Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Thermodynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer FIVE full questions, choosing ONE full question from each module.

2. Use of Thermodynamics Data Hand Book is allowed.

Module-1

- 1 a. Define:
 - i) Intensive and extensive properties
 - ii) Thermodynamics cycle
 - iii) Thermodynamics equilibrium
 - iv) Microscopic and macroscopic view points
 - v) Zenith law of thermodynamics

(10 Marks)

b. Fahrenheit and centigrade thermometers are both immersed in a fluid. Fahrenheit reading is numerically twice that of the centigrade reading. What is the temperature of the fluid expressed as R and K. Note ToF = T (R) - 459.17. (10 Marks)

OR

2 a. Define work and heat and differentiate between them.

(06 Marks)

b. 'Heat may not cause a temperature rise, substantiate this statement with suitable example.

(06 Marks

c. If perfect gas is undergoing a process according to $T\alpha V^{-2/5}$. Calculate the workdone by the gas from state 1 at 100 bar and $4m^3$ volume to the state 2 in which volume is $2m^3$. Also calculate the final pressure.

Module-2

- 3 a. Derive an expression for SFEE (Steady Flow Energy Equation) and modify it to a steam nozzle.

 (10 Marks)
 - b. Steam enters a nozzle with an enthalpy of 3025kJ/kg and exits at 2790 kJ/kg. Assume the nozzle is horizontal with a heat loss of 100kJ/kg. if the inlet velocity is 60m/s, specific volume is 0.19m³/kg and inlet area is 0.1m², determine the exit velocity and mass flow rate.

(10 Marks)

OP

a. Explain PMM I and PMM II and state why they violate thermodynamics laws. (10 Marks)
b. A heat engine working an a Carnot cycle converts one fifth of the heat input into work.
When the temperature of the sink is reduced by 80°C, the efficiency doubles, calculate the temperature of the source and sink. (10 Marks)

Module-3

- 5 a. Define the following terms:
 - i) Critical point
 - ii) Triple point
 - iii) Dryness fraction
 - iv) Enthalpy of vaporization
 - v) Degree of superheat.

Consider water as a pure substance and represents all the above point except triple point on a T-S diagram. (12 Marks)

b. A throttling calorimeter is connected to the desuperheated steam line with the pressure measuring 3.0MPa. The calorimeter pressure is 200Kpa and the temperature is 250°C. Determine the line steam quality and the enthalpy (of the line). (08 Marks)

- Derive an expression for principle of increase of entropy and show that for an adiabatic 6 process $S_2 - S_1 \ge 0$. (08 Marks)
 - b. Define available and unavailable energy.

(04 Marks)

c. A heat engine receivers reversibly 450kJ/cycle from a source at 327°C and rejects heat reversibly to a sink at 27°C. There are no other heat transfers for each of the three hypothetical cases, amount of heat rejected are i) 210kJ/cycle ii) 105 kJ/cycle iii) 315 kJ/cycle. Compute the cyclic integral of δQ/T and from these results show that which process is reversible, irreversible and impossible. (08 Marks)

Module-4

- With the help of a schematic diagram explain the working of a vapour absorption system. 7
 - A 10 tonne ammonia ice plant operates between evaporator temperature of 15°C and a condenser temperature of 35°C. The ammonia enters the compressor as dry saturated vapour. Assuming isentropic compression determine:
 - Mass flow rate NH₃
- ii) COP of the plant iii) Power input in kW
- iv) Tones of ice produced at 10°C from water at 25°C in a day.

Take enthalpy of fusion of ice = 334kJ/kg, C_p for water = 4.187 kJ/kg°C, C_p for ice = $2.1 \text{ kJ/kg}^{\circ}\text{C}$. (10 Marks)

OR

- Define the following terms and write the expression for the same. 8
 - Specific humidity i)
- ii) Relative humidity
- Degree of saturation
- iv) Sensible heating

(08 Marks)

- b. If sling psychrometer reads 40°C DBT and 28°C WBT. Calculate:
 - Specific humidity i)
- ii) Relative humidity
- Vapour density in air
- iv) Dew Point Temperature
- Enthalpy of mixture per kg of dry air.

Take total pr, p = 101.325KPa and $R_v = 0.461$ kJ/kg K, $R_a = 0.287$ kJ/kg K.

(12 Marks)

Module-5

- Derive an expression for minimum work for a reciprocating compressor. Based on the P-V diagram define isothermal efficiency of a reciprocating compressor. (10 Marks)
 - 7.5 kW of power is delivered by a single stage single cylinder double acting compressor. Determine the cylinder dimensions if stroke to diameter ratio is 1.25: 1. The following data may be assumed. Suction pressure = 0.9bar, delivery pressure = 6 bar, average piston speed as 120 m/s, law of compression PV $^{1.25}$ = C. Neglect clearance. (10 Marks)

OR

With a neat sketch, explain the principle of Rocket propulsion. 10 a.

(07 Marks)

- b. Classify Gas turbines, sketch the Gas turbine cycle on a T-S diagram showing all the processes. Consider both ideal and actual cases and explain. (06 Marks)
- With suitable sketches, explain the principle of working of a Gas turbine with all major components. (07 Marks)

