Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, June/July 2024 Additional Mathematics - I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Show that $(1+\cos\theta+i\sin\theta)^n+(1+\cos\theta-i\sin\theta)^n=2^{n+1}\cos^n\left(\frac{\theta}{2}\right)\cdot\cos\left(\frac{n\theta}{2}\right)$ 1 (07 Marks)

b. Express $\sqrt{3} + i$ in the polar form and hence find its modulus and amplitude. (07 Marks)

c. Find the argument of $\frac{1+i\sqrt{3}}{1-i\sqrt{3}}$ (06 Marks)

If $\vec{A} = i + 2j + 3k$, $\vec{B} = -i + 2j + k$ and $\vec{C} = 3i + j$, find P such that $\vec{A} + \vec{PB}$ perpendicular to C. (07 Marks)

b. Find the area of the parallelogram whose adjacent sides are the vectors $\overrightarrow{A} = 2i + 4j - 5k$ and $\vec{B} = i + 2j + 3k$. (06 Marks)

c. If $\vec{A} = 4i + 3j + k$ and $\vec{B} = 2i - j + 2k$, find a unit vector N form a right handed system. (07 Marks)

Module-2

Obtain the Maclaurin's series expansion of $\sin x$ up to term containing x^4 . (07 Marks)

 $b. \quad \text{If} \quad U = \sin^{-1} \left[\frac{x^2 + y^2}{x - y} \right], \text{ prove that } \quad x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} = \tan U \, .$ $c. \quad \text{If} \quad U = f(x - y, y - z, z - x) \text{ prove that } \quad \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} = 0 \, .$ (07 Marks)

(06 Marks)

Prove that $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ by using Maclaurin's series notation.

(07 Marks)

b. Using Euler's theorem prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 4u\log u , \text{ if } u = e^{\left(\frac{x^3y^3}{x^2 + y^2}\right)}$$
 (07 Marks)

c. If
$$u = x + y$$
, $v = y + z$ and $w = z + x$ then find $J\left(\frac{u, v, w}{x, y, z}\right)$. (06 Marks)

18MATDIP31

- a. A particle moves along a curve $x = e^{-t}$, $y = 2\cos 3t$ and $z = 2\sin 3t$, where t is the time variable. Determine the components of velocity and acceleration vectors at t = 0 in the (07 Marks) direction of i + j + k.
 - b. Find the unit normal to the surface $x^2y + 2xz = 4$ at (2, -2, 3). (06 Marks)
 - Show that the vector field $\vec{F} = (4xy z^3)i + (2x^2)j (3xz^2)k$ is irrotational. (07 Marks)

- a. Find div \vec{F} and curl \vec{F} where $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$. 6 (07 Marks)
 - b. If $\vec{F} = (3x^2y z)i + (xz^3 + y^4)j 2x^3z^2k$, find grad(div \vec{F}) at (2, -1, 0). (07 Marks)
 - c. Find the value 'a' such that the vector field $\vec{F} = (x+3y)i + (y-2z)j + (x+az)k$ is Solenoidal. (06 Marks)

Module-4

- Obtain the reduction formula for $\int_{0}^{\pi/2} \cos^{n} x \, dx$, n > 0. (07 Marks)
 - b. Evaluate $\int \frac{x^9}{\sqrt{1-x^2}} dx$ (06 Marks)
 - c. Evaluate $\iint_C xy(x+y)dxdy$ over the area between $y = x^2$ and y = x. (07 Marks)

OR

Obtain the reduction formula for

$$\int_{0}^{\pi/2} \sin^{n} x \, dx, \quad n > 0$$
 (07 Marks)

b. Evaluate
$$\int_{0}^{\infty} \frac{x^2}{(1+x^6)^{7/2}} dx$$
 (06 Marks)

c. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$$
 (07 Marks)

9 a. Solve
$$(4xy + 3y^2 - x) dx + x(x + 2y) dy = 0$$
 (07 Marks)

b. Solve
$$\frac{dy}{dx} + \frac{y}{x} = y^2x$$
 (06 Marks)

c. Obtain the solution of the differential equation

$$(1 + e^{x/y})dx + e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$$
 (07 Marks)

OR

- a. Solve: $tany dy = (cosy cos^2 x tanx) dx$ (07 Marks)
 - b. Solve: $|y(1+\frac{1}{x}) + \cos y| dx + (x + \log x x \sin y) dy = 0$ (07 Marks)
 - c. Solve: $(1 + y^2)dx = (\tan^{-1} y x) dy$ (06 Marks)