CBCS SCHEME

USN								,	100		
-----	--	--	--	--	--	--	--	---	-----	--	--

BPHYE102/202

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Applied Physics for EEE Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

4. Speed of light $c = 3 \times 10^8$ m/s, $K = 1.38 \times 10^{-23}$ J/K, $h = 6.625 \times 10^{-34}$ JS, g = 9.8 m/s², $\epsilon_0 = 8.854 \times 10^{-12}$ F/m

	Module – 1	M	L	C
Q.1	State and explain Heisenberg's uncertainty principle and show that there is no existence of electrons in the nucleus of an atom.	9	L2	CO1
]	. What is a wave function, probability density and normalization of wave function?	7	L2	CO1
		4	L3	CO1
	OR			
Q.2	Setup time Independent Schrodinger's wave equation for a particle in one dimension.	7	L2	CO1
1	Discuss the wave functions, probability densities and energy for a particle in a box by considering the ground state and first two excited states.	9	L2	CO1
	Calculate the de-Broglie wavelength of an electron when it is accelerated to a potential of 5000 V.	4	L3	CO1
West of the second	Module -2		Live to the same of the same o	
Q.3	Mention any three assumptions of quantum free electron theory. Discuss the variation of Fermi factor with temperature and energy.	9	L2	CO1
1		6	L2	CO1
•	An elemental solid dielectric material has polarizability of 7×10^{40} Fm ² . Assuming the internal field to be Lorentz field, calculate the dielectric constant for the material if the material has 3×10^{28} atoms/m ³ .	5	L3	CO1
3	OR			
Q.4	. What is super conductivity? Describe Type-I and Type-II superconductors.	7	L2	CO1
	. What is dielectric polarization? Explain various types of polarization mechanism.	8	L2	CO1
	Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K and 400 K in a material.	5	L3	CO1
	Module – 3			
Q.5	Obtain an expression for energy density of radiation under thermal equilibrium conditions in terms of Einstein's coefficients.	8	L2	CO2
	. What is attenuation? Explain different types of attenuation in optical fibers.	8	L2	CO2
	C1	4	L3	CO2
	OR			

BPHYE102/202

Q.6	a.	What is numerical aperture? Obtain an expression for numerical aperture interms of refractive indices of core and cladding of an optical fiber.	9	L2	CO2
	h	Describe the working of a laser printer.	6	L2	CO2
	b.	The attenuation of light in an optical fiber is estimated at 2.2 dB/km. What	5	L3	CO2
	c.	fractional initial intensity remains after 2 km and after 6 km.	٥		002
		Module – 4			
Q.7	a.	State and prove Gauss Divergence theorem.	7	L2	CO3
Q.,	b.	Explain Faraday's laws of electromagnetic induction and amperes law.	8	L2	CO3
		Express the same in point form.			
	c.	Determine the constant c such that the vector	5	L3	CO3
	10	$\vec{A} = (x + ay)\hat{a}_x + (y + bz)\hat{a}_y + (x + cz)\hat{a}_z$ is solenoidal.			a)
		OR			
Q.8	a.	Derive wave equation in terms of electric field using Maxwell's equations	8	L2	CO3
		for free space.			
-	b.	Discuss continuity equation. Derive the expression for displacement	8	L2	CO3
		current.			
		Calculate the curl of \vec{A} given by $\vec{A} = (1 + yz^2)\hat{a}_x + xy^2\hat{a}_y + x^2y\hat{a}_z$.	4	L3	CO3
	c.				
0.0		Module – 5	8	L2	CO4
Q.9	a.	Derive an expression for electrical conductivity in extrinsic and intrinsic	0	LZ	CO4
	h	semiconductors. Describe the construction and working of semiconductor laser with energy	8	L2	CO4
	b.	level diagram.	U		004
	c.	The Hall coefficient of a specimen of a doped silicon is found to be	4	L3	CO4
	۲.	3.66×10^{-4} m ³ /c. The resistivity of the specimen is 9.93×10^{-3} ohm-m. Find	•		
		the mobility and charge carrier density assuming single carrier conduction.			
	<u> </u>	OR			
Q.10	a.	Explain Fermi level in an intrinsic semiconductor and derive the relation	9	L2	CO4
		between Fermi energy and energy gap for an intrinsic semiconductor.			
	b.	Explain construction and working of photo diode.	7	L2	CO5
	c.	The resistivity of intrinsic germanium at 27°C is 0.47 ohm-meter. If the	4	L3	CO4
		electron and hole mobilities are 0.38 m ² /VS and 0.18 m ² /VS respectively.			
,		Calculate the intrinsic carrier density.			

	- 1				
		•			
		2 of 2			