MAXE-UP EXAM | USN | BPHYS102/20 | |-----|-------------| |-----|-------------| ## First/Second Semester B.E./B.Tech. Degree Examination, Nov./Dec. 2023 Applied Physics for CSE Stream Time: 3 hrs. Max. Marks: 100 Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Formula Hand Book is permitted. 3. M: Marks, L: Bloom's level, C: Course outcomes. 4. Physical constants: Plank's constant, $h = 6.625 \times 10^{-34}$ J-S; Speed of light, $c = 3 \times 10^8$ ms⁻¹; Mass of electron, $m = 9.1 \times 10^{-31}$ kg; Charge of electron, $e = 1.6 \times 10^{-19}$ C; Boltzmann constant, $k = 1.38 \times 10^{-23}$ JK⁻¹; Acceleration due to gravity, g = 9.8 ms⁻². | | | No. | 7. | T | <u>C</u> | |-----|-----------|--|-----|----------|-----------------| | | | Module – 1 | M | L | C | | Q.1 | a. | Obtain the expression for energy density of radiation under thermal equilibrium condition interms of Einstein's co-efficient. | 09 | L2 | CO1 | | | b. | Explain the different types of optical fibers with suitable diagrams. | 06 | L2 | CO ₁ | | | c. | An optical fiber of length 2 km has input power of 200 mW, which emerges | 05 | L3 | CO ₁ | | | | out with power of 160 mW. Calculate the attenuation co-efficient of the fiber. | | | | | | 1 | OR A | | т | | | Q.2 | a. | Describe the construction, principle and working of a semiconductor LASER with neat diagrams. | 07 | L2 | CO1 | | , | b. | Define numerical aperture and acceptance angle. Obtain an expression for numerical aperture interms of refractive indices of core, cladding and surrounding medium. | 08 | L2 | CO1 | | | c. | In diffraction grating experiment the LASER light undergoes first order diffraction with diffracting angle 23.86° . The grating constant is 1.66×10^{-6} m ⁻¹ . Calculate the wavelength of LASER source. | 05 | L3 | CO5 | | | | Module – 2 | | | | | Q.3 | a. | State Heisenberg's uncertainty principle. Using this principle, prove that the electron does not exists inside the nucleus. | 08 | L2 | CO2 | | | b. | Set up one dimensional time-independent Schrodinger wave equation. | 08 | L2 | CO ₂ | | | c. | An electron is bound in one dimensional infinite potential well of width | 04 | L3 | CO ₂ | | | C. | 0.12 nm. Find the energy value and de-Broglie wavelength in first excited level. | | | | | | | OR | | | | | Q.4 | a. | State and explain de-Broglie's hypothesis and derive the expression for de-Broglie wavelength by analogy. | | L2 | CO2 | | | b. | Derive the expression for energy eigen functions and eigen values for a particle in one dimensional infinite potential well. | 10 | L2 | CO2 | | | c. | Estimate the potential difference through which an electron is needed to be | 04 | L3 | CO2 | | | | accelerated so that its de-Broglie wavelength becomes equal to 20 A. | | <u> </u> | | | | | Module – 3 | 0.0 | 12 | COS | | Q.5 | a. | Define single and two qubits. Explain the block sphere representation of qubit. | | L2 | CO2 | | | b. | 1 1 NOT - (CNOT cota) with four different input | 08 | L2 | CO2 | | | | states with the truth table. | | TA | COA | | | c. | Show that S - gate can be formed by connecting two T - gates in series. | 04 | L3 | CO ₂ | | | | OR | | | | ## **BPHYS102/202** | Q.6 | a. | Mention the Pauli's matrices. Discuss the operations of Pauli's matrices on | 10 | L2 | CO ₂ | |------|----|--|-----|----|-----------------| | ۷.0 | a. | $ 0\rangle$ and $ 1\rangle$ states. | | | | | | b. | Explain the operations of phase gate $[S - gate]$ with $[0 > and 1 > states]$ | 06 | L2 | CO ₂ | | | D. | with truth table. Mention its matrix representation. | | 9 | | | | c. | A linear operator X operates such that $X \mid 0 > = 1 > $ and $X \mid 1 > = 0 >$. | 04 | L3 | CO ₂ | | | | Find the matrix representation of the operator X. | | | 2.1521 | | | | Module – 4 | | | | | Q.7 | a. | What is Meissner effect? Explain Type I [Soft] and Type II [Hard] super | 08 | L2 | CO ₃ | | | | conductors. | | | | | | b. | What is Fermi factor? Discuss the variation of Fermi factor with | 08 | L2 | CO ₃ | | | ~ | temperature and energy. | | | | | | c. | Superconducting tin has a critical magnetic field of 0.0217 T at 2K. If the | 04 | L3 | CO ₃ | | | | critical temperature for superconducting transition for tin is 3.7K, find the | | | | | | | critical magnetic field at 3K. | | | | | | | OR | | | | | Q.8 | a. | Define critical temperature and critical magnetic field. Explain briefly BCS | 08 | L2 | CO3 | | | | theory of superconductivity. | | | | | | b. | Enumerate the failures of classical free electron theory and mention the | 08 | L2 | CO3 | | | | assumptions of quantum free electron theory. | | | 600 | | | c. | The Fermi level in potassium is 2.1 eV. What is the energy of the energy | 04 | L3 | CO3 | | | | level for which the probability of occupation at 300 K is 0.98? | | | <u> </u> | | | | Module – 5 | | | 604 | | Q.9 | a. | Explain the odd rule with odd rule multipliers with suitable examples. | 08 | L2 | CO4 | | | b. | Explain Poisson distribution and probability mass function with example. | 07 | | CO4 | | | c. | In case of animating a jump, the push height is 0.5m and jump | 05 | L3 | CO4 | | | | magnification is 5. Calculate the jump height and push acceleration. | | | | | | | OR | 00 | TA | CO.4 | | Q.10 | a. | Discuss slow in and slow out with neat diagrams. | 08 | L2 | CO4 | | | b. | Write a note on Monte-Carlo method and discuss the determination of the | 07 | L2 | CO4 | | | | value of π using Monte-Carlo method. | 0.5 | 12 | COF | | | c. | In an optical fiber experiment the LASER light propagating through optical | 05 | L3 | CO5 | | | | made a spot diameter of 21 mm on the screen. When the distance between | | | | | | | the end of the fiber and the screen is 31 mm, calculate the acceptance angle | | | | | | | and numerical aperture. | | | | | | | | | | | | | | **** | | | | | | 4 | And the second s | 2 of 2 | | | | | | | | | | | | | | 4 attack 7 | | | |