

18MAT11 USN

First Semester B.E. Degree Examination, Jan./Feb. 2023 **Calculus and Linear Algebra**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Find the angle between the curves $r = a(1 + \cos \theta)$ and $r = b(1 \cos \theta)$. (06 Marks)
 - Prove that the pedal equation to the curve $r^m = a^m \cos m \theta$ is $pa^m = r^{m+1}$. (07 Marks)
 - Shat that the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x 2a)^3$. (07 Marks)

- Find the pedal equation to the cardioid $r = a(1 + \cos \theta)$. (06 Marks)
 - b. With usual notations prove that $\tan \phi = r \left(\frac{d\theta}{dr} \right)$. (07 Marks)
 - c. Find the radius of curvature of the curve $y^2 = \frac{a^2(a-x)}{x}$, where the curve meets X axis. (07 Marks)

Module-2

- a. Using Maclaurin's series prove that $\sqrt{1+\sin 2x} = 1+x-\frac{x^2}{2}-\frac{x^3}{6}+\frac{x^4}{24}$ (06 Marks)
 - b. Evaluate $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$. (07 Marks)
 - c. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, Prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$. (07 Marks)

- a. Expand log (1 + cos x) by Maclaurin's series upto term containing x⁴.
 b. Find the extreme values of the function x³ + 3xy² 15x² 15y² + 72x. (06 Marks)
 - (07 Marks)
 - c. If u = x + y + z, v = y + z, uvw = z, find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ (07 Marks)

- 5 a. Evaluate $\int_{a}^{c} \int_{a}^{b} \int_{a}^{a} (x^2 + y^2 + z^2) dz dy dx$. (06 Marks)
 - b. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{x}} xy \, dy \, dx$ by changing the order of integration. (07 Marks)
 - c. Prove that $\beta(m, n) = \frac{\Gamma(m) \cdot \Gamma(n)}{\Gamma(m+n)}$ (07 Marks)

- a. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration. (06 Marks)
 - b. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.

c. Show that $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} \ d\theta = \pi.$ (07 Marks)

Module-4

7 a. Solve
$$[\cos x \tan y + \cos (x + y)]dx + [\sin x \sec^2 y + \cos(x + y)]dy$$
. (06 Marks)

b. Solve
$$\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 y}{y^2}$$
. (07 Marks)

c. A body originally at 80°C cools down to 60°C in 20 minutes. If the temperature of the air is 40°C, find the temperature of the body after 40 minutes from the original. (07 Marks)

8 a. Solve
$$y(2x - y + 1) dx + x(3x - 4y + 3) dy = 0$$
. (06 Marks)

b. Show that the family of parabolas
$$y^2 = 4a(x + a)$$
 is self Orthogonal. (07 Marks)

c. Solve
$$p(p + y) = x(x + y)$$
. (07 Marks)

- Find the rank of $\begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by Elementary row transformation. (06 Marks)
 - b. Apply Gauss Jordan method to solve the system of equations

$$2x + 5y + 7z = 52$$

$$2x + y - z = 0$$
$$x + y + z = 9.$$

x + y + z = 9.(07 Marks)

c. Find the largest eigen value and the corresponding eigen vector of the matrix.

 $A = \begin{bmatrix} -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by Power method, taking the initial eigen vector as $[1, 1, 1]^1$. Perform

5 iterations. (07 Marks)

Solve the following system of equations by Gauss Elimination method. 10

$$2x + y + 4z = 12$$

$$4x + 11y - z = 33$$

$$8x - 3y + 2z = 20$$
. (06 Marks)

b. Solve the following system of equations by Gauss Seidel method.

$$10x + y + z = 12$$

 $x + 10y + z = 12$

$$x + 10y + z - 12$$

 $x + y + 10z = 12$. (07 Marks)

c. Diagonalise the matrix $\begin{vmatrix} -19 & 7 \\ -42 & 16 \end{vmatrix}$. (07 Marks)