Second Semester B.E. Degree Examination, June/July 2024 **Advanced Calculus and Numerical Methods**

Max. Marks: 100 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

- Module-1 Find the angle between surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2). 1
 - Evaluate div \vec{F} and curl \vec{F} for the vector point function $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$ (07 Marks)
 - Determine the constants a, b and c so that the vector.

$$\vec{F} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$$

is irrotational and find ϕ such that $\vec{F} = \nabla \phi$

(07 Marks)

- 2 a. If $\vec{F} = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$, evaluate $\int \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the path $x = t, y = t^2, z = t^3$. (06 Marks)
 - b. Using Green's theorem, evaluate $\int [(y \sin x)dx + \cos xdy]$, where c is the plane triangle enclosed by the lines y = 0, $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi}x$ (07 Marks)
 - c. Evaluate $\int \vec{f} \cdot \hat{n} ds$ where $\vec{f} = 4xz\hat{i} y^2\hat{j} + yz\hat{k}$ and s is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1, by using the Gauss divergence theorem. (07 Marks)

- a. Solve: $4\frac{d^4y}{dx^4} 4\frac{d^3y}{dx^3} 23\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 36y = 0$. (06 Marks)
 - b. Find the solution of $(D^2 4D + 4)y = 8(e^{2x} + \sin 2x)$ by inverse operator method. (07 Marks)
 - Obtain the solution for the differential equation, $y'' 2y' + y = \frac{e^x}{x}$ by the method of variation (07 Marks) of parameter.

OR

- Find the solution for the differential equation $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$. (06 Marks)
 - b. Solve $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 9y = 3x^2 + \sin(3\log x)$ (07 Marks)

c. The differential equation of a simple pendulum is $\frac{d^2x}{dt^2} + \omega_0^2x = F_0\sin t$, where ω_0 and F_0 are constants. Solve it when x=0, $\frac{dx}{dt}=0$ initially. (07 Marks)

Module-3

- 5 a. Form the partial differential equation by eliminating the arbitrary function f from $lx + my + nz = f(x^2 + y^2 + z^2)$ (06 Marks)
 - b. Solve by direct integration method.

$$\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x - y) = 0$$
(07 Marks)

c. Derive one dimensional heat equation in the form $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$. (07 Marks)

OR

- 6 a. Form the partial differential equation by eliminating the arbitrary function and from $f(x^2 + y^2 + z^2, z^2 2xy) = 0$ (06 Marks)
 - b. Find the solution of the partial differential equation $(x^2 y^2 z^2)p + 2xyq = 2xz$ (07 Marks)
 - c. Obtain all possible solutions of one dimensional wave $\frac{\partial^2 U}{\partial t^2} = C^2 \frac{\partial^2 U}{\partial x^2}$ by the method of variable separable method. (07 Marks)

Module-4

7 a. Test the convergence of the series,

$$\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \infty$$
 (06 Marks)

- b. Obtain the series solution of Bessel's differential equation which leads to $J_n(x)$. (07 Marks)
- c. Express the polynomial $f(x) = x^4 + 3x^3 x^2 + 5x 2$ in terms of Legendre polynomials. (07 Marks)

OR

- 8 a. Test for convergence for, $\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$. (06 Marks)
 - b. Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0$ for $\alpha \neq \beta$ and α , β are the roots of the equation $J_{n}(x) = 0$.

 (07 Marks)
 - c. Using the Rodrigue's formula, find the Legendre polynomials $P_0(x)$, $P_1(x)$, $P_2(x)$ and $P_3(x)$.

Module-5

9 a. Compute the real root of $x \log_{10} x - 1.2 = 0$ by the method of false position. Correct to 3 decimal places, which lies between 2 and 3. (06 Marks)

18MAT21

b. Using the Newton's divided difference method find the interpolating polynomial of the given data:

X	-1	0	1	3
f(x)	2	1	0	-1

(07 Marks)

c. By using Simpson's $\frac{1}{3}$ rule, evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by considering seven ordinates. (07 Marks)

OR

- 10 a. Use Newton-Raphson method to find a real root of $x \sin x + \cos x = 0$ near $x = \pi$ correct to three decimal places. (06 Marks)
 - b. From the following table, estimate the number of students who obtained marks between 40 and 45. (07 Marks)

Marks	30 – 40	40 - 50	50 - 60	60 - 70	70 - 80
Number of students	31	42	51	35	31

c. Evaluate $\int_{4}^{5.2} \log x \, dx$, by using the Weddle's Rule taking Seven ordinates. (07 Marks)

3 of 3