18MAT21

Second Semester B.E. Degree Examination, Jan./Feb. 2021 Advanced Calculus and Numerical Methods

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. In which direction the directional derivative of x^2yz^3 is maximum at (2, 1, -1) and find the magnitude of this maximum. (06 Marks)
 - b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2).

 (07 Marks)
 - c. Show that $\overrightarrow{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational. Also find a scalar function ϕ such that $\overrightarrow{F} = \nabla \phi$.

OR

- 2 a. Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = xyi + (x^2 + y^2)j$ along the path of the straight line from (0, 0) to (1, 0) and then to (1, 1).
 - b. Verify Green's theorem in a plane for $\int (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the boundary of the region enclosed by $y = \sqrt{x}$ and $y = x^2$. (07 Marks)
 - c. Verify stoke's theorem for vector,

 $\vec{F} = (x^2 + y^2)i - 2xyj$ taken round the rectangle bounded by x = 0, x = a, y = 0, y = b.

(07 Marks)

Module-2

3 a. Solve: $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$.

(06 Marks)

b. Solve: $\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$.

(07 Marks)

c. Solve: $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = x^2 - 4x - 6$.

(07 Marks)

OR

4 a. Solve: $\frac{d^2y}{dx^2} + y = \tan x$ by the method of variation of parameters. (06 Marks)

b. Solve: $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$.

(07 Marks)

c. The differential equation of a simple pendulum is $\frac{d^2x}{dt^2} + w^2x = F\sin xt$, where w and F are

constants. If at t = 0, x = 0 and $\frac{dx}{dt} = 0$, determine the motion when x = w. (07 Marks)

(06 Marks)

Module-3

- 5 a. Find the P.D.E. of the family of all spheres whose centres lie on the plane z = 0 and have a constant radius 'r'. (06 Marks)
 - b. Solve: $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$, when x = 0 and z = 0 if y is an odd multiple of $\frac{\pi}{2}$.
 - c. Find all possible solutions of one dimensional heat equations, $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$ using the method of separation of variables. (07 Marks)

OR

- 6 a. Solve: $\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial z}{\partial x} 4z = 0$ subject to the conditions that z = 1 and $\frac{\partial z}{\partial x} = y$ when x = 0.
 - b. Solve: (y-z)p + (z-x)q = (x-y). (07 Marks)
 - c. Derive one dimensional wave equation in the standard form as, $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$. (07 Marks

Module-4

7 a. Discuss the nature of the series,

$$\frac{2}{3} + \frac{2.3}{3.5} + \frac{2.3.4}{3.5.7} + \dots$$
 (06 Marks)

- b. Prove that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ (07 Marks)
- c. If $x^3 + 2x^2 x + 1 = aP_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$, find the values of a, b, c, d. (07 Marks)

OR

- 8 a. Discuss the nature of the series, $\sum_{n=1}^{\infty} \frac{(n+1)^n \cdot x^n}{n^{n+1}}$ (06 Marks)
 - b. If α and β are two distinct roots of $J_n(x) = 0$, prove that $\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = \frac{1}{2} [J_n'(\alpha)]^2 \text{ if }$ $\alpha = \beta.$ (07 Marks)
 - c. Using Redrigue's formula obtain expressions for $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$, $P_4(x)$. (07 Marks)

Module-5

9 a. The Area of a circle (A) corresponding to diameter (D) is given below:

D	80	85	90	95	100
A	5026	5674	6362	7088	7854

Find the Area corresponding to diameter 105 using an appropriate interpolation formula.

- b. Find the cubic polynomial which passes through the points (2, 4), (4, 56), (9, 711), (10, 980) by using Newton's divided difference formula. (07 Marks)
- c. Find the real root of the equation, $x \sin x + \cos x = 0$ near $x = \pi$ using Newton's Raphson method. Carry out three iterations. (07 Marks)

OR

10 a. The following table gives the normal weights of babies during first eight months of life.

Age (in months)	0	2	5	8
Weight (in pounds)	6	10	12	16

Estimate the weight of the baby at the age of seven months using Lagrange's interpolation formula. (06 Marks)

- b. Find the real root of $x \log_{10} x 1.2 = 0$ by correct to four decimal places using Regula-Falsi method. (07 Marks)
- c. Use Simpson's $\frac{3}{8}^{th}$ rule to obtain the approximate value of $\int_{0}^{0.3} (1-8x^3)^{\frac{1}{2}} dx$ by considering 3 equal intervals. (07 Marks)