18MAT21

Second Semester B.E. Degree Examination, Dec.2019/Jan.2020 Advanced Calculus and Numerical Methods

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2, -1, 2) along $2\overline{i} - 3\overline{j} + 6\overline{k}$. (06 Marks)

b. If $\overline{f} = \nabla(x^3 + y^3 + z^3 - 3xyz)$ find div \overline{f} and curl \overline{f} .

(07 Marks)

c. Find the constants a and b such that $\overline{F} = (axy + z^3)\overline{i} + (3x^3 - z)\overline{j} + (bxz^2 - y)\overline{k}$ is irrotational. Also find a scalar potential ϕ if $\overline{F} = \nabla \phi$. (07 Marks)

OR

2 a. If $\overline{F} = xy\overline{i} + yz\overline{j} + zx\overline{k}$ evaluate $\int_{C} \overline{F}.d\overline{r}$ where C is the curve represented by x = t, $y = t^2$,

 $z = t^3, -1 \le t \le 1$ (06 Mark)

b. Using Stoke's theorem Evaluate $\oint_C \overline{F} \cdot d\overline{r}$ if $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken round the rectangle

bounded by x = 0, x = a, y = 0, y = b.

c. Using divergence theorem, evaluate $\iint_{S} \overline{F} \cdot \hat{n} \, ds \quad \text{if } \overline{F} = (x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$

taken around $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.

(07 Marks)

Module-2

3 a. Solve $(4D^4 - 8D^3 - 7D^3 + 11D + 6)y = 0$

(06 Marks)

b. Solve $(D^2 + 4D + 3)y = e^{-x}$

(07 Marks)

c. Using the method of variation of parameter solve $y'' + 4y = \tan 2x$.

(07 Marks)

OR

4 a. Solve $(D^3 - 1)y = 3 \cos 2x$

(06 Marks)

b. Solve $x^2y'' - 5xy' + 8y = 2 \log x$

(07 Marks)

c. The differential equation of a simple pendulum is $\frac{d^2x}{dt^2} + W_0^2x = F_0Sinnt$, where W_0 and F_0

are constants. Also initially x = 0, $\frac{dx}{dt} = 0$ solve it.

(07 Marks)

Module-3

5 a. Find the PDE by eliminating the function from $z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$. (06 Marks)

b. Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ given $\frac{\partial z}{\partial y} = -2 \sin y$, when x = 0 and z = 0, when y is odd multiple

of $\frac{1}{2}$.

c. Derive one-dimensional wave equation in usual notations.

(07 Marks)

(07 Marks)

OR

6 a. Solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that when x = 0 $\frac{\partial z}{\partial x} = a \sin y$ and z = 0. (06 Marks)

b. Solve x(y - z) p + y (z - x) q = z (x - y).

(07 Marks)

c. Find all possible solution of $U_t = C^2 U_{xx}$ one dimensional heat equation by variable separable method. (07 Marks)

Module-4

7 a. Test for convergence for

$$1 + \frac{2!}{2^2} + \frac{3!}{3^2} + \frac{4!}{4^2} + \dots$$
 (06 Marks)

b. Find the series solution of Legendre differential equation $(1-x^2)y'' - 2xy' + n(n+1) = 0$ leading to $P_n(x)$.

(07 Marks)

c. Prove the orthogonality property of Bessel's function as

$$\int_{0}^{1} x \, \bar{j}_{n}(\alpha x) \, \bar{j}_{n}(\beta x) dx = 0 \quad \alpha \neq \beta$$
 (07 Marks)

OF

8 a. Test for convergence for

$$\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{n^{3/2}}$$
 (06 Marks)

b. Find the series solution of Bessel differential equation $x^2y'' + xy' + (n^2 - x^2)y = 0$ Leading to $\bar{i}_n(x)$.

c. Express the polynomial $x^3 + 2x^2 - 4x + 5$ in terms of Legendre polynomials.

(07 Marks)

Module-5

9 a. Using Newton's forward difference formula find f(38).

(06 Marks)

X	40	50	60	70	80	90
f(x)	184	204	226	250	276	304

- b. Find the real root of the equation $x \log_{10} x = 1.2$ by Regula falsi method between 2 and 3 (Three iterations). (07 Marks)
- c. Evaluate $\int_{1}^{3.2} \log x \, dx$ by Weddle's rule considering six intervals.

(07 Marks)

ΩD

10 a. Find f(9) from the data by Newton's divided difference formula:

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(06 Marks)

- b. Using Newton Raphson method, find the real root of the equation $x \sin x + \cos x = 0$ near $x = \pi$. (07 Marks)
- c. By using Simpson's $\left(\frac{1}{3}\right)$ rule, evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by considering seven ordinates. (07 Marks)

* * * * *