CBCS SCHEME

	A CONTRACT	-			2.8	 	and the land
TICN	1		1.				
	1	×					
001	1				2		
	1	ı	B 10 3				ı

BCHEM102/202

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Applied Chemistry for ME Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define GCV. Explain the determination of calorific value of a fuel using	07	L1	CO1
		Bomb calorimeter.			
and a fair flam with	b.	Explain the construction, working and applications of Photovoltaic cells.	07	L1	CO1
4	c.	Explain the construction, working and applications of Lithium-ion battery.	06	L2	CO ₁
		OR			
Q.2 a.	A coal sample with 93% C, 5% H ₂ and 2% ash is subjected to combustion	07	L2	CO ₁	
	in a Bomb calorimeter. Calculate the gross and net calorific values, given				
	that mass of coal sample taken is 0.95g, mass of water in the calorimeter is				
	2000g, water equivalent of calorimeter is 700g, rise in temperature of water				
		is 2.8°C, latent heat of steam is 2457 J/g and specific heat of water is			
		4.2 J/g/°C.		2	
	b.	What are fuel cells? Explain the construction, working and applications of	07	L2	CO ₁
		methanol-oxygen fuel cell.			
	c.	Justify biodiesel is a great fuel. Explain the synthesis of biodiesel by	06	L2	CO ₁
		transesterification method.			
2 XX2 E		Module – 2			
Q.3	a.	Define metallic corrosion. Explain electrochemical theory of corrosion	07	L2	CO2
		taking ion as an example.		,	
	b.	Describe electroplating of hard and decorative chromium.	07	L2	CO ₂
	c.	What is cathodic protection? Explain the principle, process and applications	06	L2	CO2
		of sacrificial anode method.			
Sec. 2		OR			
	a.	What is CPR? A steel sheet of area 100 inch ² is exposed to air near the	07	L2	CO ₂
		ocean. After 1 year period it was found to experience a weight loss of 485g			
		due to corrosion. If the density of steel is 7.9 g/cm ³ , calculate the CPR in			
		mpy and mmpy.			
b	b.	What is stress corrosion? Explain the process of stress corrosion taking	07	L2	CO ₂
		caustic embrittlement as an example.			
	c.	Explain the process of Galvanization and its applications.	06	L2	CO ₂
	.,	Module – 3			
Q.5	a.	In a polymer sample, 20% of molecules have molecular mass 15000 g/mol,	07	L2	CO ₃
		35% molecules have molecular mass 25000 g/mol, remaining molecules			_
		have molecular mass 20000 g/mol, calculate the number average, weight			
		average molecular mass of the polymer.			
	b.	Explain the synthesis, properties and applications of chlorinated poly vinyl	07	L2	CO ₃
		chloride			
	c.	Explain the synthesis of Teflon. Mention its applications.	06	L2	CO ₃

· · · · · · · · · · · · · · · · · · ·		OD			
0.6	Ι -	OR Explain the synthesis, properties and applications of Kevlar fiber.	07	L2	CO
Q.6	a.	Explain the synthesis, properties and applications of Revial Hoer. Explain the properties and industrial applications of lubricants.	07	L2	CO
	b.	Explain the properties and industrial applications of metal matrix polymer	06	L2	CO
	c.	composites.	00	LL	
		Module – 4			
Q.7	a.	Define Phase, Components and degree of freedom with example.	07	L2	CO
Q.,	b.	Explain the principle, instrumentation and applications of potentiometric	07	L2	CO
		titration.			
	c.	Describe the estimation of total hardness of water by using EDTA method.	06	L2	CO
		ØR -			~~
Q.8	a.	With the help of phase diagram, describe Lead-Silver system.	07	L2	CO
	b.	Explain the application of colorimetric sensors in the estimation of copper.	06	L2	CO
	c.	Explain the principle, instrumentation and applications of glass electrode in	07	L2	CO
		the determination of pH of beverages.			*
	l	Module – 5			
Ω	0	Define an Alloy. Explain the composition, properties and applications of	07	L1	CO
Q.9	a.	stainless steel.	0,	111	
	b.	Explain size dependent properties of nanomaterials with respect to	07	L2	CO
	D.	i) Catalytic property ii) Thermal property.			-
	c.	Explain the properties and applications of carbon nanotubes.	06	L3	CC
					=
		OR			
Q.10	a.	Explain the composition, properties and applications of Alnico.	07	L2	CO
	b.	Explain the chemical composition, properties and applications of	07	L2	CO
		Perovskites.	-		
	c.	Explain the synthesis of nanomaterials by Sol-Gel method.	06	L2	CO
	4	Explain the synthesis of nanomaterials by Sol-Gel method.			