Third Semester M.Tech. Degree Examination, Jan./Feb. 2023 Deep Learning

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define Learning. Name any five learning tasks. Explain linear regression in detail. (10 Marks) 1
 - Explain the forms capacity, regularization and hyper parameters in a learning model.

(10 Marks)

Define supervised and unsupervised algorithms. Describe KNN and K-means algorithms. 2

Describe essentials components in building ML algorithm. What are the challenges that

motivate Deep Learning? (10 Marks)

Module-2

Given $W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $W = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and b = 0 draw feed forward network and 3

evaluate XOR function.

(10 Marks)

b. Explain universal approximation theorem. Describe RLU hidden unit and sigmoid output unit. (10 Marks)

- Explain computational graph. Describe the steps to train neural network with back propagation. (10 Marks)
 - Define regularization. Describe |2 and |1 parameter regularization.

(10 Marks)

Module-3

- a. Define optimization. Describe batch and mini batch algorithms. List the optimization 5 challenges. (10 Marks)
 - b. Describe stochastic gradient descent and momentum algorithms. What are the challenges in neural network optimization? (10 Marks)

OR

- Give a list of adaptive learning rates algorithms. Write the Ada Grad algorithm. (10 Marks) 6
 - Describe convolution operation. How that can improve machine learning system? With diagram show the components of convolutional network layer. (10 Marks)

Module-4

- 7 a. Explain Recurrent Neural Network (RNN). Illustrate unfolding of computational graphs.

 How is RNN different from CNN? (10 Marks)
 - b. Describe encoder-decoder sequence-to-sequence architectures.

(10 Marks)

OR ®

- 8 a. Discuss the architecture of Long Short Term Memory (LSTM). (10 Marks)
 - b. Write a note on : (i) Optimization in RNN
- (ii) Explicit memory.

(10 Marks)

Module-5

- 9 a. Write the practical design steps of deep learning. Describe performance metrics. (10 Marks)
 - b. Describe the recommendations for baseline models.

(10 Marks)

OR

- 10 a. Discuss the criteria for gathering training data and hyperparameters. Also a note on debugging strategy. (10 Marks)
 - b. Briefly describe the processing steps in computer vision and NLP applications. (10 Marks)

* * * * *