CBCS SCHEME

USN							20SCS/SCN/SCE/SSE/SIT/SIS/SFC/LNI/SAM11
			1	l			

First Semester M.Tech. Degree Examination, June/July 2023 Mathematical Foundation of Computer Science

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. t-distribution table and χ^2 – distribution table allowed.

Module-1

- 1 a. (i) Define the terms subspace and linear span of a set.
 - (ii) Is S and T are subspaces of the vector space V(F), then $S \cap T$ is a subspace of V(F).

(10 Marks)

- b. (i) Define the terms linearly independent of a set and coordinates.
 - (ii) Let $S = \{v_1, v_2, v_3, v_4\}$ be a basis for \mathbb{R}^4 .

Where $v_1 = (1, 0, 0, 0)$, $v_2 = (2, 0, 1, 0)$, $v_3 = (0, 1, 2, -1)$ and $v_4 = (0, 1, -1, 0)$.

If v = (1, 2, -6, 2). Compute coordinate vector of v.

(10 Marks)

OR

- 2 a. (i) Define the terms basis and dimension.
 - (ii) Find a basis and the dimension of the subspace

$$W = \begin{cases} \begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} : a, b, c, d \text{ are real} \end{cases}$$

(10 Marks)

- b. (i) Define a linear transformation.
 - (ii) Find the matrix of linear transformation.

 $T: V_2(R) \rightarrow V_3(R)$ defined by

T(x, y) = (x+y, x, 3x-y) relative to the basis

$$B_1 = \{(1, 1), (3, 1)\}$$
 and $B_2 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$

(10 Marks)

Module-2

- 3 a. (i) Define the terms inner product and orthogonal sets.
 - (ii) If $y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, find the orthogonal projection of y onto u and the orthogonal

set. Also write y as the sum of two orthogonal vectors.

(08 Marks)

b. Find the QR factorization for the matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. (12 Marks)

20SCS/SCN/SCE/SSE/SIT/SIS/SFC/LNI/SAM11

OR

Using Gram-Schmidt process, find an orthogonal basis for $W = \text{span}\{x_1, x_2, x_3\}$ in \mathbb{R}^3 if

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 8 \\ 1 \\ 6 \end{bmatrix} \text{ and } \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$
 (10 Marks)

b. Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points (2, 1), (10 Marks) (5, 2), (7, 3) and (8, 3).

Diagonalize for the following matrix

$$\mathbf{A} = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}. \tag{12 Marks}$$

Define constrained optimization. b.

(ii) Find the maximum and minimum values of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$

Subject to the constraint $X^{T}X = 1$.

(08 Marks)

Find the singular value decomposition of A =6 (20 Marks)

Module-

7 $y = a + bx + cx^2$ to the following data using method of least Fit a parabola of the form squares:

X	0	1	2	3	4	5
у	1	3	7	13	21	31

(10 Marks)

Also estimate y at x = 6b. Find the correlation coefficient and the regression lines of y on x and x on y for the following data:

X	1.	2	3	4	5
у	2	5	3	8	7

(10 Marks)

Fit a non-linear curve of the form $y = ae^{bx}$ to the following data from the method least squares.

X	1	5 7	9	12
у	10	15 12	15	21

(10 Marks)

If θ is the acute angle between the two regression lines, then show that Explain the significance of the formula when r=0 and $r=\pm 1$.

20SCS/SCN/SCE/SSE/SFT/SIS/SFC/LNI/SAM11

Module-5

9 a. (i) Is the function defined as follows a density function?

$$f(x) = \begin{cases} e^{-x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

(ii) If so, determine the probability that the variate having this density will fall in the interval (1, 2)?

(iii) Also find the cumulative probability function F(2)?

(iv) Find $E(X^2)$ and $E(4X^2)$.

(10 Marks)

b. A set of five similar coins is tossed 320 times and the result is,

No. of heads	0	1	2	3 4	5
Frequency	6	27	72	112 71	32

Test the hypothesis that the data follow a binomial distribution at 5% level of significance.
(10 Marks)

OR

10 a. A random variable X has the following probability mass function:

X	0	1	2	3	4	5	6	7
P(X)	0	K	2K	2K	3K	K ²	$2K^2$	$7K^2+K$

Find:

(i) The value of K

(ii) $P(X < 6), P(X \ge 6)$

(iii) P(0 < X < 5)

(iv) F(3)

(10 Marks)

b. Two horses A and B were tested according to the time (in seconds) to run a particular race with the following results:

Horse A	28	30	32	33	334	29	34
Horse B	29	30	30	24	27	29	

Test whether you can discriminate between the two horses.

(10 Marks)