GBGS SCHEME

USN	
-----	--

20SCN/SCE/SSE/SCS/SIT/SIS/SFC/SAM/SAD/SDS11

First Semester M.Tech. Degree Examination, Feb./Mar. 2022 Mathematical Foundations of Computer Science

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define subspace.

(03 Marks)

- b. Prove that if w_1 and w_2 are subspaces of vector space V(F) then $w_1 + w_2$ is a subspace of V(F).
- c. Show that the set $S = \{t^2 + 1, t 1, 2t + 2\}$ is a basis for the vector space P_2 .

(10 Marks)

OR

2 a. Define linear span.

(03 Marks)

- b. Let $S = \{(1,-3,2), (2,4,1), (1,1,1)\}$ be a subset of $V_3(R)$. Show that the vectors (3,-7,6) is in L[S].
- C. Let $S = \{V_1, V_2, V_3, V_4\}$ be a basis for R^4 , where $V_1 = (1, 1, 0, 0), V_2 = (2, 0, 1, 0), V_3 = (0, 1, 2, -1)$ and $V_4 = (0, 1, -1, 0)$. If V = (1, 2, -6, 2), compute [V]s. (10 Marks)

Module-2

3 a. Define an inner product space.

(03 Marks)

- b. For any vectors α , β in an inner product space V and any scalar C, prove that
 - (i) $||c\alpha|| = c||\alpha||$

- (ii) $\|\alpha\| > 0$ for $\alpha \neq 0$
- (iii) $||(\alpha|\beta)|| \le ||\alpha|| + ||\beta||$
- (iv) $||\alpha + \beta|| \le ||\alpha|| + ||\beta||$

(07 Marks)

c. Construct an orthogonal basis for w given

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{x}_{2} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 3 \end{bmatrix}, \qquad \mathbf{x}_{3} = \begin{bmatrix} 5 \\ 0 \\ 2 \\ 3 \end{bmatrix}$$

(10 Marks)

OR

4 a. Define orthogonal projection.

(03 Marks)

- b. Prove that an orthogonal set of non-zero vectors is linearly independent and hence forms the basis for the subspace spanned by the set. (07 Marks)
- c. Find the least square solution of the system Ax = b for $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$ and also

determine the least square error in the solution of Ax = b.

(10 Marks)

Module-3

- 5 a. Diagonalize the matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$, find A^6 . (10 Marks)
 - b. Convert the quadratic form $Q(x) = x_1^2 8x_1x_2 5x_2^2$ into quadratic form with no cross product. (10 Marks)

1 of 2

20SCN/SCE/SSE/SCS/SIT/SIS/SFC/SAM/SAD/SDS11

a. Find the maximum and minimum values of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint (10 Marks) $X^TX = 1$.

b. Find the singular value decomposition of $A = \begin{bmatrix} 1 & 1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$ (10 Marks)

a. Find the correlation coefficient and the line of regression of y on x for the

X	1	2	3	4	5
У	2	5	3	8	7

(10 Marks)

b. Fit a straight line for the following data:

X	1	2	3	4	5	6	7
У	9	8	10	12	11	13	14

(10 Marks)

a. Show that $\tan \theta = \left(\frac{1-r^2}{r}\right)\left(\frac{\sigma_x\sigma_y}{\sigma_x^2+\sigma_y^2}\right)$ where θ is acute angle. Explain the significance of the

formula when r = 0 and $r = \pm 1$.

(10 Marks)

b. Fit a parabola $y = a + bx + cx^2$ for the following data:

X	1	2	3	4
У	1.7	1.8	2.3	3.2

(10 Marks)

(10 Marks)

a. A random variable X has the following pmf for various values of X.

undom	· vui	Idolo	Z L III	J tile i	to II o	, mg br	111 101	, 4110 010		_
X	0	1	2	3	4	5	6	7	8	
F(X)	K	3K	5K	7K	9K	11K	13K	15K	17K	

Solve: (i) Value of K

(ii)
$$P(X < 3)$$
, $P(X \ge 3)$, $P(0 < X <= 5)$

(iii) Find cumulative distribution function

(iv) What is the smallest value of X for which $P(X \le x) > 0.5$?

b. A certain injection administered to each of 12 patients resulted in the following increases of B.P: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4. Can it be concluded that the injection will be, in general, accompanied by an increase in BP? (10 Marks)

OR

10 a. A random variable X has the following pdf:

$$P(X) = \begin{cases} Ke^{-x} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Solve: (i) Value of constant K (ii) Mean (iii) Variance (iv) F(0.5)

(10 Marks)

b. The following data show defective articles produced by 4 machines:

Machine	A	В	С	D
Production time	1	1	2	3
No. of defective	12	30	63	98

Do the figures indicate a significant difference in the performance of the machines?

[Use $\chi^2_{0.05}$ ($\gamma = 3$) = 7.815]

(10 Marks)