GBGS SGHEME

USN								BAE402/BAS40)2
				l	ĺ.	I	1		

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Aerodynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of Gas tables and θ , β , μ chart are permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		3. M: Marks , L: Bloom's level , C: Course outcomes.			
-		Module – 1	M	L	C
Q.1	a.	Derive the equation to lifting flow around a circular cylinder.	10	L3	CO1
	b.	Derive the velocity potential function and stream function for doublet flow.	10	L3	CO1
		OR			
Q.2	a.	Explain about the various forces and moments acting in the airplane.	10	L2	CO1
X	b.	Derive and explain about the classical thin airfoil theory and explain the	10	L3	CO1
		application in camber airfoil.		•	
		Module – 2			
Q.3	a.	Derive and explain about the Prandtl's lifting line theory with the elliptic	10	L3	CO2
~	•••	wing distribution.			
	b.	Explain about the types of drag acting on the airplane surface.	10	L2	CO2
	10.	OR			
Q.4	a.	Derive and briefly, explain about the vortex lattice method for wings.	10	L2	CO2
V.4	b.	Explain about lift, disc and moments characteristics of complete airplane.	10	L2	CO ₂
	J.D.	Module – 3	10		
0.5	Т.	Explain the horseshoe vertex and draw the vortex model for simplified	10	L2	CO3
Q.5	a.	horse show vortex.	10	1.72	003
	 	Explain about the effect of swept wings and aerodynamic characteristics.	10	1.2	CO3
	b.		10	114	C()3
Q.6	T	OR	10	L2	CO3
	a.	Explain about critical Mach number, drag divergence mach number, effect	10	LZ	COS
	 	of thickness, camber and aspect ratio of wings.	10	т э	CO2
************	b.	Explain about transonic area rule and subsonic, supersonic leading edges.	10	L2	CO ₃
		Module – 4	10	~ ~	004
Q.7	a.	Derive and explain about the Bernoulli's equation.	10	L3	CO4
	b	Explain with the derivation how to convert the pressure in to lift and drag	10	L2	CO4
		forces.			
		OR			
Q.8	a.	Explain about the critical mach number and the drag divergence mach	10	L2	CO4
		number and the drag divergence mach number with graphical			
		representation and effects in supersonic flows.			
	b.	Derive and explain about the flow through convergent divergent nozzles.	10	L3	CO4
		Module – 5	,	,	-
Q.9	a.	Derive and explain with the graphical representation of Rankine Hugoniot	10	L2	CO5
		equation.			-
	b.	The airflow at mach number 4 and pressure $1 \times 10^5 \text{N/m}^2$ is turned abruptly	10	L3	CO5
		by a wall into the flow with a turning angle of 20°. If the shock is reflected			
		by another wall. Determine the flow properties of mach number, pressure at			
		the downstream of the shock.			
		OR			
Q.10	a.	Derive the equation for Prandtl's relation for normal shock.	10	L3	COS
<u>Q.10</u>	b.	A uniform supersonic stream with mach number 3 pressure 1 atm and	10	L3	CO5
		temperature 288K encounters a compression corner, which deflect the			
		stream as an angle of 20°. Calculate the fluid properties behind the shock			
		wave. ****			

* * * *