CBCS SCHEME

USN	-							20MCA14
		 100	 	Correct of		1		

First Semester MCA Degree Examination, July/August 2022 Mathematical Foundation for Computer Applications

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Statistical tables are permitted.

Module-1

- 1 a. Define a set, power set and a single ton set with an example for each. (06 Marks)
 - b. State and prove Associative Laws of set theory. (07 Marks)
 - c. Find the eigen values and eigen vectors of $A = \begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix}$. (07 Marks)

OR

- 2 a. Let $A = \{1, 2, 3, 4\}$ $B = \{2, 4, 5, 6\}$. Find: i) $A \cup B$ ii) A B iii) B A. (07 Marks)
 - b. 30 cars were assembled in a factory. The options available were a ratio AC and white wall tyres. It is known that 15 of the cars have radios, 8 of them have AC and 6 of them have white wall tyres. Three of them have all 3 options. Determine at least how many cars do not have any option at all.

 (07 Marks)
 - c. State and prove pigeonhole principle. Prove that if 30 dictionaries in a library contain a total of 61, 237 pages then at least one of the dictionaries must have at least 2045 pages.

(06 Marks)

Module-2

- 3 a. Define the following with an example:
 - i) Conjunction
 - ii) Disjunction.

(06 Marks)

b. Prove that for any 3 propositions p, q, r

$$[p \to (q \land r)] \Leftrightarrow [(p \to q) \land (p \to r)].$$

(07 Marks)

c. Write the converse, inverse and contrapositive of the statement "If 2 is an integer, then 9 is a multiple of 3". (07 Marks)

OR

- 4 a. Let p, q, r be propositions having the truth values 0, 0 and 1 respectively. Find the truth values of i) $(p \lor q) \lor r$ ii) $(p \land q) \land r$. (06 Marks)
 - b. Give the direct proof and indirect proof of "If n is an odd integer, then n² is an odd integer". (05 Marks)
 - c. Let the unwerse be the set of all integers. Consider the following open statements p(x): x > 3 q(x): x + 1 is even $r(x): x \le 0$.
 - Write down the truth values of i) p(2) ii) $p(3) \lor \sim r(3)$. (04 Marks) d. Test whether the argument is valid. If Sachin hits a century, then he gets a free car.

Sachin hits a century

: Sachin gets a free car

(05 Marks)

Module-3

5 a. Let:

 $\Lambda = \{1, 2, 3, 4\}$

 $R = \{(1, 1), (1, 2)(2, 1) (2, 2) (3, 4) (4, 3) (3, 3) (4, 4)\}$

(06 Marks)

- a relation on A. Verify that R is an equivalence relation on A.
- b. Let $A = \{1, 2, 3, 4\}$ R be the relation on A defined by xRy iff x divides y. Write down R as the set of ordered pairs and draw the digraph of R. (07 Marks)
- c. Let $M_R = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ $M_S = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ be the matrix relations of the relations R and S on A.

Find:

- i) $R \cup S$
- ii) R∩S
- iii) \overline{R} . Given $A = \{a, b, c\}$.

(07 Marks)

OR

6 a. Define partition of a set and equivalent class with an example.

(10 Marks)

b. Draw the Hasse diagram representing the positive divisors of 36.

(10 Marks)

Module-4

7 a. The probability distribution of a finite random variable X is given by the following table:

X	-2	-1	0	1	2	3
P(x)	0.1	K	0.2	2K	0.3	K

Find the value of K, mean and variance.

(10 Marks)

- b. When a coin is tossed 4 times, find the probability of getting.
 - i) Exactly one head
 - ii) At most 3 heads
 - iii) At least 2 heads.

(10 Marks)

OR

8 a. Find the value of c such that

 $f(x) = \begin{cases} \frac{x}{6} + c & 0 \le x \le 3 \\ 0 & \text{elsewhere is a p.d. f. Also find P(1 x 2)} \end{cases}$ (06 Marks)

- b. In a certain town the duration of a shower is exponentially distributed with mean 5 minutes. What is the probability that the shower will last for:
 - i) 10 min or more
 - ii) Less than 10 minutes
 - iii) Between 10 and 12 minutes.

(07 Marks)

- c. If x is a normal variable with mean 30 and standard deviation 5 find the probability that
 - i) $26 \le x \le 40$
 - ii) $x \ge 45$.

(07 Marks)

20MCA14

Module-5

- 9 a. Define the following with suitable examples:
 - i) Simple graph
 - ii) Null graph

iii) Complete bipartite graph.

(06 Marks)

b. Explain Konigsberg bridge problem.

(07 Marks)

c. Check whether the following graphs are isomorphic.

Fig.Q9(c)

(07 Marks)

OR

- 10 a. Define the following with an example:
 - i) Spanning subgraph
 - ii) Induced subgraph
 - iii) Planar graphs.

(06 Marks)

b. Give the graph coloring of the graph shown in Fig.Q10(b) below.

Fig.Q10(b)

(07 Marks)

c. Use Dijkstra's algorithm to find the shortest path from vertex 1 to each of the other vertices in the weighted directed network shown in the Fig.Q10(c).

Fig.Q10(c)

Indicate the weight of the shortest paths.

(07 Marks)