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Preface

This volume contains selected papers from WADT 2004, the 17th International
Workshop on Algebraic Development Techniques. Like its predecessors, WADT
2004 focussed on the algebraic approach to the specification and development
of systems, an area that was born around the algebraic specification of abstract
data types and encompasses today the formal design of software systems, new
specification frameworks and a wide range of application areas.

WADT 2004 took place at the Technical University of Catalonia (UPC),
Barcelona, Spain, on 27–29 March 2004, and was organized by Fernando Orejas
and Jordi Cortadella.

The program consisted of invited talks by Lúis Caires (Universidade Nova de
Lisboa, Portugal) and Reiko Heckel (University of Paderborn, Germany), and
33 presentations describing ongoing research on main topics of the workshop:
formal methods for system development, specification languages and methods,
systems and techniques for reasoning about specifications, specification develop-
ment systems, methods and techniques for concurrent, distributed and mobile
systems, and algebraic and co-algebraic foundations.

The Steering Committee of WADT, consisting of Michel Bidoit, José Fi-
adeiro, Hans-Jöerg Kreowski, Peter Mosses, Fernando Orejas, Francesco Parisi-
Presicce, and Andrzej Tarlecki, with the additional help of Christine Choppy
and Till Mossakowski, selected several presentations and invited their authors
to submit a full paper for possible inclusion in this volume. All submissions
underwent a careful refereeing process. We are extremely grateful to all the
referees who helped in reviewing the submissions: H. Baumeister, L. Caires,
A. Cherchago, R. Heckel, R. Hennicker, F. Jacquemard, R. Klempien-Hinrichs,
C. Lüth, S. Merz, W. Pawlowski, and L. Schröder.

This volume contains the final versions of the 14 contributions that were
accepted. It contains also the invited paper of Reiko Heckel, co-authored with
Sebastian Thöne.

The workshop was jointly organized with IFIP WG 1.3 (Foundations of Sys-
tem Specification), and received generous sponsorship from the following orga-
nizations:

– Spanish Ministry of Science and Technology (MCYT)
– Catalan Department for University, Research and Information Society

(DURSI)
– Technical University of Catalonia (UPC)

David Banyeres, Robert Clariso, Kyller Costa, Nilesh Modi, Jiangtao Meng,
Nikos Mylonakis, Sonia Perez, Edelmira Pasarella, and Elvira Pino provided
invaluable help throughout the preparation and organization of the workshop.
We are grateful to Springer for its helpful collaboration and quick publication.



VI Preface

Finally, we would like to announce that, starting in 2005, WADT will join
forces and reputations with CMCS, the International Workshop on Coalgebraic
Methods in Computer Science, to create a new high-level biennial international
event: CALCO, the Conference on Algebra and Coalgebra in Computer Science.

December 2004 José Fiadeiro, Peter Mosses, Fernando Orejas
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Ontologies for the Semantic Web in Casl
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Behavior-Preserving Refinement Relations
etween Dynamic Software Architectures

Reiko Heckel1 and Sebastian Thöne2

1 Department of Computer Science
2 International Graduate School Dynamic Intelligent Systems

University of Paderborn, Germany
reiko seb @upb.de

Abstract. In this paper, we address the refinement of abstract architec-
tural models into more platform-specific representations. For each level
of abstraction, we employ an architectural style covering structural re-
strictions on component configurations as well as supported communica-
tion and reconfiguration operations. Architectural styles are formalized
as graph transformation systems with graph transformation rules defin-
ing the available operations. Architectural models are given as graphs to
which one can directly apply the transformation rules in order to simulate
operations and their effects.

In addition to previous work, we include process descriptions into our
architectural models in order to control the communication and recon-
figuration behavior of the components. The execution semantics of these
processes is also covered by graph transformation systems.

Wepropose anotionof refinement which requires the preservation of both
structure and behavior at the lower level of abstraction. Based on formal
refinement relationships between abstract and platform-specific styles,
we can use model checking techniques to verify that abstract scenarios
can also be realized in the platform-specific architecture.

1 Introduction

In the development of complex software systems, a model of the software ar-
chitecture [30] allows for early reasoning on the system at a high level of ab-
straction. An architectural model covers the involved run-time configuration of
system components, the communication between these components, and possible
reconfiguration operations that enable the system to react to upcoming require-
ments and events. Such dynamic architectures gain increasing attention in the
context of e-business, self-healing, and mobile systems.

Since software architectures are intended to bridge the gap between system
requirements and implementation, they have to conform to both business-driven
requirements as well as restrictions and mechanisms imposed by the chosen run-
time infrastructure. In order to integrate both aspects, we propose a stepwise
refinement approach starting with an abstract, business-level architecture which

We use the term software architecture as a synonym for the model of an architecture.
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can be derived from user and business requirements. This business-level archi-
tecture is then refined into a more concrete description which also integrates
platform-specific aspects like supported reconfiguration operations and commu-
nication mechanisms.

A recent example of this general principle of model refinement is the Model-
Driven Architecture (MDA) [26] put forward by the OMG. Here, platform-
specific details are initially ignored at the model-level to allow for maximum
portability. Then, these platform-independent models are refined by adding de-
tails required to map to a given target platform. At each refinement level, more
assumptions on the resources, constraints, and services of the chosen platform
are incorporated into the model.

Similarly, as described in a previous paper [3], we use architectural styles [2],
formalized as graph transformation systems, for defining the assumptions on a
certain level of platform abstraction, i.e., the vocabulary, structural constraints,
and available communication and reconfiguration mechanisms. Then, an archi-
tecture at a certain level of abstraction has to conform to the corresponding
architectural style.

In our previous work, we applied the available style-specific reconfiguration
and communication operations to an architecture without further control. In
this paper (see Section 4), we provide an extension which allows the definition of
processes and their operational semantics. These processes control the order in
which available operations are invoked by the individual software components.
This leads to a more detailed picture of the architectural behavior.

We do not consider architectural refinement as the internal decomposition of
components into subcomponents, as done by other authors, but rather focus on
porting an abstract architecture to a more platform-specific level which usually
requires additional platform-related entities and resources. For this purpose, we
define different architectural styles for different levels of platform abstraction,
namely a generic, platform-independent style for business-level architectures and
a more specific style for architectural models at the platform-specific level.

When refining software architectures from the abstract to the concrete level,
we have to preserve both structural and behavioral properties. This leads to the
following two requirements:

1. Architectural consistency: After being ported to the lower level of ab-
straction, the concrete architecture has to satisfy the same functional re-
quirements as the abstract architecture. Therefore, we have to refine config-
urations of components, connections, and other resources in a way that all
business-relevant entities of the abstract architecture are also preserved at
the concrete level.

2. Behavior preservation: Similarly, the concrete architecture has to preserve
the abstract communication and reconfiguration behavior. In particular, we
require that all business-relevant scenarios of the abstract architecture are
also realizable in the concrete architecture.

While porting the abstract behavior to the platform-specific level we have to
respect the capabilities of the chosen target platform according to its reconfigu-
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ration and communication mechanisms. In many cases, depending on the current
situation where an operation is to be applied and the effects of preceding actions,
the refinement of an abstract action varies from other situations and cannot be
decided locally. Thus, we believe that behavior preservation cannot be solved by
a fixed syntactic mapping between abstract and concrete operations but has to
be dealt with at a semantic level.

Further requirements include a high degree of reusability which means that
the refinement relationship between certain levels of platform abstraction should
not only apply for one specific system, but should be reusable for other archi-
tectures as well.

Since refinement is not an easy task and thus error-prone and cost-intensive if
done by hand, we are also aiming at tool support. However, it is difficult to auto-
mate the construction of refined architectures, because this is a creative process,
and computers cannot invent details for the concrete level that are not exis-
tent at the abstract level. Nevertheless, we intend to investigate tool support for
checking if a concrete architecture satisfies the formal refinement relationship we
prescribe for the refinement from abstract to concrete level. Combined with user
interaction for modifying invalid concrete models, we achieve a semi-automated
approach for creating refined architectural models.

The refinement relationship, as already proposed in [5], is style-based meaning
that it is defined between two architectural styles rather than between individual
architectures. Since this relationship can be applied to any instances of the styles,
we achieve the desired degree of reusability.

To check for architectural consistency, we have to compare the business-
relevant entities of the abstract and the concrete model. For this purpose, we
use an abstraction function which lifts concrete models to the abstract style. To
check for behavior preservation, we have to prove that all states of an abstract
scenario are also reachable in a corresponding concrete scenario, preferably with
the help of model checking techniques. For this purpose, we employ a contravari-
ant translation function which transforms abstract states into requirements for
states at the platform-specific level. A model checker can then search for concrete
states satisfying these requirements.

The rest of this paper is organized as follows. We survey related work in
Section 2. In Section 3, we revisit the modeling of architectural styles based on
graph theory, and in Section 4 we extend the proposed architecture description
technique by processes for controlling architectural behavior. In Section 5, we
use this formal framework to define our notion of refinement under the obliga-
tion of architectural consistency, and Section 6 covers the problem of behavior
preservation by a semantic requirement that can be checked by model checking
tools. Section 7 concludes the paper.

2 Related ork

Refinement is a long-known design principle in software engineering. First ideas
in the context of program development go back to Wirth [34]. In the sense of

W

Behavior-Preserving Refinement Relations 3



a systematic top-down methodology, he argued for the expansion of high-level
program instructions to lower level macros and procedures.

While Wirth mainly investigated sequential programs, the refinement of con-
current systems became popular as action refinement in the context of process
algebras (cf. [17] for a survey on this topic). This field considers the refinement
of abstract actions into sequences of concrete actions, also called processes, and
the potential interleaving of multiple concurrent processes.

Our approach is different from this work for two reasons. First, we want to
avoid a fixed, sometimes even syntactically defined substitution of an abstract
action by a concrete process wherever the abstract action occurs. Instead, we
are aiming at a more flexible notion of refinement which also allows for alternate
refinements of an action depending on the context where the action occurs.
Second, we also want to enable refinement in those cases where the two levels
of abstraction are so different that it becomes hard to relate the corresponding
actions with each other.

Apart from action refinement, we also have to mention the different notions
of refinement in the field of software architecture. For instance, Batory et. al. [6]
consider feature refinement which is modifying models, code, and other artifacts
in order to integrate additional features with every refinement step. Different
to this work, Canal et. al. [9] consider refinement as the decomposition of a
software component into subcomponents and the specialization of components
under certain compatibility conditions.

In our case, we neither want to add any extra-functionality to the architecture
nor to look into the internals of the components, but we rather want to port a
business-level architecture to a more platform-specific level considering all the
restrictions and mechanisms of the chosen target platform.

Refinement of architectures in this sense has first been discussed by Moriconi
et al. in [25]. Building a formalization in first-order logic, the authors describe
a general approach of rule-based refinement replacing a structural pattern in an
abstract style by its realization in the concrete style. The approach is related to
ours, but focuses on refinement of the structure only and does not take reconfigu-
ration and communication behavior into account. Also, applying the logic-based
theory to concrete architecture description languages is not trivial. The general
idea of rule-based refinement, however, is applicable in our context, too.

Garlan [16] stresses the fact that it is more powerful to have rules operating
on architectural styles rather than on style instances. He formalizes refinements
as abstraction functions from the concrete to the abstract style. We use a similar
approach to define refinement relationships (see Section 5). Also, he argues that
no single definition of refinement can be provided, but that one should state
what properties are preserved. In our case, we concentrate on the preservation
of architectural consistency and the dynamic semantics of reconfiguration and
communication scenarios.

Other proposals on architecture refinement like [1, 12] concentrate on struc-
tural refinements only, which is complementary to our work. The only formal
approach we are aware of that considers refinement of dynamic reconfiguration
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can be found in [8]. But, the paper only sketches the ideas without any concrete
definition. Moreover, the approach is targeted on the translation from one Archi-
tecture Description Language to another rather than on the refinement between
architectural styles that represent different levels of platform abstraction.

Since we use graph transformation systems as the underlying formalism to
describe dynamic software architectures, which is in the tradition of [21, 22, 24,
31, 33], it is also worth to look at existing work on refinement of graph transfor-
mation systems. The general idea is to relate the transformation rules and, thus,
the behavior of an abstract graph transformation system to the rules of a more
concrete transformation system. One can judge these refinement relationships
along a continuum from syntactical relationships to more semantical ones.

Große-Rhode et. al. [18], for instance, propose a refinement relationship be-
tween abstract and concrete rules that can be checked syntactically. One of the
conditions requires that, e.g., the abstract rule and its refinement must have the
same pre- and post-conditions except for retyping. Based on this very restrictive
definition they can prove that the application of the concrete rule expression
yields the same behavior as the corresponding abstract rule. The draw-back of
this approach is that it cannot handle those cases where the refining rule ex-
pression should have additional effects on platform-specific elements that do not
occur in the abstract rule. And, similar to action refinement, the approach does
not allow alternate refinements for the same abstract rule.

Similarly, the work by Heckel et. al. [20] is based on a syntactical relation-
ship between two graph transformation systems. Although this approach is less
restrictive as it allows additional (platform-specific) elements at the concrete
level, it is still difficult to apply if there are no direct correspondences between
abstract and concrete rules. Moreover, their objective is to project any given
concrete transformation behavior to the abstract level and not vice versa.

In our work, we propose a more flexible, semantic-based notion of refinement.
We do not define a fixed mapping between the various transformation rules but
only between the structural parts of the graph transformation system. Then, we
check whether all system states of an abstract model are also reachable at the
concrete level, no matter by which order of transformation rules. By avoiding the
functional refinement mapping between transformation rules, we can also relate
transformation systems with completely different behavior, and we are flexible
enough to cope with alternate refinements.

3

As already introduced in [3], we use architectural styles as conceptual platform
models. Such a platform model has to define the vocabulary of elements to be
considered, to restrict the possible relationships among those elements, and to
specify communication as well as reconfiguration mechanisms supported by the
platform. We use different styles for different levels of platform abstraction.

In this section, we present the formal definition of architectural styles as typed
graph transformation systems [10] together with two exemplary styles, namely

Behavior-Preserving Refinement Relations 5
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an abstract style for business-level architectures and a platform-specific style for
service-oriented architectures. In Section 5, we explain how a refinement relation-
ship between these styles can be used to refine business-level architectures, which
abstract from platform-specific vocabulary and restrictions, to service-oriented
architectures.

Informally, a typed graph transformation system consists of (1) a type graph
to define the vocabulary of architectural elements, (2) a set of constraints to
further restrict the valid models, and (3) a set of graph transformation rules
for communication and reconfiguration operations. A system architecture that
conforms to a given style is represented as an instance graph of the type graph.

Definition 1 (Graph and Graph Morphism). A graph is a tuple G =
(N,E, src, tar) with a set N of nodes, a set E of edges, and functions src, tar :
E → N that assign source and target nodes to each edge. A graph morphism
f = (fN , fE) : G → G′ is a pair of functions fN : N → N ′ and fE : E → E′

preserving source and target (src′ ◦ fE = fN ◦ src and tar′ ◦ fE = fN ◦ tar).

Definition 2 (Typed Graph). Given a graph TG, a TG-typed graph 〈G, tpG〉
is a graph G equipped with a structure-preserving graph morphism tpG : G → TG.
We call TG type graph and 〈G, tpG〉 instance graph over TG. The category of
TG-typed instance graphs is called GraphTG.

The graphs we use are directed and unlabeled; for the sake of clarity, nodes
(and edges) can be named by unique identifiers. Type graphs can be represented
by UML class diagrams and instance graphs by UML object diagrams [19]. The
typing morphism tpG is depicted by referencing the type names. As an example,
Figure 1(a) shows the type graph of the business-level style we have defined
in [4]. Figure 1(b) shows a corresponding instance graph.

Fig. 1. Type graph and exemplary instance graph of the business-level style

6 R. Heckel and S. Thöne



According to this type graph, architectures consist of ComponentInstances
which externalize their functionalities through Ports. They can interact with each
other through a Connection between their Ports. The state of a communication
is encoded by Request and Response message nodes.

Besides the elements for run-time configurations, the type graph also defines
nodes for the application-specific types of these elements. For example, Compo-
nent, PortType, and Connector nodes can be used to describe certain types of
components, ports, or connections; PortTypes are characterized by provided and
required Interfaces. This way, a corresponding instance graph incorporates both
the actual configuration at a certain run-time state as well as application-specific
type information about the involved entities.

For example, the instance graph in Fig. 1(b) defines a system that consists of
an instance a of component A and an instance b of component B. Both component
instances own a port of type A-Port and B-Port respectively, which could be
connected by an instance of the AB-Connector. The A-Port provides the interface
Int with the operation op, while the B-Port requires this interface.

Along with the type graph comes a set C of constraints that further restricts
the set of valid instance graphs. Simple constraints already included in the class
diagram are cardinalities that restrict the multiplicity of links between the el-
ements (omitted cardinality means 0..n by default). More complex restrictions
can be defined, e.g., using expressions of the Object Constraint Language (OCL),
which is part of the UML.

Graph transformation. Graph transformation rules [13] are used to define rewrit-
ing operations on graphs. Since our instance graphs represent system configu-
rations, transformation rules nicely fit to define reconfiguration operations pro-
vided by the platform. If we encode communication-related information into
the graphs, as done by the Message node and its subtypes in Fig. 1(a), then
transformation rules are also suitable to represent communication mechanisms.
A certain reconfiguration and communication scenario can be modeled as a se-
quence of transformation rules which are applied to an initial instance graph.
The set of meaningful sequences can be restricted by additional control processes
as discussed in Section 4.

Formally, a graph transformation rule r : L � R consists of a pair of TG-
typed instance graphs L, R such that the intersection L∩R is well-defined (this
means that, e.g., edges which appear in both L and R are connected to the same
vertices in both graphs, or that vertices with the same name have to have the
same type, etc.). The left-hand side L represents the pre-conditions of the rule
while the right-hand side R describes the post-conditions. The left-hand side can
also state negative pre-conditions (negative application conditions, NAG).

According to the Double-Pushout semantics (DPO [14]), the application of a
rule r is performed in three steps, yielding a transformation step G ⇒ H:
1. Find an occurrence oL of the left-hand side L in the current object graph

G. Formally, this is a total graph morphism oL : L → G which maps the
left-hand side L to a matching subgraph in G. The occurrence is only valid,
if oL(L) cannot be extended by the forbidden elements of a NAG.

Behavior-Preserving Refinement Relations 7



2. Remove all the vertices and edges from G which are matched by L \R. We
must also be sure that the remaining structure D := G \ oL(L \ R) is still
a legal graph, i.e., that no edges are left dangling because of the deletion
of their source or target vertices. In this case, the dangling condition [14] is
violated and the application of the rule is prohibited.

3. Glue D with a copy of R \ L to obtain the derived graph H. We assume
that all newly created nodes and edges get fresh identities, so that G∩H is
well-defined and equal to the intermediate graph D.

As an example, consider the reconfiguration rule connect depicted in Fig. 2.
According to the left-hand side, the rule can be applied if there are two com-
ponent instances with free ports whose types can be connected by a connector.
According to the right-hand side, an application of this rule, e.g., to the graph
in Fig. 1(b), results in the creation of a new connection between the two ports.

Fig. 2. Reconfiguration rule connect

Definition 3 (Typed graph transformation system). A typed graph trans-
formation system G = 〈TG, C, R〉 consists of a type graph TG, a set of structural
constraints C over TG, and a set R of transformation rules r : L � R over TG.

A transformation sequence s = (G0
r1(o1)=⇒ G · · · rn(on)

=⇒ G Gn) in G, briefly
G0

∗=⇒G Gn, is a sequence of consecutive transformations such that all graphs
G0, . . . , Gn satisfy the constraints C. As above, we assume that fresh identifiers
are given to newly created elements, i.e., ones that have not been used before
in the transformation sequence. In this case, for any i < j ≤ n the intersection
Gi ∩Gj is well-defined and represents that part of the structure which has been
preserved in the transformation from Gi to Gj .

Besides the rule connect, the graph transformation system for the business-
level style contains about 10 transformation rules which handle, for instance,

8 R. Heckel and S. Thöne



creation and deletion of ports and connections as well as sending and receiving
of messages. The complete specification of the style can be found in [4], where we
also define a platform-specific style for service-oriented architectures as follows.

A SOA-specific architectural style. In service-oriented architectures (SOA), soft-
ware components expose their functionality as services over a network to service
requesters. The objective of SOA is to enable dynamic service discovery at run-
time, even if service providers and requesters do not know each other in advance.
For this purpose, the service provider has to deliver a detailed description of the
service with all necessary information about its interface, access point, quality-of-
service, and so forth. The service description is usually published to third-party
discovery agencies where service requesters can retrieve it from. As soon as the
requester finds a description that fits the requirements, it can use it to connect
to the component that provides the desired service.

For the definition of the SOA-specific architectural style, we extend the type
graph of the business-level style as partially depicted in Fig. 3. The new subtypes
of Component can be used to define a software component as Service or, if func-
tioning as discovery agency, as DiscoveryService. There are also special PortTypes
used for communication to discovery services. A central SOA element is the Ser-
viceDescription which describes a specific ServiceInstance. The knows relationship
indicates which components have access to the description. Besides ordinary Re-
quest and Response messages, there are additional SOA message types for service
discovery, namely ServicePublication, ServiceQuery, and QueryResult.

Fig. 3. Type graph of the SOA-specific style

Behavior-Preserving Refinement Relations 9



For the creation and deletion of ports and connections, the SOA-specific style
contains the same transformation rules as the business-level style, except for set-
ting up a connection to a service which requires that the requester knows the ser-
vice description beforehand. The SOA-specific variant of the connect rule, which
includes this requirement as an additional precondition, is depicted in Fig. 4.
To model SOA-specific platform mechanisms for dynamic service discovery, the
SOA style contains additional transformation rules for publishing and querying
service descriptions. Altogether, there are about 20 transformation rules which
can be found in [4].

Fig. 4. SOA-specific variant of the reconfiguration rule connect

4

With the architectural styles presented in the previous section, we can formally
define software architectures as instance graphs to which we can apply the rule-
based reconfiguration and communication operations. However, such a rule-based
behavior specification consisting of pre- and postconditions only is not sufficient
to completely express architectural behavior.

The main problem is that a rule can be applied non-deterministically when-
ever and wherever its precondition is satisfied. This can lead to non-meaningful
sequences of operations, for instance the deletion of a connection while the con-
nected components are still running a certain communication protocol. Instead,
we would like to be able to restrict the behavior of a system, e.g., in order to
coordinate reconfiguration with communication and to specify communication
protocols.

A solution to this problem should satisfy the following requirements:

1. Process descriptions: For each component type of a software architecture,
we require the description of a process that restricts the order in which re-
configuration and communication operations of the underlying architectural
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Processes for Controlling Architectural Behavior



style can be applied to any instance of the type. Thus, an individual action
of a process should correspond to the invocation of a transformation rule
which conforms to the current level of abstraction. We also require opera-
tional semantics for these process descriptions which smoothly suits to the
existing graph transformation framework.

2. Parameters: Since a process specifies the behavior of all instances of a cer-
tain component type, its actions have to relate the invocation of an operation
to the local context of the respective component instance. Thus, we have to
allow for input parameters that refer to dedicated elements within the system
architecture. Similarly, we have to equip actions with output parameters so
that the result of a rule application, e.g., a newly created port or connection,
can be referred to in subsequent actions.

3. Concurrent threads: Since an architecture may contain several run-time
instances of the same component type, we have to allow for a concurrent
execution of multiple independent threads of the same process. Moreover, one
can think of component types that follow different processes simultaneously
which results in a branch of concurrent threads for each component instance.
Other reasons for concurrency are situations where a server has to supply a
service to multiple concurrent client requests each of which is represented by
its own thread.

4. Synchronization: Many reconfiguration and communication operations in-
volve more than one component instance, for example, when a connection is
created between two instances. In such cases, all involved components should
agree on the execution of the desired operation which gives rise to synchro-
nization issues: The threads which first reach the shared action have to wait
until all other participating threads have also reached that action.

The process descriptions are required for models at all levels of abstraction.
As a solution, we propose an extension of the architectural styles introduced in
Section 3: We integrate a relatively simple meta-model for process descriptions
into the type graphs which allows us to include component-specific process de-
scriptions into the instance graphs. Furthermore, we adapt the existing graph
transformation rules so that they respect the behavior restrictions imposed by
the processes. Eventually, we define a few additional transformation rules that
are required for managing, i.e., starting and terminating the individual threads.

Although many authors use process algebras [7], petri nets, or event struc-
tures to specify and reason about concurrent processes, we stick to graph trans-
formation theory. One reason is that we can continue to apply standard graph
transformation tools for executing and analyzing the process-controlled transfor-
mation systems. Moreover, we can save additional efforts that would be required
to combine the operational semantics of graph transformations with the different
process formalisms.

Another witness for the suitability of graph transformation is existing work
that uses graph transformation systems for defining the semantics of process al-
gebras like the π-calculus. In this context, graph-based approaches are especially
used for algebras that support structural changes, e.g., messages that carry ref-
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erences to certain communication channels; of course, such structural changes
play an essential role in dynamic software architectures, too.

Type graph extensions for processes. Figure 5 shows the type graph extensions
related to process specification and thread management. Note that conceptually
these extensions are similar to a UML-like meta-model for process descriptions.
According to the left part of Fig. 5, each Component can follow one or more
Processes, and each ComponentInstance runs one or more Threads as instances of
a process. Each Process has a set of Actions ordered by the next association. A
Thread has a pointer, named previous, to the most recent action it has executed.
Together with the next association this determines the possible subsequent ac-
tions. A process can declare Variables, and threads can store values for these
variables as References to arbitrary model elements. For this purpose, we intro-
duce the abstract type Element as a supertype to all other types in the type
graph.

Fig. 5. Type graph extensions for processes and actions

The right part of Fig. 5 shows some of the subtypes of Action. Besides the
NewThreadAction, which is used to create new process instances, and the Start-
Action, which indicates the entry point of a process, there is a special xAction
node for every transformation rule of the underlying architectural style (where x
is the name of the rule). For better readability, we use additional abstract action
types like PortDependentAction to group actions with equal parameters.

Parameters are defined by special associations outgoing from an action node.
We distinguish between constants and variables. Constants, named by a preced-
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ing “#”, refer to elements that define application-specific types like, e.g., Com-
ponent, Connector, PortType, Operation, or Interface which are already known
at design-time of the process. Variables, named by a preceding “ ”, refer to a
Variable node where elements that represent run-time instances like, e.g., Com-
ponentInstance, Connection, Port, or Request can be stored at execution-time of
the process.

With the help of these type graph extensions, we can now include process
definitions in our instance graphs in order to specify component behavior.

Transformation rule extensions for processes. The semantics of an action in
a process is that the transformation rule it refers to can only be applied at
that point of the process. This introduces an additional precondition that has
to be checked before a rule is applied. Note that this is only a necessary but
not commensurate precondition: If the other preconditions of the rule are not
satisfied, then the rule cannot be applied immediately, and the process has to
wait until the remaining preconditions are satisfied, too. In order to properly
interpret actions in this way, we have to adapt the existing transformation rules
of our graph transformation systems and to restrict their applicability. We call
such adapted transformation rules process-controlled.

Consider, for example, the OpenPortAction in Fig. 5 which should create a
new port whose type is specified by the input parameter #portType and return
this port through the output variable port. The corresponding process-controlled
graph transformation rule is depicted in Fig. 6. The upper part of the rule (with
gray background) indicates the original reconfiguration rule which creates a new
port of the selected port type.

Fig. 6. The process-controlled reconfiguration rule openPort

The new, lower part of the rule restricts its application to those situations
where an OpenPortAction belongs to the next actions of the running thread and
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where the #portType parameter selects the right PortType. According to the
lower right-hand side of the rule, which defines additional process-related effects,
the rule creates a Reference node for the current thread which refers to the new
port node as value for the output variable port. As another effect, all such
process-controlled transformation rules update the pointer to the previous action
like a program counter that is increased after completion of a command.

The concurrency requirements discussed at the beginning of this section are
implicitly satisfied by the process-controlled transformation rules because the
rules are non-deterministically applied wherever possible. And, since every rule
application represents the execution of one of the pending actions, this cor-
responds to a non-deterministic interleaving of the concurrent threads. Thus,
concurrency is the default behavior of graph transformation systems.

In addition, the management of threads is handled by the two special trans-
formation rules in Fig. 7: The rule newThread presented in Fig. 7(a) creates new
instances of a process whenever a NewThreadAction occurs. The input parameter
#process determines which process has to be started. If the parameter refers to
the action’s own process, a new thread of the same process is started, e.g., if
multiple threads of the process are required to serve multiple incoming requests.

A thread terminates after an action that has no more subsequent actions
according to the next relation. In this case, the garbage collection rule clearThread
of Fig. 7(b) can be applied in order to remove the remaining Thread and Reference
nodes (crossed out elements are negative application conditions).

Fig. 7. Thread management rules newThread (a) and clearThread (b)

Synchronization between concurrent threads is required, if a reconfiguration
or communication operation involves more than one component. Then, it be-
comes necessary to get agreements from all involved threads before the corre-
sponding rule can be applied. We satisfy this requirement by non-local rules
whose precondition comprises the current state of more than one component.
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Remember, e.g., the reconfiguration rule connect depicted in Fig. 2. In this
case, both components should agree to the creation of the new connection be-
forehand. Figure 8 shows how this synchronization requirement is integrated as
a non-local precondition into the left-hand side of the rule. This way, the two
involved threads synchronize at the virtually shared ConnectAction.

Fig. 8. The process-controlled variant of rule connect (left-hand side only!)

Although both the process-controlled transformation rules and the process-
aware instance graphs become more complex, we benefit from the uniformity
of the theory and its built-in operational semantics. Also, one can think of the
formal graph-based model representation as an internal format for tools only,
while software architects do not necessarily have to encode their architectures
and process definitions as instance graphs. In fact, they can rather use a better
concrete notation like UML component diagrams for structural aspects and UML
activity diagrams or statecharts for process definitions, which is then internally
translated by a suitable CASE tool. Moreover, one could also think of import
and export interfaces to other process description standards like the Business
Process Execution Language for Web Services (BPEL4WS [15]).

5 Refinement of rchitectural onfigurations

As already discussed in Section 1, refinement is an important concept for develop-
ing software architectures. This section deals with the refinement of architectural
configurations while preserving the provided system functionality (architectural
consistency). In an instance graph, functional elements are reflected by nodes for
component and connection types and run-time instances thereof (see Section 3)
as opposed to behavior-related elements for control processes (see Section 4).
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We do not provide a functional refinement operator which takes an abstract
architecture and returns the corresponding concrete architecture, because such
a refinement is a creative, non-deterministic design process which includes sev-
eral alternative options which can all lead to a valid refinement at the concrete
level. However, what we do provide is a formal criterion for deciding if a given
concrete architectural configuration is a valid refinement of a certain abstract
configuration or not.

At first, we define this criterion based on an abstraction function. In the
second part of this section, we illustrate this kind of abstraction by means of the
two architectural styles from Section 3.

5.1

Our notion of refinement is style-based, i.e., it is based on a relationship between
an abstract architectural style G = 〈TG, C, R〉, e.g., the business-level style from
Section 3, and a concrete style G′ = 〈TG′, C ′, R′〉, e.g., the service-oriented
style from Section 3. The refinement of architectural configurations formally
corresponds to the refinement of the structural parts of an abstract instance
graph G ∈ GraphTG into a concrete instance graph G′ ∈ GraphTG′ .

In the previous section, we extended the type graphs by behavior-related el-
ements in order to encode process descriptions into instance graphs. However,
to reason solely about structural aspects of an architecture, we have to distin-
guish the structure-related part TGS of the underlying type graph TG from the
process-related extensions defined in Section 4. From this distinction, we can de-
rive a projection function on instance graphs which preserves structure-related
elements only and neglects all behavior-related elements.

Definition 4 (Projection). Given a type graph TG and a subgraph TGS ⊆ TG
thereof. The projection of instance graphs from TG to TGS is defined as a func-
tion projTGS

: GraphTG → GraphTGS
which returns for any G ∈ GraphTG

with nodes N , edges E, and typing tp : G → TG a graph GS ∈ GraphTGS
with

nodes NS = {n ∈ N |tp(n) ∈ TGS}, edges ES = {e ∈ E|tp(e) ∈ TGS}, and
typing tp|GS

. Note that GS is a subgraph of G (GS ⊆ G).

According to the requirements stated in Section 1, a refinement criterion has
to respect architectural consistency, meaning that for a valid refinement the con-
crete architecture has to preserve the functionality of the abstract architecture.
Thus, all structural entities like components and connectors of the business-level
model have to be preserved in the platform-specific model.

Since the two instance graphs to be compared are expressed in terms of dif-
ferent architectural styles, i.e., different type graphs, one cannot simply compare
them and check if the abstract graph is part of the concrete graph. Before we
can do so, we rather have to express one of the graphs in terms of the other
architectural style.

The canonical solution to this problem is by means of an abstraction function
abs : GraphTG′ → GraphTG which takes the concrete instance graph and, by
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abstracting from all platform-specific details, lifts it to the abstract level. Then,
we can check if the resulting abstraction contains the same functional elements
as the original abstract graph. For this purpose, we regard the original abstract
graph as a property that has to be satisfied by the lifted concrete graph according
to the following definition:

Definition 5 (Satisfaction). Given a model represented as an instance graph
G and a property represented as an instance graph P , both typed over the same
type graph TG. Also, given a type graph distinction TGS ⊆ TG with a corre-
sponding projection projTGS

.
We say that G satisfies P , i.e., G |= P , iff there is a total, injective graph mor-
phism m : projTGS

(P ) → projTGS
(G). This means that the relevant part of P

can be embedded into the relevant part of G.

Based on this definition, we can now formally define structural refinement
based on abstraction as follows:

Definition 6 (Structural Refinement). Given an abstract type graph TG,
a concrete type graph TG′, and an abstraction function abs : GraphTG′ →
GraphTG. A concrete instance graph G′ ∈ GraphTG′ is a structural refinement
of an abstract instance graph G ∈ GraphTG, if abs(G′) |= G.

5.2

The abstraction function abs is a semantic mapping, associating with each con-
crete configuration a corresponding abstract configuration. There is a range of
possibilities for the concrete definition of abs depending on the characteristics
of the respective architectural styles. For example, it is sufficient to base the
abstraction function abs on a mapping between the abstract and the concrete
type graph, if the abstraction of a concrete instance graph consists of adapting
the types of business-relevant elements and omitting platform-specific elements.

Other cases, not discussed in detail in this paper, might require more com-
plex transformations which map entire patterns of concrete elements to abstract
elements. For instance, a combination of two unidirectional channels at the
platform-specific level could be used to realize an abstract bidirectional chan-
nel. These complex mappings can be defined by graph transformation systems
or even more sophisticated methods like triple graph grammars [29].

In the rest of this section, we take the platform-independent (pi) style of Sec-
tion 3 as abstract transformation system Gpi = 〈TGpi, Cpi, Rpi〉 and the service-
oriented (so) style as concrete transformation system Gso = 〈TGso, Cso, Rso〉. We
define a mapping between the two type graphs TGso and TGpi and exemplify
how to derive an appropriate abstraction function from this mapping.

Type graph mapping. A type graph mapping is a partial graph morphism t :
TGso → TGpi which maps structure-related elements of the concrete type graph
TGso to structure-related elements of the abstract type graph TGpi as partially
shown in Fig. 9.
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Fig. 9. Part of the type graph mapping t

The concrete definition of t is driven by semantic correspondences between
the structure-related elements of the two type graphs. For instance, both Compo-
nent and Service nodes in a service-oriented architecture represent what we call
a Component in the business-level style. Since there is no distinction between
private and published components at the abstract level, t maps both types to
the abstract type Component.

Those elements that represent purely platform-specific concepts not occurring
at the abstract level like, e.g., DiscoveryService, ServiceDescription, or the SOA-
specific port types (see Fig. 3) are not mapped to the abstract type graph. For
behavior-related elements like, e.g., Process and Action nodes (see Fig. 5), the
type mapping is undefined, too, because the abstraction function only needs to
lift structural aspects to the abstract level.

Abstraction function. From the type mapping t, we can now derive an abstraction
function abst : GraphTGso → GraphTGpi that abstracts instance graphs typed
over TGso to those typed over TGpi. This abstraction informally consists of (1)
renaming the types of all elements whose type has an image in TGpi according
to the definition of t, (2) deleting all nodes and edges which, due to the partiality
of t, have a type in TGso but not in TGpi, and (3) deleting all dangling edges
and those adjacent nodes whose number of connected neighbor nodes falls below
the lower bound of the relevant cardinality constraint.

Figure 10 illustrates the effect of the abstraction function abst for a small
instance graph in the service-oriented style (shown in the upper left corner). The
instance graph defines a service S that supports a port type AccessS for using
the service and another port type PublishDesc for sending a service description
to available discovery services. The represented run-time snapshot contains one
instance si of the service which owns a port for each of the supported port types.
Besides, there is a description document descr describing the service instance.

In a first step, we apply the type mapping t and rename the types of the
Service and ServiceInstance nodes into Component and ComponentInstance (1).
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Fig. 10. Abstraction of a small instance graph

Then, we delete the ProviderPT and ServiceDescription nodes and the describes
edge because they have no mapping to TGpi under t (2). The deletion of the
ProviderPT node leads to the deletion of the adjacent Port node in the third step,
because otherwise the cardinality constraint would be violated which says that
every Port requires a PortType. Eventually, all dangling edges are removed (3).

6

In addition to structural refinement, we also want to check if the refinement
preserves the architectural behavior. In this section, we extend our refinement
criterion by a corresponding semantic condition, discuss possibilities and require-
ments for an automated verification of this criterion, and exemplify the concepts
with the two style examples from Section 3.

6.1

While a single instance graph represents a certain system state, the application of
a transformation rule represents a transition from one state to a subsequent state.
This way, the potential behavior can be represented as a transition system whose
states are the reachable instance graphs and whose transitions are generated by
rule applications. If we also encode application-specific process definitions into
the instance graphs, as introduced in Section 4, then the architectural behavior
represents the concurrent execution of these processes.

Given the initial state of the architecture as a start graph, one can generate
and explore the transition system by continuously applying the transformation
rules to previously generated states. We can reduce the state space by considering
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isomorphic graphs as a single state only. This is sensible, because for isomorphic
graphs the same set of transformation rules is applicable, and the result of a rule
application is only determined up to isomorphism in the DPO approach anyway
(cf. [11]). Note that, however, in some cases the resulting transition system may
still be infinite.

Recently, the automated generation and exploration of transition systems
from graph transformation systems is supported by tools like GROOVE [27]
and CheckVML [28, 32].

Definition 7 (Graph Isomorphism Class). Two TG-typed graphs G and H
are isomorphic, briefly G ∼= H, if there is a bijective graph morphism i : G → H,
called isomorphism, which also preserves their typings, i.e., tpH ◦ i = tpG.

An isomorphism class [G] is the set of all graphs that are isomorphic to G,
i.e., [G] = {H ∈ GraphTG | G ∼= H}.

Definition 8 (Architectural Behavior). Given an architectural style repre-
sented by a typed graph transformation system G = 〈TG, C, R〉 and an initial
system state represented by an instance graph G0 ∈ GraphTG, then the archi-
tectural behavior is defined by a transition system TSG0 = (S,⇒) with

– a set of states S =
{

[G] | G0
∗=⇒G G

}
consisting of isomorphism classes of

all graphs reachable in G, with [G0] ∈ S,
– a transition relation ⇒ ⊆ S×S which is defined by all possible rule applica-

tions in G, i.e., Gi ⇒ Gj iff Gi ⇒G Gj.

For the sake of simplicity, we continue to denote the states of the transition
system as graphs rather than as graph isomorphism classes. Thus, when speaking
of G ∈ S, we precisely mean [G] ∈ S. Moreover, the concatenation of consecutive
transitions starting from G and leading to H is called a path from G to H,
denoted by G

∗=⇒ H.
For the intended refinement criterion, we again consider an abstract archi-

tecture as instance graph G of a platform-independent style G = 〈TG, C, R〉
and a concrete architecture as instance graph G′ of a platform-specific style
G′ = 〈TG′, C ′, R′〉. Besides structural refinement, we now also require that the
concrete architecture preserves the behavior of the abstract architecture.

This property is expressed in terms of structural refinements for all states
reachable in the abstract behavior. To be more precise, we demand, that for
every path G ⇒ G1 ⇒ . . . ⇒ Gn in the abstract transition system TSG there
exist paths G′ ∗=⇒ G′

1
∗=⇒ . . .

∗=⇒ G′
n in the concrete transition system TSG′

with G′
i structurally refining Gi (that is, abs(G′

i) |= Gi) for all i = 1 . . . n.
Since we are now dealing with isomorphism classes, we require that the ab-

straction function abs preserves isomorphisms: G ∼= H =⇒ abs(G) ∼= abs(H).
As a consequence, it is indifferent to which representative of an isomorphism
class the function is applied.

In terms of software architecture, a path represents a certain scenario of
communication and reconfiguration operations, and, for a behavior-preserving
refinement, we want to ensure that every abstract, business-level scenario can
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also be realized at the platform-specific level. This criterion can be formulated
as a co-inductive definition as follows:

Definition 9 (Behavior-Preserving Refinement). Given an abstract archi-
tectural style G = 〈TG, C, R〉, a concrete architectural style G′ = 〈TG′, C ′, R′〉,
and an abstraction function abs : GraphTG′ → GraphTG which preserves iso-
morphisms. A concrete instance graph G′ ∈ GraphTG′ with behavior TSG′ re-
fines an abstract instance graph G ∈ GraphTG with behavior TSG, if

– abs(G′) |= G
– for every transition G ⇒ H in the abstract system TSG there exists a path

G′ ∗=⇒ H ′ in the concrete system TSG′ such that H ′ refines H.

According to this definition, a single transformation step G ⇒G H is refined
by a transformation sequence G′ ∗=⇒G′ H ′. This is because it might be necessary
to perform a number of platform-specific steps in order to realize the abstract
step. For example, consider an application of the reconfiguration rule connect
(see Fig. 2). In a service-oriented architecture, it is not directly possible to apply
the corresponding SOA-specific connect rule (see Fig. 4), because connecting to
a service requires knowledge about its description beforehand. If the description
is not known to the requester, other SOA-specific rules for service publication
and discovery have to be applied first as shown in Fig. 11.

Fig. 11. Refinement of an abstract transformation step

Since the behavior-preserving refinement solely depends on the structural re-
finement of reachable states, we do not need to provide a fixed mapping between
the transformation rules of the two involved styles. This is especially advanta-
geous, if abstract and concrete operations are very different.

Moreover, this approach implicitly allows for alternate refinements of an ab-
stract operation depending on the context of its application. In the above case,
for instance, the service description might have been published to the discovery
agency already. Then, the first two operations of the transformation sequence
in Fig. 11 can be omitted. Or, the description might already be known to the
requester due to some previous look-up so that even the query operations can
be omitted.
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6.2

Based on the tools for automated state space generation mentioned above, one
can apply various analysis techniques like model checking to the resulting tran-
sition system. We propose to express the behavioral refinement check as a reach-
ability problem in the concrete transition system that can be solved by model
checkers.

According to Definition 9, for a given abstract transformation step G ⇒ H
the reachability problem consists of searching a path G′ ∗=⇒ H ′ in the concrete
transition system with abs(H ′) |= H. Consequently, the abstraction function
abs has to be applied to every visited state in order to find an appropriate
target graph H ′. Since this affects the computational complexity, we would rather
express the same property solely at the level of the concrete system.

For this purpose, we assume a second translation, contravariant to abstrac-
tion. A function trans : GraphTG → GraphTG′ associates an abstract instance
graph with a concrete one representing the reformulation of an abstract state
over the concrete type system. Note that the concrete graph does not necessar-
ily represent a complete state of the concrete architecture, but rather a minimal
pattern which has to be present in order for the requirements of the abstract
graph to be fulfilled. Thus, we consider a concrete instance graph G′ as a valid
structural refinement of an abstract graph G if it satisfies this pattern, formally
G′ |= trans(G).

Since the abstraction function abs is in general not injective, there are various
alternative possibilities for translating an abstract configuration to the concrete
level which are all valid structural refinements. The translation function trans
selects for every abstract graph only one possible translation instead of returning
the set of all potential translations. Thus, the definition of trans already includes
certain design decisions determining the specific refinement of abstract elements.

As a consequence, not every concrete configuration that is a valid refinement
according to abs is a valid refinement according to trans, too. However, in the
opposite direction we require that the translation function has to be compatible
with the abstraction function so that a refinement according to trans entails a re-
finement according to abs. This is formally expressed as a satisfaction condition,
reminiscent of similar conditions in algebraic specification or logics.

Definition 10 (Satisfaction Condition). Given abstract type graph TG and
concrete type graph TG′. A translation function trans : GraphTG → GraphTG′

is compatible to an abstraction function abs : GraphTG′ → GraphTG, if
the following satisfaction condition holds for all G ∈ GraphTG and all G′ ∈
GraphTG′ :

G′ |= trans(G) =⇒ abs(G′) |= G

Note that, due to the argument above, the opposite direction of the entail-
ment is in general not true. This reflects the fact that the translation function
contains more information than the abstraction function. Thus, the left condi-
tion is more specific and not necessarily entailed by the right condition. It would
be different if we had defined the translation function as returning the set of all
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possible translations of an abstract configuration. But then, it would be more
difficult to reformulate the reachability problem solely for the concrete transition
system.

Under the assumption of the satisfaction condition, we can now easily derive
the following theorem which allows to express behavior-preserving refinement
solely at the concrete level.

Theorem 1. Given an abstract architectural style G = 〈TG, C, R〉, a concrete
architectural style G′ = 〈TG′, C ′, R′〉, and compatible abstraction and translation
functions abs and trans. A concrete instance graph G′ ∈ GraphTG′ refines an
abstract instance graph G ∈ GraphTG according to Definition 9, if

– G′ |= trans(G)
– for every transition G ⇒ H in the abstract system TSG there exists a path

G′ ∗=⇒ H ′ in the concrete system TSG′ such that H ′ refines H.

Proof. Since trans is compatible to abs, we can conclude from G′ |= trans(G)
that abs(G′) |= G holds, too. The second clause already conforms to Definition 9.

A model checker like SPIN [23] can now be used to refine an abstract trans-
formation step G ⇒ H by looking for a state that satisfies trans(H), technically
speaking a graph that contains trans(H) as a subgraph. With the help of tem-
poral logics such as linear-time temporal logic (LTL), we can even formulate the
reachability of entire abstract sequences G ⇒ G1 ⇒ . . .⇒ Gn as:

♦(trans(G1) ∧ ♦(trans(G2) ∧ . . .♦(trans(Gn)) . . .))

Since we require only one path to satisfy the above formula while an LTL formula
always refers to all paths of the transition system, we have to negate the above
formula and let the model checker look for a counter example. A counter example
that violates the negated formula can then be used as a witness for the original
formula.

Although we cannot verify the refinement of the complete abstract transition
system this way, we are able to check at least the most important scenarios of
business-level behavior.

6.3

In order to satisfy the required compatibility, the definition of a translation func-
tion heavily depends on the definition of the contravariant abstraction function.
In this subsection, we revisit the abstraction function from Section 5.2, which is
based on a mapping between the concrete and the abstract type graph elements,
and we show how a compatible translation function looks like for this kind of
abstraction function.

The LTL operator ♦ means “at some time in the future”

Behavior-Preserving Refinement Relations 23

Compatible Translation Function for a Type Graph-Based
Abstraction Function

2

2



In Section 5.2, we define a semantic mapping t : TGso → TGpi from the
concrete type graph to the abstract type graph. From this type graph morphism,
we derive the abstraction function abst on instance graphs which consists of
renaming concrete types to abstract types and, due to the partiality of t, deleting
purely platform-specific elements.

For the definition of a compatible translation function, we invert the type
mapping t. However, since t is not injective (e.g., both Component and Service
are mapped to Component in Fig. 9), the resulting inverse t is a relation between
the elements of the two type graphs, which can be expressed by a function
t : NTG → P(NTG′). If t maps a concrete node type nt′ to the abstract type nt,
then nt′ ∈ t(nt). Analogously, t can be extended to edge types as well.

From the inverted type mapping t, we can now derive a translation function
transt : GraphTG → GraphTG′ . For an instance graphs G ∈ GraphTG with
typing morphism tp, it

1. deletes all nodes n whose type has no image under t, i.e., t(tp(n)) = ∅
2. changes the type of n to a certain nt′ ∈ t(tp(n)) else.

The first case is relevant for behavior-related nodes, e.g., for process-descriptions,
which are also excluded from the original type graph mapping t. The second case
adapts the types of the remaining elements to the vocabulary of the concrete
style. Since there might be several alternatives returned by t for adapting the type
of an abstract element, the translation function cannot completely be defined at
the type level but requires additional user decisions at the instance level for
translating individual nodes.

Technically, these user decisions can be integrated by additional node at-
tributes that are set by the engineer to determine the desired translation option
for a node. By evaluating the values of these attributes for a given instance
graph, the translation function determines the intended translation to the con-
crete level.

What remains is to show the compatibility of transt to the original abstrac-
tion function abst. According to Definition 10, we have to show that

G′ |= transt(G) =⇒ abst(G′) |= G

Proof sketch. For arbitrary G ∈ GraphTG and G′ ∈ GraphTG′ be

G′ |= transt(G) (1)

Since t is the inverse of t, transt(G) contains only elements whose types are in the
domain of t. These elements are preserved by abstraction on both sides of (1).
Thus, the satisfaction relation still holds after application of the abstraction
function:

abst(G′) |= abst(transt(G)) (2)

Since the application of transt◦abst is the identity for structure-related elements,
we receive:

abst(G′) |= G (3)

��
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7 Conclusion

In this paper, we introduced a formal technique for modeling dynamic archi-
tectures as instances of graph transformation systems. Graph transformation
rules were used to express available communication and reconfiguration oper-
ations in a certain architectural style. Architectural models were enriched by
process descriptions with operational semantics that restrict and coordinate the
architectural behavior.

We have discussed semantic conditions for the behavior-preserving refinement
of architectural models under the obligation of architectural consistency across
different levels of platform abstraction. Style-based abstraction and translation
functions were introduced as formal refinement criteria that can be checked with
the help of analysis tools.

The presented approach is very flexible because it is not based on a fixed syn-
tactical mapping between the different operations but on a semantic relationship
that also respects context-dependent alternatives for refining abstract behavior.

Future work includes further investigations on the verification of behavioral
refinement by existing simulation algorithms for related transition systems. We
are planning to support the approach by a coupling of CASE tools with editors
and analysis for graph transformation systems, presently conducting experiments
with existing model checkers.
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M. Nagl, J. Pfalz, and B. Böhlen, editors, Proc. Application of Graph Transforma-



Modelling Mobility with Petri Hypernets�

Marek A. Bednarczyk1, Luca Bernardinello2,
Wies�law Paw�lowski1, and Lucia Pomello2

1 Institute of Computer Science, P.A.S., Gdańsk, Poland
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Abstract. Petri hypernets, a novel framework for modeling mobile
agents based on nets-within-nets paradigm is presented. Hypernets
employ a local and finitary character of interactions between agents, and
provide means for a modular and hierarchical description. They are ca-
pable of modelling mobile agents tfrahat can dynamically change their
hierarchy, and can communicate with each other and with the outside
world by exchanging messages, i.e., other mobile agents.

1 Introduction

The idea of mobility has already attracted a lot of interest in the computing
science community. Many existing formalisms devised to cope with specific ap-
plication areas have been enriched by ‘mobility-related’ features. Here, exam-
ples range from extensions of Milner’s CCS, like mobile processes in π-calculus,
cf. [10], or ‘programming-level’ notations such as UNITY or specification for-
malisms like UML (see e.g., [1]). Efforts to capture the essence of mobility also
resulted a new, dedicated frameworks like the calculus of mobile ambients [6],
Join calculus [7] or mobile Petri nets [2].

Here, yet another model called Petri hypernets is introduced. Petri nets,
cf. [11], are well-known as a general and intuitive framework in which concurrent,
asynchronous and distributed systems can be modeled. Our plan is to retain these
strengths in an extension based on the principle that mobile agents should be
modeled as Petri nets, and that other mobile agents should be able to manipulate
them.

In contrast, e.g., mobile nets aim to capture the essence of mobility by al-
lowing names of places of a Petri net to be sent as tokens. This requires the
mechanisms of fresh variable creation and variable binding to be used in the for-
malism. We consider this as a departure from one of the fundamental concepts
underlying Petri nets philosophy, namely that the interaction between places
and transitions should be local and finitary. This sets our model apart from the
formalisms like π-calculus, Join calculus, mobile nets, etc.
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We intend to model mobile agents as nets and allow that nets are manipulated
by other nets. Within a Petri net framework this can be realized by assuming
that some nets are ‘tokens’ for other nets. This nets-within-nets paradigm
was proposed by Valk and is being developed by his students and followers
cf. [12, 13, 14, 8, 9]. Petri hypernets can be seen as yet another forking of the
nets-within-nets paradigm. Each hypernet is a collection of mobile agents,
called open nets, together with an assignment of mobile agents as tokens to
places of other mobile agents, called hypermarking.

Petri hypernets support a modular and hierarchical description of reality.
There is a natural hierarchy of agents that corresponds to the assumption

that any mobile agent should be higher in the hierarchy than any of the tokens
it manipulates.

Modularity is imposed on mobile objects by assumption that each open net
is a synchronous composition of modules, each one responsible for manipulation
of mobile objects traveling along a fixed channel.

Co-operation between modules, each associated to a different channel within
an open net, is enforced by hand-shake synchronization of their transitions.
Namely, if the same transition t occurs in several different modules of an open
net N , then in order to fire t in N all these modules must be ready to par-
ticipate. It is well-known that every elementary net can be obtained as such a
synchronization of state machines [4]. A state machine is a Petri net such that
every transition has exactly one precondition and exactly one postcondition, and
with only one token in exactly one place initially marked. Thus, all reachable
markings are one-token markings. As a result the state machines are purely se-
quential, i.e., two transitions can never fire concurrently in a reachable marking.
Something similar holds for 1-safe Petri nets. Namely, given such a net N one
can construct a net N ′ with the same behavior as the synchronization of state
machines, see [3]. These observations encourage us to restrict attention only to
modules which have, essentially, the structure of sequential machines. Only the
assumption that there is at most one token in exactly one place is dropped.

The features of hypernets discussed above could be found in the existing
ramifications of the nets-within-nets paradigm. There are, however, several
important novelties as well.

First, we assume that a mobile agent does not make any assumptions about
the structure of other mobile agents. Following Valk’s original idea, also in our
model an open net is allowed to synchronize the firing of its transition t with
the firing of the transitions with the same name present in its tokens, if needed.
Namely, each module in an open net has facilities to communicate locally, with a
module of its kind in an adjacent open net. The nets adjacent to the given open
net are those immediately below and above it in the hierarchy. However, unlike
in Valk’s proposal, in hypernets such an inter-level synchronization is achieved
solely by means of exchanging messages. This readiness to communicate with its
parent net and its token nets, explains the terminology ‘open nets’ used to refer
to mobile agents in our formalization.
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Second, messages are also just mobile agents. This assumption implies that
in Petri hypernets mobile agents can migrate between the levels of the hierarchy.
Thus, the hierarchy itself may change.

Third, Valk gives two different semantics for his object nets. Consider, for
instance, a transition with one input and two output places in the top level net.
Then one has the problem explaning what is the outcome of firing this tran-
sition when a token net enters the input place. Valk considers two versions of
the semantics, both based on the assumption that the transition does not, in
fact, move the real token net, but references to it. Our decision to use sequential
machines as moduls solves this problem. In particular, firing a transition pre-
serves the identity of agents. We can think that a transition manipulates token
nets as values, that it moves them, not their references, from the input place to
the output place. The choice of sequential machines also entails that no agent is
created, and no agent is destroyed. Thus, the hypernet has a finite state space,
even if the agents it comprises are truly mobile, and can change their cooperation
potential dynamically.

Finally, it is worth stressing that in case of hypernets the decompositions play
an important structuring rôle. We see a hypernet as a hierarchical structure of
open nets, each of them decomposed into a collection of sequential modules.
From this perspective, firing of a transition t of the hypernet should be seen
as a complex transaction, which involves firing transitions t which occur in the
modules of all the open nets involved.

The reason for writing the paper is to present the simple ideas, together
with their slightly less simple formalization. The main result states that the
formalization is well-founded. Namely, firing a transaction preserves the forest-
like hierarchy of open nets within a hypernet.

2 Petri Hypernets — A Gentle Introduction

2.1 Example: Air Travels

To introduce the model and illustrate the features of Petri hypernets let us recall
a simple air travel case study considered e.g., in [1]. The case study requires the
modeler to cope with mobile agents of at least 3 different kinds: airports, planes
and travelers. The task is to describe the most basic aspects of the air travel
involving possible collections of mobile agents of these kinds.

2.2 Kinds and Modules in the Airport

An agent of each kind exhibits dynamic behavior which may involve manipula-
tion of objects of other kinds. For instance, while at an airport, travelers and
planes are under the rules set forth by the airport.

One of the assumptions underlying the definition of hypernets is that agents
cannot directly manipulate other agents of their kind. In fact, the separation
of agents into kinds is one of the basic features of the model. Most of the time
kinds will be called channels to stress the communication aspect played by them
within hypernets.
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Fig. 1. Airport — plane manipulation module

An airport perspective of the activities involved in handling of airplanes is
presented on Fig. 1. This is a purely sequential view. The planes land at a gate.
While at the gate they can deplane the travelers, one after another. Action refuel
then takes planes to the refueling place. Then, to gate moves planes to another
gate where the plane may accept new travelers, and finally take-off.

The graphical description of the plane handling activities in Fig. 1 is essen-
tially standard. The exception concerns the precondition of land and postcon-
dition of take-off transitions. Here, the open world assumption comes into play.
The airport is expecting that the planes are landing in co-operation with some
higher-level traffic control authority. Similarly, the airport authority should be
able to safely assume that upon take-off somebody above the hierarchy ladder
will take care of the plane with its passengers.

The dashed half circles which provide the input for land and the output for
take-off on Fig. 1 are intended to capture the above intuition. Drawing half of
a place is meant to indicate that co-operation with higher level is required to
successfully conclude the operation, here land and take-off. The dashes highlight
the virtual character of the half-places. Namely, they are a means of synchro-
nization of transitions between adjacent levels rather than real places that can
store tokens. This evident link with the concept of zero-places proposed by Bruni
and Montanari, see [5], remains to be investigated.

Fig. 1 describes the π-module of an airport agent only. We use the prefix π
to indicate that the tokens manipulated within the module are ‘planes’. A τ -
module for manipulating travelers at the airport is defined in Fig. 2. Recall that
the π-module presented on Fig. 1 describes co-operation with the higher level
only. Thus, the hypothetical higher level air traffic control agent should contain
a π-module which can deliver the planes to airports for landing, and handle the

Fig. 2. Airport — traveler handling module
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planes in the air upon their take-off. This mechanism for co-operation with lower
level agents is present in the τ -module on Fig. 2.

Intuitively, the travelers appear in the airport as a result of a plane landing.
The essence of the deplane action is to move the passengers from the plane to
the airport which then takes care of them. On Fig. 2 this is formalized by the
dashed half circle precondition of the deplane transition and marking it with π.
The postcondition of the board transition is treated similarly.

Notice that the virtual places used for co-operation with lower level mobile
agents bear the name of the channel. This is needed to determine the proper
place which is supposed to provide/receive the manipulated mobile agent. Due
to the tree-like hierarchy assumption such annotations were not necessary on
Fig. 1 — simply, there is at most one agent above.

2.3 Airport — An Open Net

By synchronizing the π-module with the τ -module we obtain a net representation
of an airport, see Fig. 3. The net is well-formed in the sense that the references

Fig. 3. Airport — traveler and plane manipulation modules

to other modules are consistent with respect to their structure. For instance, the
transaction board in the τ -module assumes that the π-module also has the board
transition. Thus, the passanger provided for boarding is guaranteed to have a
plane ready for accepting it at the postcondition of board in the π-module, which
is a local place. Such well-formed synchronized modules are called open nets. The
terminology intends to highlight the communication capabilities of the agents.

In our simplified view of the airport travelers appear at the airport either
as a result of a plane landing, or they are already there in the initial marking.
However, one could easily refine the model. For instance, adding a new module
to the airport could amount to adding a new means of transportation of the
passangers. Clearly, τ -module should be redefined to take care of the new ways
of handling travelers. In principle, though, π-module could be left unchanged,
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Fig. 4. An airplane

unless some ways of direct interaction between the two means of transportation
need to be introduced. This seems to indicate that the modular structure of
mobile agents may increase re-usability of components.

2.4 Plane

A very simple model of a plane is presented on Fig. 4. It consists of just one
module, a τ -module to handle travelers. The passengers may board the plane as
a result of co-operation with a higher level agent and, after being served they
may deplane, again in co-operation with the higher level mobile agent.

2.5 Petri Hypernet

An open net is, essentially, a synchronous product of sequential nets, whose
transitions are capable also of sending and receiving tokens to and from other
open nets. In fact, the tokens themselves are also open nets.

Accordingly, a Petri hypernet is a set of open nets N plus a hypermarking:

m : N ⇀
⋃

N∈N
PN

which describes the distribution of the elements of N as token nets in places of
other open nets in N . The assumption that m is a partial function captures the
idea that each open net has at most one level up net. To ensure that the net N ′

such that m(N) ∈ PN ′ is indeed ‘higher’ we require that the hierarchy, i.e., the
transitive closure of this ‘one level up’ relation, is irreflexive. If it is, we call the
hypermarking well-founded.

Fig. 5 presents an open Petri hypernet which consists of one top level net,
the airport, one plane and two (unspecified) traveler nets.

The hypernet is called open, since the top level net has a transition ready to
receive and another ready to send tokens to a higher level.

Clearly, the hierarchy described by the hypermarking is well-founded.

2.6 Transactions — Firing a Transition in a Petri Hypernet

In the hypermarking presented on Fig. 5 one traveler can board the plane. Result
of firing this transition is described on Fig. 6.
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Fig. 5. An open Petri hypernet

The ’traveler 2’ net is sent through a ’virtual channel’ connecting the airport
and the airplane open nets. As we already mentioned, tokens while traveling
along virtual channels cannot be observed. Hence, the middle picture on Fig. 6
does not really describe a valid hypernet and serves as an intuitive explanation
of the firing process only.

As the result of boarding the traveler net involved disappears from the horizon
of the airport net, and is moved to the plane net postcondition of board . Thus,
the hierarchy changes.

This single action involves board transitions on two different levels: two in-
stances of board in the airport net, and one instance of board in the plane net.
Boarding also involves manipulation of two token nets: the plane and a trav-
eler. From this perspective firing looks like a complex transaction which involves
synchronization of activities on many different levels in the hypernet.

This transactional view of transition firing provides insight into preservation
of the well-foundedness of hypermarkings. The point to notice is this. The trans-
action involves making connections between complementary and well-connected
virtual places. In our example there are two such places: the virtual output of
board in the τ -module of the airport net, and the virtual input of board in the τ -
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Fig. 6. Firing of a boarding transaction
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module of the plane net. Gluing such connections together establishes temporary
channels connecting proper places. This follows from the assumption that the
modules have the structure of state machines. Thus, each transition has exactly
one precondition and exactly one postcondition, either virtual or proper. It is
also important to notice that these channels involve modules of the same kind,
τ in our example.

The following section of the paper provides a formalization of the ideas in-
formally introduced above.

3 Petri Hypernets — A Formalization

Petri hypernets which we are about to define consist of individual nets, called
open nets. A hypermarking is just a way of saying which open net is used as a
token in another open net.

In the formalism presented the open nets will neither be created nor de-
stroyed. Cloning of nets, which we consider as a particular form of creation, is
also disallowed. To enforce this policy we define the open nets as synchronous
products of single channel components, each having a structure of a state ma-
chine.

3.1 Channels and Components — Formalization of Kinds and
Modules

Let Σ, Δ range over finite sets of channels, taken from some fixed countable
vocabulary of channel names. We let α, β, etc., range over channel names.

Definition 1. An α-component C is a triple C = 〈P, T, F 〉, where

– P is a finite set of local places of C,
– T is a finite set of transitions of C,
– F is a finite flow relation,

F ⊆ (P ∪ { ? } ∪ { ?β | β �= α })× T ∪ T × (P ∪ { ! } ∪ { !β | β �= α })

such that for every t ∈ T there exists a unique p ∈ P ∪{ ? }∪ { ?β | β �= α }, and
a unique q ∈ P ∪ { ! } ∪ { !β | β �= α } such that

F (p, t) and F (t, q) (1)

An α-component C is of sort Σ, notation C:Σ, if α ∈ Σ, and β ∈ Σ whenever
either F (?β, t) or F (t, !β) hold. Clearly, C:Σ and Σ ⊆ Δ implies C:Δ.

Condition (1) states that each α-component is in fact a usual state machine, the
set of places of which is divided into three disjoint parts. The first, with local
places, is mentioned explicitly in the definition. The other two are virtual inputs
and virtual outputs, contained in { ? } ∪ { ?β | β �= α } and { ! } ∪ { !β | β �= α },
respectively. In accord with the intuitions put forward in the previous section,
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input ? and output ! refer to communication with the implicit upper level net.
Inputs of the form ?β and outputs !β indicate communications with the lower
level nets.

The unique places p and q, local or otherwise, such that F (p, t) and F (t, q)
holds are called the precondition and postcondition of t in C.

3.2 Open Nets — Formalization of Mobile Agents

Suppose that for each α ∈ Σ an α-component of sort Σ is given. Under suitable
conditions concerning the inter-component communication, such a collection of
components synchronized together forms an open Petri net — the counterpart
of a mobile agent in our formalization.

Definition 2. An open net N is a pair N = 〈Σ, {Nα }α∈Σ 〉, such that

1. Nα =̂ 〈Pα, Tα, Fα 〉 is an α-component of sort Σ, for every α ∈ Σ
2. Fα(?β, t) implies (∃p ∈ P β).F β(p, t), for every α, β ∈ Σ, t ∈ TN

3. Fα(t, !β) implies (∃q ∈ P β).F β(t, q), for every α, β ∈ Σ, t ∈ TN

4. α �= β implies Pα ∩ P β = ∅

where TN denotes the set
⋃

α∈Σ Tα.

An open net N consists of sequential components Nα, for α ∈ Σ. Co-
operation of the components within N is enforced by taking the (partial) syn-
chronous product. That is, one glues the components on identical transitions
while keeping their state spaces apart. The latter is ensured by Def. 2.4.

A sequential component formalizes the notion of module which copes with
specific activities associated with its channel. From this perspective the syn-
chronous product of the components of an open net is a means to force coop-
eration of different modules, cf Fig. 3. Additionally, and this is specific to our
proposal, the synchronization facilitates the communication between the open
net and its tokens, cf. Fig. 6.

Thus, flow Fα(?β, t) in the α-component of N signals that the net, while
executing t, intends to exchange communication with its token net traveling
along channel β. Specifically, it means that transition t in the component Nα

wants to read what the token net enabling t in Nβ ‘sends up’ on channel α. Note
that, by Def. 2.1, N has a β-component. Def. 2.2 states that in such a case the
precondition of t in the component Nβ has to be a local place from P β . This, as
discussed later, ensures the local character of firing a transition.

In terms of our running example, consider Nτ and Nπ to be the sequential
components of the airport net responsible for managing travelers and planes
respectively, see Fig. 3. Then, Def. 2.2 ensures that disembarkment of passengers
from a plane requires the presence of the local place in Nτ , which we could think
of as an ‘arrival gate’.

Similarly, Fα(t, !β) means that while performing t, the component Nα will
send its token one level down, as a token of the token net traveling along chan-
nel β. Def. 2.3 ensures that in this case the postcondition of t in Nβ is also a
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proper place. In our example this situation is demonstrated by the board transi-
tion and the ‘departure gate’ in the π-component of the airport.

Note also that the above discussion relies on the assumption that the se-
quential components are indeed state machines, i.e., that each occurrence of
transition t has exactly one input, and one output place.

3.3 Hypernets

Let N = 〈Σ, {Nα }α∈Σ 〉 be an open net. In the sequel the notation PN =⋃
α∈Σ Pα and TN =

⋃
α∈Σ Tα is used to denote the collection of all local places

and all transitions of N , respectively.

Definition 3. A Petri hypernet H is a pair H = 〈N , m 〉, where

– N is a finite set of open nets.
– m : N ⇀

⋃
N∈N PN is a partial function called the hypermarking.

such that the following conditions hold.

1. N �= N ′ implies PN ∩ PN ′ = ∅, for N, N ′ ∈ N .
2. The partial m-depth function dm : N ⇀ N inductively defined by

dm(N) =̂
{

0 if m(N) is undefined
dm(N ′) + 1 if m(N) ∈ PN ′

is total.

Def. 3.1 captures the idea that different mobile agents cannot share any local
places. Similarly, sequential modules of an open net have disjoint local spaces.

If the value m(N) is defined, then, by Def. 3.1, there exists a unique N ′ ∈ N
such that m(N) is a local place of N ′. In this case N is a token or token net of
N ′. Thus, the clause in Def. 3.2 indeed defines dm as a partial function.

The condition of Def. 3.2 really states that the hypermarking of a Petri
hypernet is well-founded in the sense that its depth function stratifies N into a
finite, forest-like hierarchy. A token net N in H is a top-level net iff dm(N) = 0
iff m(N) is undefined.

In the sequel usual conventions apply, e.g., PH stands for
⋃

N∈N PN , etc. We
write m(N) for N ′ such that m(N) ∈ PN ′ , and χm(N) for the unique channel
α such that m(N) is a place of the α-component of N ′. In the sequel the use
m(N) always implies that m(N) is defined.

3.4 Consortia

In Petri hypernets firing a transition may involve nets at several levels in the
current hierarchy. Moreover, as an effect of firing the transition the hierarchy
itself may change. All this makes the situation more complex than usual. Yet,
the central paradigm underlying Petri net theory is retained — transition firing
has local and finitary character.
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We have already argued that with the explicit decomposition of a Petri hy-
pernet into open nets, and these in turn into components, it is appropriate to
view the global firing of a transition t as a result of a complex transaction which
involves these mobile agents and all their modules in which an occurrence of t
takes part in reshuffling of tokens involved in the transition.

To start with we consider consortia. The idea behind the notion is to take
account of all open nets involved in a transition. This involvement may take two
forms: the net is being moved around, or it is involved in moving other tokens
around. In fact, some token nets may well play both rôles at the same time, as
demonstrated by the plane agent in our running example, see Fig.6.

Let H = 〈N , m 〉 be a hypernet. Consider t ∈ TH , and a non-empty family
T of open nets containing t, i.e., N ∈ T implies t ∈ TN . For T ′ ⊆ T let us
define Inp t(T ′) = { p ∈ PH | ∃N ∈ T ′.FN (p, t) } and call it the set of t-input-
places of T ′. We use the notation Inpα

t (T ′) when we restrict attention to places
in α-components of the nets from T ′ only. If T ′ is a singleton {N} we simply
write Inp t(N) instead of Inp t({N}). The set Out t(T ) of t-output-places for T is
defined analogously.

A t-consortium selects the set of open nets T involved in performing the
transition, as well as an input token from every input place of the transition
t in any net belonging to T . This choice is modeled by the function ξ in the
definition below.

The definition of a t-consortium lists five structural conditions which have to
be satisfied by the nets from the set T and the function ξ. First, it is required that
the choice of token nets given by ξ agrees with the hypermarking of H, i.e., for
any t-input-place in T only a token assigned to this place in the hypermarking
can be selected by ξ. The remaining four conditions describe the relationship
between a (component of a) token net and its parent net, which make the inter-
level exchange of tokens possible. Conditions 2 and 3 describe the situation from
the token net point of view, while 4 and 5 take the other perspective into account.

Definition 4. A pair 〈 T , ξ 〉, where ξ : Inp t(T ) → N , is a t-consortium in H
provided the following conditions hold for N ∈ T .

1. FN (p, t) implies m(ξ(p)) = p, for p ∈ Inp t(T ).
2. Fα

N (?, t) implies m(N) ∈ T ∧ Fα
m(N)(t, !α) ∧ ξ(Inpα

t (m(N))) = N

where α = χm(N).
3. Fα

N (t, !) implies m(N) ∈ T ∧ Fα
m(N)(?α, t) ∧ ξ(Inpα

t (m(N))) = N

where α = χm(N).
4. Fα

N (?β, t) implies ξ(Inpβ
t(N)) ∈ T ∧ Fα

ξ(Inpβ
t(N))

(t, !).

5. Fα
N (t, !β) implies ξ(Inpβ

t(N)) ∈ T ∧ Fα
ξ(Inpβ

t(N))
(?, t).

An important observation concerning the notion of consortium is that we do not
require T to contain all open nets which contain t among their transitions. It is
easy to develop an example in which there are two disjoint t-consortia present
in the hypernet. Then, clearly, their union is also a t-consortium.

From the condition 1 it follows that the function ξ is injective.
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Condition 2 states that if the α-component of N expects a token from the
upper level, then the upper level net m(N) exists and belongs to T . Moreover,
the α-component of m(N) must be ready to send something down to its (unique)
α-channel such that N is the input token for t in m(N)α chosen by ξ. Channel α
is the channel through which N travels in the upper level net, i.e., α = χm(N).

In terms of the airport example, an instance of this condition would say that
in any board-consortium if the plane net is ready to accept a passenger, then the
airport net must be ready to provide one, and for this to happen the plane has to
be at the departure gate (which is a board-input-place of the plane-manipulation
component of the airport).

Condition 3. is similar, but refers to the ability of sending a token up.
Above, the unique upper channel from both conditions 2. and 3. is slightly

ambiguously denoted α. It is hoped that the precise meaning can always be
deduced from the context.

Condition 4. states, that if the α-component of N expects a token to be
provided by the token net selected by ξ in the β-precondition of t, then the
token net selected for this precondition by ξ is in T , and has an α-component in
which t is ready to send something up. For example, in any deplane-consortium
if the airport is ready to accept a passenger from a plane, the plane must be at
the deplane-input-place (i.e., an arrival gate) and has to be ready to send the
passenger up to the passenger handling τ -component of the airport.

As we know, transitions in T may also involve virtual inputs/outputs. The
set containing both input-places and virtual inputs defined as

PreCon t(T ) = { 〈 p, Nα 〉 | N ∈ T ∧ α ∈ ΣN ∧ Fα
N (p, t) }

will be called the set of t-preconditions in T . The set of t-postconditions in T is
defined in an analogous way and denoted by PostCon t(T ).

Again, when restricting attention to transitions occurring in α-components
of the nets from T only, we shall write PreConα

t (T ) and PostConα
t (T ).

3.5 Transactions, or Firing a t-Consortium

Let H = 〈N , m 〉 be a hypernet, t ∈ TH , and T be a t-consortium in H. As
we know, the occurrences of t in the open nets from T may have virtual in-
puts/outputs as their preconditions/postconditions. Informally speaking, in the
process of firing the consortium the virtual places along channels are glued to-
gether and become invisible. Token nets are being moved from the input places
they occupy (via ξ) to the corresponding output places. Both input places and
output places are ‘proper’, i.e., local places from PH .

To describe the effect of firing the transition t in H let us first recursively
define a family of partial functions:

– srcα
t : PreConα

t (T ) ∪ PostConα
t (T ) ⇀ Inpα

t (T )
– trgα

t : PreConα
t (T ) ∪ PostConα

t (T ) ⇀ Outαt (T )

for all α in the alphabet of T (i.e. α ∈
⋃
{ΣN | N ∈ T }).
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For an arbitrary t-precondition/t-postcondition in T the functions srcα
t and

trgα
t assign the ‘source input-place’ and the ‘target output-place’ for the partic-

ular occurrence of t respectively (both are elements of PH).

srcα
t (〈 p, Nα 〉) =̂

⎧⎪⎪⎨
⎪⎪⎩

p p ∈ Pα
N ∧ Fα

N (p, t)
srcα

t (〈 p′, Nα 〉) Fα
N (t, p) ∧ Fα

N (p′, t) ∧ p �= p′

srcα
t (〈 !α,m(N)α 〉) p = “?”

srcα
t (〈 !, ξ(q)α 〉) p = “?β”

where q = Inpβ
t(N)

trgα
t (〈 p, Nα 〉) =̂

⎧⎪⎪⎨
⎪⎪⎩

p p ∈ Pα
N ∧ Fα

N (t, p)
trgα

t (〈 p′, Nα 〉) Fα
N (p, t) ∧ Fα

N (t, p′) ∧ p �= p′

trgα
t (〈 ?α,m(N)α 〉) p = “!”

trgα
t (〈 ?, ξ(q)α 〉) p = “!β”

where q = srcβ
t (〈Outβt(N), Nβ 〉

Let us briefly comment on the above definition. The first two clauses in the
definition of srcα

t and the definition of trgα
t are self-explanatory. The third

clause in both cases refers to m(N)α i.e., the α-component of the ‘parent net’ of
N (wrt. to the hypermarking m). Such a parent net exists by conditions 2 and 3
of the Definition 4 respectively.

The third clause of the definition of srcα
t simply says that to find the source

input-place of an occurrence of t which reads something ‘from above’ we have to
look for the source input-place of t in the corresponding component of the parent
net. The third clause of the definition of trgα

t has an analogous interpretation.
Up to this point definitions of srcα

t and trgα
t were symmetric. The last clauses

brake this symmetry for obvious reasons. In the case of srcα
t the situation is

simple. We have to search for a matching !-virtual place in the token provided
to t in the α-component of N . This token is in the unique local place q such that
F β

N (q, t) holds, i.e., q = Inpβ
t(N).

A symmetric argument in case of trgα
t would lead to a local place r =

Outβt(N) which is a postcondition of t, so ξ cannot be directly applied to it.
To cope with this we have to first compute the local place which is going to end
up in r, and only then apply ξ to it.

The following result is crucial to guarantee correctness of our last definition.

Lemma 1. Let H = 〈N , m 〉 be a hypernet, t ∈ TH , and T be a t-consortium
in H.
1. srcα

t 〈 p, Nα 〉 is defined for any local p ∈ Outαt (T ).
2. trgα

t 〈 p, Nα 〉 is defined for any local p ∈ Inpα
t (T ).

Note that the definition of srcα
t and trgα

t does not directly refer to srcβ
t /trgβ

t

for β �= α. Intuitively it stresses the fact that the flow of tokens within a hypernet
takes place ‘along channels’, i.e., a token can move from an α-component of one
open net to a β-component of another open net within H only if β and α are
equal (of course other conditions have to be satisfied as well).
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Definition 5. The result of firing a consortium 〈 T , ξ 〉 in a hypernet 〈N , m 〉
is a hypernet 〈N , m′ 〉 such that:

m′(N) =
{

trgα
t (〈m(N),m(N)α 〉) N ∈ ξ[Inpα

t (T )], m(N) ∈ m(N)α

m(N) otherwise

i.e., the new hypermarking m′ is obtained from the original one by moving all the
input tokens designated by ξ to their target output-places given by the appropriate
instance of the function trgt.

Finally, let us formulate the main result. We state it without proof which is quite
involved and therefore omitted due to space limitations.

Proposition 1. Definition 5 is correct. In particular, the new assignment of
open nets as tokens which result from the firing of a t-consortium in a hypernet
is a well-founded hypermarking.

4 Conclusion

Petri hypernets, an extension of elementary Petri nets, have been introduced as
a means to represent systems of interacting mobile agents. Some basic properties
of the model have also been established. The main features of Petri hypernets
are the following.

– Local and finitary character of interactions between mobile agents, retained
from Petri nets.
This allows to reuse the usual notions from Petri net theory. For instance, two
consortia can be fired concurrently, provided their resources are disjoint, etc.
In fact, this seems to apply to all ramifications of Valk’s nets-within-nets
paradigm.

– Limited expressive power.
Clearly, the state space of a finite closed hypernet is finite. Thus, the model
promises to capture some essential features without resort to powerful se-
mantical concepts, like free variable generation and binding.

– The channels and the hierarchy as a support for modularization.
Channels and modules allow separation of concerns with regard to agents
of different kinds. The hierarchy helps structure the control flow of mobile
agents.

– Flexibility of the hierarchy structure, and inter-level migration.
The ability of open nets to move up and down in the hierarchy is one of
the main differences between hypernets and the other ramifications of Valk’s
nets-within-nets paradigm.

– Semantics based on the principle of preservation of mobile agents identity.

The comparable alternative approaches to the problem of specifying sys-
tems of mobile agents can be very roughly divided in two classes: the π-calculus
and the calculi inspired by it, or akin to it; the net-based models following the
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paradigm of nets-within-nets, proposed by Valk. We have chosen the latter
paradigm in order to adhere to the key principles of Petri’s net theory: local-
ity of states and transitions, and finiteness of the basic model. This choice sets
bounds to the expressive power of the model. In particular, each finite hypernet
has a finite state space if it is closed or no interactions with the outside world
are made.

A more detailed comparison of our proposal with respect to both trends has
been made in the introduction. Let us finish by discussing plans for further work.

The next step we intend to undertake is to develop sound reasoning techniques
for verification of properties of Petri hypernets. This should involve defining
suitable logics to match the behavioral notions of the model. In particular, the
logics have to take the individual character of tokens into account.

Petri hypernets provide a natural model in cases similar to the airport case
study. Here, it is natural to think of places as physical locations and of tokens
as physical objects. However, even in simple generalizations, manipulation of
references seems unavoidable. For instance, if passengers were allowed to carry
luggage, then the task of collecting the luggage after landing by its owner could
be realized by references. The luggage should have a reference to its owner,
and the owner could have a reference to its luggage. We plan to investigate if
hypernets could be extended to handle also references to agents. Perhaps one of
Valk’s referential semantics could be adapted here. Within this context it might
also be natural to consider the non-well-founded hierarchies.
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Abstract. We show that the category proposed in [5] of logic system
presentations equipped with cryptomorphisms gives rise to a category of
parchments that is both complete1 and translatable to the category of
institutions, improving on previous work [15]. We argue that limits in
this category of parchments constitute a very powerful mechanism for
combining logics.

1 Introduction

The importance of studying combined logics and, specially, general mechanisms
for combining logics is widely recognized [1]. This happens not only because of
the theoretical interest and technical difficulties of the subject, but also for prac-
tical reasons. In many fields, the need for working with several logics at the same
time is the rule rather than the exception. Among the various approaches to the
combination of logics, two deserve our close attention. One has been developed
within the general theory of institutions [12, 18], and focuses on the categorial
combination of parchments [11, 13, 14, 15]. Another, very successful, approach
is fibring [8, 7, 9, 16, 21, 2, 17]. The two approaches have also met each other in
[4, 3], where some of the very general preservation results already identified for
fibring have been brought to the level of parchments.

This work was motivated by a recent development in the theory of fibring
which consisted on adopting a novel category of logic system presentations. Still,
while the similarities between this category and the ones used in the parchment
framework were evident, their properties seemed to be quite distinct. Our initial
aim was to explore the precise relationship between them. Below, we shall briefly
overview the problem at hand and the context in which the relevant concepts
have appeared.

Ever since the first accounts of fibring, it could be noticed that fibring two log-
ics could sometimes lead to the collapse of one logic into the other (for instance,
fibring classical with intuitionistic logic would collapse into just classical logic
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FibLog POCTI/MAT/37239/2001, and the QuantLog initiative of CLC.

1 In this paper, we shall only be interested in set-indexed categorial constructions.
Therefore, all occurrences of categorial (co)completeness, (co)limit, etc. should be
understood as small.
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[8, 6]). In [5], cryptofibring was proposed as an extension of fibring and shown
to keep its general metatheoretical properties, like soundness and completeness
preservation results, while also attacking this so-called “collapsing problem”.
In [17] another variant of fibring, modulated fibring, had been introduced and
shown to avoid these collapses by means of a very careful use of adjunctions be-
tween lattice structured models. However, cryptofibring presents a structurally
simpler independent solution to the problem, interesting in its own right, that
encompasses the original definition of fibred model but also admits amalgamated
models that can be used to show that the above mentioned collapses are no longer
present. Cryptofibring is characterized categorially as a special kind of pushout
in a suitable category of logic system presentations. Its objects are simple alge-
braic presentations of both the syntax and semantics of logic systems. The main
novelty concerns its morphisms, that have been called cryptomorphisms, from
where cryptofibring borrows its name. In the sequel, we shall recall their precise
definitions, along with a short hint on the origin of the “collapsing problem” for
fibring. Further details on the theory of fibring and the “collapsing problem” are
however out of the scope of this paper. We encourage the interested reader to
browse through the cited literature, namely for motivation and examples.

It turns out, as we show here, that the cryptomorphisms introduced in [5]
set up a category of logic system presentations which is, modulo presentation
details, half-way between the categories of rooms used in [15] to build the cate-
gories of model-theoretic parchments and its logical large subcategory. The main
aim of its authors was to obtain a framework for combining logics using limits
of parchments, and a smooth way of presenting them as institutions [12], fol-
lowing earlier work [11, 13, 14]. However, they could prove that model-theoretic
parchments form a complete category but fail in general to present institutions,
whereas logical model-theoretic parchments present institutions in a smooth way
but do lack certain small limits. The counterexample used in [13, 14, 15], with
minor variations, concerns the nonexistence of a certain limit combining total
equational logic and partiality, whose intended result should help to grasp the
meaning of equations involving undefined terms.

In this paper we further show that cryptomorphisms really work. Not only
they extend fibring as was already known from [5], but, contrarily to what hap-
pened with model-theoretic parchments, logical or not, they also give rise to a
category of parchments which is simultaneously complete and easily translatable
to institutions. Indeed, both these properties follow directly from properties of
cryptomorphisms: they always fulfill the necessary satisfaction condition, and
they constitute a cocomplete category of logic system presentations. Arguably,
parchments based on cryptomorphisms are therefore an extremely powerful tool
for combining logics. As an application of cryptomorphisms, and with the main
purpose of stressing the differences with respect to (logical) model-theoretic
parchments, we shall revisit the partial equational logic example and show that
the corresponding colimit encompasses models that are compatible with each
possible interpretation of equality involving undefinedness, be it strong, weak,
existential, three-valued, or even other.
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We proceed as follows. In Section 2 we introduce the category of logic sys-
tem presentations with cryptomorphisms and explore its relationship to the cat-
egories of rooms used to build model-theoretic parchments and logical model-
theoretic parchments. Then, in Section 3, we show that cryptomorphisms indeed
build up a cocomplete category, and highlight a few differences with respect to
the other cases. The Section 4 is devoted to presenting the details of the exam-
ple and discussing its result. We conclude, in Section 5, with a discussion of the
results obtained and an outline of future work.

2 Cryptomorphisms

To combine logics and achieve a meaningful interplay between them we need to
work with presentations that pinpoint the fine details of the logic’s syntax and
semantics. A usual approach, underlying the notion of parchment [11] as well
as an essential dimension of fibring [16], is to consider some kind of algebraic
presentation a logic. Another common feature of both approaches is to adopt
a categorial setting where the combination mechanisms should be characterized
as universal constructions [10]. Before we proceed to the definition of our work-
ing category of logic system presentations and cryptomorphisms, we start by
recalling, or introducing, some notions and notation.

In the sequel, AlgSig is the category of many-sorted signatures, and AlgSigφ

its subcategory whose signatures have a distinguished sort φ ∈ S (for formulas)
and whose morphisms preserve φ. We denote by Alg the flat category of many-
sorted algebras and homomorphisms, and by Alg(Σ) the category of Σ-algebras
and Σ-homomorphisms, for each signature Σ. We use WΣ to denote the free
Σ-algebra (the word algebra), and [[ ]]A (for word interpretation) to denote the
unique Σ-homomorphism from WΣ to a given Σ-algebra A. Elements of |WΣ |s
are referred to as terms and denoted by t. Every AlgSig-morphism σ : Σ1 →
Σ2 has an associated reduct functor |σ : Alg(Σ2) → Alg(Σ1). Note that
[[t]]A|σ = [[σ(t)]]A for each t ∈ |WΣ1 |s and Σ2-algebra A. As usual, we overload
the notation and write σ for word translation instead of [[ ]]WΣ2 |σ to denote the
unique Σ1-homomorphism from WΣ1 to WΣ2 |σ. If Σ has a distinguished sort φ,
FormΣ stands for the set |WΣ |φ of formulas. We use ϕ to denote a formula.

Definition 1. A logic system presentation is a triple 〈Σ,M, A〉 where Σ ∈
|AlgSigφ|, M is a class (of models), and A associates to each m ∈ M a Σ-
interpretation structure A(m) = 〈Am, Tm〉, where Am is a Σ-algebra and Tm ⊆
|Am|φ (the designated subset of the set of truth-values).

Given a model m ∈ M , we shall simply write [[ ]]m instead of [[ ]]Am
.

This kind of interpretation structure, featuring a set of designated truth-
values, is commonly known as a logical matrix in the logic literature (see, for
instance, [20]). We can define the usual satisfaction of a formula ϕ ∈ FormΣ by
m � ϕ if [[ϕ]]m ∈ Tm.

The authors of [15] considered parchments built over a category MPRoom
whose objects can be seen as logic system presentations, modulo presentation
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details that we shall ignore. They also considered a logical version of these parch-
ments, which can similarly be built over a large subcategory LogMPRoom of
MPRoom. We recall the precise definition of their morphisms.

Definition 2. A morphism 〈σ,μ, η〉 : 〈Σ1,M1, A1〉 → 〈Σ2,M2, A2〉 of logic
system presentations consists of an AlgSigφ-morphism σ : Σ1 → Σ2, a map
μ : M2 → M1, and a family η = {ηm : A1(μ(m)) → A2(m)}m∈M2 where each ηm

is a Σ1-homomorphism from Aμ(m) to Am|σ that preserves designated values,
that is, ηm(Tμ(m)) ⊆ Tm.

A morphism is said to be closed if each ηm also reflects designated values,
that is, η−1

m (Tm) = Tμ(m) for every m ∈M2.
A closed morphism is said to be logical if ηm is injective for every m ∈ M2.

Let 〈σ,μ, η〉 : 〈Σ1,M1, A1〉 → 〈Σ2,M2, A2〉 be a morphism, ϕ ∈ FormΣ1 and
m ∈ M2. In general, it is clear that if μ(m) �1 ϕ then m �2 σ(ϕ). However the
converse does not hold, in general, since designated values are preserved but may
not be reflected. For closed morphisms, however, we obtain the usual satisfaction
condition: μ(m) �1 ϕ if and only if m �2 σ(ϕ).

With the obvious definitions of identity and composition, logic system pre-
sentations and morphisms constitute the category MPRoom. LogMPRoom
is the subcategory of MPRoom with only logical morphisms. But what is more,
closed morphisms are precisely what have been called cryptomorphisms in [5].
Requiring the weakest possible condition that ensures the satisfaction condi-
tion was indeed the main reason for their precise formulation. In the remainder
of the paper, we shall call Crypt to the corresponding category. It is worth-
while recalling that Crypt was proposed in order to characterize cryptofibring,
a generalization of fibring aimed at solving an anomaly known as the “collaps-
ing problem”. Indeed, at this level of abstraction, cryptofibring can be seen to
extend fibring in exactly the same proportion as the notion of cryptomorphism
extends the notion of arrow between logic system presentations used to charac-
terize fibring. For fibring, we just have 〈σ,μ〉 : 〈Σ1,M1, A1〉 → 〈Σ2,M2, A2〉 and
require that Aμ(m) = Am|σ and Tμ(m) = Tm. It is not difficult to understand
that this strict condition is the main reason why collapses may occur in the first
place [5]. In this context, it is also easy to understand the baptism of crypto-
morphisms. Each ηm is precisely a “homomorphism” between Aμ(m) and Am,
algebras over distinct signatures, mediated by the signature morphism σ, as in
Alg. This kind of “homomorphism” has been called a cryptomorphism before
(see, for instance, [19]).

If one wishes to work with logics at the level of institutions it is essential
that one considers parchments [11]. Fixing a base category B as a category of
rooms, we can build up a corresponding category of B-parchments. We just de-
fine a B-parchment to be a functor P : Sig → B, where Sig is some category
of abstract signatures. A morphism of B-parchments from P1 : Sig1 → B to
P2 : Sig2 → B is now just a pair 〈Φ,α〉 where Φ : Sig1 → Sig2 is a func-
tor and α : P2 ◦ Φ → P1 is a natural transformation. Using MPRoom and
LogMPRoom as a basis we obtain precisely the categories of model-theoretic
parchments and logical model-theoretic parchments of [15]. These constructions
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mimic precisely the construction of the category of institutions and institution
morphisms using (the dual of) the category of twisted relations [12] as a base.
There are two very interesting features that these categories of parchments may
enjoy: one is the possibility of setting up a functor to institutions, thus show-
ing that the parchments at hand are indeed good ways of representing logics;
the other is the possibility of combining logics using limits of parchments, when
they exist. It is a straightforward property of the general construction of these
categories of parchments that a translation to institutions can be obtained from
a translation of the base category considered to (the dual of) the category of
twisted relations. In the case of our logic system presentations, this amounts
to choosing a notion of arrow that fulfills the satisfaction condition mentioned
before. Moreover, well known results on indexed categories [19] show that this
construction always yields a complete category of parchments if the base cate-
gory considered is cocomplete.

Despite its problem with the satisfaction condition, MPRoom is a cocom-
plete category. However, the combinations obtained often feature combined mod-
els with a diversity of newly generated truth-values corresponding to the previ-
ously unknown result of applying an operation of one of the logics being combined
to a value of another. These were called “junk” values and considered harmful in
[13, 14, 15], which led its authors to restrict attention not to closed, but directly
to logical morphisms. The category LogMPRoom is however not cocomplete
(as usual, injectivity does not go along too well with coequalizers), as they have
shown in a very interesting example. The category Crypt is already known to
have some colimits, at least precisely those used for characterizing cryptofibring.
Our job, in the next section, will be to show that Crypt is indeed cocomplete.
While doing that we shall see that the previously mentioned “junk” values are
an essential ingredient of the envisaged free interplay of concepts, if measured
along the differences between colimits in Crypt and MPRoom, that we shall
pinpoint.

3 Cocompleteness

Our task now is to prove the cocompleteness of Crypt, while highlighting
the main differences between its colimits and those that can be obtained in
MPRoom.

As argued in [19], many categories arising in computer science can be seen as
indexed categories. Our categories of interest for now, MPRoom and Crypt,
but also LogMPRoom, are good examples of that. We could explore this fact
and the well known results about indexed categories to attack the cocomplete-
ness of Crypt and compare its colimits with those of MPRoom. Indeed, at a
first level, both can be seen as categories indexed by AlgSigφ, and at a second
level, the component categories of each of them can be seen as categories of
interpretation structures indexed by the dual of the category of classes. How-
ever, there is a major difference between the two cases: whereas in the case of
MPRoom each category of Σ-interpretation structures (Str(Σ) in the termi-
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nology of [15]) is also cocomplete, the relevant categories of structures in the case
of Crypt (of course, the subcategories CryptStr(Σ) of each Str(Σ) with homo-
morphisms that do not only preserve but also reflect designated values) are not
cocomplete. This fact implies that, at the second level, the sufficient conditions
for the cocompleteness of indexed categories of [19] apply to MPRoom but not
to Crypt. Still we do not start from scratch. In the sequel, we shall capitalize
on two well known results (see, for instance, [19]): the cocompleteness of Alg,
and the fact that the forgetful functor from Alg to AlgSig preserves colimits.
Although we do not want to get into the fine details of the cocompleteness of
Alg here, we shall at least have a brief look at their essential aspects by analyz-
ing some very simple but critical examples. This exercise will not only provide
further insight to the forthcoming construction of colimits in Crypt, but also
help us in making the contrast between Crypt and MPRoom, by emphasizing
the differences between CryptStr(Σ) and Str(Σ).

Colimits in Alg have two base pillars: colimits in each category Alg(Σ), and
the existence of a left adjoint Fσ of the reduct functor |σ : Alg(Σ2) → Alg(Σ1)
associated to each signature morphism σ : Σ1 → Σ2. Coproducts in Alg(Σ), for
a given signature Σ, are built by taking the free Σ-algebra over the disjoint union
of all the carrier sets of the different algebras, and then making its quotient under
the congruence generated by the interpretation of terms in each of the algebras.
We next consider two contrasting situations.

Example 1. Let Σ ∈ |AlgSigφ| be the signature with only the sort φ and the
constant operation c : φ, and consider the Σ-algebras A and B, respectively
with |A|φ = {∗} and cA = ∗, and |B|φ = {0, 1} and cB = 1. Their coproduct
A

∐
B in Alg(Σ) is (up to isomorphism) B itself, along with the homomorphisms

h : A → B such that h(∗) = 1 and idB : B → B: just put together ∗, 0 and 1
with the only Σ-term c, and collapse ∗, 1 and c by noting that [[c]]A = ∗ and
[[c]]B = 1.

Consider now the Σ-structures 〈A, ∅〉 and 〈B, {1}〉. In Str(Σ) there is a
canonical way of endowing the coproduct B of the algebras with a set T of
designated values that makes both homomorphisms preserve designated values,
that is, h(∅) ⊆ T and idB({1}) ⊆ T . Since morphisms in Str(Σ) only need to
preserve designated values, the minimal choice T = {1} is canonical because
any other designation preserving choice must be bigger. This means that idC is a
designation preserving homomorphism from 〈C, {1}〉 to 〈C, T 〉 for every T ⊇ {1}.
Indeed, the coproduct 〈A, ∅〉

∐
〈B, {1}〉 in Str(Σ) is precisely 〈B, {1}〉, along with

h and idB, as depicted in Figure 1.
However, while idB : 〈B, {1}〉 → 〈B, {1}〉 also reflects designated values, h :

〈A, ∅〉 → 〈B, {1}〉 does not because ∗ is not designated but h(∗) = 1 is. Actually,
there is no possible choice of T that makes both homomorphisms preserve and
reflect designated values. This is the reason why a coproduct 〈A, ∅〉

∐
〈B, {1}〉 in

CryptStr(Σ) does not exist. �

Example 2. Now, let Σ ∈ |AlgSigφ| be the signature with only the sort φ and
a binary operation f : φ × φ → φ, and consider the Σ-algebras A and B with
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cA = ∗

{∗}
�
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{0, 1}�
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��
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��

〈B, {1}〉

{0, 1}

cB = 1

Fig. 1. Coproduct in Str(Σ)

fA(0, 0) = 0
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hA(0)=0
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hA ���
��

��
��

〈B, {1}〉

hB����
��

��
��

fB(1, 1) = 1

{1}



hB(1)=1

����
��

��
��

〈C, {1}〉
{0, 1, f(0, 1), f(1, 0), f(0, f(0, 1)), . . . }

fC(0, 0) = 0, fC(1, 1) = 1, fC(t, t′) = f(t, t′) otherwise

Fig. 2. Coproduct in Str(Σ)

|A|φ = {0} and fA(0, 0) = 0, and |B|φ = {1} and fB(1, 1) = 1. The coproduct
A

∐
B in Alg(Σ) is in this case (up to isomorphism) the free Σ-algebra over

{0, 1} but with f(0, 0) ≈ 0 and f(1, 1) ≈ 1, let us call it C, along with the
injection homomorphisms hA : A → C and hB : B → C. Note that |C|φ is infinite
and contains 0, 1, f(0, 1), f(1, 0), f(0, f(0, 1)), and so on, but not f(0, 0) nor
f(1, 1).

Consider now the Σ-structures 〈A, ∅〉 and 〈B, {1}〉. In Str(Σ) there are now
many ways of endowing the coproduct C of the algebras with a set T of designated
values that makes both homomorphisms preserve designated values. Indeed any
T ⊆ |C|φ such that 1 ∈ T will do. However, as in the previous example, the
minimal choice T = {1} is canonical. Indeed, the coproduct 〈A, ∅〉

∐
〈B, {1}〉 in

Str(Σ) is precisely 〈C, {1}〉, along with hA and hB.
Easily, now, both hA and hB also reflect designated values. However, the

choice of T = {1} is not canonical in CryptStr(Σ) because any (bigger) choice
will preserve but not reflect it. This now means that idC is not a designation
reflecting homomorphism from 〈C, {1}〉 to 〈C, T 〉 for every T ⊇ {1} with 0 �∈ T .
This is the reason why a coproduct 〈A, ∅〉

∐
〈B, {1}〉 in CryptStr(Σ) does not

exist. �

It turns out that coequalizers do not raise these problems. They always exist
in CryptStr(Σ) and coincide with those obtained in Str(Σ), by capitalizing on
coequalizers in Alg(Σ) which are simple quotients. Absolutely similar situations
reappear, however, when we need to change signatures, namely by considering
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the left adjoints Fσ of the reduct functors |σ : Alg(Σ2) → Alg(Σ1) associated
to signature morphisms σ : Σ1 → Σ2. We do not show any examples here, due
to space limitations, but we can just recall that given a Σ1-algebra A, Fσ(A)
is the Σ2-algebra built by taking the free Σ2-algebra over the disjoint union of
all the carrier sets of A that σ maps to each sort, and then making its quotient
under the congruence generated by the interpretation of terms in A translated
by σ.

Despite all of this, we can still prove that coequalizers and arbitrary small
coproducts exist in Crypt. We start with coproducts.

Proposition 1. Crypt has small coproducts.

Proof. Let I be a set and {〈Σi,Mi, Ai〉}i∈I a family of logic system presenta-
tions. Since we need to share the distinguished sort φ, we can consider the canon-
ical signature Σφ = 〈{φ}, ∅〉 and the corresponding injections σφ

i : Σφ → Σi.
Since Sig is cocomplete, we can build its pushout {σi : Σi → Σ}i∈I . Now, we
must define the class of combined models. For ease of notation we assume that
Ai(mi) = 〈Ai,mi

, Ti,mi
〉. For each tuple of models m = 〈mi〉i∈I ∈

∏
i∈I Mi, we

first need to combine the family {〈Σi,Ai,mi
〉}i∈I in Alg. Taking into account

that the word algebra over Σφ is empty, we consider the corresponding injec-
tions 〈σφ

i , ∅〉 : 〈Σφ, ∅〉 → 〈Σi,Ai,mi
〉, and use the cocompleteness of Alg to

compute their pushout {〈σi, ηi,m〉 : 〈Σi,Ai,mi
〉 → 〈Σ,Am〉}i∈I . Now we need

to consider all possible compatible choices of designated values in Am, and de-
fine M = {〈m,T 〉 : m ∈

∏
i∈I Mi, T ⊆ |Am|φ, η−1

i,m(T ) = Ti,mi
for every i ∈ I},

μi : M → Mi such that μi(m,T ) = mi, and A(m,T ) = 〈Am, T 〉. We claim that
{〈σi,μi, ηi〉 : 〈Σi,Mi, Ai〉 → 〈Σ,M, A〉}i∈I is a coproduct of {〈Σi,Mi, Ai〉}i∈I in
Crypt. Let us prove the corresponding universal property.

Assume given a logic system presentation 〈Σ̂ , M̂ , Â 〉 and a family of cryp-
tomorphisms {〈σ̂i, μ̂i, η̂i〉 : 〈Σi,Mi, Ai〉 → 〈Σ̂ , M̂ , Â 〉}i∈I . For each m̂ ∈ M̂ , let
m = 〈mi〉i∈I with each mi = μ̂i(m̂). Clearly, each composition σ̂i ◦σφ

i maps φ to
the distinguished sort of Σ̂ . Thus, the universal property of the pushout in Alg
guarantees the existence of a unique morphism 〈σ̂, η̂m̂〉 : 〈Σ,Am〉 → 〈Σ̂ , Â m̂〉
such that σ̂ ◦ σi = σ̂i and η̂m̂ ◦ ηi,m = η̂i,m̂ for each i ∈ I. The universal
property of the pushout in Sig guarantees that the signature morphism σ̂ is
the same for every m̂. We can now define μ̂ : M̂ → M by μ̂(m̂) = 〈m,T 〉
with T = η̂−1

m̂ (T̂m̂). This is well defined because each η−1
i,m(η̂−1

m̂ (T̂m̂)) = (η̂m̂ ◦
ηi,m)−1(T̂m̂) = η̂−1

i,m̂(T̂m̂) = Ti,m. So, it is immediate that 〈σ̂, μ̂, η̂〉 constitutes a
cryptomorphism and composes with each 〈σi,μi,hi〉 into 〈σ̂i, μ̂i, η̂i〉. Uniqueness
follows from the fact that T = η̂−1

m̂ (T̂m̂) is the unique possible choice that fulfills
the closedness condition for each η̂m̂. See Figure 3 for a graphical representation
of the construction. ��

We can now turn to coequalizers. The construction is a little simpler because
there is no need to share the canonical signature Σφ: we start with a pair of
parallel arrows in AlgSigφ that already preserve φ.
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Alg Crypt

〈Σφ, ∅〉
〈σ

φ
i ,∅〉

���������� 〈σ
φ
j ,∅〉

��









〈Σi, Ai,mi〉

〈σi,ηi,m〉 ��









〈σ̂i,η̂i,m̂〉

		

. . . 〈Σj , Aj,mj 〉

〈σj ,ηj,m〉����������

〈σ̂j ,η̂j,m̂〉





〈Σi, Mi, Ai〉

〈σi,μiηi〉 		���������

〈σ̂i,μ̂i,η̂i〉

		

. . . 〈Σj , Mj , Aj〉

〈σj ,μjηj〉

���������

〈σ̂j ,μ̂j ,η̂j〉





〈Σ, Am〉

〈σ̂,η̂m̂〉

��

〈Σ, M, A〉

〈σ̂,μ̂,η̂〉

��
〈 Σ̂ , Â m̂〉 〈̂ Σ ,̂ M,̂ A 〉

Fig. 3. Coproducts in Crypt

Proposition 2. Crypt has coequalizers.

Proof. Let 〈Σ1,M1, A1〉 and 〈Σ2,M2, A2〉 be logic system presentations, and con-
sider a pair 〈σ′,μ′, η′〉, 〈σ′′,μ′′, η′′〉 : 〈Σ1,M1, A1〉 → 〈Σ2,M2, A2〉 of cryptomor-
phisms. We first use the cocompleteness of Sig to build a coequalizer σ : Σ2 → Σ
of σ′,σ′′ : Σ1 → Σ2. Then, for each model m2 ∈ M2 such that μ′(m2) =
μ′′(m2) = m1, we can form in Alg the pair of arrows 〈σ′, η′

m2
〉, 〈σ′′, η′′

m2
〉 :

〈Σ1,A1,m1〉 → 〈Σ2,A2,m2〉 and take their coequalizer 〈σ, ηm2〉 : 〈Σ2,A2,m2〉 →
〈Σ,Am2〉. Now we need to consider all possible compatible choices of desig-
nated values, and define M = {〈m2, T 〉 : m2 ∈ M2,μ

′(m2) = μ′′(m2), T ⊆
|Am2 |φ, η−1

m2
(T ) = T2,m2}, μ : M → M2 such that μ(m2, T ) = m2, and A(m2, T )

= 〈Am2 , T 〉. We claim that 〈σ,μ, η〉 : 〈Σ2,M2, A2〉 → 〈Σ,M, A〉 is a coequalizer
of 〈σ′,μ′, η′〉 and 〈σ′′,μ′′, η′′〉 in Crypt. Checking that 〈σ,μ, η〉 indeed coequal-
izes 〈σ′,μ′, η′〉 and 〈σ′′,μ′′, η′′〉 is routine. We are left with proving the corre-
sponding universal property.

Assume that 〈σ̂, μ̂, η̂〉 : 〈Σ2,M2, A2〉 → 〈Σ̂ , M̂ , Â 〉 also coequalizes 〈σ′,μ′, η′〉
and 〈σ′′,μ′′, η′′〉. For each m̂ ∈ M̂ , let m2 = μ̂(m̂). It is clear that μ′(m2) =
μ′′(m2). Since it must also be the case that 〈σ̂, η̂m̂〉 : 〈Σ2,A2,m2〉 → 〈Σ̂ , Â m̂〉
coequalizes 〈σ′, η′

m2
〉 and 〈σ′′, η′′

m2
〉 in Alg, there exists a unique morphism

〈̂̂σ, ̂̂ηm̂〉 : 〈Σ,Am2〉 → 〈Σ̂ , Â m̂〉 such that ̂̂σ ◦ σ = σ̂ and ̂̂ηm̂ ◦ ηm2 = η̂m̂.
The universal property of the coequalizer in Sig guarantees that the signature
morphism ̂̂σ is the same for every m̂. We can now define ̂̂μ : M̂ → M bŷ̂μ(m̂) = 〈m2, T 〉 with T = ̂̂η−1

m̂ (T̂m̂). This is well defined because η−1
m2

(̂̂η−1

m̂ (T̂m̂)) =
(̂̂ηm̂ ◦ ηm2)

−1(T̂m̂) = η̂−1
m̂ (T̂m̂) = T2,m2 . So, it is immediate that 〈̂̂σ, ̂̂μ, ̂̂η〉 consti-

tutes a cryptomorphism and composes with 〈σ,μ, η〉 into 〈σ̂, μ̂, η̂〉. Uniqueness
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Alg

〈Σ1, A1,m1〉
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〉
��
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〉
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����������
〈Σ, Am2〉

〈̂̂σ,̂̂ηm̂〉
��

〈Σ̂ , Â m̂〉

Crypt

〈Σ1, M1, A1〉
〈σ′,μ′,η′〉��

〈σ′′,μ′′,η′′〉
�� 〈Σ2, M2, A2〉 〈σ,μ,η〉 ��

〈σ̂,μ̂,η̂〉 

����������
〈Σ, M, A〉

〈̂̂σ,̂̂μ,̂̂η〉
��

〈Σ̂ , M̂ , Â 〉

Fig. 4. Coequalizers in Crypt

follows from the fact that T = ̂̂η−1

m̂ (T̂m̂) is the unique possible choice that fulfills
the closedness condition for each ̂̂ηm̂. See Figure 4 for a graphical representation
of the construction. ��

Finally we can state the desired result.

Theorem 1. Crypt is cocomplete.

Of course the proofs above are not too informative with respect to the con-
crete result obtained in specific examples. To provide a better understanding
of the power of the colimit construction in Crypt and work out a meaningful
application of cryptomorphisms we shall revisit the example of [13, 14, 15] in the
next section. However, we can already analyze the essential differences between
colimits in Crypt and MPRoom, at the light of Examples 1 and 2.

In MPRoom it is always possible to obtain one canonical combined model:
it features the minimal possible set of designated values, possibly at the expense
of designating a value that was previously not designated. In Crypt it depends:
no previously undesignated values can become designated by the construction,
which means that in some cases the combined structure must simply be ignored;
still, if that is not the case, any choice of newly generated values will provide a
relevant set of designated values. We claim that this is precisely where the free
interaction of the logics being combined emerges, as a result of the absolutely
fundamental role played by the “junk” values. If we are combining logics that
share a formula that is valid in one of them but has no model in the other then we
are (and should be) in trouble, and the combination will trivialize. However, if no
such inconsistencies exist, the resulting combined logic will encompass enough
models to guarantee that any choice of new combined formulas is satisfiable,
while still keeping intact the validities of each of the given logics.
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4 Partial Equational Logic

We shall now borrow the example from [13, 14], used in [15] precisely to show
that LogMPar was not complete. We choose this example not only because it
was developed in this context, thus allowing us to sharpen the distinctions with
respect to (logical) model theoretic parchments, but also because it concerns
the relevant question of assigning a meaning to equations in the presence of
undefined operations. Last but not least, although it is very simple, the end
result provides a good illustration of the power of cryptomorphisms.

Of course, we recast the example at the level of rooms, and not of parchments
as in the original formulation, and work it out in the category Crypt. Therefore,
we consider fixed a many-sorted signature with partial operations, that is, a triple
〈S, TO, PO〉 such that both 〈S, TO〉 and 〈S, PO〉 are many-sorted signatures,
respectively of total and partial operations, with TO∩PO = ∅. The logic system
presentation ALG of total equational logic without equations has sorts S∪{φ} and
operations TO, its models are precisely the 〈S,TO〉-algebras, and each 〈S,TO〉-
algebra A is endowed with the structure 〈A2, {1}〉 where |A2|φ = {0, 1} and
|A2|s = |A|s for s ∈ S, with fA2 = fA for each f ∈ TO. Although not very
interesting per se, this logic system presentation is the common part of two
other logic system presentations: ALG(≈) for total equational logic, and PALG
for partial equational logic without equations. The idea is precisely to obtain a free
combined semantics for partial equational logic. The example is particularly well
set since the colimit of ALG(≈) and ALG while sharing ALG focuses precisely
on the missing bit: the interpretation of equations involving undefined values.

ALG
ι(≈)

���������
Pι

���������

ALG(≈)

θ(≈) ���������

θ∗(≈)

		

PALG

Pθ���������

Pθ∗





PALG(≈)

θ∗

��
PALG(≈∗)

Fig. 5. The partial equational logic pushout

Now, ALG(≈) has sorts S ∪ {φ} and operations TO plus ≈: s × s → φ for
each s ∈ S, the models are also the 〈S,TO〉-algebras, and each 〈S,TO〉-algebra
A is endowed with the structure 〈A2

≈, {1}〉 where A2
≈ extends A2 by

≈A2≈ (x, y) =
{

1 if x = y
0 if x �= y

.



56 C. Caleiro and J. Ramos

Clearly, A �ALG(≈) t ≈ t′ if and only if [[t]]A = [[t′]]A. We denote by ι(≈) :
ALG → ALG(≈) the obvious cryptomorphism that injects the signatures, is the
identity on models, and also the identity on each structure.

On its turn, PALG has sorts S ∪ {φ} and operations TO ∪ PO, the models
are also precisely the 〈S,TO,PO〉-partial algebras, and each 〈S,TO,PO〉-partial
algebra B is endowed with the structure 〈B2, {1}〉 where |B2|φ = {0, 1} and
|B2|s = |B|s � {⊥s} for s ∈ S, with

fB2(−→x ) =
{

fB(−→x ) if all xi �= ⊥si
and fB(−→x ) ↓

⊥s otherwise

for each f : s1 × · · · × sn → s in TO ∪ PO. We denote by Pι : ALG → PALG
the obvious cryptomorphism that injects the signatures, forgets the partial op-
erations, and injects the corresponding structures.

The desired result should therefore correspond to the pushout of ι(≈) and Pι
in Crypt, which is actually not very difficult to compute. First of all, we have
to combine the signatures of ALG(≈) and PALG while sharing their common
subsignature ALG. We end up with sorts S ∪ {φ} and operations TO∪PO plus
≈: s× s → φ for each s ∈ S. Let us consider a pair of models, A from ALG(≈)
and B from PALG that coincide when mapped to ALG, that is, A is precisely
the restriction of B to the total operations. The corresponding combined algebra
C will include, besides {0, 1}, a whole new set of freely generated truth-values
corresponding to the new denotations of ≈ involving undefined values, that is,
V =

⋃
s∈S{x ≈ ⊥s : x ∈ |B|s} ∪ {⊥s ≈ x : x ∈ |B|s} ∪ {⊥s ≈ ⊥s}. In detail, C is

such that |C|s = |B|s � {⊥s} for s ∈ S, |C|φ = {0, 1} ∪ V , fC = fB2 and

≈C (x, y) =

⎧⎨
⎩

1 if x = y and x �= ⊥s and y �= ⊥s

0 if x �= y and x �= ⊥s and y �= ⊥s

x ≈ y otherwise
.

Therefore, the combined models can be seen as pairs 〈B, T 〉 with T ⊆ V repre-
senting any possible choice of new designated values. The structure associated
to each pair 〈B, T 〉 is precisely 〈C, {1} ∪ T 〉. It is straightforward to set up the
inclusion cryptomorphisms θ(≈) : ALG(≈) → PALG(≈) and Pθ : PALG →
PALG(≈): θ(≈) is the inclusion on signatures, maps each model 〈B, T 〉 to the
restriction A of B to the total operations, and then injects A2

≈ into C; Pθ is also
the inclusion on signatures, maps each model 〈B, T 〉 to B, and then injects B2

into C. It is clear that θ(≈) ◦ ι(≈) = Pθ ◦ Pι.

Proposition 3. The logic system presentation PALG(≈) together with the cryp-
tomorphisms θ(≈) and Pθ constitutes a pushout of ι(≈) and Pι in Crypt.

The universal property of the construction of PALG(≈) can be interpreted as
follows. Choose your favorite interpretation of partial equations, and define with
it a logic system presentation PALG(≈∗). One can of course imagine very strange
situations, but one can impose as a minimal requirement that the choice is at
least based on partial algebras, and that it extends the usual interpretation of
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total equations. In that case, it should be routine to define two cryptomorphisms
θ∗(≈) : ALG(≈) → PALG(≈∗) and Pθ∗ : PALG → PALG(≈∗) such that θ∗(≈)◦
ι(≈) = Pθ∗◦Pι. Therefore, the construction guarantees that there exists precisely
one compatible cryptomorphism θ∗ : PALG(≈) → PALG(≈∗), which means that
the chosen interpretation of partial equations corresponds to a particular choice
of models in PALG(≈). Let us see how this goes for some of the most common
interpretations of partial equations.

Example 3. The logic system presentations PALG(≈∗), with ∗ ∈ {w, s, e, 3}, of
weak, strong, existential, and strict three-valued partial equational logic, respec-
tively, all have sorts S ∪ {φ} and operations TO ∪ PO plus ≈: s × s → φ for
each s ∈ S, and the 〈S,TO, PO〉-partial algebras as models. They differ from
PALG(≈), and between each other, on the interpretation structures associated
to each model B. In the sequel, A always stands for the restriction of B to the
partial operations.

In the weak case, B is endowed with 〈B2,w
≈ , {1}〉 where B2,w

≈ extends B2 by

≈B2,w
≈

(x, y) =
{

1 if x = y or x = ⊥s or y = ⊥s

0 otherwise .

Note that B �PALG(≈w) t ≈ t′ if and only if [[t]]B = [[t′]]B or at least one of them is
undefined. The cryptomorphisms θw(≈) and Pθw simply inject A2

≈ and B2 into
B2,w

≈ . The unique compatible cryptomorphism θw maps each B to 〈C, {1} ∪ V 〉,
and then all the values in V , from C, to 1 in B2,w

≈ .
In the strong case, the structure is 〈B2,s

≈ , {1}〉 where B2,s
≈ extends B2 by

≈B2,s
≈

(x, y) =
{

1 if x = y
0 otherwise .

Note that B �PALG(≈s) t ≈ t′ if and only if [[t]]B = [[t′]]B or both are undefined.
The cryptomorphisms θs(≈) and Pθs simply inject A2

≈ and B2 into B2,s
≈ . The

cryptomorphism θs maps each B to 〈C, {1} ∪ {⊥s ≈ ⊥s : s ∈ S}〉, and then all
the values in V \ {⊥s ≈ ⊥s : s ∈ S} to 0 in B2,w

≈ , and {⊥s ≈ ⊥s : s ∈ S} to 1.
In the existential case, the structure is 〈B2,e

≈ , {1}〉 where B2,e
≈ extends B2 by

≈B2,e
≈

(x, y) =
{

1 if x = y and x �= ⊥s and y �= ⊥s

0 otherwise .

Note that B �PALG(≈e) t ≈ t′ if and only if [[t]]B = [[t′]]B with both values defined.
The cryptomorphisms θe(≈) and Pθe again simply inject A2

≈ and B2 into B2,e
≈ .

The unique cryptomorphism θe now maps each B to 〈C, {1}〉, and then all the
values in V to 0 in B2,e

≈ .
The strict three-valued case is slightly different. Each B is now endowed with

the structure 〈B3
≈, {1}〉 where |B3

≈|φ = {0, 1} � {⊥} and |B3
≈|s = |B|s � {⊥s} for

s ∈ S, with fB3≈ = fB2 for each f ∈ TO ∪ PO and

≈B3≈ (x, y) =

⎧⎨
⎩

1 if x = y and x �= ⊥s and y �= ⊥s

0 if x �= y and x �= ⊥s and y �= ⊥s

⊥ otherwise
.
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Note that B �PALG(≈3) t ≈ t′ if and only if B �PALG(≈e) t ≈ t′. The cryptomor-
phisms θ3(≈) and Pθ3 inject A2

≈ and B2 into B3
≈. The cryptomorphism θ3 maps

each B to 〈C, {1}〉, and then all the values in V from C to ⊥ in B3
≈. �

Note however that the combination obtained is so absolutely free that less
orthodox choices are also possible, namely asymmetric ones, or choices that
consider different solutions for each sort.

5 Conclusion

We have shown that the cryptomorphisms proposed in [5] really work, in the
sense that they set up a category of logic system presentations that is cocom-
plete, together with the fact that they always fulfill the usual satisfaction con-
dition. This implies that cryptomorphisms give rise to a complete category of
parchments that easily translates to the category of institutions. Therefore, lim-
its in this category of parchments always exist, and constitute a very powerful
mechanism for combining logics that extends fibring along the lines of [5]. Not
only the syntaxes of the given logics are freely combined, but also their seman-
tics. Undesired collapses are also avoided, as long as shared formulas have a
uniform semantics in the logics being combined. A solution to the paradigmatic
collapsing situation in the combination of classical and intuitionistic logics, us-
ing cryptomorphisms, can be found in [5]. We have also put cryptomorphisms
in context with the notions of morphism and logical morphism arising from the
work on model-theoretic parchments, and explained the absolutely fundamen-
tal role played by “junk” values in the freeness of the colimits obtained using
cryptomorphisms, in contrast with the logicality constraints advocated in [15].
The approach was illustrated using a simple but meaningful partial equational
logic example, whose result encompasses models that are compatible with every
possible interpretation of equality involving undefinedness, even if less standard.

Nevertheless, we agree that the proliferation of truth-values can be seen,
at least, as annoying. Moreover, the freeness of the construction really takes
advantage of this fact in allowing possibly less orthodox choices of newly desig-
nated values. But there are certainly other ways to prevent unorthodox choices,
given any reasonable notion of orthodoxy. The subsequent use of congruence
relations, as in [13], is one of them. As usual, each uniform congruence on the
resulting combined structures can be seen as the outcome of a corresponding
cryptomorphism. The cryptomorphisms θ∗ do precisely that in the example of
the previous section. Still, there are more interesting possibilities. One of them,
certainly worth pursuing, is to consider representations of all the logics involved
in a universal logic, as proposed in [14, 15]. In alternative, we can work along
with calculi associated to each of the logics, and require their soundness as a
minimal requirement, as done in [5] for cryptofibring. This last possibility also
opens the way to incorporating and extending the soundness and completeness
preservation results well-known for fibring to this wider context.
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Abstract. This paper describes the formal specification of a future
banking system by abstract data types and process algebra. In contrast
to previous exercises (e.g., [1]), the system’s description is an actual in-
dustrial standard which is being used to develop the next generation
of automatic banking machines. The specification language Csp-Casl is
particularly well suited to this type of problem, since it combines both
control and data aspects and allows loose specification of data types for
later refinement. During the formalisation, several inconsistencies and
ambiguities were exhibited. The obtained specification serves as a start-
ing point for further validation.

1 Introduction

Electronic payment systems represent an important application area for both
the theory and practice of system specification. In theory, they provide a suit-
able benchmark to demonstrate the abilities of a certain specification method
(consider e.g. [1, 5, 7]). In practice, they are classified as safety critical systems
and thus must be developed with due diligence. In this paper we consider such
an application by studying in detail how to build a formal specification for the
electronic payment system ep2 [2], a new international standard developed by a
consortium of leading Swiss finance institutes.

ep2 is typical of a number of similar applications. The system consists of
seven autonomous entities centred around the ep2 Terminal : Cardholder (i.e.,
customer), Point of Service (i.e., cash register), Attendant, POS Management
System, Acquirer, Service Center, and Card, see Fig. 1. These entities commu-
nicate with the Terminal and, to a certain extent, with one another via XML-
messages in a fixed format. These messages contain information about authori-
sation, financial transactions, as well as initialisation and status data. The state
of each component heavily depends on the content of the exchanged data. Each
component is a reactive system defined by a number of use cases. Thus, there
are both reactive parts and data parts which need to be modelled, and these
parts are heavily intertwined.

The ep2 system also represents a typical industrial case study. The specifica-
tion consists of roughly 600 pages of text, which is a mixture of plain English and

J.L. Fiadeiro, P. Mosses, and F. Orejas (Eds.): WADT 2004, LNCS 3423, pp. 61–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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other semi-formal notation. Some parts are specified up to a bit encoding level,
while others are left open and referred to common understanding. It is, how-
ever, an actual international standard which is used to implement and validate
banking machines from different manufacturers.

In the formalisation, we use the specification language Csp-Casl [22]. This
language combines process algebraic specification of reactive behaviour and al-
gebraic specification of data types at various levels of detail. Csp-Casl uses the
process algebra Csp [10, 23] for the modelling of reactive behaviour, whereas
the properties of the communications are specified in Casl [3, 16]. Csp-Casl is
generic in the Csp semantics. Furthermore, Csp-Casl offers a notion of refine-
ment with clear relations to both data refinement in Casl and process refinement
in Csp.

Structuring our Csp-Casl specifications in nearly the same way as the orig-
inal ep2 documents allows us to exhibit several ambiguities, omissions, and con-
tradictions in the documents. Here, especially Csp-Casl’s loose specification of
data types plays an important role. Often, the top level ep2 documents provide
only an overview of the data involved, while the presentation of further details
for a specific type is delayed to separate low-level documents. Csp-Casl is able
to match such a document structure by a library of specifications, where the
informal design steps of the ep2 specification are mirrored in terms of a formal
refinement relation.

The paper is structured as follows. First, we give an overview of the ep2 sys-
tem, where we focus on the existing specification and the shortcomings thereof.
Then, we quickly review the specification language Csp-Casl. In section 3, we
describe our formalization, and in section 4 we report on our results with this
formalization. Finally, we summarize our results, discuss related approaches, and
conlude with hints on future work and perspectives.

2 The ep2 System

ep2 stands for ‘EFT/POS 2000’, short for ‘Electronic Fund Transfer/Point Of
Service 2000’, and is a joint project established by a number of (mainly Swiss)
financial institutes and companies in order to define EFT/POS infrastructure for
credit, debit, and electronic purse terminals in Switzerland (www.eftpos2000.ch).
ep2 builds on a number of other standards, most notably EMV 2000 (the Eu-
ropay/Mastercard/Visa Integrated Circuit Card standard, see www.emvco.com)
and various ISO standards. An overview of ep2 is shown in Fig 1.

2.1 ep2 Document Structure

The ep2 specification consists of twelve documents, each of which either consid-
ers some particular component of the system in detail, or considers some aspect
common to many or all components. The Terminal, Acquirer, POS Manage-
ment System, Point of Service (POS), and Service Center components all have
specification documents setting out ‘general’, ‘functional’, and ‘supplementary’
requirements, where the functional requirements carry the most detail, and con-
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sist mainly of use cases discussing how that particular component behaves in
various situations. As well as the specifications of particular components, there
is a Security Specification, an Interface Specification, and a Data Dictionary.

One obvious characteristic of such a document structure is that, when con-
sidering some aspect of the system, the information required to understand that
aspect is contained in several different documents, each of which has its own
things to say about the situation in question. For example, in order to gather all
information about the SI-Init interface between Terminal and Acquirer, see Fig.
1, one has to examine the Terminal Specification, the Acquirer Specification, the
Interface Specification, and the Data Dictionary. As we will see, this approach
easily leads to inconsistencies and ambiguities.

2.2 ep2 Specification Style

The original ep2 documents are comprised of a number of different specification
notations: plain English; UML-like graphics (use cases, activity diagrams, mes-

PUI-PMS User

SEI-Settlement

FII-Finance Institute

CII-Card Issuer

Attendant

Merchant

POS Mgmt. System

Point of Service

Cardholder

Card

Finance
Institute

Issuer

Terminal

Card

Part of the Specification
ep2 (detailed)

Part of the Specification
ep2 (overview)

Bookkeeping

PBI-POS Bookkeeping

MBI-POS Mgmt.
Bookkeeping

ep2

ABI-Acquirer Bookkeeping

EI-ECR

AUI-Attendant

BE-BackEnd

FE-FrontEnd

CUI-Cardholder

CAI-Card

SI-Config

COI-Config

PI-Product

Acquirer

Service Center

Part of the Specification
ep2 (detailed)

Not part of the Specification
ep2

SI-Init

MI-Subm
MI-Rec

MI-Subm

Part of the Specification
ep2 (user interface)

Fig. 1. Overview of the ep2 System, following closely [2]
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sage sequence charts, class models, etc.); pictures; tables; lists; file descriptions;
encoding rules.

Subsequently, we will focus on the SI-Init connection between Terminal and
Acquirer (see Fig. 1).

The Acquirer is defined in a table of roles as a “Card processor, which runs
a system for processing of electronic payment transactions. The Acquirer is in
contact with the merchant.” Later, in another table describing the main system
features, the functionality of the Acquirer is classified into four subsystems:

– Acquirer Initialisation System: Supports remote SW-parameter initialisa-
tion. Exchanges Terminal configuration data with the Service Center.

– Authorisation System: Processes Terminal on-line authorisation requests, as
well as transaction reversal requests. Forwards issuer scripts to the Terminal.

– Submission System: Processes transactions.
– Reconciliation System: Provides reconciliation1 data to the merchant.

In the Acquirer general requirements document, a fifth subsystem is identified:

– COI 2 server: Used for data exchange with the Service Center.

Another table lists the communication interfaces; in particular, “The SI-Init
interface is used by the Acquirer to download application specific initialisation
data which include Acquirer data necessary for Acquirer authentication and data
submission.”

Later in the System specification, this communication is depicted in a use
case, seen in Fig 2. It shows that the “Get Initialization Function” can be called
by the service man either directly at the Terminal, or via an “Initiate Termi-
nal Setup” at the Point of Service. Additionally, the function can be called in
cyclic intervals by a timer process, or by an authentication server process at the
Acquirer’s site.

For both the Terminal and the Acquirer, activity diagrams are given describ-
ing the flow of control on the receipt of messages. For conciseness, in Fig. 3 we
only show the diagram for the Acquirer.

For each state in this activity diagram, a verbal description is given of which
message parameters are admissible in this state, and what the appropriate answer
messages are composed of. For example, in state “Send�Config Data Request�
Message”:

The Acquirer shall send the message �Config Data Request� to the
Terminal. The Acquirer shall set <Config Data Object> to the configu-
ration data object which the Acquirer is interested in. For CPTD, TACD
and CAD the Acquirer shall specify with an AID resp. a RID which table

1 Reconciliation: to compare the business undertaken at the terminal with that
recorded by the acquirer and credited to the merchant’s bank account.

2 COI stands for configuration and initialisation (of the terminal) within the ep2
specification.
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Initiate Terminal
Setup

Service Man

Timer

Acquirer
(Auth Srv)

Initiate Terminal
Setup

Service Man

Get Initialisation
Data

Get Initialisation
Data

Point of Service Terminal

<<include>>

Acquirer (Init Srv)

Fig. 2. Part of use case for Get Initialisation Function as shown in [2]

Receive «Session Start»
Message

Send «Session End»
Message

Send «Config Data Noti-
fication» Message

Receive «Config Data
Acknowledge» Message

Send «Config Data Re-
quest» Message

Receive «Config Data
Response» Message

Send «Remove Config
Data Notification»

Message

Receive «Remove Con-
fig Data Acknowledge»

Message

Send «Activate Config
Data Notification»

Message

Receive «Activate Con-
fig Data Acknowledge»

Message

Check for Additional
Configuration Data

[no actions]

[read]

[download]
[remove]

[activate]

Fig. 3. Activity diagram for Acquirer getting initialisation data, as shown in [2]

exactly it wants to receive. If the Acquirer sets <Config Data Object> to
LAID, he receives a list of all AID’s supported by him from the Terminal.
. . .

The appropriate parameter values are informally described in another table, the
beginning of which is given in Fig. 4.

On the concrete data encoding level, the SI-Init connection is constrained by
the following requirements in the system description:
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<Config
Data Ob-
ject> value

Object Name Additional Data Ele-
ment

Returned by Terminal

ACD Acquirer Config Data - One ACD object of the
requesting acquirer

AISD Acquirer Init Srv Data - One AISD object of the
requesting acquirer

CPTD Card Profile Table Data <Application Identifier
(AID)>

One CPTD object of the
requested AID.

CAD Certification Auth Data <Registered Applica-
tion Provider Identifier
(RID)>

One CAD object of the
requested RID.

TACD Terminal Application
Config Data

<Application Identifier
(AID)>

One TACD object of the
requested AID.

... ... ... ...

Fig. 4. Excerpt of message parameters and expected answers for initialisation [2]

– ep2 interface.
– Uses XML based on TCP/IP.
– Message based.
– Uses strong security mechanisms.

2.3 Shortcomings

The above specification style is typical for a number of today’s industrial de-
velopments. As described above, it uses a number of up-to-date specification
notations, and has additional verbal explanations and cross references through-
out the books. However, for a team of developers which has to rely on this
specification as a sole basis for an implementation it may be hard to produce a
correct result. (A typical scenario would be a company which is not part of the
consortium and wishes to produce a compliant device). Some of the reasons for
this are:

First, there are several ambiguities within the documents which could lead
to interoperability problems between different implementations. Ambiguities are
inherent in all natural-language documents, since human language is subject to
individual interpretation. As an example, consider the expected answer “One
ACD object of the requesting Acquirer” in Fig. 4. This could mean

– One object, and it must be the one of the requesting Acquirer.
– One of all the objects belonging to the requesting Acquirer.

(In mathematical logic the difference is formalized by Russell’s jota- and Hilbert’s
eta-operators.) Different opinions about the meaning of this requirement could
lead to incompatible implementations.

Worse, there are some inconsistencies within the documents themselves. In
fact, the data flow for the “Acquirer Init Srv Data” message is specified in the
data dictionary as from the Acquirer via Service Center into the Terminal. In
the above activity diagram, the Acquirer is allowed to read this data object from
the Terminal. It contains the Acquirer’s identifier, public key and communica-
tion address. The only plausible reason for the Acquirer to receive this data is
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to check its consistency. However, the Acquirer has no way to initiate a correc-
tion of these data, even if an inconsistency is detected. Since the specification
is rather large and was written by several authors, such situations cannot be
avoided.

Third, the ep2 documents are not suitable for tool supported software de-
velopment. In particular, since the various requirements are intermingled, they
cannot be easily input into an automated requirement management system such
as Telelogic’s DOORS or IBM/Rational’s Requisite Pro. Thus, it is hard to as-
sure that all required functionality is present in an implementation. Moreover,
it is not possible to automatically check consistency of the requirements with
one another, or to prove the conformance of a particular implementation with
respect to the specification.

Last but not least, the given documents interleave different levels of abstrac-
tion. For example, the above mentioned architecture of the Acquirer is aug-
mented by “logical component requirements” such as permanent accessibility, as
well as use cases and a data model. Thus, it is not easy to use the specification in
a structured development process. In fact, since implementation details are to be
found throughout the specification, a programmer might be forced to reinvent
parts which have already been developed by others. Moreover, implementation
details are often subject to change; thus, the whole ep2 specification must be
updated whenever some detail is modified. This can result in serious version
compatibility problems.

3 CSP-CASL

Csp-Casl [22] is a comprehensive language which combines the specification of
data types in Casl [3, 16] with processes written in Csp [10, 23]. The general
idea of this language combination is to describe reactive systems in the form of
processes based on Csp operators, but where the communications between these
processes are the values of data types, which are loosely specified in Casl. All
standard Casl features are available for the specification of these data types,
namely many-sorted FOL with sort-generation constraints, partiality, and sub-
sorting3. Furthermore, the various Casl structuring constructs can be used to
describe data types within Csp-Casl. This includes the structured free con-
struct, which adds the possibility to specify data types with initial semantics.
For the description of processes, the typical Csp operators are included in Csp-
Casl: there are for instance internal choice and external choice; the various par-
allel operators like the interleaving operator, the alphabetized parallel operator,
and the general parallel operator; also communication over channels is included.
Similarly to Casl, Csp-Casl specifications can be organized in libraries. In-
deed, it is possible to mix Casl specifications and Csp-Casl specifications in

3 For technical reasons, in Csp-Casl sub-sorting is restricted to subsort relations with
so-called top elements. As it turns out e.g. in our current case study of specifying
ep2, this restriction is of no practical relevance.
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one library, separating the development of data types in Casl from their use
within Csp-Casl. This allows the specification of a complex system like ep2 in
a modular way.

Syntactically, a Csp-Casl specification with name N consists of a data part
Sp, which is a structured Casl specification, an (optional) channel part Ch
to declare channels, which are typed according to the data specification, and
a process part P written in Csp, within which Casl terms are used as com-
munications, Casl sorts denote sets of communications, relational renaming is
described by a binary Casl predicate, and the Csp conditional construct uses
Casl formulae as conditions:

ccspec N = data Sp channel Ch process P end

See Fig. 6 for a concrete instance of such a scheme. In the process part, the
let ... in ... construct offers the possibility for recursive process definitions.
Processes can also be parameterized with variables typed by Casl sorts. In
general, this combination of recursion and parameterization leads to an infinite
system of process equations. The theory of Csp offers syntactic characterizations
for the existence and uniqueness of solutions for such systems of equations.

As a consequence of the loose semantics of Casl, semantically a Csp-Casl
specification is a family of process denotations for a Csp process, where each
model of the data part Sp gives rise to one process denotation. The definition
of the language Csp-Casl is generic in the choice of a specific Csp semantics.
For example, all denotational Csp models mentioned in [23] are possible param-
eters. For the purpose of specifying ep2 in Csp-Casl, we mainly use the Csp
denotational stable-failures model. This model is able to distinguish between the
different choice operators, and allows for infinite non-determinism as well as for
infinite communication alphabets: features which naturally appear in abstract
system descriptions involving loosely specified data types.

Framework Csp-Casl
Ccs-Casl

Casl-Chart

����� �����
Meta-framework Casl-Ltl CoCasl

Fig. 5. Relationship between Csp-Casl and other reactive Casl extensions

Related Specification Languages. Within the context of Casl, various reactive
extensions were proposed – see Figure 5 for a small selection and classifica-
tion. Our definition of Csp-Casl, like Ccs-Casl [24, 25] and Casl-Chart [20],
combines Casl with a particular mechanism to describe reactive systems. This
results in a Framework suitable to model real-world systems. Casl-Ltl [19] and
CoCasl [21, 15], on the other side, can be seen as a Meta-framework aiming
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1 ccspec ep2 =
2 data sorts D_CAI_Card; D_SI_Config; D_SI_Init; D_FE_FrontEnd;
3 D_MI_Subm; D_BE_BackEnd; D_EI_ECR; D_COI_Config; D_MI_Rec;
4 free type D_MI_Subm_or_Rec ::=
5 subm(select_subm:? D_MI_Subm) | rec (select_red:? D_MI_Rec);
6 channels C_CAI_Card: D_CAI_Card; C_SI_Config: D_SI_Config;
7 C_SI_Init: D_SI_init; C_FE_FrontEnd;
8 C_MI_Subm: D_MI_Subm; C_BE_BackEnd: D_BE_BackEnd;
9 C_EI_ECR: D_EI_ECR; C_COI_Config: D_COI_Config;
10 C_MI_Subm_or_Rec: D_MI_Subm_or_Rec;
11 process
12 let Card = Run(C_CAI_Card)
13 ServiceCenter = Run(C_SI_Config) ||| Run(C_COI_Config)
14 Acquirer = Run(C_COI_Config) ||| Run(C_SI_Init)
15 ||| Run(C_FE_FrontEnd) ||| Run(C_MI_Subm)
16 ||| Run(C_MI_Subm_or_Rec)
17 PosMgmtSystem = Run(C_BE_BackEnd) ||| Run(C_MI_Subm_or_Rec)
18 PointOfService = Run(C_EI_ECR)
19 Terminal = Run(C_CAI_Card) ||| Run(C_SI_Config)
20 ||| Run(C_SI_Init) ||| Run(C_FE_FrontEnd)
21 ||| Run(C_MI_Subm) ||| Run(C_BE_BackEnd)
22 ||| Run(C_EI_ECR)
23 in Terminal
24 [| C_CAI_Card, C_SI_Config, C_SI_Init, C_FE_FrontEnd,
25 C_MI_Subm, C_BE_BackEnd, C_EI_ECR |]
26 (Card
27 ||| ((ServiceCenter
28 [ C_COI_Config || C_COI_Config, C_MI_Subm_or_Rec ]
29 Acquirer)
30 [ C_COI_Config, C_MI_Subm_or_Rec || C_MI_Subm_or_Rec ]
31 PosMgmtSystem)
32 ||| PointOfService)
33 end

Fig. 6. Modelling ep2: The architectural level

more for the formalization of (the semantics of) different frameworks for reac-
tive systems.

Outside the Casl context, e.g. μCRL [9], LOTOS [11], and E-LOTOS [13]
provide other solutions for the integrated specification of data and processes
within one language. Conceptually, μCRL and Csp-Casl are quite similar in
their respective design. In the data part however, Csp-Casl is far more rich:
among other features, it offers partiality and subsorting which are frequently
used in the modelling of ep2. LOTOS [11] and its recently defined successor E-
LOTOS [13] use for data description initial semantics and a functional program-
ming language, respectively. Thus, these languages do not allow for the modelling
of the abstract system layers of ep2 as presented here within Csp-Casl.

4 Formalizing ep2 in CSP-CASL

The present formalization of the ep2 system is the first major industrial case
study in Csp-Casl. It was done with a number of different aims. Our main
objective was to show the feasibility of the approach. This includes many aspects:

Scalability. We wanted to show that it is possible to completely specify a non-
trivial system in this formalism. Previous approaches restricted themselves
to academic toy examples or small fragments of actual systems.
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Expressiveness. Another aim was to prove that Csp-Casl encompasses enough
expressive power to deal with the given application. In particular, ep2 con-
tains most aspects which can be found in typical present-day computational
systems.

Usability. An important point was to demonstrate that Csp-Casl specifica-
tions are easy to write and easy to understand. Many specification formalisms
are only targeted at experts and require intensive training and experience.

Adequacy. In order to investigate to what extent the informal and natural
language descriptions can be formalized, we wanted to follow the original
document structure as closely as possible.

A second objective relates to the actual ep2 system itself. We wanted to show
how formal methods can help to improve the design.

Clarity. By structuring the formal specification appropriately, we wanted to
untangle the different levels of abstraction in the documents. This could
guide future implementors in building a modular implementation.

Precision. We wanted to exhibit ambiguities and inconsistencies within the
informal descriptions, which facilitate implementations by third-party im-
plementors.

Validation and Verification. In a second step, we want to use the resulting
formal specification to validate actual implementations, prove their confor-
mance with the standard and to generate test cases from the formal specifi-
cation.

In this section, we give an overview on the structuring of our formalization.
According to the general paradigm of Csp-Casl, there are two main aspects:
the reactive behaviour of ep2 components and the data structures which are
involved.

4.1 Reactive Behaviour

It is natural to model ep2 as a reactive system. In Csp-Casl, we describe its dif-
ferent components by Csp processes which interchange data over communication
channels typed by Casl sorts.

On the architectural level in the center of the ep2 system there is a Terminal
process – c.f. line 23 of Fig. 6. This Terminal communicates over channels
with its environment, expressed here in terms of the Csp general parallel op-
erator [| C CAI Card, ..., C EI ECR |] linking the Terminal with its envi-
ronment. The environment consists of the processes Card, ServiceCenter, . . . ,
PointOfService.

Note how this model directly corresponds to Fig. 1, which is the first and most
abstract description of ep2 given in the ep2 System Specification. We express
this correspondence by the choice of names: ep2 components become identi-
cally named processes, an ep2 interface is characterized by the possible data to
be exchanged over it — prefix D for the corresponding sort providing the type of
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this data — and by the connection it represents — prefix C for the corresponding
channel.

We do not model the Cardholder and the Attendant as processes as the
ep2 specification covers their role only on the level of user interfaces. Most of
the processes in the environment run independently of each other, expressed
by the Csp interleaving operator ||| (lines 27 and 32). Some of them also
interchange information which each other: the ServiceCenter, the Acquirer,
and the PosMgmtSystem. Here, we use the Csp alphabetized parallel opera-
tor, e.g. [ C COI-Config || C COI-Config, C MI Subm or Rec ] (line 28),
which synchronizes in the intersection of the two alphabets, i.e. in this ex-
ample in C COI-Config. On the architectural level, we leave the behaviour
of the different processes completely unspecified, i.e. they are modelled by
the Csp process RUN(A), which is the deadlock-free, non-terminating process
able to engage in any event in a set of communications A. For any process
of the ep2 system we choose this set A to consist of all messages, which it
might send or receive over the channels which connect it to other processes.
For instance, for the Terminal the set A consists of all messages which can
be sent or received over any of the channels named in the general parallel
[|C CAI Card, C SI Config, . . . , C EI ECR|] which connects the Terminal
with its environment. This is expressed here as the interleaving of several
Run processes (lines 19 – 22).

On the abstract component description level, we refine the processes
RUN(A) of the above architectural model without changing the overall com-
munication structure. Our example stems from the Terminal specifi-
cation, showing the Terminal’s reactions to the Acquirer’s requests on
initialization data. In a first step, we specify only that the Terminal
produces answers of the right kind, e.g. on a D SI ConfigDataRequest a
D SI Init ConfigDataResponse is sent:

TConfigManagement = C_SI_Init ? x ->

if x in D_SI_ConfigDataRequest

then !y:C_SI_Init.D_SI_Init_ConfigDataResponse -> TConfigManagement

else if x in D_SI_ConfigDataNotification

then !y:C_SI_Init.D_SI_Init_ConfigDataAcknowledge -> TConfigManagement

else ...

Here, !y:A -> P denotes the process which first communicates a value y out of
the set A and then behaves like P; i.e. the ! operator is similar to the Csp prefix
choice, but for the former the choice is internal, while for the latter the choice
is external.

In the next step, the concrete component description level, we model which
specific values the Terminal is going to send. It is at this level, that the process
becomes stateful, i.e. it depends on a parameter p:Pair[TState][Trigger].
Here, TState represents the Terminal’s memory, while Trigger says what kind
of signal initiated the configuration management.
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TConfigManagement (p:Pair[TState][Trigger]) = C_SI_Init ? x ->

if x in D_SI_ConfigDataRequest

then C_SI_Init ! configDataResponse(x,state(p))

-> TConfigManagement(p)

else if x in D_SI_ConfigDataNotification

then C_SI_or_FE ! configDataAcknowledge

-> TConfigManagement (pair(activateData(x,state(p)),trigger(p)))

else ...

This example illustrates the interaction between the specification of reac-
tive behaviour and the modelling of data types when studying the control flow
within a component: A message x is received from the Acquirer over the channel
C SI Init. Depending on the type of x, different answers are sent back to the
Acquirer, e.g. information configDataResponse(x,state(p)) on the current
configuration of the Terminal or a message configDataAcknowledge. Then the
configuration management is continued, either without a state change or with a
state change to pair(activateData(x,state(p)),trigger(p)).

It is at the component description levels that more information on data in
terms of Casl elements come into play: for instance, there is the test if the
value x belongs to a certain subsort D SI ConfigDataRequest. The response
is computed by a function configDataResponse that takes the message x and
the current state state(p) of the Terminal as parameters, or the new state is
computed by a function activateData(x,state(p)).

4.2 Data on Different Levels of Abstraction

In direct correspondence to the development of ep2’s reactive behaviour over
different levels of abstraction, the data types involved are made more and more
concrete.

On the architectural level, see Fig. 6, it is sufficient to speak merely about the
existence of sets of values which are communicated over channels; e.g. the data
sort D CAI Card is interchanged on a channel C CAI Card: D CAI Card be-
tween the Card and the Terminal. Or a channel shall be shared by different mes-
sage types, as channel C MI Subm or Rec: D MI Subm or Rec. Here, the Casl
free type construct ensures that the different kinds of data are kept separate.

If the component specification level is abstract, it is usually sufficient to in-
troduce suitable subsorts. Consider for instance the communication between Ac-
quirer and Terminal, see Fig. 3. To specify how the Acquirer interchanges ini-
tialisation data, it is enough to know the type of the data, i.e. whether it is a
<<SessionStart>> Message or a <<ConfigDataRequest>> Message. In Casl,
this can be specified by a free type construct

free type D_SI_Init ::= sort D_SI_Init_SessionStart

| sort D_SI_Init_ConfigDataRequest

| sort D_SI_Init_ConfigDataResponse

| ...

where each alternative corresponds to a message type occurring in the activity
diagram.
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But if on the component description level the concrete value of a message
triggers a specific behaviour, it is necessary to specify the data types up to
representation. Fig. 4 shows the different messages which the Acquirer might
send to the Terminal in order to make requests on its configuration. These
messages can be modelled by a Casl free type, and we can finally make concrete
which data are involved in a D SI Init ConfigDataRequest:

free type ConfDataObjRequest ::=

ACD %% Acquirer Config Data

| AISD %% Acquirer Init Srv Data

| CPTD (ApplicationID) %% Card Profile Table Data

| CAD (RegisteredApplicationProviderID) %% Certification Auth Data

| TACD (ApplicationID) %% Terminal Application Config Data

...

free type D_SI_Init_ConfigDataRequest ::=

configDataRequest(ac:AcquirerID;term:TerminalID;conf:ConfDataObjRequest)

Up to now data modelling involved only sort declaration, sub-sorting and
several forms of disjoint union via the free types construct. But on the compo-
nent description level, also operations on data and axioms describing them come
into play. We give a simple example, again from the context of the Terminal’s
initialisation. The ep2 documentation states here: If the configuration download
is started by the service man or the ‘Use Case: Initiate Terminal Setup’, the
Terminal sets the <Config Download Mode> to ‘1’ indicating ‘Forced download’
otherwise to ‘0’ for ‘Download check’. We model this case distinction by a func-
tion sessionStart which is specified by the following axioms:

axioms sessionStart(serviceMan) = forcedDownload;

sessionStart(initialTerminalSetup) = forcedDownload;

sessionStart(others) = downloadCheck

Note that like in the modelling of the reactive behaviour, the different levels
of data abstractions are clearly connected by refinement relations.

5 Results

Our overall experience of specifying ep2 in Csp-Casl is that while it’s easy to
formalize high level descriptions (e.g. the system architecture) from semi-formal
descriptions (e.g. UML-like diagrams), writing specifications at the concrete level
is more involved. At the more concrete levels, one has to deal with more unre-
solved and unclear descriptions (mostly presented as text), and decide which
information must be formalized and what details should be ignored as they be-
long to other components or to another abstraction level. Having overcome these
obstacles, the Csp-Casl formalization is again fairly straightforward. In this
sense, our Csp-Casl specifications clearly mirror the ep2 document structure
and specify at the different abstraction levels present therein.

As for Csp-Casl’s expressivity, both the data types and the reactive be-
haviour present in ep2 can be adequately formalized. In modelling the data
types, Casl’s subsorting feature proved particularly helpful. In modeling the
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reactive behaviour, Csp’s distinction between internal and external choice was
similarly important.

5.1 Resolution of Shortcomings

Formalising ep2 in Csp-Casl leads to the partial or complete resolution of the
problems outlined in section 2.3.

Fig. 7. Sequence diagram for requesting configuration data, as shown in [2]

One reason for this is that we are describing the system within one frame-
work. In the data modelling for instance the possible values of the message type
<<Config Data Request>> are described independently in various ep2 docu-
ments, where such different formats as text and tables are involved. Here, one
of these texts mentions values LAID and LRID – see the excerpt in Section 2.2 –
which do not appear anywhere else. Csp-Casl enables us to specify the corre-
sponding data type only once and – via Csp-Casl’s library mechanism – use it
then in different contexts. If only data types are concerned, the Casl tool set
CATS offers the possibility of static checks for inconsistencies. Looking on the
reactive side, a comparison of the diagrams Fig. 3 and Fig. 7 shows that they
specify the order of Requests and Responses differently: Fig. 3 requires that after
one Request exactly one Response has to follow. In spite of this, Fig. 7 suggests
that several Requests and several Responses can be ‘bundled’, and that a session
might include different numbers of Requests and Responses. This inconsistency
is clearly due to the change between the two formalisms involved (and maybe
a weakness of the latter). In Csp-Casl, we can easily specify both variants; in
our ep2 formalization we decided to follow Fig. 3.

Another aspect is that the specification language Csp-Casl itself guides us
during the formalization process. Csp for instance is famous for its clarity con-
cerning different forms of non-determinism. Thus, in modelling a diagram such
as Fig. 3, it is natural to ask if the decision between the different branches is
an internal or an external one. In this example, it is the Acquirer who takes
the decision. Studying the documentation of the Acquirer further it turns out
that for the purpose of the ep2 system it is unnecessary to model the database
which is checked for ‘Additional Configuration Data’ in order to trigger the de-
cision. This leads finally to a simple stateless process as a model for this part
of the Acquirer. Interestingly enough, in the description of different parts of
ep2 the ‘decision points’ depicted as diamond with outgoing arcs in this kind of
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diagram need different formalizations in Csp-Casl: as internal non-determinism,
as external non-determinism, and sometimes it is even the case that there is no
decision to make. Concerning data, the loose semantics of Casl allows us to
postpone design decisions until they are actually required. As seen in Section 4.2
on the different levels of data abstraction, sub-sorting is a powerful mechanism
in decomposing complex data type into subtypes of manageable size.

The formalization helps also to design a certain system aspect only once,
with the consequence of avoiding possible source of inconsistencies. For data
types, this has been illustrated above with the message type <<Config Data
Request>>. Concerning reactive behaviour, writing a Csp-Casl specification
often helped to avoid over-specification. For instance, in the ep2 documenta-
tion the Terminal’s responses to a request from the Acquirer are described
at least twice: in the Terminal documents and in the Acquirer documents.
In the world of Csp processes this is unnecessary: after sending a request to
the Terminal, the Acquirer process wants only to receive a message on the
channel which is connected with the Terminal. Only in the formalization of
the Terminal is it necessary to state which specific response has to be sent,
and as we have seen in Section 4.1, this is only necessary at a quite concrete
level of abstraction.

5.2 Access to Formal Proofs

One of the benefits of specifying ep2 formally is that it makes it possible to
establish properties by formal proofs on the Csp-Casl specifications describ-
ing the system. First experiments in this direction include proofs of refinement
relations, deadlock analysis and consistency checks of the data types.

For instance, with the newly developed CSP-Prover [12] we were able to prove
that

– our Csp-Casl specification corresponding to the activity diagrams ‘Get Ini-
tialisation Data’ — see Fig. 3 for the Acquirer’s side of the protocol — is
deadlock-free, and

– that — concerning the reactive part of the Csp-Casl specification of the
activity diagrams ‘Get Initialisation Data’ — the specification on the con-
crete component description level refines4 the abstract component descrip-
tion level.

Concerning data types, we used the Casl consistency checker [14] in order
to prove the consistency of data types on the component description level. Here,
we concentrated on the simple case of data types corresponding to ep2 messages
as e.g. the ConfigDataRequest. At first glance this seems to be trivial, as on
the Casl side these data types involve just a free datatype construct. But as
the components of such a free type refer to other specifications, the question of
consistency becomes a more involved problem as checking for non-interference
between several separate specifications is required.
4 Here, we use Csp’s notion of stable-failure refinement.
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6 Discussion and Future Work

We have shown how to specify a non-trivial system in the formal specification lan-
guage Csp-Casl. Since ep2 is a prototypical example, the obtained results also
hold for other systems such as web services, communicating financial agents, etc.
Reconsidering our original aims, the specification language turned out to be well-
suited to “translate” informal and natural language constructs, and rich enough
to cover most important aspects of this particular system. Furthermore, it turned
out that it is mostly possible, but not always advisable to follow the original doc-
ument structure in the formalization. Considering scalability, we found that it is
neither much harder nor much simpler to write a formal than an informal spec-
ification. In fact, we think that both styles have their own benefits; ideally the
formal text should accompany informal descriptions in a ‘literate specification’.

Related Work. The specification and implementation of banking software be-
longs to the most widely used exercises in computer science education. For ex-
ample, in [4] the implementation of automated teller machine (ATM) software
from an object oriented analysis and design is described. This graduate-level tu-
torial comprises a nice example of current best practice in software engineering,
from the informal requirements specification up to an executable applet which
can be used by students for testing purposes.

Similarly, many efforts have been invested in the verification of basic prin-
ciples of the communication protocols which are employed in banking software.
For example, in [8], some aspects of the Millicent micropayment protocol are
modelled in an abstract protocol notation which is close to Csp, and security
aspects are verified from this. As another example, in [18] authentication issues
in the Secure Electronic Transaction (SET) protocol of Visa/Mastercard are
verified by model checking a multi-agent logic of belief and time.

Not much work, however, has been mentioned in the formal specification and
verification of real banking software and standards such as EMV or ep2. As an
early example, in [26], the UNITY-method is used to refine a high-level speci-
fication of an electronic funds transfer system into one that could in principle
be turned into an executable program. A more recent example of a formal spec-
ification of an actual banking standard is reported in [27], where the Mondex
electronic purse system was proven correct with respect to its Csp and Z speci-
fication and was certified according to UK ITSEC Level 6. In [17], the Internet
Open Trading Protocol (IOTP) is specified with colored Petri nets from an Re-
quest for Comments (RFC) by the Internet Engineering Task Force (IETF). In
[6], it is argued that an interdisciplinary approach is necessary in this field, where
experts from business administration, computer science and electrical engineer-
ing specify different views of a system. As example, a real internet based CD
retail store system is specified in an integrated system model.

Future Work. Our next steps on formalizing ep2 will be to complete the mod-
elling as far as possible. In particular, up to now we have formalized only a
significant part of the whole specification, where the main omissions are the low-
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level XML communication between actors and the security layer. In fact, the
security part of ep2 heavily relies on common sense and external documents; in
order to be able to prove security properties we will have to add certain assump-
tions about the underlying cryptographic methods. Other proofs on the formal
model which we already started include refinement relations and deadlock anal-
ysis with CSP-Prover [12], as well as consistency of the data types [14]. Livelock
analysis is to follow.

Finally, we want to use the model to automatically generate test cases for
the different components of the ep2 system. It is an interesting research topic to
define criteria which measure both data and control coverage of such test suites.
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di Genova, 2000.

20. G. Reggio and L. Repetto. Casl-Chart: a combination of statecharts and of
the algebraic specification language Casl. In Algebraic Methodology and Software
Technology, volume 1816 of LNCS, pages 243–257. Springer, 2000,.

21. H. Reichel, T. Mossakowski, M. Roggenbach, and L. Schröder. Algebraic-
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Algebraic Semantics of Design Abstractions for
Context-Awareness

Antónia Lopes1 and José Luiz Fiadeiro2

Abstract   We investigate essential features of contexts and proper abstractions
for modelling context-awareness within CommUnity, a language that we have
been developing to support architectural design of distributed and mobile sys-
tem.  Under the assumption that the context that a component perceives is de-
termined by its current position, we explore the use of abstract data types for
defining design primitives through which different notions of context can be
modelled explicitly according to the application domain.

1 Introduction

One of the major challenges in modern distributed computing is to deal with highly
dynamic operation contexts.  As components are entitled to move across networks
whose nodes can themselves be mobile and required to execute in different locations,
the availability and responsiveness of resources and services are often difficult to
predict and out of control [1].  Computational resources such as CPU and memory are
no longer fixed as in conventional computing.  When visiting a site, a piece of mobile
code may fail to link with libraries it requires for its computation.  Network connec-
tivity and bandwidth are other factors that can affect, in a fundamental way, the be-
haviour of mobile computing systems.  In this setting, it is no longer reasonable to
treat attempts at using absent resources or accessing unavailable services as excep-
tions.  Systems should be provided with the means to observe the context in which
they operate.  They should also be developed taking into account the different condi-
tions in which they can be required to operate.

The possibility of observing the context also opens new and more sophisticated
ways of designing systems.  For instance, as pointed out in [2], in order to scan a
database of images stored at a remote site for which there is a cheap algorithm that
quickly identifies those that are potentially interesting, we may conceive a solution
that takes advantage of the perception of the context as follows.  First, the cheap algo-
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rithm is executed remotely.  Then, the size of the selected images, the current network
latency and the processing power that is available in both hosts are used to decide if
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the remaining (intensive) computation should be performed remotely or if the images
selected by the cheap algorithm should be sent back.

Context-awareness is the emergent computing paradigm that is addressing this
kind of approach to mobile systems construction.  By context, one refers to the part of
the operation conditions of a running system that may affect its behaviour.  Typically,
different kinds of applications require different notions of context.  Hence, it is im-
portant that formalisms for designing mobile systems consider contexts as first-class
design entities.  If a specific notion of context is fixed, for instance as in Ambients
[4], the encoding of a different notion of context can be cumbersome and entangled
with other aspects, if at all possible.  On the contrary, if we support the explicit mod-
elling of notions of context according to the application domain, we make it possible
for such aspects to be progressively refined through the addition of detail, without
interfering with the parts of the system already designed.

In this paper, we investigate essential features of contexts and proper abstractions
for modelling context-awareness.  Under the assumption that the context that a com-
ponent perceives is determined by its current position, we explore the use of abstract
data types for defining design primitives through which different notions of context
can be modelled explicitly according to the application domain.

Our approach provides means for describing explicitly how contexts affect the be-
haviour of systems.  Any notion of context defines a specific set of constructs that can
be used in the specification of system actions.  These constructs allow us to enrich
architectural models with context-aware patterns of computation, coordination and
mobility in a non-intrusive way.  That is, context-awareness can be added as an or-
thogonal dimension without interfering with context-independent decisions made at
the level of computation (e.g. properties of data returned by services), coordination
(e.g. interactions managed through a shared control unit) and mobility (e.g. shared
control unit at a fixed location).

We present this approach over CommUnity, a language that we have been devel-
oping to support architectural design [11].  CommUnity was recently extended in
order to support the description of mobile systems [14].  This extension addresses a
specific notion of context that is centred on the notions of connectivity and reachabil-
ity of positions.  In this paper, we take this extension of CommUnity a step further in
order to support the definition of application-specific notions of context.  In particu-
lar, we will take into account the availability of computational resources and services
at the locations in which components are placed.

2 Designing Mobile Systems in CommUnity

CommUnity is a parallel program design language similar to Unity [6] and IP [10] in
its computational model but relying on communication rather than shared memory for
interaction.  In CommUnity, the individual components of a system are designed in
terms of channels and actions.  The role of the channels is to exchange data between

80 A. Lopes and J.L. Fiadeiro

different components.  Actions are associated with guarded commands that manipu-



late and compute data and provide points for rendez-vous synchronisation with other
components.  In order to support distribution and mobility, CommUnity provides
mechanisms for assigning channels to locations and distributing the execution of
actions among different locations.

To illustrate the way components of mobile systems can be designed in CommU-
nity and, later on, other aspects of our model, we use the image search problem men-
tioned in the introduction.  We start with a high-level description of a server that can
be used to control the access to a shared resource:

design server[N:nat] is
outloc l
prv gr@l:[0..N], rqi@l:bool i=1,…,N
do i=1,…,N

reqi[rqi]@l: ¬rqi → rqi:=true
[] grti[gr]@l: rqi∧gr=0 → gr:=i
[] reli[gr,rqi]@l: gr=i → rqi:=false|| gr:=0

This design models the basic functionalities of a server that supports up to N con-
nections and acts like a scheduler by allowing only one connection to be on at any
time.  Through each action reqi it accepts requests for using the resource, which it
records in the private channel rqi.  Private channels are internal in the sense that the
data that they store is not available to the environment but only for interaction inside
the component, namely among the actions that the component can perform.  Through
each action grti the server signals that access to the resource has been granted to the
particular client that has requested it through the action reqi.  This is because the con-
dition rqi is part of the guard of action grti, which means that a request must be pend-
ing on the i-th connection.  The other conjunct of the guard – gr=0 – ensures that no
other request has been granted.  The private channel gr is used, precisely, to commu-
nicate the status of the connections: it takes the value 0 if the resource is free and the
value i:1..N if a request has been granted along the i-th connection.  The server ac-
knowledges the release of the resource through the actions reli by resetting both gr
and rqi.

A location variable l is declared for handling distribution and mobility.  In fact, the
server is modelled as a centralised component because all its constituents are located
at l.  Furthermore, the server is not mobile because this location variable is declared to
be output – which means that it is under the control of the component – but is not
updated by any of its actions – meaning that it remains invariant.

In CommUnity, a component is designed in terms of a set of channels V (declared
as input, output or private), a set of location variables L (input or output) and a set of
actions Γ (shared or private) that, together, constitute what we call a signature.  We
use X to denote V∪L.  Input channels are used for reading data from the environment.
Output and private channels are controlled locally by the component.  Output chan-
nels allow the environment to read data processed by the component.

Locations variables, or locations for short, are used as “containers” that may trans-
port data and code while moving.  The association of a channel x with a location l is
described by x@l.  Intuitively, this means that the position of the space where the
values of x are made available is given by the value of l.  Every action g is associated
with a set of locations Λ(g) meaning that the execution of g is distributed over those
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locations.  Input locations are read from the environment and cannot be modified by
the component and, hence, the movement of any constituent located at an input loca-
tion is under the control of the environment.  Output locations can only be modified
locally and, hence, the movement of any constituent located at an output location is
under the control of the component.

Private actions represent internal computations in the sense that their execution is
uniquely under the control of the component; shared actions represent possible inter-
actions between the component and the environment.  The computational aspects are
described by associating with each action g:
•  a set D(g) with the local channels and locations into which executions of g can

write;
•  for each l ∈Λ(g), an expression of the form

L(g@l), U(g@l) → R(g@l)

Two conditions L(g@l) and U(g@l) on X establish the interval in which the ena-
bling condition e of any guarded command that implements g@l must lie: the
lower bound L(g@l) is implied by e , and the upper bound U(g@l) implies e.
When the enabling condition of g is fully determined we write only one condition.
The parameter R(g@l) is a condition on X and D(g)' where by D(g)' we denote the
set of primed symbols in D(g).  As usual, these primed symbols account for refer-
ences to the values that they take after the execution of the action.  When R(g) is
such that the primed channels and locations in D(g) are fully determined, we obtain
a conditional multiple assignment, in which case we use the notation that is nor-
mally found in programming languages (||x∈D(g) x:=F(g,x)).
A CommUnity design is called a program when, for every g∈Γ, ∧ l∈Λ(g)L(g@l)

and ∧l∈Λ(g)U(g@l) are equivalent, and the relation ∧ l∈Λ(g)R(g@l)) defines a condi-
tional multiple assignment.

In order to illustrate how CommUnity can handle distribution and mobility, we
now address the design of a client whose purpose is to search a remote image data-
base for a particular type of images:

design client1 is
outloc lf,lc
in lr:Loc, db:set(image)
out res@lc, img@lf:set(image), size@lf:nat
prv stf@lf:[0..5], stc@lc:[0..4], home@lc:Loc
do gof@lf: stf=0 → stf:=1

 @lc: stc=0 → stc:=1|| lf:=lr
[] req@lf: stf=1 → stf:=2
[] filter@lf: stf=2 → stf:=3|| img:=filterop(db)
[] rel@lf: stf=3 → stf:=4|| size:=imgsize(img)
[] backf@lf: stf=4 → stf:=5

  @lc: stc=1∧small(size) → stc:=2|| lf:=lc
[] goc@lf: stf=4 → stf:=5

@lc: stc=1∧¬small(size) → stc:=2|| lc:=lr|| home:=lc
[] check@lc: stc=2 →  stc:=3|| res:=checkop(img)
[] backc@lc: stc=3∧lc≠home → stc:=4|| lc:=home

The images are modelled through an abstract data type that involves the domain
image.  The database itself is modelled as a value of type set(image) that the envi-
ronment makes available through the channel db.

The client is a distributed component: it involves two locations, lf and lc, both un-
der its control.  The location lf is where the client runs, through action filter, the
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“cheap algorithm” – captured by the user-defined operation filterop on set(image) –
that quickly identifies the images that are potentially interesting, which it makes
available in the channel img.  The size of this set is computed by the action rel using
the operation imgsize and made available through the channel size.  Access to the
database itself is requested through action req.  Release of the database takes place
through the action rel, i.e. when the size of the extracted set is evaluated.  The private
channel stf  located at lf ensures the correct sequencing of these actions.

As motivated in the introduction, the filtering activity needs to be performed wher-
ever the database is located.  This location is made available by the environment
through the input channel lr.  Hence, through action gof, the client moves the filtering
activity to this location, i.e. assigns lr to lf.

The action gof is distributed between lf, where it initialises the filtering process by
setting stf to 1, and the second location lc, where the actual migration is performed.
The location lc is where the client determines how to proceed.  If size is small, the
client, through action backf, sends back the filter with the extracted images by as-
signing lc to lf.  Otherwise, the checker moves itself to the remote host by assigning lr
to lc.  The search of the interesting images, performed by the operation checkop on
set(img), is executed by action check at lc.  The final result is returned, at lc, through
the channel res.  Finally, the client returns home if it ever migrated to the remote host.
The private channel stc located at lc ensures the correct sequencing of these actions.

Designs are defined over a collection of data types that are used for structuring the
data that the channels transmit and define the operations that perform the computa-
tions that are required. Hence, the choice of data types determines, essentially, the
nature of the elementary computations that can be performed locally by the compo-
nents, which are abstracted as operations on data elements.  We consider that the
collection of data types appropriate for the design of a specific system is explicitly
specified through a first-order algebraic specification. That is to say, we assume a data
signature Σ=<S,Ω>, where S is a set (of sorts) and Ω is a S*×S-indexed family of sets
(of operations), to be given together with a collection Φ of first-order sentences speci-
fying the functionality of the operations.

In CommUnity, the space within which movement takes place is explicitly repre-
sented with a distinguished sort Loc.  Location variables are all implicitly typed with
this sort.  Loc models the positions of the space in a way that is considered to be ade-
quate for the particular application domain in which the system is or will be embed-
ded.  Together with the definition of the operations on locations, this provides a de-
scription mechanism that is expressive enough to establish, for instance, location
hierarchies or taxonomies. The only requirement that we make is for a special posi-
tion ⊥ to be distinguished that accounts for a special position of the space where con-
text-transparency is supported.  That is, the behaviour of any component located at ⊥
is context-unaware.

In the sequel, we use Θ  to refer to the extension of the data type specification with
what concerns the space of mobility.  In the image search example, the specification
Θ  includes the specification of Booleans, natural numbers and sets, which are stan-
dard data types.  Moreover, Θ  includes a specific sort img accounting for images, the
specific operations filterop and checkop over sets of images for the searching of the
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interesting images, and operations imgsize:set(img)→nat and small:nat→ nat that
establish the size of a set of images and a threshold over which the set of images is
considered too large, respectively.  In this way, we have a design of the system that
abstracts from specific representation of images and the specific types of images that
have to be filtered.  In this example, the space of mobility just has to include three
different positions.  In addition to ⊥, it is only necessary to account for the host where
the client runs and the location of the database server.  We have not identified any
need for special operations over positions at this stage of the design.

3 Moving Contexts into the Picture

So far we have focused on the features that support the description of mobile systems.
The question that concerns us most in this paper is the extent to which the behaviour
of these systems is affected by the context surrounding them.

Most approaches to the specification of distributed and mobile systems adopt con-
text-transparency as an abstraction principle and define the behaviour of systems
regardless of their context (e.g., [12], [16], [20]).  This implies that network connec-
tivity between two hosts is guaranteed whenever it is needed, and that it is possible to
migrate code anywhere and anytime without restrictions.  The few formalisms that
adopt a context-aware approach do not address contexts explicitly and assume spe-
cific notions of context (e.g., [3], [4], [5], [17]).  This is also the case of our previous
work in CommUnity [15].  In this section, we analyse several issues that are central to
the choice of an abstract notion of context and the development of design primitives
for context-awareness. This a first step towards a more expressive model for context-
aware computing that supports the definition of application specific notions of context
and the design of components that deal with changes in the operating conditions as
part of their intrinsic behaviour.

We should start by making clear that, by context, we refer to any collection of
characteristics and properties that are relevant to the system and are not under its
direct control.  For instance, in network applications that are able to establish firewalls
or security policies, neither the locations of the firewalls nor the structure of the space
can be considered as part of the context.  However, latency can be considered as part
of the context of systems that use the network. Although these systems necessarily
affect latency, these effects are achieved in an indirect way.

We also assume that a system is not involved in the monitoring of the contextual
information.  Any such activity has to rely on another system – the context-provider –
that supports the gathering of context information from relevant sources (e.g. from the
network layer or physical sensors) and its delivery to the system.  Such a clear sepa-
ration of context monitoring from the rest of the system is important because it con-
tributes to the taming of the complexity of designing and building context-aware
mobile systems: software designers only have to define the notion of context that best
fits the system at hand and do not have to be concerned with the way context infor-
mation needs to be sensed.  This separation is important also because it promotes the
development of general context sensing systems that can be used (and reused) as the
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basic building blocks in the construction of application-specific context-provider
systems.

The fact that we are considering distributed systems implies that contexts are also
distributed, which raises the question of whether this distribution should be abstracted
or not.  The design primitives that can be made available for modelling context-
awareness clearly depend on this decision.  A common choice in this respect is to
consider that a system has transparent access to the distributed context information
(e.g., [8]).  This approach abstracts the fact that some properties considered relevant
for the system, for instance network connectivity, affect necessarily the gathering of
remote context information.  In CommUnity, we adopt an alternative approach in
which all parts of a context can be sensed locally.  Notice that this does not mean that
distant entities cannot affect the behaviour of a component but, rather, that the trans-
mission of any remote context information that is relevant has to be explicitly de-
signed as part of the behaviour of the system.

Any notion of context is constrained by the unit of mobility.  In models with a fine-
grained unit of mobility, such as CommUnity, the software designer should write a
single context definition that applies to the entire system.  This is because a compo-
nent may have several constituents distributed over different locations that can be
moved independently and, hence, the context perceived by a component results from
what its constituents perceive in their current locations.

The notion of context in mobile computing encompasses two different aspects.
The active aspects includes the properties that affect the behaviour of a system even if
the design of the system does not explicitly use any context information.  In CommU-
nity, the identification of the active characteristics, and the definition of how these
characteristics influence the behaviour of a system, are part of the formal semantics.
For instance, a specific command may be defined to have different results according
to the context in which it is executed.  The passive part of the context includes the
characteristics that only affect the behaviour of a system if we use them explicitly in
the design.  That is, the way in which each passive characteristic affects the behaviour
of the system is explicitly coded in the design of the system. In CommUnity, we pro-
pose that abstract data types be used for defining design primitives through which
different notions of context can be modelled explicitly as part of the application do-
main. Through the specification of abstract data types, software developers can define
the structure of the contextual information demanded by the system and the opera-
tions that are needed to access this data.

To be more precise, in CommUnity, the context definition is an explicit and central
part of the design of any context-aware system. A single notion of context, that ap-
plies to the entire system, is defined by a data type specification χ and  a subset Ο of
its operations.  We take χ  in the form of a first-order algebraic specification. Each
operation symbol obs in Ο represents an observable that can be used to describe the
behaviour of the system.  More concretely, in a CommUnity design defined over a
context specification <χ,Ο>, the conditions that establish the guards and effects of
the actions are built with terms involving operations of Θ and Ο.

We require that every context description χ includes standard specifications of sets
and natural numbers (extended with ∞) and we assume they are represented by set(T)
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and nat∞, respectively. This is because we require four special observables – rs: nat∞,
sv:set(Ω) , bt: set(Loc) and reach: set(Loc) – be included in Ο. These observables
constitute the active aspect of the context and capture the fact that, in location-aware
systems, regardless of their particular application domains:

•  Computations, as performed by individual components, are constrained by the
resources and services available at the positions where the components are located.
For instance, a piece of mobile code that relies on high-precision numerical opera-
tions may fail when placed in a location where memory is scarce, computations
will not be able to proceed if the operations that the code requires are not available.

•  Communication among components can only take place when they are located in
positions that are “in touch” with each other.  For instance, the physical links that
support communication between the positions of the space of mobility (e.g., wired
networks, or wireless communications through infrared or radio links) may be
subject to failures or interruptions, making communication temporarily impossible.

•  Movement of components from one position to another is constrained by “reach-
ability”.  Typically, the space of mobility has some structure that can be given by
walls and doors, barriers erected in communication networks by system adminis-
trators, or the simple fact that not every position of the space has a host where code
can be executed.

The purpose of rs and sv is to represent respectively, the resources and services
that are available for computation. The observable rs quantifies the resources avail-
able. It may be defined as a function of other observables in χ (for instance, the re-
maining lifetime of a battery or the amount of memory available) through the inclu-
sion in χ  of whatever axioms are appropriate. The observable sv represents the serv-
ices available and it is taken as a subset of the operations of the data type signature Σ.
This is because, as we have seen in Section 2, the services that perform the computa-
tions are abstracted as operations on data elements. The intuition behind bt and reach
is even simpler: both represent the set of locations within reach. The former repre-
sents the locations that can be reached through communication while the latter con-
cerns reachability through movement. The actual meaning of these four special ob-
servers is defined by the formal semantics of CommUnity designs.

Before embarking on the definition of the semantics of CommUnity, we consider
again the image search problem.  We address the design of the solution presented in
the introduction, which relies on the observation of two properties of the context:
network latency and processing power.  In this case, the specification of the context is
rather simple.  We define two specific observers, both of them constants and returning
natural values.

 observer operations
 lat: nat  // latency
 ppw: nat   // processing power available

Additionally, we may specify a relation between the possibility of communication
and latency.  In the same way, we can relate the processing power with the special
observable rs.
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 axioms l:Loc
 belongs(l,bt)∧l≠⊥ ⊃ positive(lat)
 positive(rs) ⊃ positive(ppw)

In the envisaged system, the choice of where to execute the compute-intensive al-
gorithm is based on the size of the selected images, on the processing power available
in the remote and local machines and on the latency measured in the local host.  The
concrete criteria have to be available in the form of an operation in the data type
specification Θ.

 operations
crit: nat*nat*nat*nat->bool    //Is it ok to compute locally?

The design client1 of the client that we gave in Section 2 is now modified in order
to accommodate the new requirement.

design cwt-client is
outloc lf,lc
in lr: Loc, db:set(img)
out res@lc, img@lf:set(img),

size@lf:nat, rpw@lf:nat
prv stf@lf:[0..5], stc@lc:[0..4], home@lc:Loc
do gof@lf: stf=0 → stf:=1

 @lc: stc=0 → stc:=1|| lf:=lr
[] req@lf: stf=1 → stf:=2
[] filter@lf: stf=2 → stf:=3|| img:=filterop(db)
[] rel@lf: stf=3 → stf:=4|| size:=imgsize(img)|| rpw:=ppw
[] backf@lf: stf=4 → stf:=5

    @lc: stc=1∧crit(size,pw,rpw,lat) → stc:=2|| lf:=lc
[] goc@lf: stf=4 →  stf:=5

@lc: stc=1∧¬crit(size,pw,rpw,lat) →  stc:=2|| lc:=lr|| home:=lc
[] check@lc: stc=2 →  stc:=3||res:=checkop(img)
[] backc@lc: stc=3∧lc≠home →  stc:=4||lc:=home

This design introduces a new channel rpw through which the filter, once in the re-
mote location, sends to the checker the processing power that is measured there.  The
enabling condition of the actions that model the return of the filter and the migration
of the checker were changed to reflect the new criteria for migration.

Consider now a design client only differing from client1 in the choice of where to
run the checker operation, which is made nondeterministic. That is to say, in client,
actions backf and goc have exactly the same enabling condition:

backf@lf: stf=4 → stf:=5
    @lc: stc=1 → stc:=2|| lf:=lc

[] goc@lf: stf=4 → stf:=5
@lc: stc=2 → stc:=2|| lc:=lr|| home:=lc

Both client1 and cwt-client can be obtained from client through the superposition
of additional behaviour. From a methodological point of view, what is interesting is
that it is possible to capture the superposed aspects as an architectural element (a
connector) that is plugged to the client to control in which situations the checker have
to migrate.  Changing from one design decision to another is then just a matter of
unplugging a connector and plugging a new one.

For instance, the aspects that need to be superposed to the client in order to obtain
cwt-client are captured by what in CommUnity is called a connector Cwt with the
following glue:

Algebraic Semantics of Design Abstractions for Context-Awareness 87 



design cwt-glue is
inloc lc,lf
in size:nat,
out rpw@lf:nat
do rel@lf: true → rpw:=ppw
[] backf@lc: crit(size,pw,rpw,lat)→ skip
[] goc@lc: ¬crit(size,pw,rpw,lat)→ skip

An architecture of the image search system that makes use of the connector Cxt is
presented below. The other connector – Comm – accounts for the communication
protocol that is adopted for the communication between the filter component of the
client and the database server.  This architecture shows how the introduction of con-
text-awareness in the architectural model of a system can be achieved in a non intru-
sive way.

The advantage of this architecture is that in order to change the design decision we
adopted for the migration of the checker, we just need to replace Cwt by an appropri-
ate connector.

4 Semantic Aspects

Consider a CommUnity program P defined over a data specification Θ=<Σ,Φ>, where
Σ=<S,Ω>,  and a context specification Cxt=<χ,Ο>, where χ=<Σχ,Φχ>.

In order to define the behaviour of P, we have to fix, first of all, the carrier sets Us

that define the possible values of the each data sort s.  In particular, the set ULoc de-
fines the positions of the space of mobility for the situation at hand.  These sets of
values are considered to be global and invariant over time.  In contrast, as shown
below, the interpretation of the operation symbols in Σ  is considered to be local to
each position of the space and may change over time.  This accounts for the possible
evolution of the actual implementations of the operations that perform the computa-
tions that are required in P.

We also consider that part of the data type specification that defines the context has
a global and static interpretation.  The exception is the interpretation of the observ-
ables that account for the actual contextual information and which is considered to be
local and dynamic.  More concretely, we fix an algebra U’ for the sub-specification of
χ that is obtained by forgetting the subset of the operation symbols of Ο and the axi-
oms involving these symbols. In the sequel, we designate this specification by χ'.  The
algebra U’ should provide the standard interpretation to nat∞ and set(T).

Because P is a context-aware program, the surrounding context can affect its be-
haviour.  Therefore, we also need to fix a model of the “world” where P is placed to
run.  In fact, we have to provide a model for the context defined by Cxt.

Comm
  client dbserver

Cwt
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The model of the context should capture the fact that it may change continuously.
In the trace-based semantics of CommUnity, we take context models in the form of
infinite sequences of states; such states capture the contextual information at a par-
ticular instant of time.  As motivated in Section 3, we consider that the state of con-
textual information is distributed and put together from what is sensed locally at each
position of the space.

Local states have three dimensions. The first addresses the interpretation of the op-
erations of Σ.  It consists of an algebra U for the part of Θ that captures the operations
that are available in the state.  This algebra is based on the carriers sets Us that were
fixed before. This partiality captures that some locations may not have local imple-
mentations of some types of computations that are required in P.

The second dimension concerns the level of resources required for the computation
of each operation in Σ.  It consists of a partial function ρ:Ω→Ν∞ that must be defined
for every operation symbol for which the algebra U establishes an interpretation.

The third dimension is about the contextual information that can be observed by
the program P.  It provides the current values of the observables in a particular loca-
tion and consists of an Ο-indexed set ο={obsU }obs∈Ο of functions defining an inter-
pretation for each observable obs in Ο based on the carrier sets defined by U’.  This
set, together with the χ'-algebra U’, should define a χ-algebra.  Furthermore, the in-
terpretation of the special observables rs, sv, bt and reach, provided by the constant
functions rsU:Ν∞, svU:2Ω, btU:2Loc

U
  and reachU:2Loc

U
  is constrained as follows.

-  The set of available services, svU, must be the set of Σ-operations for which the
algebra U establishes an interpretation.

-  In any local state associated to position m, the sets of positions btU  and reachU
must include m. Intuitively, this means that we require that be in touch and reach-
ability are reflexive relations. Furthermore, btU must include the special position
⊥U. This condition establishes part of the special role played by ⊥U: at every posi-
tion of the space, the position ⊥U is always “in touch”. In addition, we require that
in any local state associated to position ⊥U, btU be the set ULoc. In this way, any en-
tity located at ⊥U can communicate with any other entity in a location-transparent
manner and vice-versa.

-  The position ⊥U is also special because it supports context-transparent computa-
tion, i.e. a computation that takes place at ⊥U is not subject to any kind of restric-
tion.  This is achieved by requiring that the values of rsU and svU in any state asso-
ciated to the position ⊥U be +∞ and Ω, respectively.  In other words, the computa-
tional resources available at ⊥U are unlimited and all services are available.

In summary, a context model is an infinite sequence of functions M0.M1.… in
which each Mi is a function over ULoc that returns a three-dimensional state. For ease
of presentation of the program behaviour, we use αi(m) and ρi(m) to denote the first
and the second component of Mi(m), respectively. Moreover, we use οi(m) to denote
the interpretation of the observable ο provided by the third component of Mi(m).

The behaviour of the program P running in a world modelled by M0.M1.… is de-
fined in terms of set of traces as follows.

We take traces in the form of V0.γ0.V1.γ1.… where each V i is a valuation of the
channels and locations of P (an S-indexed set of functions Vs:Vs→ Us) and γi is a set
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of actions of P. Notice that transitions of the form Vi.∅.Vi+1 capture state transitions
that are performed by other components of the systems in which P is integrated as a
component.

The terms and propositions used for defining the guards and effects of the actions
of P are built over the signature Σ  and the set of observables of Cxt.  The local inter-
pretation of these terms and propositions over a trace, i.e. from the point of view of a
specific position of the space, can be defined in a straightforward way.  It should just
be noted that the interpretation Ii(t)(m) of the term t at position m at time i over a trace
depends not only on the valuation Vi of the channels and location variables of the
program but also on the local state of the context at time i.  This is because, on the one
hand, the interpretation of the data operations of Σ  is defined by αi(m) and, on the
other hand, the actual values of the observables are defined by οi(m).  In particular, if
t involves data operations for which αi(m) does not establish an interpretation, then
Ii

m(t) is undefined.
The same applies to propositions. A proposition that involves one of these terms

cannot be evaluated at position m and time i.  We use S,i,m |–φ to denote that propo-
sition φ is evaluated to true at position m and at time i of S.

Formally,
Given a trace V0.γ0.V1.γ1…,  an action g of P is enabled at time i iff
•  for every l1,l2∈Λ(g), Vi(l2)∈bti(Vi(l1)) and Vi(l1)∈bti(Vi(l2))
•  for every l∈Λ(g), g@l is enabled at time i, i.e.,

(a) S,i,Vi(l) |–L(g@l);
(b) for every x∈D(g), Ii(F(g@l,x),Vi(l)) is defined;
(c) for every f∈ Ω used in L(g@l) or F(g@l,x) and every x∈D(g),

ρi(m)(f)≤rsi(Vi(l));
(d) for every x∈local(V) used in used in L(g@l) or F(g@l,x) and x∈D(g), if

l’∈Λ(x) then Vi(l’)∈bti(Vi(l));
(e) for every location l’∈D(g), Ii(F(g@l,l’))∈reachi(Vi(l’)).

The intuition behind these conditions, under which a distributed action g can be
executed at time i, are the following:
•  the execution of g involves the synchronisation of its local actions and, hence, their

positions have to be mutually in touch;
•  the local guards evaluate to true (in particular, they can be evaluated);
•  the operations necessary to perform the computations that are required by g@l are

available as well as the resources they demand;
•  the execution of the guarded command associated with g@l requires that every

channel in its frame can be accessed from its current position and, hence, l has to
be in touch with the locations of each of these channels;

•  if a location l’ can be effected by the execution of g@l, then the new value of l’
must be a position reachable from the current one.

Formally,
A trace V0.γ0.V1.γ1… is a behaviour of P iff, for every
•  i∈ω, Vi+1(x)=Vi(x) for every x∈local(L∪X)\∪g∈γi

D(g) and for every g∈γi : (a) g is
enabled at time i; (b) S,i,Vi(l) |–R(g@λ).
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This defines that the execution of an action consists of the transactional execution
of its guarded commands at their locations, which requires the atomic execution of the
multiple assignments. Moreover, private actions are subject to a fairness requirement:
if infinitely often enabled, they are guaranteed to be selected infinitely often.

5 Conclusions

In this paper, we addressed the design of context-aware systems by proposing design
primitives that support the explicit description of contexts as part of the application
domain.  The idea of having individualized context definitions as part of system de-
signs and the corresponding contextual information transparently provided by the
context has many advantages.  The maintenance of contextual information tends to be
a complex task.  For instance, it may require the interaction with heterogeneous
physical sensors or the network layer.  The separation of the design and construction
of the context-provider system from the rest of the application helps to cope with this
complexity and allows that context-provider systems be reused in different applica-
tions.

Having contexts defined through data type specifications, we showed that the
mechanisms available in CommUnity to specify how a system should behave in dif-
ferent situations are applicable also when these situations are characterised by differ-
ent context states.  Moreover, we illustrated around an example, how these mecha-
nisms support the introduction of context-awareness in architectural models in a non-
intrusive way.

The importance of a clear separation of the context-aware aspects of system be-
haviour from the other aspects has been widely recognised. In infrastructure-centred
approaches, e.g. [13] and [18], this separation is achieved through the adoption of
special mechanisms for the specification of how context influences the behaviour of
an application, different from the mechanisms available for the design of the applica-
tion.  However, in general, these approaches do not provide an abstract semantics of
these mechanisms and, often, not even address their “physiological structure”.  For
instance, in [18], context-awareness is specified through rules consisting of a context
expression and a set of actions that must be performed when the context expression
becomes true.  However, the notion of action is left undefined and it is not explained
to which extent the execution of these actions can interfere with the application be-
haviour.

In fact, much of the work that has been done in the area of context-aware comput-
ing has been devoted to the development of middleware infrastructures that facilitate
the implementation of context-aware software by taking the responsibility for the
gathering and dissemination of contextual information (e.g. [8], [9]). This work is
generally based on rigid and narrow notions of context.

In what concerns the development of design frameworks that support the design of
context-aware systems, we are only aware of Context Unity [19].  Context Unity also
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considers that context-aware systems should be designed assuming that context
maintenance is provided by underlying support systems.  The way the context can
affect the behaviour of a component is, as in CommUnity, part of the component
definition but with a completely different perspective on the notion of context.  In
Context Unity, the operational context with which a component may interact is de-
fined by a set of observables whose values exclusively depend on the values of vari-
ables of other components in the system.  However, in CommUnity, we consider that
the operational context of a design is not under control of any part of the system in
which the design is integrated as a component.  The advantage of Context Unity is
that it is possible to make precise for the context-provider system what the different
observables have to be.  The disadvantage is that it is only suitable for situations in
which the context of a system is, to some extent, expressible in terms of the applica-
tion domain.  This is the case of the running example of [19], an application in which
each component has to send messages to a group of components.  This group is con-
sidered to be a part of the context of the component and is defined in terms of the
messages that the component receives.  For instance, any component from which a
message is received is added to the group; any component that leaves a certain region
around the component is removed from the group.

So far we have only addressed the use of context information at the level of the de-
scription of components and connectors, i.e., the building blocks of system architec-
tures.  It is also important to be able to take advantage of contextual information at the
(re)configuration level, namely to use context information to program the dynamic
reconfiguration of the system architecture.  This includes, for instance, the possibility
to react to context changes by removing deployed components or adding new ones, or
yet by replacing the connectors in place.  For instance, we may wish to specify that a
GUI should be replaced by a TextualUI when the battery is low.  Some of our future
work will progress in this direction.
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Abstract. We introduce the Casl Consistency Checker (CCC), a tool
that supports consistency proofs in the algebraic specification language
Casl. CCC is a faithful implementation of a previously described con-
sistency calculus. Its system architecture combines flexibility with cor-
rectness ensured by encapsulation in a type system. CCC offers tactics,
tactical combinators, forward and backward proof, and a number of spe-
cialised static checkers, as well as a connection to the Casl proof tool
HOL-Casl to discharge proof obligations. We demonstrate the viability
of CCC by an extended example taken from the Casl standard library
of basic datatypes.

1 Introduction

Consistency of specifications is an important issue: validating a specification by
proving intended consequences (sanity or conformance checking) is meaningless
without a consistency proof – ex falso quodlibet –, and implementing a specifi-
cation is impossible in the presence of inconsistencies. Some formal development
paradigms and specification languages handle this problem by excluding inconsis-
tent specifications. In contrast, algebraic specification languages such as Casl [4,
13] allow inconsistent specifications. This allows the developer to concentrate on
the desired properties of the system during the requirements engineering phase,
then validate their consistency in a separate, later step, before finally proceeding
to implement the specification.

This paper describes a prototype of the Casl Consistency Checker (CCC),
a tool that supports consistency proofs for Casl specifications. It is a faithful
implementation of the previously introduced calculus for consistency proofs of
Casl specifications [15]. CCC is part of wider effort to provide tool support for
Casl, comprising the Casl tool set CATS [12] which includes a parser, static
analysis, and an encoding into higher-order logic, which is used to embed Casl
into Isabelle/HOL [14], thus providing proof support for Casl specifications
(HOL-CASL).

The material is structured as follows: in Sect. 2, we review the basic concepts
of the consistency calculus [15]. We then describe the system architecture in
Sect. 3 and show the CCC at work with an extended example in Sect. 4.
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2 The Consistency Calculus

The specification language Casl [4, 13] constitutes a standard in algebraic spec-
ification. Its features include total and partial functions, predicates, subsorted
overloading, sort generation constraints, and structured and architectural spec-
ifications. A method for proving consistency of Casl specifications has been
introduced in [15]; we briefly recall the main features of the calculus.

The consistency calculus comprises three parts, concerned with specification
equivalence, conservativity of extensions, and definitionality of extensions, re-
spectively. The core of the method is the conservativity calculus; consistency of
a specification is encoded as conservativity over the empty specification. The
implementation extends the calculus of [15] by well-formedness assertions, so
that well-formedness also of unparsable specifications (namely, specifications
that contain specification variables) can be guaranteed.

The Extension Calculus This calculus handles extension judgements of the
form Sp1 � Sp2 which state that one has a signature inclusion which is a specifi-
cation morphism Sp1 → Sp2. Equivalence of specifications Sp1 � Sp2 is defined
as mutual extension. These notions of extension and equivalence are meant to
be used only for minor syntactical adjustments; in particular, the extension cal-
culus is not intended as a means to establish so-called views, which serve to
describe general specification morphisms in Casl. Typical rules of the calculus
state that (Sp1 then Sp2) extends Sp1, that the union of specifications is idem-
potent, commutative, and associative, and that (Sp1 then Sp2) is equivalent to
(Sp1 and Sp2), provided the latter is well-formed (this is an example where a
well-formedness assertion is needed).

The Definitionality Calculus An extension Sp1 � Sp2 is called definitional
if each model of Sp1 extends uniquely to a model of Sp2; in Casl, this is ex-
pressed by the semantic annotation %def. In particular, definitionality implies
conservativity (see below). A definitionality assertion is written

def (Sp1 )(Sp2 ).

The definitionality calculus plays an auxiliary role, since the main concern of
the method is conservativity. It presently covers definition by abbreviation and
primitive recursion; further extensions such as well-founded recursion are obvi-
ous, but require more elaborate tool support.

The Conservativity Calculus The notion of conservativity denoted by the
Casl annotation %cons is that of model extensivity: an extension Sp1 � Sp2 is
conservative if each model M of Sp1 extends to a model of Sp2; this is written

cons(Sp1)(Sp2).

The consistency assertion c(Sp) abbreviates cons({})(Sp), where {} denotes the
empty specification. Since the empty specification has a unique model, c(Sp)
indeed states that Sp is consistent. The conservativity rules divide into three
major groups:

.

.

.
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– Basic language-independent rules, typical examples being a rule that states
that conservative extensions compose and a rule which allows deducing con-
servativity from definitionality.

– Logic-independent rules that propagate conservativity along the various
Casl structuring constructs. E.g., unions of specifications are treated by
the rule

(union)

Spi defines the signature Σi, i = 1, 2 Sp � Sp1, Sp � Sp2

Σ1 ∪Σ2 is amalgamable Sp defines Σ1 ∩Σ2

cons(Sp)(Sp1)
cons(Sp2)(Sp1 and Sp2)

Approximative algorithms for checking amalgability are already imple-
mented in CATS. This is a typical case where static side conditions are
relegated to further tools integrated into CCC.

– Logic-specific rules that guarantee conservativity for certain syntactic pat-
terns such as data types or positive Horn extensions. A simple example is

(free)

newSort(DD1 . . . DDn)(Sp)
Sp then types DD1; . . . ;DDn has a closed term for each new sort

cons(Sp)(Sp then free types DD1; . . . ; DDn)

where the DDi are datatype declarations and the assertion
newSort(DD1 . . . DDn)(Sp) states that the sorts declared in DD1 . . . DDn

are not already in Sp – another example of a proof obligation that is
discharged by a static checker.

The strategy for conservativity proofs is roughly as follows: the goal is split into
parts using the logic-independent parts of the conservativity calculus, occasion-
ally using the extension calculus for certain sideward steps; at the level of basic
specifications, conservativity is then established by the definitionality calculus
and the logic-specific rules of the conservativity calculus. This may involve the
use of built-in static checkers, and, at eventually pinpointed hot spots, actual
theorem proving.

3 System Architecture

For a tool such as a consistency checker or theorem prover, correctness is critical:
if the tool asserts that a specification is consistent, we need to be sure that this
follows from the consistency calculus, not from a bug in the implementation. On
the other hand, flexibility is important as well: users should be as unconstrained
as possible in the way which they conduct their consistency proofs.

CCC’s design follows the so-called LCF design [8], where a rich logic (such
as higher-order logic) is implemented by a small logical core of basic axioms and
inference rules. In this design, the logical core implements an abstract datatype
of theorems, with logically correct inference rules as operations. Other theorems
can only be derived by applying these operations, i.e. by correct inferences; thus
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the correctness of the whole system is reduced to the correctness of the logical
core. The logic encoded within the logical core is called the meta-logic, whereas
the logic being modelled by the rules is the object logic.

Figure 1 shows the system architecture in three layers: innermost, we have
the logical core, surrounded by the extended object logic which supplements the
meta-logic with specialised proof procedures. The outermost layer is given by
auxiliary proof infrastructure.

CATS
Static Analysis

HOL−CASL

is_definitional

Unification &

Axiomatic Rule Base

Proof Infrastructure

Derived
Rules

Tactics &
Tacticals

Goal Package
Rules Library

CASL Abstract Syntax
Meta−Logic Substitution

CCC

is_primrec_opdefn Provers

... wellformed

is_theorem

Logical Core

Extended Object Logic

Fig. 1. CCC System Architecture

3.1 The Logical Core

The logical core of CCC implements the meta-logic, the axioms of the object
logic, and the axiomatic rule base.

The meta-logic is a weak fragment of conjunctive logic. It formalises rules as
we have seen in Sect. 2 above, and ways in which to manipulate them. A rule
allows us to deduce a proposition, the conclusion, from a list of propositions,
the premises. All deductions live in the context of a particular (global) environ-
ment which maps names to specifications; hence, all rules are parameterised by
an environment. We write such a rule as Γ � P1, . . . , Pn → Q, where Γ is an
environment, P1 to Pn are the premises, and Q is the conclusion. Figure 2 shows
the rules of the meta-logic (where Pσ is the application of a substitution σ to
a proposition P , and mgu is the most general unifier of two propositions). This
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lution. Forward resolution is application of the meta-rule composei and allows us
to derive a new rule from two old ones. Backward resolution allows goal-directed
proof (see Sect. 3.3 below).

Γ � P → P
assume

Γ � P1, . . . , Pn → Q Δ � R1, . . . , Rm → S

1 ≤ i ≤ m
Γ ⊆ Δ

σ = mgu(Q, Ri)

Δ � R1σ, . . . , Ri−1σ, P1σ, . . . , Pnσ, Ri+1σ, . . . , Rmσ → Sσ
composei

Γ � P1, . . . , Pn → Q
i �= j, 1 ≤ i, j ≤ n,

Pi = Pj

Γ � P1, . . . , Pj−1, Pj+1, . . . , Pn → Q
contracti,j

Γ � P1, . . . , Pn → Q

Γ � P1σ, . . . , Pnσ → Qσ
specialise

Fig. 2. Inference Rules of the CCC meta-logic

The object logic implements the judgements of the conservativity calculus.
They are modelled by a datatype prop, with CATS used to model the abstract
syntax of Casl (in particular, AS.L SPEC is the type of specifications):

datatype prop = consistent_SPEC of AS.L_SPEC
| conservative of AS.L_SPEC * AS.L_SPEC
| definitional of AS.L_SPEC * AS.L_SPEC
| implicational of AS.L_SPEC *AS. L_SPEC
| ext of AS.L_SPEC * AS.L_SPEC
| equiv of AS.L_SPEC * AS.L_SPEC
| provable of pprop

The datatype pprop is explained in detail below.
The third component of the logical core is the rule base. This is a collection of

rules the correctness of which has to be proved outside of the system by appealing
to the Casl semantics, as opposed to all other rules, which are derived from these
rules using the meta-rules; in other words, the rule base contains all rules of the
consistency calculus of [15] except the ones explicitly stated as derived.

3.2 Provable Propositions and Provers

The extended object logic adds decision procedures, called provers, to the logi-
cal core. Provers apply to specific proof obligations called provable propositions
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represented by the datatype pprop. There are about thirty kinds of provable
propositions; an excerpt of the datatype pprop showing three typical cases is
this:

datatype pprop = well_formed of AS.L_SPEC
| is_just_signature of AS.L_SPEC
| is_theorem of AS.L_SPEC * AS.FORMULA list | ...

The first type of proof obligations states that a particular specification is well-
formed; this can be discharged by calling CATS’ static analysis. The second
states that a specification is merely a signature, and can be discharged by a
straightforward recursive function which descends the syntax tree of the speci-
fication and returns false as soon as it finds something which does not belong
into a signature (such as axioms or free datatypes). The third says that a list of
formulae is provable from the given specification, and requires interactive theo-
rem proving using HOL-CASL. A typical rule that has a provable proposition
as a premise is the conservativity rule for subtype definitions,

(sub)

newSort(s)(Sp)
implies(Sp)(Sp then axiom ∃ v : t • F )
cons(Sp)(Sp then sort s = {v : t • F}) .

Here, the provable proposition newSort(s)(Sp) states that the sort s is not
already declared in Sp, a fact that is easily checked statically.

By distinguishing propositions (prop) and proof obligations (pprop), we re-
strict the potential harmful effects of wrongly implemented provers. For example,
it is impossible to write a prover which returns consistent SPEC(Sp) for every
specification Sp. Note that provers are supplied when the system is built, never
at run-time by the user.

3.3 Proof Infrastructure

The proof infrastructure contains further modules which facilitate interactive
or semi-automatic proof. Derived rules are those of the rules from the calcu-
lus [15] which can be derived from the rule base. The tactics package allows us
to write advanced proof procedures. A tactic is a function on rules. The rules
of the meta-logic give us elementary tactics, which together with combinators
such as case distinction or sequential composition can be composed to more
sophisticated tactics such as one which handles all definitional extensions. The
rule library stores and retrieves previously shown results, and the goal package
allows backwards proof, starting from a stated goal and reducing it to the list of
empty premises by tactics application.

Users interact with the system using the SML command line interface, or
more comfortably using an instance of the Proof General interface [1]. The latter
combines SML’s flexibility and expressional power with script management and
a comfortable interactive environment.
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spec Nat = free type Bool ::= TT | FF

then free type Nat ::= 0 | suc(pre:? Nat)

then op __<=__: Nat * Nat -> Bool

...

then op __ * __ : Nat * Nat -> Nat;

forall m,n : Nat

. 0 * m = 0

. suc(n) * m = (n * m) + m

then op 1: Nat = suc (0); ...; op 9: Nat = suc (8);

op __ @@ __ (m:Nat;n:Nat): Nat = (m * suc(9)) + n

end

Fig. 3. The specification Nat

spec Char = Nat

then sort Byte = { n: Nat . (n <= 255) = TT }

then free type Char ::= chr(ord: Byte)

then op ’\000’ : Char = chr(0 as Byte);

...

then op NL:Char = LF;

then op ’\n’ : Char = NL;

end

Fig. 4. The specification Char

CCC consists of about 7500 lines of SML code (excluding CATS and HOL-
CASL). It runs under SML of New Jersey, but should be easily portable to other
SML implementations. Source code and binary builds can be downloaded from
the CCC web site [5].

4 Extended Example

To demonstrate the CCC’s capabilities, we will show the consistency of the
specifications Nat of natural numbers (see Fig. 3) and Char of the datatype
of ASCII characters (see Fig. 4), taken from the Casl standard library of Basic
Datatypes [13]1. The simple structure of these specifications allows a detailed
discussion of their respective CCC proof scripts. However, the proofs involve
non-trivial consistency arguments. Furthermore, in the case of the specification
Char a complete consistency proof is not feasible without tool support due to
the length of the specification which involves more than 1000 axioms.

1 For the purposes of this paper, the specification text has been slightly modified to
make the consistency proof more readable.

4.1 Consistency roof of

Figure 5 shows the CCC proof script. We start by loading the library containing
Nat (load lib "Numbers"), stating our goal, and unfolding the specification
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1 load_lib "Numbers"; ccc "Nat"; (* start the proof *)

2 ap (compose’ Struct.name1); (* unfold the spec *)

3 ap (Repeat(OpDefns)); (* deal with Op defns *)

4 ap (Repeat prim_rec_defns); (* deal with prim rec defs *)

5 ap (prove_free_type "0" 1); (* deal with free type Nat,

6 "0" as witness for non-empty carrier set *)

7 ap (prove 2 Prover.p_holcasl_auto);

8 ap (compose Struct.add_empty 1); (* add empty spec as start point *)

9 ap (prove 1 Prover.p_well_formed);

10 ap (prove_free_type "TT" 1); (* deal with free type Bool:

11 "TT" as witness for non-empty carrier set *)

12 ap (prove 2 Prover.p_holcasl_auto);

13 ap (compose’ Basic.triv_consistency); (* empty spec is consistent *)

14 ap (prove 1 Prover.p_is_just_signature);

15 qeccc "Nat"; (* store the result *)

Fig. 5. The CCC proof script for the specification Nat

(lines 1–2). The general idea of consistency proofs in CCC is to reduce the
overall goal to simpler goals by working backwards through the specification
text, reducing it to structures simple enough to show their consistency directly.

In our example, the first step is to show that the operation definition

op @@ (m:Nat;n:Nat): Nat = (m * suc(9)) + n

is definitional. If this is the case, the whole specification Nat is consistent if its
specification text without the last line is consistent. This type of argument (the
tactic OpDefns, line 3) can be repeated for all the digit definitions from op 1:
Nat = suc (0) to op 9: Nat = suc (8). Here, we can use the tactical combi-
nator Repeat, which applies its argument until it fails. Applying the composed
tactic reduces our goal to consistency of this smaller specification:

free type Bool ::= TT | FF
then ...
then op __ * __ : Nat * Nat -> Nat;

forall m,n : Nat
. 0 * m = 0
. suc(n) * m = (n * m) + m

Here, multiplication on natural numbers is a new operation whose axioms are
primitive recursive. This is verified by the tactic prim rec defns (line 4). Again,
this type of argument can be repeated, as also + and <= are defined
by primitive recursion. Hence, we have reduced the specification to be shown
consistent to

free type Bool ::= TT | FF
then free type Nat ::= 0 | suc(pre:? Nat)
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1 load_lib "SimpleDatatypes"; ccc "Char"; (* start the proof *)

2 ap (compose’ Struct.name1); (* unfold the spec *)

3 ap (Repeat(OpDefns)); (* deal with the Op Defns *)

4 ...

5 ap (prove 3 Prover.p_new_sorts_closed_terms_dd);

6 (* deal with free type *)

7 ap (specialize_with (("t", 0), "chr(0 as Byte)") 3);

8 ap (prove 3 Prover.p_closed_term_for_sort);

9 holcasl 3; ...; caslqed();

10
11 ap (compose SpecialExt.sub 2); (*deal with subsort definition*)

12 ap (prove 2 Prover.p_new_sort);

13 ap (compose Imp.theorem_prover_basic 2 );

14 holcasl 2; by (rtac exI 1); (* proof in HOL-CASL *)

15 by (rtac leq_def1_Nat 1); caslqed ();

16
17 ap (compose’ Struct.named); (* use the result c(Nat) *)

18 ap (compose’ (get "Nat"));

19 qeccc "c_Char"; (* store the proof *)

Fig. 6. The CCC proof script for the specification Char

Next, we deal with the definition of the natural numbers as a free type. The
tactic prove free type (line 5) takes 0 as a witness that there exists a defined
term of type Nat. In the next step, the definedness of 0 is verified by simple
theorem proving in HOL-CASL. These arguments reduce the specification text
relevant for consistency to

free type Bool ::= TT | FF

Now we add the empty specification (lines 8–9), as justified by our equivalence
rules:

{} then free type Bool ::= TT | FF

This allows us to apply again the tactic prove free type (line 10), this time
with TT as a witness. After discharging the proof obligation that TT is defined
(line 12), it remains to prove that the empty specification is consistent (line
13). This is verified by the prover Prover.p is just signature, which checks
that the empty specification does not contain any axioms. Finally, we store our
consistency result under the name Nat for later re-use (line 15).

4.2 Consistency roof of

For this example, see the proof script in Figure 6, we need to load the library
SimpleDatatypes (line 1), which imports the specification Nat the consistency
of which we have shown in the previous section. After stating our proof goal (line
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1) and unfolding the specification (line 2), the first actual proof steps consist of
showing that all the operation definitions op ’\ n’ : Char = NL till ’\000’ :
Char = chr(0 as Byte) are definitional (remember that we are working back-
wards). For this purpose we repeat again the tactic OpDefns (line 3). This reduces
our goal to show the consistency of this smaller specification:

Nat then sort Byte = { n: Nat . (n <= 255) = TT }
then free type Char ::= chr(ord: Byte)

To deal with free type Char ..., we have to show that the sort Char is new
and non-empty. The prover Prover.p new sorts closed terms dd checks the
first condition (line 5) and generates a proof obligation, where the user has to
provide a closed term as a witness that the carrier of the sort Char is non-
empty; here, we choose "chr(0 as Byte)" (line 6) and can then discharge the
proof obligation (line 7)2. This leaves us with the proof obligation that chr(0
as Byte) is actually defined, which we discharge with a small HOL-CASL proof
(line 8; the details of the proof are elided here).

Similarly, to deal with the subsort definition Byte, we need to check that sort
Byte is new (Prover.p new sort, line 11) and its carrier is non-empty. To this
end, we need to show that there exists an element in the sort Nat which is less
or equal to 255 (rule Imp.theorem prover basic, line 12), which requires more
theorem proving in HOL-CASL (lines 13–14).

We finish the proof by recalling the consistency of Nat using the above es-
tablished result (line 16–17). This is possible, because the specification Nat has
been imported and hence is part of the global environment in which we prove
the consistency of Char. Finally, the established theorem "c Char" is stored with
the command qeccc (line 18).

5 Conclusions and Future Work

CCC is a tool to support consistency proofs for specifications written in the stan-
dard algebraic specification language Casl. The calculus implemented by CCC
supports a proof method where large specifications are split into parts along their
explicit specification structure; trivial consistency issues are discharged along the
way, leading to the real hot spots of the specification that possibly require actual
theorem proving. As presented here, the tool should be seen as a prototype and
research vehicle, which we can use to study how to conduct consistency proofs
for large, realistic Casl specifications using our calculus; it is certainly not a
ready-to-use industrial strength tool yet.

The design of CCC focuses on two main issues: firstly, by basing the design
on a small and encapsulated logical core, correctness of the tool reduces to
the correctness of this core, i.e. essentially correctness of the calculus in [15].

2 These are the steps which we combined to the tactic prove free type used in the
previous section in the consistency proof of Nat.
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Secondly, tactics, tactical combinators, forward and backward proof give users
the flexibility to conduct consistency proofs in a comfortable and extensible
way, and to design powerful proof strategies. This allows us to gradually develop
effective and efficient proof tactics for realistic specifications.

The use of CCC has been illustrated by means of an extended exam-
ple. Further experiments include specifications from the libraries Numbers,
RelationsAndOrders, Algebra I from the Casl standard library of Basic
Datatypes [13] as well as consistency checks of datatypes evolving in an indus-
trial case study of specifying an electronic payment system [7]. While logically
simple, these examples provide enough material both in terms of structure and
size to show not only that the tool is able to deal with substantial specifications,
but that its use indeed represents added value.

Related work: We can distinguish between approaches which avoid inconsistency
by construction, and approaches which show consistency by showing satisfiabil-
ity. The first approach comprises model-based specification formalisms such as
Z [16] and VDM [10], where a model of the system is constructed rather than
an axiomatic description; systems based on conservative extension such Isabelle
[14], where specifications are built by conservatively extending consistent ones;
and systems based on constructive type theory such as Coq [3] or Alfa/Agda [9,
6]. Following the second approach, there is a huge body of work on the satisfi-
ability (and hence consistency) of first-order formulae, which is complimentary
to our work; in our terminology, such automatic tools are provers which can be
used to prove the consistency of a set of axioms, and we aim to integrate these
tools into our system in the future. However, the contribution of our work is to
provide a framework in which to conduct consistency proofs for large, structured
specifications.

Future work: We will focus on designing more powerful tactics by testing the
tool with more examples selected from a wide range of case studies including
specifications found in [4, 13, 2, 7]. These examples will be more involved at the
level of basic specifications (i.e. in terms of logic rather than in terms of struc-
turing). On the other hand, more decision procedures will be provided in order
to increase the degree of automation. Obvious candidates include decision pro-
cedures already implemented in the Casl tool set (for example concerning the
search for witnesses of non-emptiness of types), as well as existing automatic
consistency checkers or SAT solvers such as Chaff [11].

The authors would like to thank Janosch Neuweiler and Tobias Thiel for their
help in implementing CCC, Erwin R. Catesbeiana for asking the right ques-
tions, Till Mossakowski for consultations on HOL-CASL and CATS, and David
Aspinall for helping to set up the Proof General interface.
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Abstract. This paper describes a sublanguage of Casl, called Casl-
DL, that corresponds to the Web Ontology Language (OWL) being used
for the semantic web. OWL can thus benefit from Casl’s strong typing
discipline and powerful structuring concepts. Vice versa, the automatic
decision procedures available for OWL DL (or more precisely, the un-
derlying description logic SHOIN (D)) become available for a sublan-
guage of Casl. This is achieved via translations between Casl-DL and
SHOIN (D), formalized as so-called institution comorphisms.

1 Introduction

The internationally standardized Web Ontology Language (OWL) [10] is a major
contribution to the upcoming Semantic Web [11, 5] that proposes a new form
of web content meaningful to computers. One problem of the documents on the
web is the restricted ability to search for certain topics without any knowledge
how an author or organisation names the concept. Another problem results form
multimedia files like audio or movie files which cannot be indexed by techniques
available today; the meaning must be given by meta data. However, just giving a
text describing a piece of multimedia yields only a very limited aid for searching.

Therefore, the W3C (World Wide Web Consortium) and Tim Berners Lee
proposed the Semantic Web, where the meaning is given by shared and extended
ontologies that provide organised knowledge about certain domains; thus the
contents of the web is accessible by computers. Hence, it becomes possible e.g. to
search for the least cost of a phone call from Singapore to Germany. The visitor
from Europe does not need any knowledge of the foreign language, because
the query is given in a semantic-based language that is also provided by the
Singapore telephone company. Indeed, with Swoogle [1], a first search engine for
OWL and RDF documents is available.

In this work, we interface OWL with the specification language Casl [6, 9].
Casl provides a strong typing discipline, which allows to find conceptual errors
at an early phase. Moreover, powerful structuring constructs allow the modu-
larization of large theories into manageable pieces. Both features are present in
OWL in a very limited form only. We hence propose a sublanguage of Casl,
called Casl-DL, which corresponds to OWL DL in expressive power, but which
retains the above mentioned advantages. Casl-DL can also be used to interface
Casl with efficient decision procedures that are available for description logics.

,
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The paper is organised as follows: Section 2 recalls the underlying description
logic SHOIN (D) of OWL DL. Section 3 describes the Web Ontology Language
OWL DL. Section 4 introduces Casl and the sublanguage Casl-DL. Section 5
continues with translations between OWL DL and Casl-DL. Section 6 concludes
the paper. Last but not least an appendix collects some tables showing the
concrete translations between SHOIN (D) and Casl-DL constructs including
semantics for the SHOIN (D) constructs.

2 SHOIN (D)

SHOIN (D) is an expressive description logic [3, 19, 18]. Its main purpose is
the definition of hierarchies of concepts and roles. In terms of logic, concepts
are unary and roles are binary predicates. The general properties of concepts
and roles are collected in a so-called TBox. By contrast, the ABox represents a
particular database, i.e. defines individuals to belong to concepts and roles. It
also defines concepts and roles involving predefined datatypes. See Fig. 1 for an
example of a TBox describing the class definitions of a family.

Woman ≡ Person � Female

Man ≡ Person � ¬Woman

Mother ≡ Woman � ∃hasChild.Person

Father ≡ Man � ∃hasChild.Person

Parent ≡ Mother � Father

Grandmother ≡ Mother � ∃hasChild.Parent

MotherWithManyChildren ≡ Mother � � 3 hasChild

Wife ≡ Woman � ∃hasHusband.Man

Fig. 1. Example TBox: Family

The standard description logic that is the base of all description logics is
called ALC. ALC has a notation for the universal concept  and the bottom
concept ⊥ (representing the always true and the empty predicate). Moreover,
new concepts can be built with unions, intersections and complements of con-
cepts. Finally, concepts can be universally or existentially projected along roles
(e.g. ∃hasChild.Person means the concept that consists of all individuals having
some person as their child).

The logic ALCR+ adds the possibility to specify roles to be transitive. This
logic is also abbreviated by S, which is the first letter of the name SHOIN (D).
Likewise, the other letters are used for various features of description logics
[3, pp.494-495]. The letter H adds role hierarchies (i.e., the possibility to specify
inclusions between roles) and the letter I adds inverse roles (i.e. the possibility to
generate a new role by just swapping the arguments of a given role). Unqualified
number restrictions and nominals are added by N and O. The former allow
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stating that any individual is related to at most (or at least) n individuals by
a given role. This way, the functionality of relations can be specified. Nominals
allow for explicitly enumerating the members of a concept. Datatypes are added
by the suffix (D). The order of the letters does not really matter, so SHOIN (D)
is sometimes called SHION (D). A SHOIN (D) axiom is either an equality or
inclusion between concepts, or an inclusion between roles. A SHOIN (D) TBox
consists of a set of SHOIN (D) axioms. The semantics of such a TBox is the set
of all single-sorted first-order models interpreting concepts as unary and roles
as binary relations, and satisfying the TBox axioms (see Figs. 12 and 13 for the
SHOIN (D) syntax and Tables 1 to 7 for its semantics).

2.1 Tools for SHOIN (D)

A crucial motivation for the use of description logics is that they usually cor-
respond to decidable fragments of first-order logic. Indeed, there is a decision
procedure for satisfiability and subsumption of SHIN (D) concepts (SHIN (D)
is SHOIN (D) without nominals) that runs in non-deterministic exponential
time, but performs much better for practical examples [25]. This has been the
basis of efficient tools for OWL DL such as FaCT [17]. The tool Pellet [24] uses a
combination of known algorithms for SHIN (D) and SHON (D) (SHOIN (D)
without inverse properties). It is provably sound but incomplete with respect to
the whole of SHOIN (D). The design of a decision procedure for the whole of
SHOIN (D) is an open problem.

The Guarded Fragment of first-order logic has attracted much attention since
it has shown to be decidable [2]. Note that many description logics (as well as
propositional modal logic) can be translated into the guarded fragment. However,
this does not hold for SHOIN (D) due to the presence of transitive roles and
counting. Indeed, adding either of these features to the guarded fragment results
in an undecidable logic.

3 OWL DL

OWL is not a single language, it has three sublanguages that can be ordered
according to their expressiveness. The underlying idea of the W3C was to provide
languages that were very expressive on the one hand but also useful in automated
reasoning processes useful for the Semantic Web. The following species of OWL
are available, starting with the most expressive language:
OWL Full provides unrestricted access to all OWL constructs. As RDF Sche-

ma, it does not enforce a strict separation of classes, properties, individuals
and data values. Hence, there are e.g. no constraints on using a concept,
called class in OWL, as an individual at the same time [10, Sect.8.1]. This
corresponds to some untyped higher-order logic, leading to non-well-founded
sets as semantics.
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OWL Lite adds further constraints to OWL DL that lead to a straight-forward
and easy implementation (whereas OWL DL tries to reach the very limits
of description logics). For example, it disallows nominals (oneOf, hasValue),
union and negation of class descriptions.

Note that neither OWL DL nor OWL Full provide full quantifier logic, but only
some restricted forms of quantification corresponding to description logics. We
will work with OWL DL here, since it comes closest to the typed first-order
fragment of OWL, and we aim at a translation to the typed first-order language
Casl. Moreover, apart from the need to involve non-well-founded sets, OWL
Full has the additional drawback that no worked-out formal semantics exists, to
our knowledge.

3.1 Classes (Concepts) in OWL DL

OWL DL can be understood as syntactic sugar on top of SHOIN (D), with
a slightly new terminology. Concepts are called classes in OWL DL. The uni-
versal concept  is named class Thing, the empty concept ⊥ is named class
Nothing. New classes are introduced with either complete or partial descrip-
tions. Complete descriptions are introduced by axioms stating equivalence of
classes (=equality of concepts), while partial descriptions only specify a subclass
(=subconcept) relation to a given class, which means that they are quite loose.
Furthermore, the “one of” class axiom gives a complete definition by enumerat-
ing all individuals belonging to this class. Additionally, classes can be specified
to be disjoint with other classes.

Classes can also be specified via restrictions. Cardinality restrictions specify
a lower or upper bound or an exact number of properties that must be present.
More precisely, this means that an individual belongs to such a class if and only
if the number of individuals that it is related to (via some property, which is a
binary relation) meets the specified bounds. “All values from” restrictions allow
restricting the values that belong to a class or a role to come from another given
class. It is also possible to demand a property to be present in relation to another
class. A further restriction defines a class by having a property with (=relation
to) a certain value. These restrictions are possible with object properties and
datatype properties (see Sect. 3.2 and 3.3).

3.2 Properties (Roles) in OWL DL

Binary relations between individuals, called roles in SHOIN (D), are called
properties in OWL DL. They are divided into two types: Datatype properties
relate classes to datatypes (see Sect. 3.3 for the allowed datatypes), while object

OWL DL restricts the constructs of OWL in such a way that they correspond
to some fragment of first-order logic (actually, roughly to SHOIN (D)). In
particular, all axioms must form a tree-like structure. This means e.g. that
every reference to a name in a “subclass of” axiom implies the presence of a
declaration that this name refers to a class.
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properties relate classes with classes. The first type of properties can only have
other datatype properties as super-properties. Both types of properties can be
restricted to a certain domain and range. Without the definition of a domain
and range, every class can be related with every other class or datatype by a
given property. By giving a domain and range, the property looses this over-
loadingpossibility. Another way of restricting a property to a certain datatype
or class is possible by giving an “all values from” class axiom.

Datatype properties can be defined as the sub-property of and as equivalent
to another datatype property. Furthermore, it is possible to specify a datatype
property to be functional.

Object properties can have the same axioms regarding subsumption, equiv-
alence and functionality as datatype properties. Additionally, properties can be
defined to be symmetric, transitive, functional, inverse functional, or the in-
verse of another property. OWL also has annotation properties, which have no
semantic meaning given by the OWL recommendation.

3.3 XML Schema Datatypes in OWL DL

OWL DL treats the datatypes allowed in SHOIN (D) somewhat differently
than SHOIN (D). Datatypes are restricted to some XML Schema Datatypes.
These are numeric datatypes for integers and various subsets of the integers and
for decimal, float and double numbers. Strings and various specialized versions
of strings are allowed as well as base64 and hexadecimal encoded binary data.
Finally, various time and date specific datatypes are allowed. There is no way of
defining further datatypes than those listed in [23, Sect.2.1].

3.4 Facts

Axioms describing the membership of individuals in classes and describing re-
lations between individuals are called facts in OWL DL. In description logics,
a set of such axioms is often called an ABox (Fig. 2). It is possible to state
that an individual belongs to several classes. Implicitly, every individual is of
class Thing, because this is the implicit maximal superclass. For properties, it is
possible to provide either datatype or object values that are related. Finally, it
is possible to state that several names denote different individuals, or the same
individual.

Mother(MARY) Father(PETER)
hasChild(MARY,PETER) hasChild(PETER,HARRY)
hasChild(MARY,PAUL)

Fig. 2. Example ABox: Family individuals
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4

Casl, the Common Algebraic Specification Language [9], has been designed by
CoFI, the Common Framework Initiative for algebraic specification and devel-
opment. It has been designed by a large number of experts from different groups,
and serves as a de-facto standard. The design of Casl has been approved by the
IFIP WG 1.3 “Foundations of System Specification”.

Casl consists of several major levels1, which are quite independent and may
be understood (and used) separately:

Basic specifications are written in many-sorted first-order logic. Subsorts (in-
terpreted as injective embeddings) increase flexibility, while retaining a strong
type system. Partial functions with possibly undefined values are distin-
guished from total functions. Finally, Casl basic specifications provide pow-
erful and concise constructs for specifying datatypes, which, in the presence
of subsorts, may also be used to specify disjoint, non-disjoint and exhaustive
unions of sorts.

Structured specifications allow translation, reduction, union, and extension
of specifications. A simple form of generic (parameterized) specifications is
provided, allowing specifications to be re-used in different contexts.

Libraries allow the distributed storage and retrieval of (particular versions of)
named specifications.

Major libraries of validated Casl specifications are freely available on the
Internet, and the specifications can be reused simply by referring to their names.
Tools are provided to support the practical use of Casl: checking the correctness
of specifications, proving facts about them, etc.

While Casl has originally been designed for specifying requirements and de-
sign of software, we show here that Casl is also perfectly suited as a language
for formalizing ontologies. In particular, we propose to use Casl sorts and sub-
sorts for the development of a class hierarchy, and Casl binary predicates with
axioms for the development of properties. This leads to a cleaner methodology
for developing ontologies. With the aid of “strongly typed” ontologies it will be
easier to avoid inconsistencies.

The sublanguage of Casl corresponding to SHOIN (D), called Casl-DL, is
described as a syntactic restriction w.r.t. Casl. It contains sorts, subsorts, free
and generated data types. The sorts Thing and DATA are assumed to be present
in all signatures, and each sort must be a subsort of either of these. Figure 3
presents all declarations of sorts, predicates and functions possible in Casl-DL.
Disjointness of concepts is defined easily with free type definitions with subsorts
in Casl. Predicates are restricted to unary and binary predicates, where binary
predicates relate Thing either with Thing or with DATA or relate subsorts of
Thing with subsorts of Thing or DATA. Overloading is allowed, but the first
position of the predicate must be a subsort of Thing and the second position
must be filled either with a subsort of Thing or with one of the predefined
1 We omit Casl architectural specifications, since these seem not so relevant here.
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sorts S1, ..., Sn < S (subsort declaration)
sorts S1 = ... = Sn (sort equivalence)
sort S1 = { x : S • φ(x)} (subsort definition)
sort Ddr = { x : D • x = v1 ∨ ... ∨ x = vn} (data range subsort definition)
generated type S ::= o1|...|on (generated sort)
free type S ::= o1|...|on (enumerated free sort)
generated type S ::= sorts S1, ..., Sn (generated sort)
free type S ::= sorts S1, ..., Sn (free sort)
ops o1, ..., on : Thing (function declaration)
ops o1, ..., on : S (function declaration)
ops f1, ..., fn : S →? SD (partial function declaration)
preds P1, ...Pn : Thing (predicate declaration)
preds R1, ..., Rn : S × SD (predicate declaration)

where Si are subsorts of Thing and S is Thing or a subsort of it, and
where o1, ..., on are constant operations, and
where SD stands for either Thing or DATA or a subsort of these
where D stands for a subsort of DATA

Fig. 3. Declarations, sort and type definitions of Casl-DL

datatypes that are subsorts of DATA. Figure 5 shows some of the predefined
data types in Casl-DL. Only partial functions with one argument of sort Thing
(or a subsort of it) and with result of either type Thing or DATA (or a subsort
of these) and 0-ary (constant) functions of type Thing (or typed with a subsort
of it) are allowed. Formulas for binary predicates are restricted to those given by
Fig. 4, with the further restriction that axioms for functional predicates cannot
be combined with the transitivity axiom. For predicates and functions which
relate to DATA only equivalence and implication axioms are allowed.

Descriptions are formulas that restrict the extension of a description, set-like
combinations of descriptions or assertions of membership in a named concept
as shown in Fig. 6. The formulas regarding the cardinality of predicates are
obtained through the instantiation of the predefined parameterized specifica-
tion GenCardinality (s. Fig. 10). Special axioms restricting the sort DATA
and subsorts of it are presented in Fig. 7. Implicit embedding to supersorts and
explicit downcast to subsorts in terms are allowed. Also, terms with nested func-
tion symbols are supported. Figure 8 shows all axioms of Casl-DL built upon
descriptions. Finally axioms relating constant operations are described in Fig. 9.

To illustrate the way in which we would like to write ontologies in Casl-DL,
we give a short example in Fig. 11. Actually, it has been obtained as a result
of a translation described in the next section; a direct specification in Casl-DL
may be more concise at some places, e.g.

sort Mother = {x : Woman • ∃y : Person • hasChild(x, y)}.

The example shows the definition of the concept Child that has exactly two
parents. In description logics, so-called cardinality constraints are often used to
denote this. In Casl-DL, a (predefined) generic specification is used to introduce
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∀x : S1; y : S3 • R(x, y) ⇒ Q(x, y) (implication)
∀x : S1; y : S3 • R(x, y) ⇔ Q(x, y) (equivalence)
∀x : S1; y : S2 • R(x, y) ⇔ R(y, x) (symmetry)
∀x : S1; y : S2 • R(x, y) ⇔ Q(y, x) (inverse)
∀x, y : S1; z : S2 • R(x, z) ∧ R(y, z) ⇒ x = y (inverse functional)
∀x : S1; y : S2 • R(x, y) ⇒ φ(x) ∧ ψ(y)a (argument restriction)
∀x : S1; y : S4 • R(x, y) ⇒ φ(x) ∧ δ(y)a (argument restriction)
∀x : S1; y : S3 • f(x) = y ⇒ Q(x, y) (implication)
∀x : S1; y : S3 • f(x) = y ⇒ g(x) = y (implication)
∀x : S1; y : S3 • f(x) = y ⇔ Q(x, y) (equivalence)
∀x : S1; y : S3 • f(x) = y ⇔ g(x) = y (equivalence)
∀x : S1; y : S2 • f(x) = y ⇔ f(y) = x (symmetry)
∀x : S1; y : S2 • f(x) = y ⇔ Q(y, x) (inverse)
∀x : S1; y : S2 • f(x) = y ⇔ g(y) = x (inverse)
∀x, y : S1; z : S2 • f(x) = z ∧ f(y) = z ⇒ x = y (inverse functional)
∀x, y : S1; z : S2 • R(x, y) ∧ R(y, z) ⇒ R(x, z) (transitivity)
∀x : S1; y : S2 • f(x) = y ⇒ φ(x) ∧ ψ(y)a (argument restriction)
∀x : S1; y : S4 • f(x) = y ⇒ φ(x) ∧ δ(y)a (argument restriction)

where S1, S2 is either Thing or a subsort of it, and
where S3 is either DATA or Thing or a subsort of these
where S4 is either DATA or a subsort of it

a one of the conjuncts may be omitted

Fig. 4. Predicate axioms in Casl-DL

XMLLiteral float

nonPositiveInteger

double

DATA

long

integer

decimal

nonNegativeInteger

boolean string

Fig. 5. Some of the predefined datatypes in Casl-DL and their subsort relations

cardinality predicates for a given predicate. So, the instantiation of GenCardi-
nality with pred hasChild yields a new predicate cardinality[hasChild](p, n)
that holds if and only if the Person p is exactly related to n Persons with the
predicate hasChild.

Ontologies for the Semantic Web in Casl 113



φ(x), ψ(x) ::= true | false |
x ∈ S | (sort membership)
P (x) | (concept membership)
¬φ(x) | (description negation)
φ(x) ∧ ψ(x) | (description union)
φ(x) ∨ ψ(x) | (description intersection)
∃y : S • R(x, y)a | (existential quantification)
∃y : S • R(x, y) ∧ φ(y)a | (existential quantification)
∀y : S • R(x, y) ⇒ φ(y)a | (value restriction)
R(x, o)b | (has value restriction)
R(x, v)c | (has value restriction)
x = o1 ∨ ... ∨ x = on

b | (one of restriction)
minCardinality[P ](x, n)d | (cardinality restriction)
maxCardinality[P ](x, n)d | (cardinality restriction)
cardinality[P ](x, n)d | (cardinality restriction)
∃y : D • U(x, y)e | (existential quantification)
∃y : DATA • U(x, y) ∧ δ(y)e | (existential quantification)
∀y : DATA • U(x, y) ⇒ δ(y)e | (value restriction)
φ(f(x)) | (existential quantification)
def f(x) ⇒ φ(f(x)) (value restriction)

a where S is either Thing or a subsort of it
b where o, oi is an individual, aka ground term, of sort Thing
c where v is a ground term of sort DATA
d where n is a ground term of sort Nat
e where D is either DATA or a subsort of it

Fig. 6. Formulas for Descriptions in Casl-DL

δ(x) ::= x ∈ D | (datatype membership)
x = v1 ∨ ... ∨ x = v2 (one of)

where D is a subsort of DATA and
where v1...vn are ground terms of DATA

Fig. 7. Formulas for DATA in Casl-DL

∀x : Thing • φ(x) ⇒ ψ(x) (partial definition)
∀x : Thing • φ(x) ⇔ ψ(x) (complete definition)
∀x : S • ψ(x) (complete definition)

where S is a subsort of Thing

Fig. 8. Description axioms allowed in Casl-DL

5 Translations Between and OWL DL

This paper provides a translation of OWL DL documents to Casl-DL and
vice versa, in a way that an OWL DL ontology is optimised in the sense of
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•R(o1, o2) (predicate application)
•R(o, v) (predicate application)
•f(o1) = o2 (function application)
•f(o) = v (function application)
•o ∈ S (membership in sort)
•φ(o) (description of o)
•o1 = o2 (same object)
•¬ o1 = o2 (different object)

where oi and o denote 0-ary constant operations of sort Thing or a
subsort of it, and
where v is a ground term of sort DATA, and
where S is a subsort of Thing

Fig. 9. Axioms Relating Constants

spec GenCardinality [sorts Subject, Object
pred predicate : Subject × Object ] =

{ Set [sort Object ]
reveal Set [Object ], 	 , ε , Nat, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, @@ ,

≥ , ≤
then op toSet : Subject → Set [Object ]

∀ x : Subject ; y : Object • predicate(x, y) ⇔ y ε toSet(x )
preds minCardinality [predicate](s: Subject ; n: Nat) ⇔ 	 toSet(s) ≥ n;

maxCardinality[predicate](s: Subject ; n: Nat) ⇔ 	 toSet(s) ≤ n;
cardinality [predicate](s: Subject ; n: Nat) ⇔ 	 toSet(s) = n

} hide Pos, toSet, Set [Object ], 	 , ε , ≤ , ≥

spec PredefinedConcepts =
sort Thing
pred Nothing : Thing
∀ x : Thing • ¬ Nothing(x ) %(empty concept Nothing)%

Fig. 10. Casl-DL Prelude

Casl’s strong typing. By relying on the translations between OWL DL and
SHOIN (D) from [18, 19], we just need to define the translation along the syntax
of SHOIN (D). The remaining OWL DL specialties are dealt with as follows.
An ontology imported via an import annotation is translated to a specification in
Casl-DL and named with a part of the URI [4] of the OWL document. Then the
“importing ontology” is an extension of the imported ontology. When defining
the translation, we encountered the difficulty that in every OWL document other
ontologies could be referenced directly as an URI pointing to a name defined in
another OWL document. This problem is solved by localisation of the names
as described in the semantics document of OWL [23, Sect.5.1]. The URIs are
maintained via custom namespace annotations analogous to XML namespaces [7].
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spec Family =
PredefinedConcepts

then sorts Person, Female < Thing ;
Woman < Person;
Woman < Female;
Woman = {x : Thing • x ∈ Person ∧ x ∈ Female};
Man < Person;
Man = {x : Thing • x ∈ Person ∧ ¬ x ∈ Woman}

pred hasChild : Person × Person
sorts Mother < Woman;

Mother = {x : Thing • x ∈ Woman ∧
∃ y : Person • hasChild(x as Woman, y)};

Father < Man;
Father = {x : Thing • x ∈ Man ∧

∃ y : Person • hasChild(x as Man, y)};
Parent < Person %% smallest common supersort

generated type Parent ::= sorts Mother, Father
sorts Grandmother < Mother ;

Grandmother = {x : Thing • x ∈ Mother ∧
∃ y : Parent • hasChild(x as Mother, y)}

then GenCardinality [sort Person < Thing
pred hasChild : Person × Thing ]

then sorts MotherWithManyChildren < Mother ;
MotherWithManyChildren =

{x : Thing • (x ∈ Mother) ∧
minCardinality [hasChild ](x as Mother, 3 )}

preds hasHusband : Woman × Man;
Wife(w : Person) ⇔
w ∈ Woman ∧ ∃ m: Man • hasHusband(w as Woman, m)

end

Fig. 11. Translation of the OWL-DL TBox from Fig.1 into Casl-DL

C, D ::= A | (atomic concept)
� | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C � D | (intersection)
C � D | (union)
{o1, ...} | (nominals)
∀R.C | (value restriction)
∃R.C | (existential quantification)
R : o | (has value restriction)
� n R | (Unqualified
� n R | number
= n R restriction)

Fig. 12. Syntax for the Description of Concepts in SHOIN (D)
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as given by [19]), and their translation to Casl-DL. Here, ΔI is the domain
of individuals disjoint from the domain of data values ΔI

D. All the sorts are
subsorts either of DATA (for datatypes), or of Thing. Class descriptions denoted
as C or C1...Cn are translated to formulas with one free variable in Casl-DL.
[[C]](x) is the translation of description C in Casl-DL with the free variable x.

In principle, there are two variants of axioms: (1) partial concept axioms
and (2) complete concept axioms, presented in Table 1. Table 2 shows axioms
for some special cases that can be translated more succinctly (but note that
these translations are semantically equivalent to those that could be derived
from Tables 1 and 3). For example, a class axiom that defines a named concept
can be translated either to a formula of the form x ∈ A ⇔ x ∈ C1 ∧ ...∧ x ∈ Cn,
or to a subsort definition (where A stands for the name that is given to the class
in definition). All variables in the tables without an explicit typing are of type
Thing.

The translation of OWL DL to Casl-DL is not entirely adequate in the
sense that OWL DL admits empty classes, while subsorts in Casl-DL must
be non-empty. However, note that unnamed classes are translated to formulas
in Casl-DL, and the latter may well be unsatisfiable, i.e. denoting the empty
class. Only named classes are translated to subsorts. Generally, we feel that
named classes should be non-empty from a conceptual point of view. However,
for the case that the user really wants to have a possibly empty class, we provide
an annotation in OWL DL that leads to a translation of the class to a unary
predicate in Casl-DL.

The translation from Casl-DL back to SHOIN (D) (OWL DL) results from
the same tables given for the translation from SHOIN (D) to Casl-DL by
reading them from right to left. Of course, this is not well-defined in cases where
a certain Casl-DL construct is reached (via the left-to-right translation) either

R, S ::= S | (atomic role)
R− (inverse role)

Fig. 13. Syntax for the Description of Roles in SHOIN (D)

Figures 12 and 13 show the syntax production rules for the constructs of
SHOIN (D). Tables 1 to 7 (see the appendix) describe in detail the SHOIN (D)
constructs, their semantics (according to standard description logic semantics

from several SHOIN (D) constructs, or from none at all. In the first case, we just
define the back translation to be the first SHOIN (D) construct in the table that
fits. The second case can occur only for a limited number of constructs, for which
we employ a special treatment: (1) Overloaded binary predicates are translated a
bit differently from non-overloaded ones. The argument sorts yield two constructs
of the form S1 � ... � Sn built from the sorts for the first and second argument.
These constructs are then used in SHOIN (D) formulas for domain and range
formulas (s. Tables 5 and 6). (2) The definitions for named classes resulting
from unary predicates are marked with an OWL DL annotation. (3) Complete

Ontologies for the Semantic Web in Casl 117



definitions of the form ∀x : S • φ(x) are transformed to ∀x : Thing • x ∈ S ⇔
φ(x) and this formula is then translated. (4) Subsort definitions of the form sort
S1 = { x : S • φ(x)} are transformed to sort S1 = { x : Thing • ¬x ∈ S ∨ φ(x)}
before the translation.

5.1 Translations as Comorphisms

The translations can be shown to be institution comorphisms in the sense of
[13]. First, we present briefly the involved signatures, sentences, models and
satisfaction of SHOIN (D) and Casl-DL, giving rise to institutions in the sense
of [14]. Then we show the signature, sentence and model mappings, giving rise
to institution comorphisms.

The signatures in SHOIN (D) consist of several sets: (1) a set of concepts,
(2) a subset of primary concepts, (3) a set of individual-valued roles, (4) a set of
data-valued roles, (5) a set of individuals and (6) a set of axioms for subconcept
relations, domain and range of roles, functional roles and concept membership.
Productions of SHOIN (D) concepts are shown in Fig. 12 and 13. They are
used to form sentences like A ≡ C or A % C, where A is a concept name and C
is a concept. SHOIN (D) models consist of: (1) a set ΔI of individuals and a set
ΔI

D of data values, (2) a subset AI ⊆ ΔI for each concept A in the signature, (3)
an element of AI for every individual, (4) a binary relation for every role: either
(a) RI ⊆ AI

1 ×AI
2 (individual valued roles) or (b) RI ⊆ AI ×DI with DI ⊂ ΔI

D

(data-valued roles).The satisfaction relation between models and sentences is
defined inductively in the obvious way.

Signatures of Casl-DL consist of: (1) a set of sorts, (2) a subsort hierarchy
(which is just a pre-order) subsuming all sorts under the sort Thing, (3) a set
of unary and binary typed relations, (4) a set of unary typed functions and
(5) a set of typed constants. Productions of Casl-DL sentences are given in
Fig. 4 to 9. Casl-DL models consist of non-empty carrier sets for each sort
and an injective function for each subsort relation. Each predicate symbol is
associated with a predicate declared on the appropriate carrier set. Each function
symbol corresponds to a partial function between the appropriate carrier sets.
Satisfaction is defined as standard in partial first-order logic.

Comorphism from SHOIN (D) to . Signature mappings: (1) Pri-
mary concepts are mapped to sorts and subconcept axioms of primary concepts
yield a subsort declaration. (2) All non-primary concepts are mapped to unary
predicates on either Thing or their supersort according to the subconcept axioms.
(3) Individual-valued roles with functionality axiom yield a unary operation and
the others a binary predicate. According to the type of a role the operation or
predicate is typed either with Thing or a subsort of it. If a formula is given as
type instead of a primary concept (mapped to a sort) argument restriction ax-
ioms are generated. (4) Data-valued roles with functionality axiom yield a unary
operation and the others a binary predicate. According to the type of a role the
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operation or predicate is typed either with Thing or a subsort of it in the (first)
argument position and with DATA or or a subsort of it as result / in second
argument position. (5) Individuals are mapped to operations either typed with
Thing or with a subsort of it. (6) From subconcept axioms, which involve con-
cepts mapped to unary predicates, implications are generated. The mappings of
sentences are shown in Tab. 1 to 7. A subsorted Casl-DL model with injections
can be translated to a subsorted model with inclusions by taking the colimit
of the inclusion diagram, see [15] for details. From this, it is straightforward to
construct a SHOIN (D) model.

Comorphism from to SHOIN (D). Signature mapping: (1) All
subsorts of Thing and sort Thing itself are mapped to primary concepts. The
subsort hierarchy yields subsumption axioms. (2) Unary relations are mapped
concepts as well. Each type of a predicate gives a subsumption axiom. (3) Bi-
nary relations are mapped to either individual-valued properties or data-valued
properties according to their type. (4) Unary functions are mapped to either
individual-valued properties or data-valued properties according to their type
and yield a functionality axiom. (5) Constant operations are mapped to individ-
uals of those primary concepts where their sorts have been mapped to. Tables. 1
to 7 show the mapping of sentences by reading them from right to left. Fur-
ther details are given above how to map the sentences. A SHOIN (D)-model is
mapped to Casl-DL by interpreting the subsorts of Thing with interpretations
of the corresponding concepts in SHOIN (D), and similarly for the predicates
and individuals. Partial functions are interpreted by taking the interpretation of
the corresponding binary role in SHOIN (D); by the axiomatization, it is the
graph of a partial function.

The model translations of both comorphisms are inverse to each other. As
a consequence, the institution comorphisms can be used to borrow, in a sound
and complete way [8], any proof system that works for either of the two logics
also for use with the other one.

6 Conclusion and Future Work

We have defined a sublanguage Casl-DL of Casl that corresponds to the web
ontology language OWL DL (where DL refers to the sublanguage corresponding
to a description logic), and we have described a translation between OWL DL
and Casl-DL in detail. We believe that the main benefit of Casl-DL is the
strong typing discipline, which may lead to detection of conceptual errors at a
very early stage. By mapping OWL DL’s classes and subclasses to Casl’s sorts
and subsorts, we inherit the flexibility of subsorting while retaining the strong
type system. Moreover, Casl-DL offers the possibility to distinguish between a
subsort and a unary predicate. Although this distinction is not relevant seman-
tically, it has some conceptual importance [16]. We therefore propose Casl-DL
as a language that can be used directly to specify ontologies. Moreover, via the
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A further advantage of Casl-DL is that it naturally comes with Casl’s pow-
erful structuring constructs. By contrast, OWL DL and other description logic
languages only have quite limited ways to structure and combine ontologies. In
fact, the only way that is recommended is a transitive import of other ontolo-
gies. To stay within OWL DL requires not to import the OWL Ontology, but
to reference all names via URIs. Here Casl’s structuring capabilities provide a
much more elaborate and cleaner approach, by using hiding and translation of
symbols. An interesting question is then the interaction of Casl’s structuring
concepts with the use of tools like FaCT and Pellet. We expect that the het-
erogeneous tool set Hets [22] will be a good starting point for answering this
question. We also plan to implement the translations described in this paper
within Hets.

From an ontological point of view, it would be better not to use Casl-DL for
the development of ontologies but a more expressive language. Often KIF [12] (a
first order language with Lisp-like syntax) is used for this purpose. But KIF lacks
support for structuring ontologies in a nice way. Hence, it would be a good idea to
use (full first-order) Casl instead of KIF to develop ontologies: as stated above,
Casl provides strong typing and good structuring facilities. In this case, efficient
tools like FaCT and Pellet are no longer applicable. Some ontology designers
therefore provide their ontology both in a first-order version (e.g. in KIF) and
in a description logic version (e.g. in OWL DL) [21]. However, the process of
restricting first-order logic to description logic can hardly be automated, and
keeping two different version of a document consistent manually is tedious and
error-prone. We believe that it is more promising to use tools like the SPASS
prover [26] that both support full first-order logic and, when applied to formulas
from a suitable description logic fragment, such as Casl-DL, reach the efficiency
of specialized tools like FaCT.

In general, we think that for mediating between different languages and
tools, translations (formally realized as institution comorphisms) are extremely
important. We have sketched two such comorphisms (between Casl-DL and
SHOIN (D)); future work will extend this to a graph of formalisms and trans-
lations.
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Appendix: Translation Tables

Table 1. Base Concept Axioms for the TBox

SHOIN (D) Semantics Casl-DL
C1 � C2 CI

1 ⊆ CI
2 ∀x : Thing • [[C1]](x) ⇒ [[C2]](x)

C1 ≡ C2 CI
1 = CI

2 ∀x : Thing • [[C1]](x) ⇔ [[C2]](x)

Table 2. Derived Concept Axioms for the TBox

SHOIN (D) Semantics Casl-DL
∀R.¬A � C (∀R.¬A � C)I =

{x|∀y.〈x, y〉 ∈ RI → y ∈ (¬AI∪C)I}
∀y : A • R(x, y) ⇒ [[C]](y)

∃R.A � C (∃R.A � C)I =
{x|∃y.〈x, y〉 ∈ RI → y ∈ AI ∩ CI}

∃y : A • R(x, y) ∧ [[C]](y)

SHOIN (D) Semantics Casl-DL
A � C1 � ... � Cn AI ⊆ CI

1 ∩ ... ∩ CI
n ∀x : Thing • x ∈ A ⇒ [[C1]](x) ∧ ... ∧ [[Cn]](x)

A ≡ C1 � ... � Cn AI = CI
1 ∩ ... ∩ CI

n sort A = {x : Thing
• [[C1]](x) ∧ ... ∧ [[Cn]](x)}a

A1 � A2 AI
1 ⊆ AI

2 sorts A1 < A2

A ≡ A1 � ... � An AI = AI
1 ∪ ... ∪ AI

n generated type A ::= sorts A1, ..., An
b

A1 ≡ A2 AI
1 = AI

2 sorts A1 = A2

A ≡ {o1, ..., on} AI = {oI
1 , ..., oI

n} generated type A ::= o1|...|on
c

C1 � C2 ≡ ⊥ CI
1 ∩ CI

2 = ∅ ∀x : Thing • [[C1]](x) ⇒ ¬[[C2]](x)

a if Ci is an atomic concept, a subsort declaration for A is generated
b if pairwise disjointness axioms for A1, ..., An are present a free type definition is

used; an axiom is generated that A is a subsort of the smallest common supersort
of A1, ..., An

c if axioms are present that o1, ..., on are all different individuals, a free type definition
is used

.

.

.
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Table 3. Descriptions of Concepts

SHOIN (D) Semantics Casl-DL

Descriptions (C) [[C]]

A AI ⊆ ΔI x ∈ A for sorts
A(x) for predicates

� �I = ΔI true
⊥ ⊥I = ∅ false
C1 � ... � Cn CI

1 ∩ ... ∩ CI
n [[C1]](x) ∧ ... ∧ [[Cn]](x)

C1 � ... � Cn CI
1 ∪ ... ∪ CI

n [[C1]](x) ∨ ... ∨ [[Cn]](x)
¬C (¬C)I = ΔI \ CI ¬[[C]](x)
{o1, ..., on} ({o1, ..., on})I = {oI

1 , ..., oI
n} x = o1 ∨ ... ∨ x = on

∀R.C (∀R.C)I =
{x|∀y.〈x, y〉 ∈ RI → y ∈ CI}

∀y : Thing • R(x, y) ⇒ [[C]](y)a

∃R.C (∃R.C)I = {x|∃y.〈x, y〉 ∈ RI ∧y ∈ CI} ∃y : Thing • R(x, y) ∧ [[C]](y)b

∃R.A (∃R.A)I = {x|∃y.〈x, y〉 ∈ RI ∧ y ∈ AI} ∃y : A • R(x, y)
R : o (R : o)I = {x|〈x, oI〉 ∈ RI} R(x, o)
� n R (� n R)I = {x|	({y.〈x, y〉 ∈ RI}) ≥ n} see discussion of
� n R (� n R)I = {x|	({y.〈x, y〉 ∈ RI}) ≤ n} GenCardinality in Fig. 10
= n R (= n R)I = {x|	({y.〈x, y〉 ∈ RI}) = n} for the definition of number re-

strictions in Casl-DL
∀U.D (∀U.D)I =

{x|∀y.〈x, y〉 ∈ UI → y ∈ DI}
∀y : DATA • U(x, y) ⇒ [[D]](y)c

∃U.D (∃U.D)I = {x|∃y.〈x, y〉 ∈ UI ∧y ∈ DI} ∃y : DATA • U(x, y) ∧ [[D]](y)d

∃U.D0 (∃U.D0)I = {x|∃y.〈x, y〉 ∈ UI ∧ y ∈
DI

0 }
∃y : D0 • U(x, y)e

U : v (U : v)I = {x|〈x, vI〉 ∈ UI} U(x, v)
� n U (� n U)I = {x|	({y.〈x, y〉 ∈ UI}) ≥ n} see discussion of
� n U (� n U)I = {x|	({y.〈x, y〉 ∈ UI}) ≤ n} GenCardinality and Fig. 10
= n U (= n U)I = {x|	({y.〈x, y〉 ∈ UI}) = n} for the definition of number re-

strictions in Casl-DL

a if R is declared as functional the formula is def R(x) ⇒ [[C]](R(x))
b if R is declared as functional the formula is [[C]](R(x))
c if U is declared as functional the formula is def U(x) ⇒ [[D]](U(x))
d if U is declared as functional the formula is [[D]](U(x))
e where D0 is a data type name

.
.

.
.

.
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Table 4. Declaration of Data Ranges, Roles, Individuals and Data Values

SHOIN (D) Semantics Casl-DL
Data Ranges (D) [[D]]

D DI ⊆ ΔI
D x ∈ D

{v1, ..., vn} {v1, ..., vn}I = {vI
1 , ..., vI

n} y = v1 ∨ ... ∨ y = vn
a

Object Properties (R)

R RI ⊆ ΔI × ΔI pred R : Thing × Thing

Datatype Properties (U)

U UI ⊆ ΔI × ΔI
D pred U : Thing × DATA

Individuals (o)

o oI ∈ ΔI op o : Thing

Data Values (v)

v vI ∈ ΔI
D some constant term of a pre-

defined datatype

a for typing of binary predicates they are named subsorts of DATA (s.
Fig. 3 (data range subsort definition))

Table 5. TBox Axioms for General Properties

SHOIN (D) Semantics Casl-DL
U � Ui UI ⊆ UI

i ∀y : DATA • U(x, y) ⇒ Ui(x, y)
� 1 U � Ci UI ⊆ CI

i × ΔI
D ∀x : Thing

• minCardinality [U ](x, 1) ⇒ [[Ci]](x)a

� 1 U � Ai UI ⊆ AI
i × ΔI

D pred U : Ai × DATAb

� � ∀U.Di UI ⊆ ΔI × DI
i pred U : Thing × Dbc

U1 = U2 UI
1 = UI

2 U1(x, y) ⇔ U2(x, y)
R � Ri RI ⊆ RI

i R(x, y) ⇒ Ri(x, y)
� 1 R � Ci RI ⊆ CI

i × ΔI ∀x : Thing
• minCardinality [R](x, 1) ⇒ [[Ci]](x)a

� 1 R � Ai RI ⊆ AI
i × ΔI pred R : Ai × Thingb

� � ∀R.Cj RI ⊆ ΔI × CI
j ∀x : Thing

• true ⇒ ∀y : Thing • R(x, y) ⇒ [[Cj ]](y)a

� � ∀R.Aj RI ⊆ ΔI × AI
j pred R : Thing × Aj

b

R = R−
0 RI = (RI

0 )− R(x, y) ⇔ R0(y, x)
R = R− RI = (RI)− R(x, y) ⇔ R(y, x)
� � � 1 R− (RI)− is functional R(x, z) ∧ R(y, z) ⇒ x = y

Tr(R) RI = (RI)+ R(x, y) ∧ R(y, z) ⇒ R(x, z)
R1 = R2 RI

1 = RI
2 R1(x, y) ⇔ R2(x, y)

a for Ci and/or Cj of form A1 � ...�An overloaded predicate profiles of all pairs
are constructed; other description formulas for Ci and/or Cj yield argument
restriction formulas in Casl-DL

b if both domain and range are specified U gets type Ai × D
c D is either a datatype name or a named datatype range derived from [[Di]]
d if both domain and range are specified R gets type Ai × Aj

.

.
.

.
.
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Table 6. TBox Axioms for Functional Properties

SHOIN (D) Semantics Casl-DL
� � � 1 U UI is functional op U : Thing →? Da

� � � 1 R RI is functional op R : Thing →? Thing

U � Ui UI ⊆ UI
i ∀y : DATA • U(x) = y ⇒ Ui(x, y)b

� 1 U � Ci UI ⊆ CI
i × ΔI

D ∀x : Thing
• minCardinality [U ](x, 1) ⇒ [[Ci]](x)cd

� 1 U � Ai UI ⊆ AI
i × ΔI

D op U : Ai →? DATAe

� � ∀U.Di UI ⊆ ΔI × DI
i op U : Thing →? Dae

U = U1 UI = UI
1 U(x) = y ⇔ U1(x, y)f

R � Ri RI ⊆ RI
i R(x) = y ⇒ Ri(x, y)b

� 1 R � Ci RI ⊆ CI
i × ΔI ∀x : Thing

• minCardinality [R](x, 1) ⇒ [[Ci]](x)cd

� 1 R � Ai RI ⊆ AI
i × ΔI op R : Ai →? Thingg

� � ∀R.Cj RI ⊆ ΔI × CI
j ∀x : Thing

• true ⇒ def R(x) ⇒ [[Cj ]](R(x))c

� � ∀R.Aj RI ⊆ ΔI × AI
j op R : Thing →? Aj

g

R = R− RI = (RI)− R(x) = y ⇔ R(y) = x

� � � 1 R− (RI)− is functional R(x) = z ∧ R(y) = z ⇒ x = y

R = R1 RI = RI
1 R(x) = y ⇔ R1(x, y)b

a D is either a datatype name or a named datatype range derived from [[Di]]
b if Ui or Ri is also declared as functional this formula is ∀y : SD • q(x) = y ⇒

qi(x) = y where SD is either DATA or Thing and q either U or R
c for Ci and/or Cj of form A1 � ... � An overloaded function profiles of all pairs

are constructed
d where GenCardinality is instantiated with pred q(x : s1; y : s2) ⇔ q(x) = y

where q is either R or U
e if both domain and range are specified U gets type Ai →? D
f if U1 or R1 is also declared as functional the formula is q(x) = y ⇔ q1(x) = y
where q is either U or R

g if both domain and range are specified R gets type Ai →? Aj

Table 7. Axioms for the ABox

SHOIN (D) Semantics Casl-DL
o ∈ A oI ∈ CI

i op o : A

o ∈ Ci oI ∈ CI
i [[Ci]](o)

〈o, oi〉 ∈ Ri 〈oI , oI
i 〉 ∈ RI

i Ri(o, oi)a

〈o, vi〉 ∈ Ui 〈oI , vI
i 〉 ∈ UI

i Ui(o, vi)a

o1 = o2 oI
1 = oI

2 o1 = o2

o1 �= o2 oI
1 �= oI

2 ¬o1 = o2

a if R is declared as functional the translation result is Ri(o) = oi
b if U is declared as functional the translation result is Ui(o) = vi.

.

.
.

.
.

.

.

.
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Abstract. Computational systems are often represented by means of Kripke struc-
tures, and related using simulations. We propose rewriting logic as a flexible and
executable framework in which to formally specify these mathematical models,
and introduce a particular and elegant way of representing simulations in it: theo-
roidal maps. A categorical viewpoint is very natural in the study of these structures
and we show how to organize Kripke structures in categories that afterwards are
lifted to the rewriting logic’s level. We illustrate the use of theoroidal maps with
two applications: predicate abstraction and the study of fairness constraints.

1 Introduction

Formal reasoning about concurrent systems typically involves two levels of specifica-
tion: (1) a system specification level, in which an explicit computational description of
a concurrent system is given; and (2) a property specification level, in which different
safety and liveness properties satisfied by the system are specified. A system specifica-
tion typically determines a mathematical model (or set of models) about which we want
to verify that some properties are satisfied. Frequently used mathematical models in-
clude transition systems, and Kripke structures—i.e., transition systems decorated with
information about satisfaction of atomic predicates. For properties, different temporal
and modal logics can be used; CTL∗ [5] is a common choice, because it contains the
widely used LTL and CTL logics as special cases.

But how can such mathematical models be formally specified? There are many
possibilities. In this paper we specify them by means of rewrite theories. This is a
natural choice, because rewriting logic provides a flexible framework for specifying
a wide range of concurrent systems at a high level [16, 14], yet in an executable way
supported by languages such as Maude in which we can simulate and model check such
systems [7, 8]. Essentially, system states are specified as elements of an initial algebra,
and (parameterized) transitions as rewrite rules. Furthermore, it is then very easy to
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equationally specify atomic predicates holding on the states in a theory extension. In this
way, we can associate a Kripke structure K (R,k)Π to a rewrite theory R, a kind of states
k, and atomic propositions Π . Given a CTL∗ formula ϕ , then the issue of whether the
system specification satisfies the property ϕ becomes the question of verifying whether
K (R,k)Π |= ϕ holds.

However, it may be considerably easier to verify such a satisfaction relation using
a different system specification R ′. For example, K (R,k)Π may have infinitely many
states, whereas K (R ′,k)Π may be a finite-state abstraction of R [19], so that we can use
a model checker to verify K (R ′,k)Π |= ϕ . From this we can infer that K (R,k)Π |= ϕ
holds, provided that R and R ′ can be related by an adequate simulation map H : R −→
R ′. This of course suggests a categorical approach, and also exploring an adequate
notion of theory morphism to define such simulations at a logical level. This is the goal
of this paper. Specifically we:

– Define a category with objects Kripke structures and morphisms quite general “stut-
tering simulations,” and show that properties specified by a natural subclass of CTL∗

formulas are reflected by such simulations.
– Show that those CTL∗ formulas, with Kripke structures as models and simulations

as morphisms, form an institution [12].
– Explain theK (R,k)Π construction in detail allowing us to specify Kripke structures

by means of rewrite theories.
– Present a new notion of partial theory morphism which allows a more general and

expressive way of relating theories than with ordinary theory morphisms.
– Define a category with rewrite theories (plus the specification of the kind of states and

the state predicates) as objects, and suitable partial theory morphisms as morphisms,
and show that they define a useful class of simulations between the underlying Kripke
structures, which we call theoroidal simulations.

– Illustrate the usefulness of this notion in several areas, including predicate abstrac-
tion, and reasoning about temporal logic properties under fairness assumptions. Fur-
thermore, theoroidal simulations greatly generalize equational abstractions, which
were already shown to be very useful in [19].

An extended version of this paper with the missing proofs can be found in [15].

2 Prerequisites

2.1 Computational Systems

When reasoning about computational systems, it is usually convenient to abstract from
as many details as possible by means of simple mathematical models that can be used to
reason about them. For a state-based system we can represent its behavior by means of a
transition system, which is a pair A = (A,→A ) with A a set of states and →A ⊆ A×A
a binary relation called the transition relation.

A transition system, however, does not include any information about the relevant
properties of the system. In order to reason about such properties it is necessary to add
information about the atomic properties that hold in each state. In what follows, we
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assume a fixed set AP of atomic propositions and define a Kripke structure as a triple
A = (A,→A ,LA ), where (A,→A ) is a transition system with →A a total relation,
and LA : A → P(AP) is a labeling function associating to each state the set of atomic
propositions that hold in it. Note that the transition relation must be total [5]; given an
arbitrary relation →, we write →• for the total relation that extends → by adding a
pair a →• a for each a such that there is no b with a → b. A path in A is a function
π : IN−→ A such that, for each i ∈ IN, π(i) →A π(i+1).

To specify system properties we will use the logic ACTL∗(AP), which is a sublogic
of the branching-time temporal logic CTL∗(AP) (see for example [5–Sect. 3.1]). There
are two types of formulas in CTL∗(AP): state formulas, denoted by State(AP), and path
formulas, denoted by Path(AP). The semantics of the logic, specifying the satisfaction
relations A ,a |= ϕ and A ,π |= ψ for a Kripke structure A , an initial state a ∈ A, a
state formula ϕ , a path π , and a path formula ψ , is defined as usual [5]. ACTL∗(AP)
is the restriction of CTL∗(AP) to those formulas such that their negation-normal forms
(with negations pushed to atoms) do not contain any existential path quantifiers. Some-
times, to avoid introducing existential quantifiers implicitly, it is more convenient to
restrict ourselves to the negation-free fragment ACTL∗\¬(AP) of ACTL∗(AP), defined
as follows:1

state formulas: ϕ = p ∈ AP |  | ⊥ | ϕ ∨ϕ | ϕ ∧ϕ | Aψ
path formulas: ψ = ϕ | ψ ∨ψ | ψ ∧ψ | Xψ | ψUψ | ψRψ |Gψ | Fψ .

We write State\¬(AP) and Path\¬(AP) for the sets of state and path formulas in
ACTL∗\¬(AP), respectively.

2.2 Rewriting Logic

Rewriting logic [16] provides a very flexible framework for the system-level specification
of concurrent systems. It is parameterized by an underlying equational logic, which
we will also use to specify the system’s properties; in this paper we use membership
equational logic [17], whose main features we now review.

A signature in membership equational logic is a triple (K,Σ ,S) (just Σ in the fol-
lowing), with K a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature,
and S = {Sk}k∈K a pairwise disjoint K-kinded family of sets of sorts. The kind of a
sort s is denoted by [s]. We write TΣ ,k and TΣ ,k(X) to denote respectively the set of
ground Σ -terms with kind k and of Σ -terms with kind k over variables in X , where
X = {x1 : k1, . . . ,xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind
but without a sort represent undefined or error elements. An atomic formula is either an
equation t = t ′, where t and t ′ are Σ -terms of the same kind, or a membership assertion of
the form t : s, where the term t has kind k and s ∈ Sk. Sentences are conditional formulas
of the form (∀X)A0 if A1∧ . . .∧An, where each Ai is either an equation or a membership
assertion, and X is a set of K-kinded variables containing all the variables in the Ai. A
theory is a pair (Σ ,E), where E is a set of sentences in membership equational logic
over the signature Σ . We write (Σ ,E) � φ , or just E � φ if Σ is clear from the context, to

1 X, G, and F stand for the classic next (©), henceforth (�), and eventually (�) LTL operators.
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denote that (Σ ,E) entails the sentence φ in the proof system of membership equational
logic [17]. A theory (Σ ,E) has an initial model TΣ/E whose elements are E-equivalence
classes of terms [t]. Algebras over a signature are defined in a standard manner; we
denote by A f the interpretation of an operator f in the algebra A and by At that of a term
t, and refer to [17] for a detailed presentation of the model theory.

Concurrent systems are axiomatized in rewriting logic by means of rewrite theo-
ries [16] of the form R = (Σ ,E,R). The set of states is described by a membership
equational theory (Σ ,E) as the algebraic data type TΣ/E,k associated to the initial alge-
bra TΣ/E of (Σ ,E) by the choice of a kind k of states in Σ . The system’s transitions are
axiomatized by the conditional rewrite rules R which are of the form

λ : (∀X) t −→ t ′ if
∧
i∈I

pi = qi∧
∧
j∈J

w j : s j ∧
∧
l∈L

tl −→ t ′l ,

with λ a label, pi = qi and w j : s j atomic formulas in membership equational logic for i∈ I
and j ∈ J, and for appropriate kinds k and kl , t, t ′ ∈ TΣ ,k(X), and tl , t ′l ∈ TΣ ,kl (X) for l ∈ L.
Under reasonable assumptions about E and R, rewrite theories are executable. Indeed,
there are several rewriting logic language implementations, including CafeOBJ [11],
ELAN [3], and Maude [7, 8]. Rewriting logic then has inference rules to infer all the
possible concurrent computations in a system [16, 4], in the sense that, given two states
[u], [v] ∈ TΣ/E,k, we can reach [v] from [u] by some possibly complex concurrent compu-
tation iff we can prove u−→ v in the logic; we denote this provability by R � u−→ v.
In particular we can easily define the one-step R-rewriting relation, which is a binary
relation →1

R,k on TΣ ,k that holds between terms u,v ∈ TΣ ,k iff there is a proof of u−→ v
in which only one rewrite rule in R is applied to a single subterm.

2.3 Computational Systems in Rewriting Logic

To associate a transition system to a rewrite theory we transfer the one-step rewriting
relation →1

R,k from terms in TΣ ,k to states in TΣ/E,k, by defining [u] →1
R,k [v] iff u′ →1

R,k v′

for some u′ ∈ [u], v′ ∈ [v]. This definition determines a transition system T (R)k =
(TΣ/E,k,(→1

R,k)
•) for each k ∈ K.

In order to associate temporal properties to a rewrite theory R = (Σ ,E,R) we need
to make explicit two things: the intended kind k of states in the signature Σ , and the
relevant state predicates. Once the kind k is fixed, the transitions between states are
given by T (R)k. In general, however, the state predicates need not be part of the system
specification but only of the property specification. We assume that they have been
defined by means of equations D in a protecting theory extension (Σ ′,E ∪D) of (Σ ,E);
that is, the extension is conservative in the sense that the unique Σ -homomorphism
TΣ/E −→ TΣ ′/E∪D|Σ should be bijective at each sort in Σ . We also assume that (Σ ′,E∪D)
is a protecting theory extension of BOOL, the theory of Boolean values. Furthermore,
we assume that the syntax defining the state predicates consists of a subsignature Π ⊆ Σ ′
of operators, with each p ∈ Π a state predicate symbol that can be parameterized, that
is, p need not be a constant, but can in general be an operator p : s1 . . .sn −→ Prop,
with Prop the kind of propositions. If k is the kind of states, the semantics of the state
predicates Π is defined with the help of an operator |= : k Prop −→ Bool in Σ ′ and
by equations E ∪D. By definition, given ground terms u1, . . . ,un, we say that the state
predicate p(u1, . . . ,un) holds in the state [t] iff E ∪D � t |= p(u1, . . . ,un) = true.
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Then, we associate to a rewrite theory R = (Σ ,E,R) (with a selected kind k of
states and with state predicates Π ) a Kripke structure whose atomic propositions are
specified by the set APΠ = {θ(p) | p∈Π , θ ground substitution}, where by convention
we use the simplified notation θ(p) to denote the ground term θ(p(x1, . . . ,xn)). We define
K (R,k)Π = (TΣ/E,k,(→1

R,k)
•,LΠ ), where LΠ ([t]) = {θ(p)∈APΠ | θ(p) holds in [t]}.

3 Relating Systems

So far we have discussed how to mathematically capture the essential characteristics
of computational systems and have proposed rewriting logic as a flexible framework in
which to represent them. But we are not interested in computational systems in isolation.
We would like to be able to study, for example, if a particular system is an abstraction, or
an implementation, of another one. To do that, the concept of simulation is introduced.

3.1 Stuttering Simulations

Classically, a simulation H : A −→ B of Kripke structures relates states that satisfy the
same atomic propositions in such a way that to every path in A corresponds a path in
B. A key fact is that then every ACTL∗ formula that holds in B is also true in A .

Our aim is to generalize the notion of simulation to give it a wider applicability. This
generalization should satisfy the same two key properties of basic simulations: (i) be
compositional, and (ii) reflect interesting properties. We achieve this goal by slightly
restricting the logic; on the one hand, by forbidding negations (no real expressive power
is lost) the condition that related states have to satisfy the same properties can be relaxed,
and on the other, by forbidding the next operator X (see Section 3.2), we can allow paths
to be simulated up to stuttering (which is what one really cares about most of the time).

Formally, for A = (A,→A ) and B = (B,→B) transition systems and H ⊆ A×B
a relation, we say that a path ρ in B H-matches a path π in A if there are strictly
increasing functions α,β : IN−→ IN with α(0) = β (0) = 0 such that, for all i, j,k ∈ IN,
if α(i)≤ j < α(i+1) and β (i)≤ k < β (i+1), it holds that π( j)Hρ(k). For example, the
following diagram shows the beginning of two matching paths, where related elements
are joined by dashed lines and α(0) = β (0) = 0, α(1) = 2, β (1) = 3, α(2) = 5.

π • ��

�
� • ��

�
� • �� • ��

�
� • �� · · ·

ρ • ��

�
�

�
� • ��

�
�

�
�

• ��

�
�

�
�

� � � � � � � • ��

�
�

�
�

�
�

�
� • �� · · ·

Definition 1. Given transition systems A and B, a stuttering simulation of transition
systems H : A −→ B is a binary relation H ⊆ A×B such that if aHb, then for each
path π in A starting at a there is a path ρ in B starting at b that H-matches π . If H is
a function we say that H is a stuttering map of transition systems. If both H and H−1

are stuttering simulations, then we call H a stuttering bisimulation.
Given Kripke structures A = (A,→A ,LA ) and B = (B,→B,LB) over AP, a stut-

tering AP-simulation H : A −→ B is a stuttering simulation of transition systems
H : (A,→A ) −→ (B,→B) such that if aHb then LB(b) ⊆ LA (a). If H is a function
we call H a stuttering AP-map. We call H a stuttering AP-bisimulation if H and H−1

are stuttering AP-simulations. We call H strict if aHb implies LB(b) = LA (a).
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3.2 The Temporal Logic Institution

Simulations, as defined above, compose, and it is immediate to check that the identity
function 1A : A −→ A is a simulation of transition systems and of Kripke structures.
Therefore, transition systems together with their simulations define a category STSys,
and similarly, for each set AP of atomic propositions there is a category KSSimAP with
a subcategory KSMapAP of stuttering AP-maps. Note that if H is an isomorphism in
KSSimAP then it must be a map and a bisimulation. Note, finally, that the mapping
(A,→A ,LA ) )→ (A,→A ) extends to a forgetful functor TS : KSSimAP −→ STSys.

Although the main goal of this paper is the study of simulations and their representa-
tion in rewriting logic, we believe that a categorical viewpoint is indeed the most natural
to understand these generalized simulations and hence consider worthwhile to devote
the rest of this section to present some ideas in that context. In what follows we show
how these categories can be neatly organized in an institution [12] for the logic ACTL∗.
Other institutions for temporal logics are discussed in [1], but their notions of signature
morphism and of simulation (which roughly corresponds to our notion of bisimulation
map) are more limited. As a side effect, we will also construct a Grothendieck cate-
gory [20] which will allow us to relate Kripke structures over different sets of atomic
propositions, further generalizing the notion of simulation.

Let us first define the category of signatures. A simple option would be to choose
sets of atomic propositions as objects and functions between them as arrows, but we are
aiming for the most general notion that still reflects satisfaction of suitable formulas.2 For
that, let State\{¬,X} : Set−→ Set be the functor mapping a set AP to State\{¬,X}(AP),
the state formulas in ACTL∗\¬(AP) that do not contain the next operator X, and a
function α : AP−→ AP′ to its homomorphic extension

α : State\{¬,X}(AP)−→ State\{¬,X}(AP′) .

Then, the triple 〈State\{¬,X},η ,μ〉 is a monad [2], where η : IdSet ⇒ State\{¬,X} and
μ : State\{¬,X} ◦State\{¬,X}⇒ State\{¬,X} are natural transformations such that
ηAP(p) = p and μ “unwraps” a formula into its basic atomic propositions. Our category
of signatures will be SetState\{¬,X}, the Kleisli category of the monad; its objects are just
sets, and the morphisms AP−→ AP′ are functions α : AP−→ State\{¬,X}(AP′).

We also need a notion of a reduct of a Kripke structure, inspired by that of the
reduct of an algebra. Given a function α : AP −→ State(AP′) and a Kripke structure
A = (A,→A , LA ) over AP′, we define the reduct Kripke structure A |α = (A,→A ,
LA |α ) over AP, with labeling function LA |α (a) = {p∈ AP |A ,a |= α(p)}. We can now
define the desired institution.

Definition 2. The institution of Kripke structures, IK = (SignK,senK,ModK, |=), is
given by:

2 The simpler category, however, gives rise to a semiexact institution, which is not true for the
one presented in the text; see [15] for more details.
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– SignK = SetState\{¬,X}.
– senK : SetState\{¬,X} −→ Set is the functor mapping a set AP to State\{¬,X}(AP),

and a function α : AP −→ State\{¬,X}(AP′) to its homomorphic extension α :
State\{¬,X}(AP)−→ State\{¬,X}(AP′).

– ModK : SetState\{¬,X} −→ Catop is given by ModK(AP) = KSSimAP and, for α :
AP−→ AP′ in SetState\{¬,X}, ModK(α)(A ) = A |α and ModK(α)(H) = H.

– The satisfaction relation is defined as A |= ϕ iff A ,a |= ϕ for all a ∈ A.

Proposition 1. IK is an institution.

Now, having defined the indexed category ModK allows us to construct the “flat-
tened” category of Kripke structures over arbitrary sets of atomic propositions. Let us
denote with KSSim the Grothendieck category [20] corresponding to ModK; spelling
out the definition, this gives rise to our most general notion of simulation. A stuttering
simulation (α,H) : (AP,A )−→ (AP′,B) in KSSim between a Kripke structure A over
AP and another B over AP′ consists of a function α : AP−→ State\{¬,X}(AP′) together
with an AP-simulation H : A −→ B|α . We say that (α,H) reflects a state formula ϕ
if whenever aHb and B,b |= α(ϕ), then A ,a |= ϕ . Then, not only these generalized
simulations still compose but they also reflect suitable ACTL∗ formulas.

Theorem 1. Stuttering simulations always reflect satisfaction of ACTL∗\{¬,X} for-
mulas. In addition, strict stuttering simulations also reflect satisfaction of ACTL∗ \X
formulas.

Note that by using different types of morphisms between Kripke structures and
choosing as sentences those temporal formulas reflected by them, we can get different
institutions and Grothendieck categories. For example, if we forget about stuttering and
only allow simulations that preserve one-step transitions, and define the category of
signatures through a functor State : Set −→ Set mapping AP to State(AP), we get the
institution of Kripke structures and classic simulations.

4 Theoroidal Maps

We have already noted that, in order to reason about computational systems, these can
be abstractly described by means of transition systems and Kripke structures, and that
rewriting logic can be used to specify both kinds of structures, as explained in the previous
sections. Our goal now is to study how to relate different rewrite theories and how to lift
to this specification level all the previous results about simulations of Kripke structures.
For this, we consider four increasingly more general ways of defining simulations for
rewrite theories specifying a concurrent system:

1. The easiest way of defining a simulation map for a rewrite theory (Σ ,E,R) is by
means of an equational abstraction [19], which consists in simply adding new
equations, say E ′, to get a quotient system specified by (Σ ,E ∪E ′,R).

2. The previous method can be generalized by considering, instead of just theory inclu-
sions (Σ ,E)⊆ (Σ ,E ∪E ′), arbitrary theory interpretations H : (Σ ,E)−→ (Σ ′,E ′)
allowing arbitrary transformations on the data representation of states.
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3. A third alternative consists in defining a simulation map between rewrite theories
R and R ′ directly at the level of their associated Kripke structures by means of
equationally defined functions.

4. Finally, the most general case is obtained by defining arbitrary simulations between
rewrite theories R and R ′ by means of rewrite relations.

For each of the increasingly more general ways above of defining simulations, there
are of course associated correctness conditions that must be verified. For equational
abstractions they are considered in detail in [19]. Here we study the second case, that
we call theoroidal maps; although not so general as the last two, there are still many
interesting examples that can be explained with them, as we illustrate in Section 5. The
remaining cases 3–4 will be treated elsewhere.

4.1 Generalized Theory Morphisms

The first thing to do is to make precise the meaning of theory interpretation. The idea is
to use the standard concepts of signature and theory morphism. However, as we shall see
in some of the examples below, the usual definition of signature morphism is sometimes
not expressive enough. For this reason we introduce the following generalization of the
concept of signature morphism in which a kind or an operator can be erased.

Definition 3. Given two membership equational signatures Σ = (K,Σ ,S) and Σ ′ =
(K′,Σ ′,S′), a generalized signature morphism H : Σ −→ Σ ′ is specified by:

– partial functions H : K −→ K′ and H : S−→ S′ such that, for all sorts s ∈ Σ , if H(s)
is defined so is H([s]) and H([s]) = [H(s)].

– a partial function H assigning, to each f ∈ Σk1...kn,k such that H(k) is defined, a
Σ ′-term H( f ) of kind H(k) such that vars(H( f ))⊆ {xi1 : H(ki1), . . . , xim : H(kim)},
where ki1 , . . . ,kim is the (possibly empty) subsequence of k1, . . . ,kn determined by
those ki such that H(ki) is defined. Otherwise, if H(k) is undefined, so is H( f ).

All standard constructions and results about signature morphisms apply to these
generalized ones as well. Given H : Σ −→ Σ ′ and a Σ ′-algebra A, its reduct UH(A) over
Σ is defined by:

– For each kind k, UH(A)k = AH(k) if H(k) is defined; otherwise UH(A)k = {∗}.
– For each sort s, UH(A)s = AH(s) if H(s) is defined; otherwise UH(A)s = {∗}.
– For each operator f : k1 . . .kn −→ k, if ki1 , . . . ,kim is the subsequence of those kinds

in k1, . . . ,kn for which H is defined,

UH(A) f (a1, . . . ,an) = AH( f )(ai1 , . . . ,aim) ;

otherwise,
UH(A) f (a1, . . . ,an) = ∗ .

Given generalized signature morphisms F : Σ −→ Σ ′ and G : Σ ′ −→ Σ ′′, their com-
position G ◦F is defined for a kind k only if both F(k) and G(F(k)) are defined, and
then it is (G◦F)(k) = G(F(k)); analogously for a sort s and an operator f .
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Generalized signature morphisms can also be extended homomorphically to terms,
but note that for t of kind k, if H(k) is not defined then H(t) is not defined either. This
translation extends to formulas in the expected way, where by convention H(t = t ′) =
H(t : s) = if H is not defined for the kind of t (which is the same as that of t ′ and s).
Our desired general notion of “theory interpretation” is then captured by the following:

Definition 4. Given two membership equational theories (Σ ,E) and (Σ ′,E ′), a gener-
alized theory morphism (resp. a generalized theory morphism with initial semantics)
H : (Σ ,E)−→ (Σ ′,E ′) is a generalized signature morphism H : Σ −→ Σ ′ such that for
each ϕ ∈ E, E ′ |= H(ϕ) (resp. TΣ ′/E ′ |= H(ϕ)).

Note that, since TΣ ′/E ′ |= E ′, each generalized theory morphism is a fortiori a general-
ized theory morphism with initial semantics, but not conversely. For example, if (Σ ,E) is
the theory with one sort, Nat, a binary operator +, and the equation (∀{x,y : Nat}) x+y =
y + x, (Σ ′,E ′) is the usual equational definition of addition in Peano arithmetic, and H
is the obvious signature inclusion, then we have TΣ ′/E ′ |= (∀{x,y : Nat}) x + y = y + x,
but E ′ �|= (∀{x,y : Nat}) x+ y = y+ x.

Again, generalized theory morphisms compose and together with membership equa-
tional theories give rise to a category GThMEL.

The new feature of generalized signature morphisms, which is inherited by gener-
alized theory morphisms, is that kinds and operators can be removed. This could have
been “implemented” using the standard notion of theory morphism in the following
alternative manner:

Proposition 2. A generalized theory morphism H : T −→ T ′ is the same thing as an
ordinary theory morphism H : T −→ T ′ ⊕ONE, where⊕ denotes coproduct of theories,
and ONE is a theory with a single kind [One] and sort One, a constant ∗ of that kind,
and the equation (∀{x : [One]})x = ∗.
Proof (sketch). Leaving a kind or sort undefined in a generalized signature morphism
corresponds respectively to mapping it to [One] or One in T ′ ⊕ONE, while leaving an
operator undefined corresponds to mapping it to the term ∗. ��

Note that there is an equivalence of categories between the models of T ′ and those of
T ′ ⊕ONE, because, even though we have introduced a new kind [One], all its elements
are collapsed by the equation (∀{x : [One]})x = ∗ to the constant ∗ and can play no
distinguished role.

Example. A special case of generalized theory morphisms are the projection func-
tions from n-tuples to (n− k)-tuples. Consider a theory 3-TUPLE for triples with kinds
3-Tuple, Elt@x, Elt@y, Elt@z, an operator 〈 , , 〉 : Elt@x Elt@y Elt@z −→ 3-Tuple,
projection operators p1, p2, and p3, and the obvious equations. Similarly, the theory 2-
TUPLE has kinds 2-Tuple, Elt@x, Elt@z, an operator 〈 , 〉 : Elt@x Elt@z−→ 2-Tuple,
corresponding projection operators p1 and p2, and the equations for pairing. Project-
ing from a triple to a pair by projecting out the second component can be represented
by the generalized theory morphism H : 3-TUPLE −→ 2-TUPLE mapping the kinds
Elt@x and Elt@z to themselves, 3-Tuple to 2-Tuple, and the operator 〈 , , 〉 to the
term 〈x1 : Elt@x,x3 : Elt@z〉; the image of the kind Elt@y and the operator p2 are left
undefined.
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4.2 Simulation Maps as Generalized Theory Morphisms

To be able to arrange rewrite theories specifying Kripke structures in a categorical way
we need to consider a theory BOOL|= extending BOOL with two new kinds, State and
Prop, and a new operator |= : State Prop−→ Bool.

We now have all the ingredients needed to define a category SRWThHom|= in which
stuttering maps are specified by theory interpretations. Objects in SRWThHom|= are
triples (R,(Σ ′,E ∪D),J) specifying, respectively, the transition relation, the atomic
propositions, and the kind of the states. More precisely:

1. R = (Σ ,E,R) is a rewrite theory specifying the transition system.
2. (Σ ,E)⊆ (Σ ′,E∪D) is a protecting theory extension, containing and protecting also

the theory BOOL of Booleans, that defines the atomic propositions satisfied by the
states. We define Π ⊆ Σ ′ as the subsignature of operators of coarity Prop.

3. J : BOOL|= −→ (Σ ′,E ∪D) is a membership equational theory morphism [17] that
selects the distinguished kind of states J(State), and such that: (i) it is the identity
when restricted to BOOL, (ii) J(Prop) = Prop, and (iii) J( |= : State Prop →
Bool) = |= : J(State) Prop → Bool.

Then, a morphism

H : (R1,(Σ ′1,E1∪D1),J1)−→ (R2,(Σ ′2,E2∪D2),J2)

in SRWThHom|= is a generalized signature morphism H : Σ1∪Π1 −→ Σ2 ∪Π2 such
that:

1. H ◦J1 = J2 (so that BOOL is preserved and states in R1 are mapped to states in R2).
2. H : (Σ1,E1)−→ (Σ2,E2) is a generalized morphism of membership equational the-

ories with initial semantics, so that we have a unique Σ1-homomorphism

ηH : TΣ1/E1
−→ UH(TΣ2/E2

) : [t] )→ [H(t)] .

3. (Preservation of transitions.) ηH
J1(State) : T (R1)J1(State) −→ T (R2)J2(State), the com-

ponent corresponding to the kind J1(State) in ηH mapping [t] to [H(t)], is a stuttering
map of transition systems.

4. (Preservation of predicates.) For each t ∈TΣ1,J1(State) and state predicate p(u1, . . . ,un):

E2∪D2 �H(t) |= H(p(u1, . . . ,un)) = true =⇒ E1∪D1 � t |= p(u1, . . . ,un) = true .

We can analogously construct a subcategory SRWThHomstr
|= of strict maps. The

definition is exactly the same except for item (4), where the implication must actually
be an equivalence.

That H so constrained indeed gives rise to a map of Kripke structures is shown
in Proposition 3 below. Let us define a functor K : SRWThHom|= −→ KSMap as
follows:
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– for objects, K (R,(Σ ′,E ∪D),J) = K (R,J(State))Π ;
– for morphisms H : (R1,(Σ ′1,E1 ∪D1),J1) −→ (R2,(Σ ′2,E2 ∪D2),J2), K (H) =

(H|Π1 ,η
H
J1(State)), where H|Π1 is the restriction of H to the state predicates Π1.

Proposition 3. With the above definitions, K : SRWThHom|= −→ KSMap is a func-
tor with restriction K : SRWThHomstr

|= −→ KSMapstr.

Proof. K is well-defined on objects, and it is immediate to see that it preserves identi-
ties and composition of morphisms; the only thing we need to check is that, for all H,
K (H) is indeed a map of Kripke structures. Let then H : (R1,(Σ ′1,E1 ∪D1),J1) −→
(R2,(Σ ′2,E2∪D2),J2) be a morphism in SRWThHom|=. By item (3) above, ηH

J1(State) :
T (R1)J1(State) −→ T (R2)J2(State) is a stuttering map of transition systems. To show
preservation of predicates, let p(u1, . . . ,un) ∈ LK (R2,J2(State))Π2

|H|Π1
([H(t)]). By defini-

tion of the reduct of a Kripke structure, K (R2,J2(State))Π2 , [H(t)] |= H(p(u1, . . . ,un))
which, by definition of K (R2,J2(State))Π2 and condition (4) in the definition of mor-
phisms in SRWThHom|=, implies that p(u1, . . . ,un) ∈ LK (R1,J1(State))Π1

([t]), as re-

quired. It is clear that if H belongs to SRWThHomstr
|= the converse is also true and

K (H) is a strict map. ��

An important consequence of this result and Theorem 1 is the following:

Theorem 2. Given a morphism H : (R1,(Σ ′1,E1∪D1),J1) −→ (R2,(Σ ′2,E2∪D2),J2)
in SRWThHom|= or SRWThHomstr

|= , and a formula ϕ in ACTL∗\{¬,X}(Π1) or
ACTL∗ \X(Π1) respectively, if H(ϕ) holds in K (R2,(Σ ′2,E2 ∪D2),J2) then ϕ holds
in K (R1,(Σ ′1,E1∪D1),J1).

Similar constructions can be carried out when simulations are represented by means
of equationally defined functions or rewrite relations (recall the introduction to this sec-
tion), resulting in categories SRWTh|= and SRelRWTh|=. Then, the lifting of Kripke
structures to the framework of rewriting logic can be represented graphically with the fol-
lowing commutative diagram. In it, the horizontal arrows between categories associated
to Kripke structures are inclusions, and those that map to categories associated to tran-
sition systems are the expected forgetful functors. (SRWTh is constructed analogously
to SRWThHom|=, but taking only the transitions into consideration.)

SRWThHom|= ��

K

��

SRWTh|= ��

K

��

SRelRWTh|= ��

K

��

SRWTh

T

��
KSMap �� KSMap �� KSSim �� STSys

5 Applications

5.1 Predicate Abstraction

Simulations are useful to define abstractions that allow studying the properties of a com-
plex system using a simpler one. A particular instance of the methodology of abstraction



Theoroidal Maps as Algebraic Simulations 137

is predicate abstraction [13, 9]. Under this approach, the abstract domain is a Boolean
algebra over a set of assertions and the abstraction function, typically as part of a Galois
connection, is symbolically constructed as the conjunction of all expressions satisfying
a certain condition, which is typically discharged using theorem proving. We now show
how predicate abstractions can be understood as an instance of our notion of theoroidal
map.

Let us first focus on the transition relation. Given a computational system, a set
φ1, . . . ,φn of predicates over the states determines an abstraction function mapping a
state S to the Boolean tuple 〈φ1(S), . . . ,φn(S)〉. Let us assume that the transitions of the
system are specified by a rewrite theory R = (Σ ,E,R) whose kind of states is State.
Then, if R is State-encapsulated with constructor st : k1 . . .km −→ State (that is, among
all operators in Σ the kind State only appears in the operator st, and only as its coarity),
the above predicate abstraction can be represented in rewriting logic by means of a
rewrite theory RA = (ΣA,EA,RA) where:

– ΣA contains Σ and the signature of BOOL, together with a new kind BState, a new
operator bst : Booln −→ BState and, for each predicate φi, 1 ≤ i ≤ n, an operator
pi : State−→ Bool to represent it. We then have a signature morphism H : Σ −→ ΣA

that maps the kind State to BState, the constructor st to the term

bst(p1(st(x1, . . . ,xm)), . . . , pn(st(x1, . . . ,xm))),

and is the identity everywhere else.
– EA contains H(E) and the equations in BOOL, together with equations for p1, . . . , pn

specifying the predicates φ1, . . . ,φn.
– RA = H(R).

By construction, then, H : (Σ ,E) −→ (ΣA,EA) is a theory morphism such that
t →1

R,State t ′ implies H(t) →1
RA,BState H(t ′), thus preserving the transition relation.

We can now turn our attention to the preservation of properties. Graphically, the
relationship between the different theories involved is depicted in the following diagram,

(Σ ,E)

H
��

� � �� (Σ ′,E ∪D)

��
(ΣA,EA) � � �� (Σ ′A,EA∪DA)

where (Σ ′,E ∪D) is the equational theory specifying the properties of the given sys-
tem, and (Σ ′A,EA ∪DA) is the theory we have to associate to RA defining its atomic
propositions.

The syntax for the state predicates q (that we assume are constants) in the original
system is given in a subsignature Π of Σ ′. It is usually the case that for each of these q
one of the predicates φi in the basis defining the abstraction has the meaning “the state
S satisfies q.” Let q1, . . . ,qk be the state predicates in Π . We assume k ≤ n, and that
each q j, 1≤ j ≤ k, corresponds to the predicate φ j in the basis of the abstraction (but in
general we may have n > k, with predicates φk+1, . . . ,φn not having a counterpart in Π ).
That is, for a φ j with a corresponding q j in Π , its specification in EA through p j(S) is
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thus essentially the same (modulo renaming) as that of S |= q j in D, so that E∪D � (S |=
q j) = true ⇐⇒ EA � p j(S) = true. Then, for the abstraction we use the same set of
state predicates Π and they are specified in a theory extension (ΣA,EA)⊆ (Σ ′A,EA∪DA),
with Σ ′A = ΣA∪Σ ′ and DA containing, for each q j in Π with associated φ j, the equation

(∀{x1, . . . ,xn})(bst(x1, . . . ,x j, . . . ,xn) |= q j) = x j .

Let us extend H to Σ ∪Π by mapping each state predicate to itself. Thus, for all
ground terms t of kind State and state predicates q j, if EA ∪DA � (H(t) |= q j) = true
then, by the equation defining q j in EA ∪DA and since H(t) = bst(p1(t), . . . , pn(t)),
we have EA ∪DA � p j(t) = true and even EA � p j(t) = true because p j is completely
specified in EA. And hence, due to the relation between the equations defining p j(S) and
S |= q j, E ∪D � (t |= q j) = true holds and preservation of predicates is guaranteed.

Finally, we can put all the pieces together and summarize the previous discussion as
follows.

Theorem 3. Let a concurrent system be specified as an object (R,(Σ ′,E ∪D),J) of
SRWThHom|=, where R is J(State)-encapsulated, and let φ1, . . . ,φn be a set of predi-
cates over the kind J(State), with each state predicate q j ∈Π (we assume that all such
q j are constants) corresponding to a φ j, 1 ≤ j ≤ k. The result of applying predicate
abstraction is the system given by (RA,(Σ ′A,EA∪DA),JA), where (Σ ′A,EA∪DA) and RA

are defined as explained above, and where JA(State) = BState. Then, with these defini-
tions, H : (R,(Σ ′,E∪D),J)−→ (RA,(Σ ′A,EA∪DA),JA) is an arrow in SRWThHom|=,
where H is the signature morphism Σ ∪Π −→ Σ ′A∪Π .

Let us illustrate these ideas by outlining how they apply to the bakery protocol.
This is an infinite state protocol that achieves mutual exclusion between processes by
dispensing a number to each process and serving them in sequential order according to
the number they hold. For the case of two processes, the transitions can be specified in
rewriting logic by a theory R = (Σ ,E,R) such that:

– (Σ ,E) contains declarations and equations specifying the natural numbers; in par-
ticular, the “equal to” (==) and “less than” (<) predicates are specified.

– States are constructed by an operator st : Mode Nat Mode Nat -> State. The
first two components describe the status of the first process (the mode it is currently
in, which can be sleep, wait, or crit, and its priority as given by the number
according to which it will be served), and the last two components the status of the
second process.

– R consists of eight rewrite rules, four for each process, describing all possible tran-
sitions. Among them, for example,

rl st(M, X, sleep, Y) => st(M, X, wait, s(X)) .

to represent that the second process can “awake” and move to wait mode, and

crl st(M, X, wait, Y) => st(M, X, crit, Y) if Y < X .

allowing the second process to move to the critical section if its counter is less than
that of the first one.
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The properties are defined in a theory extension (Σ ,E) ⊆ (Σ ′,E ∪D) that simply adds
four constants 1wait, 1crit, 2wait, and 2crit to Σ to characterize when the first and
second processes are in wait or crit mode, together with the obvious equations:

eq (st(wait, X, N, Y) |= 1wait) = true .

eq (st(sleep, X, N, Y) |= 1wait) = false .

eq (st(crit, X, N, Y) |= 1wait) = false .

...

For this protocol, we might be interested in verifying the following safety property:
AG¬(1crit∧2crit).

We will use the following set of seven predicates to define the predicate abstraction:

φ1(st(M, X, N, Y)) ⇐⇒ M == wait φ5(st(M, X, N, Y)) ⇐⇒ X == 0
φ2(st(M, X, N, Y)) ⇐⇒ M == crit φ6(st(M, X, N, Y)) ⇐⇒ Y == 0
φ3(st(M, X, N, Y)) ⇐⇒ N == wait φ7(st(M, X, N, Y)) ⇐⇒ X < Y
φ4(st(M, X, N, Y)) ⇐⇒ N == crit

Intuitively, we only care whether the processes are in wait or crit mode, whether their
counters are equal to zero, and which counter is greater.

Note that the state predicates in the signature correspond to predicates 1–4. In terms
of the notation used above, q1 would be 1wait and it would be associated to φ1, q2

would be 1crit and would be associated to φ2, and q3 and q4 would be 2wait and
2crit, associated to φ3 and φ4. Now, the abstract rewrite theory RA = (ΣA,EA,RA) is
constructed by adding to R:

– Operatorsp1 : State -> Bool, . . . ,p7 : State -> Bool, together with a new
kind BState and the constructor for abstract states

op bst : Bool Bool Bool Bool Bool Bool Bool -> BState .

This determines the signature morphism H, that maps the constructor operator st
to the term

bst(p1(st(M, X, N, Y)),...,p7(st(M, X, N, Y)))

– Equations associated to pi specifying φi for i = 1, . . . ,7. Since predicates φ1, . . . ,φ4

correspond to the atomic propositions, their defining equations are “the same”:

eq p1(st(wait, X, N, Y)) = true .

eq p1(st(sleep, X, N, Y)) = false .

eq p1(st(crit, X, N, Y)) = false .

eq p2(st(wait, X, N, Y)) = false .

eq p2(st(sleep, X, N, Y)) = false .

eq p2(st(crit, X, N, Y)) = true .

...

The three remaining equations are also immediate:

eq p5(st(M, X, N, Y)) = (X == 0) .

eq p6(st(M, X, N, Y)) = (Y == 0) .

eq p7(st(M, X, N, Y)) = (Y < X) .
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– The translation of the rules in R by the signature morphism H. In particular, the two
rules introduced before become:

rl bst(p1(st(M, X, sleep, Y)), ..., p7(st(M, X, sleep, Y))) =>

bst(p1(st(M, X, wait, Y)), ..., p7(st(M, X, wait, s(X)))) .

crl bst(p1(st(M, X, wait, Y)), ..., p7(st(M, X, wait, Y))) =>

bst(p1(st(M, X, crit, Y)), ..., p7(st(M, X, crit, Y)))

if Y < X .

Finally, we have to write the equations in DA defining the atomic propositions in the
abstract model, which is straightforward.

eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 1wait) = B1 .

eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 1crit) = B2 .

eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 2wait) = B3 .

eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 2crit) = B4 .

By construction, this model is a predicate abstraction with respect to the basis
φ1, . . . ,φ7 of the bakery protocol, in which the desired property can be model checked.

It is worth pointing out that this algebraic method of defining predicate abstractions
cannot be expressed within the framework of [19], because the specification of the
predicates φi requires, in general, to introduce auxiliary operators and thus a different
signature ΣA �= Σ . Also, the resulting rewrite theory is not executable in general. This
means that it cannot be directly used in a tool like the Maude model checker [10].
Predicate abstraction can be considered as a particular instance of our framework of
algebraic simulations from a conceptual or foundational point of view, which is still quite
useful because it provides a justification for the method within our framework. Current
approaches to predicate abstraction do not work directly with the minimal transition
relation (described in our account by RA). Instead, they compute a safe approximation
of RA by discharging some proof obligations. We are at present developing methods to
compute such approximation within our framework using Maude’s inductive theorem
prover (ITP) [6] as the deductive engine to discharge such proof obligations.

5.2 A Fairness Example

We illustrate the use of theoroidal (bi)simulation maps to reason about fairness. The
treatment can be made for very general classes of rewrite theories, and for quite flexible
notions of fairness [18]. Here, we limit ourselves to illustrating some of the key ideas,
including the use of theoroidal maps, by means of a simple communication protocol
example. Note also that the same idea can be used for the representation and study of
labeled transition systems in rewriting logic.

Consider a system consisting of a sender, a channel, and a receiver. The goal is to
send a multiset of numbers (in arbitrary order) from the sender to the receiver through
the channel. The channel can at any time contain several of these numbers. Besides the
normal send and receive actions, the channel may stall an arbitrary number of times in
sending some data. We can model the states of such a system by means of the signature

snd,ch,rcv : Nat−→ Conf
null :−→ Conf

: Conf Conf−→ Conf
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where the operator (juxtaposition notation) denotes multiset union and satisfies the
equations of associativity and commutativity, and has null as its identity element. For
example, the term

snd(7)snd(3)snd(7)ch(2)ch(3)rcv(1)rcv(9)

describes a state in which 3 and two copies of 7 have not yet been sent, 2 and another
copy of 3 are in the channel, and 1 and 9 have been received. The behavior of the system
is specified by the following three rewrite rules:

send : snd(n)−→ ch(n)
stall : ch(n)−→ ch(n)

receive : ch(n)−→ rcv(n)

where n is a variable of sort Nat. Is this system terminating? Not without extra assump-
tions, since the stall rule could be applied forever. To make it terminating it is enough
to assume the following “weak fairness” property about the receive rule, described by
the formula

wf-receive = FGenabled-receive → GF taken-receive ;

that is, if eventually the receive rule becomes continuously enabled in a path, then it
is taken infinitely often. Specifying the enabled-receive predicate equationally is quite
easy (we just need to have some value in the channel) but the specification of the taken-
receive predicate is more elusive. For example, does the taken-receive predicate hold
of the state described above? We don’t know; maybe the last action was receiving the
value 1, in which case it would hold, but it could instead have been stalling on 3, or
sending 2, and then it wouldn’t. Here is where a theory transformation corresponding to
a theoroidal map, and allowing us to define a bisimilar system where the taken-receive
predicate can be defined, comes in. The new theory extends the above signature with the
following new sorts and operators:

send,stall,receive,∗ :−→ Label
{ | } : Conf Label−→ State

that is, a state now consists of a configuration-label pair, indicating the last rule that was
applied. Since initially no rule has been applied, we add the label ∗ for all initial states.
The rules of the transformed theory are now:

send : {conf snd(n) | l} −→ {conf ch(n) | send}
stall : {conf ch(n) | l} −→ {conf ch(n) | stall}

receive : {conf ch(n) | l} −→ {conf rcv(n) | receive}

where conf is a variable of sort Conf, and l a variable of sort Label. We can then define
the predicates enabled-send, enabled-receive, and taken-receive by the equations

({conf snd(n) | l} |= enabled-send) = true
({conf ch(n) | l} |= enabled-receive) = true
({conf | receive} |= taken-receive) = true
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Then the fair termination property can be defined by the following formula, which
indeed holds in the Kripke structure associated to this transformed theory for any initial
state:

A(wf-receive → F(¬enabled-send∧¬enabled-receive)) .

Let (ΣComm,EComm) denote the underlying equational theory of our original rewrite
theory, and let (ΣLComm,EComm) denote that of the transformed theory (it has the same
equations EComm). We can define a generalized theory morphism

H : (ΣLComm,EComm)−→ (ΣComm,EComm)

as follows. The sorts, implicit kinds, and operators in ΣComm are mapped identically
to themselves; the sort State is mapped to Conf ; and the sort Label is not mapped
anywhere; the operator { | } is mapped to the variable conf of sort Conf ; finally, the
label constants are not mapped anywhere. Now, let Π0 consist of the predicates enabled-
send and enabled-receive, which in the original theory are defined by the equations

conf snd(n) |= enabled-send = true
conf ch(n) |= enabled-receive = true .

Then, if Comm and LComm denote our rewrite theories, H induces a theoroidal bisim-
ulation (strict) map of Kripke structures

H : K (LComm, [State])Π0 −→ K (Comm, [Conf ])Π0 .

Furthermore, in the case of LComm we can extend Π0 to Π by adding the taken-receive
predicate, so that fair termination can be properly specified and verified.

6 Conclusions

We have argued that a categorical approach to the study of Kripke structures and their
generalized notion of simulation is very natural, and have shown this by neatly organizing
them in an institution. Among the many ways that these Kripke structures and simulations
can be formally specified we have proposed rewriting logic, which has proved to be a very
flexible framework for this task. Simulations come in several flavors in rewriting logic
and here we have focused on theoroidal maps; we have shown how they can be organized
together with rewrite theories in a category that reflects that for Kripke structures, and
how they apply to two interesting examples. An open line of research consists in the
study of proof methods and the development of tool support to prove simulations correct;
some preliminary results are reported in [15].

References

1. M. Arrais and J. L. Fiadeiro. Unifying theories in different institutions. In M. Haveraaen,
O. Owe, and O.-J Dahl, editors, Recent Trends in Data Type Specification, COMPASS/ADT,
Selected Papers, volume 1130 of LNCS, pages 81–101. Springer-Verlag, 1996.



Theoroidal Maps as Algebraic Simulations 143

2. M. Barr and C. Wells. Category Theory for Computing Science. Centre de Recherches
Mathématiques, third edition, 1999.
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Behavioural Semantics of Algebraic
Specifications in Arbitrary Logical Systems
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Abstract. Behavioural semantics for specifications plays a crucial role
in the formalization of the developments process, where a specification
need not to be implemented exactly but only so that the required system
behaviour is achieved. There are two main approaches to the definition
of behavioural semantics: the internal one (called behavioural semantics)
and external one (called abstractor semantics).

In this paper we present a notion of a behavioural concrete institu-
tion which is based on a notion of a concrete institution. The basic idea
to form a behavioural institution (i.e. to ensure the satisfaction condi-
tion holds) is adopted from [2]. The behavioural concrete institution is a
generalization of the COL-institution. In this work we also compare the
resulted behavioural semantics with the abstractor semantics.

1 Introduction

One of the problems of algebraic-style specification of software systems is that
the strict interpretation of a specification is often inadequate in practice. Typ-
ically a specification need not to be implemented exactly but only so that the
required system behaviour is achieved. To cope with this problem the seman-
tics of specifications must be redefined resulting in the so called behavioural or
observational interpretation of specifications. There are two main approaches to
the definition of behavioural semantics of algebraic specifications. The internal
approach involves introducing an indistinguishability relation between elements
of models. The external approach is based on an equivalence relation between
models. These two approaches are related to each other and coincide in some
cases, see [4].

In this work we aim at a general definition of a behavioural semantics for
algebraic specifications in an arbitrary logical system. The key notion for this
purpose is the notion of institution, introduced in [6].

We propose a notion of a behavioural concrete institution. This framework is
based on the notion of concrete model category as introduced in [5]. The idea is to
equip the model categories of institutions considered with concretization functor,

�� This work has been partially supported by KBN grant 7T11C002 21 and European
AGILE project IST-2001-32747.

J.L. Fiadeiro, P. Mosses, and F. Orejas (Eds.): WADT 2004, LNCS 3423, pp. 144–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Behavioural Semantics of Algebraic Specifications 145

thus adding ”carriers” to the models considered. Then, a concrete institution
is just an ordinary institution in which all categories of models are concrete
categories and each signature has a set of sorts.

To define a behavioural concrete institution we first need to define the be-
havioural satisfaction relation and so the behavioural semantics of flat specifi-
cations, and then extend it to form an institution. The behavioural semantics
of flat specifications was introduced in [5], but this approach doesn’t allow us
to form an institution, since the satisfaction condition doesn’t hold. Therefore
we follow the idea presented in [2]. The behavioural concrete institution is a
generalization of the COL-institution.

2 Basic Notions

An S-sorted set is a family X = (Xs)s∈S of sets. Most standard notions con-
cerning sets can be generalized to S-sorted sets. For example, let X = (Xs)s∈S ,
Y = (Ys)s∈S be S-sorted sets:

– X is a subset of Y , written X ⊆ Y if Xs ⊆ Ys for all s ∈ S;
– Cartesian product of X and Y is defined as X × Y = (Xs × Ys)s∈S ;
– an S-sorted relation between elements of X and Y is R ⊆ X × Y ; if x ∈ Xs

and y ∈ Ys for some s ∈ S, then the fact that x is in relation R with y will
be denoted x Rs y or simply x R y;

– an S-sorted function from X to Y is f = (f : Xs → Ys)s∈S ;
– a kernel of an S-sorted function f : X → Y is ker(f) = (ker(fs))s∈S , where

ker(fs) = {(x, x′) | fs(x) = fs(x′)};

The subscript s will be often omitted, for example x ∈ Xs will be written x ∈ X,
for short.

A relation ≈ ⊆ X×X is an equivalence if for all s ∈ S, ≈s is an equivalence.
A quotient of X by an equivalence ≈ is defined X/≈ = {[x]≈ | x ∈ X} (and it
is an S-sorted set), where [x]≈ = {x′ ∈ X | x ≈ x′}.

S-sorted sets with S-sorted functions form the category SetS of S-sorted
sets.

Categories are denoted with bold faces, like SetS . Objects of a category K are
denoted |K|. The fact that A is an object of a category K is written A ∈ |K|. If
f : A → B is a morphism of K then it will be denoted f ∈ K or f : A → B ∈ K
(the latter brings an additional information about the source and target of the
morphism f). The composition of morphisms f : A → B and g : B → C is
denoted with ’;’ (semicolon) and written in the diagrammatic order, f ; g.

Functors are also usually denoted with bold faces, F : K1 → K2.
A notion of institution was introduced in [6], but in this paper we work with a

slightly different definition. The definition we work with can be found, e.g in [7].
An institution INS = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|) consists of:

– a category Sign of signatures;
– a sentence functor Sen : Sign → Set;
– a model functor Mod : Signop → Cat;
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– for each signature Σ ∈ |Sign|, a satisfaction relation |=Σ ⊆ |Mod(Σ)| ×
Sen(Σ) such that for any signature morphism σ : Σ → Σ′ ∈ Sign, Σ-
sentence φ ∈ Sen(Σ) and Σ′-model M ′ ∈ |Mod(Σ′)|:

M ′ |=Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) |=Σ φ.

The above condition is called satisfaction condition.
Throughout this paper the notation for Sen(σ)(φ) and Mod(σ)(M ′) will be

simplified, i.e. Sen(σ)(φ) will be simply written as σ(φ) and Mod(σ)(M ′) will
be denoted M ′|σ. The functor |σ : Mod(Σ′) → Mod(Σ) (Mod(σ)) is called
reduct functor.

An institution INS has the amalgamation property is for each pushout in the
category of signatures Sign,

Σ1 σ′
1−−−−→ Σ′

σ1

�⏐⏐ �⏐⏐σ′
2

Σ −−−−→
σ2

Σ2,

Σ1-model M1 ∈ |Mod(Σ1)|, Σ2-model M2 ∈ |Mod(Σ2)| such that M1|σ1 =
M2|σ2 there exists a unique model M ′ ∈ |Mod(Σ′)| such that M |σ′

1
= M1 and

M ′|σ′
2

= M2.
The semantics of a specification SP in any institution INS is a signature of

this specification, Sig[SP] and a class of models of this specification, Mod[SP].
In each institution INS the following standard specification building operations
are available:

– for Σ ∈ |Sign|, Φ ⊆ Sen(Σ), a basic specification (presentation), (Σ, Φ):
• Sig[SP] = Σ,
• Mod[SP] = {M ∈ |Mod(Σ)| |M |=Σ Φ};

– for any specification SP1, SP2 with the same signature Σ, their union SP1 ∪
SP2:
• Sig[SP1 ∪ SP2] = Σ,
• Mod[SP1 ∪ SP2] = Mod[SP1] ∩Mod[SP2];

– for a signature morphism σ : Σ → Σ′ and a specification SP with the
signature Σ, translate SP by σ:
• Sig[translate SP by σ] = Σ′,
• Mod[translate SP by σ] = {M ′ ∈ |Mod(Σ′)| |M ′|σ ∈ Mod[SP]};

– for a signature morphism σ : Σ → Σ′ and a specification SP′ with the
signature Σ′, derive from SP′ by σ:
• Sig[derive from SP′ by σ] = Σ,
• Mod[derive from SP′ by σ] = {M ′|σ |M ′ ∈ Mod[SP ′]}.

Let σ : Σ → Σ′ be a signature morphism. The reduct functor |σ is isomorphic
compatible if for each Σ′-model M ′ ∈ |Mod(Σ′)|, Σ-model N ∈ |Mod(Σ)|
that is isomorphic to M ′|σ there exists a model N ′ ∈ |Mod(Σ′)| isomorphic to
M ′ such that N ′|σ = N . A specification SP has isomorphic compatible reduct
functors if for each signature morphism used to build this specification, the
corresponding reduct functor is isomorphic compatible.
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3 Concrete Categories

The contents of this section is a selection of notions presented in [1] and [5]. The
basic intuition to follow is that objects of a concrete category come equipped
with carrier sets and morphisms can be though of as a functions between carrier
sets that preserve the object structure. This additional structure of a category
allows us to define many concepts from the universal algebra, like subobjects or
quotients.

Definition 1. An S-concrete category is a category K together with a con-
cretization functor | | : K → SetS that is faithful.

The indicator S will be often omitted when dealing with S-concrete categories.
Concrete categories as defined above are similar to constructs in [1] but in

this work we deal with many-sorted sets.
Concrete categories will be denoted simply by | | : K → SetS instead of

K together with | | : K → SetS since in the concretization functors the whole
information about the concrete category is included (i.e. the category K and the
concretization functor itself).

Throughout this section, let | | : K → SetS be a concrete category.

Proposition 1. For any morphism f : A → B ∈ K:

– if |f | is surjective then f is an epimorphism;
– if |f | is injective then f is a monomorphism.

Definition 2. A concrete category | | : K → SetS is transportable if for each
object A ∈ |K| and a bijective function i : |A| → X there exists an object B ∈ |K|
and an isomorphism i′ : A → B such that |i′| = i (and |B| = X).

In [5] the notion of transportability is called admitting of renaming of elements
of objects.

Definition 3. An isomorphism i : A → B ∈ K is identity-carried if |i| is
an identity. Two objects A, B ∈ |K| are exactly isomorphic if there exists an
identity-carried isomorphism i : A → B.

Subobjects. A notion of a subobject can be found e.g. in [1], where it is called
initial subobject, but in this work, to simplify matters, we use a slightly different
definition.

Definition 4. Let A ∈ |K| be an object of K. A subobject of A is an object
B ∈ |K| together with a morphism ιB↪→A : B → A such that |ιB↪→A| : |B| → |A|
is an inclusion and for each morphism f : C → A with |f |(|C|) ⊆ |B|1 there
exists a morphism f ′ : C → B such that f ′; ιB↪→A = f .

1 |f |(|C|) is the image of the set |C| under the function |f |.
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If B is a subobject of A then there exists exactly one morphism ιB↪→A : B → A
such that |ιB↪→A| is an inclusion (follows from the faithfulness of | |). Moreover
if f : C → A is a morphism with |f |(|C|) ⊆ |B| then the morphism f ′ : C → B
such that f ′; ιB↪→A = f is unique.

The difference between the notion of a subobject presented here and the
notion of an initial subobject from [1] is that the embedding (ιB↪→A, see [1]) is
required here to be an inclusion, not only an injection (like in [1]). That simplifies
the definition of a generated subobject.

There is also a slight difference between the definition of a subobject presented
here and in [5]. The subobjects defined here are called full in [5].

Proposition 2. Let A, B, C ∈ |K|. If B is a subobject of A and C is a subobject
of B then C is a subobject of A.

Definition 5. Let A ∈ |K| be an object and X ⊆ |A|. A subobject of A gener-
ated by X is a subobject B of A such that X ⊆ |B| and for any subobject C of
A if X ⊆ |C| then |B| ⊆ |C|.

Proposition 3. A subobject of A generated by X ⊆ |A|, if it exists, is unique
up to an identity-carried isomorphism. Moreover, any object exactly isomorphic
to a subobject of A generated by X is a subobject of A generated by X.

The generated subobject of A by X ⊆ |A| will be denoted 〈X〉A and the
inclusion morphism, ι〈X〉A↪→A : 〈X〉A → A, will be written ιX↪→A, for short.

Definition 6. A concrete category | | : K → SetS has generated subobjects if
for each A ∈ |K| and X ⊆ |A| there exists the subobject of A generated by X.

Quotients

Definition 7. Let A ∈ |K| be an object of K. A quotient of A is an object B ∈
|K| together with an epimorphism πA/B : A → B such that for any morphism
f : A → C with ker(|πA/B |) ⊆ ker(|f |) there exists a morphism f ′ : B → C such
that πA/B ; f ′ = f .

A quotient B of A is final if |πA/B | is surjective.

If B is a quotient of A then the morphism πA/B is called the quotient projec-
tion.

The notion of a final quotient as defined above comes from [1]. In [5] final
quotients are called surjective quotients.

Definition 8. Let A ∈ |K| be an object of K. An equivalence relation ≈ ⊆
|A| × |A| is a congruence on A if there exists a morphism f : A → B such that
ker(|f |) = ≈.

A quotient of A by ≈ is a quotient B of A with πA/B : A → B such that
ker(|πA/B |) = ≈.

Proposition 4. A quotient of A by a congruence ≈ ⊆ |A| × |A|, if it exists, is
unique up to an isomorphism. Moreover, any object isomorphic to a quotient of
A by ≈ is a quotient of A by ≈.
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The quotient of A by a congruence ≈ ⊆ |A| × |A| will be denoted A/≈ and the
morphism πA/(A/≈) will be simply written as πA/≈ : A → A/≈.

Let A ∈ |K| be an object of K and ≈ ⊆ |A| × |A| be a congruence. If B is a
subobject of A then the quotient (if it exists) of B by ≈∩|B|×|B| will be simply
denoted B/≈ instead of B/(≈ ∩ |B| × |B|). Notice that if ≈ is a congruence on
A then ≈ (more precisely ≈ ∩ |B| × |B|) is also a congruence on B.

Definition 9. A concrete category | | : K → SetS has (final) quotients if for
each object A ∈ |K| and a congruence ≈ ⊆ |A| × |A| on A there exists a (final)
quotient of A by ≈.

Definition 10. In a concrete category | | : K → SetS subobjects are compat-
ible with quotients if for each object A ∈ |K|, its subobject ιB↪→A : B → A
and a congruence ≈ ⊆ |A| × |A| if quotients A/≈ and B/≈ exist then B/≈ is
a subobject of A/≈ (formally there exist an object C ∈ |K| isomorphic to B/≈
which is a subobject of A) and the following diagram commute:

B
ιB↪→A−−−−→ A

πB/≈
⏐⏐� ⏐⏐�πA/≈

B/≈ −−−−−−−→
ιB/≈↪→A/≈

A/≈,

i.e. ιB↪→A; πA/≈ = πB/≈; ιB/≈↪→A/≈.

4 Concrete Institutions

In this section we follow the ideas of the previous section and define a concrete
institution which is an extension of the notion of the institution introduced in [6].
A concrete institution is an institution in which for each signature a set of sorts
of this signature is available and each category of models is a concrete category.

The notation for the category of S-sorted sets, SetS , can be extended to
denote the functor: Set( ) : Setop → Cat. For a set S, SetS is the category
of S-sorted sets. For a function σ : S → S′, Setσ is the reduct functor, Setσ :
SetS′

→ SetS defined: Setσ((Xs)s∈S′) = (Ys)s∈S with Ys = Xσ(s) and similarly
for S′-sorted functions.

If ≈′ ⊆ A′ × B′ is an S′-sorted relation then Setσ(≈′) is well defined since,
in fact, ≈′ is an S′-sorted set (and the result is an S-sorted relation between
elements of Setσ(A) and Setσ(B)).

Definition 11. A concrete institution INSc based on an institution INS =
(Sign,Sen,Mod, (|=Σ)Σ∈|Sign|) consists of INS together with a functor sorts :
Sign → Set and a natural transformation | | : Mod → sortsop ;Set( ) between
functors from Signop to Cat.

Thus, a concrete institution is a tuple:

INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |).
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The functor sorts : Sign → Set yields, for each signature Σ, a set of sorts of this
signature. The natural transformation | | : Mod → sortsop ;Set( ) is a family of
concretization functors, (| |Σ : Mod(Σ) → Setsorts(Σ))Σ∈|Sign|. The naturality
of this transformation ensures that the following diagram commutes:

Σ

σ

⏐⏐�
Σ′

Mod(Σ)
| |Σ−−−−→ Setsorts(Σ)

|σ
�⏐⏐ �⏐⏐Setsorts(σ)

Mod(Σ′) −−−−→
| |Σ′

Setsorts(Σ
′),

where σ : Σ → Σ′ ∈ Sign.
The commutativity of the above diagram allows us to simplify the nota-

tion. The functor Setsorts(σ) : Setsorts(Σ
′) → Setsorts(Σ) will be denoted |σ :

Setsorts(Σ
′) → Setsorts(Σ).

Let INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) be a concrete institu-
tion, fixed throughout this section.

Definition 12. A satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ), where Σ ∈
|Sign|, is isomorphism compatible if for all isomorphic models A, B ∈ |Mod(Σ)|
and Σ-sentence φ ∈ Sen(Σ) the following holds: A |=Σ φ iff B |=Σ φ.

A concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) has
isomorphic compatible satisfaction relations if for each signature Σ ∈ |Sign| the
satisfaction relation |=Σ is isomorphic compatible.

Definition 13. A reduct functor |σ, where σ : Σ → Σ′ ∈ Sign, preserves
subobjects if for each Σ′-model A′ ∈ Mod(Σ′) and its subobject B′ the reduct
B′|σ is a subobject of A′|σ.

In a concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |)
reduct functors preserve subobjects if for each signature morphism σ : Σ →
Σ′ ∈ Sign, the reduct functor |σ preserves subobjects.

Definition 14. A reduct functor |σ, where σ : Σ → Σ′ ∈ Sign, preserves
quotients if for each Σ′-model A′ ∈Mod(Σ′) and its quotient πA′/B′ : A′ → B′

the reduct πA′/B′ |σ : A′|σ → B′|σ is a quotient of A′|σ.
In a concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |)

reduct functors preserve quotients if for each signature morphism σ : Σ → Σ′ ∈
Sign, the reduct functor |σ preserves quotients.

A concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |)
– is transportable;
– has generated subobjects;
– has (final) quotients;
– subobjects are compatible with quotients

if for each signature Σ ∈ |Sign|, the concrete category | |Σ : Mod(Σ) →
Setsorts(Σ) has the corresponding property.
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5 Behavioural Concrete Institutions

The extra structure of a concrete institution allows us to redefine the satisfaction
relation to obtain its behavioural version.

Let INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) be a concrete institu-
tion, fixed throughout this section. We assume that INSc

– is transportable,
– has generated subobjects,
– has final quotients,
– subobjects are compatible with quotients,
– has isomorphic compatible satisfaction relations,
– reduct functors preserve subobjects and quotients.

5.1 Behavioural Satisfaction Relation

Reachability is an important concept of system specifications. A reachability
structure on a model is a subset of the carrier set of this models. It contains
the elements which are of interest from the user’s point of view. In this work we
follow the ideas introduced in [2] and do not require a reachability structure to
be a subobject of a model considered contrary e.g. to [4] (where a reachability
structure is implicitly incorporated into a notion of a partial congruence).

Definition 15. A reachability structure over a signature Σ ∈ |Sign| is a family
R = (RM )M∈|Mod(Σ)| of sorts(Σ)-sorted sets such that RM ⊆ |M |Σ for each
M ∈ |Mod(Σ)|.

Another important aspect of system specifications is the concept of observ-
ability. In this work we generalize the notion of observational equality from [2]
which we call here an observability structure. An observability structure on a
model is an equivalence relation on the carrier set of this model. Unlike the
approach presented in [4] we do not impose any further restrictions on an ob-
servability structure. The idea comes from [2].

Definition 16. An observability structure over a signature Σ ∈ |Sign| is a
family ≈ = (≈M )M∈|Mod(Σ)| of equivalence relations such that ≈M ⊆ |M |Σ ×
|M |Σ (i.e. ≈M is an equivalence relation on |M |Σ).

Usually a reachability structure is determined by a distinguished set of con-
structor operations and an observability structure by a distinguished set of ob-
server operations, see [2], but it is not the purpose of this work to present how
those structures can be defined. The problem here is more complicated since in
an arbitrary (concrete) institution the notion of an operation is not available.
In this work we only present the way of defining the behavioural semantics of
specifications given arbitrary reachability and observability structures.

A pair (R,≈), where R is a reachability structure over a signature Σ and ≈ is
an observability structure over the signature Σ, is called a behavioural structure
over the signature Σ.
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Definition 17. A behavioural signature ΣBeh = (Σ,R,≈) consists of:

– a signature Σ ∈ |Sign|;
– a reachability structure R over the signature Σ;
– an observability structure ≈ over the signature Σ.

Following the ideas from [2], since no restrictions were imposed on reachability
and observability structures, we introduce two kinds of constraints on the class
of models: the reachability and the observability constraint. The former is a
well-known constraint which expresses the property that the only admissible
models are those on which the reachability structure is a subobject of the model
considered (intuitively it is closed under operations). But if we deal both with the
reachability and observability concepts such a requirement is too strong, since
from the user’s point of view this is not different from allowing the elements
of the submodel generated by its reachability structure to be indistinguishable
from some elements in this reachability structure.

The latter (the observability constraint) simply states that the observability
structure on a model must be a congruence on the subobject of this model
generated by the reachability structure.

Definition 18. Let ΣBeh = (Σ,R,≈) be a behavioural signature. A Σ-model
M ∈ |Mod(Σ)| satisfies

– the reachability constraint if for each a ∈ |〈RM 〉M |Σ there exists b ∈ RM

such that a ≈M b;
– the observability constraint if ≈M is a congruence on 〈RM 〉M (more pre-

cisely if ≈ ∩ |〈RM 〉M |Σ × |〈RM 〉M |Σ is a congruence on 〈RM 〉M ).

Definition 19. Let ΣBeh = (Σ,R,≈) be a behavioural signature. A Σ-model
M ∈ |Mod(Σ)| is called behavioural if it satisfies the reachability and the ob-
servability constraints.

The class of all behavioural models over a behavioural signature ΣBeh will be
denoted ModBeh(ΣBeh).

The standard way of defining a behavioural satisfaction relation indepen-
dently on the logical system is by the notion of a behaviour of a model, see [4]
or [5]. For the logical systems in which the satisfaction relation is based on an
equality between terms this approach (this definition of a behavioural satisfac-
tion relation) is equivalent to the approach which involves changing the semantics
of equality, see [4] or [2].

Definition 20. Let ΣBeh = (Σ,R,≈) be a behavioural signature. The behaviour
BΣBeh(M) of a behavioural model M ∈ ModBeh(ΣBeh) is defined:

BΣBeh(M) = 〈RM 〉M/≈M .
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Definition 21. Let ΣBeh = (Σ,R,≈) be a behavioural signature. A behavioural
model M ∈ ModBeh(ΣBeh) behaviourally satisfies a sentence φ ∈ Sen(Σ),

M |=ΣBeh φ

if its behaviour satisfies the sentence φ in the original sense,

BΣBeh(M) |=Σ φ.

5.2 Behavioural Concrete Institutions

The above section covers only the case of flat specifications, sometimes called
satisfaction frame, which is only a single fibre of an institution. In this section we
present how the notions of the previous section can be used to form a behavioural
concrete institution.

The first step is to impose additional requirements of the signature morphisms
of the original institution INSc, to eliminate those that violate the satisfaction
condition for behavioural satisfaction relation and behavioural models.

Definition 22. A behavioural signature morphism σ : ΣBeh → Σ′
Beh, where

ΣBeh = (Σ,R,≈) and Σ′
Beh = (Σ′,R′,≈′), is a signature morphism σ : Σ → Σ′

such that it preserves the reachability structure and the observability structure,
i.e. if for each Σ′-model M ′ ∈ |Mod(Σ′)| the following holds: R′

M ′ |σ = RM ′|σ
and ≈′

M ′ |σ = ≈M ′|σ .

Now, given the notion of a behavioural morphism we can define the category
of all behavioural signatures. This category contains all behavioural signatures
and morphisms of this category are all behavioural signature morphisms.

Definition 23. The category of all behavioural signatures, ASign, consists of:

– objects are all behavioural signatures ΣBeh = (Σ,R,≈) such that Σ ∈ |Sign|
and (R,≈) is a behavioural structure over Σ;

– morphisms are all behavioural signature morphisms.

The functor from the category of all behavioural signatures ASign to the
category of signatures Sign which simply ”forgets” about behavioural structures
is called the forgetful functor, AF : ASign → Sign. It is defined: AF(ΣBeh) = Σ
for ΣBeh = (Σ,R,≈) ∈ |ASign| and AF(σ) = σ for σ ∈ ASign.

Theorem 1. Let σ : ΣBeh → Σ′
Beh ∈ ASign be a behavioural signature mor-

phism, ΣBeh = (Σ,R,≈) and Σ′
Beh = (Σ′,R′,≈′). Then for any behavioural

model M ′ ∈Mod(Σ′) the reduct of this model, M ′|σ2, is behavioural.

2 Formally, it should be written M ′|AF(σ), but to simplify matters, since it doesn’t
throw into confusion it will be denoted like above (i.e. M ′|σ).
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The above theorem allows us to define the behavioural model functor, which
for each behavioural signature ΣBeh = (Σ,R,≈) yields the category of all be-
havioural models over the signature Σ and for each behavioural signature mor-
phism σ : ΣBeh → Σ′

Beh it yields the restriction of the reduct functor |σ to the
category of all behavioural models over the signature Σ′ (Σ′

Beh = (Σ′,R′,≈′)).
Th. 1 states that this definition is correct, i.e. the reduct of a behavioural model
over the signature Σ′ is a behavioural model over the signature Σ (w.r.t (R,≈),
where ΣBeh = (Σ,R,≈)).

Definition 24. The behavioural model functor AMod : ASignop → Cat is
defined:

– for ΣBeh = (Σ,R,≈) ∈ |ASign|, AMod(ΣBeh) = ModBeh(ΣBeh) is the full
subcategory of Mod(Σ);

– for σ : ΣBeh → Σ′
Beh ∈ ASign, where ΣBeh = (Σ,R,≈) and Σ′

Beh =
(Σ′,R′,≈′), AMod(σ) = |σ is the restriction of the reduct functor |σ :
Mod(Σ′) → Mod(Σ) to the category AMod(Σ′

Beh).

Theorem 2. For each behavioural signature morphism σ : ΣBeh → Σ′
Beh, where

ΣBeh = (Σ,R,≈) and Σ′
Beh = (Σ′,R′,≈′), for each behavioural Σ′-model M ′ ∈

|AMod(Σ′
Beh)| and Σ-sentence φ ∈ Sen(Σ) the following holds:

M ′|σ |=ΣBeh φ iff M ′ |=Σ′
Beh

σ(φ).

Definition 25. The tuple

AINSc = (ASign,ASen,AMod, (|=ΣBeh)ΣBeh∈|ASign|, asorts, | |a)

is the behavioural concrete institution also called the concrete institution of
behavioural logic based on the concrete institution INSc, where

– ASign is the category of all behavioural signatures,
– ASen : ASign → Set is the behavioural sentence functor, defined: ASen =

AF;Sen,
– AMod : ASignop → Cat is the behavioural model functor,
– for each ΣBeh ∈ |ASign|, |=ΣBeh is the behavioural satisfaction relation,
|=ΣBeh ⊆ |AMod(Σ)| ×ASen(Σ),

– asorts : ASign → Set is the behavioural sorts functor, defined: asorts =
AF; sorts,

– | |a : AMod → asortsop ;Set( ) is a natural transformation between functors
from ASignop to Cat, defined: for a behavioural signature ΣBeh ∈ |ASign|,
| |aΣBeh

: AMod(Σ) → Setasorts(ΣBeh) is the restriction of the functor | |Σ :
Mod(Σ) → Setsorts(AF(ΣBeh)) to the category of all behavioural models over
ΣBeh.

The superscript ’a’ in the natural transformation | |a : AMod → asortsop ;Set( )

will be omitted.
The institution AINSc is a rather ”large” institution. The category of sig-

natures of this institution contains all behavioural signatures ΣBeh = (Σ,R,≈)
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such that Σ is a signature from the original category of signatures Sign and
(R,≈) is an arbitrary behavioural structure. Such a freedom is usually inade-
quate in practice (when defining a behavioural semantics of a specification lan-
guage based on the original semantics). Interesting cases are when behavioural
structures are determined for example by given sets of constructor and observer
operations (see [2]). The institution AINSc was introduced for technical reasons,
to express some properties concerning behavioural structures. Therefore we in-
troduce a new behavioural concrete institution BINSc in which the category
of signatures BSign contains only some behavioural signatures and behavioural
signature morphisms. In other words BSign is a subcategory of ASign. Formally
BINSc is a tuple:

BINSc = (BSign,BSen,BMod, (|=ΣBeh)ΣBeh∈|BSign|, bsorts, | |b).

The other components (apart from BSign) of BINSc are defined in exactly the
same way as in the institution AINSc. The forgetful functor BF : BSign →
Sign can also be easily defined.

An institution BINSc can be thought of as a ”subinstitution” of AINSc with
a smaller category of signatures. Note that AINSc is a special case of BINSc.

5.3 Properties of Behavioural Concrete Institutions

Let INSc be a concrete institution that satisfies all the properties mentioned in
the beginning of this section and BINSc be an arbitrary behavioural concrete
institution based on INSc. Of course there also exists the behavioural concrete
institution AINSc based on INSc in which the category of signatures contains
all behavioural signatures and all behavioural signature morphisms.

In this subsection we assume that the functor sorts : Sign → Set is cocon-
tinuous.

Proposition 5. If the category Sign of signatures if cocomplete then so is the
category of all behavioural signatures ASign and the forgetful functor AF :
ASign → Sign is cocontinuous.

One important property of an institution is the amalgamation property. Un-
fortunately a behavioural concrete institution doesn’t have the amalgamation
property even if the concrete institution on which it is based on has the amalga-
mation property. The counterexample can be found in [3], where the constructor
based observational logic institution, which is a special case of a behavioural con-
crete institution, is presented. However there are some conditions under which
the amalgamation union of two models exists. These conditions are generaliza-
tion of the conditions for amalgamation from [3].

Proposition 6. Let

Σ1
Beh = (Σ1,R1,≈1)

σ′
1−−−−→ Σ′

Beh = (Σ′,R′,≈′)

σ1

�⏐⏐ �⏐⏐σ′
2

ΣBeh = (Σ,R,≈) −−−−→
σ2

Σ2
Beh = (Σ2,R2,≈2)
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be a pushout in the category BSign of behavioural signatures such that, the image
of this diagram under the forgetful functor BF,

Σ1 σ′
1−−−−→ Σ′

σ1

�⏐⏐ �⏐⏐σ′
2

Σ −−−−→
σ2

Σ2,

is a pushout in the category Sign. Assume that INSc has the amalgamation
property on this pushout, i.e. for any N1 ∈ |Mod(Σ1)|, N2 ∈ |Mod(Σ2)| such
that N1|σ1 = N2|σ2 there exists the unique amalgamation N ′ ∈ |Mod(Σ′)| of N1

and N2 (i.e. N ′|σ′
1

= N1 and N ′|σ′
2

= N2). Now, let M1 ∈ |BSign(Σ1)|, M2 ∈
|BSign(Σ2)| be behavioural models such that M1|σ1 = M2|σ2 . If 〈R1

M1
〉
M1
|σ1 =

〈RM1|σ1
〉
M1|σ1

and 〈R2
M2
〉
M2
|σ2 = 〈RM2|σ2

〉
M2|σ2

then there exists the unique

amalgamation M ′ ∈ |BSign(Σ′)| of M1 and M2.

5.4 Behavioural Specifications

Given a behavioural concrete institution BINSc all standard specification build-
ing operations are available:

– for ΣBeh ∈ |BSign|, Φ ⊆ BSen(ΣBeh), a basic specification (presentation)
(ΣBeh, Φ):

• Sig[(ΣBeh, Φ)] = ΣBeh,
• Mod[(ΣBeh, Φ)] = {M ∈ |BMod(ΣBeh)| |M |=ΣBeh Φ};

– for any specifications SP1
Beh, SP2

Beh with the same signature ΣBeh, their
union SP1

Beh ∪ SP2
Beh:

• Sig[SP1
Beh ∪ SP2

Beh],
• Mod[SP1

Beh ∪ SP2
Beh] = Mod[SP1

Beh] ∩Mod[SP2
Beh];

– for a behavioural signature morphism σ : ΣBeh → Σ′
Beh and a specification

SPBeh with the signature ΣBeh, translate SPBeh by σ:
• Sig[translate SPBeh by σ] = Σ′

Beh,
• Mod[translate SPBeh by σ]={M ′∈|BMod(Σ′

Beh)||M ′|σ∈Mod[SPBeh]};
– for a signature morphism σ : ΣBeh → Σ′

Beh and a specification SP′
Beh with

the signature Σ′
Beh, derive from SP′

Beh by σ:

• Sig[derive from SP′
Beh by σ] = ΣBeh,

• Mod[derive from SP′
Beh by σ] = {M ′|σ |M ′ ∈ Mod[SP′

Beh]}.

For each behavioural specification SPBeh (i.e. a specification in the institution
BINSc) there exists a standard specification SP (i.e. in the institution INSc)
built in the same way as SPBeh, which corresponds to this behavioural specifi-
cation with the following property: Sig[SP] = BF(Sig[SPBeh]). This correspon-
dence can be easily defined by the induction on the structure of specifications. For
example, if SPBeh = (ΣBeh, Φ) is a basic specification, where ΣBeh = (Σ,R,≈),
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then the corresponding standard specification is defined: SP = (Σ, Φ). The def-
inition of the correspondence for the others specification building operations
are obvious, e.g. if SPBeh = derive from SP′

Beh by σ then the corresponding
standard specification is defined: SP = derive from SP′ by σ, where SP′ is a
standard specification that corresponds to SP′

Beh.

5.5 Examples

The described above notion of a behavioural concrete institution covers many
institution of interest: institution of standard algebras, partial algebras with
strong homomorphisms and Casl -institution with a slightly changed notion of
a homomorphism between models.

6 Relating Behavioural and Abstractor Semantics

In this section we present relations between the behavioural and abstractor se-
mantics.

Let INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) be a concrete institu-
tion that satisfies all the assumptions presented in the beginning of the previous
section (which allow us to define a behavioural concrete institution based on
INSc), fixed throughout this section.

6.1 Abstractor Specifications

Let us now briefly focus on the abstractor semantics. More information about it
can be found for example in [5] or [4].

In fact the additional structure available in concrete institutions is not needed
to define the abstractor semantics (i.e. the notion of the standard institution is
sufficient for that purpose).

Let Σ ∈ |Sign| be a signature of a concrete institution INSc. An abstractor
equivalence over the signature Σ is an equivalence relation between Σ-models,
≡ ⊆ |Mod(Σ)|× |Mod(Σ)|. An abstractor equivalence ≡ is called isomorphism
protecting if all isomorphic models M, N ∈ |Mod(Σ)| are equivalent, M ≡ N .

For any class of Σ-models M ⊆ |Mod(Σ)|, the abstractor closure of M is
the closure of this class under the abstractor equivalence, Abs≡(M) = {M ∈
|Mod(Σ)| |M ≡ N for some N ∈M}.

The notion of an abstractor closure allows us to define the abstractor seman-
tics of specifications. Let SP be a specification with the signature Σ. The class
of models which behaviourally (up to the abstractor equivalence ≡) satisfy the
specification SP is the abstractor closure of the class of models which satisfy the
specification SP literally, i.e. Mod[abstract SP wrt ≡] = Abs≡(Mod[SP]).

6.2 Behavioural Specifications and Behavioural Closure Operator

Let BINSc = (BSign,BSen,BMod, (|=ΣBeh)ΣBeh∈|BSign|, bsorts, | |) be a be-
havioural concrete institution based on INSc.
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A similar condition to isomorphism protecting can be expressed for
behavioural structures. It is called isomorphism compatibility and it differs
slightly from the one introduced in [4] since in this framework not for each
model the behaviour is defined.

Definition 26. A behavioural signature ΣBeh = (Σ,R,≈) ∈ |BSign| is iso-
morphism compatible if for each isomorphic Σ-models M, N ∈ |Mod(Σ)| if
M is behavioural then N is behavioural and in that case their behaviours are
isomorphic, BΣBeh(M) ∼= BΣBeh(N).

The notion of a fully abstract model can be found in [4] or [5]. A model
is fully abstract if the behavioural structure on this model is trivial, i.e. the
reachability structure on such a model is the whole carrier set of this model and
the observability structure is an identity relation.

Definition 27. Let ΣBeh = (Σ,R,≈) ∈ |BSign| be a behavioural signature. A
model M ∈ |Mod(Σ)| is fully abstract if RM = |M |ΣBeh and ≈M = id |M |ΣBeh

.
If M⊆ |Mod(Σ)| is a class of Σ-models then, FAΣBeh(M) denotes the class of
all fully abstract models in M, FAΣBeh(M) = {M ∈M |M is fully abstract}.

Note that if a model M ∈ |Mod(Σ)| is fully abstract then it is behavioural.
Therefore FAΣBeh(M) is a class of behavioural models (even if in M there are
non-behavioural models).

The regularity of a behavioural structure (signature) is also an important
property, see [4]. It express the idempotency of the behaviour operator.

Definition 28. A behavioural signature ΣBeh ∈ |BSign| is called:

– weakly regular if for each behavioural model M ∈ |BMod(ΣBeh)| its be-
haviour is behavioural and it is isomorphic to the behaviour of the behaviour
of this model, i.e. BΣBeh(M) ∼= BΣBeh(BΣBeh(M));

– regular if for each behavioural model M ∈ |BMod(ΣBeh)| its behaviour is a
fully abstract model.

Regularity implies weak regularity. If a behavioural signature ΣBeh is weakly
regular and isomorphic compatible then the behavioural satisfaction relation
|=ΣBeh is isomorphism compatible.

The above conditions which should be satisfied by any reasonable behavioural
concrete institution (by all signatures in the behavioural concrete institution)
will allow us to express relations between the internal approach and the external
approach to the definition of behavioural semantics.

Definition 29. Let ΣBeh = (Σ,R,≈) ∈ |BSign| be a behavioural signature,
M⊆ |Mod(Σ)| be a class of Σ-models. The behavioural closure of the class M
is a class BehΣBeh(M) = {M ∈ |BMod(ΣBeh)| | BΣBeh(M) ∈M}.

Note that, similarly as for the operator which yields the class of fully abstract
models, even if there are some non-behavioural models in M, the behavioural
closure of this class contains only behavioural models.
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Corollary 1. Let SPBeh = (ΣBeh, Φ) be a behavioural specification and SP be its
corresponding standard specification. Then Mod[SPBeh] = BehΣBeh(Mod[SP]).

The following lemma is useful to prove relations between the behavioural and
abstractor semantics.

Lemma 1. Let SPBeh be a behavioural specification and SP its corresponding
standard specification. If SP has isomorphic compatible reduct functors then
Mod[SPBeh] ⊆ BehΣBeh(Mod[SP]), where ΣBeh = Sig[SPBeh].

The proof of the above lemma is by the induction on the structure of specifica-
tions.

The opposite inclusion doesn’t hold in general (i.e. BehΣBeh(Mod[SP]) �⊆
Mod[SPBeh]), even in the case of standard algebras and equational logic.

6.3 Relations

The crucial notion for expressing relations between the two approaches to the
definition of the behavioural semantics is the notion of factorizability, introduced
in [4].

Definition 30. Let ΣBeh = (Σ,R,≈) be a behavioural signature and ≡ be an
abstractor equivalence over Σ. The abstractor equivalence ≡ is called factorizable
by ΣBeh (or by the behavioural structure (R,≈)) if the following two conditions
hold:

– for all behavioural models M, N ∈ |BMod(ΣBeh)|, M ≡ N iff BΣBeh(M) ∼=
BΣBeh(N);

– for each behavioural model M ∈ |BMod(ΣBeh)| and N ∈ |Mod(Σ)| if M ≡
N then N is behavioural, N ∈ |BMod(ΣBeh)|.

The second condition in the above definition states that the class of behavioural
models over Σ (w.r.t (R,≈)) is closed under the abstractor equivalence ≡. The
first condition is standard, i.e. it comes from the original definition of factoriz-
ability in [4].

The abstractor equivalence ≡Obs,In from [4] is factorizable by ΣCOL w.r.t
the above definition, if Obs is the set of observable sorts of ΣCOL (i.e. SObs)
and In is the set of loose sorts of ΣCOL (i.e. SLoose), see [2] for the definition of
observable and loose sorts of a COL-signature.

Throughout the rest of this section we assume that all behavioural signa-
tures ΣBeh ∈ |BSign| are isomorphic compatible and all abstractor equivalences
considered are isomorphic protecting.

Lemma 2. Let ΣBeh = (Σ,R,≈) be a behavioural signature that is weakly regu-
lar and ≡ is an abstractor equivalence over Σ, factorizable by ΣBeh. Then for any
class of models M ⊆ |Mod(Σ)| the following holds: BehΣBeh(M) ⊆ Abs≡(M).
If moreover M is closed under isomorphism and M⊆ BehΣBeh(M) (behavioural
consistency) then BehΣBeh(M) = Abs≡(M).
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Note that in the above lemma, the class M is not required to be a class of
behavioural models. But if M is behaviourally consistent (M ⊆ BehΣBeh(M))
then it implies that M contains only behavioural models.

Proposition 7. Let ΣBeh = (Σ,R,≈) be a behavioural signature that is weakly
regular and ≡ be an abstractor equivalence over Σ, factorizable by ΣBeh. Let also
SPBeh be a behavioural specification with Sig[SPBeh] = ΣBeh and SP be a stan-
dard specification which corresponds to the behavioural specification SPBeh. We
assume that SP has isomorphic compatible reduct functors. Then Mod[SPBeh] ⊆
Mod[abstract SP wrt ≡].

The opposite inclusion doesn’t hold in general. Consider a basic specifica-
tion SPBeh with an empty set of axioms. If not all models over the signature
Sig[SPBeh] are behavioural then Mod[abstract SP wrt ≡] �⊆ Mod[SPBeh] (SP
is the standard specification corresponding to SPBeh), since on the left-hand
side of the inclusion there is the whole class of models over Sig[SP] and on the
right-hand side only behavioural models.

The last fact in this subsection concerns relations between behavioural spec-
ifications and the abstractor closure of the class of fully abstract models.

Lemma 3. Let ΣBeh = (Σ,R,≈) be a behavioural signature that is regular
and ≡ is an abstractor equivalence over Σ, factorizable by ΣBeh. Then for any
class of models closed under isomorphism M ⊆ |Mod(Σ)| the following holds:
BehΣBeh(M) = Abs≡(FAΣBeh(M)).

7 Final Remarks

In this paper we attempted to define a behavioural semantics for specifications
built in an arbitrary logical system formalized as an institution. Although the
presented framework covers many institutions of interest it doesn’t cover, for ex-
ample the institution of continuous algebras (an institution of behavioural logic
for continuous algebras can be defined if we deal only with the observability con-
cepts). In fact, all assumptions needed to form a behavioural concrete institution
from an ordinary concrete institution are quite numerous.

A technical tool used in this work are standard techniques of concrete cate-
gories. However, an interesting issue, for further work is to define a behavioural
institution based on an institution (without the additional structure of concrete
institutions) by a given behaviour operator.

Another important issue for further work is to find a proof system for
behavioural specifications basing on a given proof system for ordinary
specifications.
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The standard development paradigm of algebraic specification [1] postulates that
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erties but ideally says nothing about implementation issues; this is to be followed
by a number of refinement steps that fix more and more details of the design,
until a specification SPn is obtained that is detailed enough that its conversion
into a program P is relatively straightforward:

SP0∼∼∼> SP1∼∼∼> · · · ∼∼∼> SPn ·····> P

Actually, this picture is too simple in practice: for complex software systems,
it is necessary to reduce complexity by introducing branching points into the
chain of refinement steps, so that the resulting implementation tasks can be
resolved independently, e.g. by different developers. CASL architectural speci-
fications [3, 8] have been designed for this purpose, based on the insight that
structuring of implementations is different from structuring specifications [9].

However, CASL architectural specifications allow for the specification of in-
dividual branching points only. In this work, we extend CASL with a simple
refinement language that adds the means to formalize whole developments in
the form of refinement trees.
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The paper is organized as follows. Section 2 recalls CASL, Sect. 3 introduces
simple refinements and Sect. 4 branching refinements. These are related to con-
structor implementations in Sect. 5, which leads to the question of how programs
are modelled in CASL. This is addressed in Sect. 6. Sections 7 and 8 describe
the syntax and semantics of our proposed refinement language; to facilitate un-
derstanding, we first deal with a simpler version in Sect. 7 before exposing the
full complexity of the proposed refinement language and its semantics in Sect. 8.
Finally, Sect. 9 sketches a larger example and Sect. 10 concludes the paper.

2 CASL Preliminaries

CASL [2, 8] consists of several major layers, which are quite independent and may
be understood and used separately:
Basic specifications are written in many-sorted first-order logic, extended by

subsorting, partial functions and induction axioms for datatypes. Indeed, the
details are quite irrelevant here as long as a basic specification determines a
signature together with a set of axioms. The semantics of a basic specification
is then given by the signature and the class of all models that satisfy the
axioms. Formally, [[〈Σ, Φ〉]] = {M ∈ Mod(Σ) | M |= Φ}, where Mod(Σ) is
the class of all CASL models over the signature Σ.

Structured specifications allow specifications to be built from basic specifi-
cations by the use of translation, reduction, union, and extension, as well
as generic (parametrized) and named specifications; semantics of structured
specifications is given in terms of signatures and model classes, as for basic
specifications.

Architectural specifications describe the structure of an implementation by
defining how it may be constructed out of software components (units) that
satisfy given specifications. These unit specifications describe self-contained
units (models, as above), or generic units (corresponding to parametrized
programs) mapping such models to other models.
CASL admits a clean separation of the layer of basic specifications from the

other layers. Any logic can be used in the basic specification layer, as long as it is
formalized as an institution [10]. The semantics of the other layers is defined for
an arbitrary institution. The architectural specification layer is also independent
of the details of the features used for building structured specifications.

3 Simple Refinements

The simplest form of refinement is just model class inclusion. Consider the fol-
lowing standard specification of monoids:

spec Monoid =
sort Elem
ops 0 : Elem;

+ : Elem × Elem → Elem, assoc, unit 0
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This specification is rather loose. It can be refined in many different ways, e.g.
into the natural numbers. We first specify the natural numbers inductively in
terms of zero and successor, then define addition, and finally hide the successor
operation:

spec NatWithSuc =
free type Nat ::= 0 | suc(Nat)

op + : Nat ×Nat → Nat , unit 0
∀x , y : Num • x + suc(y) = suc(x + y)

spec Nat =
NatWithSuc hide suc

The refinement between the two specifications can now be stated as follows:
refinement R1 =

Monoid refined via Elem �→ Nat to Nat
Correctness of this refinement means that given any Nat-model, its reduct

along Elem �→ Nat yields a Monoid-model, formally

M |σ ∈ [[Monoid]] for each M ∈ [[Nat]]

where σ maps Elem to Nat (σ is generated from the symbol map Elem �→ Nat
in a straightforward way, see [8]). Of course, this just states that the natural num-
bers with addition form a monoid, or, in other words, that σ : Monoid→ Nat
is a specification morphism. Specification morphisms arise in CASL already as
views, used for instantiating generic specifications. For that application it is
useful to allow them to be generic themselves, and this leads to certain compli-
cations. Here specification morphisms are used for a different purpose where the
complications of generic views are irrelevant and distracting.

The specification Nat can be taken as a realisation of the natural numbers,
but quite an inefficient one. It is far more efficient to use a binary representation
(++ is binary addition with carry):

spec NatBin =
generated type Bin ::= 0 | 1 | 0(Bin) | 1(Bin)
ops + , ++ : Bin × Bin → Bin
∀x , y : Bin
• 0 0 = 0 • 0 1 = 1
• ¬ (0 = 1) • x 0 = y 0 ⇒ x = y
• ¬ (x 0 = y 1) • x 1 = y 1 ⇒ x = y
• 0 + 0 = 0 • 0 ++ 0 = 1
• x 0 + y 0 = (x + y) 0 • x 0 ++ y 0 = (x + y) 1
• x 0 + y 1 = (x + y) 1 • x 0 ++ y 1 = (x ++ y) 0
• x 1 + y 0 = (x + y) 1 • x 1 ++ y 0 = (x ++ y) 0
• x 1 + y 1 = (x ++ y) 0 • x 1 ++ y 1 = (x ++ y) 1

We now have a further refinement:
refinement R2 =

Nat refined via Nat �→ Bin to NatBin

op 1 Nat 0suc( )=:
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Note that it is quite typical that the target specification of the refinement adds
auxiliary operations, which are forgotten by reducing along the signature mor-
phism.

The two refinements can be combined into a chain of refinements:

refinement R3 =
Monoid refined via Elem �→ Nat to

Nat refined via Nat �→ Bin to NatBin

which can be depicted as follows:

Monoid σ
� Nat θ

� NatBin

Here, σ and θ are the specification morphisms associated to the refinements,
and the correctness conditions for the individual refinements guarantee that the
chain is also a correct refinement in the following sense:

M |σ;θ = (M |θ)|σ ∈ [[Monoid]] for each M ∈ [[NatBin]]

If we want to save some typing, we can also write:

refinement R3′ =
Monoid refined via Elem �→ Nat to R2

or equivalently

refinement R3′′ =
Monoid refined via Elem �→ Nat to Nat then R2

which can be rewritten as

refinement R3′′′ = R1 then R2

4 Branching Refinements

Suppose that we want to implement not only Nat, but NatWithSuc, i.e. also
the successor function. Now, while the presence of the successor function en-
ables an easy specification of the natural numbers, it may be a little distracting
in achieving an efficient implementation. So we can help the implementor and
impose (via a CASL architectural specification) that the natural numbers should
be implemented with addition, and the successor function should only be imple-
mented afterwards, in terms of addition:

arch spec Addition First =
units N : Nat;

M : { op suc(n : Nat) : Nat = n + 1 } given N
result M
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We thus have chosen to split the implementation of NatWithSuc into two
independent subtasks: the implementation of Nat, and the implementation of a
generic program, that given any Nat-model will realise the successor function
on top of it. The generic program is then applied once to the implementation N
of Nat. A version making this genericity explicit is the following:

arch spec Addition First Generic =
units N : Nat;

F : Nat→ { op suc(n : Nat) : Nat = n + 1 };
M= F [N ]

result M

Here, F is a generic program unit, that is, a parametrized program, that may
be applied to any program unit matching its parameter specification, not only
to N . The specification

Nat → { op suc(n : Nat) : Nat = n + 1 }
is a so-called (generic) unit specification. It denotes the class of all functions F
mapping Nat-models to models of

Nat then { op suc(n : Nat) : Nat = n + 1 }
in such a way that the argument model (unit) is preserved, i.e. F (N)|Nat = N
for any Nat-model N .

The term F [N ] is a unit term (in this case: a unit application) computing
a unit out of the (generic and non-generic) units introduced earlier. M = F [N ]
is a unit definition which defines the unit M to be exactly the (value of the)
unit term F [N ]. The unit M is then used as the result unit term. In general, the
result unit may be given by an arbitrary unit term involving the units declared
or defined within the architectural specification. If the result unit is itself to be
generic, the unit term has to preceded by a λ-abstraction (this is one form of
unit expression).

We can express that Addition First is a refinement of NatWithSuc as
follows:

refinement R4 =
NatWithSuc refined to arch spec Addition First

This time, we have left out the signature morphism, since it is just the iden-
tity. Since the refined specification is an architectural specification, we use the
keywords arch spec before the refined specification.

If we want to combine this design decision with the decision to implement
Nat with NatBin, we can write a refinement directly after the specification of
the unit in question:

arch spec Addition First With Bin =
units N : Nat refined via Nat �→ Bin to NatBin;

F : Nat→ { op suc(n : Nat) : Nat = n + 1 };
M= F [N ]

result M

or, more briefly, using the refinement of Nat into NatBin named R2 above:

166 T. Mossakowski, D. Sannella, and A. Tarlecki



arch spec Addition First With Bin′ =
units N : R2;

F : Nat→ { op suc(n : Nat) : Nat = n + 1 };
M= F [N ]

result M

5 Refinement: Constructor Implementations

Semantically, all the types of refinements introduced so far can be seen as con-
structor implementations in the sense of [15]. Constructor implementations are
written as

SP κ∼∼∼> SP ′

Here, a constructor κ is a function mapping models to models; formally κ :
Mod(Sig [SP ′])→Mod(Sig [SP ]). Such a constructor implementation is correct
if

for all A′ ∈ [[SP ′]], κ(A′) ∈ [[SP ]].

In our proposed refinement language, constructors are induced by specification
morphisms σ:SP−→SP ′, that is, signature morphisms from Sig [SP ] to Sig [SP ′]
with [[SP ′]]|σ ⊆ [[SP ]]. The constructor is just the reduct functor induced by σ,
and correctness is equivalent to σ being a specification morphism.

Constructors correspond to generic program modules in programming lan-
guages, such as generic packages in Ada or functors in Extended ML:

functor K(X:SP’):SP = ... code ...

In the framework of [15], a specification is implemented via a sequence of
refinement steps, until ultimately the empty specification is reached:

SP0 κ1
∼∼∼> SP1 κ2

∼∼∼> · · · κn
∼∼∼> SPn =

If all these steps are correct, the combination of the constructors (starting with
the trivial model empty of the specification) yields a model of the original
specification SP0:

κ1(κ2(· · · (κn(empty)) · · ·)) ∈ [[SP0]]

Architectural specifications introduce branching : a specification may be re-
fined to several specifications, which requires n-ary constructors:

SP κ∼∼∼>

⎧⎪⎨
⎪⎩

SP1

...
SPn

As expected, correctness here means that

for all A1 ∈ [[SP1]], . . . , An ∈ [[SPn]], κ(A1, . . . , An) ∈ [[SP ]].
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The corresponding CASL architectural specification is written

arch spec
units U1 : SP1

. . .
Un : SPn

result UT

where UT is a unit term describing the constructor κ, which may involve the unit
names U1, . . . , Un. Unit terms are built by renaming of units, hiding parts thereof,
amalgamation of units, application of generic units to arguments, as well as
local unit definitions (introducing local names for unit terms). The requirements
imposed by the semantics on the result unit terms ensure that the induced
constructors are always defined for the relevant argument units.

Analogously to the linear situation, once we have a tree of correct refinement
steps with leaves being empty specifications, as follows:

SP κ∼∼∼>

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

SP1 κ1
∼∼∼>

...

SPn κn
∼∼∼>

⎧⎪⎨
⎪⎩

SPn1 κn1
∼∼∼∼>

{
SPn11 κn11

∼∼∼∼∼>
· · ·

SPnm κnm
∼∼∼∼>

we can construct a model of the original requirement specification by successively
applying the constructors, starting with the trivial model empty :

κ(κ1(empty),
· · ·
κn(κn1(κn11(empty)),

· · ·
κnm(empty))) ∈ [[SP ]]

Note that this whole section applies not only to the refinement of ordinary
program units (models), but also to generic units (functions from models to
models). We will come back to this later.

6 Programs in CASL

One problem with the approach described so far is that the constructors provided
by specification morphisms and architectural specifications in CASL do not suffice
for implementing specifications. In a sense, these constructors only provide means
to combine or modify existing program units—but there is no way to build
program units from scratch. That is, CASL lacks a notion of program.

An obvious way out of this situation is to add more unit operations that
can be used for unit terms (or unit expressions) in architectural specifications.
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Concerning construction of datatypes, one could add a simple version of free
extension, giving a model of a datatype that is determined uniquely up to iso-
morphism, and that corresponds to an algebraic datatype in a functional pro-
gramming language. For the construction of operations on top of these datatypes,
one could use reducts along derived signature morphisms. Derived signature mor-
phisms may map an operation to a term or to a recursive definition by means of
equations, like function definitions in a functional programming language. See
[16, Chap. 4] for a more detailed account of this approach.

Note that this approach is necessarily no longer institution independent. The
details of the kind of free extensions that actually correspond to datatypes in
a programming language depend both on the institution and the programming
language at hand. The same remark holds for the definition of derived signature
morphisms.

An alternative is to approximate the institution independent essence of pro-
grams by considering monomorphic specifications. A unit specification is mono-
morphic if the result specification is a monomorphic extension of the argument
specifications. This means that it is a construction that is unique up to iso-
morphism. Ultimately, monomorphic unit specifications need to be translated
to (parametrized) programs in some programming language. As above, this pro-
cess obviously depends on both the institution and the programming language
in question. The difference is that the specification language itself remains insti-
tution independent, since the translation to a programming language is not part
of the specification language.

In some cases it is possible to perform the translation automatically, for unit
specifications that obey certain syntactic restrictions. For functional program-
ming languages such as Haskell and ML, one would require that all sorts are
given as free types, and all functions are defined by means of recursive equa-
tions in such a way that termination is provable. Indeed, the translation of a
parametrized program then provides a construction that is unique, not only
unique up to isomorphism. See [14] for details, and [6] for a translation of a
subset of CASL to OCAML. Using free extensions, it is also possible to capture
partial recursive functions, see [6, 14]. Moreover, with Haskell (and its type class
Eq) as target language, generated types with explicitly given equality can also
be used. For ML and Haskell, there is also a direct correspondence at the level
of CASL unit terms, see Fig. 1.

For other programming languages, the translation between monomorphic
specifications and programs might be much less straightforward. In general, it
may be necessary to translate manually, and prove that the resulting program is
a correct realization of the specification. There may also be a mismatch between
the constructs that are available for combining modules in the programming lan-
guage and the constructs that CASL provides for combining unit terms. Then,
one possibility would be to view unit terms in architectural specifications as
prescriptions for the composition and transformation of the component units,
and carry these out manually using the constructs that the programming lan-
guage provides. (This may be automated by devising operations on program
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CASL ML Haskell
non-generic unit structure module
generic unit functor multi-parameter type class

in a module
monomorphic unit specifica-
tion with free types and re-
cursive definitions

structure with datatypes
and recursive definitions

module with datatypes and
recursive definitions

unit application functor application type class instantiation
unit amalgamation combination of structures combination of modules
unit hiding restriction to subsignature hiding
unit renaming redefinition redefinition
architectural specification structure/functor using

other structures/functors
module using other modules

Fig. 1. Unit term constructs in ML and Haskell

texts corresponding to unit term constructs.) Alternatively, one might take the
target programming language into account in the refinement process and simply
avoid in unit terms any use of the constructs that have no counterpart in the
programming language at hand.

With this approach, the use of a parametrized program κ in a constructor
implementation SP κ∼∼∼> SP ′ is expressed as

arch spec
unit K : SP ′ → SP refined to USP
result K

where USP is a monomorphic specification of κ from which the corresponding
parameterized program may be obtained directly. Such a constructor can also
be used in the context of another refinement. For example, the refinement

SP κ∼∼∼> SP ′
κ′∼∼∼> SP ′′

is expressed as

refinement R5 =
SP refined to

arch spec
units

K : SP ′ → SP refined to USP
A′ : SP ′ refined to arch spec

units
K ′ : SP ′′ → SP ′ refined to USP ′

A′′ : SP ′′

result K ′ A′′

result K A′

where USP and USP ′ are monomorphic specifications of κ and κ′, respectively.

[ ]
[ ]

{

}

{

}
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7 Refinements in CASL

Let us now come to a more systematic treatment of the refinement language that
we propose.

The grammar below extends the grammar for the concrete syntax of CASL

given in the CASL Reference Manual [8]. The new parts of the grammar are
marked in italics, while removed parts are crossed out. The details here are for-
mulated in terms of concrete syntax, in contrast to [8], to make the presentation
more accessible to readers who are not intimately familiar with the details of the
CASL design. A corresponding abstract syntax is given in the appendix.

The central notion of the refinement language is specification refinement.
These can take various forms, all of which have already been discussed along
with concrete examples above.

SPEC-REF ::= SPEC-NAME

| UNIT-SPEC

| UNIT-SPEC refined via SYMB-MAP-ITEMS* to SPEC-REF

| UNIT-SPEC refined to SPEC-REF

| arch spec ARCH-SPEC

| SPEC-REF then SPEC-REF

Like ordinary specifications and unit specifications, specification refinements
can be named:

SPEC-REF-DEFN ::= refinement SPEC-NAME = SPEC-REF end

Here, the notation end stands for optional end.
The syntax of declarations of units within architectural specifications is re-

laxed: arbitrary specification refinements are allowed, not only unit specifica-
tions:

UNIT-DECL ::= UNIT-NAME : SPEC-REF

To avoid additional complexity but mainly for methodological reasons, we leave
out refinements of unit specifications with imports (the “given” clause in Ad-
dition First in Sect. 4). See Sect. 10 for justification and discussion.

Finally, since we allow for coercion of architectural specifications to specifi-
cation refinements, there is no need for coercing them to unit specifications:

UNIT-SPEC ::= SPEC

| SPEC *...* SPEC -> SPEC

| arch spec ARCH-SPEC

| closed UNIT-SPEC

As with the rest of CASL, the semantics is given in two parts: the static
semantics and the model semantics. In the semantics below, we ignore global en-
vironments which store the meanings of global names; consequently, we also omit
the case of named specification refinements. Details, which are straightforward,
follow a similar pattern as in [8, III:5 and III:6].

The static semantics of specification refinements is given in Fig. 2. The judge-
ments are of the form � SPR � (UΣ, UΣ′). Here, UΣ is the unit signature for
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� USP � UΣ
� USP qua SPEC-REF � (UΣ, UΣ)

� USP � UΣ
� SPR � (UΣ, UΣ′′)

� USP refined to SPR � (UΣ, UΣ′′)

� USP � UΣ = (Σ1, . . . , Σn → Σ)
� SI � σ : Σ → Σ′

� SPR � (UΣ′ = (Σ1, . . . , Σn → Σ′), UΣ′′)
� USP refined via SI to SPR � (UΣ, UΣ′′)

� ASP � Cs, UΣ
� arch spec ASP � (UΣ, ⊥)

� SPR1 � (UΣ, UΣ′) � SPR2 � (UΣ′, UΣ′′)
� SPR1 then SPR2 � (UΣ, UΣ′′)

Fig. 2. Static semantics of specification refinements

units of the specification being refined and UΣ′ is the unit signature for units
of the specification after refinement. A unit signature consists of a tuple of ar-
gument signatures (which is empty and may be omitted for non-generic units)
and a result signature. Further details can be found in [8, III:5]. For instance,
we have

�Monoid refined via Elem �→ Nat to Nat � (Σ ,Σ ),

where Σ and Σ are the signatures of Monoid and Nat respectively.
Since so far we don’t allow for further refinement of architectural specifications,
only of their units, if SPR is an architectural specification we mark this by
putting UΣ′ = ⊥.

The model semantics of specification refinements is given in Fig. 3. The
judgements are of the form � SPR ⇒ R. If � SPR � (UΣ, UΣ′) then R is a
class of pairs (U,U ′) such that U and U ′ are units over unit signatures UΣ and
UΣ′ respectively and R−1 is a partial function mapping UΣ′-units to UΣ-units.
R−1 is the constructor involved in the refinement and its domain is the class of
models of the specification after refinement. A unit is either a model (when it is
non-generic) or a unit function, mapping compatible tuples of argument models
to result models. Further details can be found in [8, III:5]. For instance, we have

�Monoid refined via Elem �→ Nat to Nat⇒ {(N |σ, N) | N ∈ [[Nat]]}

where σ maps Elem to Nat . Again, this takes a special form when SPR is an
architectural specification: the second component of each pair is then ⊥.

Both static semantics and model semantics rules rely on the semantics of
unit specifications [8, III:5], symbol mappings [8, III:4] and architectural spec-
ifications [8, III:5]. We just recall that the static semantics of an architectural
specification consists of a static unit context (which we ignore here, but see
Sect. 8) and a result unit signature. An architectural model consists of a unit
environment (again, ignored here, but see Sect. 8) and a result unit. Note that
the semantics of architectural specifications has to be adjusted as well, since
its unit declarations may now involve arbitrary specification refinements rather
than only unit specifications. Luckily, going from the semantics of the former to
the plain CASL semantics of the latter is very easy here. In the static semantics,
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� USP ⇒ U
� USP qua SPEC-REF ⇒ {(U, U) | U ∈ U}

� USP ⇒ U � SPR ⇒ R
U ′ ∈ U , for all (U ′, U ′′) ∈ R
� USP refined to SPR ⇒ R

� USP ⇒ U � SI � σ : Σ → Σ′ � SPR ⇒ R
U ′|σ ∈ U , for all (U ′, U ′′) ∈ R

R′ = {(U ′|σ, U ′′) | (U ′, U ′′) ∈ R}
� USP refined via SI to SPR ⇒ R′

� ASP ⇒ AM
� arch spec ASP ⇒ {(U, ⊥) | (E, U) ∈ AM}

� SPR1 ⇒ R1 � SPR2 ⇒ R2

for all (U ′, U ′′) ∈ R2, (U, U ′) ∈ R1 for some U
R = {(U, U ′′) | (U, U ′) ∈ R1, (U ′, U ′′) ∈ R2 for some U ′}

� SPR1 then SPR2 ⇒ R

Fig. 3. Model semantics of specification refinements

from the semantics of specification refinements we just take the first component
(the unit signature of the specification being refined). In the model semantics,
we project the semantics of specification refinements onto the first component,
thus taking the class of all units that may arise as results of the construction
involved in the refinement.

The semantics of specification refinements relies on the simplifying assump-
tion that the parameter specifications of generic unit specifications do not change
under refinement. This allows us to freely use the reduct notation U |σ, even when
U is a generic unit; in this case, the notation denotes the unit function obtained
by reducing the result via σ after applying U . In practice, this restriction is not
troublesome, since we always can write an architectural specification that ad-
justs the parameter specification as required. Namely, given unit specifications
SP → SP ′ and SP1 → SP ′

1 with a specification morphism σ : SP1 → SP , the
following is a correct specification refinement1

SP → SP ′ refined via τ to arch spec
unit F :SP1 → SP ′

1

result λX :SP .F [X fit σ]

1 Assuming that all symbols shared between SP ′
1 and SP originate in SP1, as imposed

by CASL rules for application of generic units.

{
}
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where τ is a specification morphism from SP1 to the pushout specification SP ′
1⊕

SP in the following diagram:

SP1
��

σ

��

SP ′
1

��
SP

������������
�� SP ′

1 ⊕ SP

SP ′

τ

��

In the terminology of [11], (σ, τ) is a first-order morphism from SP → SP ′ to
SP1 → SP ′

1.
A crucial property of development trees as are now captured by architectural

specifications with specification refinements is that adding correct refinements to
unit specifications in an architectural specification, and thus expanding the de-
velopment tree by additional refinement steps at its leaves, preserves correctness
of the entire development. In particular, the semantics of architectural speci-
fications with new correct refinements remains well-defined. This holds by [3,
Thm. 2] (a technical assumption necessary there holds trivially in the absence
of imports).

8 Component efinements

Refinements introduced in Sect. 7 do not allow the user to refine architectural
specifications as such. Only refinements for individual units are allowed, and they
must be inserted into the architectural specification, directly into unit declara-
tions. Consider for instance the following example from Sect. 4, where a refine-
ment for unit N in the architectural specification Addition First Generic
was captured as follows:

arch spec Addition First With Bin′ =
units N : R2;

F : Nat→ { op suc(n : Nat) : Nat = n + 1 };
M= F [N ]

result M

This is not very convenient: given an already defined architectural specification
(in this case, Addition First Generic), one would like to avoid rewriting it
when indicating that specifications of some of the units (N here) are to be refined
(using R2 here). Instead, one would rather refer to the architectural specification
as given, and indicate refinements that are to follow, in this case writing:

refinement R =
arch spec Addition First Generic then {N to R2}

R
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where {N to R2} is a refinement of an architectural specification having a unit
named N . The refinement R then consists of the architectural specification Ad-
dition First Generic with N further refined according to R2. The need for
such syntax is perhaps even more visible in complex examples involving nested
refinements, like refinement R5 at the end of Sect. 6, which one would prefer to
restructure as follows:

refinement R5′ =
SP refined to arch spec units

K : SP ′ → SP
A′ : SP ′

result K A′

then {K to USP ,
A′ to arch spec units

K ′ : SP ′′ → SP ′

A′′ : SP ′′

result K ′ A′′

then {K ′ to USP ′}}
or even:

refinement R5′′ =
SP refined to arch spec units

K : SP ′ → SP
A′ : SP ′

result K A′

then {K to USP ,
A′ to arch spec units

K ′ : SP ′′ → SP ′

A′′ : SP ′′

result K ′ A′′ }
then {A′ to {K ′ to USP ′}}

Of course, all the architectural specifications used here, as well as the refinements,
would typically be defined earlier and then referred to by their names when
refined further.

To capture such possibilities we extend the syntax for refinements introduced
in Sect. 7, adding a new form:

SPEC-REF ::= ...

| {UNIT-NAME_1 to SPEC-REF_1, ..., UNIT-NAME_n to SPEC-REF_n}
However, this apparently simple change considerably increases the conceptual

(and then semantic) complexity here, since in fact we are now dealing with three
kinds of refinements:

– unit specification refinements which lead from a unit specification to another
unit specification;

– branching specification refinements which generalise unit refinements by ad-
ditionally allowing the target specification to be architectural; and

{

}

{

}

{

}

{

}

[ ]

[ ]

[ ]

[ ]

;

;

;

;
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� USP � UΣ
� USP qua SPEC-REF � (UΣ, UΣ)

� USP � UΣ
� SPR � (UΣ, BΣ′′)

� USP refined to SPR � (UΣ, BΣ′′)

� USP � UΣ = (Σ1, . . . , Σn → Σ)
� SI � σ : Σ → Σ′

� SPR � ((Σ1, . . . , Σn → Σ′), BΣ′′)
� USP refined via SI to SPR � (UΣ, BΣ′′)

� ASP � RstC , UΣ
� arch spec ASP � (UΣ, π2(RstC ))

� SPR1 � RΣ1 � SPR2 � RΣ2

RΣ = RΣ1 ; RΣ2

� SPR1 then SPR2 � RΣ

UN 1, . . . ,UN n are distinct
� SPR1 � RΣ1 · · · � SPRn � RΣn

� {UN 1 to SPR1, . . . ,UN n to SPRn} � {UN 1 �→ RΣ1, . . . ,UN n �→ RΣn}

Fig. 4. Static semantics of extended refinements

– component specification refinements which name units whose specifications
are to be further refined as indicated.

The corresponding semantic concepts come now in three flavours as well. For
the static semantics, we introduce refinement signatures, RΣ, which take one of
the following forms:

– unit refinement signatures (UΣ, UΣ′) which consist of two unit signatures
(this corresponds to the typical case in the static semantics of Sect. 7);

– branching refinement signatures (UΣ, BΣ′) which consist of a unit signature
UΣ and a branching signature BΣ′, which is either a unit signature UΣ′ (in
which case the branching refinement signature is a unit refinement signature)
or a branching static context BstC ′, which is in turn a (finite) map assigning
branching signatures to unit names. Note that therefore all static contexts
as used in the plain CASL semantics [8, III:5] are branching static contexts,
but not vice versa;

– component refinement signatures which are (finite) maps {UN i �→ RΣi}i∈J
from unit names to refinement signatures. When all RΣi, i ∈ J , in such a
map are branching refinement signatures, we refer to it as a refined-unit static
context. Any refined-unit static context RstC = {UN i �→ (UΣi, BΣi)}i∈J
can be naturally coerced to the static context π1(RstC ) = {UN i �→ UΣi}i∈J
of the plain CASL semantics, as well as to the branching static context
π2(RstC ) = {UN i �→ BΣi}i∈J .

New rules for the static semantics of refinements are given in Fig. 4. The first
three rules are essentially inherited from Sect. 7, with a minor change to allow for
the target signature to be branching. The new rule for architectural refinements
allows for their further refinement by replacing the ⊥ mark by the branching
static context that emerges from the semantics of the architectural specifica-
tion (see the end of this section for a brief discussion of the new semantics for
architectural specifications). The rule for individual component refinements is

176 T. Mossakowski, D. Sannella, and A. Tarlecki



straightforward: it just stores the refinement signatures obtained from the re-
finements attached to unit names. The extra complexity is hidden in the rule
for refinement composition using an auxiliary partial composition operation on
refinement signatures. Given refinement signatures RΣ1 and RΣ2, their com-
position RΣ1 ; RΣ2 is defined inductively depending on the form of the first
argument:

– RΣ1 = (UΣ, UΣ′): then RΣ1 ; RΣ2 is defined only if RΣ2 is a branching
refinement signature of the form (UΣ′, BΣ′′). Then RΣ1 ; RΣ2 = (UΣ, BΣ′′).

– RΣ1 = (UΣ,BstC ′): then RΣ1 ; RΣ2 is defined only if RΣ2 is a component
refinement signature such that RΣ2 matches BstC ′, that is, dom(RΣ2) ⊆
dom(BstC ′) and for each UN ∈ dom(RΣ2),
• either BstC ′(UN ) is a unit signature and then RΣ2(UN ) = (UΣ′, BΣ′′)

with UΣ′ = BstC ′(UN ), or
• BstC ′(UN ) is a branching static context and then RΣ2(UN ) matches

BstC ′(UN ).
Then RΣ1 ; RΣ2 = (UΣ,BstC ′[RΣ2]), where given any branching static con-
text BstC ′ and component refinement signature RΣ2 that matches BstC ′,
BstC ′[RΣ2] modifies BstC ′ on each UN ∈ dom(RΣ2) as follows:
• if BstC ′(UN ) is a unit signature then BstC ′[RΣ2](UN ) = BΣ′′ where

RΣ2(UN ) = (BstC ′(UN ), BΣ′′),
• if BstC ′(UN ) is a branching static context then BstC ′[RΣ2](UN ) =

BstC ′(UN )[RΣ2(UN )].
– RΣ1 is a component refinement signature: then RΣ1 ; RΣ2 is defined only if

RΣ2 is a component refinement signature too, and moreover, for all UN ∈
dom(RΣ1) ∩ dom(RΣ2), RΣUN = RΣ1(UN ) ;RΣ2(UN ) is defined. Then
RΣ1 ; RΣ2 modifies the (ill-defined) union of RΣ1 and RΣ2 by putting
(RΣ1 ; RΣ2)(UN ) = RΣUN for UN ∈ dom(RΣ1) ∩ dom(RΣ2).

The complexity of the model semantics for refinements increases similarly.
Given a refinement signature RΣ, refinement relations, R, are classes of assign-
ments, R, which take the following forms:

– unit assignments, for RΣ = (UΣ, UΣ′), are pairs (U,U ′) of units over unit
signatures UΣ and UΣ′, respectively;

– branching assignments, for RΣ = (UΣ, BΣ′), are pairs (U,BM ′), where U
is a unit over the unit signature UΣ and BM ′ is a branching model over
the branching signature BΣ′, which is either a unit over BΣ′ when BΣ′

is a unit signature (in which case the branching assignment is a unit as-
signment), or a branching environment BE ′ that fits BΣ′ when BΣ′ is a
branching static context. Branching environments are (finite) maps assign-
ing branching models to unit names, with the obvious requirements to ensure
compatibility with the branching signatures indicated in the corresponding
branching static context. Note that therefore all unit environments as used
in the plain CASL semantics [8, III:5] are branching environments, but not
vice versa.
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� USP ⇒ U
� USP qua SPEC-REF ⇒ {(U, U) | U ∈ U}

� USP ⇒ U � SPR ⇒ R
U ′ ∈ U , for all (U ′,BM ′′) ∈ R
� USP refined to SPR ⇒ R

� USP ⇒ U � SI � σ : Σ → Σ′ � SPR ⇒ R
U ′|σ ∈ U , for all (U ′,BM ′′) ∈ R

R′ = {(U ′|σ,BM ′′) | (U ′,BM ′′) ∈ R}
� USP refined via SI to SPR ⇒ R′

� ASP ⇒ AM
� arch spec ASP ⇒ {(U, π2(RE)) | (RE , U) ∈ AM}

� SPR1 ⇒ R1 · · · � SPRn ⇒ Rn

� {UN 1 to SPR1, . . . ,UN n to SPRn} ⇒ {R | dom(R) = {UN 1, . . . ,UN n},
R(UN 1) ∈ R1, . . . , R(UN n) ∈ Rn}

� SPR1 ⇒ R1 � SPR2 ⇒ R2 R = R1 ; R2

� SPR1 then SPR2 ⇒ R

Fig. 5. Model semantics of extended refinements

– component assignments, for RΣ = {UN i �→ RΣi}i∈J , are (finite) maps
{UN i �→ Ri}i∈J from unit names to assignments over the respective refine-
ment signatures. When RΣ is a refined-unit static context (and so each Ri,
i ∈ J , is a branching assignment) we refer to RE = {UN i �→ (Ui,BM i)}i∈J
as a refined-unit environment. Any such refined-unit environment can be nat-
urally coerced to a unit environment π1(RE ) = {UN i �→ Ui}i∈J of the plain
CASL semantics, as well as to a branching environment π2(RE ) = {UN i �→
BM i}i∈J .

New rules for the model semantics of refinements are given in Fig. 5. As
with the static semantics, the non-trivial change is hidden in the rule for re-
finement composition using the auxiliary partial operation to compose refine-
ment relations. Given two refinement relationsR1,R2 over refinement signatures
RΣ1, RΣ2, respectively, such that the composition RΣ = RΣ1 ; RΣ2 is defined,
the composition R1 ;R2 is defined as a refinement relation over RΣ as follows:

– RΣ1 = (UΣ, UΣ′), RΣ2 = (UΣ′, BΣ′′): then R1 ;R2 is defined only if for all
(U ′,BM ′′) ∈ R2 we have (U,U ′) ∈ R1 for some U . Then

R1 ;R2 = {(U,BM ′′) | (U,U ′) ∈ R1, (U ′, BM ′′) ∈ R2 for some U ′}
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– RΣ1 = (UΣ,BstC ′) and RΣ2 is a component refinement signature that
matches BstC ′: then R1 ;R2 is defined only if for each R2 ∈ R2 there is
(U,BE ′) ∈ R1 such that R2 matches BE ′, that is, for each UN ∈ dom(R2),
• either BstC ′(UN ) is a unit signature and then R2(UN ) = (U ′′,BM ′′)

with U ′′ = BE ′(UN ), or
• BstC ′(UN ) is a branching static context and then R2(UN ) matches

BE ′(UN ).
Then

R1 ;R2 = {(U,BE ′[R2]) | (U,BE ′) ∈ R1, R2 ∈ R2, R2 matches BE ′}
where given any branching environment BE ′ that fits BstC ′ and assignment
R2 that matches BE ′, BE ′[R2] modifies BE ′ on each UN ∈ dom(R2) as
follows:
• if BstC ′(UN ) is a unit signature then BE ′[R2](UN ) = BM ′′ where

R2(UN ) = (BE ′(UN ),BM ′′);
• if BstC ′(UN ) is a branching static context then we put BE ′[R2](UN ) =

BE ′(UN )[R2(UN )].
– RΣ1 and RΣ2 are component refinement signatures such that for all UN ∈

dom(RΣ1) ∩ dom(RΣ2), RΣUN = RΣ1(UN ) ;RΣ2(UN ) is defined then
R1 ;R2 is defined only if for each R2 ∈ R2 there is R1 ∈ R1 such that
R1 transfers to R2, that is, for each UN ∈ dom(R1) ∩ dom(R2),
• either RΣ1(UN ) is a unit refinement signature (UΣ, UΣ′), and then

R1(UN ) = (U,U ′
1) and R2(UN ) = (U ′

2,BM ′′) with U ′
1 = U ′

2, or
• RΣ1(UN ) is a branching refinement signature (UΣ,BstC ′), and then

R1(UN ) = (U,BE ′) and R2(UN ) is an assignment that matches BE ′, or
• RΣ1(UN ) is component refinement signature, and then R1(UN ) trans-

fers to R2(UN ).
Then

R1 ;R2 = {R1 ; R2 | R1 ∈ R1, R2 ∈ R2, R1 transfers to R2}

where given any assignments R1, R2 over RΣ1, RΣ2, respectively, such that
R1 transfers to R2, R1 ; R2 is the assignment that modifies the (ill-defined)
union of R1 and R2 on each UN ∈ dom(R1) ∩ dom(R2) as follows:
• if RΣ1(UN ) = (UΣ, UΣ′), R1(UN ) = (U,U ′

1) and R2(UN ) = (U ′
2,BM ′′)

(hence U ′
1 = U ′

2) then (R1 ; R2)(UN ) = (U,BM ′′);
• if RΣ1(UN ) = (UΣ,BstC ′), R1(UN ) = (U,BE ′) (hence R2(UN ) is an

assignment that matches BE ′) then (R1 ; R2)(UN ) = (U,BE ′[R2(UN )]);
• if RΣ1(UN ) is a component refinement signature (hence R1(UN ) and

R2(UN ) are component assignments such that R1(UN ) transfers to
R2(UN )) then (R1 ; R2)(UN ) = R1(UN ) ;R2(UN ).

We also have to consider the necessary changes to the semantics of archi-
tectural specifications in [8, III:5]. Most visibly, as sketched above, we have
to modify the semantic concepts for architectural specifications to work with
refined-unit static contexts and refined-unit environments rather than unit static
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contexts and unit environments. This would alter most of the rules only formally.
At crucial places, where units are used, the easy modification relies on the π1 co-
ercions from refined-unit static contexts to static contexts and from refined-unit
environments to unit environments for static and model semantics, respectively.

Further straightforward modification concerns the semantics of unit declara-
tions, now with arbitrary specification refinements in place of unit specifications.
The new static semantics imposes the restriction that only branching specifica-
tion refinements (so: no component specification refinements) are allowed here2,
and stores the appropriate branching refinement signature for the declared unit
name in the refined-unit static context. Then, the model semantics produces the
context that consists of all refined-unit environments that map the declared unit
name to a branching assignment in the semantics of the branching specification
refinement used in the declaration.

Finally, the semantics of unit definitions involves additional unit refinement
signatures and assignments with the ⊥mark as the second component to indicate
that unit definitions cannot be further refined.

9 The Steam Boiler Example

So far, we have illustrated the refinement language by means of toy examples.
A discussion of realistic examples would exceed the space limitations of this
paper. However, the CASL User Manual [2, Chap. 13] contains a specification
of an industrial case study, namely a steam boiler control system that serves
to control the water level in a steam boiler. Reference [2, Sect. 13.10] contains
several architectural specifications explaining how to decompose the steam boiler
control system into subsystems, using e.g. a specification Value for physical
values, a specification Sbcs State for the specification of the state of the steam
boiler, a specification PU Prediction for prediction of the pump behaviour,
etc. There is no space here to repeat the details of this example, so we refer the
reader to [2, Chap. 13] and only use the additional linguistic features introduced
in Sects. 7 and 8 to present specification refinements that formally capture the
development described there.

The development in [2, Sect. 13.10] begins by indicating the initial architec-
tural design for the overall requirement specification of the system:

arch spec Arch Sbcs =
units P : Value → Preliminary

S : Preliminary → Sbcs State
A : Sbcs State → Sbcs Analysis
C : Sbcs Analysis → Steam Boiler Control System

result λV : Value • C [A [S [P [V ]]]]

2 The (abstract) syntax of specification refinements may be massaged so that some
of the restrictions imposed by the static semantics on the composability and use of
specification refinements are incorporated in the (context-free) grammar.

;
;

;
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We may record this initial refinement now:

refinement Ref Sbcs =
Steam Boiler Control System to Arch Sbcs

In [2, Sect. 13.10], specifications refining the individual units of the above
architectural specification are given. We extend the refinement Ref Sbcs to
capture them as well:

refinement Ref Sbcs′ =
Ref Sbcs then {P to arch spec Arch Preliminary,

S to Unit Sbcs State,
A to arch spec Arch Analysis,
C to Unit Sbcs System }

The resulting specification for the unit S, Unit Sbcs State, is monomor-
phic:

unit spec Unit Sbcs State =
Preliminary → Sbcs State Impl

Development within CASL stops at this point, the last step being the passage
to a program in a programming language. This also holds for the component
C, even though the corresponding unit specification Unit Sbcs System is not
explicitly provided in [2, Chap. 13].

The architectural specification Arch Analysis used in the refinement above
is given in [2, Sect. 13.10] as follows:

arch spec Arch Analysis =
units FD :Sbcs State → Failure Detection

PR :Failure Detection → PU Prediction
ME :PU Prediction→Mode Evolution[PU Prediction]
MTS :Mode Evolution [PU Prediction ]→ Sbcs Analysis

result λS :Sbcs State • MTS [ME [PR [FD [S ]]]]

As remarked in [2, Sect. 13.10], the specifications for the components ME and
MTS are simple enough to be directly implemented, so we stop their development
at this point. For the other two units, we record the corresponding refinements
from [2, Sect. 13.10]:

refinement Ref Arch Analysis =
{FD to arch spec Arch Failure Detection,
PR to arch spec Arch Prediction}

Finally, we put the above together and capture the overall development
sketched in [2, Sect. 13.10]:

refinement Ref Sbcs′′ =
Ref Sbcs′ then {A to Ref Arch Analysis}

;
;

;
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10 Conclusion and Future Work

The issue of refinement has been discussed in many specification frameworks,
starting with [12] and [13], and some frameworks provide methods for proving
correctness of refinements. But this is normally regarded as a “meta-level” issue
and specification languages have typically not included syntactic constructs for
formally stating such relationships between specifications that are analogous to
those presented here for CASL. A notable exception is Specware [17], where speci-
fications (and implementations) are structured using specification diagrams, and
refinements correspond to specification morphisms for which syntax is provided.
This, together with features for expanding specification diagrams, provides suf-
ficient expressive power to capture our branching specification refinements. A
difference is that Specware does not include a distinction between structured
specifications and CASL-like architectural specifications, and refinements are re-
quired to preserve specification structure.

One point of this proposal that requires further work is the treatment of
shared subcomponents, such as S in the following:

arch spec ASP = units S : USP
A1 : arch spec

units
B1 : USP ′

1

· · ·
Bm : USP ′

m

result . . .B1 . . .S . . .Bm . . .
· · ·
A2 : arch spec

units
C1 : USP ′

1

· · ·
Cp : USP ′

p

result . . .C1 . . .S . . .Cp . . .
result . . .A1 . . .A2 . . .

This requires a relatively straightforward modification to the semantics of CASL

architectural specifications to make declared units visible within architectural
specifications for further units.

We have not provided a treatment of refinements of unit specifications with
imports, as was pointed out in Sect. 7. A formal account of imports would add
considerably to the complexity of the semantics, see [8, III:5]. However, they can
be regarded as implicit formal parameters which are instantiated only once, as
in the specification Addition First Generic. And moreover, this seems to be
the appropriate view when refinements are considered. The ultimate target of re-
finement of such a specification will necessarily involve a parametrized program,
and at some point in the refinement process this needs to be made explicit. Thus
we regard the lack of treatment of imports as methodologically sound rather than
merely a convenient simplification. That said, given modified visibility rules as

{

}

{

}
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sketched above, we could allow for refinements from a specification of the form
SP given UT to an architectural specification of the form

arch spec
units F : SPpar → SP ′

result F [UT ]

which would be correct provided UT : SPpar and [[SP ]] ⊇ [[SPpar and SP ′]].
Notice that here UT typically refers to units from the level of the unit that is
specified by SP given UT ; this is the reason why the modified visibility rules
are necessary.

Finally, we have not discussed behavioural refinement, corresponding to ab-
stractor implementations in [15]. Often, a refined specification does not satisfy
the initial requirements literally, but only up to some sort of behavioural equiv-
alence: for example, if stacks are implemented as arrays-with-pointer, then two
arrays-with-pointer differing only in their “junk” entries (that is, those that are
“above” the pointer) exhibit the same behaviour in terms of the stack oper-
ations, and hence correspond to the same abstract stack. This can be taken
into account by re-interpreting unit specifications to include models that are be-
haviourally equivalent to literal models, see [4, 5]; then specification refinements
as considered here become behavioural.

Acknowledgments: Our thanks to the anonymous referees, and to Michel
Bidoit, whose suggestions encouraged us to make some important improvements.
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A Abstract Syntax for CASL Architectural Specifications

The grammar extends the grammar given in the CASL Reference Manual [8].
The new parts of the grammar are marked in italics, while removed parts are
crossed out.

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

| ARCH-SPEC-NAME

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= unit-decl UNIT-NAME SPEC-REF UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME

| arch-unit-spec ARCH-SPEC

| closed-unit-spec UNIT-SPEC

UNIT-TYPE ::= unit-type SPEC* SPEC

SPEC-REF-DEFN ::= ref-unit-spec-defn SPEC-NAME SPEC-REF

SPEC-REF ::= SPEC-NAME

| unit-spec UNIT-SPEC

| refinement UNIT-SPEC SYMB-MAP-ITEMS* SPEC-REF

| arch-unit-spec ARCH-SPEC

| compose-ref SPEC-REF SPEC-REF

| component-ref UNIT-REF*

UNIT-REF ::= unit-ref UNIT-NAME SPEC-REF

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

UNIT-TERM ::= unit-translation UNIT-TERM RENAMING

| unit-reduction UNIT-TERM RESTRICTION

| amalgamation UNIT-TERM+

| local-unit UNIT-DEFN+ UNIT-TERM

| unit-appl UNIT-NAME FIT-ARG-UNIT*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

A SPEC-NAME can be a SPEC-REF either directly, or indirectly via UNIT-SPEC.
This ambiguity is solved by looking up the SPEC-NAME in the global environ-
ment, which is expected to keep information about UNIT-SPECs and SPEC-REFs
separately.
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Abstract. In this paper we present a new component concept equivalent
to the one of [2] which is more appropriate for distributed applications.
After that, we present the notion of component system and define a set
of operations of component systems, some of which are used to define
an ambient calculus [1] with component systems. Finally we present an
example.

1 Introduction

The final aim of this work is the study of the modelling and development of
component-based distributed applications with mobile processes in the internet.
In particular, we believe that the concept of component can play an important
role in the development of such applications where components can be defined
as independent units with a specific task or functionality. These systems are in
general heterogeneous which means that they can be described or implemented
using different formalisms. To develop these systems, we use a uniform notion
of component which is, to a certain extent, independent of the formalism which
is used. The framework which we define is based on a generic notion of trans-
formation or refinement which is used to define the semantics of components
and their interconnection. In particular, in [2], the conditions which must satisfy
these transformations in order to instantiate the given framework to a concrete
formalism are presented. Additionally, a simple notion of composition of compo-
nents is given. In our work, we define a new semantics of components which is
a variation of the one defined in [2] which make possible the definition of more
complex forms of composition.

In this work we also introduce the notion of component system. A compo-
nent system is a set of components where every component can have several
import interfaces and several export interfaces. Additionally, we can connect an
import interface of a component with an export interface of another component.
A component system is in general a graph. We define also different operations on
component systems, including a non-deterministic operation to establish some
or all the possible connections between two component systems. In particular,
when a component moves into a new context, it may establish different kinds
of connections through its interfaces with several interfaces from the other com-
ponents. In this situation we assume that some of these connections may be

J.L. Fiadeiro, P. Mosses, and F. Orejas (Eds.): WADT 2004, LNCS 3423, pp. 186–20 , 2005.
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established nondeterministically. Moreover, we assume that this interconnection
can vary over time. The intuition behind this operation is that mobile com-
ponents are autonomous agents that, on a given situation, may choose which
connections to establish.

In order to explicitly deal with mobility we decided to integrate our generic
approach with a specific well-established calculus for distribution and mobility
like the ambient calculus [1]. This is a first step to use our component framework
in distributed and mobile applications although the extension is not as general
as we would have liked to. A possible future work which would be a more general
extension than the one which we propose, would be to incorporate component
systems in bigraphs [3].

In order to extend component systems with the ambient calculus, it is nec-
essary to define a forest of hierarchies of component systems. Thus, an ambient
expression will denote a forest of hierarchies of component systems and after
making a move, a sub-hierarchy of a hierarchy will be associated to another
hierarchy in the forest. Every component system in the hierarchy can have as-
sociated a forest of sub-hierarchies. The main modification in the calculus is the
possibility to have a component system as a process and the obligation to have
a component system associated to the name of an ambient.

Finally, we present an example of a server with a firewall together with two
clients trying to obtain a software component to finish an application. To present
the example, we instantiate our component system with a formalism based on
algebra transformation systems.

The structure of this paper is the following: in the first section we present
our component concept reviewing the notion of the transformation framework
in [2]. In the next section we present our component system and interconnected
forest of hierarchies of component systems. After that we present the extension
of the ambient calculus with component system and finally we instantiate our
component concept with a formalism based on algebra transformation system
and we present an example.

2

As we mentioned in the introduction, components can be seen as independent
units with a specific task or functionality which can be used in as many envi-
ronments and applications as possible [4]. To achieve this, in a component there
must be a clear distinction between its body, where the functionality of the com-
ponent is described (or implemented) in detail, and its interfaces, describing how
the component is related to the outside world.

In [2], a generic component framework is presented. This framework is generic
not only concerning the underlying specification formalism used inside the com-
ponents, but also concerning the concept of transformations in order to model
abstraction and refinement between interfaces and body of one component, or
between import and export interfaces between different components. The only
requirement for a specification formalism to be used in connection to our com-
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ponent framework is to show that the formalism is a transformation framework.
More precisely:

Definition 1. A transformation framework T over a class of specifications con-
sists of a class of transformations and a subclass of embeddings, which include
identical transformations and identical embeddings, both are closed under com-
position and satisfy the following properties:

– For each transformation t1 : SPEC1 ⇒ SPEC3, and each embedding i1 :
SPEC1 ↪→ SPEC2 which can be represented as in Figure 1, there is a se-
lected transformation t2 : SPEC3 ⇒ SPEC4, with embedding i2 : SPEC2 ↪→
SPEC4, called the extension of t1 with respect to i1. t2 is also denoted as
Ei1(t1).

SPEC1

t1

��

� � i1 �� SPEC2

t2

��
SPEC3

� � i2 �� SPEC4

Fig. 1. Extension Diagram

– Horizontal and vertical composition of extension diagrams are required in the
usual way.

In this paper, we consider that components may have several import and
export interfaces allowing us to connect a given component with several other
components. In particular, export interfaces describe services that a component
offers to the outside world, while import interfaces specify services used inside a
component that are assumed to be defined by other components. Export inter-
faces are assumed to be different abstractions of the body and each of them is
related to the body by a transformation modelling a refinement. Import inter-
faces are assumed to be related to the body by independent embeddings. More
precisely:

Definition 2. A component consists of a body specification with a list of inde-
pendent import specifications together with the corresponding embeddings and a
list of export specifications together with the corresponding transformations into
the body specifications. Thus, a component will have this general form

(BOD,< IMP1, i1, . . . , IMPn, in >, < EXP1, e1, . . . , EXPm, em >)

A possible graphical representation is in figure 2.
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As said above, we assume that the family of embeddings ij : Ij → BOD for each
connector is independent. This means intuitively that the import interfaces
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EXP1
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... BOD ...

IMPn

� �

in

		����������
EXPm

em



 ����������
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Fig. 2. Diagram of a component

IMPj of B are pairwise disjoint. Formally, independence of embeddings can be
expressed by the following definition:

Definition 3. A family of embeddings ij : SPECj ↪→ SPEC, (j = 1..n) is
independent if the following properties are satisfied:

– For every family of transformations tj ∈ Trafo(SPECj), (j = 1..n), there
exists a selected transformation t ∈ Trafo(SPEC) and selected independent
embeddings i′j , i

′
k such that the diagram 3 commutes. t is called the paral-

SPEC1

t1

��

� 	

i1

������������
. . . SPECn

tn

��


�

in������������

SPEC′
1� 	

i′1

������������ SPEC

t

��

SPEC′
n


�

i′n������������

SPEC′

Fig. 3. Parallel Extension

lel extension of {tj}j=1..n with respect to {ij}j=1..n and will be denoted as
PE{ij}j=1..n

({tj}j=1..n)
– For any SPECj , 1 ≤ j ≤ n, given the extension diagram of figure 4 and

any SPECk, 1 ≤ k ≤ n, we have that the diagram in figure 5 is a parallel
extension diagram, where i′′k is the composition of ik and t′′. Note that, in
this case, we are asking that the composition of the embedding ik and the
transformation t′′ should be an embedding

A Distributed and Mobile Component System 189

– Parallel extension diagrams can be composed vertically.

Now, in this paper we provide a new semantics to components which can be
seen as a variation on the semantics defined in [2]. In particular, in this paper
we consider that the semantics of a component is defined as a class of tuples of
transformations (refinements) of the export interfaces that have to satisfy some



SPECj

t1

��

� � ij �� SPEC

t′′

��
SPEC′′

j
� � i′′j �� SPEC′′

Fig. 4. Extension Diagram

SPECj

t1

��

� � ij �� SPEC

t′′

��

SPECk�
ik

��

id

��
SPEC′′

j
� � i′′j �� SPEC′′ SPECk�


i′′k
��

Fig. 5. Extension as parallel extension

constraints. On one hand, these transformations must be defined as the compo-
sition of the corresponding export connections ek and a given transformation t
which is a refinement of the body specification. On the other hand, t must be
a parallel extension of some family of refinements of the import specifications.
More precisely:

Definition 4. The semantics of a component COMP :

(BOD,< IMP1, i1, . . . , IMPn, in >, < EXP1, e1, . . . , EXPm, em >)

is defined as follows:

TrafoSem(COMP ) = {< t ◦ e1, . . . , t ◦ em > | t ∈ Trafo(BOD) and
∃t1 ∈ Trafo(IMP1). . . . .∃tn ∈ Trafo(IMPn) t = PE{ij}j=1..n

({tj}j=1..n)}

where Trafo(SPEC) denotes the class of all transformations defined over SPEC.

3

A component system is a set of components together with a set of connections.
More precisely, every component j can have mj import interfaces and pj export
interfaces, and we can connect an import interface of a component j with an
export interface of a component k via a transformation cjk. We will assume that
every component has a name. More precisely:

190 N. Mylonakis and F. Orejas

Definition 5. A component system CS consists of a list of components and a
list of connections which are denoted as Comp(CS) and Conn(CS) respectively.
Each component in Comp(CS) has the form:

C : (BODC , < IMPC
1 , i1, . . . , IMPC

n
C

, inC
>,< EXPC

1 , e1, . . . ,EXPC
mC

, em
C

>)

Component Systems



where C is the name of the component, and each connection in Conn(CS) is a
transformation:

connC,C′ : IMPC
j ⇒ EXPC′

k

where IMPC
j is an import interface of the component C and EXPC′

k is an export
interface of the component C ′.

As in the case of single components, we define the semantics of a compo-
nent system as a set of tuples of transformations of the export specifications
in the system that satisfy a given set of constraints. In particular, given a re-
finement for each import specification of the given system, we require that the
transformation associated to a given export specification should be the compo-
sition of the corresponding export connection and the parallel extension of the
import refinements. This means that these transformations must belong to the
semantics of the components of the system. On the other hand, each connec-
tion, connC,C′ : IMPC

j ⇒ EXPC′
k , induces the additional constraint that the

transformation associated to EXPC′
k composed with connC,C′ coincide with the

given refinement of IMPC
j . More precisely:

Definition 6. Given a component system CS, where Comp(CS) consists of
components:

Cj : (BODCj , < IMPCj , i
Cj

1 , . . . , IMPCj
n

Cj

, iCj
n

Cj

>,

< EXP
Cj

1 , e
Cj

1 , . . . , EXPCj
m

Cj

, eCj
m

Cj

>)

with 1 ≤ j ≤ p and Conn(CS) consists of connections:

connCj1 ,Cj2
: IMP

Cj1
k1

⇒ EXP
Cj2
k2

)

where Cj1 and Cj2 are components in Comp(CS), the semantics of CS is defined
as:

TrafoSem(CS) = {< tC1 ◦ eC1
1 , . . . , tC1 ◦ eC1

m
C1

, . . . , tCp ◦eCp

1 , . . . , tCp ◦ e
Cp
m

Cp
> |

∀j(1 ≤ j ≤ p) ∀k(1 ≤ k ≤ n
Cj

) ∃t′Cj
k ∈ Trafo(IMP

Cj

k ) such that

(tCj = PE{i
Cj
k }k=1..n

Cj

({t′Cj

k }k=1..n
Cj

) and

∀connCj1 ,Cj2
∈ Conn(CS)(tCj2 ◦ e

Cj2
k2

◦ connCj1 ,Cj2
= t′Cj1

k1
)}

In the rest of this section, we define some operations on component systems.
We present an operation to connect two component system by a single connec-
tion, an operation to add a connection to a component system and an operation
to make non-deterministically some or all the connections between two compo-
nent systems.
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defines the following component system:

(Comp(CS1) ∪ Comp(CS2), Conn(CS1) ∪ Conn(CS2) ∪ {con})

Definition 8. If C1 and C2 are components in CS, then the operation to add
a connection to CS

add conn(con : IMPC1 ⇒ EXPC2 , CS)

defines the following component system:

(Comp(CS), Conn(CS) ∪ {con})

The next definition is required for the definition of the next operation:

Definition 9. Given two specifications SP1,SP2, Trans(SP1,SP2) holds if and
only if there exist a transformation t : SP1 ⇒ SP2.

Definition 10. The non-deterministic operation to make some or all the con-
nections between two component systems

make con(CS1, CS2)

with arbitrary set CON such that

con : IMPC1 ⇒ EXPC2 ∈ CON ⇔ C1 ∈ Comp(CS1) ∧
C2 ∈ Comp(CS2)∧ Trans(IMPC1, EXPC2)})

defines the following component system:

(Comp(CS1) ∪ Comp(CS2), Conn(CS1) ∪ Conn(CS2) ∪ CON)

As we explained in the introduction, we need this non-deterministic operation
because we consider our components as autonomous agents which can decide
which interconnections are going to make. Moreover, these interconnections can
vary over time. The only restriction in making a connection is that an import
interface of a component of the first given system and an export interface of
a component of the second given system must be compatible. It may happen
that the import interface in the first system can have several compatible export
interfaces corresponding to different components of the second system. In this
case, the first component system can choose which connection to make and
at a later stage disable the first connection made and make a different new
connection. One may ask if all these connections will always make sense. In
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principle, they should. However, it will depend on how much detail we have
in the interface specifications. For instance, if the interface specifications just

Definition 7. If C1 and C2 are components in CS1 and CS2, respectively, then
the operation to connect CS1 and CS2:

CS1 ◦con:IMP C1⇒EXP C2 CS2



probably, the connection will only be reasonable from a syntactic point of view.
But if the interfaces provide enough semantic detail then all the connections will
make sense. In the example in section 5, we will have a component system CSSRK
which will make a connection with another component system CSSR, and after
changing the location by CSSRK, CSSRK will loose the connection with CSSR
and it will make a new connection with the component system CSCL1.

In order to extend the component system with the ambient calculus, it is nec-
essary to define an interconnected forest of hierarchies of component systems.
Thus, an ambient expression will denote an interconnected forest of hierarchies
of component systems. Every component system in the hierarchy can have as-
sociated a forest of sub-hierarchies. The interconnections among the component
systems of the forest can be made autonomously by the component systems. The
interconnections among component systems of the forest which we allow are from
a component system to its immediate ancestor component system in the hierar-
chy. For this, we have to use a similar operation to make con but now for two
separate component systems in a hierarchy of component systems. This opera-
tion will be called make con uh. Additionally, we allow interconnections among
component systems of the same hierarchy. For this, we will use the operation
make con wh.

The constructor operation for hierarchies (besides the empty hierarchy) is
the following:

– make hier: Operation which given a component system and a forest returns
a hierarchy of interconnected component systems.

The operations which we will use in the definition of the forest associated
to an expression of the ambient calculus are the following (here we just provide
an intuitive description of these operations, although it would not have been
difficult to define them formally):
– empty forest: Operation which returns the empty interconnected forest.
– add forest: Operation which given a component system and an intercon-

nected forest of hierarchies returns a forest with just one hierarchy with
root the given component system and the forest of hierarchies as associated
sub-hierarchies.

– union forest: Operations which given two interconnected forest of hierar-
chies returns the union of the two interconnected forests.

Now we describe the operations make con uh and make con wh which we have
mentioned above to make interconnections among the component systems of a
forest:

– make con uh Operation which given two hierarchies and an interconnected
forest such that the second hierarchy is a sub-hierarchy of the first hierarchy

A Distributed and Mobile Component System 193

in the given interconnected forest, performs non-deterministically a set of
connections from the component system of the root of the sub-hierarchy to
the component system of the root of the hierarchy similar to the operation
make con.

:

describe signatures, without any semantic descriptions of their behaviour, then,



– make con wh Operation which given two hierarchies and an intercon-
nected forest such that the two hierarchies are sub-hierarchies with the
same root in the given interconnected forest, performs non-deterministically
a set of connections from the component system of the root of the first sub-
hierarchy to the component system of the root of the second sub-hierarchy
similar to the operation make con.

These two last operations are used in the following operation which is used to
define the interconnected forest associated to an ambient calculus expression:

– make interconnections: Operation which applies the operations make
con uh or make con wh appropriately to all possible pairs of component
systems which can interconnect.

4

In this section, we extend the component system with operators of the ambient
calculus [1]. We have chosen the ambient calculus because it is a well-established
calculus to describe mobility of processes in a hierarchical physical space of
computing sites represented by ambients. This hierarchical space can change
over time, having the possibility to move an ambient inside another ambient,
to move an ambient out of another ambient and to open an ambient. All these
moves change the hierarchical space of computing sites.

The main idea of the extension is to define an ambient calculus where com-
ponent systems may be attached to the name of an ambient. Thus, in our case,
the hierarchical space of computing sites is a forest of component systems.

The calculus of components with ambients is defined as follows:

P ::= P ‖ Q | (m,CS) | (m,CS)[P ] | !P |
M.P | νn.P |

M ::= in n | out n | open n |M.M ′ |

As in the definition of the ambient calculus n and m range over names, P
and Q over processes and M and M’ over capabilities, which are actions to make
a move. CS ranges over component systems.

As we can observe, the rest of the operators are very similar to those of the
ambient calculus. We have changed the syntax of the parallel operator ‖ where
in [1] is |. See also [1] for an informal explanation of the rest of the operators,
and the formal definition of the function free names which can be extended to
our calculus very easily.

As we mentioned in the previous section, an expression of our calculus de-
notes an interconnected forest of hierarchies of component systems. We define
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-

:

this semantics in two steps. First, a function called Forest defines the forest
associated to each (sub)expression. The second step permits the definition of

Extension of the Component System with the Ambient
Calculus



connections between components belonging to different subsystems. In particu-
lar, we assume that our components are autonomous agents that can establish
connections with other components in a given scope. In this sense, a function
called make interconnections is assumed to define, nondeterministically, the
interconnections that the component systems can perform autonomously as we
described in the previous section.

Definition 11. Given an expression of the ambient calculus (aexpr), the inter-
connected forest of hierarchies of component systems associated to this expression
is defined as follows:

Intconforest(aexpr) = make interconnections(Forest(aexpr))

where the function Forest is inductively defined as follows:

Forest(P ‖ Q) = union forest(Forest(P ),Forest(Q))
Forest((n, CS)) = add forest((n, CS), empty forest())
Forest((n, CS)[Q]) = add forest((n, CS),Forest(Q)))
Forest(M.P ) = Forest(P )
Forest(νn.P ) = Forest(P )
Forest(!P ) = union forest(P,Forest(!P ))

In the following we explain some of the cases of this definition:

– The forest associated to an expression of the form P ‖ Q is the union of
the forests of P and Q, and the forest associated to !P is the infinite forest
built as the union of infinite occurrences of the forest associated to P .

– To build the forest associated to the restriction operator νn.P we should
assign a fresh name to any occurrence of n in P. We do not do so because
we assume that our ambient expression has no name conflicts because it has
been previously renamed appropriately. Otherwise the function Forest would
be incorrect.

– The forest associated to the expression M.P is the forest of P because this
function denotes the forest associated to P before performing the actions M.
After performing the actions M we will have a different forest.

The definition of the structural congruence between expressions of the new
calculus and its operational semantics can be defined in a very similar way as in
the original presentation in [1]. We just present the operational semantics which
is used in the example of the next section. As we can see, this semantics coincides
essentially with the original semantics of the ambient calculus:
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(n, CS)[inm.P ‖ Q] ‖ (m,CS′)[R] → (m,CS′)[(n, CS)[P ‖ Q] ‖ R]
(m,CS)[(n, CS′)[out m.P ‖ Q] ‖ R]] → (n, CS′)[P ‖ Q] ‖ (m,CS)[R]
open m.P ‖ (m,CS)[Q] → P ‖ Q
P → Q ⇒ (νn)P → (νn)Q
P → Q ⇒ (n, CS)[P ] → (n, CS)[Q]
P → Q ⇒ P ‖ R → Q ‖ R
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′



5 Example

This example describes a server with a firewall together with two clients trying
to obtain a software component. This example is based on an example from [1].

The formalism which we use for the specification of components are algebra
transformation systems as in [5]. Thus, specifications denote a class of computa-
tions where we have states which are represented by Σ-algebras and computation
steps are partial functions from Σ-algebras to Σ-algebras.

We assume predefined the component systems CS and CSPROD which de-
note the component system of the client to be finished and the component system
of the server which the client needs to finish an application, respectively. Ad-
ditionally, we will use the component systems CSCL1, CSCL1K’, CSCL1K”,
CSSR, CSSRK and CSCL2.

In what follows, we will give some details of the definition of the component
system of the server CSSR. This component system will consist of two compo-
nents: one defining the proper server and another one defining a firewall. The
server component has two import algebra transformation systems: one from a
client and another one from the firewall. The whole component system is defined
as follows:

(CSSR,< CSR : (BODcsr, < IMP csr
1 , icsr

1 , IMP csr
2 , icsr

2 >, < EXP csr
1 , ecsr

1 >),
CFW : (BODcfw, <>, < EXP cfw

1 , ecfw
1 >) >,

< ccsr1cfw1 : IMP csr
1 → EXP cfw

1 >)

We will denote the part of the component system of the server which is not
a name as CSSRG adding a G at the end of the name of the component system.
We will proceed in the same way with the other component systems.

The attributes of the body of the server will include the following:

CPU,memory, threads, adm domains : integer
sockets : list[queue[cl descr]]
queue sentag : queue[agentid plus descr]
queue recvag : queue[agentid plus descr]
queue sentprod : queue[agentid plus descr]

And the attributes imported by the firewall component will include the fol-
lowing:
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client list : list[client address]
socket fw : list[queue[cl descr]]
queue recv server : queue[agentid plus descr]
queue recv client : queue[agentid plus descr]
queue recv prod : queue[agentid plus descr]

Comments:

– CPU, memory, threads and adm domains are the resources which the server
has to assign to incoming mobile agents from clients.



– Sockets in Application Program Interfaces of protocol software for client-
server applications are implemented in a similar way than operating systems
implement I/O operations to transfer data to or from a file. In both cases the
concept of descriptor is used. Because of lack of space we will not describe
the main operations of sockets.

– The abstract data types of the attributes use standard parameterized spec-
ifications of lists and queues. The queues of agentid plus descr are used to
enqueue agents to be sent or to be received. The lists of queues are lists of
sockets which can have different clients associated to the socket. The list
of client addresses are the client addresses from where the firewall accepts
connection.

– We also use the specification of client descriptor (cl descr), client address
(client address) and agent identification and descriptor (agentid plus descr)
for which we do not give details.

The algebra transformation system of the body of the server will include
computation steps to make the following algebra transformations:

– to initialize the values of the server.
– to create a new socket for the server.
– to accept a client to a socket of the server.
– to assign resources to an agent of a client.
– to enqueue an agent in the first queue of the server to send the agent to a

client accepted in the socket of the server.
– to dequeue an agent in the first queue of the server and enqueue the agent

in the first queue of the firewall.

The two last computation steps can be defined as follows:

– If ag is an agent plus descr such that the descriptor of ag belongs to the
attribute sockets of the server in the given state algebra, then this compu-
tation step enqueues the agent in the attribute queue sentag of the server of
the given state algebra.

– If the attribute queue sentag of the server of the given state algebra is not
empty, this computation rule dequeues an agent of the attribute queue sentag
of the server,andenqueues the obtainedagent inthe attribute queue recv client
of the firewall.
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The component system CSSRK, which is the component system associated to
the agent of the server, is defined with the component CSRK with just an import
algebra transformation system. The import algebra transformation system will
include an operation to assign resources which will be connected to the equivalent
operation of the export algebra transformation system of the server component
of the server component system.

The component system CSCL1 is the component system associated to the
client and it is defined with the component CCL1 with two export algebra trans-



formation systems. One export algebra transformation system includes the op-
erations of the import algebra transformation system of the server component
and the other an operation to assign resources to incoming mobile agents.

The component system CSCL1K’ is the component system associated to the
agent of the client and it is defined with the component CCL1K’ with an import
and an export algebra transformation system. The import algebra transforma-
tion system will also include an operation to assign resources which initially will
be connected to the equivalent operation in the export algebra transformation
system of the component of the client component system.

The component system CSCL1K” is defined with the component CCL1K”
with an import and an export algebra transformation system.

The definition of component system CSCL2 is not necessary to be specified.
The expression of the first client (CLIENT1) is the following:

(CSCL1, CSCL1G)[(CSCL1K ′, CSCL1K ′G)[
open CSSRK.(CSCL1K ′′, CSCL1K ′′G)[open PROD]] ‖
open CSCL1K ′′.CS]

The expression of the second client (CLIENT2) is the following:

(CSCL2, CSCL2G)[(AGENT, (<>, <>))[out CSCL2.in CSSR.R] ‖ S]

The expression of the server (SERVER) is the following:

(νCSSR)(CSSR,CSSRG)[
(CSSRK, CSSRKG)[

out CSSR.in CSCL1.in CSCL1K ′.out CSCL1.in CSCR] ‖
open CSCL1K ′.(PROD, (<>, <>))

[inCSCL1K ′′.out CSSR.in CSCL1.CSPROD]]

Initially, we have the two clients and the server in parallel:

CLIENT1 ‖ CLIENT2 ‖ SERV ER

The interconnected forest of hierarchies of component systems has the hi-
erarchies of CLIENT1 (with root the component system CSCL1 and two sub-
hierarchies, one with root CSCL1K’ and the application CS), CLIENT2 (with
root CSCL2 and subhierarchy AGENT) and SERVER (with root CSSR and
two subhierarchies, one with root CSSRK and the product PROD). Some of the
interconnections of the forest of hierarchies are the following:
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– An interconnection from an import algebra transformation system of the
component CSR of CSSR to the export algebra transformation system of
the component CCL1 in CSCL1.

– An interconnection from the import algebra transformation system of the
component CSRK in CSSRK to an export algebra transformation system of
the component CSR in CSSR. The import and export algebra transformation
systems contain an operation to assign resources to the agent CSSRK.



Client2 cannot access the server. Client1 can access the server and obtain the
software component. In the following, we will see how the protocol works.

In the first sequence of the reductions, a server agent with component system
CSSRK, enters client with component system CSCL1.

The result expression is the following:

(CSCL1, CSCL1G)[(CSSRK, CSSRKG)[
inCSCL1K ′.out CSCL1.in CSSR]] ‖
(CSCL1K ′, CSCL1K ′G)[
open CSSRK.(CSCL1K ′′, CSCLK ′′G)[open PROD]
‖ open CSCL1K ′′.CS] ‖ (νCSSR)(CSSR,CSSRG)[

open CSCL1K ′.(PROD, (<>, <>))
[inCSCL1K ′′.out CSSR.in CSCL1.CSPROD]] ‖

CLIENT2

Now we analyze the dynamic reconfiguration of the interconnected forest of hier-
archies. The hierarchy of SERVER has not got the server agent with component
system CSSRK anymore, and now it is in the CLIENT1 hierarchy. Additionally,
the component system of the server agent CSSRK looses his connection with
the global component system of the server CSSR, and when entering the client,
it establishes a new connection with the global component system of the client
CSCL1. This new connection will allow the agent of the server to gain resources
in the client, which are shared with the resources which use the agent client with
component system CSCL1K’.

In the following sequence of reductions, the agent with component system
CSSRK enters the ambient with component system CSCL1K’:

(CSCL1, CSCL1G)[(CSCL1K ′, CSCL1K ′G)[
open CSSRK.(CSCL1K ′′, CSCL1K ′′G)[open PROD] ‖
(CSSRK, CSSRKG)[out CSCL1.in CSSR]] ‖ open CSCL1K ′′.CS] ‖
(νCSSR)(CSSR,CSSRG))[open CSCL1K ′.(PROD, (<>, <>))

[inCSCL1K ′′.out CSSR.in CSCL1.CSPROD]]CLIENT2

Next, the agent with component system CSCL1K’ of the client with component
system CSCL1 enters the server:

(CSCL1, CSCL1G)[open CSCL1K ′′.CS] ‖
(ν CSSR)(CSSR,CSSRG)[(CSCL1K ′, CSCL1K ′G)[
(CSCL1K ′′, CSCL1K ′′G)[open PROD]] ‖ open CSCL1K ′.(PROD,
(<>, <>))[in CSCL1K ′′.out CSSR.in CSCL1.CSPROD]] ‖ CLIENT2
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Making this move, the component system CSCL1K’ of the agent looses the
connection with the component system of the client CSCL1, and when entering
the server, it establishes a connection with the global component system CSSR
of the server. This connection will allow the agent to gain resources in the server.



Finally, the agent with component system CSCL1K’ of the client which is
now in the server takes the component and moves it to the client. The final
expression is the following:

(CSCL1, CSCL1G)[CS ‖ CSPROD] ‖
(ν CSSR)(CSSR,CSSRG)[] ‖ CLIENT2

6

In this paper we have presented an extension of an existing generic component
system to be able to develop distributed and mobile applications. The extension
is based on the ambient calculus. In particular, this extension is based on attach-
ing component systems to ambients, in such a way that the typical operations on
ambients, such as in, out or open, imply the mobility of the associated compo-
nents. We would have liked to extend our generic approach to components with
an (equally) generic approach to mobility. Nevertheless, we think that this is an
important step to provide the basis for a general approach for the development
of component-based distributed and mobile applications. In particular, we are
now able to describe applications which dynamically reconfigurate an intercon-
nected forest of hierarchies of component systems as we have seen in a simple
and comprehensive example.

Acknowledgments: We would like to thank the anonymous referees for
their comments.

References

1. L. Cardelli and A. D. Gordon. Mobile ambients. In In Maurice Nivat, editor,
Proc. FOSSACS’98, International Coference on Foundations of Software Science
and Computation Structures, volume 1378 of Lecture Notes in Computer Science,
pages 140–155. Springer-Verlag, 1998.

2. Hartmut Ehrig, Fernando Orejas, Benjamin Braatz, Markus Klein, and Martti Pi-
irainen. A generic component framework for system modeling. In FASE 2002 (LNCS
2306), 2002.

3. Ole Jensen and Robin Milner. Bigraphs and mobile processes. Technical report,
University of Cambridge, UCAM-CL-TR-57.

4. Stefan Mann, Alexander Borusan, Hartmut Ehrig, Martin Grosse-Rhode, Rainer
Mackenthun, Asuman Sunbul, and Herbert Weber. Towards a component con-
cept for continuos software engineering. Technical Report Bericht 55/00, Institut
Software-und Shystemtechnik, 2000.

5. Fernando Orejas and Hartmut Ehrig. Components for algebra transformation sys-
tems. In Electronic Notes in Theoretical Computer Science 82 N. 7, 2003.

200 N. Mylonakis and F. Orejas

Conclusions and Future Work



Application and Formal Specification of
Sorted Term-Position Algebras

Arnd Poetzsch-Heffter and Nicole Rauch

University of Kaiserslautern
poetzsch, rauch @informatik.uni-kl.de

Abstract. Sorted term-position algebras are an extension of term alge-
bras. In addition to sorted terms with constructor and selector functions,
they provide term positions as algebra elements and functions that re-
late term positions. This paper describes possible applications of term-
position algebras and investigates their formal specification in existing
specification frameworks. In particular, it presents an algebraic specifi-
cation of term-positions in Casl and in a higher-order logic.

1 Introduction

Sorted term algebras are a very helpful and flexible concept for modeling and
programming. In particular, they provide the foundation for the datatype decla-
rations in functional programming languages and sorted specification languages
(see e.g. [1, 2]). Term-position algebras, or tepos-algebras for short, are an exten-
sion of term algebras. Conceptually, a term position is a node within a given
sorted tree. While for a constructor term it only makes sense to ask for its sub-
terms, term positions enable to refer to parent positions and, more generally, to
the upper tree context of positions. Formally, a term position p in a constructor
term t is the occurrence of a subterm s of t in t. We call s the term belonging to
p and t the root term of p. The tepos-algebra for a given sorted term algebra A
and a sort S of A is an extension of A by all positions in constructor terms of
sort S.

An important aspect for the practical use of term-position algebras is that
they need no further declaration constructs and almost no additional declara-
tion work by the user1. They are defined based on the usual language constructs
for datatype declaration. In this paper, we investigate the design and the formal
specification of the semantics of sorted tepos-algebras. The goal is to use existing
specification and verification frameworks for the semantics specification so that
their tooling and verification support can be exploited. As specification frame-
works, we consider Casl [3–5] and Isabelle/HOL [6]. The contribution of the
paper has different aspects: It introduces tepos-algebras as a powerful language
concept and their formalization as an interesting specification challenge. In the
main parts of the paper, we describe how this challenge can be solved in Casl
and Isabelle/HOL and compare the two specifications.
1 By a user, we mean a person who writes programs or specifications based on term

and tepos-algebras.
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Overview The rest of the paper is structured as follows. Section 2 provides an
informal introduction to the use of tepos-algebras by a small example. Section 3
explains the design choices underlying the specification of tepos-algebras and
formulates the specification challenge. Section 4 presents the specification of
tepos-algebras in Casl. Section 5 shows how tepos-algebras can be specified
in Isabelle/HOL. Section 6 discusses the approach in relation to other work.
Section 7 contains the conclusions.

2 Tepos-Algebras at Work

In this section, we show how tepos-algebras can be used in programming and
specification. With this introduction, we pursue four goals:
– The reader should get some intuitive understanding of how tepos-algebras

can be applied. According to our experiences2, working with constructor
terms and term positions, that is, with two tree representations at once, is
unfamiliar at the beginning, but well accepted after having studied some
examples.

– We want to give some idea of how tepos-algebras can be integrated into
programming or specification languages.

– To motivate the study of tepos-algebras, we like to demonstrate that they
enable new specification techniques. In the example below, we show two such
aspects from the area of programming language specification: 1. Simplifying
the formulation of context conditions. 2. Avoiding continuation semantics
for a language with gotos.

– A subset of the example will later be used to illustrate the formal specifica-
tion of tepos-algebras.

For illustration purposes, we assume a fictitious programming or specification
language TePos with a datatype construct for the declaration of free recursive
datatypes with constructors and selectors (such datatype declarations are avail-
able in most typed functional programming languages and specification lan-
guages).

Datatype Declaration. In TePos, the declaration of the abstract syntax of a small
imperative programming language with gotos is as follows:

datatype SIMPL is

Prog = prgm( stm: Stmt )

Stmt = assg( lhs: Idt , rhs: Expr )

| sequ( fst: Stmt, scd: Stmt )

| loop( cnd: Expr, bod: Stmt )

| goto( tid: Idt )

| labl( lid: Idt, stm: Stmt )

2 Most of our experiences were made with students in compiler construction courses,
in which we used a tool based on tepos-algebras [7, 8].

.

Expr = vare( idt: Idt )

| cons( val: Int )

| plus( fst: Expr, scd: Expr )

end
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This declaration uses the sorts Idt for identifiers and Int for integer constants,
it introduces SIMPL3 as a name for the declaration, and defines new sorts Prog
with constructor prgm as well as Stmt and Expr with constructors for the different
statement and expression kinds. Besides term sorts and constructors, it provides
term selectors like stm, lhs, and rhs that allow to select the subterm of a
given term. Selectors are partial functions. For example, the evaluation of fst(
assg("a", cons(8)) ) is not defined, because fst is a selector that only works
for terms constructed by sequ. How partiality is handled in TePos is irrelevant
for this paper. We allow overloading of selector names if their domain sorts are
different. Otherwise overloading is not allowed.

Tepos-Algebra Declaration. TePos supports a declaration that provides the el-
ements and features of a tepos-algebra. The tepos-algebra is defined as an ex-
tension of a datatype (here SIMPL) and one of its sorts (here Prog). As a third
argument, it takes a string (here "Pos") that is used to name position sorts.
Here is the declaration for our example:

datatype SIMPLPOS is tepos of SIMPL, Prog, "Pos" end

This one-line declaration defines the tepos-algebra with a number of sorts and
functions. It defines the sorts ProgPos, StmtPos, ExprPos, IdtPos, and IntPos
of positions in terms of sort Prog. For example, an element of sort StmtPos rep-
resents a subterm occurrence of sort Stmt in a term of sort Prog. The declaration
also defines the overloaded functions

term: ProgPos -> Prog pos: Prog -> ProgPos

term: StmtPos -> Stmt root: StmtPos -> ProgPos

term: ExprPos -> Expr root: ExprPos -> ProgPos

term: IdtPos -> Idt root: IdtPos -> ProgPos

term: IntPos -> Int root: IntPos -> ProgPos

The function term yields the term belonging to a position (as defined in Sect. 1);
pos yields the root position of a term of sort Prog; and root yields the root
position for a given position. Thus, root is a first example of a function on
positions p that refers to the upper tree context of p.

To reach child positions, that is, positions down the tree, the declaration
SIMPLPOS defines selectors for positions. To keep the naming simple, we overload
the term selectors. For example, the selector cnd: Stmt -> Expr is overloaded
by a selector cnd: StmtPos -> ExprPos. Both selectors are partial functions,
and the position selector is defined for a position p if and only if the term selector
is defined for the term belonging to p. Altogether, we get two tree representations
linked by the functions pos and term. Figure 1 illustrates this for a simple term.

3 Simple Imperative Programming Language

By distinguishing between datatype constructors and other functions, Fig-
ure 1 also indicates a central aspect of how tepos-algebras are specified. Argu-
ment flow of datatype constructors is denoted by solid arrows. For the other

.
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Expr

Stmt
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ExprPos

StmtPos

IdtPos

stm

cnd
bod

idt lhs
rhs

pos

term

root
prgm

loop

vare assg

Fig. 1. Illustration of tree representations with terms and positions

functions, we use dashed arrows. Note that the position tree is constructed from
the root to the leaves (see Sect. 4).

Tepos-Algebra Extension and Use. A fully-fledged language supporting tepos-
algebras would provide further features. In this section, we illustrate and use
subsorting on term and position sorts and an extended form of pattern matching.
In Section 4, we show how a supersort of all position sorts can be specified and
used as a basis for further functions.

Subsorting for free datatypes is naturally defined by the constructors. All
terms constructed by a constructor c form one subsort of the range sort of c. We
denote the subsorts by the constructor name with a capitalized first letter. For
example, Goto denotes the goto-statements, that is, the subsort of Stmt that
contains exactly those terms constructed by goto. The corresponding subsorts
on positions are denoted by the postfix ”Pos” (for example, GotoPos). It should
be clear that such a subsorting needs no special declarations by the user but can
be implicitly provided by the language used.

Based on the declarations SIMPL and SIMPLPOS, we can define interesting lan-
guage properties in an elegant declarative way. We start with context conditions.
For example, labels must be unique in SIMPL-programs. That is, two different
labeled statements lp1, lp2 in the same program (root(lp1 ) = root(lp2 )) must
have different label identifiers:

∀ LablPos lp1 , lp2 :
lp1 �= lp2 ∧ root(lp1 ) = root(lp2 ) ⇒ term(lid(lp1 )) �= term(lid(lp2 ))

Recall that applying the selector lid to a labeled statement position yields an
identifier position. To get the identifier at that position, we have to apply the
function term (cf. Fig. 1). The second context condition states that for each goto
statement there must be a corresponding labeled statement:

∀ GotoPos gp ∃ LablPos lp :
root(gp) = root(lp) ∧ term(tid(gp)) = term(lid(lp))
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It is worth noting that, without positions, these properties can only be formalized
by a nontrivial environment or symboltable mechanism.

For SIMPL-programs satisfying the context conditions, we can define a func-
tion target that yields for a goto statement the unique target statement:

target: GotoPos -> LablPos

The specification of target is given in the appendix. Here, it is of interest that
the user of target need not know about the specification details. The function
target links one position of the tree to another one. In particular, we can use
it to express an operational semantics for SIMPL without continuations (see
[9] for a discussion on continuation semantics). We present such a semantics
here as an example to discuss pattern matching on positions. Let State be the
sort of mappings from identifiers to integers, eval be a function evaluating an
expression in a state, and update be a function that takes a state st, an identifier
id, and a value v and yields a “new” state nst such that nst(i) = st(i) for all
i �= id and nst(id) = v:

State = Idt -> Int update : State x Idt x Int -> State

eval : Exp x State -> Int

Based on these notions, the execution of a SIMPL-program p in state st is defined
by exec(stm(pos(p)),st) where exec is specified as follows:

exec: StmtPos x State -> State

exec(sp, st) = case sp of

assg<v,e> => update(st,term(v),eval(term(e),st))

| sequ<sp1,sp2> => exec(sp2, exec(sp1,st))

| loop<e,bod> => if eval(term(e),st)=0 then st

else exec(sp,exec(bod,st))

| Goto<_> => exec(target(sp),st)

| Labl<_,sp0> => exec(sp0,st)

The case expression is similar to that of functional programming languages.
The difference is that matching works on positions. For example, the pattern
assg<v,e> matches statement positions of sort AssgPos with child positions v
and e. The reason to use a position instead of a term representation of statements
is that the execution of goto statements refers to the target statement in the
upper context. This can not directly be expressed by constructor terms.

This section should have given some idea of how tepos-algebras can be used
in programming and specification. Further examples as well as language and
implementation issues are described in [7]. The following sections focus on the
challenge of how tepos-algebras can be formally specified.

3 Specification Challenge

On the meta-level, term positions are usually formalized as pairs with the root
term as first component and a sequence of natural numbers as second component.
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The number sequence describes the selection path from the root position of the
term to the subterm position. To illustrate this, let t be the term of Fig. 1:

prgm( loop( vare("b"), assg("b",plus(vare("b"),vare("c"))) ) )

Using brackets to enclose list elements in the meta-notation, the position at
the root of the program is denoted by (t, []), the position of the loop statement
by (t, [1]), of the assignment by (t, [1, 2]) and of the identifier “b” on the left
hand side of the assignment by (t, [1, 2, 1]). For object-level specifications, this
approach has the following four disadvantages: (a) Positions are not sorted; (b)
selection by numbers is error-prone; (c) modifications or extensions of the term
algebra (e.g. adding a parameter to a constructor) cause subtle modifications
of the position handling; (d) the algebraic laws of term positions are hidden.
To overcome these disadvantages, tepos-algebras should be formalized within a
specification framework in a way that positions are ordinary sorted elements.

The main design problem for tepos-algebras pertains to the sorting/typing
discipline for the positions. Essentially, there are four options:

1. All positions of all terms are in one sort.
2. Positions are sorted according to the term sorts they correspond to. That is,

there is exactly one position sort for each term sort.
3. In addition to the second option, position sorts are distinguished with respect

to the sort of the root term. That is, a position sort captures the information
about the sort of the root.

4. Position sorts are dependent sorts, depending on the root term.

For the following reasons, we chose the third design option: It is sufficiently fine
grained for the applications that we are interested in and that we can imagine
so far (see Sect. 2 and [7]). The more coarse grained sorts of the first and second
option can be realized within this option by introducing further supersorts. We
avoid dependent sorts that are not supported by many specification frameworks.
Based on this design decision, the specification challenge is as follows:

Given a sorted free datatype specification with sorts S0, ..., Sn, suit-
able constructors and selectors, and a sort S ∈ {S0, ..., Sn}, specify
the corresponding tepos-algebra with suitable sorts and functions.

Essentially, there exist two approaches to formalize new language concepts or
constructs. Either one writes a freestyle mathematical definition, or one uses ex-
isting specification languages and frameworks. The first approach provides more
flexibility, the second approach allows to inherit the techniques and tools under-
lying the specification framework. Here, we investigate the second approach. As
specification frameworks, we use the algebraic order-sorted specification language
Casl and the higher-order many-sorted specification language of Isabelle/HOL.
For both frameworks, we specify tepos-algebras by a shallow embedding, that is,
we define how a tepos-algebra declaration like that for SIMPLPOS given above
is translated into the specification language.
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4 Specifying Tepos-Algebras in an Algebraic Framework

The specification of tepos-algebras in Casl is described in two steps. In the
first step, we concentrate on the kernel of tepos-algebras containing the position
sorts, the selectors on position sorts, and the functions pos and term. As an
introduction, we demonstrate the shallow embedding of the kernel by a repre-
sentative example (Sect. 4.1). Then, we define it for the general case (Sect. 4.2).
In the second step, we explain how extensions of the kernel can be formalized in
Casl (Sect. 4.3).

4.1 Introduction to the Tepos-Algebra Specification in CASL

The declaration of a tepos-algebra consists of three parts:

1. a declaration of a free datatype,
2. a declaration of the sort of terms for which the positions should be defined,
3. declarations for the naming of new sorts and functions.

In Casl, the free datatype can be given as a named specification based on some
externally declared sorts. As a tiny example, we consider a subset of the abstract
syntax of SIMPL (cf. Sect. 2). The extension to SIMPL is straightforward. In
Casl syntax, we get the following declaration:

spec SIMPLS = sort Idt then free types

Prog ::= prgm( stm:? Stmt );

Stmt ::= assg( lhs:? Idt ; rhs:? Expr )

| sequ( fst:? Stmt; scd:? Stmt )

| loop( cnd:? Expr; bod:? Stmt );

Expr ::= vare( idt:? Idt )

| plus( fst:? Expr; scd:? Expr )

The question mark after the selector names indicates that selectors are partial
functions. Note that Casl allows overloading of functions as demonstrated by
the selector fst. To declare the tepos-algebra for SIMPLS, we could imagine an
extension of Casl allowing declarations like:

spec SIMPLSPOS = tepos(SIMPLS,Prog,"Pos")

The meaning of this declaration is defined by giving a Casl specification for it.
The basic idea underlying this specification is taken from the meta-level repre-
sentation of a position as a pair of the root term and a list of natural numbers
describing the selection path – recall the example (t, [1, 2, 1]) from above. To ex-
press the position at the root, we use a constructor pos, that is, we write pos(t)
instead of (t, []). The selection of child positions is denoted by unary functions
as well. For convenience, we reuse the names of the selectors on the term side for
these functions. For example, (t, [1, 2, 1]) would be denoted on the object-level
as lhs(bod(stm(pos(t)))). This overloading can be handled by Casl if position
sorts are different from term sorts and if position sorts corresponding to different
term sorts are different as well. Our approach fulfills this requirement; recall our
design decision described in the previous section. Following this basic idea leads
to two specification problems:

Application and Formal Specification of Sorted Term-Position Algebras 207



1. How do we specify that different selection paths yield different positions?
2. How do we distinguish “valid” selection paths from “invalid” ones, that is,

from paths that do not denote a position in the root term?

The first question has a canonical answer: Use a free type specification in which
the selection functions stm, bod, etc. are the constructors of the position sorts.
Unfortunately, this leads to a conflict with the second problem, because we get
many invalid paths. To overcome this conflict, we can use partial constructors
and enforce that they are defined if and only if the path is valid. As a partial
function yields “undefined” in a free specification whenever we do not force it
explicitly to yield a defined value, we only have to specify in which cases the
paths are valid.

A path is valid iff all selection steps are valid. A selection step by selection
function sel on a position pp is valid iff the selection by sel is defined on the
term belonging to pp. To formalize this, we have to specify a function term that
yields for each position the term belonging to it. term can be defined recursively:
For the root position of a term p, we have term(pos(p)) = p. Otherwise, if pp is
a position and sel is a selection function for the sort of pp, then term(sel(pp)) =
sel(term(pp)).

The main challenge now is that the specification of the partial constructors
and the recursive specification of term are mutually dependent. Thus, in order
to implement these ideas in a specification framework, it has to support free
specifications of this kind for types with partial constructors and for total recur-
sive functions. Casl meets this challenge. Thus, our specification approach can
directly be formulated in Casl. Figure 2 demonstrates this for SIMPLSPOS.

The next subsection provides a complete description of the embedding that
we illustrated here by the example.

4.2 Complete Description of the Embedding

In this subsection, we describe how the tepos-algebra for a given datatype dec-
laration is specified in general. Furthermore, we discuss validation issues. Tepos-
algebras are declared based on datatype declarations of the following form:

spec DT = sorts U1, . . . ,Up then free types

S1 ::= con1
1 ( sl11,1 :? T1

1,1 ; . . . ; sl11,n(1,1) :? T1
1,n(1,1) )

. . .

| con1
m(1) ( sl1m(1),1 :? T1

m(1),1 ; . . . ; sl1m(1),n(1,m(1)) :? T1
m(1),n(1,m(1)) );

. . .

Sr ::= conr
1 ( slr1,1 :? Tr

1,1 ; . . . ; slr1,n(r,1) :? Tr
1,n(r,1) )

. . .
| conr

m(r) ( slrm(r),1 :? Tr
m(r),1 ; . . . ; slrm(r),n(r,m(r)) :? Tr

m(r),n(r,m(r)) )

where Si are different sort names and Ti
j,k denote sorts that are either in the

defined sorts {S1, . . . ,Sr} or in the used sorts {U1, . . . ,Up}. We assume that the
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spec SIMPLSPOS = SIMPLS then free {

types

ProgPos ::= pos( Prog );

StmtPos ::= stm( ProgPos )?

| fst( StmtPos )?

| scd( StmtPos )?

| bod( StmtPos )?;

ExprPos ::= rhs( StmtPos )?

| cnd( StmtPos )?

| fst( ExprPos )?

| scd( ExprPos )?;

IdtPos ::= lhs( StmtPos )?

| idt( ExprPos )?;

ops

term : ProgPos -> Prog;

term : StmtPos -> Stmt;

term : ExprPos -> Expr;

term : IdtPos -> Idt;

vars p: Prog; pp: ProgPos;

sp: StmtPos; ep: ExprPos;

. term(pos(p)) = p

. term(stm(pp)) = stm(term(pp))

. term(fst(sp)) = fst(term(sp))

. term(scd(sp)) = scd(term(sp))

. term(bod(sp)) = bod(term(sp))

. term(rhs(sp)) = rhs(term(sp))

. term(cnd(sp)) = cnd(term(sp))

. term(fst(ep)) = fst(term(ep))

. term(scd(ep)) = scd(term(ep))

. term(lhs(sp)) = lhs(term(sp))

. term(idt(ep)) = idt(term(ep))

}

Fig. 2. Casl specification for SIMPLSPOS

specification does not use the names pos and term, that all constructor names
coni

j are different, and that selectors are only overloaded if they have different
domain sorts, that is, selector names sl i1j1,k1

and sl i2j2,k2
may only be equal if

i1 �= i2. To keep the following construction simple, we assume that there is at
least one ground term for each used and defined sort. We say that a string π
is an admissible postfix for a set T of sort names if no sort name in T ends
with π. For brevity, we will not distinguish between sorts and their names in the
following.

The declaration of a tepos-algebra for a datatype declaration DT with defined
sorts S and used sorts U consists of a sort S in S and a postfix π admissible for
S ∪ U . To formalize the meaning of such a declaration, we need some notions
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and notations. We say that T is a sort reachable from S iff there is a term of
sort S with a subterm of sort T. In particular, S is reachable from S (recall
that there is a term in S). The set of sorts reachable from S in DT is denoted
by R = {R1, . . . ,Rq}. Without loss of generality, we assume that S equals R1.
Furthermore, we need new schematic names:

– The selector names with range type Ri and a domain type in R are denoted
by slr i

1, . . . , slr
i
l(i). Note that each schematic name slr i

j denotes the same
name as one of the schematic names slkl,m.

– The index of the domain type of selector slr i
j is denoted by dom(i, j), that

is, the domain type is Rdom(i,j).
– Rπ

ix denotes the sort name obtained from Rix by appending π where ix is a
single or double index.

Based on these notations, the tepos-algebra for DT, R1, and π is defined by the
Casl specification shown in Fig. 3.

Validation. As the specification given in Fig. 2 defines the meaning of the tepos-
algebra for datatype DT, it can only be validated and not verified. Validation

DT then free {
Rπ

1 ::= pos ( R1 )
| slr1

1 ( Rπ
dom(1,1) )?

. . .
| slr1

l(1) ( Rπ
dom(1,l(1)) )?;

Rπ
2 ::= slr2

1 ( Rπ
dom(2,1) )?

. . .

Rπ
q ::= slrq

1 ( Rπ
dom(q,1) )?

. . .
| slrq

l(q) ( Rπ
dom(q,l(q)) )?;

ops

term : Rπ
1 → R1 ;

. . .
term : Rπ

q → Rq ;

vars x : R1; x1 : Rπ
1 ; . . . ; xq : Rπ

q ;

· term( pos(x) ) = x
· term( slr1

1(xdom(1,1)) ) = slr1
1( term(xdom(1,1)) )

. . .
· term( slr1

l(1)(xdom(1,l(1))) ) = slr1
l(1)( term(xdom(1,l(1))) )

. . .
· term( slrq

1(xdom(q,1)) ) = slrq
1( term(xdom(q,1)) )

. . .
· term( slrq

l(q)(xdom(q,l(q))) ) = slrq
l(q)( term(xdom(q,l(q))) )

}

Fig. 3. Complete embedding schema for tepos-algebras
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Proof of lemma 1: sln(. . . sl1(pos(t)) . . .) is well-sorted according to the con-
struction of the specification. The first property is proved by induction on n.
For n = 0, we get term(pos(t)) = t as a direct consequence of the first axiom.
Now, let us assume sln(. . . sl1(t) . . .) = term(sln(. . . sl1(pos(t)) . . .)) and let sl
be a constructor such that sl(sln(. . . sl1(t) . . .)) is well-sorted. We derive:

sl(sln(. . . sl1(t) . . .))
= (∗ by induction hypothesis ∗)

sl(term(sln(. . . sl1(pos(t)) . . .)))
= (∗ by the axiom corresponding to sl ∗)

term(sl(sln(. . . sl1(pos(t)) . . .)))

The second property is derived from the first. (1) If sln(. . . sl1(t) . . .) is defined,
then term(sln(. . . sl1(pos(t)) . . .)) is defined because of the strong equality. Be-
cause the interpretation of term is strict, sln(. . . sl1(pos(t)) . . .) is defined as
well. (2) If sln(. . . sl1(pos(t)) . . .) is defined, then term(sln(. . . sl1(pos(t)) . . .)) is
defined, because term is specified as a total function. Because of strong equality,
the second property yields that sln(. . . sl1(t) . . .) is defined as well. QED

here means to check that the specification formalizes our informal understanding
and that it has the properties we expect (see [10] for a discussion). An essential
property is for example that the extension exists and is unique (up to isomor-
phism). This holds because we used a free construction based on equational
axioms only.

A second important validation property is that the elements in the position
sorts represent exactly the positions in the terms of sort R1. To show this and to
illustrate where the Casl semantics comes in, let us assume that A is a partial
algebra satisfying the specification. In the following, we consider all terms to be
interpreted in A. We first prove an auxiliary lemma. Then, we come back to the
validation property.

Lemma 1. Let t be a term of sort R1, let sl1, . . . , sln be some selectors, and let
sln(. . . sl1(t) . . .) be well-sorted. Then sln(. . . sl1(pos(t)) . . .) is well-sorted and:

1. sln(. . . sl1(t) . . .) = term(sln(. . . sl1(pos(t)) . . .)) (strong equality)

2. sln(. . . sl1(t) . . .) is defined ⇔ sln(. . . sl1(pos(t)) . . .) is defined

The second validation property says that the elements of the position sorts
represent exactly the valid selection paths for the terms of sort R1:

Lemma 2. Let MetaPos(Ri) be the set of valid selection paths from a term t
of sort R1 to a subterm of sort Ri and let Rπ

i (A) denote the carrier set of sort
Rπ

i in A. Then the following mappings ρi, i ∈ {1, . . . , q}, are bijective:

ρi : MetaPos(Ri) → Rπ
i (A)

ρi( (t, [sl1, . . . , sln]) ) =def sln(. . . (sl1(pos(t))) . . .)
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Proof sketch of lemma 2: We have to show that the mappings ρi are well-defined,
injective, and surjective:
1. Well-defined: The second property of lemma 1 guarantees well-definedness.
2. Injective: It is easy to show that the standard algebra of term positions as
introduced informally in Sect. 2 is a model of the specification. In that algebra,
different selection paths yield different positions. Since A is an initial algebra,
this property holds for A as well.
3. Surjective: According to the Casl semantics, the position sorts are gener-
ated by the constructors. That is, each element p of a position sort Rπ

i (A) has
a representation of the form p = slk(...(sl1(pos(t)))...). Consequently, slk(...
(sl1(pos(t)))...) is defined. According to lemma 1, this implies that slk(...sl1(t)
...) is defined as well. Thus, we have a preimage for each element of a position
sort. QED

4.3 Extending the Tepos-Algebra Kernel

In Sect. 2, we worked with a tepos-algebra that contained more sorts and func-
tions than the tepos-algebra kernel described above. For example, we used a
function root and subsorts GotoPos and LablPos. Such extensions can easily
be declared on top of the kernel. In Casl, their specification is straightforward.
We show here only how the function root and some subsorts can be specified.
Other examples would be a supersort for all positions and functions operating
on such supersorts (for instance, a function parent that yields for each position
the parent position). Which of these extensions are included in tepos-algebras is
mainly a language design issue and beyond the scope of this paper.

We illustrate the specification of additional functions and subsorts based on
the example specification SIMPLS. The function root can be recursively defined:

vars t : Prog; pp : ProgPos; sp : StmtPos; ep : ExprPos;
· ¬def root(pos(t))
· root(stm(pp)) = pp when pos(term(pp)) = pp else root(pp)
· root(fst(sp)) = root(sp)
· root(scd(sp)) = root(sp) · root(fst(ep)) = root(ep)
· root(bod(sp)) = root(sp) · root(scd(ep)) = root(ep)
· root(rhs(sp)) = root(sp) · root(lhs(sp)) = root(sp)
· root(cnd(sp)) = root(sp) · root(idt(ep)) = root(ep)

In a handwritten specification, the case for constructor stm can be simplified
into root(stm(pp))=pp, because in the abstract syntax of SIMPL a term of sort
Prog never occurs as a subterm. However, in general, terms of the root sort can
occur as subterms. Thus, a case distinction can be necessary. Finally, we show
how subsorts of sorts with multiple constructors can be specified. Casl allows
to introduce new subsorts in a convenient way by set comprehension:

sort Assg = { t : Stmt. ∃ id : Idt, e : Expr. t = assg(id, e) }
sort AssgPos = { p : StmtPos. term(p) ∈ Assg }
. . .
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5 Specifying Tepos-Algebras in Higher-Order Logic

When we first looked at different specification frameworks to specify the seman-
tics of tepos-algebras, Casl seemed not only appealing because of its support for
partial functions and constructors. Appealing was as well the tool HOL-Casl
[11] that allows to generate a higher-order theory from a Casl specification.
Unfortunately, the current version of HOL-Casl does not support partial con-
structors in free specifications. Furthermore, HOL-Casl uses a special bottom
element to encode partiality into HOL which only supports total functions. In
our experiments, it turned out that for our verification goals it is more suit-
able and elegant to use a different encoding. That is why we developed our own
embedding into the Isabelle/HOL framework.

The basic idea of our embedding is as follows. Partiality of a function f is
handled by a definedness predicate def f that yields true for all values on which
f is defined. For values x with ¬ def f (x), we specify that f(x) = arbitrary where
arbitrary is some arbitrary element of the range of f . (Isabelle/HOL guarantees
that sorts are nonempty and uses the Hilbert operator to formalize arbitrary .)

A typical application of this technique is the specification of the selectors for
datatypes. The standard datatype construct of Isabelle/HOL does not support
selectors. Thus, they have to be specified separately. As in Sect. 4, we use the
specification SIMPLS to demonstrate the embedding. For example, the selectors
stm and lhs are specified as follows:

stm (x ::Prog) ≡ case x of prgm y ⇒ y
def stm x ≡ case x of prgm y ⇒ True

lhs (x ::Stmt) ≡ case x of assg (y , z ) ⇒ y
| sequ (y , z ) ⇒ arbitrary
| loop (y , z ) ⇒ arbitrary

def lhs x ≡ case x of assg (y , z ) ⇒ True
| sequ (y , z ) ⇒ False

| loop (y , z ) ⇒ False

Starting from the datatype and selector specification, we specify the position
sorts. As Isabelle/HOL does not support partial constructors, we have to do this
in several steps:

All such specifications extending the tepos-algebra kernel can be generated au-
tomatically without needing any further declaration support from the user.

1. In the first step, we freely-generate sorts that contain more elements than
we have positions. We call the sorts ProgPosU, StmtPosU, ExprPosU, and
IdtPosU where “U” stands for unrestricted.

2. Then, we define functions corresponding to term on these sorts.
3. Using these functions, we define subsets of the unrestricted position sorts.
4. By lifting the subsets, we define the new sorts ProgPos, StmtPos, ExprPos,

and IdtPos.
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The datatype specification for the unrestricted sorts looks as follows – we append
the character “U” to the end of the constructor names because Isabelle/HOL
does not allow to overload the names of the selector functions by constructor
names (for brevity, we leave out some productions):
datatype ProgPosU = posU Prog
and StmtPosU = stmU ProgPosU

| fstU StmtPosU
| scdU StmtPosU
| bodU StmtPosU

and ExprPosU = rhsU StmtPosU

| ...

The term-function is defined via primitive recursion. Since Isabelle/HOL does
not allow overloading of primitive recursive functions, we specify one term-
function for each sort. For brevity, we only show parts of the specifications and
simplify the original Isabelle/HOL source a bit:

primrec
termP (posU p) = p
termS (stmU p) = stm(termP p)
termS (fstU p) = fst(termS p)
...

Using the term-functions, we inductively define the sets of all valid positions.
Starting from a valid position, if the application of a selector on the term side is
defined, then the application on the position side yields another valid position.
These sets are denoted with a postfix “S” (for “set”). Again, we display only a
small part of the specification.

ProgPosS :: ProgPosU set
inductive ProgPosS
(posU x) ∈ ProgPosS

StmtPosS :: StmtPosU set
inductive StmtPosS
(x ::ProgPosU ) ∈ ProgPosS ∧ (def stm (termP x )) =⇒ (stmU x) ∈ StmtPosS

(x ::StmtPosU ) ∈ StmtPosS ∧ (def fst (termS x )) =⇒ (fstU x ) ∈ StmtPosS

Isabelle enables to specify types/sorts4 for such sets provided the sets can be
proven to be non-empty. This can always be achieved by specifying a witness,

4 In Isabelle, sorts are called types.

that is an element of the set. Based on this, we can declare the sorts ProgPos,
StmtPos, etc.:

typedef ProgPos = ProgPosS

typedef StmtPos = StmtPosS

For these types, Isabelle/HOL automatically provides us with representation and
abstraction functions. For example, the representation function Rep ProgPos
takes an argument of type ProgPos and yields the corresponding element of
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the underlying set ProgPosS, that is, it has range type ProgPosU. The abstrac-
tion function Abs ProgPos has domain type ProgPosU. It maps elements from
ProgPosS to their abstraction in ProgPos. Elements not contained in ProgPosS
are mapped to arbitrary . (Additionally, Isabelle provides a number of lemmas
regarding injectivity, inversion, and so on.)

Finally, we have to lift the functions on positions to the new restricted sorts.
We demonstrate this here for fstU. The corresponding partial function from
StmtPos to StmtPos is denoted by fstP (“P” for “partial”). fstP and the corre-
sponding definedness predicate def fstP are defined as follows:

fstP y ≡ Abs StmtPos (fstU (Rep StmtPos y))
def fstP y ≡ (fstU (Rep StmtPos y)) ∈ StmtPosS

Discussion. It is interesting to compare the Casl and the Isabelle/HOL speci-
fications. The Casl specification is much shorter and, what is more important,
the underlying idea of the specification technique is directly visible. This is pos-
sible because Casl supports partial constructors in a free specification where
the partiality depends on an inductively specified total function. Of course, this
elegance comes at the price that consistency checking of the specification is more
complex. Whereas the Isabelle/HOL theory provides by construction a conser-
vative extension of the datatype specifying the term algebra, extensions in Casl
can lead to inconsistent specifications. Considering our work as a specification
case study, we learned two lessons:

1. It is helpful to start with a loose specification. We first tried to develop the
formalization of tepos-algebras directly in HOL – and almost gave up. Then,
we learned about Casl and that its nice, well-integrated features allow for
a very concise specification. This was the step when we identified the kernel
of tepos-algebras. Finally, we could construct a HOL specification, focussing
on design issues simplifying verification.

2. Formalizing partial functions by adding a bottom element to the range and
domain types (e.g. by using the type constructor option) is not always a
good choice. Using the Hilbert-operator and a definedness predicate can
lead to more practical specifications, that is, to specifications that simplify
the formal verification using interactive tactical provers.

6 Related Work

To our knowledge, this is the first work on formal specification of sorted term
positions at the object level. We developed tepos-algebras as a foundation for
language specification and implementation tools. Having a rich tree representa-
tion enables to use language specification techniques that do not work for free
constructor terms. That is why most language specifications with abstract state
machines are based on such rich tree represenations (as one example, see [12]).

Depending on the application area, other tree representations and formaliza-
tion techniques are used. Higher-order abstract syntax (see [13]) is particularly
well suited for matching, substitution in terms, and unification. It allows to ab-
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stract over parameterized subterm positions. This is very helpful to express name
bindings and consistent renamings. So far, we have not looked at how practical
it is to specify substitution in a tepos-algebra framework.

Special logics become more and more popular to describe certain kinds and
properties of trees or to discover the shape of trees. The logic underlying Mona
[14] can for example be used to describe pointer structures as part of a decidable
program logic. Similarly, shape analysis uses a logic as a basis for automated
analyses for programs with pointers (see e.g. [15]).

7 Conclusions

We demonstrated how tepos-algebras can be used and formally specified. As
application area, we looked at language specifications and showed how a contin-
uation semantics can be avoided if the abstract syntax trees of the language are
represented by a tepos-algebra. Similarly, complex environments can be avoided
by using the position of the declaration to access the declaration information of
a program elements.

The main part of the paper explained shallow embeddings of tepos-algebras
into Casl and into Isabelle/HOL. Our conclusion is that such frameworks should
be used in combination. The powerful Casl language allows to exploit and com-
pare different specification techniques, which is very helpful in the design phase
of the specification. On the other hand, Isabelle/HOL provides more automated
checks for the specification.5 Furthermore, it enables to refine the specification
towards effective verification applications. Future work in that direction is the
development of proof principles and proof strategies for tepos-algebras.
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A Declaration of Function target

The declaration of function target shows how functions can be used to represent
references from one tree node to another in a declarative way:

datatype LablPosNil = lbpos( lbp: LablPos ) | nil end

labl_lkup: Idt x StmtPos -> LablPosNil

labl_lkup(id,sm) = case sm of

sequ<sm1,sm2> => if labl_lkup(id,sm1)!=nil then labl_lkup(id,sm1)

else labl_lkup(id,sm2)

| loop<e,body> => labl_lkup(id,body)

| labl<lip,sm0> => if id = term(lip) then sm

else labl_lkup(id,sm0)

| _ => nil

target: GotoPos -> LablPos

target(gp) = lbp(labl_lkup(term(tid(gp)), stm(root(gp))))
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Abstract. An automated technique to translate conditional rewrite
rules into unconditional ones is presented, which is suitable to imple-
ment, or compile, conditional rewriting on top of much simpler and eas-
ier to optimize unconditional rewrite systems. An experiment performed
on world’s fastest conditional rewriting engines shows that speedups for
conditional rewriting of an order of magnitude can already be obtained
by applying the presented technique as a front-end transformation.

1 Introduction

Conditional term rewriting is a crucial paradigm in the algebraic specification of
abstract data types, since it provides a natural means for executing equational
specifications. Many specification languages today, including Maude [4], ELAN
[3], OBJ [9], CafeOBJ [6], provide conditional rewriting engines to allow users to
execute and reason about specifications. Conditional rewriting also plays a foun-
dational role in functional logic programming [10]. Additionally, there are many
researchers, including the author, considering rewriting a powerful programming
paradigm by itself, who are often frustrated that conditional rewrite “programs”
are significantly slower than unconditional ones doing the same thing.

Conditional rewriting is, however, rather inconvenient to implement directly.
To reduce a term, a rewriting engine needs to maintain a control context for
each conditional rule that is tried. Due to the potential nesting of rewrite rule
applications, such a control context may grow arbitrarily. Our technique auto-
matically translates conditional rewrite rules into unconditional rules, by encod-
ing the necessary control context into data context. The obtained rules can be
then executed on (almost) any unconditional rewriting engine, whose single task
is to match-and-apply unconditional rules. Such a simplified engine can be seen
as a rewrite virtual machine, which can be even implemented in hardware for
increased efficiency, and our transformation technique can be seen as a compiler.

Experiments performed on two fast rewriting engines show that speedups of
an order of magnitude can be obtained right now if one uses our transformation
technique as a front-end. However, since these rewrite engines are optimized for
conditional rewriting, we expect significant further increases in efficiency if one
just focus on the much simpler problem of developing optimized unconditional
rewrite engines and use our technique as a front-end. Even though presented as a
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translation of conditional rewrite systems into unconditional ones, our technique
can easily be adapted and used as a means to implement conditional rewriting
also without applying an explicit transformation. We will discuss this elsewhere.

The proofs of Proposition 1 and Theorem 1 can be found in [16].

Related Work. Stimulated by the benefits of transforming conditional term
rewrite systems (CTRSs) into equivalent unconditional term rewrite systems
(TRSs), there has been much research on this topic. Despite the apparent sim-
plicity of most transformations, they typically work for restricted CTRSs and
their correctness, when they are correct, is quite technical and tricky to prove. A
large body of literature has been dedicated to transformations preserving only
certain properties of CTRSs, e.g., termination and/or confluence. We do not
discuss these here; the interested reader is referred, e.g., to Ohlebusch [14].

In this paper we focus on transformations that generate TRSs computation-
ally equivalent to CTRSs, i.e., the TRSs can be transparently used to reduce
terms in the original CTRSs. The first attempt in this category is due to Bergstra
and Klop [2], for a restricted class of CTRSs (whose underlying unconditional
TRS is left-linear and without superposition); unfortunately, this transformation
was shown to be unsound by Dershowitz and Okada [5]. The transformation in
Giovannetti and Moiso [8] works only under severe restrictions on the original
CTRS: no superposition, simply terminating (enforced by the requirement of a
simplification ordering), and non-overlapping of conditions with left-hand-side
(lhs) terms. Hintermeier [11] proposes a technique where an “interpreter” for
CTRS is defined as a TRS, providing explicit rewrite definitions for matching
and applications of rewrite rules. Besides being technically very intricate and
practically inefficient, this transformation is proven to be correct only when the
original CTRS is confluent and strictly terminating (i.e., decreasing). Our work
in this paper was motivated by efforts in rewriting logic semantics [12], where
rewriting logic is used as a core mechanism to give operational semantics to con-
current programming languages. In this framework, as well as in many others,
restrictions such as termination and/or confluence are unacceptably strong. In-
deed, in any programming language there are programs which do not terminate,
and concurrency leads quickly to non-confluence (e.g., data-races).

Our technique was presented at WADT’04 and was developed independently
from that of Viry [17]. However, the two techniques have many similarities1.
They are both based on decorations of terms, obtained by adding as many aux-
iliary arguments to each operation f as conditional rules in the original CTRS
having f at the top of their lhs. The procedure in [17] encodes the condition
of each rule within a special data-structure that occurs as the corresponding
auxiliary argument associated to the operation occurring at the top of its lhs.
Two unconditional rules are added in the generated TRS for each conditional
rule in the original CTRS, one for initializing the special data-structure and the
other for continuing the rewriting process when the condition was evaluated. For
example, the CTRS (taken from [17]) R below is transformed into R′:

1 We thank Bernhard Gramlich for making us aware of Viry [17].
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(R)⎧⎨
⎩

f(g(x)) → p(x) if c(x) →∗ true
f(h(x)) → q(x) if d(x) →∗ true
c(a) → true

(R′)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(g(x) | ⊥, z) → f(g(x) | [c(x), (x)], z)
f(x | [true, (y)], z) → p(y)
f(h(x) | z, ⊥) → f(h(x) | z, [d(x), (x)])
f(x | z, [true, (y)]) → q(y)
c(a) → true

where “|” is syntactic sugar for “,”, separating the normal arguments from the
auxiliary ones; “⊥” is a special constant whose occurrence states that the cor-
responding conditional rule has not been tried yet on the current position; a
structure [u,

→
s ] occurring during a rewriting sequence as an auxiliary argument

of an operation, means that u is the current reduction status of the correspond-
ing condition that started to be evaluated at some point, and that

→
s was the

substitution at that point that allowed the lhs of that rule to match. The sub-
stitution is needed by the second unconditional rule associated to a conditional
rule, to correctly initiate the reduction of the rhs of the original conditional rule.

Despite being proved sound and complete by Viry [17], the procedure above,
unfortunately, cannot be used as is to interpret any CTRS on top of a TRS.
That is because it destroys the confluence of the original CTRS, thus leading to
normal forms in the TRS which can be further reduced in the CTRS. Indeed, let
us consider the following CTRS R, from Antoy, Brassel and Hanus [1], together
with Viry’s transformation R′:

(R)
{

f(g(x)) → x if x →∗ 0
g(g(x)) → g(x) (R′)

⎧⎨
⎩

f(g(x) | ⊥) → f(g(x) | [x, (x)])
f(x | [0, (y)]) → y
g(g(x)) → g(x)

R is confluent but R′ is not: f(g(g(0)) | ⊥) can be reduced to both 0 and
f(g(0) | [g(0), (g(0))]); the latter occurs because the “conditional” rule is first
tried and “failed”, then the “unconditional” one is applied successfully thus
changing the context so that the “conditional” rule becomes conceptually ap-
plicable, but it fails to apply since it was already marked as “tried”. To solve
this problem, Viry [17] proposes a reduction strategy within the generated TRS,
called conditional eagerness, stating that t1, ..., tn must be already in normal form
before a “conditional” rule can be applied on a term f(t1, ..., tn | ⊥, ...,⊥). This
way, in the example above, g(g(0)) is enforced to be first evaluated to g(0) and
only then f(g(0) | ⊥) is applied the “conditional” rule and eventually reduced
to 0. However, conditional eagerness does not seem to be trivial to enforce in an
unconditional rewriting engine, unless that is internally modified. One simple,
but very restrictive, way to ensure conditional eagerness is to enforce innermost
rewriting both in the original CTRS and in the resulting TRS.

A different fix to Viry’s technique was proposed by Antoy, Brassel and Hanus
[1], namely to restrict the input CTRSs to constructor-based ones, i.e., ones in
which the operations are split into constructors and defined, and the lhs of each
rule is a term of the form f(t1, ..., tn), where f is defined and t1, ..., tn are all
constructor terms. The problematic CTRS above is not constructor-based, so
Viry’s procedure is not guaranteed to work correctly on it. While constructor-
baseness is an easy to check and automatic correctness criterion, we believe that
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it is an unnecessary strong restriction on the input CTRS, which may make the
translation useless in many situations of practical interest.

An additional drawback of Viry’s transformation is that it increases the num-
ber of rewrite rules having the same operator at the root of their lhs, which tends
to be a source of matching overhead on many rewrite engines, especially in the
context of very large CTRSs2. Therefore, we are still left with no satisfactory
translation of CTRSs into equivalent TRSs. In this paper we give a practical
solution to this problem, which imposes no restrictions on the original CTRS,
which adds exactly one unconditional rule for each conditional rule in the origi-
nal CTRS, and which is shown to bring a significant speedup on current condi-
tional rewrite engines if applied as a front-end transformation. Our translation is
almost ideal, in that it still requires some special support from the underling un-
conditional rewrite engine: to provide (1) a binary equality operation, denoted
equal?(t, t′) in this paper, returning true iff the normal forms of t and t′ are
identical, and (2) a conditional if (b, t, t′) which is eager in b and lazy in t and t′.
However, all rewriting engines that we know provide them [9, 3, 4, 6, 18]. They
can also be easily defined if the rewriting engine provides support for simple
contextual strategies, which all rewriting engines that we know do.

2 Preliminaries

We recall some basic notions of conditional rewriting, referring the interested
reader to [14] for more details. An (unsorted) signature Σ is a finite set of
operational symbols, each having zero or more arguments. We let Σn ⊆ Σ denote
the set of operations of n arguments. The operations of zero arguments in Σ0 are
called constants. We assume an infinite set of variables X . Given a signature Σ
and a set of variables X ⊆ X , we let TΣ(X) denote the algebra of Σ-terms over
variables in X. A term without variables is called ground. A map θ : X → TΣ(X )
can be uniquely extended to a morphism of algebras TΣ(X ) → TΣ(X ) replacing
each variable in x by a term θ(x); to keep the notation simple, we let θ also
denote this map. A conditional Σ-rewrite rule has the form

l → r if u1 = v1, · · · , um = vm,

where l, r, u1, v1, ..., um, vm are Σ-terms in TΣ(X ). The term l is called the left-
hand-side (lhs), r is called the right-hand-side (rhs), and u1 = v1, · · · , um = vm is
called the condition of the rewriting rule above. As usual, we disallow rewriting
rules whose lhs is a variable. Further, we assume that the lhs of a rewriting
rule contains all the variables that occur in that rule, that is, following the
terminology in [13] our rewrite systems are of type 1. If m = 0, the rewrite
rule is called unconditional and written l → r. Unless specified differently, by
conditional rule we mean a rule with m ≥ 1. A conditional (unconditional)
Σ-term rewrite system R = (Σ, R), abbreviated CTRS (TRS), consists of a

2 We have encountered CTRSs of thousands of rules in the context of rewriting logic
semantics of programming languages [12].
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finite set R of conditional (unconditional) Σ-rewrite rules. Any Σ-rewrite system
R = (Σ, R) generates a relation →R on TΣ(X ), defined recursively as follows.
For any θ : X → TΣ(X ), t[θ(l)] →R t[θ(r)] whenever there exists some si such
that θ(ui) →�

R si and θ(vi) →�
R si for any 1 ≤ i ≤ m, where t is a term

having one occurrence of a special variable, say ∗, t[θ(l)] is the term obtained
by substituting ∗ with θ(l) in t, and →�

R is the reflexive and transitive closure
of →R. Hence, α →R β iff α has a subterm matching the lhs of a rule in R
via some substitution, s.t. all the terms in each equality in the condition can
be iteratively reduced to a common term. Such CTRSs are also called join or
standard [14]. Alternative interpretations of equalities are also possible, and we
will discuss transformations of those elsewhere soon. However, as their name
suggests, standard conditional rewrite systems are the most common ones and
major rewriting engines, e.g., Maude [4] and ELAN [3], support them. These
systems perform millions of rewrites per second on standard PCs and are, at our
knowledge, the fastest rewriting engines.

Terms which cannot be reduced any further in R are called normal forms
for R. Rewriting of a given term may not terminate for two reasons: either
the reduction of the condition of a rule does not terminate, or there are some
rules that can be applied infinitely often on the given term. On systems like
Maude or ELAN, the effect in both situations is the same: the system loops
forever unless it crashes running out of memory. Because of this reason, we do
not make any distinction between the two causes, and simply call a Σ-rewriting
system terminating iff it always reduces any Σ-term to a normal form (we let
this notion at an intuitive level here, but it can be formalized). Letting ; denote
the composition of relations, a relation → is confluent iff ←�;→�⊆→�;←�.

3 Defining the Basic Infrastructure

We define several operators together with appropriate (unconditional) rules.
Most rewriting engines have these basic operators built-in, but here we do not
assume any existing operators and therefore define everything needed.

Let true and false be two constants which are assumed not defined within any
given CTRS (otherwise change their name). Let us also assume a fresh binary
operator ∧, written in infix associative notation, together with the rules:

true ∧ true → true, true ∧ false → false,
false ∧ true → false, false ∧ false → false.

These will be needed to evaluate conditions that will be translated into corre-
sponding conjunctions of equalities; equalities will be defined shortly.

Let us now consider a special operator if ( , , ), together with the rules:

if (true,x, y) → x, if (false,x, y) → y.

This operator is assumed eager in its first argument and lazy in the others. Most
rewrite engines provide it as builtin, so the two rules above are not needed.
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We need another special operator, equal?( , ), that reduces its arguments
and returns true if they are identical and false otherwise. One obvious rule to
add is equal?(x,x) → true. Moreover, for all σ ∈ Σn we add

equal?(σ(x1, . . . ,xn),σ(y1, . . . , yn)) → equal?(x1, y1)∧· · ·∧equal?(xn, yn), (1)

where x1, ...,xn, y1, ..., yn are disjoint variables. These rules propagate the equal-
ity of two terms having the same operator as root to the equality of their cor-
responding sub-terms. Note that σ may be a constant in Σ0, in which case, by
convention, equal?(x1, y1) ∧ · · · ∧ equal?(xn, yn) is true, the unit of ∧. The fol-
lowing rules, one for each pair σ ∈ Σn, τ ∈ Σm of different operations in Σ,
state that terms having different operations at root are not equal:

equal?(σ(x1, . . . ,xn), τ(y1, . . . , ym)) → false.

Note that equal? needs to be eager in both its arguments. All rewrite engines we
know have such an operator builtin, so these rules are not needed in practice.

For a given signature Σ, let Σ′ denote the signature Σ extended with all the
auxiliary operations above, and let I(Σ) be the Σ′-rewriting system containing
all the rules above. We call I(Σ) the infrastructure rewriting system of Σ.

Proposition 1. Let R be a Σ-rewrite system, conditional or not. Then

1. I(Σ) is a confluent and terminating unconditional Σ′-rewrite system;
2. If u, v ∈ TΣ(X) then u (→�

R;←�
R) v iff equal?(u, v) →�

R∪I(Σ) true;
3. If u, v are ground Σ-terms then a normal form of equal?(u, v) in R ∪ I(Σ)

is either true or false;
4. R terminates if and only if R∪ I(Σ) terminates;
5. If R is confluent and terminates, i.e., it has unique normal forms, then
R∪ I(Σ) is also confluent and terminates.

By 2., one can replace any equality u = v in the condition of a rule in R by
equal?(u, v) = true. Note that the restriction on u and v to be ground is crucial
in 3. Suppose, e.g., that u is a variable, say x. Then there is no rule to reduce the
term equal?(x, v) to true or false. Moreover, one does not want to add rules of
the form equal?(x, τ(y1, . . . , ym)) → false to I(Σ) because one would destroy the
confluence of I(Σ) and thus the correctness of the definition of equal?: indeed,
equal?(τ(y1, . . . , ym), τ(y1, . . . , ym)) would reduce to both true and false in I(Σ).

4 The Main Transformation

The major reason for which conditional rules are inconvenient to implement in
a rewriting engine is because, in order to reduce a term, the rewriting engine
needs to maintain a control context for each conditional rule that is tried to be
applied. By control context we here mean the status of the evaluation of the
condition (note that a condition is a set of equalities) plus the right hand term
that needs to replace the left hand one in case the condition evaluates to true.
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Due to the potential nesting of rewrite rule applications, such a control context
may grow arbitrarily, meaning that the rewriting engine needs to pay special
care to choosing appropriate data-structures to maintain it and to recover the
computation in case the evaluation of a condition fails.

Example 1. Let us consider natural numbers built with 0 and successor s, to-
gether with the following, on purpose inefficient, conditional rules defining odd
and even operators on natural numbers:

odd(0) → 0,
odd(s(x)) → 0 if even(x) = 0,
odd(s(x)) → s(0) if even(x) = s(0),

even(0) → s(0),
even(s(x)) → 0 if odd(x) = 0,
even(s(x)) → s(0) if odd(x) = s(0).

In order to check whether a natural number n, i.e., a term consisting of n succes-
sor operations applied to 0, is odd, a rewriting engine may need O(2n) rewrites
in the worst case. Indeed, if n > 0 then either the second or the third rule of
odd can be applied at the first step; however, in order to apply any of those
rules one needs to reduce the even of the predecessor of n, twice. Iteratively, the
evaluation of each even involves the reduction of two odds, and so on. Moreover,
the rewriting engine needs to maintain a control context data-structure, storing
the status of the application of each (nested) rule that is being tried in a reduc-
tion. It is the information stored in this control context that allows the rewriting
engine to backtrack and find an appropriate rewriting sequence. �

A challenging question motivating the present work is the following: would it
be possible to automatically replace conditional rules like the above by uncondi-
tional ones, so that a rewriting engine’s single job would be to match-and-apply
rules, without worrying about any control context aspects? A positive answer
to this question could potentially lead to a new generation of efficient rewrit-
ing engines, which would take advantage of today’s increasingly highly parallel
computing architectures and would potentially allow optimizations that were
not possible for conditional rewriting. In this section we show how a conditional
rewrite system R can be automatically transformed into an unconditional one
R, which practically preserves all the properties of R. The major idea is, like in
the use of continuations (see [15] for a discussion on several independent discov-
eries of continuations, and [7] for a pragmatic presentation of continuation), to
convert the control context into data context. This way, the term to be rewrit-
ten is enriched at appropriate positions to contain all the information needed
to continue its reduction. The rewriting engine does not need to maintain any
auxiliary information about the status of the rewriting process: it only needs
to find a redex in the term to rewrite and apply a corresponding unconditional
rewrite rule, a simple process amenable to high parallelization and optimization.

4.1 An Unsatisfactory Transformation

Once one generates the infrastructure (unconditional) Σ′-rewrite system I(Σ),
a simple-minded way to transform a conditional Σ-rewrite system R into an
unconditional one is to translate each conditional rule
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l → r if u1 = v1, · · · , um = vm

into an unconditional rewrite rule

l → if (equal?(u1, v1) ∧ · · · ∧ equal?(um, vm), r, l).

Such a transformation has the desirable property that both the conditional
rewrite system and its unconditional variant can “reach”, by reduction in zero
or more steps starting with a given Σ-term, the same set of Σ-terms. In other
words, if a and b are Σ-terms then a →� b in the conditional Σ-rewrite sys-
tem if and only if a →� b in the unconditional Σ′-rewrite system. Therefore,
if reachability analysis is what one is interested in then this simple translation
provides an effective method to reduce the problem to unconditional rewrite sys-
tems. This rewrite system transformation can be useful in systems like Maude,
providing commands of the form “search a =>* b” searching for a sequence of
applications of rewrite rules transforming a into b.

However, this translation cannot be used to execute conditional rewriting on
top of an unconditional rewriting engine. Indeed, if the conjunction of equali-
ties reduces to false then the unconditional rewrite system leads to an infinite
rewriting sequence, by keeping applying the rule above. Would it be possible
to properly mark the term to rewrite whenever a rule is tried and its condition
reduces to false, so that that rule will not be applied anymore on that position?

4.2 Adding Control Context Arguments

Like in Viry [17], the idea is to add a few auxiliary arguments to some operators
to keep the necessary control context information. This way, terms to rewrite
will store information about the conditional rules that can be potentially applied
on each of their subterms. Let R = (Σ, E) be any Σ rewriting system. For each
n and each σ ∈ Σn, let us associate a unique number between 1 and kσ to each
conditional rewrite rule in R whose lhs is rooted in σ, that is, a rule of the form

σ(t1, . . . , tn) → r if u1 = v1, · · · , um = vm,

with t1, . . . , tn, r, u1, v1, . . . , um, vm terms and m ≥ 1, where kσ is the total num-
ber of such rules. Note that kσ is 0 if there is no rule having σ as a root of its
lhs, or if all such rules are unconditional.

Let us next define a signature Σ, replacing each σ ∈ Σn by an operator
of n + kσ arguments, σ ∈ Σn+kσ

. The additional kσ arguments are written at
the right of the other n arguments, and they can take only two possible values
(or constant terms): true or false. An important step in our transformation
technique is to replace all the operations in Σ by corresponding operations in Σ.
The intuition for the additional arguments comes from the overall idea of passing
the control context (due to conditional rules) into data context: the additional
i-th argument of an operation σ staying at some position in a term to rewrite,
tells whether the i-th rule having σ at the root of its lhs is enabled or not at
that position; if true then it means that the rule can potentially be applied, and
if false then it means that the rule has been already tried at that position but
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its condition failed to evaluate to true, so there is no need to try it anymore.
Let us extend this to Σ-terms, by letting the variables unchanged and replacing
each operator σ by σ with the kσ additional arguments all true. Formally, let
· : TΣ(X ) → TΣ(X ) be a map from Σ-terms to Σ-terms defined inductively as

– x = x for any variable x ∈ X , and
– σ(t1, . . . , tn) = σ(t1, . . . , tn, true, . . . , true) for any σ ∈ Σn and any terms

t1, . . . , tn ∈ TΣ(X ).

Let’s define another useful map from Σ-terms to Σ-terms, ·̃X : TΣ(X) → TΣ(X ),
but this time indexed by a finite set of variable X ⊆ X , as follows:

– x̃X = x for any variable x ∈ X, and

– ˜σ(t1, . . . , tn)
X

= σ(t̃1
X

, . . . , t̃n
X

, b1, . . . , bkσ
) for any σ ∈ Σn and any terms

t1, . . . , tn ∈ TΣ(X), where b1, . . . , bkσ
∈ X −X are some arbitrary but fixed

different fresh variables that do not occur neither in X nor in t̃1
X

, . . . , t̃n
X

.

Therefore, t̃X transforms the Σ-term t into a Σ-term, replacing each opera-
tion σ ∈ Σ by σ ∈ Σ and adding distinct variables for the additional argu-
ments, following some arbitrary but deterministic conventions. Given a Σ-term
t in TΣ(X) of the form σ(t1, . . . , tn) for some operation σ ∈ Σn, and given
a natural number i between 1 and kσ, then we let t̃Xi/true denote the Σ-term

σ(t̃1
X

, . . . , t̃n
X

, b1, . . . , bi−1, true, bi+1, . . . , bkσ
), that replaces bi in t̃X by true.

Similarly, t̃Xi/false denotes σ(t̃1
X

, . . . , t̃n
X

, b1, . . . , bi−1, false, bi+1, . . . , bkσ
), that

replaces bi in t̃X by false. Thus, t̃Xi/true (resp. t̃Xi/false) contains the additional
control context information whether the i-th conditional rule of σ is enabled.

4.3 An Almost Correct Transformation

For a given conditional Σ-rewrite system R, we can now define an unconditional
Σ

′
-rewrite system3 R′ by adding to I(Σ) the following unconditional Σ

′
-rewrite

rules. For each conditional (m ≥ 1) rule l → r if u1 = v1, · · · , um = vm over
variables X in R, say the i-th among the conditional rewrite rules in R having
the root operation of l as a root of their lhs, add to R′ the unconditional rule

l̃Xi/true → if (equal?(u1, v1) ∧ · · · ∧ equal?(um, vm), r, l̃Xi/false).

For each unconditional rewrite rule l → r in R over variables X, add to R′ an
unconditional rewriting rule l̃X → r.

Therefore, for each conditional rule in R we add an unconditional one in
R′, whose corresponding additional argument of its transformed lhs is true. By
throwing the control context’s ball into matching’s court, this intuitively says
that such a rule can be applied on a (sub)term only if it is “enabled” in that
(sub)term. Its rhs term has a conditional operation at its root, which first evalu-
ates the conjunction of all the equalities of pairs of terms occurring in the condi-
tion of the conditional rule; note that these terms are properly transformed into

3 Note that (Σ′) = (Σ)′, so we take the liberty to denote this signature Σ
′
.
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Σ-terms enabling all possible rules at any of their positions. If the conjunction
evaluates to true then the rhs of the conditional rule is returned, also modified
to enable all possible rules on it. If the condition reduces to false then the only
thing to do is to “disable” this current rule. Due to the change of the correspond-
ing argument from true to false, note that matching will disallow this rule to
be applied anymore on that (sub)term. Since unconditional rules are always en-
abled, they are transformed into unconditional rules ignoring the control context
arguments in the lhs and enabling all possible rules on its rhs. Note that R′ does
not modify any rule in R if R already contains only unconditional rules.

Example 2. Let us apply the translation technique above on the conditional
rewriting system for odd/even in Example 1. Since there are two conditional
rules whose root of lhs is odd and two whose root of lhs is even, each of these op-
erators will be enriched with two additional arguments. The new, unconditional
rewriting system is then:

odd(0, b1, b2) → 0,

odd(s(x), true, b2) → if (equal?(even(x, true, true), 0), 0, odd(s(x), false, b2)),
odd(s(x), b1, true) → if (equal?(even(x, true, true), s(0)), s(0), odd(s(x), b1, false)),
even(0, b1, b2) → s(0),
even(s(x), true, b2) → if (equal?(odd(x, true, true), 0), 0, even(s(x), false, b2)),
even(s(x), b1, true) → if (equal?(odd(x, true, true), s(0)), s(0), even(s(x), b1, false)).

The unconditional rule for odd says that 0 is not an odd number, regardless
of the control context. The first conditional rule for odd has the constant true as
the first auxiliary argument of its lhs, telling the matching procedure that this
rule can be applied only if it was not previously disabled. If the condition of if
evaluates to true then 0 is returned, otherwise the same term as the lhs, except
that true is replaced by false, thus disabling the current conditional rule to avoid
getting into non-terminating rewriting. The variable argument b2 says that it
does not matter whether the second conditional rule is enabled or not (but this
information will be preserved in case the first conditional rule is disabled). The
other conditional equations are similar. If one wants to test whether a number
n, i.e., n consecutive applications of successor on 0, is odd, one should reduce
the term odd(n), i.e., odd(n, true, true), under the unconditional rewrite system.
Note that the operations 0 and s are not added auxiliary arguments because they
do not occur as a root of a lhs of any conditional rule in the original conditional
rewriting system. �

Unfortunately, the translation above suffers from the same problem as that
of Viry [17]: for some CTRSs, the generated TRSs have additional normal forms
corresponding to terms which could be further reduced in the original CTRS.

Example 3. Consider the problematic CTRS from Section 1:

f(g(x)) → x if x = 0,
g(g(x)) → g(x),
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whose corresponding TRS, according to the transformation above, is:

f(g(x), true) → if (equal?(x, 0), x, f(g(x), false)),
g(g(x)) → g(x).

Then note that even if f(g(g(0))) admits a unique normal form in the original
CTRS, f(g(g(0)), true) admits two normal forms in its corresponding TRS:

f(g(g(0)), true) → f(g(0), true) → if (equal?(0, 0), 0, f(g(0), false)) →∗ 0,
f(g(g(0)), true) → if (equal?(g(0), 0), g(0), f(g(g(0)), false)) →∗

→∗ f(g(g(0)), false) → f(g(0), false).

The latter cannot be further reduced with the rules in the TRS. �

The problem here, like in Viry’s transformation [17], is that a successful ap-
plication of a rewrite rule may enable some application of a conditional rule that
has already been tried before, but at that time failed to apply. One unsatisfac-
tory way to fix this problem is, like in [17], to enforce conditional eagerness on
the generated TRS; another, even more unsatisfactory, is to reduce the applica-
bility of the transformation to only innermost, or eager, CTRSs. We next show
how to fix this problem in general.

4.4 The Correct Transformation

To fix the problem in the previous subsection, we need a mechanism to “inform”
the term to reduce, after each successful application of a rewrite rule, that some
“conditional” rules that have been tried before and failed may succeed now. More
precisely, we need to traverse the term along the path from the current position
(where the successful rule was applied) to its root, and make all the auxiliary
arguments of the operations on this path true. This can be accomplished, for
example, by considering a new (unary) operator, say { }, stating that the en-
closed term has just been modified, together with appropriate rewrite rules to
propagate this information upwards, updating the “applicability bits”: for each
σ ∈ Σn and each 1 ≤ i ≤ n, consider a rule

σ(x1, ...,xi−1, {xi},xi+1, ...,xn, b1, ..., bkσ
) →

→ {σ(x1, ...,xi−1,xi,xi+1, ...,xn, true, ..., true)}.
The applicability information of an operation can be updated from several of its
subterms; to keep this operation idempotent, we also consider the rule

{{x}} → {x}.

Formally, for a given conditional Σ-rewrite system R, we let Σ
′
{} define the

signature Σ
′

in the previous subsection extended with the unary operator { }
above, and we let R be the unconditional Σ

′
{}-rewrite system extending I(Σ)

with the operator { } together with its unconditional rewrite rules above, as well
as with the following rules. For each conditional (m ≥ 1) rule l → r if u1 =
v1, · · · , um = vm over variables X in R, say the i-th among the conditional
rewrite rules in R having the root operation of l as a root of their lhs, add to R:
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l̃Xi/true → if (equal?({u1}, {v1}) ∧ · · · ∧ equal?({um}, {vm}), {r}, l̃Xi/false).

For each unconditional rewrite rule l → r in R over variables X, add to R an
unconditional rewriting rule l̃X → {r}.

Before we formalize the exact relationship between CTRSs and their uncon-
ditional variants, let us define another map of terms, this time from Σ-terms to
Σ-terms. Let ·̂ : TΣ(X ) → TΣ(X ) be the map defined inductively as

– x̂ = x for any variable x ∈ X , and
– ̂σ(t′1, . . . , t′n, s1, . . . , skσ

) = σ(t̂′1, . . . t̂′n) for any operator σ ∈ Σn and any
terms t′1, . . . , t

′
n, s1, . . . , skσ

∈ TΣ
′(X ).

Therefore, t̂′ forgets all the auxiliary arguments of each operation occurring in
t′. Note in particular that t̂ = ̂̃t = t for any t ∈ TΣ(X ).

Example 4. Let us consider the problematic CTRS in example 3. Its correspond-
ing TRS generated as above contains the following rules:

{{x}} → {x}
f({x}, b) → {f(x, true)}
g({x}) → {g(x)}

f(g(x), true) → if (equal?({x}, {0}), {x}, f(g(x), false)),
g(g(x)) → {g(x)}.

Then the term f(g(g(0)), true) admits the normal form {0}:

f(g(g(0)), true) → if (equal?({g(0)}, {0}), {g(0)}, f(g(g(0)), false)) →∗

→∗ f(g(g(0)), false) → f({g(0)}, false) →
→ {f(g(0), true)} → {0}.

Note that the normal form {0} is possible exactly because the information
that a subterm has been rewritten is transmitted upwards via the operator { }
and its associated rules. The obtained TRS is not confluent, because the term
above also admits the normal form 0, but this time the (at most two) normal
forms that a term can have (t and/or {t}) are very closely related and one can
easily infer the desired normal form in the original CTRS. In order to have a
unique normal form in the TRS, we will actually enclose the original term into
curly brackets before we reduce it, as the theorem below suggests.

Theorem 1. If R is a conditional Σ-rewriting system then

1. For any ground Σ-terms α and β, α →�
R β if and only if there is some

ground Σ-term γ such that γ̂ = β and {α} →�
R {γ};

2. R terminates on a ground Σ-term α if and only if R terminates on {α};
3. R terminates if and only if it terminates on all terms {α} with α a Σ-term;
4. If γ in 1. is a normal form (in R) then β is also a normal form (in R);
5. If R terminates then R is ground confluent iff R is ground confluent.
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5 Putting Them all Together

We can now present the main result of this paper, namely a technique providing a
rewriting engine that accepts conditional rewrite rules, obtained by appropriately
wrapping a simpler rewriting engine that only accepts unconditional rules.

Input: a conditional Σ-rewrite system R and a Σ-term α over variables
X to be reduced with R.
Step 1: Add the variables in X as fresh constants into Σ, so that α
becomes a ground Σ-term;
Step 2: Generate Σ like in Subsection 4.2, by adding to each operator
σ ∈ Σ as many auxiliary arguments as conditional rules of lhs rooted in
σ are in R;
Step 3: Generate the infrastructure unconditional Σ

′
-rewrite system

I(Σ) by adding to Σ the operators equal? and if ( , , ) as well as their
corresponding rules described in Section 3;
Step 4: Generate the unconditional Σ

′
-rewrite system R by adding to

I(Σ) the operation { } and its rules, as well as the unconditional Σ
′
-

rewrite rules associated to the rules in R as shown in Subsection 4.4;
Step 5: Reduce the term {α} to a normal form in R, say {γ}, using any
engine for unconditional rewriting;
Step 6: Return the Σ-term γ̂.

We claim that the steps above, by applying a series of simple and totally auto-
matic syntactic transformations to the input conditional rewrite system and term
to rewrite, yield a rewriting engine that accepts conditional rewrite systems.

Step 1 shows a usual way to reduce terms with variables: interpret the vari-
ables as constants. However, in our framework it is quite important to add
these variables explicitly as constants early in the reduction process. This is
because the equality operator will need to consider these constants as distinct
operations, so that it can add appropriate rules, including ones of the form
“equal?(a,σ(x1, . . . ,xn)) → false” for any such constant a and operation σ ∈ Σn.

Step 2 modifies the signature Σ into Σ, by analyzing the rules in R and
adding an appropriate number of arguments to operations in Σ. Since the con-
stants added to Σ at Step 1 are fresh, no rule in R has them as lhs terms, so
these constants will not be changed in Σ. Note, however, that other constants
in Σ may get translated into operations with several arguments.

Step 3 adds the auxiliary equality and conditional operators that are needed
to translate the conditional rules into unconditional ones. Note, again, that the
constants added at Step 1 will increase the number of rules for equal?.

Step 4 generates the unconditional rewrite system R, by adding exactly one
unconditional rule per conditional or unconditional rule in R. Once R is avail-
able, any engine for unconditional rewriting can be used to reduce α under R, as
done in Step 5. Note that the normal form γ of α in R, if it exists, is a Σ-term.
Therefore, since the hat function is defined as ·̂ : TΣ(X ) → TΣ(X ), the term γ̂
returned at Step 6 is indeed a Σ-term, as the result of reducing α under R is
expected to be.
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Maude Elan
n Conditional Unconditional Conditional Unconditional
11 0.007 0.003 0.604 0.061
13 0.027 0.009 2.309 0.244
15 0.142 0.037 8.922 0.959
17 0.459 0.154 34.2 3.8
21 7.9 2.6 548.1 62.9
23 29.2 10.4 - -
25 117.2 49.3 - -
31 7431 2489 - -

Fig. 1. Times in seconds to reduce odd(n) using Maude and ELAN, using both the
conditional rewrite system in Example 1 and its unconditional variant in Example 2

Theorem 2. The algorithm above, taking a conditional Σ-rewrite system R
and a Σ-term α as input, terminates iff R terminates on α. If the algorithm
terminates and outputs a Σ-term β, then β is a normal form of α in R.

Proof. The algorithm terminates if and only if its Step 5 terminates, because all
the other steps are nothing but simple syntactic translations over a finite signa-
ture and number of rewrite rules. Step 5 terminates if and only if R terminates
on {α}. By 2 in Theorem 1, this is equivalent to saying that R terminates on
α. Now suppose that the algorithm terminates and that it outputs a Σ-term β.
By Steps 5 and 6 and the discussion preceding this theorem, this happens if and
only if there is some Σ-term γ such that {α} →�

R {γ} and γ̂ = β, which, by 1 in
Theorem 1, is equivalent to α →�

R β. Since γ is a normal form in R, it follows
by 4 in Theorem 1 that β is a normal form in R.

6 Preliminary Experiments

As mentioned previously in the paper, our original purpose for translating con-
ditional rewrite systems into unconditional ones was to ease the process of im-
plementing rewriting engines, at the same time aiming at highly efficient imple-
mentations of rewriting based on a fast and simple rewriting virtual machine.
To test the computational equivalence between conditional rewriting systems
and their corresponding unconditional variants, we have applied the translation
presented in Section 5 manually for the conditional rewrite system in Example
1, and performed some experiments on a 2.4GHz PC machine using two major
rewriting engines: Maude [4] and Elan [3]. The results of these experiments are
listed in Figure 1, in seconds; the “-” should be read “core dump”.

It was an unexpected surprise to see that the unconditional variant was much
faster than its corresponding conditional rewrite system: almost 3 times faster for
Maude and 10 times for ELAN. Since the implementation details of these rewrite
engines are not well documented, we do not know the exact reasons for which
conditional rewriting is so slow in these systems in comparison to unconditional
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rewriting. However, the preliminary results in Figure 1 tell us that maintaining
the control context required to backtrack through conditional rewrite rules is
a non-trivial matter, and that the translation technique proposed in this paper
can be perhaps implemented in these systems to bring immediate benefits to
conditional rewriting.

7 Conclusion and Future Work

An automatic technique to transform a conditional term rewriting system into an
unconditional one was presented, which preserves all the major properties. The
technique consists of adding some key auxiliary arguments to certain operations,
which are used to maintain the control context as data context.

Only first steps towards a generic transformation procedure for general con-
ditional rewrite systems have been made here. We have not considered rewriting
modulo axioms yet, such as associativity, commutativity and identity, but these
will be considered soon. Also, the current technique can be improved: not all the
auxiliary arguments added to operations seem to be necessary. Can we statically
reduce their number?

Future work will also investigate how well analysis techniques for uncon-
ditional rewriting systems translate into corresponding analysis techniques for
conditional ones via our transformation. One complication here is that some of
the operations that we introduce require to be evaluated eagerly in some argu-
ments. This is also a drawback of our technique if one wants to use it for theorem
proving purposes. Can one find a transformation which imposes no evaluation
strategies?
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Abstract. Higher-order logic with shallow type class polymorphism is
widely used as a specification formalism. Its polymorphic entities (types,
operators, axioms) can easily be equipped with a ‘naive’ semantics de-
fined in terms of collections of instances. However, this semantics has the
unpleasant property that while model reduction preserves satisfaction of
sentences, model expansion generally does not. In other words, unless
further measures are taken, type class polymorphism fails to constitute
a proper institution, being only a so-called rps preinstitution; this is un-
fortunate, as it means that one cannot use institution-independent or
heterogeneous structuring languages, proof calculi, and tools with it.

Here, we suggest to remedy this problem by modifying the notion of
model to include information also about its potential future extensions.
Our construction works at a high level of generality in the sense that
it provides, for any preinstitution, an institution in which the original
preinstitution can be represented. The semantics of polymorphism used
in the specification language HasCasl makes use of this result. In fact,
HasCasl’s polymorphism is a special case of a general notion of poly-
morphism in institutions introduced here, and our construction leads to
the right notion of semantic consequence when applied to this generic
polymorphism. The appropriateness of the construction for other frame-
works that share the same problem depends on methodological questions
to be decided case by case. In particular, it turns out that our method is
apparently unsuitable for observational logics, while it works well with
abstract state machine formalisms such as state-based Casl.

1 Introduction

The idea that a logic is something that comes with signatures, models, sentences
and a satisfaction relation is formalized in the notion of institution as intro-
duced in [15]. In practice, this concept is exploited to support genericity and
heterogeneity in specification frameworks. For example, the semantics and proof
calculus for structured and architectural specifications in Casl [27] is generic
over institutions, and heterogeneous Casl [25, 26] uses a graph of institutions
for heterogeneous specification. The central condition governing the behaviour
of institutions is the satisfaction condition, stating that satisfaction of sentences
is preserved under both model expansion and reduction.
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Type class polymorphism has been used in programming languages like
Haskell [31], as well as in the higher-order logic of Isabelle [38]. It is one of the cen-
tral features of the recently developed specification language HasCasl [35, 36].
Little attention has been paid in the literature to the question whether type
class polymorphism can be formalized as an institution, the main problem here
being that with the ‘naive’ semantics, the satisfaction condition fails in the sense
that satisfaction of polymorphic axioms is preserved only by model reduction,
not by model expansion, because expanded models may have more types. Thus,
the naive semantics defines only a so-called rps preinstitution [32] rather than
an institution.

The work of [28] is an initial attempt to define an institution for polymor-
phism but imposes severe restrictions on signature morphisms by simply ruling
out the introduction of new types. For the case of polymorphism without type
classes, one solution is to parametrize the notion of model by a fixed universe of
types [7, 19]; this solution, however, does not seem to be suitable for type class
polymorphism.

The main goal of the present work is to provide a semantics that avoids
both problems, i.e. caters for type classes and works with the usual structured
specification style where the signature is built up successively. In particular,
we wish to avoid restrictions on signature morphisms; instead, we argue that
the failure of the satisfaction condition points to a flaw in the notion of model.
The key idea is to notice that polymorphic axioms are intended as statements
about all types including those yet to be declared, and that therefore models
should take into account future extensions. Starting from this observation, we
obtain a general procedure that transforms a preinstitution into an institution,
the so-called institution of extended models. This construction is employed in the
semantics of HasCasl. It turns out that the notions of semantic consequence and
model-expansive extension engendered by the construction agree with intuitive
expectations, at least in sufficiently rich logics such as the logic of HasCasl.

More generally, HasCasl’s treatment of polymorphic sentences can be sub-
sumed under a definition of polymorphic formulae in institutions introduced
here. Such generic polymorphic frameworks are perfect candidates for the ex-
tended model construction, and indeed it turns out that the notion of semantic
consequence in the institution of extended models over a generic polymorphic
framework is simpler and more natural than the original notion.

There are several other known examples of logical frameworks where the
satisfaction condition fails unless restrictions are imposed. E.g. in observational
logics, signature morphisms are usually not allowed to introduce new observers
[5, 16], precisely in order to rescue the satisfaction condition. Moreover, in the
(non-)institution of SB-Casl [3, 4], the satisfaction condition fails for signature
morphisms that introduce additional state components [3]. We discuss both these
examples from a methodological perspective; it turns out that our construction
cannot be recommended for the observational case, since it suppresses coinduc-
tion, while the semantics obtained for SB-Casl arguably provides the ‘right’
notion of semantic consequence.
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The material is organized as follows. Sections 2 and 3 provide preliminary
material concerning the institution-theoretic background and type class poly-
morphism in HasCasl. The failure of the satisfaction condition in the various
settings mentioned above is treated in detail in Section 4. Section 5 defines
polymorphic formulae over an institution. The construction of an institution
from a given preinstitution is introduced in Section 6, and applied to generic
polymorphic frameworks in Section 7. The issue of model-expansive extensions
(also referred to as model-theoretically conservative extensions or, e.g. in the
semantics of Casl, just as conservative extensions) is discussed in Section 8.
Section 9 provides some observations on how the generic mechanism instantiates
in frameworks other than type class polymorphism.

2 Institutions

A specification formalism is usually based on some notion of signature, model,
sentence and satisfaction. These are the ingredients of the notion of institution as
introduced by Goguen and Burstall [15]. Contrary to Barwise’s notion of abstract
model theory [2], the theory of institutions does not assume that signatures are
algebraic signatures; indeed, nothing at all is said about signatures except that
they form a class and that there are signature morphisms, which can be composed
in some way. This amounts to stating that signatures form a category.

There is also nothing special assumed about the form of the sentences and
models. Given a signature Σ, the Σ-sentences form just a set, while the Σ-models
form a category (taking into account that there may be model morphisms). Sig-
nature morphisms lead to translations of sentences and of models (thus, the
assignments of sentences and of models to signatures are functors). There is a
contravariance between the sentence and model translations: sentences are trans-
lated along signature morphisms, while models are translated against signature
morphisms.

Following [15], this is formalized as follows.

Definition 1. An institution I = (SignI ,SenI ,Mod I , |=I) consists of

– a category SignI of signatures;
– a functor SenI : SignI → Set giving, for each signature Σ, the set of sen-

tences SenI(Σ), and for each signature morphism σ : Σ → Σ′, the sentence
translation map SenI(σ) : SenI(Σ) → SenI(Σ′), where SenI(σ)(ϕ) is often
written as σϕ;

– a functor Mod I : (SignI)op → CAT (where CAT denotes the quasicate-
gory of categories and functors [1]) giving, for each signature Σ, the category
of models Mod I(Σ), and for each signature morphism σ : Σ → Σ′, the
reduct functor Mod I(σ) : Mod I(Σ′) → Mod I(Σ), where Mod I(σ)(M ′),
the σ-reduct of M ′, is often written as M ′|σ; and

– a satisfaction relation |=I
Σ ⊆ |Mod I(Σ)| × SenI(Σ) for each Σ ∈ SignI ,
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such that for each σ : Σ → Σ′ in SignI , the satisfaction condition

M ′ |=I
Σ′ σϕ ⇔ M ′|σ |=I

Σ ϕ

holds for all M ′ ∈Mod I(Σ′) and all ϕ ∈ SenI(Σ).

The notion of institutions owes much of its importance to the fact that sev-
eral languages for modularizing specifications are generic over an underlying
institution [11, 12, 13, 18, 27, 33]. Furthermore, institutions form the basis of het-
erogeneous frameworks such as heterogeneous Casl [25, 26]. Such frameworks
require a means of interrelating institutions, i.e. some notion of morphism be-
tween institutions. There are various such notions in the literature; one of the
most important ones are institution comorphisms, which essentially express that
fact that one institution is encoded into another.

Definition 2. Given institutions I and J , an institution comorphism [17] (also
called a plain map of institutions [21]) μ = (Φ, α, β) : I → J consists of
– a functor Φ : SignI → SignJ ,
– a natural transformation α : SenI → SenJ ◦ Φ,
– a natural transformation β : Mod J ◦ Φop → Mod I

such that the following satisfaction condition is satisfied for all Σ ∈ SignI ,
M ′ ∈Mod J(Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Φ(Σ) αΣϕ ⇔ βΣM ′ |=I

Σ ϕ.

Example 3. Equational logic and first-order logic can be formalized as institu-
tions [15], and the obvious inclusion is a comorphism.

3 Polymorphism in HasCasl

HasCasl is a wide-spectrum language which provides a common framework
for algebraic specification and functional programming, oriented in particular
towards Haskell. This is achieved by extending the algebraic specification lan-
guage Casl [6] with higher-order functions in the style of Moggi’s partial λ-
calculus [23], type constructors, type classes, and constructor classes (for details,
see [35, 36]); general recursion is specified on top of this in the style of HOLCF.
The semantics of a HasCasl specification is the class of its (set-theoretic) in-
tensional Henkin models: function types are interpreted by sets which need not
contain all set-theoretic functions, and two functions that yield the same value
on every input need not be equal.

The main point of interest for the purposes of this paper is the semantics of
HasCasl’s type class oriented shallow polymorphism. A type class in HasCasl
(for the sake of simplicity, we omit constructor classes here) gives rise to a subset
of the syntactical set of types, where types are generated from basic types and
type constructors, the latter either user-declared or, like function types, built-in.
The set of types associated to a class is determined by the explicitly declared
instances of the class. Instances may be monomorphic or polymorphic. E.g., the
specification
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class Ord < Eq
vars a : Type, b : Eq
types Nat : Ord ;

List a;
List b : Eq

declares a class Eq with a subclass Ord , a unary type constructor List , and a
type Nat (without defining any of these items); moreover, Nat is declared to be
of class Ord , hence also of class Eq , and List is declared to produce types of class
Eq when applied to arguments of class Eq . In the signature determined by the
above declarations, the classes Eq and Ord coincide, both consisting precisely
of the types of the form List (List (. . .List Nat)). When further instances are
declared later on in the specification process, the two classes will in general be
different.

Axioms and operators may be polymorphic over classes. E.g., we can write
(continuing the above specification)

var c : Ord
op ≤ : Pred(c × c)
var x , y , z : c

• x ≤ x
• (x ≤ y ∧ y ≤ z ) ⇒ x ≤ z

This means that ≤ is a polymorphic predicate over class Ord satisfying
reflexivity and transitivity. Operators and axioms may be explicitly tied to a
class by means of a bracket notation, thus making up the interface of the class
which generates proof obligations (which, like the proof obligations associated
to Casl’s semantic annotations, lie outside the scope of the semantics proper)
for later instantiations.

In general, polymorphic types, operators, and axioms are semantically coded
out by collections of instances. That is, the effect of a polymorphic type is essen-
tially just its contribution to the syntactic type universe; a polymorphic operator
is interpreted as a family of operators, one for each instantiation of its type argu-
ments; and a polymorphic axiom is understood as a collection of axioms, indexed
over all types in the classes named in the quantifiers. This constitutes the first
level of the semantics of polymorphism used in HasCasl; as will be explained
in detail in the next section, one does not obtain an institution at this level. This
deficiency is repaired at the second level of the semantics; this second level and
the general construction behind it are the subject of this paper. The semantics
of polymorphic formulas at the first level will moreover be identified as a special
case of a general definition of polymorphism in institutions in Section 5.

4 Failures of the Satisfaction Condition

There are various features in modern specification languages that tend to
cause the satisfaction condition (cf. Section 2) to fail; besides polymorphism as
discussed in the previous section, this includes observational satisfaction and
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dynamic equations between programs in states-as-algebras frameworks such as
SB-Casl [4]. Briefly, the reasons for the failures are as follows:

– Parametric polymorphism: if a signature morphism σ introduces addi-
tional types, then the translation of a polymorphic axiom ϕ may fail in a
model M although ϕ holds in the reduct of M along σ, namely if ϕ holds
for the ‘old’ types, but not for the newly introduced ones.

– Observational equality: if a signature morphism σ introduces additional
observers, then observational equalities that hold in the reduct of a model
M under σ may fail in M , since the new observers may detect previously
unobservable differences.

– dynamic equations: if a signature morphism σ introduces additional state
components (i.e. dynamic functions, predicates, or sorts), then dynamic
equations p = q between stateful program expressions [4] that hold in the
reduct M |σ of a model M may fail to hold in M , since the interpretations
of p and q may differ on the new state components [3].

In all these cases, only one direction of the satisfaction condition holds, so that
logics with these features constitute proper rps preinstitutions; we explicitly
repeat the definition [32]:

Definition 4. A preinstitution consists of a signature category equipped with
model and sentence functors and a satisfaction relation in the same sense as
an institution (cf. Section 2); these data are not, however, required to obey the
satisfaction condition. A preinstitution is called an rps preinstitution (‘reducts
preserve satisfaction’) if

M |= σϕ implies M |σ |= ϕ

for all M , σ, ϕ, and an eps preinstitution (‘extensions preserve satisfaction’) if
the reverse implication holds.

Let PI1, PI2 be preinstitutions. A preinstitution comorphism [24] μ : PI1 →
PI2 consists of the same data (Φ, α, β) as an institution comorphism (in partic-
ular, sentence translation is covariant and model translation is contravariant),
without however being required to obey the satisfaction condition as in Defini-
tion 2. A preinstitution comorphism μ is called rps if

M |= αϕ implies βM |= ϕ,

and weakly eps if a model M satisfies αϕ whenever βK |= σϕ for all K, σ such
that K|Φσ = M .

Thus, an institution is a preinstitution that is simultaneously rps and eps, and a
preinstitution comorphism between two institutions is an institution comorphism
iff it is rps and weakly eps.

The typical remedy used hitherto to obtain institutions in the presence of the
mentioned features is to restrict signature morphisms to cases where the full sat-
isfaction condition holds. We discuss this point in more detail in Section 9; here,
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we just note that this is not an acceptable solution for the case of polymorphism:
one has to require that signature morphisms do not introduce additional types,
a restriction that effectively prevents the use of structured specifications. We
emphasize that this problem is not solved by treating quantified types as first-
class types (higher rank polymorphism), even if one manages to work around the
obstacle that the latter is inconsistent with higher order logic [10]: e.g., the re-
striction that signature morphisms be surjective on types is imposed also in [28],
where it is needed in order to ensure preservation of coherent families of domains
in a semantics of higher rank polymorphism in the style of Reynolds. In other
words, ensuring coherence of polymorphic operators model-theoretically is not a
feasible option.

For plain shallow polymorphism without type classes, a further alternative is
to interpret the range of quantification over type variables in a fixed universe of
types, i.e. some collection of sets closed under a number of constructions, rather
than in the syntactical universe of declared types. This is the approach taken
e.g. in [7, 19]; it is not apparently suitable for HasCasl and similar frameworks
for two reasons:

– in connection with a Henkin style semantics of function types, it is unclear
what closure of the type universe under function types means;

– the type universe does not give an indication of what the interpretation of
type classes should be, in particular since type classes on the one hand can
be entirely loose and on the other hand are meant to contain only explicitly
declared instances rather than, say, all structures matching the interface.

Independently of these specific issues, a further general disadvantage of the uni-
verse approach is that the choice of a universe unduly influences semantic con-
sequence — the particularities of the chosen universe may induce unintended
semantic consequences in a rather unpredictable way, thus introducing an un-
necessary degree of incompleteness of deduction. The solution chosen in the
semantics of HasCasl is therefore to add a second level to the model semantics
according to the general construction described below.

5 Generic Polymorphism

We now introduce a general notion of syntactic polymorphism in an institution
which covers HasCasl’s type class polymorphism as a special case. This con-
struction provides a wide range of examples of rps preinstitutions. We will return
to this example in Section 7, where we will show that the notion of semantic
consequence between polymorphic formulae induced by our generic construc-
tion of institutions from preinstitutions is not only in accordance with intuitive
expectations, but also greatly simplifies the original notion.

Our construction of polymorphic formulae is similar in spirit to the open
formulae introduced in [37]: given a signature Σ1, an open Σ1-formula is just
a sentence φ in some extension Σ2 of Σ1, and a Σ1-model M satisfies such a
formula if all its expansions to Σ2 satisfy φ. In typical algebraic settings, this
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produces exactly the right kind of first or higher order quantification if Σ2 intro-
duces only additional constants or function symbols, respectively; essentially, the
new symbols then play the role of universally quantified variables. However, the
given notion of satisfaction is rather too strong if Σ2 introduces additional types;
since new sorts and function symbols involving new sorts (including instances of
polymorphic operators for new sorts) can be interpreted with arbitrary malev-
olence in extensions of M , most open formulae involving such a Σ2 will in fact
be unsatisfiable.

Thus, we need a relaxed notion of satisfaction in order to arrive at the right
notion of universal quantification over types. The idea is to require satisfaction
of φ as above not for all extensions of M , but only for extensions by syntactic
definition, i.e. the new signature items in Σ2 have to be interpreted in terms of
the base signature Σ1. Of course, the involved notion of interpretation will have
to be sufficiently general. E.g., we will want to interpret function symbols by
terms, type constants by composite types etc. — in other words, we will need to
use derived signature morphisms. All this is formalized as follows.

Definition 5. An institution with signature variables is an institution I with
a distinguished object-full subcategory Var of the signature category Sign (i.e.
Var need not be full in Sign, but contains all objects of Sign) whose mor-
phisms are called signature variables. Signature variables are assumed to be
pushout-stable, i.e. pushouts of signature variables along Sign-morphisms exist
and are signature variables. (Morphisms in Sign should be thought of as derived
signature morphisms.)

In I, a polymorphic formula ∀σ. φ over a signature Σ1 consists of a signature
variable σ : Σ1 → Σ2 and a Σ2-sentence φ. A Σ1-model M satisfies ∀σ. φ if

M |= τφ for all τ in Sign such that τ ◦ σ = id.

A sentence τφ as above is called an instance of ∀σ. φ. The translation ρ(∀σ. φ)
of ∀σ. φ along a signature morphism ρ : Σ1 → Σ3 is defined to be ∀σ̄. ρ̄φ, where

Σ2
ρ̄� •

Σ1

σ �

ρ
� Σ3

σ̄�

is a pushout; note that σ̄ is indeed a signature variable. (This definition deter-
mines the translation only up to isomorphism; for similar reasons as given in
Remark 5.1. of [37], this is not actually a problem.)

The polymorphic preinstitution Poly(I) over I is given as follows: the notions
of signature, model, and model reduction are inherited from I; Σ-sentences are
polymorphic formulae over Σ; satisfaction and sentence translation are as above.

The sentences of I can be coded in Poly(I): a Σ-sentence φ in I is equivalent
to the polymorphic formula ∀idΣ . φ, where idΣ is indeed a signature variable
thanks to object-fullness of Var in Sign.
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Example 6. An example of the syntactic polymorphism described above is
HasCasl’s type class polymorphism. The base institution is essentially as in
the first level of the HasCasl semantics, except that polymorphic sentences
are excluded, so that we actually obtain an institution rather than an rps pre-
institution. (Note that the base institution does have polymorphic types and
operators. In particular, signature morphisms can translate polymorphic oper-
ators only as a whole, not instance by instance.) Signature morphisms are, as
announced above, derived signature morphisms which map

– operator constants to terms;
– type constructors to λ-expressions which denote composite type constructors

possibly containing subtype formation; and
– classes to subsets of the syntactic type universe.

A signature variable in this institution is an injective plain HasCasl signature
morphism (which maps types to types, operators to operators etc. as usual)
which is bijective on all syntactic entities except types. (This illustrates the
necessity of the restricted cocompleteness requirement for institutions with sig-
nature variables: pushouts of derived signature morphisms in general fail to
exist, while pushouts of derived signature morphisms along signature variables
do exist; this phenomenon is typical of derived signature morphisms in general.)
Then, polymorphic formulae and their satisfaction as defined above coincide
with the corresponding notions in HasCasl as explained in Section 3. E.g., if
σ : Σ1 ↪→ Σ2 extends Σ1 by a single new type constant a, then the polymorphic
formula ∀σ. φ is equivalent to the polymorphic HasCasl sentence ∀a : Type. φ:
the left inverses τ of σ correspond to the possible instantiations of the type
variable a in Σ1. Note that the interpretation of instances of polymorphic oper-
ators involving a is forced by the interpretation of a, since, as emphasized above,
signature morphisms map polymorphic operators as single entities.

By the above example and Section 4, it is clear that the polymorphic prein-
stitution Poly(I) will in general fail to be an institution. However, we have

Theorem 7. The polymorphic preinstitution Poly(I) is an rps preinstitution.

6 A Generic Institutionalization

We now describe a general process that transforms preinstitutions into institu-
tions. We begin with a heuristic observation regarding the intended meaning of
polymorphic definitions. Consider the specification

spec Composition =
vars a, b, c : Type
op comp : (b → c) → (a → b) → a → c
vars f : b → c; g : a → b

• comp f g = λx : a • f (g x )
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where for the sake of the argument we abuse HasCasl as a notation for the
simply typed λ-calculus with shallow polymorphism in much the same sense
as described in Section 3, the only real point of this being the assumption that,
unlike in actual HasCasl, there is no unit type. On the first level of the semantics
as described in Section 3, Composition is model-theoretically entirely vacuous,
since the syntactic set of types is empty and hence the polymorphic axiom is
trivially satisfied in ‘all’ models of the signature (there is in fact only one model,
since the signature is effectively empty). This is clearly not the intention of
Composition. Indeed this specification is necessarily meant as a building block
for other specifications that import the polymorphic operator and its definition,
which then induce instances according to the ambient signature. In other words,
the real purpose of Composition is apparently to say something about the
interpretation of comp at all types, even those not yet declared. Thus, a model
of the specification should contain information not only about the interpretation
of the presently declared signature, but also about all ‘future’ extensions of this
interpretation. This is the motivation for the following definitions:

Definition 8. Let PI be a preinstitution. An extended model of a signature
Σ1 is a pair (N, σ), where σ : Σ1 → Σ2 is a signature morphism and N is a
Σ2-model in PI. The reduct (N, σ)|τ of (N, σ) along a signature morphism τ is
(N, σ ◦ τ). The extended model (N, σ) satisfies a sentence ϕ if

N |= σϕ

in PI.

We record explicitly

Theorem and Definition 9. The extended models, together with the original
notions of signature and sentence from PI, form an institution, called the insti-
tution of extended models and denoted Ext(PI).

Proof. Functoriality of reduction is easy to see. To check the satisfaction condi-
tion, let τ : Σ1 → Σ2 be a signature morphism, let ϕ be a Σ1-sentence, and let
(N, σ) be an extended Σ2-model. Then (N, σ) |= τϕ in Ext(PI) iff N |= στϕ in
PI iff (N, σ)|τ = (N, σ ◦ τ) satisfies ϕ in Ext(PI). ��

The semantic consequence relation in Ext(PI) is precisely as expected:

Proposition 10. A Σ1-sentence ψ is a semantic consequence of a set Φ of Σ1-
sentences in Ext(PI) iff

σΦ |= σψ

in PI for each signature morphism σ : Σ1 → Σ2.

Proof. ‘If ’: trivial.
‘Only if ’: let σ : Σ1 → Σ2 be a signature morphism, and let N be a Σ2-model

such that N |= σΦ in PI. Then the extended model (N, σ) satisfies Φ and hence
also ψ, i.e. we have N |= σψ. ��
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That is, a formula is a semantic consequence of a specification Sp = (Σ, Φ)
(where Φ is a set of Σ-sentences) iff this is the case, in PI, in all extensions
of Sp.

Example 11. In the example specification Composition from Section 4, all
formulae are semantic consequences on the first level, i.e. in PI, since all formu-
lae are vacuously true. This pathology disappears in Ext(PI), where semantic
consequences of the specification are only those formulae that follow from the
definition of composition independently of how many types are introduced, such
as e.g. associativity of composition. Thus, the notion of semantic consequence
at the second level, unlike the one at the first level, conforms to intuitive expec-
tations. We will make this more precise in Section 7.

One can give a concise description of extensions in Ext(PI):

Lemma 12. The extensions of an extended model (N, τ) along a signature mor-
phism σ are precisely the extended models (N, ρ) where τ = ρ ◦ σ.

We can represent PI in Ext(PI) by a preinstitution comorphism (cf. Defini-
tion 4)

η : PI → Ext(PI)

which is the identity on signatures and sentences, and takes every extended
model to its base model.

Proposition 13. The comorphism η is weakly eps. Moreover, η is rps if PI is
rps.

Remark 14. Interestingly, the concept of extended model is close to the very
abstract or hyper-loose semantics as introduced in [9, 30], where models may
interpret more symbols than just the ones named in their signature. This is used
e.g. in the semantics of RSL [14].

There are two crucial differences here. The first is of motivational nature:
the purpose of very abstract semantics is to ensure that refinement is model
class inclusion; there is no intended connection with repairing the satisfaction
condition, and in fact, the construction described in [9] is explicitly intended as
a construction on institutions (one of the example applications given in [9, 30] is
to the institution of many-sorted first order logic). Note that, when applied to
institutions, the very abstract semantics is equivalent to the original semantics
in terms of the engendered semantic consequence relation.

Secondly, at a more technical level, the phrase ‘models may interpret addi-
tional symbols’ means that very abstract semantics limits the notion of model to
extended models with injective signature morphisms; the main technical content
of [9] is to solve the difficulties caused by this restriction w.r.t. model reduc-
tion. For the purposes pursued here, the restriction to injective extensions is not
only unnecessary, but would indeed invalidate our main result; i.e. for models of
polymorphism modeled along the construction of [9], the satisfaction condition
would still fail.

Taking PI as the first level of the HasCasl semantics (cf. Section 3), we define
the second level of the semantics [36] to be given by Ext(PI).
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7 Semantic Consequence for Generic Polymorphism

We now investigate the implications of the extended model construction ex-
plained in Section 6 in relation to the generic polymorphism introduced in Sec-
tion 5 — recall that generic polymorphism in general leads only to an rps prein-
stitution. For the remainder of this section, let I be an institution with signature
variables, and let Poly(I) denote the polymorphic preinstitution over I as defined
in Section 5.

Let ∀σ. φ and ∀ρ. ψ be polymorphic formulae over a signature Σ1. It is easy
to check that ∀ρ. ψ is a semantic consequence of ∀σ. φ in Poly(I) iff

{τφ | τ ◦ σ = id} |= πψ

in I for each signature morphism π such that π◦ρ = id. This is rather unpleasant,
since it means we have to prove a possibly infinite number of semantic conse-
quences, one for each instance πψ of ∀ρ. ψ in Σ1. Fortunately, the (stronger)
notion of semantic consequence in the institution Ext(Poly(I)) is much more
tractable:

Theorem 15. In Ext(Poly(I)), ∀ρ. ψ is a semantic consequence of ∀σ. φ iff

ρ(∀σ. φ) |= ψ

in Poly(I) (or, since ψ enjoys eps, equivalently in Ext(Poly(I)))

(Recall that ρ(∀σ. φ) = ∀σ̄. ρ̄φ, where (ρ̄, σ̄) is the pushout of (σ, ρ)). The above
condition can be equivalently rephrased as the semantic consequence

{λφ | λ ◦ σ = ρ} |= ψ (∗)

in I. Thus, unlike proofs of semantic consequence in Poly(I) as described above,
proofs in Ext(Poly(I)) are actually feasible, since we have to prove only a single
generic instance of the goal, rather than all instances that exist in the base
signature due to pure syntactic happenstance. Moreover,

any sound and complete deduction system for I induces a sound and
complete deduction system for Ext(Poly(I)),

while for Poly(I), one will in general only obtain a sound but not complete
deduction system.

The formulation of semantic consequence given in the theorem is exactly what
one would intuitively expect: we fix the additional syntactic material quantified
over by ρ and prove ψ only for this fixed instance; in the proof, we are allowed
to make use of all instances of φ, including instances involving the new syntactic
material. Proofs of polymorphic formulas e.g. in Isabelle [29] work in precisely
this way, which we have now provided with a semantic foundation.

Proof (Theorem 15). ‘Only If ’: by Proposition 10, we have ρ(∀σ. φ) |= ρ(∀ρ. ψ),
and ψ is an instance of ρ(∀ρ. ψ). The latter follows from the universal property
of the pushout of ρ with itself.
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‘If ’: let Σ1 be the base signature of ∀σ. φ and ∀ρ. ψ, let κ : Σ1 → Σ2 be a
signature morphism, and let

• κ̄σ� • •
κ̄ρ� •

and

Σ1

σ �

κ
� Σ2

σ̄�

Σ1

ρ �

κ
� Σ2

ρ̄�

be the associated pushout diagrams. Then κ(∀σ. φ) = ∀σ̄. κ̄σφ and κ(∀ρ. ψ) =
∀ρ̄. κ̄ρψ. By Proposition 10, we thus have to prove

∀σ̄. κ̄σφ |= ∀ρ̄. κ̄ρψ

in Poly(I), i.e. given a model M such that M |= ∀σ̄. κ̄σφ and τ such that τ ρ̄ = id,
we have to show M |= τ κ̄ρψ in I. Since semantic consequence in I is stable under
translation, this reduces by (∗) above to showing M |= τ κ̄ρλφ for all λ such that
λ ◦ σ = ρ. For such a λ, we have τ κ̄ρλσ = τ κ̄ρρ = τ ρ̄κ = κ, so that the pushout
property yields ν such that νσ̄ = id and νκ̄σ = τ κ̄ρλ. Then M satisfies the
instance νκ̄σφ of ∀σ̄. κ̄σφ; but νκ̄σφ = τ κ̄ρλφ. ��

8 Model-Theoretic Conservativity

While the semantic consequence relation engendered by the extended model
construction is without further ado precisely the ‘right’ one, the issue of model
expansion, i.e. of conservativity in the model-theoretic sense as used e.g. in Casl,
is somewhat more subtle. We recall a few definitions:

Definition 16. A theory in a (pre-)institution is a pair Sp = (Σ, Φ) consisting
of a signature Σ and a set Φ of Σ-sentences. A model of Sp is a Σ-model M such
that M |= Φ. A theory is consistent if it has a model. A signature morphism
σ : Σ1 → Σ2 is a theory morphism (Σ1, Φ1) → (Σ2, Φ2) if

Φ2 |= σΦ1.

A theory morphism σ : Sp1 → Sp2 is model-theoretically conservative or model-
expansive if every model M of Sp1 has an Sp2-extension, i.e. a model N of Sp2

such that N |σ = M .

Notice that by Proposition 10 and Example 11, the notion of theory morphism
in Ext(PI) is in general properly stronger than in PI.

Proposition 17. A theory is consistent in an rps preinstitution PI iff it is
consistent in Ext(PI).

Typical extensions that would be expected to be model-expansive e.g. in
HasCasl are (recursive) function definitions, loose declarations of new signature
elements, and declarations of free datatypes. An apparent obstacle to model-
expansivity of such extensions at the second level of the semantics is Part (i) of
the following observation:
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Proposition 18. Let PI be an rps preinstitution, and let σ : (Σ1, Φ1) →
(Σ2, Φ2) be a theory morphism in Ext(PI). Then the following holds:

(i) If σ is model-expansive in Ext(PI) and (Σ1, Φ1) is consistent, then σ is
a section as a signature morphism; i.e. there exists a signature morphism
τ : Σ2 → Σ1 such that τ ◦ σ = id.

(ii) If σ is a section as a theory morphism in Ext(PI), i.e. there exists a theory
morphism τ : (Σ2, Φ2) → (Σ1, Φ1) such that τ ◦ σ = id, then σ is model-
expansive.

Proof. (i): By assumption and the rps condition, (Σ1, Φ1) has a model (M, id) in
Ext(PI). By Lemma 12, existence of an extension of this model along σ implies
that σ is a section.
(ii): Straightforward. ��
When plain signature morphisms are used, which typically map type constants to
type constants, operators to operators etc., then the necessary condition above
is clearly too restrictive; essentially, the only model-expansive extensions one
obtains are those that define symbols by other symbols already present. The
solution to this is to use derived signature morphisms instead, which typically
are allowed to map, say, type constants to composite types, operators to terms,
and the like; by the sufficient condition (ii) above, one then obtains as model-
expansive extensions all declarations and definitions which can be implemented
by some composite object in the present theory.

In the case of HasCasl, the notion of derived signature morphism required
here is the one already given in Example 6. Thanks to the richness of HasCasl
specifications, the model-expansive extensions are indeed the expected ones un-
der this definition; this includes

– equational definitions
– well-founded recursive definitions of functions into types that admit a unique

description operator [34]
– general recursive definitions over cpo’s
– inductive datatype definitions, provided that the base theory already con-

tains the natural numbers (this is a categorical result inherited from topos
theory [22])

– class declarations.

In general, it depends on the expressive power of signatures and theories in the
preinstitution at hand whether or not using derived signature morphisms leads to
a satisfactory notion of model-expansivity. It should however be noted that there
is usually quite some latitude in the definition of derived signature morphism;
many forms of extensions can be made model-expansive by just giving a more
liberal definition of what a derived signature morphism can do.

9 Application to Other Frameworks

We now briefly discuss the effects of the extended model construction in other
frameworks where the satisfaction condition may fail, to wit, in observational
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and state-based frameworks as described in Section 4. Of course, the construction
will always work in principle; however, the question remains whether or not the
ensuing semantic modifications are methodologically desirable, and what the
actual benefits are. Here, we will concentrate on two issues:

A) Is the notion of semantic consequence engendered by the extended model
construction the expected one? I.e., in view of Proposition 10, is semantic
consequence intended to be independent of the surrounding signature?

B) Is the alternative solution of restricting signature morphisms acceptable?

We have seen that, in the case of type class polymorphism, the answer is ‘yes’
to Question A) and ‘no’ to Question B): semantic consequences that hold only
due to the particular nature of the presently declared types can be regarded
as unwanted side effects, and limiting signature morphisms to be surjective on
types is not an option.

The situation is different with observational satisfaction. It is precisely the
point of having distinguished observable operations or sorts that these govern
the notion of observational equality, and moreover that the given set of observers
determines a proof principle for observational equality, namely coinduction. This
proof principle is lost when extended models are considered (in a setting with
unrestricted signature morphisms): since deduction then has to work within
arbitrary signature extensions that may introduce any number of additional ob-
servers, the notion of semantic consequence for extended models is just semantic
consequence in standard equational logic. This is clearly not the desired effect,
so that the notion of extended model cannot in fact be considered suitable for
observational specification. It is thus lucky that, given this negative answer to
Question A), the answer to Question B) is affirmative: it is common practice to
restrict signature morphisms of observational specifications in such a way that
extensions never introduce new observers [5, 16]. This forces a specification style
where all observers are introduced in one go at the beginning, being regarded as
constituting the requirements on the system, and the non-observable part, i.e.
the implementation, is added later; indeed, this specification style is explicitly
advocated e.g. in [20].

Finally, let us have a look at the specification of stateful systems in the states-
as-algebras paradigm as used e.g. in the specification language SB-Casl [4].
The problem here, as pointed out in Section 4, are so-called dynamic equations
between program-like expressions called transition terms in SB-Casl (besides
these dynamic equations, SB-Casl also features pre- and postconditions, which
are however unproblematic w.r.t. the satisfaction condition). The purpose of
dynamic equations lies both in the (possibly recursive) definition of procedures
and in their loose equational specification e.g. as inverses of other procedures (a
very simple example of this is given in [4]). As indicated in Section 4, dynamic
equations may break in model expansions when signature morphisms introduce
additional state components.

The methodology of state-based specification in this sense is not as yet well
developed, so that we feel entitled to pitch in our own bit of philosophy, as
follows. Concerning Question B) above, it seems undesirable to have a develop-
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ment paradigm where the specification process starts with defining the entire
state space in full detail and only then allows the formulation of requirements
for programs that work on this state space; to the contrary, one would normally
wish to start with the requirements, mentioning only the parts of the state space
relevant for input and output, and then work out the detailed design of the state
space. As to Question A), it appears for rather the same reason that semantic
consequences that hold only due to an insufficiently detailed description of the
state space should be regarded as spurious, so that the notion of semantic con-
sequence induced by the extended model construction is indeed an improvement
over the original one. As an extreme example, consider a specification that in-
troduces some procedure names, but no dynamic signature components at all
(presumably with the intention to specify these in later extensions), i.e. induces
a trivial state space; in SB-Casl, such a specification might look as follows:

spec Sp =
proc p, q
pre p : True
pre q : True

(the two preconditions express that p and q terminate). Then, unless extended
models are used, any two terminating programs (transition terms) would be
equal, i.e. their equality is a semantic consequence of the precondition expressing
their termination; in particular, the above specification implies the dynamic
equation p = q. We argue that this sort of semantic consequence is actually a
pathology, which is eliminated by our extended model construction.

10 Conclusion

Starting from the problem that type class polymorphism does not enjoy the sat-
isfaction condition of institutions, but only the reduction preserves satisfaction
(rps) half, we suggest a general construction of institutions from preinstitutions.
The construction is based on the idea that a model of a specification should
contain information not only about the interpretation of the presently declared
signature, but also about all ‘future’ extensions of this interpretation. Conse-
quently, the extended models of a signature are defined to consist of a signature
extension and a model of the extended signature. The arising notion of semantic
consequence is the expected one, namely, semantic consequence in all signature
extensions in the original preinstitution. Moreover, in sufficiently rich logics such
as the HasCasl logic, one also obtains the expected model-expansive extensions.

The semantics of polymorphism used in HasCasl makes use of this result,
so that HasCasl does indeed fit into the institution-independent framework of
Casl. We have also investigated the use of our construction in other frameworks
where the satisfaction condition fails for unrestricted signature morphisms, the
result being that the implications of our constructions are methodologically
undesirable in the case of observational satisfaction, but beneficial in the case
of dynamic equations in a states-as-algebras framework. The suitability of our
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approach for security formalisms, which also exhibit the phenomenon that secu-
rity assertions tend to be unstable under refinement [8], is under investigation.

A particularly pleasing point is that HasCasl’s polymorphic sentences can
be subsumed under a general definition of polymorphic formulae over institu-
tions; the extended model construction, when applied to such generic polymor-
phic frameworks, leads to a very natural notion of semantic consequence which
agrees with proof principles used e.g. in Isabelle [29]. In this sense, our method
provides a semantic basis for existing proof methods.
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Abstract. This paper concerns the problem of building reactive systems
in a modular way.

Several institutions have been proposed for the specification of reac-
tive systems throughout the last fifteen years. Based on the institutions,
formalisms for the incremental construction of system specifications have
been developed. Related problem of modular construction of system im-
plementations has received less attention. This paper is the first attempt
to use architectural specifications of Casl for that purpose. The seman-
tics of the architectural specifications is based on the underlying insti-
tution. We argue that none of the institutions defined so far for reactive
systems is appropriate as a basis for architectural specifications, and
therefore we propose another one, better suited for this task.

We also show how to express synchronisation of reactive systems using
implementation-building operations of Casl architectural specifications.

1 Introduction

This paper concerns the problem of building reactive systems in a modular fash-
ion. Reactive systems can be formalised in various ways. A simple and intuitive
model adopted in this paper is a labelled transition system (cf e.g. [NW95–Sec.
2]), enriched with an assignment of data structures to system states.

To avoid confusion we reserve the term system to mean a labelled transition
system and will refer to reactive systems as reactive components, or components
for short.

For specifying reactive components we intend to use CTL� logic ([GHR95]),
expressive enough to describe safety, liveness and fairness properties.

1.1 Structuring Specifications

Institutions ([GB92]) provide semantics for the specification-building operations,
as defined e.g. in [ST84], independent of the underlying logic. Operations for
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composing complicated specifications out of the smaller ones have been incorpo-
rated into several specification languages, such as Casl ([CoFI04]) or CafeOBJ
([DF98]). They can be used for constructing specifications of reactive components
in a modular fashion, provided that an appropriate institution is defined, and in
the past fifteen years several suitable institutions have been proposed.

Dynamic algebras of Costa and Reggio ([CR97]) and related entity algebras
of Reggio ([Reg90]) model reactive components as structures of many-sorted
partial first-order logic, with distinguished sorts for the states and the labels
of a transition system. Transitions are represented as ternary predicates. Static
data and dynamic transitions are thus treated uniformly in a familiar algebraic
framework, in particular, both states and transition labels can be manipulated
as first-class values. Logic introduced for specifying systems is an extension of
first-order logic with CTL�-like temporal modalities. Dynamic algebra approach
is used in [ACR99] to propose Casl-LTL extension to Casl.

An alternative extension of the algebraic approach towards modelling reactive
systems are D-oids of Astesiano and Zucca ([AZ95]). A D-oid is a set of static
structures modelling configurations of a component (e.g. structures of first-order
logic) and a set of dynamic operations, associating with each structure, and a
tuple of arguments from its carrier, a resulting structure together with a partial
mapping between the carriers of the two structures. The mappings make possi-
ble tracing the identity of an element of the carrier throughout the sequence of
dynamic operations and specifying operations that create, merge or delete ele-
ments. Related to D-oids is the SB-Casl extension of Casl by Baumeister and
Zamulin ([BZ00]), where transitions between states are specified operationally
in terms of state updates. However, the formalism of [BZ00] does not constitute
an institution.

At the other end of the spectrum there are less algebraic and more process-
oriented approaches, where system transitions are labelled with action symbols
and component behaviour is described in terms of sequences (or trees, if branch-
ing structure is taken into account) of actions. Fiadeiro and Maibaum define
in [FM92] an institution for linear temporal logic. They use theories as units
for building specifications. Colimits in the category of theories are used to con-
struct large specifications from smaller ones — an idea that is further explored
in CommUnity specification formalism ([FLW03]).

In [CSS98] Sernadas et al use a generic institution for a class of modal logics
as a basis for an object specification formalism. Transition systems are used as
models, but an occurrence of an action is represented as an atomic proposition
holding in a state rather than as a transition labelled with an action symbol.
Similar institution is defined for CTL� in [AF95] — again, the transitions are
not labelled.

Perhaps the closest to our work is the institution of Cengarle ([Cen98]). There,
a model is a labelled transition system with data structures in system states and
transitions labelled with action symbols, while the logic is a variant of CTL�.
The institution is shown to have the amalgamation property and structuring of
theories is also considered.
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1.2 Structuring Models

In contrast with structuring the specifications, much less work has been done
concerning structuring the models.

Using a formalism like the one of [FM92] one may be tempted to identify a
structure of a reactive component with the structure of its specification. However
Fiadeiro and Maibaum remark ([FM92–pp. 8]):

It is the specification activity we want to make modular (...) a specifier
will not actually manipulate models but theories.

In this paper we are interested precisely in “manipulating models”.
The specification formalism of CommUnity ([FLW03]) may be viewed as a

further development of ideas from [FM92]. A CommUnity design is a specifica-
tion of a reactive component, a design morphism identifies a component specified
by its source as a part of a component specified by its target. Specifications of
complex systems are given by colimits in the category of designs, the structure
of a system is thus reflected in the structure of its specification. However, design
morphisms are not specification morphisms in the institutional sense — a clear
distinction is made in CommUnity between superposition and refinement of
designs.

There are nevertheless purely institutional tools developed for structuring
the models, such as architectural specifications ([BST99]) of Casl. Although
Casl is an algebraic specification language, its architectural specifications are
given institution-independent semantics and thus can be also used to structure
reactive components. However, there have been no attempts yet to apply them
in this domain.

Before discussing architectural specifications we first define transition systems
formally. Fixing the semantic domain for reactive system specifications will not
restrict severely the choice of an institution whereas it will provide the reader
with more intuition.

2 Transition Systems

There are two kinds of atomic observations one can make regarding a reactive
component — one can notice when a component performs certain action and
examine current values of component attributes. The set of action symbols and
the signature of state attributes constitute the signature of a reactive system.

Definition 1 (System signature). A system signature is a pair Θ = 〈Γ, Σ〉,
where

– Γ is a set of action symbols,
– Σ is a many-sorted first-order data signature.

We could distinguish a subset of rigid symbols in Σ to represent state-
independent data, such as arithmetical operations, but we prefer to keep the
presentation simple.
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Definition 2 (Θ-system). Let Θ = 〈Γ, Σ〉 be a system signature. A Θ-system
is a triple S = 〈W,D, T 〉, where

– W is a nonempty set of system states,
– D : W → Str(Σ) is a mapping assigning a data structure to each state,

such that for every v,w ∈ W , |D(v)| = |D(w)|,
– T ⊆W × Γ ×W is a set of transitions.

The common carrier of data structures of S is denoted by Univ(S), and the
class of all Θ-systems is denoted by Sys(Θ).

As usual, we write v
g−→ w ∈ T whenever 〈v, g,w〉 ∈ T . We also write v

Δ−→ w

∈ T , for Δ ⊆ Γ , if v
g−→ w ∈ T for some g ∈ Δ. We say that v has no Δ-successor

in S, written v
Δ
� if there is no w such that v

Δ−→ w ∈ T . v � stands for v
Γ
�.

The identity of system states is not relevant when one is only interested
in data contained in states and transitions between them. Therefore we write
〈W,D, T 〉 = 〈W ′, D′, T ′〉 whenever there is a bijection i : W → W ′ such that
D = i;D′ and T ′ =

{
i(v)

g−→ i(w) | v g−→ w ∈ T
}

.

3 Modular System Description

Having fixed the semantic domain we describe the syntax and the semantics
of a simplified version of architectural specifications (see [CoFI04–Chapt. 5] for
precise definitions) using a small example of a network service.

The service repeatedly performs a sequence of three actions: accepts a request,
processes it and delivers a response. Moreover, the requests can be classified into
several types (we will distinguish just two of them in the specification) and there
is also a possibility that the service will forward a request to some other external
network service.

We need three intermediate specifications: BasicService, describing the basic
accept-process-respond cycle, MultiService, distinguishing between two request
types, and FwdService, specifying the forwarding mechanism.

arch spec Service is
units S : BasicService

F : BasicService ϑ1−→ MultiService

G : BasicService ϑ2−→ FwdService
result F (S ) and G(S )

The above architectural specification states that the implementation of Service
is built with three units. S is a basic unit that implements BasicService. F is
a generic unit implementing an operation that when given an implementation
of BasicService produces an implementation of MultiService, and G is another
generic unit producing an implementation of FwdService.
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The semantics of architectural specification is institution-based: S denotes a
model of BasicService, F and G denote functions on models and F (S) and G(S)
denotes the amalgamation (see [Tar99]) of models.

A signature ΘMS of the result of F is identified as an extension of a signature
ΘBS of its argument by a morphism ϑ1 : ΘBS → ΘMS .1 The function denoted
by F is required to be persistent, i.e. F (A)|ϑ1 = A must hold for any model A
of ΘBS . In the Casl terminology F (A) is an expansion of A along ϑ1.

Specifications of individual units will be just sets of sentences in an institu-
tion of our choice. Desirable properties of a candidate institution are the cocom-
pleteness of the category of signatures — making composing the specifications
possible — and the amalgamation property, ensuring that the amalgamation of
units is well-defined. However when one wants to build models incrementally,
using generic unit application and unit amalgamation, it is even more important
that each model have many non-trivial expansions along a signature morphism.

In most of the institutions considered in Sec. 1.1, the reduct is defined in such
a way, that all expansions of a system have the same sets of states and transitions
(modulo relabelling) as the original system.2 With such an institution adopted
for the semantics of the example specification, all the models involved will be
forced to share a common set of states and transitions. All than can be done
by applying generic units and amalgamating models would be a relabelling of
transitions and expanding the data structures in states.

What we would like to do instead, is to expand a system by enlarging its state
space and by adding new transitions. To be able to do that, we must propose a
new institution as a basis for architectural specifications.

4 Specification Logic

By f : A ⇀ B we denote a partial mapping f from A to B. We write f(a)↓ if
f is defined for a ∈ A, f(a)↑ otherwise. dom(f) denotes the set {a ∈ A | f(a)↓}.
The identity f(a) = f(b) implies that both f(a) and f(b) are defined.

4.1 Prefixes and Runs

Formulas of the specification logic will be tested against runs — sequences of
consecutive transitions performed by a system and of states encountered. Runs
may be either finite or infinite but are required to be maximal.

Definition 3 (Prefix, run). Let S = 〈W,D, T 〉 be a Θ-system, where Θ =
〈Γ, Σ〉. A prefix in S is a pair ρ = 〈ρs, ρa〉, where ρs : N ⇀ W and ρa : N ⇀ Γ
are such that

1 We drop the Casl requirement that the argument signature must be included in the
result signature.

2 One exception are dynamic algebras, where a model corresponds to a set of transition
systems — each for every sort of states. It is possible to expand a model by adding
entirely new transition system, but still not by enlarging an existing one.
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(i) either ρa is total or exists l ∈ N such that, for all n ∈ N, ρa(n)↓ iff n < l; in
the former case ρ is infinite, in the latter it has length l; we write len(ρ) = ω
or len(ρ) = l, respectively,

(ii) ρs(0)↓ and, for all n > 0, ρs(n)↓ iff ρa(n− 1)↓,
(iii) for all n ∈ N such that ρa(n)↓, ρs(n)

ρa(n)−−−→ ρs(n + 1) ∈ T ,

ρ is a Δ-prefix if −→ρa(N) ⊆ Δ. ρ is Δ-maximal if it is a Δ-prefix and is either
infinite or ρs(len(ρ)) Δ

�.
ρ is a run in S (or S-run) if it is a Γ -maximal prefix. ρ′ is a prefix of ρ if

len(ρ′) ≤ len(ρ), ρ′
s(n) = ρs(n) for all n ≤ len(ρ′) and ρ′

a(n) = ρa(n) for all
n < len(ρ′).

Runs(S) denotes the set of all S-runs.
For a prefix ρ such that len(ρ) ≥ n we define its n-th suffix ρ(n) in a straight-

forward way:

ρ(n)
s (k) = ρs(n + k) if ρs(n + k)↓, otherwise ρ(n)

s (k)↑
ρ(n)

a (k) = ρa(n + k) if ρa(n + k)↓, otherwise ρ(n)
a (k)↑

Prefixes ρ and ρ′ are co-initial if ρs(0) = ρ′
s(0).

4.2 Formulas

The logical part of the institution is a rather obvious extension of the standard
CTL� ([GHR95]) to deal with first-order data structures in system states and
transition labels (usually, CTL� is interpreted over propositional Kripke frames
with a single transition relation).

φ −→ t1 = t2 | P (t1, . . . , tk) | ff | φ1 → φ2 | ∀xsφ1

XΔ φ1 | φ1 U φ2 | A φ1

where P ∈ Σk, ti ∈ TΣ(X ), xs ∈ Xs and Δ ⊆ Γ

Fig. 1. Syntax of Θ-formulas

The syntax of formulas over Θ, or Θ-formulas, is shown on Fig. 1. We assume
a countable many-sorted set X of individual variables. A formula is either atomic
or is built with standard propositional connectives, a quantification over first-
order variables and temporal modalities.

Instead of a single X (“next”) modality we use a family of modalities indexed
with sets of actions. U (“until”) and A (“for all runs”) are standard CTL�

modalities.
Besides usual propositional connectives we also introduce some other ab-

breviations, shown on Fig. 2, including temporal modalities F (“finally”), G
(“globally”) and W (“weak until”).

Forms(Θ) denotes the set of all Θ-formulas.
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Δ! ≡ XΔ tt E φ1 ≡ ¬A ¬φ1

[Δ]φ1 ≡ A (Δ! ⇒ X φ1) 〈Δ〉φ1 ≡ ¬[Δ]¬φ1

F φ1 ≡ tt U φ1 G φ1 ≡ ¬F ¬φ1

φ1 W φ2 ≡ G φ1 ∨ φ1 U φ2

Fig. 2. Abbreviations

4.3 Formula Satisfaction

Θ-formula satisfaction is defined for the runs of a Θ-system in a standard way.

Definition 4 (Formula satisfaction). For a Θ-system S = 〈W,D, T 〉 we de-
fine the relation |=S⊆ Runs(S)×Univ(S)X × Forms(Θ) inductively:

– ρ, ξ |=S P (t1, . . . , tk) iff D(ρs(0)), ξ |=Σ P (t1, . . . , tk),
– ρ, ξ |=S t1 = t2 iff D(ρs(0)), ξ |=Σ t1 = t2,
– ρ, ξ /|=S ff ,
– ρ, ξ |=S φ1 → φ2 iff ρ, ξ |=S φ1 implies ρ, ξ |=S φ2,
– ρ, ξ |=S ∀xsφ1 iff ρ, ξ[a/xs] |=S φ1 for all a ∈ |Univ(S)|s,
– ρ, ξ |=S XΔ φ1 iff len(ρ) > 0, ρa(0) ∈ Δ and ρ(1), ξ |=S φ1,
– ρ, ξ |=S φ1 U φ2 iff exists n ≤ len(ρ) such that ρ(n), ξ |=S φ2 and, for all

k < n, ρ(k), ξ |=S φ1,
– ρ, ξ |=S A φ1 iff ρ′, ξ |=S φ1 for every ρ′ ∈ Runs(S) co-initial with ρ.

We write ρ |=S φ if ρ, ξ |=S φ for all ξ ∈ Univ(S)X .

In the above definition |=Σ is a satisfaction relation of many-sorted first-order
logic.

For a set Δ ⊆ Γ we define the formula

MaxPrefixΔ = Δ! W A¬Δ!

satisfied precisely by those runs which have a maximal Δ-prefix.

4.4 Sentences

We now extend the satisfaction relation from single runs to sets of runs. To that
end we define Θ-sentence to be a Θ-formula with an operator indicating whether
it must hold for all runs of a set or for at least one of them.

Definition 5 (Sentence). For a signature Θ the set Sen(Θ) of Θ-sentences
is defined as follows:

Sen(Θ) = {� φ | φ ∈ Forms(Θ)} ∪ {♦ φ | φ ∈ Forms(Θ)}

Definition 6 (Sentence satisfaction). For a signature Θ the satisfaction re-
lation |=Θ⊆ Sys(Θ)× Sen(Θ) is defined as follows:

– S |=Θ � φ iff for all ρ ∈ Runs(S), ρ |=S φ,
– S |=Θ ♦ φ iff there exists ρ ∈ Runs(S) such that ρ |=S φ.
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4.5 An Example Specification

For the sake of example we list below several axioms of the specification
BasicService.

The signature ΘBS of BasicService contains action symbols req (for request),
proc (for process) and resp (for response) representing actions performed by a
service, sorts representing request and response data and constants req data,
resp data and null (strictly speaking we need two null constants of different
sorts).

(1) ♦ req data = null ∧ resp data �= null
(2) � (req data = null ∧ resp data = null) → 〈req〉tt
(3) � [req ](req data �= null ∧ ¬req ! U resp!)

Axiom (1) state the existence of a state satisfying certain requirements. Ax-
iom (2) gives the sufficient conditions for an action req to be enabled. The last
axiom describes the effects of req and ensures service responsiveness — after an
occurrence of req a resp must eventually follow and no req is allowed to occur
before that point.

To present other specifications involved in Service we need to introduce sig-
nature morphisms and associated model and sentence functors.

5 The Institution SYS

5.1 Signature Morphisms

A signature morphism ϑ : Θ → Θ′ describes an extension of a system signature.
Morphisms may rename or add elements to data signature, remove or add action
symbols and split existing action symbols into several variants.

Definition 7 (Signature morphism). Let Θ = 〈Γ, Σ〉 and Θ′ = 〈Γ ′,Σ′〉 be
signatures. A signature morphism ϑ : Θ → Θ′ is a pair 〈γ,σ〉, where

– γ : Γ ′ ⇀ Γ is a partial mapping,
– σ : Σ → Σ′ is a first-order many-sorted signature morphism.

If 〈γ,σ〉 : Θ → Θ′ is a signature morphism, an action symbol g′ ∈ Γ ′ is called
a variant of g ∈ Γ if γ(g′) = g. g′ is a new action symbol if γ(g′)↑.

The idea of an action part of a morphism being a contravariant partial map-
ping is adopted from CommUnity.

Signatures and their morphisms with obvious identities and morphism com-
position constitute the category Sign. Being a product of two cocomplete cate-
gories it is also cocomplete.

5.2 The Reduct Operation

Let ϑ : Θ → Θ′ be a signature morphism and let S be a Θ-model. As argued in
Sec. 3, due to the requirement that parametric units may only produce expan-
sions of their arguments, it is important that the class of Θ′-systems that are
reduced to S include many non-trivial expansions of S.
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In our institution, the expansions can be built by:

– adding new data components, which leads to splitting each state of the origi-
nal system into several states differing in the values of new state components;
the effects of transitions can then be modelled with more detail by describing
how the new components are affected;

– splitting actions into variants which can then be specified and modelled
(partially) independently;

– introducing new actions which may add new runs to the original system.

The reduct operation is defined in two steps. First, a notion of prereduct is
introduced. A prereduct of a Θ′-system along ϑ : Θ → Θ′ is a Θ-system for which
satisfaction condition holds. A proper reduct is obtained by taking a quotient of
a prereduct by a suitable equivalence relation.

Definition 8 (Prereduct). Let S = 〈W,D, T 〉 be a Θ′-system and let ϑ =
〈γ,σ〉 : Θ → Θ′ be a signature morphism. The prereduct of S along ϑ is a
Θ-system S|�ϑ = 〈W,D′, T ′〉, where

– D′(w) = D(w)|σ, for every w ∈W ,

– T ′ = {v γ(g)−−−→ w | v g−→ w ∈ T and γ(g)↓}

The prereduct of a Θ′-system is obtained by reducing data structures along
the data component of a signature morphism, relabelling the transitions ac-
cording to the action component and removing all the transitions labelled with
actions that are new in Θ′. The set of states is not affected, therefore all expan-
sions of a model with respect to the prereduct operation share the common set
of states, which clearly is not satisfactory for our purposes.

To define the proper reduct we recall the standard notion of bisimulation.

Definition 9 (Bisimulation). Let S1 = 〈W1, D1, T1〉 and S2 = 〈W2, D2, T2〉
be systems. A relation ∼⊆W1×W2 is a bisimulation between S1 and S2 if, for
all 〈v1, v2〉 ∈∼, the following conditions hold:

(1) D1(v1) = D2(v2),
(2) if v1

g−→ w1 ∈ T1, for some w1, g, then there exists w2 such that v2
g−→ w2 ∈ T2

and w1 ∼ w2.
(3) if v2

g−→ w2 ∈ T2, for some w2, g, then there exists w1 such that v1
g−→ w1 ∈ T1

and w1 ∼ w2.

We say that S1 and S2 are bisimilar, written S1 ≈ S2, if there exists a
total bisimulation ∼ between S1 and S2, i.e. a bisimulation such that for every
v1 ∈ W1 there exists v2 ∈ W2 such that v1 ∼ v2 and for every w2 ∈ W2 there
exists w1 ∈W1 such that w1 ∼ w2.

For any Θ-system S, the largest bisimulation on S (the sum of all bisimula-
tions between S and itself) is an equivalence relation.

Definition 10 (Reduct). Let S = 〈W,D, T 〉 be a Θ′-system and let ϑ =
〈γ,σ〉 : Θ → Θ′ be a signature morphism. Denote by ≈ the largest bisimula-
tion on S|�ϑ. The reduct of S along ϑ is a Θ-system S|ϑ = 〈W ′, D′, T ′〉, where
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– W ′ = W/ ≈
– D′([v]≈) = D(v)|σ,

– T ′ = {[v]≈
γ(g)−−−→ [w]≈ | v

g−→ w′ ∈ T for some w′ ∈ [w]≈ and γ(g)↓}.

5.3 Formula Translation

The components of a signature morphism ϑ = 〈γ,σ〉 : Θ → Θ′ determine the
translation σ̄ : TΣ(X )→TΣ′(X ) of terms and the translation−→γ −1: P(Γ )→P(Γ ′)
of sets of action symbols. These two mappings induce the translation function
ϑ̄ : Forms(Θ) → Forms(Θ′).

Clearly, simple renaming of action and operations in terms and formulas is
not enough for the satisfaction condition to hold. The expanded system may
contain runs that are removed by the reduct operation. The key idea here is to
translate Θ-formulas in such a way, that they concern only those runs of the
expanded Θ′-system that extend runs of the reduct system.

Definition 11 (Run extension). Let S be a Θ′-system and let ϑ : Θ → Θ′

be a signature morphism. A run ρ′ ∈ Runs(S) extends ρ ∈ Runs(S|�ϑ) if, for all
k ≤ len(ρ), ρs(k) = ρ′

s(k) and, for all k < len(ρ), γ(ρ′
a(k)) = ρa(k).

Definition 12 (Formula translation). For a signature morphism ϑ : Θ → Θ′

the formula translation function ϑ̄ : Forms(Θ) → Forms(Θ′) is defined induc-
tively as follows:

ϑ̄(t1 = t2) = σ̄(t1) = σ̄(t2) ϑ̄(P (t1, . . . , tn)) = P (σ̄(t1), . . . , σ̄(t2))
ϑ̄(ff ) = ff ϑ̄(φ1 → φ2) = ϑ̄(φ1) → ϑ̄(φ2)
ϑ̄(∀xsφ1) = ∀xσ(s)ϑ̄(φ1) ϑ̄(XΔ φ1) = X−→γ −1(Δ) ϑ̄(φ1)
ϑ̄(φ1 U φ2) = ϑ̄(φ1) Udom(γ) ϑ̄(φ2) ϑ̄(A φ1) = Adom(γ) ϑ̄(φ1)

where

φ1 UΔ φ2 = (Δ! ∧ φ1) U φ2

AΔ φ1 = A (MaxPrefixΔ → φ1)

Intuitively, ρ satisfies φ1 UΔ φ2 if a Δ-prefix of ρ satisfies φ1 U φ2, and ρ
satisfies AΔ φ1 if φ1 is satisfied by all runs co-initial with ρ which start with a
maximal Δ-prefix (cf the definition of MaxPrefixΔ in Sec. 4.3).

5.4 Satisfaction Condition

The satisfaction condition for the institution is verified first for prereducts, then
it is shown that the prereduct S|�ϑ is logically equivalent to the reduct S|ϑ.

Lemma 1. Let ϑ : Θ → Θ′, S ∈ Sys(Θ′), φ ∈ Forms(Θ) and ρ ∈ Runs(S|�ϑ).
Denote by Ext(ρ) the set of those S-runs that extend ρ. The following equivalence
holds:

ρ |=S|�ϑ φ iff, for every ρ′ ∈ Ext(ρ), ρ′ |=S ϑ̄(φ)
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Definition 13 (Sentence translation). For a signature morphism ϑ : Θ →
Θ′ the sentence translation function Sen(ϑ) : Sen(Θ) → Sen(Θ′) is defined as
follows:

Sen(ϑ)(� φ) = � MaxPrefixdom(γ) → ϑ̄(φ)
Sen(ϑ)(♦ φ) = ♦ ϑ̄(φ) ∧MaxPrefixdom(γ)

The following lemma is a consequence of Lemma 1.

Lemma 2. Let ϑ : Θ → Θ′, S ∈ Sys(Θ′) and ψ ∈ Sen(Θ). The following
equivalence holds:

S|�ϑ |=Θ ψ iff S |=Θ′ Sen(ϑ)(ψ)

To establish the satisfaction condition for reducts it remains to show that
bisimilar models satisfy the same sentences.

Lemma 3. Let S1, S2 ∈ Sys(Θ). If S1 ≈ S2 then, for all ψ ∈ Sen(Θ), S1 |=Θ ψ
iff S2 |=Θ ψ.

Proposition 4 (Satisfaction Condition). Let ϑ : Θ → Θ′, S ∈ Sys(Θ′) and
ψ ∈ Sen(Θ). The following equivalence holds:

S|ϑ |=Θ ψ iff S |=Θ′ Sen(ϑ)(ψ)

The satisfaction condition is a consequence of Lemmas 2, 3 and the fact that
for any Θ′-system S and any signature morphism ϑ : Θ → Θ′, the prereduct S|�ϑ
is bisimilar to the reduct S|ϑ.

The definition below summarizes this section.

Definition 14 (Institution SYS). The institution SYS is a tuple
〈Sign,Mod,Sen, |=〉, where

– The category of signatures Sign is defined in Sec. 5.1.
– The model functor Mod : Signop → Cat is defined as follows:

• Mod(Θ) is a discrete category in which objects are fully abstract
Θ-systems, i.e. those, for which the largest bisimulation is the identity,

• for ϑ : Θ → Θ′ the reduct functor Mod(ϑ) : Mod(Θ′) → Mod(Θ) is
defined in Def. 10.

– The sentence functor Sen : Sign→ Set is defined in Def. 5 and Def. 13.
– The satisfaction relation |= is defined in Def. 6.

We consider only fully abstract systems as Θ-models, since otherwise a reduct
along idΘ would not be an identity functor. From now on all systems are assumed
to be fully abstract.
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Fig. 3. An example model

5.5 Example Specification Again

Assume, that the signature ΘMS of MultiService contains four action symbols:
req1 , req2 , proc and resp, and the signature morphism ϑ1 : ΘBS → ΘMS maps
both req1 and req2 to req in the signature ΘBS of BasicService (cf. Sec. 4.5),
proc to proc and resp to resp.

The signature ΘFS of FwdService contains two new action symbols besides
those from ΘBS : fwd (for forward) and ign (for ignore). That last action repre-
sents the possibility that the external — and thus unreliable — service to which
a request was forwarded did not process it correctly for some reason.

A possible implementation of the unit S and the results of applying para-
metric units to it are shown on Fig. 3. F (S) adds more detail to S by splitting
a state and transitions: to the target state of the req-transition in S, corre-
spond two states in F (S), each representing an entry point for a different type
of service. A single req-transition of S is split into two variants, representing two
different types of service requests.

G(S) adds entirely new behaviour to S: new transitions, and thus new runs,
appear. The fwd transition represents forwarding the request, both the source
and the target of this transition correspond to a single state of S. Adding the
new ign transition introduces the possibility that the request is not served (i.e.
no proc,resp sequence occurs after req).

Let ψ be the sentence stated as axiom (3) in the specification BasicService.
The satisfaction condition ensures that, since ψ holds in S and both F (S) and
G(S) are expansions of S, translations of ψ must also be satisfied by those two
models.

Sen(ϑ1)(ψ) is equivalent to the sentence

� [req 1 , req 2 ](req data �= null ∧ ¬{req 1 , req 2}! U resp!)

and Sen(ϑ2)(ψ) to

� MaxPrefix{req,proc,resp} → [req ](req data �= null ∧ {proc, resp}! U resp!)

Note, that the property expressed by ψ is no longer guaranteed to hold for all runs
of a ΘFS -system, but only for those that start with a maximal {req , proc, resp}-
prefix.
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6 System Amalgamation

The denotation of F (S) and G(S) in the example specification is the amalga-
mation of models denoted by F (S) and G(S).

Let Θ1
ϑ1←− Θ

ϑ2−→ Θ2 be a diagram in Sign. Its pushout is a signature
Θ′ = 〈Γ ′,Σ′〉 together with morphisms υ1 = 〈δ1, τ1〉 : Θ1 → Θ′ and
υ2 = 〈δ2, τ2〉 : Θ2 → Θ′, defined as follows:

Γ ′ = {〈g1, g2〉 ∈ Γ1 × Γ2 | γ1(g1) = γ2(g2) or γ1(g1)↑, γ2(g2)↑}
+ {g1 ∈ Γ1 | γ1(g1)↑} + {g2 ∈ Γ2 | γ2(g2)↑}

δi(〈g1, g2〉) = gi, δi(gi) = gi, δi(g2−i)↑, for i = 1, 2

and 〈Σ′, τ1, τ2〉 is a pushout of the diagram Σ1
σ1←− Σ

σ2−→ Σ2 in the category of
many-sorted first-order signatures.

Lemma 5 (Weak Amalgamation). Let 〈Θ′, υ1 : Θ1 → Θ′, υ2 : Θ2 → Θ′〉 be
a pushout of the diagram

Θ1
ϑ1←− Θ

ϑ2−→ Θ2

Let S1 ∈Mod(Θ1) and S2 ∈Mod(Θ2) be such that S1|ϑ1 = S2|ϑ2 . There exists
S′ ∈Mod(Θ′) such that S′|υ1 = S1 and S′|υ2 = S2.

Proof. The amalgamated model, denoted by S1×ϑ1
ϑ2

S2, is constructed as follows:
let ≈1 and ≈2 denote largest bisimulations on S1|�ϑ1

and S2|�ϑ2
, respectively. Let

us recall from Sec. 2 that the identity S1|ϑ1 = S2|ϑ2 means that there exists a
suitable bijection i : W1/≈1→ W2/≈2.

S1 ×ϑ1
ϑ2

S2 = 〈W ′, D′, T ′〉 is given by:

– W ′ = {〈v1, v2〉 ∈W1 ×W2 | i([v1]≈1) = [v2]≈2}
– D′(〈v1, v2〉) = DS1(v1) ×σ1

σ2
D2(v2) (the amalgamation of first-order struc-

tures), and

T ′ =
{

〈v1, v2〉 〈g1,g2〉−−−−→ 〈w1, w2〉 | v1
g1−→ w1 ∈ T1 and v2

g2−→ w2 ∈ T2

}

∪
{

〈v1, v2〉 g1−→ 〈w1, v2〉 | v1
g1−→ w1 ∈ T1

}
∪

{
〈v1, v2〉 g2−→ 〈v1, w2〉 | v2

g2−→ w2 ∈ T2

}
Verifying that S1 ×ϑ1

ϑ2
S2 is a Θ′-model and that (S1 ×ϑ1

ϑ2
S2)|υ1 = S1 and

(S1 ×ϑ1
ϑ2

S2)|υ2 = S2 is straightforward.

The example from Fig. 4 shows that for an arbitrary pair S1, S2 of systems
extending the common one there may not exist a unique system that extends
them both. The signatures of S, S1 and S2 are 〈∅,Σ〉, 〈{f},Σ〉 and 〈{g},Σ〉, re-
spectively, for some data signature Σ. The pushout signature is 〈{f, g, 〈f, g〉},Σ〉.
Four other systems that extend both S1 and S2 can be obtained by removing
some transitions from S1 ×ϑ1

ϑ2
S2. The construction given in the above lemma

always yields the largest (w.r.t. the number of transitions) such system.
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Fig. 4. An example of amalgamation

Amalgamation Lemma provides the semantics for the F (S) and G(S) con-
struct in the example. From the persistence of F and G it follows that F (S)|ϑ1 =
S = G(S)|ϑ2 and thus, by Lemma 5, we conclude the existence of a system
F (S)×ϑ1

ϑ2
F (G) which is denoted by F (S) and G(S).

7 Describing System Synchronisation

It is important to realise that a reduct of a system should not be, in general,
viewed as its subsystem. Intuitively, to consider C a subcomponent of C ′, one
should be able to retrieve from every configuration of C ′ a corresponding con-
figuration of C. Whenever C ′ changes its configuration by performing an action,
C may have to change configuration accordingly, by performing a corresponding
“subaction”. In other words, C should simulate C ′.

The notion of a subcomponent can be expressed on the level of transition
systems by defining a notion of a system morphism, that identifies its target as
a subsystem of its source.

Definition 15 (Category of systems). The category of systems Sys has pairs
〈Θ,S〉, where S ∈ Mod(Θ), as objects. A morphism μ : 〈Θ′, S′〉 → 〈Θ,S〉 is a
pair 〈ϑ, π〉, where

– ϑ = 〈γ,σ〉 : Θ → Θ′ is a signature morphism,
– π : S′ → S is a function such that

(i) D(π(v′)) = D′(v′)|σ,

(ii) if v′ g′
−→ w′ ∈ T ′ and γ(g′)↓ then π(v′)

γ(g′)−−−→ π(w′) ∈ T

(iii) if v′ g′
−→ w′ ∈ T ′ and γ(g′)↑ then π(v′) = π(w′).

We will also use the term system for objects of Sys.
The above definition is very similar to the definition of the category of systems

in [NW95–Sec. 1].
Consider again systems depicted on Fig. 4. 〈Θ1, S1〉 is not a subsystem of

〈Θ′, S1×ϑ1
ϑ2

S2〉, since S1 cannot simulate the g-transition of S1×ϑ1
ϑ2

S2. Similarly,
S in not a subsystem of S1, since it cannot simulate the f -transition. This
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example shows that systems being amalgamated do not have to share a common
subsystem.

The parallel composition of reactive components C1 and C2 can be defined
as “the smallest” component having both C1 and C2 as subcomponents. On the
level of systems, a parallel composition of S1 ∈ Mod(Θ1) with S2 ∈ Mod(Θ2)
would be then the categorical product 〈Θ1, S1〉 × 〈Θ2, S2〉 (cf [NW95–Sec. 2]).
As the following result shows, the product coincides with a special form of the
amalgamation, where both amalgamated systems extend the trivial one.

Fact 6. Denote by Σ0 the empty many-sorted first-order signature and by A0

— the unique (empty) Σ0-structure. Θ0 = 〈∅,Σ0〉 is the initial system signature
and S0 = 〈{�}, {� �→ A0}, ∅〉 is the unique Θ0-system.

Let S1 ∈Mod(Θ1), S2 ∈Mod(Θ2) and let ϑ1 : Θ0 → Θ1 and ϑ2 : Θ0 → Θ2.
The product 〈Θ1, S1〉 × 〈Θ2, S2〉 is 〈Θ1 + Θ2, S〉, where S = S1 ×ϑ1

ϑ2
S2 is the

amalgamation of S1 and S2.

The signature of the product 〈Θ1, S1〉 × 〈Θ2, S2〉, where Θ1 = 〈Γ1,Σ1〉,
Θ2 = 〈Γ2,Σ2〉, is given by

Θ1 + Θ2 = 〈(Γ1 × Γ2) + Γ1 + Γ2,Σ1 + Σ2〉

(see the definition of the pushout signature in Sec. 6).
Systems 〈Θ1, S1〉 and 〈Θ2, S2〉 can be synchronised by requiring that certain

actions of Θ1 and Θ2 may only occur simultaneously. This can be done by pro-
viding a synchronisation set Γ , with mappings γ1 : Γ1 ⇀ Γ and γ2 : Γ2 ⇀ Γ ,
where Γ1 and Γ2 are action components of Θ1 and Θ2, respectively. The signa-
ture of the synchronised system is given by a pushout Θ′ = 〈Γ ′,Σ1 + Σ2〉 of

Θ1

〈γ1,ιΣ1 〉
←−−−−− 〈Γ, Σ0〉

〈γ2,ιΣ2 〉
−−−−−→ Θ2, where ιΣ denotes the unique signature mor-

phism ιΣ : Σ0 → Σ.
Since Γ ′ is a subset (Γ1×Γ2)+Γ1+Γ2 with “unsynchronised” pairs of actions

removed, the synchronisation of 〈Θ1, S1〉 and 〈Θ2, S2〉 via γ1, γ2 can be then
defined as the system obtained by removing from the product 〈Θ1, S1〉×〈Θ2, S2〉
transitions labelled with symbols not in Γ ′. Similar approach is taken in [NW95].

Such a restriction of 〈Θ1, S1〉 × 〈Θ2, S2〉 can be expressed using the reduct
operation, which motivates the following definition.

Definition 16 (System synchronisation). Let S1∈Mod(Θ1), S2∈Mod(Θ2),
Θ1 = 〈Γ1,Σ1〉, Θ2 = 〈Γ2,Σ2〉. Let Γ be a set and let γ1 : Γ1 ⇀ Γ , γ2 : Γ2 ⇀ Γ
be partial mappings.

A synchronisation of S1 and S2 via γ1, γ2, denoted S1‖γ1
γ2

S2, is a Θ′-system
(S1 ×υ1

υ2
S2)|ι, where

– 〈Θ′, ϑ1 :Θ1→Θ′, ϑ2 : Θ1→Θ′〉 is a pushout of Θ1

〈γ1,ιΣ1 〉
←−−−−−〈Γ, Σ0〉

〈γ2,ιΣ2 〉
−−−−−→Θ2,

Θ′ = 〈Γ ′,Σ1 + Σ2〉,
– υ1 : Θ0 → Θ1 and υ2 : Θ0 → Θ2 are unique morphisms from the initial

signature Θ0,
– ι = 〈δ, idΣ1+Σ2〉 : Θ′ → Θ1 + Θ2 is such that δ(g) = g if g ∈ Γ ′ and δ(g)↑

otherwise.
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The morphism ι : Θ′ → Θ1 + Θ2 in the above definition exists thanks to the
fact that the source 〈Γ, Σ0〉 of the pushout diagram of signatures has an empty
data signature. The synchronisation we consider is therefore less general than a
mechanism used in CommUnity, where two components may also share some
part of data structure besides actions.

7.1 An Architectural Specification of Synchronisation

The synchronisation of the model S of BasicService with the model L of simple
access-control system is shown on Fig. 5. The synchronisation set is Γ = {�},
action symbols of S and L are Γ1 = {req , proc, resp} and Γ2 = {login, access}
respectively. Mappings γ1 : Γ1 ⇀ Γ and γ2 : Γ2 ⇀ Γ are given by

γ1(req) = � = γ2(login) = γ2(access)
γ1(proc)↑, γ1(resp)↑

The synchronised system has a signature with an action set

Γ ′ = {〈req , login〉, 〈req , access〉, proc, resp}

and is a restriction of the product of S and L. Dotted lines on Fig. 5 represent
transitions removed from the product.

The synchronisation could be described by a simple architectural specification
using a provisional syntax

arch spec AuthorisingService is
units S : BasicService

L : AccessControl
result sync req in S with login, access in L

where the term sync req in S with login, access in L is a syntactic sugar for

(S and L) hide 〈proc, login〉, 〈proc, access〉, 〈resp, login〉, 〈resp, access〉
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In Casl architectural specifications the semantics of U hide symbols is the
reduct of model denoted by U along an inclusion morphism ι : Θ → ΘU , where
ΘU is a signature of U and Θ is ΘU with symbols removed.

8 Conclusions

We have defined an institution for the specification of reactive systems. With
regard to the syntax of the logic and the satisfaction relation the institution is
similar to those defined in [CR97] or [Cen98]. The uniqueness of our institution
— compared to institutions briefly described in Sec. 1 — lies in the definition
of the reduct operation and the translation function. They are defined so that
an expansion of a system can have larger state space and more transitions than
the original system.

In Sec. 7 we have briefly discussed the difference between system amalgama-
tion and synchronisation. On the one hand, it is possible to amalgamate systems
that do not have a common subsystem. On the other hand, it is possible to
synchronise arbitrary systems that do not have a common reduct. Nevertheless,
action synchronisation can be expressed in terms of system amalgamation and
reduction. Therefore, covering system synchronisation in architectural specifica-
tions does not seem to require adding new architectural operations. However,
synchronisation by sharing common state, in the style of CommUnity, is not
supported yet and will require further work.

The category of systems was defined in Sec. 7 only to provide motivation
for the definition of system synchronisation. It may be worthwile to investigate
more thoroughly the interplay between various constructions in the category of
systems and the reduct operation.

The future work will also include incorporating action refinement in the in-
stitutional framework. Ideally, the reduct operation would be defined in such
a way, that in an expansion of a system a single transition could be replaced
by a sequence, or rather a subsystem of “sub-transitions”. This will probably
require replacing transition systems with a non-interleaving model of concurrent
components, such as asynchronous transition systems ([NW95–Sec. 10]).
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