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Preface

The 10th East-European Conference on Advances in Databases and Information
Systems was held on September 3-7, 2006, in Thessaloniki, Greece. It was orga-
nized by the Aristotle University of Thessaloniki, the University of Macedonia
and the Alexander Technological Educational Institute of Thessaloniki.

The main objective of the ADBIS series of conferences is to provide a forum
for the dissemination of research accomplishments and to promote interaction
and collaboration between the database and information systems research com-
munities from Central and East European countries and the rest of the world.
The ADBIS conferences provide an international platform for the presentation
of research on database theory, development of advanced DBMS technologies,
and their advanced applications.

The conference continued the long tradition of successful ADBIS conferences
held in St. Petersburg (1997), Poznan (1998), Maribor (1999), Prague (2000),
Vilnius (2001), Bratislava (2002), Dresden (2003), Budapest (2004) and Tallinn
(2005). The conference included regular sessions with technical contributions re-
viewed and selected by an international Program Committee, as well as invited
talks presented by leaders in their fields: Serge Abiteboul, Yannis Ioannidis and
Pavel Zezula. ADBIS 2006 was also taken as an opportunity to host two other
very popular events: the 2nd ADBIS Workshop on Data Mining and Knowl-
edge Discovery (ADMKD) and the 5th Hellenic Data Management Symposium
(HDMS).

ADBIS 2006 attracted 126 submissions from 36 countries from all over the
world. This volume contains 29 high-quality papers selected during a rigorous
reviewing process by an international Program Committee. The papers cover a
wide range of topics of database and information systems research, all of them
addressing hot research issues. A further 17 papers, which ranked top after the
29 papers presented in this volume, were accepted to be included in a separate
volume of research communications published as a local volume of ADBIS 2006
proceedings, and published electronically in the CEUR Workshop Proceedings
series at http://ceur-ws.org/.

Many people and organizations contributed to the success of ADBIS 2006.
Our thanks go to the authors and invited speakers for their outstanding contribu-
tion to the conference and the proceedings. We are very grateful to the Program
Committee members for their reviewing and for accepting a heavy workload.
Our thanks go also to the additional referees who carefully reviewed the submis-
sions. Without the willingness and enthusiasm of many scientists, who shared
their expertise and voluntarily donated their time to thoroughly evaluating the
merits of the work submitted, this conference would not have been possible.

We wish to thank all the members of the organizing team, as well as our
sponsors, who made the conference possible. Our special thanks go to Apostolos
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Papadopoulos and Konstantinos Tarabanis for their general organizational ser-
vices, Antonis Sidiropoulos and the other members of the Data Eng. Lab of the
Aristotle University for maintaining the ADBIS 2006 Web site, and Michalis
Vassilakopoulos for the technical preparation of the conference proceedings. We
are also grateful to Springer for supporting the publication of the ADBIS 2006
proceedings in their LNCS series. Finally, we would like to express our gratitude
to our sponsors: the Ministry of National Education and Religious Affairs, and
the IT companies: Altec and G-net.

This volume of proceedings is dedicated with loving memory to Radu Bercary
and Alexander Zamulin, members of the ADBIS family, who passed away.

September 2006 Yannis Manolopoulos
Jaroslav Pokorný

Timos Sellis



In Memory of Radu Bercaru and Alexandre Zamulin

Radu Bercaru was Scientific Director of the National Institute for R&D in In-
formatics (ICI), Bucharest, Romania, and Secretary of the ICI Scientific Council.
He was member of the Program and Steering Committees of the ADBIS confer-
ences. He was author/co-author of more than 40 papers published in national and
international journals and proceedings. His areas of expertise were conceptual
modelling, development of complex database systems, advanced databases, soft-
ware engineering, national and international project management and consulting
services, and team management in information systems development projects.
His international experience consisted in local coordination of EU funded re-
search projects and EU/ PHARE projects. In Romania, he was a member of the
Evaluation Board for the Romanian Academy and Ministry of Education and
Research Grants, of the Working Groups in charge of the Romanian Informa-
tion Society Strategy, of the Steering Committee of the Romanian Conferences
on Computer Science and Information Technologies, and other committees. He
was also Director of the ICI R&D Program “Advanced Technologies and Systems
for the Knowledge-Based Information Society”. Radu Bercaru died in February
2005.

Alexandre Zamulin held several research positions at the Novosibirsk Branch
of the Institute of Precise Mechanics and Computing Machines of the Acad-
emy of Sciences of the USSR (AS USSR), at the Computing Center of the
Siberian Branch of the Academy of Sciences of the USSR (SB AS USSR) and
at the Institute of Informatics Systems of the Siberian Branch of the Russian
Academy of Sciences (IIS SB RAS). He was also Associate Professor of the
Novosibirsk Electrotechnical Institute and Professor of the Novosibirsk State
University, where he was head of the System Informatics chair in the Informa-
tion Technologies Department. Moreover, Alexandre Zamulin was a member of
the Inter-Departmental Commission on Databanks of the USSR State Research
and Technology Committee, member of the Commission on Databanks of the
AS USSR Coordinating Committee on Computing Machines and member of the
Scientific Council and the Dissertation Council on physics and mathematics of
the IIS SB RAS. Over a long period, he was a co-chair of the International Con-
ference on Perspectives of System Informatics (PSI). For several years, he was a
member of the Program Committee of the ADBIS conferences and contributed
to ADBIS conferences with a number of articles. In the course of his scientific
activities Alexandre Zamulin published over 100 works, including 2 monographs,
devoted to the various aspects of constructing information systems, databases,
programming languages, and specification languages. In recent years his chief
scientific interests were connected with methods of algebraic specification of
programming languages and databases. He was also a member of the editorial
boards of many international editions. Alexandre Zamulin died in February 2006.
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Data Ring: Let Us Turn the Net into a Database!

Serge Abiteboul1 and Neoklis Polyzotis2

1 INRIA-Futurs & LRI-Univ. Paris 11, France
serge.abiteboul@inria.fr

2 Univ. of California Santa Cruz, USA
alkis@cs.ucsc.edu

Abstract. Because of information ubiquity, one observes an important
trend towards transferring information management tasks from database
systems to networks. We introduce the notion of Data Ring that can be
seen as a network version of a database or a content warehouse. A main
goal is to achieve better performance for content management without
requiring the acquisition of explicit control over information resources.
We discuss the main traits of Data Rings and argue that Active XML
provides an appropriate basis for such systems.

The collaborating peers that form the Data Ring are autonomous,
heterogeneous and their capabilities may greatly vary, e.g., from a sen-
sor to a large database. To support effectively this paradigm of loose
integration, the Data Ring enforces a seamless transition between data
and metadata and between explicit and intentional data. It does not dis-
tinguish between data provided by web pages and data provided by web
services, between local (extensional) data and external data obtained via
a Web service call. This is achieved using the Active XML technology
that is based on exchanging XML documents with embedded service calls
both for the logical and physical data model.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Future Data Management:

“It’s Nothing Business; It’s Just Personal.”

Yannis Ioannidis

Department of Informatics & Telecommunications
University of Athens, Athens, Hellas, Greece

yannis@di.uoa.gr

Abstract. Conventional data management occurs primarily in central-
ized servers or in well-interconnected distributed systems. These are
removed from their end users, who interact with the systems mostly
through static devices to obtain generic services around main-stream ap-
plications: banking, retail, business management, etc. Several recent ad-
vances in technologies, however, give rise to a new breed of applications,
which change altogether the user experience and sense of data manage-
ment. Very soon several such systems will be in our pockets, many more
in our homes, the kitchen appliances, our clothes, etc. How would these
systems operate? Many system and user aspects must be approached in
novel ways, while several new issues come up and need to be addressed
for the first time. Highlights include personalization, privacy, informa-
tion trading, annotation, new interaction devices and corresponding in-
terfaces, visualization, etc. In this talk, we take a close look at and give
a very personal guided tour to this emerging world of data management,
offering some thoughts on how the new technical challenges might be
approached.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Scalable Similarity Search

in Computer Networks

Pavel Zezula

Masaryk University, Brno, Czech Republic
zezula@fi.muni.cz

Abstract. Similarity search in metric spaces represents an important
paradigm for content-based retrieval of many applications. Existing cen-
tralized search structures can speed-up retrieval, but they do not scale up
to large volume of data because the response time is linearly increasing
with the size of the searched file. Four scalable and distributed similarity
search structures will be presented. By exploiting parallelism in a dy-
namic network of computers, they all achieve practically constant search
time for similarity range or nearest neighbor queries in data-sets of arbi-
trary sizes. Moreover, a small amount of replicated routing information
on each server increases logarithmically. At the same time, the poten-
tial for interquery parallelism is increasing with the growing data-sets
because the relative number of servers utilized by individual queries is
decreasing. All these properties are verified by experiments on a proto-
type system using real-life data-sets. Results are used to establish specific
pros and cons of individual approaches in different situations.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, p. 3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An XML Algebra for XQuery

Leonid Novak1,� and Alexandre Zamulin2,��

1 Institute of System Programming,
Russian Academy of Sciences,

Moscow 109104, Russia
Fax: +7 095 912-15-24

novak@ispras.ru
2 A.P. Ershov Institute of Informatics Systems

Siberian Branch of Russian Academy of Sciences
Novosibirsk 630090, Russia

Fax: +7 383 3323494
zam@iis.nsk.su

Abstract. An XML algebra supporting the XQuery query language
is presented. The usage of expression constructing operators instead of
high-order operations using functions as parameters has permitted us to
remain in the limits of first-order structures whose instance is a many-
sorted algebra. The set of operators of the presented algebra substan-
tially differs from the set of operators of relation algebra. It is caused by
the complex nature of the XML data model comparing with relational
one. Actually, only predicative selection is more or less same in both
algebra. Yet, the XML algebra in addittion permits selection by node
test. The relational projection operator is replaced by the path expres-
sion and navigating functions; the join operator is replaced by unnesting
join expressions. In addition, a number of node constructing expressions
permitting update of the algebra state are defined.

1 Introduction

A formal model of the database state corresponding to the XQuery 1.0 and
XPath 2.0 data model [19] and consisting of document trees defined by XML
Schema has been presented in [10]. This model regards the database state as
a many-sorted algebra composed of the states of individual nodes representing
information items of a document. However, no algebra resembling relation alge-
bra for this data model is proposed in [10], and elaboration of such an algebra
supporting the XQuery language has been proclaimed as a subject of further
research. It should be noted that a number of papers proposing different XML
algebras have been published [2,6,5,7,12,15,21].

� The work of this author is supported in part by Russian Foundation for Basic Re-
search under Grant 05-07-90204.

�� We are very sad to inform you that Alexandre Zamulin passed away in February
2006, while this article was submitted.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 4–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An XML Algebra for XQuery 5

Their typical flaws are:

– use of an artificial data model suitable to the authors,
– meaning by algebra something different from what is meant by algebra in

mathematics;
– use of functions and predicates as operation arguments, while the algebra is

a first-order structure;
– ignoring the fact that the result of a query may belong to an algebra different

from the algebra of the query arguments;
– informal description of the algebra ignoring significant details of operations.

One of the aims of this paper is to propose an XML algebra that is free of
the above flaws. Another aim is to elaborate such an XML algebra that could
support XQuery [17], which is a de-facto standard of an XML query language.
Not all features of XQuery are taken into account in the algebra proposed in
the paper. We consider that an XQuery interpreter should exist whose task
is to interpret an XQuery query in terms of the algebra while performing the
work corresponding to the following XQuery features( specification of such an
interpreter is not a subject of this paper):

– atomization,
– computation of Effective Boolean Value,
– evaluation of branching (conditional and type switch) expressions,
– evaluation of type-checking expressions (instance of, cast, treat),
– evaluation of content expressions of node constructors.

The remainder of the paper is organized as follows. A brief review of the XML
data model presented in [10] is given in Section 2. Basic notions of signatures and
expressions are introduced in Section 3. An example database schema used for
illustration of XML algebra operations is given in Section 4. Navigating functions
used for traversing a document tree are defined in Section 5. Several forms of
querying expressions are formally described in Section 6. Different kinds of node
constructors changing the database state are defined in Section 7. Related work
is reviewed in Section 8, and some conclusions are drawn in Section 9.

2 Main Components of the XML Database Model

The data model presented in [10] is described by means of many-sorted algebras
[4].

Definition. A many-sorted signature Σ is a pair (T, F ), where T is a set of
sorts and F a set of operators indexed by their profiles. An operator is either a
symbol or a name, and a profile is either an element of T or t1, ..., tn → tn+1,
where ti is an element of T .

Definition. A many-sorted algebra A of signature Σ = (T, F ) is constructed by
associating
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– a set with each element t ∈ T , denoted by At in the sequel;
– an element cA ∈ At with each operator c indexed by the profile t;
– a function fA : At1 × ...× Atn → Atn+1

with each operator f indexed by the
profile t1, ..., tn → tn+1.

The family of sets associated with the signature sorts in algebra A is called
the algebra carrier and denoted by |A|. An algebra of signature Σ is called a
Σ-algebra.

Since the XML database model presented in [19] intensively uses the notion
of type, we consider that the set T consists of type names and the set F of
operators defined for each type. The function associated with an operator is
often called an operation. The type system of the model includes a number of
atomic types (xs:Boolean, xs:Integer, etc.), defining atomic values, and the type
xdt:untypedAtomic denoting atomic data, such as text that has not been as-
signed a more specific type. It is assumed that each atomic type is equipped
with conventional operations. The type system also includes the set type con-
structor Set(t), the sequence type constructor Seq(t), the union type constructor
Union(t1, ..., tn), where t, t1, ..., tn are types, and the enumeration type construc-
tor Enumeration(I1, ..., In), where I1, ..., In are identifiers.

The following operations are applicable to all sets: “∪” (union), “∩” (intersec-
tion), “⊂” (inclusion), and “∈” (membership) If s is a sequence, then asSet(s)
is a set containing the same elements as s without duplicates.

A sequence, like a set, is often defined in this paper by comprehension, which
generally has the following form: (f(x1, ..., xn) | P (x1, ...., xn)), where x1, ..., xn

are universally quantified variables, f a function name, and P a predicate. Typ-
ical sequence type constructors are the empty sequence constructor () and the
singleton sequence constructor (e) where e is an atomic value or node. If s1 and
s2 are two sequences of the same type, then s1 + s2 is a concatenation of the
sequences, such that the first element of s2 follows the last element of s1 (the
notation (v1, ..., vn) can be considered as a shorthand for (v1) + ... + (vn)). Also,
s1 ∪ s2 is a union of the sequences, such that the resulting sequence contains
the elements of both sequences (retaining duplicate elements) in an indefinite
order. The number of elements of a sequence s is denoted by |s| in this paper.
A set can be converted into a sequence by the operation asSeq (the order of the
elements is not defined). Several operations are applicable to sets and sequences
of numerical values. These are avg, sum, max, and min. The operation count
(number of elements) is applicable to any sequence or set.

The union type constructor plays an important role in the data model since
a sequence may consist of items of different types. There are several predefined
union types in the data model. The type xdt:anyAtomicType is the union of all
the atomic types and the type xdt:untypedAtomic, and the type xs:anyType is
the union of all types1. The following law exists for “flattening” the union of
union types:

Union(t1, ..., ti, ..., tn) = Union(t1, ..., ti1, ..., tim, ..., tn)
1 In fact, the type xs:anyType does not include node types in the XQuery data model;

it includes them in our data model for generality.
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if ti = Union(ti1, ..., tim). The following law permits us to get rid of duplicate
component types in a union type:

Union(t1, ..., ti, ..., tj , ..., tn) = Union(t1, ..., ti, ..., tn) if ti = tj .
An XML database schema consists of a number of document definitions. Each

individual document consists of information items with a definite document or-
der. An information item of a document is mapped to a node in the database.
A node, like an object of an object-oriented database [9], possesses an identi-
fier and state represented by the values of node accessors resembling observing
methods of an object-oriented database (we mean a node identifier by a node in
the sequel). Each node is an instance of type Node, which is the union type for
the types Document, Element, Attribute, Text, Namespace, ProcInstruction,
and Comment whose respective instances are document, element, attribute, text,
namespace, processing instruction, and comment nodes2.

Finally, each node and each atomic value are instances of the type Item, which
is the union of types xdt:anyAtomicType and Node. Atomic values and nodes are
called items in the sequel. It is assumed that each data type is equipped with
an equality predicate permitting to check for equality two values of the type; the
equality of nodes is based on the identity of node identifiers.

All nodes in a database are arranged in linear order in such a way that if a
node of one document tree precedes a node of another document tree, then all
the nodes of the first tree precede all the nodes of the second tree. The operation
nd1 << nd2 results in true if the node nd1 precedes the node nd2 (see [1] for an
algorithm implementing this operation).

In addition to the types used in [10], we use record (tuple) types in this paper.
A record type rec p1 : t1, ..., pn : tn end is equipped with a record construction
operation rec producing a record on the basis of record field values and projecting
operations pi producing field values of a given record. If p1, ..., pn are identifiers
and v1, ..., vn are values of respective types t1, ..., tn, then rec(v1, ..., vn) is a
record constructing expression of type rec p1 : t1, ..., pn : tn end.

3 Signatures and Expressions

A database schema defines a database signature Σ = (T, F ). F includes, in
addition to the operators defined in data types, node accessors defined in [19],
all the function names and operators defined in [20], the names of navigating
functions defined in this paper and some special constants defined in the sequel.
Node accessors used in the paper are node-kind, node-name, parent, string-value,
type, children, attributes, and nilled. Two extra functions with signatures

reverse order, document order : Seq(Node)→ Seq(Node)
are also part of our F . The first function orders the argument sequence in doc-
ument order, and the second one orders it in reverse document order.

2 To save space, we do not consider the last three kinds of nodes in this paper. However,
there is no technical problem in taking them into consideration if needed.
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Any particular database state is an algebra of this signature as it is explained
above. The signature Σ (as any other signature) may be enriched by new sorts
and/or operators. In this case a Σ-algebra A is extended with new sets and/or
functions associated with the new signature components.

Using operators from F , we can construct expressions. Each expression has
a certain type. In a type hierarchy, a subtype expression is also a supertype
expression. Given a Σ-algebra A, an expression can be interpreted or evaluated,
yielding a certain algebra element. However, in contrast to conventional expres-
sions of many-sorted signatures whose interpretation never changes neither the
signature nor the algebra, XML expressions may be classified into three groups:

– conventional algebraic expressions written and evaluated in the same signa-
ture and algebra;

– expressions written in one signature and interpreted in an algebra of an
enriched signature;

– expressions whose interpretation changes the algebra and produces an ele-
ment of the new algebra.

There is nothing special with respect to the expressions of the first group. The
situation with the expressions of the second group is more complex. An example
of such an expression in relation algebra is projection of a relation onto a set of
attributes or join of two relations. In either case the type of the resulting relation
may be different from the relation types defined in the database schema. A query
compiler, when parsing such an expression, constructs a new type and enriches
the original signature with it. The current algebra is extended by the new type
(sort and operations) as well, and the query is interpreted in the new algebra.
If a signature Σ is enriched to signature Σ′ and a Σ-algebra A is extended to
Σ′-algebra A′, we use the index A to denote those components of A′ that are the
same as in A.

An expression of the third group is the most difficult to process because
the processing generally produces a side-effect (i.e., the expression, being inter-
preted in a certain algebra, may change it and produce an element of algebra).
An example of this kind of expression is a node constructing expression whose
interpretation produces a new node in a new algebra. We consider that such
an expression is based on a function yielding a pair, an algebra and an algebra
element. Note that a node construction expression is an expression and, accord-
ing to the syntax of XQuery, can be used anywhere an expression is needed.
This means that generally the interpretation of any expression may produce a
side-effect. To save space, we will indicate this in only in the interpretations of
node constructors, the side-effect-producing interpretation of all expressions can
be found in [11].

We always write an expression e in italics. Its interpretation in algebra A is
written as [[e]]A. The result of the interpretation is generally written as 〈A′, e〉,
where A′ is a new algebra and e is the evaluation of e in A′. However, where there
may be no confusion, we write just e for the interpretation of e. If e is an expres-
sion of type Seq(t), we sometimes write: “e denotes a sequence of items of type
t”. Given a signature Σ and a set of variables X , we write “Σ-expression e” if e
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is composed exclusively of operators of Σ, and we write “(Σ, X)-expression e” if
e contains, in addition, variables from X . If A is a Σ-algebra and ξ : X → |A| a
variable assignment, then the notation eξA, or simply eξ, means in the sequel the
interpretation of e in algebra A with the variables bound to the indicated alge-
bra elements. The expression syntax is conventional with conventional operator
priorities. Generally, an expression is parsed from left to right. The cases where
we use special syntax or special parsing order will be mentioned explicitly. The
definitions of some functions and expressions use the standard functions defined
in [20]. We prefix them by fn.

4 Running Example

The examples given in the paper are mainly based on the queries presented in
[17] for a database containing documents of the following structure.

< bib >...
< book year = ... >

< title > ... < /title >
< author > ... < /author >
< author > ... < /author > . . .
<publisher>...</publisher>

< price > ... < /price >
< /book >. . .
< proc >

< title > ... < /title >...
<editor>...</editor>

<editor>...</editor> . . .
<article>

< author > ... < /author >
< author > ... < /author >. . .

</article> . . .
< /proc > . . .

< /bib >

5 Navigation Functions

In addition to node accessors, XQuery possesses a number of expressions de-
noting different parts of a document tree relative to a specified node. For each
of these expressions, we define a supporting function producing a node nd of a
certain algebra A.

1. child : Node→ Seq(Node) The function yields a sequence containing all chil-
dren nodes of the argument node if any.
2. descendant : Node → Seq(Node) The function yields a sequence containing
all descendants of a node in the “parent-children” hierarchy if any.
3. parent : Node → Seq(Node). The function yields a sequence containing the
parent of the argument node if any.
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4. attribute : Node→ Seq(Node) The function yields a sequence containing the
attribute nodes of the argument element node.

In order to save space we don’t give the definintion of other navigation
functions: descendant or self, ancestor, ancestor or self, following sibling,
following, preceding sibling, preceding. It can be found in [11].

Notation. The call of each of the above functions is written in this paper using
the dot notation, i.e., as a call of a method in an object-oriented language; for
instance, nd.child, nd.parent, etc.

6 Querying Expressions

In addition to elementary expressions constructed with the use of navigating
functions listed above, an XML data model must include facilities for construct-
ing more complex expressions representing data retrieval or update. The set of
all possible expressions in an XML data model constitutes an XML algebra3.
Generally, an XQuery query has the following form:

for $x1 in s1, $x2 in s2($x1), ... , $xm in sm($x1, ..., $xm−1)
let $y1 := e1($x1, ..., $xm), $y2 := e2($x1, ..., $xm, $y1), ... ,

$yn := en($x1, ..., $xm, $y1, ..., $yn)
where p($x1, ..., $xm, $y1, ..., $yn)
order by e($x1, ..., $xm, $y1, ..., $yn)
return f($x1, ..., $xm, $y1, ..., $yn)

where si has to be a sequence, and p, e and f are expressions involving the
variables $x1, ..., $xm, $y1, ..., $yn. Normally, si’s are nested sequences. Thus, to
represent such a query in XML algebra, we need an expression that evaluates to
a sequence of tuples of items belonging to possibly nested sequences (clauses for
and let), an expression that evaluates to a subsequence of a sequence according
to selection criteria (clause where), ordering expression, and an expression that
constructs the resulting sequence (clause return). These expressions are defined
in the sequel.

6.1 Unnesting Join Expression

This expression in fact replaces the join operation of the relation algebra because
relationships between different sequences of nodes in the XML database are
represented by node identifiers rather than by relation keys. First we define
three auxiliary expressions serving to support different kinds of FOR and LET
clauses.To save space we omit the definition of ordering mode of the resulting
sequences of algebra expressions. It can be found in [11].

1. If y is an identifier and s a Σ-expression of type Seq(t), then �y : s� is an
expression of type t′ = Seq(rec y : t end) of signature Σ′ obtained by enriching

3 We define special forms of expressions rather than functions to avoid the problem of
higher-order functions (a conventional algebra is a first-order structure).
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Σ by type t′. Interpretation. Let A be a Σ-algebra, A′ a Σ′-algebra extending A
by type At′ , and [[s]]A

′
= s, then:

[[�y : s�]]A
′
= s′, where s′ = (rec (v) | v ∈ s). This expression supports the

FOR clause with a single range variable.
2. If y and i are identifiers and s a Σ-expression of type Seq(t), then �y, i : s�

is an expression of type t′ = Seq(rec i : integer, y : t end) of signature Σ′

obtained by enriching Σ by the type t′. Interpretation. Let A be a Σ-algebra, A′

a Σ′-algebra extending A by type At′ , and [[s]]A
′
= s, then:

[[�y, i : e�]]A
′

= (rec (i, s[i]) | i = 1, ..., |s|). This expression supports the
FOR clause with a range variable and a positional variable.

3. If y is an identifier, and e a Σ-expression of type t, then �y = e� is an
expression of type t′ = Seq(rec y : t end) of signature Σ′ obtained by enriching
Σ by the type t′ Interpretation. Let A be a Σ-algebra, A′ a Σ′-algebra extending
A by type At′ , and [[e]]A

′
= e, then:

[[�y = e�]]A
′

= (rec (e)). This expression supports the LET clause with a
single variable name.

4. Finally we define an expression supporting any combination of FOR and
LET clauses. If s1 is a Σ-expression of type Seq(rec x11 : t11, ..., x1m : t1m

end)} and s2 a (Σ, {x11, ..., x1m})-expression of type Seq(rec x21 : t21, ...,
x2n : t2n end)}, then s1 ∗ s2 is an expression of type t′ = Seq(rec x11 :
t11, ..., x1m : t1m, x21 : t21, ..., x2n : t2n end) of signature Σ′ obtained by
enriching Σ by the type t′. Interpretation. Let A be a Σ-algebra, A′ a Σ′-
algebra extending A by type At′ , [[s1]]A

′
= s1, and k = |s1|. Further, ∀ i = 1, ..., k

let s1[i] = rec(vi1, ..., vim), ξi = {x1 
→ vi1, ..., xm 
→ vim}, [[s2ξ1]]A
1

= s21,
... [[s2ξk]]A

k−1

= s2k, ssi = (rec (vi1, ..., vim, w1, ..., wn) | rec(w1, ..., wn) ∈ s2i)
then:

[[s1 ∗ s2]]A
′
= s′, where s′ = ss1 ∪ ... ∪ ssk.

Examples. If the variable books denotes a sequence of book nodes, then

�x: books�*�y:x.child::element(authors)�

is an expression evaluating to a sequence of pairs of book and author nodes
so that a book node is paired with its each child author node. The following
expression:

�x: (1, 2, 3)�*�y: (4, 5, 6)�

evaluates in fact to the Cartesian product of the indicated sequences while the
expression

�x: (1, 2, 3)�*�y = (x+1, x+2)�

evaluates to the following sequence of tuples: (〈1, (2,3)〉, 〈2, (3,4)〉, 〈3, (4,5)〉).
If variable pets denotes a sequence (“cat”, “dog”, “pig”, then the expression:

�t,i:pets�
evaluates to the following sequence of pairs (〈 1, “cat”〉, 〈 2, “dog”〉, 〈 3, “pig”〉).
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6.2 Quantified Expressions

Universal quantification and existential quantification are widely used in XQuery.
The corresponding algebra expressions can be defined as follows.

If t1, t2..., tn are types from the signature Σ, X = {x1, x2, ...., xn} a set
of variables, s1 a Σ-expression of type Seq(t1), s2 a (Σ, {x1})-expression of
type Seq(t2), ... , sn a (Σ, {x1, ..., xn−1})-expression of type Seq(tn), and b a
(Σ, {x1, ..., xn})-expression of type Boolean , then

forall(x1 : s1, x2 : s2, ..., xn : sn)!b and exists(x1 : s1, x2 : s2, ..., xn : sn)!b
are expressions of type Boolean. Interpretation. The first expression evaluates
to true if every evaluation of b produces true. The second expression evaluates
to true if at least one evaluation of b produces true.

6.3 Selection Expressions

A selection expression serves for selecting part of a sequence based on a selection
criteria. In comparison to relational model and object model, the set of selection
criteria in XML algebra is much broader and includes node kind tests in addi-
tion to predicate tests. The interpretation of these expressions takes place in an
algebra A, and it does not change the algebra.

6.3.1 Kind Tests
Let s denote a sequence of nodes. Then:
1) s :: node() denotes the same sequence as s.
2) s :: element(),s :: attribute(),s :: text() denotes a sequence of the nodes of
the corrisponding type in s.

Example. If the variable books denotes a sequence of nodes that are descen-
dants of a bib node, then books :: text() denotes a sequence consisting only of
text nodes contained in books.

3) s :: document() denotes a singleton sequence containing the document node
from s.
4) if n is a QName, then s :: element(n) (s :: attribute(n)) denotes the sequence
of element (attribute) nodes from s with name n.

Example. If the variable book data denotes a sequence of nodes that are children
of a book node, then book data :: element(author) denotes a sequence consisting
only of author element nodes of a particular book.

5) if n is a QName and t a type name, then s :: element(n, t) (s :: attribute(n, t))
denotes a sequence of element (attribute) nodes from s with name n, type t, and
the value of the node accessor nilled equal to true.
6) if t is a type name, then s :: element(∗, t) (s :: attribute(∗, t)) denotes a se-
quence of element (attribute) nodes from s of type t.
7) if n is a QName and t a type name, then s :: element(n, t?) denotes a sequence
of element nodes from s with name n and type t regardless of the value of the
node accessor nilled.
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8) if t is a type name, then s :: element(∗, t?) denotes the sequence of element
nodes from s of type t.

6.3.2 Predicate Tests
Let t be a type the signature Σ, s a Σ-expression of type Seq(t), y a variable
of type t, and p a (Σ, {y})-expression of type Boolean, then select(y : s) :: p
is a (Σ)-expression of type Seq(t). Interpretation. Let A be a Σ-algebra, [[s]]A =
(v1, . . . , vn), i = 1, ..., n, ξi = {y 
→ vi}, [[pξ1]]A = p1, ..., [[pξn]]A = pn, then

[[select(y : s) :: p]]A = (vi | pi).
Example. If the variable books denotes a sequence of book nodes, then

select(x: books) :: typed-value(x.attribute :: attribute(year))= 2000
denotes a sequence of book nodes for the books published in 2000 and

select(x: books) :: typed-value(x.child :: element(price)) > 100
denotes a sequence of book nodes for the books whose price is greater than 100
dollars. The expression can be written in a simpler form if t is a record type[11].

Example. If books denotes a sequence of book nodes, then
select(�x : books � ∗� y = x.child :: element(author)�) :: count(y) > 2

is a selection expression. Note that the local variable x ranges over books, y
denotes the authors of a particular book, expression (�x : books � ∗ � y =
x.child :: element(author)�) is a sequence of pairs 〈book, sequence of authors〉,
and the predicate count(y) > 2 leaves in the sequence only those pairs where
there are more than two authors.

6.4 Path Expression

This kind of expression permits one to navigate over a tree by using navigat-
ing functions. If y is a variable, s1 a Σ-expression of type Seq(Node), t2 an
atomic/node type, and s2 a (Σ, {y})-expression of type Seq(t2), then path(y :
s1)/s2 is a Σ-expression of type Seq(t2). The expressions s1 and s2 are called left
step and right step, respectively. Interpretation. Let A be a Σ-algebra, [[s1]]A =
(nd1, . . . , ndn), i = 1, ...., n, ξi = {y 
→ ndi}, [[s2ξ1]]A = v1, ... [[s2ξn]]A = vn, then

[[path(y : s1)/s2]]A =
{
f(asSeq(asSet(v1 ∪ . . . ∪ vn)) if t2 is a node type
v1 + . . . + vn if t2 is an atomic type,

where f is document order if order mode = ordered, and identity function in
the opposite case. Note that an ordered set is the result of the interpretation of
this expression in the first case and a sequence in the second case.

Examples:
1) The following expression consists of two path subexpressions4.
path(y : fn : doc(“books.xml′′))/

path(x : y.child::element(bib))/y.child::element(book);
The left step is represented in this expression by the function fn : doc(), which
4 In this example and henceforth, it is considered that the operator ’.’ has a higher

priority that the operator ’::’ which, in its turn, has a higher priority than the
operator ’/’. There is also no attempt to use any syntactic sugar in expressions.
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produces a singleton sequence containing a document node. The right step is
represented by another path expression (depending on the variable y), which
is evaluated for each element of the sequence produced (singleton sequence in
this case). In this expression, the left step y.child :: element(bib) gives us an
element node at the top of the node hierarchy, which is used by the right step
x.child:: element(book) selecting the book elements within the bib elements.

2) If books denotes a sequence of book nodes, then
path(y : select(x : books) :: typed-value(x.attribute :: attribute(year)) =

2000)/y.child :: element(title);
is an expression evaluating to the titles of the books published in 2000 (note
that x ranges over all books and y ranges only over those books that satisfy the
selection condition).

3) Let doc denote the following document:
< a > < b >< c > 1 < /c >< c > 2 < /c >< /b >

< b >< c > 3 < /c >< c > 4 < /c >< /b > < /a >,
then the expression

path(x : doc.child :: element(a))/
path(y : x.child :: element(b))/seq(y.child :: element(c)[2]) evaluates to

(< c > 2 < /c >, < c > 4 < /c >) or ((< c > 4 < /c >, < c > 2 < /c >).

6.5 Ordering Expressions

In XQuery, the clause order by in the FLWOR expression orders a sequence
of tuples (records) produced by evaluation of the preceding clauses, based on
the values of a number of expressions evaluated for each tuple of the sequence.
Therefore, an ordering expression in our algebra serves to order a sequence of
tuples (records) based on the values of one or more of ordering keys, which are
empty or singleton sequences.

Generally, two values of the same ordering key are compared using a predefined
operation “>” (greater). However, in case the ordering key has the string type,
the name of a specific collation used for ordering may be indicated (as a string
value). We will take both options into account.

Let t be a record type rec x1 : t1, ..., xn : tn end, s a sequence of type
Seq(t), e1, ..., el be (Σ, {x1, ..., xn})-expressions each denoting either an empty
or a singleton sequence of type Seq(t′k) where t′k is an atomic type, ak and bk

are one of the symbols ’↑’ or ’↓’ (a indicates whether the order is ascending (’↑’
or descending (’↓’ and b indicates whether the empty sequence has preference
(’↑’ or not (’↓’), and ck is a possibly nonempty string if t′k is the type string
and the empty string in all other cases, then

stable order(e1[a1, b1, c1], ..., el[al, bl, cl] : s) and
order(e1[a1, b1, c1], ..., el[al, bl, cl] : s) are expressions of type Seq(t).

Interpretation. Let A be an algebra and [[s]]A = s. Then
[[stable order(e1[a1, b1, c1], ..., el[al, bl, cl] : s)]]A = s′ and
[[order(e1[a1, b1, c1], ..., el[al, bl, cl] : s)]]A = s′.

The interpretation of the first expression should produce a sequence s′ containing
the same items as s (i.e., el ∈ s ⇐⇒ el ∈ s′) in the order dictated by a, b,
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and c. The second expression differs from the first one in retaining the relative
positions of two items having equal values of the ordering key. See the details of
interpretation in [11].
Example. If books denotes a sequence of type Seq(rec book : Element, price :
Seq(Integer) end), then the following expression indicates ordering the records
in the descending order of book prices (records without indicated prices placed
last): order(price[↓, ↓, ()] : books).

6.6 Mapping Expression

This expression denotes the result of a FLWOR query. The constructor of this
expression uses a sequence of tuples (records) and an expression and produces a
final sequence by evaluating the expression on each tuple of the first sequence.
Formally: if s is a Σ-expression of type Seq(rec x1 : t1, ..., xn : tn end) and e a
(Σ, {x1, ...., xn})-expression of type t, then s�e is a Σ-expression of type Seq(t),
called a mapping expression. Interpretation. Let [[s]]A = (r1, ..., rm), i = 1, ..., m,
ri = rec(vi1, ..., vin), ξi = {xi 
→ vi1, ...., xn 
→ vin}, [[eξi]]A = vi, then

[[s � e]]A = v1 + .... + vm.
Example. Assume the variable proc denotes a sequence of proceedings nodes,
and we want to pose the following query: “find the titles of all proceedings whose
editors have not have a publication in the proceedings they have edited.”. It can
represented by the following expression:

select(�x : proc � ∗� y : x.child :: element(editor) � ∗
�z : x.descendant :: element(author)�) :: y �= z�x.child :: element(title).

The first operator “*” creates a stream of pairs of (proc, author) nodes, the
second operator “*” converts it into a stream of triples of (proc, author, title)
nodes, the predicate y �= z selects in the stream those tuples where editor and
author are different nodes, and finally the operator “�” produces the sequence
of the titles of the remaining proceedings.

6.7 Sequence Expressions

XQuery possesses a number of sequence constructing and manipulating expres-
sions. They are supported in our algebra by several expressions defined as follows.
1. If e1, ..., en are Σ-expressions of respective types Seq(t1), ..., Seq(tn), where ti
is an atomic or node type, then seq(e1, ..., en) is a Σ-expression of type Seq(t)
where t = Union(t1, ..., tn). Interpretation. Let A be an algebra, and [[ei]]A = si,
then [[seq(e1, ..., en)]]A = s1 + ... + sn.
2. If e1 and e2 are Σ-expressions of type Integer, then range(e1, e2) is a Σ-
expression of type Seq(Integer). Interpretation. Let A be an algebra and [[ei]]A

= si〉, then
a) [[range(e1, e2)]]A = (v1, v2, ..., vn),

where v1 = s1, vn = s2, and vi+1 = vi + 1, for i = 1, ..., n− 1, if s1 ≤ s2;
b) [[range(e1, e2)]]A = (), otherwise.

3. If e1 and e2 are expressions of type Seq(Node) then
union(e1, e2), intersect(e1, e2), and except(e1, e2)
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are expressions of type Seq(Node) interpreted as follows. Let A be an algebra,
[[e1]]A = s1, [[e2]]A = s2, then

[[union(e1, e2)]]A = f(asSeq(asSet(s1) ∪ asSet(s2)));
[[intersect(e1, e2)]]A = f(asSeq(asSet(s1) ∩ asSet(s2)));
[[except(e1, e2)]]A = f(asSeq(asSet(s1)\asSet(s2)))〉;

where f is document order if order mode = ordered, and identity function in
the opposite case.
4. If s1 and s2 are expressions of type Seq(anyAtomicType) and � is one of
the relation symbols “=”, “!=”, “<”, “<=”, “>”, or “>=”, then s1 � s2 is
an expression of type Boolean. Interpretation. This expression implements the
operation of general comparison. See the details of interpretation in [11].

7 Node Constructors

This is a set of expressions copying existing nodes or constructing new nodes.
The interpretation of these expressions updates the current algebra and produces
an element of the new algebra. Therefore, we use a notion of pair 〈A, v〉, where
A is an algebra and v ∈ |A| is an algebra element, as the result of interpretation.

The set of all pairs 〈A, v〉 where A is a Σ-algebra and v a value of type t is
denoted by At(Σ). The functions fst and snd applied to such a pair produce
its first and second component, respectively.To save space, we give only informal
semantics of the expressions, the formal semantics can be found in [11].

7.1 Node Copying

This facility is used in XQuery where parts of existing document trees are used
in the construction of new elements or documents. If nd is a Σ-expression of
type Node, then copy node(nd) is a Σ-expression of type Node, and if s is a
Σ-expression of type Seq(Node), then copy nodes(s) is a Σ-expression of type
Seq(Node). In a Σ-state A the expressions are respectively interpreted by the
functions

copy nodeA : ANode × AElement → ANode(Σ)
and

copy nodesA : ASeq(Node) × AElement → ASeq(Node)(Σ)
as follows5: The first function produces a new algebra extending the previous one
with a clone of the indicated node, and the second one produces a new algebra
extending the previous one with clones of the indicated nodes.

7.2 Attribute and Text Node Constructor

These are the node constructing expressions whose interpretation produces a
new attribute on the basis of a name and string value supplied in a query or a
text node on the basis of a string value.
5 The first argument of both functions is the node/nodes to be copied, and the second

argument, if not NULL, is the parent node of each new node.
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Definition. If n is a QName and e a String, then attribute node(n, e) is an
expression of type Attribute.

Definition. If e is a String, then text node(e) is an expression of type Text.

7.3 Element Node Constructors

There are two forms of element node constructing expressions. The first one
constructs an element node with simple content on the base of a string value
supplied in a query. Definition: If n is a QName, atseq an expression of type
Seq(Attribute)6, and e an expression of type Text such that parent(e) = (), then
element node(n, atseq, e) is an expression of type Element. By this constructor
one can construct a terminal element node.

The second one constructs an element with complex content. Definition:
If n is a QName, atseq an expression of type Seq(Attribute)7, and elseq an
expression of type Seq(Union(Element, T ext)) such that if type(elseq[i]) =
Text then type(elseq[i + 1]) =type(elseq[i-1]) = Element (no adjacent text
nodes are allowed) and parent(elseq[i]) = () for any i = 1, ..., |elseq|, then
element node(n, atseq, elseq) is an expression of type Element. By this con-
structor an element node with children is constructed.

Example. The following fragment of the XML text:
<book> year="2004">

<title>XQuery: The XML Query Language </title>
<author>Michael Brundage</author>
<publisher>Addison-Wesley Professional</publisher>
<price>34.64</price>

</book>
can be represented by the following element constructor:

element node(book, (attribute node(year, "2004"),
(element node(title,(),text node("XQuery:The XML Query Language")
element node(author, (), text node("Michael Brundage"),
element node(publisher,(),text node("Addison-WesleyProfessional"),
element node(price, (), text node("34.64"))).

A more complex example. The following XQuery query transforms a bib doc-
ument (bound to the variable $bib) into a list in which each author’s name
appears only once, followed by a list of titles of books written by that au-
thor. The fn:distinct-values function is used to eliminate duplicates (by
value) from a list of author nodes. The author list, and the lists of books
published by each author, are returned in alphabetic order using the default
collation.

6 Constraints: 1) if ni = node-name(atseq[i]), nj = node-name(atseq[j]) and i �= j,
then ni �= nj ; 2) parent(atseq[i]) = (). The constrains let one make sure that
attributes have different names and none of them is part of an existing tree.

7 See the above constraint.
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<authlist>
{ for $a in fn:distinct-values($bib/book/author)
order by $a return

<author>
<name> $a </name>
<books> { for $b in $bib/book[author = $a]

order by $b/title return $b/title}
</books>

</author>}
</authlist>

The query can be represented in the algebra as follows:

element node(authlist, (), order(typed value(a)[↑,↑,""]:
�a: fn:distinct-values(path(x: bib)/

path(y: x.child::element(book))/
y.child::element(author))�)�

element node(author, (),
(element node(name, (), text node(string value(a))),
element node(books, (), copy nodes(

order(typed value(b/title)[↑,↑,""]:
�b: path(x: bib)/

select(y: x.child::element(book))::
a ∈ y.child::element(author) ��

b/title))))))

7.4 Document Node Constructors

The result of the document node constructor is a new document node whose
children are element and/or text nodes.

Definition: If elseq is an expression of type Seq(Union(Element, T ext)) such
that no adjacent text nodes are allowed, then document node(elseq) is an ex-
pression of type Document.

Example. The XQuery query
document {

<author-list>
fn:doc("bib.xml"/bib/book/author)

</author-list> } returning an XML document containing a root ele-
ment named author-list is represented by the following algebra expression:

document node((element(author list, (),
copy nodes(fn:doc("bib.xml"/bib/book/author)))))

8 Related Work

One of the first works presenting an XML algebra is [5] (an updated version
was proposed as a working draft of W3C [16]). The authors show in the paper
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how nested for-loops can be used to provide restructuring and joining of existing
documents and, moreover, how projection can be formally expressed by iteration.
There is no algebraic definition of any operation. One can say that just a simple
query language is defined that has no relation to XQuery and cannot be used
for defining its semantics.

A number of algebras were proposed in the process of design and development
of the database system TIMBER [8]. A tree algebra, called TAX, is described in
[7]. According to TAX, the database is a collection (set) of ordered labeled trees.
For this reason, all operations of this algebra take collections of trees as input
and produce a collection of trees as output. The algebra thus uses more complex
data structures (trees) compared to our algebra and therefore it is much more
heavier. The complexity of the algebra has forced the authors of TAX to de-
sign, in addition, a lower-level algebra, called physical algebra (reported in [13]),
manipulating sequences of trees and serving for implementation of the TAX al-
gebra. However, in the further development of the project the authors practically
directly used an updated version of the physical algebra for implementation of
a newly designed data structure, Generalized Tree Pattern [3], which represents
an XQuery as a pattern consisting of one or more trees. The next step in the
project development was the introduction of the notion of a tree logical class as
a labeled set of tree nodes matching a designated node and development of a
new algebra, designed for manipulating tree logical classes [14]. Unfortunately,
there is no formal definition of the operations.

An XML algebra for data mining, called XAL, is reported in [22]. An XML
document is regarded in XAL as a rooted directed graph with a partial relation
on its edges. A XAL operation takes a set of nodes as input and produces a set
of nodes as output. The main operations are selection, projection, product, and
join. No detailed description of the operations is given.

A logical algebra and a physical algebra reportedly supporting XQuery are
presented in [6]. It is claimed that an XQuery query is first translated into the
logical algebra and then, after a possible optimization, is evaluated using the
physical algebra. Both algebras are described informally. Moreover, since their
operations use functions and predicates as operands, they are not algebras in
fact.

Another XML algebra, called XAT, is reported in [21]. It is intended to sup-
port XQuery like the algebra described in this paper. The XAT data model
represents data as hierarchical tables (collections of tuples). The set of XAT
operators is divided in three groups: XML operators, SQL operators, and Spe-
cial operators. All operators as well as translation of the XQuery expressions
are described informally, using examples. However, since XAT and XQuery use
different data model, the translation is pure syntactical.

Relation-like flat tables are the main data structures used in the Xtasy algebra
[15]. Each tuple in a table consists of variable-value pairs also referred to as
bindings. The semantics of all the operators are described informally. Only some
simple XQuery queries can be represented by the algebra. The tuple-oriented
algebra described in [12] resembles the previous one with the exception that
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the tuple can have a hierarchical structure, i.e., a tuple element can be a set of
tuples. The algebra is also informally described.

An XML algebra designed for effective stream processing is briefly described in
[2]. The inputs and output of each operator of the algebra are streams represented
as tuple sequences. The semantics of the operators are defined by equations
using list comprehensions and monoid calculus. Typing details are neglected.
Only predicates are used as selection criteria. No navigating function is defined.
Differences in paths expressions are not taken into account.

Thus, each algebra is practically capable only syntactically translate some
XQuery queries into the algebra. Taking into account that each of them is based
on a data model different from XQuery data model, execution of an algebra
expression may produce result different from the result produced by direct exe-
cution of the corresponding XQuery query.

9 Conclusion

We have presented an XML algebra supporting XQuery. The algebra is in fact a
number of kinds of expressions (expression constructing operators) algebraically
defined. The introduction of kinds of expressions instead of high-order operations
using functions as parameters has permitted us to remain in the limits of first-
order structures whose instance a many-sorted algebra is.

The set of kinds of expression of the presented algebra substantially differs
from the set of operators of relation algebra. The difference is caused by the
more complex structure of the XML document compared to the relation. In
fact, only selection by predicate test is more or less the same in both algebras.
At the same time, the XML algebra in addition permits selection by node test.
The projection operator of relation algebra is replaced by the path expression
and a number of navigating functions permitting selection of different parts of
the document tree. The join operator is replaced by a number of unnesting join
expressions permitting creation of a stream of flat tuples on the basis of several
possibly nested parts of the document tree.

In addition, we have defined a number of node constructing expressions per-
mitting update of the current algebra by introduction of new nodes and corre-
sponding node accessors. The evaluation of such an expression produces a new
algebra as a side effect. Since XQuery allows expressions to be nested with full
generality, the evaluation of each expression theoretically may produce a side-
effect. For this reason, the semantics of any expression in our approach is a
pair, an algebra and a value, which corresponds one-to-one to the semantics of
XQuery expressions. Another distinguishing feature of our algebra is that the
first operand of many expressions (path, mapping, etc.) provides a context for
the evaluation of the second operand, which may help in optimizing query per-
formance. Our algebra does not possess facilities corresponding to the branching
and type-checking expressions of XQuery. As we have noted in Introduction, we
consider these facilities more appropriate in the XQuery interpreter than in the
XML algebra.
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Abstract. Writing correct and precise XPath queries needs much effort from 
users: the user must be familiar with the complex structure of the queried XML 
documents and has to compose queries, which must be syntactically and seman-
tically correct and precise. Incorrect queries select no data and thus lead to 
highly inefficient processing of queries. Unprecise queries might select more 
data than what the user really wants and thus might lead to unnecessarily high 
processing and transportation costs. Therefore, we propose a schema-based ap-
proach to the satisfiability test and to the refinement of users’ XPath queries. 
Our schema-based approach checks whether or not an XPath query conforms to 
the constraints given in the schema, rewrites and refines the XPath query ac-
cording to the information of the schema. If an XPath query does not conform 
to the constraints given in the schema, its results will be every time an empty 
node set, which is a hint for semantic errors in the XPath query. Our rewriting 
approach for XPath queries replaces wildcards with specific node tests, replaces 
recursive axes with non-recursive axes, eliminates reverse axes, and redundant 
location steps. Thus, our rewriting approach generates a query, which contains 
more information, and can be more easily refined by the user in comparison to 
the original query. Our performance analysis shows the optimization potential 
of avoiding the evaluation of unsatisfiable XPath queries and of processing re-
written and refined XPath queries. 

1   Introduction 

An important issue for query languages is the satisfiability test of a query. The satisfi-
ability test for XPath ([21], [22]) queries can be defined as follows: Given an XPath 
query Q, the satisfiability test checks, whether or not there exists an XML document D 
(which conforms to a given schema) so that the evaluation of Q on D returns a non-
empty result. Using the satisfiability test can avoid the unnecessary submission and 
computation of an unsatisfiable XPath query, and thus saves users’ cost and evalua-
tion time. As well as for query optimization, the XPath satisfiablity test is also impor-
tant for consistency problems, e.g. XML access control [ 5] and type-checking of 
transformations [ 15]. Several research efforts focus on the satisfiability test of XPath 
queries with or without respect to schemas, e.g. [ 2], [ 9], [ 10], [ 12], [ 13] and [ 14]. 

In the absence of schemas, the satisfiability test can detect errors in an XPath ex-
pression, which are inconsistent with the XML data model. For example, the XPath 
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query Q1=/parent::a is unsatisfiable, because the root node has no parent node according 
to the XML data model. The query Q2=//regions/america will be tested as a satisfiable 
XPath query without respect to a schema. However, according to a given schema, e.g. 
the schema given in [ 7], the element regions can have children, which are called 
namerica and samerica, but cannot have children with name america. Thus, Q2 is unsatis-
fiable with respect to the given schema. Therefore, we can detect more errors in 
XPath queries if we consider schema information, which is one of our contributions. 

Formulating a query like //a is easy for a user, but the query might often select more 
data than what the user really wants to achieve. However, writing a query, which 
exactly specifies the desirable data, might be not trivial for the user as it requires that 
the user must be familiar with the complex structural constraints imposed by the 
schema of the input XML document. Thus, there is a need to investigate means to 
help users to refine their query efficiently. The refinement problem of XPath queries 
can be stated as follows: Given a satisfiable XPath query Q, we want to find a query R 
such that for any valid XML document D, the evaluation of R on D returns a subset of 
the result of applying Q on D, denoted by R(D) ⊆ Q(D), which exactly specifies the data 
the user wants to achieve. In this paper, we suggest the following refinement ap-
proach: Given a query Q, our approach proposes a query Q’, which is equivalent to, but 
which contains more information than Q. For determining Q’, we replace wildcards 
with specific node tests, and replace recursive axes with non-recursive axes. Mean-
while, we eliminate reverse axes, redundant qualifiers and location steps in Q accord-
ing to the integrity constraints in the schema. This query can be then more easily 
refined by the user to the query R on the basis of an XPath expression, which is 
equivalent to, but contains more information than the initial query. Note that in the 
absence of schemas, the descendant axis can not be replaced with child axes and wild-
cards cannot be eliminated completely [ 4]. 

In comparison to the contributions for the satisfiability test and rewriting of XPath 
queries with respect to schemas, our approach supports both the satisfiability test and 
rewriting of XPath expressions, and allows the recursive as well as non-recursive 
schemas and all XPath axes.  

The rest of the paper is organized as follows. Section 2 defines the XML Schema 
subset and XPath subset supported by our approach. Section 3 develops a data model 
of XML Schema language for the evaluation of XPath queries on XML Schema defi-
nitions. Section 4 presents our approach, including the evaluation of XPath queries on 
an XML Schema definition, the satisfiability test and rewriting of XPath queries and 
the complexity analysis of our approach. Section 5 presents the performance analysis 
based on our prototype. Section 6 describes the related work. This paper ends up with 
the summary and conclusions in Section 7. 

2   XPath and XML Schema 

XPath queries are used to select a set of nodes in an XML document. In this paper, we 
consider the basic properties of the XPath language [ 22][ 23]. The abstract syntax of 
the supported XPath subset is defined in EBNF as follows: 

 

Pattern  e::=  e|e | /e | e/e | e[q] | axis::nodetest. 
Qualifier  q::=  e | e=C | e=e | q and q | q or q | not(q) | (q) | true() | false(). 
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axis::=  child | attr | desc | self | following | preceding | parent | ances | DoS | AoS | FS | PS. 
nodetest::=  label | ∗ | node() | text(). 
 

where label is an element or attribute name and C is a literal, i.e. a string or a number.  
Furthermore, we write DoS for descendant-or-self, AoS for ancestor-or-self, FS for following-
sibling and PS for preceding-sibling. We also use attr as short name for attribute, desc for 
descendant and ances for ancestor. 

The semantics of each pattern is defined in terms of the semantics of its subpat-
terns. The smallest subpattern is a location step that contains an axis and a node test, 
with or without qualifiers. An axis identifies a set of nodes, which are related with a 
given node, called the context node. The nodes identified by an axis are filtered by a 
node-test. A qualifier filters the nodes selected by a pattern. 

XML Schema is a language for defining a class of XML documents, called in-
stance documents of the schema. We call a schema, which is formulated in the XML 
Schema language, an XML Schema definition (or XSchema for short), which is itself 
an XML document. An XSchema defines the structure of the instance documents, the 
vocabulary (e.g. the element and attribute names used, and the data types of elements 
and attributes). In this paper, we support the subset of the XML Schema language, 
which contains the most important language constructs to express XML Schema defi-
nitions, where a given XSchema must conform to the following EBNF rules. 

 

              XSchema ::= <schema > (elemD|attrGD|groupD|compTD)* </schema>. 
elemD ::= <element name='N' occurs? (type=‘T’)?>  <complexType (mixed='true')?  
                      (ref='N’)?>  complexType? </complexType> (attrR|attrD)* </element>. 
groupD ::= <group name='N'> complexType? </group>. 
compTD ::= <complexType name='N'> complexType  </complexType>. 
complexType ::= <all occurs?> complexType?</all> | <sequence occurs?> complexType?  
                             </sequence> | (elems|groupR)*. 
elems ::= (elemD | <element ref='N'  occurs? />)*. 
groupR ::= <group ref='N'/>. 
attrR ::= <attributeGroup ref='N'/>. 
attrGD ::= <attributeGroup name='N'> (attrD)*  </attributeGroup>. 
attrD ::= <attribute name=’N’ type=’T’ (use= ‘required’)?/> 
occurs ::= minOccurs=num maxOccurs=(num|'unbounded'). 

 

Example 1: Fig. 1 presents an example of an XML Schema definition web.xsd, which 
contains the schema information for XML documents describing webpages. 

(D1) <schema>
(D2)  <group name=‘pages’>
(D3)   <sequence>
(D4)    <element name=‘page’

minOccurs=‘0’ maxOccurs=‘1’>
(D5)     <complexType>
(D6)      <sequence>
(D7) <element name=‘title’ minOccurs=‘0’

maxOccurs=‘1’ type=‘string’/>
(D8) <element name=‘link’

minOccurs=‘0’>
(D9)   <complexType>

(D10)    <group ref=‘pages’ minOccurs=‘0’
maxOccurs=‘unbounded’/>

</complexType> </element>
</sequence> </complexType>

</element> </sequence> </group>

(D11) <element name=‘web’>
(D12)  <complexType>
(D13)   <group ref=‘pages’

minOccurs=‘0’ maxOccurs=‘unbounded’/>
</complexType> </element>

</schema>  
Fig. 1. An XML Schema definition web.xsd 
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3   Data Model for XML Schema 

Based-on the data model for the XML language given by [ 19] and [ 16], we develop a 
data model for XML Schema for identifying the navigation paths of XPath queries on 
an XML Schema definition. The following notations on set and relationships are used 
to model the XML Schema definition, and are also used to model schema paths (c.f. 
Section 4). A relationship on types T1, T2, …, Tn, is represented by a function f: 
T1XT2X…→Tn. Set(T) indicates the type of a set the elements of which are of type T. We 
write ∅ for an empty set, ∈ for membership and ∪ for the union of sets. The transi-
tive closure f+ and reflexive transitive closure f* of a relationship function f:T→Set(T) 
are defined as follows: 

 

f n(x) = { z | y∈f n-1(x) ∧ z∈f(y) }, where  f 0(x) = {x}, f 1(x) = f (x) 
f +(x)  =  ∪n=1

∞ f n(x) and f *(x)  =  ∪n=0
∞ f n(x)  

 

An XML Schema definition is a set of nodes of type Node. There are four specific 
Node types in XML Schema definitions, which are associated with instance nodes of 
the schema: root, iElem, iAttr and iText. Accordingly, we define four functions of 
Node→Boolean to test the type of a node: isRoot, isiElem, isiAttr, and isiText, which return 
true if the type of the given node is a root node, is of type iElem, iAttr or iText respec-
tively, otherwise false. 

 

Definition 1 (instance nodes): The instance nodes of an XML Schema definition are 
 

• <element name=N> (which is of type iElem), 
• <attribute name=N> (which is of type iAttr), 
• <complextType mixed= ‘true’> (which is of type iText),  
• <element type=T> (which is of type iText), where T is a simpleType. 
 

Definition 2 (succeeding nodes): A node N2 in an XML Schema definition is a suc-
ceeding node of a node N1 in the XML Schema definition if 

 

• N2 is a child node of N1, or  
• N1=<element type=N> and N2=<complexType name=N> with the same N, or 
• N1=<element ref=N> and N2=<element name=N> with the same N, or 
• N1=<group ref=N> and N2=<group name=N> with the same N, or 
• N1=<attributeGroup ref=N> and N2=<attributeGroup name=N> with the same N. 
 

Definition 3 (preceding nodes): Node N1 in an XML Schema definition is a preced-
ing node of a node N2 in the XML Schema definition if N2 is a succeeding node of N1. 

 

Fig. 2 defines the relation functions of Node→Set(Node), which relate a schema node to 
other schema nodes. For instances, root(x) returns the root node of the document in 
which x occurs; iChild relates a node to its instance child nodes. For computing iChild(x), 
an auxiliary function S(x) is defined, which relates the node x to the self node and all 
the descendant nodes of x, which occur before the instance child nodes of x in the 
document order. iDesc relates a node to all its instance descendant nodes and is defined 
to be the transitive closure iChild+. The relation function iSibling(x) relates the node x to 
its instance sibling nodes. iBranch(x) relates node x to all the instance element nodes 
excluding any ancestors and descendants of the node x. iPS(x) relates the node x to its 
instance sibling nodes that occur before node x in the document order, and iPreceding(x) 
relates node x to its instance branch nodes that occur before node x in the document 
order. We write y<<x to indicate that the node y occurs before the node x in the  



26 J. Groppe and S. Groppe 

document order of an instance document. The document order of an instance docu-
ment is computed from an XML Schema definition in the following way: if a set of 
elements is declared as sequence with the attribute maxOccurs set to 1, the document 
order of elements is the order in which they are defined; if it is declared as all or as 
sequence with the attribute maxOccurs set to be greater than 1, any element of this set  
of elements can occur before any other elements of this element set in an instance 
document. 

root(x) = { y | isRoot(y)}
succe(x) = { y | y is a succeeding node of x }
prece(x) = { y | y is preceding node of x }
S(x) = ∪i=0

∞ Si, where S0 = {x}, Si = { z | y∈Si-1 ∧
z∈succe(y) ∧ ¬isiElem(z) ∧ ¬isiAttr(z) }

P(x) = ∪i=0
∞ Pi, where P0 = {x}, Pi = { z | y∈Pi-1 ∧

z∈prece(y) ∧ ¬isiElem(z) ∧ ¬isiAttr(z) }
iChild(x) = { z | y∈S(x) ∧ z∈succe(y) ∧

( isiElem(z) ∨ isiText(z) ) }
iAttribute(x) = { z | y∈S(x) ∧ z∈succe(y) ∧ isiAttr(z) }
iParent(x) = { z | y∈P(x) ∧ z∈prece(y) ∧ isiElem(z) }
iSibling(x) = {y | z∈iParent(x) ∧ y∈iChild(z)}

iBranch(x) = {y | y∈iChild+(root(x)) ∧
y ∉iParent∗(x) ∧ y ∉iChild+(x) ∧
¬isiAttr(y)}

iDesc(x) = {z | z∈iChild+(x)}                            
iAnces(x) = {z | z∈iParent+(x)}
iDoS(x) = {z | z∈iChild∗(x)}
iAoS(x) = {z | z∈iParent∗(x)}
iPS(x) = {y | y∈iSibling(x) ∧ y << x}
iFS(x) = {y | y∈iSibling(x) ∧ x << y}
iPreceding(x) = {y | y∈iBranch(x) ∧ y << x }
iFollowing(x) = {y | y∈iBranch(x) ∧ x << y}

 

Fig. 2. Used relation functions 

 

Let NodeTest be the type of the node-test of XPath. An auxiliary function attr(x, name) 
retrieves the value of the attribute name of the node x. The function NT: Node × Node-
Test→Boolean, which tests a schema node against a node test of XPath, is defined as: 

 

•  NT(x, ∗) = isiElem(x) ∨ isiAttr(x)                   • NT(x, label) = (isiElem(x) ∧ (attr(x, name)=label))          
•  NT(x, Node()) = true                                             ∨ (isiAttr(x) ∧ (attr(x, name)=label))  
•  NT(x, text()) = isiText(x) 

4   Schema Paths, Satisfiability Test and Rewriting 

In this section, we first present our XSchema-XPath evaluator, which evaluates an 
XPath query on an XML Schema definition and returns a set of schema paths. We 
then describe the satisfiablity test and the rewriting mechanisms based on the deter-
mined schema paths of the XPath query.  

4.1   Evaluation of XPath Queries on an XML Schema Definition  

A common XPath evaluator is typically constructed to evaluate XPath queries on 
XML documents. Our approach modifies the common XPath evaluator in order to 
evaluate XPath queries on XML schema definitions rather than the instance docu-
ments of the schema. Instead of computing the node set of XML documents specified 
by an XPath query, our XSchema-XPath evaluator computes a set of schema paths  
to the possible resultant nodes, when the XPath query is evaluated by a common 
XPath evaluator on XML instance documents. If an XPath query cannot be evaluated 
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completely, the schema paths for the XPath query are computed to an empty set of 
schema paths. 

4.1.1   Schema Paths 
Definition 4 (Schema paths): A schema path is a sequence of pointers to either the 
schema path records <XP’, Na, z, lp, f> or the schema path records <o, {f, …, f}>, where 
• XP’ is an XPath expression, 
• N is a node in an XML Schema definition, 
• a is a label, 
• z is a set of pointers to schema path records, 
• lp is a set of schema paths, 
• f is a schema path list, or a qualifier expression q’, and q’ ∈ {true(), false(), 

self::node()=C},  where C is a literal, i.e. a number or a string, and 
• o is a keyword. 
 

XP’ is the part of a given XPath expression, which has been evaluated; N is a resul-
tant node of a schema whenever XP’ is evaluated by our XSchema-XPath evaluator on 
the schema definition; a is a label associated with the schema node N, indicating an 
XPath axis, i.e. child, parent, FS, PS or self, from which the node N is generated, or indi-
cating the text node-test text() of XPath. a is needed for rewriting.  z is a set of pointers 
to the schema path records in which the schema node is the parent of the schema node 
of the current record. Note whenever a record is the first record of a loop, the record 
has more than one possible parent record. lp represents loop schema paths; f represents 
either a schema path list computed from a qualifier q that tests the node N, or the 
qualifier q itself that does not contain location steps like true() or false(), but also includ-
ing self::node()=C. o represents operators like or, and and not.  
 

Example 2: Our XSchema-XPath evaluator evaluates the XPath query Q=//page[title or 
author]/parent::link on the XML Schema definition in Fig. 1 and computes a set of 
schema paths from Q (cf. Fig. 3). Fig. 4 is the graphical representation of Fig. 3, in 
which we only present the schema node item of the schema path records. An empty 
set of schema paths is computed from another query Q2=//link/title[AoS::page], since the 
element title is not a child of the element link. 
 

(R1)   { (</,    /,   -,    -,   -> ,
(R2)      <s1, D11child,  {R1},  -,  ->,  
(R3)      <s1, D4child,  {R2, R4}, 
(R4)          {(<s1,  D8child, {R3}, -, ->)}, 
(R5)          {(<‘or’, 
(R6)                 {(<s2, D7child, {R3}, -, ->),
(R7)                   (‘false()’)})} >,
(R8)      <Q, D8parent, {R3}, -, -> )}
where s1=//page[title or author]

s2=title  

D11

/

D4

D8 ‘false()’

‘or’

D8

main schema path
loop schema path

qualifier schema path

schema path record

D7

 

Fig. 3. Schema paths of the query Q Fig. 4. Graphical representation of schema paths of 
Fig. 4 
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4.1.2   Computation of Schema Paths 
We use the technique of the denotational semantics [ 18] to describe our XSchema-
XPath evaluator, and define the following notations. Let z be a pointer in a schema 
path and d is a field of a schema path record, we write z.d to refer to the field d of the 
record to which the pointer z points. We use the letter S to represent the size of a 
schema path p, thus p(S) to represent the last pointer, p(S-1) to represent the pre-last 
pointer and so on. 

The denotational semantics of the XSchema-XPath evaluator is specified by a 
function L, which is defined in Fig. 5. The function L takes an XPath expression and a 
schema path as the arguments and yields a set of new schema paths, and is defined 
recursively on the structure of XPath expressions. For evaluating each location step of 
an XPath expression, our XSchema-XPath evaluator first computes the axis and the 
node-test of the location step by iteratively taking the schema node p(S).N from each 
schema path p in the path set as the context node. The path set is computed from the 
part xp’’ of the XPath query, which has been evaluated by the XSchema-XPath evalua-
tor. For each resultant node r selected by the current location step xpf, a new schema 
path is generated based on the old path p. The auxiliary function ϑ(r, g) generates a 
new schema path record e=<xp’, r, g, -, -> (where xp’=xp’’/xpf and g is a set of pointers to 
schema path records), adds a pointer to e at the end of the given schema path p and 
returns a new schema path.  

In the case of recursive schemas, a loop is identified whenever the XSchema-
XPath evaluator revisits a node N of the XML Schema definition without any progress 
in the processing of the query. In order to avoid an infinite search, we do not continue 
the search after the node N, once a loop has been detected. We detect loops in the 
following way: Let r be a visited schema node when evaluating the part xp’ of an 
XPath expression. If there exists a record p(i) in p, such that p(i).N=r, and p(i).XP’=xp’, a 
loop is detected and the loop path segment is lp = (p(i), …,p(S)). lp will be attached to the 
schema node p(i).N where the loop occurs. A loop might occur when an XPath query 
contains the axis desc, ances, preceding or following, which are boiled down to the recur-
sive evaluation of the axis child or parent respectively. For computing L desc::n (p), we 
first compute pi | pi∈L child::* (pi-1) where p1=L child::* (p). If no loop is detected in the  path 
pi, i.e. ∀k∈{1, ..., S-1}: pi(k).N≠pi(S).N ∨ pi(k).XP’≠pi(S).XP’,  L’ self::n (pi) is then computed in 
order to construct a possible new path from pi. If a loop is detected in the path pi, i.e. 
∃k∈{1,.., S-1}: pi(k).N=pi(S).N ∧ pi(k).XP’=pi(S).XP’,  a loop path segment, i.e. {pi(k), …, pi(S-1)} is 
identified. The function X modifies the record, which is the head of the loop, by add-
ing the loop path into the record, i.e. X(pi(k), (pi(k),..,p(S-1))), and returns true. Further-
more, although the schema nodes in two records are the same, i.e. pi(k).N=pi(S).N, these 
two nodes have different parents, i.e, pi(k).z ≠ pi(S).z. Therefore, the new parent pi(S).z 
has to be recorded and this is done by the function Z, which adds a parent pointer into 
the record pi(k), i.e. Z(pi(k), pi(S).z), and returns true. 

The schema paths of a qualifier are attached to the context node of the qualifier. 
When computing the schema paths of a qualifier, the XSchema-XPath evaluator ini-
tializes a schema path variable f with null, which is logically concatenated with the 
main path p, denoted by p+f, for the need of both finding the context node of the quali-
fier and finding the nodes specified by reverse axes in the qualifier, which occur  
before the context node of the qualifier in the document order. Let F = {f1,..,fk} be com-
puted from a set of qualifier expressions q1,..qk, where fi is either a schema path list 
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computed from a qualifier expression qi, or is the qualifier expression qi itself when qi 

does not contain location steps. Let i be an integer indicating the position of a pointer 
in a schema path p. The function A(F, i, p) writes F into the field p(i).f and returns the 
modified schema path p. The node p(i).N is the context node of these qualifiers. qi is 
evaluated to false if qi is computed to an empty set of schema paths with the exception 
of not(qi), which is computed to true in this case. When the qualifier is evaluated to 
false, the main schema path is computed to an empty set of schema paths. For the 
qualifier [q1 and q2], we first generate a schema path with only one record, i.e. f=(<‘and’, -
>), then we compute two sets of the schema paths from q1 and q2, i.e. L(q1)(p’+f1) and 
L(q2)(p’+f2), and attach two sets of schema paths to ‘and’, i.e. f=(<‘and’, { L(q1)(p’+f1), 
L(q2)(p’+f2)}>). Finally, the path f is attached to the node in the main path, which is the 
context node of the qualifier. L e[q1 and q2] (p) is computed to an empty set of schema 
paths if q1 or q2 is evaluated to false. 

• L DoS::n (p)= L self::n (p) ∪ L desc::n (p)
• L AoS::n (p) = L self::n (p) ∪ L ances::n (p)
• L FS::n (p) = { ϑ(r, p(S).z) | r∈iFS(p(S).N) ∧ NT(r,n) }
• L following::n (p) = L AoS:: ∗/FS :: ∗/DoS::n (p)
• L PS::n (p) = { ϑ(r, p(S).z) | r∈iPS(p(S).N) ∧ NT(r,n) }
• L preceding::n (p) = L AoS:: ∗/PS :: ∗/DoS ::n (p)
• L attr::n (p) = { ϑ(r, p(S)) | r∈iAttr(p(S).N) ∧ NT(r,n) }
• L e[q] (p) = A({L q (p’+f)}, S, p’), where f=∅ ∧ p’∈L e (p)
• L e[q1[q2]] (p) = A( {L q1[q2] (p’+f)}, S, p’ ), 

where f=∅ ∧ p’∈L e (p)
• L e[self::node()=C] (p) = A( {‘self::node()=C’}, S, p’ ),

where p’∈L e (p)
• L e[e1 = C] (p) = L e[e1[self::node()=C]] (p)
• L e[q1][q2] (p) = A({A({L q2 (p’+f2), L q1 (p’+f1)}, S, f)},

S, p’),  where p’∈L e (p) ∧ f=(<‘and’, ->) ∧ f1=∅ ∧ f2=∅.
• L e[q1 and q2] (p) = L e[q1][q2] (p)
• L e[q1 or q2] (p) = A({A({L q2 (p’+f2), L q1 (p’+f1)}, S, f)}, 

S, p’),  where p’∈L e (p) ∧ f=(<‘or’, ->) ∧ f1=∅ ∧ f2=∅.
• L e[q1 = q2] (p) = A({A({L q2 (p’+f2), L q1 (p’+f1)}, S, f)},

S, p’),  where p’∈L e (p) ∧ f=(<‘=’, ->) ∧ f1=∅ ∧ f2=∅.
• L e[not(q)] (p) = A({A({L q (p’+f1)}, S, f)} , S, p’), 

where f=(<‘not’, ->) ∧ p’∈L e (p) ∧ f1=∅.

• L e1|e2 (p) = L e1 (p) ∪ L e2 (p) 
• L /e (p) = L e (p1) ∧ p1=( </,/,-, -, - > )
• L e1/e2 (p) = { p2 | p2∈L e2 (p1)  ∧ p1∈L e1 (p) }
• L self::n (p) = { ϑ(p(S).N, p(S).z) | NT(p(S).N, n) }
• L child::n (p) = {ϑ(r, p(S)) | r∈iChild(p(S).N) ∧ NT(r,n)}
• L’ self::n (p) = { p | NT(p(S).N, n) }
• L desc::n (p) = { p’ | p’∈∪i=1

∞ L’ self::n (pi) ∧
∀k∈{1, …, S-1 }: pi(k).N≠pi(S).N ∨ pi(k).XP’≠pi(S).XP’

where pi∈L child::∗ (pi-1) ∧ p1∈L child::∗ (p), or 
p’∈∪i=1

∞ L’ self::n (pi-1) ∧ X(pi(k), (pi(k),..,pi(S-1))) ∧
Z(pi(k), pi(S).z)) ∧ ∃k∈{ 1,.., S-1 }: pi(k).N=pi(S).N ∧

pi(k).XP’=pi(S).XP’, where pi∈L child::∗ (pi-1) ∧
pi-1∈ L child::* (pi-2) ∧ p1∈L child::∗ (p).

•L parent::n (p) = { ϑ(r, x)| r=Z1.N ∧ Z1∈p(S).z ∧
x=Z1.z ∧ NT(r,n) }

• L ances::n (p) = { p’ | p’∈∪i=1
∞ L’ self::n (pi) ∧

∀k∈{1,.., S-1}: pi(k).N≠pi(S).N ∨ pi(k).XP’≠pi(S).XP’,   
where pi∈L parent::∗ (pi-1) ∧ p1∈L parent::∗ (p), or 

p’∈∪i=1
∞ L’ self::n (pi-1)  ∧ X(pi(k), (pi(k),..,pi(S-1))) ∧

Z(pi(k), pi(S).z)) ∧ ∃k∈{1,.., S-1}: pi(k).N=pi(S).N ∧
pi(k).XP’=pi(S).XP’, where pi∈L parent::∗ (pi-1) ∧

pi-1∈L parent::* (pi-2) ∧ p1∈L parent::∗ (p).

L: XPath expression × schema path → set(schema path)

 

Fig. 5. Formulas for constructing schema paths 

4.2   Testing the Satisfiability of XPath Queries 

Since the satisfiability test of XPath queries in the presence of schemas is undecidable 
for the XPath subset supported by our approach [ 2], we present a fast, but incomplete 
satisfiability tester, i.e. for the satisfiability test of XPath queries, our satisfiability 
tester computes to one of the following results: {unsatisfiable, maybe satisfiable}. 
Whereas we are sure that the XPath query is unsatisfiable, whenever our satisfiability 
tester returns unsatisfiable, we cannot be sure that the XPath query is satisfiable if our 
satisfiability tester returns maybe satisfiable. 
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Definition 5 (satisfiability of XPath queries): A given XPath query Q is satisfiable 
according to a given XML Schema definition XSD, if there exists an XML document 
D, which is valid according to XSD, and the evaluation of Q on D returns an non-empty 
result. Otherwise Q is unsatisfiable according to XSD. 
 

Proposition 1 (Unsatisfiable XPath queries): If the evaluation of an XPath query Q 
on a given XML Schema definition XSD by the XSchema-XPath evaluator generates 
an empty set of schema paths, then Q is unsatisfiable according to XSD.  
 

Proof. The XSchema-XPath evaluator is constructed in such a way that the XSchema-
XPath evaluator returns an empty set of schema paths, if the constraints given in Q 
and the constraints given in XSD exclude the constraints of the other. Thus, there does 
not exist a valid XML document according to XSD, where the application of Q returns 
a non-empty result.   

If the XSchema-XPath evaluator computes a non-empty set of schema paths for an 
XPath query, the XPath query is only maybe satisfiable, since the satisfiability test of 
XPath expressions formulated in the supported subset of XPath is undecidable [ 2]. 
Furthermore, we do not consider the conflict of the constraints from the XPath ex-
pression itself, e.g. //a[@b=1][@b=5]. This kind of constraints can be checked by a rule-
based approach for testing the satisfiability without schema information like proposed 
in [10]. The next generation of satisfiability tester may combine satisfiability tester 
using schema information (as described in this paper) and rule-based approaches (as 
proposed in [10]) to benefit from the advantages of both approaches, 

4.3   Rewriting and Refinement of XPath Expressions 

After the computation of the schema paths of an XPath query, we can construct an 
XPath query, which is equivalent to the original one, but in which redundant location 
steps are eliminated, wildcards are replaced with specific node-tests, and reverse axes 
and recursive axes are eliminated wherever possible. The rewriting approach of XPath 
queries includes mapping a set of schema paths to a (regular) XPath expression, and 
optimizing the mapped XPath expression by a set of equivalence rules. 

4.3.1   Mapping Schema Paths to (Regular) XPath Expressions 
The mapping function M[L] maps a set of schema paths L={p1,…,pm} into an XPath query 
Q’. The mapping function M[p] maps a schema path p = (r1,…,rn) (where p∈L) into a sub-
expression e of the query Q’. The mapping function M[r] maps a schema path record r 
(where r∈p) into a pattern of the sub-expression e. The patterns are concatenated in the 
correct order with ‘/’ to form the sub-expression e=M[p]=M[r1]+‘/’+ …+‘/’+M[rn], where we 
use ‘+’ to denote concatenation of strings. Disjunctions of the sub-expressions form 
the mapped query Q’=M[L]=M[p1]+‘|’+ …+‘|’+M[pn]. In order to compute a pattern from a 
schema path record <XP’, Na, z, lp, f> or <o, {f,…,f}>, we need the following functions. The 
function S(N, a) computes the axis and the node-test of a pattern; function R(f) com-
putes a qualifier; and the function D(lp) computes the union of loop patterns. Let us 
assume that B is a pattern, then we define B* as a loop pattern, in which the Kleene star 
denotes an arbitrary repetition of the pattern B. As an example, if B = a, then B* = (a0 | a | 
a/a | a/a/a |…), where a0 is the empty expression ⊥. The auxiliary function attr(N, ‘name’) 
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retrieves the value of attribute ‘name’ of the node N, which is the name of an element or 
attribute appearing in an instance document. 

Let L be a schema path list, p be a schema path and r be a schema path record, 
L={p1,…,pm} and p=(r1, ..., rn), where p∈L. The semantics of the mapping function M, which 
maps a list of schema paths into a (regular) XPath expression, is defined in Fig 6. 
Note that in the mapping functions of Fig. 6, the two fields XP’ and z in a schema path 
record r are left out since they do not contribute to the computation of the mapping. 

If we use the function Mr[<Na, lp, ->], we get a regular XPath expression with loop  
patterns using the Kleene star *, which is not a standard XPath operator, and if we use 
the function M[<Na, lp, ->], we get a standard XPath expression, which conforms to the 
XPath specification ([21], [22]), without loop patterns. Since loop patterns are not 
supported by the XPath language, instead of computing loop patterns, M[<Na, lp, ->] 
computes a desc or ances axis from a path record containing loop schema paths. 

M[<‘and’, {f1, f2}>] = R(f1)+‘and’+R(f2) 
M[<‘or’, {f1, f2}>] = R(f1)+‘or’+R(f2)
M[<‘=’, {f1, f2}>] = R(f1)+‘=’+R(f2)
S (/, a) = ‘/’
S(N, a) = a+‘::’+attr(N, ‘name’), where

a∈{‘child’, ‘parent’, ‘FS’, ‘PS’, ‘self’, ‘attr’}
S(N, ‘text’) = ‘child::text()’
R(f) = M(f), if f is a schema path list
R(f) = f, if f is a qualifier expression
D(lp) = D({lp1,…,lpk}) =   

‘(‘+‘(’+M[lp1]+‘)*’+‘|’…‘|’+‘(’+M[lpk]+‘)*’+‘)’

M[L] = M[p1]+‘|’+ …+‘|’+M[pm]
M[p] = M[r1]+M[r2]+‘/’+…+‘/’+M[rn], if r1.N=‘/’
M[p] = M[r1]+‘/’+… +‘/’+M[rn], if r1.N≠‘/’
M[<Na, -, ->] = S(N, a)
M[<Na,  -, f>] = S(N, a)+‘[’+R(f)+‘]’
M [<Na, lp, ->] 

= ‘desc::’+attr(N,  ‘name’), if a = ‘child’, or 
= ‘ances::’+attr(N, ‘name’), if a = ‘parent’

Mr[<Na, lp, ->] = D(lp)+‘/’+S(N,a)
M[<Na, lp, f>] = M[<Na, lp, ->]+‘[’+R(f)+‘]’
M[<‘not’, {f}>] = ‘not’+R(f)  

Fig. 6. Mapping functions that map a set of schema paths to a (regular) XPath expression. Note 
that in these mapping functions, the two fields XP’ and z in a schema path record r are left out 
since they do not contribute to the computation of the mapping. 

Proposition 2: Let S be a set of schema paths, let XPr be the regular XPath expression 
mapped from S (where a schema path record with loop schema paths is mapped using 
the function Mr[<Na, lp, ->]) , and let XP be the standard XPath expression mapped from S 
(where a schema path record with loop schema paths is mapped using the function 
M[<Na, lp, ->]). The evaluation of XP returns the same node set as XPr for all possible 
XML documents. 

Proof. As mentioned earlier, a loop occurs only when our XSchema-XPath evaluator 
processes the location steps, which contains the axis descendant or ancestor to which all 
recursive axes like following and preceding are boiled down to. All the descendant nodes 
(or ancestor nodes respectively) of the context node of the location step will be vis-
ited. The descendant (or ancestor respectively) nodes are logged into the correspond-
ing schema path records whenever these nodes fulfil the constraints of the current 
location step and the following locations steps. The function M[<Na, lp, ->] retrieves the 
nodes P, which we divide into three different types of nodes: the first type of nodes 
fulfils the constraints of the current and following location steps and the constraints of 
the loop patterns, i.e. the nodes retrieved by the Mr[<Na, lp, ->] pattern; the second type of 
nodes fulfils the constraints of the current and following location steps, but does not 
fulfil the constraints of the loop patterns, i.e. these nodes contained in the result of the 
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mapped subqueries of some of the other successfully detected schema paths of Q; the 
third type of nodes fulfils the constraints of the current location step, but does not 
fulfil the constraints of following location steps, i.e. these nodes are not logged into 
any schema path and will be filtered when XP is evaluated. Acording to the XPath 
language, the result of an XPath query does not contain any duplicates. Therefore, the 
total mapped XPath expressions using either M or Mr return the same node set for all 
possible XML documents. 

4.3.2   Optimizing Mapped (Regular) XPath Expressions 
The mapped XPath query can be furthered optimized by eliminating redundant loca-
tion steps, which are mainly the location steps containing the reverse axis parent. For 
this optimization, we develop a set of rewriting rules. Different from the rewriting 
rules presented in [ 16], which eliminates reverse axes based-on the symmetry of the 
XPath axes, we eliminate reverse axes mainly based-on the symmetry of the schema 
paths. For example, [ 16], which offers a rule-based approach to eliminate reverse axis 
without considering schema information, eliminates the parent axis by generating a self 
axis. In comparison, our rules eliminate the parent axis without generating expressions 
containing the self axis, as we have already considered the schema information when 
generating the schema paths. The reverse axes, which are remaining after the elimina-
tion of redundant location steps, can be eliminated using the rule-set in [ 16]. 

Let a be an axis, n be a node-test, e be a pattern and q be a qualifier. The rewriting 
rules, which eliminate redundant location steps in the XPath expressions mapped 
from a set of schema paths, are defined in Fig. 7. 

e/attr::n1/parent::n2 ≡ e[attr::n1]
e/child::n1/parent::n2≡ e[child::n1]
e1/child::n1/e2/parent::n3 ≡ e1[child::n1/e2], 

where e2 contains only the axes FS and PS 
e1/attr::n1[parent::n2/e2] ≡ e1[e2]/attr::n1
e1/child::n1[parent::n2/e2] ≡ e1[e2]/child::n1
e1/child::n1/e2/[parent::n2/e3] ≡ e1[e3]/child::n1/e2, 

where e2 contains only the axes FS and PS
e1[child::n1/parent::n2/e2] ≡ e1[child::n1][e2]
e1[attr:n1/parent::n2/e2] ≡ e1[attr::n1][e2]
e1/(e2/child ::n1)*/child ::n2/parent ::n3 ≡

e1/(e2/child::n1)*[child::n2]

e/self::n ≡ e
e[a::n][a::n] ≡ e[a::n]
e[a::n]/a::n ≡ e/a::n 
e[true()] ≡ e
e[q and true()] ≡ e[q]
e[q or true()] ≡ e
e[q or false()] ≡ e[q] 

e*/child::n ⊆ desc::n
e*/parent::n ⊆ ances::n

 

Fig. 7. Rewriting rules, which optimizes the XPath queries mapped from schema paths 

 

Note that in Fig. 7, e*/child::n is the pattern, which is mapped by Mr[<Na, lp, ->] when a = 
‘child’, and desc::n is the pattern, which is mapped by M[<Na, lp, ->] when a = ‘child’. As 
shown in Proposition 2, although desc::n retrieves a superset of the node set retrieved 
by e*/child::n, the entire XPath query, which is rewritten from the mapped XPath query, 
returns the same node set for all possible XML documents when using either desc::n or 
e*/child::n. 
 

Example 3: The schema paths in Fig. 3 is mapped to the regular XPath expression 
Qr=/web/(page/link)*/page[title or false()]/parent::link and the standard XPath expression 
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Q’=/web/desc::page[title or false()]/parent::link, and further pruned as Qr’=/web/(page/link)* 
[page[title]] and Q’’=/web/DoS::link[page[title]]. 
 

Example 4: Assume that a user wants to refine a query C = //page[not(parent::web)]/∗. Our 
XSchema-XPath evaluator evaluates the query C on the schema definition web.xsd of 
Fig. 1 and generates the following XPath query Cr = er/title | er/link, where er= 
/web/(page/link)*/page[not(parent::web)]. Based on this XPath expression, the user might 
refine the query as C’= /web/page/link/page/title. 

4.4   Complexity Analysis 

Let a be the number of location steps in query Q and let N be the number of instance 
nodes in an XML Schema definition. Each schema path contains at most a*N nodes, 
each of which can be the start node of at most O(Σi=1

N-1(N!/(N-i)!)) different 
schema paths of length 1 to N in the worst case of a preceding or a following axis until we 
recognize a loop. Thus, for each schema path of the result of the previous location 
step, we can detect at most O(a*N*Σi=1

N-1(N!/(N-i)!))=O(a*N*N!) different 
schema paths as the result of the current location step. For all locations steps, we can 
detect at most O((a*N*N!)a) different schema paths, each of which contains at most 
O(a*N) schema nodes, for Q. Therefore, the worst case complexity of both, the run-
time and the space, is O(a*N*(a*N*N!)a). 

We assume that the typical case is characterized as follows: Each instance schema 
node in an XML Schema definition has only a small number of successor nodes. Fur-
thermore, we assume that the query Q specifies a small node set so that we only detect 
a small number, which is less than a constant k, of schema paths. Therefore, the com-
plexity of both runtime and space is O(k*a*N) for the typical case. 

The complexity for the construction of the rewritten query is the same in the worst 
case, i.e. O(a*N*(a*N*N!)a), and in the typical case, i.e. O(k*a*N), as the con-
struction of the rewritten query is linear to the number of stored nodes in the set of 
schema paths. 

5   Performance Analysis 

We have implemented a prototype of our approach, including the XSchema-XPath 
evaluator, satisfiability test and rewriting of XPath queries, in order to verify the cor-
rectness and effectiveness of our approach. The test system for all experiments is an 
Intel Pentium 4 processor 2.4 Gigahertz with 512 Megabytes RAM, Windows XP as 
operating system and Java VM build version 1.4.2. We use the XQuery evaluators 
Saxon version 8.0 (//saxon.sourceforge.net) and Qizx version 0.4pl (//www.xfra.net/quizxopen) 
in order to evaluate the XPath queries.  

We have used the XPathMark benchmark [ 7] as the source of our experimental 
data. We have transfomed the benchmark DTD benchmark.dtd into the XML Schema 
definition benchmark.xsd by using the tool Syntext Dtd2xs-2.0 (//freshmeat.net/projects/ 
syntext_dtd2xs/). We have generated data from 0.116 Megabytes to 11.597 Megabytes 
by using the data generator of the XPathMark benchmark.  
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The performance analysis, which deals with the detection of unsatisfiable XPath 
queries by our XSchema-XPath evaluator and the evaluation of these unsatisfiable 
queries by common XPath evaluators, has been presented in [ 9], which shows the 
optimization potential of avoiding the evaluation of unsatisfiable queries, and a speed-
up factor up to several magnitudes is possible. Therefore, in this paper, our perform-
ance study focuses on the rewriting overhead and refinement potential. Given an 
XPath query Q, our approach rewrites Q into a set of more specific (regular) XPath 
expressions, from which we generate a refined query R. We then use common XPath 
evaluators to evaluate the queries Q and R on the XML documents with different sizes. 
We compare the number NQ of the nodes selected by the original query Q and the 
number NR of the nodes selected by the refined query R, i.e. NR/NQ. We also test the 
rewriting time of the original queries and the evaluation time of the refined queries. 

Fig. 8 presents the original queries Q and their according refined queries R used in 
our experiment. Fig. 9 presents the result of NR/NQ. Fig. 10 and Fig. 11 present the 
rewriting time of the original query Q5 by our XSchema-XPath evaluator on the XML 
Schema definition benchmark.xsd, and the evaluation time of the according refined 
query R5 on different documents when using the Qizx evaluator and when using the 
Saxon evaluator respectively. Note that other refined queries have comparable results. 
The results show that the refined query selects a smaller set of nodes in most cases so 
that we can save processing and transportation costs. Although the time of rewriting is 
more than the time of query processing, when the size of the queried data is small, the 
absolute overhead of the rewriting approach is quite low, less than 1 second in all 
considered cases. 

 

     Q1: //item    R1: /site/regions/africa/item 
     Q2: //education    R2: /site/people/person/profile/education 
     Q3: //edge[attribute::*]    R3: /site/catgraph/edge[attribute::from = "J" or attribute::from = "S"] 
     Q4: //person[child::*]    R4: /site/people/person[homepage] 
    Q5: //open_auction/child::*/child::*    R5: /site/open_auctions/open_auction/bidder/date 

Fig. 8. The original queries Q and their according refined queries R 

 

Fig. 9. Ratio of the node numbers selected by the refined query and by the original query 
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Fig. 10. The evaluation time of R5 by Qizx evaluator on different sizes of data and the rewrit-
ing time of Q5 by our XSchema-XPath evaluator on the XML Schema definition benchmard.xsd 

 
Fig. 11. The evaluation time of R5 by Saxon evaluator on different sizes of data and the rewrit-
ing time of Q5 by our XSchema-XPath evaluator on the XML Schema definition benchmard.xsd 

6   Related Work 

Several contributions focus on the satisifability problem of XPath queries. [ 2]  
theoretically studies the complexity problem of XPath satisfiability in the presence  
of DTDs, and shows that the complexity of XPath satisfiability depends on the 
considered subsets of XPath expressions and DTDs. We present a practical algorithm 
for testing the satisfiability of XPath queries. [ 12] investigates the satisfiability prob-
lem of XPath expressions in the absence of schemas, whereas we present an approach 
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based on schema information. [ 14] examines the satisfiability test of tree pattern que-
ries (i.e. reverse axes are not considered) with respect to a non-recursive schema. We 
support all XPath axes and recursive schemas. Furthermore, the approaches presented 
in [ 2], [ 12] and [ 14] cannot rewrite XPath expressions. In contrast, our approach can 
rewrite an XPath expression as well as test the satisfiability of XPath expressions. 
[ 11] filters the unsatisfiable XPah queries by a set of simplification rules while we use 
the constraints given by an XML Schema definition to check the satisfiability of 
XPath expressions. 

[ 13] suggests an algorithm for rewriting and satisfiability test of XPath expressions 
in the presence of DTDs. Different from [ 13], which enumerates all possible paths 
from a DTD, we directly generate the paths for a given XPath query by evaluating the 
XPath query on the XML Schema definition. Furthermore, we support recursive 
schemas that are not considered by [ 13]. We consider all XPath axes, but the axes that 
depend on document order are not supported by [ 13]. 

A number of research efforts are dedicated on rewriting of Path expressions.  [ 4] 
suggests an approach to minimize wildcards in the absence of schemas. In comparison 
to [ 4], we support to eliminate wildcards completely in XPath queries. [ 16] eliminates 
reverse axes in XPath expressions according to the axis symmetry of XPath, while we 
eliminate reverse axes based on the symmetry of schema paths as well as of XPath 
axes. Thus, we can eliminate reverse axes without adding additional location steps. 
[ 6] develops an algorithm to rewrite XPath queries to regular XPath queries on recur-
sive DTDs, but only forward axes are considered and the reverse axes and the axes 
depending on the document order are not allowed. Our approach can rewrite an XPath 
query to regular and standard XPath queries in the case of recursive schemas, and 
supports all XPath axes. Furthermore, similar to [ 13], [ 6] enumerates all the paths 
from a DTD regardless of input queries, but we construct only the paths from an 
XML Schema definition for a given XPath query. [ 1], [ 17] and [ 20] reduce redundant 
location steps of tree pattern queries relying on the equivalence and containment 
analysis of two sub-patterns. [ 8] reformulates XPath expressions according to XSLT 
stylesheets in order to reduce the amount of data transmitted and transformed. 

[ 3] models XML Schema with the goal to give a formal description of XML 
Schema language, whereas our XML Schema model is used to identify the navigation 
paths of XPath queries on an XML Schema definition. 

We extend our contributions in [ 9] and [ 10] by rewriting, refinement as well as sat-
isfiability-test of users’ XPath queries and a performance analysis, which shows the 
optimization potential of using our approach in query optimization. 

7   Summary and Conclusions 

We propose a schema-based approach to the satsifiability test, rewriting and refine-
ment of XPath queries. For this purpose, we develop an XML Schema data model to 
identify the navigation paths of XPath queries on an XML Schema definition so that 
we can support all XPath axes. Our approach evaluates XPath queries on (recursive) 
XML Schema definitions rather than the instance XML documents and generates a set 
of schema paths. If the set of schema paths is computed to an empty set, the XPath 
query is unsatisfiable, otherwise it is maybe satisfiable. Based-on the schema paths, 
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our approach rewrites a given XPath query to a more specific (regular) XPath query 
by eliminating wildcards, recursive axes, and reverse axes wherever possible. Thus, 
users can easily refine their query based on the rewritten query of the original query.  

We present the experimental results of our prototype, which shows the optimiza-
tion potential of the satisfiability test and refinement. Our approach can remarkably 
decrease the processing time of queries by filtering unsatisfiable XPath queries, and a 
speed-up factor up to several magnitudes is possible. Our approach can significantly 
reduce the number of nodes selected by refining the original queries and thus the 
users can save processing and transportation costs. 

We are of the opinion that our presented approach can be used to optimize XQuery 
expressions and XSLT stylesheets, which embed the XPath language. 
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Abstract. XML is suitable for structuring complex data coming from
different sources and supported by heterogeneous formats. It allows a
flexible formalism capable to represent and store different types of data.
Therefore, the importance of integrating XML documents in data ware-
houses is becoming increasingly high. In this paper, we propose an XML-
based methodology, named X-Warehousing, which designs warehouses at
a logical level, and populates them with XML documents at a physi-
cal level. Our approach is mainly oriented to users analysis objectives
expressed according to an XML Schema and merged with XML data
sources. The resulted XML Schema represents the logical model of a
data warehouse. Whereas, XML documents validated against the analy-
sis objectives populate the physical model of the data warehouse, called
the XML cube.

1 Introduction

With the recent popularity of Internet and new ways of communication, enter-
prises are collecting huge amount of heterogeneous data. These data are quite
complex since they concern different types of information, coming from different
sources, and presented on different supports. For instance, in medical sector,
a case study of a patient may contain general information about the patient
(age, sexe, etc.) as well as scanned images, recorded interviews and expert’s
annotations. Since enterprises aim at integrating these data in their Decision
Support Systems (DSS), some efforts are needed to structure them and to make
them homogeneous as well as possible. The XML (eXtensible Markup Language)
formalism has emerged as a dominant W3C1 standard in describing and ex-
changing data among heterogeneous data sources in a semi-structured way. Its
self-describing hierarchical structure enables a manipulative power to accommo-
date complex, disconnected, and heterogeneous data. Further, XML documents
may be validated against an XML Schema. It allows to describe the structure

1 http://www.w3.org
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of a document and to constraint its contents. Nowadays, in most organizations,
XML documents are becoming a usual way to represent and to store data. There-
fore, new efforts are needed to integrate XML in classical business applications.
Populating data warehouses with XML documents is also becoming a challeng-
ing issue since multidimensional data organization [1] is quite different from
semi-structured data organization. The difficulty consists in carrying out a mul-
tidimensional design within a semi-structured formalism like XML.

In this paper, we propose an XML based approach, named X-Warehousing,
to warehouse complex data. We include a methodology that enables the use of
XML as a logical modelling formalism of data warehouses. This methodology
starts from analysis objectives defined by users according to a multidimensional
conceptual model (MCM). We use MCM in order to easily represent multidi-
mensional structures of a data warehouse through what users can express future
analysis objectives at a conceptual level. The data warehouse is then modelled
at a logical level with an XML Schema, which defines a reference data cube
model. Our approach also allows to populate the designed data warehouse with
XML documents that reflect the latter analysis needs over complex data. In
fact, the reference data cube model is matched with complex data presented
under XML documents. Note that, we focus on analysis needs rather than data
sources themselves. In order to match the reference model with XML documents,
they are both presented by XML Schemas. Then, we transform them into at-
tribute trees [2] to make them comparable. Therefore, these attribute trees will
be merged according to a fusion function by pruning and grafting [3]. Finally,
our approach outputs XML documents valid as well as possible against the ref-
erence cube model. Each output XML document respects the user constraints
required on its data content and represents a real OLAP (On-Line Analytical
Processing) fact. The whole set of the warehoused documents corresponds to the
physical model of the data warehouse named XML Cube.

The rest of the paper is organized as follows. We address a survey of related
work in Section 2. In Section 3, an overview and the context of our approach are
given. Section 4 provides a necessary formal background for our X-Warehousing
proposal. Section 5 details the methodology of building XML Cubes from initial
XML sources. We present, in Section 6, a Java application we implemented. A
case study on a real complex data is illustrated in Section 7. Finally, we conclude
and propose future work in Section 8.

2 Related Work

Some proposals regarded multidimensional modelling by using XML as a base
language for describing data warehouses. Krill [4] affirms that vendors such as
Microsoft, IBM, and Oracle will largely employ XML in their database systems
for interoperability between data warehouses and tool repositories. Nevertheless,
we distinguish two separate approaches in this field.

The first approach focuses on physical storage of XML documents in data
warehouses systems. XML populates warehouses since it is considered an effi-
cient technology to support data within well suited structures for interoperability
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and information exchange. Baril and Bellahsène introduced the View Model [5],
which is a method capable of querying XML databases. A data model is defined
for each view to organize semi-structured data. An XML warehouse, named
DAWAX (DAta WArehouse for XML), based on the View Model was also pro-
posed. In [6], Hümmer et al. proposed an approach, named XCube, to model
classical data cubes with XML. XCube consists of three kinds of XML Schemas:
(1) XCubeSchema to hold the multidimensional schema; (2) XCubeDimension
to describe hierarchical structure of involved dimensions; and (3) XCubeFact
to describe facts. Nevertheless, this approach focuses on the exchange and the
transportation of classical data cubes over networks rather than multidimen-
sional modeling with XML.

The second approach aims at using XML to design data warehouses accord-
ing to classical multidimensional models such as star schemes and snow flake
schemes. XML-star schema [7] uses Document Type Definitions (DTDs) to ex-
plicit dimension hierarchies. A dimension is modelled as a sequence of DTDs that
are logically associated similarly as the referential integrity does in relational
databases. Golfarelli et al. introduced a Dimensional Fact Model [8] represented
via Attribute Trees [2]. They also use XML Schemas to express multidimensional
models by including relationships with sub-elements. Nevertheless, Trujillo et al.
think that this approach focuses on the presentation of the multidimensional
XML rather than on the presentation of the structure of the MCM itself [9].
They claim that an Object Oriented (OO) standard model is rather needed to
cope all multidimensional modeling proprieties at both structural and dynamic
levels. Trujillo et al. provide a DTD model from which valid XML documents
are generated to represent multidimensional models at a conceptual level. Nas-
sis et al. propose a similar approach where OO is used to develop a conceptual
model for XML Document Warehouses (XDW) [10]. An XML repository, called
xFACT, is built by integrating OO concepts with XML Schemas. Nassis et al.
also define Virtual dimensions by using XML and UML package diagrams in
order to help the construction of hierarchical conceptual views.

The X-Warehousing process is entirely based on XML: it designs warehouses
with XML Schemas at a logical level, and then populates them with valid XML
documents at a physical level. Further, since it uses XML, our approach can also
be considered a real solution for warehousing heterogenous and complex data in
order to prepare them for future OLAP analysis.

3 Overview and Context of Our Approach

Since we need to prepare XML documents to future OLAP analysis, storing
them in a data repository is not a sufficient solution. We rather need to express
through these documents a more interesting abstraction level completely ori-
ented to analysis objectives. X-Warehousing builds a collection of homogeneous
XML documents. Each document corresponds to an OLAP fact where the XML
formalism structures data according to a multidimensional model. In order to
do so, we propose to match and validate XML documents against a MCM (star
or snow flake schema) modelled via a reference XML Schema.
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Fig. 1. Overview of the X-Warehousing approach

As presented in Figure 1, the X-Warehousing approach accepts a reference
MCM and XML documents in input. In fact, through the reference MCM a user
may design a data warehouse by defining facts, dimensions, and hierarchies.
This MCM reflects analysis objectives needed by the user. This model is then
transformed to a logical model via an XML Schema (XSD file). Once the refer-
ence model is defined, we can submit XML documents to populate the designed
warehouse. XML Schemas are initially extracted from input XML documents.
We transform the XML Schemas of reference model and XML documents into
attribute trees [2] in order to make them comparable. In fact, two attribute
trees can easily be merged together through fusion based on pruning and graft-
ing functions [3]. At this stage, two cases are possible: (1) if an input document
contains a minimum information required in the reference MCM, the document
is accepted and merged with the MCM. An instance of the XML documents is
created according to the resulted XML Schema and validated. This new XML
Schema represents the logical model of the final XML Cube; (2) otherwise, if
a submitted document does not contain enough information to represent an
OLAP fact according to the reference MCM, the document will be rejected and
no output is provided. The goal of this condition is to obtain an homogeneous
collection of data with minimum information capable to populate the final XML
Cube.
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The interest of our approach is quite important since organizations are treat-
ing domains of complex applications. In these applications, a special consider-
ation is given to the integration of heterogenous and complex information in
DSS. For example, in breast cancer researches, experts require efficient represen-
tations of mammographic exams. Note that information about a mammogram
come from different sources like texts, experts annotations, and radio scanners.
We think that structuring such a set of heterogenous data within XML format
is an interesting solution for warehousing them. Nevertheless, this solution is
not sufficient for driving future analysis. It is necessary to structure these data
in XML format with respect to a multidimensional reference model of a data
warehouse. Output XML documents of the X-Warehousing process represent the
physical model of the data warehouse. Each output document corresponds to a
multidimensional structured information of an OLAP fact.

In the following, we base our study on a running example about the breast
cancer domain. A collection of input XML documents describing suspicious re-
gions of cancer tumors is already created from the Digital Database for Screening
Mammography2 [11].

4 Formal Background

In this section, we provide a formalization for our X-Warehousing approach. We
recall conceptual aspects of typical data warehouse models, i.e., star schema
and snow flake schema. Then, we propose a logical model of data warehouses
extracted from the conceptual model, and represented by both XML Schemas
and attribute trees [3].

4.1 Conceptual Warehouse Models

In general, the conceptual model of a data warehouse is a description of dimen-
sion and fact tables. Star schema and snow flake schema are two main variants
of this approach. From a relational point of view, a star schema consists in one
fact table surrounded by independent dimension tables, i.e., there is no particular
relations between dimension tables.

Definition 1. (Star schema)
Let D = {Ds, 1 ≤ s ≤ r} be a set of r independent dimension tables. Each table
Ds has Ds.PK as a primary key. F is a fact table with d multi-part keys. A “star
schema” is defined by the couple (F,D) which satisfies the following conditions :

– ∀t ∈ {1, . . . , d}, it exists exactly one s ∈ {1, . . . , r} such as F.Kt = Ds.PK;
– ∀s ∈ {1, . . . , r}, it exists one or many t ∈ {1, . . . , d} such as F.Kt = Ds.PK.

According to the previous definition, each multi-part key from a fact table is
linked to exactly one dimension table. Whereas, a dimension can be linked to
one or many multi-part keys in the fact table. This situation can be encoun-
tered in many real world modeling problems. For instance, a Sale fact can be
characterized by an Origin Country and a Destination Country.
2 http://marathon.csee.usf.edu/Mammography/Database.html
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Fig. 2. Conceptual model of the Suspicious Region data cube

In OLAP analysis, we usually need more than a single granularity level of
information in one dimension. For example, to learn about the detailed Origin
of a Product, a multidimensional data model is supposed to cope information as
well about the State of the Product as its Country, its District, and its Office. In
order to do so, a dimension may be expressed through a multi-level hierarchy.
From a conceptual point of view, a hierarchy with l levels is generally represented
by a set of l tables D1, . . . , Dt, . . . , Dl, where ∀t ∈ {2, . . . , l} the primary key
Dt.PK of Dt is an attribute (foreign key) in Dt−1. In other terms, tables of a
hierarchy are linked by a semantic inclusion: D1 ⊂ · · · ⊂ Dt−1 ⊂ Dt ⊂ · · · ⊂ Dl.
For example, one tuple from table Office is semantically included to another
tuple from table District. In the same way, a District is semantically included to
a Country, and so on. We assume that the primary key of a hierarchy corresponds
to the the primary key of its first table D1, which represents the finest granularity
level of the dimension.

Definition 2. (Snow flake schema)
Let H = {Hs, 1 ≤ s ≤ r} be a set of r independent hierarchies. Each hierarchy
Hs has Hs.PK as a primary key. F is a fact table with d multi-part keys. A
“snow flake schema” is defined by the couple (F,H) which satisfies the following
conditions:

– ∀t ∈ {1, . . . , d}, it exists exactly one s ∈ {1, . . . , r} such as F.Kt = Hs.PK;
– ∀s ∈ {1, . . . , r}, it exists one or many t ∈ {1, . . . , d} such as F.Kt = Hs.PK.

A snow flake schema is quite similar to a star schema. It consists in one fact
table surrounded by a set of dimensions, where each dimension is represented by
a hierarchy instead of a single table. For example, the MCM of Figure 2 displays
a data cube of suspicious regions (tumors detected on mammographic screens)
organized according to a snow flake schema. The conceptual representation of
data warehouses is a way through what users can easily define future analysis
objectives. We emphasize that the relational formalism as used here aims at
representing both multidimensional data structure and analysis objectives.
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4.2 Modelling a Warehouse with XML

An XML document consists in nested element structures, starting with a root
element. Each element can contain sub-elements and attributes. Both elements
and attributes are allowed to have values. Attributes are included, with their
respective values, within the element’s opening declaration (tag). Between an
opening and a closing tag of an element, any number of sub-elements can be
present. According to these properties, we propose to represent the above con-
ceptual models (star schema and snow flake schema) of XML warehouses. More
precisely, we use XML Schemas to define the structure of a data warehouse.

To formalize a star schema of an XML warehouse, we define the concept of
an XML star schema as follows:

Definition 3. (XML star schema)
Let (F,D) be a star schema, where F is a fact table having m measure attributes
{F.Mq, 1 ≤ q ≤ m} and D = {Ds, 1 ≤ s ≤ r} is a set of r independent dimension
tables where each Ds contains a set of ns attributes {Ds.Ai, 1 ≤ i ≤ ns}. The
“XML star schema” of (F,D) is an XML Schema where:

– F defines the XML root element in the XML Schema;
– ∀q ∈ {1, . . . , m}, F.Mq defines an XML attribute included in the the XML

root element;
– ∀s ∈ {1, . . . , r}, Ds defines as many XML sub-elements of the XML root

element as times it is linked to the fact table F ;
– ∀s ∈ {1, . . . , r} and ∀i ∈ {1, . . . , ns}, Ds.Ai defines an XML attribute in-

cluded in the XML element Ds.

Since the XML formalism allows to embed multi-level sub-elements in one XML
tag, we use this property to represent XML hierarchies of dimensions. Let H =
{D1, . . . , Dt, . . . , Dl} be a dimension hierarchy. We can represent this hierarchy
by writing D1 as an XML element and ∀t ∈ {2, . . . , l}, Dt is writing as an XML
sub-elements of the XML element Dt−1. The attributes of each tables Dt are
defined as XML attributes included in the XML element Dt. Therefore, we can
also define the notion of XML snow flake schema, which is the XML equivalent
of a conceptual snow flake schema:

Definition 4. (XML snow flake schema)
Let (F,H) be a star schema, where F is a fact table having m measure attributes
{F.Mq, 1 ≤ q ≤ m} and H = {Hs, 1 ≤ s ≤ r} is a set of r independent
hierarchies. The “XML snow flake schema” of (F,H) is an XML Schema where:

– F defines the XML root element in the XML Schema;
– ∀q ∈ {1, . . . , m}, F.Mq defines an XML attribute included in the the XML

root element;
– ∀s ∈ {1, . . . , r}, Hs defines as many XML dimension hierarchies as times it

is linked to the fact table F , like sub-elements of the XML root element.
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Based on XML formalism properties, XML Schemas enable to write a logical
model of a data warehouse from its conceptual model. Our approach does not
only use the XML formalism to design data warehouses (or data cubes), but
also populates them with data. We use XML documents to support information
relative to the designed facts. As an XML document supports values of elements
and attributes, we assume that it contains information about a single OLAP
fact. We say that an XML document supports an XML fact when it is valid
against an XML star schema or an XML snow flake schema representing a
logical model of a warehouse. For instance, Figure 3 shows an example of an XML
fact associated to the conceptual model of the “Suspicious Region” data cube
presented in Figure 2. Note that at a physical level, the XML Cube, introduced
in Section 3, corresponds to a set of XML facts.

<?xml version="1.0" encoding="UTF-8" ?>

<Suspicious_region Region_length="287" Number_of_regions="6">

 <Patient Patient_age="60" >

  <Age_class Age_class_name="Between 60 and 69 years old" />

 </Patient>

 <Lesion_type Lesion_type_name="calcification type round_and_regular distribution n/a">

  <Lesion_category Lesion_category_name="calcification type round_and_regular" />

 </Lesion_type>

 <Assessment Assessment_code="2" />

 <Subtlety Subtlety_code="4" />

 <Pathology Pathology_name="benign_without_callback" />

 <Date_of_study Date="1998-06-04">

  <Day Day_name="June 4, 1998">

   <Month Month_name="June, 1998">

    <Year Year_name="1998" />

   </Month>

  </Day>

 </Date_of_study>

 <Date_of_digitization Date="1998-07-20">

  <Day Day_name="July 20, 1998">

   <Month Month_name="July, 1998">

    <Year Year_name="1998" />

   </Month>

  </Day>

 </Date_of_digitization>

 <Digitizer Digitizer_name="lumisys laser" />

 <Scanner_image Scanner_file_name="B_3162_1.RIGHT_CC.LJPEG" />

</Suspicious_region>

Fig. 3. An example of an XML fact

4.3 Attribute Trees

The concept of attribute trees was first introduced by Golfarelli et al.. An at-
tribute tree is a directed, acyclic and weakly connected graph that represents a
warehouse schema. In [3], Golfarelli and Rizzi have proposed a general frame-
work for data warehouses design, where a warehouse may be represented by an
attribute tree on which it is possible to apply algorithms in order to transform
it. For more details about attribute trees, we refer lectures to [2].
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Fig. 4. Attribute tree associated to the Suspicious Region data cube

In order to handel data warehouses and to be able to transform their schemas,
we also represent their logical model via attribute trees. For example, Figure 4
shows the attribute tree associated to the multidimensional model of the “Sus-
picious Region” data cube presented in Figure 2.

5 Building XML Cubes

Recall that our approach starts from a reference MCM corresponding to user’s
analysis objectives. The reference MCM will be matched with complex data pre-
sented in XML documents. In order to make them comparable, both MCM and
XML documents are transformed into attribute trees. As explained in Subsec-
tion 5.1, the comparison of attribute trees is realized by fusion operations ac-
cording to pruning, and grafting functions [3]. Nevertheless, an XML document
which does not contains sufficient information according to defined analysis ob-
jectives is naturally rejected from the final warehouse. Thus, we introduce in
Subsection 5.2 the concept of Minimal XML document content.

5.1 Fusion of Attribute Trees

The pruning and the grafting functions provide from two input attribute trees
a merged one which contains the maximum of common attributes with respect
to their relative relationships.

The fusion by pruning is carried out by dropping any uncommon subtree
starting from the root vertex. Dropped attributes are not included in the merged
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Fig. 5. Examples of fusion of two attribute trees by (a) pruning and by (b) grafting

tree. For example, in Figure 5(a), only common vertexes (black circles) in the two
input trees are kept in the resulting tree. All other uncommon vertexes (white
circles) are therefore dropped with their subtrees.

The fusion by grafting is used when common subtrees do not have a same
structure of relationships in two input trees. In this case we need to pick up
common attributes by preserving their general relationships. When an uncom-
mon vertex is dropped, the grafting function checks wether its descendants con-
tain common vertex or not. The common descendants are therefore preserved in
the merged tree. For example, in Figure 5(b), uncommon vertexes x and y are
dropped, but since their respective descendants (d, e and b) are common, they
are kept in the merged tree.

5.2 Minimal XML Document Content

In some cases, when an input XML document does not contain enough infor-
mation required by the analysis objectives, the fusion provides a poor output
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XML document, which represents an OLAP fact with missing data. It is natu-
rally useless to populate the warehouse with such a document. In order to check
wether an input XML document contains enough information to populate the
warehouse or not, we introduce the Minimal XML document content. The mini-
mal XML document content is an information threshold entirely defined by users
when submitting the MCM to express analysis objectives. At this stage, a user
can declare for each measure, dimension, and dimension hierarchy wether it is
mandatory or optional according to his analysis objectives needed in the final
XML Cube. The minimal XML document content corresponds to the attribute
tree associated to mandatory elements declared by the user when submitting the
data cube model.

Recall that our approach aims at building a data cube with XML sources
that allows future OLAP analysis. It is naturally not possible to decide with an
automatic process which element in a future analysis context may be optional or
not. It is entirely up to the user to define the minimal XML document content.
Nevertheless, by default, we suppose that all measures and dimensions attributes
of a submitted data cube model are mandatory in the final XML Cube. We also
suppose that not all measures can be optional elements in the data cube. Indeed,
in an analysis context, OLAP facts without a measure could not be exploited
by OLAP operators such as aggregation. So, users are not allowed to set all the
measures to optional elements. At least one measure in the submitted data cube
model must be mandatory.

At the fusion step, the attribute tree of an input XML document is checked.
If it contains all mandatory elements required by the user, it will be merged with
the attribute tree of the data cube model. Else, it will be rejected, the fusion
process will be canceled, and therefore no output document will be created.

6 Implementation

The core programm of the X-Warehousing application is developed with Java
and runs on all Java-enabled platforms (Figure 6(b)). The application contains
two main modules: the Model Loader Module and the Model Merger Module.

6.1 Model Loader Module

A reference data cube model can be submitted by a manual input or by loading
an XSD file associated to a MCM. In the case of a manual submission, the
loader module transforms the data cube model into an XML Schema and then
into an attribute tree. The attribute tree is saved into an XSD file, which will
be displayed within a hierarchical tree (Figure 6(b)) via a JTree Object. If a user
loads an XSD file, an algorithm parses it and populates an internal attribute tree
object structure. We consider each XSD file as a JDOM document type. Then, we
use the JDOM API to scan the document and build attribute trees. On the other
hand, the Model Loader Module loads input XML documents containing data
and their underlying structure. It also extracts the XSD file and the attribute
tree corresponding to an input XML document.
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Fig. 6. (a) Architecture (b) Interface of the X-Warehousing application

6.2 Model Merger Module

Once a data cube reference model and input XML documents are loaded, the
Model Merger Module can run according to an automatic or a manual mode.
The two modes use the same core algorithms. Nevertheless, the automatic mode
picks up XML documents from a specified directory, validates them against the
reference model and saves them in an XML repository automatically within a
looping mode. The Model Merger Module works with the help of fusion functions
presented in Section 5. Figure 7 shows function MergeTree which merges two
attribute trees. This function goes through each branch of the tree, reads the tree
of the data cube model and the tree of an input XML document and populates
a new XML document with the resulted model structure. When a vertex from
the reference tree does not match with the document tree, MergeTree sets the
arc value to zero. Then, it re-writes the tree with only non-null arcs.

Function MergeTree(tree1,tree2)
tree3=DuplicateTree(tree1)
While Not(end(nodeList(tree3)))

vertex1=GetVertex(tree3)
While Not(end(nodeList(tree2)))

vertex2=GetVertex(tree2)
If vertex2=vertex1 Then vertex1.arc = 0

End While
End While
Tree3=WriteTree(tree3)

End Function

Fig. 7. The function MergeTree
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7 Case Study

We run our X-Warehousing approach on a real world application domain. We
consider the screening mammography data cube, presented in Figure 2, a refer-
ence MCM. We use a collection of 4 686 XML documents as input data to be
warehoused 3. All these documents have the same structure and are valid against
the same XML Schema. Therefore they have the same attribute tree. Figure 8
shows the attribute tree associated to these input XML documents. Once the
reference MCM and the input XML documents are submitted, our application
achieves the fusion of attribute trees displayed in Figures 8 and 4. The result of
this step closely depends on the minimal XML document content defined at the
submission of the reference MCM.
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Fig. 8. Attribute tree of input XML documents

For example, let set to mandatory all the dimensions and all the measures
of the reference model. In this case, all the input XML documents will be re-
jected and no output will be obtained. In fact, note that the Assessment code
attribute is absent in the attribute tree of input XML documents. Therefore, as
this attribute is mandatory in the reference model, the Attribute Tree Merger
will reject each XML document that does not include it.
3 The collection of XML documents is available at: http://eric.univ-lyon2.fr/

∼rbenmessaoud/?page=donnees&section=3
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<?xml version=”1.0” encoding=”UTF-8” ?>
<xs:schema xmlns=”http://www.w3schools.com”>

<xs:element name=”Suspicious region”>
<xs:complexType>

<xs:sequence>
<xs:element name=”Patient” type=”Patient Type” />
<xs:element name=”Lesion Type” type=”Lesion Type Type” />
<xs:element name=”Subtlety” type=”Subtlety Type” />
<xs:element name=”Pathology” type=”Pathology Type” />
<xs:element name=”Date of study” type=”Date Type” />
<xs:element name=”Date of digitization” type=”Date Type” />
<xs:element name=”Digitizer” type=”Digitizer Type” />
<xs:element name=”Scanner image” type=”Scanner Type” />

</xs:sequence>
<xs:attribute name=”Region length” type=”xs:integer” />
<xs:attribute name=”Number of regions” type=”xs:integer” />

</xs:complexType>
</xs:element>

<xs:complexType name=”Patient Type”>
<xs:sequence>

<xs:element name=”Age class”>
<xs:complexType>

<xs:attribute name=”Age class name” type=”xs:string”/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name=”Patient age” type=”xs:integer”/>

</xs:complexType>

<xs:complexType name=”Lesion Type Type”>
<xs:sequence>

<xs:element name=”Lesion category”>
<xs:complexType>

<xs:attribute name=”Lesion category name” type=”xs:string”/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name=”Lesion type name” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”Subtlety Type”>
<xs:attribute name=”Subtlety code” type=”xs:integer”/>

</xs:complexType>

<xs:complexType name=”Pathology Type”>
<xs:attribute name=”Pathology name” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”Date Type”>
<xs:sequence>

<xs:element name=”Day”>
<xs:complexType>

<xs:sequence>
<xs:element name=”Month”>

<xs:complexType>
<xs:sequence>

<xs:element name=”Year”>
<xs:complexType>

<xs:attribute name=”Year name” type=”xs:integer”/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name=”Month name” type=”xs:string”/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name=”Day name” type=”xs:string”/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name=”Date” type=”xs:date”/>

</xs:complexType>

<xs:complexType name=”Scanner Type”>
<xs:attribute name=”Scanner file name” type=”xs:string”/>

</xs:complexType>

</xs:schema>

Fig. 9. Logical model of the Suspicious Region XML Cube

Suppose now that we define a more flexible minimal XML document content
by setting Assessment dimension to optional. In this case, the lack of the As-
sessment code attribute in input XML document would not prevent the fusion
step of attribute trees. Therefore, the Model Merger Module provides a logical
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model of an XML Cube represented by the XML Schema of Figure 9. Further,
for each input document, an XML fact (XML document) is generated.

Note that, in this case study, as all the input XML documents have the same
structure, all the generated XML facts are valid against the same XML Cube
of Figure 9. Note also that uncommon attributes in attribute trees of Figures 8
and 4 are pruned by the Attribute Trees Merger component of our application.
For instance, the attributes Lesion type id, Boundary chain code, and Patient id
are dropped, and therefore do not exist in the XML Cube.

Finally, through this case study, we show the capability of our approach to use
XML both to design and to store complex data according to a multidimensional
structure that reflects analysis objectives required by users. XML can therefore
be considered as a logical and physical description platform for future analysis
tasks on complex data.

8 Conclusion and Future Work

In this paper, we proposed a methodology entirely based on the XML formal-
ism to warehouse complex data. Our X-Warehousing approach does not simply
populate a repository with XML documents, but also expresses an interesting
abstraction level by preparing XML documents to future analysis. In fact, it
consists in validating documents against an XML Schema which designs a data
warehouse. We defined a general formalization for modelling star and snow flake
schemas within XML. We also use the concept of attribute trees [2] in order to
help the creation and the warehousing of homogeneous XML documents by merg-
ing initial XML sources with a reference multidimensional model. Constraints on
the created XML documents can be required and expressed by users. To validate
our X-Warehousing approach, we implemented a Java application which loads in
input a reference multidimensional model and XML documents. It provides a
logical and a physical model of an XML cube composed of homogeneous XML
documents where each document corresponds to an OLAP fact which respects
data required constraints. A case study on breast cancer domain is provided to
show the interest of employing our approach in a real world field for designing
and warehousing complex data by using XML.

For future work, a lot of issues need to be addressed. The first is devoted to a
performance study of OLAP queries in order to achieve analysis on XML docu-
ments as provided in the XML Cube. The second issue deals with experimental
tests on the reliability of the developed application. This includes studies on
complexity and processing time of loading input XML documents, building at-
tribute trees, fusion of attribute trees, and creation of output XML documents.
Third, some optimization are also needed on the Model Loader Module archi-
tecture. For instance, when we submit a collection of XML documents having
the same structure, the application does not need to generate an XML Schema
and an attribute tree for each input document. Finally, we plan to study the
problem of updating the XML Cube when the reference MCM is modified in
order to attend new analysis objectives.
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Abstract. Web communities involve networks of loosely coupled data
sources. Members in those communities should be able to pose queries
and gather results from all data sources in the network, where available.
At the same time, data sources should have limited restrictions on how
to organize their data. If a global schema is not available for such a
network, query processing is strongly based on the existence of (hard
to maintain) mapping rules between pairs of data sources. If a global
schema is available, local schemas of data sources have to follow strict
modelling restrictions posed by that schema.

In this paper, we suggest an architecture to provide better support
for distributed data management in loosely coupled data sources. In our
approach, data sources can maintain diverse schemas. No explicit map-
ping rules between data sources are needed to facilitate query processing.
Data sources can join and leave the network any time, at no cost for the
community. We demonstrate our approach, describing SDQNET, a pro-
totype platform to support semantic query processing in loosely coupled
data sources.

1 Introduction

Web communities, e.g. concerning e-science, e-learning, art and culture, are pop-
ular means of exchanging data and queries for collaborative work. Such commu-
nities are based on a network of loosely coupled data sources characterized by
heterogeneity and autonomy. A community member in any data source should
be able to pose queries and gather results from all the other data sources in the
network, where available. At the same time, data sources should have limited
restrictions on how to organize their data. Also, a data source should be able to
leave/join the network at any time, with no additional global maintenance cost
for the community.

Traditional information integration architectures, like virtual databases [9]
and mediators [10], provide an arrangement of heterogeneous data sources with
a global aspect of the underlying information, independent of its schema and
location. However, both architectures are not directly applicable to communities
of loosely coupled databases. This is due to their requirement for the existence
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of a global mediated schema and mappings between that schema and the (local)
schemas of the data sources. A global schema must be prepared carefully and
globally, and is usually hard to maintain. Data sources are not autonomous
enough to significantly change their schemas. The ad-hoc extensibility of data
sources is missing. Thus, even for small-scale loosely coupled data sources, data
and query exchanging is difficult to achieve.

Peer-to-peer data management systems (PDMSs) [2] provide an informa-
tion integration framework closely related to that of loosely coupled databases.
PDMSs support decentralized sharing and management of data using data
sources that have client and server functionality at the same time. A PDMS
consists of a set of data sources. Each one maintains a local schema. Queries are
initiated by a data source and propagated to other ones for evaluation.

In case a global schema is available in a PDMS, local schemas are usually views
of that global schema. In this case, query routing, i.e. finding which sources are
able to answer a query, can be supported by schema indexes built for the local
schemas of all sources, like in [1]. Those sources will receive and then process
the query. While the existence of a global schema makes query routing and
processing easier, it does not provide the necessary flexibility needed to support
loosely coupled database communities. The reason is that data sources have to
follow strict modelling restrictions imposed by the unique global schema.

In case a global schema is not available, each source maintains a list of neigh-
bouring source. Mapping rules should be provided between a source and its
neighbours. Queries initiated by a source are sent to its neighbouring sources.
Each one of those sources sends the query to its neighbours, and so on. The
mapping rules are used to reformulate the query to match the local schema of
each source reached. However, such rules are difficult to maintain. For example,
every time that a new source joins the system, new mapping rules should be
created and several current mapping rules should be changed manually.

Our Approach. In this paper we suggest an architecture to provide better
support for distributed data management in loosely coupled data sources. The
suggested architecture gives the necessary flexibility to employ diverse schema
descriptions in data sources, without the need to maintain mapping rules between
data sources.

We demonstrate our approach describing SDQNET, a prototype platform to
support semantic query processing in loosely coupled data sources. In SDQNET,
schema information is organized in three levels: local schemas, community sche-
mas and global schema. Local schemas (level 1) are the schemas of data sources.
Community schemas (level 2) are RDFS schemas available in the community,
relevant to a specific domain. They are used to wrap the local schemas of the
data sources that want to join the community. The reason for picking-up RDFS is
that it can capture easily schema descriptions that range from simple tagged data
to relational descriptions and even to complex class/subclass hierarchies. Finally,
community schemas are parts of a global RDFS schema (level 3). However,
as it will be shown in the next sections, we note that the task of joining a
community is based on exploiting the community schemas available and not
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the global schema. The global schema just ensures that community schemas are
consistent to each other. This gives better flexibility to support loosely coupled
database communities and enables query transformation.

To join a community, a data source should agree to exploit schema informa-
tion from a variety of community schemas and not from only one global schema.
Specifically, it should determine an RDFS schema R to wrap its local schema.
The R (a) can be part of any available community schema, or (b) can be con-
structed by applying schema operators on the available community schemas.
Those schema operators can produce integrated RDFS schemas based on union,
intersection and difference semantics.

Once a data source determines an RDFS schema R, it wraps its local schema
to R. Wrapping is performed by mapping its local schema primitives to R’s
primitives (e.g. relational tables to classes, and attributes to properties), and
converting local data to RDF resources (e.g. tuples to RDF resources).

Any data source that has joined a community in SDQNET can initiate queries
using the RDFS schema which wraps its local schema for that specific commu-
nity. Queries are initiated and propagated to other data sources in the network
to gather results. Query processing does not require the existence of mapping
rules between pairs of data sources.

Contribution. The main contribution of this work is an architecture for dis-
tributed data management in loosely coupled data sources. The suggested ar-
chitecture provides the necessary flexibility to support loosely coupled database
communities, and it lies between the following two extremes: (a) ‘having a global
schema for easy query processing, at the expense of the flexibility needed for
defining local schemas in nodes’ and (b) ‘do not have a global schema to give
the needed flexibility for defining local schemas in nodes, at the expense of main-
taining mapping rules’. Specifically:

– We provide a flexible wrapping mechanism, based on RDFS schemas, for
data sources that employ diverse local schema information.

– We exploit schema operators for such wrapping. The operators are applied
on RDF schema graphs available for the community, and produce new, in-
tegrated ones. Such integration is based on set-like semantics and gives an
intuitive way in wrapping data sources.

– We design a query processing technique that does not require the existence
of mapping rules during the propagation of the query in the data sources.
Under this technique, we are also able to retrieve answers, even in the case
a query does not exactly match the schema of a local data source.

– We present SDQNET, a platform that integrates the above ideas to support
semantic query processing in loosely coupled data sources.

Related Work. The Piazza system [2] supports decentralized data management
in a network of loosely coupled bases. Each node in Piazza can maintain a local
schema without any restriction. Query processing is based on reformulating the
initial query using mapping rules. In the Edutella [3] system, nodes can either
agree to use the same schema or use different schemas. The Edutella Mapping
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Service is responsible to handle the mappings between different schemas and use
them in order to translate queries from one schema to the other.

However, as we point out in the previous paragraphs, mapping rules are diffi-
cult to maintain. When for example a new node joins the network, new mapping
rules should be created and several current mapping rules should be changed.
Similar problems appear in case a node leaves the network.

The SQPeer system [1] uses the Semantic Overlay Networks (SONs) tech-
nology, according to which peers sharing the same schema information about a
community domain are clustered together to the same SON. The active schema of
the peer is a subset (view) of a unique global SON schema for which all classes
and properties are populated in the peer base. The SQPeer system identifies
peers that can answer a query by maintaining indexes on schema information in
peers. Thus, query processing is not based on query reformulation.

In our approach, data sources do not have to follow strict modelling restric-
tions imposed by the unique global schema. This is due to the existence of
community schemas, and the set of schema operators available which provide
the necessary flexibility considering schema selection for the wrapping tasks.

2 Application Scenario

In this section we present an application scenario that exploits SDQNET to set
up a community network. Based on the scenario, we identify the key features
of SDQNET and its functionality to support distributed data management in
loosely coupled data sources.

Consider a web community for exchanging information about movies. This
community involves a set of data sources and a set of community RDFS schemas
shown in Figure 1. The oval labelled nodes represent classes. The rectangular
labelled nodes denote literals, like string, integer, etc. The plain labelled edges
with the solid arrow represent properties. The other arrowed edges define an isA
hierarchy (class/subclass) of classes.

To join a community, a new data source should determine, with the help of
SDQNET, a schema in order to wrap its local data. In our example, we consider
three new data sources. We assume that all data sources maintain relational
schemas. Suppose that community schema S3, shown in Figure 1, fits perfectly
the wrapping needs of the first data source DS1. Thus, DS1 selects S3 to wrap
its local data.

Suppose now that S2 fits the wrapping needs of the second data source DS2,
but it also contains schema information not needed in DS2. For example, DS2

does not want provide information about action and science fiction movies. So,
DS2 considers only a part of schema S2, presented as schema S4 in Figure 2.

Finally, assume that both S1 and S3 contain schema information needed by
the third data source DS3. For example, DS3 provides information not only
about actors, but also about producer of movies. Source DS3 decides to merge
S1 and S3 to get the appropriate RDFS schema to wrap its data. The merged
schema S5 is shown in Figure 2. Summarizing, DS1 maintains schema S3 to
wrap its local data, DS2 maintains S4 and DS3 maintains S5.
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Fig. 2. RDFS schemas that wrap data sources

Source DS2 initiates a query to find director names for “High Fantasy” movies
generated by “JAK Productions”. This query reaches both DS1 and DS3. How-
ever, DS1 cannot reply to the answer since it does not contain the class Company.
Similarly, at first glance, DS3 can not reply to the answer. However, knowing
from the community schemas that “High Fantasy” is a subclass of “Fantasy”,
we can still get answers, though more general. In fact, the SDQNET gives the
option for the user to select whether to get such general answers or not.

Based on the functionality described in the application scenario of this section,
we next address the following issues:

1. How a new data source joins the community?
2. How a data source wraps its local schema to community schemas?
3. How a data source initiates a query and how the query is processed?
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3 Joining the Community

When a data source joins a community network, it determines an RDFS schema
R to wrap its local schema. To assist the creation of R, SDQNET provides a set
of community schemas. Community schemas are RDFS schemas relevant to the
domain addressed in the involved community network, and are used to create
R. Specifically, R is created by integrating community schemas under union,
intersection and difference semantics. Community schemas are RDF schemas
which are subsets (discussed later) of a given RDF schema, called global RDF
schema which ensures that community schemas are consistent to each other.

The construction of R is based on the usage of schema operators suggested
in [6] to support manipulation of RDF schemas as full-fledged objects. The
operators are applied on RDF schema graphs and produce new, integrated RDF
schema graphs. The key feature is that such integration is based on set-like
semantics. We exploit three binary operators (union, intersection, difference)
that can be applied on RDF schema graphs as a whole, and produce new ones. We
also exploit a unary operator that can be applied on one RDF schema graph and
return a part (subset) of it. In the following subsections, we discuss background
issues concerning those schema operators originally presented in [6].

3.1 Modelling Issues

RDF schemas provide a type system for RDF. The primitives of RDF schemas
are classes and properties. Classes describe general concepts and entities. Prop-
erties describe the characteristics of classes. They also represent the relationships
that exist between classes. Classes and properties are primitives similar to those
of the type system of object-oriented programming languages. The difference is
that properties in RDF schemas are considered as first-class citizens and are
defined independently from classes. Formally, an RDF schema is defined in [6]
as follows:

Definition 1. An RDF schema (RDFS) is a 5-tuple (C, L, P, SC, SP ) repre-
senting a graph, where:

1. C is a set of labelled nodes. Each node in C represents an RDF class.
2. L is a set of nodes labelled with data types defined in XML schema [7], e.g.

integer, string etc. Each node in L represents a literal.
3. P is a set of directed labelled edges (c1, c2, p) from node c1 to node c2 with

label p, where c1 ∈ C and c2 ∈ C ∪ L. Each edge in P represents an RDF
property p with domain c1 and range c2.

4. SC is a set of directed edges (c1, c2) from node c1 to node c2, where c1, c2 ∈ C.
Each edge in SC represents an isA relationship between classes c1 and c2

(i.e. c1 is a subclass of c2).
5. SP is a set of directed edges ((c1, c2, p1), (c3, c4, p2)) from edge (c1, c2, p1) to

edge (c3, c4, p2), where (c1, c2, p1), (c3, c4, p2) ∈ P . Each edge in SP repre-
sents an isA relationship between property (c1, c2, p1) and property (c3, c4, p2)
(i.e. that is (c1, c2, p1) is a subproperty of (c3, c4, p2)).
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Let �C be a relation on C: c1 �C c2 holds if c1 is a subclass of c2. With �+
C

we denote the transitive closure of �C . We consider c1 to be an ancestor of c2

(or c2 to be a descendant of c1) if c2 �+
C c1. Similarly, let �P be a relation on

P : (c1, c2, p1) �P (c3, c4, p2) holds if (c1, c2, p1) is a subproperty of (c3, c4, p2).
With �+

P we denote the transitive closure of �P . We consider (c1, c2, p1) to be
an ancestor of (c3, c4, p2) (or (c3, c4, p2) to be a descendant of (c1, c2, p1)) if
(c3, c4, p2) �+

P (c1, c2, p1).
We next present the concept of the subset relation for RDF schemas intro-

duced in [6]. Intuitively, an RDF schema R1 is a subset of an RDF schema R2

when R1 contains some of the elements (i.e. classes, properties, etc.) of R2, and
it does not violate the isA hierarchy of classes and properties maintained in R2.

Definition 2. Let Ri = (Ci, Li, Pi, SCi, SPi) and Rj = (Cj , Lj, Pj , SCj , SPj)
be two RDF schemas. Ri is a subset of Rj, denoted by Ri ⊆ Rj, if:

1. Ci ⊆ Cj.
2. Li ⊆ Lj.
3. for each edge (c1, c2, p1) ∈ Pi there is an edge (c3, c4, p2) ∈ Pj with

(c1 ≡ c3 or c1 �+
Cj

c3) and (c2 ≡ c4 or c2 �+
Cj

c4) and p1 = p2.
4. for each pair of nodes c1, c2 ∈ Ci,

if c1 �Ci c2 then c1 �+
Cj

c2 and
if c1 �+

Cj
c2 then c1 �+

Ci
c2.

5. for each pair of edges (c1, c2, p1), (c3, c4, p2) ∈ Pi,
if (c1, c2, p1) �+

Pi
(c3, c4, p2) then (c1, c2, p1) �+

Pj
(c3, c4, p2) and

if (c1, c2, p1) �+
Pj

(c3, c4, p2) then (c1, c2, p1) �+
Pi

(c3, c4, p2).

Figure 3 shows the RDF schema R1 which is a subset of R, since it satisfies
all conditions of the definition. For example, having C1 = {A, B, C, E, G} and
C = {A, B, C, D, E, F, G}, C1 ⊆ C. Also, for each pair of nodes in C1 the fourth
condition of the above definition holds (e.g. A �C1 E and A �+

C E hold, and
A �+

C E and A �+
C1

E hold as well for nodes A, E in C1).
Finally, we give some definitions which are useful to the discussion that will fol-

low [6]. All subsequent definitions refer to an RDF schema R = (C, L, P, SC, SP ).

Definition 3. The extended domain of a property (c, s, p) ∈ P , denoted by
D+((c, s, p)), is the set of classes {c, c1, . . . cn}, where {c1, . . . cn} are all descen-
dants of c.

A B
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1R R

Fig. 3. An example of RDF schema subsets
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Using the extended domain of a property we refer to all classes which can be
applied to a property as a set. Similarly, we define the extended range of a
property to refer to all the classes from which a property can take values as a
set.

Definition 4. The extended range of a property (e, c, p) ∈ P , denoted by R+((e,
c, p)), is the set of classes {c, c1, . . . cn}, where {c1, . . . cn} are all descendants
of c.

In SDQNET, community schemas are RDF schemas which are subsets of a given
RDF schema, called global RDF schema. The global schema just ensures that
community schemas are consistent to each other.

Definition 5. Let S = {R1, R2, . . . Rn} be a set of RDF schemas. A global RDF
schema for S is an RDF schema R such that Ri ⊆ R, 1 ≤ i ≤ n.

3.2 Schema Operators

The operators available to construct the RDFS schema R for a data source to
join a community network are summarized as follows (a detailed description of
the operators is presented in [6]):

1. Projection. Given a set of RDF classes, the projection extracts the part
of an RDF schema that involves those classes. Consider the RDF schema
R in Figure 4. Projecting R with Cs = {C, D, G, F} results in an RDF
schema which includes classes A, B, C, D, G, F and the involved properties
(A, B, p1) and (D, B, p2).

2. Union. The union operator merges two RDF schemas R1 and R2. Union
can be implemented as a projection on a class set built from the (set) union
of class sets of R1 and R2. An example of the union operator is shown in
Figure 5.

3. Intersection. The intersection operator results in an RDF schema that con-
tains common elements from both schemas. Intersection can be implemented
as a projection on a class set built from the (set) intersection of class sets of
R1 and R2.

4. Difference. The difference operator results in an RDF schema that contains
elements of one schema that are not present in the other. Difference can be
implemented as a projection on a class set built from the (set) difference of
class sets of R1 and R2.

Users in a data source can create an RDFS schema to wrap its local data,
and join the community network, using schema creator wizards provided by
SDQNET. Thus, the task of joining a community is based on exploiting the
community schemas available and not the global schema. The global schema
just ensures that community schemas are consistent to each other. This gives
better flexibility to support loosely coupled database communities.

When a data source joins the network, it establishes a neighbouring relation-
ship with some data sources (randomly). Such a relationship will be exploited
during the query processing phase. (see Section 5).
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4 Wrapping Local Schemas

Next we describe how a data source wraps it local schema to the RDF schema R
constructed by the data source as shown in the previous section. In SDQNET, we
assume that all data sources employ relational schemas. However, our prototype
can be easily extended to handle data sources with schema descriptions that
range from simple tagged data to complex class/subclass hierarchies.

The SDQNET performs wrapping based on a mapping between relational
model primitives and RDFS model primitives. Users can define such a mapping
using wrapper wizards provided by SDQNET. The process includes two steps:

1. First, user defines an SQL view on the relational data available in her data
source. Such a view actually determines which data will be offered to the
network by the specific data source.

2. Then, the user maps the attributes of the view created in the previous step
to certain class properties of the RDFS schema R used by the data source.
Those properties have literals as range. Figure 6 shows the wizard provided
by SDQNET to define mappings between an SQL view and R on a data
source.

Formally, a mapping between an SQL view and an RDFS schema R is defined
as follows:

Definition 6. Let V (a1, a2, . . . , an) be an SQL view for a data source, and P =
{(c1, l1, p1), (c2, l2, p2), . . . , (ck, lk, pk)} a set of properties of an RDFS schema



64 E. Spyropoulou and T. Dalamagas

Fig. 6. An example of a mapping between an SQL view and R in a data source

(C, L, P, SC, SP ), where c1, c2, . . . , ck ∈ C and l1, l2, . . . , lk ∈ L. A mappingM :
V → P is a set of correspondences of the form a ∼ p, where a ∈ {a1, a2, . . . , an}
and p ∈ {p1, p2, . . . , pk}.
For example, in Figure 6, the mapping between the SQL view and the RDFS
schema is {(actorname ∼ firstname), (actorsurname ∼ lastname)}.

After a mapping is established between the SQL view and the RDFS schema
R of the data source, data included in that view are converted to RDF resources.
Specifically, all tuples in the view are transformed to RDF resources.

4.1 SQL View-to-RDF Conversion

The SQL view-to-RDF conversion is based on the mapping between the SQL
view and the RDFS schema. The result of the conversion is an XML encoded
RDF file F [8] which wraps the data of the SQL view. More specifically, we use
(a) the RDFS schema of the data source to define the structure of F , and (b)
the mapping to fill the values of the RDF class properties that appear in F with
the values from the corresponding SQL view attributes. Next we present the
conversion algorithm in detail.

Algorithm
Consider:
R = (C, L, P, SC, SP ): RDFS schema to wrap local schema,
V (a1, a2, . . . , an): SQL view,
P ′ = {(c1, l1, p1), (c2, l2, p2), . . . , (ck, lk, pk)}
where C′ = {c1, . . . , ck} ⊆ C and L′ = {l1, . . . , lk} ⊆ L,
M = the set of mappings a ∼ p,
ClassesToWrite: it keeps the start tags for RDFS classes to be written (vector,
initially empty)
WrittenClasses: it keeps the end tags for RDFS classes to be written (vector,
initially empty)
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ClosedClasses: it keeps the end tags for RDFS classes already been written (set,
initially empty)
ClosedProperties: it keeps the end tags for RDFS properties already been writ-
ten (set, initially empty)

1 for every tuple of V
2 for every class ci ∈ C′

3 put ci in ClassesToWrite
4 while ClassesToWrite is not empty
5 if the RDF/XML file is empty
6 write the class ci start tag
7 else
8 find the property p ∈ P such that (d, ci, p), where d ∈ C′

9 write the start tag of the property p
10 write the start tag of the class ci

11 end if
12 for every pi ∈ P ′′ ⊆ P ′, P ′′ = {ci, l1, p1), (ci, l2, p2), . . . , (ci, lk, pk)}
13 find a such that a ∼ pi and its value from V
14 write at the RDF/XML file pi and the value of a
15 end for
16 put ci in WrittenClasses
17 remove ci from ClassesToWrite
18 for every pi such that (ci, r, pi), r ∈ C′

19 put r at the beginning of the ClassesToWrite
20 if there isn’t any pi such that (ci, r, pi), r ∈ C′

21 for every wci in WrittenClasses, beginning with the last one
22 for every pi such that (wci, r, pi), r ∈ C′

23 if r ∈ ClosedClasses
24 write the property end tag
25 put p in ClosedProperties
26 end if
27 end for
28 if there is no pi such that (ci, r, pi), r ∈ C′ and pi /∈ ClosedProperties
29 write the end tag of the class wci

30 put wci in ClosedClasses
31 end if
32 end for
33 end if
34 end while
35 end for
36 end for

For example, consider that a user of the data source DS1 (see Section 2) wants
to wrap its local data using S3 (see Figure 1). First, the user defines the SQL
view shown in Table 1. Then, she defines the mapping: Name ∼ firstname,
Surname ∼ lastname, Movie ∼ title (firstname, lastname and title are prop-
erties whose domain are classes Actor, Actor and ScienceF iction respectively).
The resulting RDF file in XML encoding follows:
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<sref:Actor rdf:about=”#Item0”>
<sref:firstname>Jodie</sref:firstname>
<sref:lastname>Foster</sref:lastname>
<sref:acts>

<sref:ScienceFiction rdf:about=”#Item1”>
<sref:title>Contact</sref:title>

</sref:ScienceFiction>
</sref:acts>
. . .

</sref:Actor>

Table 1. SQL View

Name Surname MovieTitle
Jodie Foster Contact
. . . . . . . . .

We first write the start tag of the class Actor (lines 5,6). Then, we write the
properties of Actor which have literals as range and their values according to the
mapping (lines 12-14). The class ScienceFiction is the only class contained in
the ClassesToWrite vector (lines 18,19). So, this is the next class we consider.
This class belongs to the range of acts property. So, we first write the start tag
of acts and then the start tag of ScienceFiction (lines 8-10). Next, we write the
properties of ScienceFiction which have literals as range. Since ScienceFiction
has not any properties which have a class as range, we start closing the tags at
the reverse order we opened them (lines 20-32).

In SDQNET, we maintain RDF resources and RDFS schemas for data sources
using the ICS-FORTH RDFSuite1.

5 Querying

A query is initiated by a data source and propagated to its neighbours in the
community network for evaluation. The neighbours propagate the query to their
own neighbours and so on. We next describe how queries are formulated and
processed.

The queries are initiated in a data source using the SDQNET query wizard.
Figure 7 illustrates an example of a query that searches for movie titles as well
as for the names of their directors.

Definition 7. Let an RDF schema R = (C, L, P, SC, SP ). A query Q on R is
formed as {{c1(P1), p1, c2(P2), p2, . . . , pn−1, cn(Pn)}, C} where:

1. ci ∈ C and pi ∈ P (1 ≤ i ≤ n),
2. pk is the domain of ck and has ck+1 as range (1 ≤ k ≤ n− 1),
3. Pi is a list of properties ∈ P that have ci as domain and literals as range

(1 ≤ i ≤ n),

1 http://www.ics.forth.gr/isl/RDF/index.html
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Fig. 7. A query example in SDQNET

4. C is set of conditions of the form c.p{=, >, <, <>}constant, where p is a
property that has c ∈ C as domain and a literal as range.

Note that {c1(P1), p1, c2(P2), p2, . . . , pn−1, cn(Pn)} (from now on: query schema)
is actually an RDFS schema, and, in particular, it is a subgraph of R.

A query q matches an RDFS schema R if the RDFS graph that corresponds
to {{c1(P1), p1, c2(P2), p2, . . . , pn−1, cn(Pn)} (i.e., query schema) is subset of R
(see Definition 2). In this case we say that q is satisfiable.

If the query is satisfiable on the RDFS schema R that wraps a data source
DS, then it is evaluated on DS. Query evaluation is done using RQL [4], a
query language for RDF bases. If the query is not satisfiable then SDQNET
applies a query transformation algorithm exploiting semantic information. We
next describe the algorithm.

Query transformation algorithm
Consider:
The data source RDFS schema R = {DC, DL, DP, DS, PS}
The query schema QS = {QC, QL, QP, ∅, ∅}
The global RDFS schema GS = {GC, GL, GP, SC, SP}
R+: The extended range of a property

1 if c1 /∈ DC
2 find the nearest superclass sc of c1 with c1 �+

GC sc
such that sc ∈ GC and sc ∈ DC

3 if sc exists and LP ′ ⊆ LP with LP = {lp ∈ LP |(sc, l, lp) and l ∈ DL}
and LP ′ = {lp′ ∈ LP ′|(c1, l

′, lp′) and l′ ∈ QL}
4 substitute c1 with sc in the query schema
5 end if
6 if p1 /∈ DP
7 find the property sp with (sc, c, sp), c ∈ GC and sp ∈ GP

such that sp ∈ (p1 ∪ P ′ : ∀p′ ∈ P ′, p1 �+
GP p′)
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8 if sp exists then substitute p1 in the query schema with sp
9 end if
10 end if
11 for every ci ∈ QC and every pi ∈ QP , i ≥ 2 do
12 if ci /∈ DC
13 find the nearest superclass r of ci with ci �+

GC r
such that r ∈ R+ of pi−1 and r ∈ DC

14 if r exists and LP ′ ⊆ LP with LP = {lp ∈ LP |(r, l, lp) and l ∈ DL}
and LP ′ = {lp′ ∈ LP ′|(ci, l

′, lp′) and l′ ∈ QL}
15 substitute ci with r
16 end if
17 if p1 /∈ DP
18 find the property sp with (ci, c, sp), c ∈ GC and sp ∈ GP

such that sp ∈ (pi ∪ P ′ : ∀p′ ∈ P ′, pi �+
GP p′)

19 if sp exists then substitute pi in query schema with sp
20 end if
21 end if
22 end for

For example, consider the data source DS1 of the application scenario in Sec-
tion 2, and the query q:

Director(firstname,lastname).directs.High Fantasy.generated by.Company(name),
Company.name=“JAK Productions”.

DS1 maintains schema S3 to wrap its local data (see Figure 1). The query is
not satisfiable in DS1 because the query schema (QS) is not subset of S3.
Also, q cannot be transformed because there isn’t any superclass of Company
(line 13).

Moreover, the query q is not satisfiable in DS3 because the query schema
(QS) is not subset of S5 (DS3 maintains schema S5 to wrap its local data -
see Figure 2). According to the transformation algorithm Director ∈ DC =
{Actor, Producer, Director, MoviePerson, Fantasy, Science F iction, Action,
Movie, Company} (line 1) so we next consider High Fantasy class (line 11).
High Fantasy /∈ DC (line 12). We now search for the nearest superclass of
High Fantasy that belongs to the R+ of directs (line 13). The class Fantasy
satisfies these criteria. In addition, class High Fantasy in QS does not have any
properties with literals as range, so LP ′ ⊆ LP = {title} (line 14). Thus, class
Fantasy is substituted by class High Fantasy in q (line 15). The property gen-
erated by exists in DP = {participates, directs, produces, acts, generated by}
(line 17). We now consider class Company. Company ∈ DC (line 12), so the
algorithm terminates and no other substitution is performed. The reformulated
query is therefore:

Director(firstname,lastname).directs.Fantasy.generated by.Company(name),
Company.name=“JAK Productions”.

This new query is satisfiable in DS3, since the new query schema is subset of
S5.
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6 Conclusion

We presented an architecture for distributed data management in community
networks of loosely coupled data sources. The suggested architecture is flexible
enough for such kind of networks, since it lies between the following two extremes:
(a) ‘having a global schema for easy query processing, at the expense of the
flexibility needed for defining local schemas in nodes’ and (b) ‘do not have a
global schema to give the needed flexibility for defining local schemas in nodes,
at the expense of maintaining mapping rules’. No explicit mapping rules between
data sources are needed to facilitate query processing. Data sources can join and
leave the network any time, at no cost for the community.

Our ideas are being implemented in SDQNET, a platform that supports se-
mantic query processing in loosely coupled data sources. We exploit schema
operators applied on RDF schema graphs available for the community. The new,
integrated schemas produced are used to wrap data sources. We described a
wrapping mechanism based on RDFS schemas for data sources that employ di-
verse local schema information. We presented a query processing technique that
does not require the existence of mapping rules during the propagation of the
query in the data sources. Under this technique, we are also able to retrieve
answers, even in the case a query does not exactly match the schema of a local
data source.

For further work, we plan to extend our wrapping engine to support data
sources that maintain different types organization (e.g., DTDs, flat files, etc).
Also, we are working on exploiting SDQNET to set up a real community network
to provide art information involving various diverse data sources.
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Abstract. In many information systems, the databases that make up the system 
are distributed in different modules or branch offices according to the 
requirements of the business enterprise. In these systems, it is often necessary to 
combine the information of all the organization's databases in order to perform 
analysis and make decisions about the global operation. This is the case of Data 
Warehouse Systems. From a conceptual point of view, a Data Warehouse can 
be considered as a set of materialized views which are defined in terms of the 
tables stored in one or more databases. These materialized views store historical 
data that must be maintained in either real time or periodically by means of 
batch processes. During the maintenance process the systems must perform 
selections, projections, joins, etc. that can affect several databases. This is a 
complex problem since making a join among several tables requires (at least 
temporarily) having the information from these tables in the same place. This 
requires the Data Warehouse to store auxiliary materialized views that in many 
cases contain duplicated information. In this article, we study this problem, and 
we propose a method that minimizes the duplicated information in the auxiliary 
materialized views and also reduces the response time of the system. 

Keywords: Data Warehousing, materialized views, multi-source views, view 
fragmentation, multi-level views. 

1   Introduction 

The use of Data Warehouse systems is becoming one of the critical factors that 
determine the success of many companies and organizations. The information 
gathered in the Warehouse can be used to make decisions about the processes of the 
organization, and should therefore be consistent. The information should also be as 
up-to-date as possible. Having the information of the operational systems up-to-date 
makes the results of the queries carried out on the Warehouse Database to be closer to 
the reality of the organization. 
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grant TIN2005-09207-C03-02, by the ICT for EU-India Cross-Cultural Dissemination Project 
ALA/95/23/2003/077-054, and by UPV under grant TAMAT. 



72 J. Silva, J. Belenguer, and M. Celma 

Many previous approaches [3, 6, 7, 8, 12, 13, 14, 15] consider that the information 
of a Data Warehouse System consists of a set of materialized views that store 
information from one or more databases that the organization uses in its operational 
systems. The process of loading this information is usually done using daily batch 
processes at night in order to avoid the slowdown of the operation systems. However, 
in some cases, the organization needs to compare the historical information in the 
Warehouse with the most recent information available in the operational system and 
therefore the Warehouse must be maintained in real time. 

Maintenance of materialized views in general, and of Data Warehouses in 
particular, is a very relevant problem that has been studied in many works. For 
instance, [14, 15] deal with the problem of updating materialized views in real time, 
and [5, 7, 12] outline the general maintenance problem of materialized views. 
Unfortunately, none of these works have studied the case in which each independent 
view has been defined over multiple sources of data. In this case, the problem is more 
complex since each single materialized view can involve several operational 
databases. In [13] we proposed a qualitative solution to the problem; however the 
solution left the quantification of the different cases for future study. In this article we 
propose a quantitative approach to the problem and we analyze the most efficient 
solution for each case. 

The article is organized as follows: In section 2, the statement of the problem is 
presented along with the current state of the art. In section 3, the different parameters 
for quantifying the problem are studied. Also, different ways of measuring the time 
and the space required in the maintenance of the materialized views are analyzed. In 
section 4, the different cases are analyzed and the most efficient solution for each one 
is presented. Section 5 concludes. 

2   State of the Art 

The updating of materialized views in real time is usually performed by first 
establishing a communication channel between the Warehouse and the underlying 
operational systems. This is done so that every time a modification takes place in the 
tables of the operational systems, these systems inform the Warehouse of the changes 
by sending the updates that are necessary to maintain the consistency of the 
materialized views. 

When a view is defined on tables from databases of different operational systems, 
neither the Warehouse nor any of the operational systems can make a join among the 
tables to solve the view. This is because all the necessary information must be (at 
least temporarily) in the same location. At first glance, this may appear to be a 
problem of small granularity; however, this is not always the case. Many times 
business enterprises have branch offices located in different parts of the world that 
share the same Data Warehouse. In this context, the volume of data needed for 
maintaining the views might contain millions of tuples. 

The solutions that have been proposed [7, 9, 12] and used to solve the problem of 
the multi-source views are based on the duplication of information [5, 6]; the 
definition of maintenance transactions [10]; or the redefinition of the original views, 
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in an attempt to avoid (if it is possible) the joining of tables from different databases 
[2]; or establishing a hierarchy of auxiliary multi-level views [13]. 

As it was stated in [13], in many cases the most appropriate solution consists of 
extending the materialized views definition with a hierarchy of views whose top level 
are the original views. Although this proposal solves the problem, it has only been 
defined at a qualitative level, and has left the quantification for future work. An 
outline is presented in Figure 1, where the solution to this problem is presented. 

 

Fig. 1. Data warehouse maintenance using auxiliary multi-level views 

Figure 1 shows three operational systems with tables (A, B, C, D) and a Data 
Warehouse with four materialized views (V1, V2, V3, V4) defined as follows:  

 V1 = ΠW σ V>1000 (A∞B) 

 V2 = ΠX σ X<400 (B∞C) 
 V3 = ΠX (C) 

 V4 = ΠW σ (A∞D) 

Views V2 and V4 introduce a problem because they include joins on tables from 
different databases that are in different locations. To solve this problem, we have 
defined four new views (Va, Vb, Vc, Vd) to extract the necessary information from 
tables A, B, C and D. The original views have been redefined from these new views 
(see definition in Figure 1) in such a way that none of the views include joins on 
tables from different databases. So the maintenance of the original views is now 
possible because they are defined over local views (single source); and also the 
maintenance of auxiliary views is possible because they are defined over a single 
(remote) source. This maintenance could be achieved by using the ECA (Eager 
Compensating Algorithm) [15].  

This leads to the question of how many level 2 views should be defined for each 
table of the operational systems in order to duplicate and maintain the smallest 
quantity of information possible, and at the same time minimize the response time of 
the system. This question does not have an easy answer, since the answer not only 
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depends on the definition of the views, but on other parameters such as the 
transmission speed and the volume of data stored in the table. The main goal of this 
work is to find the answer to this question based on the study of all the possible cases 
where this problem occurs. 

3   Problem Statements: Study of Influential Parameters 

If we analyze the outline of views in Figure 1, it seems quite clear that there should be 
at least one view for each database in the operational systems. In the simplest case, 
this view belongs to the last level in the view hierarchy, and it contains information 
from one or more tables of this database. It is also clear that it is not always possible 
to represent all the necessary information from one database in a single view. In 
general, by defining a subview for each table included in the views of the first level, 
we have all the necessary information for maintenance. Each subview stores the 
minimum necessary information of each table, and by joining them, all the Data 
Warehouse views can be computed. Sometimes it is more appropriate to define more 
than one view for each table in order to avoid storing and maintaining unnecessary 
information. As an example, consider Table A in Figure 2, and views V1, V2, V4 and 
V5. Views V1 and V2 maintain the same information than V4 and V5. Nevertheless, 
while V1 and V2 maintain redundant information (ΠQ σC(A)), V4 and V5 do not.  
 

 
 

Fig. 2. Removing spare data using several views 

A table can be represented as a space of two dimensions where dimension Y 
represents the tuples of the table and dimension X represents the fields of this table. 
Each view defined in this table represents a subspace that includes both the fields in 
its projection and the tuples defined in its selection. In this sense, two different 
subspaces defined by two different views can be grouped in a single new view. 
However, information that does not belong to any of them could be included in this 
new view. 

Figure 2 shows two opposed problems that can appear during maintenance. When 
using a single view V3, unnecessary information can be stored (spare information).  
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When using views V1 and V2 the same information is stored twice (redundant 
information). 

Data Warehouse designers must determine the number of views for each database 
and each table of the operational systems. This decision is crucial to ensure that the 
volume of data stored in the auxiliary materialized views and the maintenance time of 
the Data Warehouse are minimized. To address this problem, we study quantitatively 
all the different cases that a designer can find. For this purpose, the designer should 
take into account the following variables:  

Table 1. Metrics and variables 

Name Description 
M Number of sent messages. 

C 
Global temporal maintenance cost (taking into account 
input-output operations, bits transference, etc.). 

Card V Cardinality of view V. 
Grad V Number of attributes (fields) in view V. 

MT 
Number of updates (insertions, modifications, 
deletions) on table T. 

mT 
Percentage of MT which corresponds with 
modifications on table T. 

ρ 
Number of updates (on average) that are relevant for 
several views. 

k 
Average of the maintenance cost (messages + index 
maintenance + etc) of an operation. 

s Number of updates before the view is recomputed. 

 
In [15], the authors propose to compute the number of messages between the 

operational systems and the Data Warehouse as a metric of the maintenance cost of a 
materialized view. This metric corresponds with M in Table 1. For its computation, 
they propose the following formula whose performance evaluation can be found in 
annex D in [15]: 

(1)                                                    2×=
s

M
M T  

In this metric, MT represents the total number of updates in the source; and for 
every s updates, the operational system sends (and receives) one message to the Data 
Warehouse. Then, assuming that the message is sent after each update (s=1), two 
messages are generated by each update in the source. 

It is clear that measuring the maintenance cost by only considering the amount of 
sent messages can be too rough. For this reason, we propose a different metric that 
takes into account other factors such as the view size, the probability that the 
modifications in the sources will affect the materialized views, etc. The formula that 
defines this metric is: 
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where T is the table in the operational system on which the views V1…Vn are defined. 
The meaning of the rest of variables is explained in Table 1. 

This metric takes into account the spare information as well as the redundant 
information. In the case that the intersection of two or more views is not the empty 
set, that is, there is redundant information, this redundancy is taken into account in the 
cost since it is computed several times in different pairs Card(Vi)·Grad(Vi). The spare 
information is computed in the corresponding pair in the same way. Hence, the 
component (Card(V1)·Grad(V1) + … + Card(V1)·Grad(V1)) / Card(VT)·Grad(VT) 
represents the probability that an arbitrary update in T could affect one of the views. 

The redundant maintenance is computed with the second expression of the 
formula; ρ·k represents the cost associated to all the operations caused by the change 
of a tuple from one view to another during maintenance. It is of special importance to 
realize that, in the case of disjoint views, this change of view cannot be caused by an 
insert or delete operation, but rather can only be caused by a modify operation. 
Therefore, when views do not have redundant tuples we use the parameter ρm which 
only refers to modifications. Assuming that every field in the views has the same 
probability to be modified, ρm can be computed by the formula: 

(3)                                                   
=

= n

i Vim N
1

'ρ  

where N’Vi is the number of modifications that affect the view i. 
Parameter ρ represents the number of times that one update on a materialized view 

produces another update on any other view. In order to validate the correctness of 
Formula (3), for simplicity, we can assume that every field in table T has the same 
probability to be updated by one of the MT updates (in practice, we use a statistical 
distribution or a weight). Then, the probability that the view Vi was affected by an 
update is:   

(4)                                        
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The probability that the update affects to the set of views V1…Vn is given by: 
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Using (4), the number of updates which affect the view Vi is: 

(6)                         
( ) ( )
( ) ( )TGradTCard

VGradVCard
MPMN ii

TViTVi ⋅
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The number of modifications which affect the view Vi is the number of 
modifications over the tuples of Vi plus the number of modifications over tuples not 
belonging to Vi which after the modification belong to Vi. Formally, 
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The generalization of (7) is: 

(8)                                                     
=
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4   Case-Based Reasoning 

There is not only one solution to the problem described in the previous section. The 
solutions depend on different factors that are related to the definition of the views (for 
example the number of fields and tuples of a table used in several views); and they 
also depend on architectural factors such as the average speed of the information 
transmission, the average number of transmissions which are necessary to perform 
maintenance, the volume of information to maintain, etc. In this section, we study all 
the possible combinations that can take place in the definition of diverse views on a 
table. For each case we analyze which solution is the most appropriate according to 
the mentioned parameters.  
 

 

Fig. 3. Table T with 4 fields and 6 conditions defined over the tuples space 

Figure 3 shows a hypothetical table T with 4 fields (W, X, Y, Z) and 6 conditions 
dividing the tuples space in 4 disjoint sets. Two views defined over this table 
necessarily hold in one of the following cases: 
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For each case, we have computed the cost taking into account all the possibilities 

(using different number of views). The whole analysis can be found in a publicly 
available technical report in http://www.dsic.upv.es/~jsilva/research.htm#techs. 

From this analysis, we conclude that in cases 1, 2, 3 and 7 the best solution is to 
consider one single view. In cases 4, 5, 6 and 8 the best solution depends on the 
parameter ρ and on the cardinality of the views: 

o If ρ > MT (Card V3 · Grad V3 – (Card V1 · Grad V1 + Card V2 · Grad V2) ) / Card T · Grad T)  
then the cost of using one view is smaller than the cost of using two views.  
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o If ρ = MT (Card V3 · Grad V3 – (Card V1 · Grad V1 + Card V2 · Grad V2) ) / Card T · Grad T)  
then the cost of using one view or two views is the same. In this case only one 
view is used. 

o If ρ < MT (Card V3 · Grad V3 – (Card V1 · Grad V1 + Card V2 · Grad V2) ) / Card T · Grad T)  
then the cost of using two views is smaller than the cost of using one view. 

Here, V3 represents a view which contains all the information (and maybe more) 
stored by V1 and V2. 

Case number 9 is more complex since it needs 3 views for maintaining all the 
information without redundancy. The computation of the cost for this case is shown in 
a technical report accessible at http://www.dsic.upv.es/~jsilva/research.htm#techs. 

5   Conclusions 

There are many works [3, 5, 6, 8, 10, 14, 15] which deal with the use of materialized 
views in Data Warehouse systems or with the problem of maintenance of these 
materialized views. However, surprisingly, not much effort [7, 9, 12] has been spent 
to address the problem of multi-source materialized views. This is an important 
problem since, for example, it is not possible —or it is really very expensive due to 
the necessity of duplicate the tables— to maintain in real-time a view that joins tables 
from different sources. In [13], we proposed to extend the original views with a set of 
intermediate views that extract information from just one determined source. But in 
that work we did not consider how to find out which is the optimal configuration of 
views taking into account the maintenance costs. 

In this paper we have carried out this study analyzing each possible case from the 
point of view of required space and time consumed for maintenance. To achieve this 
goal, ECA (Eager Compensating Algorithm) could be used in order to maintain the 
auxiliary single-source (top level) views. 
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Abstract. Materialized view selection is a non-trivial task. Hence, its
complexity must be reduced. A judicious choice of views must be cost-
driven and influenced by the workload experienced by the system. In
this paper, we propose a framework for materialized view selection that
exploits a data mining technique (clustering), in order to determine clus-
ters of similar queries. We also propose a view merging algorithm that
builds a set of candidate views, as well as a greedy process for selecting
a set of views to materialize. This selection is based on cost models that
evaluate the cost of accessing data using views and the cost of storing
these views. To validate our strategy, we executed a workload of decision-
support queries on a test data warehouse, with and without using our
strategy. Our experimental results demonstrate its efficiency, even when
storage space is limited.

1 Introduction

Among the techniques adopted in relational implementations of data warehouses
to improve query performance, view materialization and indexing are presumably
the most effective ones [15]. Materialized views are physical structures that im-
prove data access time by precomputing intermediary results. Then, user queries
can be efficiently processed by using data stored within views and do not need
to access the original data. Nevertheless, the use of materialized views requires
additional storage space and entails maintenance overhead when refreshing the
data warehouse.

One of the most important issues in data warehouse physical design is to select
an appropriate set of materialized views, called a configuration of views, which
minimizes total query response time and the cost of maintaining the selected
views, given a limited storage space. To achieve this goal, views that are closely
related to the workload queries must be materialized.

The view selection problem has received significant attention in the literature.
Researches about it differ in several points: (1) the way of determining candidate
views; (2) the frameworks used to capture relationships between candidate views;
(3) the use of mathematical cost models vs. calls to the query optimizer; (4) view
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selection in the relational or multidimensional context; (5) multiple or simple
query optimization; and (6) theoretical or technical solutions.

The classical papers in materialized view selection introduce a lattice frame-
work that models and captures dependency (ancestor or descendent) among
aggregate views in a multidimensional context [2,10,13,21]. This lattice is greed-
ily browsed with the help of cost models to select the best views to materialize.
This problem has been firstly addressed in one data cube and then extended
to multiple cubes [16]. Another theoretical framework called the AND-OR view
graph may also be used to capture the relationships between views [8,5,9,14,22].
The majority of these solutions are theoretical and are not truly scalable. In
opposition to these studies, we exploit a query clustering involving similarity
and dissimilarity measures defined on the workload queries, in order to capture
the relationships existing between the candidate views derived from this work-
load. This approach is scalable thanks to the low complexity of our clustering
(log linear regarding the number of queries and linear regarding the number of
attributes).

A wavelet framework for adaptively representing multidimensional data cubes
has also been proposed [18]. This method decomposes data cubes into an indexed
hierarchy of wavelet view elements that correspond to partial and residual ag-
gregations of data cubes. An algorithm greedily selects a non-expensive set of
wavelet view elements that minimizes the average processing cost of the queries
defined on the data cubes. In the same spirit, Kotidis et al. proposed the Dwarf
structure, which compresses data cubes [17]. Dwarf identifies prefix and suffix
redundancies within cube cells and factors them out by coalescing their stor-
age. Suppressing redundancy improves the maintenance and interrogation costs
of data cubes. These approaches are very interesting, but they are mainly fo-
cused on computing efficient data cubes by changing their physical design. In
opposition, we aim at optimizing performance in relational warehouses without
modifying their design.

Other approaches detect common sub-expressions within workload queries
in the relational context [3,6,15,19]. The problem of view selection consists in
finding common subexpressions corresponding to intermediary results that are
suitable to materialize. However, browsing is very costly and these methods are
not truly scalable with respect to the number of queries.

Finally, the most recent approaches are workload-driven. They syntactically
analyze the workload to enumerate relevant candidate views [1]. By calling the
query optimizer, they greedily build a configuration of the most pertinent views.
A workload is indeed a good starting point to predict future queries because these
queries are probably within or syntactically close to a previous query workload.
In addition, extracting candidate views from the workload ensures that future
materialized views will probably be used when processing queries.

Our approach is also workload-driven. Its originality lies in exploiting knowl-
edge about how views can be used to resolve a set of queries to cluster these
queries together. For this purpose, we define the notion of query similarity
and dissimilarity in order to capture closely related queries. These queries are
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grouped in the same cluster and are used to build a set of candidate views.
Furthermore, these candidate views are merged to resolve multiple queries. This
merging process can be seen as iteratively building a lattice of views. The merg-
ing process time can be expensive when the number of candidate views is high.
However, we apply merging over candidate views present in each cluster instead
of the whole set of candidate views as in [1]. This reduces the complexity of the
merging process, since the number of candidate views per cluster is significantly
lower.

The remainder of this paper is organized as follows. We first present in Sec-
tion 2 our materialized view selection strategy. Then, we show in Section 3 how
we build a candidate view configuration through our merging process. Next, we
detail in Section 4 the cost models used for building the final configuration of
views to materialize. To validate our approach, we also present some experiments
in Section 7. We finally conclude and provide research perspectives in Section 8.

2 Strategy for Materialized View Selection

The architecture of our materialized view selection strategy is depicted in Fig-
ure 1. We assume that we have a workload composed of representative queries
for which we want to select a configuration of materialized views in order to
reduce their execution time. The first step is to build, from the workload, a con-
text for clustering. This context is modelled as a matrix having as many lines
as the extracted queries and as many columns as the extracted attributes from
the whole set of queries. We define similarity and dissimilarity measures that
help clustering together relatively similar queries. We apply a merging process
on each query cluster to build a configuration of candidate views. Then, the final
view configuration is created with a greedy algorithm. This step exploits cost
models that evaluate the cost of accessing data using views and the cost of their
storage.

2.1 Query Workload Analysis

The workloads we consider are sets of GPSJ (Generalized Projection-Selection-
Join) queries. A GPSJ query q is composed of joins, selection predicates and
aggregations. As such, it may be expressed in relational algebra over a star
schema as follows: q = πG,MσS(F �� D1 �� D2 �� . . . �� Dd), where S is a
conjunction of simple range predicates on dimension table attributes, G is a
set of attributes from dimension tables Di (grouping set), and M is a set of
aggregated measures each defined by applying aggregation operator to a measure
in fact table F . For example, query q1 in Figure 2 may be expressed as follows:
q1 = πsales.time id,sum(quantity sold)σfiscal day=2(sales �� times).

The first step consists in extracting from the workload the attributes that
are representative of each query. We mean by representative attributes those
that are present in Where (join and selection predicate attributes) and Group
by clauses. We also save for each query their aggregation operators and joined
tables. A query qi is then seen as a line in a matrix composed of cells that
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Fig. 1. Strategy of materialized view selection

correspond to the representative attributes. The general term qij of this matrix
is set to 1 if the extracted attribute is present in the query and to 0 otherwise.
This matrix represents our clustering context. Moreover, we store in an appendix
matrix the existing associations between the join attributes and queries, in the
same manner. We illustrate this step by an example: from the workload shown
in Figure 2, we build the clustering context depicted in Figure 3.

2.2 Building the Candidate View Set

In practice, it is hard to search all the views that are syntactically relevant
(candidate views) from the workload queries, because the search space is very
large [1]. To reduce the size of this space, we propose to cluster the queries. In-
deed, we group in a same cluster all the queries that are closely similar. Closely
similar queries are queries having a close binary representation in the query-
attribute matrix. Two closely similar queries can be resolved by using only one
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(q1) select sales.time id, sum(quantity sold) from sales, times
where sales.time id = times.time id and times.fiscal day = 2
group by sales.time id;

(q2) select sales.prod id, sum(amount sold) from sales, products, promotions
where sales.prod id = products.prod id and sales.promo id = promotions.promo id and
promotions.promo category = ‘newspaper’
group by sales.prod id;

(q3) select sales.cust id, sum(amount sold) from sales, customers, products, times
where sales.cust id = customers.cust id and sales.prod id = products.prod id and
sales.time id = times.time id and times.fiscal day = 3 and customers.cust marital status
=‘single’ and products.prod category =‘Women’
group by sales.cust id;

. . .

Fig. 2. Example of workload

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a1 times.time id a2 times.fiscal day
q1 1 1 1 0 0 0 0 0 0 0 0 0 a3 sales.time id a4 products.prod id
q2 0 0 0 1 0 1 1 1 1 0 0 0 a5 products.prod category a6 sales.promo id
q3 0 0 0 1 0 1 1 1 1 1 1 1 a7 promotions.promo id a8 sales.prod id
.. a9 promotions.promo category a10 sales.cust id
.. a11 customers.cust marital status a12 customers.cust id

Fig. 3. Example of clustering context

materialized view. Used within a clustering process, the similarity and dissimi-
larity measures defined in the next section ensures that queries within the same
cluster strongly relate to each other whereas queries from different clusters are
significantly distant to each other.

Similarity Measure. Let QA be a query-attribute matrix that has a set of
queries Q = {qi, i = 1..n} as rows and a set of attributes A = {aj, j = 1..p}
as columns. The value qij is equal to 1 if attribute aj is extracted from query
qi. Otherwise, qij is equal to 0. We describe query qi by a vector of p values
qi = [qi1, ..., qip]. These p values describe respectively the presence (qij = 1) or
absence (qij = 0) of attribute aj . This description model helps comparing two
queries. Then, for example, we can consider queries q1 and q2 as closely similar
if vectors [q11, ..., q1p] and [q21, ..., q2p] have the majority of their cells equal. This
introduces the notion similarity and dissimilarity between queries.

Similarity and Dissimilarity Between Queries. We define the notion of
similarity and dissimilarity between queries by two functions δsimj (qk, ql) and
δdissimj (qk, ql) that measure the similarity between two queries qk and ql with
respect to attribute aj .

δsimj (qk, ql) =
{

1 if qkj = qlj = 1
0 otherwise

This first function defines the notion of similarity between qk and ql following
attribute aj : two queries qk and ql are considered similar regarding attribute aj

if and only if qkj = qlj = 1, i.e., attribute aj is extracted from both queries.
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δdissimj (qk, ql) =
{

0 if qkj = qlj

1 if qkj �= qlj

This second function defines the notion of dissimilarity between queries qk

and ql according to attribute aj : two queries qk and ql are considered dissimilar
according to attribute aj if only and if qkj �= qlj , i.e., if one and only one of the
queries does not contain aj . Note that there is not a complete symmetry between
the notion of similarity and dissimilarity: non similar queries according to an at-
tribute are not necessarily dissimilar according to this attribute. For example, let
q1 and q2 be queries such that q1j = 0 and q2j = 0, respectively. Then we have
δsimj (q1, q2) = 0 (q1 and q2 are not considered similar) and δdissimj (q1, q2) = 0
(q1 and q2 are not considered dissimilar). This absence of full symmetry under-
lines the fact that the absence of the same attribute in two queries does not give
an element of similarity or dissimilarity between these queries.

These measures can be extended to an attribute set A = {a1, . . . , ap} such
that we get the degree of global similarity and dissimilarity between two queries:
sim(qk, ql) =

∑p
j=1 δsimj (qk, ql) and dissim(qk, ql) =

∑p
j=1 δdissimj (qk, ql),

where 0 ≤ sim(qk, ql) ≤ p and 0 ≤ dissim(qk, ql) ≤ p. Hence, the closer
sim(qa, qb) (resp. dissim(qa, qb)) is to p the more qa and qb can be considered
globally similar (resp. dissimilar).

Similarity and Dissimilarity Between Query Sets. As we do for two
queries, we introduce two functions that take into account the degree of sim-
ilarity and dissimilarity between two query sets. A set of queries (subset of Q)
is denoted Ca. In order to translate the level of similarity (resp. dissimilarity)
between query sets, we use function Sim(Ca, Cb) (resp. Dissim(Ci, Cj)) that
determines the number of similarities (resp. dissimilarities) between two different
sets of queries Ca and Cb (Ca �= Cb):

Sim(Ca, Cb) =
∑

qk∈Ca,ql∈Cb

sim(qk, ql)

Dissim(Ca, Cb) =
∑

qk∈Ca,ql∈Cb

dissim(qk, ql)

where 0 ≤ Sim(Ca, Cb) ≤ card(Ca) × card(Cb) × p and 0 ≤ Dissim(Ca, Cb) ≤
card(Ca)× card(Cb)× p. Hence, the closer Sim(Ca, Cb) (resp. Dissim(Ca, Cb))
is to card(Ca) × card(Cb) × p the more Ca and Cb can be considered similar
(resp. dissimilar).

Similarity and Dissimilarity Within a Query Set. The notion of sim-
ilarity (resp. dissimilarity) within a query set corresponds to the number of
similarities (resp. dissimilarities) between queries of a same set Ca. It con-
sists of an extension of the similarity and dissimilarity functions defined be-
tween query sets: Sim(Ca) =

∑
qk∈Ca,ql∈Ca,k<l sim(qk, ql) and Dissim(Ca) =∑

qk∈Ca,ql∈Ca,k<l dissim(qk, ql), where 0 ≤ Sim(Ca) ≤ card(Ca)×(card(Ca)−1)×p
2

and 0 ≤ Dissim(Ca) ≤ card(Ca)×(card(Ca)−1)×p
2 . Hence, the close Sim(Ca) (resp.
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Dissim(Ca)) is to card(Ca)×(card(Ca)−1)×p
2 the more Ca contains queries that are

globally similar (resp. dissimilar).

Query Clustering. Clustering involves the determination of groups of objects
(here: queries) that reveal the the internal structure of data. These groups must
be such as they are composed of objects with high similarity and objects from
different clusters present a high dissimilarity.

Let us consider clustering Ph of a query set, a quality measure of this clustering
can be built as follows:

Q(Ph) =

a=1..z,
b=1..z,a < b

Sim(Ca, Cb) +

z

a=1

Dissim(Ca)

0 ≤ Q(Ph) ≤ i=1..z,j=1..z,i<j card(Ci) × card(Cj) × p + z
i=1

card(Ci)×(card(Ci)−1)×p

2

This measure permits to capture the natural aspect of a clustering. Hence,
Q(Ph) measures simultaneously similarities between queries within the same
cluster and dissimilarities between queries within different clusters. Thus, Q(Ph)
evaluates simultaneously the homogeneity of clusters as well as the heterogeneity
between clusters. Therefore, the clustering presenting a high intra-cluster homo-
geneity and a high inter-cluster disparity has a weak value of Q(Ph) and thereby
appears as the most natural.

Jouve and Nicoloyannis proposed such a solution in the Kerouac clustering
algorithm and its associated clustering quality measure [11]. We have chosen this
algorithm because it has several interesting properties: (1) its computational
complexity is relatively low (log linear regarding the number of queries and
linear regarding the number of attributes) ; (2) it can deal with a high number
of objects (queries) ; (3) it can deal with distributed data [12].

3 View Merging Process

If we materialize all the different views derived from the query clusters obtained
in the previous step, we can obtain a high number of materialized views, espe-
cially if the number of queries within the workload is high. A view configuration
obtained this way would not be very relevant if the storage space allotted by the
data warehouse administrator was limited. Instead of materializing each view, it
is better to only materialize views that can be used to resolve multiple queries.
To solve this problem, we must enumerate the space of views that can be merged,
determine how to guide the merging process, and finally build the set of merged
views. View merging is relevant if the queries are strongly similar. As we cluster
together closely similar queries, it is logical to apply the merging process on the
set of queries present in each cluster. This significantly reduces the number of
possible combinations when merging views. We detail in the following sections
how we merge two views and then generalize this process to many views.
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Merging of View Couples. The merging of two views must ensure these con-
ditions: (1) all queries resolved by each view must also be resolved by the merged
view, and (2) the cost of using the couple of views must not be significatively
greater than the cost obtained when using the merged view. Let v1 and v2 be a
couple of views of the same cluster and s11, . . . , s1m the selection predicates that
are in v1 and not in v2. In a dual way, let s21, . . . , s1n be the selection conditions
present in v2 and not in v1. Merged view v12 is obtained by applying Algorithm 1.

Algorithm 1 Merge View Pair(v1, v2)

1: put v1 and v2 aggregation operations in v12
operation aggregations

2: put the union of projection and group by
attributes v1 and v2 in projection and group
by clause of v12

3: put all attributes s11, . . . , s1m and
s21, . . . , s1n in the group by clause of v12

4: put the selection predicates shared between
v1 and v2 in the selection predicate clause
of v12

Algorithm 2 Mergin View Generation

1: M = V1
2: for (k = 2; Vk−1 �= ∅; k + +) do
3: Ck = View Gen(Vk−1)
4: M ← M ∪ Ck

5: for all (view v ∈ M) do
6: Remove the parents of v from M
7: end for
8: end for
9: return M

The merging of two views v1 and v2 is effective if cost(v12) ≥ ((cost(v1) +
cost(v2)) ∗ x). Cost computation is detailed in Section 4. The value of x is fixed
empirically by the administrator. If it is small (resp. high), we privilege (resp.
disadvantage) view merging.

Property 1. The view obtained by merging views v1 and v2 is the smallest view
that resolves the query resolved by both v1 and v2.

Proof. To show that the view obtained by merging views v1 and v2 is the smallest
view, we have to show that there is no view v′

12 such as the data within v′
12 are also

included within v12. We denote respectively views v1, v2 and v12 πG1,M1σS1(F �� . . .),
πG2,M2σS2(F �� . . .) and πG12,M12σS12(F �� . . .), respectively, where:
– G1, G2 are respectively the attribute set of the group by clause of views v1 and v2;
– S1, S2 are respectively the attribute set of the selection predicates of v1 and v2;
– G12 = G1 ∪ G2 ∪ (S1 ∪ S2 − S1 ∩ S2) is the attribute set of the group by clause of
merged view v12;
– S12 = S1 ∩ S2 is the set of attribute selection predicates within merged view v12.

Note that sets G12 and S12 are obtained by applying lines 1 and 2 of Algorithm 1.
Let us now assume that the data in view v′

12, denoted πG′
12,M′

12
σS′

12
(F �� . . .) are all

in v12. This means that both of the following conditions hold: (1) G12 ⊂ G′
12, (2)

S12 ⊃ S′
12.

From the first condition, there is at least one attribute x such that x ∈ G′
12 and

x /∈ G12. As we have x /∈ G12, then x /∈ G1, x /∈ G2 and x /∈ S1 ∪ (S2 −S1 ∩S2) because
G12 = G1 ∪G2 ∪ (S1 ∪S2 −S1 ∩S2). As x /∈ G1 and x /∈ G2, then x is not in any clause
of v2. This means that x /∈ G′

12, which contradicts condition x ∈ G′
12.

From the second condition, there is at least one attribute y such that y ∈ S12 and
y /∈ S′

12. As we have y ∈ S12, then y ∈ S1 and y ∈ S2 because S12 = S1 ∪S2. As y ∈ S1

and y ∈ S2, then y must be in all the predicates of the views obtained by merging v1

and v2. This means that y ∈ S′
12, which contradicts condition y /∈ S′

12.

Merged View Generation Algorithm. The algorithm of view generation
by merging is similar to algorithms searching for frequent itemsets. A frequent
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itemset lattice looks like a lattice of views within a given cluster. The lattice
nodes represent the space of views obtained by merging.

Algorithm 3 Function View Gen(Vk−1)

1: Ck = ∅
2: for all (view v ∈ Vk−1) do
3: for all (view u ∈ Vk−1) do
4: if (v[1] = u[1] ∧ . . . ∧ v[k − 2] = u[k −

2] ∧ v[k − 1] < u[k − 1]) then
5: c = Merge View Pair (v,u)
6: if (cost(c) ≥ ((cost(v)+cost(u))∗x))

then
7: Ck = Ck ∪ {c}
8: end if
9: end if
10: end for
11: end for
12: return Ck

Algorithm 4
View Configuration Construction

1: S ← ∅
2: repeat
3: vmax ← ∅
4: Fmax ← 0
5: for all vj ∈ V − S do
6: if F/S(vj) > Fmax then

7: Fmax ← F/S(vj)

8: vmax ← vj

9: end if
10: end for
11: if F/S(vmax) > 0 then

12: S ← S ∪ {vmax}
13: end if
14: until (F/S(vmax) ≤ 0 or V − S = ∅)

The algorithm of view generation by merging (Algorithm 3) uses an iterative
approach by level to generate a new view. It explores the view lattice in breadth
first. The input of the algorithm is V1, a set of candidate views extracted from
a given cluster. This algorithm outputs a set of candidate views obtained by
merging. In the kth iteration, view set Vk−1 obtained by merging the k − 1th

level’s views from the lattice (computed in the last step) is used to generate the
set Ck of k-candidate views. This set is added to set M (line 4). The parents of
each view obtained by merging are then removed from set M (lines 5 to 7).

The function for view generation by merging View Gen(Vk−1), called on line 3,
takes as argument Vk−1 and returns Ck. Two views v and u within Vk−1 form
a k-view c if and only if they have (k − 2) views in common. This is expressed
using a lexicographic order in the condition of line 3. We denote by v[1] . . . v[k−
2]v[k−1] the merged views in the kth iteration that are used to derive v. Function
Merge View Pair(v,u) (Algorithm 1) called on line 5 of View Gen generates a
new view c. The condition of line 6 ensures, after generating a k-view from two
k − 1-views, that the candidate view does not have a cost greater than the cost
of its parents.

4 Cost Models

The number of candidate views is generally as high as the input workload is
large. Thus, it is not feasible to materialize all the proposed views because of
storage space constraints. To circumvent these limitations, we use cost models
allowing to conserve only the most pertinent views. In most data warehouse cost
models [7], the cost of a query q is assumed to be proportional to the number of
tuples in the view on which q is executed. In the following section, we detail the
cost model that estimates the size of a given view.

Let ms(F ) be the maximum size of fact table F , |F | be the number of tuples
in F , Di ID be a primary key of dimension Di, |Di ID| be the cardinality of
the attribute(s) that form the primary key, and N be the number of dimension
tables. Then, ms(F ) =

∏N
i=1 |Di ID|.
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Let ms(V ) be the maximum size of a given view v that has attributes
a1, a2, . . . , ak in its group by clause, where k is the number of attributes in
v and |ai| is the cardinality of attribute ai. Then, ms(v) =

∏k
i=1 |ai|.

Golfarelli et al. [7] proposed to estimate the number of tuples in a given view
v by using Yao’s formula [23] as follows:
|v| = ms(v) ×

[
1−∏|F |

i=1
ms(F )×d−i+1

ms(F )−i+1

]
, where d = 1 − 1

ms(v) . If ms(F )
ms(v) is suffi-

ciently large, then Cardenas’ formula [4] approximation gives:

|v| = ms(v)×
(

1−
(
1− 1

ms(v)

)|F |)
, where d = 1− 1

ms(v) .

Cardenas’ and Yao’s formulaes are based on the assumption that data is
uniformly distributed. Any skew in the data tends to reduce the number of tuples
in the aggregate view. Hence, the uniform assumption tends to overestimate the
size of the views and give a crude estimation. However, they have the advantage
to be simple to implement and fast to compute. In addition, because of the
modularity of our approach, it is easy to replace the cost model module by
another more accurate one.

From the number of tuples in v, we estimate its size, in bytes, as follows:
size(v) = |v|×∑c

i=1 size(ci), where size(ci) denotes the size, in bytes, of column
ci of v, and c is the number of columns in v.

5 Objective Functions

In this section, we describe three objective functions to evaluate the variation
of query execution cost, in number of tuples to read, induced by adding a new
view. The query execution cost is assimilated to the number of tuples in the fact
table when no view is used or to the number of tuples in view(s) otherwise. The
workload execution cost is obtained by adding all execution costs for each query
within this workload.

The first objective function advantages the views providing more profit while
executing queries, the second one advantages the views providing more benefit
and occupying the smallest storage space, and the third one combines the first
two in order to select at first all the views providing more profit and then keep
only those occupying the smallest storage space when this resource becomes
critical. The first function is useful when storage space is not limited, the second
one is useful when storage space is small and the third one is interesting when
storage space is larger.

5.1 Profit Objective Function

Let V = {v1, ..., vm} be a candidate view set, Q = {q1, ..., qn} a query set (a
workload) and S a final view set to build. The profit objective function, noted
P , is defined as follows:
P/S(vj) =

(
C/S(Q)− C/S∪{vj}(Q)− β Cmaintenance({vj})

)
, where vj /∈ S.

– C/S(Q) denotes the query execution cost when all views in S are used. If
this set is empty, C/∅(Q) = |Q| × |F | because all the queries are resolved
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by accessing fact table |F |. When a view vj is added to S, C/S∪{vj}(Q) =∑|Q|
k=0 C(qk, {vj}) denotes the query execution cost for the views that are in

S ∪ {vj}. If query qk exploits vj , the cost C(qk, {vj}) is then equal to Cvj

(number of tuples in vj). Otherwise, C(qk, {vj}) is equal to the minimum
value between |F | and values of C(qk, {v}) (executing cost of qk exploiting
v ∈ S with v �= vj).

– Coefficient β = |Q| p(vj) estimates the number of updates for view vj . The
update probability p(vj) is equal to 1

number of views
%update
%query , where %update

%query
represents the proportion of updating vs. querying the data warehouse.

– Cmaintenance({vj}) represents the maintenance cost for view vj .

5.2 Profit/Space Ratio Objective Function

If view selection is achieved under a space constraint, the profit/space objective
function R/S(vj) = P/S(vj)

size(vj ) is used. This function computes the profit provided
by vj in regard to the storage space size(vj) that it occupies.

5.3 Hybrid Objective Function

The constraint on the storage space may be relaxed if this space is relatively
large. The hybrid objective function H does not penalize space–“greedy” views
if the ratio remaining space

storage space is lower or equal than a given threshold α (0 < α ≤ 1),
where remaining space and storage space are respectively the remaining space
after adding vj and the allotted space needed for storing all the views. This
function is computed by combining the two functions P and R as follows:

H/S(vj) =
{

P/S(vj) if remaining space
storage space > α,

R/S(vj) otherwise.

6 View Selection Algorithm

The view selection algorithm (Algorithm 4) is based on a greedy search within
the candidate view set V . Objective function F must be one of the functions
P or R described previously. If R is used, we add to the algorithm’s input the
space storage M allotted for views.

In the first algorithm iteration, the values of the objective function are com-
puted for each view within V . The view vmax that maximizes F , if it exists
(F/S(vmax) > 0), is then added to S. If R is used, the whole space storage M is
decreased by the amount of space occupied by vmax.

The function values of F are then recomputed for each remaining view in
V − S since they depend on the selected views present in S. This helps taking
into account the interactions that probably exist between the views.

We repeat these iterations until there is no improvement (F/S(v) ≤ 0) or until
all views have been selected (V − S = ∅). If function R is used, the algorithm
also stops when storage space is full.
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7 Experiments

In order to validate our approach for materialized view selection, we have run
tests on a 1 GB data warehouse implemented within Oracle 9i, on a Pentium
2.4 GHz PC with a 512 MB main memory and a 120 GB IDE disk. This data
warehouse is composed of the fact table Sales and five dimensions Customers,
Products, Times, Promotions and Channels. We executed on our data ware-
house a workload composed of sixty-one decision-support queries involving aggre-
gation operations and several joins between the fact table and dimension tables.
Due to space constraints, the data warehouse schema and the detail of each work-
load query are available at http://eric.univ-lyon2.fr/~kaouiche/adbis.
pdf. Our experiments are based on an ad-hoc benchmark because, as far as we
know, there is no standard benchmark for data warehouses. TPC-R [20] has no
multidimensional schema and does not qualify, for instance.

We first applied our selection strategy with the profit function. This function
gives us the maximal number of materialized views (twelve views) because it
does not specify any storage space constraint. This point gives us the upper
boundary of the storage space occupation. Then, we applied the profit/space
ratio and hybrid functions under a storage space constraint. We have measured
query execution time with respect to the percentage of storage space allotted
for materialized views. This percentage is computed from the upper boundary
computed when applying the profit function. This helps varying storage space
within a wider interval.

 

 

Fig. 4. Profit/space ratio function Fig. 5. Hybrid function

Ratio Profit/Space Function Experiment. We plotted in Figure 4 the vari-
ation of workload execution time with respect to the storage space allotted for
materialized views. This figure shows that the selected views improve query exe-
cution time. Moreover, execution time decreases when storage space occupation
increases. This is predictable because we create more materialized views when
storage space is large and thereby better improve execution time. We also observe
that the maximal gain is equal to 94.86%. It is reached for a space occupation
of 100% (no constraint on storage space). This case is also reached when using
the profit function, because it corresponds to the upper boundary.
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Hybrid Function Experiment. We repeated the previous experiment with
the hybrid objective function. We varied the value of parameter α between 0.1
and 1 by 0.1 steps. The obtained results with α ∈ [0.1, 0.7] and α ∈ [0.8, 1] are
respectively equal to those obtained with α = 0.1 and α = 0.8. Thus, we plotted
in Figure 5 only the results obtained with α = 0.1 and α = 0.7. This figure shows
that for percentage values of space storage under 18.6%, the hybrid function
with α = 0.1 and α = 0.8 behaves as the ratio function. When the storage space
becomes critical, the hybrid function behaves as the ratio profit/space function.
On the other hand, for the percentage values of storage space greater than 18.6%,
the results obtained with α = 0.8 are slightly better than those obtained with
α = 0.1. This is explained by the fact that for the high values of α, the hybrid
function chooses the views providing the most profit and thereby improving the
best the execution time. The maximal gain in execution time observed for the
values 0.1 and 0.8 of α is equal to 96%.

Fig. 6. Query covering rate by the selected materialized views

Selected View Pertinence Experiment. In order to show if our strategy
provides pertinent views for a given workload, we measured the covering rate of
the workload query results by the selected views. We mean by covering rate the
ratio between the number of queries resolved from the materialized views and the
total number of queries within the workload. Thus, the highest the rate value,
the most pertinent the selected views. In this experiment, the percentage of
storage space is also computed from the upper boundary. We plotted in Figure 6
the covering rate according to storage space occupation. This figure shows that
the covering rate increases with storage space. When storage space gets larger,
we materialize more views and thereby we recover more query results from these
views. When materializing all the views (100% storage space occupation), all
the data corresponding to query results are recovered from the materialized
views. This shows that, without storage space constraint, the selected views
are pertinent. For example, for 0.05% storage space occupation, 22.95% of the
query results are recovered from the selected views. This shows that, even for a
limited storage space, our strategy helps building views that cover a maximum
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number of queries. This experiment shows that materialized view selection based
on workload syntactical analysis is efficient to guarantee the exploitation of the
selected views by the workload queries.

8 Conclusion

In this paper, we presented an automatic strategy for materialized view selection
in data warehouses. This strategy exploits the results of clustering applied on
a given workload to build a set of syntactically relevant candidate views. Our
experimental results show that our strategy guarantees a substantial gain in
performance. It also shows that the idea of using data mining techniques for
data warehouse auto-administration is a promising approach.

This work opens several future research axes. First, we are still currently
experimenting in order to better evaluate system overhead in terms of material-
ized view building and maintenance. The maintenance cost is currently derived
from the query frequencies (Section 4). We are envisaging a more accurate cost
model to estimate update costs. We also plan to compare our approach to other
materialized view selection methods. Furthermore, it could be interesting to de-
sign methods that select both indexes and materialized views, since these data
structures are often used together. More precisely, we are currently developing
methods to efficiently share the available storage space between indexes and
views. Finally, our strategy is applied on a workload that is extracted from the
system during a given period of time. We are thus performing static optimiza-
tion. It would be interesting to make our strategy dynamic and incremental, as
proposed in [13]. Studies dealing with dynamic or incremental clustering may be
exploited. Entropy-based session detection could also be beneficial to determine
the best moment to run view reselection.
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Abstract. In existing systems, user transactions get blocked during materialized
view creation and non-trivial database schema transformations. Blocking user
transactions is not an option in systems with high availability requirements. A
non-blocking method to perform such tasks is therefore needed.

In this paper, we present a method for non-blocking creation of derived tables,
suitable for highly available databases. These derived tables can be used to create
materialized views and to transform the database schema. Modified versions of
well-known crash recovery techniques are used, thus making the method easy to
integrate into existing DBMSs. Because the involved tables are not locked, the
derived table creation may run as a low priority background process. As a result,
the process has little impact on concurrent user transactions.

1 Introduction

As applications change over time, the database schema is required to change as well. In
a study of seven applications, Marche [19] reports of significant changes to relational
database schemas over time. Six of the studied schemas had more than 50% of their at-
tributes changed. The evolution of the schemas continued after the development period
had ended. A similar study of a health management system [26] came to the same con-
clusion. Two ways to let a database evolve is to add materialized views and to transform
the database schema.

Materialized views (MVs) may be added to a database to speed up processing of
frequently used queries. During the last couple of decades, many authors have suggested
methods to maintain consistency between MVs and the base tables they collect data
from. The goal of their research (e.g. [1,3,9,25]) has mainly been to interfere as little
as possible with other transactions using the system. The community has not shown the
same interest in the initial creation of MVs, however. Thus, in today’s systems, the MVs
are created by read and insert operations that effectively block concurrent transactions
from updating the involved tables.

A database schema transformation changes the table structure of a database. An ex-
ample is to merge records from two tables into one, thus resulting in a table containing
a full outer join of the original records. In current DBMSs, non-trivial schema transfor-
mations are executed by an insert into select statement. The effect of this is the same
as MV creation: read and insert operations block other transactions from updating the
source tables.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 96–107, 2006.
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The blocking MV creation and schema transformation methods described may take
minutes or more for tables with large amounts of data. Databases with high availabil-
ity requirements should not be unavailable for long periods of time. Such databases,
often found in e.g. the telecom and process regulation industries, would clearly benefit
from mechanisms to perform these tasks without blocking. Although databases used in
e.g. webshops, airline reservation systems and banking may be less critical, downtime
should always be avoided to maintain good customer relations.

Both MV creation and schema transformations can be performed by materializing
a derived table (DT). In this paper, we present non-blocking methods to materialize
DTs using six relational operators. These are vertical merge (full outer join) and split,
horizontal merge (union) and split, difference and intersection. The two first methods
are enhancements of algorithms previously published by the authors [18], the remaining
four are new.

The DT materialization method presented is based on log redo. This means that
log records from the source tables are redone to the DTs in a similar way as normal
crash recovery, but with redo rules adapted to each DT operation. We assume that the
DBMS produces redo log records, and that undo operations produce Compensating Log
Records (CLR) [4] as described for the ARIES method [21]. With CLR, all operations
(including undo), are found in the same sequential log and with all the information
necessary to apply the operations to the DTs. Furthermore, it is assumed that Log Se-
quence Numbers (LSNs) are used as state identifiers, and that the LSNs are associated
with records in the database [10]. LSNs are commonly used in commercial systems,
e.g. in SQL Server 2005 [20].

The paper is organized as follows: Section 2 describes other methods and research
areas related to non-blocking DT creation. An overview of the framework and details
for how to apply it to the six relational operators are presented in Sections 3 and 4,
respectively. Finally, in Section 5, we conclude and suggest further work.

2 Related Work

Non-blocking creation of derived tables that involve any of the six operators has to the
authors’ knowledge only been researched in a schema transformation setting. Ronström
[24] presents a non-blocking schema transformation method that uses both a reorganizer
and triggers within user transactions. The method is able to perform vertical and hor-
izontal merge and split, but methods for difference and intersection are not presented.
Sagas [5] are used to organize the transformations. The reorganizer is used to scan the
old tables, while triggers make sure that updates to the old tables are executed imme-
diately to the transformed table. When the scan is complete, the old and transformed
tables are consistent due to the triggered updates.

No implementation or test results have been published on Ronströms method, but
triggers are used in a similar way to keep immediate MVs up to date. The extra workload
incurred by using triggers to update MVs is significant, and other update methods are
therefore preferred whenever possible (see e.g. [3,15]).

Fuzzy copy is a technique to make copies of a table without blocking update oper-
ations [2,11]. A begin-fuzzy mark is first written to the log. The records in the source
table are then read without setting locks, resulting in a fuzzy copy where some of the
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Fig. 1. The first three steps of derived table materialization

updates that were made during the scan may not be reflected. The log is then redone
to the copy in a similar way as in ARIES [21] to make it up to date. LSNs on records
ensure that the log propagation is idempotent. When all log records have been redone
to the copy in ascending order, it is in the same state as the source table. An end-fuzzy
mark is then written to the log, and the copy process is complete. The method requires
CLRs to be used for undo processing.

Materialized views store the result of a query. They are used to speed up query
processing and must therefore be consistent with the source tables. To the authors’
knowledge, no method for non-blocking MV creation has been published. At first
glance, maintenance of MVs has much in common with the non-blocking DT ma-
terialization method presented in this paper. However, all MV maintenance meth-
ods require the MVs to be consistent with a previous state of the source tables
[1,3,6,7,8,9,15,22,25,28]. Thus, since a fuzzy copy is not consistent with the source
table, the MV update methods are not applicable.

Existing database systems, including IBM DB2 v8.2 [13,14], Microsoft SQL Server
2005 [20], MySQL 5.1 [27] and Oracle 10g [17], offer some simple schema transfor-
mation functionality. These include removal of and adding one or more attributes to a
table, renaming attributes and the like. Complex tranformations like the ones presented
in this paper are not supported.

3 General Framework

The goal of the DT materialization framework is to provide a way to create a derived
table without blocking other transactions. At the same time, the efficiency of concurrent
transactions should be degraded as little as possible. After materialization, the DTs can
be used as MVs or to transform the schema. Using relational operators enables us to
make use of existing, optimized code (like join algorithms) for parts of the process.
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All DT materialization methods presented have four steps. As illustrated in Figure 1,
the first three steps are to create the new tables, populate them with fuzzy copies of the
source tables and then use modified recovery techniques to make the derived tables up
to date with the source tables. The fourth step, synchronization, ensures that the DT has
the same state as the source tables, thus making the DT ready for its intended use. The
four steps are explained in general below.

3.1 Preparation Step

Before materialization starts, the derived tables must be added to the database. The
tables must as a minimum include an LSN for all contributing source records and the
attributes used to identify them in the log. In this paper, we use a Record ID (RID)
as identifying attribute, but any unique identifier will work. Record IDs are commonly
used internally by commercial DBMSs, e.g IBM DB2 UDB v8.2 [12]. Depending on
the operator, other attributes like join attributes in the case of vertical merge, may also
be required. If any of the required attributes are not wanted in the DT, they must be
removed after the materialization has completed.

Constraints, both new and from the source tables, may be added to the new tables.
This should, however, be done with great care since constraint violations may force the
DT materialization to abort. Any indices that are needed on the new tables should also
be created at this point. In particular, since RIDs from the source tables are used to iden-
tify which records a logged operation should be applied to in the DTs, all six operators
should have indices on source RID to speed up log propagation. Indices created during
this step will be up to date when the materialization is complete.

Some of the relational operators require information that is not stored in the DTs. In
these cases, an additional table may be required during the DT materialization process.
This is commented on when needed.

3.2 Initial Population Step

The newly created DTs have to be populated with records from the source tables. This
is done by a modified fuzzy copy technique, so the first step of populating DTs is to
write a fuzzy mark in the log. This log record must include the transaction identifiers of
all transactions that are currently active on the source tables, i.e. a subset of the active
transaction table. The source tables are then read fuzzily, returning an inconsistent re-
sult since locks are ignored [11]. Once the source tables have been read, the relational
operator is applied and the result, called the initial image, are inserted into the DTs.

3.3 Log Propagation

Log propagation is the process of redoing operations originally executed on source
table records to records in the DTs. All these operations are reflected in the log, and are
applied sequentially. By redoing the logged operations, the DTs will eventually have
records with the same state as the source table records.

Log propagation starts when the initial images have been inserted into the DTs. An-
other fuzzy mark is first written to the log. This log record marks the end of the current
log propagation cycle and the beginning of the next one. Log records of operations
that may not be reflected in the DTs are then inspected and applied if necessary. In the
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first iteration, the oldest log record that may contain such an operation is the oldest log
record of any transaction that was active when the first fuzzy mark was written. Later
log propagation iterations only have to read the log after the previous fuzzy mark.

When the log propagator reads a new log record, affected records in the DTs are
identified and changed if the LSN indicate an older state than the log record represents.
The effects of the propagation depend on the operator being used and are therefore
described individually in Section 4.

If a schema transformation is the goal of the DT materialization, locks are maintained
on records in the DTs during the entire log propagation process. By doing this, the locks
are in place when the next step, synchronization, is started. Since locks are only needed
when user transactions access both source and derived tables at the same time, they are
ignored for now.

The synchronization step should not be started if a significant portion of the log
remains to be propagated because it involves latching the source tables. Each log prop-
agation iteration therefore ends with an analysis of the remaining work. Based on the
analysis, either another log propagation iteration or the synchronization step is started.
The analysis could be based on, e.g. the time used to complete the current iteration, a
count of the remaining log records to be propagated, or an estimated remaining propa-
gation time.

The log propagator will never finish executing if more log records are produced
than the propagator can process in the same time interval. If this is the case, the DT
materialization should either be aborted or get a higher priority.

3.4 Synchronization

When synchronization is initiated, the state of the DTs should be very close to the state
of the source tables. This is because the source tables have to be latched during one final
log propagation iteration that makes the DTs consistent with the source tables.

We suggest three ways to synchronize the DTs to the source tables and thereby com-
plete the DT materialization process. These are called blocking commit, non-blocking
abort and non-blocking commit synchronization.

Blocking commit synchronization blocks all new transactions that try to access any of
the source tables involved. Transactions that already have locks on the source tables are
then allowed to complete before a final log propagation iteration is performed, making
the DTs consistent with the sources. Depending on the purpose of the DT creation,
either the source tables or the DTs are now available for transactions.

The non-blocking abort strategy latches the source tables for the duration of one
final log propagation. Latching these tables effectively pauses ongoing transactions that
work on them, but the pause should be very brief (less than 1 ms in the prototype
implementation [18]). Once the log propagation is complete, the DTs are in the same
state as the source tables.

If the newly created DTs are to be used as materialized views, the preferred MV
update strategy (e.g. [3,9]) is used from this point. If the DTs are materialized to perform
a schema transformation, the locks that have been maintained on the DTs since the first
fuzzy log mark are made active. Records that are locked in the source tables are now
also locked in the DTs. Note that locks forwarded from source tables conflict with locks
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Table 1. Summary of information needed to make the transformations self-maintainable

Operator Additional Information Needed
Vertical Merge Attribute: LSN and RID of Sl and Sr records
Vertical Split Attribute: Counter
Horizontal Merge (dup. rem.) Table: LSN and RID of duplicates
Horizontal Merge (dup. incl.)
Horizontal Split Table:Records not matching select criterion
Difference Table: LSN of records in Tint and Tcomp

Intersection Table: LSN of records in Tdiff and Tcomp

set directly on a DT but not with each other [18]. Once the DT locks have been activated,
transactions are allowed to access the unlocked parts of the DTs whereas transactions
that operate on the source tables are forced to abort. Source table locks held in the DTs
are released as soon as the propagator has processed the abort log record of the lock
owner transaction.

Non-blocking commit synchronization works much like the previous strategy in that
latches are placed on the source tables during one final log propagation. In contrast to
the previous strategy, however, transactions on the source tables are allowed to continue
processing once the tables have been synchronized. If used for MV creation, there is no
reason not to choose this strategy. For schema transformations, however, this strategy
enables transactions on the source tables to aquire new locks. These locks must be set
on all involved records in the DTs as well as in the source tables, resulting in overhead
and more locking conflicts. The non-blocking abort strategy may therefore be a better
choice, especially in transformations where one DT record is composed of multiple
source records, like join.

4 Descriptions for Derived Table Materialization Operators

The following sections describe how to materialize DTs by using standard relational
operators. These are vertical merge (full outer join) and split, horizontal merge (union)
and split, difference and intersection.

The methods differ in whether the DTs contain all necessary information to identify
transformed records and their state or not. The information that is not found in the
DTs is summarized in Table 1. By adding this information, the log propagator is able
to correctly update the DTs without accessing the source tables. This is known as the
self-maintainability property [23], and renders the methods useful also in distributed
database systems.

4.1 Vertical Merge (Full Outer Join)

Vertical merge transforms two source tables, Sl (left source) and Sr (right source),
into one derived table T by applying the full outer join operator. An example merge
of “Employee” (Sl) and “PostalCode” (Sr) is shown in Figure 2. For readability it is
assumed that the join attribute of table Sr (attribute PCode in Figure 2) is unique, i.e.
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Fig. 2. Example of vertical merge DT creation. Grey attributes are used internally by the DT
materialization process, and are not visible to other transactions. The reverse operation is an
example of vertical split DT creation. The grey attributes are incorrect in a split context.

there is a one-to-many relation between the source tables. A merge of many-to-many
relations is possible with minor changes to the described method.

The Derived Table, T, must as a minimum include the record IDs and LSNs from
both source tables. In Figure 2, these are denoted RID- and LSN- left and right. The join
attributes must also be included. With this information, DT materialization satisfies the
self-maintainability requirement.

In addition to the indices on source record IDs (see Section 3.1), an index should be
added to the join attributes of T. These indices provide fast lookup on T−records that
are affected by any logged operation.

After creating the table, the full outer join operator is applied to the fuzzy read source
tables, and the result is inserted into T . Special Sl− and Sr− NULL records, denoted
snull

l and snull
r , are joined with records that otherwise would not have a join match, as

illustrated in Figure 2.
Once the initial image is inserted, the log propagator is started. The propagator

ignores insert log records if the record already exists in T. Otherwise, if a join match
is found, the record is joined with it and inserted. In the case that there are no join
matches, the record is joined with a NULL record.

If a record joined with a NULL record in T is deleted, the whole record is simply
removed. If it is joined with another record, that record must be joined with a NULL
record if it is not represented in at least one more record in T.

Update log records that do not change the join attributes are propagated straightfor-
ward by updating attribute values of all duplicates of the record in T, provided that the
log has a higher LSN. If the join attributes are changed, however, the update is treated
as a delete followed by an insert.

Synchronization is performed as described in Section 3.4. After this, a simple trans-
formation can be used to remove attributes like the additional LSNs that are no longer
in use. As mentioned in Section 2, simple transformations like attribute removal exist
in commercial systems.

An alternative approach for vertical merge transformation has previously been pre-
sented by the authors [18]. The alternative approach did not include the extra LSN and
source record ID attributes, thus requiring slightly less storage space. In contrast to
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the method presented here, however, it was not able to handle delta updates [16] (e.g.
“increment”).

4.2 Vertical Split

Vertical split is the reverse of the full outer join method described in the previous sec-
tion. The method transforms one source table S into two new tables Tl (left result) and
Tr (right result), each containing a subset of the source table attributes. An example
vertical split operation is that of splitting EmployeePost in Figure 2 into Employee and
PostalCode. Note, however, that the grey attribute values are incorrect in a vertical split
context.

In most cases, the source table S contains multiple records with equal Tr−parts,
e.g. multiple people with the same postal code. These records should be represented
by only one record in Tr. Furthermore, a record in Tr should only be deleted if there
are no more records in S with that Tr−part. To be able to decide if this is the case, a
counter, similar to that of Gupta et al. [8], is associated with each Tr−record. When
a Tr− record is first inserted, it has a counter of 1. After that, the counter is increased
every time an equal record is inserted, and decreased every time one is deleted. If the
counter of a record reaches zero, the record is removed from Tr.

The DTs are created during the preparation step, and must include the record IDs and
LSNs from the source tables. The initial population and synchronization steps work as
described in Section 3, but log propagation must be described in more detail.

When insert operations are encountered in the log, Tl is checked to see if the record
exists there. If so, the logged operation is already reflected in both DTs. Otherwise, a
record is inserted into Tl and Tr. If an equal Tr−record existed, its counter is increased.
The LSN is then set to the highest value of the logged operation and the existing record.

Delete and update operations are ignored if the record does not exist in Tl, or if the
LSN of that record is higher than that of the log. Otherwise, in the case of delete, the
Tl−record is deleted, and the counter of the matching Tr−record is decreased. The LSN
of the Tr−record is changed if the log record has a higher LSN value. If the counter
reaches zero, the Tr−record is removed as well. In the case of update, the Tl−record
is simply updated. If the key attribute of Tr is not updated, updating the Tr−record is
straightforward as well. If the key attribute is updated, however, the update is treated as
a deletion of the old Tr−record followed by an insertion of the updated one.

Whether or not two Tr−records are equal has so far not been discussed. If the split is
performed with the notion that “equal” means that all attribute values are the same, the
algorithm described above is sufficient. There are, however, cases where equal primary
keys would be a better criterion to determine equality. The described split of Employ-
eePost into Employee and Postal Code is a good example since for most applications,
postal code should be unique. Thus, a problem arises if multiple S−records that con-
tribute to the same Tr−record are not consistent. To continue the example, if a record
with postal code 7020 existed that had a different city than “Tr.heim”, e.g. “London”,
there would be an inconsistency. A solution to this problem has been presented by the
authors [18]. The method uses primary key as equalness criterion, and flags records
that may be inconsistent. Flagged records are checked regularly, and are unflagged if all
contributing source records are consistent. Since source table records have to be read,
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Fig. 3. Union Derived Table with Duplicate Removal. Grey attributes are used internally by the
DT materialization process, and are not visible to other transactions.

the method is not self-maintainable. The solution forces the DBA to manually update
inconsistent records since the DBMS has no notion of which attribute values are correct.

4.3 Horizontal Merge (Union)

Horizontal merge adds records from two source tables S1 and S2 into Tunion. If dupli-
cate records are included in Tunion, the method is straightforward. All source records
are represented unmodified in Tunion, and the source RIDs and LSNs therefore identify
the records and record states in Tunion. Thus, the log propagation rules are applied like
normal crash recovery.

Union transformation with duplicate removal is more complex. Duplicate records
from the source tables are represented by only one record in Tunion, and logged opera-
tions may merge new duplicates and split former duplicates into multiple records. The
main problem is that the DT alone does not have LSNs and RIDs of duplicate records.
Figure 3 illustrates a horizontal merge with a duplicate pair with RID r2 and r12. RecID
denotes the record ID in the DT, and RIDSrc denotes the ID the record has in the source
table. The Figure also shows a table “duplicates” (Tdup) used to store information on
duplicate records. The necessary information is the record ID from the source table and
from Tunion, in addition to the LSN. With this information, the log propagator can de-
termine if a logged operation on a duplicate record is already reflected, thus making log
propagation possible. In addition to the index on source RID in Tunion, indices should
be added to both source and union RID in Tdup.

Logged insert operations insert a record into either Tunion or Tdup, depending on the
existence of a duplicate record. If, however, the same source record ID already exists in
either Tunion or Tdup, the log record is ignored.

Delete operations remove a record from Tdup or from Tunion. If the record is deleted
from Tunion and one or more duplicates of the record exists, one of the duplicates must
be moved from Tdup to Tunion. This can be done by deleting the record from Tdup and
then update the LSN and source record ID attributes of the record in Tunion to that of
the deleted duplicate.

Update operations may create or remove duplicates: if a record with duplicates is
updated, the operation is applied as a delete followed by an insert. If a new duplicate is
formed as a result of the update, the method works like described for insert of duplicates.
Otherwise, when neither the old or updated record images have duplicates, the update
is applied straightforward.
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Fig. 4. Difference and intersection transformation. Grey attributes are used internally by the DT
materialization process, and are not visible to other transactions.

4.4 Horizontal Split

Horizontal split is the reverse of union. The transformation takes records from one
source table, S, and distributes them into two or more tables T1..n by using a selection
criterion. Example criterions include that of splitting an employee-table into “New York
employee” and “Paris employee” based on location, or into “high salary employee” and
“low salary employee” based on a condition like “salary > $40.000”. The selection
criterion may result in non-disjunct sets, and may even not include all records from the
source table.

All derived tables must include the source RIDs and LSNs from S. A temporary
table equal to the DTs is used to store records that do not fit any of the select criterions,
if any. As an example, consider the employee table that was split into New York and
Paris offices. An employee in London would not match any of these. If the log describes
an update reflecting that the employee has moved to the Paris office, however, the log
propagator will need the pre-update state of the record before inserting it into the correct
table to be self-maintainable. The temporary table is removed once the synchronization
step has completed.

With source RIDs and LSNs included in the DTs, log propagation for horizontal
split is similar to normal crash recovery. The only difference is that the DTs the log
records is applied to has to be identified first. For insert operations, the attribute values
used in the selection criterions are included in the log record. Thus, the DTs to insert
into are found in the log record directly. For update and delete operations, a search is
necessery to identify all involved records. The reason for this is that the log records of
these operations do not include the value of the selection attributes. Delete operations
and update operations that do not change select criterion attributes are applied straight-
forward when first found. If the attribute(s) used in the select criterion are updated,
however, the record may have to be deleted and inserted into other DTs.

4.5 Difference and Intersection

Difference and intersection are so closely related that the same method is applied to
materialize both DTs. Figure 4 shows the involved tables: S1 is compared to S2, and
difference and intersection sets are inserted into Tdiff and Tint, respectively. In addi-
tion, the records from S2 are stored into Tcomp.
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The derived tables must store the source record IDs (RIDSrc in Figure 4), and LSNs.
When the source tables have been fuzzily read, records from S2 are inserted into Tcomp,
whereas records from S1 are inserted either into Tdiff or Tint, depending on the exis-
tence of equal records in Tcomp.

Since the records stored in the DTs are unmodified and contain both source RIDs
and LSNs, log propagation is self-maintainable: Insert of S1−records are ignored if the
record already exists in either Tdiff or Tint. Otherwise, an equal record is searched
for in Tcomp to determine which of the two tables it should be inserted into. Delete
operations for T1 removes the record from whichever table it resides in. Updates may
require a record to be moved between Tdiff and Tint.

The deletion of a record from S2 is propagated as a delete from Tcomp, and may
require a record in Tint to move to Tdiff . The opposite may be the result of an insert
into S2. Finally, update operations affecting a record in Tcomp may require records to
be moved between Tdiff and Tint.

5 Conclusion and Further Work

A method to perform non-blocking derived table materialization for six common rela-
tional operators has been developed for relational databases. Once created, these derived
tables can be used as materialized views or for non-trivial schema transformations. In
contrast to the method described in this paper, current commercial DBMSs block the
involved tables during these task which may take minutes or more when large source
tables are involved. Two of the operators are enhancements of methods previously sug-
gested by the authors [18] while the remaining four are new. In contrast to the previously
published methods, the enhanced methods can handle delta updates.

The method has been shown to incur little response time and throughput interference
to normal transactions executing concurrently with the vertical merge and split methods
previously published [18]. All described operators will be tested with the same proto-
type to verify these results. Since all operators use the same technique, however, the
results are expected to be very similar in all cases.
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Abstract. Entity-Relationship and other common database modeling
tools have restricted capabilities for designing a relationship of higher ar-
ity. Although a complete and unambiguous specification can be achieved
by traditional functional dependencies for relational schemata, use of the
traditional formal notation in practice is rare. We propose an alternative
way: designing or surveying the properties of a non-binary relationship
among object classes or attributes is considered by spreadsheet reason-
ing methods for functional dependencies. Another representation by the
semilattice of closed attribute sets can also be used in parallel due to
convenient conversion facilities.

1 Preliminaries

1.1 Introduction

The Entity-Relationship (ER) model (eg. [12,13,11,21]) is the most widely used
graphical tool for database schema design. The design procedure is based on
identification of entity classes and relationships among them. Relationships are
usually binary, ie. they connect two entity classes, but higher arities (eg. ternary,
quaternary) are allowed and should be used whenever convenient. The model
allows specification of cardinalities of entities participating in relationships.

During database design we observe a separation of complexity. The arity of
entity types (number of attributes) is often higher than the arity of relationship
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types (number of component types of the relationship type and the number of
attributes of the relationship type). This separation of type complexity may lead
to two different design principles: requirement of full knowledge of all functional
dependencies that are valid for a relationship type and tolerance of incomplete
knowledge of functional dependencies of entity types. Since relationship types
are usually of small arity we need tools which allow to develop the complete set
of functional dependencies1 and allow to detect when we gained the complete
knowledge.

ER and other common modeling tools have restricted capabilities for design-
ing a relationship of higher arity. Therefore, binarization is often performed
even if higher arity relationships would provide a more suitable model. In fact,
the complexity of such relationships can be high and different types of ternary,
quaternary relationships are not characterized (as opposed to binary cases) [9].
The complete and unambigous specification can be achieved by recalling data-
base constraints, and relationship construction can be achieved through relation
schema design. To achieve this, the database developer must master semantics
acquisition, while nowadays, dependency theory at schema design is usually ap-
plied only to determine keys and decompose schemata into normal forms (eg.
[5,6,4,7]). At the same time, a simple and powerful decomposition theory that
might be applied to relationship types and will lead to simpler and better to
survey schemata is not yet known. This theory can be developed if we have a fa-
cility for reasoning on the entire set of functional dependencies of a relationship
type.

We focus on relationships that can be described by sets of functional depen-
dencies. The notion of these dependencies was introduced in [3] for the relational
database model [14], mainly to provide a way for specification of the properties
of valid, acceptable instances of a relational schema. Classical database design
is based on a step-wise extension of the constraint set and on a consideration of
constraint sets through generation by tools. The theory developed in [7] provides
a tool to decompose relationship types within the notions of the extended ER
model [21]. In this case a relationship type may be decomposed by pivoting.

The traditional formal notation considers dependencies one-by-one including
trivial and redundant ones. The implication is not effective enough in most cases.
There is usually a strong inter-dependence among constraints. All these lead to
an inconvenience in using the formalism with the traditional axiomatization.
Therefore, simple and sophisticated means of representation and reasoning for
constraint sets are needed. [18] proposed an approach for graphical representa-
tion of sets of functional dependencies for small relation schemata that supports
reasoning. Based on similar theoretical considerations, we give in this paper
another means of representation, the spreadsheet representation that might be
more convenient for some designers, especially for designing relationships with
arity higher than three. More details on both representations can be found in

1 During constraint acquisition it is also important to collect those dependencies which
are known to be invalid in general. They can be represented by negated (or excluded)
functional dependencies [21].
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[17]. We present the spreadsheet representation parallel with the semilattice ap-
proach of closed attribute sets discussed in [16]. They are likely to complement
(compensate) each other because the more dependencies we have in the spread-
sheet, the less edges we have in the semilattice graph.

The proposal of spreadsheet representation of constraint sets provides a possi-
ble solution of the problem of defining a pragmatical approach that allows simple
representation of and reasoning on database constraints. It is crucial since typical
algorithms such as normalization algorithms can only generate a correct result
if specification is complete. Therefore, the database design process may only be
complete of all integrity constraints if one specifies the missing constraints that
cannot be derived by those that have already been specified.

1.2 On the Complexity of Relationship Types

For the binary case, three different basic relationship types exist (without con-
sidering optionality and exact cardinalities): one-to-one, one-to-many, many-to-
many. If we fix the role of the two components, the many-to-one version must be
included additionally. These relationship types can be described by sets of func-
tional dependencies, treating components as attributes of a relational schema.
With the generalization of this concept to higher arities, the different possible
types of relationships correspond to the different closed sets of functional depen-
dencies.

Denote by SDn the set of closed sets of functional dependencies for a relation
schema with n attributes (with constant attributes disallowed). This corresponds
to the different relationship types for components with fixed role (asymmetric
types counted more that once). Furthermore, let τ the equivalence relation on
these sets classifying them into different types or cases (for two equivalent sets
there exists a permutation of attributes transforming one set to another). The
number of different classes (SDn/τ) exactly correspond to the number of relation-
ship types if the attributes do not have a fixed role (an asymmetric relationship
type is counted only once). If we allow attributes to be stated as constants (which
is, however not likely in schema design), it yields a larger set that is exactly the
set of Moore families [19] for n, denoted by SD�0n and its equivalence classes
SD0

n/τ . For each n ∈ N+,
∣∣SD0

n+1/τ
∣∣ = |SDn+1/τ | + ∣∣SD0

n/τ
∣∣ easily follows, as

well as
∣∣SD0

n

∣∣ =
∑n

i=0

(
n
i

) |SDi| where |SD0| = 1.
With these notations, Table 1 shows the number of different cases for known

arities and demonstrates the combinatorial of the search space. The first five rows
were computed by a PROLOG program [18,17] and the third column was also
obtained by [20]. The number of Moore families for six elements was presented
in [19] and the first column can be calculated from that by the summarization
formula above. The number of different equivalence classes for the sixth row is
still unknown.

Although the number of different relationship types for n attributes is still
unsolved2, it can be seen from the table that the complexity is already high for

2 Estimations exist, see [8,16].
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Table 1. Number of closed sets of functional dependencies for n attributes

n |SDn| |SDn/τ | |SD�0n| |SD0
n/τ |

1 1 1 2 2

2 4 3 7 5

3 45 14 61 19

4 2 271 165 2 480 184

5 1 373 701 14 480 1 385 552 14 664

6 75 965 474 236 ? 75 973 751 474 ?

small arities. Therefore, suitable tools are sought for a complete specification of
a relationship with functional dependencies.

1.3 Motivating Example

Figure 1 shows an ER model of a university lecture proposal as a relationship
with arity seven. To give a complete specification for the structure of this re-
lationship in terms of functional constraints directly seems to be hard. For a
better design, one may seek decomposition possibilities (separation of aspects).
A possible solution is presented on Figure 2. 3 In this case we have still the
question of describing the type, ie. the inner structure of the relationships. It
is simple for the two binaries, ’Side condition’ and ’History of proposal’, they
are many-to-many and many-to-one, respectively, but we need to determine the
type of the ternary relationships ’Lecture proposed’ and ’Course proposed’ by
choosing one of the 45 possibilities for each (see Table 1). One may also have
relationships in the decomposed schema with higher arities that need complete
type specification.

�

�

Lecture
proposed

Module

Can be held in

Room

�

Course

�
Program

�Entered by

�Given by

�Responsible
Person

Fig. 1. ER schema for a university lecture proposal as a single relationship

Let us consider the specification of one of the ternary relationship types in
the decomposed schema as a running example.
3 HERM model, see [21].
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proposed

Module

Course

Program

�Side
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Room

� �Given by

�Responsible Person

�

History of

proposal

Entered by

�

Fig. 2. Decomposed extended ER schema of lecture proposal by pivoting

Example 1. ’Course proposed’: Assume a course determines its module, more-
over, there can only be one course proposed for a module and program. It is for-
malized as two functional dependencies {Course→ Module, Program Module
→ Course}. The complete specification can be reached by a constraint acquisition
process.

2 Classical, Lean and Graphical Reasoning

2.1 Traditional Logical Approach

We adopt the traditional notation for functional dependencies (eg. [3,16,1,21])
with the correspondence that a relationship type can be interpreted as a relation
schema and its component types as attributes. Besides functional dependencies
(FDs), we use excluded functional constraints (also called negated functional
dependencies) as well: eg. X −→/ Y states that the functional dependency X −→
Y is not valid.4

Traditional axiomatization of functional dependencies is the following, Arm-
strong implication system. It can be extended for negated dependencies by five
more rules [21].

Axiom

XY → Y

Rules

(1)
X −→ Y

XV W −→ Y V
(2)

X −→ Y , Y −→ Z

X −→ Z

However, this traditional formalism has inherent redundancy that might be
confusing if one tries to find the derived dependencies of an initial set.

4 Negated functional dependencies are considered with weak semantics, ie. a negated
dependency may be valid in a particular instance but invalidity is taken as the normal
situation for instances of the schema.



Relationship Design Using Spreadsheet Reasoning 113

Example 2. Recall Example 1. The functional dependency Course Program →
Module easily follows by rule (1). However, at this point only trivial (and
pseudo-trivial)5 dependencies can be derived as a next step and it is not easy
to see whether further nontrivial dependencies can be derived. If one adds
Course Module → Program as an extra initial dependency for the sake of ex-
ample, this situation remains unchanged. However, in the latter case Course→
Program is a nontrivial consequence that can only be reached via derivation of
a (pseudo-) trivial dependency, eg. by first deriving Course → Course Module
by (1) and then using the transitive rule (2).

In the above example the question is still open: Is there any other nontriv-
ial dependencies that can be derived? The only way to answer that with the
above axiomatization seems to be first to derive all trivial and redundant de-
pendencies like Course → Course, Course → Course Program, Course →
Module Program, etc. and see what may follow further by the rules. It becomes
more complicated when we add the rules for negated functional constraints [21].

One may use the closure algorithm [1] instead, which is effective but does not
provide a representation and reasoning system for the whole set of dependencies.
Moreover it can not deal with negated dependencies which is necessary to collect
the possible remaining dependencies which should be checked against the real
world to achieve a complete specification of the relationship type.

2.2 A Simplified Logical Approach

For a more suitable logical framework, we propose a simplification, bearing in
mind that the aim is to consider sets of dependencies and not dependencies one-
by-one. The redundancy and unnecessary complexity of the above formalism lies
in the following aspects: First, all the symbols occuring in the rules denote at-
tribute sets and not single attributes. Moreover, these sets may not be disjoint.
This raises the number of the possible instantiations of the rules. Second, de-
pendencies with more than one attribute on their right-hand sides are inherently
redundant since they can directly be decomposed to singletons, ie. which have
only one attribute on their right-hand side.6 (Pseudo-)Trivial dependencies do
not hold extra information either.

Functional Constraints, Excluded Functional Constraints and their
Dimension. To give a proper formal basis for our spreadsheet representation,
we simplify the above formalism and deal with nontrivial singleton functional
5 A trivial constraint has a subset of its left side as its right side. A pseudo-trivial

constraint has at least one attribute that appears on its both sides. Since we focus
on sets of constraints, we treat pseudo-trivial dependencies as trivials for the sake
of simplicity.

6 A non-singleton functional dependency can be decomposed into singletons. A non-
singleton negated dependency, however, represents a disjunction. We do not consider
such dependencies since their relevance is usually not high and by using our simpli-
fied implication system they are not needed as intermediate results either (during
derivation of singleton constraints).
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constraints (both functional dependencies and their negated versions) only, with-
out loosing relevant expressive power of functional constraints.

In most of the cases, we focus on closed sets of functional dependencies. A
finite (singleton, nontrivial) constraint set F is closed iff F+ = F where F+ is the
singleton, nontrivial closure of F, i.e. contains all implied singleton, nontrivial
constraints.

Dimension of a constraint is simply the size of its left-hand side, i.e. the
number of attributes on its left-hand side. Dimension allows a natural grouping
of possible singleton, nontrivial functional constraints over an attribute set.

For a single attribute A, given a set of functional dependencies F ⊂ D+
c ,

the dimension of A is denoted by [A]F (or just simply [A]) and defined as
[A]F

def= minX→A∈F+ |X |. This definition is extended with [A]F
def= ∞ for the

case when no X → A exists in F+. The dimensions of attributes can be used to
classify the sets of functional dependencies.

The ST and PQRST Implication Systems and the Order of Rule Appli-
cation. We base our spreadsheet reasoning on the following sound and complete
axiomatization of nontrivial and singleton constraints [18,17].

In the following rules, Y denotes a set of attributes (allowed to be empty) and
A, B, C are different attributes not occurring in Y .

(S)
Y → B

Y C → B
(T )

Y → A, Y A→ B

Y → B
(P )

Y C �→ B

Y �→ B

(Q)
Y → A, Y �→ B

Y A �→ B
(R)

Y A→ B, Y �→ B

Y �→ A
(�) ¬(Y → B, Y �→ B)

– The ST implication system for positive constraints contains rules (S) and
(T) and no axioms,

– The PQRST implication system for both negative and positive constraints
has all the presented rules and the symbolic axiom (�), which is used for
indicating contradiction.

The implication systems introduced above have the advantage of the existence
of a specific order of rules which provides a complete algorithmic method for get-
ting all the implied functional constraints starting with an initial set[17]. The
order for positive dependencies is first to use (S) only as many times as possible
and then use (T) as many times as possible. We may call it ST method. It can
be fine-tuned by taking dimensions into account: start with lower-dimensional
instantiations of rule (S) and move towards higher dimensions. When applying
rule (T) the opposite should be done: start with the highest-dimensional cases
possible and end with the lowest-dimensional. The method is extended for ex-
cluded functional constraints by applying (R) until no changes occur, then (P)
and (Q) in an arbitrary order until no changes occur. This is called STRPQ
method.
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2.3 Triangular Graphical Representation and Reasoning

[18] proposed a graphical representation for sets of (nontrivial, singleton) func-
tional constraints for small number of attributes, which has a similar theoretical
background. Functional dependencies and excluded functional constraints are
represented as filled circles at the nodes of geometrical figures (circles and crossed
circles, resp). Rules of the PQRST system can be graphically interpreted and im-
plied constraints are denoted by empty circles. Although it can be generalized to
higher number of attributes, the representation is best for ternary cases. In such
a case, the diagram consists of a triangle and three separate edges. Triangular
nodes represent FD’s that have two attributes on their left sides. One-to-one con-
straints correspond to nodes of separate edges. For instance, Figure 3 shows the
case of Example 1 on the left: the initial functional dependencies {Course →
Module, Program Module → Course} as filled circles and the implied func-
tional dependency Course Program → Module as an empty circle. The right
side is an extension by the negated dependency Program �→Module and its im-
plication Program �→ Course (by (R)). For higher number of attributes higher
dimensional representations exist (eg. tetrahedral for 4 attributes) that may be
transformed into two dimensions (eg. quadratic for 4 attributes). Some design-
ers may find the spreadsheet notation we present in this paper more convenient
(especially for more than 3 attibutes) but both can be used in parallel.

Course Program

Module

×

×

Course Program

Module

Fig. 3. Examples of the triangular representation

3 Spreadsheet Representation and Reasoning

3.1 The Spreadsheet Notation of Sets of Functional Dependencies

A set of functional dependencies over a specific set of attributes can be repre-
sented as a row of a table where columns correspond to the possible functional
dependencies and a digit 1 or 0 in a column indicates the presence or absence
of the corresponding dependency in the set. This representation is a brief but
still convenient way to present a larger amount of sets and can also be used for
reasoning on a particular set of constraints.

Dependencies are grouped according to their dimensions. Since our main focus
is on schema design, we ignore cases with zero-dimensional constraints (speci-
fying constant attributes), so the possible dimension values for n attributes are
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{1, 2, . . . , n−1}. The number of possible (singleton, nontrivial) dependencies with
dimension d is

(
n
d

)
(n−d). Therefore, the number of columns of the spreadsheet

for n-ary cases is
∑n−1

d=1

(
n
d

)
(n−d). It equals 2 for 2 attributes, 9 for 3 attributes,

28 for 4 attributes and 75 for 5 attributes.

Sets of Functional Dependencies for Small Relation Schemata. The
number of different types of ternary relationships is 14 (see Table 1). Table 2
shows the spreadsheet representation of the sets with their generating systems
and attribute dimensions indicated. The two dimension groups of dependencies
are separated by triple lines.

The possible 165 quaternary cases are presented in [17].

Table 2. The sets of functional dependencies for the ternary case, grouped by dimen-
sions of attributes

3.2 Extension to Spreadsheet Reasoning

Consider the spreadsheet representation for three attributes. Generalization of
the following issues for higher number of attributes is straightforward.

To use the spreadsheet for reasoning, we extend the notation as follows. Let 1
and 0 indicate the functional dependencies and excluded functional constraints
of the initial set, respectively. We put a ’.’ to each of the columns corresponding
the constraints whose state is not known. As we get an implied positive con-
straint (functional dependency) during the deduction process, we replace the
corresponding ’.’ with �1 if the state of the implied constraint was previously
unknown. Similarly, an implied negated constraint is indicated by �0.
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Table 3. Example of the spreadsheet derivation of functional constraints: Rules of the
PQRST implication system in the spreadsheet form

BC AC AB B A C A C B Implication impact
→ → → → → → → → → of detected
A B C A B A C B C functional constraints

. 
 1 . . 1 . . . . (S) A → B 
 AC → B

. . 1 . 1 . 
 1 . . (T) AB → C, A → B 
 A → C

. 0 . . 
 0 . . 
 0 . (P) AC �→ B 
 A �→ B, C �→ B

. . 
 0 . 1 . 0 . . (Q) A → B, A �→ C 
 AB �→ C

. . 1 . 
 0 . 0 . . (R) AB → C, A �→ C 
 A �→ B

Table 3 shows how rules of the PQRST implication system can be represented
in the spreadsheet form for the ternary case. For cases with more attributes C
has to be syntactically replaced in the rules with each possible attribute set.
The STRPQ algorithm presented above provides a possible way for derivation
of the full knowledge a partial set holds. Other implication systems can also be
used but PQRST has the advantage that the rules are simple to instantiate in
terms of the spreadsheet representation. A rule application corresponds to the
choice of one or two columns (depending on the rule) with proper content (0 or
1, depending on the rule) and writing the result in one target column (implied 0
or 1). Dimensionality ensures that the involved columns for a rule instantiation
are not far away from each other, even for higher arities: we must consider two
neighboring dimension groups only.

The spreadsheet can be used for deriving contradictions as well. Contradic-
tions occur whenever new constraints are introduced and the implication system
allows to derive the opposite. We may indicate the contradiction by the symbol�. The first case on Table 4 is due to the rule system in the extended Armstrong
axiomatization (reversed transitivity). The second one is obvious due to rule (Q)
of the PQRST system.

Table 4. Deriving contradiction by spreadsheet reasoning

BC AC AB B A C A C B Implication impact
→ → → → → → → → → of detected
A B C A B A C B C functional constraints

. . . . 1 . 0 . 
 0 �1 {A → B, A �→ C} � {B → C}

. 
 0 �1 . 1 . 0 . . {A → B, A �→ C} � {AB → C}

3.3 Managing Sets of Functional Dependencies

Inserting a Functional Constraint into a Closed Set. We can now derive
from a set of given constraints all constraints that are implied and that are
contradicted. We, thus, obtain a number of constraints whose validity is still
open. Using the approach of [2] we can generate sample data and provide them
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to the designer with the question whether these data support a certain functional
dependency or not. At this point, a new constraint is inserted and only the new
implications needed to be generated in the spreadsheet, involving a contradiction
check. This way sets of functional dependencies can be definitively developed.

The following recursive algorithm adds a (positive) functional dependency to
a closed set:7

Add(F, A1A2 . . . Ak → B) :
if A1 . . . Ak �→ B then �, stop
else if A1 . . . Ak → B then return
else declare A1 . . . Ak → B as implied and
1. (S): ∀C : Add(F, A1 . . . AkC → B)
2. (T): ∀C : if A1 . . . AkB → C then Add(F, A1 . . . Ak → C)
3. (T support): ∀i : if A1 . . . Ai−1Ai+1 . . . Ak → Ai then

Add(F, A1 . . . Ai−1Ai+1Ak → B)
4. (R support): ∀i : if A1 . . . Ai−1Ai+1 . . . Ak �→ B then

Add(F, A1 . . . Ai−1Ai+1Ak �→ Ai)
5. (Q support): ∀C : if A1 . . . Ak �→ C then

Add(F, A1 . . . AkB �→ C)
end if

end.

To insert a negated constraint, the algorithm looks like this:

Add(F, A1A2 . . . Ak �→ B) :
if A1 . . . Ak → B then �, stop
else if A1 . . . Ak �→ B then return
else declare A1 . . . Ak �→ B as implied and
1. (R): ∀C : if A1 . . . AkC → B then Add(F, A1 . . . Ak �→ C)
2. (Q): ∀C : if A1 . . . Ak → C then Add(F, A1 . . . AkC �→ B)
3. (P): ∀i : Add(F, A1 . . . Ai−1Ai+1Ak �→ B)

end if
end.

The algorithms work by searching all possible consequences and support cases
of each constraint recursively based on the implication system PQRST. Their
efficiency is proportional to the number of newly implied constraints multiplied
by the number of attributes of the schema. It is due to the simplicity of the rules:
the number of possible instantiations given one of their prerequisite constraints
(i.e. when Y and B fixed) is bounded by the number of attributes – one free
parameter remains which is an attribute (eg. C for rule (S) and A for rule (T)).
This is not true for the Armstrong implication system. Since there are constant
number of rule application types after adding a single constraint (5 for a positive
and 3 for a negative constraint), complexity of the whole recursive algorithm is
bounded by a constant (five or three) times the number of attributes multiplied
by the total number of added constraints.
7 Universe of quantification ∀C contains all the attributes except A1 . . . Ak and B.

Universe of quantification ∀i is [1 . . . k]. Quantifications can be implemented by for
loops.
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Deleting a Constraint. Could be performed by a same type of recursion.
However, an implied constraint cannot be removed so the first step is to check
whether it is implied by other constraints. This should be done for all implica-
tions as well. Since mutual implications may exist, deletion can only be carried
over by a two-phase method: first flag all the implied constraints in the spread-
sheet that can be derived using the one to be deleted and then check which of
them can be derived using other, remaining constraints. This may cause some
flags to be removed (some constraints not to be deleted). After this procedure is
completed, flagged constraints can be removed from the constraint set and the
set remains closed.

3.4 An Example

Example 3. Recall our running example (Example 1) and from now on, let us
abbreviate the components of the relationship with their initials: C for Course,
P for Program and M for Module. Table 5 shows the steps of constraint acqui-
sition process with spreadsheet reasoning. The first two steps were depicted on
Fig. 3 as well.

Table 5. Constraint acquisition with spreasheet reasoning

The initial assumption is the same as in Example 1, ie. MP → C, C → M .
From this initial set, CP → M follows by rule (S) as shown in the first line
of Table 5. As a second step, P �→ M is inserted and the recursive implication
process yields the only implication P �→ C. In the third step, the possible depen-
dency C → P is chosen from the still unknown columns and declared as invalid.
Rule (Q) is applicable and we get MC �→ P . It immediately implies M �→ P
by (P) and no other new implications exist. As the fourth step the last missing
constraint is declared as negated too, and its possible implications are checked
whether they contradict some of the constraints already specified. There is no
contradiction in this case.

4 Spreadsheet Reasoning and the Semilattice of Closed
Attribute Sets

We know from [16] that the set of closed attribute sets wrt a set of functional
dependencies is closed under intersection so they form an intersection-semilattice
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(meet-semilattce, SL). This can be reversed: each set of attribute sets containing
the full set (of all the attributes of the schema) that is closed under intersection
forms an SL and there exists a set of functional dependencies whose closed
attribute sets are exactly the items of the SL. This way we get an alternative
representation of functional dependency sets and so, of relationship types.

The semilattice can be represented by a graph [15,10]: labelled nodes corre-
spond to closed attribute sets and the (nontransitive instances of) set contain-
ment are represented by edges. Since the attributes are ’inherited’ along the
edges, it is enough to indicate the new attributes at each node only. For the sake
of clarity, we indicate all the attributes but put the inherited ones in brackets.
Figure 4 shows the semilattice graph corresponding to Example 1 and 3. 8

O

  P        M

              C(M)

       (CPM)

Fig. 4. Semilattice graph of closed attribute sets for Example 1,2,3 and 4

The semilattice graph corresponds to a different point of view than the spread-
sheet: the more positive dependencies we have, the less vertices the graph has.
This is of course not a strict proposition since we may have redundant dependen-
cies. However, adding a nonredundant dependency always destroys at least one
closed set, ie. removes one or more nodes from the graph. The semilattice graph
notation becomes simple in some cases while considering the set of functional
dependencies is complicated in the spreadsheet. In other cases the situation is
reversed. Therefore, by designing or surveying a relation schema, both represen-
tations may be used in parallel, focusing on the one more convenient.

4.1 Conversion Between Representations

Obtaining the Closed Attribute Sets from a Closed Set of Functional
Dependencies. Whether or not a specific attribute set is closed can be seen
from the spreadsheet representation of a closed constraint set in the dimension
group corresponding to the size of the attribute set. To construct the semilattice
graph of all the closed sets needs systematically collecting the closed sets. It is
performed on the basis of the following rules:

1. The set of all attributes is always closed.
2. If a set X is closed and no dependency Y → A holds where Y ⊂ X and

A ∈ X \ Y then Y is closed.
3. If two sets X and Y are closed then X ∩ Y is closed.

8 If some dependencies remain unknown then a semilattice graph can still be con-
structed but some closed attribute sets will be (and must be marked as) uncertain.
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We start with the full set with size n (first rule). Then look at each attribute
sets with size n− 1 whether the dependency holds whose left-hand side is that
set (simply displayed as the highest dimension group in the spreadsheet). If the
dependency does not hold, the set is added to the closed attribute sets (second
rule). Then we add the intersections of the obtained sets as closed sets (third
rule). This process is repeated with the possible sets in decreasing order by their
sizes. The third rule ensures once a closed set is found, determining whether a
subset of it is closed needs only to check existence of dependencies completely
inside (and not pointing outside) of the set. The whole process can be done also
by hand for small relation schemata using the spreadsheet representation.

Transforming the Semilattice Graph into a Closed Set of Functional
Constraints. Given the semilattice of the closed attribute sets, negated func-
tional constraints can be obtained: if a set X is closed, then X �→ A holds for
each A /∈ X . These are declared as initial constraints in the dimension group
of the spreadsheet corresponding to the size of X . All other negated constraints
can be derived afterwards by the negated reduction rule (P). All the remaining
nodes correspond to positive functional dependencies.

Example 4. Consider the graph on Figure 4. We construct line 4 of Table 5
(implication signs may differ). MC is closed, therefore a 0 must be entered into
the column of MC → P . It implies M �→ P and C �→ P by (P). The closedness
of M means M �→ C must be declared additionally and due to the closedness
of P P �→ M and P �→ C must be declared. Finally, all the remaining columns
must be filled with 1’s.

5 Conclusion, Future Work and Open Problems

We have proposed a spreadsheet representation for reasoning on sets of func-
tional constraints (functional dependencies and excluded functional constraints)
as well as conversion algorithms between this type of representation and the
semilattice of closed attribute sets that can be used as a support for spreadsheet
reasoning. The main focus is on considering sets of constraints as a whole instead
of constraints one-by-one as in the traditional notation. Inherent redundancy of
the traditional syntax is eliminated by not considering trivial and nonsingleton
dependencies. A simple and powerful implication system PQRST convenient for
the spreadsheet representation is taken as a basis for reasoning. There exists a
specific order of rule application to derive all implied dependencies and we have
also given a recursive method for inserting a dependency into a closed set whose
efficiency reflects the simplicity of the rules.

Implementation of the discussed methods can give a software tool support
for designing relationships by sets of functional constraints. Future work may
include the construction of a spreadsheet method for other types of constraints
like multivalued or inclusion dependencies.

The different possible sets are generated for up to 5 attributes [17]. We know
the number of possible sets for 6 fixed attributes from [19]. However, it is still
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open for six attributes how many different types of relationships are possible (the
number of cases up to permutation of attributes). No exact numbers for more
than 6 attributes are known, according to our knowledge. However, a deeper
analysis of the known cases (ternary, quaternary, quinary) is also promising in
order to have more sophisticated reasoning facilities on types of relationships.
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efficient approach for obtaining semantic constraints using sample data and natural
language processing. In Proc. Semantics in Databases, LNCS 1358, pages 1–28.
Springer, Berlin, 1998.

3. W. W. Armstrong. Dependency structures of data base relationships. In J. L.
Rosenfeld, editor, Information Processing 74, Proceedings of IFIP Congress 74,
pages 580–583, Stockholm, Aug. 5-10,1974, 1974. North-Holland, Amsterdam.

4. J. Biskup. Boyce-codd normal forma and object normal forms. Information
Processing Letters, 32(1):29–33, 1989.

5. J. Biskup. Foundations of information systems. Vieweg, Wiesbaden, 1995. In
German.

6. J. Biskup, J. Demetrovics, L. O. Libkin, and M. Muchnik. On relational database
schemes having a unique minimal key. J. of Information Processing, 27:217–225,
1991.

7. J. Biskup and T. Polle. Decomposition of database classes under path functional
dependencies and onto contraints. In Proc. FoIKS’2000, LNCS 1762, pages 31–49.
Springer, 2000, 2000.

8. G. Burosch, J. Demetrovics, G. O. H. Katona, D. J. Kleitman, and A. A.
Sapozhenko. On the number of databases and closure operations. TCS, 78(2):377–
381, 1991.

9. R. Camps. From ternary relationship to relational tables: A case against common
beliefs. ACM SIGMOD Record, 31(2), pages 46–49, 2002.

10. N. Caspard and B. Monjardet. The lattices of closure systems, closure operators,
and implicational systems on a finite set: a survey. Discrete Applied Mathematics,
127:241–269, 2003.

11. Chen & Associates, Baton Rouge, LA. ER-designer reference manual, 1986–1989.

12. P. P. Chen. The entity-relationship model: Toward a unified view of data. ACM
TODS, 1(1):9–36, 1976.

13. P. P. Chen, editor. Proc. 1st Int. ER Conf., ER’79: Entity-Relationship Approach
to Systems Analysis and Design, Los Angeles, USA, 1979, 1980. North-Holland,
Amsterdam.

14. E. F. Codd. A relational model for large shared data banks. CACM, 13(6):197–204,
1970.

15. J. Demetrovics and N. X. Huy. Translations of relation schemes and representations
of closed sets. PU.M.A.Ser. A, 1(3-4):299–315, 1990.

16. J. Demetrovics, L. O. Libkin, and I. B. Muchnik. Functional dependencies and the
semilattice of closed classes. In Proc. MFDBS’89, LNCS 364, pages 136–147, 1989.



Relationship Design Using Spreadsheet Reasoning 123

17. J. Demetrovics, A. Molnar, and B. Thalheim. Graphical and spreadsheet rea-
soning for sets of functional dependencies. Technical Report 0404, Kiel Uni-
versity, Computer Science Institute, http://www.informatik.uni-kiel.de/reports/
2004/0404.html, 2004.

18. J. Demetrovics, A. Molnar, and B. Thalheim. Graphical reasoning for sets of
functional dependencies. In Proceedings of ER 2004, Lecture Notes in Computer
Science 3288, pages 166–179. Springer Verlag, 2004.

19. N. Habib and L. Nourine. The number of moore families on n=6. Discrete Math-
ematics, 294(3):291–296, 2005.

20. A. Higuchi. Note: Lattices of closure operators. Discrete Mathematics, 179:267–
272, 1998.

21. B. Thalheim. Entity-relationship modeling – Foundations of database technology.
Springer, Berlin, 2000. See also http://www.informatik.tu-cottbus.de/∼thalheim/
HERM.htm.



Modeling and Storing Context-Aware

Preferences

Kostas Stefanidis, Evaggelia Pitoura, and Panos Vassiliadis

Department of Computer Science, University of Ioannina, Greece
{kstef, pitoura, pvassil}@cs.uoi.gr

Abstract. Today, the overwhelming volume of information that is avail-
able to an increasingly wider spectrum of users creates the need for per-
sonalization. In this paper, we consider a database system that supports
context-aware preference queries, that is, preference queries whose result
depends on the context at the time of their submission. We use data
cubes to store the associations between context-dependent preferences
and database relations and OLAP techniques for processing context-
aware queries, thus allowing the manipulation of the captured context
data at different levels of abstractions. To improve query performance,
we use an auxiliary data structure, called context tree, which indexes the
results of previously computed preference-aware queries based on their
associated context. We show how these cached results can be used to
process both exact and approximate context-aware preference queries.

1 Introduction

The increased amount of available information creates the need for personalized
information processing [1]. Instead of overwhelming the user with all available
data, a personalized query returns only the relevant to the user information. In
general, to achieve personalization, users express their preferences on specific
pieces of data either explicitly or implicitly. The result of their queries are then
ranked based on these preferences. However, most often users may have different
preferences under different circumstances. For instance, a user visiting Athens
may prefer to visit Acropolis in a nice sunny summer day and the archaeological
museum in a cold and rainy winter afternoon. In other words, the results of a
preference query may depend on context.

Context is a general term used to capture any information that can be used to
characterize the situation of an entity [2]. Common types of context include the
computing context (e.g., network connectivity, nearby resources), the user context
(e.g., profile, location), the physical context (e.g., noise levels, temperature),
and time [3]. A context-aware system is a system that uses context to provide
relevant information and/or services to its users. In this paper, we consider
a context-aware preference database system that supports preference queries
whose results depend on context. In particular, users express their preferences
on specific attributes of a relation. Such preferences depend on context, that is,
they may have different values depending on context.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 124–140, 2006.
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We model context as a finite set of special-purpose attributes, called con-
text parameters. Users express their preferences on specific database instances
based on a single context parameter. Such basic preferences, i.e., preferences as-
sociating database relations with a single context parameter, are combined to
compute aggregate preferences that include more than one context parameter.
Context parameters may take values for hierarchical domains, thus different lev-
els of abstraction for the captured context data are introduced. For instance,
this allows us to represent preference along the location context parameter at
different levels of detail, for example, by grouping together preferences for all
cities of a specific country. Basic preferences are stored in data cubes, following
the OLAP paradigm.

Although, aggregate preferences are not explicitly stored, we cache the results
of previously computed preference queries using a data structure called context
tree. The context tree indexes the results of queries based on their associated
context. The cached results are re-used to speed up the processing of queries
that refer to the exact context of a previously computed query as well as of
queries whose context is similar enough to those of some previously computed
ones. We provide initial experimental results that characterize the quality of the
approximation attained by using preferences computed at similar context states.

In summary, in this paper, we make the following contributions:

– We provide a logical model for context-aware preferences that is based on a
multidimensional model of context.

– We propose storing the results of previously computed preference queries
using a data structure, the context tree, that indexes these results based on
the values of the context parameters.

– We show how cached results can be used to compute both exact and approx-
imate context-aware preference queries.

2 A Logical Model for Context and Preferences

2.1 Reference Example

Consider a database schema with information about points of interest and
users (Fig. 1). The points of interest may for example be museums, mon-
uments, archaeological places, zoos. We consider three context parameters as
relevant to this application: location, temperature and accompanying people.
Users have preferences about points of interest that they express by providing
a numeric score between 0 and 1. The degree of interest that a user expresses
for a point of interest depends on the values of the context parameters. For ex-
ample, a user may visit different places depending on the current temperature,
for instance, user Mary may give Acropolis that is an open-air place, a lower
score when the weather is cold than when the weather is warm. We consider
temperature to take one of the following values: freezing, cold, mild, warm,
and hot. Furthermore, the location of users may also affect their preferences, for
example, a user may prefer to visit places that are nearby her current location.
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Similarly, the result of a query depends on the accompanying people that might
be friends, family, and none. For example, a zoo may be a better place to visit
than a brewery in the context of family.

Points of Interest(pid, name, type, location, open-air, hours of operation, admission cost)
User(uid, name, phone, address, e-mail)

Fig. 1. The database schema of our reference example

2.2 Modeling Context

Context is modeled through a finite set of special-purpose attributes, called
context parameters (Ci). For a given application X , we define its context envi-
ronment CEX as a set of n context parameters {C1, C2, . . . , Cn}. For instance,
the context environment of our example is {location, temperature, accompany-
ing people}. As usual, a domain is an infinitely countable set of values. A context
state corresponds to assigning to each context parameter a value from its domain.
For instance, a context state may be: CS(current) = {Plaka, warm, friends}.
The result of a context-aware preference query depends on the context state
of its execution. It is possible for some context parameters to participate in an
associated hierarchy of levels of aggregated data, i.e., they can be viewed from
different levels of detail. Formally, an attribute hierarchy is a lattice of attributes
– called levels for the purpose of the hierarchy – L = (L1, . . . , Ln, ALL). We re-
quire that the upper bound of the lattice is always the level ALL, so that we
can group all values into the single value ‘all’. The lower bound of the lattice is
called the detailed level of the parameter. In our running example, we consider
location to be such an attribute as shown in Fig. 2 (left). Levels of location are
Region, City, Country, and ALL. Region is the most detailed level, while level
ALL is the most coarse level.

2.3 Contextual Preferences

In this section, we define how context affects the results of a query. Each user
expresses her preference for an item in a specific context by providing a numeric
score between 0 and 1. This score expresses a degree of interest: value 1 indicates
extreme interest, while value 0 indicates no interest. We distinguish preferences
into basic (involving a single context parameter) and aggregate ones (involving
a combination of context parameters).

Basic Preferences. Each basic preference is described by (a) a value of a
context parameter ci ∈ dom(Ci), 1 ≤ i ≤ n, (b) a set of values of non-context
parameters ai ∈ dom(Ai), and (c) a degree of interest, i.e., a real number between
0 and 1. So, for a context parameter ci, we have:

preferencebasici(ci, ak+1, . . . , am) = interest scorei.

In our reference example, besides the three context parameters (i.e, location,
temperature and accompanying people), the set of non-context parameters are
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attributes about points of interest and users that are stored in the database.
For example, assume user Mary and the point-of-interest Acropolis. When
Mary is in the Plaka area, she likes to visit Acropolis and gives it score 0.8.
Similarly, she prefers to visit Acropolis when the weather is warm and gives
Acropolis score 0.9. Finally, if she is with friends, Mary gives Acropolis score
0.6. So, the basic preferences for Acropolis and Mary are:

preferencebasic1(Plaka, Acropolis, Mary) = 0.8,
preferencebasic2(warm, Acropolis, Mary) = 0.9,

preferencebasic3(friends, Acropolis, Mary) = 0.6.

For context values not appearing explicitly in a basic preference, we consider
a default interest score of 0.5.

Aggregate Preferences. Each aggregate preference is derived from a combi-
nation of basic ones. An aggregate preference involves (a) a set of of n values
xi, one for each context parameter Ci, where either xi = ci for some value ci ∈
dom(Ci) or xi = ∗, which means that the value of the context parameter Ci is
irrelevant, i.e., the corresponding context parameter should not affect the aggre-
gate preference, and (b) a set of values of non-context parameters ai ∈ dom(Ai),
and has a degree of interest:

preference(x1, . . . xn, ak+1, . . . , am) = interest score.

The interest score of the aggregate preference is a value function of the in-
dividuals scores of the basic preferences. This value function prescribes how to
combine basic preferences to produce an aggregate score. In general, this may
be any computable function specified by the user. In this paper, we assume that
the interest score of an aggregate preference is simply a weighted sum of the
corresponding basic preferences. Users just specify a weight wi for each context
parameter Ci, such that,

∑n
i=1 wi = 1. For instance, in the previous example, if

the weight of location is 0.6, the weight of temperature is 0.3 and the weight
of accompanying people is 0.1, preference(Plaka, warm, friends, Acropolis,
Mary) gets score 0.81.

We describe next two approaches for computing the aggregate scores when
the value for some parameters in the preference is ‘*’. The first one assumes a
score of 0.5 for those context parameters whose values in the preference is ‘*’.
Then, the interest score for the preference preference(x1, . . . xn, ak+1, . . . , am)
is computed as:

interest score =
∑n

i=1 wi × yi

where yi = preferencebasici(xi, ak+1, . . . , am), if xi = ci and yi = 0.5, if xi = *.
The other approach includes in the computation only the interest scores of

those context parameters whose values are specified in the preference and ignores
those specified as irrelevant. In this case, the interest score for the preference
preference(x1, . . . xn, ak+1, . . . , am) is computed as follows. Assume without loss
of generality, that for the first k parameters xi, 1 ≤ i ≤ k, it holds xi = ci, for
ci ∈ dom(Ci) and for the remaining n− k parameters, xi, k < i ≤ n, it holds xi

= *. Then,



128 K. Stefanidis, E. Pitoura, and P. Vassiliadis

interest score =
∑k

i=1 w′
i × yi

where w′
i = wi

k
j=1 wj

, yi = preferencebasici(xi, ak+1, . . . , am), if xi = ci and yi

= 0.5, if xi = *.
For instance, preference(Plaka, ∗, friends, Acropolis, Mary) has score 0.69

when using the first approach and score 0.77, when using the second one.
It is easy to see that the orderings produced by each approach are consis-

tent with each other [4]. That is, both approaches order the tuples (e.g., the
points of interest in our example) the same way, since in both cases their ag-
gregate score depends on the values of the context parameters that are specified,
i.e., are not irrelevant. In the following, we assume that the second approach is
used.

To facilitate the procedure of expressing interests, the system may provide
sets of pre-specified profiles with specific context-dependent preference values
for the non-context parameters as well as default weights for computing the
aggregate scores. In this case, instead of explicitly specifying basic and aggregate
preferences for the non-context parameters, users may just select the profile that
best matches their interests from the set of the available ones. By doing so, the
user adopts the preferences specified by the selected profile.

2.4 Preferences for Hierarchical Context Parameters

When the context parameter of a basic preference participates in different levels
of a hierarchy, users may express their preference in any level, as well in more
than one level. For example, Mary can denote that the monument of Acropolis
has interest score 0.8 when she is at Plaka and 0.6 when she is in Athens.

For a parameter L, let L1, L2,. . . , Ln, ALL be the different levels of the hier-
archy. There is a hierarchy tree, for each combination of non-context parameters.
In our reference example, there is a hierarchy tree for each user profile and for
a specific point of interest that represents the interest scores of the user for
the points of interest, according to the location parameter hierarchy. In Fig.
2 (right), the root of the tree corresponds to level ALL with the single value
all. The values of a certain dimension level L are found in the same level of the
tree. Each node is characterized by a score for the preference concerning the
combination of the non-context attributes with the context value of the node.

Athens

  Greece

Region

City

Country

 Perama

Ioannina

ALL    all

KifisiaPlaka

Ioannina

PeramaKifisia

Athens

  
. . . . . .

. . . 

0.8 0.7

Greece
. . .

all
0.5

    Plaka

0.3Thessaloniki

Fig. 2. Hierarchies on location (left) and the hierarchy tree of location (right)
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If the context in a query refers to a level of the tree in which there is no explicit
score given by the user, there are three ways to compute the appropriate score
for a preference. In the first approach, we traverse the tree upwards until we find
the first predecessor for which a score is specified. In this case, we assume that
a user that defines a score for a specific level, implicitly defines the same score
for all the levels below. In the second approach, we compute the average score of
all the successors of the immediately following level, if such scores are available,
else we follow the first approach. Finally, we can combine both approaches by
computing a weighted average score of the scores from both the predecessor and
the successors. In any case, we assume a default score of 0.5 at level all, if no
score is given.

3 Storing Basic Preferences

We store basic user preferences in hypercubes, or simply cubes. The number
of data cubes is equal to the number of context parameters, i.e., we have one
cube for each context parameter. Formally, a cube schema is defined as a finite
set of attributes Cube = (Ci, A1, . . . , An, M), where Ci is a context parameter,
A1, . . . , An are non-context attributes and M is the interest score. The cubes for
our running example are depicted in Fig. 3. In each cube, there is one dimension
for the points of interest, one dimension for the users and one dimension for
the context parameter. In each cell of the cube, we store the degree of interest
for a specific preference.

User UserUser

Accompanying_People

     Points_of_Interest      Points_of_Interest      Points_of_Interest

Location Temperature

Fig. 3. Data cubes for each context parameter

A relational table implements such a cube in a straightforward fashion. The
primary key of the table is Ci, A1, . . . , An. If dimension tables representing hi-
erarchies exist (see next), we employ foreign keys for the attributes correspond-
ing to these dimensions. The schema for our running example which is based
on the classical star schema is depicted in Fig. 4. There are three fact tables,
Temperature, Location and Accompanying People. The dimension tables are:
Users and Points of Interest. These are dimension tables for both fact tables.

Regarding hierarchical context attributes, the typical way to store them is
shown in Fig. 5 (left). In this modeling, we assign an attribute for each level
in the hierarchy. We also assign an artificial key to efficiently implement refer-
ences to the dimension table. The denormalized tables of this kind suffer from
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       uid

      

scoreuid

phone

address

e−mail

 name

   weather Users

  pid
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 city

country

    lid

hours of operation

   pid

  open−air

   admission cost

   name

     type

    region

Temperature
Points_of_Interest

      Location

pid

uid

  lid

score

Accompanying_ People

a_people

score

pid

uid

H_Location

Fig. 4. The fact and dimension tables of our schema

the fact that there exists exactly one row for each value of the lowest level of
the hierarchy, but no rows explicitly representing values of higher levels of the
hierarchy. Therefore, if we want to express preferences at a higher level of the
hierarchy, we need to extend this modeling (assume for example that we wish
to express the preferences of Mary when she is in the city of Thessaloniki, in-
dependently of the specific region of Thessaloniki she is found at). To this end,
we use an extension of this approach, as shown in the right of Fig. 5. In this
kind of dimension tables, we introduce a dedicated tuple for each value at any
level of the hierarchy. We populate attributes of lower levels with NULLs. To
explain the particular level that a value participates at, we also introduce a level
indicator attribute. Dimension levels are assigned attribute numbers through a
topological sort of the lattice.

To compute aggregate preferences from simple ones we need also to store
the weights used in this computation. Weights are stored in a special purpose
table AggScores(wC1, . . . , wCk, Ak+1). The value for each context parameter
wCi is the weight for the respective interest score and the value Ak+1 spec-
ifies the user who gives these weights. For instance, in our running example,
the table AggScores has the attributes Location weight, Temperature weight,
Accompanying People weight, and User. A record in this table can be (0.6,
0.3, 0.1, Mary).

Aggregate preferences are not explicitly stored. The main reason is space
and time efficiency, since this would require maintaining a context cube for
each context state and for each combination of non-context attributes. Assume
that the context environment CEX has n context parameters {C1, C2, . . . , Cn}
and that the cardinality of the domain dom(Ci) of each parameter Ci is (for
simplicity) m. This means that there are mn potential context states, leading
to a very large number of context cubes and prohibitively high costs for their
maintenance. Instead, we store only previously computed aggregate scores, using
an auxiliary data structure (described in Section 4).



Modeling and Storing Context-Aware Preferences 131

  1

2

3

G_ID Region   City Country

Greece

Greece

Greece

  Kefalari

Athens

Athens

...
 Perama Ioannina

    Plaka

  1

2

3

G_ID Region   City Country

Greece

Greece

Greece

 Acropolis

  Kefalari

 Polichni

Athens

Athens

...
101

102

120

NULL

NULL

NULL NULL

Salonica

Athens Greece

Greece

Greece

Level

1

1

1

2

2

3

...

3CyprusNULLNULL121

...

 Thessaloniki

Fig. 5. A typical (left) and an extended dimension table (right)

An advantage of using cubes to store user preferences is that they provide
the capability of using hierarchies to introduce different levels of abstractions
of the captured context data through the drill-down and roll-up operators [5].
The roll-up operation provides an aggregation on one dimension. Assume, for
example, that the user has executed a query about Mary’s most preferable point-
of-interests in Plaka. However, this query has returned an unsatisfactory small
number of answers. Then, Mary may decide that is worth broadening the scope of
the search and investigate the broader Athens area for interesting places to visit.
In this case, a roll-up operation on location can generate a cube that uses cities
instead of regions. Similarly, drill-down is the reverse of roll-up and allows the
de-aggregation of information moving from higher to lower levels of granularity.

4 Caching Context-Aware Queries

In this section, we present a scheme for storing results of previous queries exe-
cuted at a specific context, so that these results can be re-used by subsequent
queries.

4.1 The Context Tree

Assume that the context environment CEX has n context parameters {C1, C2,
. . . , Cn}. A way to store aggregate preferences uses the context tree, as shown
in Fig. 6. There is one context tree per user. The maximum height of the con-
text tree is equal to the number of context parameters plus one. Each context
parameter is mapped to one of the levels of the tree and there is one additional
level for the leaves. For simplicity, assume that context parameter Ci is mapped
to level i. A path in the context tree denotes a context state, i.e., an assignment
of values to context parameters. At the leaf nodes, we store a list of ids, e.g.,
points of interest ids, along with their aggregate scores for the associated con-
text state, that is, for the path from the root leading to them. Instead of storing
aggregate score values for all the ids, to be storage-efficient, we just store the
top − k ids (keys), that is the ids of the items having the k-highest aggregate
scores for the path leading to them. The motivation is that this allows us to pro-
vide users with a fast answer with the data items that best match their query.
Only if more than k-results are needed, additional computation will be initiated.
The list of ids is sorted in decreasing order according to their scores.
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The context tree is used to store aggregate preferences that were computed
as results of previous queries, so that these results can be re-used by subsequent
queries. Thus, it is constructed incrementally each time a context-aware query is
computed. Each non-leaf node at level k contains cells of the form [key, pointer],
where key is equal to ckj ∈ dom(Ck) for a value of the context parameter Ck

that appeared in some previously computed context query. The pointer of each
cell points to the node at the next lower level (level k + 1) containing all the
distinct values of the next context parameter (parameter Ck+1) that appeared
in the same context query with ckj . In addition, key may take the special value
any, which corresponds to the lack of the specification of the associated context
parameter in the query (i.e., to the use of the special symbol ‘*’).

c    c     c               any...

...c    c              any ...

c            any c            any... ... ... ...c            

21    23 21    23     25

11    12     14

n2    n2    n3    

c    c     c            22    ...c          

1

2

n

top_k list {(id, score)}

C

C

C

top_ktop_ktop_ktop_ktop_k

  Plaka       any   Plaka  Plaka     Kifisia

warm      cold warm

  friends         family

query1: friends/ warm/ Plaka
query2: family/ warm/ Plaka
query3: friends/ cold/ Plaka
query4: friends/ warm/ Kifisia
query5: friends/ warm/ *

Fig. 6. A context tree (left) and a set of aggregate preferences and the corresponding
context tree (right)

In summary, a context tree for n context parameters satisfies the following
properties:

– It is a directed acyclic graph with a single root node.
– There are at most n+1 levels, each one of the first n of them corresponding

to a context parameter and the last one to the level of the leaf nodes.
– Each non-leaf node at level k maintains cells of the form [key, pointer] where

key ∈ dom(Ck) for some value of ck that appeared in a query or key = any.
No two cells within the same node contain the same key value. The pointer
points to a node at level k + 1 having cells with key values which appeared
in the same query with the key.

– Each leaf node stores a set of pointers to data sorted by their score.

For example, Fig. 6 (right) shows a set of context states expressed in five pre-
viously submitted queries and the corresponding context tree. Assume that the
three context parameters are assigned to levels as follows: accompanying people
is assigned to the first level, temperature to the second and location to the third
one. Leaf nodes store the ids of the top−k points of interest, that is the places
with the top− k highest aggregate scores.
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The context tree provides an efficient way to retrieve the top-k results that
are relevant to a preference query. When a query is posed, we first check if there
exists a context state that matches it in the context tree. If so, we retrieve the
top-k results from the associated leaf node. Otherwise, we compute the answer
and insert the new context state, i.e., the new path and the associated top-k
results, in the tree. Thus a query is a simple traversal on the context tree from
the root to a leaf. At level i, we search a node for a cell having as key value the
ith value of the query and descend to the next level following the appropriate
pointer. For a context tree with n context parameters (C1, C2, . . . , Cn), if each
parameter has |dom(Ci)| values in its domain, the maximum number of cells that
are required to be visited for a query is |dom(C1)|+ |dom(C2)|+ . . .+ |dom(Cn)|,
while the number of nodes is equal to the height of the tree.

The way that the context parameters are assigned to the levels of the context
tree affects its size. Let mi, 1 ≤ i ≤ n, be the cardinality of the domain, then
the maximum number of cells is m1 ∗ (1 + m2 ∗ (1 + . . . (1 + mn))). The above
number is as small as possible, when m0 ≤ m1 ≤ . . . ≤ mk, thus, it is better
to place context parameters with domains with higher cardinalities lower in the
context tree.

Finally, there are two additional issues related to managing the context tree:
replacement and update. To bound the space occupied by the tree, standard
cache replacement policies, such as LRU or LFU, may be employed to replace
the entry, that is the path, in the tree that is the least frequently or the least
recently used one. Regarding cache updates, stored results may become obsolete,
either because there is an update in the contextual preferences or because entries
(points-of-interests, in our running example) are deleted, inserted or updated. In
the case of a change in the contextual preferences, we update the context tree by
deleting the entries that are associated with paths, that is context states, that
are involved in the update. In the case of updates in the database instance, we
do not update the context tree, since this would induce high maintenance costs.
Consequently, some of the scores of the entries cached in the tree may be invalid.
Again, standard techniques, such periodic cache refreshment or associating a
time-out with each cache entry, may be used to control the deviation between
the cached and the actual scores.

4.2 Querying with Approximate Results

We consider ways of extending the use of the context tree to not only provid-
ing answers in the case of queries in exactly the same context state, but also
providing approximate answers to queries whose context state is “similar” to a
stored one. One such case involves the ‘*’ operator. If the value of some context
parameter is “any” (i.e., ‘*’), we check whether results for enough values of this
parameter are already stored in the tree. In particular, if the number of the
existing values of this parameter in the same node of the context tree is larger
than a threshold value, we do not compute the query from scratch, but instead,
merge the stored results for the existing values of the parameter. We call this
threshold, coverage approximation threshold (ct). Its value may be either system
defined or given as input by the user.
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Another case in which we can avoid recomputing the results of a query is
when the values of its context parameters are “similar” with those of some
stored context state. For example, if one considers the near-by locations Thisio
and Plaka as similar, then the query friends/warm/Thisio can use the results
associated with the stored query friends/warm/Plaka (Fig. 6 (right)).

To express when two values of a context parameter are similar, we introduce
a neighborhood approximation threshold (nt). In particular, two values ci and c′i
of a context parameter Ci are consider similar up to nti, if and only if for any
tuple t with score di for Ci = c1 and d′i for Ci = c′i, it holds:

|di − d′i| ≤ nti (1)

for a small constant nt, 0 ≤ nt ≤ 1.
The threshold nti may take different values for each context parameter Ci

depending for instance, on the type of its domain. As before, the threshold may
be either determined by the user or the system. To estimate the quality of an
approximation, we are interested in how much the results for two queries in
two similar context states differ, that is how much different is the rating of the
results in the two states, thus leading to a different set of top-k answers. We have
proved [4] the following intuitive property that states that for any two tuples,
the difference between their aggregate scores in two states, s and s′ that differ
only at the value of one context parameter, Ci, is bounded, if the two values of
Ci are similar. This indicates that the relative order of the results in states s
and s′ is rather similar.

Property 1. Let t1, t2 be two tuples that have aggregate scores d1, d2 in a context
state s and d′1, d′2 in a context state s′ respectively. If s, s′ differ only in the
values of one context parameter, Ci, and these two values of Ci are similar up
to nti, then if |d1− d2| ≤ ε, |d′1− d′2| ≤ ε + 2 ∗w1 ∗ nt, where wi is the weight of
the context parameter Ci.

Property 1 is easily generalized for the case in which two states differ in more
than one similar up to nti context parameter. In particular:

Property 2. Let t1, t2 be two tuples that have aggregate scores d1, d2 in a context
state s and d′1, d′2 in a context state s′ respectively. If s, s′ differ only in the
value of m context parameters, Cjk

, 1 ≤ k ≤ m, and these two values of Cjk
are

similar up to ntjk
, then if |d1 − d2| ≤ ε, then, |d′1 − d′2| ≤ ε + 2 ∗ (wj1 ∗ ntj1 +

wj2 ∗ntj2 . . .+wjm ∗ntjm), where wjk
is the weight of a context parameter Cjk

.

5 Performance Evaluation

In this section, we evaluate the expected size of the context tree as well as the
accuracy of the two approximation methods. We divide the input parameters
into three categories: context parameters, query workload parameters, and query
approximation parameters. In particular, we use three context parameters and
thus, the context tree has three levels (plus one for the top − k lists). There
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are two different types regarding the cardinalities of the domains of the context
parameters: the small domain with 10 values and the large one with 50 values.

We performed our experiments with various numbers of queries stored at the
context tree varying from 50 to 200, while the number of tuples is 10000. 10%
of the values in the queries are ‘*’. The other 90% are either selected uniformly
from the domain of the corresponding context parameter, or follow a zipf data
distribution. The coverage approximation threshold ct refers to the percentage of
values that need to be stored for a context parameter, to compute the top−k list
by combining their corresponding top− k lists when there is the ‘*’ value at the
corresponding level in a new query. The neighborhood approximation threshold
nt refers to how similar are the scores for two “similar” values of a context
parameter. Our input parameters are summarized in Table 1.

5.1 Size of the Context Tree

In the first set of experiments, we study how the mapping of the context para-
meters to the levels of the context tree affects its size. In particular, we count the
total number of cells in the tree as a function of the number of stored queries,
taking into consideration the different orderings of the parameters. For a context
tree with three parameters, we call ordering 1 the ordering of the context para-
meters in which the parameter whose domain has 10 values is assigned to the
first level, the parameter with 10 to the second one, and the parameter with 50
values to the last one. Ordering 2 is the ordering when the domains have 10, 50,
10 values respectively, and for the ordering 3 the domains have 50, 10, 10 values.
As discussed in Section 3, the mapping of the context parameters to levels that
is expected to result in a smaller sized tree, is the one that places the context
parameters with the large domains lower in the tree.

In our experiments, 10% of the query values are selected to be the any value.
The rest 90% of the values are selected from the corresponding domain, either
using a uniform data distribution, or a zipf data distribution with a = 1.5. In
both cases, as shown in Fig. 7, the total storage space is minimized when the
parameter with the large domain (50 values) is assigned to the last level of the
tree (ordering 3). Also, for the zipf distribution (Fig. 7 (right)), the total number
of cells is smaller than for the uniform distribution, (Fig. 7 (left)), because using
the zipf distribution “hot” values appear more frequently in queries, i.e., more
context values are the same.

However, the best way of assigning parameters to levels depends also on the
query workload, that is, on the percentage of values from the domain of each
parameter that actually appears in the queries. Thus, if a parameter has a very
skewed data distribution, it may be more space efficient to map it higher in the
tree, even if its domain is large. This is shown with the next experiment (Fig.
8). We performed this experiment 50 times with 200 queries. The values of the
context parameters with small domains are selected using a uniform data dis-
tribution and the values of the context parameter with the large domain are
selected using a zipf data distribution with various values for the parameter a,
varying from 0 (corresponding to the uniform distribution) to 3.5 (correspond-
ing to a very high skew).
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Table 1. Input Parameters

Context Parameters Default Value Range

Number of Context Parameters 3
Cardinality of the Context Parameters Domains

Small 10
Large 50

Query Workload

Number of Tuples 10000
Number of Stored Queries 50-200
Percentage of ‘*’ values 10%
Data Distributions uniform

zipf - a = 1.5 a = 0.0 - 3.5
Top-k results 10

Query Approximation

Coverage Approximation Threshold (ct) ≥ 40%, 60%, 80%
Neighborhood Approximation Threshold (nti) 0.08 0.04, 0.08, 0.12
Weights 0.5, 0.3, 0.2
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Fig. 7. Uniform (left) and zipf data distribution with a = 1.5 (right)

5.2 Accuracy of the Approximations

In this set of experiments, we evaluate the accuracy of the approximation when
using the coverage and the neighborhood approximation thresholds. In both
cases, we report how many of the top-k tuples computed using the results stored
in the tree actually belong to the top-k results.

Using the Coverage Approximation Threshold. A coverage approximation
threshold of ct% means that at least ct% of the required values are available,
i.e., are already computed and stored in the context tree. We use three values
for ct, namely, 40%, 60%, and 80%. All weights take the value 0.33. In Fig.
9, we present the percentage of different results in the top-k list for each ct
value, when a ‘*’ value is given for a parameter with a small domain or a large
domain, respectively. To compute the actual aggregate preference scores, we use
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Fig. 10. Different results between two similar queries when nt = 0.04, 0.08, 0.12

the second of the two approaches presented in Section 2.2. The approximation
is better when ‘*’ refers to the context parameter with the large domain. This
happens because in this case, more related paths of the context tree are available,
and so, more top-k lists of results are merged to produce the new top-k list.

Using the Neighborhood Approximation Threshold. We consider first
that a query is similar with another one, when they have the same values for
all the context parameters except one, and the values of this parameter are
similar up to nt. We use three values for the parameter nt: 0.04, 0.08, and
0.12. The weights have the values 0.5, 0.3, and 0.2. We count first, the number
of different results between two similar queries that differ at the value of one
context parameter, as a function of the weight of this parameter, taking into
consideration the different values of nt. The results are depicted in Fig. 10 (left).
Then, we examine the case in which the values of two context parameters are
different (Fig. 10 (right)). In this case, the accuracy of the results depens on both
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the weights that correspond to the context parameters whose values are similar.
As expected, the smaller the value of the parameter nt, the smaller the difference
between the results in the top-k list of two similar queries. Note further, that
the value of the weight that corresponds to the similar context parameter also
affects the number of different results: the smaller the value of the weight, the
smaller the number of different results.

6 Related Work

Although there has been a lot of work on developing a variety of context in-
frastructures and context-aware middleware and applications (such as, the Con-
text Toolkit [6] and the Dartmouth Solar System [7]), there has been only little
work on the integration of context into databases. Next, we discuss work related
to context-aware queries and preference queries. A preliminary version of the
model without the context tree and the performance evaluation part appears
in [8].

Context and Queries. Although, there is much research on location-aware query
processing in the area of spatio-temporal databases, integrating other forms
of context in query processing is less explored. In the context-aware querying
processing framework of [9], there is no notion of preferences, instead context
attributes are treated as normal attributes of relations. Storing context data
using data cubes, called context cubes, is proposed in [5] for developing context-
aware applications that archive sensor data. In this work, data cubes are used
to store historical context data and to extract interesting knowledge from large
collections of context data. In our work, we use data cubes for storing context-
dependent preferences and answering queries. The Context Relational Model
(CR) [10] is an extended relational model that allows attributes to exist under
some contexts or to have different values under different contexts. CR treats con-
text as a first-class citizen at the level of data models, whereas in our approach,
we use the traditional relational model to capture context as well as context-
dependent preferences. Context as a set of dimensions (e.g., context parameters)
is also considered in [11] where the problem of representing context-dependent
semistructured data is studied. A similar context model is also deployed in [12]
for enhancing web service discovery with contextual parameters.

Preferences in Databases. In this paper, we use context to confine database
querying by selecting as results the best matching tuples based on the user
preferences. The research literature on preferences is extensive. In particular, in
the context of database queries, there are two different approaches for expressing
preferences: a quantitative and a qualitative one. With the quantitative approach,
preferences are expressed indirectly by using scoring functions that associate
a numeric score with every tuple of the query answer. In our work, we have
adapted the general quantitative framework of [13], since it is more easy for
users to employ. In the quantitative framework of [1], user preferences are stored
as degrees of interest in atomic query elements (such as individual selection or
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join conditions) instead of interests in specific attribute values. Our approach
can be generalized for this framework as well, either by including contextual
parameters in the atomic query elements or by making the degree of interest
for each atomic query element depend on context. In the qualitative approach
(for example, [14]), the preferences between the tuples in the answer to a query
are specified directly, typically using binary preference relations. This framework
can also be readily extended to include context.

7 Summary

The use of context allows users to receive only relevant information. In this
paper, we consider integrating context in expressing preferences, so that when a
user poses a preference query in a database, the result also depends on context.
In particular, each user indicates preferences on specific attribute values of a
relation. Such preferences depend on context and are stored in data cubes. To
allow re-using results of previously computed preference queries, we introduce
a hierarchical data structure, called context tree. This tree can be used further
to produce approximate results, using similar stored results. Our future work
includes exploring context information in answering additional queries, not just
preference ones.
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Abstract. Meta modeling is an essential means to systematize, formalize, 
standardize, integrate, analyze and compare models, techniques, methods and 
tools. Numerous fields, such as databases, software engineering, software 
architectures, semantic web, computer-aided tools and method engineering, 
have benefited from it. The importance of meta modeling is ever increasing 
along with the emergence of novel approaches, architectures, techniques and 
languages based on UML and MDA. This paper presents a framework to 
integrate and compare divergent conceptions of meta modeling in databases, 
software engineering, and information systems development. The framework is 
applied to analyze and compare conceptions of meta levels in the literature.  

1   Introduction 

Meta modeling has been an important research topic and practical means since  
the 1980’s. Database Architecture Framework Task Group (DAFTG) of the 
ANSI/X3/SPARC [1], for instance, engineered a reference model in which the 
intension-extension dimension was based on meta levels. Nowadays, numerous 
disciplines benefit from modeling on meta levels: e.g. business process engineering 
[42, 33], schema and data integration [5, 9], software process modeling [38, 14, 21], 
software maintenance [31, 39], software architectures [32], ontology engineering [11], 
method engineering [34, 8, 36], and computer–aided engineering [26, 30, 20, 19].  

Meta modeling means basically a process which takes place on one level of 
abstraction higher than modeling (cf. [16]). Although there is a common agreement 
on generic characterizations such as this, there is a wide divergence of conceptions of 
meta modeling and ways it is applied, on a more detailed level. Meta modeling is seen 
to involve data (e.g. [25]) or processes (e.g. [42]). The root level in meta modeling 
may concern phenomena in business systems, information systems (IS) (e.g. [4, 7]), 
or IS development (e.g. [22, 26]). Meta modeling may be applied to stories (e.g. [15]), 
models (e.g. [37, 26]) or languages (e.g. [41, 35]). The importance of meta modeling 
is still growing. For instance, to specify UML in a more unambiguous fashion, OMG 
has used UML itself as the meta language to define the semantics of UML [37]. OMG 
has also established the Model-Driven Architecture in which transformations between 
models on different levels can be specified based on the meta models of source and 
target languages [32, 6]. UML and MDA are commonly seen to play a central role in 
the integration of different languages, architectures and computer-aided design 
environments in software engineering and information systems development. There 
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are, however, some deficiencies in how meta modeling is dealt with in UML and 
MDA, which hampers their use for the intended purposes [2, 17].  

The purpose of this study is to derive a coherent and consistent framework, a kind 
of ontology [18], in order to obtain an integrated view on meta modeling. The 
framework specifies fundamental concepts, constructs and principles for meta levels 
and meta modeling. The framework recognizes two major approaches to meta 
modeling, a model-based approach and a language-based approach, and integrates 
them. It also connects meta levels to processing layers and thus provides a basis for 
the consideration of root levels in meta modeling. To demonstrate the applicability of 
the framework, we deploy it to analyze and compare divergent conceptions of meta 
levels presented in the literature.  

The rest of the article is structured as follows. First, we define the basic concepts 
and categories related to model and modeling. Second, we derive the notion of meta 
level through the discussion about concepts and meta concepts, and apply this to 
establish the framework composed of levels of models and languages. Third, we 
discuss meta modeling approaches and present a comparative analysis of meta levels 
defined in the literature. The article ends with a summary and conclusions.  

2   Systems of Levels 

The purpose of this section is to derive a conceptual framework which can be used to 
specify and analyze systems of meta levels in databases (DB), software engineering 
(SE) and information systems development (ISD). First, we specify a system of model 
levels (Section 2.1) and a system of language levels (Section 2.2), and then we 
integrate them with one another (Section 2.3). In Section 2.4 we associate a system of 
model levels with information processing layers.  

2.1   Model Levels 

According to a common understanding, a model is to serve as a means to gain 
relevant knowledge about things in reality. To elaborate this generic conception, we 
apply three viewpoints (i.e. teleological, semantic and semiotic) and define the notion 
in three parts. A model is a thing that is used to help or enable the understanding, 
communication, analysis, design, and/or implementation of some other thing(s) to 
which the model refers (Teleological viewpoint). It may help the users better 
understand reality, design options for changes, foresee consequences of changes, 
reason on information and knowledge carried by the model, etc. (cf. [29]). Second, a 
model is a perception and an abstraction of relevant things in reality (Semantic 
viewpoint). Third, a model appears in one of three forms, namely as a conceptual 
construct, as a linguistic expression, or as a physical construct (Semiotic viewpoint).  

Implied from the semiotic viewpoint, we distinguish between three kinds of 
models: a concept model, a model denotation and a physical model (cf. [12]). A 
concept model is composed of concepts and conceptual constructs referring to 
relevant things in reality. To enable communication a concept model has to be 
represented in some language. A precise and unambiguous representation of a concept 
model in a language is called a model denotation (cf. [13]). A physical model consists 
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of physical parts, which, as an organized whole, resemble some other thing(s). In this 
study we are only interested in concept models and model denotations.  

Based on which kinds of concepts and conceptual constructs models are composed 
of, we distinguish between instance models, type models and meta models. An 
instance model is a model which mainly comprise concepts that are instances of the 
concepts of some other model, called a type model. Likewise, a type model comprises 
concepts that are instances of the concepts of some other model, called a meta model. 
A meta model is a thing that is used to help or enable the understanding, 
communication, analysis, design and / or implementation of models. Models with the 
instanceOf relationships between their concepts constitute a hierarchy of levels, which 
we call a system of model levels. A model level is composed of models that comprise 
concepts on the same concept level. We distinguish between four model levels: 
instance level, type level, meta level, and meta meta level. Besides the instanceOf 
relationships, the model levels are also related to each other in another way: a model 
on a higher level describes / prescribes models on the next lower level. 

2.2   Language Levels 

A language is an abstract thing that is used in communication among people, between 
people and computers, or between computers. A language is composed of syntax and 
semantics. Syntax consists of two parts, an abstract syntax and a concrete syntax. An 
abstract syntax gives the conceptual components of a language and rules for 
connecting them, leaving out representational details [23]. A concrete syntax gives 
notational elements, called the symbols in the vocabulary of a language, and rules for 
connecting them with one another and with the concepts (cf. signification rules). 
Semantics of a language defines meaning of the symbols. A vocabulary of a language 
is a non-empty and finite set of symbols [13]. A symbol is a special sign used as an 
undividable part of an expression [13].  

To specify and communicate about a language some other language, called a meta 
language, is used. A language representation is referred to as a language denotation. 
A meta language, in turn, is represented in a meta meta language, and so on. Hence, 
we have a system of language levels which are related to one another through the 
representedIn relationships. The hierarchy of language levels continues upward until, 
on some level, a self-descriptive language is used, i.e. a language is reached that is 
sufficiently expressive to be used to formulate its own rules [13]. 

2.3   Integration of Levels 

After having derived the systems of levels for models and languages, we next relate 
them to one another through a framework presented in Figure 1. The framework is 
composed of four levels (L0 – L3). Two lowest levels correspond to relevant 
phenomena in reality (L0) and models about them (L1), correspondingly. The models 
(e.g. an ER schema) appear either as conceptual structures, or as denotations. The 
next higher level (L2) contains meta models of which the models on the lower level 
are instances (e.g. the ER model [10]). In addition, the level contains languages, in the 
form of conceptual constructs and denotations, which are used to represent model 
denotations. On the highest level (L3) there are meta meta models of which meta 
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models are instances, as well as meta languages which are used to represent meta 
model denotations and languages. A meta language denotation is expressed by using 
the language itself.  

The key point in relating the levels of models and languages to one another is 
abstract syntax: a model is represented as a model denotation based on a certain 
language with a conceptual foundation that consists of basic concepts, constructs and 
rules. These basic concepts and constructs constitute the abstract syntax of the 
language that is the same as the meta model of the model (see Figure 1). 

 

 

Fig. 1. Levels of models and languages 

2.4   Levels and Processing Layers 

Up till now, the models have been considered irrespective of phenomena they are 
describing and prescribing. Based on what object systems the models have, we 
recognize four information processing layers: information system (IS) layer, 
information system development (ISD) layer, method engineering (ME) layer, and 
research work (RW) layer (see Figure 2). The bottom layer stands for daily 
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information processing actions (e.g. inventory control, order processing), with or 
without computers, in the organizations. The next higher layer means all those 
development actions by which information systems are analyzed, design, 
implemented, tested and taken into use. The ME layer means engineering actions 
through which procedures, techniques and methods for ISD are developed, selected, 
configured and customized. The RW layer involves research and development actions 
which aim to produce better conceptual and methodical means for ME work.  

 

 

Fig. 2. Model levels and processing layers 

With attaching models, meta models and meta meta models to the four processing 
layers, we can show how the model levels and the processing layers are interrelated 
and which kinds of models there actually are. On each layer we distinguish between 
three kinds of models, process models, deliverable models, and data models1.  
The process models describe/prescribe what actions are carried out, in which order 
and how. The deliverable models describe/prescribe purposes, structures and 
representations of deliverables. The data models describe/prescribe the conceptual 

                                                           
1  Actually, each layer represents a context which can be modeled through nine kinds of 

models: purpose models, actor models, process or action models, deliverable models, data 
models, facility models, location models, time models, and inter-domain models [36]. Here, 
we consider only three of them.  
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contents of deliverables. Respectively, there are meta process models, meta deliv-
erable models, and meta data models. The arrows between the meta models and the 
models, as well as between the models and the phenomena in reality, stand for the 
instanceOf relationships and the describes/prescribes relationships in Figure 2. 

The processing layers and the model levels are not orthogonal to one another. For 
instance, on the ME layer there are models on two levels, and the RW layer contains 
models on three different levels. We have attached the root level to the IS layer in 
Figure 2, but it is equally possible to regard the ISD layer as the root layer, as it is 
done in [22] and [26]. 

3   Meta Modeling Approaches 

There is a wide divergence of conceptions of meta modeling and systems of levels in 
the DB, SE and ISD literature. We make an in-dept analysis of these conceptions in 
the next section. Here, we discuss, on a general level, meta modeling approaches, 
based on the framework constructed above.  

Concluded from the literature analysis, we can distinguish between three different 
approaches to define a system of meta levels: (a) a model-based approach, (b) a 
language-based approach, and (c) a technique-based approach (or a method-based 
approach). In the model-based approach the levels in the system are derived through 
the instanceOf relationships between the concepts within the models on two adjacent 
levels in the hierarchy (e.g. [4, 26, 37]). In the language-based approach a system of 
meta levels is established for the languages such that a language used to present 
another language is called a meta language [41, 35]. In the technique-based approach 
a meta model is a model of a modeling technique (e.g. [43, 7]). The purpose of this 
approach is commonly to produce a structural framework for an information base of 
method knowledge [20] or project knowledge [26].  

Jarke, Klamma and Lyytinen [27] discuss interoperability and adaptability of meta 
model based environments and distinguish between ”ontology based meta modeling”, 
“notation oriented meta modeling” and “process oriented meta modeling”. This 
categorization is based on the diamond model [28] which describes a possible space 
of choices when adapting or interrelating models. Ontology based meta modeling 
deals with representations of domain-related concepts and vocabularies. Notation 
based meta modeling concerns specifications of notations and notational systems. 
Process oriented meta modeling involves specifications of processes and process 
structures. Compared to our framework, ontology based meta modeling means meta 
data modeling, in other words making models of concepts and conceptual constructs 
of (type) models. Notation oriented meta modeling corresponds to meta deliverable 
modeling. Process oriented meta modeling means producing models about process 
models. As concluded from the above, the approaches in [27] are not orthogonal to 
one another.  

Atkinson and Kühne [3] distinguish between linguistic meta modeling and 
ontological meta modeling. This categorization is based on what kinds of instanceOf 
relationships there are between the concerned entities. Linguistic instanceOf 
relationships are, for instance, those connecting ‘Lassie’ and ‘Object’, and ‘Object’ 
and ‘Class’ (in UML) [3]. Examples of ontological instanceOf relationships are those 
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relating ‘Lassie’ and ‘Collie’, and ‘Collie’ and ‘Breed’. Compared to this dichotomy 
we can say that our instanceOf relationships are linguistic ones. We assume that 
ontological instanceOf relationships are specified within the models, not between the 
models on different meta levels.  

4   Comparative Analysis of Related Work 

In this section we describe and analyze presentations for systems of levels given in 
the literature. Our aim is to find out viewpoints from which meta levels have been 
established, approaches applied to meta modeling, and systems of levels built up in 
the presentations. For the analysis we have selected twelve well-known presentations 
[4, 25, 7, 16, 43, 22, 26, 40, 20, 24, 13, 37] in the fields of DB, SE and ISD. With the 
selection of this variety we want to advance the achievement of a shared 
understanding of meta modeling in these fields. The results of the analysis are 
summarized in Appendix 1. Next, we first describe the selected presentations one by 
one, in the temporal order, and then summarize the results from the comparative 
analysis.  

Bergheim et al. [4] present a taxonomy of concepts of the science of information 
systems to distinguish between four meta levels: -level, -level, -level, and  –
level. The lowest level, the operational level, concerns the changes of states in the 
application. The next meta level, also known as the application level, contains 
descriptions about a specific application (e.g. a data flow diagram or a Java program). 
The -level is about how to make instances on the -level (e.g. a DFD model or the 
language Java itself). The highest level is about how to make instances on the -level, 
that is, about the ways to make different formalisms. For each level, a universe, 
constructs, a theory, an interpretation, valuations, a model, a description, and a 
method are considered. The discussion about the levels is comprehensive in [4], and 
considering when it was published, it was in advance of one's time. It is a pure 
representative of the model-based approach to establishing a system of meta levels.  

ISO [25] launched the Information Resource Dictionary Standard (IRDS), which is 
composed of four levels: application data, IRD level, IRD Definition level, and IRD 
Definition Schema level. The first level includes data and program execution (i.e. 
computerized IS). The next level stands for a data base schema and application 
programs. The IRD Definition level specifies the models and languages by which 
schemata and programs are described. The IRD Definition Schema level specifies a 
meta meta model, according to which things on the ISD Definition level are 
associated and described. The IRDS is an outcome of the model-based approach, 
although a language as a means of description is recognized. 

Brinkkemper [7] distinguishes between three levels: a system to be modeled, a 
modeling technique, and a meta modeling technique. In the hierarchy of levels, “the 
system of concepts of a modeling technique is considered as a concrete system on an 
abstraction level higher than the application of modeling in the development of an IS” 
([7] p. 28). The levels are mentioned to be resulted from “type abstraction”. The 
approach is clearly technique-based. Brinkkemper [7] provides a figure showing the 
unnamed relationships between the aforementioned concepts and between the notions 
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of modeling notation and meta modeling notation. The figure does not make clear the 
semantics of the relationships. The models are missing in the hierarchy.  

Van Gigch [16] categorizes the knowledge needed to solve a problem into three 
levels of inquiry. The level of implementation or intervention contains e.g. citizens, 
clients and practitioners participating in activities involving real world problems. On 
the modeling level understanding and solving problems requires formulation of 
models. On the meta level or meta modeling level people are involved in the design of 
methods and approaches to be used on the other levels of inquiry. A meta model is 
considered to be a model of the modeling process. Hence, although the approach in 
[16] is mainly model-based, it also covers a modeling process.  

Wijers [43] divides the knowledge needed in modeling into three levels: 
application level, meta level, and theory level. On the application level actual ISD 
processes and products (ISD models) are dealt with. Modeling knowledge concerning 
the ways of working and modeling, as well as the acquisition of modeling knowledge 
are included on the meta level. The theory level is concerned with a theory applicable 
on the meta level. A meta model is defined to encompass a concept structure (for a 
way of modeling) and a task structure (for a way of working) as well as constructs 
interrelating those two. Wijers [43] apply the model-based approach. However, the 
scope also contains the process of modeling. This should not, however, be situated on 
the same meta levels as models. 

Heym et al. [22] suggest a methodology reference model that is based on three 
levels of abstraction in which each level applies the notation or specification model 
from the next higher level. This means that an object type on the higher level is 
instantiated on the next lower level. The levels are: methodology level, method level 
and project level. The methodology level describes a methodology reference model, 
which contains all the object types and relationships necessary to describe ISD 
methods. The method level specifies an ISD method by a number of description 
objects of object types defined on the higher level. The project level describes a 
particular project to which a certain method is applied, by creating instances of 
special method description objects from the method level. The scope in [22] is very 
broad, covering the whole ISD knowledge. The levels of abstraction are not pure 
model levels, because on the method level, for instance, part of knowledge concerns 
ISD processes which should not be on the meta level (cf. Figure 2). 

Jarke [26] uses Telos’ metaclass hierarchy in ConceptBase  to document data of 
projects on three levels: instance level, class level, and metaclass level. The instance 
level consists of concrete development projects within their environments. The class 
level defines the basic structure for development processes. The metaclass level 
describes the development environment. The metaclass hierarchy of [26] applies the 
model-based approach.  

Saeki et al. [40] defines a meta model as a data model for representing design 
methods. To specify the structural relationships among a meta model, formal 
representations of design methods, and actual specification processes, Saeki et al. [40] 
distinguish between three levels: instance level, object level and meta level. The 
instance level corresponds to actual products and design activities. The object level 
stands for the formal representations of a design method. The meta level contains a 
model for the representations on one level lower, as well as the relationships between 
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the representations of design methods. The hierarchy of levels in [40] applies the 
method-based approach on a general level.  

Harmsen [20] allocates methodological knowledge onto three levels: method 
engineering level (ME), IS engineering methods level (ISEM), and IS engineering 
level. The ME level describes classes of ISEM concepts, that is to say, concepts of 
any ISD method. The IS engineering methods level describes instances of concepts on 
the method engineering level. The IS engineering level addresses the actual models, 
reports, steps and tools used in an ISD project. There are the type/instance 
relationships between the levels. Meta modeling is carried out on the ISEM level, and 
meta meta models belong to the method engineering level. Harmsen [20] applies the 
method-based approach, and typically for the adherents of this approach he leaves the 
specification of the system of levels rather general.  

ter Hofstede et al. [24] distinguish between three levels of abstraction on which 
method knowledge can be viewed. The levels are: method level, application level, and 
operational level.  The method level concerns knowledge which enables to control the 
ways how information modeling process may be performed and to define which 
products may result from those processes. The application level is concerned with 
information which results from projects for specific organizations and applications. It 
is an instantiation of the method level. The operational level is an instantiation of the 
application level and as such it consists of concrete entities, relationships, process 
traces, etc. ter Hofstede et al. [24] apply the method-based approach. Unfortunately, 
the elements on, and the relationships between, the levels are considered on quite a 
general level.   

The Frisco Report [13] recognizes three meta levels: meta-level 0, meta-level 1, 
and meta-level 2. On each meta level, a model and a model denotation are specified. 
The models are: a base model (meta-level 0), a language used to represent the base 
model (meta-level 1), and a meta-language used to represent the language (meta-level 
2). A base model may be a particular model consisting of states and transitions, and a 
base model denotation is its graphical representation. The representing relationships 
relate the meta levels to one another. The Frisco applies a mixed approach, 
considering the relationships between the languages and between the models, 
although the latter ones are only implicitly specified.  

OMG [37, 32] presents a four-layered architecture to be used as a basis of 
standards. In the OMG terminology these layers are known as M0, M1, M2, and M3. 
On the M0 layer there is a (computerized) running system (CIS) in which the actual 
instances exist. The M1 layer contains models of the system. The M2 layer contains 
meta models (e.g. the UML meta model and the CWM). On the M3 layer there are 
meta meta models (e.g. MOF) that are used to define meta models. Every meta model 
is an instance of some meta meta model, and every model must be an instance of 
some meta model. The architecture has clearly been built following the model-based 
approach.  

The descriptions above concretely show that there is a large variety of terms and 
meanings with which models and languages on different levels are specified in the 
literature. The systems of levels are also considered from different viewpoints, e.g. 
from the viewpoint of the science of information systems [4], of meta modeling [3, 
43, 13], of method engineering [22, 40, 20, 24], of problem solving [16], of metadata  
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management systems [26], and of standardization of development environments  
[25, 37]. The root level is considered to be either the IS [4, 7, 13], the CIS [25, 37], 
ISD work [22, 26, 40, 20, 24], or part of ISD (IS modeling [43]). In the latter cases, 
the aim is to specify and structure ISD method knowledge into a method base. Van 
Gigch [16] advocates yet another approach and applies a general view of problem 
solving to IS’s, ISD or any other human action. This diversity of viewpoints largely 
explains the differences between the systems of levels. Our analysis revealed several 
deficiencies and inconsistencies in the systems of levels presented in the literature. In 
many presentations the systems of levels are specified in too a general manner. The 
most common inconsistence results from mixing the levels and the processing layers. 
As a consequence, ISD process models, for instance, are considered to be on the same 
model level as IS meta process models, just because they are on the ME layer. This is 
typical for presentations applying the technique-based or method-based approach [7, 
16, 43, 22, 40, 20, 24]. In addition, some of the levels are not explicitly specified in 
some presentations (e.g. Level 1 in [7] and Level 0 in [13]).  

5   Summary and Conclusions 

Meta modeling is of high importance in several disciplines. There are, however, quite 
divergent conceptions of its approaches, focal points and outcomes in the literature. 
We have derived an integrated conceptual framework to analyze, compare and 
elaborate these conceptions. The framework is composed of two hierarchical systems 
of levels, the system of model levels and the system of language levels, structured 
onto four levels. The systems are integrated with one another and associated with four 
processing layers. 

The framework has been applied to categorize, analyze and compare meta 
modeling approaches presented in the literature. In addition, an extensive analysis of 
twelve presentations for the systems of levels has been carried out. The analyses 
showed, in a concrete manner, how diversified conceptions of meta modeling are in 
the DB, SE and ISD literature. Some deficiencies and inconsistencies were also 
revealed. In another study [36] the framework has been deployed to build a 
comprehensive ontological framework, called OntoFrame, for IS, ISD, and method 
engineering. Both of these efforts demonstrated the usability of our framework for the 
consideration of meta modeling. 

In future, our aim is to elaborate the framework, for instance, to recognize more 
explicitly contextual features of the domains on each layer. We are also committed to 
examine more deeply various suggestions to improve the levels in the MOF 
specification [37]. These suggestions include, among others, deep instantiation based 
meta modeling [3] and power type-based meta modeling [17].  

The importance of meta modeling is still growing in the future. Novel artifacts are 
emerging necessitating compatible approaches to, foundations for, and outcomes 
from, meta modeling in the environments which integrate data bases, software 
architectures, and IS engineering tools. We believe that our framework can benefit a 
search for a shared understanding of meta modeling and provide a common 
conceptual groundwork for these efforts. 
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Implementation of UNIDOOR,

a Deductive Object-Oriented Database System

Mohammed K. Jaber and Andrei Voronkov
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Abstract. This paper proposes the DJR approach for implementing
deductive object-oriented database systems(DOOD). This technique is
based on classifying DOOD features into three abstract implementation
levels. The classified features are then delegated to the DJR suite, which
is built around the Data Model, Java and Relational components. The
use of the Java virtual machine (JVM) provides essential object-oriented
features that were hard to implement and maintain. The implementa-
tion of many critical database management features is delegated to the
relational back-end. As a result, only a minimal implementation effort
is needed to build a very complex system. The DJR approach was used
to implement our DOOD system UNIDOOR. The system was success-
fully and rapidly built and it supports essential object-oriented features
along with the major database management features which were hard to
implement in previous DOOD prototypes.

1 Introduction

It has long been recognised that the principal benefits provided by the deduc-
tive and the object-oriented paradigms to database systems are complementary.
Deductive databases (DDBs) are logically well-founded and offer a declarative
query language and a rule-based programming environment but they lack real-
world data modelling capabilities. Object-oriented databases (OODBs), on the
other hand, support rich data modelling constructs but lack formal semantics
and declarative query languages. Any database system which smoothly integrates
the two paradigms, without sacrificing the principal features of either, will pro-
vide significant opportunities for conventional and novel application areas such
as building database middle-ware for distributed information systems [21], man-
aging and querying the Web [8], and for building advanced decision support and
knowledge discovery systems [7].

Research on deductive object-oriented databases (DOOD) started in the late
1980s. It seeks to provide the combined support for the modelling features of
OODBs and the declarative query languages of DDBs. But unlike the relational
database systems, DOOD systems were engineered without an agreed notion of a
standard object data model and without an ample understanding of what appro-
priate query model for DOOD is. Consequently, a variety of language constructs,
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architectures, and query processing methodologies have been developed [9]. How-
ever, due to implementation limitations, DOOD systems were often monolithic,
lack certain services provided by the commercial DBMS, thus discouraging users
that could benefit from a deductive query language but are not inclined to mi-
grate their data and programs to non-mainstream DBMS.

In this paper, we describe a technique called the DJR approach for im-
plementing DOOD systems. DJR is based on the implementation suite (Data
model,Java,Relational back-end). The rationale behind this technique is to clas-
sify the features of a DOOD system into an abstract hierarchy of features de-
pending on their dependency on each other and on the underlying data model of
the DOOD system. These features are then distributed among the suite compo-
nents in a way that optimally utilise the services of Java Virtual Machine (JVM)
and the relational database system. Thus, DJR shifts the main implementation
efforts into (1) those high-level features strongly dependent on the data model
and (2) maintaining the communication between the suite components.

The DJR approach was used in the implementation process of the current
prototype of UNIDOOR, a DOOD system based on the data model proposed in
[23]. The impact of the DJR approach in implementing UNIDOOR was great
in both effort and time. Many essential database management features such
as persistent store, transaction control and database administration, that were
missing from many other DOOD systems, were successfully implemented. More-
over, only a minimum effort was needed to implement complex OO features
such as inheritance, overriding, overloading and encapsulation. So, the deduc-
tive part of UNIDOOR is significantly freed from the burden of manipulating the
database persistent objects and their associated complexity and behaviour. As
a result, the implementation of the deductive side is now focused on optimising
and evaluating declarative queries and can smoothly incorporate in addition to
the traditional techniques, any novel techniques with a great flexibility.

This paper is structured as follows. Section 2 presents a brief coverage of
DOOD research focusing on their implementation limitations. Section 3 intro-
duces the DJR approach and explains the rationale of feature abstraction and
the DJR suite. Section 4 illustrates how the DJR approach was used in the im-
plementation of the UNIDOOR system. Section 5 concludes the paper with the
summary and outline of some future work.

2 DOOD Systems

A DOOD system encompasses a deductive, object-oriented and database man-
agements components. Some of these components have conflicting features. For
example, Deduction is based primarily on predicates while OO favours functional
methods. Database updates are mainly imperative while a deductive language
is logical. As a result, an integration may requires sacrificing certain conflict-
ing features. There have been a number of attempts to design DOOD systems
since late 1980s [13,11,1,3]. A wave of DOOD implementation started in early
1990s based on the assumption that DOOD systems can be implemented by
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integrating working systems and languages rather than building the systems
from scratch. But the possible combinations of systems and languages were no-
ticeably many. For example, CORAL++ [19] extended the deductive database
system CORAL [16] with the C++ type system. Chimera [5] combined the im-
perative and declarative features into a single language over an OO data model.
Noodle [15] introduced a declarative query language over the OODB system
SWORD [14], ROCK&ROLL [2] was based on a formally defined semantic ob-
ject data model from which an imperative language ROCK and a declarative
language ROLL were derived and integrated. Validity [7] was based on the lan-
guage DEL, which contains declarative and imperative constructs. A formal
treatment of many other DOOD systems can be found in [9,18,6].

2.1 A Glance at a DOOD System

In this subsection, we intend to give a glance at DOOD systems by presenting
the bill of materials problem described in [4] into UNIDOOR. We would like to
compute a bill of materials presenting information about parts, their number and
suppliers, corresponding to a cheapest purchase. The formalisation is as follows.
We assume that the device, components and parts mentioned above informally
belong to a class Part:

class Part {

components : Set(<part : Part,quantity : int>)

suppliers : Set(<supplier : Supplier, price : int>)

...}

Here Supplier is a class. We define a function bill giving, for each part, the
best price and the corresponding bill of materials.

bill: Part => <price:int,

components:Set(<part:Part, quantity:int, supplier:Supplier>)>

Note that the return value of bill has a complex type.
We want to define the best price for a part if it is ordered directly from a sup-

plier. To do this we will introduce some definitions. These definitions illustrate
many features underpinning the design of UNIDOOR. The first definition

has_supplier(_part) :- isNonEmpty(_part.suppliers).

is a typical Prolog-style rule that can be read as follows: “For all parts, a part
has a supplier if the set of suppliers of this part is non-empty”. Variables in the
rule begin with the underscore character. Even for this very simple rule there
are several features bringing it well beyond logic programming:

1. the path expression part.suppliers uses the attribute suppliers in the
class Part;

2. the (built-in) relation isNonEmpty is a relation on sets;
3. the variable part ranges over complex values, structured as tuples, which

have a set as a component.
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In addition, the operational semantics of the language will treat this rule in a
special way (roughly speaking, it can only be used with part instantiated to a
concrete set), but the operational semantics of the rule language is beyond the
scope of this paper. The next rule
best price( part)= min { supplier.price| supplier in part.suppliers}.
illustrates the following concepts of the language

1. The use of set comprehension to form sets.
2. The use of functions in addition to relations.
3. Iteration over set elements logically using the membership relation in.
4. A completely logical view of aggregates as functions from sets (or multisets).

Unlike many other deductive query languages (e.g., [22]) UNIDOOR’s grouping
operations are also defined in a logical way using a function definition and set
comprehension. For example, using the function definition of best price, one
can define the best prices for all parts as follows:

best_prices = {(_part,best_price(_part)) | _part in Part}.

Finally, the last definition demonstrates the use of tuple values in the language

best_direct_order(_part,_supplier,_price) :-

has_supplier(_part), _price= best_price(_part),

<supplier=_supplier,price=_price> in _part.suppliers.

An implementation of a system able to cope with such definitions and have
features of a full-fledged database system poses a highly non-trivial challenge.

2.2 Implementation Limitations

In early 1990s, object-oriented database systems products started to appear.
From a competition point of view, it was an important step for DOOD research
to go beyond the theory to the practise. Because DOOD research was immature
at that time, this step was done by paying a high price. Many essential database
and OO features were compromised or sacrificed. These features are listed below.

Data Persistence. In most DOOD implementations, the persistence store was
designed and implemented from scratch, as in [10,3,15]. Other DOOD systems
were designed as deductive layer over a persistent OODB system, as with [17].
Some DOOD implementations provided persistence by interfacing with exper-
imental object stores, as it was with [2,19]. Meanwhile other implementations
compromised the persistent store by using primitive data storage techniques such
as the UNIX file system in [12], or simply ignoring data persistence as in [1].

Concurrency. Current DOOD implementations are single-user. Multi-users en-
vironment requires additional functionalities (such as locks) on top of the per-
sistent store.

Transaction Control. Most DOOD implementations do not provide transac-
tion management for their updates.
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Database Administration. Because most DOOD implementations were
single-user, there was no concern for a database administrator (DBA). In gen-
eral, users are granted all privileges by default. However, if a DOOD system
is interfaced with a DBMS, then privileges are controlled by the DBA of this
particular DBMS and it is done in isolation from the DOOD system.

Crash Recovery. Most DOOD implementations do not support crash recovery.
However, for DOOD systems that are interfaced with a DBMS back-end, this
facility is supported if the back-end supports it.

Object-Orientation. Many implementation have ignored many basic OO fea-
tures such as encapsulation, method expression and invocation, public/private
access specifiers and class members (i.e. static attribute and method). Some of
these features were sacrificed because including them into the data model and
the query language will significantly complicate their semantics.

Meanwhile, other database management features, in addition to several OO fea-
tures were implemented inefficiently. This is due to the following reasons

Implementation Tools. Many DOOD systems were implemented using pro-
gramming languages that have not been extensively tested in terms of their
efficiency, specially for implementing large-scale products such as DOOD sys-
tems. For example, languages such as O++ and E, which are extensions of C++,
where used in the implementation of [15] and [2] respectively. Moreover, the
lack of important features such as automatic garbage collection or meta-access
to some built-in facilities means that these facilities must be implemented from
scratch. Similarly, database systems are much more than centralised repositories
of passive data. Thus implementing persistence from scratch requires far more
facilities than a passive persistence. If a back-end is used, then its limitations
will also affect the final product, for example, [17] does not support methods
and method invocation because it is not supported by its OODBMS back-end.

Implementation Strategies. Most implementations do not provide detailed
explanation of their algorithms and techniques, such as how data types are
mapped into the implementation language type system, how types are resolved,
how unification of complex terms in deductive rules is performed and how schema
queries are evaluated. Some implementation strategies are extremely expensive.
For example, in [2], when an object is deleted, the system must scan a huge list
of object-references and null each object attribute referencing the deleted object
to avoid dangling references.

3 The DJR Approach

If we abstract the DOOD features, under the implementation criteria, we will
get the following three abstract feature levels

1. low-level features: in which their implementation is not affected by the im-
plementation of other features;
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2. middle-level features: in which their implementation depends on the the
implementation of the low level features, but the implementation of some
other features depend on their implementation;

3. high-level features: in which their implementation strongly depends on the
middle-level and low-level features;

Low-level features such as transaction control, crash recovery and concurrency
are in the kernel of this abstraction. Their implementation is totally indepen-
dent from the implementation of other features. Implementation of the middle-
level features such as updates, encapsulation, inheritance, late binding, object
identity, access specifiers, overriding and overloading depends on the low-level
features. Finally, implementation of high-level features such as query evaluation
and optimisation, the type system and type resolution are mainly built on top
of the other features. Note that having low level does not imply being simple.
A feature has a low level if its implementation is independent of other features.
Implementation of higher level feature depends on the lower level features.

3.1 The DJR Suite

We can notice that the abstraction of features implicitly suggests the following:

1. low level features are already provided by most commercial database man-
agement systems. Thus, we can rely on one of them to handle these features.

2. middle level features are integral parts of many OO programming languages
such as Java and C++. The choice of the programming language should
also consider the fact that these features are built on top of the low level
features. Thus, it is necessary that the chosen language provides additional
interfacing facilities to link these features to the back-end.

So, we can reduce the implementation effort by delegating as many features
as possible to the programming language and the back-end DBMS. However,
high level features mainly depend on the data model. Thus, they need to be
implemented from scratch. But because they also depend on the features of the
middle and low levels, additional interfacing effort is needed. The selection of
the programming language and the back-end is a crucial step in this approach.

For an implementation programming language, Java turned out to be indis-
pensable as a candidate choice for the following reasons

• Java is an OO programming language with an extensible type system. It has
meta-programming facilities for handling classes, attributes and methods. It also
provides a persistent object facility through object serialisation;

• Java is a good choice for rapid prototyping. It has a huge library of util-
ity packages for services and application program interfaces (APIs). Java is also
backed by a variety of third party development tools provided by major system
vendors for interfacing relational DBMSs (JDBC) and OODBs (JDO). In addi-
tion, Java is web friendly and it has a phenomenal popularity within the Internet
community and Web APIs (i.e JDOM and SAX);
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• Java applications are portable. Applications are executed inside a runtime
instance of the abstract specification of JVM. This facility provides several run-
time utilities such as run-time compilation/linking/loading of classes, an au-
tomatic garbage collection, an advanced memory management, a distinguished
exception handler and an automatic initialisation of variables. Java has an opti-
mised and secured compiler.
On the other hand, we believe that a relational database systems (RDBMS) is
the best candidate to serve as a back-end due to the following reasons

• RDBMS products have been available for a long time, undergone extensive
development and are highly reliable in terms of database integrity and crash
recovery. Moreover, RDBMSs are scalable and they provide extensive proved
optimisation techniques at both software and hardware levels;
• RDBMS products are widely available with reasonable prices compared to
products from other database paradigms. Moreover, most relational database
vendors provide a standard API for the major programming languages.
• In a DOOD context, a relational back-end is appealing because relations
are an integral part of the DOOD data model. If properly interfaced, a DOOD
system can directly access and query the relational legacy data with no need for
any data transformation. Moreover, if successfully engineered, a DOOD system
can integrate and query several databases simultaneously;

In our approach, Java will be used to implement the data model specific
features of the high level, while middle level features will be delegated to JVM.
Low level features are delegated to the relational back-end. The result of applying
those tools over the feature abstraction divides the conceptual world into three
overlapping parts. This is called the DJR suite. This term stands for the Data
model, Java and the Relational back-end. Figure 1 depicts the DJR suite as the
result of applying Java and a relational back-end over the feature abstraction.

DJR also indicates several important properties. For example, low-level fea-
tures are handled in the R area. Middle-level features are handled in the DJ,
DR, JR and J areas. High-level features are in the D area. We can identify the
necessary skills needed in each area. For example, any intersection areas con-
taining J require Java API skills (such as JDBC in the area JR), while any area
involving R requires a considerable knowledge of relational database. Any area
involving D requires a considerable knowledge of the DOOD system data model
and its query language. The DJR area requires all skills.

The contribution of feature abstraction also suggest a collaboration between
the different levels to achieve some goals such as efficient computation or opti-
misation. Consider for example the following query
{ x in Part | x.partNo < 8800 & x.componentsCount() > 15 }
This query simply returns the set of all parts which have a part number less
than 8800 and which contains more than 15 components. However, if the ex-
tension of class Part is huge, there will be a significant overhead in evaluating
the extension expression, and consequently the invocation of componentCount()
method. But with DJR a collaboration between Java and the back-end can
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evaluate this query more efficiently. The effective extension expression of class
Part can be minimised by selecting only the objects that satisfy the condition
< 8800 using the back-end query language. The method invocation expression
can be evaluated by calling a stored procedure in the back-end.
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Fig. 1. Feature abstraction + Implementation tools = DJR Suite

Java applications run slower than their C++ counterpart. But, when it comes
to databases, the ability to manipulate large amount of data efficiently is more
important than the speed of the application execution. Moreover, Java has a
huge advantage over C++ due to its meta-programming facilities and garbage
collection.

An OO back-end looks more appealing than a relational one. However, object-
oriented databases are more expensive and their legacy data are far too small
than their relational counterpart. This is almost certainly requires a transforma-
tion of the relational legacy data into the OODBMS. Moreover, the OODBMS
technology is relatively younger and far more complex than the relational tech-
nology. Their products are relatively immature and their management and op-
timisation facilities are still under development.

Object-relational databases (ORDBMS) are not a better choice for a back-
end. The reason is that the DOOD object model is different than the OR model.
This means that we still need to build an additional mapping layer on top of
the mapping layer provided by the OR vendor. Nevertheless, if a DOOD data
model is generally accepted, its additional constructs can be added to the original
mapping layer.
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4 DJR in Action

In this section, we illustrate how the DJR tools (i.e. Java and the relational back-
end) contributed in the implementation of the DOOD system UNIDOOR. We
focus on the implementation techniques for the object-oriented and database
management features. The deductive features, however, are presented briefly
because they are data-model specific. We show how DJR paves the ground to
incorporate in addition to the traditional techniques, any novel techniques with
a great level of flexibility and orthogonality with the underlying complexity of
OO and database management.

4.1 The Contribution of Java

The main programming effort will be centred around the interfacing areas (i.e.
DJ,DR, DJR and JR). Luckily, the facilities in the J area are automatically
supported by JVM. The implementation in the D area (i.e. the query language)
will be illustrated later.

UNIDOOR has an extensible type system hierarchy. Types can be either
atomic, such as Integer, Real, classes or constructed from other types us-
ing collections and tuple type constructors. The DJR approach suggests the
following technique for implementing similar type systems.

• An atomic type is compiled into the corresponding atomic Java class.
• A collection type is compiled into a uniform Java class that extends a generic
collection class with basic utility methods (such as union, membership, . . .etc).
• A tuple type is compiled into a Java class consisting of the same set of
attributes but with additional set/get methods.
• A user-defined class is compiled into a corresponding Java class. This class
mirrors the inheritance hierarchy, and the attributes static/non-static and pub-
lic/private access specifiers of the corresponding UNIDOOR class definition.

In general, UNIDOOR types are compiled into Java classes with the necessary
private components and a corresponding public set/get methods for the type
components.

Methods are handled differently. Each method is compiled into a correspond-
ing Java method definition. This definition mirrors the original interface part
of the method but its implementation part depends on the query expression in-
volved. The set of expressions depends on the proposed data model, and thus
will not be covered here. Nevertheless, simple method expressions can easily be
compiled to Java. For example, if class Part contains the method

complex():Boolean= count(components) >9;

then the following definition will be included in the Part Java class
public Boolean complex(){return new Boolean(components.count()>9);}

We can now identify the advantages of the implementation approach of the
type system. The inheritance hierarchy will be respected by the type Java classes.
Method overloading, overriding, late binding and invocation will be handled
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automatically at runtime by JVM. Aggregate functions (such as count) are
compiled into calls for some inherited methods in the generic collection class.

One may argue that the above compilation of UNIDOOR type system into
Java is natural and straightforward. However, it is important to know that it is
an essential step in the implementation of a highly complex system. This step
is an integral part of the whole implementation process and thus is related not
only to Java but also to both the deductive side and the back-end side.

The static analysis of a DOOD query expressions depends on the query lan-
guage semantics of the data model. Nevertheless, the DJR approach provides
guidelines that can be adapted to handle data-model specific expressions. In
UNIDOOR, syntax checking is done mainly by the parser, while semantic check-
ing of UNIDOOR query expressions is handled in the following way. UNIDOOR
has rich collection of expressions. UNIDOOR defines special class for every kind
of expression. For example, we have a class for binary expressions, a class for
set comprehension expressions, a class for quantified expression, . . . etc. Ex-
pression classes are defined with a set of utility methods for type resolution,
expression evaluation and error handling. These classes are arranged in a hier-
archical order. When UNIDOOR parser encounters an expression, it generates
the corresponding expression tree in a bottom-up fashion from simple expres-
sion up to the full expression. Each node of the expression tree is an instance
of the corresponding expression class. Tree generation breaks if a syntax error
is encountered. UNIDOOR semantic checking then starts by calling the utility
method resolveType. This method has different behaviour according to the un-
derlying expression class. For example, in the IntExpr class, it simply returns the
type Integer, while in BinExpr class, the type of the expression is determined
by considering, the binary operator domain, and the types of the left and right
hand side expressions. Generally speaking, an expression type is determined by
calling the resolveType method of the root of the expression tree, which (re-
cursively) calls resolveType methods of its subexpression and so on down to
the expression tree terminals. In case of type conflicts, the compiler produce
an error. Since UNIDOOR does not have polymorphic types, type resolution is
relatively unsophisticated.

The evaluation of an expression is done by recursively calling the (overloaded)
utility method Object evaluate() on the root of the expression tree. The behav-
iour of this method depends on the expression it self.

It proved to be crucial to use Java runtime facilities in some critical cases.
Consider for example that a new type is introduced at runtime in following query
expression

x in {{1,2,3},{4,5}} & 5 in x

here the type of the subexpression {{1,2,3},{4,5}} is Set(Set(Integer)). If this
type was first introduced at run-time, then there is no corresponding Java class
definition yet in JVM. Java will throw an exception stating the absence of that
Java class. In our approach, this can be solved using the following technique.
First, a special exception handler catches the exception and then calls the Java
code-generating method to generate the required class file. It then compiles it,
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loads it to the main memory and finally links it to the running database session.
This can be done by using the JVM compile/load/link facilities. If the new type
is deeply constructed from types in which their Java class are yet not linked
in JVM, the process is recursively repeated until all type references have their
corresponding Java class linked in JVM. Run-time types are available as long as
the session is running. This means that there will be no need for regenerating any
type if it is referenced again during the same session. If one could not load new
class definitions, many functions would have required several implementations
for both compile-time and run-time generated classes.

Path expressions are also handled automatically by JVM. For example, if we
have the following static method definition in class Supplier:
static riskySup():Set(Supplier)={ x in Supplier| x.man.age<20};
This static method returns the set of suppliers that are managed by young
managers. The path expression x.man.age navigates from a Supplier object,
then via an Employee object and then to the attribute age. In our approach, Java
automatically handles the necessary path expressions and inheritance.

In the update language, when we create a new instance of a UNIDOOR class,
a corresponding new instance must be created in its corresponding Java class.
In our implementation, we can create a new instance by calling new followed
by the class name with a named tuple argument. The attributes of this named
tuple must be a subset of the UNIDOOR class attribute list. UNIDOOR first
creates an instance using the empty constructor of that class. Then, it iterates
over the tuple attributes and calls the corresponding set method to assign each
value to the specified attribute. If a particular attribute was not defined in the
class, then an exception is thrown. UNIDOOR catches this exception and re-
ports a type error. Invoking the constructor and the set methods is done using
Java meta-programming facilities for run-time method invocation. JVM will au-
tomatically handle any inherited fields from their superclasses. Noticeably, the
created object will automatically be assigned a unique object identity by Java.
Deleting and modifying object values is handled by the relational back-end to
insure the database integrity. This will be explained in the next subsection.

Java provides an interesting feature called the object serialisation. Java takes
an object’s state and converts it to a stream of data thus making object persis-
tence easy. This feature is utilised in our approach to store the values of static at-
tributes across the sessions. It is also used to pass the generated UNIDOOR/Java
schema mapping from the compilation stage to the querying stage.

4.2 The Contribution of the Relational DBMS

When UNIDOOR compiles an input schema into a collection of Java classes, it
also create a relational schema at the back-end. This schema defines a collec-
tion of tables with the necessary integrity constraints. The relational schema is
defined in a special way to maintain objects persistence and database integrity.

Mapping between UNIDOOR data model and the relational model is per-
formed using the well-known object-relational (OR) mapping technique [20]. The
technique is slightly modified to incorporate the deductive side. We create a table
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for each class. Each table includes the attributes implemented by the class and
excludes the inherited attributes. There is an additional key column OID with an
AUTO INCREMENT modifier to guarantee a unique persistent object identity. The
types of the columns depend on the types of the corresponding attributes in the
class. The root class UNIDOORObject is mapped into a table with two columns,
a key column and a string-valued column storing the principal class of that par-
ticular OID’s value. This table is important for two reasons. First, it is used to
synchronise between the in-memory object instances and the persistent objects.
Second, foreign keys will reference one table only instead of several tables (for
each referenced class table). Attributes of atomic types are mapped into columns
of the corresponding relational atomic type. For example, an String attribute
is mapped into a column of type CHAR(256). But if an attribute was of a class
type, a tuple type or a collection type (i.e. a set or a Multiset), then it is mapped
into a column of type INT. In general, key columns (OID) and references columns
(OID REF) are of type INT. These columns will store the persistent key value of
the referenced type table.

Tuple types are handled similar to objects, but with an additional foreign key
column (OID REF) to reference the key value of the value (or object) that contains
this tuple value. Finally, a collection type is mapped into a table with three
columns, a key column (OID) to uniquely identify each member in the collection,
a foreign key column (OID REF) to store the key value of the referencing value,
and a VALUE column of the corresponding collection type, to store the actual
value of a collection member. In this respect, collection values are mutable.

One of the important features in this OR mapping mechanism is that we
need not care about dangling references. This is done in the following way. For
each column of a class type, we create an integrity constraint that will set the
value of that column to null if the referenced column was deleted. Thus, for the
the manager attribute (man) of the Supplier class, the schema of the Supplier
table will contain the following integrity constraint

FOREIGN KEY(man) REFERENCES Employee(OID) ON DELETE SET NULL;

so, if an Employee object is deleted, then all manager attributes referencing
that particular Employee object will be automatically set to NULL by the back-
end. For tuple and collection attributes, we have two integrity constraints. The
First one is to ensure that the tuple or the collection entry that refers to that
particular object is deleted once the object that references them is deleted. For
example, schema of the tuple type Set(<part: Part, quantity: int> table will
contain the integrity constraint

FOREIGN KEY(OID REF) REFERENCES Part(OID) ON DELETE CASCADE;

so, if a Part object is deleted, then all entries in that set table that reference this
particular object (that is its components values) will automatically be deleted by
the back-end. The CASCADE modifier ensures that the deletion will cascade down
the nested tables. The second integrity constraint is used for class collection
types to insure the deletion of a collection object member if that object was
deleted. For example, if for a particular Part instance, one if its components
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object member was deleted. Then we need to ensure that this particular subpart
is removed from that part components collection. This can be maintained by
adding the following constraint

FOREIGN KEY(VALUE) REFERENCES Part(OID) ON DELETE CASCADE;

into the set of components table.
During a query session, when a particular object of some class is referenced,

the OR mapping mechanism creates an empty object instance and then sets
its attributes using the data stored in the relational back-end. It also build a
synchronisation list so that any changes in any active (i.e. in memory) object
is mirrored in the persistent copy of that object. The OR mapping mechanism
uses the UNIDOOR-Java schema created during the compilation of the original
UNIDOOR schema to determine the necessary tables for initiating that object. If
we retrieve an object of a class with some inherited attributes, the OR mapping
mechanism will perform the necessary joins between the tables that build up
the inheritance hierarchy up to the base class. OR mapping mechanism uses the
JDBC API to execute the necessary SQL commands for both data definition
and object initialisation.

Class extension is an important expression in the UNIDOOR query language
(and also in nearly all DOOD systems). A class extension is simply the set
of all object instances of that class. Whenever a class extension is referenced,
it is better not to initiate the whole set of objects instances of that class to
perform a query. Queries that involve class extension expressions are prone to
huge optimisation by the back-end. Consider the following query:

{ x in Part | x.partNo < 8800 & . . .};
UNIDOOR query optimiser notices that it is better to initiate the class extension
expression with only persistent objects that had an partNo column with value
less than 8800. Thus, the optimiser indexes the Part table on the partNo column
and access only those entires with partNo<8800. The query evaluator can then
proceeds with the remaining portion of the query. Another clear example is the
following query:

count(PART);

in the non-optimised version, the above query will be evaluated in the following
way. An empty instance of the type Set(Part) is created. It is then populated
with the Part objects using the back-end. Finally, the count method associated
with the Set(Part) is called and its result is returned as the query answer.
However, an optimised version of the query evaluator will recognise the fact that
this query can be evaluated entirely by the back-end by invoking the following
SQL command

SELECT COUNT(*) FROM PART;

This sort of collaboration between Java and the back-end is the backbone for
deductive query evaluation and optimisation. Deductive rules are compiled into
static methods defined in a special class. A static EDB predicate can be stored
using Java persistent object facility while a dynamic EDB predicate can be stored
as a static multiset of some tuple type. UNIDOOR monitors many important
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information such as class extension sizes and potential indexing attributes at
compile-time and at run-time. These information are used for potential optimi-
sation. To illustrate this consider the following rule

payroll( supplier, manager, salary):-

manager= supplier.man, salary= manager.salary + supplier.bonus.

Suppose that the predicate payroll is called with all its arguments free. In
this case both extensions (i.e. Suppliers, Employee) need to be computed. If
UNIDOOR finds that the Employee extension is larger than the Supplier exten-
sion, then it evaluates the extension of the Supplier first then proceed with
evaluation using path expressions. When an argument is bound, UNIDOOR
checks if it can use this value as an index for a faster access to some class ex-
tension. Details of the techniques behind such decisions are beyond the scope of
this paper.

Because a DOOD model is mapped into the relational back-end, all basic
database facilities are provided directly. For example, the crash recovery feature
of the relational back-end means that DOOD has a crash recovery feature too.
Database administration can be maintained by using the DBA facilities of the
relational back-end. This is done first by providing an administrator privilege to
some user. Then all administration features are provided by building an interface
that simply connects to the relational database server and then these commands
are provided as a layer by the DOOD interface. The interface simply executes
the necessary administration commands using the JDBC API. Users can be
added and their respective privileges can be modified by the administrator. If
a user violates his/her privileges, an a exception is thrown and the interface
layer should deal with that properly without leaving the query session. The
DBA interface layer can be incorporated within the complier so that only the
administrator has the power to compile a schema. Concurrent access to the
database is also controlled by the locking mechanism provided by the relational
back-end. Nevertheless, the logical treatment for concurrent access relies heavily
on the proposed DOOD system.

Updates are handled in the following way. An update layer is built between
Java and the relational back-end. This interface layer provides the facilities to
load/store object from/to main memory and to/from relational back-end. When
a new object is created, a storeObject method inside that layer is called which
receives this object, retrieve its non-null attributes using Java meta-classes, and
then executes the corresponding SQL commands to insert that instance. If a
particular object is deleted, its persistent OID is retrieved using the synchroni-
sation list and then an SQL delete statement is executed. Updates are handled
similarly but we need to consider only the modified attributes.

Transaction can be performed using the transaction control service provided
by the back-end. A transaction block is automatically mapped into a relational
transaction block. Whenever a start transaction command is encountered, a
corresponding START TRANSACTION is also executed. When UNIDOOR encoun-
ters a commit/rollback command, a corresponding COMMIT/ROLLBACK com-
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mand is executed in the back-end. The transaction logic in UNIDOOR will
determine when roll-back or commit command are executed.

5 Conclusion

The DJR approach is a new technique for implementing DOOD systems. It
proposes an abstraction of the DOOD features. It then defines the DJR imple-
mentation suite consisting of Java as the implementation programming language
and a relational DBMS as a back-end. It also provides many useful guidelines on
how to use the built-in facilities of the implementation tools to implement many
important but hard-to-implement DOOD features. The power of DJR for rapid
implementation highly complex systems (such as UNIDOOR) lies heavily on the
cumulative contribution and collaboration between Java and the back-end.

The consistency of the DJR approach was verified when we successfully built
the DOOD system UNIDOOR. The UNIDOOR prototype successfully maintains
the integrity of its data and it supports most of the database facilities such as
the transaction control, updates, persistence store, crash recovery mechanism
and database administration facilities. The DJR approach can also help in the
management of the implementation process. Basically, it cuts away a great deal
of the implementation effort by identifying the implementation areas along with
the necessary programming skills. Thus, the implementation of a DOOD system
can easily be distributed among a group of programmers. We argue that the
DJR approach can also be used on implementing any system that requires a
persistence store such as deductive databases.

In the future, we will investigate further optimisation techniques over the
DJR suite. We shall also extend UNIDOOR to work in a distributed database
environment and to interface with the Web. We believe that the DJR tools has
the potential for these added functionality. But this will require a revision for
the feature abstraction.
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Abstract. As Web applications grow in terms of quantity and quality, different 
vertical solutions could make use of them as an important source of informa-
tion. Nevertheless, obtaining information from web sources becomes a chal-
lenging issue because of their complex access due to the hypertext browsing 
paradigm, and HTML's semistructured format. Web Automation middleware 
navigates through web links and fills web forms in an automatic way, so to ex-
tract information from the Hidden Web. The main optimization parameter is the 
time required to navigate through the intermediate pages that lead to the desired 
results. This work proposes a technique which focuses on improving the brows-
ing time by storing  information from previous queries, and using it to preload 
an adequate subset of the navigational sequence on a specific browser, before 
the next sequence is launched. It also takes into account the most commonly 
used sequences, being the ones to be preloaded more often. 

1   Introduction 

The world wide web is the most important source of information for many types of 
knowledge areas, like competitive intelligence, product search and comparison, op-
erational business intelligence, and so on. Most of the information stored in the web is 
hidden behind forms (authentication, information-filling, etc.), navigational links with 
JavaScript, session maintenance, and so on. These web sites, generically known as 
Deep Web or Hidden Web, are estimated to keep more than five hundred times the 
information which resides in web pages accessible through a static URL [2].  

In the last years some research groups and industrial companies have been focusing 
on automatic browsing and extraction of information from Deep Web sources. Basi-
cally, obtaining information from web sources is divided into two main steps: firstly, 
being able to browse through the access pages up to the first page of results; secondly, 
extracting information from the result web pages, in either a structured or unstruc-
tured way. Some of the research groups (e.g. [11]) deepen into how to browse through 
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the different access pages for the system to get to the result page. Other works focus 
on the extraction step ([1], [6], [7] and [8] for a survey) and how to obtain structured 
or indexed information from the web. Both steps (browsing and structuring) are inter-
twined since after browsing to the first result page, it must be parsed as to know its 
internal structure, and also to know how to access possible detail and “more result” 
pages.   

When building web automation systems or information integration applications 
with access to web sources, it is critical to optimize the web access efficiency. Web 
sources are slower than traditional corporate and local sources, such as relational 
databases, because of: (1) their inherent distributed structure, (2) http, WWW’s com-
munication protocol, and (3) the way web sources structure their information in 
pages, so that a “virtual table” might imply browsing through tenths, hundreds or even 
thousands of web pages (mainly “more results” pages and “detail” pages). 

There are complex web sources which require long navigation sequences before ar-
riving at the real query form, due to session maintenance. For example, in many real 
sources it is necessary to introduce login/password information, after what the user 
must navigate through one or more pages until arriving at a certain query form. This 
fact can cause that a query take a very long time to execute. 

The different flows of navigation of several queries have "common denominators", 
that is, sequence elements that are repeated such as the login/password access, or the 
different options by which the site can be browsed before arriving at a concrete page. 
Much processing time is lost because the system does not consider that from a query 
to another, it would only be necessary one step back and a new selection; instead, it 
repeats the complete navigation access path from the beginning.  

The optimization of the process flow can provide many considerable improvements 
as far as the access time to the remote information of each source is concerned, some-
times in orders of magnitude - mainly in sources which reside in servers with small 
bandwidth, or in sources with many intermediate steps -. This work describes a series 
of techniques which allow to optimize access to web sources in a mediator-wrapper 
architecture [14], even though this approach is valid for a stand-alone web extraction 
system. 

This paper shows a novel approach with regards to web source browsing optimiza-
tion, based on browser reutilization and use of a cost repository. The structure of this 
work is as follows: Section 2 and Section 3 introduce the web browsing optimization 
challenge by characterizing its main components. Section 4 shows the Cost Reposi-
tory Parameters, while Section 5 describes how to obtain an adequate sequence prefix; 
Section 6 explains how the browser pool can select which sequences must be pre-
loaded at execution time. Section 7 explains the two sequence ranking algorithms 
proposed. Finally, Section 8 takes care or other important issues, and Section 9 sum-
marizes on conclusions. A previous phase of this work was presented in [4]. 

2   Using a Browser Pool to Browse Web Sources 

The web automation system proposed in this work uses browsers as basic elements 
which are able to access information stored or dynamically generated by web applica-
tions, and that might require prior authentication, and/or link traversing. The use of a 



 Preloading Browsers for Optimizing Automatic Access to Hidden Web 173 

browser instead of an HTTP client improves the quality and quantity of web applica-
tions which can be browsed since it emulates a user’s behaviour, so many issues such 
as session maintenance, javascript, etc., are taken care by the browser internals. 

The approach followed in this paper is focused on the component known as 
Browser Pool. This module is responsible for receiving the requests, each of which is 
associated with a specific web navigation, and selecting one of its set of browsers to 
be executed.  This request is called “Navigational Sequence”, and it is composed of a 
set of actions which must be performed by the browser. The language to describe 
these sequences is known as NSEQL –Navigational Sequence Language, thoroughly 
described in [9]-, and has been designed for executing them on the Internet browser 
interface (Microsoft Internet Explorer and Netscape Firefox). Table 1 shows an ex-
ample of an NSEQL program, which guides a browser from the home page of a hypo-
thetical electronic bookshop to a query result page, after the user is authenticated, the 
search terms are inserted and the query form is submitted. 

As it can be observed, the syntax is very simple to understand. The first line com-
mands the browser to access the initial page. Lines 3 to 6 show how the browser must 
fill the authentication form and click on a button in order to submit the information. 
“@LOGIN” and “@PASSWORD” are NSEQL attributes which can be used to pa-
rameterize the sequence (for example, by telling the system the specific login and 
password values). Finally, after the browser receives the page after the authentication 
process, lines 8 to 11 are executed so that the page’s “searchBrick” form is found and 
its search field “field-keywords” is filled with information provided by attribute 
“@QUERY”. Finally, the form information is submitted, and the result page is re-
turned. The browser will return information about the status of each of the sequence 
steps, plus the HTML code of the last page.  

When this query must be executed several times with the same of different attrib-
utes, one can observe that the most important optimization parameter is the “browse 
time” spent by the system to access the information stored in the pages hidden behind 
links, authentication and query forms. How the Browser Pool decides which browser 
is assigned to a specific request, and how to optimize the execution of these se-
quences, are the main purposes and value propositions of this paper.  

Table 1. NSEQL Description 

1. Navigate(http://www.ebookshop.com,0) 
2. WaitPages(1) 
3. FindFormByName(implogin,0) 
4. SetInputValue(imapuser,0,^EncodeSeq(@LOGIN)) 
5. SetInputValue(pass,0,^EncodeSeq(@PASSWORD)) 
6. ClickOnElement(button,INPUT,0) 
7. WaitPages(1) 
8. FindFormByName(searchBrick,0) 
9. SetInputValue(field-keywords,0,^EncodeSeq(@QUERY)) 
10. FindElementByAttribute(INPUT,NAME,Go,0,true) 
11. ClickOnSelectedElement() 
12. WaitPages(1) 
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A browser pool receives the different petitions from the web automation system, 
each of which is related with an NSEQL program. The browser pool uses the brows-
ers already opened and in a passive state to execute each of the programs. If a petition 
arrives and a browser is not available, the browser would open one if the number of 
browsers is below the maximum number of open browsers, or queue the petition until 
one is available. Fig. 1 shows an example of these steps, in which a browser pool is 
configured to have at most three active browsers at a time. Three different types of 
browsing sequences are sent to the browser pool, each of them with specific number 
of elements. Two premises in this example are that: (1) each sequence element takes 
exactly the same time (something not very real in internet environments, but which 
help us to better understand how this architecture works), and (2) the browsing peti-
tions arrive at the same time, so that browsers have no gap time between requests. 

 

 

Fig. 1. Browser Pool Steps without Optimization 

Here we can see how each the browser pool assigns each browsing petition to a 
free browser (according to a specific ordering). After each browser finished a petition, 
it starts a new one if it exists.  

The following sections show the different optimization techniques required to de-
crease the number of browsing steps.  

3   Optimizing Navigational Sequences 

The proposed solution in this article is an extension of the pool of browsers, so that 
for each browser, the sequence of navigation actions which took it to its present state 
is stored. When a new sequence is received by the browser pool to be executed, it is 
verified whether there is any browser that it has some sequence with a common prefix 
with the recently received sequence. In that case, the system will evaluate whether it 
is better to reuse the browser’s present state or to start from the beginning. Thus, in 
the previously commented case, when the new sequence arrives, the pool would real-
ize that there is a browser which is a single step from the desired state, and would 
reuse it.  
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In addition, to avoid the problem of the initialization cost –that is, the time required 
to start the browser, and navigate through different pages until arriving at a concrete 
result page-, the pool of browsers starts up a preconfigured number of browsers al-
ready initialized, that is, pointing to the pages which, according to the cost repository, 
are more suitable to respond to the queries, anticipating themselves to the future 
needs. This is obtained by means of a historical ranking of sources and states, so that 
we can construct a heuristic model. 

The browser pool must make use of both status information and cost statistics –or, 
more precisely, access cost statistics-.  

Status information will be used by the pool to control where its browsers are in 
each moment. Currently, information managed is the set of navigational sequences, 
where the path followed by each browser is defined sequentially. Every element from 
this sequence is actually a state of a particular deterministic finite automata. This 
information is required by the pool to determine, when a new query arrives, which of 
its elements has a minor distance with respect to the target –the element of the new 
sequence to execute-. 

Access information will allow the pool to initialize its browsers so that, statisti-
cally, the following sequences’ starting nodes are as close to the first ones’ finishing 
nodes as possible. The associated cost will be lower when sequences are closer. 

In the case that the browser selected for the following sequence had previously 
executed that same one, the system must decide whether the browser’s current state is 
the optimal, or whether it must browse to a later or earlier state. When the optimal 
state is at a previous step, a “back sequence” must be executed. This special sequence 
has a series of implications that will be commented in section 8.  

4   Web Automation Optimization Cost Parameters 

A cost repository is used to store information about the browsers, such as the com-
plete access route for parameterised query (query type) to a web source and the utili-
zation ranking, which will allow for the pool of browsers to select the appropriate 
access route to initialize the new navigators.  

An important characteristic in the cost repository is the storage of information by 
each access route and time section. In our preliminary studies we have observed great 
existing differences of web source performance in different time sections. The use of 
a navigational sequence or another also depends on the time section in which the 
request is made.  

The required general parameters for an adequate physical access optimization are 
the following for each query type: 

a) information about its related navigational sequence (the one which allows the 
browser to access the desired results), written in NSEQL. 

b) each query will increase by one the number of queries per time section on 
this query type. This will be used to generate the sequence ranking. 

c) finally, the last attribute stored is the route subset, the navigational sequence 
prefix that the browser should navigate automatically so that the user query 
is optimized regarding the access to the web source. Initially, it is assigned 
the complete NSEQL sequence. The browser reuse algorithm can be used so 
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that when it finds the “back sequence”, that prefix (the difference between 
the whole NSEQL sequence and the back sequence) is the value stored at the 
cost repository.  

An aggregate method will compute the number of ocurrences per time section for 
each navigation sequence, thus obtaining a relative ordering with respect to their fre-
quence of utilization.  

On a frequency basis (so as not to disturb the runtime execution of the optimizer), 
an update thread will take care of taking these occurrences and generating the relative 
ordering of each query type per time section with respect to the rest of them, accord-
ing to their frequency of utilization. This processing can make use of a typical mean 
average M(k) = Σηi(k)vi, i=1..k, where ηi(k) = 1/k, or more appropriate probability 
functions. This ordering will be stored in a “position” attribute on the cost repository, 
for every query type and time section. 

5   Selecting a Reutilization Prefix for a Specific Sequence 

One of the optimization techniques described in this work is related to selecting the 
most appropriate subset of the NSEQL navigational sequence (a “prefix”) to preload a 
browser so that, when a web automation query is executed on the system, the browser 
is already positioned on the best possible sequence element. This way, web browsing 
performance can improve even orders of magnitude, since HTTP connection is the 
parameter which affects the most to efficiency overall. A conservative approach takes 
as prefix the sequence elements counting from the home page to the first page with 
variables. For example, the sequence elements required to access the authentication or 
the query form. This technique is not error-prone, but might not be optimal in the case 
there are more than one form, and the changing variables between queries do not take 
part on the first n-m forms (where m=0 would mean the worst case possible, in which 
no variable changes among queries, so that the browser could just stay at the first 
result list page).  

In our case we propose the following: for every query type and time section (in 
case the behaviour differs depending on the time), we keep information about whether 
there are any value changes in each attribute of the sequence. These changes take the 
last “m” sample queries (which value has been heuristically determined as 5). This 
way, the system can choose at runtime whether the prefix should “stop” at the first 
query form, or, in case its variables have not changed, it can use some more sequence 
elements.  

This is implemented with a 2xN matrix, where n is the number of attributes per 
query type and time section, in the following way: {{attribute1, boolean1}, {attribute2, 
boolean2}, …, {attributen, booleann}}, where booleani indicates whether that attribute 
has changed in the previous i executions or not.  

This method, although more computationally intensive (requiring O(N*m)), it is 
very flexible with regards to the use of the variables. For example, the prefix will take 
into account whether an attribute used in an authentication form stores always the 
same values or not; in the first case, it will be considered that the attribute has, actu-
ally, a constant value. 
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As an example we will use the NSEQL program from Table 1, in which a book-
shop web application access is automated. We can observe that there are two pages in 
which attributes are used: the authentication page and the query page. A conservative 
optimization technique would select the sequence prefix defined from the home page 
to the authentication page (that is, the sequence Navigate(http://www. 
ebookshop.com,0); WaitPages(1)), and would use it from then on.  

However, the technique proposed in this work does not create a prefix a priori. In-
stead, it will depend on the queries performed by the system on that specific query 
type. Let us take a look at a set of sample queries for the previously mentioned elec-
tronic bookshop in Table 2. Let us also imagine that the configuration attribute “m” 
equals to 3, which is the number of sample queries checked for each attribute in order 
to find any change of values. With this information, in each iteration the 2xN matrix 
is generated, indicating the attributes which value has changed in the previous “m” 
iterations. 

Table 2. Sample Queries for the Electronic Bookshop Web Application 

N LOGIN PASSWORD QUERY N LOGIN PASSWORD QUERY
1 Joe Joe Java 8 Joe Joe CORBA

communication
2 Joe Joe Java 9 Christie Christie Java
3 Joe Joe Relationa

l
Databases 

10 Christie Christie Java

4 Joe Joe UML 11 Christie Christie Java
5 Christie Christie UML 12 Christie Christie Java
6 Christie Christie Mediators

Web 
13 Joe Joe  Java 

7 Joe Joe ActiveX
 

 
Using the information on that matrix, the system generates the sequence prefix be-

fore each query. For the first query, as there is no previous information, the conserva-
tive technique is used in which the browser is positioned in the first page in which any 
attribute is required –in this case, the authentication page-. Since “m” equals to 3, the 
first three queries use this technique strictly. In the fourth query, since the login and 
password values have kept the same value in the last “m” queries, the prefix is modi-
fied so that it positions the browser in the query form page. This allows this fourth 
query to save a few page browsings. Again, for the fifth query the browser is position 
in the query form page, but a different pair login/password is provided. In this case, if 
a “back page” sequence is provided by the user, the appropriate subset of this se-
quence is provided in order to go back to the authentication page; if no sequence is 
given, it is very dangerous to try the Back button in session maintenance web applica-
tions, so, if it is not explicitly configured to try it –because the administrator has de-
cided that this web application behaves correctly with the Back option-, it is better to 
open a new browser (in order to clean any session information) or reuse an existing 
one, and perform the whole sequence. As the sample queries are being executed,  
this technique works as depicted. The last issue we want to show here is that, before 
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executing the twelfth query, since both the pair login/password and query attributes 
have not changed in the previous “m” queries, then the prefix used is actually the 
whole sequence, so that, since the twelfth query repeats all the attributes, the response 
will be the same as in the previous query. 

This last behaviour must be described a little bit more carefully. In some cases, re-
using the browser results absolutely can be a better-than-good idea, since web data 
might have been updated since the last query (p.e. in highly-variable values in finan-
cial web applications, or because the last query was executed a long time ago). There-
fore, in these cases it might be better that, even if all attribute values have not 
changed, to repeat the last query form so that the browser is forced to query the server 
for new results. This, too, can be configured. 

Obviously, the prefix sequence for the fourteenth query execution goes back to the 
authentication form, since, even though the QUERY attribute has not changed, so 
have the LOGIN and PASSWORD attributes done. 

The value of the “m” attribute can be chosen heuristically, but must be carefully se-
lected. If we choose a very low “m” (p.e. 1), this means that the algorithm will react 
by taking only the last query executed. When attributes vary in a frequent way, the 
prefix will not be very useful, and “back page” sequences will have to be executed 
many ways. If m takes a big value, this means that the conservative technique will be 
used unless fixed attribute values are used most of the times. 

6   Browser Pool Run-Time Optimization 

The previous technique allows the system to choose a promising prefix sequence 
which avoids automatic browsing of the whole web flow. This section complements it 
by allowing the browser pool to preload the most promising sequences, that is, the 
ones which will be executed with the most probability.  

Every time a query is executed with a predefined navigational sequence, the cost 
repository must store that fact, so that a “sequence ranking” per time frame is created.  
A time frame is a division of the 24-hour period, for example 00:00-07:59. Thus, the 
browser pool will start up the preconfigured number of browsers. Each one of these 
browsers will directly access, without a query having been made, the set of better 
positioned sequences in the ranking –this does not mean one sequence per browser: if 
one sequence is much better positioned than the rest, this could mean than two or 
more browsers navigate to it-. These browsers will stop right in the state of the se-
quence in which it is necessary to insert execution-time data –user data, login, pass-
word, etc.- by using the technique from section 5; thus, the system is optimizing their 
utilization. 

When a new browser is launched, the optimizer must take into account two types 
of information: the one provided by the cost repository, plus that provided by the pool 
about the rest of the browsers which are already active –so that, for instance, if the 
active browsers are already coping with the first two sequences in the ranking, the 
new browser is taken to the third one-. 

If a new query arrives which implies the use of a browser, the pool will check 
whether there are already some of the already active-but-idle ones with the same se-
quence required. If more than one browser responds, the pool will decide which one 
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to use by measuring which one has to use a lesser number of navigational events to 
get to the step in which execution-time data must be inserted. This is achieved by 
using the concept of “distance”. 

The other possibility is that no active-but-idle browser is in that required sequence 
(i.e. no browser is currently in any page belonging to that sequence). This situation can 
lead to the following choices: (1) If the probability that this sequence is invoked again in 
a future query is much lower –a configurable parameter- than the probability of the 
sequences already involved in the current executable queries, a new browser can be 
started even if some of the rest are not in use, in order to avoid that arriving queries 
which make use of the more typical sequences can not take advantage of the optimizer, 
because they have to either wait for a browser to finish, or start up another browser. (2) 
It also can happen that the pool does not accept the creation of a new browser –p.e. there 
is a maximum number of allowed instances-. In this case, the pool will use the active-
but-idle browser with owns the sequence with the lowest ranking number. 

The following section explains the ranking algorithm in more detail. 

7   Ranking Phase 

The browser pool is responsible for creating a ranking with the set of navigational 
sequences used by the system in real time. The issue in creating this ranking relates to 
how will the topmost sequences be mapped to the browsers which are currently avail-
able (NUM_BROWSERS). 

We offer two possibilities: the first one is to map these browsers with the top x%, 
while the second one is to use the NUM_BROWSERS/n top sequences. Let us see 
one example for each choice. 

7.1   Mapping Browsers with Query Types in the Top X% 

Table 3 shows the sample query type utilization used in the following examples. We 
have nine sources (from “A” to “F”), each of which has a percentage value of use as 
shown in the table. This value has been obtained as described in sections 4 and 6.  

Table 3. Sequence Utilization Example 

SEQUENCE % SEQUENCE % 
A 8% F 2% 
B 6% G 2% 
C 6% H 1% 
D 4% I 1% 
E 2%  

 

If NUM_BROWSERS = 10, and X%=20 (that is, the user wants to map the top-
most 20% of the sequences to the browsers):  

a) 20% is achieved by the first three sequences: A, B and C (8% + 6% + 6%). 
b) 8%*10 browsers / 20% = 4 browsers for sequence A 
c) 6%*10 browsers / 20% = 3 browsers for sequences B and C 
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This means that the first four browsers will be started and preloaded with sequence 
A’s prefix, other three will have B’s prefix, and the other three, C’s prefix. 

“X” is a parameter configurable by the user, and its value will depend on the type 
of application for which is being used. If the solution mostly accesses a concrete and 
limited set of sources, and there are not many browsers available (due, for instance, to 
hardware constraints), X could be a low percentage of the total use to improve the use 
of the browsers. Nevertheless, if the use distribution of the sources is lineal, X should 
be big enough to, basically, distribute the browsers as much as possible. 

7.2   Mapping Browsers with a Maximum Number of Query Types  

A parameter n = 5 means  that the user wishes the first five sequences to be ade-
quately distributed along the available browsers. 

In the previous table, this means that sequences A, B, C, D and E will be used, 
which stands for 8% + 6% + 6% + 4% + 2% = 26% 

a) 8%*10 browsers/26% = 40/13 = 3 browsers for sequence A 
b) 6%*10 browsers/26% = 30/13 = 2.5 browsers for sequence B and C (3 and 

2) 
c) 4%*10 browsers/26% = 20/13 = 1 browser for sequence D 
d) 2%*10 browsers/26% = 20/26 = 1 browser for sequence E 

8   Other Issues 

Some issues must be taken into consideration when considering the implementation of 
these techniques. 

8.1   “Back Navigation” to a Common Page 

If a browser can be reused so that the same sequence previously executed is called 
again, one would wish that it would navigate back to the most adequate sequence 
element (i.e. web page) so that this new query does not have to take the whole path 
back from the beginning; unluckily, this is not possible in most of the times: (1) in 
some occasions, this is due to web redirections which do not allows us to exactly 
know how many “back steps” the system must perform; (2) in other ones, when a web 
application does not allow to open more than one session with the same 
login/password values, the system might not be able to find the correct back se-
quence; (3) finally, in some stateful web applications, the back sequence does not 
work (this is also true in some AJAX-based web applications [3]). Therefore, the 
system will not browse back, but will start from the beginning of the sequence to 
achieve the correct state.  

This is not always a feasible solution. When session maintenance is kept by the 
browser, the navigational sequence might change (usually because this second time, 
the authentication form page is not shown, leading the user from the home page di-
rectly to the search form page, thus disabling the usefulness of the sequence). In those 
cases, the user should explicitly provide a “back sequence” to lead the browser to the 
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correct sequence element (for example, by pressing the “Disconnect” button and 
browsing to the most interesting page in terms of optimization). 

8.2   Browser Session Maintenance 

A problem that arises here is that the browser session can expire before an appropriate 
query arrives. In order to avoid the error produced if this browser is tried to be used, 
there are a few options: one is to make browsers navigate randomly through a link and 
repeating this same sequence at certain intervals. Another one is to restart the se-
quence whenever it fails. The chosen option is the configuration of session timeout 
for each source - with a default value -, so that the pool of browsers acts before the 
session expires. 

8.3   Pay-per-Access Web Sites 

This approach can be expensive if a pay is realized per access, since the system will 
automatically access web sources which might not be actually used. Thus, in these 
cases, this optimization must not be taken into account. 

8.4   Changes in Web Sources 

Web sites are autonomous sources with regards to the Web Automation middleware, 
that is, they do not inform the system about their possible changes with respect to 
format or navigational sequences. One issue to take into account is how the Automa-
tion system must behave if after a sequence prefix has been generated, the source 
changes so that the sequence navigation is no longer valid. This leads us to the prob-
lem of automatically detecting those changes and regenerating the sequences to adjust 
them to the new situation.  

The wrapper maintenance approaches presented to date are based on wrapper in-
duction techniques [8]. In this approach, wrappers are generated by providing the 
system with user-labeled examples which are used to induce the underlying structure 
of the target HTML pages. The main idea in our automatic maintenance implementa-
tion system [12][13] is to collect results from valid queries against the web connector 
and, when the source changes, use them to generate new examples to bootstrap the 
wrapper induction process again. 

When the maintenance system starts regenerating the program, the information 
stored in the cost repository about this specific navigational sequence must be deleted 
so not to cause future inconsistences.  

9   Conclusions 

Fig. 2 shows how applying the previously detailed optimization techniques causes a 
very important decrease in the number of navigational steps required to answer all the 
browsing requests made to a Web Automation system. Compare this with Fig. 1, and 
you can see a reduction from 62 to 30 steps. That means that, if each step takes ap-
proximately the same time to execute, we would be saving more than half the time. 
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And this with the premise used in this example, in which all browsing requests come 
at the same time; if some of the requests had delayed a little bit (p.e. the second “B”, 
and the second “C”), the number of steps would decrease down to 10 steps (having B 
and C the same number of steps in their back sequences than A), obtaining a gain of 
6-to-1 (Fig. 3). 

 

Fig. 2. Browser Pool Steps with Optimization 

 

 

Fig. 3. Browser Pool Steps with B and C delays 

This paper has described and explained a set of techniques and algorithms which 
optimize how web automation and extraction systems access transactional web appli-
cations. These systems are critical in mediator applications which make use of web 
data for solutions such as Competitive Intelligence or Single Customer View, and, 
thus, must behave with a high performance and efficiency. Use of cache is not always 
the best solution, since web application usually store real-time, highly changing in-
formation. We show an innovative way of accessing data from Hidden Web, by stor-
ing historical information from previous queries to the different query types, and 
applying a set of techniques to obtain the best sequence element that each browser 
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should point to. These techniques have been developed as part of the physical layer 
optimization of a mediator/wrapper environment for web sources [5][10]. 

References 

1. Arasu, A. and Garcia-Molina, H. Extracting Structured Data from Web Pages. Proceedings 
of the ACM SIGMOD international conference on Management of data. 2003. 

2. Bergman M.K. The Deep Web. Surfacing Hidden Value. http://www.brightplanet. 
com/technology/deepweb.asp 

3. Garret, J.  J. Ajax: A New Approach to Web Applications. http://www.adaptivepath.com/ 
publications/ essays/archives/000385print.php 

4. Hidalgo, J., Pan, A., Losada, J., Álvarez, M. Adding Physical Optimization to Cost Models 
in Information Mediators. 2005 IEEE Conference on e-Business Engineering. 2005. 

5. Hidalgo, J., Pan, A., Losada, J., Álvarez, M., Viña, A. Building the Architecture of a Sta-
tistics-based Query Optimization Solution for Heterogeneous Mediators. 6th International 
Conference on Information Integration and Web-based Applications & Services. 2004.1.  

6. Knoblock, C.A., Lerman, K., Minton, S. and Muslea, I. Accurately and Reliably Extracting 
Data from the Web: A Machine Learning Approach. Bulletin of the IEEE Computer Soci-
ety Technical Committee on Data Enginnering. 1999. 

7. Kushmerick, N., Weld, D.S. and Doorembos, R. Wrapper induction for information extrac-
tion. Proceedings of the fifteenth International Joint Conference on Artificial Intelligence. 
1997. 

8. Laender, A. H. F., Ribeiro-Neto, B. A., Soares da Silva, A. and Teixeira, J.  S. A Brief Sur-
vey of Web Data Extraction Tools. ACM SIGMOD Record 31(2). 2002. 

9. Pan A., et al, 2002. Semi-Automatic Wrapper Generation for Commercial Web Sources. 
Proceedings of IFIP WG8.1 Working Conference on Engineering Information Systems in 
the Internet Context. 2002. 

10. Pan, A., Raposo, J., Álvarez, M., Montoto, P., Orjales, V., Hidalgo, J., Ardao, L., Molano, 
A., Viña, A. The DENODO Data Integration Platform. 28th International Conference on 
Very Large Databases. 2002. 

11. Raghavan S. and García-Molina H., Crawling the Hidden Web. Proceedings of the 27th In-
ternational Conference on Very Large Databases. 2001. 

12. Raposo, J., Pan, A., Álvarez, M., Hidalgo, J. Automatically Generating Labeled Examples 
for Web Wrapper Maintenance. Proceedings of the 2005 IEEE/WIC/ACM International 
Conference on Web Intelligence. 2005.  

13. Raposo, J., Pan, A., Álvarez, M., Viña, A. Automatic Wrapper Maintenance for Semi-
Structured Web Sources Using Results from Previous Queries. Proceedings of the 2005 
ACM Symposium on Applied Computing. 2005. 

14. Wiederhold, G. Mediators in the Architecture of Future Information Systems. IEEE Com-
puter, March 1992. 



A Middleware-Based Approach to Database Caching

Andreas Bühmann, Theo Härder, and Christian Merker

Department of Computer Science, University of Kaiserslautern,
P. O. Box 3049, D-67653 Kaiserslautern, Germany

Abstract. Database caching supports declarative query processing close to the
application. Using a full-fledged DBMS as cache manager, it enables the evalua-
tion of specific project-select-join queries in the cache. In this paper, we propose
significant improvements and optimizations – as compared to the well-known
DBCache approach – that make our caching concept truly adaptive. Furthermore,
we describe an adaptive constraint-based cache system (ACCache) relying on
middleware components as a DBMS-independent realization of this approach.

1 Motivation

While Web caching is concerned with reducing response time and bandwidth consump-
tion for service requests in the user-to-server path, database (DB) caching focuses on
request optimization in the remaining path from the Web server to the backend database,
which keeps the dynamic up-to-date data used by transactional programs to derive user
query results. In contrast to Web caching, which can only answer identifier-based cache
requests, DB caching provides declarative query processing, which makes it much more
powerful but also more complex.

To accelerate service requests of Web users and, at the same time, to improve scala-
bility of applications accessing the backend DB, application servers frequently migrate
to data centers closer to the user “at the edge of the Internet”. Special algorithms enable
Web clients to select one of the replicated servers close to them thereby minimizing
response times of Web services. However, this is only true if locality of data reference
can be provided by such application servers – often achieved through geographical con-
texts of these services. Otherwise, frequent round-trips to the remote backend DB may
degrade the performance of DB-based services to a level much worse than without ap-
plication server migration. Therefore, it is vital for the entire migration approach to keep
prevalently used data close to the application in database caches (also called frontend
DB servers).

In Sect. 2, we present an adaptive constraint-based caching concept supporting the
evaluation of project-select-join (PSJ) queries. This mechanism must be entirely trans-
parent to application programs such that turning caching on or off only affects query
performance. Because (any type of) caching always has inherent trade-offs as far as
cache consistency and maintenance is concerned, only DB contents exhibiting high lo-
cality of reference should be kept in the cache. Therefore, only a few tables containing
selected records are maintained in a typical cache, arranged into cache groups, although
the backend DB may consist of hundreds of tables. Moreover, caching is always kind of
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speculative, because it should anticipate changing workload needs in the future. Thus,
caching adaptivity is of utmost importance. As compared to [1], we propose a much
more flexible mechanism enabling orthogonality of parameter specification (by candi-
date values) and cache filling as well as evaluation of more query types.

Section 3 describes an implementation of this mechanism based on middleware con-
cepts. While cache management is rather straightforward for simple cache groups (e. g.,
Director→Movie), query processing power is limited in such cases. Thus, to reveal the
strengths and weaknesses of ACCache, we have chosen a rather complex running ex-
ample (Fig. 1). Section 4 summarizes our results and identifies future work.

2 Constraint-Based Database Caching

Constraint-based database caching promises a new quality for the placement of data
close to their application. The key idea is to accomplish predicate completeness in the
cache for some given types of query predicates P such that all queries matching P can
be evaluated correctly.

A database cache is a database consisting of cache tables. Cache tables represent se-
lected backend tables in the cache and contain subsets of their records1. All records (of
various types) in the backend DB that are needed to evaluate a predicate P are called the
predicate extension of P. If a collection of cache tables contains the predicate extension
of a predicate P, it is said to be predicate complete with respect to P. Note that a pred-
icate extension in the sense used here consists of all records from the backend tables
needed to reconstruct the query result. For an aggregate query, the predicate extension
would not be the aggregate (as the query result) but all records to be aggregated.

Cache constraints enable cache loading in a constructive way and guarantee the pres-
ence of their respective predicate extensions in the cache. This technique does not rely
on static predicates: Parameterized constraints make the specification adaptive; it is
completed when specific values instantiate the parameters: An “instantiated constraint”
then corresponds to a predicate and, once the constraint is satisfied (i. e., all related rec-
ords have been loaded), it delivers correct answers to eligible queries. Note, the set of
all present predicate extensions flexibly allows combined evaluation of their predicates
in the cache.

Given suitable cache constraints, there are no or only simple difficulties in deciding
whether certain predicates can be evaluated. At run time, only simple existence queries
are required to determine whether suitable predicate extensions are available.

The primary task of this constraint-based caching approach is to support local
processing of queries that typically contain simple projection and selection operations
as well as equi-joins (PSJ). Because all columns of the corresponding backend tables
are kept, all project operations possible in the backend DB can also be performed in
the cache. Other operations like selection and join depend on specific cache constraints.
Furthermore, since full DB functionality is available, the results of these PSJ queries
can be subjected to further arbitrary selections and transformations.

1 In the present state of our model, we deal with whole records only and do not consider projec-
tions of certain sets of columns, as DBProxy [2] does, for example.
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2.1 Completeness

For predicates we would like to evaluate in the cache, we must guarantee predicate
completeness. Considering a cache table S, we denote by SB its corresponding backend
table, by S.c a column c of S.

Let us begin with single cache tables. For simple equality predicates like S.c = v,
where v is a value, the predicate completeness takes the shape of value completeness.

Definition 1 (Value completeness). A value2 v is said to be value complete (or com-
plete for short) in a column S.c if and only if all records of σc=v SB are in S.

Obviously, if we know that a value v is value complete in a column S.c, we can correctly
evaluate S.c = v in the cache, because all records from table SB that carry this value are
there. Determining which values actually are complete is the task of probing, which
will be introduced in Sect. 2.2.

To obtain the predicate extensions of PSJ queries we use referential cache constraints
(RCCs) between cache columns to specify all records needed to satisfy specific equi-
join predicates.

Definition 2 (Referential cache constraint). A referential cache constraint S.a→ T.b
from a source column S.a to a target column T.b is satisfied if and only if all values v
in S.a are value complete in T.b.

An RCC S.a→ T.b guarantees, whenever we find a record s in cache table S, that all
join partners of s with respect to S.a = T.b are in T , too. Note, the RCC alone does
not allow us to correctly perform this join in the cache: Many records of SB that have
join partners in TB may be missing from S. But using an equality predicate with a
complete value in column S.c as an anchor, we can restrict this join to pairs of records
that are present in the cache: The RCC S.a→ T.b expands the predicate extension of
S.c = x to the predicate extension of S.c = x∧S.a = T.b. In this way, a column with a
complete value can serve as an entry point for a query into the cache; it allows us to start
reasoning about predicates evaluable in the cache: Once the cache has been entered in
this sense, reachable RCCs show us where joins can correctly be performed. Of course,
the application of RCCs can be chained: A second RCC T.d→U.e could expand the
predicate extension to S.c = x∧S.a = T.b∧T.d = U.e.

Figure 1 shows a cache setup for a movie database, including many RCCs used
to connect the selected cache tables. Let us assume we know that the name ‘Bond’
is complete in A.name3, which means that all actors named ‘Bond’ are in the cache.
We can then safely evaluate the predicate A.name = ‘Bond’ in the cache, because it is
predicate complete with respect to this predicate. Furthermore, since we guarantee that
all specified RCCs hold at any time, we are allowed to evaluate

A.name = ‘Bond’∧A.id = P.aid∧P.mid = M.id∧M.zip = C.zip

in the cache, too. Of course, this is only a skeleton of a possible query and could be
enriched with further selection predicates such as M.title = ‘Dr. No’.

2 As SQL’s null indicates the absence of a value, we do not regard null in itself as a value.
3 In formulas like this one, we like to abbreviate the table names.
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Fig. 1. Cache groups G1 and G2

Using RCCs we implicitly introduce a value-based table model intended to sup-
port queries. Despite similarities to the relational model, RCCs are not identical to the
primary-key/foreign-key (PK/FK) relationships contained in the backend schema. A
PK/FK relationship can be processed symmetrically, whereas our RCCs can be used
for join processing only in the specified direction. Considering that we have unique
(U) and non-unique (NU) columns, there are other important differences: n : m RCCs
(NU→ NU) have no counterparts in the backend DB, and a column may be the source
of n and the target of m RCCs. In contrast, a column in the role of a primary key may
be the starting point of k, but in the role of a foreign key the ending point of only one
(meaningful) PK/FK relationship.

2.2 Probing for Entry Points

RCCs allow us to draw conclusions about predicate extensions that are in the cache,
but only if we can rely on some value being complete and serving as an entry point.
Considering some column S.c, how do we know that a value v is complete there? Obvi-
ously, our goal ought to be to provide simple and efficient means for deciding about the
completeness of values in the cache: The process of using simple (existence) queries
on the cache to decide about completeness is called probing; the queries used are called
probe queries accordingly.

In contrast to DBCache [1], we use a new probing approach [3], which does not re-
quire new constraints and thus does not load extra records into the cache (as DBCache’s
cache keys do). The fundamental insight is that RCCs already provide guarantees about
complete values in the cache: The source column S.a of an RCC S.a→ T.b (or more
precisely, the values therein) controls which values are complete in its target column
T.b. We therefore call S.a a control column of T.b.

In general, any given column S.c can have zero or more control columns. Whenever
a column S.c we would like to use as an entry point for a predicate S.c = v has at least
one control column, we can probe (i. e., check for the existence of value v) in the control
columns of S.c. If we find v in one of these columns, we know that it is value complete
in S.c and that we can correctly evaluate the predicate in the cache.
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In our example in Fig. 1 the following five columns possess control columns and
could thus serve as entry points: P.aid, M.id, M.directed_by, and G.id have one control
column each, C.zip even three (A.zip, D.zip, and M.zip), which would require – in the
worst case – to probe in all the three columns for a value.

Probing can be optimized if we can deduce that, at all times, a column can contain
complete values only.

Definition 3 (Column completeness). A cache column S.c is said to be column com-
plete (or complete for short) if and only if all values v in S.c are value complete.

Given a complete column S.c, if a probe query confirms that value v is present in S.c (a
single record suffices), we can be sure that v is value complete and thus evaluate S.c = v
in the cache. Unique columns of a cache table are complete per definition. In contrast,
non-unique columns are only complete under special conditions (or if completeness is
enforced through additional cache constraints4).

You can show that a column T.c is complete (at all times) if

– it is a U column,
– it is a column with an (self-)RCC T.c→ T.c, or
– it is the only column in table T with incoming RCCs.

In our example, we have five U columns and one additional complete NU column,
namely P.aid. Column M.directed_by is not complete, because table M is reached by
another incoming RCC on column M.id.

The set of possible entry points is directly dependent on the cache group design. If an
additional NU columns c seems to be beneficial as an entry point, because many queries
refer to this column c, we may have to rethink our design and, for example, make c a
filling column or add an RCC to c.5

Probing Strategies. When looking for an entry point for a predicate S.c = v, we have
two kinds of probing operations at our disposal:

– If S.c is column complete, we can probe directly in S.c.
– If S.c has at least one incoming RCC, we can probe in a control column of S.c.

We may choose between these two, based on the probing costs (e. g., is there an index
on the probed column?). We may even apply a number of successive probing operations
for a single entry point, thereby forming probing strategies. In this case, the order of the
probing operations and their probabilities of success determine the average costs of the
whole probing strategy.

2.3 Loading Predicate Extensions

To be able to evaluate a predicate Q in the cache, the cache manager must guaran-
tee predicate completeness for Q by loading all required records into the cache tables.

4 For example, DBCache’s cache key columns are forcibly complete.
5 Whether such a change really pays off has to be determined by cost models and measurements;

cf. Sect. 3.6.
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Following the RCCs, the cache manager can construct predicate extensions using only
simple loading steps based on equality of values.

Obviously, there must be some way to tell the cache manager which predicate exten-
sions to load. In essence, this means placing single values into specific cache columns,
from where the cache manager will fill the cache, guided by the cache constraints.

Candidate Values in Filling Columns. Besides RCCs, a second type of cache object
is needed in order to establish a parameterized loading mechanism: Attached to selected
filling columns are sets of candidate values (CVs), which alone initiate the loading of
predicate extensions when they are referenced by user queries.

The set of all candidate values of a filling column S. f is denoted by CS. f and is
always a subset of SB. f ’s domain. Whenever a candidate value v in CS. f occurs in an
equality predicate of a query (S. f = v), the cache manager probes the respective cache
table as usual to see whether this value is present: A successful probe query (the value v
is found) implies that the predicate extension for the given equality query is in the cache
and that this query can be evaluated locally. Otherwise, the query is sent to the backend
to continue processing.

As a further consequence of this cache miss attributed to v, the cache manager satis-
fies the value completeness for v asynchronously by fetching all required records from
the backend and loading them into the respective cache table. It then proceeds to restore
the validity of all RCCs by loading the necessary records into the remaining tables.
Hence, the cache is ready to answer the corresponding equality query locally from then
on as well as all queries anchored by it.

Apparently, a reference to a candidate value v serves as a kind of indicator that,
in the immediate future, locality of reference is expected on the predicate extension
determined by v. Candidate values therefore carry information about the future work-
load and sensitively influence caching performance. Hence, candidate values must be
selected carefully. In a straightforward case, the database administrator (DBA) speci-
fies the set of candidate values (e. g., as the domain itself, an enumeration, a range, or
as other predicates) positively or negatively (stop-words). Which candidate values are
actually placed into the cache depends on the query load, which makes this caching
scheme adaptive. In an advanced scheme, the cache manager itself takes care, by moni-
toring the query load, that only those values with high re-reference probability become
and stay candidate values: This adds a second level of adaptivity.

Master Control Columns. The subset of candidate values of a filling column S. f that
have already been referenced and therefore actually are in the cache controls which
values are complete in S. f and, hence, behaves similar to the contents of a control
column. To allow uniform treatment of all cache columns with regard to probing and
filling, we introduce an artificial control column ctrl( f ) for each filling column f .

This master control column ctrl( f ) is a U column of a separate, anonymous (master
control) table with an RCC ctrl( f )→ f pointing to the filling column f .

Having made this step, we can simply regard the domain of ctrl( f ) as the set of
candidate values of f , whereas the actual contents of column ctrl( f ) (i. e., some of the
candidate values) determines which predicate extensions are in the cache. When looking
for an entry point for a predicate f = v, we can use our regular probing strategies (and
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probe in the control column ctrl( f ), for instance); in case of a cache miss, the value v is
inserted into the master control column ctrl( f ) from where the cache manager will start
its loading steps to reestablish the validity of all cache constraints.

Now the only special thing about filling columns is their sensitivity to references
of values in equality predicates, which leads to new values in their artificial control
columns. With respect to probing, query evaluation, and even filling via RCCs they
behave exactly like any other column.

Figure 2 shows the master control columns ctrl(A.name) and ctrl(D.name) for the
two filling columns A.name and D.name (dark gray) of our example. Assume A.name =
‘Bond’ is part of a predicate. Hence, the filling column A.name is our potential entry
point. We can now probe for ‘Bond’ in the control column of A.name, which happens to
be the master control column ctrl(A.name). If we find the value there, we can evaluate
the predicate in the cache. If we do not, we must pass the predicate on to the backend,
but can prepare for subsequent cache-based evaluations of the predicate by inserting
‘Bond’ into ctrl(A.name).

With the master control columns in place, we can add the NU columns A.name and
D.name to our set of potential entry points gathered in Sect. 2.2, which yields a total
count of nine.

2.4 Cache Groups and Federations

In general, our caching mechanism supports PSJ queries that are characterized by pred-
icate types of the form (EP1∨ . . .∨EPn)∧EJ1∧ . . .∧EJm, where the EPi, 1≤ i≤ n, are
equality predicates on filling columns of a specific cache table called root table and the
EJ j, 1 ≤ j ≤ m, correspond to RCCs that (transitively) connect the root table with the
remaining cache tables involved. The resulting structure is called cache group, which is
our unit of design to support a specific predicate type in the cache.

Definition 4 (Cache group). A cache group is a collection of cache tables linked by a
set of RCCs. A distinguished cache table is called the root table R of the cache group
and holds one or more filling columns. The remaining cache tables are called member
tables and must be reachable from R via RCCs.

Whenever more than one basic predicate type should be supported in a cache, we have
to consider the federation of cache groups overlapping in some tables. On the one hand,
memory space may be saved in shared cache tables, but, on the other hand, implicit
extension of one cache group by RCCs of another one may lead to the loading of many
unwanted records into the cache.
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In our example, cache group G1 and G2 are designed for the two predicate types

(A.name = v1)∧A.id = P.aid∧P.mid = M.id∧M.genre = G.id∧A.zip = C.zip

(D.name = v2)∧D.zip = C.zip∧D.id = M.directed_by∧M.zip = C.zip

and share the member tables C and M in the federation (see Fig. 1).

2.5 Related Approaches

At first sight, DBCache [1,4] uses similar concepts to perform database caching with
cache groups: The concept RCC and the basic method of determining predicates evalu-
able in the cache are the same. But DBCache does not use the concept of predicate
extensions or predicate completeness to explain why the cache is structured as it is. It
has no notion of master control columns or of probing in control columns in general
and is restricted to complete columns (DBCache term: domain-complete columns) as
potential entry points. To make at least filling columns complete, further constraints
called cache keys are employed – they fail to separate values referenced and wanted to
be complete in the cache (contents of our master control columns) from values that are
in the cache because of other constraints and may thus lead to unwanted cache loading.

Our master control columns have been inspired by the control tables in the MTCache
project [5,6], which are used in quite a similar way: There a set of stacked materialized
views is used to describe the cache contents, each dependent on the contents of another
view (which resembles RCCs) or ultimately on the contents of a control table.

3 Architecture of ACCache

The key idea of DB caching is to provide – close to the application server – a query
processing facility, which must be transparent for the transaction programs requesting
DBMS services. For developing an adequate architecture, it is reasonable to strive for
a solution which is independent of a specific DBMS and exclusively rests on the avail-
ability of some SQL engine. Hence, it became obvious that we should go for a flexible
solution based on middleware concepts. In this way, our work does not rely on the good-
will of a single manufacturer (which would require to massively modify and expand the
code of an existing DBMS) and gains flexibility and openness thereby enabling the use
of different DBMS engines at minimal porting costs. Furthermore, we have the opportu-
nity to avoid the trade-offs and to combine – based on our concepts described in Sect. 2
– the advantages of different existing systems [1,5].

3.1 Component Architecture

Figure 3 illustrates the main tasks of our adaptive constraint-based caching system by its
components providing the required services and their interaction. Cache transparency
for the user is achieved through the JDBC interface, which accepts SQL statements
and delivers results in the way the application program expects. All requests are passed
on to some Query Worker, which analyzes them, regarding the cache’s configuration
and its current contents, and – if processing in the cache is possible – transforms them
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Fig. 3. Constraint-based caching system: Overview

such that references to cache and backend tables can be separated. Hence, the native
federated query facility of the DBMS used [7] can distribute (appropriate parts of) the
query statement to the cache DB and backend DB. Sending DB requests and receiving
their results are handled by the middle tier thereby providing a uniform interface (to all
ACCache components) and controlling all accesses to the underlying DBMSs.

The Setup and Initializer components perform the initial cache creation using a con-
figuration file and possibly some initial cache filling. Cache maintenance and adaptiv-
ity is primarily accomplished by the Fill Daemon and the Garbage Collector whereas
the Hit Counter is responsible for collecting reference statistics to enable accurate
load/unload decisions.

3.2 Initializing DB Cache Processing

The Setup and Initializer components provide an administrator interface to ACCache.
They enable the setup of a specific cache DB configuration and, for each operating
session, the creation and initialization of appropriate data structures within ACCache.
These data structures are used for keeping meta-data for the cache tables (table and
column names, column types, RCCs, filling columns, etc.) as well as statistics for cache
operation control.

The kernel part of the ACCache-internal data structure contains the object types il-
lustrated in a UML class diagram in Fig. 4. A table object represents a pair of associated
backend and cache table. For a column, the kind of information recorded is dependent
on the role it plays: For example, if a filling column is specified, two additional table
objects are created and referenced by this column object. The first one is a master con-
trol table carrying information about cached values in a filling column (value, loading
time stamp, most recent reference, etc.), whereas the second one keeps all candidate
values for the filling column (filling value table).

Cache DB setup requires the following essential steps:

– allocation of the specified cache tables and their related control tables: They can be
created in any sequence, because foreign-key relationships are not maintained in
the cache (but only RCCs)
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Table

-SchemaNameInBackend:String

-TableNameInBackend:String

-SchemaNameInBackend:String

-TableNameInBackend:String

Column

-Name:String

-Type:String

-Unique:boolean

-Nullable:boolean

-PrimaryKey:boolean

-FillColumn:boolean

RCC

*contains

ControlTable+

sourceColumn+

outgoingRCC+

*

targetColumn+

incomingRCC+

*

FillvalueTable+

Fig. 4. Meta-data of the cache-related object types

– specification of filling value tables
– creation of appropriate indexes (on source columns of RCCs and on U columns) to

speed up probe queries.

An important optimization feature is the use of prepared statements for probing,
filling, and other housekeeping operations on the cache. Because of their frequency,
these SQL operations should be highly optimized and ready for running when needed.
Because all possible operations are known in advance – once a cache DB configuration
is fixed –, they can be prepared in the form of query execution plans (QEPs) and kept
ready as soon as the cache DB is set up. The ACCache components accessing the cache
DB via the middle tier require four different types of SQL statements:

– existence queries, primarily used by the Query Workers for probing
– insert statements used by the Fill Daemon to load new records into cache tables
– update queries to modify information in control tables
– delete statements to unload records from cache tables.

3.3 Query Worker

The Query Worker component (QW) is responsible for the processing of user queries
and therefore provides the key ACCache functionality. As shown in Fig. 3, several QW
instances are managed in a pool at run time; a free QW is assigned to an arriving query
and put back in the pool when finished. At first, a QW validates the request against a
grammar of a subset of SQL. If no match is obtained, the query is passed on to the back-
end DB. Otherwise, local processing is initiated which is only sketched in its essential
steps. Assume the following query is a potential candidate for cache processing (see
Fig. 1):

After checking for correct SQL syntax, the query is decomposed into its different
clauses. At first, all table (and alias) names from the clause are extracted. Then
the clause is analyzed. For predicates of the form columni = columnj (equi-join
predicate), QW checks whether an RCC exists between these columns. The data struc-
ture illustrated in Fig. 4 greatly supports the analysis. When an RCC is identified, QW
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Fig. 5. Anchoring of cache tables

creates/expands a directed graph – the so-called cache group evaluation graph (CEG) –,
which receives the table names of the related columns as vertices. These table vertices
are connected by a directed edge representing the direction of the RCC.

Figure 5 shows the result of the analysis process for our example. After two join
predicates, QW extracts a predicate of the form columnk = value which is considered as
a potential entry point. Hence, QW initiates a probing process. If columnk is a U column
(like d.id), a probing query is sent to the cache DB. Otherwise, probing is performed
on the source columns of incoming RCCs (see Sect. 2.2). The related existence queries
probing potential entry points have the form

〈cache table〉 〈column〉
As soon as a complete value is determined (assume, d.id = ‘711’ is in the cache), the
probing process stops successfully. In this case, the column can be used as an entry point
for the query: It is taken as an anchor for the related table and added/connected to the
CEG. Depending on the query analyzed, several entry points attached to table vertices
may exist. Obviously, all table vertices reachable from an entry point are automatically
anchored. Hence, the CEG enables the generation of modified queries that are to be
(partially) evaluated in the cache DB. For our example, the original query is rewritten
to read

where the prefix indicates a reference to a cache table. When the middle-tier com-
ponent forwards the transformed query to the federated query facility, the entire query
evaluation is performed in the cache DB in this case.

If probing fails, the value looked up is not complete in the cache. QW then checks
whether the related column is a filling column and whether the value belongs to the
candidate values. If so, a message is sent to the Fill Daemon to load this value into the
cache.

3.4 Fill Daemon

Loading of records must be accomplished very carefully, that is, caching of duplicate
records must be prevented and – after the filling process as a consequence of a CV



A Middleware-Based Approach to Database Caching 195

reference is finished – all cache constraints must be satisfied by the state of the cache.
The principal approach to loading predicate extensions has been discussed in Sect. 2.3.
Here we outline its implementation.

Assume Actor name ‘Bond’ is included in the list of CVs, was referenced in a query,
and was not found in the cache (see Fig. 1). Hence, the Fill Daemon will receive a
message to make Actor name ‘Bond’ complete thereby loading the resp. predicate ex-
tension. Inserting ‘Bond’ into the control table implies loading the related Actor records
which force Play and City records into the cache. The inserted Play records require the
filling of Movie records and these, in turn, Genre and City records.

We have already mentioned that the insert statements for such a filling process are
prepared by the Initializer component. However, these statements necessarily carry so-
called markers (for actual parameters values) instead of concrete values. Hence, starting
with the control table, we insert value ‘Bond’ and request all Actor records with name
‘Bond’ from the backend DB. These records are then inserted into the Actor table in
the cache (bewaring of duplicates). Furthermore, they deliver the values replacing the
markers in the prepare statements for Play and City, and so on.

Top-Down Filling. The filling process sketched so far iteratively loads a sequence of
cache tables starting with the control table. This table sequence can be computed by
recursively following the outgoing RCCs of each table visited. As an example, we list
the insert statement for the Actor table:

The entire filling process must be executed by a transaction whose insertions have
to be protected by locks. Otherwise, parallel QWs could see inconsistent cache states
which could lead to wrong query evaluations. For example, when inserting Actor record
having a.id = ‘007’, the corresponding records are not present in cache table Play.
Hence, “long” X locks must be kept until the filling process is successfully finished
which, in turn, may block reader transactions for long time spans.

Bottom-Up Filling. A more sophisticated filling mechanism may avoid such situations.
The key observation is that loading the cache tables bottom-up, we can fill each table in
a separate transaction thereby providing cache consistency and only need to lock until
the resp. cache table is loaded. More precisely, we have to define so-called atomic zones
which can be loaded independently. In the simplest case, if no cycles are present, every
cache table is an atomic zone. Due to space limitations, we cannot discuss cycle issues
in detail and refer to [8]; suffice it to say that all tables belonging to an allowed cycle
end up in the same atomic zone.

Figure 6 illustrates the atomic zones for the filling process of cache group G1. The
loading sequence of these zones can be determined by topological sorting which results
for our example in: (Genre, City), Movie, Play, Actor, and finally the control table for
A.name. Hence, after having finished loading of, say, cache table Genre, we can release
the locks on Genre and let concurrent QWs run reader transactions on this table, and
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so on. However, to start the filling process with table Genre, we need to determine the
records to be inserted. Therefore, we need to travel along the reverse RCC path from
Genre up to Actor to select the Genre records depending on a CV to be filled in.

In the general case, the reverse RCC path be Rn,Rn−1, . . . ,R1 where the target table
of Rn is the cache table to be filled and the source table of R1 is the root table. Then, the
prepared insert statements have the following generic form:

〈cache table〉
〈corresponding backend table〉 〈Rn target col.〉

〈Rn source col.〉 〈Rn source table〉 〈Rn−1 target col.〉
. . . 〈R1 source col.〉 〈R1 source table〉 〈filling col.〉

If a cache table is reachable by several RCC paths, it may receive records via all
these paths. Therefore, prepared insertion statements are generated for all these paths –
done in a stereotypical way, as shown below.

Again, we illustrate the insertion statement for the first table to be loaded. The only
marker to be replaced is ‘Bond’.

Hence, bottom-up filling provides a trade-off between potentially higher concurrency
during the filling process and the need for more complex queries to be evaluated in the
backend DB.
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3.5 Hit Counter and Garbage Collector

The Hit Counter (HC) is responsible for recording statistical data used by the Garbage
Collector (GC) for its cache replacement strategy. It is implemented as a separate
process owning a queue continuously monitored and emptied. QWs fill this queue with
messages recording each entry point found while a query was analyzed. In all control
tables, HC maintains statistical information on the (candidate) values which triggered
the load of those values identified as potential entry points for a query. In particular, the
columns hitcounter and lastaccess are incremented or modified.

GC is responsible for controlling the size of the cached data by periodically checking
whether or not a pre-specified cache filling level (high-water mark) is observed. If this
level is reached, GC initiates one or more deletions of cache instances by removing
a CV from a control table. As a consequence, the entire predicate extension for the
removed CV has to be deleted from the cache thereby preserving the cache constraints.
Thus, records belonging to multiple predicate extensions must not be deleted. In such
cases, records can leave the cache only if the last predicate extension they belong to is
removed from the cache.

Again, the prepared statements for delete operations are generated by the Initializer.
The concrete CVs to be replaced, however, are chosen by means of an LRU algorithm.
As a victim, GC selects the entry from a control table which has the least recent time
stamp in the lastaccess column. This CV replaces the marker in the prepared statement.

Deletion starts from the control table removing the selected LRU CV and proceeds
to all connected cache tables via outgoing RCCs. As in case of cache loading, we ex-
clude the discussion of cycles. Assume, we want to remove the predicate extension for
D.name = ‘Spielberg’ in cache group G2 (see Fig. 1). After ‘Spielberg’ is not in master
control table, say K1, anymore, the records in cache table Director are removed by:

The deletion procedure has to follow all RCC paths starting from the root table. The
prepared statements to be applied have the following generic form where corresponding
expressions have to be generated and ed for each incoming RCC of a cache table.
Hence, the base template is

〈cache table〉
〈RCC target column〉
〈RCC source column〉 〈RCC source table〉

which can easily applied to cache table Movie. Removing records from City with two
incoming RCCs requires the following statement:

At this point, you might wonder whether or not the deletion procedure is complete.
What happens to RCC-dependent records in table Genre?
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3.6 Savings and Penalties in Cache Group Federations

So far, we have discussed the management of single cache groups. As our running ex-
ample in Fig. 1 reveals, it may be sometimes beneficial to allocate multiple overlapping
cache groups in a federation. This design was influenced by the transparency require-
ments for cache tables which demand that each table (logically) appears only once in
the cache.

For example, G1 and G2 share the tables Movie and City, which may save multi-
ple representations of the same records. However, loading of records intended for one
cache group may unintentionally cause records to be loaded in other cache groups. For
example, table Genre only belongs to G1. However, it is RCC-connected to table Movie
to be loaded in G1 and G2. Hence, to preserve the RCC constraint, Genre may have to
be filled whenever new records appear in table Movie. Therefore, loading a new predi-
cate extension in G2 may enforce records into Genre (in G1) – only to satisfy all cache
constraints.

Hence, if we load a new predicate extension into G2, ACCache may have to insert
Genre records, too, that is, new records in Movie may imply via RCC M.genre→ G.id
the insertion of (unwanted) Genre records. Symmetrically, deletion of a predicate ex-
tension in G2 may remove records from Movie. To keep the cache consistent, Genre
records may have to be deleted, too. Thus, deletion statements must cover all cache
tables reachable by RCC paths starting from the root table of G2.

The penalty each group in a federation must pay can be considered as a “mem-
bership fee”. Separate allocation of cache groups, however, does not offer a perfect
solution either. In such cases, we necessarily create copies in the cache which have
to be kept consistent. For these reasons, savings and penalties of different solutions
should be quantified, before a specific cache group design is chosen. Such an ap-
proach requires quantitative models for loading and unloading cache tables depend-
ing on specific workloads. A so-called cache group adviser could be a valuable tool
for such design decisions. First steps in this direction are proposed by the authors
in [9].

4 Summary

In this paper, we have primarily discussed the design and implementation issues of
a middleware-based solution for database caching. For this reason, we have sketched
our model for adaptive constraint-based caching and have emphasized the benefits and
added value of this model as compared to the DBCache approach. The main part of our
work has addressed our ACCache system which provides a database caching solution
kept independent from specific DBMSs.

Our future work concentrates on optimization in ACCache. This includes the design
of a suitable benchmark enabling representative performance measurements with com-
parable results and providing a refined exploration of federation issues. Moreover, these
results could empower an adviser to support the specification of adequate configurations
for cache groups and federations.
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Abstract. Web caching and replication tune capacity with performance and they
have become essential components of the Web. In practice, caching and repli-
cation techniques have been applied in proxy servers and Content Distribution
Networks (CDNs) respectively. In this paper, we investigate the benefits of inte-
grating caching policies on a CDN’ s infrastructure. Using a simulation testbed,
our results indicate that there is much room for performance improvement in
terms of perceived latency, hit ratio and byte hit ratio. Moreover, we show that
the combination of caching with replication fortifies CDNs against flash crowd
events.

1 Introduction

The rapid evolution of the Internet along with the increasing interest of the end-user
for Web services has lead to the development of a wide variety of on-line applications
(video-on-demand (VOD), e-commerce, information retrieval (IR), on-line gaming).
Web sites (i.e. news sites), offering those services, have to deal with the increasing
number of requests, whereas, on the server side, this results in increasing demand for
processing time and overloading. On the end-user side, noticeable latency, connection
interrupts and Denial of Service (DoS) are perceived due to network traffic and server
overloading. For instance, in an application which gets real-time data from the NAS-
DAQ Stock Market and makes buying decisions, delayed (stale) data will lead to mis-
leading actions. In order to deal with such situations caching and replication have been
proposed.

The Caching Approach. The key idea behind caching [10,22] is to keep content close
to the end-user according to a cache replacement policy. Specifically, the end-user’s re-
quest for an object is posed to a proxy server, which may contain a cached version of
the object. If the proxy server contains a “fresh copy” of the requested object (cache
hit) then the end-user receives it directly from the proxy cache, elsewhere (cache miss)
the end-user is redirected to the origin server (where the Web site is located). Therefore
both the bandwidth consumption and the network traffic are reduced [11,2]. Addition-
ally, network availability is significantly improved since the end-user may receive a
copy even if the origin server is unavailable. Another advantage of caching is that fresh
content is added into the caches leading to better storage usage.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 200–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A complementary to caching technique is prefetching [14]. Prefetching is proposed
to find meaningful object access patterns in order to predict future requests. Therefore,
objects may be transferred to the proxy server a priori (before they are even requested).

The Replication Approach. The main idea is to bring static content replicas close to
the end-user. This is currently applied in the Content Distribution Networks [16,23].
A CDN consists of a set of surrogate servers geographically distributed in the Web,
which contain copies (replicas) of content belonging to the origin server (according to
a specific storage capacity). Therefore, CDNs act as a network layer between the ori-
gin server and the end-users, for handling their requests. With this approach, content is
located near to the end-user yielding low response times and high content availability
since many replicas are distributed. The origin server is “relieved” from requests since
the majority of them is handled by the CDN, whereas, Quality of Service (QoS) and
efficiency are guaranteed in a scalable way. Finally an important characteristic of the
CDNs is the efficiency against flash crowd events [25]. Specifically, a flash crowd event
occurs when unpredictably numerous users access a Web site. Events that affect global
communities (i.e. Sept. 11th, Tsunamis etc) lead to flash crowd events affecting popular
news Web sites. The side effects are significant: DoS, increased network latency and
Web servers overloading. Therefore it is important to enhance content delivery man-
agement especially in unpredictable crisis situations.

Caching and replication deals with situation as separate approaches. While caching
is mainly addressed to proxy servers, replication is the main technology of CDNs. How-
ever, implementing caching techniques over a CDN may improve performance by al-
lowing fresh content to be replicated. In this paper, we focus on adapting representative
cache replacement policies over a CDN along with replication. We explore the poten-
tial performance benefit in terms of perceived latency, hit ratio and byte hit ratio by
using surrogate servers both as replicators and proxy caches. Caching and replication
may benefit if used together, shown by our extensive experimentation using a detailed
simulation model. Moreover, we demonstrate the robustness of the integrated approach
in a CDN during a flash crowd event since it is a crucial issue.

The rest of this paper is organized as follows. In Sect. 2 we discuss the motivation
of this work and present some previous related work. Section 3 formally presents the
problem of content management in CDNs when using replication and caching. In Sect.
4 a brief description of the developed simulation model is given which has been used
in order to perform the experiments presented in Sect. 5. Finally, the conclusion of this
work and potential future work are given in Sect. 6.

2 Previous Work and Motivation

2.1 Previous Work

The performance of CDNs is affected by three main issues:

– Surrogate servers placement over the network: The optimal selection of proper
spots over the network [12,19,20] where the surrogate servers should be placed
yielding optimized performance. Algorithms that proposed to solve this problem
are investigated in [19].
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– Content outsourcing: The detection of the proper content for outsourcing[6]. Full
mirroring is a naive approach because even if disk prices are continuously dropping,
the sizes of Web objects increase and updating such a huge amount of Web objects
is a cumbersome task.

– Object replicas’ placement: Placing object replicas on surrogate servers
[7,17,18,8] in a way that leads to optimized performance. Benchmarks of algo-
rithms that manage this issue can be found in [7].

In this paper, we address the problems of object replicas selection and placement by
applying caching policies integrated with the existing replication scheme. The problem
of optimal content placement is proved to be NP-complete and therefore only heuristic
approaches are feasible [7] such as Greedy Global algorithm. Greedy global recursively,
for all objects and surrogate servers, detects the object that if placed at a specific surro-
gate server leads to optimized performance. Although Greedy Global seems to be the
choice, its complexity is too high for applying a per-object placement on a large set
of surrogate servers and objects. An alternative self-adaptive algorithm (lat-cdn) has
been proposed in [17] that requires no other knowledge (such as recorded access logs)
besides the network topology. The il2p algorithm [18] is proposed which takes into ac-
count the servers’ load. Specifically, il2p using recursively two phases selects which
object should be placed and where. During the first phase for each object the appro-
priate surrogate is selected minimizing network latency. Given the candidate pairs of
(object, surrogate server), at the second phase, the one that yields the maximum utility
value (depended on server’s load) is selected.

Since CDNs have to deal with large amounts of data it is crucial to apply several
data and communication management policies. Up to now, the uncooperative pull-based
[23,26], cooperative pull-based [1], cooperative push-based and uncooperative push-
based are the basic approaches, as reported in [16].

2.2 Motivation

The motivation of this work originates from the idea of improving a cooperative push
based CDN by solving problems arising from pure replication. More specifically:

– Due to replication and distribution cost, a replicas’ placement should be static for
a large amount of time. This leads to unoptimized storage capacity usage since the
surrogate servers would contain redundant content. If the end-users’ access pat-
terns change the replicas will no longer cover a large percentage of the requests.
Besides replication no other action, such as replacement of unpopular objects by
other currently popular, is performed.

– The placement of surrogate servers on the network is static reducing the flexibility
of the CDN.

A possible brute-force solution to fight these drawbacks is to upgrade the Web servers
and the network infrastructure. Faster Web servers and increased bandwidth solves the
problem of fast data transfer and handling large amount of requests. However, this
is a temporary solution. It includes increasing economic cost, since more and more
resource-demanding services would emerge flooding again the network. Furthermore,
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it is not scalable since upgrading the hardware infrastructure is not always practically
and economically feasible.

In order to deal with the static nature of the information stored on the surrogate
servers we propose the integration of caching and replication. If replication and caching
cooperate they may be beneficial since both deal with the same problem but from a dif-
ferent approach. Although caching may suffer from low hit ratio and byte hit ratio [11]
(typically below 50%) the performance gain from static replication along with caching
in terms of response time (as we will show in the experiments) is significant. An eval-
uation of caching and replication as seperate approaches in CDNs is covered in [9],
where caching outperforms but replication is still preferred for content availability and
reliability of service. In [3] authors proved that integrating a simple LRU with replica-
tion, on a CDN, via a hybrid greedy algorithm yields performance outperforming a pure
caching or replication scheme. Specifically, in each iteration a benefit value for every
server-object pair is assigned and the one that produces the best benefit is selected for
replication. At the end of the algorithm a percentage of the available storage capacity
is reserved by static content and the rest is available for LRU. However, the possibil-
ity of using various representative cache replacement policies is not examined and the
proposed approach is not tested during flash crowd events.

To the best of our knowledge, in the past the possibility of using caching along with
replication on CDNs has not been studied in more extend. Therefore, the challenge is
to improve the performance by using caching and replication together. In the context of
integrating caching policies on a CDN’s infrastructure our primary contributions are:

– Extend the policies of content selection and placement on CDNs by adopting rep-
resentative cache replacement techniques. We select the LRU, LFU and SIZE as
representatives of the main categories of cache replacement algorithms namely Re-
cency, Frequency and Size based [24].

– Develop a detailed trace-driven simulation environment to test the efficiency of the
proposed integrated scheme. The development of such an environment is crucial
since we can capture the behavior of a realistic CDN infrastructure. Moreover, we
avoid the oversimplified approach of a hop-based implementation that may give
misleading results.

– Provide extensive experimentation covering all the possible combinations with real
and artificial datasets, using representative cache replacement policies and repli-
cation at different levels of integration showing that pure caching or replication
cannot meet the performance benefit of the integrated method.

– Demonstrate results proving that the integration has superior performance during
flash crowd events and address several considerations and future road maps for such
an integrated approach.

3 Integrating Caching in a Cooperative Push-Based CDN

Here we formally propose the problem of content management on cooperative push-
based CDNs using replication integrated with caching policies. We choose the cooper-
ative push-based scheme since it has been proved in [7] that is optimal. According to
this approach, replicas are selected and placed at the surrogates servers a priori. Then
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the surrogate servers cooperate with each other in order to reduce the response times
and replication cost. Specifically, the end-users’ requests are directed to the closest sur-
rogate server. If the surrogate server contains the requested object then it is satisfied
without causing traffic to the network backbone. Otherwise, the request is redirected
to another server. The CDN may redirect the request to a surrogate server which con-
tains the requested object or to the origin server, if the object is not outsourced at all.
The bandwidth is shared among the surrogate servers and the objects replication redun-
dancy is reduced.
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server
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r%

c%

Network backbonerouter

clients group

M
(s)

Storage reserved
exclusively

for web site W

W
web site

origin
web server

Fig. 1. CDN infrastructure

Here, we propose a modification of the cooperative push based scheme. Specifically,
we consider the surrogate servers to operate both as static caches and proxy caches by
partitioning the available storage capacity into two parts. The first one is used for repli-
cating statically content and the second one for running a caching policy replicating
content dynamically (Fig. 1). Assigning such a “dual” role to surrogate servers is feasi-
ble due to their increasing capacities and capabilities. When a surrogate server receives
a request for an object a check to the static cache is performed. If it is a hit the request
is served, else another check to the dynamic cache is performed. In case the object is in
the dynamic cache, it is served and the cache is updated according to the cache replace-
ment policy. If the requested object is not outsourced either in the dynamic cache, it is
pulled from another server (selected based on proximity measures) and stored into the
dynamic cache according to the current cache replacement policy and then the end-user
receives the cached object. Therefore the end-user deals only with the nearest surrogate
server and is not redirected elsewhere. Cached objects will be available in cache for
future requests as long as they are allowed by the current cache replacement policy.
The content of a surrogate server adapts to the current needs for objects and the static
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nature of replication is overcome. The surrogate server plays a more active role and per-
forms content management deciding which object should remain or not. Furthermore,
besides the static cache, the content selection and placement is automated and it fits to
the current objects’ access pattern. The reason to keep the static part of the cache, as we
will prove in the experiments, is to maintain content availability by distributing a large
number of replicas to the network.

Table 1. Variables description

Variable Description
W The Web site
N Number of objects of W

W (s) Web site’s size

U
(s)
k Size of kth object

M Number of surrogate servers

Mi The ith surrogate server

M
(s)
i Storage capacity of the ith surrogate server

M (s) Storage capacity of each surrogate server

fik Function indicating whether the kth object is placed at the ith surrogate server or not

r Percentage of the M (s) for replication

c Percentage of the M (s) for caching

Therefore, consider a Web server representative who has signed a contract with the
described CDN for outsourcing content of a Web site W . The Web site contains N
objects initially located only at the origin Web server (outside of the CDN). The total
size of W is W (s) and is given by the following equation:

W (s) =
N∑

k=1

U
(s)
k (1)

where U
(s)
k is the size of the kth (1 ≤ k ≤ N ) object.

Let M be the number of surrogate servers consisting the CDN. Each surrogate server

Mi(1 ≤ i ≤ M) has a total cache size M
(s)
i dedicated (hired) for W . However, the

surrogate servers may contain content from other Web sites without interfering with

M
(s)
i . The M

(s)
i is exclusively reserved for replicating content of W , of which the

original copies are located in the origin Web server. For simplicity, we consider that

the surrogate servers are homogeneous (same storage capacity M
(s)
i = M (s)(1 ≤ i ≤

M)).
In order to apply replication and caching techniques the available storage capacity is

split into two parts (Fig. 1):

– Static cache: Dedicated for replicating content statically. Its size is a percentage
r, (r ∈ [0..1]) of M (s). Therefore, the replicated objects, in static cache, obey the
following constrain:
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N∑
k=1

(fikU
(s)
k ) ≤ rM (s) (2)

where fik is a function denoting if an object exists (outsourced) in cache or not.
Specifically, fik = 1 if the kth object is placed at the ith surrogate server and fik =
0 otherwise. The content of the static cache is defined by applying a replication
algorithm like il2p.

– Dynamic cache: Reserved for applying cache replacement policies. The size re-
served for dynamic caching is a percentage c, (c ∈ [0..1]) of M (s). More specifi-
cally, the stored objects respect the following storage capacity constrain:

N∑
k=1

(fikU
(s)
k ) ≤ cM (s) (3)

Initially, the dynamic cache is empty since it is filled with content at run-time ac-
cording to the selected cache replacement policy (upon misses).

Given the above cache segmentation scheme, the percentages (r, c) and must obey
the following:

r + c = 1 (4)

If c = 0 the cooperative push-based scheme is applied where the pulled objects are
not stored for future use (pure replication). If we set r = 0 the surrogate servers turns
into cooperative proxy caches (dynamic caching only). For c > 0 and r > 0 we get
the integrated approach where replication is used along with caching. Here the problem
addressed is to select the optimal values for r and c, given a replica placement and
caching algorithm, which improves the performance of the CDN.

4 CDNsim: The Simulation Testbed

For the experimentation needs, we have implemented a complete simulation environ-
ment, called CDNsim. CDNsim simulates a main CDN infrastructure and is implemented
in the C programming language. It is based on the ParaSol library1 which provides a par-
allel and discrete event simulation environment. Further details about CDNsim along
with the source code can be found at http://oswinds.csd.auth.gr/∼cdnsim/. Due to space
limitations, only the basic characteristics of the simulator are presented here.

CDNsim uses a network graph generated by the GT-ITM internetwork topology gen-
erator [27] in order to build the network backbone with a realistic TCP/IP protocol
implementation. This includes packets routing, retransmissions on errors or DoS, finite
bandwidth links, bottlenecks, etc. Packets routing is performed by following the shortest
paths generated by the Dijkstra algorithm. The nodes of the generated network topol-
ogy are assigned to specific network elements which include the following a) routers,
b) surrogate servers, c) origins servers and d) client groups (clients grouped accord-
ing to their domains). Communication via routers causes the main network traffic and

1 http://www.cs.purdue.edu/research/PaCS/parasol.html
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perceived delays. Therefore, requests that lead to cache misses and must be pulled are
“expensive” in order to be satisfied. We avoid the oversimplified approach of network
latency depended only by the number of network-hops since we simulate a realistic
network.

There are several clients’ log files on the Web2 but we do not have the respective
Web sites’ structure, and vice versa. Moreover, the CDN providers do not offer their
log files. Therefore, we use articial workloads and Web sites. For that reason, we used
the R-MAT Web site generator [5] and we assigned sizes to the objects according to the
log-t distribution as described in [13]. For each of the generated sites we have produced
a set of object requests using the generator presented in [14].

An issue that may affect the performance of a simulation is cache consistency. Since
there is a certain amount of literature that deals with the problem of cache consistency
we assume that there is implemented an appropriate mechanism like Web server in-
validation [4] that ensures the freshness of the objects. Moreover the probability of
requesting for a stale object is low because according to [15] the duration between two
modifications in the same object is up to 24 hours.

5 Performance Evaluation and Experimentation

In this section we present results demonstrating the behavior of the integrated scheme
in terms of mean response time, hit ratio and byte hit ratio. Section 5.1 summarizes
the performance parameters evaluated in the experiments. In Sect. 5.2 the simulations’
setup and the used datasets are described while Sect. 5.3 presents the experimentation.

5.1 Parameters

Here we briefly present the performance criteria used in the experiments, namely the a)
mean response time, b) response time CDF, c) hit ratio and d) byte hit ratio. These cri-
teria have been used since they are the most indicative ones for performance evaluation.

– Mean response time. This is the expected time for a request to be satisfied. It is
the summation of all request times divided by their quantity. Low values denote
that content is close to the end-user.

– Response time CDF. The Cumulative Distribution Function (CDF) in our experi-
ments denotes the probability of having a response times lower or equal to a given
response time. The goal of a CDN is to increase the probability of having response
times around the lower bound of response times.

– Hit ratio. It is defined as the fraction of cache hits to the total number of requests.
A high hit ratio indicates an effective cache replacement policy and defines an in-
creased user servicing, reducing the average latency.

– Byte hit ratio. It is the hit ratio expressed in bytes. It is defined as the fraction of
the total number of bytes that were requested and existed in cache to the number of
bytes that were requested. A high byte hit ratio improves the network performance
(i.e. bandwidth savings, low congestion etc.).

2 Traces available in the Internet Traffic Archive: http://ita.ee.lbl.gov/html/traces.html
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5.2 Simulation Configuration

Network and CDN Topology. Using the GT-ITM we have indicatively created an AS
network topology with a total of 3037 nodes. Given a standard link speed of 1MB per
second we have generated the shortest paths of all nodes to all nodes for optimal packets
routing. A set of 20 surrogate servers is randomly attached in the existing network
backbone.

For the experimentation needs we express M (s) as a percentage p of the origin
server’s Web site size W (s) (i.e. M (s) = pW (s)). For the static cache, we have used
the il2p algorithm since its complexity is acceptable on a per-object replication. Specif-
ically, we follow the following steps to initialize and run the surrogate servers caches:

1. Initially the surrogate servers are empty. We set the (r, c).
2. We fill the static cache specified by the r by running the il2p algorithm.
3. We set the cache replacement policy for the dynamic cache specified by c. In our

experiments the caching policy may be LRU, LFU or SIZE.

The (r, c) pairs that we used for the simulator are i) (1,0) for pure replication, ii)
(0.8,0.2), iii) (0.5, 0.5), iv) (0.2, 0.8) and v) (0, 1) for pure caching. Additionally for
setting the upper and lower bound of performance we have configured CDNsim for
full mirroring of the Web sites and then to have empty disks (caches) without possible
addition of objects into the cache.

Datasets. With the above described configuration we present three experiments using
three datasets. The first dataset concerns an artificial Web site of 2994 objects, size
746.86 MBs and set of 1969114 requests. We set p = 0.15 leading to a cache size of
112.03 MBs. As mentioned before, we had to use synthetic datasets due to the lack
of real CDN traces. The second dataset includes the same Web site but it runs under
a flash crowd event. We have shrunk the time window of the requests in order to in-
crease their density and rate. This leads to greater network traffic since more packets
travel simultaneously and the surrogate servers’ load is increased because of the greater
number of simultaneously active sessions. The final dataset is a real Web site. We have
used the Standford’s Web site 3 which contains 281904 objects and its size is 8.66 GBs.
The number of requests is 3744460 and the p = 0.015, since it is much larger than the
artificial Web sites, leading to storage capacity of 133,15 MBs. Table 2 summarizes the
overall experimentation configuration.

5.3 Simulation Results

In this section we present the results and we compare the performance parameters of
pure replication, pure caching and integration of replication with LRU, LFU and SIZE
(representatives of Recency, Frequency and Size based policies [24]).

Experiments Without Flash Crowd Event
Artificial Data. The resulting mean response times are depicted in Fig. 2. The x axis
represents the integration level of replication and caching (the (r, c) values) while the

3 http://www.stanford.edu/∼sdkamvar/research.html
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Table 2. Experimentation configuration summary

Network topology AS 3037 nodes
Link speed 1MB/s
N 20
(r, c) (1, 0), (0.8, 0.2), (0.5, 0.5), (0.2, 0.8), (0, 1), full mirroring, empty disks
Rep. alg. il2p
Caching policies LRU, LFU, SIZE
Dataset 1 Artificial, 2994 objects, 746.86 MBs, 1969114 reqs., p = 0.15
Dataset 2 Artificial, 2994 objects, 746.86 MBs, 1969114 reqs., p = 0.15, flash c.e.
Dataset 3 Real, 281904 objects, 8.66 GB, 3744460 reqs., p = 0.015

y axis is the resulting mean response times of the requests. The performance limits are
bounded by the cases of full mirroring and empty disks. By using pure replication the
mean response time is reduced significantly denoting that the existence of replicas on
the network participates to the improvement of performance setting the limits of pure
replication. However, there is still room for optimization. For the integration level where
(r, c) = (0.5, 0.5) the mean response times are reduced up to 40% compared to pure
replication and 15% compared to pure caching, for all caching schemes. Reducing c
the results are gradually worsen for values of c > 0.8 meaning that there is still need
for static replicas to exist. This behavior is presented also in Fig. 3 which shows the
hit ratio at the y axis and the integration level at x axis. The combination of replication
with SIZE outperforms all the other combinations in terms of hit ratio. The hit ratio
gain may reach 70% compared to pure replication and around 10% compared to pure
caching. Examining the byte hit ratio (y axis) at Fig. 4 at different pairs of (r, c) (x
axis), we can conclude that the performance gain in terms of byte hit ratio is not signifi-
cant, however a gain around 10% is still possible with all cache replacement algorithms
demonstrating the same behavior. Another illustration of the situaton is shown in Fig. 5.
The x axis contains the response times of all requests ascending while the y represents
the portion of requests that their response time is lower than a given value. The CDFs
of the intergrated approach tend to fit the ideal situation of full mirroring with SIZE as
the leading algorithm.

In this experiment we can conclude that LRU, LFU and SIZE has similar behavior in
terms of mean response time, byte hit ratio and CDFs. The leading algorithm, in the hit
ratio case, is SIZE which can be explained by the fact that SIZE favors smaller objects
leading to increased number of objects in cache.

Real Data. The second experiment, given the same execution environment, is run with
the Standfors’s Web site. Figure 6 illustrates the mean response time. As we can see
the pure replication is unable to offer considerable performance benefit. This can be
explained by the fact that W (s) � M (s), therefore a relatively small set of replicas
cannot cover a large enough percentage of the requests. However, for (r, c) = (0.8, 0.2)
we get a 70% which is peak for all caching policies. Pure caching seems to be the choice
here because the average object size is too small (around 33 Kb). Although the pure
caching outperforms the use of integration is preferred because it has comparable results
to the pure caching and distributes a number of replicas over the network increasing
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content availability. Both in hit ratio Fig. 7 and byte hit ratio Fig. 8 the peak occurs at
the same integration level ((r, c) = (0.8, 0.2)) with SIZE slightly better in terms of hit
ratio and worse in terms of byte hit ratio. At (r, c) = (1.0, 0.0) the estimated values are
quite low since the available storage capacity is too limiting and therefore the replica
placement algorithm does not perform well. The reasons we have selected this storage
capacity constrain (p = 0.015) are: a) the il2p execution time for the real dataset was
restricting and b) we would like to monitor the system performance with low cache
sizes. It is clear that in low cache sizes caching is preferred since it updates the content



Integrating Caching Techniques on a Content Distribution Network 211

Replication vs Caching precentage

B
yt

e
hi

tr
at

io

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 8. Real Web site - Byte hit ratio

Response time

R
es

po
ns

e
ti

m
e

C
D

F

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Fig. 9. Real Web site - CDF (r, c) = (0.8, 0.2)

while replication is not recommended since the static replicas cannot cover a satsifying
portion of the requests. In Fig. 9 for (r, c) = (0.8, 0.2) can the intergrated approach fits
to the upper bound performance limit.

As a conclusion for this experiment, pure caching outperforms in case the objects
have small sizes. However, at the integration level where (r, c) = (0.8, 0.2), the results
are comparable. As expected, LRU and LFU has similar behavior while SIZE is leading
in terms of hit ratio and it is not recommended for optimizing byte hit ratio.

Experiments with Flash Crowd Event
As mentioned in the Introduction, it is crucial to enhance content delivery during flash
crowd events. Therefore the integration of caching with replication should be tested
appropriately.

Artificial Data. In this experiment we record the behavior of the CDN during a flash
crowd event in the considered logs. The CDN’s operation is intensive since a large
amount of requests is served simultaneously. Figure 10 depicts the mean response times.
The situation where the disks are empty leads to an unstable state where, as expected,
increased response times are observed. In the case of full mirroring the performance is
similar to the no flash crowd event case (Fig. 2) since the entire network backbone is
skipped. Using pure replication an important performance benefit exists, however, now
the response times are 100% larger than the no flash crowd event operation. For (r, c) =
(0.8, 0.2) the percieved mean response times are comparable to the ones depicted in Fig.
2 during no flash crowd event, meaning that the CDN copes with the flash crowd event
efficiently. For LRU and LFU the performance of the model is the same as the no flash
crowd event but for SIZE at c > 0.2 it is worse but still better than pure replication
or caching. In terms of hit ratio (Fig. 11) the combination of SIZE with replication
for (r, c) = (0.2, 0.8) yields performance 60% greater than replication and around 8%
better than caching. For this integration level, all caching policies reach peak in their
performance. The expected byte hit ratio Fig. 12 seems to follow the same behavior
just like the no flash crowd event case. Looking the model from the perspective of CDF
Fig. 13 for (r, c) = (0.8, 0.2) we notice that in the case of empty disks the distribution
is uniform explained by the flash crowd event. For the inergated approach the choice
algorithm is the SIZE.
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Summarizing this experiment, during a flash crowd event the absence of a caching or
replication mechanism leads to unacceptable response times. However, pure replication,
as applied currently in CDNs, improves the performance. The performance may be
significantly ameliorated using replication with caching showing the robustness of the
integrated approach.
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Summary of Experiments
To summarize the experiments, we can conclude that the integration of replication with
caching leads to improved performance in terms of perceived network latency, hit ratio
and byte hit ratio. The results reinforce the initial intuition that replicating replicas
statically for content availability along with caching policies improves the performance.
Our experimentation has shown that:

– The integrated approach demonstrates mean response times up to 40% better than
pure replication.
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– A performance benefit of 15% may be achieved when compared with pure caching
in terms of mean response time.

– Pure replication yields poor performance, 70% worse than the integrated approach,
in terms of hit ratio.

– Pure caching demonstrates performance in hit ratio which may be 10% worse than
the caching-replication combination.

– It can be observed in the experiments that there is not a fixed pair of (r, s) that gives
us the peak of performance.

– As presented in the experimentation , CDNs using the integrated approach, demon-
strate improved performance during a flash crowd event, comparable to the case of
a no flash crowd event.

– The performance peak appears to be independent from the selected cache replace-
ment policy.

6 Conclusion and Future Work

This paper investigates the potential performance gain occurring by replication and
caching if used together in a CDN. We offered an extensive set of experiments ex-
ploring the performance limitations. For the purposes of the experiments a detailed
simulation environment has been developed. It has been shown that caching outper-
forms static content replication. Moreover, a possible integrated scheme outperforms
the pure replication or caching scheme as separate implementations. CDNs may take
advantage of the dynamic nature of cache replacement policies while maintaining static
object replicas for availability, reliability and bounded update propagation cost. Finally
our experiments shown that CDNs are effectively fortified against flash crowd events.

The integrated approach should be tested and applied on several network topolo-
gies such as ad-hoc mobile wireless networks [21]. Currently we are working on the
extension of the replicas placement in terms of dynamic data and various dynamic pa-
rameters of QoS, since it is an open issue in this work. Moreover, the development of an
automated mechanism for detecting the appropriate level of integration (i.e. (r, c) pair)
which leads to performance peak is crucial. Finally, another consideration is the imple-
mentation of a mechanism that dynamically recalculates the (r, c) at run-time adapting
to the varying needs.
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Abstract. Among the most important expected benefits of a global
service oriented architecture leveraging web service standards is an
increased level of automation in the discovery, composition, verifica-
tion, monitoring and recovery of services for the realization of complex
processes. Most existing works addressing this issue are based on the
Ontology Web Language for Services (OWL-S) and founded on descrip-
tion logic. Because the discovery and composition tasks are designed to
be fully automatic, the solutions are limited to the realization of rather
simple processes. To overcome this deficiency, this paper proposes an
approach in which service capability descriptions are based on full first
order predicate logic and enable an interactive discovery and composi-
tion of services for the realization of complex processes. The proposed
approach is well suited when automatic service discovery does not consti-
tute an absolute requirement and the discovery can be done interactively
(semi-automatically) with human expert intervention. Such applications
are, for instance, often met in e-science. The proposed approach is an
extension and adaptation of the compositional information systems de-
velopment (CISD) method based on the SYNTHESIS language and pre-
viously proposed by some of the authors. The resulting method offers
a canonical extensible object model with its formal automatic seman-
tic interpretation in the Abstract Machine Notation (AMN) as well as
reasoning capabilities applying AMN interactively to the discovery and
composition of web services.

1 Introduction

The current Web service infrastructure offers syntactic interoperability by means
of widely accepted standards such as the Web Services Description Language
(WSDL1.1 [27]), the Universal Description, Discovery and Integration language
(UDDI [26]) and the Simple Object Access Protocol (SOAP [21]).

Yet semantic interoperability is one of the most important expected features of
a global service oriented architecture. In order to reach the necessary level of au-
tomation of service discovery, composition, verification, monitoring and recovery,
a large body of research works aims at devising richer specifications providing
for semantically well-founded reasoning about services. Many such approaches
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are based on OWL-S [17], a language for the semantic specification of services
building upon OWL [16], the Ontology Web Language proposed by W3C. In
OWL-S each service is provided with an advertisement containing three descrip-
tions: service profile (”what the service does”), service model (”how the service
works”), and service grounding (”how to access the service”). OWL-S and other
similar languages assume mechanisms for their combined use with existing Web
service standards such as UDDI and WSDL. The solutions proposed realize sim-
ple ”on the fly” dynamic discovery – usually referred to as service matchmaking
– and composition of services based on the service’s capability descriptions, i.e.
inputs, outputs, pre-conditions and effects (IOPEs) of a service [20].

Because of the limitations of the OWL description and of the reasoning mecha-
nism based on description logic, and because the discovery and composition tasks
are designed to be fully automatic, the solutions are limited to the realization of
rather simple processes. Indeed, full automation applies to tractable problems
(checking credit, simple procurement, etc.). Most importantly, such approaches
do not apply to the problems of discovery and composition of services for the
realization of complex processes that are in use in numerous application domains
such as e-science.

In order to overcome this deficiency, this paper1 proposes an approach in which
IOPEs service capability descriptions based on full first order predicate logic that
enable an interactive discovery and composition of services for the realization of
complex processes. The proposed approach is well suited when automatic service
discovery does not constitute an absolute requirement and the discovery can be
done interactively (semi-automatically) with human expert intervention. The
proposed approach extends and adapts the Compositional information systems
Development (CISD) method [4] devised and proposed by some of the authors.

CISD is a method for the semantically correct composition of software com-
ponents into coherent application. The CISD method is originally designed for
object- oriented platforms such as CORBA, RMI and J2EE. CISD leverages an
ontological model and a canonical object model, both based on the SYNTHE-
SIS language [10], to offer a unified representation of both the new application
(specification of requirement) and pre-existing components. Discovery and com-
position of components relevant to the application is realized in the framework
offered by the domain ontology and the canonical object model.

In order to apply the CISD method to Web services, we have preliminarily
defined in [5] a mapping of WSDL specifications into the canonical model. The
basic steps for composing Web services by refining a specification of requirement
were also demonstrated in [5].

In this paper, we concentrate on the discovery based on the IOPEs capa-
bilities of services, putting aside other service properties (e.g., non functional
properties) defined by other metadata facilities of the augmented UDDI. We use
the canonical extensible object model of SYNTHESIS [10], its formal automatic

1 This research has been partially supported by the grants 05-07-90413, 06-07-89188-a
of the Russian Foundation for Basic Research and by NUS Eastern Europe Research
Scientists & Students Exchange & Collaboration Programme (EERSS).
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semantic interpretation in the Abstract Machine Notation (AMN) [2] and reason-
ing mechanisms obtained by applying AMN interactively. If a service is defined
in WSDL or UDDI augmented with OWL-S, such definition is also assumed
to be mapped into the canonical model. How to do such mapping for OWL is
considered in detail in [12,15].

The paper is structured as follows. In Section 2 we give a brief introduction to
the canonical model. We define the operations of the type composition calculus
based on the refinement2 relation. We show the need for a formal proof of the
refinement relation between type specifications. B-Technology that implements
AMN [1] is used for that purpose. We give a short characterization of AMN as
well as of the program facilities that have been recently developed [24] for the
automatic mapping of the canonical model specifications into AMN.

In Section 3, we present an example with two Web services. The first Web ser-
vice is specified in OWL-S and WSDL. Pre-conditions and effects in this service
are defined using Semantic Web Rule Language (SWRL) [25] which is tractable.
The second Web service is described with formulae expressed in the canonical
model to describe pre-conditions and effects. Such formulae are generally not
tractable (as they make use of full first order predicate logic). Appropriate com-
position of services is realized by using the type specification calculus [11]. To
show that the discovery of Web services is correct, we prove that a relevant type
of specification of requirements is refined by the composition of Web services
obtained. In Section 4, we illustrate an approach to the formal proof of this
condition showing also some details of the mapping of the canonical model into
AMN. In section 5, we survey the related work. In the conclusion section, we
summarize the contribution of the paper.

2 Complex Service Discovery for Compositional IS
Development

In CISD, the SYNTHESIS language is intended to provide a uniform (canonical)
representation of heterogeneous data, programs and processes for their use as
interoperable entities. Strongly typed, object-oriented subset of the language (as
required in this paper) contains a universal constructor of arbitrary abstract data
types, a comprehensive collection of the built-in types, as well as type expressions
based on the operations of type calculus.

All operations over typed data in the SYNTHESIS language are represented
by functions. Functions are given by predicative specifications expressed by
mixed pre- and post-conditions formulae of typed first order predicate logic.

In the SYNTHESIS language the type specifications are syntactically repre-
sented by frames, their attributes by slots of the frames. Frames are embraced by
figure brackets { and }, slots are represented as pairs 〈slot name〉 : 〈slot value〉 (a
frame can be used as a slot value). Slots in a frame are separated by semi-colons.

2 A non-formal definition of refinement is as follows. Type A refines type B if A can
be substituted instead of B so that a user does not notice the difference.
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Compositional development is a process of systematic manipulation and trans-
formation of specifications. Type specifications of the SYNTHESIS language are
chosen as the basic units for such manipulation. The manipulations required in-
clude decomposition of type specifications into consistent fragments, identifica-
tion of reusable fragments, composition of identified fragments into specifications
refining [2] the requirements, justification of the refinement relation reached. The
compositional specification calculus [11], designed for such manipulations, uses
the following concepts and operations.

Definition 1. A signature ΣT of a type specification T = 〈VT ,OT , IT 〉 in-
cludes a set of operation symbols OT indicating operation arguments and result
types and a set of predicate symbols IT for invariants. Conjunction of all in-
variants in IT constitutes the type invariant InvT . OT is a union of type state
attributes AttT and type methods MethT . Extent VT of the type T (carrier of
the type) is modeled by a set of admissible instances of the type. Each instance
of the type is a tuple of pairs 〈a, v〉 such that a is a state attribute of the type
(a ∈ AttT ) and v is a value of the attribute. Every instance must satisfy the
invariant InvT .

Definition 2. A type reduct RT is a subspecification of an abstract data type
T specification. A signature Σ′

T of RT is a subsignature of ΣT including the
extent VT , a set of operation symbols O ′

T ⊆ OT , a set of symbols of invariants
I ′
T ⊆ IT .

The identification of a fragment of an existing component type that may be
reused in the implementation of another type requires a most common reduct of
these types to be constructed.

Definition 3. Most common reduct RMC (T1,T2) for types T1 and T2 is a
reduct RT1 of T1 such that there exists a reduct RT2 of T2 such that RT2 refines
RT1 and there can be no other reduct R′

T1
such that RMC (T1,T2) is a reduct of

R′
T1

, R′
T1

is not equal to RMC (T1,T2) and there exists R′
T2

of T2 that refines
R′

T1
.

Definition 4. Type C is a refinement of type R iff:

– there exists an injective mapping Ops : OR → OC ;
– there exists a total abstraction function Abs : VC → VR;
– for all v ∈ VC , InvC (v) implies InvR(Abs(v));
– for all m ∈ MethR, m is refined by Ops(m).

To establish a method refinement m1 refines m2 it is required that method pre-
condition pre(m2) implies pre-condition pre(m1) and post-condition post(m1)
implies post-condition post(m2).

The type calculus operations (such as meet and join) are used for the compo-
sition of identified reusable fragments into specification refining the specification
of requirements. The meet operation T1�T2 produces a type T as an ”intersec-
tion” of specifications of the operand types. The join operation T1�T2 produces
a type T as a ”join” of specifications of the operand types [11]. To save space,
we provide a complete definition only for join operation.
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Definition 5. Generally type T – a result of an operation T1 �T2 – includes a
merge of specifications of T1 and T2. Common elements of specifications of T1

and T2 are included into the merge (resulting type) only once. Common elements
of the types are defined by most common reducts RMC (T1,T2) and RMC (T2,T1).
More formally OT1�T2 is defined as

OT1�T2 = (OT1 \ORMC (T1,T2)) ∪ (OT2 \ORMC (T2,T1))

Type invariant of T is defined as a conjunction of operand types invariants
InvT1&InvT2 .

The most important stage of CISD is the proof of the refinement relation be-
tween requirement type R and component composition of type C . Since predi-
cative specifications of functions in the SYNTHESIS language are based on an
undecidable first order logic, special methods and tools should be used for es-
tablishing of the refinement. In CISD for this purpose B-Technology [1] is used.
B-Technology provides an implementation for formal specification language –
Abstract Machine Notation (AMN) as well as tools (B-Toolkit[28]) for auto-
matic/interactive proof of the refinement.

AMN [2] is based on the first order predicate logic and Zermelo-Frenkel set the-
ory and enables to consider state space specifications and behavior specifications
in an integrated way. The system state is specified by means of state variables
and invariants over these variables, system behavior is specified by means of op-
erations defined as generalized substitutions – a sort of predicate transformers.
Refinement of AMN specifications is formalized as a set of refinement proof oblig-
ations – theorems of first order logic. Generally speaking in terms of pre- and
post-conditions of operations, refinement of AMN machines means weakening
pre-conditions and strengthening post-conditions of corresponding operations
included in these constructions. Proof requests are automatically generated by
B-Toolkit and should be proven with the help of B-Toolkit theorem prover.

To reduce refinement of SYNTHESIS type specifications to refinement of
AMN specifications, specific program facilities were recently developed for auto-
matic mapping of the canonical model (SYNTHESIS) specifications into AMN.
These facilities were developed as a part of CISD tool [4] [5] and include a
graphical user interface enabling an expert to select an appropriate type from
the meta-information repository to map into AMN and a translator of the SYN-
THESIS specifications into AMN. The paper introduces the principles of the
canonical model into AMN mapping (section 4) and demonstrates their use for
formal verification of complex services discovery and composition.

3 Specifications of Requirement and Web Services

Compositional development includes several stages mentioned on Fig. 1. In this
paper we concentrate on the stage of formal verification of the refinement as-
suming the previous stages to be done and results obtained. The stage of formal
verification is marked in grey on Fig. 1. Some details about the stages omitted
including ontological relevance check can be found in [4][5].
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Fig. 1. CISD Tool structure

We shall consider formal verification of compositional development of a part of
Funding Agency system managing finances aimed at support of research projects.
A group of researchers prepares a proposal and registers it at the Funding Agency
to obtain a grant. The funding Agency nominates experts to review proposals
and decides whether to support a proposal or not.

As a example of a requirement specification consider the type Secretary of
a Funding Agency system. A secretary of the agency identifies a set of available
experts (obtainExperts method), searches for relevant experts and reports the
number of relevant experts (searchForExperts method). An expert is consid-
ered to be relevant if her or his research area is computer science. The secretary
selects some relevant experts to review a proposal (dispatch method). An ex-
pert can be selected to review a proposal if and only if her or his area of expertise
is the same as the research area of the proposal. The area of expertise of an ex-
pert can be more specific than the research area of the expert, for example data
mining can be an area of expertise.

Secretary type specification in the SYNTHESIS language is as follows.

{ Secretary; in: type;

availableExperts: {set; type_of_element: Expert;};

obtainExperts: { in: function;

params: {+exprts/{set; type_of_element: Expert;}};

{{ this.availableExperts’ = exprts }};

};

searchForExperts: { in: function; params: {-numberOfExperts/integer};
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{{ this.availableExperts’ = {exp/Expert | in(exp, availableExperts) &

exp.researchArea = "computer sci"} &

numberOfExperts = card(this.availableExperts’) }};

};

dispatch: { in: function; params: { +revi/Review };

{{ ^isempty(this.availableExperts) &

ex exp/Expert (in(exp, this.availableExperts) &

exp.area_of_expertise = revi.forProposal.area &

revi.byExpert’ = exp) }};

};

}

Input and output parameters of methods are marked by + and - respectively,
term this denotes a reference to an instance of a type for which a method is
called. Terms marked by apostrophe refer to the post-state of the system, built-
in boolean function in checks whether an item belongs to a set, card function
returns a cardinality of a set, isempty function checks whether a set is empty,
^ denotes logical not, ex denotes existential quantifier.

We can assume that, as a result of the primary stages of compositional devel-
opment, two Web services have been chosen to be relevant to Secretary type
(requirement).

A first service is Dispatcher service specified in OWL-S with grounding in
WSDL. Pre-conditions and effects in this service are defined using SWRL [12].
To save space the Dispatcher service XML code is omitted:

<wsdl:portType name="Dispatcher">

<wsdl:operation name="getExperts" ... </wsdl:operation>

<wsdl:operation name="checkExpert" ... </wsdl:operation>

<wsdl:operation name="countExperts" </wsdl:operation>

</wsdl:portType>

Dispatcher looks for all the specialists which are potential experts (opera-
tion getExperts). After that Dispatcher considers potential experts one by
one and chooses relevant experts such that their research field is computer
science (checkExpert method) and reports the number of relevant experts
(countExperts method). Semantics of Dispatcher service is provided by the
OWL-S service profile specification. To save space this XML code is omitted.

A second service is the Executive service specified in the SYNTHESIS lan-
guage and uses for pre-conditions and effects the formulae of the canonical model
that is not tractable (as it uses full first order predicate logic). A specialist can
be appointed to review a submission if and only if his/her field of expertise is the
same as research field of submission, specialists with PhD degree are preferred
(appoint method).

{ Executive; in: type;

relevantExperts: {set; type_of_element: Specialist;};

expertsChecked: boolean;

appoint: {in: function; params: { +revi/Evaluation };
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{{ this.expertsChecked = true & ^isempty(this.relevantExperts) &

( ex exp/Specialist(in(exp, this.relevantExperts) &

exp.fieldOfExpertise = ev.submRef.field &

exp.degree = "PhD" & revi.bySpecialist’ = exp) |

( all exp/(Specialist)((in(exp, this.relevantExperts) &

exp.fieldOfExpertise = revi.submRef.field) ->

exp.degree <> "PhD") &

ex exp/(Specialist)(in(exp, this.relevantExperts) &

exp.fieldOfExpertise = revi.submRef.field &

revi.bySpecialist’ = exp) ) ) }};

};

}

To satisfy the requirement specified by type Secretary it is required to create
an appropriate composition of Dispatcher and Executive components. For this
purpose WSDL+OWL-S specification of Dispatcher should be mapped into the
Dispatcher type of the canonical model:

{ Dispatcher; in: type;

experts: {set; type_of_element: Specialist;};

expertsGot: boolean;

relevantExperts: {set; type_of_element: Specialist;};

expertsChecked: boolean;

getExperts: { in: function; ... };

checkExpert: { in: function; ... };

countExperts: {in: function; params: {-numberOfExperts/integer};

{{ isempty(this.experts) & this.expertsGot = true &

numberOfExperts = card(this.relevantExperts) &

this.expertsChecked’ = true

}};

};

}

The required composition intended to refine Secretary type is the join of
Dispatcher and Executive types that is DispatcherJOINExecutive type:

{ DispatcherJOINExecutive; in: type;

experts: {set; type_of_element: Specialist;};

expertsGot: boolean;

relevantExperts: {set; type_of_element: Specialist;};

expertsChecked: boolean;

getExperts: { in: function; ... };

checkExpert: { in: function; ... };

countExperts: {in: function; ... };

appoint: {in: function; ... };

}

Discovery of relevant services includes also the establishment of ontologi-
cal relevance of structure and methods of requirement and component types.
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Fig. 2. Ontological relevance diagram

Specifications of requirement and pre-existing components must be associated
with ontological contexts defining concepts of the respective subject areas. Here
we assume that ontological concepts are described with their verbal definitions
similarly to definitions of words in a dictionary. Fuzzy relationships between con-
cepts of different contexts are established by calculating correlation coefficients
between concepts on the basis of their verbal definitions. The correlation coeffi-
cients are calculated using the vector-space model [4]. This can be done with the
help of CISD tool [4][5]. In this paper only the final picture of ontological rele-
vance is presented on Fig. 2. Arcs on the figure denotes a relation of ontological
relevance. For example, method appoint of type Executive, a pair of meth-
ods checkExpert and countExpert, four state attributes of type Dispatcher
were established to be relevant to method dispatch of type Secretary, method
searchForExperts, attribute availableExperts of type Secretaty respec-
tively. Note that ontological relevance should be established also for types used in
specification of requirement type Secretary (Proposal, Expert, Review types)
and types used in composition of components type Dispatcher � Executive
(Submission, Specialist, Evaluation types). In the example considered type
Proposal was established to be relevant to the type Submission, type Expert
– to the type Specialist, type Review – to the type Evaluation.

4 Formal Verification of Web Service Discovery

To show that the discovery of Web services is correct, we need to prove that
a relevant type of specification of requirements Secretary is refined by the
composition of Web services obtained (Dispatcher � Executive). To use auto-
matic/interactive tools of B-technology for proving the refinement it is required
to map Secretary and Dispatcher � Executive types into AMN.

In this section general principles underlying the mapping of the SYNTHESIS
language into AMN is demonstrated by the example of mapping the Secretary
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type into AMN. Mapping of abstract types into AMN is based on extensional
principle: every type is represented by its extent – a constant set of possible
instances of the type. For a set of interrelated types a special AMN construction
is provided, so-called context machine.

MACHINE FundingAgency structureContext

SETS AVAL; . . .

CONSTANTS Obj , . . . , ext Review , ext Secretary , ext Expert , . . .

PROPERTIES Obj ∈ POW (AVAL) ∧ ext Review ∈ POW (Obj ) ∧
ext Secretary ∈ POW (Obj ) ∧ ext Expert ∈ POW (Obj ) . . .

END

It contains a definition of the extent of all object types – Obj which is a
subset of the set of all abstract values (AVAL) expressible in the language and
definitions of extents of all types required (ext Secretary, ext Expert , etc.). An
extent of every type (for example, Secretary) is a subset of Obj : ext Secretary ∈
POW (Obj ). POW (Obj ) denotes a set of all subsets of the set Obj .

An abstract type is represented in AMN by a separate construction:

REFINEMENT Secretary

INCLUDES Review

SEES String TYPE ,Bool TYPE ,Expert , FundingAgency structureContext, . . .

VARIABLES available experts

INVARIANT available experts ∈ ext Secretary → POW (ext Expert)

OPERATIONS . . .

REFINEMENT is the most universal AMN construction, since it can be used
both as refined and as refining machine in the hierarchy of refinement. Therefore
this construction is most preferable for homogeneous representation of abstract
types in AMN. This construction is composed with context machine, with ma-
chines corresponding to other types used (Expert, Review, etc.) and to auxiliary
constructions (String TYPE , Bool TYPE ) with the help of AMN composition
facilities (SEES, INCLUDES [2]).

State attributes of a type is represented in AMN by variables. Variables are
appropriately typed as total functions from extent of the type into a type of
the attribute in the INVARIANT section. Methods of a type are represented in
AMN as operations defined as generalized substitutions [2]. Every operation is
of sort

op = S

Here op is an operation signature, S is a substitution, defining the effect of the
operation on the state space. The Generalized Substitution Language (GSL [2])
provides for description of transitions between system states. Each generalized
substitution S defines a predicate transformer, linking some post-condition R
with its weakest pre-condition [S ]R. This guarantees preservation of R after the
operation execution. In such case we say that S establishes R. We shall use
substitutions given in the table 1.
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Here S ,T stand for substitutions, x , y, t are variables, E ,F denote expres-
sions, G, P are predicates, P{x → E} denotes predicate P having all free oc-
currences of variable x replaced by E .

Table 1. The Generalized substitutions and their semantics

The generalized substitution S [S ]P

x := E P{x → E}
x := E || y := F [x , y := E ,F ]P

ANY t WHERE G THEN T END ∀ t • (G ⇒ [T ]P)

S ; T [S ][T ]P

To save space full representation of a method by AMN operation is provided
only for the method searchForExperts of the type Secretary.

receiveExperts(av , expts) = . . .

dispatch(av , revi) = . . .

numberOfExperts ← searchForExperts(av) =

PRE av ∈ ext Secretary THEN

ANY v1, numberOfExperts1 WHERE

v1 ∈ POW (ext Expert) ∧ numberOfExperts1 ∈ NAT ∧
∃(exprts).(exprts ∈ POW (ext Expert) ∧

(exprts = {exp | exp ∈ ext Expert ∧ exp ∈ availableExperts(av) ∧
researchArea(exp) = ”computer sci”} ∧
v1 = exprts ∧ numberOfExperts1 = card (exprts)))

THEN

availableExperts(av) := v1;

numberOfExperts := numberOfExperts1

END

END

This example demonstrates some principles of mapping SYNTHESIS specifi-
cations of mixed pre and post-conditions of methods (formulae of typed first
order logic) into AMN generalized substitutions. The general idea is to ex-
tract terms referring to the system post-state from a formula and replace them
by auxiliary variables. In case of searchForExperts method these terms are
this.availableExperts’ and output parameter numberOfExperts. Auxilary
variables are v1 and numberOfExperts1. After that the formula should be trans-
formed into AMN predicate: every term, built-in operation or logical operation
of the formula should be transformed into AMN expression, built-in operation or
logical operation. Note that every operation has an obligatory input parameter
av that denotes an instance of the type for which a method is called (parameter
av is a representation of this reference).

In the same way the composition type Dispatcher � Executive is mapped
into AMN construction DispatcherJOINExecutive.
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REFINEMENT DispatcherJOINExecutive

INCLUDES Evaluation

SEES String TYPE ,Bool TYPE ,Submission,Expert , Specialist ,

FundingAgency structureContext

VARIABLES dispatcher , relevantExperts, expertsGot, experts

INVARIANT

dispatcher ∈ POW (ext Dispatcher) ∧
relevantExperts ∈ ext Dispatcher → POW (ext Specialist) ∧
expertsGot ∈ ext Dispatcher → BOOL ∧
experts ∈ ext Dispatcher → POW (ext Specialist) ∧ . . .

OPERATIONS

getExperts(av) = . . .

numberOfExperts ← countExperts(av) =

PRE av ∈ ext Dispatcher

THEN

ANY v1, numberOfExperts1 WHERE

v1 ∈ BOOL ∧ numberOfExperts1 ∈ NAT ∧ experts(av) = ∅ ∧
v1 = TRUE ∧ numberOfExperts1 = card (relevantExperts(av))

THEN

expertsGot(av) := v1; numberOfExperts := numberOfExperts1

END

END ;

checkExpert(av) =

PRE av ∈ ext Dispatcher

THEN

ANY v2, v1 WHERE

v2 ∈ POW (ext Specialist) ∧ v1 ∈ POW (ext Specialist) ∧ ¬ (experts(av) = ∅) ∧
∃(exp).(exp ∈ ext Specialist ∧ exp ∈ experts(av) ∧

(researchField(exp) = ”computer sci” ∧ v1 = {exp} ∪ relevantExperts(av) ∨
researchField(exp) �= ”computer sci” ∧ v1 = relevantExperts(av)) ∧
v2 = experts(av) \ {exp})

THEN

experts(av) := v2; relevantExperts(av) := v1

END

END ;

appoint(av , revi) = . . .

END .

Mapping of services presented in the SYNTHESIS language into AMN is done
automatically by means of mapping facilities developed as a part of CISD tool.
These facilities implement principles introduced above.

The last stage of the proof consists in applying the automation facilities of
B-Technology to prove that construction Secretary is refined by construction
DispatcherJOINExecutive. Complex proofs are carried out with human expert
intervention. We use B-Toolkit 5.4.1. In the example at hand, it automatically
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formulated 20 theorems, expressing the fact that construction Secretary is re-
fined by construction DispatcherJOINExecutive. Large number of theorems is
explained by automatically subdividing complex theorems by the tool into sim-
pler ones to prove them independently. In the table 2 total number of theorems
formulated and number of theorems automatically proved are shown.

Table 2. The number of theorems

Number of Number of
theorems automatically

proved theorems

Theorems of the initialisation refinement 6 1
Theorems of refinement for operation getExperts 3 2
Theorems of refinement for operation checkExpert 4 3
Theorems of refinement for operation searchForExperts 2 1
Theorems of refinement for operation dispatch 5 3

Total number of theorems 20 10

Complete proof of all the refinement theorems make us sure that discovered
services and their proper composition implement the requirement specification.

5 Related Work

In order to enhance Web service descriptions, existing approaches extend UDDI
or WSDL. For instance, [23] combines OWL-S and UDDI by embedding an
OWL-S profile description into a UDDI data structure. The UDDI registry is
augmented with an OWL-S matchmaking component. [8] uses OWL-S profile
elements with no corresponding UDDI. It defines specialized UDDI T-Models
for each unmapped elements in the OWL-S Profile. Mechanisms for augmenting
WSDL to provide semantic descriptions and for enhancing UDDI to provide
semantic discovery are defined in [20]. Extensions to Web service description are
presented as annotated WSDL 1.1 files. The internal organization of UDDI data
structures are modified to act as place holders of semantic information [18]. In
the SYNTHESIS CISD we combine the canonical model and UDDI similarly to
[23].

A number of capability matching algorithms have been proposed for OWL-
S. They use the service descriptions in the Service Profiles and the ontologies
that are available to decide whether there is a match between service requests
and advertisements. A first family of approaches relies on an extensive ontology
where OWL ontological classes in request and advertisements are compared.
The matching process [13] is reduced to subsumption between the classes in the
ontology. Different degrees of matching can be detected.

A second family represents capabilities in terms of the state transformation.
The respective matchmakers [14][19][3][22] compare the state transformation de-
scribed in each advertisement to the one described in the request. They compare
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both outputs and inputs of the IOPEs. If the output required by the requester
subsumes that of the advertisement, then the inputs are checked. If the inputs
requested are subsumed by the input acceptable to the service, then the service
is a candidate.

Distinctively, our approach uses a full first-order predicate language, which is
more powerful than description logic as used in OWL-S. In our approach, it is
possible to interactively prove a refinement relation between type specifications.
Type specifications are used as ontological concept definitions as well as abstract
specifications of services.

A Service aggregation matchmaking (SAM) [7] can be used to match queries
with service registries enriched with OWL-S ontologies. SAM provides more
flexible matching with respect to matchmakers of the entire services. It performs
a fine-grained matching at the level of atomic processes and sub-services. It can
return (when no full match is possible) a list of partial matches.

The service discovery approach proposed in our work is a significant Genera-
lization of the SAM capabilities. According to the compositional calculus used,
we discover the most common reduct (fragment) of request and advertisement
services and try to construct a composition of such common reducts developed
for existing advertisements that should refine the request [4].

6 Conclusion

In this paper we reported the latest results that we obtained extending the
CISD method for compositional information systems development to the se-
mantic composition of Web services. The CISD method has been developed for
correct composition of software components. It was originally designed [4] for
object-oriented platforms (like CORBA, RMI, J2EE). In CISD, an ontological
model and a canonical object model (both based on the SYNTHESIS language)
are used for the unified representation of the new application (specification of
requirement) and of the pre-existing components. Discovering of components re-
levant to the application and producing their compositions are provided in frame
of the domain ontology and the canonical object model. In 2003, we started to
investigate the application of the CISD method to the composition of Web ser-
vices. We studied the mapping of WSDL specifications into the canonical model
and we defined the basic steps in the composition of Web services [5].

Meanwhile, the lack of semantic interoperability of Web service infrastructure
motivated researchers to develop rich specifications catering for semantically
well-founded reasoning about services. Focusing on the realization of complex
processes and considering an interactive active approach that allows harnessing
the intractability of full first order logic, we now present a novel approach ex-
tending and adapting CISD to web service composition. The approach leverages
a mapping of the SYNTHESIS language into the Abstract Machine Notation
(AMN). AMN is a formal method providing for interactive proof of a refinement
relation between type specifications.

The paper shows by example how the CISD method extended with such map-
ping can be applied for interactive provable discovery of the application relevant
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complex Web services to develop their composition refining a specification of
requirement. We are convinced that such approach can co-exist with approaches
based on OWL-S or similar ideas for applications where automatic service discov-
ery does not constitute the absolute requirement and can be done interactively
(semi-automatic) with human expert intervention. We are currently applying the
approach that we have presented to the composition of services in the e-science
framework of the Virtual Observatory in astronomy [6] project.

References

1. Abrial J.-R. B-Technology. Technical overview. – BP International Ltd., 1992.
2. Abrial. J.-R. The B-Book. – Cambridge University Press, 1996.
3. T. Andrews, et. al. Business Process Execution Language for Web Services //

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/ – 2003.
4. Briukhov D.O., Kalinichenko L.A. Component-based information systems develop-

ment tool supporting the SYNTHESIS design method // Advances in Databases
and Information Systems: Proc. of the Second East European Conference. – Berlin-
Heidelberg: Springer-Verlag, 1998. – P. 305-327.

5. Briukhov D.O., Kalinichenko L.A., Tyurin I.N. Extension of Compositional In-
formation Systems Development for the Web Services Platform // Advances in
Databases and Information Systems: Proc. of the Second East European Confer-
ence. – Berlin-Heidelberg: Springer-Verlag, 2003. – P. 16-29.

6. Briukhov D.O., Kalinichenko L.A. et. al. Information Infrastructure of the Russian
Virtual Observatory (RVO). – http://synthesis.ipi.ac.ru/synthesis/publications/
rvoii/rvoii.pdf – Moscow: IPI RAN, 2005. – 173 p.

7. A. Brogi, S. Corfini, R. Popescu. Composition-oriented Service Discovery // De-
partment of Computer Science, University of Pisa.

8. Colgrave et. al. Using WSDL in a UDDI Registry // UDDI TC Note. – 2003.
9. D.Fensel, C. Bussler. Web Services Modeling Framework // Electronic Com-

merce: Research and Applications. – http://www.wsmo.org/papers/publications/
wsmf.paper.pdf – 2002.

10. Kalinichenko L.A. SYNTHESIS: the language for description, design and pro-
gramming of the heterogeneous interoperable information resource environment.
– Moscow, 1995.

11. Kalinichenko L.A. Compositional Specification Calculus for Information Systems
Development // Advances in Databases and Information Systems: Proc. of the
3rd East European Conference. – Berlin-Heidelberg: Springer-Verlag, 1999. – P.
317-331.

12. Kalinichenko L.A., Skvortsov N.A. Extensible ontological modeling framework for
subject mediation // Proc. of the Fourth Russian Scientific Conference ”DIGITAL
LIBRARIES: Advanced Methods and Technologies, Digital Collections. – Dubna,
2002.

13. L. Li, I. Horrocks. A Software Framework for Matchmaking Based on Semantic
Web Technology // Proc. 12th Internationall World Wide Web Conf. – 2003.

14. D. Martin, et. al. Bringing Semantics to Web Services: The OWL-S Approach //
J. Cardoso and A. Sheth (Eds.): Proc. SWSWPC 2004, LNCS 3387. – Springer,
2005.

15. Kalinichenko L.A., Skvortsov N.A. Ontology reconciliation in terms of type refine-
ment // Proc. of the Sixth Russian Conference on Digital Libraries RCDL2004. –
Pushchino, 2004.



Interactive Discovery and Composition of Complex Web Services 231

16. OWL Web Ontology Language Reference // http://www.w3.org/TR/owl-ref/
17. OWL-S Coalition. OWL-S 1.0 Release // http://www.daml.org/services/owl-s/

1.0/
18. M. Paolucci, T. Kawamura, T. Payne, K. Sycara. Importing the Semantic Web in

UDDI // Proc. of Web Services, E-Business and Semantic Web Workshop, CAiSE.
– 2002.

19. M. Paolucci et al. Semantic Matching of Web Services Capabilities // The Semantic
WebISWC 2002: First International Semantic Web Conf., LNCS 2342. - - Springer-
Verlag, 2002.

20. P. Rajasekaran, J. Miller, K. Verma, A. Sheth. Enhancing Web Services Descrip-
tion and Discovery to Facilitate Composition // LSDIS Lab, Computer Science
Department, University of Georgia. – Athens, 2004.

21. Simple Object Access Protocol (SOAP) 1.1 // W3C Note 08 May 2000. –
http://www.w3.org/TR/SOAP/

22. E. Sirin, B. Parsia, J. Hendler. Filtering and Selecting Semantic Web Services with
Interactive Composition Techniques // IEEE Intelligent Systems. – July/August
2004.

23. N. Srinivasan, M. Paolucci, K. Sycara. Adding OWL-S to UDDI, implementation
and throughput // Robotics Institute, Carnegie Mellon University. – 2003.

24. S.A. Stupnikov. Automation of refinement verification in information systems com-
positional design// The Systems and Means of Informatics: Special Issue Formal
Methods and Models for Compositional Infrastructures of Distributed Information
Systems.— Moscow: IPI RAN, 2005. – P. 96-119. (In Russian)

25. SWRL: A Semantic Web Rule Language: Combining OWL and RuleML // W3C
Member Submission 21 May 2004. – http://www.w3.org/Submission/SWRL/

26. UDDI Version 3.0 Specification // http://uddi.org/pubs/uddi v3.htm
27. Web services description language (wsdl) 1.1 // W3C note 15 March 2001. –

http://www.w3.org/tr/wsdl/
28. http://www.b-core.com/ONLINEDOC/BToolkit.html



Efficient Processing SAPE Queries Using the

Dynamic Labelling Structural Indexes�

Attila Kiss and Vu Le Anh

Department of Information Systems, Eötvös Loránd University, Hungary
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Abstract. There are a variety of structural indexes which have been
proposed to speed up path expression queries over XML data. They
usually work by partitioning nodes in the data graph into equivalence
classes and storing equivalence classes as index nodes. In most of current
structural indexes, the nodes in the same partition have the same label.
They are not flexible with queries containing the wild- or alternation
cards, and sometimes their size is bigger than the necessity.

In this paper, we introduce the dynamic labelling structural indexes.
These structural indexes only support a set of frequently used simple
alternation path expressions (SAPE for short), where expressions may
contain wild- or alternation cards. The labels of data nodes in the same
partition may be different. The dynamic labelling not only decreases the
size of the structural index, but also supports SAPE’s better. Every static
labelling structural index can be improved by using dynamic labelling.
Because of the limitation, in this paper we just study the DL-1-index
improved from the 1-index, and the DL-A*(k)-index improved from the
A(k)-index. The construction and refinement of these indexes are based
on our results from the properties of partitions and the split operation.
Our experiments show that the size of the improved dynamic labelling
structural indexes is smaller and the query processing on these indexes
is more efficient comparing to the naive ones.

1 Introduction

In recent years, the XML has become the dominant standard for exchanging
and querying documents over the Internet. XML data is graph structured and
self describing. There are a variety of query languages proposed to query XML
[1,2,3,4]. Path expressions are the basic building blocks of XML queries. To sum-
marize the structure of XML data and speed up path expression evaluation, the
structural indexes have been proposed [5,6,7,8,9,10]. The query is processed on
the index graph first, the answer is validated on the data graph if it is necessary.
Usually, a structural index is a graph defined by an equivalence relation on the
nodes of the data graph. Each index node corresponds to an equivalence class
of data nodes. The equivalence relation used in structural indexes can be static
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Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 232–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Processing SAPE Queries Using the DL Structural Indexes 233

[5,6,9], which depends only on the data graph, or dynamic [7,8], which depends
on the data graph and the query load (a set of frequently used queries). The
most popular structural indexes are the 1-index [5], the A(k)-index [6] (static
structural indexes), the D(k)-index [7], the M(k)-index and the M∗(k)-index
[8] (adaptive structural indexes).

The 1-index is based on the notion of bisimulation. All nodes in the same
index node have the same set of incoming label paths. Hence, we can evaluate
accurately any path expression on the 1-index without validating on the data
graph. However, the size of 1-index can be quite large. The A(k)-index is based
on the notion of k-bisimilarity, which can be considered as weakening of the
bisimulation. All nodes in the same index node have the same set of incoming
label paths not longer than k. Thus with the A(k)-index all path expressions
not longer than k can be evaluated accurately. In the case the path expression is
longer than k we have to validate the answer on the data graph. The equivalence
relation in A(k)-index is weaker than in the 1-index and the length of queries
is often short in practice, so the size of the A(k)-index is also smaller than the
1-index’s, and the queries evaluation is more efficient.

With the static nature, the 1-index and the A(k)-index treat all data nodes
uniformly and do not support the query load, in which all structures do not have
the same significance. The D(k)-, the M(k)- and the M∗(k)-indexes are based
on the notion of the dynamic local similarity, which means different index nodes
have different local similarity requirements that can be tailored to support a
given set of frequently used path expressions. The values of k depend on the
length of the path expressions and they can be adjusted dynamically to adapt
changing query load. The adaptive nature makes these indexes flexible and more
effective and smaller than the static ones.

In above structural indexes, data nodes in the same index node must have
the same label. They are static label structural indexes, in which the labels are
uniform. When the query load is considered, specially if the queries contain the
wild card or alternation card, the significance of labels are different. For example,
let us see the Benchmark data set [13] with the path expression //regions/ ∗
/item. The wild card (∗) is matched by 6 data nodes, whose labels are asia,
africa, europe, namerica, samerica, australia. They have similar meaning and
structure but they are stored in 6 different index nodes because of the difference
of their labels. Grouping them in a same index node not only decreases the
cost of the query evaluation, but also decreases the size of the index graph.
Moreover the labels, which do not occur in queries, should be grouped as an
unique unused-label.

To overcome the above limitations, we introduce the dynamic labelling struc-
tural indexes. Not like previous adaptive indexes, in our scenario the frequently
used path expressions may contain the wild or alternation cards, which are
called simple alternation path expressions (or SAPE for short). In the same
index node data nodes may have different label. Every static labelling structural
indexes can be improved by using dynamic labelling. The construction and re-
finement of the improved indexes are based on our new results of studying split
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operation over partitions. Because the limitation of this paper, we just study the
DL-1-index improved from the 1-index, and the DL-A*(k)-index improved from
the A(k)-index. However, most of dynamic labelling technics and spirits using
for the improvement of other structural indexes can be found in two samples
introduced in this paper, the DL-1-index and the DL-A*(k)-index.

We introduce and study the stable structural indexes. The 1-index is a special
stable structural index, which supports any SAPE. The DL-1-index is also a
stable structural index, but supports only a finite set of SAPE’s. Our refinement
and construction algorithms guarantee that the 1-index is a refinement of the
DL-1-index, and the size of the DL-1-index is bound by the size of the 1-index.

The DL-A*(k)-index supports a finite set of SAPE’s, which are not longer
than k. The DL-A*(k)-index does not contain only the k similarity index graph
like the A(k)-index, but also stores ancestor bisimilarity layers. In literature, the
A(k)-index is determined by only one equivalence relation and the DL-A*(k)-
index is determined by k equivalence relations. Astonishingly, the cost of query
processing on the DL-A*(k)-index is quite more efficient than on the A(k)-index.
The i-th layer of the DL-A*(k)-index is a i-bisimilarity and it is a refinement
of (i − 1)-th layer. Our refinement and construction algorithms guarantee that
the A(i)-index is a refinement of the i-th layer, and the size of the i-th layer is
bound by the size of the A(i)-index.

The remainder of the paper is organized as follows. Section 2 is the prelimi-
nary. In section 3, we study partitions and the split operation. In section 4, we
introduce and study the DL-1-index. In section 5, we introduce and study the
DL-A*(k)-index. In section 6, we present our experiments. Section 7 concludes
the paper.

2 Preliminaries

2.1 Data Model and Simple Alternation Path Expressions

We model XML or other semi structured data as a finite rooted directed labelled
graph G = (V, E, Σ, r). V is the finite set of data nodes. Each node u ∈ V
has a label l = Label(u) ∈ Σ. E is the set of edges. r is the single root of
the graph, with no incoming edges and distinguished label, ROOT. We define
Succ(u) = {v ∈ V |(u, v) ∈ E}, Succ(W ) =

⋃
u∈W Succ(u) and Label(W ) =⋃

u∈W {Label(u)} (W ⊆ V ). An example data graph is shown in Figure 1. The
dotted lines represent reference edges.

Label−1(S) (S ⊆ Σ) denotes the set of data nodes u, in which Label(u) ∈ S.
A node path, p, in the data graph G is a sequence of nodes, u0u1...ul, such that
there exists an edge from ui to ui+1 for each 0 ≤ i ≤ l − 1. A SAPE, R, is a
sequence of non-empty subsets of Σ, S0S1...Sl, where Si �= ∅ and Si ⊆ Σ for
each 0 ≤ i ≤ l. A node path, p, matches a SAPE, R, if Label(ui) ∈ Si for each
0 ≤ i ≤ l. l is the length of p and R. T i

G(R) denotes the set of the i-th data
nodes ui of the node paths on G matching R. The target set of R on G is the set
of the end data nodes ul of the node paths on G matching R (T l

G(R)), and it is
also denoted by TG(R). For example, in XPath syntax [4], the path expression
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/CSDepartment/ ∗ / ∗ /name returns the target set {9, 11, 12, 14, 16}. In this
paper, we focus on simple alternation path expressions.

2.2 Structural Indexes

In general, a structural index of the data graph G is a labelled directed graph
I(G) = (VI , EI , Σ, rI), which is built by the following general procedure: (1)
partitioning the data nodes into classes according to some equivalence relation,
(2) making an index node for each equivalence class, with all data nodes in this
class being its extent, and (3) adding an index edge from index node I to index
node J if there exists an edge from data node u to data node v, where u is
an element of I and v is an element of J . The root of the index graph is rI ,
that contains only the root of data graph. In most of the previously introduced
structural indexes data nodes in the same index node have the same label, and
the label of an index node is defined as the label of data nodes in its extent. In our
scenario the labels of the data nodes in the same index node may be different. An
index node U is labelled by Label(U). In the case a dynamic labelling structural
index is determined by several equivalence relations, each equivalence relation
determines a data node partition and two different index nodes of two different
partitions may have common element.

An index node path of the index graph IG , U0U1 . . . Ul, matches a SAPE,
R = S0S1...Sl, if Label(Ui) ∩ Si �= ∅ for each 0 ≤ i ≤ l. Similarly, we define
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TIG (R) the target set of R on IG , as the set of the end nodes of the node paths in
IG matching R. We say an index graph, IG , is safe with a SAPE, R, if for each
data node, u, of the target set of R on G, U is also an element of the target set
of R on IG , where U is the index node containing u.

An index graph, IG , is sound with a SAPE, R = S0S1 . . . Sl, if for each index
node, U , of the target set of R on IG , all data nodes in its extent are also elements
of the target set of R on G. A target index node U of R is sound, if there exists
an index node path U0U1 . . . Ul such that Ul = U and Label(Ui) ⊆ Si for each
i = 0, . . . , l.

Proposition 1. Let U0U1 . . . Ul be an index node path, u0u1 . . . ul be a node
path, in which ui ∈ Ui for each i = 0, . . . , l; R = S0S1...Sl be a SAPE.

1. If u0u1 . . . ul matches R then U0U1 . . . Ul also matches R.
2. If Ui+1 ⊆ Succ(Ui) for each i = 0, . . . , l − 1 and Label(Ui) ⊆ Si for each

i = 0, . . . , l then all data nodes in Ul are elements of the target set of R.

Proof. 1. u0u1 . . . ul matches R, so Label(ui) ∈ Si and Label(Ui) ∩ Si �= ∅
(Label(ui) ∈ Label(Ui) ∩ Si). Thus U0U1 . . . Ul also matches R.

2. Ui+1 ⊆ Succ(Ui) implies that for each ui+1 ∈ Ui+1 there exists ui ∈ Ui

such that uiui+1 is an edge. Therefore, for each ul ∈ Ul there exists a node path
u0 . . . ul such that ui ∈ Ui. Label(Ui) ⊆ Si implies Label(ui) ∈ Si. Thus ul is an
element of the target set of R.

Proposition 1 implies two following claims about the sufficient conditions for the
soundness and the safeness of structural indexes.

Claim 1. IG is safe with any SAPE if the following condition is satisfied:
(i) For each index node U , data node u ∈ U and edge (u′, u) there exists an

index node U ′ such that U ′ contains u and (U ′, U) is an index edge.

Claim 2. IG is sound with R if two following conditions are satisfied:
(i) For each index edge (U ′, U), we have U ⊆ Succ(U ′) and
(ii) All target index nodes U of R on IG are sound.

3 Partitions and the Split Operation

3.1 Partitions

Definition 1. We say B = {Bi|i ∈ I, Bi ⊆ V (G), Bi �= ∅} a partition over
V (G) if V (G) =

⋃
i∈I Bi and for all i, j ∈ I, i �= j : Bi ∩Bj = ∅.

Definition 2. Let C be a set of subsets of V (G), B be a partition over V (G).
We say B is a refinement of C if for all C ∈ C, B ∈ B : B ⊆ C or B ∩C = ∅.

Clearly, B∗ =
⋃

u∈V (G){u} is a refinement of any set of subsets of V (G). As a
special case of the refinement relation, we define the � relation over the set of
partitions as follows.

Definition 3. B and B′ are partitions. B′ � B if B′ is a refinement of B.
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Remark 1. 1. � is reflexive, transitive and antisymmetric relation.
2. B′ � B ⇔ for all B ∈ B, B is the union of some elements of B′.

Definition 4. Let C be a set of subsets of V (G). B is called the coarsest refine-
ment of C, if B is a refinement of C and for all partition B′ being a refinement
of C holds B′ � B. CRF (C) denotes the coarsest refinement of C.
The following proposition shows the existence and the recursive construction of
the coarsest refinement.

Proposition 2. Let B be a partition, C be a subset of V (G), C, C′ be set of
subsets of V (G). Moreover, we assume that there exists CRF (C′). We have:

1. CRF ({C}) = {C, V (G) \ C} \ {∅}.
2. CRF (B ∪ {C}) =

⋃
B∈B{B \ C, B ∩ C} \ {∅}.

3. CRF (C′ ∪ C) = CRF (CRF (C′) ∪ C).
The definitions of the coarsest refinement and the partitions imply (1) and (2).
The proof of (3) can be found at [16].

As a simple case, CRF ({∅}) = CRF ({V (G)}) = {V (G)}. If V (G) = {1, 2, 3, 4,
5, 6} then CRF ({1, 2}, {2, 3}, {3, 4, 5}) = {{1}, {2}, {3}, {4, 5}, {6}}. Several
trivial properties of the CRF function are shown below.

Remark 2. 1. CRF (C) = C ⇔ C is a partition over V (G).
2. If C ⊆ C′ then CRF (C′) � CRF (C).
3. CRF (C′ ∪ C) = CRF (CRF (C′) ∪ CRF (C)).
4. If CRF (C′) � CRF (C) then CRF (C′ ∪ C′′) � CRF (C ∪ C′′).

3.2 The Split Operation

Definition 5. Let C be a subset of V (G) and C be a set of subsets of V (G). We
define Succ0(C) = C, Succk+1(C) = Succ(Succk(C)) and Succk(C) = {C′|∃C ∈
C : C′ = Succk(C)} (k ∈ N).

Definition 6. We define
1. split(C) = CRF (C ∪ Succ(CRF (C))).
2. split0(C) = CRF (C) and splitk+1(C) = split(splitk(C)) (k ∈ N).
3. We say partition B is stable, iff split(P) = B.
4. If there exists k0 ∈ N such that for all k ∈ N, k ≥ k0 : splitk(C) = splitk0(C)

then let split∞(C) = splitk0(C).
The existence of k0 in the definition of split∞ follows by the fact that splitk+1(C)
is a refinement of splitk(C) and V (G) is finite.

Proposition 3. Let B, B′ be partitions and B′ � B. We have:
1. If B′ � split(B) then for all B′ ∈ B′ and B ∈ B: B′ ∩ Succ(B) = ∅ or

B′ ⊆ Succ(B).
2. splitk(B′) � splitk(B) (k ∈ N).
3. split∞(B′) � split∞(B).
4. If B′ is stable then B′ � split∞(B) � B.
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Proof. Because B′ � split(B) � CRF (Succ(B)) (Remark 2.2) so (1) is true.
(2) is proved by using induction. The full proof can be found at [16].
(2) implies (3) and (3) implies (4) directly.

Let m be the number of edges and n be the number of nodes of the data graph.
The split(C) can be computed with the complexity O(m + n) by scanning only
one time all edges and nodes. The split∞(C) can be computed by using PT
algorithm [11] with the complexity O(m log n).

4 The DL-1-Index

4.1 The 1-Index and the Stable Structural Indexes

The equivalence relations in the 1-index [5] are bisimilarity relations, which are
defined as follows:

Definition 7. Two data nodes u and v are bisimilar (u ≈ v), if
(1) they have the same label, and
(2) if (u′, u) is an edge, then there exists v′ such that u′ ≈ v′ and (v′, v) is also
an edge, and vice versa.

Pc is the partition determined by the equivalence ≈c, where u ≈c v ⇔ Label(u)
= Label(v). P is a partition determined by a bisimilarity relation. The first
condition in definition 7 implies that P � Pc, the second condition follows that
P is stable. Proposition 3 implies that P � split∞(P). Generally, P is a stable
refinement of split∞(Pc), iff the associated equivalence relation is bisimilarity.

The set of index nodes of the 1-index is split∞(Pc). The 1-index is a special
case of the stable structural indexes, which are defined as follows.

Definition 8. IG is a stable structural index, iff the set of index nodes is
a stable partition and there is an index edge (U ′, U) if there exists a data edge
(u′, u) such that u′ ∈ U ′ and u ∈ U .

All stable structural indexes satisfy the condition in Claim 1. Because the set
of index nodes is a stable partition so Proposition 3 implies that for all index
nodes U , U ′: U ∩ Succ(U ′) = ∅ or U ⊆ Succ(U ′). Therefore all stable structural
indexes also satisfy the first condition in Claim 2 for any SAPE. We say a stable
structural index IG supports a SAPE R, if it satisfies the second condition in
Claim 2. Clearly, if IG supports a SAPE R then it is safe and sound with R.

With the 1-index for each index node Ui, we have |Label(Ui)| = 1 so if
Label(Ui) ∩ Si �= ∅ then Label(Ui) ⊆ Si. Therefore the 1-index satisfies the
second condition in Claim 2 for any SAPE. Hence the 1-index is safe and sound
with any SAPE.

A stable structural index graph IG is a refinement of the stable structural
index graph I ′G , if the data node partition of IG is a refinement of the data node
partition of I ′G . We study the inheritance of the support of a SAPE between a
stable structural index and its stable refinements in following proposition.
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Proposition 4. Let IG , I ′G be stable structural index graphes, in which IG is a
refinement of I ′G , and R = S0 . . . Sl be a SAPE. We have:

1. If U0 . . . Ul is an index node path of IG matching R and U ′
0, . . . , U

′
l ∈ V (I ′G)

such that Ui ⊆ U ′
i , 0 ≤ i ≤ l, then U ′

0 . . . U ′
l is also an index node path of I ′G

matching R.
2. If I ′G supports R then IG supports R, too.

The proof of Proposition 4 can be found at [16].

4.2 The DL-1-Index

DL-1-indexes are stable structural indexes, which support a given query finite
set of SAPE’s. A DL-1-index is constructed as follows: (1) The set of index
nodes of the initial DL-1-index is split∞(Pu), where Pu = {V (G)}. (2) Using
DL1-Refine algorithm we refine the index step by step so that it supports a
given finite set of SAPE’s. Pu is the coarsest partition so every stable structural
index is a refinement of the initial structural index. The DL1-Refine algorithm
refines the index graph IG to support a SAPE R = S0 . . . Sl.

DL1-Refine(IG,R)
begin
1. C ← {TG(R)}
2. for i ← 0 to l − 1 do
3. C ← C ∪ {Extent(T i

G(R)) ∩ Label−1(Si)}
4. DL1-TotalSplit(IG , C)
5. C ← ∅
6. for each U0 . . . Ul index node path matching R, and Ul ∩ TG(R) = ∅ do
7. for i ← 0 to l − 1 do
8. C ← C ∪ {Ui ∩ Label−1(Si)}
9. DL1-TotalSplit(IG , C)
end

DL1-TotalSplit(IG , C)
begin
1. P is the partition over data nodes
2. P ← split∞(P ∪ C)
3. for each edge (u′, u) do
4. U , U ′ are index nodes such that u ∈ U and u′ ∈ U ′

5. if � an index edge from U ′ to U then
6. Add an index edge from U to U ′

end

The refinement algorithm has two phases. After the first phase (step 1-4.),
if U is a target index node of R on IG and U ∩ TG(R) �= ∅ then U is sound .
After the second phase (step 5-9.), there is no false target index node. It means:
there does not exist an index node U of IG , such that U is a target index node
of R and U ∩ TG(R) = ∅. Thus IG supports R after applying the DL1-Refine
algorithm.

Let us see the illustration for the DL-1-index and the DL1-Refine algorithm
which is shown in Figure 2. The data graph is represented in Figure 2(a) The
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1-index and the data graph coincide. The initial DL-1-index is represented in
Figure 2(b). The DL-1-index, which is constructed by refining the initial DL-
1-index to support R1 = //(K|L) is represented in Figure 2(c). The DL-1-
index, which is constructed by refining the DL-1-index in Figure 2(c) to support
R2 = //(B|C)/E is represented in Figure 2(d). In the refinement to support R1,
we refine the index graph by using C = {{1, 2}} at the first phase, the second
phase is not necessary as there is no false target index node. In the refinement
to support R2, we refine the index graph by using C = {{5, 6}, {9, 10}} at the
first phase, but only the second phase changes the index graph to exclude the
false target index node by using C = {{7}}.

A 0

K 1 L 2 M 3 N 4

B 5 C 6 C 7 D 8

E 9 E 10 F 11 E 12

(a)

A 0

{K,L,M,N} {1,2,3,4}

{B,C,D} {5,6,7,8}

{E,F} { 9,10,11,12}
(b)

A 0

{K,L} {1,2} {M,N} {3,4}

{B,C} {5,6} {C,D} {7,8}

E{9,10} {E,F}{11,12}

(c)

{B,C} {5,6}

E{9,10}

A 0

C 7 D 8

F 11

(d)

{K,L} {1,2} {M,N} {3,4}

E 12

Fig. 2. An example of DL-1-indexes

Proposition 5. IG supports R after applying the DL1-Refine algorithm and
if at the beginning the 1-index is a refinement of IG then at the end the 1-index
is still a refinement of IG .

The proof of Proposition 5 can be found at [16]. The 1-index is a refinement
of the initial DL-1-index so the 1-index is a refinement of all DL-1-indexes.
The algorithms for evaluating a SAPE on index graph are quite similar to the
algorithms for evaluating an simple path expression which are introduced and
studied in [5,6,7].

5 The DL-A*(k)-Index

5.1 The A(k)-Index, the k-Stable Structural Indexes

The equivalence relations in the A(k)-indexes [6] are k-similarity relations, which
are defines inductively as follows:

Definition 9. 1. Two data nodes u and v are 0-bisimilar (u ≈0 v), if they have
the same label.

2. Two data nodes u and v are k-bisimilar (u ≈k v) if
i. u ≈k−1 v and
ii. for each edge (u′, u) there exists v′ such that u′ ≈k−1 v′ and (v′, v) is also

and edge, and vice versa.
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They shown that the partition created by the k-similarity is equal to splitk(Pc)
[6], which is defined as the set of index nodes of the A(k)-index. An index edge
is added from index node U ′ to index node U , iff there is exists an edge from
u′ ∈ U ′ to u ∈ U . They also show that the A(k)-index is safe and sound with
any SAPE not longer than k.

However the A(k)-index does not satisfies the first condition of Claim 2 as if
(U ′, U) is an index edge then U may not be a subset of Succ(U ′). We introduce
and study the k-stable structural indexes, in which the first condition in Claim
2 is hold.

Definition 10. A k-stable structural index is determined by (P0,P1, . . . ,Pk)
partitions in which Pi+1 � split(Pi) for each i = 0, . . . , k − 1. The set of index
nodes is VI =

⋃k
i=0 Pi. An index edge is added from U ′ to U if there exists an

edge from u′ ∈ U ′ to u ∈ U and there exists i0 ∈ {0, 1, . . . , k − 1} such that
U ′ ∈ Pi0 and U ∈ Pi0+1.

P0, P1, . . . , Pk−1 are called ancestor partitions. The condition Pi+1 � split(Pi)
and the definition of the index implies that if (U ′, U) is an index edge then
U ⊆ Succ(U ′) (Proposition 3.1). Hence the k-stable structural indexes satisfy
the first condition of Claim 2.

The A(k)-index stores information of all data node paths not longer than k,
and only the k-bisimilarity partition is used for the query evaluation. With the
k-stable structural indexes we store information of the most important data node
paths not longer than k determined by the set of given queries. By using the
ancestor bisimilarity partitions the complexity of query evaluation is reduced.
To avoid refining the ancestor bisimilarity partitions, we modify the definition
of target index node of a SAPE R = S0S1 . . . Sl (l ≤ k) on a k-stable structural
index by a plus condition that the target index node must be an element of Pk.
It implies that if U0U1 . . . Ul matches R and Ul is a target node then Ui ∈ Pk−l+i

for each i = 0, . . . , l.
Similar to the DL-1-index, we say a k-stable structural index AG supports

a not longer than k SAPE R, if the second condition in Claim 2 is satisfied.
Clearly, if AG supports a SAPE R not longer than k then it is safe and sound
with R.

A k-stable structural index graph AG determined by (P0, . . . ,Pk) is a refine-
ment of the k-stable structural index graph A′

G determined by (P ′
0, . . . ,P ′

k), if Pi

is a refinement P ′
i for each i = 0, . . . , k. Similar to Proposition 4, the following

proposition describes the inheritance of the support of a SAPE between a stable
structural index and its stable refinements.

Proposition 6. Let A′
G be k-stable structural index graphes, AG be a refinement

of A′
G and R = S0 . . . Sl (l ≤ k) be a SAPE. We have:

1. If U0 . . . Ul is an index node path of AG matching R and U ′
0, . . . , U

′
l ∈ V (A′

G)
such that Ui ⊆ U ′

i , 0 ≤ i ≤ l, then U ′
0 . . . U ′

l is also an index node path of A′
G

matching R.
2. If A′

G supports R then AG supports R, too.

The proof of Proposition 6 is quite similar to the proof of Proposition 4.
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5.2 The DL-A*(k)-Index

DL-A*(k)-indexes are k-stable structural indexes, which support a given finite
set of SAPE’s not longer than k. A DL-A*(k)-index is constructed as follows:(1)
The initial DL-A*(k)-index is determined by (Pu, split(Pu), . . . , splitk(Pu)) (2)
Using AK-Refine algorithm we refine the index step by step so that it supports
a given finite set of SAPE’s. We define Extenti(W ) =

⋃
u∈W,U∈Pi,u∈U U . The

AK-refine algorithm refining AG to support R = S0S1 . . . Sl (l ≤ k) is shown
as follows.

AK-Refine(AG,R)
begin
1. Tl ← TG(R)
2. for i ← 0 to l − 1 do
3. Ti ← {Extentk−l+i(T

i
G(R)) ∩ Label−1(Si)}

4. for i ← 0 to l do
5. AK-Split(AG,{Ti},k − l + i)
6. AK-Edge-Construct(AG)
7. Ti ← ∅ (i = 0, . . . , l − 1)
8. for each U0 . . . Ul index node path matching R, and Ul ∩ TG(R) = ∅ do
9. for i ← 0 to l − 1 do
10. Ti ← Ti ∪ (Ui ∩ Label−1(Si))
11. for i ← 0 to l − 1 do
12. AK-Split(AG,{Ti},k − l + i)
13. AK-Edge-Construct(AG)
end

AK-Split(AG,C,i)
begin
1. Pi ← CRF (Pi ∪ C)
2. if i < k then
3. AK-Split(AG,Pi ∪ Succ(Pi),i + 1)
end

AK-Edge-Construct(AG)
begin
1. for each edge (u′, u) do
2. for i = 0 to k − 1 do
3. Let U ′ ∈ Pi, U ∈ Pi+1 be index nodes such that u ∈ U and u′ ∈ U ′

4. if � an index edge from U ′ to U then
5. Add an index edge from U to U ′

end

Similar to the DL1-Refine algorithm, the AK-Refine algorithm also has
two phases. After the first phase (step 1-6.), if U is a target index node of R on
IG and U ∩ TG(R) �= ∅ then U is sound with R. After the second phase (step
7-13.), there is no false target index node, thus AG supports R.

Let us see the illustration for the DL-A*(k)-index and the AK-Refine
algorithm which is shown in Figure 3. The data graph is represented in
Figure 2(a). The A(1)-index and the data graph coincide. There are three DL-
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{A,B,C,D,E,F,M,N,K,L}A00{A10,A11}

{A}A10{0} {B,C,D,E,F,M,N,K,L}A11{1,2,3,4,5,6,7,8,9,10,11,12}

{A,B,C,D,E,F,M,N,K,L}A00{A10,A11,A12}

{A}A10{0} {B,C,D,E,F,M,N}A12{3,4,5,6,7,8,9,10,11,12}{K,L}A11{1,2}

{A,D,E,F,M,N,K,L}A00{A10,A11,A13,A14,A15}

{A}A10{0} { E,D,M,N}A15{3,4,8,12}{K,L}A11{1,2}

(a)

(b)

(c)

{B,C,}A01{A12}

{B,C}A12{5,6,7} {E}A13{9,10} {F}A14{11}

Fig. 3. An example of the DL-A*(1)-index

A*(1)-indexes. Each DL-A*(1)-index is determined by two partitions P0 =
{A0i} and P1 = {A1i}. Because of P1 � P0, for each index node A0i ∈ P0

we enumerate on the right the index nodes A1j ∈ P1, which are subsets of A0i,
and for each index node A1i ∈ P1 we enumerate on the right the data nodes in
its extent. The label of each index node is enumerated in the left. Index edges are
solid lines. The DL-A*(1)-index in Figure 3(b) is the result when we refine the
initial DL-A*(1) in Figure 3(a) to support R1 = //(K|L), and the DL-A*(1)-
index in Figure 3(c) is the result when we refine the DL-A*(1)-index in Figure
3(b) to support R2 = //(B|C)/E.

Let A*(k)-index be the k-stable structural index determined by (Pc, . . . , splitk
(Pc)).

Proposition 7. AG supports R after applying the AK-Refine algorithm. If at
the beginning the A*(k) is a refinement of AG then after refinement the A*(k)
is still a refinement of AG.

The proof of Proposition 7 is similar to the proof of Proposition 5, and the full
version can be found at [16]. The A*(k) is a refinement of the initial DL-A(k)-
index so the A*(k) is a refinement of all DL-A(k)-indexes.

In the case the length of the path expression is longer than k, the information
supplied by index edges of the DL-A*(k)-index is not enough since they are
planned just for SAPE queries not longer than k. We suggest the DL-A*(k)-index
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should be extended by adding extended index edges between index nodes in k-
layer (the dotted lines in Figure 3). We add a extended index edge from U ′ ∈ Pk

to U ∈ Pk iff there exists a data edge from u′ ∈ U ′ to u ∈ U . In summary, when
the path expression is not longer than k the evaluation is calculated on ”origin”
index edges, in the case the path expression is longer than k, the ”origin” index
edges are used to find the first k index edges of the matching index node paths,
the extended index edges are used to find the remainder.

6 Experiments

We compared the performance of the DL-1-index vs. the 1-index, the DL-A*(k)-
index vs. the A(k)-index on the same large data sets with different finite sets
of SAPE’s. The experiments were performed on Celeron R (2.4 G.hz), platform
with MS-Windows XP and 512 MBytes of main memory. The Xerces Java SAX
parser 1 [15] was used to parse XML data. We implemented the algorithms in
C++. The data sets and the sets of frequently used SAPE’s were chosen as
follows.

Data Sets. We used two data sets: the XMark data set(100 Mb) and the TreeBank
data set (82M). The XMark data set containing the activities of an auction Web
site is generated by using the Benchmark Data Generator [13]. The TreeBank
data set is the collection of English sentences, tagged with parts of speech [14].
The properties of the data sets are as below:

Data set Number of Nodes Number of Edges Number of Labels
XMark 1.681.342 1.987.929 76

TreeBank 2.437.667 2.437.666 251

Query Loads. For the simplicity, we assumed that in our SAPE queries Si is
a wild card or unique label value (Si = Σ or |Si| = 1). For each data set, we
generated 4 query loads randomly. Each query load contained 100 SAPE queries.
The length of each query was less than 5. In the i-th query load the probability
of Si is a wild card was equal to (i− 1) ∗ 20% (In the query load 1, there did not
exist wild card, and in the query load 2 the probability of Si be wild card was
20%, etc...).

The sizes of index graphs and the average of the evaluation cost of the queries
in the query loads were focused in the performance of the DL-1-indexes vs.
the 1-index, the DL-A*(k)-index vs. the A(k)-index. We measured the size of
the index graph by the number of index nodes. Similar to [6,7,8] we adopted the
same main-memory cost metric for query evaluation. The cost was the number
of the visited index nodes. The validation was not necessary because each query
load was supported by the corresponding dynamic labelling index graphs.

6.1 The DL-1-Index vs. the 1-Index

The results of the DL-1-index vs. the 1-index experiments are shown in
Figure 4 (A, B, C and D). In each chart, we represent the results of 4 tests
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Fig. 4. The results of the experiments

corresponding with 4 query loads. Black color corresponds to the 1-index, and
white color corresponds with to DL-1-index. Comparing with the 1-index, the
sizes of the DL-1-indexes are smaller and the average cost of the query evaluation
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of the DL-1-index is lower, since the 1-index is a refinement of the DL-1-indexes.
However, the sizes of the DL-1-indexes increased very fast after each refinement
and converge to the size of the 1-index since they must fulfill to be stable struc-
tural indexes. In test 3 the proportions of the index size the DL-1-index vs.
the 1-index were 80, 70% (XMark) and 83, 41% (TreeBank). As a result the ef-
ficiency of the DL-1-indexes decreased quickly after each refinement. In test 3
the proportions of the average cost of the query evaluation the DL-1-index vs.
the 1-index were 81, 55% (XMark) and 84, 87% (TreeBank).

6.2 The DL-A*(k)-Index vs. the A(k)-Index

Because the length of each query was less than 5, we chose k = 4. Not like
the DL-1-indexes, which were limited by the ”stable” property, the DL-A*(k)-
index were almost dynamic. The results were impressive. Although storing the
ancestor bisimilarity layers but the sizes of the DL-A*(k)-indexes in our tests
were smaller comparing with the A(k)-index. In test 3, the proportions of the
index size between the DL-A*(k)-index vs. the A(k)-index were 53, 58% (XMark)
and 40, 87% (TreeBank). By using ancestor bisimilarity layers the cost of query
evaluation on the DL-A*(k)-index was quite cheaper than on the A(k)-index.
In test 3, the proportions of the average cost of the query evaluation the DL-
A*(k)-index vs. the A(k)-index were 8, 46% (XMark) and 4, 97% (TreeBank).
Because of the above results we believe that the DL-A*(k)-index is one of the
most efficient adaptive structural indexes.

7 Conclusion

The dynamic label similarity not only makes the size of a index graph be smaller,
but also supports the queries, which contain wild- or alternation cards, better.
The labels of data nodes in the same index node may be different. They depend
on the set of frequently used queries. Every static label structural index can be
improved so that it supports dynamic label similarity.

The DL-1-index is improved from the 1-index to support dynamic label sim-
ilarity. We study stable structural indexes and their properties. We show that
the 1-index is only a special case of stable structural indexes, and guarantee
that the sizes of the weak 1-indexes are bound by the size of the 1-index. Our
experiments show that the size of a weak 1-index is not only smaller but the cost
of the query evaluation is also cheaper than the 1-index.

The DL-A*(k)-index is improved from the A(k)-index. By storing ancestor
bisimilarity layers we reduce the cost of the query evaluation on the DL-A*(k)-
index. With the results of our experiments we believe that the weak DL-A*(k)-
index is one of the most efficient adaptive structural indexes.

In future, we continue our work to improve the D(k)-index, M(k)-index to
support dynamic label similarity. We will also investigate adaptive structural
indexes, which support more complex queries (tree-structured, branching).
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Abstract. Various application domains require databases to store time se-
quences. Very often time sequences describe some continuous processes at dis-
crete time points. Many applications require queries to take into consideration 
not only explicit values of time sequences, but also the values of the processes 
represented by them (these values can be derived from explicit values by user-
defined interpolation functions). For example, a user of industrial process con-
trol system may ask the following query: "Find those time intervals during 
which specified physical value, represented by a series of measurements, was 
greater than given limit value". We show that conventional secondary indexes 
are not suitable to support such queries. We also investigate the properties of 
IP-index – the first index structure supporting queries on time sequences taking 
into account the interpolation (so-called "queries on continuous time se-
quences"). We show that IP-index improves the performance of such queries, 
but its size is enormously big for many real-life sequences. This fact makes it 
nearly impossible to use IP-index in some application domains. In this paper we 
present a new indexing technique to support queries on continuous time se-
quences – ICB-index. ICB-index makes the performance of such queries as 
high as IP-index does, but it requires substantially less space than IP-index. The 
effectiveness of ICB-index is verified by experiments on sensor-generated time 
sequences from a power plant. 

1   Introduction 

Data ordered over time – time sequences (TS) – can be found in many diverse appli-
cation domains – financial, medical, industrial, scientific, and so on. That is why lots 
of database research papers address the problems of time sequences modeling and 
querying. There have been proposed many specialized data models for time se-
quences, as well as query languages and query evaluation and optimization tech-
niques (see, for example, [1, 3, 4, 5, 7, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25]). 

Most of the work was done to meet the requirements of financial applications and 
was focused mainly on statistical analysis and similarity search. But, as [11] pointed 
out, "in many applications individual values are at least as important as shapes of time 
sequences". This is especially the case for industrial applications.  
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For example, process control system of hydroelectric power station "Zhigulevskaya" 
generates some 5000 time sequences with cardinality 0.25 – 2.5 million. A user of this 
system is interested in individual value queries and range queries rather than in shape 
queries. Fig. 1.1 shows a fragment of hydroelectric generator active power time se-
quence. Typical queries on this time sequence are: 1) "When did the generator work 
normally with full load?" ("When was the power greater than 100 but less than 120 
MW?"); 2) "When did the generator work with ultimate load?" ("When was the power 
greater than 120 MW?"); 3) "When did generator loading/unloading take place?" 
("When did the power value cross the limit of 50 MW?"). In [11] such queries were 
termed as value queries (in contrast to shape queries). It is difficult to answer such que-
ries because we should take into consideration not only explicit values of TS, but also 
the values of the process represented by it (these values can be derived from explicit 
values by user-defined interpolation functions). 

 

Fig. 1.1. Generator active power time sequence in megawatts (MW) 

We shall say that time sequence is continuous if it requires queries to consider in-
terpolation assumptions (in some research papers some other terms are used to de-
scribe the same object, e.g. "interpolated time series", but we use the term "continuous 
time sequence" because this term is used in paper [11], which is, in some sense, the 
prototype of this paper). Many applications (including the above example) require 
time sequences to be seen as continuous.  

Conventional secondary indexes are not suitable to support queries on continuous 
TSs, because they allow finding only those values that are explicitly stored in the 
database, while the answer to the query on continuous TS may contain implicit val-
ues. That is why most of the systems which support value queries on continuous TSs 
use full scan of TS to answer the query. As a result, the response time of the system 
may be inadequate (recall the number and the cardinality of TSs in above example 
and notice that these values are typical for industrial process control systems). 

The first index structure supporting value queries on continuous TSs is IP-
index [10, 11, 12]. It dramatically improves the performance of such queries, but it has 
a serious drawback – its size is enormously big for many real-life TSs (in section 5 we 
show that the size of IP-index can be many times greater than the size of TS). This 
fact makes it nearly impossible to use IP-index in some application domains.  

In this paper we present a new indexing technique to support value queries on one-
dimensional continuous time sequences – ICB-index. ICB-index is based on the idea 
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of IP-index and makes the performance of the queries as high as IP-index does, but it 
requires substantially less space than IP-index. The effectiveness of ICB-index is 
verified by experiments on 2180 sensor-generated time sequences from hydroelectric 
power station "Zhigulevskaya". 

The rest of this paper is organized as following. In section 2 we discuss existing re-
search work that focuses on the support of interpolation in databases. In section 3 we 
formulate mathematical definition of the problem of supporting queries on TSs con-
sidering interpolation assumptions. In section 4 we show that conventional secondary 
indexes are unsuitable to solve this problem. In section 5 we describe the idea of IP-
index (because ICB-index is based on it) and give the experimental results showing 
that the size of IP-index is enormously big. Section 6 presents ICB-index and experi-
mental results made with it. Section 7 concludes the paper. 

2   Related Research Work 

There are not so many research papers that consider the problem of supporting inter-
polation in databases. One of the first of them was [6], but it considered only step-
wise-constant interpolation. Some research papers address the problem of supporting 
interpolation in databases on the logical level (they investigate, how we can formu-
late the queries that consider interpolated data). The model proposed in [20, 21] sup-
ports different types of interpolation by introducing different types of TSs: stepwise 
constant, continuous, discrete and user-defined. It also introduces an operator for 
selecting data by specifying the set of time points of interest. Paper [2] proposes 
another approach. It suggests any relational query on a database DB to be viewed as 
a query on database DB* which consists of all the data of DB and is supplemented  
by all the data that can be derived from explicit data of DB using interpolation as-
sumptions. 

Even fewer research papers are dedicated to the effective evaluation of the que-
ries supporting the interpolation. Neugebauer [14] proposed to supplement the 
original time sequence with the values at the specified equidistant time points be-
fore evaluating the query (these values can be derived from explicit ones using 
specified interpolation function). But this approach does not allow us to answer the 
query "When was the value of continuous time sequence equal to a given value?" 
Grumbach et al. [8, 9] concerned the problem of efficient manipulation of interpo-
lated data. They proposed a novel optimization technique for the queries supporting 
the interpolation. But anyway, their approach requires the full scan of the table to 
answer the query. 

L. Lin et al. [10, 11, 12] proposed specialized indexing technique – IP-index, which 
supports queries on the time sequences that take into consideration the interpolation 
assumptions. IP-index was the first indexing technique supporting such queries. A. 
Nanopoulos and Y. Manolopoulos [13] proposed an improvement of IP-index – SIQ-
index that is based on the R*-tree and deals with the problem of the size of IP-index. 
In this paper we propose another improvement of IP-index –  ICB-index. It also deals 
with the problem of the size of IP-index, but it takes another approach. 
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3   Mathematical Definition of the Problem 

This section contains the definitions of terms and notations that we use in this paper 
and the definition of the problem of supporting value queries on continuous time 
sequences. We try to use the same notations as in papers [10, 11, 12], because our 
indexing technique is an extension of the approach proposed there. 

One-dimensional time sequence is a sequence of pairs (ti, vi), i = "1…n", where 
each ti is a time point, each vi is a numeric value corresponding to this time point, and 
these pairs are ordered, i.e. ∀ i, j : i > j → ti > tj. In this paper we consider time se-
quences only of this sort. We term each pair (ti, vi) as state, denoted by Si. 

In this paper we assume that each time sequence describes some continuous proc-
ess v (t) (i.e. each value vi of the time sequence equals to the value of this process at 
time point ti , and we do not know the values of this process at time points not in-
cluded into the time sequence). To derive the values of this process at time points that 
are not included into the time sequence some continuous piecewise interpolation func-
tion v*(t) is used. We denote by σ*

Θ ( TS ) the operator that is used to formulate value 
queries on the time sequence TS that is seen as continuous. This operator returns the 
set of time points (or time intervals) at which the value of v*(t) satisfies the condition 
Θ (note that we do not know at which points the value of the process v (t) satisfies the 
condition, we can only determine at which points the value of interpolation function 
satisfies it). We allow the following types of conditions for this operator: 1) v = x (for 
finding time points at which v*(t) is equal to x); 2) v > x (for finding time intervals 
during which v* (t) is greater than x); 3) v < x; 4) their combinations. 

Our definitions are independent of the data model. In practice time sequence can be 
modeled as a relation, as an attribute of abstract data type or as an object, and σ*

Θ 
operator can be implemented as an additional operator of relational algebra or as a 
method accordingly. 

Now we can formulate the problem we concerned like following: "How can σ*
Θ 

operator be efficiently executed (without linear scan of time sequence)?" Obviously, 
the beginnings and the ends of time intervals included into the result of σ*

v > x (or 
σ*

v < x) operator could be retrieved by σ*
v = x  operator (see Fig. 3.1). So, the problem of 

supporting σ*
Θ operator is reduced to the problem of supporting σ*

v = x  operator.  
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Fig. 3.1. σ*
v > x  and σ*

v = x   operators 
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This problem can be further reduced. Let us denote by v*
i (t) the piece of interpola-

tion function v*(t) that is defined between time points ti and ti+1 and is used to derive 
the values of v (t) between them. The most practical interpolation functions have the 
following property: to construct v*

i (t) we need the states Si and Si+1 and sometimes 
several states around them. For example, if the interpolation is piecewise-linear we 
need only Si and Si+1 in order to find the coefficients of linear function v*

i (t). That is 
why we can find the result of σ*

v = x  operator in the following three steps. 

1. Determine all the states Si = (ti, vi) with the following property:   

1

min
+≤≤ ii ttt

v*
i (t)  ≤   x   ≤ 

1

max
+≤≤ ii ttt

v*
i (t) . (3.1) 

Note, that in case of piecewise-linear interpolation the above condition is equiva-
lent to the following: 

min(vi, vi+1)  ≤   x   ≤   max(vi, vi+1) . (3.2) 

2. Read out all the states found in the previous step as well as their surrounding 
states needed to find the coefficients of corresponding pieces v*

i (t) of the interpo-
lation function. 

3. For each v*
i (t) that we have found coefficients for in the previous step solve the 

equation v*
i (t) = x . 

The third step involves only main memory operations with the states that have al-
ready been read out, so its performance is not very critical. The performance of the 
second step depends only on the number of the states returned by the first step and on 
the type of interpolation function, so it cannot be optimized. In contrast, performance 
of the first step is critical and is subject to optimization. If we do not have any special-
ized index, we have to scan the whole time sequence in order to complete this step. 
Thus, we have reduced the problem of supporting value queries on continuous time 
sequences to the problem of finding all the states satisfying the condition (3.1) if the 
value of x is given. 

4   Why onventional Secondary Indexes are Unsuitable to Solve 
the Problem? 

At the first glance it seems that if we have certain additional information about some 
time sequence then conventional secondary indexes can be used to support value 
queries on this time sequence considering interpolation assumptions. For example, 
assume that a time sequence is regular (i.e. the distance ∆t  between its time points is 
always the same) and describes some continuous process  v (t). Assume that the first 
derivative of this process is bounded: Mtv ≤|)('| , and that piecewise-linear interpo-

lation is used to derive the values of  v (t) at time points that are not included into the 
time sequence. If we need to find time points at which the value of the process v (t) (to 
be more correct, the value of interpolation function) was equal to a given value  x , we 
should find all the states which satisfy the condition (3.2). With the assumptions we 
made above we can use standard relational selection operator to find them:  

σ tMxVtMx ∆⋅+≤≤∆⋅− (R) (4.1) 
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(we assume here that the time sequence is modeled as the relation R with attributes 
"T" – timestamp and "V" – value). Obviously, the result of this operator will contain 
all the states satisfying the condition (3.2). Operator (4.1) is efficiently supported by 
conventional secondary indexes and seems to solve the problem. 

But there are at least two reasons why this solution is not very good. First, the as-
sumption that TS is regular seems unrealistic (many applications work with irregular 
TSs). Second, even if the above assumptions hold, operator (4.1) returns all the states 
satisfying the condition (3.2), but not only such states. Fig. 4.1 illustrates this fact. In 
this example operator (4.1) will return the following states: (t7, v7), (t8, v8), (t9, v9), 
(t10, v10), (t11, v11), (t12, v12) and (t14, v14). The states (t7, v7), (t9, v9) and (t11, v11) satisfy 
the condition (3.2) (they are marked by bold dots in the figure), while the states 
(t8, v8), (t10, v10), (t12, v12) and (t14, v14) are "unwanted" because they do not satisfy this 
condition. So, the problem is that the operator (4.1) returns a number of unwanted 
states. It causes unnecessary disk operations. 

We have made an experiment on the real-life TS shown in Fig. 1.1 to determine 
how many unwanted states are returned by operator (4.1). For different values of x 
(the value we search for) we determined the number of states satisfying the condition 
(3.2) and the total number of states returned by operator (4.1). The results of this 
experiment (see Fig. 4.2) show that the number of unwanted states is great. The total 
number of the states returned by operator (4.1) is on average 50 times greater than the 
number of states satisfying the condition (3.2). It means that we have to read out 
much more information than we need and to sort it out afterwards. So, conventional 
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Fig. 4.2. The number of states satisfying the condition (3.2) (black area) and the total number 
of states returned by operator (4.1) (grey area) 
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secondary indexes are unsuitable to solve our problem. We need some specialized 
indexing structure allowing us to find all the states satisfying the condition (3.1) (or 
(3.2) in case of piecewise-linear interpolation) without reading any unwanted states. 

5   IP-Index: Advantages and Drawbacks 

IP-index (Interpolation-index) [10, 11, 12] was developed by Ling Lin et al. to support 
value queries on continuous TSs. It allows efficient finding of time sequence states 
satisfying the condition (3.2) (IP-index supports only piecewise-linear interpolation). 

5.1   The Idea of IP-Index  

Each state Si of a time sequence can be viewed as a point in two-dimensional plane t-
v. Let us denote by Sgi the segment that starts with Si and ends with Si+1. IP-index is 
built like following. 

1. All the states Si are projected on the v-axis. As a result the v-axis is partitioned 
into non-overlapping intervals [kj, kj+1], j = "1…m–1", where m is a number of 
distinct values of time sequence. 

2. Obviously, each interval [kj, kj+1] has the following property: for all the values x 
between kj and kj+1 the sequence of segments Sgi intersecting the line v = x is the 
same (see Fig. 5.1) and consequently the sequence of states satisfying the condi-
tion (3.2) is also the same. The sequence of such states is associated with each in-
terval [kj, kj+1] building up the IP-index. 

3. Each interval [kj, kj+1] is identified by its starting point kj in IP-index (interval 
[kj, kj+1] can be uniquely identified by its starting point because its ending point is 
the starting point for the next interval). The values kj ,  j = "1…m", are called the 
keys of IP-index. 
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Fig. 5.1. The idea of IP-index 

The IP-index for the time sequence shown in Fig. 5.1 looks like following: 

 k1: S1, S2 ;  k2: S2 ;  k3: S2, S3 ; k4: – . 

In order to find the result of σ*
v = x  operator we should find TS states satisfying the 

condition (3.2). To do this we should find such key kj in IP-index that x ∈ [kj, kj+1] and 
then just read out the state sequence associated with it. To allow for the fast finding of 
the keys of IP-index any conventional indexing technique can be used. 

The main advantage of IP-index is that we do not have to read out any unwanted 
states of time sequence. We read out only those states that are needed to calculate the 
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result of σ*
v = x  operator. Thus, IP-index makes the performance of  σ*

v = x  operator as 
high as possible. Its effectiveness is verified by the experiments made by Ling Lin. 

5.2   IP-Index: Experimental Results 

We have made a series of experiments on real-life TSs from hydroelectric power 
station "Zhigulevskaya" to determine the space requirements of IP-index. Fig. 5.2 
shows the TSs we used in the experiments. Two of these TSs describe slow processes 
(temperature), four of them describe fast processes (electrical and hydromechanical 
processes). All of these TSs are regular and their cardinality is 300 thousand states. 

For each time sequence we calculated the size of IP-index and IP-index size/TS 
size ratio (see Table 1). All the time sequences were generated by 15-bit analog-to-
digital converter, that is why 2 bytes are enough to represent each state of these time 
sequences (it is not necessary to store timestamps, because TSs are regular). So, the 
size of each TS is 300 000⋅2/1024 ≈ 586 Kb. The size of IP-index has two compo-
nents: 1) 3 bytes multiplied by the total number of the states in all the state sequences 
associated with the keys of IP-index (3 bytes are enough to address 16 million states); 
2) 6 bytes multiplied by the number of the keys (2 bytes to store the value of the key 
and 4 bytes for the pointer to the state sequence associated with the key). 

 

Fig. 5.2. The time sequences used in the experiments 

Table 1. IP-index size and IP-index size/TS size ratio 

Time sequence IP-index size, Kb IP-index size / TS size ratio 
Turbine vibrations 609 050 1041.1 
Generator active power 10 989 18.8 
Oil pump current 56 455 96.5 
Oil level in the spill tank 5 006 8.6 
Bearing segment temperature 310 0.5 
Generator temperature 650 1.1 
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Table 1 shows that the size of IP-index for time sequences that describe fast proc-
esses can be enormously big. This fact made it impossible to use IP-index at hydroe-
lectric power station "Zhigulevskaya". 

6   ICB-Index 

ICB-index (Interpolation Compressed Block index) is an extension of IP-index and is 
the main contribution of this paper. ICB-index efficiently supports the value queries 
on continuous time sequences by allowing the fast finding of time sequence states 
satisfying the condition (3.1) if the value of x is given. This index is suitable for any 
type of interpolation. It makes the performance of queries as high as IP-index does, 
but it requires substantially less space than IP-index.  

ICB-index is based on the idea of IP-index and the following two ideas that al-
lowed to reduce its space requirements. 

1. We replace the state sequences associated with each key of IP-index by the se-
quences of disk blocks that contain the states of these state sequences. 

2. We use an additional level of index to eliminate the redundancy that exists in IP-
index (very often a state sequence associated with a key of IP-index is very simi-
lar to the state sequences associated with its neighbor keys). 

In the next subsection we discuss these ideas in more detail. 

6.1   The Ideas of ICB-Index  

For large time sequences the size of IP-index becomes great because state sequences 
corresponding to each key have large cardinality. The first idea of ICB-index is based 
on the fact that usually each of these state sequences contains lots of the states stored 
in the same disk block. To reduce the cardinality of state sequences it makes sense to 
store pointers to the blocks containing the states of this sequence instead of the point-
ers to the states. This change will not decrease the performance of the queries because 
even if we have the pointers to the states that should be read we always read the 
whole blocks from the disk. For example, suppose that the following state sequence is 
associated with some key kj of IP-index: 

S1, S2, S6, S15, S18   . (6.1) 

It means that all the states S1, S2, S6, S15, S18 satisfy the condition (3.2) for all the val-
ues contained in the interval [kj, kj+1]. If we know that the states S1 – S10 are contained 
in block B1 and the states S11 – S20 are contained in block B2, we can replace the state 
sequence (6.1) with the following sequence of blocks: B1, B2. If such sequence is 
associated with the key kj, it means that to get all the states that satisfy the condition 
(3.2) for all the values contained in the interval [kj, kj+1] we have to read out the blocks 
B1 and B2. We then should check all the states we've read whether they satisfy the 
condition (3.2) or not. But this check involves only main memory operations, while 
the number of disk operations remains the same. Thus, we can reduce the size of the 
sequences associated with the keys of IP-index. 

The second idea is based on the fact that very often a state sequence associated 
with a key of IP-index is very similar to the state sequences associated with its 
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neighbor keys. The naive way to eliminate such redundancy is to use differential 
encoding [19]. Each state sequence can be stored as the list of differences from the 
state sequence associated with the previous key or with the first key of some group. 
But with this approach we shall either loose the ability of random access to the index 
or face the difficulties with adding a new key to the index. Thus, differential encoding 
will reduce either the performance of index search or index update speed; both are 
undesirable. We propose a better solution – we introduce an additional level of the 
index. Its keys k'l, l = "0…K–1" (where K is some constant), partition the v-axis into 
the intervals that are larger than the intervals [kj, kj+1], j = "1…m–1" (intervals into 
which the keys of IP-index partition the v-axis). Then suppose, that amongst intervals 
Ij = [kj, kj+1], j = "1…m–1", those (and only those) intervals whose indexes fall into 
the range "j1…j2", are contained in the interval [k'l, k'l+1], and suppose that state se-
quences associated with the keys kj,  j = "j1…j2", have the same subsequence. Then 
we can remove this subsequence from these state sequences and associate it with the 
key k'l of the additional level of the index (see Fig. 6.1). Thus, we do not lose any 
information contained in the IP-index, but reduce the size of the index. Our approach 
does not have the drawbacks of differential encoding we've mentioned above. 
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Fig. 6.1. An additional level for IP-index 

These are two ideas ICB-index is based on. Note, that these are only the ideas, we 
give the precise description of the ICB-index structure in the next subsection. 

6.2   The Structure of ICB-Index  

Before building ICB-index the TS itself should be a little bit reorganized on the disk. 
TS should be stored in such a way that allows to find the coefficients for each piece  
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Fig. 6.2. Time sequence that does not fulfill the requirement of ICB-index (a) and reorganized 
time sequence that fulfills the requirement of ICB-index (b) 
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v*
i (t) of interpolation function v*

 (t) using time sequence states from only one disk 
block. We can easily fulfill this requirement by adding duplicate states to TS. 
Fig. 6.2 (a) shows an example of TS for which piecewise-linear interpolation is used. 
To find the coefficients of the piece of interpolation function defined on the interval 
[t10, t11] we need the states S10 and S11 that are stored in the different blocks. So, the 
above requirement is not fulfilled. To fulfill it we can reorganize the time sequence by 
duplicating the state S10, see Fig. 6.2 (b). Now the requirement is fulfilled. 

Let us now describe the structure of ICB-index. In this section we use the notations 
from the section 3 and introduce some new notations. Let us denote by B the disk 
block containing several sequential states of TS. Assume that v*

i (t), i = "n1…n2", are 
the pieces of the interpolation function v*(t) for which we can find the coefficients 
having only the states from the block B. We shall use the following notations: 

))((min *

],[
min

121

tvB
nn ttt +∈

= ;   ))((max *

],[
max

121

tvB
nn ttt +∈

= .  

So, Bmin and Bmax are the minimum and the maximum value of the interpolation func-
tion on the interval where it can be constructed using the TS states from the block B.  

t
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Bmin

Bmax

tn1
tn2  

Fig. 6.3. Visual representation of the time sequence block 

Then disk block B can be represented as a rectangle in two-dimensional plane t-v 
(see Fig. 6.3), and the whole time sequence can be represented as a series of such 
rectangles (see Fig. 6.4). We shall use such visual representation to illustrate the 
structure of ICB-index. 

ICB-index consists of two parts: the auxiliary index and the main index.  
The auxiliary index (see Fig. 6.4) is built like following. Let vmin and vmax be the 

minimum and the maximum value of the process v(t). We partition the interval 
[vmin, vmax] into K equal intervals: [k'l, k'l+1], l = "0…K–1". With each interval  
[k'l, k'l+1] we associate the sequence of pointers to such blocks B, that 
[k'l, k'l+1] ⊆ [Bmin, Bmax]. Each interval [k'l, k'l+1] is uniquely identified by its starting 
point k'l  in the index. The values k'l , l = "0…K", are called the keys of the auxiliary 
index.   

The main index (see Fig. 6.4) is built like following. 

1. The values Bmin and Bmax of all the blocks of TS are projected on the v-axis. As a 
result the interval [vmin, vmax] is partitioned into non-overlapping intervals 
[kj, kj+1], j = "1…m–1", where m is a number of distinct Bmin and Bmax values. 

2. Each interval [kj, kj+1] has the following property: for all the values x between kj 
and kj+1 the sequence of such blocks B that x ∈ [Bmin, Bmax] is the same. Please 
note, that if for some block B the following property holds: x ∈ [Bmin, Bmax], then 
there exists at least one state S satisfying the condition (3.1) in the block B. It 
means that for all the values x between kj and kj+1 the states satisfying the condi-
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tion (3.1) are contained in the same sequence of blocks. These blocks can be de-
termined by checking the condition [kj, kj+1] ⊆ [Bmin, Bmax]. We associate the se-
quence of pointers to such blocks with each interval [kj, kj+1]. 

3. Each interval [kj, kj+1] is identified by its starting point kj in the index. The values 
kj ,  j = "1…m", are called the keys of the main index. 

4. If there exists such key k'l  in the auxiliary index that 

[kj, kj+1] ⊆ [k'l, k'l+1]  ,  (6.2) 

we remove all the block pointers associated with the key k'l  in the auxiliary index 
from the sequence of block pointers associated with the key kj in the main index. 
We can do this for the following reason. Associating a pointer to the block B with 
a key kj in the main index means that for all values x belonging to the interval 
[kj, kj+1] there exists at least one state S in the block B, for which the condition 
(3.1) is satisfied. But if the block B is already associated with a key k'l  in the aux-
iliary index, then [k'l, k'l+1] ⊆ [Bmin, Bmax]. It means that for all values x belonging 
to the interval [k'l, k'l+1] (and, according to (6.2), for all values belonging to the 
interval [kj, kj+1]) there exists at least one state S in the block B, for which the 
condition (3.1) is satisfied. So, we already have this information in the auxiliary 
index and do not have to duplicate it in the main index. 
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Fig. 6.4. Schematic representation of a time sequence and ICB-index structure (here "Bl." 
means "Block") 

Table 2. The structure of ICB-index 

 The auxiliary index The main index 
The keys 

of the 
index 

K

vv
lvk l

minmax
min'

−⋅+= , 

l = "0...K" 
 (where K is a parameter) 

Distinct values Bmin and Bmax of all the 
blocks containing the states of time 

sequence, 
denoted by kj ,  j = "1…m" 

Block 
pointers 

associated 
with the 

keys 

Pointers to such blocks B 
that  

[k'l, k'l+1] ⊆ [Bmin, Bmax] 
are associated with the key 

k'l 

Pointers to such blocks B that 
[kj, kj+1]

 ⊆ [Bmin, Bmax] and 

l (0 ≤ l ≤ K-1): [k'l, k'l+1]
 ⊆ [Bmin, Bmax] 

& [kj, kj+1] ⊆ [k'l, k'l+1] 
are associated with the key kj 
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Table 3. The effectiveness of the auxiliary index 

(a) The main index for TS shown in
Fig. 6.4 (without auxiliary index) 

(b) ICB-index for the time sequence shown in Fig. 6.4 

Key 
values 

Blocks associated with the 
keys 

0 1, 14 
2 1, 2, 3, 12, 14 
3 1, 2, 3, 4, 12, 13, 14 
4 1, 2, 3, 4, 5, 10, 11, 12, 13, 14 
6 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
8 4, 5, 6, 7, 8, 9, 10, 11 
9 5, 6, 7, 8, 9, 10 

10 6, 7, 8, 9 
12 -  

The auxiliary index The main index 
Key 

values 
Blocks associ-
ated with the 

keys 
0 1, 14 
3 1, 2, 3, 4, 12, 

13, 14 
6 4, 5, 6, 7, 8, 9, 

10, 11 
9 6, 7, 8, 9 

12 -  

Key 
values 

Blocks asso-
ciated with  

the keys 
0 - 
2 2, 3, 12 
3 - 
4 5, 10, 11 
6 2, 3, 12 
8 - 
9 5, 10 

10 - 
12 -   

The above indexing technique is applied only to the blocks that satisfy the condi-
tion Bmax > Bmin. Blocks for which Bmax = Bmin can be indexed separately using any 
conventional indexing technique (using the values Bmax as the keys). 

Table 2 contains an overview of what are the keys of the main and the auxiliary in-
dex and which blocks are associated with them.  

The auxiliary index allows to reduce the overall size of ICB-index. Table 3 (a) 
shows the main index for the time sequence shown in the Fig. 6.4 for the case when 
the auxiliary index is not created; Table 3 (b) shows ICB-index consisting of the aux-
iliary and the main index for the same time sequence. The number of block pointers 
contained in the index shown in Table 3 (a) is less than the overall number of block 
pointers contained in the auxiliary and the main index shown in Table 3 (b). 

Let us now describe how ICB-index is used to support value queries on continuous 
TSs. In order to find the result of σ*

v = x  operator we should find TS states satisfying 
the condition (3.1). To do this we should accomplish the following steps. 

1. Find such key kj in the main index that x ∈ [kj, kj+1] and read out all the blocks 
associated with it (if x is equal to some key of the index there may exist two keys 
satisfying the above condition and in this case we should read out the blocks as-
sociated with both of them). 

2. Find such key k'l in the auxiliary index that x ∈ [k'l, k'l+1] and read out all the 
blocks associated with it. 

3. In the blocks that were read out in steps 1 and 2 find the states that satisfy the 
condition (3.1). 

To allow the fast finding of the keys of the main index any conventional indexing 
technique can be used. The keys of the auxiliary index can be accessed even faster – 
we can compute the address of the key k'l satisfying the condition x ∈ [k'l, k'l+1] using 
the following formula: 

−
−

⋅−⋅+= 1
)(

minmax

min
vv

Kvx
sizekeyfirstaddresskey   ,  

 



 ICB-Index: A New Indexing Technique for Continuous Time Sequences 261 

where first is the address of the first key of the auxiliary index, key size is the size 
needed to store one key of the auxiliary index, K is a parameter used in the auxiliary 
index definition, ⋅  is the ceiling operation. 

To find the result of σ*
v = x  operator using ICB-index we should read out only those 

blocks of time sequence that certainly contain the states satisfying the condition (3.1) 
(i.e. the states we search for). That is why ICB-index makes the performance of value 
queries on continuous TSs nearly as high as IP-index does (we say "nearly" because 
ICB-index requires one additional disk operation to read the sequence of block point-
ers associated with a key of the auxiliary index). But ICB-index has an important 
advantage – it requires substantially less space than IP-index. Subsection 6.4 contains 
the results of experiments verifying the effectiveness of ICB-index.  

6.3   ICB-Index Size Optimization 

While describing the structure of the auxiliary index in the previous subsection we 
used a parameter K. Obviously, the value of this parameter influences the overall size 
of ICB-index. It can easily be seen that the function ICBSize(K) (ICB-index size as a 
function of K) is unimodal (it has the only minimum). For example, Fig. 6.5 shows 
the function graph of ICBSize(K) for the time sequence shown in Fig. 1.1. 

 

Fig. 6.5. The function graph of ICBSize(K) (in kilobytes) for TS shown in Fig. 1.1 

So, for each time sequence there is exactly one optimal value of K that minimizes 
the overall size of ICB-index. We can calculate the value of ICBSize(K) function at 
any point by building the ICB-index in the main memory for some part of the time 
sequence, that is why the task of finding optimal value of K can be viewed as one-
dimensional optimization problem of finding the minimum of ICBSize(K) in the inter-

val [2, pvv 10)( minmax ⋅− ], where p is the precision of time sequence values (the 

number of digits after the decimal point). We can solve this problem using any exist-
ing optimization approach, e.g. golden section search or Fibonacci search (in our 
implementation we use golden section search). 

6.4   ICB-Index: Experimental Results 

To compare ICB-index size with IP-index size we've made a series of experiments on 
the real-life TSs from hydroelectric power station that we used to determine the space 
requirements of IP-index. For each TS we determined the optimal value of K parame-
ter, the size of ICB-index and ICB-index size/TS size ratio. Obviously, the size of 
ICB-index depends on the number of the states of one time sequence contained in one 
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disk block (let us denote this number by NDB). In practice NDB is not very large, be-
cause each disk block usually contains the states of several time sequences (in order 
to optimize TSs update speed). In our experiments we considered 3 different values of 
NDB: 80, 120 and 160 (these values are typical for process control systems for which 
we plan to use ICB-index). Table 4 contains the results of the experiments.  

Table 4. ICB-index size and ICB-index size/TS size ratio for different values of NDB 

Optimal value of K 
parameter for NDB 
= 80, 120 and 160 

ICB-index size, Kb, 
for NDB = 80, 120 and 

160 

ICB-index size / TS 
size ratio for NDB = 

80, 120 and 160 

Time 
sequence 

80 120 160 80 120 160 80 120 160 
Turbine vibrations 93 80 80 1 864 1 130 788 3.2 1.9 1.3 
Generator active power 538 432 429 562 418 331 1.0 0.7 0.6 
Oil pump current 112 102 121 984 817 695 1.7 1.4 1.2 
Oil level in the spill tank 99 77 66 617 476 392 1.1 0.8 0.7 
Bearing segment temp. 13 13 13 40 31 30 0.1 0.1 0.1 
Generator temperature 26 16 16 102 81 78 0.2 0.1 0.1 

Table 4 shows that if NDB = 160 (or greater) then the size of ICB-index is not more 
than 1.3 times greater than the size of time sequence (recall that the size of IP-index is 
adequate only for those TSs that describe temperature processes, for the others the 
size of IP-index is 8–1000 times greater than the size of time sequence).  

We have made further experiments on 2180 sensor-generated time sequences from 
hydroelectric power station "Zhigulevskaya" that describe temperature, electrical and 
hydromechanical processes. The cardinality of these TSs varied from 0.25 to 2.5 mil-
lion, for all time sequences NDB = 160. We achieved the following results. 

1. For all time sequences the size of ICB-index is not more than 1.5 times greater 
than the size of time sequence. 

2. ICB-index makes the performance of value queries on continuous time sequences 
as high as IP-index does. 

3. ICB-index (as well as IP-index) improves the performance of value queries on 
continuous time sequences compared to conventional secondary indexes. 

Table 5 shows how ICB-index (as well as IP-index) improves the average perform-
ance of value queries on continuous time sequences that belong to different groups 
compared to conventional secondary indexes. 

Table 5. The performance increase of value queries on continuous time sequences due to the 
use of ICB-index compared to conventional secondary indexes 

Performance increase  
(averaged by the value we search for) 

The group of time 
sequences (depending 

on the type of the 
processes described by 

time sequences) 

The number 
of time 

sequences 
in the group 

Minimum per-
formance increase 
within the group 

Average perform-
ance increase 

within the group 

Maximum per-
formance increase 
within the group 

Electrical 500 2.1 times 2.62 times 2.7 times 
Hydromechanical 440 2.1 times 2.58 times 2.7 times 

Temperature 1240 1.4 times 1.55 times 1.9 times 
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Please note, that we achieved performance increase shown in Table 5 for real-life 
time sequences that conform to assumptions made in section 4, i.e. they are regular 
and describe continuous processes v (t) such that Mtv ≤|)('| . If any of these assump-

tions doesn't hold, we cannot use relational operator (4.1) to find all the states satisfy-
ing the condition (3.2), because in this case the difference between vi and vi+1 can be 
unpredictably great and, therefore, there is no such M that the result of (4.1) operator 
contains all the states satisfying the condition (3.2). In this case the only way to sup-
port σ*

Θ operator is to use ICB-index (we do not mention linear scan of TS and IP-
index that, as we have shown in this paper, is enormously big).   

7   Conclusions and Future Work 

In this paper we presented a new indexing technique that supports value queries on 
continuous time sequences – the queries, which consider not only explicit values of 
the time sequence, but also the values that can be derived by interpolation functions. 
We formulated the mathematical definition of the problem of supporting such queries 
and showed that although in some cases the conventional secondary indexes can be 
used to support such queries, their use is an ineffective solution. 

We also investigated the properties of IP-index – the first index structure support-
ing value queries on continuous time sequences. We showed that IP index can signifi-
cantly speed up such queries (as its authors promised). But for some real-life time 
sequences the size of IP-index becomes enormously big. It makes it impossible to use 
IP-index in some application domains, e.g. in process control systems. 

We proposed a new index structure supporting value queries on continuous time 
sequences – ICB-index. ICB-index is based on the idea of IP-index and on the two 
ideas of how we can reduce the size of IP-index: 1) replacing the state pointers (i.e. 
record pointers) by the block pointers in the index; 2) introducing the additional level 
of the index that allows to reduce the redundancy in IP-index. ICB-index makes the 
performance of the queries as high as IP-index does, but it requires substantially less 
space than IP-index.  

The effectiveness of ICB-index is verified by the experiments on 2180 different sen-
sor-generated time sequences from the hydroelectric power station "Zhigulevskaya". 
We gained the following results: 1) for all the time sequences the size of ICB-index is 
not more than 1.5 times greater than the size of time sequence, while the size of IP-
index is up to 1000 times greater than the size of time sequence; 2) the performance of 
value queries of continuous time sequences is the same when using ICB-index and IP-
index; 3) ICB-index (as well as IP-index) makes the response time of value queries on 
continuous time sequences, averaged by the value we search for, 1.4 – 2.7 times shorter 
compared to the conventional secondary indexes, if time sequences are regular; ICB-
index (or another index based on the idea of IP-index) is the only way to support such 
queries, if time sequences are irregular.  

We consider the following directions for the future work. 

1. Comparison of ICB-index with another improvement of IP-index – SIQ-index 
that was proposed in [13], in order to determine their difference both in query 
performance and size of the index structure. 
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2. Optimization of ICB-index, e.g. we can partition the v-axis into unequal intervals 
while building the auxiliary index (it can further reduce the size of ICB-index). 

3. The development of the data structure that allows to build and update ICB-index 
for the time sequences that are dynamically updated in real-time mode. 

4. The integration of ICB-index into some well-known extensible database man-
agement system. 
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Abstract. This paper concerns the efficient processing of multiple k nearest
neighbor queries in a road-network setting. The assumed setting covers a range
of scenarios such as the one where a large population of mobile service users that
are constrained to a road network issue nearest-neighbor queries for points of in-
terest that are accessible via the road network. Given multiple k nearest neighbor
queries, the paper proposes progressive techniques that selectively cache query
results in main memory and subsequently reuse these for query processing. The
paper initially proposes techniques for the case where an upper bound on k is
known a priori and then extends the techniques to the case where this is not so.
Based on empirical studies with real-world data, the paper offers insight into the
circumstances under which the different proposed techniques can be used with
advantage for multiple k nearest neighbor query processing.

1 Introduction

A variety of location-based services for travelers such as tourists, visitors, and com-
muters are currently expected to be among the mobile services that have the highest
likelihood of being used widely as the use of data services takes off.

An infrastructure is emerging that enables such services. In particular, vehicles are
increasingly being equipped with general-purpose computing devices, e.g., in-board
devices and aftermarket PDAs and dedicated navigation devices, and cellular data con-
nections, e.g., GSM/GPRS and UMTS. Mobile users may thus request services from a
central server, and these services will involve the processing of spatial queries, among
which k nearest neighbor (kNN) queries are expected to be frequent.

This general scenario underlies a number of recent contributions to spatial query
processing. In particular, it is reasonable to assume that the service users are constrained
to a road network and that points of interest located in the road network are of interest
to the services. Contributions exist that consider a variety of spatial queries in this set-
ting, including range queries, closest-pair queries, distance joins, and also kNN queries.
However, existing contributions focus on efficient means of answering a single query.

In contrast, it is reasonable to expect that the central server will at times receive
many query requests, making it important to not simply consider the efficient process-
ing of each query in isolation, but to process multiple queries efficiently, thus obtaining
improved throughput. This paper does exactly that. The idea underlying multiple spa-
tial query processing is to re-use cached results of recently computed, nearby queries

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 266–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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for computing a location-dependent query. The restriction of the mobile users and the
points of interest to a road network contributes to making such re-use effective.

This paper thus considers the efficient processing of multiple kNN queries. More
specifically, it presents a range of approaches for the main-memory caching and re-
use of previously computed queries; and it reports on empirical studies of its proposals
that utilize real-world road network and points of interest data. The caching approaches
proposed are relatively easy to implement. Since it is also easy to switch from one
approach to another, it is possible to combine the approaches so that the currently best
approach is always utilized. The empirical studies suggest that the paper’s proposals
yield better performance than the existing single-query processing approach.

We believe that the contributions made by the paper are applicable to other kNN
algorithms than the one considered, and we believe that they are applicable also to
other types of spatial queries than kNN queries.

Query processing in the context of spatial networks as well as kNN query process-
ing have recently attracted significant attention, and several papers are available that
concern kNN and related queries for spatial networks [2,5,6,7,8,11]. One approach,
the INE algorithm [11], uses variation of Dijkstra’s algorithm for incremental network
expansion, in that way computing a kNN query. In contrast, other approaches [2,5,6,8]
pre-compute local distances to data objects or kNNs and store these on disk, so that sub-
sequent kNN queries can be processed more efficiently. These approaches all consider
the processing of queries one at a time, and they use disk-based structures. In contrast,
our focus is on the efficient processing of multiple kNN queries by using main-memory
caching strategies. This paper’s proposal uses a modified INE algorithm.

Past proposals have utilized different storage structures for spatial networks. This
paper adopts the data structures proposed along with the INE and Islands ap-
proaches [5,11], which are also similar to the CCAM [13] structure. Among the existing
spatial network models [4,12], we adopt the link-node representation of a road network.

Within spatial databases, existing papers [9,10,14] discuss the processing of multiple
queries by assuming that objects move in Euclidean space. Specifically, techniques [10]
have been proposed for processing multiple range queries with the idea of ordering the
queries so that “similar” queries are close and can be executed together. For contin-
uously answering a collection of concurrent continuous kNN queries, the SEA-CNN
approach [14] groups similar queries in a query table so that these continuous kNN
queries are reduced to a spatial join between the objects and queries. The conceptual
partitioning monitoring (CPM) algorithm [9] partitions the space around each query
with a 2-dimensional grid and improves the nearest neighbor search on the grid by or-
ganizing the cells into conceptual rectangles for each query. In contrast, we consider
the processing of multiple static k nearest neighbor queries in spatial networks. This
functionality is novel and also essential for continuous kNN query processing in spatial
networks where static kNN queries have to be computed several times during a single
continuous query.

The paper is outlined as follows. Section 2 presents the background of this paper.
Section 3 introduces the multiple query processing approaches and their extensions. The
performance of these approaches is studied in Section 4. Finally, Section 5 summarizes
the paper and offers directions for future research.
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2 Background

In the prototypical usage scenario for this paper’s contribution, a population of on-line
users move in a road network (e.g., by foot, bicycle, bus, or car) while issuing requests to
a central server for location-based services. The services involve kNN queries for points
of interest (e.g., gas stations or attractions) that are located within the road network. The
objective is now for the server to be able to process as many queries as possible. Terming
the users query points and the points of interest data points, we proceed to consider the
modeling of this scenario in more detail.

2.1 The Road Network Model

A road network is defined as a two-tuple RN = (G, coE), where G is a directed, labeled
graph and coE is a binary, so-called co-edge, relationship on edges. The graph G is itself
a two-tuple (V, E), where V is a set of vertices and E is a set of edges. Vertices model
intersections and starts and ends of roads. An edge e models the road in-between an
ordered pair of vertices and is a three-tuple e = (vs, ve, l), where vs, ve ∈ V are,
respectively, the start and end vertex of the edge. The edge can be traversed only from
vs to ve. The element l captures the travel length of the edge. A pair of edges (ei, ej)
belong to coE , if and only if they represent the same bi-directional part of a road and a
u-turn is allowed from ei to ej .

Next, a location loc in the road network is a two-tuple (e, pos) where e is the edge
where the location is located and pos represents the length from the start vertex of
the edge to loc. Then, a data point is modeled as a non-empty set of locations, i.e.,
dp = {loc1, · · · , lock}.

A query point qp is modeled as a two-tuple (e, pos) where e is the edge on which the
query point is located and pos represents the length from the start vertex of the edge to
qp. Given a query point and a value k, the kNN query returns k data points for which
no other data points are closer to the query point in terms of road-network distance. The
distance between a query point and a data point is the length of a shortest path between
the query point and the location of the data point that is closest to the query point.

An edge with start and end vertices vi and vj is denoted by ei,j . Figure 1 illustrates
the concepts defined above, e.g., edge e3,4 = (v3, v4, 6), data point dp1 = {(e3,4, 5),
(e4,3, 1)}, and query point qp = (e8,9, 2).
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For the simplicity of our discussion, we assume that each edge in the road network
has a corresponding co-edge connecting the two vertices in the opposite direction. Each
data point then has two positions—one on each edge that models the road along which
the data point is located. Note that in figures (as in Figure 1) we draw the two co-edges
as one edge with two arrows.

2.2 INE Revisited

The INE algorithm is an adaptation of Dijkstra’s shortest-path algorithm to use a disk-
based network data structure [11]. It incrementally expands its search for data points
through a network, starting at a query point. At each step, it reads the closest vertex w
from a priority queue, Qv, which stores yet-to-be-visited vertices in the order of their
network distance from the query point. Then it puts all non-visited adjacent vertices of
w into Qv and inserts the data points found on the adjacent edges of w into a queue Qdp

that stores the data points found so far. Let dk denote the network distance from the
query point to the kth nearest neighbor in Qdp. The search terminates when k nearest
neighbors are found and the distance from the query point to the next vertex to be
explored is larger than dk. For the example road network in Figure 1, Figure 2 illustrates
the steps of the INE algorithm for a 3NN query at qp = (e8,9, 2).

Step Qv Qdp dk

1 〈(v8, 2), (v9, 2)〉 ∅ ∞
2 〈(v9, 2), (v7, 6), (v3, 7), (v13, 8)〉 〈(dp5, 3)〉 ∞
3 〈(v10, 5), (v7, 6), (v3, 7), (v11, 7), (v13, 8)〉 〈(dp5, 3), (dp6, 5)〉 ∞
4 〈(v4, 6), (v7, 6), (v3, 7), (v11, 7), (v5, 7), (v13, 8)〉 〈(dp5, 3), (dp6, 5)〉 ∞
5 〈(v7, 6), (v3, 7), (v11, 7), (v5, 7), (v13, 8)〉 〈(dp5, 3), (dp6, 5), (dp1, 7)〉 7

6 〈(v3, 7), (v11, 7), (v5, 7), (v13, 8), 〈(dp5, 3), (dp6, 5), (dp1, 7), 7
(v2, 9), (v6, 9), (v12, 11)〉 (dp2, 7), (dp4, 7)〉

Fig. 2. Steps for 3NN Using the INE Algorithm

2.3 System Architecture

We assume a client-server architecture: mobile users issue requests that involve kNN
queries from their mobile devices to a central server that perform the processing. If,
during a short time span, more queries arrive than the server can process, they are
queued. As answering a kNN query entails accessing a certain amount of road net-
work data, only some of which can be cached in main memory, the focus of this paper
is to minimize the number of disk accesses to the road network data needed for an-
swering multiple queries. Queries are put in a queue based on their arrival order. The
road network model and the points of interest are also managed by the server. In each
iteration, the query processor takes one query request from the queue and processes it
by accessing these data sets. We omit the description of the detailed structures used for
the network model and points of interest, as we simply re-use those described for the
INE and Islands approaches [5,11].
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3 Multiple kNN Processing Algorithms

By caching results of previously answered kNN queries in main memory, it becomes
possible for a new query to experience a reduction of accesses to disk-resident road
network data if it is able to re-use cached data. We denote the conventional algorithm
that simply processes the multiple queries as they arrive using the INE approach as
Conv kNN . We proceed to introduce three approaches that improve the multiple kNN
query processing when an upper-bound on k is known, and then we extend the algo-
rithms to the general case.

3.1 The Case of Known Upper Bound on k

We assume an upper bound kmax on the k in the multiple kNN queries, i.e., k ≤ kmax.
Such a bound may be realistic in real-world applications, as it can either be pre-defined
by LBS vendors or be obtained by observing historical records.

Basic Observation

Lemma 1. Let qp be a query point, v a network vertex, and dp a data point. If dp is one
of the k nearest neighbors of qp and the shortest path from qp to dp passes through v,
then dp is also one of the k nearest neighbor data points of v.

Based on this lemma, during the kNN expansion process from a query point qp, if a net-
work vertex v is visited and the k nearest neighbor data points of v are already known,
the expansion process reuses these k nearest neighbors of v and avoids visiting adja-
cent vertices of v. This is possible because the INE algorithm guarantees that when v is
visited (removed from the queue of vertices), the shortest path from qp to v has already
been found. This, combined with Lemma 1, guarantees that all qp’s k nearest neigh-
bors, which have the shortest paths from qp passing through v, can be found among the
k nearest neighbor data points of v.

With this observation, if we cache a certain amount of network vertices together with
their k nearest data points, a newly-started kNN expansion process will be able to re-use
the cached data and save computation.

We extend the INE algorithm with the capability of using the cached data. The ex-
tended algorithm, INE∗, takes three parameters: the query point qp, the value k, and a
list L of cached results. Entries in the list L have the form (v,QPv), where v is a vertex
and QPv is the set of the k nearest data points of v (including corresponding distance
values). Similar to the INE approach, during the network expansion process, the INE∗

algorithm uses two priority queues, Qdp and Qv, to record, respectively, data points
and vertices together with their distance to the query point, denoted as d(qp, dp) and
d(qp, v). Both queues sort elements by the distance value and do not allow duplicate
data points or vertices. The size of Qdp is limited to k elements. We introduce update
and deque operations for the two queues. The update(dp/v, dist) operation inserts a
new data point or vertex and the corresponding distance into the queue. If this data
point or vertex is already in the queue then, if dist is smaller than the distance stored
in the queue, the distance value in the queue is updated to dist. The deque operation
removes a vertex with the smallest distance and returns it. The pseudo code is listed
next. Queues Qv and Qdp are assumed to be empty initially.
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(1) procedure INE ∗(qp, k, L)
(2) for each data point dp on edge qp.e: Qdp.update(dp, d(qp, dp))
(3) Qv.update(qp.e.vs, d(qp, qp.e.vs)), Qv.update(qp.e.ve, d(qp, qp.e.ve))
(4) if ∃a such that (a, qp.e) ∈ coE ,do lines (2)–(3) assuming qp = (a, a.l − qp.pos)
(5) Let dpk denote the k-th element in Qdp, or dpk = ⊥ if there is no such element
(6) dk ← d(qp, dpk) // dk ←∞ if dpk = ⊥
(7) vx ← Qv.deque, mark vx visited
(8) while d(qp, vx) < dk ∧Qv �= ∅
(9) if (vx,QPvx) ∈ L
(10) for each dp ∈ QPvx : Qdp.update(dp, d(qp, vx) + d(vx, dp))
(11) else
(12) for each non-visited adjacent vertex vy of vx

(13) for each dp on edge ex,y (and edge ey,x if (ex,y, ey,x) ∈ coE)
(14) Qdp.update(dp, d(qp, vx) + d(vx, dp))
(15) Qv .update(vy, d(qp, vx) + ex,y.l)
(16) dk ← d(qp, dpk)
(17) vx ← Qv.deque, mark vx visited
(18) return Qdp

During the INE∗ expansion process, whenever a vertex vx in the list L is visited, the
algorithm updates the queue Qdp with the kNNs of vx (line 10) and proceeds to visit
the next vertex in the queue Qv (line 17). It can be observed that the algorithm still
works if the list L keeps more than k nearest neighbors to corresponding query points.
Then line 10 only uses the first k data points of vx. With this algorithm as a basis, we
introduce three approaches for multiple k nearest neighbor query processing.

The Sharing Approach. A basic approach to improving the efficiency of multiple
query processing is to re-use the results of finished kNN queries for new queries.
Since these finished query points can be treated as extra vertices on the road network,
Lemma 1 applies, and the INE∗ algorithm can be used. To control the size of the list
of cached query results (list L), we define a threshold D and add this threshold as an
additional parameter to the INE∗ algorithm. For a query started at qp, if a cached query
point qp′ is discovered in the network expansion process within a network distance D
from qp, the result of the query at qp is not saved in L. Otherwise, it is saved in the list
for future queries.

Assuming a sequence of queries S = 〈. . . , (qpi, ki), . . .〉, where qpi is a query point
and ki is the number of nearest neighbors (0 < ki ≤ kmax), we describe the sharing
approach in the following.

Approach 1. (The S kNN (S,D, kmax) algorithm)

1. Retrieve query request (qpi, ki) from S
2. Execute INE∗(qpi, ki, L,D); in the expansion process, if ki neighbors are found

within D while no cached query points are discovered, continue the expansion to
distance range D or until a cached query point is reached; If there are no cached
query points found within D, continue the expansion until kmax neighbors are
found and save the query result (qpi, QP qpi) in L

3. Go to step 1 until S = ∅ �
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Step 2 of the approach guarantees that no two cached queries are closer to each other
than D and that all of the cached results contain kmax neighbors. If k nearest neighbors
are found within the distance threshold D from the query, the algorithm continues the
expansion to distance D to check if the query has to be cached.

An alternative policy is to cache a query point if its k nearest neighbors are found
within D and no other cached query points are reached in the process. With this policy,
parts of the road network with a high density of data points will obtain many cached
queries. This, in turn, may result in queries from other areas of the road network being
purged from the cache due to its limited size. In this way, areas dense with data points
are favored in the cache, and this may not be desirable because, even without caching,
queries run fast in these areas due to small expansion ranges. Thus, we choose to enforce
the thresholdD strictly, which results in a uniform distribution of cached queries in the
road network.

The Clustering Approach. Intuitively, if a number of queries are clustered in a small
area of the road network, most of them will benefit from queries cached near the cluster.
In the following, we explore a approach that finds the clusters of queries in order to
obtain maximum reuse of cached query results within the clusters.

We divide the road network into “sub-networks” generated by the clusters of query
points (details will follow). Consider Figure 3. The network inside the big rectangle R
is a sub-network of the example road network in Figure 1. We denote this sub-network
R. A network vertex belongs to R if, based on coordinates of this vertex, it is inside the
rectangle R. We divide all vertices belonging to R into two types. First, those vertices
whose adjacent vertices also belong to R are called internal vertices of R. Second, those
vertices that have at least one adjacent vertices not belonging to R are defined as border
vertices. In Figure 3, vertex v10 is an internal vertex while vertices v4, v9, and v11 are

2

V

1
1 1

2

23

1

2

qp1
V11

4

dp6

V2
2

1

1

3

3

3

1

V
V

dp

qp

9

5

dp

10

RR

R R

R 4

Fig. 3. The Clustering Approach

border vertices. A network edge belongs to
R if both its vertices belong to R, e.g., edges
e4,5 and e9,11 belong to R in Figure 3. A
data point or a query point belongs to a
sub-network R if its edge belongs to R. As
shown in Figure 3, data point dp6 and query
point qp2 belong to R while dp1 and qp1 do
not.

The clustering approach is based on the
following observation. In Figure 3, suppose
a 3NN query is issued from query point qp2

in R. We can answer the query in two steps.
First, we run the INE∗ algorithm to find 3NNs to all border vertices of R: v4, v9, v11.
Second, we run the INE∗ at qp2, but during the incremental expansion process, when
a border vertex is visited, we treat it as a cached query—its corresponding 3NNs (com-
puted in the first step) are added into queue Qdp and the expansion process does not
proceed to the adjacent vertices. Since 3NNs of all border vertices are pre-computed,
the network expansion process is constrained inside R. The 3NNs of qp2 are data points
found either by the expansion process inside R or by reading nearest neighbors of bor-
der vertices. Based on Lemma 1, the result of such a two-step execution is correct.
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Although this procedure restricts the expansion scope of a kNN query to a sub-
network, it is expensive to answer a single kNN query in such a way due to the cost of
pre-computing kNNs of border vertices. However, since the pre-computed data can be
used for all the query points inside the same sub-network, sharing of the pre-computed
border vertices may be beneficial if a substantial amount of queries are running in
the same sub-network. In addition, we “pre-compute” the border vertices in a lazy
fashion—a kNN query on a border vertex is run and the result is cached only when
we first encounter this vertex during the processing of some query.

To generate sub-networks, we assume that a spatio-temporal histogram H is avail-
able. It is a uniform two-dimensional m×m grid covering the MBR (Minimum Bound-
ing Rectangle) of the whole road network. Each histogram cell records the number of
query points located in this cell in a short history. We use the DBSCAN algorithm [3]
to cluster the histogram cells based on the recorded numbers of query points. A clus-
ter’s ID is then recorded with each cell of the cluster. Cells that are not assigned to any
cluster by DBSCAN are assigned to the “cluster” of outliers.

The modified INE∗ algorithm getsH as an extra parameter and uses the cluster IDs
of grid cells to determine border vertices in the network expansion process. When ex-
amining a vertex, the algorithm uses the coordinates of the vertex to find its histogram
cell and the corresponding cluster ID. By comparing the cluster IDs of the vertex and
all its adjacent vertices, the algorithm determines if the vertex is a border vertex. For
example, suppose the four small rectangles in Figure 3 are histogram cells and are as-
signed the same cluster ID while their neighboring rectangles (not shown in the figure)
have different cluster IDs. Vertex v9 is a border vertex because it is inside the cluster
while one of its adjacent vertex is in a cell of a different cluster.

The clustering approaches takes the following parameters: a sequence of queries S,
the histogram H = {c1, c2, . . . , cm}, the upper-bound kmax, and the DBSCAN para-
meters Eps and MinPts [3]. Briefly, Eps defines a distance scope for searching neigh-
borhood points and MinPts defines the minimum number of points in a neighborhood
to a “center” point. We proceed to consider the clustering approach in more detail.

Approach 2. (The C kNN (S,H, kmax,Eps ,MinPts) algorithm)

1. Execute DBSCAN (H,Eps ,MinPts) saving cluster IDs with each cell in H
2. Retrieve (qpi, ki) from S
3. Execute INE∗(qpi, ki, L,H); in the expansion process, if a border vertex v is vis-

ited, do not consider its adjacent vertices (lines 12–15 in INE∗). If v is in L, update
Qdp with kiNNs of v (line 10). If v is not in L, execute INE∗(v, kmax, L), placing
the result (v, QP v) into L and update Qdp.

4. Go to step 2 until S = ∅ �
As discussed, the cached list L, which is used to record border vertices of clusters and
their kNNs, is populated in a lazy fashion. When enough border vertices of a cluster are
computed, network expansions starting inside the cluster will have a reduced scope.

For an example of the running of this algorithm, consider the sub-network covered
by rectangle R in Figure 3 as a sub-network of the whole network in Figure 1. Assume
that a number of queries were already processed in this sub-network, so that 3NNs to the
border vertices are computed (shown in Figure 4(a)). Then, Figure 4(b) demonstrates
the running steps of INE∗(qp2, 3, L,H) at qp2 = (e9,10, 2).
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Border Vertex 3NNs
v4 〈(dp1, 1), (dp3, 3), (dp6, 6)〉
v9 〈(dp6, 3), (dp1, 5), (dp5, 5)〉
v11 〈(dp3, 1), (dp6, 2), (dp1, 5)〉

(a) List L

Step Qv Qdp dk

1 〈(v10, 1), (v9, 2)〉 ∅ ∞
2 〈(v9, 2), (v4, 2), (v5, 3), (v11, 4)〉 ∅ ∞
3 〈(v4, 2), (v5, 3), (v11, 4)〉 〈(dp6, 5), (dp1, 7), (dp5, 7)〉 7

4 〈(v5, 3), (v11, 4)〉 〈(dp1, 3), (dp3, 5), (dp6, 5)〉 5

5 〈(v11, 4)〉 〈(dp1, 3), (dp3, 4), (dp6, 5)〉 5

6 ∅ 〈(dp1, 3), (dp3, 4), (dp6, 5)〉 5
(b) Steps for 3NN from qp2

Fig. 4. Running Example of INE∗ in C kNN

The Combined Approach. In an attempt to combine the benefits of the sharing and
clustering approaches, we combine step 3 of the C kNN algorithm with step 2 of
the S kNN algorithm. The combined approach takes six parameters: the sequence of
queries S, the histogramH, the upper bound kmax, clustering parameters Eps , MinPts ,
and the thresholdD. We describe the approach in the following.

Approach 3. (The SC kNN (S,H, kmax,Eps ,MinPts ,D) algorithm)
Execute C kNN (S,H, kmax,Eps ,MinPts) with the following modifications: In

step 3, execute INE∗(qpi, ki, L,H); in the expansion process, if a border vertex v is
visited, do not consider its adjacent vertices (lines 12–15 in INE∗). If v is in L, up-
date Qdp with the kiNNs of v (line 10). If v is not in L, run INE∗(v, kmax, L), put
the result (v, QP v) into L, and update Qdp. If ki neighbors are found within D while
no cached query points are discovered, continue the expansion to distance range D or
until a cached query point is reached; if there are no cached query points found within
D, continue the expansion until kmax neighbors are found and save the query result
(qpi, QP qpi) in L. �

Here, list L contains two types of cached results—results of previous queries and for
border vertices. We assign equal weight to both types and use LRU cache-replacement.

3.2 The Case of Unknown Upper Bound on k

As described, the S kNN , C kNN , and SC kNN algorithms assume a have fixed
upper-bound on k. Such an assumption, although is applicable in real LBS applications,
limits the flexibility of these applications. Thus, we proceed to extend the algorithms to
process queries with arbitrary k values.

To see how the S kNN algorithm can be extended, suppose a k1NN query at query
point qp1 in Figure 5 is processed and cached. When the k2NN query at qp2 visits qp1,
if k2 ≤ k1, based on Lemma 1, the network expansion process can update the result
with the first k2 nearest data points of qp1 and stop visiting neighbor vertices of qp1. If
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k2 > k1, the network expansion can also use the k1 nearest data points of qp1, but it has
to continue visiting adjacent vertices of qp1. The bigger the sizes (k’s) of the cached
query results, the better such a strategy works.
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Fig. 5. Extension to LS kNN

To achieve high k’s of the cached query results,
we exchange a cached query point with a new query
point with a higher k, whenever such a new query is
issued on the same edge or co-edge. For example in
Figure 5, when another k3NN query at qp3 is issued
and qp3 is on the same edge as qp1, after process-
ing of qp3, if k3 > k1, we replace the cached qp1

with qp3 and corresponding nearest neighbors. This
way, the sizes (k’s) of the cached query results is in-
creased lazily, as queries with high k’s arrive.

We summarize the “lazy-update” sharing approach in the following. The parameters
for the algorithm are the same as for S kNN , except for the upper bound of k.

Approach 4. (The LS kNN (S,D) algorithm)
Execute the S kNN algorithm with the following modifications. In step 2, in the

expansion process of INE∗(qpi, ki, L,D), when a cached query point is encountered
and L is updated with its nearest neighbors, if its k value is smaller than ki, continue
visiting its adjacent vertices. Before step 3, if there is another query point on the same
edge as qpi with a smaller k value than ki, replace that query point and its corresponding
nearest neighbors with qpi and its nearest neighbors. �

With this “lazy-update” strategy, the LS kNN algorithm is able to process multiple
kNN queries without setting the upper bound of k. Notice that the efficiency of the
strategy largely depends on the distribution of k values in the query stream. The worst
case for the algorithm is when k values are small at the beginning of a query stream and
increase with time. Also notice that, by replacing cached query points with new ones
on the same edge, the enforcement of the precise thresholdD is compromised.
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Fig. 6. Extension to LC kNN

We can also apply the lazy-update strategy to the
C kNN algorithm. As shown in Figure 6, let the bor-
der vertices of the sub-network be v4, v5, v9, and v11.
Suppose also that after processing the k1NN query
at qp1, border vertex v9 is cached with k1 nearest
neighbors. Then, when a k2NN query at qp2 vis-
its the border vertex v9, if k2 ≤ k1, the expan-
sion process updates the query result with the first
k2NNs of v9 and avoids visiting its adjacent vertices.

If k2 > k1, the network expansion is paused and a new k2NN query is fired at v9 to find
k2 nearest neighbors. Then the query uses these NNs of v9 to update the query result
and continues expanding in other directions. The cached k1NNs of v9 are replaced with
its k2NNs.

The pseudo code for this lazy-update clustering approach follows. It uses the same
parameters as the C kNN algorithm, except from the upper bound of k.
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Approach 5. (The LC kNN (S,H,Eps ,MinPts) algorithm)
Execute the C kNN algorithm with the following modification. In step 3, in the

expansion process of INE∗(qpi, ki, L,H), when a border vertex v is visited, if v is in
L and has no less than ki cached NNs, update Qdp with the kiNNs of v. If v is not in L
or it has less than ki cached NNs, run INE∗(v, ki, L), place the result (v, QP v) in L,
and update Qdp. �

We can also extend the SC kNN algorithm by applying the above-described strategies.
We omit the presentation of the “Lazy-Combined Approach” (denoted as Approach 6)
and denote the algorithm as the LSC kNN algorithm. It has the same parameters as
the SC kNN algorithm, but is able to handle multiple nearest neighbor queries with
arbitrary k values.

3.3 Discussion

As pointed out in the coverage of the VN3 and Island approaches [5,8], for an online-
processing system, it is necessary to consider updates to the road network as well as
points of interest during query processing. For the algorithms proposed in this paper,
updates to both the network and data points will cause the cached list L to be truncated
and re-filled by new queries. In addition, since the Islands approach uses a similar net-
work expansion algorithm as the INE algorithm, the approaches proposed here can be
directly applied with the Islands approach. It will be an interesting direction to consider
how to accommodate updates to the network and points of interest data while, at the
same time, improve the efficiency of processing multiple queries.

As we have proposed a total of 6 approaches, we believe that, since the different
approaches may perform best in different situations, it is possible to design query ex-
ecution strategies that, based on given situations, automatically switch among these
approaches to always achieve the best performance. The switching among the six ap-
proaches is straightforward since one only needs to replace the network expansion strat-
egy in the INE∗ algorithm. In the next section, we focus on experimentally exploring
the settings for which each of the approaches excels.

4 Evaluation

We use two data sets for examining the performance properties of the caching ap-
proaches. The first consists of a real-world road network and associated points of in-
terest for Aalborg (AAL), Denmark, containing 11, 300 vertices, 13, 375 bi-directional
edges, and 279 data points. The second data set is a representation of the road network
of San Francisco (SF) [1]. It contains 175, 343 vertices as well as 223, 140 bi-directional
edges. The road network and points of interest data are arranged into disk pages based
on the data structures described for the INE and Islands approaches [5,11]. We set the
page size to 4k and use an LRU buffer for caching the disk pages read by the algo-
rithms. While the Conv kNN algorithm uses the whole main-memory buffer for the
LRU buffer of disk pages, the algorithms proposed in the paper also use an in-memory
list L that occupies part of the main-memory buffer. We also apply the LRU strategy to
L. The total size of the buffer is 15% of the network data. The AAL and SF datasets
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contain 129 and 4, 023 pages. We study the performance of these approaches in terms
of the average disk accesses. The approaches are implemented in C++ (the DBSCAN
algorithm is based on the source code kindly provided to us by its authors [3]).

Values for parameters used in the experiments are listed in Figure 7 (the values in

Query Points 200, 500, 2000, 5000, 20000

Range of k [1, 5], [1, 10], [1, 20], [1, 50], [1, 80]

Size of List L 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 of
the buffer size

Threshold D 0.001, 0.005, 0.01, 0.05, 0.1 of Dmax

Histogram Cells 5×5, 8×8, 10 × 10, 15×15, 20×20

Eps 2 ∗Cl

MinPts 0.5 ∗ Cave

Fig. 7. Parameter Values

bold are defaults). Briefly, they
are the number of query points,
the range of k, the size of
the cached list L, the distance
thresholdD, the number of his-
togram cells, and parameters
Eps and MinPts for the clus-
tering algorithm. We define the
maximum Euclidean distance
between any two vertices of
the road network as Dmax. The

distance threshold D is represented as a fraction of Dmax. The histogram is a uniform
m×m grid exactly covering the MBR of the whole road network. We define Cl as the
length of the diagonal of a histogram cell, and Cave as the average number of query
points inside an “occupied” cell, i.e., a cell containing at least one query point. The
parameter Eps is represented as a function of Cl, and MinPts as a function of Cave .

We use the real data points in the AAL data set and introduce synthetic data points
for the SF data set in our evaluations. The synthetic data points are generated randomly
at a density of 0.1%, where the density is defined as the number of data points versus the
number of bi-directional edges in the network. The query points and k values (within a
given range) are generated randomly.

In the experiments, we first explore the differences among the sharing, clustering,
and combined approaches. As described, updates to network data cause the cached list
L to be invalidated for all approaches. Depending on the frequency of such updates,
the average number of queries issued in-between two resettings of the cached list L
may vary. In the first set of experiments, we explore the average query performance for
varying amount of queries. The average number of disk accesses per query is measured,
and the experiments are run on both the AAL and SF data sets, for both cases with and
without a known upper bound on k. The parts of the curves to the right in Figure 8
describe the performance when updates are infrequent, while the parts of the curves
towards the left represent the performance when updates are increasingly frequent.

For the clustering approach, at the beginning of each experiment, all the query points
to be executed are clustered. Assuming that the query distribution does not change with
time, the resulting sub-networks should be similar to the sub-networks generated by
clustering a history of past queries as described in Section 3. Figure 8 shows that the
sharing approach is competitive with the conventional algorithm in the AAL network,
but has worse performance in the SF network. The results also demonstrate that the
clustering and the combined approaches have high costs for very small amounts of
query points. Thus, when the cached list L is invalidated too often, which happens
when updates occur, the approaches are worse than Conv kNN .
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(a) Average Performance with Upper Bound of k

(b) Average Performance without Upper Bound of k

Fig. 8. Accumulated Query Performance

To study in detail how the cached data influence query efficiency, we perform 5, 000
queries (on the AAL data set) and measure the average disk accesses for every 100
queries. We define the “steady state” for the cached list L as the first time it becomes
full. As illustrated in Figure 9, the performances of the sharing approaches are very
close to that of the conventional algorithm, but exhibit slightly better performance than
Conv kNN after the “steady state.”

The clustering and combined approaches both show substantially improved query
performance after the steady state. An interesting observation is that the clustering
algorithm with an upper bound of k (C kNN ) has the worst performance of all (see
Figure 9(a)), while the variant without an upper bound of k, LC kNN , is the best one
(see Figure 9(b)). This is because the upper bound of k in the first case is used by
kNN queries at border vertices. Depending on the value of kmax, each such query has
a substantial cost and the corresponding cached result occupies substantial space in the
list L. On the other hand, the LC kNN algorithm incurs smaller cost for the queries at
border vertices and uses less caching space to save the results of these queries, which,
in turn, enables more items to be cached in L.
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(a) Disk Accesses with Upper Bound of k

(b) Disk Accesses without Upper Bound of k

Fig. 9. Evolution of Performance on AAL Network

Figures 9(b) and 8(b)
show that the LC kNN
algorithm is slightly better
than LSC kNN for the
AAL data set, while the
same experiment on the
SF data set shows that
LSC kNN outperforms
LC kNN . To further study
the differences between
these two approaches, ex-
periments were performed
varying other parameters:
the size of the cached list
L, the amount of cells in a
histogram of queries, and
the distance threshold D
used by the LSC kNN
approach. Figure 10 shows
the results for the AAL data
set. It can be observed that
the LSC kNN algorithm
performs better than the
LC kNN algorithm when
the cache size is small,
but it is outperformed
by LC kNN when the
cache size grows. With

more histogram cells, the LC kNN algorithm seems to get worse and worse as the
number of border vertices becomes too large compared to the given cache size. As
expected, when the distance threshold D increases, less and less results of queries
from non-border vertices are saved in the cache, and the performance of LSC kNN
becomes closer to LC kNN . The difference between the LC kNN and LSC kNN
algorithms is also affected by the network topology, the density and distribution of data

Fig. 10. Comparison of LC kNN and LSC kNN on Other Parameters (AAL)
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Fig. 11. Comparison of Approaches With or Without kmax (AAL)

points (the AAL data set includes real data points with a density of 2% and the SF data
set has synthetic, uniformly distributed data points with a density of 0.1%), as well as
the effect of the clustering functions.

Based on the described experiments, we conclude that with a tight upper bound on k
that is not far from the average k value of the queries, the combined approach is the best
suited approach. For the case where there is no such upper bound, both the clustering
and the combined approaches have similar performance. The clustering approach may
then be preferable because it is simpler than the combined approach.

To explore further the difference among the approaches when the upper bound of
k is fixed or not, we execute 5, 000 queries for different ranges of k values. The para-
meter kmax is used in the S kNN ,C kNN , andSC kNN algorithms, while the “lazy”
variants of these algorithms use actual k values as described in Section 3. As shown
in Figure 11, the performances of the S kNN and LS kNN algorithms are quite close
even with a very big upper bound of k. The combined approaches exhibit similar be-
havior. In contrast, the difference between the performances of C kNN and LC kNN
is substantial. Comparing the performances of LC kNN and SC kNN , we conclude
that the “lazy” clustering approach (LC kNN ) is the most suitable, independently of
whether the upper bound of k is known or not.

Experiments were also performed to check how the performance of these algorithms
is influenced by other parameters, i.e., density of data points and the clustering parame-
ters Eps and MinPts . The results of these experiments, not covered in detail here, are
quite consistent to those reported and thus provide a further validation of our findings.

Summarizing the performance evaluation, we can conclude that when the amount of
successive queries between adjacent updates in a workload exceeds one thousand, the
proposed approaches have better performance than the conventional approach, which
uses the main-memory buffer solely as a disk-page buffer. Next, the “lazy” clustering
approach (LC kNN ) is the most competitive of the proposed approaches under a broad
variety of settings.

5 Summary and Research Directions

With focus on the use of main-memory caching strategies for improving the efficiency
of multiple k nearest neighbor query processing, this paper presents a total of six
caching algorithms. The paper first presents three basic approaches that assume that
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an upper bound on k is known a priori. Then it extends these approaches to contend
with the general case where the upper bound is unknown.

Empirical performance studies demonstrate that the algorithms excel over the con-
ventional algorithm in a variety of circumstances. The algorithms termed the “lazy”
clustering approach is the best in most settings. In addition, these algorithms are easy
to implement and can be used in combination to achieve multiple k nearest neighbor
query processing that outperforms existing proposals.

Future work can be explored in several directions. First, as discussed in the paper,
it is relevant to consider updates to the network as well as the points of interest when
processing multiple queries. Second, it is of interest to conduct a theoretical analysis
of the relationships among parameters such as the cache size, the range of k, the query
throughput, the data point density, and the performance of multiple queries. Third, it is
of interest to investigate approaches that off-load the server side by delegating process-
ing to the mobile devices.

Acknowledgments. C. S. Jensen is also an adjunct professor in Department of Tech-
nology, Agder University College, Norway.
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Abstract. In order to search similar moving object trajectories, the pre-
viously used methods focused on Euclidean distance and considered only
spatial similarity. Euclidean distance is not appropriate for road network
space, where the distance is limited to the space adjacent to the roads. In
this paper, we consider the properties of moving objects in road network
space and define temporal similarity as well as spatio-temporal similarity
between trajectories based on POI (Points of Interest) and TOI (Times
of Interest) on road networks. Based on these definitions, we propose
methods for searching for similar trajectories in road network space. Ex-
perimental results show the accuracy of our methods and the average
search time in query processing.

Keywords: Trajectories, Road Network Space, Spatio-Temporal
Similarity.

1 Introduction

In the real world, most moving objects exist in road network space rather than in
Euclidean space. Nevertheless, most previous studies on moving object trajecto-
ries have been based on Euclidean distance. Euclidean distance is not appropri-
ate for road network space in query processing or measuring similarity between
moving object trajectories.

The previously used methods related to searching for similar moving object
trajectories have several problems. First, the previous methods were based on
Euclidean space. This is not suitable for road network space with the distance
defined along a road. That is, it is difficult to apply the distance of Euclidean
space to road network space. Second, the previous methods considered only
spatial similarity without considering temporal similarity to search for similar
moving object trajectories. For example, if two moving objects pass through the
same points at different time intervals, we can know that they are similar to
each other spatially, but not spatiotemporally.

In order to solve the problems of the previous methods, we investigate the
properties of moving objects on road networks and consider spatial similarity as
well as temporal and spatio-temporal similarity. In terms of real applications,
we are not interested in meaningless locations or times. We consider interesting

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 282–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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points on road networks. We also interest in the time interval of moving objects
on road networks. In this paper, we define temporal similarity as well as spatio-
temporal similarity between moving object trajectories based on POI (Points
of Interest) and TOI(Times of Interest). Based on these definitions, we propose
methods for searching for similar trajectories of moving objects on road networks.

This paper is organized as follows. In section 2, we introduce the related work
and the problems of the previously used methods and propose the motivations
of this paper. In section 3, we propose methods in order to search for similar
trajectories on road networks based on POI and TOI. Experimental results are
given in section 4. Finally, we conclude and suggest future work in section 5.

2 Related Work and Motivation

In this section, we introduce related work with moving object trajectories on
road networks. We discuss the problem of previous methods and propose the
motivations of this paper.

2.1 Related Work

In order to analyze the behavior of moving objects, we must first define a sim-
ilarity measure between moving object trajectories. To define this similarity,
research representing the trajectory of moving objects in road network space is
required. There has been some research representing moving object trajectories.
Models for representing and querying moving objects on road networks were pre-
sented in [1][2] and approaches for representing and reasoning moving objects in
constrained environments moving along a road network were introduced in [3][4].

In previous studies, the similarity measure between trajectories was based
on Euclidean space and considered only spatial similarity without considering
temporal and spatio-temporal similarity. In particular, some methods searching
for similar trajectories were introduced in [5][6]. The method proposed in [6]
searched for the most similar trajectory with a given query trajectory. However,
it is not suitable for road networks because this method is based on Euclidean
space. The similarity retrieval for the trajectory of mobile objects was presented
in [7], which determined the similarity between trajectories based on shape. Con-
trary to other existing studies, this considered the spatio-temporal similarity but
has the problem of Euclidean distance. Methods searching for similar trajecto-
ries using the distance function based on OWD (one way distance) or Time
Warping Distance were proposed in [8][9]. These methods also considered only
spatial similarity without considering temporal and spatio-temporal similarity
and it is difficult to apply these to road network space because of the problem
of Euclidean distance and Time Warping Distance.

2.2 Motivation

In order to search moving object trajectories, some methods of existing research
have been proposed in Euclidean space. However, Euclidean distance is not
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appropriate for roadnetwork space defined along a road.We investigate several dif-
ferences between Euclidean space and road network space. First, while moving ob-
ject trajectories in Euclidean space are expressed to a sequence of points in (x,y,t)
space, those of road networks are represented as a set of (SegID,offset,t), where
SegID is a road sector identifier, and offset is the offset from the starting point
of the road sector. Therefore, the distance between two points is calculated more
easily on road networks defined along road sectors than Euclidean space. Second,
moving object trajectories in Euclidean space have a linear interpolation problem.

Figure 1 shows the difference in linear interpolation between Euclidean space
and road network space. In figure 1, the moving object trajectory TRA passes a
and c. For example, suppose that find an intermediate point between a and c.
Then, we can find point b in road network space using (SegID, offset,t), but find
point b’ in Euclidean space. This means that Euclidean distance is not suitable
for road network space.

TRA

a

b'

c

b

10:00

10:10

10:05

Fig. 1. Linear interpolation between Euclidean space and road network space

Based on these properties, figure 2 shows another example of the difference
between Euclidean space and road network space. In figure 2, suppose that find
the nearest two gas stations from a moving vehicle. If we find them by Euclidean
distance, they are a and d. However, if we find them along a road, they are e and
f. Consequently, we can know that a and d are meaningless gas stations from a
given vehicle.

Most previous methods considered only spatial similarity in measuring the sim-
ilarity between moving object trajectories. For example, if two trajectories pass
through the same points at different time intervals on road networks, we under-
stand by spatio-temporal intuition that they are not similar to each other. How-
ever, previous methods asserted that two trajectories are similar to each other.

To solve these problems concerning previous methods, we define spatial and
temporal similarity based on road networks. In general, moving objects on road
networks are represented as locations and times obtained by GPS. In real appli-
cations, however, we are not interested in these meaningless locations or times.
We consider POI (Points Of Interest) on road networks and TOI (Times Of
interest) of moving objects. In this paper, we define similarity between moving
object trajectories based on POI and TOI and search for similar trajectories
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Gas
station

a

b

c

d e

f

g

Fig. 2. Difference between Euclidean distance and road network distance

based on this similarity. For example, if two trajectories passed the same POI
and TOI, we assert that they are similar to each other.

Figure 3 shows an example of how to define similarity of trajectories based on
POI and TOI. For example, suppose that compare the similarity Sim(TRA,TRB)
between two trajectories TRA and TRB and the similarity Sim(TRB,TRC) be-
tween two trajectories TRB and TRC . In figure 3, while TRA and TRB have
a few temporal differences because they pass the same POIs at different time
intervals, TRB and TRC do not fully pass the same POIs but pass at an almost
similar time interval. In figure 3, it is hard to distinguish the differences between
Sim(TRA,TRB) and Sim(TRB,TRC). Therefore, we define not only temporal
similarity and spatio-temporal similarity but also spatial distance and spatio-
temporal distance based on POI and TOI. We propose methods for searching
for similar trajectories using these definitions.

TRA

TRB

TRC

10:00 10:10 10:20

10:4010:30

10:10

10:00

10:20 10:11 10:2110:30

10:40 10:5010:31

10:41

a b c

d
e

f

g

Fig. 3. How to define similarity of trajectories

3 Methods for Searching for Similar Trajectories on
Road Networks

It is difficult to search directly for similar trajectories from a number of tra-
jectories on road networks. To search for similar trajectories on road networks,
therefore, we need a filtering step. In this paper, we use spatial filtering and
temporal filtering because we search for similar trajectories based on spatial and
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Querying Trajectory

Step 1: Filtering

Step 2: Refining similar trajectories

Similar
Trajectories

Fig. 4. Process of searching for similar trajectories

temporal similarity. Spatial filtering is considered by spatial similarity, which is
based on POI. The spatial similarity was proposed in our previous research[10].
Temporal filtering is considered by temporal similarity, which is based on TOI.
For example, if two trajectories passed by the same TOI, it is regarded that they
are similar to each other temporally.

After performing the filtering step based on the spatial or temporal similarity,
we need a refinement step in order to search for similar trajectories. In this paper,
we use the refinement step in order to search for similar trajectories from the
trajectories selected by the filtering step. Figure 4 shows the process of searching
for similar trajectories by using the filtering step and the refinement step.

We introduced the following three methods in our previous research in order
to search for similar trajectories on road networks[10]. Among three methods, we
proposed the method for searching for similar trajectories in [10], which consists
of two steps; the filtering step based on spatial similarity and the refinement
step based on temporal distance. We also investigated problems related to the
remaining methods. In this paper, we present methods in order to search for
similar trajectories by solving the problems of our previous research.

• Method 1: Searching for similar trajectories based on spatial filtering and
temporal distance.
• Method 2: Searching for similar trajectories based on temporal filtering and

spatial distance.
• Method 3: Searching for similar trajectories based on spatio-temporal filter-

ing and spatio-temporal distance.

In this section, we investigate each method in detail.

3.1 Searching for Similar Trajectories Based on Spatial Filtering
and Temporal Distance

We proposed method 1 in our previous research. We briefly introduce method 1
in this subsection. Method 1 filters trajectories based on spatial similarity and
refines similar trajectories based on temporal distance. We defined the spatial
similarity between trajectories based on POI in method 1.
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TRA
TRB

TRC

Selected by filter Filtered out

p1 p2

p3

Fig. 5. Spatial Filter by POIs

Figure 5 shows an example of filtering based on the spatial similarity for POIs
(p1,p2,p3) of a given query. As shown in figure 5, TRA and TRB were selected
by filtering and TRC was filtered out.

In [10], we defined spatial similarity as well as the temporal distance between
trajectories so as to apply method 1. Figure 6 shows an example of temporal
distance between two trajectories. In this figure, the temporal distance between
two trajectories TRA and TRB is calculated as follows:

distT (TRA, TRB, P ) = 10 + 10 + 10 + 20 + 15 = 65

TRA
TRB 10:00 10:10 10:20

10:4010:30

10:10 10:20 10:30

10:50 10:55

p1 p2

p3

p4 p5

Fig. 6. An example of temporal distance

The advantage of this method is that a lot of trajectories are removed from
trajectory data by spatial filtering. The disadvantage is that a long period of time
is required in spatial filtering because the time complexity for the comparison
between POIs of the query trajectory and those of trajectory data is O(n2).

3.2 Searching for Similar Trajectories Based on Temporal Filtering
and Spatial Distance

In terms of practical application, the meaning of distance between two time in-
tervals can rarely be found. Thus, our previous research introduced that method
2 was not appropriate for searching for similar trajectories. However, we are
interested in time intervals of moving objects. TOI (Times of interest) is an
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important characteristic of road networks. If trajectories pass the same points
at the same TOI on road networks, we consider that they are similar to each
other. Therefore, we define temporal similarity based on TOI. For example, the
heaviest traffic time intervals on a specific road network can be TOI. We filter
trajectories using this definition. If two trajectories pass through the same TOI,
they are considered similarity by the following definition:

Definition 1. Temporal Similarity between Trajectories on Road Networks. Sup-
pose that T is a set of TOIs on a given road networks. Then, temporal similarity
between two trajectories TRA and TRB is defined as

SimTOI(TRA, TRB, T )=

⎧⎨
⎩

1, if∀t ∈ T,
t∈ [ts(TRA), te(TRA)] && t∈ [ts(TRB), te(TRB)]

0, otherwise

Figure 7 shows an example of filtering based on temporal similarity. Suppose
that TOI of a given query trajectory is [8:00 ∼ 9:00]. Then, TRC, TRD and
TRE are selected according to temporal similarity.

time07:00 07:30 08:00 08:30 09:30

TRA

TRB

09:00

TRC TRD

TRE

TRF

(x,y)

Times Of Interest

Fig. 7. Temporal Filter by TOI

With filtered trajectories based on temporal similarity, we define spatial dis-
tance and refine similar trajectories based on this. Spatial distance can be defined
as the difference between the locations of two objects passing the same TOI as
follows:

Definition 2. Spatial Distance between Trajectories. Suppose that t ∈ T , and T
is the set of TOIs. Then the spatial distance between two trajectories TRA and
TRB is defined as

distS(TRA, TRB, T ) =
∑

distS(p(TRA, ti), p(TRB, ti))

Figure 8 shows an example of the spatial distance between two trajectories TRA

and TRB. Their spatial distance is calculated as follows:

distS(TRA, TRB, T ) = 3 + 4 + 2 + 2.5 + 3.5 = 15

Consequently, method 2 searches for similar trajectories using filtering based
on temporal similarity and refining based on spatial distance. However, the dis-
advantage of this method is that many trajectories are selected from trajectory



Searching for Similar Trajectories on Road Networks 289

time10:10 10:20 10:30 10:40 10:50

TRA

TRB3

4

2
2.5

3.5

Fig. 8. An example of spatial distance

Algorithm 1. Searching on based Temporal Filter and Spatial Distance

Input. input trajectories TRIN , threshold δ, query trajectory trQ, TOI set T ,
time interval t

Output. similar trajectories TROUT

Begin
TRCandidate ← φ
TROUT ← φ
For each tr ∈ TRIN

If tr.t ⊇ trQ.t
then TRCandidate ← TRCandidate ∪ {tr}

For each tr ∈ TRCandidate

If distS(trQ, tr, T ) < δ
then TROUT ← TROUT ∪ {tr}

return TROUT

End

data by temporal filtering. For example, if the time interval of a query trajectory
is much shorter than the total time interval for all moving objects, most trajec-
tories are selected from trajectory data; nevertheless, the advantage is that little
time is required in temporal filtering because the comparison between the time
interval of a query trajectory and that of the trajectory data can be calculated
simply and quickly.

Algorithm 1 summarizes the search procedure of method 2 explained in this
subsection. It consists of two steps; the filtering step based on temporal similarity
and the refinement step used in order to search for similar trajectories based on
spatial distance.

3.3 Searching for Similar Trajectories Based on Spatio-temporal
Filtering and Spatio-temporal Distance

There is a possibility that we search more efficiently for similar trajectories,
if spatio-temporal similarity is considered in searching for similar trajectories
on road networks. Therefore, method 3 considers both methods 1 and 2. That
is, method 3 uses spatial and temporal similarity together in the filtering step.
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Afterwards, we refine similar trajectories using spatio-temporal distance based
on POI and TOI. In order to apply this method, we need a definition for measur-
ing spatio-temporal distance. However, we stated in section 2 that it is difficult
to define similarity between trajectories by spatio-temporal distance directly. In
this paper, we regard spatio-temporal distance as the sum of temporal distance
and spatial distance, which is defined as follows:

Definition 3. Spatio-Temporal Distance between Trajectories. Suppose that TRA

and TRB are two trajectories. Then the spatio-temporal distance between TRA

and TRB is

distST (TRA, TRB) = distT (TRA, TRB) + distS(TRA, TRB)

To use this definition, the equivalence between temporal distance and spatial dis-
tance is defined so that 1 second = α meters. Moving objects on road networks
move with various speeds. With this observation, we solve the equivalence prob-
lem between temporal distance and spatial distance using the speed of moving
objects. That is, the equivalence problem between temporal distance and spatial
distance is solved by the following formula:

ConvtS(TRA, TRB) = |(VTRA)− VTRB )| × distT (TRA, TRB)

The above formula converts temporal distance into spatial distance. Applying
this formula to definition 3, the spatio-temporal distance between two trajecto-
ries is defined as follows:

distST (TRA, TRB) = ConvtS(TRA, TRB) + distS(TRA, TRB)

By solving the equivalence problem, it is possible to represent the spatio-
temporal distance as the spatial distance. Consequently, we search for similar
trajectories based on spatiotemporal similarity and spatiotemporal distance. Fig-
ure 9 shows an example of the spatiotemporal distance between a query trajec-
tory TRQuery and the other trajectory TRA. In this figure, suppose that the
distance from p1 to p4 is 30 km and that between each POIs is 10 km, with
each speed of TRQuery and TRA during the blocks being 60 km/h and 30 km/h.
Then, a query trajectory passes through four POIs(p1,p2,p3,p4) during the time
interval [10:00∼10:30].

TRA

p1

10:00

11:00

TRQuery 10:00

10:30

10:20

10:40

10:10

10:20

p2

p3

p4

Fig. 9. An example of spatio-temporal distance
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As shown in figure 9, TRA satisfied the condition of TRQuery. Thus, the
spatio-temporal distance between TRQuery and TRA is calculated as follows by
the above formula and definition:

distST (TRQuery, TRA) = distT (TRQuery, TRA) + distS(TRQuery, TRA)
=|(VQuery−VA)|×distT (TRQuery, TRA)+distS(TRQuery, TRA)
=|(60km/h− 30km/h)|× 60 minutes + 30 km = 60 km

The advantage of this method is that the similar trajectories with a query tra-
jectory are selected by spatial and temporal filtering, but the disadvantage is that
more similar trajectories than the selected trajectories are included among the
trajectories removed by the filtering step. For example, figure 10 shows another
example of the spatio-temporal distance between the query trajectory TRQuery

and the trajectory TRB removed by the filtering step. In this example, we follow
the assumptions of figure 9. We just suppose that the speeds of two trajectories
TRQuery and TRB are 60 km/h and 75 km/h.

TRB

p1

10:00

10:24

TRQuery 10:00

10:30

10:08

10:16

10:10

10:20

p2

p3

p4

Fig. 10. Another example of spatio-temporal distance

When apply equally with the example of figure 9, the spatio-temporal dis-
tance between two trajectories is calculated as follows:

distST (TRQuery, TRB) = distT (TRQuery, TRB) + distS(TRQuery, TRB)
=|(VQuery−VB)|×distT (TRQuery, TRB)+distS(TRQuery, TRB)
=|(60km/h− 75km/h)|× 12 minutes + 15 km = 18 km

With distST (TRQuery, TRA) and distST (TRQuery, TRB) of the above exam-
ples, we know that TRB is more similar than TRA to the query trajectory
TRQuery. However, method 3 does not compare TRB with TRQuery because
TRB is a trajectory removed by the filtering step based on temporal similarity.

Algorithm 2 summarizes the search procedure of method 3 explained in this
subsection.

4 Experimental Results

In order to examine the feasibility of methods proposed in this paper, we
performed experiments that compare the accuracy and the performance of our
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Algorithm 2. Searching on based Spatio-Temporal Filter and Spatio-
Temporal Distance

Input. input trajectories TRIN , threshold δ and ε, query trajectory trQ,
POI set P , TOI set T , time interval t

Output. similar trajectories TROUT

Begin
TRCandidate ← φ
TROUT ← φ
For each tr ∈ TRIN

If (∀p ∈ P , p is on tr) && (tr.t ⊇ trQ.t)
then TRCandidate ← TRCandidate ∪ {tr}

For each tr ∈ TRCandidate

If (distT (trQ, tr, P ) < δ) && (distS(trQ, tr, T ) < ε)
then TROUT ← TROUT ∪ {tr}

return TROUT

End

methods. In previous research, the most representative moving object generator
based on road networks was T.Brinkhoff’s moving object data generator[11][12].
Data generated by T.Brinkhoff’s generator is not fit to real data because its
movement is uniform and acceleration and deceleration are unexpressed. Thus,
We experimented with a moving object generator based on real road networks
in Pusan. This generator reflects the real road information and the traffic in-
formation and generates a near real moving object data by adding the various
speeds of moving objects.

Figure 11 shows the generator of moving object data used in this paper. We
defined 10,000 POIs on road networks in Pusan. We generated 100,000 moving
object trajectories using this generator and 5,000 query trajectories from the
moving object trajectories.

In our experiments, we compared our methods proposed in this paper. Figure
12 shows the consistency rate when searching for the same trajectory between
method 1 and method 3. As shown in this figure, method 1 and method 3 show a
high consistency rate. Here, we regarded the search result of the same trajectory
by using these two methods as having been in agreement. For example, suppose
that find the most similar trajectory with a query trajectory. As shown in this
figure, the consistency rate between method 1 and method 3 is 100 % because
they found the same trajectory.

We excluded method 2 from this experiment because method 2 searched for so
many trajectories and they included meaningless trajectories. These meaningless
trajectories are trajectories that pass different POIs with a query trajectory. This
means that most trajectories are selected by temporal filtering because the time
intervalofaquerytrajectory is smaller thanthetotal life spanforallmovingobjects.
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Fig. 11. Generator of moving object trajectories based on road networks
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Fig. 12. Consistency rate between method 1 and method 3
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Figure 13 shows the average search time in query processing for our methods
by changing the number of POIs. As stated above, method 2 searched for so
many trajectories including meaningless trajectories. As shown in this figure,
however, method 2 required the least search time. Contrary to our expectations,
this means that method 1 is more necessary the search time than method 2.
Because the time complexity of the spatial distance and the temporal distance
is O(N), those of the spatial filtering and the temporal filtering are O(n2) and
a constant.

5 Conclusion and Future Work

The previously used methods related to searching for similar moving object tra-
jectories were based on Euclidean space. A few studies introduced a similarity
measure between moving object trajectories in road network space, but most
studies considered only the spatial similarity between trajectories. In this paper,
we defined the temporal similarity and the spatio-temporal similarity as well as
the spatial distance and the spatio-temporal distance based on POI and TOI.
Based on these definitions, we proposed methods for searching for similar tra-
jectories on road networks. Our experimental results showed the accuracy of our
methods and the average search time in query processing.

In the future, we will apply data mining techniques such as pattern analysis or
clustering method to moving object trajectories on road networks. By using these
mining techniques, detection of specific patterns of moving object trajectories or
clusters of similar trajectories may be possible in the future.
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Abstract. Data Stream Management (DSM) addresses the continuous
processing of sensor data. DSM requires the combination of stream op-
erators, which may run on different distributed devices, into stream
processes. Due to the recent advantages in sensor technologies and wire-
less communication, DSM is increasingly gaining importance in various
application domains. Especially in healthcare, the continuous monitoring
of patients at home (telemonitoring) can significantly benefit from DSM.
A vital requirement in telemonitoring is however that DSM provides a
high degree of reliability. In this paper, we present a novel approach to
efficient and coordinated stream operator checkpointing supporting reli-
able DSM while maintaining the high result quality needed for healthcare
applications. Furthermore, we present evaluation results of our check-
pointing approach implemented within our process and data stream man-
agement infrastructure OSIRIS-SE. OSIRIS-SE supports flexible failure
handling and efficient and coordinated checkpointing by means of consis-
tent operator migration. This ensures complete and consistent continuous
data stream processing even in the case of failures.

1 Introduction

Data Stream Management (DSM) addresses the continuous processing of sen-
sor data. This is done by combining dedicated stream operators into stream
processes. These operators might run on different distributed devices (e.g., sensor
signal filtering at a PDA while sophisticated analysis and correlation operators
are hosted by a more powerful server). Recent advantages in wireless communi-
cation standards, powerful mobile devices, and wearable computers proliferate
ubiquitous and pervasive computing. At the same time, new sensor technologies
are emerging and producing vast amounts of data. These trends are fostering
distributed DSM. Especially in healthcare, the continuous monitoring of patients
at home (telemonitoring) is becoming more and more important, mainly due to
the progression of chronic ailments in an aging society. A vital requirement in
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Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 296–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient and Coordinated Checkpointing for Reliable Distributed DSM 297

telemonitoring is that the infrastructure for distributed DSM provides a high
degree of reliability and availability, since it can potentially be life-saving.

Consider, as an example, a patient being equipped with a wearable telemon-
itoring system consisting of ECG and blood pressure sensors attached to the
body. Quality of life and disease treatment can greatly benefit from reliable and
correct interpretation of the patient’s physiological signs. Dedicated operators
(e.g., for detection of pathological heartbeats) are shared among a wearable de-
vice (e.g., smartphone or PDA), a PC at the patient’s home and servers at the
caregiver side. Sensor information is reliably processed by a telemonitoring in-
frastructure. A telemonitoring infrastructure offers distributed DSM, supports
the analysis of the data accumulated, and allows extracting and forwarding rel-
evant information to the healthcare provider in charge. Reliability is of utmost
importance in this scenario. Therefore no data stream elements are allowed to be
omitted from processing since the infrastructure is in charge of detecting critical
situations or even anticipating them.

In this paper, we present coordinated and efficient checkpointing of various
operators within a stream process in order to reduce runtime and recovery over-
head by maintaining result quality even in case of multiple failures. We consider
a passive standby reliability approach [1] based on checkpointing as promising to
the medical application scenario, where result quality is of utmost importance.
Furthermore, we apply reliability in a fine grained way at the level of opera-
tors, rather than considering the whole stream processing engine running on
the affected node. Hence in case of failures or overload situations, each running
operator instance can be individually restarted at the best available node. The in-
cident of restarting an operator instance on an alternative node is called operator
migration. Based on operator migration, we propose and evaluate a new reliabil-
ity protocol, called Efficient and Coordinated Operator Checkpointing (ECOC),
to reduce the drawbacks of passive standby, i.e., high runtime and recovery over-
head. Similar high demands on result quality may also arise in different stream
processing applications, e.g., traffic control or scientific sensor networks.

The ECOC approach is incorporated into OSIRIS-SE [2,3], our infrastructure
for distributed DSM. In particular, OSIRIS-SE provides an infrastructure that
is able to efficiently combine, process, and manage continuous streams of data
coming from different sensors across a loosely coupled network of nodes.

This paper is organized as follows: The basics of our data stream model and
an overview of failures are presented in Section 2. In Section 3, we describe our
ECOC approach to efficient and coordinated checkpointing in order to achieve
a high degree of reliability for data stream management. Section 4 describes
the implementation within OSIRIS-SE and gives experimental results on our
reliability strategies. Section 5 surveys related work and Section 6 concludes.

2 Data Stream Model and Supported Failures

The basis of our ECOC approach on data streams is the operator and fail-
ure model we present in this section. A data stream is defined as a continuous
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transmission of sequentially ordered data elements. Each data element contains
several data items as payload information and has a time context. For the illus-
tration of timing issues (as used in Fig. 4), we apply two timelines to data stream
elements: Each stream element has a logical time context (e.g., sequence num-
ber), which is called stream-time. On the other hand, each stream element has a
physical time context, which corresponds to the time of execution by the consum-
ing operator instance and is called execution-time. Stream elements which are
pipelined through multiple operator instances have consequently one execution-
time per operator. The latency between the execution-times of two subsequent
operators is caused by processing and transmission delays and is only visible at
execution-time scale. The stream-time is not showing these delays. If delays were
neglected, stream-time and execution-time coincide.

2.1 Operators

Operators (Fig. 1) perform the processing steps as atomic units of execution
of DSM by consuming input elements and producing output elements (marked
in grey color in Fig. 1), while performing a state transition. Produced output
elements are stored in output queues for downstream operators. In the remain-
der of the paper, the term ‘operator’ is used as short notation for an operator
instance. A node in the DSM infrastructure hosting a running operator is also
called provider. With respect to the investigated application scenario, we con-
sider operators as stateful and deterministic machines. This means that every
operator produces the same output stream and result into the same operator
state when provided with the same input stream starting from the same opera-
tor state without regarding the execution-time. Optionally, the processing step
may produce a side effect, e.g., performing a backup of the current operator
state. A processing step has a stream-time context tuple according to the last
consumed and last produced stream elements (shown grey in Fig. 1). In the fol-
lowing, we describe the state information accumulated during the execution of
an operator instance, which is called operator state:

Stream-Time Context: The stream-time context refers to the last processing step
executed by the operator with respect to input and output streams.
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Processing State: Operators may aggregate a processing state. For example, a
windowed average calculation requires to sum all data stream elements within
the time window.

Output Queue: Output queues contain processed data stream elements for down-
stream operators. Data stream elements are allowed to be removed from the
output queue only if no downstream operator relies on them. This mechanism
is described in detail in Section 3.1. The content of input queue shown in Fig. 2
is not considered as part of the operator state. The purpose of the input queue
is solely to decouple transport from execution and assure FIFO order of stream
elements. The elements are immediately removed after processing.

Routing State: The destination of outgoing data streams, which is also stored
within the operator state. This state changes very infrequently. The destination
of an outgoing data stream only changes when the provider of the subsequent
operator has changed, due to either a failure or an overload situation.

Sensor operators are operators without input data streams in our model.
Sensor operators acquire their input directly from senor data sources. Our de-
terministic ECOC approach for reliability is not valid for these sensors, because
regardless they are restarted from a given state, the acquired physical sensor
data will be different and thus the output stream is not consistent. Reliability
for sensor operators demands additional effort, e.g., establishing active standby
sensor operators. Details on this are out of scope of this paper. Output operators
are operators without output data streams. These operators store or transmit
the result of stream processing to external systems.

2.2 Stream Processes

A stream process is a well defined set of logically linked operators continuously
processing the selected input data streams, thereby producing results and having
side effects. Figure 3 illustrates a stream process which continuously monitors
ECG and blood pressure of a patient. Each box in Fig. 3 contains a full-fledged
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operator of Fig. 2. Quality of service parameters attached to a process definition
specify time-constraints for reliability. For example, a timeout-constraint indi-
cates a maximum tolerable delay dmax between stream-time and execution-time.
After exceeding the threshold, the failure has to be handled by operator migra-
tion to ensure proper continuation of DSM. Fig. 4 illustrates this scenario within
the given telemonitoring stream process by using the two timelines of DSM we
introduced. After exceeding dmax the infrastructure starts to seamlessly migrate
the operator instance to another node. After tmigrate the operator is migrated
and after tcatch−up the new operator instance has reduced its delay to normal.

2.3 Reliable DSM and Supported Failures

In general, reliable and fault-tolerant DSM implies that stream processes have
to be executed in a way that the process specification is met, even in case of
failures, i.e., to correctly execute all operators in proper order without generating
gaps, duplicates, or wrong elements in the result stream. The definition based
on our deterministic operator model reads as follows: Reliable DSM produces
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a result stream and side effects, which are equal to the result stream and side
effects produced by an ideal, faultless DSM system.

In this work, our approach supports the following failure scenarios for reliable
DSM: single or multiple fail-stop failures of operator instances or their providers
and single or multiple network failures. Multiple failures are a sequence of single
failures within the recovery time. With respect to failure handling, we apply the
following failure classification:

Temporary failures, e.g., a temporary network disconnection (loss of messages)
or a temporary failure of a provider which is able to recover within the max-
imum allowed delay time dmax, are compensated by the output buffers of the
upstream provider. For recovery, the upstream provider resends the data stream
elements and receives an acknowledge message. Failures exceeding dmax become
permanent failures.

Permanent failures, e.g., a permanent network disconnection or failure of a
provider, require to migrate the operator instance with its aggregated operator
state from the affected provider to another suitable provider. Operator migration
implies the continuation of an operator instance from a recent checkpoint on a
new provider in order to allow for seamless continuation of DSM, and eventu-
ally the stopping of an old running operator instance. Details on handling of
permanent failures are described in Section 3.

Consequences of a failure in distributed DSM usually affect more than one
node of the infrastructure because upstream and downstream operators may be
on different nodes. Therefore, it is vital for proper failure handling of OSIRIS-
SE that all affected nodes detect the failure or have to be informed about the
failure. Further details on OSIRIS-SE can be found in [3].

3 Reliable Operator Checkpointing

In what follows, we present our proposed efficient and coordinated checkpointing
(ECOC) approach in order to provide reliable DSM as needed for example in
healthcare applications.

3.1 Operator Checkpoints

An operator checkpoint implies the reliable storage of the current operator state
at a suitable backup node. The checkpoint contains the processing state, e.g., the
hash table of a hash join or the current sum value for an aggregated sum operator.
Additionally, the current stream-time of each input and output operator is part of
the checkpoint and forms together the time-context tuple, i.e., for a checkpoint
of operator B by (tinB , tout

B ), and for a checkpoint of operator A by (tout
A ), see

Fig. 5. The superscript of the timestamp indicates the data stream, we refer the
timestamp to. For simplification, we have only one input and one output stream
named ‘in’ and ‘out’. The time-context tuple of a checkpoint of operator A has
only one value because A has only one output stream.

Output queues exist for each outgoing data stream, which allow for retrans-
mission of data stream elements between producer and consumer operators in
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case of failures. The time-context of an output queue is characterized by an
time-interval of the oldest and the youngest data stream element in the queue.
This time-interval is given in square brackets, e.g., [t1, t2] describes an output
queue with the oldest stream-timestamp t1 and the youngest stream-timestamp
t2. Within this work the backup node is considered as always available. Nev-
ertheless, a failure of the backup node may be compensated by using multiple
backup nodes, which could be seamlessly integrated in the approach presented
in this paper.

As described in Section 2.1, the output queue elements are part of the operator
state. Output stream elements may be sent to multiple downstream neighbors.
After sending the elements, the sent elements still remain in this output queue.
Whenever an operator is performing a checkpoint, a checkpoint-acknowledge
message (Check-Ack) to the upstream operator indicates the stream-time of the
youngest stream element that has contributed to this checkpoint. Until then,
the downstream operator was able to rely on having the input elements before
this timestamp buffered by the upstream operator. Figure 5 illustrates that by
performing the checkpoint (see Fig. 5a), operator B can be sure that stream ele-
ments already contributing to this checkpoint are no longer needed for possibly
necessary recovery. When all downstream operators have given a Check-Ack for
certain output elements (illustrated in Fig. 5b), the output queue of operator A
is trimmed and these elements are discarded (see Fig. 5c).

3.2 On the Coherence of Operator Checkpoints

Considering operator checkpoints of consecutive operators in the data stream
process flow, we can identify some important time-dependencies which are lever-
aged by our ECOC approach. For illustration and experimental studies, we con-
sider a simple stream process consisting of three operators (ECG, DF, and QRS)
as shown in Figure 6. In here, ‘EGC’ is reading a sensor gathering an ECG sig-
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nal, ‘DF’ is performing digital filtering in order to remove noise, and ‘QRS’ is
analyzing the filtered ECG for detection and evaluation of the QRS complex,
which is an important characteristic of heart activity.

In the following example, we analyze temporal relations between checkpoints
of subsequent operators in the stream process flow. Firstly, DF is performing
a checkpoint and the output queue of ECG is trimmed (illustrated in Fig. 6a).
Secondly, ECG is performing a checkpoint later in time (see Fig. 6b). Since
the time of the ECG checkpoint is later, some elements have accumulated in
the output queue of ECG [tinDF , tout

ECG] and need to be saved within the check-
point. Thirdly, QRS accomplishes its checkpoint at last and DF can trim its
output queue accordingly (illustrated in Fig. 6c). The right hand side of
Fig. 6 illustrates the corresponding timelines of checkpointing as introduced in
Section 2.2.

In case of a single failure, e.g., the provider hosting the DF operator fails,
the DSM infrastructure is able to migrate the operator instance. A new DF
operator instance is restarted from the checkpoint (tinDF , tout

DF ) (see Fig. 6a). Since
operator ECG keeps unacknowledged output elements, operator ECG is able to
replay the data stream to the DF operator. Due to our deterministic operator
model, duplicate data stream elements can be transparently dropped by the
DSM infrastructure. In this failure scenario, the recovery of the output queue of
the failed operator DF is not needed.

We further investigate the failure of two consecutive operators in the process
control flow, e.g., both operators DF and QRS fail, illustrated in Fig. 7. The
DSM infrastructure migrates the operator instances and restarts both opera-
tors from their recent checkpoints (tinDF , tout

DF ; tinQRS). Fig. 7 illustrates different
cases dependent of the relative stream-time between the checkpoint of DF and
QRS. Firstly, both checkpoints of DF and QRS are synchronous with respect to
stream-time (tout

DF = tinQRS). In this case, the recovered DF seamlessly feeds the
recovered QRS. Secondly, we are moving the checkpoint of QRS after the check-
point of DF (tinQRS > tout

DF ).This results in unnecessary duplicates produced by
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DF, because DF has recovered from an older checkpoint than QRS and replays
elements already processed by QRS. Thirdly, the checkpoint of QRS is moved
before the checkpoint of DF (tinQRS < tout

DF ). In this case, QRS expects elements
before the checkpoint of DF. Since operator DF keeps unacknowledged output
elements (starting from the time of the checkpoint of QRS), DF is able to replay
the elements from the recovered output queue and fill the gap. These three fail-
ure scenarios are equivalent to scenarios where multiple consecutive operators
fail.

Concluding the investigations so far, we see that the checkpointing and re-
covery of the output queue is not necessary for the single failure scenario. In the
single failure scenario, the recovered operator starts from a checkpoint, which
is before the current state of any subsequent operator. If a subsequent operator
does not fail in the meantime, it will never need to process older stream elements
again. Furthermore, the investigation of the multiple failure scenario has shown
that the recovery of the output queue is not always needed. In the following, we
guarantee that the most recent checkpoint of a subsequent operator is later or
equal than the most recent checkpoint of its predecessor (e.g., tinQRS ≥ tout

DF ). In
this case, a recovered subsequent operator expects only elements, which are not
yet produced by the recovered predecessor, and the checkpoints does not need
to include the output queue.

Omitting the output queue from checkpointing is beneficial because usually
many stream elements enter the output queue between two consecutive check-
points. For the example of our stream process (Fig. 6), 100 ECG elements are
arriving at the DF operator per second, the processing state of the digital fil-
ter consists of 4 values, and checkpoints are scheduled every 250 elements. In
this case, the processing state is negligible compared to the average size of the
output queue. Since checkpoint messages have to be transferred across network
connections, the size of checkpoint messages has to be reduced by ensuring cases
where no output queues are needed (see Section 4).
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3.3 Efficient Coordinated Operator Checkpointing

Efficient coordinated operator checkpointing (ECOC) describes an algorithm that
applies to the planning of checkpoints in order to guarantee that the input check-
point timestamp of an operator is equal to the output checkpoint timestamp of
the preceding operator. In this case, output queue content can be safely omitted
from checkpoint messages because the output queue is empty at the time of sav-
ing the checkpoint. This strategy describes a protocol between neighboring op-
erators in the process control flow and controls the times of checkpoints. For this
reason, an additional checkpoint-request message (Check-Request) is introduced.

Figure 8 illustrates the messages needed for checkpoint coordination and the
internal logs. Figure 9 describes the algorithm in pseudocode. In order to delay
a scheduled checkpoint for acknowledgment, a two-phase protocol is needed. In
the first phase (planning phase), a checkpoint is scheduled locally and stored
in the pending checkpoint list. Additionally, subsequent operators are informed
by Check-Request messages. In the second phase (backup phase), subsequent
operators confirm the pending checkpoint by Check-Ack messages. If all subse-
quent operators have acknowledged the pending checkpoint is send as permanent
checkpoint to the backup node. The pending checkpoint list is a data structure
in the local memory assigned to an operator instance holding a list of check-
points ordered by their corresponding timestamps. Contrary to the standard
uncoordinated checkpointing, this data structure is additionally needed in order
to perform ECOC. Due to the coordination of the checkpoints, the checkpoints
in the pending checkpoint list are waiting for their acknowledgement from all
subsequent operators. If all acknowledgements are received, it is guaranteed that
permanent checkpoints of downstream operators have the acknowledged stream-
timestamp.

A drawback of the ECOC approach is the delay of permanent checkpoints in
the planning phase with respect to execution time. This delay is not blocking
the stream processing and has no affect on time constraints in stream time.
Assuming the case of a failure in the planning phase, the affected operator is
recovered from the most recent permanent checkpoint before. In this case, correct
data stream processing is still guaranteed, but duplicates are produced because
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1 (true)
2 wait to receive message or for local scheduler event;
3 (message = Check-Request) or (local scheduler event)
4 //planning phase if outputs available
5 outputs.length > 0
6 do pending checkpoint;
7 add to PendingCheckpointList;
8 send Check-Request downstream;
9
10 do permanent checkpoint at backup node;
11 send Check-Ack upstream;
12
13
14 (message = Check-Ack)
15 //backup phase if pending checkpoint available
16 trim ouput queue;
17 PendingCheckpointList.length>0
18 select last pending checkpoint;
19 save pending checkpoint permanently at backup node;
20 trim PendingCheckpointList;
21 send Check-Ack upstream;
22
23

24

Fig. 9. Pseudocode of the ECOC Algorithm

of recovering from the older checkpoint. Therefore, we consider this drawback
as acceptable.

Checkpoints may be triggered by a local operator scheduler or by a Check-
Request message from an upstream operator. The local scheduler can follow
different strategies for checkpoint planning, e.g., every 50 data stream elements
or triggered by side-effects during operator processing.

Figure 10 illustrates the life cycle of pending checkpoints. Firstly, DF receives
a Check-Request message (1.) and adds a pending checkpoint at stream-time 650
into the pending backup list (planning phase). After execution of the pending
checkpoint a Check-Request message (2.) containing the corresponding stream-
time is send to all downstream operators (only QRS in this example). Output op-
erators, like QRS, have no output queues to consider for ECOC and are allowed
to immediately perform a permanent checkpoint (3.). In the backup phase, DF
receives the corresponding Check-Ack message (4.) from the downstream neigh-
bor (QRS), indicating the execution of the requested checkpoint at QRS. In the
meantime DF has received a new Check-Request (5.) for 700, which triggered a
new pending checkpoint and is treated in the same way as the former request.
Only if appropriate acknowledge messages of all downstream operators are re-
ceived, the output queues are trimmed and the last recently pending checkpoint
before or equal the acknowledgement is send as permanent checkpoint (6.) to the
backup node (the one with stream-time 650). The selected pending checkpoint
and all pending checkpoints before are removed from the pending checkpoint list
whereas the newer pending checkpoints are kept in the list. After the permanent
checkpoint of stream-time 650 a corresponding Check-Ack message (7.) is sent
upstream.

Considering side-effects, the local operator scheduler normally plans a check-
point after the execution of a side-effect. Due to the pending checkpoints in
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Fig. 10. Pending Checkpoints for ECOC

our approach, consistency of side-effects needs additional treatment. This can
be done by an undo log for side-effects, which is immediately propagated to the
backup node because a pending checkpoint may not become permanent in case
of a failure during the planning phase. Considering the following example, in
which a heart analysis operator is increasing a counter of pathological heart-
beats as side effect. Given the case that the heart analysis operator has to be
restarted from a recent checkpoint, the number of pathological heartbeats may
be incorrect if pending checkpoints have not become permanent due to a failure.
In this case, the side-effect may be executed too often. Applying the undo log
would correct this failure.

Revisiting our example stream process again (see Fig. 6), we illustrate this
checkpoint strategy according to Figure 11. In this scenario, ECOC is applied to
the three operators ECG, DF, and QRS. In the following, we describe how the
DSM infrastructure performs a checkpoint of ECG, which is synchronous to the
checkpoint of DF. Operator ECG performs a pending checkpoint and sends a
Check-Request message for timestamp tout

ECG to node hosting DF. Operator DF
performs also a pending checkpoint and sends a Check-Request for timestamp
tout
DF to the QRS operator. Finally, the QRS operator performs a permanent

checkpoint sends a Check-Ack Message for timestamp tout
DF to DF. Operator DF

is now able store the pending backup permanently at the backup node and sends
a Check-Ack message for timestamp tinDF = tout

ECG to operator ECG. Operator
ECG has now acknowledgments from all downstream neighbors (only operator
DF) and is allowed to save the checkpoint of operator ECG permanently.

As the previous example has shown, ECOC can be cascaded to chains of
arbitrary length, because Check-Request messages trigger the planning phase at
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Fig. 11. ECOC of the Example Stream Process
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the downstream neighbors and Check-Ack messages allow to move to the backup
phase (see pseudocode in Fig. 9). Also splits in the stream process are supported
by ECOC since Check-Request messages are send to all downstream neighbors
and the pending checkpoint has to wait for all acknowledgements. Join operators
are also supported by ECOC since Check-Request messages are obeyed from all
upstream operators. Loops in the data flow of stream processes are currently not
supported but topic of future work.

4 Evaluation

In this section, we present evaluation results of the different checkpointing strate-
gies presented in Section 3. Our reliable DSM is implemented within our infor-
mation management infrastructure OSIRIS-SE (Open Service Infrastructure for
Reliable and Integrated process Support - Stream Enabled) [2,3]. In particular,
we focus on network transport overhead and memory overhead during the run-
time of a stream-process. Network transport overhead is the additional amount
of communication data due to our reliability strategies. Memory overhead is
the additional amount of main memory of a node imposed by our reliability
measures. Furthermore, we evaluate the performance of the recovery phase by
measuring the restart delays for operator recovery (see tmigrate of Fig. 4).

OSIRIS-SE is an extended version of the predecessor OSIRIS [4,5,6,7] which
offers an infrastructure for reliable P2P process execution. OSIRIS-SE, in ad-
dition, allows for the P2P execution of stream-processes in a distributed en-
vironment. OSIRIS-SE is programmed in Java and runs on various platforms,
including also PDAs with MS Windows Mobile 2003. The experimental setup
consists of a network of three Intel Xeon based Windows PCs as providers of
operators and as backup nodes. Hence, these providers are equipped with a local
OSIRIS-SE software layer hosted by a J2SE1.5 JVM and thus are able to run
stream processes. In this experimental setup one node is an operator provider
and a backup node for another provider at the same time. For this reason, also
costs at the backup node are included in the evaluations.

The runtime evaluations cover the network overhead of checkpointing and the
average JVM memory consumption. For the experiments, the sample stream
process depicted in Figure 6 is used to process real world ECG data. The stream
process is running at a rate of 400 ECG samples per second. Throughout the
experiments, we compare three different checkpointing settings. The first setting
(Unsafe) performs no operator checkpointing. This setting is used for overhead
comparison. In the second setting (Uncoordinated), we have investigated unco-
ordinated locally scheduled checkpoints every check-interval elements. The third
setting (Coordinated) considers our ECOC checkpointing approach triggered by
the ECG operator every check-interval elements.

Figure 12 illustrates the network overhead caused by checkpointing based on
the Unsafe setting, where no checkpointing is performed. The Uncoordinated
setting shows the expected high network overhead since output stream elements
are sent in checkpointing messages. The overhead of 100 % results from the fact
that data stream elements are sent a second time within a checkpoint message.
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For the shortest check-interval some elements are even sent a third time within
a second checkpoint message resulting in an overhead of far more than
100 %. The ECOC approach used in the Coordinated setting shows only minor
network overhead since the output elements are not part of checkpoint messages.
Even more beneficial, ECOC shows a further reduction of network overhead
when the check-interval is extended. Figure 13 illustrates the average memory
consumption of the JVMs of the three settings. Coordinated shows about the
same memory consumption as the Unsafe setting. Some deviations occur due to
the heuristics of the JVM’s garbage collector. The Uncoordinated setting shows
higher memory consumption because of long output queues as part of checkpoint
messages.

For the recovery evaluation the same setup as for the runtime evaluations
is used. In the recovery case only Coordinated and Uncoordinated settings are
evaluated because the Unsafe setting is not able to perform proper recovery
needed in our medical scenario. The DF operator is deactivated at random times
to simulate a failure scenario. The provider of the ECG operator detects the
failure because of missing acknowledgments. If the maximum allowed timeout
(see dmax of Fig . 4) is reached the backup node of DF is assigned to activate
a new DF operator instance from its recent checkpoint. The backup node needs
tmigrate to recover a new operator instance from the checkpoint. During dmax

and tmigrate the ECG operator has to continuously acquire ECG readings from
the sensor in order to avoid a dangerous gap in monitoring.

Fig. 14 illustrates the recovery times. Both settings perform about equal in this
measurement. Uncoordinated needs slightly more time because of the recovery
of output queues, which is not needed in the Coordinated setting.

The evaluations have shown that the ECOC approach performs significantly
better than the Uncoordinated setting, which uses the standard passive standby
approach. In particular, ECOC dramatically reduces the network overhead,
which is a major drawback of the uncoordinated passive standby approach.
Additional measurements demonstrate that ECOC does not result in higher
memory consumption than the uncoordinated checkpointing approach. In the
recovery phase, ECOC shows about the same performance as the uncoordinated
approach.
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5 Related Work

Various approaches in the distributed database area address process-pairs [8],
which describe a model of primary and backup processes. The primary process
checkpoints all requests to the backup process, so the backup has all informa-
tion necessary to take over control in case the primary fails. This approach has
been adopted in the Tandem architecture [9] and combined with transaction
checkpoints. Elonazhy et al. [10] have presented a survey of work on rollback
recovery protocols in message-passing systems. Distributed DSM systems are a
special kind of message-passing systems, therefore many of these protocols can
be applied to DSM as well. Nevertheless, our DSM model that also follows the
process-pairs idea extends this general approach. For example the domino effect
does not appear in our approach because consistency between checkpoints is
guaranteed by ECOC.

Although data stream management has received an increasing popularity
among researchers in the recent years, only few work is focusing on aspects
of availability and reliability.

Aurora [11] allows for user defined continuous query processing by placing
and connecting operators in a query plan. Queries are based on a set of well-
defined operators. QoS definitions specify performance requirements. Algorithms
for high available DSM in the context of Aurora are discussed in [1]. In contrast to
our work, this work addresses reliability at the level of the whole stream process-
ing engine running on the affected node whereas we focus on reliability at the
level of operator execution. We extended the well-know idea of process-pairs and
checkpointing by leveraging the nature of operator states and their correlation
between neighboring operators in a stream-process. Contrary to upstream back-
ups and passive standby of Aurora, we apply coordinated checkpoints, which we
state as more beneficial for our interested application area. Further work [12]
presented in the context of Borealis [11], an extension of Aurora, allows for re-
duced result quality which is not applicable considering our indented healthcare
application scenario.

TelegraphCQ [13] is a DSM project with special focus on adaptive query
processing. Fjords allows for inter-module communication between an extensi-
ble set of operators enabling static and streaming data sources. Eddies supports
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adaptive query processing. Sets of operators are connected to the Eddy, and
Eddy routes each tuple individually. Flux [14] provides load balancing and fault
tolerance [15] by providing adaptive partitioning of operator execution over mul-
tiple network nodes. This is realized by placing Flux between producer/consumer
pairs. Therefore, contrarily to our approach, Flux describes an active process-
pairs approach, where parts of stream processing are partitioned to be reliably
executed in parallel. This active approach is not applicable to our intended
healthcare monitoring scenario, where hardware resources at the patient homes
are limited.

6 Conclusion

In this paper, we have presented a novel approach to reliability for data stream
management in a distributed environment. By implementing ECOC for efficient
and coordinated operator checkpointing, the degree of reliability to be achieved
in DSM can be significantly increased with affordable overhead. The presented
reliability approach is implemented in OSIRIS-SE, a stream-enabled informa-
tion management infrastructure. Additionally to reliability at operator level as
presented in this paper, OSIRIS-SE addresses reliability also at network and
application level [3]. Compared to other approaches in this field, our approach
is particularly suited to be used in healthcare applications where a high degree
of reliability is a vital requirement. A major contribution of this paper is the de-
tailed presentation and experimental evaluation of coordinated checkpointing for
transparent failure handling and state backup at the operator level. Operators
are executed reliably by applying the process pairs approach.

In a first series of experiments with the OSIRIS-SE system, we have shown
that coordinated checkpointing not only provide a higher degree of consis-
tency in the system but also impose significantly less overhead compared to
uncoordinated checkpointing. In particular, the high network overhead of unco-
ordinated checkpointing is significantly reduced by applying coordinated and effi-
cient checkpointing. Especially, with respect to the intended medical application
scenario including mobile devices and wireless connections energy consumption
caused by network traffic is crucial.

In future work, we will emphasize also on the performance of complex stream
processes with intra-process parallelism, i.e., on data stream processes containing
join and split operators, and stream processes with cyclic data stream processing
flows.
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Abstract. Many real-life applications use various kinds of clustering
algorithms. Very popular and interesting are applications dealing with
spatial data, like on-line map services or traffic tracking systems. A very
important branch of spatial systems is telemetry. Our current research
is focused on providing an efficient caching structure that will accelerate
spatial queries evaluation and improve the ways of storing and processing
aggregates. We use a density-based clustering algorithm to create the
structure levels. The used clustering algorithm is fast and efficient but
it requires a user-defined Eps parameter. As we cannot get the Eps
parameter from the user for every level of the structure, we propose
an Automatic Eps Calculation (AEC) algorithm which, based on the
points distribution characteristics, is able to estimate the Eps parameter
value. The algorithm is not limited to the telemetry-specific data and
can be applied to any set of points located in a two-dimensional space.
We describe in detail the algorithm operation, test results and possible
algorithm improvements.

1 Introduction

Recent years have seen a rapid evolution in the spatial information systems.
The systems are extremely useful and find their application in many aspects of
everyday life. There are on-line services providing very precise and high-quality
maps created from satellite images [1,2]. Another example is traffic-tracking
systems monitoring car traffic in big cities. A very important branch of spatial
systems is telemetry. Our team is doing research in spatial data warehousing. As
a motivating example we use a telemetric system of integrated meter readings.
The system consist of utility meters, collecting nodes and telemetric servers.
The meters are located in blocks of flats, housing developments etc. They meter
water, natural gas and electrical energy usage. The readings are sent to the
telemetric server via radio. The ETL process extracts the readings and loads
them to the data warehouse database. Apart from meter readings, the database
stores information about the meters’ geographical location and their attributes.

The most typical use for the data warehouse is to investigate utilities consump-
tion. Our current research is focused on providing fast and accurate answers to
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spatial aggregate queries. We are in the process of designing and implementing a
caching structure dedicated to telemetry-specific data. We named the structure
a Clustered Hybrid aR-Tree (CHR-Tree) because we intend to use clustering to
create the structure nodes, and, like in the aR-Tree [5], the structure nodes store
aggregates.

We already have a solution to the problem of storing and processing aggre-
gates in the CHR-Tree nodes (please refer to [4]). Currently we are trying to
employ density-based clustering to group telemetry objects and, consequently,
construct the hierarchical structure of the CHR-Tree. The used clustering algo-
rithm, although fast and efficient, requires a user-defined Eps parameter. We
cannot assume getting the Eps parameter from the user for every level of the
structure. In this paper we present the results of our research on finding a way
to automatically calculate the Eps parameter. We propose an Automatic Eps
Calculation (AEC) algorithm, which based on the points distribution character-
istics is able to properly estimate the Eps parameter value. The reminder of the
paper is organized as follows. In the next section we present more details of the
problem we intend to solve. We then provide an extensive description of the AEC
algorithm, its operation, input parameters and outcome. We also present tests
results proving that the AEC algorithm is applicable to sets of two-dimensional
points of a wide variety. Lastly, we conclude the paper presenting our future
plans and possible algorithm improvements.

2 Problem Description

Constructing the caching structure for telemetry-specific data we have to take
into consideration the telemetry objects distribution. A natural, although specific
feature of the telemetric spatial data is that the meters are gathered in bigger or
smaller groups (blocks of flats, housing developments). Also, in some regions the
density of the meters is much higher than in other regions (the straightforward
consequence of the natural distribution of housing developments in the cities,
suburbs and uninhabited areas). Using density-based clustering we reflect the
distribution of the meters in the hierarchical structure of the CHR-Tree. Fig-
ure 1 presents an example of a very simple CHR-tree created for a few meters
located along roads. The tree leaves (spotted-line rectangles) are clusters of me-
ters located by the same street. Intermediate level nodes (dotted-line rectangles)
contain groups of neighboring leaves. The tree root (solid-line rectangle) contains
all meters located in the region.

2.1 Clustering

Henceforth, we will use points and meters interchangeably. We know the geo-
graphical location of every meter. The meters are clustered (merged into groups)
according to their location. The most similar are those points with the short-
est distance between them. For our research we decided to use the density-based
clustering algorithms. The well-known algorithms from this group are DBScan [3]
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Fig. 1. A hypothetic CHR-Tree structure

and DBRS [6]. To start the clustering process the algorithms require two con-
figuration parameters:

– Eps – a parameter that defines a half of the range query square side. The
side length is used by the clustering algorithm to evaluate range queries when
searching for neighboring points,

– MinPts – a parameter defining the minimal number of objects (points) re-
quired to create a cluster. If in the point neighborhood (area of which is defined
by Eps) there are less than MinPts points, the point is marked as noise.

Motivated by the fact that to the best of our knowledge there is no automatic
method for calculating or even estimating the Eps parameter for the density-
based clustering 1, we decided to study the problem and try to propose a solu-
tion. In the following section we present an Automatic Eps Calculation (AEC)
algorithm which, basing on the points distribution characteristics, is able to es-
timate the Eps parameter value. The algorithm application is not limited to the
telemetry-specific data. It can be applied to any set of two-dimensional points.
We do not address the problem of estimating the MinPts parameter, as we
always set MinPts = 1 (we mark no utility meters as noise).

3 AEC Algorithm

To estimate the Eps parameter we have to investigate the distribution of the
points in a given dataset. Datasets may be large, hence in some way we have to
limit the amount of analyzed data. In such a situation using a random sampling
approach is justified and can give good results in acceptable time.

The AEC algorithm uses three sets of data, whose usage is explained in the
following subsections.

1. Set of all points P . The points in the set P are located in an abstract region,
in two-dimensional space.

2. Set N . The set contains points randomly chosen from the set P . There is a
function V NC that is used for creating the N set. The function takes one
optional parameter r, that defines the region from which the points are being

1 Authors of [3] proposed a simple heuristics to determine the Eps and MinPts. How-
ever, the heuristics cannot be considered automatic as it requires user interaction.
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picked. When the r parameter is present during the N set generation, we
mark the set with an appropriate subscript: Nr.

3. Set H . Like the N set, the H set contains points randomly picked from
the P set. The H sets are created for points ni ∈ N . In the case of the H
set, the function creating the set is named V HC. Next to the r optional
parameter, whose meaning is identical as for the N set, the V HC function
takes another parameter defining the point ni that is skipped during random
points drawing. The notation Hr,ni means that the H set was created for
the point ni ∈ N ; the point ni was skipped during random points drawing
and the points in H are located in a region r.

The cardinalities of N and H sets are the AEC algorithm parameters. Thanks to
the parametrization of those values we can easily control the precision and the
algorithm operation time. The cardinality of the N set is defined as the percent
of the whole P set. The cardinality of the H set is defined directly by the number
of points creating the set.

3.1 Distance-Only Method

We start with the distance-only method which though not giving the proper
results, is a good introduction to subsequent subsections. Our first observation
was, that some knowledge about clusters distribution in a given region can be
gained by analyzing the distances between points. To analyze the distances we
utilize the N and H sets. The beginning of the AEC algorithm operation is as
follows: from the set P pick randomly points creating the set N . In the next
step, for each point ni ∈ N create set Hni (figure 2). The distance analysis
is based on calculating the Euclidean distances between the point ni and all
the points in the related Hni set. The distances are calculated for all points in
the N set and all related H sets. In the next step we sort all the distances in
ascending order. The sorted distances (dist1, dist2, . . . , distk) are then analyzed;
the algorithm searches for the biggest difference (the biggest delta: &i = disti−
disti−1) between two distances.

Let’s consider the example shown in figure 3. We have a set P of 16 points
grouped in 3 clusters. Of course the algorithm does not know anything about the

 Data set 
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N VHC(n) 

H

H

H

H

H

 

Fig. 2. N and H sets creation process
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Fig. 3. An example of the distance-only based method

Table 1. Hypothetical N and H sets, and distances between the points

ni H set distances

1 6, 3 dist(1,6) = 45.7; dist(1,3) = 37.2

2 4, 7 dist(2,4) = 342.4; dist(2,7) = 52.2

6 9, 8 dist(6,9) = 222.4; dist(6,3) = 79.2

8 5, 1 dist(8,5) = 302.1; dist(8,1) = 325.0

clusters. For this example, to make the N and H sets small for better presentation,
we set the N cardinality to 25%, and the H cardinality to 2 points. We randomly
pick 25% of the points from the P set and we get the points marked: 1, 2, 6, 8.
For each of the points we randomly choose 2 points to create the H sets.

When we sort the distances in ascending order and look for the greatest delta
we see that it is for dist(6, 3) and dist(6, 9). The first distance, between point p6

and point p3 is the greatest distance inside a cluster, while the distance between
p6 and point p9 is the least distance between clusters. It may seem that having
such a result is enough for determining the Eps parameter for density-based
clustering, because we can simply choose the greatest distance inside a cluster
as an Eps and we can expect the clustering algorithm to discover all the clusters
and to merge none of them.

This is true, but only for very simple sets of clusters. There are many cases
which cannot be correctly analyzed by simply checking the distances between
clusters. Below we mentioned only a selection of them:

– there are many clusters. Some of them are close to each other, but there
are also distant ones. The greatest distance delta will be between the close
clusters and between the distance ones, not between points inside clusters
and close clusters. One may want to analyze the series of measurements to
find the first biggest delta, but we found it extremely complicated,

– the density of points in clusters is different. There are very dense clusters
and also sparse clusters. It may happen that dense clusters are closer to each
other than the points in sparse clusters.

3.2 Stripe Density

From the above we see that knowing only the distance between points pi and pj is
not enough to calculate the Eps parameter. Missing is the knowledge about the
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neighborhood of the analyzed points, specifically the points in the region between
the investigated points pi and pj . We decided to introduce a new coefficient PIS
(Points In Stripe). The PIS(pi, pj) is the number of points located in a stripe
connecting the points pi and pj .

To evaluate the PIS coefficient value for a pair of points we use one spatial
query and four straight lines. Having the pi and pj points coordinates we can
easily calculate the parameters a and b of the straight line L equation y =
ax + b. The line L contains the points pi and pj . In the next step we calculate
equations of the lines perpendicular to L in points pi and pj, respectively Lpi and
Lpj (we do not include the equations because of the complicated notation and
straightforward computation). The final step is to calculate two lines parallel to
L, first above line L – La and the second below line L – Lb. The distance between
the parallel lines and the L line (the difference in the b line equation coefficient)
is defined as a fraction of the distance between points pi and pj . The fraction is
the AEC algorithm parameter named stripeWidth; stripeWidth ∈ (0, 1). The
lines create a stripe between the points, and the stripe encompasses some number
of points.

Having the lines equations we can easily calculate whether or not an arbitrary
point from the set P is located inside the stripe between points pi and pj or
not. In order to reduce the number of points being analyzed we evaluate a
rectangle encompassing the whole stripe. The rectangle vertexes coordinates are
set by calculating the coordinates of the points where the stripe-constructing
lines (La, Lb, Lpi and Lpj ) cross, and then choosing the extreme crossing points
coordinates. Using the stripe-encompassing rectangle we execute the range query
to choose the points which can possibly be located within the stripe between pi

and pj . In the next step, only the points chosen by the range query are examined
if they are located within the stripe.

After calculation of the PIS coefficient we are equipped with two values that
provide interesting knowledge not only about distance between points pi and
pj but also about their neighborhood. Basing on the distance between points:
dist(pi, pj) and the number of points in a stripe between points PIS(pi, pj) we
can calculate another coefficient, which is a density of the stripe between pi and
pj : dens(pi, pj) = PIS(pi,pj)

dist(pi,pj)2·stripeWidth .
Figure 4 presents an example of a stripe between two points. The stripeWidth

parameter was set to 0.98. In this example we are checking two pairs of points:
p5, p8 and p3, p6. We used a dashed line to indicate the line linking two points.
Solid lines depict the parallel and perpendicular lines. Rectangles drawn with
spotted lines describe the regions encompassing the stripes. From the picture we
see, that there is one point between points p5, p8 and there are 3 points between
points p3, p6. The density for p5, p8: dens(p5, p8) = 1

302.12·0.98 = 0.11 · 10−4

and for p3, p6: dens(p3, p6) = 3
79.22·0.98 = 4.88 · 10−4. From the example we see

that the density inside the cluster is much greater than outside the cluster. The
density coupled with the distance between points brings much more knowledge
than the distance only.
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Fig. 4. Illustration of the stripe between two Points

Now we are able to ascertain whether two points are relatively close to each
other, and whether they are located in a dense neighborhood or, on the other
hand, if the points are relatively distant and there are almost no points in the
stripe between them. After analyzing the operation of the density-based algo-
rithms, that are executing a series of range queries, we decided to search not for
a distance between points in clusters or for the thinnest cluster diameter, but
rather for a minimal distance between clusters. The distance, or at least a value
based on the distance, can be used as the Eps parameter in the density-based
clustering algorithm. Using a minimal distance between clusters as the Eps pa-
rameter should result in grouping all the points whose distances to their closest
neighbors are shorter than the minimal distance between clusters (they are in
one cluster) and not grouping points when the distance between them is greater
than the minimal distance between clusters.

3.3 Algorithm Operation

Our first approach utilizing the PIS coefficient was as follows:

1. Calculate an average density densavg of the region where the points from
the set P are located.

2. Create the N set and related H sets. The creation process is analogical to
the presented in 3.1.

3. For every analyzed pair of points calculate: distance, PIS and density of the
stripe between the points.

4. From all the results choose the shortest distance, for which the PIS > 0 and
the density of the stripe between the points is less than densavg.

The algorithm operation was much better in comparison to the distance-only
method, but it was very unstable (the algorithm often returned very different
values for the same input data). Moreover, the algorithm was very sensitive to the
cluster distribution characteristics, especially for small cardinalities of N and H .

To improve the algorithm operation we decided to apply an iterative approach.
Iterative approaches are often applied in many data analyzing and data mining
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tasks. Coupled with random sampling, the iterative approach can improve the
results and make them more precise.

In the case of the AEC algorithm, in every iteration we are try to minimize
the possible minimum distance between clusters. The iterative version of the
AEC algorithm performs the following steps:

1. Evaluate an initial average distance between clusters distinit and initial den-
sity densinit. Details of this process are described later. At this moment it
is enough to mention that this fragment is not iterative.

2. The iterative section:
(a) If the current iteration is the first iteration, assume that the current

minimum distance between clusters distcur = distinit, and the respective
current density is denscur = densinit.

(b) Create a new N set, analogically as described in 3.1.
(c) For every point ni ∈ N create a rectangle rni , which vertexes coordinates

are given by the following equation:
rni(left, top, right, bottom) = rni(ni.x − distcur, ni.y + distcur, ni.x +
distcur, ni.y − distcur).

(d) For every point ni ∈ N create a set Hrni
,ni skipping the point ni (the

V HC function).
(e) Evaluate an average density of the rni rectangle.
(f) For every point ni, and points from the related Hni set calculate a set

of quantities: distance, PIS and density of the stripe.
(g) From all the results choose the shortest distance, for which the PIS > 0

and the density is less than the average density of the rni . If there is no
such result, do not return anything.

(h) Compare the result obtained for the point ni with the current values
of distcur and denscur. If disti < distcur and densi <= denscur then
update the current values of minimal distance and minimal density be-
tween clusters: distcur := disti and denscur := densi. If only the first
part of the condition holds (disti < distcur), then check a suspected re-
gion defined by using the coordinates of points for which the disti was
calculated. Details of this operation are described below. The suspected
region checking operation can possibly return a pair of results: the dis-
tance dists and related density denss. The returned pair is compared
with the iteration results and if dists < distcur and denss <= denscur

then the result of the iteration results are updated: distcur := dists and
denscur := denss.

(i) Check the iteration breaking condition. The iterations can be broken in
two cases: (1) the number of performed iterations is greater than the al-
lowed number of iterations (which is another AEC algorithm parameter),
and (2) if the result returned from consecutive iterations was repeated
a fixed number of times. Breaking the iteration because of the second
condition is more desirable, because we can expect that the algorithm
found a minimal distance between clusters that cannot be replaced by
any other distance.
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Initialization. In order to start the iterative algorithm operation, the initial
minimal distance between clusters distinit and initial density densinit must be
properly set. The initial values should be set in a way that they reduce the
number of iterations, but on the other hand, the initial values cannot narrow
down the set of possible solutions.

We use the average distance between randomly selected points, and average
density related to the distance as the initial values.

Suspected Regions. The case of a suspected region is considered for points pi,
pj when only the distance condition (dist(pi, pj) < distcur)) holds, the density
condition (dens(pi, pj) <= denscur)) does not. Our experiments showed that
there are two possible scenarios resulting in examining the suspected region:

1. the points pi, pj are located close to each other inside a cluster. Then the
distance then is short, but the density of the stripe between the points is
high.

2. the points pi, pj are located in separate clusters but they are not border
points. The density of the stripe between the points is increased by the
presence of the border points of both clusters.

Of considerable interest is the second case. The AEC algorithm does not analyze
distances with the zero PIS coefficient. There are many cases when the clusters’
shapes make it difficult to randomly pick two points so that one of them is a
border point of the first cluster and the second is located near the border of the
second cluster. The analysis is performed as follows:

1. define the suspected region. The rectangle rs for the suspected region has its
center directly between the points pi and pj. In the next step calculate the
density densrs of the rs.

2. create a set of points Nrs .
3. for each point ni ∈ Nrs create a set Hni,rs , then calculate distances and

densities of the stripe between points ni and the related points hi ∈ Hni,rs .
As the result choose the minimal distance with the minimal density.

In the event that the calculated result density is less than the average density
of the rs region, the suspected region analysis results are compared with the
results of the analysis in the iterative section of the AEC algorithm. For a pair
of points located inside a cluster the suspected region analysis does not influence
the results because the density condition is not satisfied (the density is high
inside a cluster). But for the points located in two different clusters the analysis
often gives important results.

The amount of points checked during suspected regions analysis depends
on the number of points in the rs rectangle. If the number is less than
the N set cardinality, then all the points are checked. But if the number is
greater, the cardinality of the Nrs set equals the cardinality of the N set created
in the iterative section of the algorithm. The situation is identical for the H
sets.
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3.4 Results Interpretation

The interpretation of the result obtained from the analysis is as follows:

– if the density of all clusters of points in the set P is similar, then the result
of the AEC algorithm is the distance between a pair of closest clusters. By
similar density we understand that the distances between neighboring points
in all clusters are always less than the distances between border points of
the closest clusters. We can define the Eps parameter for the density-based
clustering as 85% – 90% of the obtained distance. Decreasing the value of
the distance we prevent merging of the closest clusters during the clustering
process.

– if the points from the set P are grouped in clusters of significantly different
density, then, depending on density of the sparse clusters, the result of the
AEC algorithm is one of the following:
• if the distance between dense clusters is less than the distance between

neighboring points in the sparse clusters, then the AEC algorithm out-
come is the distance between the dense clusters. Performing the cluster-
ing results in creating the dense clusters and merging points located close
to each other in sparse clusters. The sparse clusters will be represented
as a set of smaller clusters.
• if the distance between border points in dense clusters is greater than

the distance between neighboring points in sparse clusters, then the AEC
algorithm outcome is the distance between points in the most sparse clus-
ters. Clustering results in creating dense clusters and most of the sparse
clusters. Depending on the points distribution in the most-sparse clus-
ters, some of the most-sparse clusters can be divided into a few smaller
clusters.
• if distances between neighboring points in all kinds of clusters (both

dense and sparse) are greater than the minimal distance between bor-
der points of the closest clusters, then the AEC algorithm outcome is
the minimal distance between clusters. Performing clustering results in
creating both dense and sparse clusters.

4 Test Results

In this section we present the results obtained for a set of five various datasets.
For each dataset we performed a set of experiments with the following
parameters:

– the cardinality of the N set was 5, 15, 25 and 35% of the input dataset
cardinality,

– the cardinality of the H set was 10, 20, 30 and 40 points for each value of
the N set cardinality,

– the number of iterations was set to 10, 20 and 30 for each combination of N
and H sets cardinality.
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As can be easily calculated, a single test set contained 4× 4× 3 = 48 tests. The
test sets were run for the stripeWidth parameter set to 0.98 and 0.6. The iter-
ations were broken if the result of the consecutive iterations was repeated more
than 4 times. It never happened for all the test sets that the number of itera-
tions exceeded the maximum. The iteration breaking was always caused by the
number of repeated consecutive results. Thus we can treat the tests for identical
cardinality of N and H sets as three repeated tests, which is useful in the pres-
ence of the random factor. All the experiments were run on a machine equipped
with Pentium IV 2.8 GHz and 512 MB RAM. The software environment was
Windows XP Professional, Java Sun 1.5 and Oracle 10g.

The main purpose of the experiments was to verify the AEC algorithm oper-
ation against various datasets. The AEC algorithm was run with a given set of
parameters. The calculated Eps parameter was passed to the DBRS clustering
algorithm, which was returning the number of created clusters. If the number of
clusters declared for a given dataset equaled the number of clusters found by the
DBRS, we marked the experiment as a success. If the number of clusters were
not equal, we marked the experiment as a failure.

In figure 5 we present five datasets used for the experiments. Preparing the
datasets we tried to provide the clusters and datasets with as much variety as
possible. In the presented test datasets we included both dense and sparse clus-
ters; and also clusters strongly varying in shapes and sizes. We also included
clusters located inside other clusters. The purpose of such datasets was to check
the AEC algorithm operation for datasets that might exist in real-life applica-
tions. Below we present the results obtained for the test datasets. Each table cell
contains AEC algorithm operation times in milliseconds; in the braces we placed
the number of performed iterations. The blank table cell represents a failure.

The first dataset (about 650 points) contained 10 small, dense clusters; densi-
ties of all clusters were very similar. The results for this dataset (fig. 6) show that

Fig. 5. Five datasets used for the experiments
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Fig. 6. Results for the first dataset

only for the least cardinality of N and H sets the algorithm could not estimate
the proper Eps value. For the remaining cases the four iterations were enough
to properly estimate the parameter.

The second dataset contained about 200 points grouped in three relatively
sparse clusters, densities of all clusters were similar. The clusters were located
close to each other (relating the distance to the cluster sizes). Alike in the first
dataset, the AEC algorithm rarely performed more than four iterations (fig. 7).

The third dataset contained only about 120 points grouped in eight small clus-
ters. A big number of small, relatively sparse clusters caused the AEC algorithm
to not work well for the low cardinalities of the N and H sets. The algorithm
needed to check more than 25% of the whole dataset to provide proper results.
Also, the number of iterations is greater than for other datasets (fig. 8).

The next, fourth dataset containing 400 points was an example of a dataset
with clusters of different density. There are three dense clusters, one less dense
cluster, and one sparse cluster. Despite differences between the clusters’ densities
the algorithm gave proper results for all tested cardinalities of N and H sets.
Only once, for the lowest N and H sets cardinalities, the algorithm performed
more than four iterations (fig. 9).

The last dataset contained over 420 points in three clusters of similar density
but different shapes. Small clusters located inside the big ones were intended
to disrupt the AEC algorithm when calculating the PIS coefficient. For this
dataset the AEC algorithm gave proper results for greater numbers of analyzed
points. Also the number of performed iterations is greater (when compared with
the results for other datasets). However, for the cardinality of the set N equal
35%, the algorithm gave proper results for all cardinalities of the set H (fig. 10).



Towards Automatic Eps Calculation in Density-Based Clustering 325

Fig. 7. Results for the second dataset

Fig. 8. Results for the third dataset

Summarizing the tests result we can say that for all tested datasets the algo-
rithm gave proper results. There are easy datasets like the second or the fourth,
for which it is enough to test only 5% of the whole dataset but there are also
more difficult ones, for which a proper estimation of the Eps parameter requires
testing more than 25% of the whole dataset.
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Fig. 9. Results for the fourth dataset

Fig. 10. Results for the fifth dataset

In general, when a given dataset contains a big number of small, sparse clusters
the AEC algorithm needs to analyze relatively big numbers of points to properly
estimate the Eps parameter. This results from the fact that the more sparse
clusters in the dataset, the lower is the probability of checking the distance and
the PIS coefficient for a pair of points located inside one cluster.



Towards Automatic Eps Calculation in Density-Based Clustering 327

The stripeWidth parameter had little influence on the algorithm results, at
least for the tested datasets. In most cases the 0.98 value gave better results; for
the third dataset narrow stripe (0.6) only were results better.

The accuracy of the AEC algorithm is determined by the algorithm parame-
ters. The bigger the N and H sets cardinalities (the more pairs of points the
algorithm investigates) and the more iterations performed, the more accurate
the results. However, every investigated pair of points has its influence on the
algorithm operation time. The parameters should be set according to the tested
dataset. If the dataset characteristics are not known in advance (as with the
presented test scenario) the obtained results show that investigating 25% of a
dataset always gives accurate results.

5 Future Plans

The current implementation of the AEC algorithm is time-intensive. Executing
spatial queries and calculating lines equations for many pairs of points causes the
whole process of estimating the Eps parameter to be long-lasting in comparison
to the clustering process. In figure 11 we can see the percentage participation
of the AEC algorithm components in the total algorithm execution time. The
most time-intensive fragment of the algorithm is calculating the value of the
PIS coefficient. This fragment consists of two operations (marked as merged
in the figure): executing range queries (19%) and checking the relation between
points and lines (39%). We want to use distributed processing to achieve better
algorithm efficiency and scalability. The set of points can be distributed over the
computers and then each machine can separately calculate the Eps parameter.
Finally one computer will choose the best result utilizing the standard distance
and density condition.

Fig. 11. Percentage participation of the AEC algorithm components in the total algo-
rithm execution time
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6 Conclusions

In this paper we proposed an empirical approach to a problem of automatic
calculation of Eps parameter for density-based clustering algorithms like DBRS
and DBScan. The AEC algorithm, working iteratively, chooses randomly a fixed
number of sets of points and calculates three coefficients: distance between the
points, number of points located in a stripe between the points and density of
the stripe. Then the algorithm chooses the best possible result, which is the
minimal distance between clusters. The calculated result has an influence on the
sets of points created in the next iteration. If the result is repeated a few times,
the iteration is broken and the shortest distance is passed as the Eps parameter
to the density-based clustering algorithm.

We presented test results for a set of five different sets of points. With a
suitably high number of checked points the algorithm was able to estimate the
proper Eps parameter for all tested datasets. We also presented the algorithm
drawbacks and suggested possible improvements.
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Abstract. This paper presents a music genre classification system that
relies on note pitch and duration features, derived from their respective
histograms. Feature histograms provide a simple but yet effective classi-
fier for the purposes of genre classification in intra-classical genres such
as sonatas, fugues, mazurkas, etc. Detailed experimental results illustrate
the significant performance gains due to the proposed features, compared
to existing baseline features.

Keywords: Music genre classification, music features, histograms, pitch,
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1 Introduction

Digitised music exists in broadly two categories depending on whether its record-
ing contains directions of what to be played by a performer or a particular
audio-recorded performance of a piece. The former representation of music is the
symbolic, while the latter is the acoustic. Music Information Retrieval (MIR) is
accordingly divided into two categories depending on the representation of music
that is under examination.

Although young a field, MIR and especially Content-Based MIR (CBMIR)
mainly orientate towards acoustic data, a fact that can easily be partially ex-
plained by the popularity of acoustic recordings. Though, the two representations
are interconnected with acoustic music being, improvisation set aside, up to a
great degree the product of symbolic music. Thus, taking into consideration the
relationship between the two representations of music and the existence of very
large acoustic databases (for both commercial and not purposes) one can imag-
ine not only the existence of large analogous collections of symbolic music but
also the significance of MIR on symbolic data, especially for music distribution.

One of the necessities that prevails in MIR is genre classification. Apart from
the obvious significance to numerous occupations (retailers, librarians, musicolo-
gists, e.t.c.) as a means for music organisation, genre classification is additionally
important as research indicates that liking a music piece can adhere to the per-
formance style instead of the actual piece itself [4]. Since predefined metadata in
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symbolic music data are rare and their manual appointment inhibits difficulties
and potential inconsistencies, the need for an effective automatic means of mu-
sic classification unfolds as the collections of symbolic digital music files increase
at a rapid rate. Moreover, genre classification is of great assistance to the wide
public accessing musical archives, offering increased ease in identifying types of
music.

As aforementioned, musical pieces in symbolic format represent the inten-
tion of the composer towards the performer. Thus, the symbolic representation
engulfs an excess of information, that may not always be perceivable in the
respective acoustic piece. In order to process all the information included in
the music files, one can rely on perceptual criteria (features) related to pitch,
rhythm, timbre, etc of the music in order to characterise a musical genre. The
key to success is the choice of features to be based upon, while the effectiveness
of the classifier, although still important, remains secondary as is limited by
the feature selectivity. In this paper, we focus on the note pitch and duration
information of the musical data.

1.1 Contribution and Paper Organisation

This paper examines the problem of determining the musical genre of a musical
piece, provided in symbolic representation. Based on prior work on symbolic
music genre classification, we focus on note pitch and duration information of
the musical data.

Current research on music genre classification based on musical feature his-
tograms [5], has been isolated on the pitch information of notes solely. Although
pitch is described in the literature as one of the predominant musical character-
istics [2], rhythm, one of the main dimensions of which is note durations, is also
given high credit and current research is not considering it.

Moreover, current research examines broad categories that, although up to a
degree overlapping and vague, present far more distinctive characteristics than
the sub-categories of any category.

To address these issues, this paper proposes the following:

– Re-examination of the selectivity of pitch features in different music cate-
gories that present more similarities,

– Introduction of duration and pitch-duration combination features that are
based on pitch and duration information of the notes,

– A differentiated approach to pitch feature as described by current research.

The rest of the paper is organised as follows. Section 2 is devoted in back-
ground information and related research as far as symbolic music genre classifi-
cation is concerned. Moreover, a baseline approach is reviewed therein and the
motivating factors that led to this research are summarised. Extending the idea
proposed in Section 2.1, Section 3 provides a complete account of the features
proposed in this paper. Subsequently, Section 4 presents and discusses the ex-
perimentation results obtained. Finally, the paper is concluded by a summary
and the intended future work in Section 5.
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2 Background and Related Work

Musical genre classification is one of the key areas MIR researchers are inter-
ested in. Although, as already mentioned, genre classification research is mainly
oriented towards acoustic data, approaches for symbolic data do exist and have
interesting results to demonstrate.

Tzanetakis et al. [5] presented pitch histograms as a way to represent the pitch
content of music signals both in symbolic and acoustic form. Based on features
extracted from these histograms the authors of [5] managed a 50% accuracy for
5 genres (for more details see Section 2.1).

Following the participation success of the International Symposium on Music
Information Retrieval (ISMIR) conference on 2005, the MIREX competition was
held. The goal of the contest was to classify symbolic recordings into genre cat-
egories. The best ranking results were presented by [3] with 77.17% and 65.28%
mean hierarchical and raw classification accuracy, respectively.

In [3] a short account of a system that extracts 109 musical features from sym-
bolic recordings and uses them to classify the recordings by genre is presented.
The features used are based on instrumentation, texture, rhythm, dynamics,
pitch statistics, melody and chords. The achieved reported classification reaches
90% for intra-category subcategories and 98% for categories. Though, this ap-
proach has an increased execution time while the space reduction is limited. The
execution times (as seen from the results of the MIREX contest) are prohibitive
for applications that require responses in real time, especially when frequent con-
tent update is potential. Additionally, the increased execution times were for a
small database of 950 songs. Overall, the required methods need focus on a small
selection of features which deliver increased selectivity performance. Moreover,
the approach described in [3] additionally requires training for the“fittest” set
of features.

Finally, Basili et al. [1] presented five features based on melody, timbre and
rhythm for the purposes of symbolic music genre classification. Though, their
investigation was oriented towards the comparison of different machine learning
algorithms in genre classification.

2.1 Pitch Histograms

The authors of [5] introduced pitch histograms as a means to represent the pitch
content of the notes of both symbolic and acoustic musical data. MIDI data
files were used to extract note pitches, the frequency of occurrence of which
constitutes the pitch histogram. As MIDI specification allows only for 128 dis-
crete notes, each pitch histogram is an array of 128 values, indexed by the note
number, representing the frequency of appearance of each note.

Tzanetakis et al. considered two versions of the pitch histogram according to
whether the octave discrimination of notes is taken into consideration or not.
Thus, the unfolded version does consider octaves in pitches of the notes leading
to two C notes, being one octave apart, to be considered as, two different notes.
In the folded version, all note pitches are transposed into a single octave, that is
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the two C notes of the previous example would be the same note, and then are
mapped to a circle of fifths, so that adjacent histogram bins are spaced a fifth
apart, rather than a semitone.

The rationale these choices rely on is that unfolded histograms can capture the
pitch range of a piece, folding supports octave independency and the mapping
to the circle of fifths ameliorates the expression of tonal music.

In order to minimise the search space, four one-dimensional features were
extracted from the two histograms (folding and non-folding), namely PITCH-
Fold, AMPL-Fold, PITCH-Unfold & DIST-Fold. The first is the bin number
of the maximum peak of the folded histogram. The second is the amplitude
of the maximum peak of the folded histogram. PITCH-Unfold is period of the
maximum peak of the unfolded histogram, while DIST-Fold is the interval (in
bins) between the two highest peaks of the folded histogram.

2.2 Motivation

Although the work of Tzanetakis et al. is rather intuitive, easy to perform, fast to
calculate and the results reported are 1.6 times better than random classification,
the accuracy still remains at levels that allow further amelioration. This is es-
pecially true, considering that each note carries additional information to pitch,
its duration, that can equivalently easily be extracted and would not burden the
dimensionality of the search space, at least to the point of recompensation by
increasing the accuracy.

The use of the note duration is intuitively supported by the connection of note
duration with rhythm. In a simplistic point of view, rhythm can be perceived
as the number of notes within a bar, played at a specific tempo. As the total
duration of notes within a bar is explicitly defined, smaller duration values lead
to more notes within a bar, thus making the rhythm faster. The effect of the

Fig. 1. Normalised duration histogram
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note durations on rhythm is rather important, as the music genres, generally,
abide to rhythmic patterns.

The aforementioned arguments broadly appear in Figure 1 where it can be
seen that different musical genres have different frequencies of appearance for
each note duration.

3 The Proposed Method

This work’s key proposal is the utilisation of the duration histograms for the
purposes of symbolic music genre classification.

This section presents three features that are based on the note duration dimen-
sion of a musical piece, as well as a differentiated, with respect to [5], approach
in the extraction of features from the note pitch information of a piece.

A duration histogram is an array of 25 integer values (the eight standard
durations, their dotted and double dotted augmentations and the breve duration)
indexed by duration size that represents the frequency of occurrence of each
note duration in a musical piece. Intuitively, duration histograms offer a means
to capture the structure and rhythmic part of a piece. This is especially true in
classical music where musical genres were created and evolved based on rules. For
example, it is quite common for fugues to have several parts where the durations
of the notes therein are significantly shorter than the other parts, in order to
convey a sense of tenseness, since the original theme of fugues was an escape. On
the other hand, sonatas are known to be structured to be more slow especially
in their second parts.

As already discussed, the feature selection process is of great importance for all
information retrieval purposes. This work proposes the extraction of three one-
dimensional features from the duration histograms, namely the duration that
has the greater frequency of appearance in a piece, the number of appearances
of the duration with the highest frequency and the distance between the two
highest frequency durations in terms of relative temporal duration.

The selection of the feature set is highly important, since the performance of
the classifier mainly depends on the selectivity capability of the features to filter
out statistical properties of the histogram that are irrelevant while retaining
information that describe genre differences and thus assist the classification.

Accordingly, the proposed selection of features was based on the specific char-
acteristics required to retain such as the note duration that appears more often
as well as the second (indirectly through the distance) and the appearances of the
most often duration. Additionally, features of the same style have successfully
been employed in the literature for the purposes of symbolic genre classification,
although on differentiated characteristic of the musical data.

3.1 The Proposed Features

Non-folding Pitch. In non-folding pitch features, the effect of folding is not
taken into consideration. Accordingly, the four one-dimensional feature vec-
tors described in Section 2.1 are extracted based solely on unfolded his-
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tograms. This is done in order to establish the effect of folding in the classical
works examined herein.

Duration. In duration features, all features (as described in Section 3) are
derived solely from duration histograms in order to determine the selectivity
of the feature vectors produced by the duration histograms.

Pitch & Duration. This feature is the combination of the feature vectors of
the pitch information of the notes combined with the feature vectors pro-
duced by the duration information. Thus, each musical piece is represented
by seven feature vectors, four from the pitch histogram and three from the
duration histogram. As, pitch histogram can exist in two versions, the pitch
& duration (or combination) feature vectors come in two flavours as well,
the folding and non-folding.

Weighted Pitch & Duration. The last feature proposed in this paper is a
modified version of the combination feature previously described. The modi-
fication consists of a weighting scheme that allows the prediction of the genre
to be more or less affected by one of the two features, in order to determine
their contribution.

4 Performance Evaluation

In support of the efficiency of the proposed features, this section presents the
experiments that have been performed. A concise description of the experimen-
tation platform and data sets is also given followed by a performance analysis
based on experimental comparison of the baseline and proposed features.

4.1 Experimental Set-Up

All algorithms described have been implemented and performed on a personal
computer with 3,06GHz Intel Pentium IV processor, 1 GByte RAM, MS Win-
dows XP operating system while the developing package utilised was MS Vi-
sual C++. The performance measure was the precision accuracy of the k-NN
classifier.

The data sets employed for the experiments include real music objects, that
originated from **kern Humdrum files acquired from the Humdrum website [6].
Each **kern file was stripped in order to retain only the note pitch and duration
information. All the music objects pertain to classical works. The following five
sub-categories were selected: ballads, chorales, fugues, mazurkas & sonatas and
50 songs were randomly selected by each category, adding up to a total corpus
of 250 pieces.

After the vector extraction is completed (as described in Section 3), the dis-
tinguishing capability of the feature vectors is examined by means of the k-NN
classifier, using the “leave one out” method. That is, one musical piece in the
database is assumed to be of unknown genre and the rest of the pieces are consid-
ered as training data. Of the k nearest neighbour genres to the unknown piece,
the genre with majority of appearances is predicted to be the genre of the piece
assumed to be unknown. The process is repeated for all pieces in the database
leading to the accuracy of the features.
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4.2 Results

Initially, pitch, duration and combination were considered separately for both
folding (pitch and combination) and non-folding features and the accuracy re-
sults are illustrated in Figure 2a and Figure 2b, respectively.
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Fig. 2. Accuracy of all approaches (a) folding and (b) non-folding

Although pitch and duration have quite similar performances, duration is
slightly better, while the combination features clearly outperform both. In addi-
tion, the changes in accuracy of the folding affected features seem to be rather
marginal.

The next experimentation refers to the combination weighted approaches.
Figure 3a and Figure 3b, provide four of the most characteristic weighting se-
lections for both folding and non-folding. The legent titles imply the percentage
of duration - pitch that participated.
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Fig. 3. Accuracy of weighted combination (a) folding and (b) non-folding

Once again, the “0-100” combination, in which duration is not participating,
presents the worse accuracy, while even 20% of duration contribution offers 9%
increase in accuracy. The best performance is produced by the equally balanced
participation of both duration and pitch (“50-50”). It should be noted that the



336 I. Karydis

performances between folding and non-folding are again quite similar. From this
point on, folding features have not been considered further and all results imply
non-folding features, where applicable.

Next, we experimented (Figure 4) on the size of the musical piece regarded
as unknown (L). The size was adjusted by means of the number of notes within,
while for the pitch features, cropping occurred at the ending of the piece, retain-
ing, thus, the first L notes. For the pieces that had less a number of notes than
L, the full piece was selected.
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Fig. 4. Pitch accuracy for varying query size

An obvious trend towards better accuracy is clearly depicted in Figure 4,
while for very small L the accuracy is equivalent to random (for five categories)
since the note number is not enough for an accurate prediction.

In the following experiment, the size of the musical piece regarded as un-
known (L) was examined against the accuracy for the duration features. In
this experiment we additionally tested the offset the L notes are taken from.
Figure 5 depicts the accuracy for L notes of the unknown genre piece taken from
the middle part of the datum.
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A slightly better performance in accuracy for the duration features is appar-
ent in comparison to pitch features (Figure 4). The results for different offsets
of the L notes proved identical making clear that the offset from which the part



Symbolic Music Genre Classification Based on Note Pitch and Duration 337

of the musical piece regarded of unknown genre is taken has no significant effect
in the accuracy.

Following, is the experiment of the combination feature against the size of
the musical piece regarded as unknown (Figure 6). Once again the performance
of the combination approach is clearly better, in comparison to the accuracy
results gathered for both pitch and duration separately.
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Finally, the last experiment performed a pairwise comparison between dif-
ferent genres. In this case, herein are presented two of the most representa-
tive results, the comparison between fugues - mazurkas (Figure 7a) & ballads -
mazurkas (Figure 7b).
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Fig. 7. Accuracy for pairwise comparison between (a) fugues - mazurkas & (b) ballads
- mazurkas

In Figure 7a, we observe the domination of the duration features over the
pitch features, while in Figure 7b pitch features perform far better than duration
features, though, the combination features are overall better.

5 Conclusions

This paper proposes the use of note pitch and duration histograms for the pur-
poses of symbolic music genre classification. Note information histograms have
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a great capability in capturing a fair amount of information regarding harmonic
as well as rhythmic features of different musical genres and pieces.

This paper proposes the incorporation of the note duration information dur-
ing the feature extraction process. The duration dimension of a note is highly
capable of supporting genre classification, though its weighted use with the pitch
information proves even better.

This is verified through extensive experimental results, which illustrate the
suitability of the proposed feature, reaching an accuracy level of 70%, that is a
gain of 40% from the baseline approach.

Future work includes plans to examine broader ranges of musical categories,
in order to establish the suitability of the proposed features, as well as the
incorporation of the notion of patterns in genre classification. Patterns have
played a significant role in the indexing of music even since the very first attempts
of the creation of musical dictionaries.
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Abstract. In this paper we introduce a novel push and pull technique
to analyze pedigree data. We present the Push and Pull Pedigree An-
alyzer (PPPA) to organize large and complex pedigrees and investigate
the development of genetic diseases. PPPA receives as input a pedigree
(ancestry information) of different families. For each person the pedigree
contains information about the occurrence of a specific genetic disease.
We propose a new solution to arrange and visualize the individuals of the
pedigree based on the relationships between individuals and information
about the disease. PPPA starts with random positions of the individuals,
and iteratively pushes apart non-relatives with opposite diseases patterns
and pulls together relatives with identical disease patterns. The goal is
a visualization that groups families with homogeneous disease patterns.

We investigate our solution experimentally with genetic data from
peoples from South Tyrol, Italy. We show that the algorithm converges
independent of the number of individuals n and the complexity of the
relationships. The runtime of the algorithm is super-linear wrt n. The
space complexity of the algorithm is linear wrt n. The visual analysis of
the method confirms that our push and pull technique successfully deals
with large and complex pedigrees.

Keywords: pedigree data mining, visual data mining, pedigree
visualization.

1 Introduction

The pedigree of an individual shows the family and ancestors of the individual.
Typically, a pedigree is shown as a diagram with symbols representing people
and lines representing genetic relationships. Figure 1(a) shows a typical pedi-
gree of an individual. Squares represent males and circles represent females.
Lines connecting a male and female represent mating. Vertical lines that extend
downward link parents to their children. Therefore, the youngest individuals are
at the bottom of the diagram and the oldest individuals are at the top. The
purpose of pedigrees is to show relationships between the family members and
investigate genetic diseases of closed populations. Individuals that suffer from
the disease of interest are colored black.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 339–352, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Figure 1(b) shows an example of a relational representation of a pedigree. The
ID attribute uniquely identifies the individual, the mother and father attributes
are the IDs of the parents, Sex denotes the gender of the individual, and Sick
denotes whether the individual suffers from the disease of interest.

0 1

52

3 4

6

(a) Pedigree Diagram

ID Mother Father Sex Sick

0 -1 -1 0 0
1 -1 -1 1 0
2 0 1 0 0
3 -1 -1 0 0
4 -1 -1 1 1
5 3 4 1 0
6 2 5 1 1

(b) Tabular Representation
of the Pedigree

Fig. 1. An Example of the Pedigree Data

Mining pedigree data is a complicated task. A genetic disease of an individual
might be the result of a cross-over of ancestors many generations ago. To support
the investigation of the causes of the disease one needs a good arrangement and
visualization of the individuals of a pedigree. First, the whole pedigree should
be visualized to reveal all correlations between both female and male individu-
als of the family. Second, the relatives (parents and children) of the individual
should be visualized closer to the individual allowing efficient identification of
individuals that are related to the disease. Finally, the relatives of sick individ-
uals should be visualized closer to the sick person indicating the potential cause
of the disease for other members of the family.

This paper introduces the Push and Pull Pedigree Analyzer (PPPA) that
arranges and visualizes pedigree data. The idea of the solution comes from closed
physical systems with few opposing forces. In such systems particles start with
an initial chaotic state and are subjected to opposing forces. After some time
an equilibrium state is reached with a stable arrangement of particles. Similar
to this the PPPA method starts with random positions of individuals in space
(cf. Figure 2(a)), and then pushes non-relatives with opposite disease patterns
from each other and pulls relatives with identical disease patterns towards each
other. The equilibrium state yields a graph with an arrangement between the
individuals of the pedigree: relatives are arranged to be close to each other and
non-relatives to be far away from each other (cf. Figure 2(b)).

The motivation for our solution comes from a genetic research project of iso-
lated populations in South Tirol, Italy [1]. South Tirol is naturally divided into
four valleys that are separated by mountain ranges. Because of the physical set-
ting the inhabitants of the valleys form closed societies and almost full pedigrees
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(a) Initialization (b) End of the Process

Fig. 2. Illustration of the PPPA Algorithm

of up to 15 generations are available. The investigation of these pedigrees and
associated diseases requires novel techniques. Existing solutions work for small
pedigrees only and attempts to generalize them to larger settings failed.

The organization of the paper is as follows. We review related work in Sec-
tion 2. We describe the PPPA method in Section 3. Section 4 experimentally eval-
uates our solution. Finally, Section 5 draws conclusions and offers future work.

2 Related Work

Tulip [2] and graph visualization tools of the Tulip framework [3,4,5,6,7,8] is the
closest related work to our method. The tools allow to draw and manipulate
very large graphs (up to a million of nodes). The algorithms of the framework
implement different graph visualizations including, clustering, different metrics,
and mapping of visual attributes. U. Brandes [7] investigates the graph drawing
methods based on the physical analogies using different forces between the nodes
(spring forces, energy based placement). These systems have a layout component
and aim to optimize the overall visualization of the graph.

Visual Technologies [9], Cyrillic [10,11], Progeny [12], aiSee [13], Pedigree
visualizer [14,15], offers a broad range of tools to investigate and visualize pedi-
gree data. Typically, the visualizations are limited to pedigree diagrams (cf.
Figures 1(a), 3(a)) and do not focus on the arrangement of the members.

Lineage [16] computes different statistics of the pedigrees and allows to vi-
sualize the pedigrees. The pedigrees are visualized in layers starting with the
oldest generation at the top, and younger generations towards the bottom (cf.
Figure 3(b)). The tool allows to visually analyze the individual members and
the properties of the individual members of the tree. However, an analysis of the
families and classification of the members of families is complicated, since the
individuals are visualized equidistant on the layers.
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(a) Visual Technologies (b) Lineage (c) PEDSTAT

Fig. 3. Pedigree Visualizations of Different Tools

PEDSTATS [17] allows to compute and visualize summary structures includ-
ing statistics about the family, the founders of the family, sex of the family,
distribution of specific genes and alleles of the family, and pair wise investiga-
tion of different variables of the population. The tool investigates relationships
between individual members of the pedigree and classifies the relationships (for
example number of family member, number of founders of the family). Statisti-
cal information is reported. In this paper we focus on the relationships between
individual and aim to arrange the individuals of the pedigree based of the rela-
tionships of between the members of the pedigree.

Research on pedigree data includes linkage analysis, likelihood tests of pedi-
gree relationships, allele sharing, etc [18,17,19,20]. The work typically focuses on
a very specific problem. Histograms and Scatter plots are used to illustrate the
result (cf. Figure 3(c)).

There’s a large body of research papers in the area of graph visualization
[2,21]. The research papers focus on the optimal and esthetic visualization of
general graphs including identification of hierarchies, reduction of the number of
both non-edge and edge crossings, overlappings of sub-graphs [8], zoom-in/out
and fold/unfold functionality [22], organization of nodes into layouts [23] in the
graphs. In this paper we focus on informative but not necessarily nice visual-
izations of pedigree data. For example, assymetric and visually not nice graphs
might indicate individuals that potentially could have genetic diseases.

3 The PPPA Method

The PPPA method inputs pedigree data of a population and assigns a point in
space to each individual of the pedigree. In subsequent iterations the algorithm
pushes points that are not related away from each other and pulls points that
are related towards each other. We use a kd-tree to efficiently implement the
push and pull step. We stop the iterative process once the average distance of
moving points is below ε.

The organization of the Section is the following. First we describe the push-
pull functions in Section 3.1. The stop criteria is described in Section 3.2. Finally,
Section 3.3 presents the algorithm of the method.
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3.1 Push and Pull Functions

Below we define a class of push and pull function between two individuals of
a pedigree. The meaning of the constants is the following. cdmax

push and cdmax
pull

determine the maximal strength of push and pull. csick
push and csick

pull quantify the
push and pull force of sick individuals. cskew

push determines the skew of the function:
a large constant means that close points are pushed more and far away points are
pushed less. cclose

pull quantifies the pull force of close relatives. cadjust
pull guarantees

the convergence of the method, i.e., fpull(0) = 0.

Definition 1 (Push function). Let p be a point representing an individual of
the given pedigree. Let q be an individual of the pedigree such that q is neither a
child nor a parent of p. Then p and q push away from each other by δ:

p← p− δ
p− q

‖p− q‖ (1)

q ← q + δ
p− q

‖p− q‖ , (2)

(3)

where

δ = fpush(‖p− q‖, sick) =
cdmax
push

1 + (1 + sick) · ecskew
push ·(1+csick

push·sick)·‖p−q‖ , (4)

and sick is 1 if either p or q are sick (but not both), and 0 otherwise.

Definition 2 (Pull function). Let p be a point representing an individual of
the given pedigree. Let q be an individual of the pedigree such that q is either a
child or a parent of p. Then p and q pull towards each other by δ:

p← p + δ
p− q

‖p− q‖ (5)

q ← q − δ
p− q

‖p− q‖ , (6)

(7)

where

δ = fpull(‖p− q‖, sick) =
cdmax
pull

1 + e1/(cclose
pull ·(1+csick

pull ·sick)·‖p−q‖+cadjust
pull )

(8)

and sick is 1 if either p or q are sick (but not both), and 0 otherwise.

Figure 4 illustrates the push and pull functions as the distance between points
p and q increases. First, the push function pushes non-relatives almost twice
further if either p or q suffers from the disease. The pull function pulls a child
and a parent towards each other if one of them suffers from the disease. Second,
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the strength of the push function decreases exponentially as the distance between
the points increases and is almost 0 for distances more than 0.2–0.4. Intuitively,
this is because such individuals are neither in a parent nor child relationship. In
contrast, the strength of the pull function is high for relatives that are far away
(0.2–0.4) and decreases very rapidly as the parent approaches the child.

(a) Push Function (b) Pull Function

Fig. 4. Push and Pull Functions

We experimented with different values of the constants in Equations (4)
and (8) and different datasets. We chose the following values, because they guar-
anteed best convergence rate: cdmax

push = cdmax
pull = 0.1, csick

push = 1.5, csick
pull = 3.0,

cskew
push = 8.0, cclose

pull = 2.5, cadjust
pull = 0.0001.

Example 1 (Push and Pull functions for a 3D case.). Let p = (0.0, 0.0, 0.0) and
q = (0.1, 0.0, 0.1), neither p nor q is sick, and p is neither child nor parent of q.
Then p and q push each other away. The distance between the points is:

d(p, q) =
√

0.12 + 0.02 + 0.12 = 0.14

The push distance is

δ = fpush(0.14, 0) =
0.1

1 + e20·0.14
= 0.006

and therefore point p and q are pushed away from each other by 0.006. The new
coordinates for p are:

(0.0, 0.0, 0.0)− (0.1, 0.0, 0.1)
0.14

0.006 = (−0.004, 0.000,−0.004).

The new coordinates for q are:

(0.1, 0.0, 0.1) +
(0.1, 0.0, 0.1)

0.14
0.006 = (0.104, 0.000, 0.104).
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Now consider p = (0.0, 0.0, 0.0) and q = (0.1, 0.0, 0.1), p is a father of q and
q suffers from the disease. Then p and q pull towards each other and the pull
distance is

δ = fpull(0.14, 1) =
0.1

1 + e1/(2.5·4·0.14+0.0001)
= 0.032

and therefore point p and q are pulled towards each other. The new coordinates
for p are:

(0.0, 0.0, 0.0) +
(0.1, 0.0, 0.1)

0.14
0.032 = (0.023, 0.000, 0.023).

The new coordinates for q are:

q̄ = (0.1, 0.0, 0.1)− (0.1, 0.0, 0.1)
0.14

0.032 = (0.977, 0.000, 0.977).

The PPPA method scans the database and for each data point p pushes and pulls
the other database points. The complexity of the straightforward implementation
of this step is O(n2) and is prohibitively expensive. Instead we query for data
points in the ε neighborhood and use a kd-tree to improve the performance of
look-ups of points that are the nearest to the given point p. At the beginning of
each iteration we build a kd-tree (O(n log2 n) complexity) and then query the
tree for neighborhoods. In contrast the pull function pulls only points q that
are either the parents or the children of p. We pre-compute the parents and
the children for every data point. Therefore the complexity of the pull step is
constant, and the overall complexity of the method is to O(n log2 n) ·N , where
N is the average size of the neighborhood per iteration.

3.2 Stop Criteria

The PPPA method starts with a uniform distribution of the data points, and
pushes non-relatives away from each other and pulls relatives towards each other.
The stop criteria determines when the iterative process is stable and the points do
no longer move significantly with respect to each other. Let ε be the given error.
Let p1

b , p
2
b , . . . , p

n
b be the positions of the individuals in space before the iteration,

and p1
a, p2

a, . . . , pn
a be the positions of the individuals after the iteration. Let

average movement =
1
n

n∑
i=1

‖pi
b − pi

a‖ (9)

be the average movement of points during the iteration. Then we stop when the
average movement is less than ε.

3.3 The PPPA Algorithm

Figure 5 presents the PPPA algorithm. First, the algorithm assigns random
positions for all individuals in the pedigree (cf. Line 1 in Figure 5). Then it
starts the iterative process (cf. block 2). For each iteration it scans the database,
builds the kd-tree, and pushes and pulls the relevant points. It stops if the
average movement of points is less than ε (cf. Line 2.3).



346 A. Mazeika, J. Petersons, and M.H. Böhlen

Input:

p[i].{id, mother, father, sex, sick}: an array of individuals, i = 1, . . . , n
ε: precision of the estimation

Output:

p.x[i], p.y[i], p.z[i]: 3D positions of the individuals of the pedigree

Body:

1. Initialize the positions of the individuals

p[i].{x, y, z}←{UNIFORM(0.0, 1.0), UNIFORM(0.0, 1.0), UNIFORM(0.0, 1.0)};
average movement = ∞
Compute the diameter of the neighborhood that correspond to ε error level:

diam = f−1
push(ε)

2. WHILE average movement > ε DO

2.1 Build the kd-tree K
2.2 Scan database. FOR EACH i = 1, . . . , n DO

2.2.1 Identify the points that are within diam from p[i]:
ε neigh = K.ε neighborhood(p[i], diam)

2.2.2 FOR EACH q[j] ∈ ε neigh DO

2.2.2.1 Push p[i] and q[j] outwards each other:

δ = fpull(d(p[i], q[j]), p[i].sick XOR q[i].sick)
p = p − δ(p − q)/(‖p − q‖)
q = q + δ(p − q)/(‖p − q‖)

2.2.3 Identify the set PC(p[i]) of parents and children of p[i]
FOR EACH q[j] ∈ PC(p[i]) DO

2.2.3.1 Pull p[i] and q[j] towards each other:

δ = fpush(d(p[i], q[j]), p[i].sick XOR q[i].sick)
p = p + δ(p − q)/(‖p − q‖)
q = q − δ(p − q)/(‖p − q‖)

2.3 Compute average movement

Fig. 5. The PPPA Algorithm

4 Experimental Investigation

We organize the experiments in three sub-sections. First we evaluate the stop
criteria and investigate the convergence of the method as the number of iterations
of the method increases (cf. Section 4.1). Then we investigate the time complexity
as the number of individuals in the database increases (cf. Section 4.2). Finally,
we give a visual evaluation of the method for different datasets (cf. Section 4.3).

The algorithms were implemented in C++ and integrated into the 3DVDM
system [24,25]. The experiments were run on Intel Mobile P4 1.7GHZ machine
with 512MB of RAM.

4.1 Convergence of the Method and Stop Criteria

We varied the complexity of the relationships of families and generated the fol-
lowing three datasets: a dataset with four independent non-intersecting families
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(5 generations in each family, 63 persons per family), a dataset with one family
and no cycles (7 generations in the family, 255 persons in the family), and a
dataset with one family and cycles (7 generations in the family, 255 persons in
the family, 8 individuals of the last generation of the same family were married
to each other). The number of individuals per dataset is around 250.

Figure 6 illustrates the typical convergence of the method for the datasets. At
the end of the process the individual families are clearly separated: close relatives
of the family are placed close to each other and far relatives are placed far apart
(cf. Figure 6(a)).

(a) Visualization
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(b) Average Movement

Fig. 6. Typical Visualization and Average Movement

Figure 6(b) shows the average movement of individual points of the database
as the number of iterations increases. During the first iterations (cf. number of
iterations 0–50 in Figure 6(b)) the method experience an exponential conver-
gence rate. During the first iterations the families are separated in space, and
the distribution of the individuals of the families is close to uniform. During the
last iterations (cf. number of iterations 50–400 in Figure 6(b)) the convergence
rate is linear and the positions of the individuals of the families are stable. Since
we update the visualization as the number of iterations increase, we can inves-
tigate and mine the pedigrees after the first few seconds of the runtime of the
PPPA method (cf. Section 4.2).

Figure 7 illustrates the number of active points (points that move further
than threshold ε) as the number of iterations increase. The decrease of the ac-
tive points is less pronounced for the case of the four independent families (cf.
Figure 7(a)), since the members of the families should separate from the non-
members of the family and the internal structure of each of the family must be
constructed. The decrease of the active points of one large family is more pro-
nounced (cf. Figure 7(b)), since there are no individuals of other families that
should be pushed away, and only the internal structure of the family must be
built. Figure 7(c) shows the decrease of the active points for one family with
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(c) One Family with Cycles

Fig. 7. Active Points

several cycles. Since the structure of the family is more complicated compared
to the one family case, the decrease of the number of active points is less
pronounced.

4.2 Numerical Evaluation

Figure 8 shows the computational time as the number of individuals in the
pedigree increases. Figures 8(a) and 8(b) show that the computational time is
super-linear wrt the number of families (the number of individuals per family is
fixed to 15) and wrt the number of individuals (the number of families is fixed
to 1). This is due to the usage of the kd-tree.

In general, the computational time increases only slightly as the number of
cycles increases averaging around 20 seconds (cf. Figure 8(c)). However, due to
random positioning of the initial points the variance of the computational time
in this case is high.
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Fig. 8. Computational Time

4.3 Visual Evaluation

In this section we investigate a number of case studies and present screen shots of
the 3DVDM system. We organize the experiments such that the experiments of
pedigrees of only healthy individuals and similar pedigrees with some unhealthy
individuals can be compared. Note that the figures use colors to identify healthy
and sick individuals, respectively.
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Many small families. Figure 9 illustrates the screen shot of one thousand in-
dividual families. Each family consists of the parents (father, mother) and a
child.

The families form compact graphs clearly separated from each other when the
family members are all healthy individuals (cf. Figure 9(a)) In contrast, families
with the disease (cf. Figure 9(b)) push away healthy families twice stronger than
healthy ones. Therefore healthy families are placed in the center of the Figure
while sick families are pushed away from the center.

(a) All Healthy (b) Sickness Percentage ≈ 10%

Fig. 9. 333 Families of One Child and Parents

Few big families. Figure 10 illustrates a visualization of four families (127 indi-
viduals each). Figure 10(a) illustrates the case of all healthy individuals, while
Figure 10(b) illustrates a case of three healthy and one sick family. In case
of the healthy pedigree all families are clearly separated from each other (cf.
Figure 10(a)). In case of a sick family the three healthy families form a compact
structure. The sick family is pushed away from the healthy ones.

Partly sick families. In contrast to the previous experiments where families were
either completely sick or not sick at all (this is not uncommon for genetic dis-
eases), this paragraph experiments with families with sick and healthy persons.

Figure 11(a) illustrates 6 families with ancestors up to the 5th generation. Half
of the individuals of the families are sick. In this case the sick population does
not form a separate cluster from the healthy one, but the visualization forms
typical patterns: sick and healthy individuals form small sub-clusters inside the
families.

Figure 11(b) illustrates four big families (one of them is completely healthy)
and 50 small families. Every second generation contains around 70% of sick
people. As one can expect, the healthy family stays in the middle of the Figure
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(a) All Healthy (b) 1 Family Sick

Fig. 10. 4 Families with Ancestors Till 6th Generation

and the families with sick members are pushed away from the healthy one. In
contrast to Figure 10(b) sick individuals do not form clear clusters.

In summary our PPPA method produces good results and makes it easy to
identify individuals who are potential carriers of a genetic defect. Note that
the PPPA algorithm does not include an explicit layout component that, e.g.,
attempts to avoid intersecting edges. Only the push and pull mechanism is used
to arrange individuals. Despite this approach the edges of graphs rarely intersect

(a) 6 Families with Ancestors Till 5th
Generation

(b) 4 Big Families and 50 Small Families

Fig. 11. Families with Sick and Healthy Individuals Mixed
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and graphs are divided into clearly visible sub-graphs if the pedigree consists of
independent families.

5 Conclusion and Future Work

This paper introduces the PPPA method to mine large and complex pedigree
databases. The PPPA method organizes the individuals of a given pedigree:
close relatives are visualized close to each other while non-related individuals
are visualized far away from each other. The arrangement of the pedigree allows
to mine large and complex pedigrees and focuses on the relationships between
individuals. We evaluate the PPPA method experimentally. We show that the
method converges to a stable arrangement of the pedigree independent of the
initial distribution of the data. The time complexity of the method is slightly
worse than linear wrt the number of individuals of the pedigree. The visual
evaluation of the method shows that it is possible to mine large and complex
pedigree databases with the help of the PPPA method.

There are two interesting directions for future work. First, we will evaluate
the method analytically. This will establish conditions for the convergence of the
method as the number of iterations increases. Second, we want to progress the
mining of real world pedigree data of South Tirol. This will allow to understand
the complex structures of pedigrees of isolated populations and come up with
better identification and treatment methods of genome diseases.
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Abstract. As document collections accummulate over time, some of the discus-
sion subjects in them become outfashioned, while new ones emerge. Then, old
classification schemes should be updated. In this paper, we address the challenge
of finding emerging and persistent “themes”, i.e. subjects that live long enough
to be incorporated into a taxonomy or ontology describing the document collec-
tion. We focus on the identification of cluster labels that “survive” changes in
the constitution of the underlying population of documents, including changes in
the feature space of dominant words, because the terminology of the document
archive also changes over time. We have conducted a set of promising experi-
ments on the identification of themes that manifested themselves in section H2.8
of the ACM digital library and juxtapose them with the classes foreseen in the
ACM taxonomy for this section.

1 Introduction

Document archives are usually organized by some rather rigid categorization scheme,
often a taxonomy of subjects. If no full text retrieval is permitted, these taxonomy sub-
jects are the sole means of search in it. Even by full text retrieval, they are still a major
indicator of the documents’ contents. However, the usability of taxonomies towards old
documents is limited: There is a time lag between the emergence of a new subject and
the expansion of the taxonomy to include it. This time lag may be quite large, since
taxonomies are usually expanded to include persistent, long-lived subjects rather than
short-lived hypes. This implies that old documents may become invisible because they
are characterized by too generic subjects, although new ones would be more appropriate
for them.

As an example, consider the ACM archive1 , which uses the ACM taxonomy for key-
word assignment, categorization and browsing. The taxonomy has been extended with
themes like “data mining” and “image databases” to cover documents on these sub-
jects. However, two particularities must be considered here. First, there is some elapsed
time between the insertion of the first document on e.g. data mining and the addition of
the new class in the categorization scheme; in this time period, documents on the new
subject are assigned to the generic parent class. If a knowledge seeker is interested on
early advances on data mining, she must go through the whole subarchive on database

1 http://portal.acm.org/ccs.cfm
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applications. Although keyword-based search is available, the appropriate keywords for
search on data mining in the early nineties are likely to be different from those of to-
day. Second, a concept added in the taxonomy may be too generic or too specific with
respect to the name of the class. For example, a dominant concept among the early
documents on data mining is “association rules”, while the “image databases” class
seems to be dominated by the concept “image retrieval” (this is further discussed in the
section on our experiments). In such cases, it is necessary to perform a retrospective
re-categorization of the documents or at least discover the keywords characterizing the
emerging themes.

To address this issue, we propose the monitoring of evolving themes from the ac-
cummulating document collection and the actualization of the categorization scheme
with emerging and persistent ones. We define a “theme” as a topic that (a) describes
an adequately large cluster of documents, (b) persists over several timeslots during
the period of observation and (c) is described by the same words, at least to a cer-
tain extend, although the terminology of the document collection may change with
time. We are further interested in connecting themes that may refer to the same sub-
ject but use different terminology or are subordinate to an a priori unknown new broad
subject.

Our “Theme-Monitor” builds upon our previous work [SS06] for the identification
of short-term trends. In [SS06], we have studied the appearance and decay of themes
from one timeslot to another, by clustering the documents inserted in the collection at
each timeslot and then comparing the themes found at adjacent timeslots. In this study,
we concentrate on themes found in the document collection as it accummulates, i.e.
under the constraint that old documents should be further represented in the model.
This deviates from the conventions pursued in Topic Discovery and Tracking (for TDT
see [All02]), where newer documents are assigned higher weights than old ones, but is
more appropriate for re-categorization in document collections, where old documents
must still be assigned to an appropriate category and be accessible, even if the theme
they represent has stagnated in the meanwhile.

Our Theme-Monitor takes feature space evolution into account. Although we expect
that dominant features in an accummulating collection are not changing often, we do
take account of the emergence of new words by reconsidering the feature space when-
ever it does not return satisfactory text clustering results.

In the next section, we discuss relevant research. The Theme-Monitor is described in
section 3, starting with a conceptual model for clusters and themes over an accummu-
lating collection and continuing with the monitoring algorithm itself. In section 4 we
describe our experiments with the H2.8 section of the ACM archive. The last section
concludes and gives an outlook on theme and terminology evolution.

2 Related Work

The subjects of Topic Detection and Topic Tracking are defined in [All02], where the
five tasks of TDT are enlisted. As stated in that book, TDT concentrates on the de-
tection and tracking of stories (a “topic” is a story) and encompasses the tasks of (1)
story segmentation, (2) first story detection, (3) cluster detection, (4) tracking and (5)
story link detection. There is a conceptual similarity to our problem specification, in the
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sense that the emerging classes to be discovered are “topics”. However, these classes
are not stories in the TDT sense: For our problem specification, the documents in the
stream are distinct, none of them refering to older documents - hence task (5) does
not apply. It is not of interest to detect a story and then track it across documents,
as in tasks (2) and (4), but rather identify documents across different time periods,
which, when taken together contribute to the same, a priori unknown but statistically
important “topic”. This separation has been first elaborated in the survey of [KGP+03],
where the new task of topic trend discovery was introduced. However, the methods
presented under this task in [KGP+03] rely on cross-references among documents,
i.e. on task (5) of the original TDT agenda and thus do not transfer to our problem
specification.

Moringa and Yamanishi use a finite mixture model to detect emerging topic trends
in a document stream and adapt the model describing the stream [MY04]. As stressed
in the introduction, adaptation of the model is not appropriate in our case, because old
documents should still be present and accessible in the categorization scheme. More-
over, their soft clustering algorithm allows a document to contribute in multiple topics.
Documents may indeed adhere to multiple categories and some libraries do allow the
assignment of a document to more than one classes. However, before extending an ex-
isting categorization scheme by a new category, one needs proof that this category is
needed, i.e. there is an adequate number of documents that are characterized by this
category and cannot be accommodated properly elsewhere.

The same shortcoming pertains to the work of Mei and Zhai [MZ05], where mixture
models are used to cluster documents, derive themes from them and study the evolution
of those themes. The authors model the time span in which a topic is traced and propose
an “evolution graph”, in which transitions of one theme to another can be identified.
The emphasis of that study is on modeling and tracing semantically connected themes,
i.e. themes that are partially described by the same words. Our Theme-Monitor also
expresses a theme as a set of words that describe a cluster. However, our clusters are
crisp and are built over an evolving feature space where new words may be added and
old ones may become obsolete. Moreover, Theme-Monitor is more restrictive in its
definition of “theme”, thus skipping changes that may be simply due to the instability
of the underlying clusters.

There is a relevance between theme evolution and cluster evolution, since themes
are essentially cluster descriptors. Cluster evolution is addressed in the context of “spa-
tiotemporal clustering”, including the studies of [Agg05, NMSD05], and in the context
of finding differences between datasets and between models over datasets, as pursued by
the FOCUS framework [GGR99]. Spatiotemporal clustering is not applicable to theme
monitoring though, because the feature space over which clusters are built may change;
when the feature space changes, the trajectory of the old clusters becomes obsolete and
cannot be used to compare old and new clusters. Although cluster comparison in gen-
eral may be applicable for theme monitoring, we should keep in mind that not all cluster
changes correspond to changes of themes. Therefore, in our experiments we use FO-
CUS as reference to show that Theme-Monitor locates theme changes only and ignores
the evolution of many unstable clusters.
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3 Theme-Monitor on an Accummulating Document Collection

Our algorithm Theme-Monitor takes as input a document collection, typically a bibli-
ographical archive, thematically categorized according to a taxonomy. It monitors this
archive over a series of time periods and tries to discover persistent thematic subcollec-
tions and assign labels to them. These labels are meant as themes that should become
new classes in the original taxonomy.

We first present the model of documents and themes used by Theme-Monitor and
then describe the cluster matching and cluster quality evaluation mechanism as parts
of the monitoring algorithm. A more extensive version of this model has appeared in
[SS06] for the ThemeFinder algorithm that operates on non-accummulated document
sets.

3.1 Modeling Clusters, Labels and Themes

The archiveAmonitoring by Theme-Monitor is a homogeneous, accummulating docu-
ment collection corresponding to one node of the categorization hierarchy and its chil-
dren. We observeA over a series of T time periods t1, . . . , tT , whereupon each period
ti encompasses a subset of documents Di such that Di ⊆ Dj , ∀i < j.

In an archive that accummulates over a long period of time, old documents are likely
to have been described differently than more recent ones. In our running example of the
H2.8 section of the ACM digital library, many early documents do not have abstracts. In
such a case, considering all information available for each document would lead to the
suppression of old documents or of those belonging to specific, possibly stagnating cat-
egories. To alleviate this problem, we consider the same set of information pieces for all
documents, for example title and keywords. In the following, this “view over the docu-
ment” is considered as “the document” itself, since all further information is filtered out.

A document in Di, ∀i is a vector of words derived from a feature space. There are
many sophisticated methods for the selection of a feature space. In our preliminary
experiments with several clustering algorithms and feature space selection schemes, it
turned out that conventional methods that consider all words perform poorly – most
likely because the texts are small and highly diverse. The best performance was achi-
eved when limiting the number of features to the “best” n ones according to two criteria:
(a) the features with the highest TF×IDF values or (b) the features with the highest
scores in the entropy-based measure proposed in [BN04]. In our experiments, we opted
for the former on reasons of computational simplicity.

For a given document subset D and feature space fs, we cluster the documents on
semantic similarity. Typically, not all clusters are of the same quality. We concentrate
on clusters that can be described by a representative label – a “theme” as follows:

Definition 1. Let D be a collection of documents and fs be a feature space. Let
ζ(D, fs) = {C1, . . . , Ck} be a clustering, i.e. a set of clusters that partition D into
k non-overlapping groups of similar document vectors over the feature space fs.

A cluster C ∈ ζ(D, fs) is a “thematic cluster” if the following set is not empty:

LC = {w ∈ fs|support(w, C) ≥ τwordsupport} (1)

This set constitutes the “label” of C, denoted as label(C).
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In this definition, support(w, C) returns the fraction of documents in cluster C that
contain the word w, divided by the number of documents in C, card(C). The threshold
τwordsupport restricts the set LC to the words of the feature space that are frequent in
C, i.e. those that characterize the documents in C.

Cluster labels are candidates for themes. A theme is a persistent label, i.e. one that
appears for several, possibly consecutive periods:

Definition 2. Let t1, . . . , tT be the series of T periods of observation over the accu-
mulating archive. Let l ≡ label(C) be a the label of some detected thematic cluster C.
Then the label l is a “theme” if there are at least m periods ti1 , ti2 , . . . , tim such that:
∀j = i1, i2, . . . , im∃Cj ∈ ζ(Dj , fsj) : |l\label(Cj)| ≤ τdeviation where the threshold
τdeviation allows for (a) differences among the feature spaces used in different periods
and (b) variations in the cluster’s dominant words.

This definition specifies that a label is a theme if some of its words appear in at least m
arbitrary, not necessarily consecutive periods. The threshold τdeviation determines how
many of the words may deviate. By setting τdeviation := 0 and m := T , we demand
that a label is a theme only if it appears in all periods. In [MZ05], such a label would be
called a “trans-collection theme”, with the difference that their clusters may overlap, so
that these themes cannot be used for the separation of documents into future classes.

3.2 Label Monitoring and Cluster Tracing

The Theme-Monitor starts with an initial clustering of the documents in the first period.
In each subsequent period, the accummulating document set is re-clustered using the
original feature space and the new clustering is evaluated on quality. If the clustering
is of poor quality, it is rejected, the feature space is computed anew over the whole
accummulated document set and clustering is performed again. Then, the labels of the
new clusters are matched to the old labels. Matched labels (or fragments of labels,
subject to τdeviation) are retained as theme candidates. Candidates surviving for more
than m periods (cf. Def. 2) are declared as themes.

Assessing the Quality of Clusterings. The quality of clusters and of clusterings can be
assessed according to different criteria, usually a combination of cluster homogeneity
and separability, combined with stability of the clustering scheme. For Theme-Monitor,
clustering quality refers rather to the existence of thematic clusters that may result in
themes:

Definition 3. Let D be a documentset, fs be a feature space and ζ(D, fs) be the clus-
tering of D using fs. This clustering is good iff the number of thematic clusters in it is
no less than a threshold τclustering .

While this seems oversimplifying at first glance, the existence of thematic clusters pre-
supposes cluster homogeneity. We use this criterion to decide whether the feature space
should be rebuild to accommodate words that are more representative of the newly in-
serted documents.

Finding the Best Match for a Thematic Cluster. Once a clustering is built, the the-
matic clusters in it are juxtaposed to those of the previous clustering. The simplest case
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of a match for a thematic cluster C ∈ ζi−1 would be a cluster C′ ∈ ζi such that
label(C) = label(C′). As pointed out in Def. 2, we allow for a deviation between
two labels. This deviation is realized in the heuristic algorithm best match(·) shown in
Table 1.

Table 1. The heuristic best match

Step Action in best match(C, ξ)

1 candidates ← ∅
2 for each X ∈ ξ do
3 if label(X) == label(C) then
4 return X
5 endif
6 if label(X) ∩ label(C) �= {e} then
7 candidates ← candidates ∪ {X}
8 endif
9 endfor

10 if candidates == ∅ then
11 return ∅
12 endif
13 L ← ordering(label(C),MFWF )
14 for each w ∈ L do
15 wL ← {X ∈ candidates|w ∈ label(X)&

support(w,X) ≈ support(w,C)}
16 if wL �= ∅ then
17 candidates ← wL
18 endif
19 endfor
20 L ← ordering(candidates,MCWF )
21 return firstOf(L)

MFWF = Most Frequent Word F irst
MCWF = Most Common Words F irst

The heuristic best match(C, ξ) is actually a series of heuristics applied upon the set
of clusters ξ. In step 3 it is checked whether there is a cluster with the same label as
C. If this is the case, this cluster is returned. Otherwise, a list of candidates is built,
consisting of the thematic clusters having at least one common word with the label of
C (Steps 6, 7). If there are no such candidates, the empty set is returned in step 11. If
there are candidates, then they are filtered on the basis of the frequency of the words in
their labels (Steps 13-19).

The motivation of ordering the words in the label of C by frequency is that frequent
words inside the cluster are likely to be more important. Then, starting with the most
frequent word in step 14, a subset of candidates is identified in step 15: These are the
clusters, where the word appears in the label and has a similar support as in the cluster
C. If this set is not empty, it replaces the original set of candidates (steps 16-17). In any
case, the next most frequent word is processed in the next iteration (step 14).

Steps 10 and 16 guarantee that the set of candidates considered in step 20 is not
empty. In this step, the candidates are ordered by number of common words between
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their label and the label of C. Then, in step 21, the cluster with the most common words
is returned as best match.

Cluster Monitoring vs Theme Discovery. In each iteration, the Theme-Monitor builds
a clustering, eventually after re-constructing the feature space and then matches each
thematic cluster of the old clustering to the best candidate in the new clustering. Labels
that pertain to more than m periods are reported as themes, i.e. as candidates for an
extension of the library’s original taxonomy.

By virtue of Def. 2, a theme does not correspond to one label but to a set of similar
but not necessarily identical labels supported by clusters of different periods. Moreover,
themes are not exclusive to clusters: Depending on the τsupport threshold for labels, two
clusters may have the same label. This is quite likely for poorly separated clusters that
may occur if the information in the vector space is not adequate for a better separation.

To deal with those cases, the Theme-Monitor constructs themes in two steps: First,
clusters of the same clustering but sharing exactly the same label are taken together.
Second, all clusters contributing to the same theme are considered together and a new
label is constructed as the most frequent subset of words – subject to either a length
limit (the n most frequent words) or a frequency limit (all words that appear in at least
N documents).

4 Experimenting with the ACM Digital Library

We tested our Theme-Monitor on section H2.8 of the ACM digital library. This sec-
tion, named “database applications” contains documents on several subcategories that
have been gradually added. Once made available to the authors, those topics have been
used as keywords. The topic “image databases” appears already in the first period of
observations (≤ 1994), the topic “data mining” first appears in 1995, “spatial databases
and GIS” in 1996, while “scientific databases” and “statistical databases” are used since
1997. The ACM categories are listed in Table 2, together with the acronyms we have
assigned to them for brevity.

Table 2. The ACM categories in section H2.8

Data mining DM
Spatial databases & GIS SpatDB
Image databases ImgDB
Statistical Databases StatDB
Scientific Databases SciDB

For our experiments, we have downloaded the documents from 1996 to 2004, distrib-
uted as shown in Table 3 including the original distribution of the five subcategories.
Our objective was the a posteriori discovery of the five subcategories by juxtaposing
them to the themes that emerged in the collection. For our vectorization, we have used
titles and keywords but no abstracts, since some documents did not contain abstracts.
We have built a feature space of the 30 features with the highest TF×IDF and set the
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Table 3. Number of documents in the ACM subarchive “database applications” and the subgroups

Period 1996 1997 1998 1999 2000 2001 2002 2003 2004
numbers 89 150 369 675 1155 1634 2338 3371 4434
DM 16 56 148 315 580 872 1330 1984 2577
SpatDB 40 53 124 188 316 388 517 662 851
ImgDB 16 22 70 135 208 287 340 429 571
StatDB 17 19 21 25 33 44 66 84 89
SciDB 0 0 6 12 18 43 85 212 346

number of target clusters to 5. We have experimented with different algorithms and then
decided for bisecting K-means that delivered the best results.

4.1 Indicator of New Themes

For the theme discovery, we have set τwordsupport = 0.6 and τthematic = k − 2.
The new ACM topics in the subarchive indicate that the ACM taxonomy designers

have responded to emerging research threads. These threads are associated with a drift
in the frequent terms in the documents: new research areas use new terms. A simple way
of detecting such a drift is by clustering the documents and check whether the thematic
clusters degenerate. So, we first have checked whether the anticipated themes could be
found without using Theme-Monitor.

A high number of feature space changes is not desirable, because it is apt to fea-
tures of short-term popularity and prohibits a long-term observation of the clusters. For
τmatches = τthematic − 2, a change in the feature space is needed only for 2 periods.
The same holds for τmatches = τthematic − 3, which is less restrictive. Although the
value of τthematic is too small (4 thematic clusters) for generalization, this experiment
indicates that the value τthematic − 2 is appropriate for τmatches.

4.2 Cluster Evolution Tracking vs Theme Discovery

Theme discovery and evolution, as pursued by Theme-Monitor, is narrowly coupled
with cluster evolution. However, the appearance of a theme may be independent of
cluster changes. For example:

– One or more old clusters may be absorbed by a new one. Nonetheless, the new
cluster may retain the label of one of the old clusters.

– themes are not exclusive to clusters: Depending on the τsupport threshold for labels,
two clusters may have the same label. This is quite likely, if clusters are poorly
separated.

– A label may “migrate” from one cluster to another, especially if clusters are unsta-
ble and noisy but contain a homogeneous subgroup of documents.

To study the difference between cluster evolution and theme discovery, we have in-
voked next to Theme-Monitor a method that tracks cluster evolution and have compared
their findings. In [SNTS06], we present the method MONIC for the detection of clus-
ter transitions, such as survivals, absorptions and splits. Here, we have used a more



Discovering Emerging Topics in Unlabelled Text Collections 361

restricted version of MONIC, concentrating only on cluster survivals. For survival de-
tection, we have then used an adapted version of FOCUS [GGR99].

As described in [SNTS06], we assume that a cluster C has survived into a cluster C′

if the portion of C contained in C′ exceeds a threshold τoverlap, i.e. overlap(C, C′) :=
|C∩C′|

|C| ≥ τoverlap. If τoverlap is set to a value larger than 0.5, then an old cluster may
survive in at most one new cluster. For smaller values, the contents of an old cluster
may survive in more than one new clusters.

4.3 Themes vs ACM Categories

We have applied bisecting K-means upon the vectorized ACM documents accummu-
lated up to each timepoint, setting k = 5 and τwordsupport = 0.6. For experiments with
different values of k, the reader is referred to [SNTS06]. Our experimental results are
shown in Table 4 and discussed below.

The first column in Table 4 shows the time period under observation. In the second
column, we see the feature space used by Theme-Monitor for the clustering. For 1997,
the old feature space of 1996 has been replaced by the period-specific feature space.
Differently from our experiments on non-accummulated data, this feature space has
turned out to be adequate for all subsequent periods.

The labels found by Theme-Monitor are shown in the third column. Next to each
word, we see its support inside the cluster. We can see that there is a gap in the support
of the words in the label: If τwordsupport were set to any value larger than 0.6, only
words appearing in all documents would have qualified. This would have lead to shorter
labels but also to the disappearance of some thematic clusters, like the cluster labelled
“datum” which refers to data mining (this label is discussed below).

The third column shows that there are no collection themes according to Def. 2, since
no label persists across all periods. However, there are several, quite interesting themes:
When we set the number of periods m to 4 and insist that no word from a label may
disappear (u = 0), the label {datum, mine} qualifies as theme, while the label {retrieval,
image, base} persists in 4 non-consecutive periods. If we allow that a label may change
by at most one word (u = 1), then {retrieval, image} with the additional word “base”
becomes a very stable theme, appearing for the last 5 time periods. This theme refers
obviously to “image retrieval”, a subcategory of image databases that emerges in 1997,
disappears for a short time and then becomes stable from 2000 on.

The emergence and evolution of labels associated to data mining is also very inter-
esting. The first cluster of period 1996 contains the words “discovery”, “knowledge”
and “datum” (data) in all documents, the word “pattern” is also very frequent. With
the period-specific feature space of 1997, the cluster on data mining becomes separated
under the label {datum, discovery}. The words “knowledge” and “discovery” persist
in the next three periods. For m = 3, the label {datum, discovery, knowledge} would
have become a theme, the “knowledge discovery [from] data”. Starting from 1998,
the label {datum, mining} becomes present; the two sibling labels {datum, mine} and
{datum, mining} finally absorb the older label {datum, discovery, knowledge} and the
new theme for “data mining” becomes a very stable label.

An explanation of the sibling labels {datum, mine} and {datum, mining} is due
here. They are an artefact of the linguistic preprocessor, which (correctly) distinguishes
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Table 4. Thematic clusters and corresponding ACM categories for each period

Time Feature Words in the label ACM topic
period space of τwordsupport ≥ 0, 6 name correctness coverage

1996 1996 discovery (1), knowledge (1), datum (1), gis
(0.67), pattern (0.67), spatial (0.67)

DM 0.67 0.25

. . . COVERS ALSO SpatDB 0.33 0.5
database (1), datum (1) DM 0.53 0.5
database (1) – – –

1997 1997 datum (1), discovery (1) DM 0.9 0.5
image (1), content (1), base (1), retrieval (0.67) ImgDB 0.83 0.23
statistical (1), database (1), security (1) StatDB 0.93 0.68

1998 same datum (1), discovery (1), knowledge (1) DM 0.89 0.26
datum (1), mining (0.64) DM 0.9 0.5
database (1) – – –

1999 same datum (1), discovery (1), knowledge (1) DM 0.92 0.22
system (1), computer (1) ImgDB 0.67 0.01
system (1), geographical (1), information (0.69) SpatDB 0.9 0.23

2000 same datum (1), mine (1) DM 0.91 0.22
discovery (1), knowledge (1), datum (0.62) DM 0.92 0.22
retrieval (1), image (1), base (0.69) ImgDB 0.92 0.27

2001 same datum (1), mine (1) DM 0.91 0.21
datum (1), mining (1) DM 0.87 0.33
retrieval (1), image (1), base (1) ImgDB 0.93 0.36

2002 same datum (0.65) DM 0.69 0.44
datum (1), mine (1) DM 0.92 0.23
retrieval (1), image (1), base (1) ImgDB 0.91 0.35
system (1) – – –

2003 same datum (0.63) DM 0.7 0.44
datum (1), mine (1) DM 0.92 0.22
retrieval (1), image (1) ImgDB 0.91 0.41
database (1) – – –

2004 same datum (0.6) DM 0.64 0.46
datum (1), mine (1) DM 0.92 0.21
retrieval (1), image (1), base (1) ImgDB 0.87 0.34
image (1) ImgDB 0.78 0.30

between “mining” and “mine”. Since the documents of the ACM subarchive though
are quite unlikely to refer to explosives, though, we can assume that all appearances of
“mine” refer to data mining. We intend to remove the artefact in future implementations.
For the time being, however, the artefact causes either distinct clusters (as in 2001) or
cannibalization – none of the two words is adequately frequent to appear in a label.
We suspect that this is the cause of the uninformative label “datum” that appears in the
last three periods. This is further indicated by the juxtaposition of the cluster labelled
“datum” to the ACM categories: 64% of its members refer to data mining.

For the fifth and sixth column of Table 4 we introduce two measures, emanating
from the conventional measures of correctness and coverage for two-class prediction.
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For any ACM category cat and for any cluster C we define the correctness of the cluster
towards the category as the ratio of cluster members belonging to this category:

correctness(cat, C) =
|{x ∈ C|x ∈ cat}|

|C|
We similarly define the coverage of the cluster towards the category as the ratio of
category members that appear in this cluster:

coverage(cat, C) =
|{x ∈ cat|x ∈ C}|

|cat|
Then, in the last two columns of Table 4, we show the correctness and coverage of
each cluster C towards its “dominant” category, i.e. the category in which most of its
members belong. This corresponds to the category cat with the maximum correctness.
We use the value 0.5 for this measure, to enforce cluster homogeneity.

The forth column of the Table shows the dominant category. For labels like “data-
base” and “system” we did not assess a dominant category. For the other labels, we see
in the fifth column that the correctness is rather low at first (1996). As soon as the new
feature space of 1997 is introduced, though, there is a good mapping of clusters to the
individual categories, reaching a correctness of 0.92 for data mining in some periods.
For the first cluster in period 1996, we also show the second category present in the
cluster: We see that the cluster consists of documents on data mining and on spatial
databases in a 2/3 to 1/3 relation.

We can see from Table 4 that more than one cluster may be mapped to the same
category. This is reflected in the last column, where the coverage towards the dominant
category only once exceeds 0.5. This is natural: Categories like DM or ImgDB are very
broad and we find some subtopics of this categories. Since we trace only stable themes,
the coverage cannot reach 1. This is best reflected in the theme “image retrieval”, which
is a clear subcategory of image databases. We find no subtopics at the small categories,
the “scientific database” and “statistical database” category.

Our analysis of the accummulating subcollection can identify stable and popular
themes. Some stable themes with lower support, e.g. subtopics of the themes we find
here, can be better traced by the analysis of the non-accummulating subcollections
[SS06]. In comparison to the experiments in [SS06] we have identified some themes
like “association, mine, rule”, a popular subarea of data mining and we have found
the themes “discovery knowledge” and “Mine” as two different themes at the non-
accumulated subcollections. Here we have seen both themes as part of an evolution of
the main collection theme “datum”.

Coverage of the ACM Section H2.8. It can be seen in Table 4 that the coverage
towards the ACM subarchive is rather low and that some clusters reflect subtopics rather
than whole categories.

We first checked whether the low coverage can be attributed to the clustering algo-
rithm. As already mentioned, we have experimented with different clustering algorithms.
In [SNTS06], we have also considered k = 10 and discovered that this larger value finds
more informative subtopics (obviously) but still does not allow for the identification of
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all classes. Hence, we performed a series of classification experiments, i.e. used the doc-
ument labels, and searched for features/keywords with high predictive power.

Similarly to many clustering algorithms, classification algorithms like C4.5 and Na-
ive Bayes require special tuning to deal with highly skewed data. Therefore, we have
first attempted a separation of the dominant class “Data Mining” from the rest of the
collection and then tried to build a classifier for the remaining classes. We concentrated
on data from one period, 2001. The separation of the “Data Mining” class from the
others was achieved with an accuracy of more than 80%. This reflects that the identifi-
cation of this class in the data is easy - a fact that is apparent in our clustering results
as well. However, the classification accuracy for the other four categories was low. One
of the most remarkable results was that the SVM and the J4.8 classifiers assigned the
documents of the category “scientific databases” to the class “spatial databases”, while
Naive Bayes assigned a large portion of documents on spatial, statistical and image
databases to the class “scientific databases”. Hence, we came to the conclusion that the
categories cannot be properly separated, most likely because of the existence of subcat-
egories. The subtopics found by Theme-Monitor (association rules, image retrieval) are
indicatory of such subcategories.

Comparing Themes to Evolving Clusters. The comparison of cluster evolution and
theme discovery is shown in Fig. 1. We can see that some clusters of one period merged
together into one cluster at the next period. One example are the clusters 3 and 4 at
period 1997 which merged at period 1998 into cluster 3, which also merged with cluster
2 at period 1998, and into cluster 2 at period 1999. An other interesting point, that after
a merge new clusters exist and sometimes they also are merged later.

Fig. 1. followed cluster at bisecting k-means (left) and Theme-Monitor (right)

The right diagram of figure 1 show the results of our Theme-Monitor, after the cluster
matching described at sec. 3.2. As we can see, the Theme-Monitor follows nearly the
same clusters like the adapted FOCUS framework. One important difference of the
results between the Theme-Monitor and the adapted FOCUS is that the Theme-Monitor
follows only the labelled clusters and not all clusters of the clustering. So we see at the
right diagram a smaller number of clusters.
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An other difference of the Theme-Monitor is that we normally not detect merges and
splits of a cluster, because our best match algorithm only find one cluster as best match
to an other cluster. One exception exist for merges detection, this is possible with the
Theme-Monitor. If the best match algorithm has as result the same cluster at ti+1 for
two different clusters at ti. Then we can say that both clusters at ti merge together to the
best match cluster at ti+1. At the diagram we see such point at cluster 3 and 4 at period
1996, which merge together to cluster 3 at period 1997. We see that the label “discovery
knowledge datum” at period 1996 change over time to the label “datum mining” at
period 2001 and “datum” at the following periods. Here we see that our assumption is
correct that the terminology of this document archive change over this long time.

5 Conclusions and Outlook

We have expanded the Theme-Monitor algorithm for the discovery of persistent
“themes” and detection of their evolution over time at an accummulating document
collection and studied its behaviour upon the ACM subarchive on “database applica-
tions”. Theme-Monitor identifies emerging and persistent “themes”, i.e. labels of stable
clusters that survive re-clustering in each period and occasional changes in the feature
space with minimal changes of the feature space. Our text documents are very short
and so we have not a typical text collection. So we have used the bisecting k-means
algorithm for clustering and the vector space model for document representation. For
other experiments with larger text documents we will try other algorithms for clustering
which are better for text clustering and try digrams for document representation. Since
our algorithm considers occurring words rather than abstract concepts, it could not ex-
tract the concrete ACM topics from the reference archive but did discover the subjects
that gave raise to the inclusion of these topics in the ACM taxonomy.

We intend to enhance Theme-Monitor with a more sophisticated clustering core that
exploits cluster homogenity metrics. We also envisage a mechanism that varies the ex-
pected number of themes over time, possibly by replacing the bisecting k-means with
a Nearst-Neighbor- algorithm. Finally, we want to cross-check the performance of the
Theme-Monitor against a fully labeled archive, e.g. by the retrospective re-assignment
of the ACM topics to the subarchive documents.

Acknowledgement. We would like to cordialy thank Dirk Dreschel for the classifica-
tion experiments on the ACM digital library.
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Abstract. Computational database technology spans the two research fields
data-base technology and scientific computing. It involves development of data-
base capabilities that support computational-intensive applications found in sci-
ence and engineering. This includes support for representing and processing of
mathematical models within the database environment without any significant
performance loss compared to conventional implementations.

This paper describes how an existing database management system, AMOS II,
is extended with capabilities to solve the Black–Scholes equation commonly used
in option pricing. The numerical method used is finite differences, and a flexible
database framework that can deal with complex mathematical objects and numer-
ical methods is created. We describe how computational data representations and
operations are adapted to the database management system and the approach is
evaluated with respect to performance, extensibility, and ease of use.

1 Introduction

The numerical solution of partial differential equations (PDEs) is an important area of
scientific computing, since there are so many processes in e.g. engineering, physics,
biology, and even economics, that can be modeled by PDEs, but there are so few PDEs
that are solvable analytically. This kind of applications usually require a very high per-
formance, and a wish to solve PDEs numerically has often been an important force
in the development of high performance hardware, such as the Earth Simulator [1].
Finding a suitable, general environment for numerical computations is also an ongo-
ing concern in the field of scientific computing. Historically, the scientific computing
community developed successful Fortran libraries for numerical linear algebra such as
Linpack [8] and Lapack [9]. With the advent of object-oriented (OO) methods came
better modeling tools for supporting complex data structures. Examples of OO projects
are Cogito [36,35], Overture [10], and Diffpack [11]. OO frameworks have also been
developed and Compose [3] presents a quite general PDE solver design, implemented
on top of Overture. Pantazopoulos [26] presents Finanzia as an OO framework for fi-
nancial modeling. Generally, we find that program packages are either optimized for
speed, often written in C or Fortran, or developed in a high-level language such as Mat-
lab to allow for fast development and more readable code. Most of these solutions miss
out on one or some of the aspects of performance, maintenance, ease of use, and ability
to analyze data.

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 367–382, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The approach of using computational databases for numerical methods in engineer-
ing has been explored by Orsborn [24], where a FEM application has been integrated
with the AMOS database management system (DBMS). The general idea with this ap-
proach is to make database technology with efficient data management and query capa-
bilities accessible to computational-intensive applications. However, this will put new
demands on the DBMS itself including support for new types of mathematical data and
operations. If these requirements can be resolved, future database tools can be used for
developing computational database applications found in advanced scientific and engi-
neering applications and furthermore to extend their functionality with facilities like ad
hoc query capabilities.

In this paper, a problem solving environment for PDEs is created by extending
AMOS II [5] with suitable numerical mechanisms [4]. Specifically, support for finite
difference approximations and methods for solving the resulting linear systems of equa-
tions are developed. We use the framework to develop a financial modeling application.
We solve the Black–Scholes (BS) equation in one and two dimensions. The BS equa-
tion describes how the prices of options and financial instruments vary over a certain
designated time. This application is very important in today financial markets. The is-
sue to construct general software for modeling it has also been addressed by Skavhaug
using Diffpack [32], and by the already mentioned project Finanzia.

We think, however, that a full-fledged computational environment for financial mod-
eling must employ a database for evaluating simulations and for monitoring the market.
We argue that a computational database is the appropriate way to design a useful soft-
ware environment for this kind of applications, in the same way as OO analysis and
design stress the importance of data before algorithms. While the computational prob-
lem chosen has been the BS equation, it should be emphasized that the overall objective
is on providing a framework for scientific computing that is both effective and easy to
use, rather than focusing on some specific equation or type of problem.

2 Database Technology for Computational Applications

Database systems have traditionally been positioned for administrative systems devel-
opment. However, the current trend broadens this perspective to incorporate support for
more advanced and complex data sets and applications. These advanced applications are
often found in science and engineering where many applications involve large data sets
of high complexity. Furthermore, many of these complex data sets originate from some
mathematical model where data are generated by applying mathematical operators and
algorithms of various complexity.

This work focus on this interdisciplinary research area of database technology and
scientific computing that we term computational database technology earlier discussed
in [24] and [23] that studies how to provide database support for computational-inten-
sive database applications. A central idea is here to provide query-based computations
and analysis of complex models within the DBMS while withholding computational
performance competitive with conventional codes for scientific computing. To support
these computational-intensive applications, a computational database management sys-
tem (CDBMS) must be extensible on all levels [12] [24] that include:
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– Storage and access extensions - it should be possible to create new storage struc-
tures and operations on them. Computational-intensive applications normally in-
volve tailored and optimized data structures such as numerical matrix and vector
representations. These tailored data representations also require specialized indexes
and operators such as indexing of numerical matrices and numerical operations
such as matrix multiplication and decomposition operations.

– Query language extensions - the possibility to create abstract data types and define
operations on them, or overloading existing operations. Furthermore, the storage
and access extensions should be transparently integrated into the query language to
become accessible in query expressions.

– Query processing extensions - changing execution strategies should be an option, so
that the database can choose between different operations. For instance, the most
efficient execution plan for a set of complex arithmetical operations of a matrix
expression. Here, the query processor needs to understand specialized indexes, cost
models and possibly optimization algorithms.

Extensibility, have mainly been promoted for the object-relational class of database
management systems [31] and by the release of the SQL:99 standard. Besides exten-
sibility, also embeddable [29] and main-memory [16] database management systems
are important enabling technologies for supporting computational database systems.
The ability to embed, extend, compose and configure a DBMS into a tailored system
for developing advanced scientific applications can really have the capability to lever-
age development of scientific software as well as scientific data management. Main-
memory database technology is also critical since computational performance must
compete with that of conventional implementations in C or Fortran. Earlier work have
compared differences between secondary and primary memory storage techniques, es-
pecially with regard to speed and results indicates that this approach is feasible [24].
A more thorough discussion on the requirements on computational database systems
is given in [24] and several authors have been discussing the need to develop database
technology to support advanced applications [30] [6] [2] [17] [18].

The AMOS II DBMS [27] [5], used in this work, is an object-relational DBMS
that combines object-oriented modeling with powerful query capabilities. AMOS II is a
fully extensible system, covering all levels of extensibility discussed in the previous sec-
tion, and can be composed and configured for specific needs. The AMOSQL database
language of AMOS II can be extended by transparently integrating foreign functions
implemented in a conventional programming language such as C/C++, Java or Lisp.
Furthermore, AMOS II has a small footprint and can be embeddable into applications
providing access to full DBMS capabilities within conventional applications. The final
characteristic that makes AMOS II most suitable for developing computational database
systems is that it is a main-memory DBMS making it possible to achieve computational
performance on par with corresponding C or Fortran implementations.

3 Financial Derivatives and Finite Differences

As mentioned in the introduction, the Black–Scholes (BS) equation is commonly used
in the financial field to value financial instruments, such as option pricing of financial



370 J. Åkerlund, K. Åhlander and K. Orsborn

derivatives. These instruments usually depend on the more or less random fluctuation
of an underlying value or asset. It is beyond the scope of this paper to discuss finance
modeling in depth and we refer to standard financial textbooks for more details [21,38].

In Section 3.2, we mention a few numerical methods for the BS equation. In particu-
lar, we recall some basic ideas regarding the finite difference method, and we highlight
some requirements on the software that this method imposes. For a thorough treatment
on finite differences we refer to e.g. [19], and for a good description of how to solve the
BS equation with finite differences we refer to Tavella [34].

3.1 Financial Derivatives and the Black–Scholes Equation

There are many variants of financial derivatives. Among the simplest are Europeran
call and put options. A call option is an agreement between two parties that the option
holder has the right but not the obligation to buy a specified asset for a fixed price at a
future date—i.e., to exercise the option. The asset is often a stock, but may be anything
from gold to cattle. A put option instead gives the right to sell the asset. There are
also American options with the difference that, while a European option can only be
exercised at a specified future date, an American option can be exercised at any time
prior to the expiry date.

Options can be used for mere speculation—if you think that the price of a stock will
increase drastically at the open market, it might be a good idea to buy call options for
this stock. If the stock is worth more at the market than the exercise price, you make
a profit. Otherwise, it is no gain in exercising the option and you have lost worth the
option cost. Another common use of options is to limit various risks for a company,
i.e., hedging. The bottom-line is that it is important to have appropriate models for the
pricing of options, whether you sell or buy them and whatever your purpose is.

In order to model financial markets, it is often assumed that the Efficient Market
Hypothesis holds. Its weak form states that no excess returns can be earned by analyzing
historical data, and the only factor that affects stock prices is the introduction of news,
and the market responds immediately to it. Under various assumptions, see e.g. [21,38],
the BS equation for the value V of an option based upon a single stock with price S is
derived:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1)

This PDE states how the time derivative of the value (∂V/∂t) depends upon the volatil-
ity σ, the interest-free rate r, and on the first and second derivatives of the option value
with respect to the underlying stock, ∂V/∂S and ∂2V/∂S2, respectively. At termina-
tion time, the value of the option as a function of the underlying stock price is known.
For example, a European call option is worth nothing if the actual stock price S is less
than the exercise price V , and it is worth V − S if V > S. The PDE described by (1)
can then be used to compute backwards in time, in order to obtain an estimate of what
the option is worth today.

The model is quite sensitive to the underlying data, and the parameter σ is very hard
to estimate. The partial derivatives of V are important to consider when analyzing the
computations. In financial modeling, they are often referred to as the “Greeks”. They
are delta, gamma, rho, theta and vega (which is not actually a Greek letter):
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Options may be based upon more than one asset, so called basket options. When
modeling basket options on d underlying assets, BS equation in d dimensions are used.
The value V now depends on the coefficiency matrix σσT , where the individual com-
ponents represent volatilities or connection between different volatilities, as well as on
partial derivatives with respect to each of the underlying assets:

∂V

∂t
+

1
2

d∑
i,j=1

[σσT ]ijSiSj
∂2V

∂Si∂Sj
+

d∑
i=1

rSi
∂V

∂Si
− rV = 0 (3)

The “multi-dimensional” BS equation (3) is difficult to solve when d becomes large.

3.2 Finite Differences

There are many different ways to numerically solve PDEs. Finite elements, finite dif-
ferences, and finite volume methods are well-known general purpose methods. For the
BS equation, Monte-Carlo methods are often used, particularly when the number of
dimensions grow large. Another standard method is based upon trees; see e.g. Hull for
an introduction to so-called lattice methods [21]. Finite elements are applied to the BS
equation in [32]. A thorough description on finite differences for the BS equation is
found in Tavella [34].

Ideally, a CDBMS for the BS equation should support a variety of numerical meth-
ods. To start with, we have chosen to use finite differences, because it is a fairly simple
method to implement and because it is generally applicable. In this section, we recall
the basics of finite differences. We also discuss how to solve the resulting linear system
of equations by means of iterative methods.

When using the finite difference method, a solution to a certain equation is approxi-
mated over a number of discrete points, generally referred to as a grid or mesh, which
might be in any number of dimensions depending on the equation. For some problems
it is useful to have non-uniform grids, with individual points more densely placed in
areas that require higher precision.

In the finite difference method, all partial derivates in the PDE are approximated by
finite difference operators. As an example, the partial derivative ∂u/∂t is defined as
follows:

∂u

∂t
(x, t) = lim

δt→0

u(x, t + δt)− u(x, t)
δt

(4)

The discretization is now made by setting δt to a small but nonzero number:

∂u

∂t
(x, t) ≈ u(x, t + δt)− u(x, t)

δt
(5)

It is this step, which involves a number of small differences that are not infinitesimal,
that is referred to as a finite difference. The example given above makes a forward step
in time and is for this reason called a forward difference, often denoted D+,tu(x, t).
Similarly,

∂u

∂t
(x, t) ≈ D−,tu(x, y) =

u(x, t)− u(x, t− δt)
δt

, (6)
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is referred to as a backward step. These approximations are of first order, which means
that the error is proportional to the time step δt. A more accurate approximation is

∂u

∂t
(x, t) ≈ D0,tu(x, y) =

u(x, t + δt)− u(x, t− δt)
2δt

, (7)

which is a second order approximation. Combinations of these and other finite differ-
ences are used for approximating other partial derivatives. For example,

∂2u

∂x2
(x, t) ≈ D+,xD−,xu(x, t) (8)

which is also a second order approximation.
For our application, we have chosen the following interior discretization of the BS

equation. In one dimension,

D+,tV (S, t) +
1
2
σ2S2D+,SD−,S

1
2

(V (S, t) + V (S, t + δt)) +

rSD0,S
1
2

(V (S, t) + V (S, t + δt)) − rV (S, t) =
1
2

(V (S, t) + V (S, t + δt)) , (9)

with obvious generalizations to higher dimensions, see Tavella [34]. Tavella also pre-
sents the boundary conditions that we use.

A seen above, finite differences may be applied in both space and time, leading to
a discrete approximation of the PDE in every interior space point. This approximation
is often referred to as a stencil. If the time discretization is a forward difference, the
values at each time level can be calculated from the values at the previous level—i.e.,
the method is explicit. With a backward difference, the values at a new time level are
dependent on each other. The method is implicit, which implies that a sparse linear
system of equations must be solved at each time level. The implications for a general-
purpose software that should support finite differences, is that there should be an easy
interface to construct different finite difference stencils, and it should be possible to use
them both in explicit and implicit settings. However, since (9) is implicit, we have here
focussed on this case.

In order to solve linear systems of equations, we can basically choose between di-
rect methods and iterative methods. Iterative methods are often advantageous for sparse
systems. We have chosen to implement the generalized minimal residual (GMRES) it-
erative method, which is a well-known and robust method for this application. There are
also several sparse matrix formats to choose from, such as the Compressed Sparse Row
(CRS) format and the Ellpack-Eispack format [28]. Initially, we have chosen to support
the Ellpack-Eispack format. Even though it is less flexible than CRS, it is appropriate
for our application.

4 Implementation

Constructing a suitable database environment for a finite difference solver requires that
the suitable numerical methods described are implemented. While these different parts
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have all been referred to as extensions, they are regarded as a whole, and all contribute
to the solution.

An important part of modelling has been to construct a general storage format for
sparse matrices that commonly occur in finite difference computations. The general
framework for the matrix extension is first described followed by a description of the
scientific computing extension.

4.1 The Matrix Extension

In order to extend the database query language with matrix and vector functionality,
a foreign data source must be created that creates numerical objects and methods that
can be used with them. Such an extension has been written in C, thereby enabling the
external code to use the same physical storage as the database.

The most important points that the extended query language can do is listed in [24],
notably the following:

– Make queries involving matrix types in combination with other types of heteroge-
nous data.

– Express more complex matrix operations in terms of simpler ones.
– Understand domain-specific operators and thereby choose algorithms based on cost

measures. This is important in conjunction with solving the BS equation where
different solvers for equation systems will be considered based on matrix size and
dimension of the problem.

– Enables specific algorithms to be written for specific combinations of matrices and
vectors.

As a basis for the matrix extension used in this package, a new version of the same
basic representation that is described in [24] has been used. It builds upon the object
hierarchy shown in Fig. 1. Part of this hierarchy has been implemented previously by
Orsborn [24].

While a full-fledged implementation should contain all different matrix types, the
implementation focuses on the core types that are needed for most PDE solvers - sparse
matrices and dense vectors. The row type has been implemented due to its similarity
with the column type, and dense matrices have been included as a proof of concept
(partly of how different algorithms can be chosen for different types of matrices).

The matrix package also distinguishes what sort of numerical representation is used,
by keeping the types imatrix, dmatrix and fmatrix, where i, d and f stands
for int, double and float, respectively. It should be noted that in the implementation
described here, only the double type is supported.

The basic operations that the query language must be able to perform on the ma-
trices include the following matrix and vector operations: (this is a combination of a
subset of the operations required by sparse matrix kits as described in [33], with vector
operations)

– sparse matrix times dense vector
– sparse matrix plus sparse matrix
– sparse matrix minus sparse matrix
– sparse times constant
– sparse matrix times diagonal matrix (C = AD) and vice versa (C = DA)
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Matrix

Column RowSquare

Symmetric Triangular

Upper
Triangular

Lower
Triangular

Fig. 1. Type taxonomy for the matrix package

– vector plus vector
– vector minus vector
– vector times constant
– cross product
– dot product
– Euclidean norm

As can be seen from the above, the polymorphism employed in the database allow
users to choose many kinds of different operations depending on the chosen formats.

4.2 The Scientific Computing Extension

The scientific computing extension contains a few useful tools commonly used in gen-
eral PDE solvers. In the present project, capabilities for easily constructing a typical
finite difference coefficient matrix as well as two different solution methods, have been
added.

Stencil to Matrix. As many computational problems require setting up some sort of
banded matrix, especially when stencils are concerned, the function stencil to matrix
has been designed to do that It takes as argument two AMOS vectors, where the first
vector describes positions relative to the main diagonal, and the other the coefficients
the respective diagonals should have.

For example, to construct the matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

1. −2. 0. 0. 0. 0.
−2. 1. −2. 0. 0. 0.
0. −2. 1. −2. 0. 0.
0. 0. −2 1. −2 0.
0. 0. 0. −2. 1. −2.
0. 0. 0. 0. −2. 1.

⎞
⎟⎟⎟⎟⎟⎟⎠
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one could simply type:

set :s = square_sparse_dmatrix(6, 3);
stencil_to_matrix(:s, {-1,0,1}, {-2.0, 1.0, -2.0});

Numerical Solvers. The ability to solve linear systems of equations is important in
most PDE solvers. Generally, there are two approaches: direct solution methods such as
Gaussian elimination (LU decomposition) or iterative solution methods. We have im-
plemented a direct tridiagonal solver, which is often useful for one-dimensional prob-
lems [38], as well as GMRES, an iterative solver, since this usually is a better approach
for PDEs in higher dimensions [28]. Both solvers are optimized for the present appli-
cation.

5 Performance

For the database to be a viable alternative to other applications and problem solving
environments, it is not only important that it is easy to use but performance is critical
as well. Since most of the time is spent in the time-marching process, the speed of the
solvers becomes one of the most important measures. Three factors are important in
this case: the time it takes to add and subtract sparse matrices and vectors, the speed
of the solvers and the overhead of the database operations. The speed of the solvers
have been tested with both the tridiagonal solver and GMRES (which is not the native
Matlab GMRES but the same version implemented in the database).

In both tests dummy problems with tridiagonal matrices were used. Both solvers
were given sparse matrices with 1.0 on the main diagonal. In the tridiagonal case, the
side diagonals had the value 0.000001, and for GMRES, the value of 0.0001 was used.

As can be seen in Fig. 2, the differences between a pure C implementation and the
database are too slight to be noticeable. Further, the database system is around 4 times
faster than Matlab. In the example with GMRES, Fig. 3, the difference is even more
emphasized, the database implementation being around 8 times faster. This should not
be seen as saying that Matlab is really that much slower, since an interpreted function
for GMRES is used. The time difference between the tridiagonal solver, which is an
atomic function in Matlab, says more about real temporal differences.

It is safe to say, however, that the database implementation can provide quite com-
petitive performance in comparison to the native C implementation which is a most
promising result for the computational database approach.

In the case with the complete solvers for the BS equation, the difference needs some
extra interpretation, as can be seen from Fig. 4, in which the database is around 9 times
faster. The combination of the fact that Matlab is an interpreted language, and that
both the inner and the other loop is in the foreign function threediag solve, gives an
explanation for the big difference.

In the case with the two-dimensional solver differences are much smaller, even
though the database is faster, see Fig. 5. Since GMRES has been shown to be around 4
times faster in the database, and care has been taken to see that they achieve the same
results, either the overhead of the database or the large number of sparse additions and
multiplications in the database plays a role. For such operations it is most probable that
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Matlab and the database have the same performance. It should further be noted that the
two-dimensional database operations do not currently have an optimal implementation
and should be exchanged with improved representations in future work.

For the one-dimensional solver, the values used were S = 120, K = 20.0, r =
0.555555, number of grid points = 48, dt = 0.00005, σ = 0.3.

For the two-dimensional solver, S1 = 120.0, S2 = 120.0, K = 20.0, r = 0.555555,
number of grid points = 31 ∗ 31, dt = 0.00005, σ1 = 0.3, σ2 = 0.3, σc = 0.05 (where
σc is the relation between the two volatilities).

6 Use Cases

As has been seen earlier on, PDE problems generally involve finding a problem do-
main, selecting initial values and then time-marching to a specific solution. In any case,
regardless of dimensions, this amounts to the following:
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1. Create the contract function as initial values.
2. Create the system matrix that is used for solving the system of linear equations.
3. Use a solver for the time-marching.

Both the 1d and 2d solvers are functions that already exist in the database, with
predefined functions for the boundary values in 1d and 2d.

This section first gives an account of how the one- and two-dimensional cases work,
followed by examples of queries a user might want to perform, including determining
some of the Greeks in Eqs. (2).

6.1 1d Solver

While the contract function always looks the same, the system matrix used in this partic-
ular implementation consists of finite difference operators for the first- and second-order
derivatives in the equation, as well as the time derivative and the r value. While the lat-
ter two only affects the main diagonal of the matrix, the operators for the other two
(called D0 and D+D−, respectively) use stencils that require information in directly
adjacent gridpoints.

The boundary conditions used in both the 1d and the 2d solvers enforce the second
derivative to zero (as described in [34]). In the one-dimensional case, this means that the
D+D−-operator is not used in the first and the last point of the domain. The first-order
derivative also looks slightly different in the end points.

The one-dimensional operators have been set up in a sparse matrix by using the
stencil to matrix function described in Section 4.2. Either defined through a function
or typed directly at the command line, the user can create the D+D− operator by the
following set of commands, where :s is an instance of a sparse matrix, and c1 and c2
are the different values in the stencil:

stencil_to_matrix(:s, {-1,0,1}, {c1, c2, c1}, 1, size-2);

This says that the matrix should be filled in all places except on the first and the
last position (i.e. the first and the last rows in the matrix) However, if a user choosed
to fill the whole matrix by these values and wants to change to the boundary condition
described above, the following will suffice:

stencil_to_matrix(:s, {0, 1}, {0.0, 0.0}, 0);
stencil_to_matrix(:s, {-1,0}, {0.0, 0.0}, size-1);

The values in the first and the last rows in the matrix are now replaced by zero values.
When the difference operators have been created (this has been stored in the current

implementation of the database as the d0 and the dpdm functions, respectively), the
system matrix can be expressed as follows:

sysmatrix = i(n) - (diag(x) * d0 * r2 +
diag(x2) * dpdm * pow(sigma, 2.0) -
i(n) * r2) * dt_scaled;

Here, i(n) creates an identity matrix, x2 is computed as pow(x, 2.0), n is the size of
the computed matrix, dt = σ2

2 , dt scaled = dt ∗ 0.5 ∗ pow(sigma, 2.0) and r2 is the r
value multiplied by 2. All the computations involved use the sparse functionality.
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The Matlab command for the same expression would be:

sysmatrix = eye(n) - (sparse(diag(x)) * d0 * r2 +
sparse(diag(x.*x)) * dpdm * sigmaˆ2

- eye(n) * r2) * dt_scaled;

As can be seen from this example, the complexity of the matrix and vector expres-
sions in the database system can be at least as simple as the corresponding Matlab
expression. There is no additional complexity introduced in using the database and nu-
merical data can be freely combined with any other data in the database.

Finally, since the resulting system matrix is tridiagonal, that solver can be used. An
example of calling the one-dimensional solver function is the following:

set :c = bs_solve_1d(120.0, 20.0, 0.555555, 50, 0.00005,
0.3, 0.2)

where the parameters given is Smax, E (exercise price), r, number of grid points, dt,
volatility and the time step the user is interested in. The :c object is a vector containing
the answer.

6.2 2d Solver

The specific equation for the two-dimensional problem is obtained from (3). The con-
tract function used is:

max(
S1 + S2

2
−K, 0) (10)

The main difference between the one-dimensional and two-dimensional solvers is that
the latter require a two-dimensional mesh and have more complicated boundary values.
As there is still no specific mesh object available in this implementation (an issue that
will be addressed in future), extra functionality must be added to treat a one-dimensional
vector that is used in the solution process as two-dimensional.

For this purpose, the structure size 2d is created:

create type size_2d properties (y_size integer,
x_size integer);

This structure is then used as a basis for performing two-dimensional operations.
The function abs pos calculates the corresponding one-dimensional position of a two-
dimensional position:

create function abs_pos(size_2d c, integer y,
integer x) -> integer as
select y * y_size(c) + x;

The derived function stencil to matrix 2d uses this functionality to set boundary
conditions in the correct rows in the system matrix. For the stencils used in the two-
dimensional case, there are eight boundary conditions (four for the corners, and four
for the upper, lower, left and right boundaries, respectively).
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In order to specify that only the inner part of the square should be filled with stencil
coefficients for the D+D− operator in the x dimension (as stated above, the second-
order derivatives are zero), the following is sufficient. In this example, :s is the system
matrix, :s2d is a size 2d structure, c1 and c2 are constants, and y size2 and x size2
are the sizes in the x and y dimensions minus 2, respectively:

stencil_to_matrix_2d(:s, :s2d, 1, y_size2, 1, x_size2,
{-1,0,1}, {c1, c2, c1});

To add or remove a certain boundary condition, one expression like the above is
needed. That makes testing different boundary conditions a rather simple task.

Since the stencils used in the two-dimensional case are more complicated than in
the one-dimensional problem, the tridiagonal solver can no longer be used. Instead,
GMRES is used for the solution.

An example of calling the two-dimensional solver function is

set :c = bs_solve_2d(120.0, 120.0, 20.0, 0.555555,
30, 0.00005, 0.3, 0.3, 0.05, 0.01);

As before, :c is the vector containing the solution, and the parameters are S1
max,

S2
max, E (exercise price), r, number of grid points (the function currently only handles

quadratic grids), dt, volatilities for the two underlying assets, the relation between the
two volatilities, and the time amount.

6.3 Query Examples

One specific feature of the database that sets it apart from other systems with a similar
aim is the ability to perform ad hoc queries, i.e. finding new information from previ-
ously calculated data (or computing new data) that it was not specifically designed for.
Queries provide a simple way to find numerical information.

As an example of the latter, the following query is used to get the values of the most
commonly used Greek, namely Delta (where :c is the result of the one-dimensional
solver).

select r from real r, gridpoint_1d g,
integer size, integer pos

where size = size(:c) - 1
and g = unload(:c, 1, size)
and pos = pos(g) - 1
and r = (val(g) - val(unload_pos(:c, pos))) / 2.0;

The unload and unload pos are functions that return a vector as a collection of grid-
points, or as a similar gridpoint for one position.

For Gamma, the expression is only slightly more complicated:

select r from real r, gridpoint_1d g, integer size,
integer pos1, integer pos2

where size = size(:c) - 2
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and g = unload(:c, 1, size)
and pos1 = pos(g) - 1 and pos2 = pos(g) + 1
and r = val(unload_pos(:c, pos1)) +

val(unload_pos(:c, pos2)) - 2.0 * val(g);

While the Greeks are an important use of queries, there are other examples that really
show their capabilities. This example, in two dimensions, show how to get all values in
the final solution that are above 1.0 (:s is a result from the two-dimensional solver, and
:s2d is a size 2d structure):

select yp, xp, r from real r, gridpoint_2d g,
integer xp, integer yp

where g = unload(:s, :s2d) and r = val(g) and r > 1.0
and xp = xpos(g)
and yp = ypos(g);

Here, by explicitly including x and y positions in the select statement, the result will
show not only the requested values but also their positions.

As another example, say that a user wants to get the numerical values at the upper
boundary. This is simply done by asking for the values at the upper gridpoints:

select r from real r, gridpoint_2d g
where g = unload(:c,:s2d)
and ypos(g) = 0 and r = val(g);

7 Concluding Remarks

We have developed an extension to an existing database system, AMOS II, that can
handle complex numerical models. The extension transparently handles sparse matrices
and corresponding operations including numerical solvers, and we demonstrate how a
PDE solver for the Black–Scholes equation is developed and used within the extension.

The computational database approach integrates advanced numerical capabilities
within a database environment that can avoid unnecessary data duplication and transfor-
mation while making queries and other database facilities accessible to computational
applications. Using a call-out interface with precompiled database functions and foreign
functions allows a user to approach a problem with the same ease of use as for example
using the Matlab system. Furthermore, these capabilities can be provided without any
significant performance loss making the computational performance comparable with
native C implementations. This combination of core functionality written as foreign
functions, combined with the high-level efficiency and ease of use of the query lan-
guage, shows that this approach has the capabilitity to perform as well as other problem
solving environments.

The ability to pose queries over numerical results is one of the most attractive fea-
tures of our computational database environment and one that also distinguishes it from
other environments. Future work include improved representations of some financial
and mathematical concepts and operations and extending the approach to other appli-
cation areas. Related work studies visualization of numerical data and, to address huge
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data sets and high performance, we are currently developing support for parallel algo-
rithms on distributed platforms.
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Abstract. This paper presents a framework for merging, repairing and querying
inconsistent databases in the presence of functional dependencies and foreign key
constraints and investigates the problem related to the satisfaction of general in-
tegrity constraints in the presence of null values. In more details, the approach
consists in i) merging the source databases to reduce the set of tuples incon-
sistent with respect to the constraints defined by the primary keys, ii) repairing
the integrated database with respect to functional dependencies and foreign key
constraints, and iii) computing consistent answers over repaired database. This
paper presents a system prototype, RAINBOW, developed at the University of
Calabria, implementing the proposed framework. The system receives in input an
integration operator and a query and outputs the answer to the query. The system
currently implements many of the integration operators proposed in the literature.

1 Introduction

Data integration aims to provide a uniform integrated access to multiple heterogeneous
information sources, designed independently and having strictly related contents. How-
ever the integrated view, constructed by integrating the information provided by the
different data sources, by means of a specified integration strategy, could potentially
contain inconsistent data, i.e. it can violate some of the constraints defined on the data.

Example 1. Consider the database consisting of the relation Employee(Name, Age,
Salary) where the attribute Name is a key for the relation. Assume there are two dif-
ferent instances for the relations Employee: DB1 = {Employee(Mary, 28, 20),
Employee(Peter, 47, 50)} and DB2 = {Employee(Mary, 31, 30), Employee
(Peter, 47, 50)}. The merging of the two databases, performed by using as integration
strategy the union operator (i.e. by considering the union of the tuples in both the rela-
tions), produces the following integrated database :DB = {Employee(Mary, 28, 20),
Employee(Mary, 31, 30), Employee(Peter, 47, 50)} which does not anymore sat-
isfy the key constraint. �

In the presence of an inconsistent integrated database, i.e. a database that does not sat-
isfy some integrity constraints two possible solutions have been investigated in the lit-
erature [2,3,6,7,8,9,10,11,13,14,15]: repairing the database or computing consistent
answers over the inconsistent database. Intuitively, a repair of the database consists in
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c© Springer-Verlag Berlin Heidelberg 2006



384 L. Caroprese and E. Zumpano

deleting or inserting a minimal number of tuples so that the resulting database is con-
sistent, whereas the computation of the consistent answer consists in selecting the set
of certain tuples (i.e. those belonging to all repaired databases) and the set of uncertain
tuples (i.e. those belonging to a proper subset of repaired databases).

Example 2. Consider the integrated databaseDB reported in Example 1. There are two
possible repaired databases each obtained by deleting one of the two tuples whose value
of the attribute Name is Mary. The answer to the query asking for the age of Peter,
this is constituted by the set of certain tuples {〈47〉}, whereas the answer to the query
asking for the age of Mary produces the set of uncertain values {〈28〉, 〈31〉}. �

The paper proposes a framework for merging, repairing and querying inconsistent data-
bases. To this aim the problem of the satisfaction of integrity constraints in the presence
of null values is investigated and a new semantics for constraints satisfaction, inspired
by the approach presented in [5], is proposed. The present work focuses on the incon-
sistencies of a database instance w.r.t. particular types of integrity constraints, imple-
mented and maintained in commercial DBMS, such as primary keys, general functional
dependencies and foreign key constraints. The motivation to consider general functional
dependencies, and special forms of functional dependencies such as primary keys, is
that primary keys are used in the merging phase, whereas functional dependencies and
foreign key constraints are used to repair the database.

More specifically, the task of merging data provided by various sources is performed
using an integrator operator [17,13,12], which often reduces the set of tuples inconsis-
tent w.r.t. the primary key; the task of repairing an inconsistent database, so that achiev-
ing a consistent state, is obtained by removing or inserting some tuples in the database
in order to satisfy functional dependencies and foreign key constraints. Finally, the con-
sistent answer to a query Q is computed by evaluating the set of set of certain tuples,
i.e. those tuples satisfying the query and belonging to all repaired database, and the set
of uncertain tuples, i.e. those tuples satisfying the query and belonging to some, but not
all, repaired databases. The framework for merging, repairing and querying inconsis-
tent databases with functional dependencies, restricted to primary key constraints, and
foreign key constraints has been implemented in a system prototype, developed at the
University of Calabria. The system, called RAINBOW, receives in input an integrator
operator, a flag F specifying how to manage the inconsistent database, i.e. by repair-
ing it or by consistently answering queries. More specifically, the integration operator
is used in order to perform the merging phase, so that obtained an integrated, possibly
inconsistent database, DBI . Then the system performs the management of DBI by al-
lowing, coherently with the solutions provided in the literature, either to compute the
repairs (F =0) or to consistently answer to a given query (F=1). In the first case the
system outputs the repaired database, in the latter case the system receives in input a
query and outputs the answer to the query.

2 Preliminaries on Relational Databases

Before formally introducing the problems related to the merging, repairing and query-
ing of inconsistent databases let us introduce some basic definitions and notations. For
additional material see [1,18].
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A relational schema DS is a pair DS = 〈Rs, IC〉 where Rs is a set of relational
symbols and IC is a set of integrity constraints, i.e. assertion that have to be satisfied
by a generic database instance.

Given a database schema DS = 〈Rs, IC〉 and a database instance DB over Rs, we
say that DB is consistent if DB |= IC, i.e. if all integrity constraints in IC are satisfied
by DB, otherwise it is inconsistent.

A relational query (or simply a query) over Rs is a function from the database to
a relation. In the following we assume queries over DS = 〈Rs, IC〉 are conjunctive
queries, i.e. first order relational formulas with existential quantification and conjunc-
tion of the form: Q(y1, ...yn) ≡ ∃x1, ...∃xmΦ(x1, ...xm, y1, ...yn) where Φ is a con-
junction of atoms whose predicate symbols are in Rs and each xi with i ∈ [1..n] and
yj with j ∈ [1..m] is either a variable or a constant.

We will denote with Dom the database domain, i.e. the set of values an attribute can
assume, consisting of a possibly infinite set of constants and assume ⊥∈ Dom, where
⊥ denotes the null value.

3 Databases Merging

This section investigates the problem of database merging. Let us introduce some sim-
ple definitions in order to simplify the description of our approach. Let R be a relation
name, then we denote by: i) attr(R) the set of attributes of R; ii) key(R) the set of at-
tributes in the primary key of R; iii) fd(R) the set of functional dependencies defined
on attr(R). Given a tuple t ∈ R, key(t) denotes the values of the key attributes of t.
The absence of information for an attribute is indicated by⊥ (the null value).

Once the logical conflicts owing to the schema heterogeneity have been resolved,
conflicts may arise, during the integration process, among data provided by different
sources. In particular, the same real-world object may correspond to many tuples, that
may have the same value for the key attributes but different values for some non-key
attribute.

The database integration problem consists in the merging of n databases DB1 =
{R1,1, ...R1,n1}, ...,DBk = {Rk,1, ...Rk,nk

}. In the following we assume that relations
corresponding to the same concept and furnished by different sources are homogenized
with respect to a common ontology, so that attributes denoting the same property have
the same name [17]. We say that two homogenized relations R and S, associated to
the same concept, are overlapping if key(R) = key(S). Given a set of overlapping
relations an important feature of the integration process is related to the way conflicting
tuples are combined.

Before performing the database integration the relations to be merged, i.e. the set of
overlapping relations, must be first reconciled so that they have the same schema.

Definition 1. Given a set of overlapping relations {S1, ..., Sn}, a reconciled relation R
is s.t.: i) attr(R) =

⋃n
i=1 attr(Si)∪ {Src}, ii) R contains all tuples t ∈ Si, 1 ≤ i ≤ n

completed as follows: all attributes belonging to attr(R) − attr(Si) are fixed to ⊥;
R[Src] = i, where i is the unique index of the source database. �

Example 3. Consider the following two overlapping relations S1 and S2:
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K Title Author

1 Moon Greg
2 Money Jones
3 Sky Jones

S1

K Title Author Y ear

3 F lowers Smith 1965
4 Sea Taylor 1971
7 Sun Steven 1980

S2

The reconciled relation R is the following:

K Title Author Y ear Src

1 Moon Greg ⊥ 1
2 Money Jones ⊥ 1
3 Sky Jones ⊥ 1
3 F lowers Smith 1965 2
4 Sea Taylor 1971 2
7 Sun Steven 1980 2

R
�

Given a database DB consisting of a set of reconciled relations {R1, ..., Rn} the inte-
grated database, DBI consists of a set of n integrated relations {RI

1, ..., R
I
n}, where

each RI
j (j ∈ [1..n]) is obtained by applying an integration operator, denoted as (, to

the reconciled relation Rj , i.e. computes RI
j = ((Rj).

In order to perform the database integration task several integration operators have
been proposed in the literature, we recall here: the match join operator [17], the merging
by majority operator [13], the merge operator and the prioritized merge operator [12].

Before presenting, in an informal way, these operators we introduce some prelimi-
nary definition and define desirable properties of integration operators.

Definition 2. Given two relations R and S such that attr(R) = attr(S) and two tuples
t1 ∈ R and t2 ∈ S, we say that t1 is less informative than t2 (t1 ) t2) if for each
attribute A in attr(R), t1[A] = t2[A] or t1[A] =⊥. Moreover, we say that R ) S if
∀t1 ∈ R, ∃t2 ∈ S s.t. t1 ) t2. �

In the following given a set of overlapping relations {S1, . . . , Sn} and the correspond-
ing reconciled relation R we will denote as R|i the set of tuples in R obtained by
extending tuples in Si with ⊥ value for each attribute A �∈ attr(Si). Thus R|i contains
those tuples in R having Src = i (R|i = Πattr(R)−{Src}(σSrc=i(R))).

Definition 3. Let {S1, ..., Sn} be a set of overlapping relations and R the correspond-
ing reconciled relation, then an integration operator, (, is said to be (i) complete (or
lossless), if R|i ) ((R), for i ∈ [1..n]; (ii) dependency preserving, if ((R) |= fd(Si);
(iii) correct if ∀t ∈ ((R) ∃t′ ∈ Πattr(R)−{Src}(R) s.t. t′ ) t. �

Informally, if an integration operator is both correct and complete it preserves the infor-
mation provided by the sources. In fact, it could modify some input tuples by replacing
null values with not null ones, but all the associations of not null values which were
contained in the source relations will be inserted into the result (completeness) and no
association of not null values which was not contained in the source relations will be
inserted into the result (correctness).
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In the rest of this section we will briefly describe some integration operators proposed
in the literature. We suppose the database sourceDBi is preferred by the user over each
databaseDBj , with j > i.

The integration strategy performed by different integration operators, proposed in
the literature, will be described by evaluating the integrated relation, RI , obtained by
applying them to the reconciled relation R in Example 3. Moreover, we suppose the
functional dependency T itle→ Author is defined over R, i.e. the attribute Author is
functionally dependent on the attribute T itle. We recall that inconsistencies taken into
account by these integration operators only derive from primary keys violations.

The Mach Join Operator, proposed in [17], manufactures tuples in the integrated
relation by performing the outer-join of the V alSet of each attribute, where the
V alSet of an attribute A is the projections of the reconciled relation on {K, A}.

Example 4. The integrated relation
RI is the following:

K Title Author Y ear

1 Moon Greg ⊥
2 Money Jones ⊥
3 Sky Jones 1965
3 Sky Smith 1965
3 F lowers Smith 1965
3 F lowers Jones 1965
4 Sea Taylor 1971
7 Sun Steven 1980

RI

The Match Join operator is complete, but it
is not correct, since it mixes values coming
from different tuples with the same key in
all possible ways. As a consequence, when
applying the Match Join operator to the re-
lation R in Example 3 we obtain an in-
tegrated view RI violating the functional
dependency T itle → Author. Thus the
Match Join operator produces tuples con-
taining associations of values that may be
not present in any original relation and the
integration process may generate a relation
which is not anymore consistent w.r.t. the
functional dependencies.

The Merging by Majority Operator, proposed in [13], tries to remove conflicts tak-
ing into account the majority view of the databases, i.e. it maintains the (not null)
value which is present in the majority of the databases. Thus the operator constructs
an integrated relation containing generalized tuples, i.e. tuples where each attribute
value is a simple value, if the information respects the majority criteria, or a set, if
the operator does not resolve the conflict.

Example 5. The merging by majority operator is not able to solve the conflict
present in R between the two tuples t1 and t2 having key(t1)=key(t2) = 3. Thus
RI will contain also the generalized tuple {3, {Sky, F lowers}, {Jones, Smith},
1965}. �

The Prioritized Merge operator, introduced in [12], is an operator which, if conflict-
ing tuples are detected, gives preference to those belonging to the source on which
the user expressed preference: a tuple coming from a preferred relation is always
maintained, and if it has some null values it is completed with not null values pro-
vided by less preferred relations.
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Example 6. The integrated relation
RI is:

K Title Author Y ear

1 Moon Greg ⊥
2 Money Jones ⊥
3 Sky Jones 1965
4 Sea Taylor 1971
7 Sun Steven 1980

RI

Obviously, the prioritized merge operator is
correct, but it is not complete as in the pres-
ence of conflicting tuples it maintains the
not null values coming from the first rela-
tion holding it, following the preference or-
dering.

Fact 1. The complexity of constructing the merged database by means of an integration
strategy is polynomial time. �

4 Repairing and Querying Inconsistent Databases in the Presence
of Null Values

In this section we propose a semantics for constraint satisfaction in the presence of null
values, inspired by the approach presented in [5]. Bertossi et al. in [5] investigate the
problem related to the satisfaction of integrity constraints in an incomplete database, i.e.
a database in which incomplete information is represented by null values. The authors
consider general constraint of the form1:

(∀ X)[
m∧

j=1

bj(Xj), ϕ(X0) ⊃
n∨

j=m+1

(∃Zj)bj(Xj , Zj) ] (1)

where bj , for j ∈ [1..n], are predicate symbols, ϕ(X0) denotes a conjunction of built-in
atoms, X =

⋃m
j=1 Xj , Xi ⊆ X for i ∈ [0..n] and all existentially quantified variables

appear once. The notion of relevance of attributes w.r.t. the occurrence of null values
in constraints is defined: the relevant attributes for a constraint of the form (1) are
those involved in joins, those appearing in both the body and the head of (1), and those
appearing in ϕ. Thus, a constraint is satisfied if any of the relevant attributes has a null
value or the constraint is satisfied in the standard way (no null value involved).

Example 7. Consider the constraint ic : ∀(X, Y, Z)[p(X, Y ), p(X, Z) ⊃ Y = Z] and
the databaseDB = {p(a,⊥), p(a, b)}. The set of relevant attributes is {X, Y, Z}. When
checking the satisfaction of ic for X = a, Y = b and Z =⊥, a null value is present in
a relevant attribute, thus the constraint ic is satisfied and the database DB is consistent
w.r.t. the semantics proposed in [5].

Observe that the database of previous example is inconsistent w.r.t. the semantics adop-
ted by commercial DBMS as two different tuples with the same value for primary key
attributes belong to the database. In order to capture the behavior of commercial DBMS

1 The order of literals in a conjunction or in a disjunction is immaterial. A literal can appear in
a conjunction or in a disjunction at most once. The meaning of the symbols ‘∧’ and ‘,’ is the
same.
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semantics, in the following we provide an alternative notion of satisfaction for integrity
constraints. Our semantics can be thought of as a refinement of the one in [5] as is ob-
tained from the one in [5] by modifying as follows the definition of relevant attributes:
the relevant attributes for a constraint of the form (1) are those involved in joins, those
appearing in both body and head of (1), and those appearing in ϕ that are not involved
in equality conditions in the head of (1) or in inequality conditions in the body of (1).

Example 8. Consider the constraint and the database of Example 7. The set of relevant
attributes is {X}; ic is not satisfied for X = a, Y = b and Z =⊥, therefore the database
DB is inconsistent.

In the following we will provide further details on the satisfaction of functional depen-
dencies and foreign key constraints in the presence of null values and will show how
to handle a violation for these kinds of constraint. The motivation for considering only
these limited form of constraints, relies in the fact they can be defined and maintained in
commercial DBMS and are the types of constraints we manage in the system prototype
for integrating, repairing and querying inconsistent databases.

Definition 4. (Functional Dependency Satisfaction) Given a functional dependency
fd of the form

∀(X, Y, Z)[p(X, Y ), p(X, Z) ⊃ Y = Z] (2)

a database DB satisfies fd if for each p(x, y) ∈ DB and, p(x, z) ∈ DB then y = z
or x =⊥. If a violation of fd occurs, i.e. there exists p(x, y) ∈ DB and p(x, z) ∈ DB
with x �=⊥ and y �= z, then the constraint can be satisfied by deleting either p(x, y) or
p(x, z). �

Definition 5. (Foreign Key Satisfaction) Given a foreign key constraint fk of the form

∀(X, Y )[p(X, Y ) ⊃ ∃Zq(X, Z)], (3)

where X, Y, Z are lists of variables and Y, Z may be empty lists, then a database DB
satisfies fk if for each p(x, y) ∈ DB, there exists q(x, z) ∈ DB or x =⊥. If a viola-
tion of fk occurs, i.e. there exists p(x, y) ∈ DB with x �=⊥ and there does not exist
q(x, z) ∈ DB, then the constraint can be satisfied by either deleting the tuple p(x, y) or
inserting a tuple q(x,⊥). �

Before formally introducing the notion of repair in the presence of null values some
preliminaries are provided.

An update atom is in the form +a(X) or −a(X). A ground atom +a(t) states that
a(t) will be inserted into the database, whereas a ground atom −a(t) states that a(t)
will be deleted from the database. Given a set U of ground update atoms we define
the sets U+ = {a(t) | + a(t) ∈ U}, U− = {a(t) | − a(t) ∈ U}. We say that U is
consistent if does not contain two update atom +a(t) and−a(t) (i.e. if U+∩ U− = ∅).
Given a database DB and a consistent set of update atoms U , we denote as U(DB) the
updated database DB ∪ U+ − U−. In the following we will use IC to denote a set
of constraints including functional dependencies and foreign key constraints, i.e. IC =
FD ∪ FK. Moreover, we denote with PK the subset of the functional dependencies
defining primary keys.
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Definition 6. Given a database DB and a set of integrity constraints IC, a repair for
〈DB, IC〉 is a consistent setR of update atoms such that

1. R(DB) |= IC and
2. there is no consistent set U of update atoms such that U ⊂ R and U(DB) |= IC

and
3. there is no update atom +a(x) ∈ R s.t. there exists +a(x′) with +a(x′) << +a(x)

and, letR′ = R∪ {+a(x′)} − {+a(x)},R′(DB) |= IC. �

The third condition in the previous definition ensures that for each databaseDB and set
of integrity constraints IC there is a finite number of repairs.

Observe that if ⊥�∈ Dom, the notion of repair here provided coincides with the one
given in [11].

Example 9. Consider the following set of integrity constraints IC :

– ∀(X, Y, Z)[p(X, Y ), p(X, Z) ⊃ Y = Z]
– ∀(X, Y, Z)[q(X, Y ), q(X, Z) ⊃ Y = Z]
– ∀(X, Y )[p(X, Y ) ⊃ ∃Z q(Y, Z)]

and the database DB = {p(a,⊥), p(a, b)}. DB is inconsistent w.r.t. IC and the repairs
for 〈DB, IC〉 are: R1 = {−p(a, b)} and R2 = {−p(a,⊥), +q(b,⊥)}. Observe that
each set U = {−p(a,⊥), +q(b, X)} of update atoms with X a constant different from
⊥ is not a repair as it does not satisfy the third condition in Definition 6.

In the rest of the section we investigate the problem of querying an inconsistent database
by considering the computation of consistent answers. The set of tuples present in the
database, i.e. those implied by the constraints or originally present may be either true,
false or undefined.

Definition 7. Given a database schema DS = 〈Rs, IC〉 and a database DB over Rs,
an atom A is true (resp. false) with respect to 〈DB, IC〉 if A belongs to all repaired
databases (resp. there is no repaired database containing A). The set of atoms which are
neither true nor false are undefined. �

Thus, true atoms appear in all repaired databases [3], whereas undefined atoms appear
in a proper subset of repaired databases.

Definition 8. Given a database schema DS = 〈Rs, IC〉 and a database DB over Rs,
the application of IC to DB, denoted by IC(DB), defines three distinct sets of atoms:
the set of true tuples IC(DB)+, the set of undefined tuples IC(DB)u and the set of
false tuples IC(DB)−. �

Definition 9. Given a database schema DS = 〈Rs, IC〉, a database DB over Rs and
a query Q, the consistent answer of the query Q on the database DB, denoted as
Q(DB, IC), consists of three sets, denoted Q(DB, IC)+, Q(DB, IC)− and
Q(DB, IC)u, containing, respectively, the sets of tuples which are true (i.e. belong-
ing to Q(DB′) for all repaired databases DB′), false (i.e. not belonging to Q(DB′) for
all repaired databases DB′) and undefined (i.e. set of tuples which are neither true nor
false). �
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Example 10. Consider the set of constraints in Example 9 and the database DB =
{p(a,⊥), p(a, b), p(c, d), q(d, e)}. There are two repairsR1 andR2 that coincide with
those reported in Example 9 and produce respectively the repaired databases : DB1 =
{p(a,⊥), p(c, d), q(d, e)} and DB2 = {p(a, b), p(c, d), q(d, e), q(b,⊥)}. Given the
query Q1 : p(X, Y ), the set of true tuples is {〈d, e〉}, whereas the set of undefined
tuples is {〈a,⊥ 〉, 〈a, b〉}. For the query Q2 : s(X, Z)← p(X, Y ), q(Y, Z), the set of
true tuples is {〈c, e〉}, whereas the set of undefined tuples is {〈a,⊥ 〉}.

5 RAINBOW: A System for Merging, Repairing and Querying
Inconsistent Databases

RAINBOW (RepAiring INconsistent dataBases fOr query ansWering) is a system pro-
totype for merging, repairing and querying inconsistent databases with functional
and foreign key constraints implemented at the University of Calabria. The system,
which currently works for foreign key constraints and functional dependencies defining
primary key constraints, has been implemented by using Java 2 Platform and all the
experimentations have been performed on databases managed by MySQL. The overall
architecture of the system prototype is reported in Figure 1.

RAINBOW receives in input an integrator operator - IO that specify how to construct
the integrated database DBI , a flag F ∈ {0, 1} and i) if F=0 returns the repaired
databases that can be obtained from the possibly inconsistent database DBI , ii) if F=1
the system receives in input a query Q and outputs the answer - Ans. It performs this
task by i) merging of the set of overlapping relations, contained in the Source Database
- SDB - ii) constructing the integrated database - DBI - as specified by IO and iii) if
(F=0) building a repaired databaseDBR that maintains information on the set of repairs
associated with DBI , i.e. the set of databases obtained from DB which are consistent
w.r.t. the set of constraints; or iii) if (F=1) answering the query Q by returning the
answer Ans partitioned into two parts: certain answer (set of tuples which are true in
all repaired database) and uncertain answer (set of tuples which are true in just in some
repaired database).

The system can be used by means of a User Interface - UI - that allows to specify
the integration operator, selected among those defined in the literature, the flag F and,
eventually, the user query Q. The user interface module interacts with the integration
module - IM - the repairing module -RM - and the query evaluation module -QEM
- and outputs either a repaired database DBR that maintains information on the set of
repairs associated with DBI or the answer Ans. In the rest of this section the main
features of the modules that constitute the system will be detailed.

5.1 Integration Module

The integration module receives in input the source database, the integration operator
and constructs the corresponding integrated database. It is in charge of computing the
integration of the reconciled relations, belonging to the source database, by using a
specified integration strategy as described in Section 3. The integration module imple-
ments many of the integration operators, proposed in the literature, such as the match
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Fig. 1. System architecture

join [17], the merging by majority [13], the merge and the prioritized merge operator
[12]. The implementation of these operators is obtained by means of SQL statements.

In the following, for the sake of brevity, the notation R.X will be used either in the
case X is a single attribute or a list of attributes of R. Moreover, a condition θ expressed
over a list of attributes X = {X1, . . . , Xn} is intended to be expressed over each attribute
in X , as an example X IS NULL denotes the conjunction X1 IS NULL AND . . . AND
Xn IS NULL; and R1.X = R2.X denotes the equality condition R.X1 = R2.X1 AND . . .
AND R1.Xm = R2.Xn; whereas R1.X <> R2.X denotes the inequality condition R.X1 <>
R2.X1 OR . . . OR R1.Xm <> R2.Xn.

Examples of different integration operators will be described in the following, by
referring to the reconciled relation R = {K, X1, .., Xn, Src}.

The Match Join Operator. The Match Join operator can be easily expressed by means
of the following SQL statement:

for each Xi ∈ attr(R)− {K, Src}
CREATE VIEW Ti(K, Xi) AS

SELECT K, Xi FROM R
WHERE Xi IS NOT NULL

CREATE VIEW RI(K, X1, . . . , Xn) AS
SELECT T1.K, T1.X1, ..., Tn.Xn

FROM T1, ..., Tn

WHERE T1.K = T2.K AND ...
AND Tn−1.K = Tn.K;

The Merging by Majority Operator. The SQL statement expressing the Merging by
Majority operator is the following:
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for each Xi ∈ attr(R)− {K, Src} {
CREATE VIEW Wi(K, Xi, Counter) AS

SELECT K, Xi, COUNT(∗) FROM R
GROUP BY (K, Xi);

CREATE VIEW Ti(K, Xi) AS
SELECT K, Xi FROM Wi

WHERE NOT EXISTS(
SELECT * FROM Wi AS W ′

i

WHERE Wi.K = W ′
i .K AND

Wi.Counter < W ′
i .Counter); }

CREATE VIEW RI(K, X1, . . . , Xn) AS
SELECT T1.K, T1.X1, ..., Tn.Xn

FROM T1, ..., Tn

WHERE T1.K = T2.K AND ...
AND Tn−1.K = Tn.K;

The Prioritized Merge Operator. The Prioritized Merge operation can be easily ex-
pressed by means of an SQL statement, as follows:

for each Xi ∈ attr(R)− {K, Src} {
CREATE VIEW Ti(K, Xi) AS

SELECT K, Xi FROM R
WHERE NOT EXISTS(

SELECT * FROM R R′

WHERE R.K = R′.K AND
R′.Xi IS NOT NULL AND
((R.Xi IS NOT NULL AND R.Src > R′.Src) OR
(R.Xi IS NULL))) }

CREATE VIEW RI(K, X1, . . . , Xn) AS

SELECT T1.K, T1.X1, ..., Tn.Xn

FROM T1, ..., Tn

WHERE T1.K = T2.K AND ...

AND Tn−1.K = Tn.K;

5.2 Repairing Module

The Repairing Module - RM - is responsible for solving PKs and FKs inconsisten-
cies and implements the strategy reported in Section 4. It receives in input the Integrated
DatabaseDBI and produces a repaired databaseDBR in which each tuple t has an addi-
tional attribute (Truth) reporting its truth value (i.e. undefined, true) in a deterministic
semantics.
RM first creates a copy of the integrated database DBI into a database DBR in

which each relation RR is constructed as follows: its schema is obtained by adding
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the attribute (Truth) to the schema of the corresponding relation RI ∈ DBI , and its
instance is obtained from the corresponding instance by setting to true the value of
each tuple. Obviously each constraint defined over DBI can be considered valid over
DBR.

The -RM - then works as follows:

– Test on FKs satisfaction. For each FK constraint ∀(X, Y )[p(X, Y ) ⊃ ∃Zq(X, Z)]
and ∀t = pR(x, true) ∈ DBR,
• if � ∃qR(x, , true) ∈ DBR, then t[Truth] is updated to undefined and
• if � ∃qR(x, , ) ∈ DBR, the tuple q(x,⊥, undefined) will be inserted in
DBR;

– Test on PKs satisfaction. For each relation RR with key K and for each tuple t ∈
RR, t[Truth] is updated to undefined if ∃t′ ∈ RR s.t. t �= t′ and t[K] = t′[K].

Given a relational schema R(K, X), where K denotes the list of attributes belonging
to the primary key, and X denotes the remaining attribute in R, we denote the key
constraint with K → X . Given two relational schema R(X) and Q(Y ) a foreign key
constraint will be expressed by using the syntax R[C] ⊆ Q[D], where C ⊆ X and
D ⊆ Y (its primary key).

In the following, we suppose the relation RR, obtained from RI by adding to its
schema the attribute Truth, has been already constructed as previously specified.

The repair module first verifies FKs satisfaction and updates the repaired database
DBR by executing the following SQL statements:

UPDATE RR SET Truth = ‘undefined′

WHERE RR.X IS NOT NULL AND NOT EXISTS(
SELECT * FROM QR

WHERE QR.Y = RR.X AND QR.T ruth = ‘true′);

INSERT INTO QR

SELECT X,NULL,‘undefined′ FROM RR

WHERE RR.X IS NOT NULL AND NOT EXISTS(
SELECT * FROM QR

WHERE QR.Y = RR.X);

Then, in order to check the satisfaction of primary key constraints theRM executes
the following SQL statement for each relation R(K, X).

UPDATE RR, RR AS R′ SET RR.T ruth = ‘undefined′

WHERE RR.K = R′.K AND RR.X <> R′.X

Example 11. Consider the relations Employee(Name, City, Age, Level) and Level
(Id, Salary). Suppose to have the constraints:

– Name→ City, Age, Level;
– Id→ Salary
– Employee[Level] ⊆ Level[Id]
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and assume the following instances of the integrated relations:

EmployeeI = {〈Mary, V enice, 28, A〉, 〈Mary, V enice, 31, A〉, 〈Peter,
Rome, 47, B〉, 〈Peter, Rome, 40, B〉, 〈David, Naples, 40, A〉, 〈David,
F lorence, 40, B〉} and LevelR = {〈A, 20〉}.
The repaired relations, computed byRM are the following:

EmployeeR = {〈Mary, V enice, 28, A, undefined〉, 〈Mary, V enice, 31, A,
undefined〉, 〈Peter, Rome, 47, B, undefined〉, 〈Peter, Rome, 40, B, undefined〉,
〈David, Naples, 40, A, undefined〉, 〈David, F lorence, 40, B, undefined〉} and
LevelR = {〈A, 20, true〉, 〈B,⊥, undefined〉}.

The value of Truth attribute states that the relation Employee of a repaired database
cannot contain both tuples 〈Mary, V enice, 28, A〉 and 〈Mary, V enice, 31, A〉, both
tuples 〈Peter, Rome, 47, B〉 and 〈Peter, Rome, 40, B〉 and both tuples 〈David,
Naples, 40, A, true〉 and 〈David, F lorence, 40, B, true〉. �

5.3 Query Evaluator Module

The Query Evaluator Module - QEM - receives the query Q and returns, to the user
interface, the answer Ans partitioned into the sets of certain and uncertain tuples. The
computation of the answer is performed over a database DBQ computed from DBI

by applying the technique presented in the section 4 using the set of constraints that
directly or even indirectly are meaningful for the query.

Before presenting a complete example that illustrates the main feature of the QEM
we introduce some preliminary concepts.

Definition 10. Given a database DB, a set FK of foreign key constraints and a con-
junctive query Q, involving the relations {R1, ..., Rn}, the dependency graph G(DB,
FK) is the graph 〈N, A〉, with N the set of nodes and A the set of arcs, obtained as
follows: for each relation R ∈ DB, N contains a node identified with the same name
of the relation and for each foreign key constraint R[X ] ⊆ Q[Y ] ∈ FK , A contains an
arc (R, Q).

The query graph G(DB, FK, Q) is the subgraph of G(DB, FK) containing each
node reachable from or from which is reachable a node in {R1, ..., Rn}. �

Example 12. Consider the database DB containing the relations Employee(Name,
City, Age, Level), Level(Id, Salary) and Product(Id, Description). Suppose to
have the set of foreign key constraints FK = {Employeee[Level] ⊆ Level[Id]} and
the query Q : g(Name, Age) ← Employee(Name, Age, ), asking for name and
age of each employee. The query graph G(DB, FK, Q) contains the nodes Employee
and Level. �

TheQEM receives in input a query Q and works as follows:

Step 1 - It executes a process similar to the one performed by the repairing moduleRM,
in order to compute the database DBQ in which each relation RQ has an additional
attribute Truth;
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Step 2 - It executes the query Q onDBQ and returns the answer Ans partitioned in two
sets: the set of true tuples and the set of undefined tuples.

In more details, in the Step 1 for each relation R, corresponding to a node in
G(DB, FK, Q), the QEM computes the relation RQ. The attribute Truth of each
tuple t ∈ RQ is fixed by checking the satisfaction of FK constraints involving R (cor-
responding to arcs of G(DB, FK, Q)), and the satisfaction of functional dependencies
in the form K → X , where K denotes the key attribute and X is an attribute involved in
Q. The SQL statements that allows to perform Step 1 are analogous to the one reported
in previous subsection. Finally, in the Step 2 the QEM evaluates the query Q over the
databaseDBQ.

Example 13. Consider the Example 11 and the query Q : g(Name, City, Level)←
Employee (Name, City, , Level) asking for name, city and level of employees. The
information holds in the repaired relations EmployeeR and LevelR states that i) all the
repaired databases agree that Mary has an A level and lives in Venice because in each of
them the relation Employee contains a tuple of the form 〈Mary, V enice, , A〉 and
the relation Level contains the tuple 〈A, 20〉; ii) the information that Peter has a B level
and lives in Rome is not confirmed by all repaired databases because a tuple 〈B, 〉
is not present in the relation Level and a way to repair the original database (in order
to satisfy the foreign key constraint) is to delete both tuples 〈Peter, Rome, 47, B〉 and
〈Peter, Rome, 40, B〉 from Employee; iii) finally some repaired database holds the
information that David has an A level and lives in Naples and some other stores the
information that David has a B level and lives in Florence.

The database DBQ, computed by QEM is the following: EmployeeQ =
{〈Mary, V enice, 28, A, true〉, 〈Mary, V enice, 31, A, true〉, 〈Peter, Rome,
47, B, undefined〉, 〈Peter, Rome, 40, B, undefined〉, 〈David, Naples, 40,
A, undefined〉, 〈David, F lorence, 40, B, undefined〉} and LevelQ = {〈A, 20,
true〉, 〈B,⊥, undefined〉}. Therefore, the answer to the query Q has to return the
certain tuple {〈Mary, V enice, A〉} and the uncertain tuples {〈Peter, Rome, B〉,
〈David, Naples, A 〉, 〈David, F lorence, B〉}.

The SQL statement allowing to answering the query Q by computing the relation
Ans is the following:

CREATE VIEW Ans AS
SELECT Name, City, Level, Truth
FROM EmployeeQ

Obviously, in order to partition the answer Ans into certain and undefined tuples,
we have just to select from Ans the set of tuples having truth value equal to true and
undefined, respectively. �

Another peculiarity of the QEM that is important to point out is that, in order to cor-
rectly answering queries, each undefined tuple t ∈ Ans (i.e. t[Truth] = undefined)
is obtained from tuples that could be present in the same repaired database (i.e. their
simultaneous presence does not violate any PKs).

The following example should make this crystal clear.
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Example 14. Consider the database of previous example and suppose to have the query
Q : g(City1, City2)← Employee( , City1, Age, ), Employee( , City2, Age, ),
City2 �= City1 asking for pairs of different cities in which live employees having the
same age. The SQL statement allowing to answering the query Q is the following:

CREATE VIEW Ans AS

SELECT E1.City, E2.City, Eval({E1.T ruth, E2.T ruth})
FROM EmployeeQ AS E1, EmployeeQ AS E2

WHERE E1.Age = E2.Age AND E1.City �= E2.City

AND NOT (E1.Name IS NOT NULL AND E1.Name = E2.Name AND

(E1.City <> E2.City OR E1.Age <> E2.Age OR E1.Level <> E2.Level))

where the function Eval receives a list of truth values and returns true if all the values
are true and undefined otherwise.

In this case EmployeeQ = {〈Mary, V enice, 28, A, undefined〉, 〈Mary, V enice,
31, A, undefined〉, 〈Peter, Rome, 47, B, undefined〉, 〈Peter, Rome, 40, B,
undefined〉, 〈David, Naples, 40, A, undefined〉, 〈David, F lorence, 40, B,
undefined〉}.

Previous statement ensures that tuples that cannot be simultaneously present in the
same repaired database are not joined (note that these tuples have undefined as truth
value): e.g. the tuples 〈David, Naples, 40, A, undefined〉 and 〈David, F lorence,
40, B, undefined〉} are not joined. The answer Ans to the query Q contains the un-
certain tuples {〈Rome, Naples〉, 〈Naples, Rome〉, 〈Rome, F lorence〉, 〈Florence,
Rome〉}. �

6 Conclusion

In this paper a framework for merging, repairing and querying inconsistent databases
has been presented. The framework considers integrity constraints defining primary
keys, foreign keys and general functional dependencies. The approach consists of three
steps: i) merging of the source databases, by means of integration operators or general
SQL queries, to reduce the set of tuples coming from the source databases which are
inconsistent with respect to the constraints defined by the primary keys, ii) repairing the
integrated database which may be inconsistent with respect to functional dependencies
and foreign keys constraints and iii) computing the consistent answers over the repaired
database. Finally, the architecture of a system prototype, developed at the University of
Calabria, implementing the proposed approach, has been presented.
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Abstract. While the cost per megabyte of magnetic disk storage is eco-
nomical, organizations are alarmed by the increasing cost of managing
storage. Storage Area Network (SAN) architectures strive to minimize
this cost by consolidating storage devices. A SAN is a special-purpose
network that interconnects different data storage devices with servers.
While there are many definitions for a SAN, there is a general consensus
that it provides access at the granularity of a block and is typically used
for database applications.

In this study, we focus on SAN switches that include an embedded
storage management software in support of virtualization. We describe
an On-line Re-organization Environment, ORE, that controls the place-
ment of data to improve the average response time of the system. ORE is
designed for a heterogeneous collection of storage devices. Its key novel
feature is its use of “time” to quantify the benefit and cost of a migra-
tion. It migrates a fragment only when its net benefit exceeds a pre-
specified threshold. We describe a taxonomy of techniques for fragment
migration and employ a trace driven simulation study to quantify their
tradeoff. Our performance results demonstrate a significant improvement
in response time (order of magnitude) for those algorithms that employ
ORE’s cost/benefit feature. Moreover, a technique that employs band-
width of all devices intelligently is superior to one that simply migrates
data to the fastest devices.

1 Introduction

Organizations are alarmed by the increasing cost of managing storage [31]. These
costs include expenses associated with the human operators who manage disk
storage, and the lost productivity when data is unavailable. Data might be un-
available for several reasons. Failure of the disk subsystem containing the ref-
erenced data is one. Another might be the load imposed on the system which
results in formation of hot spots and bottlenecks, preventing it from responding
in a timely manner, causing the user to perceive the data as being unavailable.

Storage Area Network (SAN) architectures strive to minimize the cost of man-
aging storage by consolidating storage devices in a centralized place. They also
promise to increase the productivity and effectiveness of human operators by
providing detailed information about the system, advanced notification of when
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the storage subsystem is not meeting the performance requirements of an appli-
cation (or filling up), suggestions on how to improve system performance, etc. A
SAN is a special-purpose network that interconnects different kinds of data stor-
age devices with servers. It may consist of multi-vendor storage systems, storage
management software and network hardware. It provides block-level access to
the data1. This is important for database management systems that implement
the concept of a transaction and its ACID properties: Atomic, Consistent, Isola-
tion, and Durable [22]. The commercial arena offers SAN solutions in a variety
of hardware configurations, e.g., Fibre Channel, iSCSI, Intel’s Infiniband, etc.

The focus of this study is on SANs that include an embedded storage manage-
ment software in support of virtualization. This software includes a file system
that separates storage of a device from the physical device, i.e., physical data in-
dependence. Virtualization is important because it enables a file to grow beyond
the capacity of one disk (or disk array). Such embedded file systems constitute
the focus of this study. We investigate ORE, a framework that enables these
embedded devices to incorporate new devices and populate them intelligently.
Moreover, ORE migrates fragments from one device to another with the objective
to minimize the average response time of the system. It incorporates the avail-
ability requirements of data and controls its placement to meet this objective.

ORE consists of three steps: monitor, predict, and migrate. The first step
gathers data about the environment. The second predicts what data to migrate
(if any) to which node. Finally, migrate schedules and performs the data mi-
gration. Its novel feature is its use of “time” to quantify the benefit and cost
of a migration. It migrates a fragment only when its net benefit exceeds a pre-
specified threshold, zero in this study. We describe a taxonomy of techniques
with and without this feature. Our performance results indicate that this fea-
ture enhances average response time significantly. This is because it (a) migrates
those fragments that impose the highest load to the fastest disks, and (b) as-
signs fragments that are referenced together to different devices, minimizing the
formation of queues.

In order to realize acceptable throughput, we assume the distribution of blocks
is based on a large striping unit [21,28,35,7,18,6]. This means (a) the fraction
of a file assigned to a disk is larger than a block size and (b) a block is almost
always assigned to a single device. The focus of our framework is to improve
average response time with inter-block (instead of intra-block) parallelism.

We use a trace-driven performance evaluation study to compare this frame-
work with alternative re-organization algorithms. Our performance results
demonstrate the superiority of the proposed algorithm. The rest of this pa-
per is organized as follows. Section 2 details related work and how this study
is novel. Section 3 details our target environment. Based on this, we details our
re-organization framework in Sections 4 and 5. Section 6 contains a comparison
of this algorithm with its alternatives and different parameter settings. Brief
conclusions and future research directions are described in Section 7.

1 A SAN may also provide the key element of a Network Attached Storage (NAS)
system, namely, manage data at the granularity of a file.
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2 Related Work

The Petal [25] file system is one of the early studies to describe virtual disks.
While it does not explicitly describe a SAN or an embedded file system, it
employs the concept of “storage servers” that resemble a SAN embedded file
system. It outlines an addressing scheme for these servers to map logical block
references to physical disk address spaces. It employs chain-declustering [23,18]
for high availability and dynamic load balancing. We adapt their concept to a
SAN embedded file system and describe ORE as a novel extension that decides
what fragment to migrate to improve response time.

On-line data re-organization has been studied by the COMFORT [28,29,33]
and SNOWBALL [32] projects. Our work is novel for several reasons. First, there
is a conceptual difference: We assume magnetic disks are inexpensive and small
enough to justify their presence in an embedded device for SAN switches. This
enables our framework to collect and maintain trace data on how requests utilize
disks in order to make decisions that improve average response time dramati-
cally. A key assumption here is that past request patterns resemble future access
patterns. Second, we focus on how to migrate fragments amongst a heteroge-
neous collection of disks. Our performance results demonstrate that a simple
extension2 of the algorithms described in either COMFORT or SNOWBALL
does not result in the best possible performance.

3 Target Environment

In our assumed environment, there are K storage devices. Each storage device
di has a fixed storage capacity, C(di), and an average bandwidth, BW (di). With
one or more applications that consume Btotal bandwidth during a fixed amount of
time, ideally, each disk must contribute a bandwidth proportional to its BW (di):

Fairshare(di) = Btotal × BW (di)∑K
i=1 BW (di)

(1)

The bandwidth of a disk is a function of the average requested block size (β)
and its physical characteristics [19,6]: seek time, rotational latency, and transfer
rate (tfr). It is defined as:

BW (di) = tfr × β

β + (tfr × (seek time + rotational latency))
(2)

Given a fixed seek time and rotational latency, BW(di) approaches disk transfer
rate with larger block sizes (β).

There are F files stored on the underlying storage. The number of files might
change over times, causing the value of F to change. A file fi might be parti-
tioned into two or more fragments. Its number of fragments is independent of
2 This simple extension would be the EVEN policy of Section 5.1 that is several orders

of magnitude slower than either EVENC/B or PYRAMIDBW,C/B proposed in this
study.
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the number of storage devices, i.e., K. Fragments of a file may have different
sizes. Fragment j of file fi is denoted as fi,j . In our assumed environment, two
or more fragments of a file might be assigned to the same disk drive3.

4 ORE: A Three Step Framework

ORE consists of 3 logical steps: monitor, predict, and migrate. It partitions time
into fixed intervals, termed time slices. During monitor, it constructs a profile
of the load imposed by each file fragments per time slice. During predict, it
performs two tasks. First, it computes what fragments to migrate from one disk
to another in order to enhance system performance. Second, it identifies when
in the future the migration should be performed so that it does not interfere
with the current system load. Once an idle time arrives and there are candidates
to migrate, ORE enters the migrate phase and changes the placement of these
fragments. Below, we detail each of these steps.

Monitor: During each time slice, ORE constructs a profile of the load imposed
on each disk drive and the average response time of each disk di. The load
imposed on disk drive di is quantified as the bandwidth required from disk di.
It is the total number of bytes retrieved from di during a time slice divided by
the duration of the time slice. The average response time of di is the average
response time of the requests it processes during the time interval.

This process produces two tables, FragProfiler and DiskProfiler, that are used
by the other two steps. FragProfiler table maintains the average block request
size, heat, and load imposed by each fragment fi,j per time slice. DiskProfiler
table maintains the following metadata for each disk drive di per time slice: its
heat, load, standard deviation in system load, average response time, average
queue length, and utilization.

Predict: During this stage, ORE predicts what fragments to migrate to enhance
response time. Section 5 describes a taxonomy of algorithms that can be em-
ployed for this step. In Section 6, we quantify the tradeoff associated with these
alternatives.

Migrate: Fragment migration might be performed in two possible ways. With
the first, the fragment is locked in exclusive mode while it is migrated from dsrc

to ddst. This simple algorithm prevents updates while the fragment is migrating.
It is efficient and easy to implement. However, the data might appear to be
unavailable during the reorganization process. Due to this limitation, we ignore
this algorithm from further consideration.

The second, allows concurrent updates against two copies of the migrating
fragment: (a) one on dsrc, termed primary, and (b) the other on ddst, termed
secondary. The secondary copy is constructed from the primary copy of the
fragment. All read requests are directed to the primary copy. All updates are
3 Some studies require each fragment of a file to be assigned to a different disk

drive [29].
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performed against both the primary and secondary copy. The migration process
is a background task that is performed based on availability of bandwidth from
dsrc. It assumes some buffer space for staging data from primary copy to fa-
cilitate construction of its secondary copy. This buffer space might be pro-
vided as a component of the embedded device. Depending on its size, the sys-
tem might read and write units larger than a block. Moreover, it might per-
form writes against ddst in the background depending on the amount of free
buffer space. Once the free space falls below a certain threshold, the system
might perform writes as foreground tasks that compete with active user re-
quests [4].

5 Predict: Fragments to Migrate

Predict, the second step of our framework, may utilize a taxonomy of techniques
for choosing what fragments to migrate. In this section, we detail two classes of
greedy algorithms, each with a different objective:

1. EVEN strives to distribute the load uniformly across the disks by migrating
fragments to minimize the difference between (a) the disk that has more than
its fair share of system load, and (b) the disk that has less than its fair share.

2. PYRAMID maximizes the utilization of fastest disks by (a) organizing
disks in a vertical hierarchy with the fastest disk appearing at the top of the
pyramid, and (b) migrating fragments that impose the greatest load to the
top of this hierarchy.

When a configuration consists of groups of disks with approximately the same
bandwidth, ORE constructs clusters with each cluster containing the same band-
width. This does not impact the design of EVEN. However, it modifies PYRA-
MID to become a hybrid approach. Same as before, PYRAMID organizes the
clusters in a hierarchy with the cluster containing the fastest disk type appearing
at the top of the hierarchy. Fragments that impose the highest load migrate to
the top of the pyramid. Within a cluster, fragments are migrated using EVEN
because the disks that constitute a cluster are of the same type.

To illustrate, assume a configuration with 100 disks of type A, each offering
a bandwidth of 10 megabytes per seconds, and 2 disks of type B, each offering
100 megabytes per second. The first cluster, termed C1, offers an aggregate
bandwidth of 1000 megabytes per second. The second cluster, termed C2, offers
an aggregate bandwidth of 200 megabytes per second. This does not impact
EVEN because it continues to treat each disk individually, migrating fragments
to approximate an even distribution of workload. However, PYRAMID organizes
these two clusters in a hierarchy with C2 as at the top layer because it contains
the fastest disks. It migrates fragments that impose the highest load to C2.
Within each cluster, it employs EVEN to approximate an even distribution of
workload across the disks of that cluster.

In the following, we detail each approach and its variations.
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5.1 EVEN: Constrained by Bandwidth

At the end of each time slice, EVEN computes the fair-share of system load
for each disk drive. Next, it identifies the disk with (a) maximum positive load
imbalance, termed dsrc, and (b) minimum negative load imbalance, termed ddst.
(The concept of load imbalance is formalized in the next paragraph.) Amongst
the fragments of dsrc, it chooses the one with a load closest to the minimum
negative load of ddst. It migrates this fragment from dsrc to ddst. This process
repeats until either there are no source and destination disks or a new time slice
arrives.

The maximum positive load imbalance pertains to those disks with an im-
posed load greater than their fair share. For each such disk di, its δ+(di) =
load(di)-Fairshare(di). Positive imbalance of di is defined as δ+(di)

Fairshare(di)
. EVEN

identifies the disk with highest such value as the source disk, dsrc, and migrates
its fragments to those disks with a negative load imbalance.

We define the minimum negative load imbalance for those disks with an im-
posed load less than their fair share. For each such disk di, its δ−(di) equals
load(di)-Fairshare(di). Negative imbalance of di is δ−(di)

Fairshare(di)
. The disk with

the smallest negative imbalance4 is the destination disk, ddst, and EVEN mi-
grates fragments to this disk. EVEN identifies those fragments of dsrc with an
imposed load approximately the same as δ−(ddst) and migrates them to ddst.

EVENC/B: Constrained by Bandwidth with Cost/Benefit Considera-
tion. EVENC/B extends EVEN, see Section 5.1, by quantifying the benefit and
cost of each candidate migration from dsrc to ddst. Section 5.3 describes how the
system quantifies the cost and benefit of each candidate migration because it is
general purpose and used by the PYRAMID variation of Section 5.2. EVENC/B

sorts candidate migration based on their net benefit, i.e., benefit - cost, mi-
grating those that provide the greatest savings first. After each migration, the
cost of each candidate migration is re-computed (because the migration might
have changed this value) and the list is resorted. Section 6 shows this algorithm
provides significant response time enhancements when compared with EVEN.

5.2 PYRAMID

PYRAMID migrates fragments with the highest load to the fastest disk drives.
It constructs layers of storage devices and assigns the fastest to the top of the
hierarchy. Fragments migrate up and down the pyramid based on their imposed
load. We describe 3 variations of this algorithm. The performance results of
Section 6 demonstrate the superiority of the last design, PYRAMIDBW,C/B .

PYRAMIDSP : Constrained by Space. PYRAMIDSP migrates highest load
fragments to the fastest disks until their storage capacity is exhausted. If the

4 Given two disks, d1 and d2 with negative imbalance of -0.5 and -2.0, respectively, d2

has the minimum negative load imbalance.
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database size is smaller than the total storage capacity of devices then disks that
constitute the lowest layer of this hierarchy might be completely un-utilized.

Its details are as follows. At the end of each time slice, this algorithm sorts
fragments based on their imposed load. It maintains a sorted list of disks based on
their available bandwidth. Next, it computes which fragments should reside on
which disk by exhausting the storage capacity of disks at the highest layer. This
is the target placement. PYRAMIDSP compares this with the current placement
and computes a collection of migrations to transform the current placement to
the target placement. It migrates those that impact fragments with the highest
load first. It terminates when (a) the new placement is realized or (b) a new
time slice arrives.

By exhausting the storage capacity of fast disks, a migrationwith PYRAMIDSP

might translate into multiple migrations. For example, assume the storage capac-
ity of disks 1 and 2 are exhausted. In order to switch the place of two equi-sized
fragments, say 1.1 and 3.2, the system might perform 3 migration: migrate frag-
ment 1.1 from disk 1 to disk 3, migrate fragment 3.2 from disk 2 to disk 1, and
migrate fragment 1.1 to disk 2. Of course, this can be prevented as long as main
memory is sufficiently large to hold either fragment 1.1 or 3.2 and partially written
fragments can be restored in the presence of failures.

When a configuration consists of groups of disks with each disk group pro-
viding similar bandwidth, this algorithm constructs clusters of disks. Migra-
tion of fragments across the clusters is the same as before. Within a cluster,
PYRAMIDSP employs EVEN to migrate fragments from one disk to another,
see Section 5.1.

PYRAMIDBW : Constrained by Bandwidth. PYRAMIDBW migrates
fragments with the highest load to the fastest disk drives with the objective
to utilize the bandwidth of each layer in the hierarchy. Thus, even if the data-
base is small enough to fit on the fastest disk, this algorithm utilizes the storage
capacity of each layer. The amount of data assigned to each layer is proportional
to its bandwidth.

Its detail is as follows. At the end of each time slice, PYRAMIDBW sorts
fragments and disks based on their imposed load and bandwidth, respectively.
Next, using the bandwidth of each disk, it estimates the fraction of load that
should be assigned to each disk to exhaust its bandwidth. This identifies which
fragments should reside on which disk drive. If the current assignment realizes
this new placement then the algorithm terminates. Otherwise, it migrates frag-
ments to realize the new placement. It terminates when (a) the new assignment
is realized or (b) a new time slice arrives.

PYRAMIDBW,C/B: Constrained by Bandwidth with Cost/Benefit
Consideration. This algorithm extends PYRAMIDBW by computing the cost
and benefit of each candidate migration. It sorts these candidates based on their
net benefit, performing those that provide greatest savings first. Note that once it
migrates the first candidate in the list, the benefit of the other migrations might
change. Thus, it re-computes the benefit of each candidate after performing one
migration.
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5.3 Evaluating Benefit and Cost of a Migration

This section describes an approach to quantify the benefit and cost of migrating a
fragment fi,j from dsrc to ddst. Its unit of measurement is time, i.e., milliseconds.
The cost of migrating a fragment is the total time spent by dsrc to read the
fragment and ddst to write the fragment.

The benefit of migrating fi,j is measured in the context of previous time
slices. ORE hypothesizes a virtual state where fi,j resides on ddst and measures
the improvement in average response time. In essence, it estimates an answer
to the following question: “What would be the average response time if fi,j

resided on ddst?” By comparing this with the observed response time, we quantify
the benefit of a migration. Of course, this number might be a negative value
which means that there is no benefit to performing this migration. Note this
methodology assumes the past access patterns resemble future access patterns.

We start by describing a methodology to estimate a response to the hypo-
thetical “what-if” question. Next, we formalize how to compute the benefit.
Subsequently, we present how much space is required to implement our method-
ology.

Our methodology to estimates a response to the “what-if” question assumes
ORE is previewed to all block requests issued to the SAN switch and the status of
each storage drive. ORE maintains one additional piece of information, namely
the duration of overlap between two fragments, termed OVERLAP(fi,j, fk,l).
This information is maintained for each time slice. It estimates how long two
requests referencing fragments fi,j and fk,l overlap with each other in time. It
is used to detect correlations between requests referencing fragments fi,j and
fk,l. If there is a high correlation then these fragments should be assigned to
different disks to minimize the impact of queuing delays. Below, we present a
formal definition of OVERLAP.

In order to define OVERLAP and describe our methodology, and without loss
of generality, assume that we are answering the “what-if” question in the context
of one time slice. To simplify the discussion further, assume a homogeneous
collection of disk drives. (This assumption is removed at the end of this section.)
The average system response time, RTavg, is a function of average response
time observed by requests referencing each fragment. Assuming F files, each
partitioned into at most G fragments, it is defined as:

RTavg =

∑F
i=1

∑G
j=1 RTavg(fi,j)

F × G
(3)

The average response time of a fragment, RTavg(fi,j), is the sum of its average
service time, Savg(fi,j), and wait time, Wavg(fi,j):

RTavg(fi,j) = Savg(fi,j) + Wavg(fi,j) (4)

Savg(fi,j) is a function of the disk it resides on and average requested block
size. For each fragment, ORE maintains the average requested block size in the
FragProfiler table. Thus, given a disk drive ddst and a fragment fi,j , ORE can
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estimate Savg(fi,j) if fi,j resided on ddst (using the physical characteristics of
ddst).

To compute Wavg , note that each request has an arrival time, Tarvl. For
each fragment fi,j residing on disk di, we maintain when the requests ref-
erencing fi,j will depart the system, Tdepart. Tdepart is estimated by analyz-
ing the wait time of the request in the queue of di. Upon the arrival of a
request referencing fragment fk,l, we examine all those fragments with a non-
negative Tdepart. For each, we set OVERLAP(fk,l, fi,j ,Tarvl) to be the differ-
ence between Tarvl(fk,l) and Tdepart(fi,j): OVERLAP(fk,l, fi,j ,Tarvl)= Max(0,
Tdepart(fi,j) − Tarvl(fk,l)). For a time slice, OVERLAP(fk,l, fi,j) is the sum of
the individual OVERLAP(fk,l, fi,j ,Tarvl) where Tarvl is during the time slice. In
our implementation, we maintained OVERLAP(fk,l, fi,j) as an integer that is
initialized to zero at the beginning of each time slice. Upon the arrival of a request
referencing fk,l, we increment OVERLAP(fk,l, fi,j) with OVERLAP(fk,l, fi,j ,
Tarvl). This minimizes the amount of required memory.

OVERLAP(fk,l, fi,j) defines how long requests referencing fk,l wait in a queue
because of requests that reference fi,j . Assuming that fi,j and fk,l are the only
fragments assigned to disk di and the system processes #Req(fk,l) requests that
reference fk,l, the average wait time for these requests is:

Wavg(fk,l) =
OV ERLAP (fk,l, fi,j) + OV ERLAP (fk,l, fk,l)

#Req(fk,l)
(5)

It is important to observe the following two details. First, self OVERLAP is
also defined for a fragment fk,l, i.e., OVERLAP(fk,l, fk,l). This enables ORE
to estimate how long requests that reference the same fragment wait for one
another. Second, this paradigm is flexible enough to enable ORE to maintain
OVERLAP(fk,l, fi,j) even when fk,l and fi,j reside on different disks. ORE uses
this to estimate a response time for a hypothetical configuration where fi,j mi-
grates to the disk containing fk,l. Third, ORE can estimate the response time of
a disk drive for an arbitrary assignment of fragments to disks using Equation 3.

Based on Equation 4, there are two ways to enhance response time observed
by requests that reference a fragment, fk,l. First, migrate fk,l to a faster disk
for an improved service time, Savg. Second, migrate a fragment fi,j away from
those disks whose resident fragments have a high OVERLAP(fk,l, fi,j).

Figure 1 shows the pseudo-code to estimate the benefit of migrating fi,j from
dsrc to ddst. ORE may compute this for N previous time slices where N is
an arbitrary number. The only requirement is that the embedded device must
provide sufficient space to store all data pertaining to these intervals.

Given G fragments, in the worst case scenario, the system maintains G2 + G
2

integer values. For example with a 1000 fragments (G=1000) and a 32 bit integer
representation, in the worst case scenario, the system would store 4 megabytes
of data per time slice. In our experiments, the amount of required storage was
significantly less than this. With the 80-20 rule, we expect this to hold true for
almost all applications. In Section 7, we describe how ORE can employ a circular
buffer to limit the size of trace data that it gathers from the system.
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1. the load imposed by fragment fi,j on dsrc is termed load(fi,j , dsrc).
2. the load imposed by fragment fi,j on ddst after migration is load(ddst) +

load(fi,j , dsrc).
3. Number of accesses processed by disk dsrc is Accesssrc

4. Number of accesses processed by disk ddst is Accessdst

5. Look-up the average response time of dsrc prior to migration, termed RTsrc,before

6. Look-up the average response time of ddst prior to migration, termed RTdst,before

7. Estimate the average response time of dsrc after migration, termed RTsrc,after

8. Estimate the average response time of ddst after migration, termed RTdst,after

9. Total response time savings of dsrc after migration is:
Savingssrc=(Accesssrc,after × RTsrc,after) − (Accesssrc,before × RTsrc,before).

10. Total response time savings of ddst after migration is:
Savingsdst=(Accessdst,after × RTdst,after) − (Accessdst,before × RTdst,before).

11. Benefit of migrating fi,j is Benefit(fi,j)=Savingssrc + Savingsdst.

Fig. 1. Pseudo-code to compute the benefit of a candidate migration

In our experiments, see Section 6, the maximum percentage error observed
by our methodology was 23% when estimating the average response time of a
request.

6 Performance Evaluation

We used a trace driven simulation study to quantify the performance of the
proposed on-line re-organization algorithm. We start with a brief overview of
the trace driven simulation model. Next, we present the obtained results and
our observations.

The traces were gathered from a production Oracle database management
system on a HP workstation configured with 4 gigabyte of memory, and 5

# of Requests

Time Slice ID

Cumulative Average Response Time (Milliseconds)

Time Slice ID

EVEN

PYRAMID

PYRAMID

PYRAMID

BW

BW,C/B

SP

EVENC/B

2a. No. of requests as a function of time 2b. Cumulative average response time

Fig. 2. Pattern of request arrival and system performance
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terabytes of storage devices (283 raw devices). The database consisted of 70
tables and is 27 gigabyte in size. The traces were gathered from 4 pm, April
12 to 1 pm April 23, 2001. It corresponds to 23 million operations on the data
blocks. The file references are skewed with approximately 83% of accesses ref-
erencing 10% of the blocks. Moreover, accesses to the tables are bursty as a
function of time. This is demonstrated in Figure 2a, where we plot the num-
ber of requests to the system as a function of six minute intervals, termed time
slices.

We used the Java programming language to implement our simulation model.
It consists of 3 class definitions:

1. Disk: This class definition simulates a multi-zone disk drive with a complete
analytical model for computing seeks, rotational latency, and transfer time.
When a disk object is instantiated, it reads its system parameters from
a database management system. Hence, we can configure the model with
different disk models and different number of disks for each model. A disk
implements a simplified version of the EVEREST file system.

2. Client: The client generates requests for the different blocks by reading the
entries in the trace files.

3. SAN Switch: This class definition implements a simplified SAN switch that
routes messages between the client and the disk drives. The file manager is
a component of this module. This module services each request generated
by a client.
(a) File Manager: The file manager controls and maintains the placement

of data across disk drives. It maintains the assignment of different files
and their fragments across the disk drives. Given a request for a block
of a file, this module locates the fragment referenced by the request and
resolves which disk contains the referenced data. It consults with the file
system of the disk drive to identify the appropriate cylinder and track
that contains the referenced block.

The file manager implements the 3-step re-organization algorithm of ORE, see
Section 4, and its alternative policies detailed in Section 5.

We conducted experiments with both a large configuration consisting of 283
raw devices that corresponds to the physical system that produced the traces
and smaller configurations. The smaller configurations are faster to simulate.
The performance results presented in this paper are based on one such configu-
ration consisting of 9 disk drives. It consisted of 3 different disk models, forming
3 clusters of homogeneous disks: C1, C2, and C3. Each cluster consisted of 3
disk drives. These disks correspond to those introduced in the late 2000, late
1998 and early 1997. Each disk in C1 has a storage capacity of 180 gigabytes
with a transfer rate of 40 megabytes per second (MB/sec). These were modeled
after the high density, Ultra160 SCSI/Fibre-Channel disks introduced by Sea-
gate in late 2000. Each disk in C2 has a storage capacity of 60 gigabytes with
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a transfer rate of 20 MB/sec. Each disk in C3 has a storage capacity of 20
gigabytes with a transfer rate of 4 MB/sec. These two models are similar to
those described in [38].

We also analyzed different block sizes. The experimental results presented here
are based on 128 kilobyte blocks. In Section 7, we summarize our observations
based on smaller block sizes.

All experiments start with the same data placement, namely, a random dis-
tribution of fragments across all 9 disks.

Performance Results: Figure 2b shows the performance of alternative predict
techniques using the trace. The x-axis of this figure denotes time, i.e., six minute
time intervals termed time slices. The y-axis is the cumulative average response
time. It is computed as follows. For each time slice, we compute the total num-
ber of requests and the sum of all response times till the end of that time slice.
The cumulative average response time is the ratio of these two numbers, i.e.,
total response time

total requests . If during a time slice, no requests are issued then the cumu-
lative average response time remains constant. This explains the flat portions of
each curve in Figure 2b.

The y-axis of Figure 2b ranges from 12 milliseconds to 5 minutes. The max-
imum response time is very high given that (a) the average service time of the
slowest disk is 68 milliseconds, and (b) the average utilization of the available
bandwidth (for all 9 disks) is less than 10%. The high response time is because
of the bursty nature of request arrivals, see Figure 2a. There are time slices that
observe more than 100,000 requests in a matter of seconds. These requests ref-
erence a few tables and access the same disk to form long queues. The wait-time
in these queues explains the high response times.

Figure 2b shows PYRAMIDBW,C/B is superior to all the other techniques be-
cause it provides the best possible cumulative average response time. The second
best technique is EVENC/B . Both use OVERLAP to identify those fragments
that are referenced together and migrate them to different disks. This minimizes
the length of queues observed at each disk drive. In general, using the concept of
cost/benefit to migrate fragments reduces the maximum queue lengths by more
than a factor of 2.

With our configuration, the database is small enough to fit on one of the three
180 gigabyte disks. PYRAMIDSP migrates all file fragments to the 3 fastest
disks by the 200th time slice, rendering the six slower disks idle. Next, it uses
EVEN to migrate the fragments amongst these 3 disk drives. Similar to EVEN
and PYRAMIDBW , it observes queues longer than those seen by EVENC/B

and PYRAMIDBW,C/B , although it benefits from the speed of the fast disks
to service these requests quickly (12 millisecond service time versus 18 and 68
milliseconds with the other two disk models).

The fact that the performance of PYRAMIDSP is not as good as EVENC/B

and PYRAMIDBW,C/B highlights the following interesting observation: migrat-
ing data to fast disks does not result in superior performance. A re-organization
strategy that assigns a proportional amount of system workload to each device
intelligently is a superior alternative.
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7 Conclusion and Future Research Directions

This paper introduced ORE as a 3-step reorganization framework for embed-
ded SAN file systems. We described several algorithms that decide what frag-
ments to migrate to which disk. We employed a trace driven simulation study to
quantify their performance trade-offs. Two algorithms, namely, EVENC/B and
PYRAMIDBW,C/B provide the best cumulative average response time. There
are several reasons for this. First, they migrate fragments with a high load to
the faster devices. Second, they use the concept of OVERLAP to migrate two
fragments that are referenced simultaneously to different devices in order to min-
imize the queuing delays. While we do not claim that these observations apply
to all SAN applications, we expect them to hold true for those applications that
issue requests in a bursty manner, exhibit a skewed data access pattern (80-20
rule [19]) with future access patterns resembling past access patterns.

The block size (β) impacts the behavior of ORE greatly. A small block size,
e.g., 2 kilobyte, reduces bandwidth of fast disks dramatically because seek and
rotational delays dominate the transfer time, see Equation 2. With the nine disk
configuration of Section 6, a 2 kilobyte block size would force ORE to treat all
disks as identical.

An intelligent technique such as PYRAMIDBW,C/B that utilizes bandwidth of
all devices is superior to one that simply migrates the data to the fastest devices
(PYRAMIDSP ). In our experiments, PYRAMIDBW,C/B controls placement of
data with the objective to minimize the likelihood of simultaneous requests ref-
erencing the same device, reducing formation of bottlenecks and hot spots.

The results presented in this paper are very promising and we plan to extend
ORE in several ways. First, ORE should consider the availability requirement of
a file fi when placing it across devices. For example, fi may specify that its mean-
time-to-data-loss, MTTDL(fi), should exceed 200,000 hours, MTTDLmin(fi)
= 200,000 hours. Assuming physical disk drives fail independent of one another,
each disk has a certain failure rate [38,30,16], termed λfailure. Its mean-time-
to-failure (MTTF) is simply: 1

λfailure
. When a file (say fj) is partitioned into n

fragments and assigned to n disks (say d1 to dn) then the data becomes unavail-
able in the presence of a single failure5. Hence, it is defined as follows [38,30,16]:
MTTDL(fi) = 1

n
i=1 λfailure(di)

. For example, if the MTTF of disk A and B
is 1 million and 2 million hours, respectively, then the MTTDL of a file with
fragments scattered across these two disks is 666,666 hours. This is important
because ORE may not be able to spread the fragments of a file across all de-
vices. Moreover, ORE might be forced to place those files with a high availability
requirement on the newer disks with a high MTTF characteristics.

Second, we intend to investigate the design of an online capacity planner that
consumes the maximum response time requirements of an application, detects

5 There has been a significant amount of research on construction of parity data blocks
and redundant data, see [38] that focuses on this for heterogeneous disks. This topic
is beyond the focus of this study. In this paper, we control the placement without
constructing redundant data.
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when the system is not meeting this requirement, and suggests changes to the
configuration to meet the specified response time. This capacity planner would
be a component of the embedded device. It can detect when the response time
requirement is being violated because it observes all request arrivals and depar-
tures. It can suggest hardware changes because the first step of ORE, monitor,
gathers important details on how the resources are used.
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Abstract. Database fragmentation is a process for reducing irrelevant data 
accesses by grouping data frequently accessed together in dedicated segments. 
In this paper, we address multimedia database fragmentation by extending 
existing fragmentation algorithms to take into account key characteristics of 
multimedia objects. We particularly discuss multimedia primary horizontal 
fragmentation and provide a partitioning strategy based on low-level multi-
media features. Our approach particularly emphasizes the importance of 
multimedia predicates implications in optimizing multimedia fragments. To 
validate our approach, we have implemented a prototype computing multimedia 
predicates implications. Experimental results are satisfactory. 

Keywords: Multimedia fragmentation, Range and KNN operators, predicates 
implication, objects classification. 

1   Introduction 

Since the last two decades, multimedia data are of key importance in many 
application areas such as medicine, surveillance, cartography, meteorology, security, 
visual data communications, etc. Hence, the need for systems that can catalog, store, 
and efficiently retrieve relevant distributed multimedia data is becoming very high. 
Initially, research in multimedia management has been handled separately by database 
management and computer vision communities. As a result, different types of features 
have been used, in the literature, for multimedia data management. Low-level features 
such as color, texture, shape, layout, etc. are used by the computer vision research 
community, while meta-data and semantic based features are widely used by the 
database management community to describe data context and semantics. Emerging 
applications in distributed environments create an increasing demand on the 
performance of multimedia systems, requiring new data partitioning techniques to 
achieve high resource utilization and increased concurrency and parallelism. Several 
continuing studies are aimed at building distributed multimedia databases 
management systems MMDBMS [20]. Nevertheless, most existing systems lack a 
formal framework to adequately provide full-fledge multimedia operations. 

Traditionally, partitioning techniques are used in distributed system design to 
reduce accesses to irrelevant data. Three main fragmentation techniques have been 
defined for relational databases: horizontal fragmentation HF, vertical fragmentation 
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(VF), and hybrid or mixed fragmentation (MF). These techniques have been recently 
extended for object oriented databases. However, multimedia data fragmentation 
issues haven’t been addressed in current systems.  

Multimedia fragmentation is a relatively complicated issue owing to the 
complexity of the multimedia data itself; different multimedia data types (video, 
audio, image and/or text), frequently used with various formats, as well as the 
intricacy of the description of physical and/or semantic multimedia data. In this paper, 
we address primary horizontal fragmentation in distributed multimedia databases and 
analyze the impact of multimedia operators and predicates. We particularly address 
multimedia predicates implication required in current fragmentation algorithms such 
as Make_Partition and Com_Min [2, 11, 12]. We also present our prototype with 
corresponding experimental results conducted to validate our approach. 

The remainder of this paper is organized as follows. Section 2 briefly reviews 
background in DB fragmentation. Section 3 presents a motivation example. Section 4 
details our multimedia fragmentation process. Section 5 presents our prototype and 
experimental tests. Finally, section 6 concludes and draws future directions. 

2   Background 

Fragmentation techniques for distributed DB systems aim to achieve high resource 
utilization and performance [5]. This is addressed by removing irrelevant data 
accessed by applications and by reducing data exchange among sites [1]. In this 
section, we briefly present traditional database fragmentation approaches, depicting 
the evolution from relational to object oriented DBMS, and focus on horizontal 
fragmentation algorithms. In essence, there are three fundamental fragmentation 
strategies: Horizontal Fragmentation (HF), Vertical Fragmentation (VF) and Mixed 
Fragmentation (MF).  

HF underlines the partitioning of an entity/class in segments of tuples/objects 
verifying certain criteria. The generated horizontal fragments have the same structure 
as the original entity/class. Horizontal fragmentation is generally categorized in two 
types: Primary HF and Derived HF. PHF is the partitioning of an entity based on its 
attributes’ values [12]. DHF denotes the partitioning of an entity (called member) 
based on links with other entities (called owners) [12]. In other words, it is the 
partitioning of an entity/class in terms of the PHF of another entity/class [1] taking 
into consideration their inner-links.  

VF breaks down the logical structure of an entity/class by distributing its 
attributes/methods over vertical fragments, which would contain the same tuples/ 
objects with different attributes [1]. The unique tuple/object identifier (id) is kept in 
all vertical fragments [7] so that the DBMS can link related segments.  

MF is a hybrid partitioning technique where horizontal and vertical fragmentations 
are simultaneously applied on an entity/class [11].  

To the best of our knowledge, two main algorithms for the PHF of relational 
DBMS are provided in the literature: Com_Min developed by Oszu and Valduriez 
[12] and Make_Partition Graphical Algorithm developed by Navathe et al. [10] (used 
essentially for vertical fragmentation). The Com_Min algorithm generates, from a set 
of simple predicates applied to a certain entity, a complete and minimal set of 
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predicates used to determine the minterm fragments corresponding to that entity. A 
minterm is a conjunction of simple predicates [2] associated to a fragment. 
Make_Partition generates minterm fragments by grouping predicates having high 
affinity towards one another. The number of minterm fragments generated by 
Make_Partition is relatively smaller than the number of Com_Min minterm fragments 
[15] (the number of minterm fragments generated by Com-Min being exponential to 
the number of simple predicates considered).  

Similarly, there are two main algorithms for the PHF of object oriented DBMS: 
one developed by Ezeife and Barker [6] using Com_Min [12], and the other 
developed by Bellatreche et al. [2] on the basis of Make_Partition [10]. The use of 
Com_Min or Make_Partition is the major difference between them. 

3   Motivation 

In order to use current partitioning approaches, widely employed in traditional 
databases, for fragmenting multimedia data, several issues should be studied and 
extended. On one hand, to achieve fragmentation, current algorithms require as an 
input parameter [6] the database conceptual schema (CS). This requirement is not 
always fulfilled in some multimedia databases due to the unstructured (or semi-
structured) and complex nature of multimedia data. On the other hand, multimedia 
queries contain new operators handling low-level and semantic features. These new 
operators should be considered when studying predicates and particularly predicate 
implications. For example, let us consider the following predicates used to search for 
photos similar to given photos in an Employee multimedia database as shown below. 

In current approaches, the following predicates are considered different and analyzed 
separately: 

P1 and P2: two range queries with different parameters (radius) 
P1 and P3: two range queries with different parameters and values 
P3 and P4: two different operators 

However, in multimedia applications, P1 would also retrieve objects belonging to 
results of queries based on P2 and P3. Likewise, P4 may return a subset of P3’s results. 
Thus, we can say that P2 and P3 infer P1 (denoted by P1 → P2,P3), and consider only 
the results returned by P2 / P3 , thus eliminating P1.

It is important to notice that ignoring such implications between predicates  
can lead, in multimedia applications, to higher computation costs when creating 

1 More details about multimedia operators will be given later. 
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fragments, bigger fragments which is very restrictive for multimedia storage, 
migration, and retrieval, as well as data duplication on several sites. In [2, 11], the 
authors have only highlighted the implication issue importance, but have not well 
detailed nor identified the various kinds of implications. These issues will be tackled in
following paragraphs. 

4   Multimedia Primary Horizontal Fragmentation 

In this section, we start by introducing some concepts and definitions necessary to 
tackle multimedia primary horizontal fragmentation. We develop subsequently 
additional steps to be integrated in current approaches, allowing adequate multimedia 
data fragmentation processing. 

4.1   Definitions 

4.1.1  Multimedia Object 
A multimedia object is described by a set of attributes, related to a set of meta-data. It 
can be formally depicted as a set of attribute (ai) and value (vi) doublets:  

O {(a1, v1); (a2, v2), … , (an, vn)}. Multimedia attributes and values can be simple
(like color = “red”), complex (color histogram, texture, shape, etc.) or the raw data 
(BLOB files) of multimedia objects. 

4.1.2  Multimedia Type 
A multimedia type allocates a set of attributes used to describe multimedia objects 
corresponding to that type: T(a1, a2, a3, … , an).We consider that two objects, 
described by the same attributes, are of the same type. 

4.1.3   Multimedia Query 
A multimedia query is written as follows [2, 9]:  
q = {(Target clause), (Range clause), (Qualification clause)},   where:

Target clause: contains multimedia attributes returned by the query 
Range clause: gathers the entities (tables/lasses) accessed by the query, to 
which belong target clause and qualification clause attributes 
Qualification clause: is the query restriction condition, a Boolean 
combination of predicates, linked by logical connectives , , ¬

4.1.4   Multimedia Operators and Predicates 
As mentioned before, multimedia information introduces new types of data and new 
operators and predicates. In the following, we explain multimedia operators and 
predicates related to low-level features. Note that semantic similarity operators are out 
of this paper’s scope and will be detailed in future studies. 

4.1.4.1   Multimedia Operators. In multimedia databases, objects are widely described 
using vector spaces with numeric attributes, such as shape or color descriptors. Thus, 
in order to retrieve multimedia data, dedicated similarity queries are used, involving 
range queries and/or k-nearest neighborhood operators. Formal definitions are given 
thereafter. 
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4.1.4.1.1   Multimedia Range Query Operator. A range query operator  returns the 
set of objects Vj of an object value Vi located within a certain range  from Vi using a 
distance function D (cfr. Figure 1). It can be formally written as:  

Range Query(Vi, , ) = 
iN (V )  = {Vj / D(Vi, Vj) ≤  / ε ∈ �  (1) 

The function D can be the classic Euclidean distance, a weighted Euclidean distance, 
a quadratic form distance, etc.  

 
 

  

Fig. 1. Visualizations of a range query operator  

A range query operator  has the following interesting properties, useful for 
optimizing the computation process: 

 ji
i j( ) ( )  i iN V N V if⊆ ≤  

 j ji l i l
i j lif ( ) ( )  ( ) ( ) ( ) ( ) , ,i j j l i lN V N V and N V N V N V N V⊆ ⊆ → ⊆ ∀  

4.1.4.1.2   Multimedia KNN Operator. A K-Nearest Neighborhood (KNN) operator 
r

 
returns the set of K neighbors of an object value Vi located into either a ranged or 
unlimited domain space, using a distance D [3, 20]. It could be formally written as 
follows: 

{ }k
i i j=1..k i j iK N N (V , , )  =N (V ) = V  / D (V , V )   D (V ,V )k ε ε ≤r

r
  

k *
i i V N (V ), where k   and Max(D(V ,V))  /  { }ε ε∀ ∉ ∈ ≤ ∈ ∪ ⊥r � �  

If ε =⊥ , the domain space is unlimited 

(2) 

As for range query operators, a KNN operator can be observed as a visual object in 
function of values dimensions. Fig. 2 shows a ranged 2D KNN operator with k=3. 

 
Fig. 2. Visualizations of a ranged 2D KNN operator 
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A KNN operator 
r

has the following properties: 

ji
kk

i j( ) ( )  k ki iN V N V if⊆ ≤r r

j ji l i l
k kk k k k

i j lif ( ) ( )  ( ) ( ) ( ) ( ) k , k ,ki j j l i lN V N V and N V N V N V N V⊆ ⊆ → ⊆ ∀r r r r r r

4.1.4.2   Multimedia Predicates. A multimedia predicate $P  is defined as follows: 
$

i i m iP = (A   V )θ
Where: 

Ai is a multimedia attribute or object  
Vi is a value in the domain of Ai or a multimedia object 

{ }m t ,= ∪
r

 where 
t
 is a traditional operator such as a comparison 

operator (=, <, , >, , ), or a set operator (contained-in, set-equality, …), etc. 

4.2   Steps for Multimedia Data Primary Horizontal Fragmentation 

Before applying current fragmentation approaches, several steps should be executed 
in order to support and provide relevant multimedia data fragmentation. We suggest 
introducing the following pre-processing phase: 

Multimedia_fragmentation_pre-processing () 

Begin 
  Multimedia_Types_Classification()                           // detailed in section 4.2.1
  For each multimedia Type 
   Predicates_Grouping()                          // detailed in section 4.2.2
   Multimedia_Predicates_implication()    // detailed in section 4.2.3
  EndFor 

End 

4.2.1   Classification of Multimedia Objects  
By applying existing horizontal fragmentation algorithms to a multimedia database, 
we attain non consistent horizontal fragmentation criteria (minterms). Suppose that 
Camera Position, Audio Frequency and Dominant Color are three multimedia 
attributes describing Video, Audio and Image objects respectively. The following 
Boolean expression: CameraPosition = “North West”  AudioFrequency = “6 KHz” 

 DominantColor = ((10; 10; 10), RGB) is a non consistent minterm, specifying 
criteria on “heterogeneous” attributes describing multimedia objects of different 
types, therefore producing an empty horizontal fragment.

In order to attain coherent minterms, we need to gather related objects together. As 
mentioned before, we assume that multimedia objects having the same attributes are 
considered of the same type. The algorithm provided below is used for classifying 
objects, according to their corresponding types.  

Multimedia_Types_Classification () 

Input : MM         // multimedia objects
Output : TM       //set of multimedia types corresponding to objects in MM

Begin 
    For each Moi ∈ MM 
          If Moi.A  all Ti.A                             // Adding a new type corresponding to the object Moi
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                  New Tn+1 / Tn+1.A = Moi.A        // if the type isn’t considered yet in MM 
                  Tn+1 = Tn+1 U Mo 
          Else 
                  Ti = Ti U Moi / Moi.A = Ti.A       // Adding the object Moi to its corresponding type 
          EndIf                                               // if the type is already identified
    Endfor 

End 

4.2.2   Predicate Grouping 
It is also important to gather predicates into groups on the basis of operators.  Using 
the algorithm below, two predicate groups are identified: multimedia and 
traditional. This separation will allow defining appropriate methods for multimedia 
implication: 

� �

m

t

P P
P P

P P

i j

i j

i j

⎯⎯→
⎯⎯→ ⇔

⎯⎯→

⎯⎯→ denotes a multimedia similarity implication  

t
⎯⎯→ denotes a traditional implication

Recall that traditional implication is out of this paper’s scope. 
Predicates_grouping () 

Input:  Q              //set of all user queries 
             Ti                    //a multimedia type

Output: i

jP //a query predicate defined on type T

�
iP //set of multimedia predicates applied on T

iP //set of traditional predicates applied on T

Begin 
  For each query Qi ∈ Q 

   For each 
i

j
P ∈ Qi

    If ∈i

j
P P)( $  then 

     � �= ∪ i

i jiP P P

    Else 

             = ∪ i

ji iP P P
    Endif 
   EndFor 
  EndFor 

End 

4.2.3   Multimedia Predicates Implication 
Finding inference or implication between predicates is crucial to cutback the number 
of predicates involved in the fragmentation process [4, 11] (a large number of 
unnecessary fragments would notionally achieve low system performance). When a 
predicate Pi implies a predicate Pj (denoted by Pi → Pj), Pi can be removed from the 
minterm fragment to which it belongs and replaced by Pj. Predicate implication is 
taken into consideration in traditional algorithms, mainly in Com_Min [12] and 
Make_Partition algorithms [10]. In the following, we detail the rules that can be used 
to determine implication between low-level feature-based predicates, by using both: 
range query and KNN methods. 
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4.2.3.1   Range Query Predicates Implication. Two range query predicates 
i jP and P

are in implication if: 

{ }0 ( , ) -j i i j i jP P D V V ε ε→ ⇔ ≤ ≤

Fig. 3. 2D Range Query Predicates Implication 

However, if εi = εj and D(Vi, Vj) ≠ 0 or if i - j < D(Vi, Vj) i + j, then there is an 

intersection between 
jP and Pi . Therefore, 

i jP and P  cannot be associated via 

implication. 

4.2.3.2   KNN Predicates Implication. The KNN implications for ranged or unlimited 
domain space are identical and can only be computed as follows:
 

{ }j i i j i jP P V V and k k→ ⇔ = ≥
uur ur

Fig. 4. KNN Predicates implication with identical values 

Note that two KNN predicates 
i jP and P
ur uur

identified within two limited ranges 
iε and 

jε are not in implication (like for range queries) if: 

{ }0 ( , ) -  where    [0,1]i j i j i jD V V andε ε ε ε< ≤ ∈

4.2.3.3   Multimedia Predicates Implication. Using the same reasoning, we consider 
that two multimedia predicates � �

i jP and P  are in implication if:  

b

Vi

c

a

Vi = Vj

Ki = 3 
Kj = 2

Vi

V

Pi

Pj
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� �

� � { }( )0 ( , ) -  and  and ( )

OR

i j i j i j

j i

i j i j

D V V P P P

P P

V V and k k

ε ε ε ε≤ ≤ ∨ ∈ <

→ ⇔
= ≥

r

The first condition allows computing the implication between either two range query 
predicates or a range query predicate and a ranged KNN predicate. ε

r
 is used to 

designate the range of KNN predicate, and ε  to designate the radius of the range 
predicate. The second condition highlights KNN predicates implication. 

The following algorithm generates sets of multimedia predicate implications, ISi,
corresponding to each multimedia type Ti. Note that every set element consists of a 
doublet of predicates (Pi , Pj), meaning that Pi implies Pj.

Multimedia_Predicates_Implication () 

Input: �
iP //set of M multimedia predicates applied on a multimedia type T

Output: ISi //set of multimedia predicates implications applied on a type Ti

Variable: i
jP  //a query predicate defined on type T

Begin 

For each i
jP ∈ �

iP

If j M-1 then 

For each i
j+1P ∈ �

iP

If (Aj=Aj+1)  then                                                                                        //same attribute 

If( i
jP .operator = and( i

j+1P .operator = or
r

i
j+1P .operator = )) then     

If (εj > εj+1 )   then                                                                  // Rj Rj+1 , Rj Kj+1

If ≤ ≤j j+1 j j+10 D(V ,V ) -  then                               // →i i
j+1 jP P

ISi=ISi U ( i i
j+1 jP ,P )

Endif 
Elseif (εj+1 > εj and i

j+1P .operator = ) then              // Rj Rj+1 

If ≤ ≤j+1 j j+1 j0 D(V ,V ) - then                                 // →i i
j j+1P P

ISi=ISi U ( i i
j j+1P ,P )

Endif 
Endif 

Elseif (
r

i
jP .operator = and 

r
i
j+1P .operator = ) then                    // Kj Kj+1 

If 
i j

D(V ,V)= 0  or Vi=Vj then 

If (kj ≥  kj+1) then 

ISi=ISi U ( i i
j+1 jP ,P )

Elseif (kj+1 ≥  kj) then 

ISi=ISi U ( i i
j j+1P ,P )

Endif 
Endif 

Elseif(
r

i
jP .operator =  and i

j+1P .operator = ) then                                      // Kj Rj+1

If (εj+1 > εj) then
If 0 ≤ ≤j+1 j j+1 jD(V ,V) - then                                           // i i

j j+1P P→

ISi=ISi U ( i i
j j+1P ,P )

Endif 
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Endif 
Endif 

Endfor 
Endif 

Endfor 
ISi = Optimize(ISi )

End 

Optimize(ISi)

Input: ISi                                                               // set of multimedia predicates implications applied on a type T 

Begin
For each ( i i

j kP ,P )∈ ISi

For each ( i i
k lP ,P )∈ IS

    If ( → →i i i i
j k k lP P  and P P ) then

ISi=ISi U ( i i
j lP ,P )

Endif
EndFor 

EndFor 
     End

4.2.4   Algorithm Complexity 
The complexity calculations are carried out below on the basis of the worst case 
analysis. Suppose nf represents the largest number of possible fragments, no represents 
the largest number of multimedia objects in a type or a fragment, nq the largest 
number of user queries, nt the largest number of types, np the largest number of 
multimedia predicates, ni the largest cardinality of the sets ISi, nv the largest feature 
vector dimension involved. Our fragmentation pre-processing algorithm is of time 
complexity of O(nt × (no + nq×np + nv×np

2 +ni
2) ), which simplifies to O(nt × (nv×np

2)). 
Note that the polynomial (quadratic) nature of our features implication computation 
algorithm (O(nv×np

2)) dominates the complexity formulae and is experimentally 
demonstrated in our simulation prototype.

4.2.5   Computation Example 
In the following, multimedia predicates (range query and KNN) will be illustrated in 
the same manner for the sake of simplicity: 

P  = A Similar( ) V    and    P
ur

 = A Similar(k, ) V    where: 

− A is a multimedia attribute. In the present example, A stands for Dominant Color : DC

− Similar represents , the range similarity operator, when the number between brackets  denotes 
a real value such as 0.0  1.0 ;  designating the similarity range 

− Similar stands for 
r

, the KNN operator, when the number between brackets k denotes an integer 
value ; k representing the number of neighboring objects to be returned by the KNN predicate 
within a range 

Figure 5 shows three images a, b and c characterized by their feature vector values 
Va, Vb and Vc respectively ; V designating, for each image, its Dominant Color
feature in RGB color space (vector dimension = 3). 

We also consider the following two range query predicates:                                      
− P1: DC Similar( 1) V1  and  P2: DC Similar( 2) V2 (DC: Dominant Color ) where V1 = (22; 22; 

22), V2 = (90; 10; 10), 1 = 0.6, and 2 = 0.2 
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Va = (20; 21; 20) Vb = (110; 20; 25) Vc = (240; 12; 12) 

Fig. 5. Sample images

Please note that in our similarity computations, we used the following weighted 
Euclidean distance function: 

[ ]1

1

( ) ²

( , ) 0,1
( )

N

i i
i
N

i i
i

x y

D ist X Y
x y

=

=

−
= ∈

+

N = Max (dim(X), dim(Y)), dim(X) 
and dim(Y) being the dimensions 
of vectors X and Y respectively.

Following our multimedia implication computation rules, predicate p2 implies 
predicate p1 (0 ≤ Dist(V1, V2) ≤ 1 – 2) where: 

− Dist(V1, V2) = ( (22-90)2 + (22-10)2 + (22-10)2 )1/2  /  (22 +90 + 22 + 10 + 22 + 10)  =  0.397 
− and 1 – 2 = 0.6 – 0.2 = 0.4 

A query utilizing predicate P1 would return still regions a and b 
− Dist(V1, Va) = 0.024 (< 1, returned object) 
− Dist(V1, Vb) = 0.399 (< 1, returned object) 
− Dist(V1, Vc) = 0.662 (> 1)

Whereas a query invoking predicate P2 would return still region b 
− Dist(V2, Va) = 0.417 (> 2)
− Dist(V2, Vb) = 0.102  (< 2, returned object) 
− Dist(V2, Vc) = 0.401 (> 2)

One can clearly realize that the set of multimedia objects returned by P1 ({a, b}) 
includes those returned by of P2 ({b}). If taken into account, such implications would 
reduce fragment creation computation cost, fragment size and multimedia data 
duplication on multiple sites. 

5   Prototype 

To validate our approach, we have implemented a C# prototype called “Multimedia 
Implication Identifier” encompassing: 

• A relational database, storing multimedia objects via Oracle 9i DBMS, 
described following the multimedia meta-model M² (MPEG-7 compatible) 
developed by Chalhoub et al. in [4]. 

• A set of interfaces allowing users to formulate simple and complex 
multimedia queries, providing the ability to select multimedia information. 

• Containers for storing user queries, enabling, via specific processes, the 
computation of query access frequencies which are basically used in the 
predicate affinity calculations. 

• Specific containers undertaking the storage of predicates, utilized by 
dedicated procedures to calculate predicate implications. 

The prototype accepts, as input, multimedia queries. Automatic processes 
subsequently calculate query access frequencies, identify corresponding predicates, 
and compute for each multimedia type (represented by a table) its Predicate Usage 
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Matrix (PUM)1 and its Predicate Affinity Matrix (PAM)2 used to measure the affinity 
between predicates, the PAM taking into account our predicate implication steps. 

Note that we chose to present multimedia implications in PAM matrixes, proposed 
by [15, 4], for the sake of clearness (PAMs being suitable structures for displaying 
predicate implications). Nevertheless, our algorithm is generic in the sense that it 
could be equally used with other primary horizontal fragmentation approaches, 
Com_Min [16] in particular. 

5.1   Simulation Example 

Among the various tests that were conducted, we present a simple simulation example 
comparing predicate affinities (PAM) obtained with and without the inclusion of our 
multimedia physical implication rules. In the following example, multimedia type 
“Still Region”, designating motionless images, is selected for PUM and PAM 
calculations. Let Q = {qi = 0 to 5} be a set of user queries defined on “Still Region” 
Type. Recall that we represent queries following paragraph 4.1.3.

q0: { (MO); (StillRegion); (ObNature = "vehicule"  
         DC Similar(0.3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q1: { (MO); (StillRegion); (ObNature = "vehicule"    ObColor = "red"   
         DC Similar(0.2) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q2: { (MO); (StillRegion); (ObNature = "truck"     ObColor = "red"   
         DC Similar(0.1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))) }  
q3: { (MO); (StillRegion); (ObNature = "vehicule" 
         DC Similar(3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q4: { (MO); (StillRegion); (ObNature = "vehicule"      ObColor = "red"   
         DC Similar(1) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q5: { (MO); (StillRegion); (ObNature = "truck"        ObColor = "red"   
         DC Similar(1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))) } 

Let P = {Pi = 0 to 8} be the set of predicates used by Q.

P0: ObNature = “vehicule” 
P1: DC Similar(0.3) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P2: ObColor = “red” 
P3: DC Similar(0.2) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P4: ObNature = “truck” 
P5: DC Similar(0.1) ((9; 8; 7), (7; 8; 7), (10; 11; 10)) 
P6: DC Similar(3) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P7: DC Similar(1) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P8: DC Similar(1) ((9; 8; 7), (7; 8; 7), (10; 11; 10)) 

P contains traditional predicates (P0, P2) as well as multimedia predicates (P1, P3, P4,
P5, P6, P7, P8). Note P1, P3 and P5 are range query predicates (the number between 
brackets being a real value – similarity range ), while P6, P7 and P8 are KNN 
predicates (the number between brackets being an integer value – number of objects k 
to be returned by the predicate). Also note that DC represents a composite Dominant 

1 It contains the predicates used by each query as well as query access frequencies and is 
subsequently used as input to the PHF process adopted by [11, 2]. 

2  Following [15, 4], the PAM is a square and symmetric matrix where each value aff(Pi, Pj) can 
be numerical or non numerical. Numerical affinity represents the sum of the frequencies of 
queries which access simultaneously Pi and Pj. Non numerical affinity underlines the 
implication relation between predicates Pi and Pj.
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Color feature vector stating the three consecutive dominant colors in an image, in 
RGB color space. For example, DC1 of predicate p1 underlines dominant colors C(12; 
10; 13), C’(14; 15; 16) and C’’(20; 20; 20).  

By reading the updated PAM, one can clearly point out the multimedia implication 
rules defined in the paper: 

− Predicate P3 ( 3 = 0.2, V3 = ((12; 10; 13), (14; 15; 16), (20; 20; 20))) implies P1 ( 1= 0.3, V1 = 
((12; 10; 13), (14; 15; 16), (20; 20; 20))) having: 

• V1 = V3 and 1 > 3

− Predicate P5 ( 5 = 0.1 “max”, V5 = ((9; 8; 7), (7; 8; 7), (10; 11; 10))) implies    P1 ( 1 = 0.3, V1 = 
((12; 10; 13), (14; 15; 16), (20; 20; 20))) having: 

• 1 > 5 , dist(V1,V5) 1 – 5

− No implication can be identified between predicates P3 and P5 having: 
• dist(V3,V5) > 3 – 5 (similarity circle intersection/exclusion) 

− Predicate P7 (k7 =1, V7 = ((12; 10; 13), (14; 15; 16), (20; 20; 20))) implies predicate P6 (k6 =3, V6

= ((12; 10; 13), (14; 15; 16), (20; 20; 20))) having: 
• V6 = V7 and k6 > k7

− No implication can be identified between P6 (orP7) and P8, having: 
• V8  V6 (correspondingly V7)

Fig. 6. Updated Predicate Affinity Matrix 

Disregarding our multimedia implication rules would yield, in the present example, 
a PAM with only numerical affinities. 

The PUM and uPAM make up the inputs to the NHP primary horizontal 
partitioning algorithm [11, 2], not being implemented yet in our prototype. 

5.2   Timing Analysis 

We have shown that the complexity of our physical similarity implication simplifies 
to O(nv×np2). We verified the formula experimentally, the timing results being 
presented in Fig. 7.

Updated Predicate Affinity Matrix 

Predicate Usage Matrix 

Predicates invoked in user queries 

User queries 
and 

corresponding 
access

frequencies 
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Fig. 7. Timing results 

The experiment was carried out on a Pentium 4 PC (2.8 Ghz CPU, 798 Mhz bus, 
512 MB RAM). One can see that the time to compute similarity implications grows in 
a polynomial (quadratic) fashion with the number of predicates involved. Our 
experiments also show that feature vector dimension affects time complexity, owing 
to predicate distance computations (weighted Euclidian distance). 

6   Conclusion and Future Work 

In this paper, we proposed an approach for the Primary Horizontal Fragmentation of 
multimedia databases, by extending existing fragmentation methods. Following the 
definition of a multimedia type, we identified the need to classify multimedia objects 
corresponding to the same type, in order to achieve consistent horizontal 
fragmentation criteria. The “Type Fragmentation” phase could be then followed by 
the PHF of each generated type. The original idea of emerging new multimedia 
operators allowed the adaptation of existing fragmentation procedures to partition 
multimedia data. We concentrated our efforts on the primary horizontal fragmentation 
of unstructured multimedia data, emphasizing the impact of multimedia predicate 
implications in optimizing multimedia fragments. 

Future directions include the introduction of semantic-based multimedia 
predicates. Our future goals also incorporate generating a multimedia conceptual 
schema, including the derived horizontal fragmentation process, and optimizing, if 
possible, the used fragmentation methods (semantic implication is yet to be 
developed). Likewise, multimedia vertical fragmentation and XML fragmentation 
will be talked in upcoming studies.   
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Abstract. Database modeling is based on the assumption of a high reg-
ularity of its application areas, an assumption which applies to both the
structure of data and the behavior of users. Content modeling, however,
is less strict since it may treat one application entity substantially dif-
ferently from another depending on the instance at hand, and content
users may individually add descriptive or interpretive aspects depend-
ing on their knowledge and interests. Therefore, we argue that adequate
content modeling has to be open to changes, and content management
systems have to react to changes dynamically, thus making content man-
agement a case for dynamic system generation.

In our approach, openness and dynamics are provided through a com-
piler framework which is based on a conceptual model of the application
domain. Using a conceptual modeling language users can openly express
their views on the domain’s entities. Our compiler framework dynami-
cally generates the components of an according software system. Central
to the compiler framework is the notion of generators, each generating
a particular module for the intended application system. Based on the
resulting modular architecture the generated systems allow personalized
model definition and seamless model evolution.

In this paper we give details of the system modules and describe how
the generators which create them are coordinated in the compiler frame-
work.

1 Introduction

Most data-intensive applications serve, one way or another, as information sys-
tems (ISs) and call for some kind of persistence technology. High volumes of data
and large user communities require additional functionality (query support, con-
currency, recovery etc.) which nowadays comes nicely packaged as off-the-shelves
database models and database technology.

Database modeling is rather strict in the sense that it is based on the as-
sumption of a high regularity of its application areas. This assumption applies
to both the structure of data and the behavior of users. Therefore, database
models rest on a small set of agreed upon computational base types (numbers,
strings, . . . ) and a few structuring mechanisms (mostly records and sets) used
to design schemata shared by the entire application and its community. In an
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enterprise database, for example, the view on a company employee is defined be-
fore employee records are instantiated, and users of the database have to share
the company’s view.

Content modeling, however, is more capricious since it may treat each repre-
sented entity substantially differently depending on the instance at hand, and
content users may individually add descriptive or interpretive aspects depend-
ing on their knowledge and interests. For example, when considering a particular
piece of art, some users may be interested in the artist who created it, the mate-
rial used and the prices achieved while others are more concerned about details
on the period in which it was created, its meaning, etc.

Therefore, we argue that adequate content models have to be open to changes,
and content management systems have to be dynamic to reflect such model
changes. In other words, content management systems are seen as a case for
dynamic system generation while database management system usually get away
with the technically less ambitious case of generic system implementation.

ISs inherit the restrictions of fixed schemata and a uniform user community
from the underlying database technology. The development of ISs usually ac-
commodates to these restrictions: in an intensive phase of domain analysis the
database schema is defined once and for all. Application logic and presentation
are implemented with respect to the schema and the domain model. Because IS
implementation relies heavily on certain schema information, later changes to
this schema affect all parts of an IS, an aspect nearly prohibitive to any effort
of dynamic system evolution or to any attempt of system personalization.

For content management systems such inflexibility cannot be tolerated. Con-
tent is viewed by users in different contexts with individual conceptual models
in mind. Furthermore, users have to be able to define suitable models or adapt
existing ones during the lifetime of a content management system. Therefore,
model changes have to be integrated dynamically, without additional develop-
ment steps which include manual intervention.

In our approach, openness and dynamics of content management systems is
provided through a compiler framework which is based on a conceptual model of
the application domain. In our conceptual modeling language users can openly ex-
press their views on the domain’s entities, and based on such views our compiler
framework dynamically generates the components of the implementing software
system. Central to the compiler framework is the notion of generators, each
generating a particular module for the application system and collectively im-
plementing the intended application. Based on the resulting modular architecture
the generated system allows personalized model definition and seamless model
evolution.

In this paper we give details about the system modules as well as the genera-
tors which create them. We also describe how the generators are interconnected
in the compiler framework.

The paper is organized as follows: in sec. 2 we give a brief account of con-
ceptual modeling for content-intensive application systems and of contemporary
approaches to model-based system generation. The additional support required
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for openness and dynamics is outlined in sec. 3. In sec. 4 we discuss our con-
tributions to implementing open and dynamic content management systems.
A detailed description of our model compiler framework is finally presented in
sec. 5. The paper concludes with a summary and a short outlook on future work.
Related work is discussed where appropriate.

2 Application System Modeling

Automatic system generation is based on abstract models—of either an appli-
cation domain or of software. Such models and appropriate software generation
facilities enable open dynamic content management systems.

2.1 Conceptual Modeling

Conceptual modeling [10,8] is the activity of providing a model of an application
domain. Conceptual modeling languages provide a domain vocabulary and avoid
technical details as much as possible.

Starting system development with conceptual modeling thus avoids untimely
consideration of technical constraints.

A conceptual model defines a vocabulary as a foundation for users and soft-
ware developers. This way software uses the domain experts’ vocabulary, and
users are able understand the functionality of the developed software.

2.2 Model-Driven Development

Research and practice in software engineering led to a thorough understanding of
IS development. The insights gained are leading towards approaches which allow
to derive software from specifications. To this end, models are used as (more or
less) formal specifications of software systems.

Two of the approaches which are currently discussed take a somewhat exteme
position: domain-specific languages (DSLs) [4] and mappings between software
models expressed in general purpose languages, e.g., the Model-driven Architec-
ture propsal [13].

DSLs are abstract languages for one application domain which are intended
to be used by domain experts. DSLs are not necessarily (computationally) com-
plete. Instead they cover an area of an application domain with a clearly de-
fined scope. DSLs have a fixed semantics within the application domain. This
semantics is based on by prefabricated software components which provide im-
plementations. Such software components can range from libraries to software
generators [17].

General purpose languages serve the modeling of complete software systems.
Often, languages which allow varying degrees of concreteness are used, e.g. the
Unified Modeling Language (UML). During the generation process of a software
system a series of model mappings is applied, leading from abstract to more con-
crete models. During the process details are added at every model stage. Usually,
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the series of models starts with less formal models which can be created in co-
operation with domain experts. Approaches based on general purpose languages
generally arrive at completely formal descriptions of the software to be gener-
ated. Therefore, the final step of creating code comes down to a transformation
from the chosen language to a programming language.

2.3 Open Modeling and Dynamic System Evolution

As discussed in the introductory section content management systems need

– a conceptual model which is open to different user views (openness) and
– implementations which keep up with the opinions of the users (dynamics).

Therefore, a modeling language is needed which on the one hand allows do-
main experts to describe their application domain, and on the other hand is
concrete enough to serve the purpose of automatic software generation.

An approach which is purely based on a DSL does not offer openness since it is
constrained to a fixed set of concepts which are offered by the respective language
and mapped to existing software components. Existing approaches which map
models expressed in a general purpose language to each other do not account
for dynamics. The additional information given for the mapping at every model
stage generally prevents fully automatic system creation [2,5].

In contrast to the approaches discussed in the previous section we concentrate
on the specific class of content management which is combined with conceptual
models for the description of entities. Modeling is open to any application do-
main, while the restriction to systems with a common core functionality allows
their dynamic generation.

Note that we have to consider two modeling facilities for openness and dy-
namics: for the source application domain we need a modeling language which
is general enough to allow openness, meaning that it is not constrained to pre-
defined concepts for the description of entities. The target software model has
to be specific enough to allow dynamics by enabling automatic generation of
content management systems.

3 Support for Openness and Dynamics

The requirements of openness and dynamics call for special support in both
systems creation as well as in operation. In fact in open and dynamic systems
the line between creation and operation is blurred.

3.1 Shortcomings of Manual Software Engineering

Data-intensive applications normally are developed in processes which bear re-
semblance with the waterfall process: As part of the analysis of an application
domain a conceptual schema is created. Based on this schema, the whole of the
system is implemented. This means that the application is manually linked to the
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schema by the implementation process. Obviously, any changes to the schema
have an impact on all parts of the application.

Therefore, when openness and dynamics are required, the common approach
of manually implementing a static conceptual schema is clearly unfeasible. Our
approach can remedy the situation by open modeling and dynamic systems gen-
eration as is discussed in sec. 4. Model changes are considered the rule not the
exception, and content management systems are created with evolution in mind.

3.2 Modeling Requirements

The conceptual modeling language is needed to mediate between two worlds: the
application domain of a user and the later system implementation.

Our approach concentrates on content management but combines it with a
conceptual model of the described entities. Entities are therefore modeled dual-
istically by medial content as well as a conceptual description (see sec. 4.1). The
approach is thus applicable to a wide variety of application domains.

However, in order to support dynamic systems, the model given by the user
has to be compiled into a running system without any human intervention.
Our approach achieves this by means of a compiler framework running a set
of generators as described in more detail in sec. 5. On top of the conceptual
schema, some of the generators might require a few additional parameters to
bridge the gap between a conceptual model and its implementation in a content
management system. These parameters provide the information discussed in
sec. 2.2 but are completely available before the generation.

3.3 System Requirements

The general requirements outlined above can be mapped to requirements to
content management systems. In particular:

1. The conceptual schema needs to be available to users and users must be able
to modify it.

2. The system must be up to date with any such modifications automatically,
therefore any manual development is not possible.

3. The conceptual schema must be truly conceptual. In traditional systems
development it is often the case that implementation decisions have to be
made during the analysis phase for purely technical reasons (e.g., the length
of fields because of restrictions in the database). Such information must be
separated from the conceptual schema.

We describe in the next sections how these requirements are met by our ap-
proach.

4 Ingredients of Open and Dynamic Systems

The requirements put forward in sec. 3 cannot be met with standard contempo-
rary information systems. Generic systems lack openness since application do-
main concepts have to be mapped to generic ones, and hand-coded systems lack
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dynamics since changes require an incremental engineering roundtrip. Our ap-
proach employs a conceptual modeling language, a modular system architecture,
as well as automatic system generation to meet the requirements. The concep-
tual modeling language is covered in detail in previous work (see [14,15]) but
will be outlined next. We then describe the modular architecture of generated
content management systems and point out how these systems are created.

4.1 Conceptual Modeling Language

In our conceptual modeling language, entities are described by asset classes.
These classes jointly describe a medial view (in the form of multimedia content,
e.g., an image) and a conceptual view of the entity, see fig. 1. The conceptual
view consists of characteristics (primitive attributes which are intrinsic to the
entity), relationships to other asset classes, and constraints on the asset class.
Classes are related in an inheritance hierarchy.

Asset classes are grouped into asset models, which usually deal with a par-
ticular application domain. Classes from one model can be imported into other
models. The language supports openness by allowing the (partial) redefinition of
imported classes to suite the task at hand. Anything that is not redefined stays
the same as in the original.

Furthermore, the language provides means to create, modify, and delete in-
stances as well as to query for them.

4.2 Modular System Architecture

The creation of a system in a dynamic manner can in some cases entail changes
to its setup. The architecture of the system must therefore allow for flexible
reconfiguration. A monolithic system is certainly not capable of such flexible
change. Quite the contrary, we propose a modular system architecture that is
built of many small modules. The kinds of modules for the most frequently
occurring tasks are illustrated in fig. 2(a). All modules have a uniform interface
and can be composed in layers. This makes it possible to always combine modules
in the way most appropriate to the task at hand.
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(a) Six kinds of modules

mclient1 : client
module for database
with schema for M

mmed : mediation module for access to
assets from schemata M1 and M2

DB with
schema
for M1

mclient2 : client
module for database
with schema for M

mtr : transformation
module M1 M2

DB with
schema
for M2

(b) A sample module organization

Fig. 2. Modules of generated content management systems

The module interface reflects the capabilities of the asset language to create,
modify, delete and query for asset instances. Each module can thus express its
functionality in terms of calls to the module(s) on the underlying layer.

A component is a combination of modules, usually arranged in layers. Com-
ponents provide several services to their modules: resolution of identifiers, man-
agement of module lifecycles, and management of the proper organization of
modules at system startup. Each module can use other modules and can also be
used by several others. However, the setup of modules in a component always
must be a directed acyclic graph.

Modules can be of several kinds, in particular:

– Components are accessed via server modules using standard protocols.
– The description data of asset instances is stored in third party systems,

databases in most cases. Mapping asset models to schemata of such systems
is done by client modules.

– A central building block of the architecture of generated content management
systems is the mediator architecture [19]. In our approach it is implemented
by modules of two kinds. The first are mediation modules which delegate
requests to other modules based on the request.

– The other kind are transformation modules. By encapsulating mappings in
such modules, rather than integrating this functionality into other modules,
mappings can be added dynamically (compare [12]).

– Hub modules uniformly distribute calls to a larger number of underlying
modules.

– By use of distribution modules components can reside at different physical
locations and communicate by exchanging data.

These module kinds have been identified with respect to the requirements of
content management systems. They provide basic services by the principle of
Separation of Concerns. The functionality of a content management system is
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implemented by a component configuration which composes selected modules.
For example, schema evolution leads to a combination of client, transformation,
and mediation modules (indicated in figure 2(b), see [15] for details).

4.3 System Generation

The subdivision of a system into fine-grained modules as outlined above allows
for flexible reconfiguration. This is necessary for a dynamic system, however
not sufficient. Manual implementation of modules is unfeasible, as modules are
usually highly schema dependent. System generation is therefore necessary to
allow the system to be dynamic.

Several generative approaches (e.g., [18]) use loosely coupled generators. While
this is fine for system generation under the supervision of a developer, generation
in dynamic systems must happen without such intervention. We have therefore
aimed at a tight, albeit flexible, coupling of generators. Given that our approach
assembles systems of smaller modules, we can use generators which each create
a particular type of module (e.g., a client module for persistence in relational
databases). The generators are combined in a compiler framework which takes
care of their proper setup and manages their interdependencies.

5 Model Compiler Framework

As argued in the previous section automatic software generation is necessary to
allow dynamics of information systems with a fine-grained architecture.

There are different approaches to the problem of generating whole software
systems which are composed of various parts that are produced by indepen-
dent generators: (1) the generated software modules have to be adapted to be
composable [7], (2) generic software modules are wrapped in a domain-specific
way [11], (3) glue code to combine modules needs to be generated [3], or (4) the
generators need to cooperate in order to create a consistent set of modules. As
already indicated we favor the latter approach for content management systems.

Writing coordinated generators is a complex task, mainly because setting up
an infrastructure for them [16] is difficult. Therefore, our model compiler for
content management systems is designed as a framework with generators as
extension points. In conjunction with a facility for code generation it constitutes
a domain-independent meta-programming infrastructure [17].

5.1 A Framework Approach to Model Compilers

A typical compiler is divided into frontend and backend [1] to decouple source
language recognition from target language generation. To this end, a compiler
frontend creates an intermediate representation of the input definitions. Such
an intermediate representation forms the input of a compiler’s backend which
generates code in the target language. This allows compiler setups for multiple
targets as well as—at least in theory—to process different source languages.

The model compiler for our conceptual language is built in an object-oriented
fashion. The classical division into frontend and backend has been translated into
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a framework architecture that allows to configure compilers for the generation
of dynamic content management systems. This framework addresses the need to
generate multiple targets in conjunction.

An instance of the compiler framework is defined by providing a parser, a
dictionary proxy, several generators, and a configuration of the framework. This
is detailed in the subsequent sections.

Alike a programming language compiler, which creates an intermediate code
representation, the frontend in the compiler framework creates intermediate
model representations. Starting from a class IntermediateModel the asset class
definitions are available as an object graph.

Compilers use symbol tables to store information about the language con-
structs recognized. Our model compiler for content management systems builds
on the concept of symbol tables, but extends it significantly: these tables are
not only used in the frontend of a compiler, but they are the means by which
generators communicate during the generation process.

Asset class definitions can be distributed: models are created by combining
existing classes available to the modeler, and existing classes can be redefined
(see section 4.1). Therefore, the model compiler needs access to asset classes
which are not contained in the model at hand, but have been defined elsewhere.
They are provided by dictionaries which store available class definitions.

Fig. 3 shows a UML sequence diagram of the frontend activities of a compiler
run. This figure emphasizes the function of dictionaries. In the example an inter-
mediate model im is created by the parser in the frontend. The definitions make
reference to another model which is included as an intermediate model sm. In or-
der to get access to it the parser requests it from the framework (sm=getModel).
The framework contains a dictionary proxy to transparently access the known
dictionaries. In the example there are two dictionaries. The first one does not
know the requested model. The second one returns it as rm, and the dictionary
proxy creates a local representation sm from rm.

Dictionary proxies are used to decouple a compiler configuration from the ac-
cess to dictionaries. Dictionaries can be accessible by various means. For example,
asset class definitions can be contained in local files or in resources accessible
over a network. Dictionary proxies are a configurable part of the framework so
that various alternatives can be realized.

Since a compiled model might be included into other models, it also has to be
made available in a dictionary. In the example of fig. 3 the framework registers
the model with the dictionary proxy (registerModel), which in turn inserts it into
the first dictionary (createModel).

Dictionaries by themselves are content management systems which are gen-
erated from the asset meta model. This way, the compiler can use a proper
component configuration. A variety of dictionary implementations can easily be
created using the existing generators, e.g., dictionaries that store schemata in re-
lational databases or XML databases. Furthermore, dictionaries can be equipped
with a range of other functionality for, e.g., remote access.
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:Compiler
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:DictionaryProxy

:Dictionary :Dictionary

im:Inter
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sm=findModel

:Compiler
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getParserDescription()
getDictionaryProxyDescription()

continued in backend, running generators

Fig. 3. Frontend of the model compiler with distributed dictionary

5.2 Parsers

In accordance with the classical architecture of compilers the intermediate model
is used to distribute information between the compiler components. An inter-
mediate model is created from an external representation. A parser makes the
compiler independent of a particular linguistic form of an asset model, and there
are parsers that retrieve asset model definitions from various sources.

A set of parsers is readily available for model compiler instances. The one
most commonly used reads files containing asset language expression as defined
in [15]. Other options are parsers for different syntactical forms, e.g. in XML, or
parsers that adapt an internal model representation from modeling tools.

Additional parsers can be developed within the compiler framework. They
have to fulfill an interface prescribed by the framework which requires them to
produce an IntermediateModel instance.

5.3 Code Generators

The backend of a model compiler consists of generators. There is a correspon-
dence between generators and the modules of content management systems. For
each implementation of one of the module kinds introduced in sec. 4.2 there is
at least one generator. Often there is more than one generator which contributes
to the creation of a module. For example, client modules for database access
are typically created by a pair of generators; one of them creates the database
schema, the other one creates code to access the database as well as to store and
retrieve asset instances.
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In order to be integrated into the compiler framework, generators have to
fulfill an interface. This interface mainly defines methods for a protocol by which
generators communicate with the framework.

As part of this protocol parameters can be passed to generators as will be ex-
plained in the following sections. Generators take parameter values into account
when generating a module.

The artifacts which are created by a generator to implement a module are
reflected in the symbol table of the generator. The generators create their arti-
facts as a complex structure into which the symbol table provides named points
of entry. Each generator fills its symbol table during its execution and passes
the symbol table back to the compiler framework afterwards. The framework
in turn gives available symbol tables to further generators making them the
essential means of generator communication.

The symbol tables contain detailed structured information about the artifacts
which were created by the respective generator. A typical behavior for a gener-
ator is for example to iterate over all asset classes from the intermediate model
and all their attributes to generate a piece of code for each attribute. The sym-
bol table will then contain a mappings from attributes to these pieces of code
(e.g., access methods). The aim of symbol tables is to make access explicit for
generators which rely on artifacts created by others (and most generators do).
Without symbol tables, generators further down the chain would have to make
assumptions about namings and would have to recover the corresponding pieces
from the whole of the generated artifacts.

A complete system is normally built from artifacts in several languages. Dif-
ferent meta-programming facilities are available to the generators to create their
output. This facilitates the creation of structured models of the artifacts and is
therefore important to provide meaningful symbol tables. The structured models
are converted into their concrete form as a side-effect of the generator execution.
Such a concrete form are for example files containing source code of a particular
programming language.

5.4 Framework Configurability

By providing generator implementations the backend of the compiler frame-
work is enriched with additional functionality. Which generators are actually
executed is determined by a compiler configuration, as are the frontend compo-
nents (parser, dictionary proxy) used. Multiple configurations can be provided
by system experts. Upon dynamic system generation a user chooses one of the
available configurations for each compiler run.

For the frontend, the parser and the dictionary proxy (see fig. 3) can be chosen.
They are provided as discussed in sections 5.1 and 5.2.

The backend configuration consists of two kinds of definitions: the generators
to be used for creating a content management system and values of parameter
to the generators.

For each configuration a set of generator implementations is given. This way
generator instances out of the known generator implementations are chosen.
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There may be more than one generator with the same implementation, for ex-
ample, if two client modules for database access are needed in a content manage-
ment system. In this case the two client modules are created by two instances
of the corresponding generator. The generation results may differ because of
different sets of parameter values.

Values for parameters which a generator might need are given as part of the
configurations. Generators determine the parameters to use at runtime, and the
framework will supply them with the values given in the configuration. This is
part of the generator protocol introduced in the subsequent section.

5.5 Generator Control

Traditional compilers for programming languages include a backend for one gen-
eration target—executable binary code in most cases. In contrast a model com-
piler for content management systems has to consider several targets at a time,
e.g., database schemata, database access code, application level code, and so on.

The multiple targets of a model compiler are addressed by the generators
provided to the compiler framework as described in the previous section. The
various artifacts a compiler creates are highly interrelated. Therefore, the execu-
tion of generators has to be scheduled in such a way that they create a working
content management system.

Generators follow a specified protocol inside the compiler framework. Fig. 4
illustrates this protocol in the form of a UML sequence diagram. In this fig-
ure a compiler setup with three generators is shown. The APIGenerator is a
standard generator which creates the uniform module interface (see sec. 4.2).
An SQLSchemaGenerator produces a database schema for a relational database.
Real setups use specialized generators which account for the peculiarities of con-
crete database management systems. The JDBCGenerator creates Java code for
a client module which stores asset instances according to the given asset model
in the database with the generated relational schema.

The grey box in fig.4 represents the compiler frontend as shown in fig. 3. It
creates the intermediate model im which reflects the asset class definitions.

The extended symbol table concept described in sec. 5.1 is the primary means
to coordinate generator executions. Depending on its configuration, the frame-
work (here represented by the Compiler instance) creates the necessary genera-
tors. Each generator is asked for the symbol tables it needs as input, the symbol
table it will produce as the result of a successful execution, and the configura-
tion parameters it needs to be supplied with. Based on the information given by
the generators the framework computes a schedule for generator execution that
ensures the required data flow.

In the example of fig. 4 both the API and the SQL schema generator will not
require any symbol tables as input. The JDBC generator generates a client mod-
ule which implements the module API and accesses a database configured with
the generated schema, thus it requires symbol tables which reflect the respective
artifacts. Therefore, the JDBC generator needs both symbol tables created by
the other generators (st1 and st2) and thus has to be executed last. Either the
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getGeneratorDescriptions()

parsing in frontend, creating intermediate model

Fig. 4. Generator scheduling protocol

API or the SQL schema generator can be run first, or both can be run in parallel.
Following the generator protocol the JDBC generator returns the symbol table
st3 as announced by getProducedSymbolTable. This symbol table can be used by
generators which want to employ the JDBC code.

Finally, the generators are run in the determined order (generate in fig. 4).
They are provided with the required symbol tables and parameter values, and
return a new symbol table.

Fig. 5 makes the data flow that takes place between the generators through
symbol tables more explicit. The generators of a first schedule stage (API and
SQL schema generators) are executed concurrently. Each of them creates some
module artifacts and stores information about the generated artifacts in a partic-
ular symbol table. The symbol tables are available to the generator of the second
schedule stage (the JDBC generator). The activity diagram in fig. 5 shows both
control and data flow to point out the fact that the compiler framework com-
putes a schedule for the generators instead of having them controlled by data flow
alone. This way, the compiler framework can detect inconsistent configurations
without actually running generators.

Generators are provided with the intermediate model when they request sym-
bol tables (getRequestedSymbolTables) and parameters (getRequestedParameters).
This way the choice of symbol tables and parameters can depend on the actual
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Fig. 5. Generator communication with symbol tables

asset class definitions. E.g., a schema generator needs type mappings for all asset
class members. Therefore, it will gather the types used in asset class attributes
and request the according SQL types which shall be used within a database.
Because of the dynamic choice of symbol tables possible generator schedules can
depend on the asset class definitions.

5.6 Component Assembly

When all generators have finished their tasks a system component is assembled
from the generated modules and parameterizations of third party products. This
includes two activities: actually building the modules and combining them in a
component of a content management system.
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Modules are built from the generated artifacts. Each generated artifact needs
a special final treatment: source code needs to be compiled, database schemata
have to be deployed, etc.

A component is created according to a given component configuration (see
sec. 4.2) which determines the component’s functionality on the basis of the
basic functionality offered by the individual modules.

6 Summary and Outlook

Content management systems which describe domain entities by multimedia con-
tent have to take into account their users’ views and working contexts. One way
to do so is by means of a conceptual model provided by the users. In this paper
we have presented a generative approach to the creation of content management
systems that enables openness and dynamics of such systems.

As a solution to the problem of coordinating the various generators of software
artifacts for a content management system a design for a compiler framework
has been proposed.

Through application projects, we were able to verify that users are indeed
enabled to provide their personalized perspective [9] and that a dynamic response
to schema modifications is feasible [6].

In the future we hope to extend our approach in several respects. One of the
focal points is a possible feedback of generator runs on the asset model. Giving
such feedback will enable generators to interact with each other via the model
to distribute any additional constraints that might be necessary to impose on
the schema. An example of this is the length restriction of string fields. These
restrictions can arise from the use of a relational database for persistence. How-
ever, these restrictions need to be respected by all parts of the application, e.g.,
in presentation logic. There is, therefore, a feedback loop from the client module
generator providing additional information to the other generators. Currently
such information which is important to all generators has to be defined in the
asset model, violating its conceptual nature.
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Aouiche, Kamel 81

Belenguer, Jorge 71
Ben Messaoud, Riadh 39
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