O
™M
q_
o
V)
)
=
=

The ARTIST Roadmap
for Research and Development

_

ﬁ

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3436

Bruno Bouyssounouse Joseph Sifakis (Eds.)

Embedded Systems
Design

The ARTIST Roadmap
for Research and Development

@ Springer

Volume Editors

Bruno Bouyssounouse

ARTIST Technical Coordinator

Joseph Sifakis

ARTIST Scientific Coordinator

Verimag Laboratory

Centre Equation, 2 avenue de Vignate, 38610 Gieres, France
E-mail: {Bruno.Bouyssounouse,Joseph.Sifakis} @imag.fr

Library of Congress Control Number: 2005921510

CR Subject Classification (1998): C.3,C.2,D.2, D.3, D.4, K.6

ISSN 0302-9743
ISBN 3-540-25107-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 11400707 06/3142 543210

Preface

Embedded systems now include a very large proportion of the advanced products
designed in the world, spanning transport (avionics, space, automotive, trains),
electrical and electronic appliances (cameras, toys, televisions, home appliances,
audio systems, and cellular phones), process control (energy production and
distribution, factory automation and optimization), telecommunications (satellites,
mobile phones and telecom networks), and security (e-commerce, smart cards), etc.
The extensive and increasing use of embedded systems and their integration in
everyday products marks a significant evolution in information science and
technology. We expect that within a short timeframe embedded systems will be a part
of nearly all equipment designed or manufactured in Europe, the USA, and Asia.

There is now a strategic shift in emphasis for embedded systems designers: from
simply achieving feasibility, to achieving optimality. Optimal design of embedded
systems means targeting a given market segment at the lowest cost and delivery time
possible. Optimality implies seamless integration with the physical and electronic
environment while respecting real-world constraints such as hard deadlines, reliability,
availability, robustness, power consumption, and cost. In our view, optimality can only
be achieved through the emergence of embedded systems as a discipline in its own right.

Embedded systems are of strategic importance in modern economies. They are used
in mass-market products and services, where value is created by supplying either
functionality or quality. Europe currently has a strong position in sectors where
embedded technologies play a central role. It has a lead in civil avionics where fly-by-
wire technology provides an overwhelming competitive advantage in the cost of
operating aircraft. Europe is also well positioned in the space sector, specifically for
launch vehicles and satellites. In the automotive industry, European manufacturers
and their suppliers enjoy a leading technological advantage for engine control, and
emerging technologies such as brake-by-wire and drive-by-wire. Railway signalling
in Europe relies on embedded systems, and allows faster, safer, and heavier traffic.
Embedded applications will be extensively used to make energy distribution more
flexible, especially in view of the coming market liberalization. Embedded
technologies are strategic for the European telecommunications sector. Finally,
Europe is also well positioned for e-services (e-banking, e-health, e-training), based
on the leading edge in smart-card related technologies.

Embedded systems design raises challenging problems for research, including:

e Security
Economic, citizenship, and societal activities in Europe rely increasingly on
embedded applications. Widespread acceptance and reliance on these will depend
on the availability of seamless solutions for securing rights and privacy.

e Reliable, mobile, embedded services
Electronic commerce and e-services in a wireless world will need provably correct
foundations to ensure further growth.

VI Preface

e Large-scale heterogeneous distributed systems
Applications such as automated highways, advanced air traffic control, or next-
generation factory automation require full-scale, industry-ready paradigms,
methodologies, and advanced prototypes. These need to integrate heterogeneous
elements from different, perhaps competing providers, in evolving embedded
environments.

e Adaptive embedded systems
Tomorrow’s resource-constrained applications, such as image processing,
telecommunications, and industrial automation, are expected to see drastic
advances in performance and dependability, with the ability to adapt to dynamic
changes in resource needs, including power/energy, bandwidth, memory, and
computing power.

e Component-based design, validation, and tool-based certification
Development costs and time-to-market could be vastly reduced, by enabling the
incremental design and formal validation of arbitrarily complex systems.

This roadmap was written by the IST-2001-34820 ARTIST FP5 Accompanying
Measure on Advanced Real-Time Systems, funded by the European Commission, and
which started April 1st, 2002 and ended March 31st 2005.

The ARTIST FP5 workplan includes, in addition to providing this roadmap,
advancing the state of the art and structuring research on embedded systems in
Europe. It gathered together 28 leading European research institutions, as well as
many top researchers in the area.

The aim of ARTIST FP5 was to coordinate the R&D effort in the area, to improve
awareness of academics and industry, especially about existing innovative results and
technologies, standards, and regulations, and to define innovative and relevant work
directions, identify obstacles to scientific and technological progress, and propose
adequate strategies for circumventing them.

ARTIST FPS5 was implemented as a set of four coordinated actions, each centred on a
high-priority thematic area of research on embedded systems. Correspondingly, the
roadmap is organised into four parts.

Action 1: Hard Real Time. This action was led by Professor Albert Benveniste of
INRIA (France), and focused on aspects of hard real-time applications, bringing
together competencies from synchronous languages, time-triggered systems, and
schedulers.

Action 2: Component-Based Design and Development. This action was led by
Professor Bengt Jonsson of Uppsala University (Sweden), and focused on both
theoretical and practical aspects of modelling complex systems with emphasis on
methods (compositionality, composability) and standards (e.g. UML).

Action 3: Adaptive Real-Time Systems for QoS Management. This action was led
by Professor Giorgio Buttazzo of the University of Pavia (Italy), and focused on soft
real-time approaches and technology for telecommunications, large open systems, and
networks. It gathered together teams with expertise in real-time operating systems and
middleware.

Action 4: Execution Platforms. This action was led by Professor Lothar Thiele of
the Swiss Federal Institute of Technology (ETHZ), and focused on issues at the
frontier between hardware and software — and their implications for embedded
systems design.

Preface vl

To enhance readability, each of the four parts of the roadmap follows a similar
structure, although there are domain-related specificities. Also, inevitably, some
topics may be treated in more than one part of the document, but the index should
help the reader find the different relevant texts for a given topic.

Oversight for ARTIST FP5 was provided by the Artist Industrial Advisory Board
(IAB), which reviewed the roadmap. The ARTIST IAB is chaired by Dr. Dominique
Potier, Scientific Director for Software Technologies, Thales.

We would like to thank all the contributors to the roadmap, including the engineers
and researchers who participated in the various technical meetings and workshops, as
well as the industrial leaders who granted interviews and/or provided information in
the questionnaire. Special thanks also go to the Artist FP5 reviewers and the project
officer, for constructive and stimulating comments.

The elaboration of this roadmap provided the opportunity for fertile interaction
between key players in the area of embedded systems, and proved to be useful for
structuring the area.

The work and the strategic orientations and conclusions of ARTIST FP5 led to the
creation of the ARTIST2 FP6 Network of Excellence on Embedded Systems Design.
Information about ARTIST2 is available on the web-site: http://www.artist-
embedded.org/FP6.

This roadmap usefully complements other existing roadmapping work from ITEA
and MEDEA+. We hope that it will be useful for both research and industry and that
it will serve to advance awareness about the state of the art and provide insights on
possible avenues for R&D.

Grenoble, January 2005 Bruno Bouyssounouse
ARTIST Technical Coordinator
Verimag Laboratory, France

Joseph Sifakis
ARTIST Scientific Coordinator
Verimag Laboratory, France

Bruno Bouyssounouse
ARTIST Technical Coordinator
Joseph Sifakis

ARTIST Scientific Coordinator

Editors

Verimag Laboratory, France

Verimag Laboratory, France

Contributors

Part I: Hard Real-Time Development Environments

Coordinator: Albert Benveniste

Jos Baeten

Philippe Baufreton
Albert Benveniste
Samuel Boutin

Bruno Bouyssounouse
Dominique Briére
Paul Caspi

Werner Damm
Emmerich Fuchs
Vered Gafni

Thierry Gautier

Drora Goshen
Guenter Gruensteidl
Nicolas Halbwachs
Hermann Kopetz

Kim Larsen

Hervé Le Berre
Rainer Leupers

Brian Nielsen
Ernst-Riidiger Olderog
Yiannis Papadopoulos
Philipp Peti

Manfred Pisecky
Peter Puschner

Jorn Rennhack
Alberto Sangiovanni-Vincentelli
Christian Scheidler
Arne Skou

Yves Sorel

Ulrich Virnich

Birgit Vogel-Heuser
Reinhard Wilhelm
Tim Willemse

INRIA, France

Eindhoven Technical University, The Netherlands
Hispano-Suiza, France

INRIA, France

Renault, France

Verimag Laboratory, France

Airbus, France

Verimag Laboratory, France

OFFIS, Germany

Vienna Technical University, Austria
Israel Aircraft Industries, Israel
INRIA, France

Israel Aircraft Industries, Israel
Alcatel, Austria

Verimag Laboratory, France

Vienna Technical University, Austria
Aalborg University, Denmark
Airbus, France

RWTH Aachen, Germany

Aalborg University, Denmark
OFFIS, Germany

University of York, UK

Vienna Technical University, Austria
TTTech, France

Vienna Technical University, Austria
Airbus, Germany

PARADES, Italy

DaimlerChrysler, Germany

Aalborg University, Denmark
INRIA, France

Siemens, Germany

University of Wuppertal, Germany
Saarland University, Germany
Eindhoven Technical University, The Netherlands

Organization

Part II: Component-Based Design and Integration Platforms

Coordinator: Bengt Jonsson

Ed Brinksma

Geoff Coulson

Ivica Crnkovic
Andy Evans
Sébastien Gérard
Susanne Graf
Holger Hermanns
Jean-Marc Jézéquel
Bengt Jonsson

Noél Plouzeau
Anders Ravn
Philippe Schnoebelen
Francois Terrier
Angelika Votintseva

University of Uppsala, Sweden

University of Twente, The Netherlands
Lancaster University, UK
Mailardalen University, Sweden
University of York, UK

CEA, France

Verimag Laboratory, France
Saarland University, Germany
INRIA, France

University of Uppsala, Sweden
INRIA, France

Aalborg University, Denmark
LSV Laboratory, France

CEA, France

OFFIS, Germany

Part III: Adaptive Real-Time Systems for Quality of

Luis Almeida
Alejandro Alonso
Guillem Bernat

Alan Burns

Giorgio Buttazzo
Antonio Casimiro
Carlos Delgado Kloos
Johan Eker

Joaquim Ferreira
Gerhard Fohler

José Alberto Fonseca
Josep Fuertes

Marisol Garcia Valls
Michael Gonzalez Harbour
Giuseppe Lipari
Lucia Lo Bello
Evangelos Markatos
Pau Marti

Ernesto Martins
Miguel de Miguel
Laurent Pautet

Paulo Pedreiras
Julian Proenza

Juan Antonio de la Puente

Service Management
Coordinator: Giorgio Buttazzo

University of Pavia, Italy

University of Aveiro, Portugal
Technical University of Madrid, Spain
University of York, UK

University of York, UK

University of Pavia, Italy

University of Lisbon, Portugal
University Carlos III de Madrid, Spain
Ericsson, Sweden

IX

Polytechnic Institute of Castelo Branco, Portugal

Mailardalen University, Sweden
University of Aveiro, Portugal
Technical University of Catalonia, Spain
University Carlos III de Madrid, Spain
University of Cantabria, Spain

Scuola Superiore S. Anna of Pisa, Italy
University of Catania, Italy

ICS Forth, Greece

Technical University of Catalonia, Spain
University of Aveiro, Portugal
Technical University of Madrid, Spain
Telecom Paris, France

University of Aveiro, Portugal
University of Balearic Islands, Spain
Technical University of Madrid, Spain

X Organization

Daniel Simon
Liesbeth Steffens
Paulo Verissimo
Andy Wellings
Sergio Yovine

INRIA, France

Philips Research, The Netherlands
University of Lisbon, Portugal
University of York, UK

Verimag Laboratory, France

Part IV: Execution Platforms

Coordinator: Lothar Thiele ETHZ, Switzerland

Luca Benini
Geert Deconinck
Petru Eles

Rolf Ernst
Murali Jayapala
Jan Madsen
Zebo Peng
Marco Platzner
Paul Pop

Lothar Thiele
Tom Vander Aa
Kashif Virk
Fabian Wolf

University of Bologna, Italy

K.U.Leuven, Belgium

Link6ping University, Sweden

Technical University of Braunschweig, Germany
K.U.Leuven, Belgium

Technical University of Denmark, Denmark
Linkoping University, Sweden

ETHZ, Switzerland

Linkoping University, Sweden

ETHZ, Switzerland

K.U.Leuven, Belgium

Technical University of Denmark
Volkswagen AG, Germany

Table of Contents

Part I: Hard Real-Time Development Environments

1

Executive Overview on Hard Real-Time Development Environments............. 1
1.1 Motivation and ObJECHIVEScceeruieruieiiieieeiieniieieeie e 1
1.2 Essential CharacteriStiCs.......coveruirreerireieniieniieieeieeeeeeeseeseeeseeeneeeee s 2
1.3 Role in Future Embedded Systemscccecevienienienieeieiieneeeeeee 3
1.4 Overall Challenges and Work Directions..........ccoccvevvereerieerveeeeeneennenn. 4
1.5 Document StIUCLUIEceouieiiriieniieiieieete ettt 9
Hard Real-Time System Development............cccocoverieniiiiiicienienieieeieeeens 10
2.1 Brief Discussion of Current Practice: The V-Shaped Lifecycle........... 10
2.2 An Emerging Approach: Platform-Based Designc..ccccecevereeuennee. 11
Current Design Practice and Needs in Selected Industrial Sectors.................. 15
3.1 AUtOmOtiVE SYSIEIMS ...ocvieivieeiieiieeiiesieecieeeie ettt re b eesesenesaeens 15
3.2 Aecronautics: A Case StUAYcooeeiiirieiieiieie e 24
3.3 Consumer Electronics: A Case Studyccceverveeirvieievenencnenenenn 31
3.4 Automation APPLICAIONSceevveriieriieiieieeieriieieeie e see e esseeee e 35
Tools for Requirements Capture and Explorationccoccoeeenienieiinoenenns 39
4.1 Definitions of Hard Real-Time Dependability Features....................... 39
4.2 Scientific Engineering Tools and Physical Systems Modellers 45
4.3 State-Based Design: Dealing with Complex Discrete Control............. 50
Tools for Architecture Design and Capture..........coeceeeereereeneene e 54
Tools for Programming, Code Generation, and Designcc.ccccevevenenennene 63
6.1 SETUCTUTE ..ottt sttt st et e e 63
6.2 Code Generation from Synchronous Languages............ccceevveevrevennens 63
6.3 Back-End Code Generation — Below C........ccccooiiiiniiinininiiieieene 68
Tools for Verification and Validationc..cccoeoievieniiiiiiiienienieeeeeeee 72
7.1 Building Blocks for Verification and Validationc.cccccoeeieeenneen. 72
7.2 Model ChecKing.......coceeiiiiriiniiriineiieiieteteteee e 72
7.3 Static Program ANalySiS.........cccovverieriiiiieiienieie e eiesieenie e e seneneeens 76
7.4 Testing Embedded SyStemscccoevveviiriiiniieiieieeiesieereeee e 80

Middleware for Implementing Hard Real-Time Systems........c.ccoceeverererueneee 85

XII Table of Contents

9 Review of Some Advanced Methodologiesccocveveveiieiiiienieiieieeieeiens 92
9.1 The Setta PrOJECtcceveririirieicicectceese et 92
9.2 The SafeAir PrOJeCt.....cccuieiieiieiieeiesieeieee ettt 96

Part II: Component-Based Design and Integration Platforms

10 Executive Overview on Component-Based Design and Integration

PIAtTOIINS ..o e e 103
10.1 Motivation and ObBJECHIVESc..ccerirrerirerieicieneirene e 104
10.2 Essential CharacteristiCs.........coeveririrerieieieieniesienie e 105
10.3 Role in Future Embedded Systemscccoocvevievieniieieiieieeieee 108
10.4 Overall Challenges and Work Directions.........c.ccecceveeenveneeieeneenneene 109
10.5 Document StrUCTUTEcovuviiriieriieiieeiiee ettt 112
11 Component-Based System Developmentc.ccceevvieiiiieiieneennecieceenenn, 114
11.1 Lifecycle of Component-Based Systems...........cccecveveverienieeeenvennnenn. 114
11.2 Lifecycle of COMPONENLSocveruireiriieieieieierie ettt 117
11.3 Issues Specific for Embedded Systemscccooveveeneiieiieenieneee 117
11.4 Summary and Conclusions............cceeveireierienieieeie e 118
12 Current Design Practice and Needs in Selected Industrial Sectors................ 120
12,1 AULOMIOLIVE. .cueniinieiisieiteeieeit ettt sttt 120
12.2 Industrial AUtOMAtIONcceeeeieieierieiese et 124
12.3 Consumer EICCtrONICScovieuieriieiieiieieeiieeiieteee e 129
12.4 Telecommunication Software Infrastructure............ccooovvevereenrennne. 131
12.5 Avionics and ACTOSPACE........ccverreerreerreereeieereesreesseesessesssesseesseessennns 134
12.6 Summary and Challenges...........ccocvevvieiieieiieiieie e 136
13 Components and CONTACTSc..ccuerireririrereeieteeentee et 139
13,1 INtrodUCHION ...ccueiiieiieiteie ettt 139
13.2 Level 1 — Syntactic INterfacesccecveveerierieicierieneeieeee e 140
13.3 Level 2 — Functional Properties..........cccoveeveeieieereenieeie e 143
13.4 Level 3 — Functional Properties..........ccoceeeerieiieneeneee e 145
13.5 Level 4a — Timing Properties.......cccccoevererineninineeeeieeeieneneennene 147
13.6 Level 4b — Quality 0f SEIrVICe ...cvvevvieiieiieiieeiiecieeie e 153
13.7 Specifying and Reasoning About Contracts: Summary and
ANALYSIS...eiieiiieiiieii ettt ettt eaeenaeenne e 158
14 Component Models and Integration Platforms: Landscape...........c.ccoccevenee. 160
14.1 Widely Used Component Modelscccceruenieninninienienceeee 160

14.2 Component Models for Embedded System Design...........ccccocevuenene. 172

Table of Contents X111

14.3 Integration Platforms for Heterogeneous System Design 181
14.4 Hardware/Software Modelling Languages............ccooceeveerreerncennenne. 186
14.5 Component Models and Integration Platforms: Summary and
CONCIUSIONSviniiiiieitteieecee ettt 187
14.6 Component Libraries: Approaches to Component Retrieval.............. 189
15 Standardization EFfOrtS..........cccoeveiiiiniininiccce e 194
15.1 Specification Standards............cceeveevieriieriieiieiieceeee e 194
15.2 Implementation Technology Standards...........cccceveeviiiiiiiiiinceeene 202
15.3 Conclusions and Challenges............cccceceevvenineninininenieeecencnene 203
16 RETCTEICES ...ttt ettt 204

Part III: Adaptive Real-Time Systems for Quality of Service Management

17 Executive Overview on Adaptive Real-Time Systems for Quality of

Service Managementc..coeveeeeieierieninienenieeie ettt sttt 216
17.1 Motivation and ObBJECHIVEScccervireriririeieieneireneseeie e 216
17.2 Essential CharacteriStiCs........ovveruieruierieeienierieenieesieeresneseesieesseenneens 217
17.3 Role in Future Embedded Systemsccocvevvievieriieieiieceereee 218
17.4 Overall Challenges and Work Directions........cccccecceveeevienieniencennenne. 220
17.5 Document StrUCTUTEccvvieeeiiieeeiiieeeiiie et eree e e e eeeeeeseraeeeas 225
18 Adaptive Real-Time System Developmentcccvevueeeieiieieeneenieeieeneenns 227
19 Current Design Practice and Needs in Selected Industrial Sectors................ 229
19.1 Industrial Sector 1: Consumer Electronics in Philips.........c.ccccceueeee. 229
19.2 Industrial Sector 2: Industrial Automation.............cccveevveeereeeereeeneenns 232
19.3 Industrial Sector 3: Consumer Electonics: Ericsson Mobile
PlatfOrmMS ...t 237
19.4 Industrial Sector 4: Telecommunications — The PT-Inovagao
CaSE STUAY..eeuvieeiieiiieiieciiete ettt st ae e sreesreesreereens 240
20 Real-Time Schedulingcocoiiiiiiiiii e 242
20.1 LandSCape......cccueeieruieriieieiieieeste ettt te bbb ens 242
20.2 ASSESSIMENL....cccuvieeiieiiieetieireeeteesiteesteesreesseesseessseessseessseessseessseenes 248
20.3 TIENAS...cuiiieiiiecieeete ettt ettt e e et e e eaae e sebeeeaae e 248
20.4 Recommendations for Research.........c.ccccooovevivviiiiininneieceeeee 252
20.5 RECIENCESuiitiiitiiiieiieie ettt s 254
21 Real-Time Operating SYSteMS.........cevieriieriiiierieriieieeieee e 258
211 LandSCape......cceeiueeriieieeie ettt 259

21,2 ASSESSIMENE...ceviiiiiiiiiiiiiiiiieieieeeeeee ettt ee ettt e et et r e 275

X1V Table of Contents

2 R T ') s e R 279
21.4 Recommendations for ReSearch............cccooovvvvvvviiiiiieiiiieeeeeeeie e, 282
21,5 REFEICNCES ..ot 283
22 QOS MANAZEMENTeeiuiieeiiieiiieeiie ettt ettt e st et esibeesabeesibeesanee e 287
22,1 LandSCape......cccoirerieiiiieiieieteeneee e 287
22,2 ASSESSIMENL.....uuviviiieiieieiiireeeeeeeeeeeiree e e e ee et e e e e e e eeear e e e e e e e eeaaareeeeas 294
223 TIENAS.c..eeiiieeeiie ettt 295
22.4 Recommendations for Research...........ccccccovviiiiiiiiiiiiiieeieeee 299
22,5 REEICNCES ..ottt e e e eaaaee s 300
23 Real-Time MIddIEWATe.........ccouvviiiieiiiiieiie e 305
23,1 LandSCape......cccuerierieeriieiesieseeste et ere ettt ens 306
23,2 ASSESSIMENL.....uviiiiiiiiiieieiiieeeeeee et e e ee e e e e e e e e e e aaaaaeeas 310
R T T U0 1 L« L3RRS 311
23.4 Recommendations for Research...........ccccccovviiiiiiiiiiiiiiiiiiiieeciieen, 313
23,5 RETEIEICESovviiieeeeieeeeeeeeeeee e 314
24 INEEWOTKS ettt e e e et e e e e et e e e e e e sennaanees 316
24,1 LandSCape......cccverierueeriieieieieieesteesteere et et e ste b ebe e saae s sreeaeenaeens 316
24,2 ASSESSIMENT.....uueeeiiiieiieieeieeee ettt e e ee e e e e e e e e e e e aaaaeeeas 325
243 TTENAS. ..eveiieiieeeeeee ettt e et e e e e e eeaaaaee s 326
24.4 Recommendations for Research.............cccccovvevviiiioeeeiiiiieeceeecee 333
24.5 REEIEICESovviiiieiiei et 335
25 Programming Languages for Real-Time Systems.........cccceccevvevenincncnennenn 338
25.1 LandSCape......cccoiveriririeieieteenee e 338
25.2 ASSESSIMENL.....uvvvriiieieeieiiirieeee e e eeecee e e e eeeee e e e e e e et e e e e e e e eraraae s 344
253 TIENAS.c..eeeiieeeie ettt 346
25.4 Recommendations for Research...........cccccoovviiiiiiiiiiiiceeeeeee 347
25,5 REEICNCES ..ottt et e e e e e e aaaee s 349
26 OFNET ISSUES ..ttt e et e s et e e e e e e e enaees 352
26.1 POWET AWAICIICSScceeeieuirrieeeeeeeeiiireeeeeeeeeeetreeeeeeeeeeearreeeeeeeeeaareeeeas 352
26.2 Media-Processing AppliCations..........c.ccvevveeereeeeieeneenieeeeeeeeeeeeneenns 358
26.3 Integrating Real-Time and Control Theory.........ccccoeceeveioerienennncnne. 358
26.4 Probabilistic TIme ANalysiscccecvevuevieninenienienineneeeeeeeeieeeenne 365

26.5 Hardware TrendsS........cc.coooeveiiieeeeeeieeeeeeeeee e 369

Table of Contents XV

Part IV: Execution Platforms

27

28

29

30

Executive Overview on Execution Platforms...........cccocevvevienvnieiieneee, 373
27.1 Motivation and ObBJECHIVEScc.coeruirereririeiiienteneneeeee e 373
27.2 Essential CharacteristiCs.........ccceverirererieieieienenesieeieeiceieeee e 374
27.3 Role in Future Embedded Systemscccoccvevieiieniieieiiecieieee 374
27.4 Overall Challenges and Work Directions........cc.cceceveeveeneeieneennenne. 374
27.5 Document StrUCTUTEoevveeriieriieiiieeiee sttt 375
Current Design Practice and Needs in Selected Sectors.........cccveevveverveennenne. 377
28.1 Automotive INAUSLIYocvvvieiieiieiiceeeeeee e 377
28.2 Mechatronics INAUSIIYceevvieiieiieieieeie e 383
Computing Platformscocoeveieiiinininiiineneeicceeeeee e 388
29.1 Multiprocessor Systems — Modelling and Simulation........................ 388
29.2 Distributed Embedded Real-Time Systems — Analysis and
EXPlOTation.....c..couiiuiiiiieiiiicicienctc e e 406
29.3 Reconfigurable Hardware Platforms.........c.ccccoovvevveniinieicieiieeee, 423
29.4 Software Integration — Automotive Applications.............cceceveevvennne. 440
Low Power ENgineering..........cccuecuerenenirineneeieieienenese et 450
30.1 Power-Aware and Energy Efficient Middlewareccccceeveeeenen. 450
30.2 Memory Hierarchy and Low Power Embedded Processors............... 464

1 Executive Overview on Hard Real-Time
Development Environments

1.1 Motivation and Objectives

This is a roadmap for research in hard real-time systems. We intend it to be a roadmap
for research, rather than for R&D in general. As such, it takes a longer view and has a
more speculative approach than a typical industrial roadmap. Moreover, it shifts its
focus from the topics traditionally referred to by hard real-time to topics that we be-
lieve carry the strongest research needs.

Traditionally, hard real-time includes task scheduling, real-time OS and executa-
bles, and “meeting deadlines” as the ultimate objective. These topics are indeed cov-
ered in part III of this document, but as the background for the OS needed to support
Quality of Service (QoS) requirements in future real-time systems. The argument can
be made that research on task scheduling should shift to adaptivity and QoS issues.

Is Research on Hard Real-Time Systems Still Needed?

We believe research on pure hard real-time systems is still needed, but that it now
needs to focus on issues other than RTOS and deadlines. Hard real-time systems de-
sign has become part of a larger engineering activity: designing embedded systems
for control or information processing. Said differently, Hard real-time systems are just
part of intelligent devices that cannot work without being controlled and supervised
by computers. Research on hard real-time must therefore shift from a single-
technology research to the broader perspective of systems design.

Therefore, this Part I of the roadmap is about hard real-time and related issues aris-
ing in embedded systems design. It focuses on the entire design flow and the theories,
methods, and tools needed to support it.

A number of theories are available: scientific engineering modelling for physical
systems and their control, theories supporting verification and validation, theories
supporting timing and other extra-functional analyses, theories supporting code gen-
eration, and theories supporting testing. Related tools and paradigms are also numer-
ous and the resulting set of technologies is surprisingly rich. As we shall see, there are
many subjects for difficult and relevant research in hard real-time systems design.

‘Who Should Read This Document?

Venture capitalists may prefer gather their data from other sources, better documented
in terms of Return on Investment (Rol). However, we believe that anyone interested
in future technological trends and emerging research issues in this area will benefit
from this document. The reader should be warned that we have favoured depth and
novelty of the information as opposed to comprehensive and balanced coverage. We
have not included existing technologies that are relevant and would have found their
place here. But we hope — and we do believe — that we did not miss what will be the
important ideas for the next 10 years.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 1-9, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 1 Executive Overview on Hard Real-Time Development Environments

How Should This Document Be Read?

Browsing the document can bring sources of inspiration and directions for research.
The sections on advanced technologies are well documented, and provide a number of
useful web links. A list of contributors is provided in the roman pages. We encourage
the reader to address questions and comments to the contributors.

1.2 Essential Characteristics

There is no clear-cut definition for Embedded Systems. We will refer to Embedded
Systems as electronic programmable sub-systems that are generally an integral part of
a larger heterogeneous system. Embedded systems play an increasingly important role
in the added value of advanced products that are designed and manufactured in
Europe.

The following general statements are quoted from the Embedded Systems Road-
map 2002, published by the Technology Foundation of the Netherlands (STW),
(http://www.artist-embedded.org/Intranet/Roadmaps/STW-roadmap.pdf).

The importance of embedded systems is undisputed. Their market size is about 100
times the desktop market. Hardly any new product reaches the market without em-
bedded systems any more. The number of embedded systems in a product ranges
from one to tens in consumer products and to hundreds in large professional sys-
tems. [...] This will grow at least one order of magnitude in this decade. [...]

The strong increasing penetration of embedded systems in products and services
creates huge opportunities for all kinds of enterprises and institutions. At the same
time, the fast pace of penetration poses an immense threat for most of them. It con-
cerns enterprises and institutions in such diverse areas as agriculture, health care,
environment, road construction, security, mechanics, shipbuilding, medical appli-
ances, language products, consumer electronics, etc.

Because they are applied in a wide variety of industrial sectors, embedded systems
require a large number of different skills, including principally: Skills for their design:
application domain expertise, architectural design, application software, middleware,
hardware design, fault tolerant design, safety techniques, verification and testing, just
to name the most important areas. Embedded systems have been available for many
years, yet there is a lack of a well-identified technical or academic discipline to sup-
port their design as they become more complex. The near absence of curricula in
Europe dedicated to embedded systems is significant. There is indeed a strong need to
establish the foundations of an engineering discipline that makes integration and
multi-disciplinarily its flagship.

The increasing dependency on software is an essential characteristic of modern
embedded systems and as such, it is the main focus of the Artist Roadmap.

Real-time embedded systems are of particular interest to the European community.
Real-time embedded systems interact continuously with the environment and have
constraints on the speed with which they react to the environment stimuli. Examples
are power-train controllers for vehicles, embedded controllers for aircrafts, health
monitoring systems and industrial plant controllers. Timing constraints introduce

1.3 Role in Future Embedded Systems 3

difficulties that make the design of embedded systems particularly challenging. We
classify as hard real-time (HRT) the embedded systems that have tight timing con-
straints, i.e., they are difficult to achieve and they may not be violated, with respect to
the capability of the hardware platforms used. HRT constraints challenges the way in
which software is designed at its roots. Standard software development practices do
not deal with physical properties of the system as a paradigm. We need a new system
science where functionality is married to physical aspects. The roadmap presented
here focuses on the design of distributed hard real-time embedded systems with par-
ticular emphasis on software.

We intend it to be a Roadmap for research, rather than for R&D in general and as
such, it takes a longer view and has a more speculative approach than a typical indus-
trial roadmap.

1.3 Role in Future Embedded Systems

The general trend for the future is that more systems and objects will contain com-
puter-controlled components. The increasing role of embedded electronics in systems
such as automobiles, trains, planes, power systems, military systems, consumer elec-
tronics, and other telecommunication systems is discussed in detail throughout this
document. However, the set of applications that use embedded systems will continue
to grow exponentially.

Emerging sensor systems technologies, often distributed and autonomous, will call
for more embedded signal and information processing power. Most of it will consist
in adaptive (not hard) real-time processing, however. Autonomy, adaptivity, commu-
nicating ability, and higher number crunching capability, will be the main issues. We
do not expect issues of hard real-time to be central for such distributed, autonomous,
sensor systems.

However, there is a trend to design more devices that will require an associated
computer control system. Perhaps the most well-known such systems are aircraft:
they simply could not fly without computer control, because they have inherently
unstable flight modes. This trend is increasing significantly, as designing systems that
would be naturally unstable opens up new possibilities and increases opportunities for
better performance. Consumer electronics products including disk drives, or remote
manipulators used in surgery also involves such technology. The joint design of de-
vices with their closed-loop control will be a domain of increasing importance.
Clearly, this is an area where hard real-time is central, since the computer system is
responsible for the reflex capabilities of the system.

Perhaps the ultimate and most challenging domain for hard real-time in the future
will be in Micro Electro-Mechanical Systems (MEMS). MEMS are considered to be a
key technology for the future. MEMS devices may be able to explore blood vessels
and find their path inside the human’s body. As they tightly combine mechanics and
electronics in both analogue and digital forms, closed loop control is an important part
of their design. Therefore hard real-time aspects are also central. However, it is our
opinion that most of the classical hard real-time technology will not be relevant to
MEMS. Task scheduling will probably not be used. Instead, the direct mapping from
specifications involving functional aspects as well as non-functional aspects related to

4 1 Executive Overview on Hard Real-Time Development Environments

power consumption, heat dissipation, and electro-mechanical characteristics will be
likely to prevail. Methods, techniques, and tools jointly addressing these different
facets of the design will be needed.

Fortunately, research efforts toward these directions are underway in both commu-
nities of EDA (with the hybrid extensions of RTL-level or system-level formalisms)
and embedded control systems design (with the need to address functional specifica-
tion, as well as architecture and software generation with power optimization).

1.4 Overall Challenges and Work Directions

The challenges described below point out that there is a need for a revolutionary ap-
proach to embedded software design.

Increasing Complexity of the Application Space

Overview

In the (recent) past, an embedded system would be either small or simple, or the com-
position of almost non-interacting imported and assembled components. The trend is
that the number and complexity of functions will increase drastically. Increasing
complexity is making the present design methodologies rapidly obsolete. Productivity
of the order of six (or less!) lines of embedded code per day per person is common in
HRT embedded systems. If we do not have a breakthrough in design methodology
and tools, the inefficiency of the embedded software development process will pre-
vent novel technology to enter the market in time. The cost of developing a new plane
(of the order of several billions of Euros) is about % related to embedded software and
electronics subsystems.

Work Directions

Research is needed to raise the levels of abstraction at which a design is entered.
There is almost no hope of improving productivity substantially without this step
since productivity problems originate from a number of difficulties, including verifi-
cation and testing. For embedded controllers, the name of the game is to keep the
control requirements orthogonal with respect to implementation. Then the strategic
aspect of design is the development of control algorithms.

For low-level continuous systems or components, a rich body of theory and tools
has been developed for control design. This means that control laws can be automati-
cally synthesized from higher levels specifications related to the bandwidth of the
system for control, its stability margin and its robustness margin (how much the real
system is expected to deviate from the model used to synthesize control). Although
mainly developed for linear systems, these techniques have been and are successfully
used for nonlinear systems, by using robust control design techniques. Still, some
“truly” nonlinear systems require ad-hoc designs for which existing tools provide
strong assistance, not synthesis. The situation is not satisfactory for the control of
more complex subsystems involving several modes of operation and switching poli-
cies between them, i.e., hybrid systems. While modellers such as Simulink/Stateflow
allow for the description of such subsystems and their simulation, no synthesis tech-
nique is available yet.

1.4 Overall Challenges and Work Directions 5

From the algorithm design to implementation, we need to develop a suite of auto-
matic synthesis tools where the implementation process is fast and at the same time
highly optimized. Today, automatic code generation is available only for small parts
of the design flow, mostly for embedded code generation for single components.
Furthermore, even when available, this technique is not widely used in practice. Re-
search is needed to enlarge the target of code generation to distributed architectures.
Solving this problem requires the development of specification languages based on
rigorous semantics, which are accepted in both the control and the software engineer-
ing communities, which unambiguously represent the behaviour of the embedded
system. The semantics of Matlab/Simulink descriptions is not formally defined: the
behaviour of a system is determined by the execution of the simulators! In addition,
we need to develop models and methods to assess whether the performance of the
final implementation meets the constraints.

Interaction with the Physical World

Overview

Hard real-time embedded systems are mostly controllers, i.e., they act on physical
plants to make them behave according to a prescribed reference. This is the case for
example, for industrial system control, power-train control, flight control, and envi-
ronment control. The interaction with physical plants is the source of the hard real-
time constraints. The interaction with the physical world also comes from the imple-
mentation side of HRT systems: the physical parameters of the implementation, e.g.,
timing, power, and size, are essential for fulfilling performance and cost requirements.
This is what makes writing embedded software a substantially different task than
“standard” software.

Work Directions

Apart from the increase in complexity, the needs for the design of embedded systems
have broadened to encompass not only the functional aspects of systems, but also to
capture and analyze the extra-functional ones, such as timing and energy consump-
tion. Often the physical parameters are subject to variation. Hence, there is a link
between such extra-functional aspects of systems and hybrid systems and stochastic
systems that needs to be explored. The notion of time has played a fundamental role
in research recently both at abstract levels and at the implementation level. Timing
issues have been tackled at the abstract level introducing synchronous abstractions
(e.g., the ones incorporated into synchronous languages and time-triggered protocols
and architectures) but there is a growing interest in studying with the same mathe-
matical rigor asynchronous paradigms of various sorts. These approaches tend to
establish a formal relation between different levels of abstraction so that certain prop-
erties at lower levels are guaranteed to hold. More research will be needed to offer a
framework where coordination policies can be traded-off and chosen with a theoreti-
cal underpinning.

However, while it is possible to achieve a certain degree of separation of concerns
using theoretical approaches, the selection of implementation architecture (e.g., the
number and type of processing elements, the communication mechanisms) versus
another must be guided by some quantitative measure of performances that have to be

6 1 Executive Overview on Hard Real-Time Development Environments

abstracted at the various steps of the design. In this respect, implementation-aware
control algorithms must be researched carefully. In addition, estimation and profiling
models have to be derived and the appropriate tools to analyze the quality of the im-
plementation architecture have to be further developed to allow evaluation that is
solid and robust with respect to the obvious simplifications needed to obtain estima-
tion and profiling models.

Correct deployment of designs over distributed real-time architectures involves a
combination of theories and viewpoints. Correct deployment of discrete systems (say,
automata or a combination of these) is feasible or will be feasible in the near future,
by using recent or ongoing advances in formal methods. But how continuous control
designs and even worse hybrid systems are perturbed when distributed deployment is
performed is an open issue for research — unless very strict architectures such as TTA
(Time Triggered) are used.

Safety-Critical Nature of Designs

Overview

Many embedded controllers operate on systems that may cause severe damages to
people and property if they malfunction, i.e., they are safety critical. Clearly, the
emergence of X-by-wire technologies in the transportation industry will increase their
number and importance significantly. Safety has a dramatic impact on the design
processes and techniques used. Because of safety concerns, the embedded systems
have to have zero defects. Ideally, the design methodology should guarantee correct-
by-construction implementations of a complete specification. Complete means that no
constraint is left out and that the full functionality is considered. Today, some safety
critical systems, e.g., embedded systems for military applications and for avionic,
have to go through certification. Certification is a very expensive proposition: it re-
quires very extensive testing, and a design and product development process that
satisfy a set of tight rules on the way the development work is organized. There is,
however, no guarantee that certified software is error free. A related issue is fault
diagnosis and fault tolerance. When safety critical systems fail to function properly,
there must be a way of tracing what went wrong (fault diagnosis) and to react accord-
ingly, so that the system may continue to work through the fault albeit in a degraded
mode (fault tolerance).

Work Directions: Diagnosis

The integration of software from different vendors into a single component demands a
new approach towards fault containment, error containment and diagnosis. Hard real-
time aspects raise specific problems, but offers in turn special means to fix these.
Quick detection of a fault can be critical. Transient faults may reveal malfunctioning
that can become fatal. Fault effect propagation requires on-line sophisticated filtering
of alarms. Proper instrumentation, fault-tolerant architecture, and mechanisms for on-
line probing of the system, are needed to account for these special issues. Such
mechanisms can benefit in turn, from using hard real-time as an advantage for several
purposes, including time as a basis for fault isolation and fault containment, and fault
detection with bounded delay reaction time.

1.4 Overall Challenges and Work Directions 7

Work Directions: Certification

The trend is to move from process-based certification to process-and-tool-based certi-
fication. This calls for new trustable tools and methods. To reduce the cost of certifi-
cation, it would be a great advantage if the certification can proceed in a modular
fashion, i.e., if certification arguments that have been developed for a particular sub-
system can be used in a modular fashion. Modular certification depends very much on
the partitioning properties provided by the distributed architecture, which in turn can
take advantage of the hard real-time nature of the system. So-called formal methods
are an essential enabling factor in support of certification; they need to scale up to
much more complex designs.

Work Directions: Dependability

Safety critical systems must achieve a dependability (a commonly used value is 1
failure in 10™ hours) which is better than the dependability of any of its constituting
components. Such systems require a safety case that must be based on a combination
of experimental evidence and analytical modelling. In ultra-dependable systems even
a very small correlation of failures of the replicated units can have a significant im-
pact of the overall dependability. New approaches are needed to isolate component
failures and to eliminate even very low probability error propagation. In doing this,
real-time should be taken as an advantage, not as a problem.

Work Directions: Formal Methods

By formal methods, we mean fundamental techniques for analysis, validation, compo-
sition, or transformation of systems or software, in a provably sound way. Formal
methods are enabling technologies for exploring specifications and models, for vali-
dating designs against requirements, for generating code, for deploying designs on
architectures, and are a support for the certification of designs or tools. Formal meth-
ods include numerous technologies such as model checking, automatic test genera-
tion, proofs, automatic code generation from high level specifications, static program
analysis, timing analysis, code validation, theorem proving, and more; the main ones
are detailed hereafter in this document. No safety critical design will be possible in
the future without a significant use of formal methods. New domains have been in-
cluded during the last decade, in the scope of formal verification and validation. This
includes in particular aspects of timing and hybrid systems— i.c., the mixing of dis-
crete and continuous features.

Formal methods have scaled up drastically in the last decade, and this process is
going to continue even faster. In this respect, automatic code generation from high
level specifications now allows to handle quite large components or subsystems. Be-
ing more complex in nature, formal validation or analysis techniques have quite often
stayed behind the needs of real life designs. Still, skilled engineers managed to use
them by properly phrasing or decomposing their validation or analysis problems into
tractable parts. Nevertheless, it is a constant and stringent need that formal methods
and tools scale up to follow the increasing complexity of designs.

By far the most accepted means for analyzing hard real-time systems is by using
automated verification techniques such as model-checking. However, the applicability
of such techniques is restricted due to inherent theoretical limitations. To further im-

8 1 Executive Overview on Hard Real-Time Development Environments

prove the state of practice, existing techniques (such as model checking and symbolic
reasoning) should be combined and extended to yield a common methodology.

Europe has had a leading position in this area, both for specification and program-
ming tools, for verification and validation tools, and for provably safe distributed
architectures. This rich and solid background needs to be further developed to scale
up properly, and to adjust to new design methodologies, such as the ones suggested in
this document.

Complexity of Design Flows and Supply Chains

Overview

Supply chains for electronic systems are changing rapidly. System companies are re-
trenching in core competencies that favour market access and sales channels versus
product development and implementation. The electronics industry is increasingly
disaggregating: new opportunities are now opening up for subsystem and component
suppliers. These dynamics are stressing the interfaces among the supply chain players.
Several quality problems and time-to-market delays can be traced to specification and
system integration difficulties. Among the most challenging supply chains to support
are the automotive and avionics chain.

Work Directions

The complexity of supply chains has several consequences. Firstly, it calls for a de-
sign approach at the level of each component (systematically investigated by the
“components” action roadmap), offering means to specify components to suppliers
and facilitate their subsequent integration. Secondly, the strategy of systems integra-
tors for preserving added value will put virtual prototyping and platform-based design
in the fore (see the landscape on automobile, in this document).

Research performed over the last decade has shown that notations and formalisms
can be developed, that are at the same time familiar to the engineer, and still based on
a solid mathematical basis — examples of such are the synchronous languages with
their associated GUI. Such techniques have naturally offered specification tools asso-
ciated with formal validation methods, and even certifiable code generation. Although
large, the range of applicability of such results still does not encompass the whole
design flow for hard real-time. The scope needs to be enlarged to cover physical sys-
tems modellers and scientific engineering tools, as well as more general system mod-
elling techniques such as UML.

It is the essence of embedded systems design that diverse tools based on different
paradigms coexist within the overall design flow. This situation will continue.

Integrating these tools has become a major concern. Scientific engineering tools
and physical systems modellers, on the one hand, and formal verification, code gen-
eration over distributed architectures on the other hand, will continue to rely on dif-
ferent underlying paradigms. Should UML establish itself as an overall framework for
the entire design process, the issue would still remain in the form of the coherence
among the multi-faceted semantics supporting the different views and profiles. Thus
paradigm integration emerges as the needed mathematical foundation to support the
semantic integration of different tools and frameworks.

1.5 Document Structure 9

Research must be done on open semantics, to support smooth transitions between
different technologies along the design flow. Paradigm integration emerges as the
necessary mathematical foundation to support the semantic integration of different
tools and frameworks. Paradigm integration is not the exercise of embodying different
paradigms into a “most general” one, since this would require developing tools to
handle this “most general” framework, something not possible due to complexity
issues. The objective is rather to develop approaches that will upgrade existing tools
with semantic adaptors toward tools supported by other paradigms.

1.5 Document Structure

The rest of the document is organized as follows.

Section 2 briefly reviews existing development practices, and introduces the
emerging platform-based approach.

Section 3 analyses the landscape by reporting on current design practices. We have
chosen to focus on selected industrial sectors, which we believe will drive the evolu-
tion of design practices: automobile, acronautics, mobile telecommunications, and
automation. For each sector, we have tried to be as specific as possible, sometimes by
highlighting the design aspects of particular systems for which hard real-time is an
important factor. We believe this section conveys a rich body of information. It sig-
nificantly influenced the findings and recommendations.

Sections 4 — 8 review the building blocks and technologies that are available to
support the design process. We review established technologies. But we have also
decided to include less mature building blocks, since we believe this is the duty of an
academic roadmap on research. Again, we warn the reader that our list may not be
exhaustive, but we have done our best at reporting the most striking technologies
available. For each building block, we give a description, its rough position in the
design flow, pointers to tools; then — and most importantly — we formulate misses,
needs, and detailed recommendations for research.

Section 9 presents the results from recent projects covering methodology issues.
Our selection is obviously biased: while we are pretty convinced that the projects we
have selected provide added value, we have certainly omitted other projects that could
have been interesting.

2

2.1

Hard Real-Time System Development

Brief Discussion of Current Practice: The V-Shaped Lifecycle

The traditional hard real-time embedded system development process follows the
standard V-shaped lifecycle, shown below in its simplest format.

Requirements Capture &
Exploration

|

System
Testing
Integrating COTS
& components

Unit Testing

Verification & Validation

Requirements on
COTS & components

Verification & Validation

Programming &
Code Generation

‘ Middleware for Execution

Figure 2.1. The traditional V-shaped lifecycle

Each phase can be further detailed or refined into several steps. The way the V-cycle
is detailed and implemented varies significantly within the different between teams in
embedded systems.

Key points are the following:

Each phase is now supported by a well-defined methodology and supported by
advanced tools with (mostly) well-accepted notations. Some of these tools and
technologies are reviewed in later sections.

Even today, a very small amount of advanced Verification and Validation (V&V)
is performed. By advanced, we mean supported by formal methods or semanti-
cally-sound model checking or other similar verification techniques. Today, V&V
mainly amounts to code inspection, sometimes assisted by tools, but without the
added value of formal technologies. Of course, the EDA sector is far more ad-
vanced in the use of novel V&V technologies.

The transition between the different stages requires careful manual inspection and
cross-checking, and this is frequently error-prone. This is made even worse by the

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 10— 14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2.2 An Emerging Approach: Platform-Based Design 11

diverse nature of the skills, cultural backgrounds, and associated notations and
tools in use by the different teams that participate in the overall design. For exam-
ple, application domain engineers need to cooperate with software developers and
electronics designers. They all use different tools based on different paradigms.

This situation has some important consequences. The design of unitary devices or
small embedded systems is today reasonably well instrumented and does not require a
strong investment from the research community. In contrast, designing complex sys-
tems where embedded computing plays an important part is still a formidable chal-
lenge. Dealing with the integration of components as well as the unavoidable hetero-
geneity resulting from a multidisciplinary design team requires heavy investment in
research. Elements and guidelines for this are provided in the next sections.

2.2 An Emerging Approach: Platform-Based Design

In this section we present the design methodology that we like to advocate, namely:
platform-based design. In its ultimate form that we discuss here, it originates and
benefits from several sources. First and foremost, platform-based design is already in
use in EDA industry. It has been promoted and advocated in the embedded systems
industry, by A. Sangiovanni-Vincentelli (see references below). To put this design
methodology in perspective with respect to research performed in the last years, we
have collected in section 9 some projects that addressed this issue.

The reader can also refer to the MOBIES (http://www.rl.af.mil/tech/programs/
MOoBIESY/) project, not discussed here — Model Based Integration of Embedded Soft-
ware. MOBIES is a DARPA-funded US project on application-independent methods
and design tools for embedded systems.

The T-Lifecycle

The metaphor of the “V” was adequate to describe past and current practice, as it
scans the design process, from highest levels down to lowest ones, and backward up
to integration. Moves in the lifecycle have consisted and will consist in automating
some of the steps of the V. Thus we feel that the V-metaphor is no longer adequate
and we like to re-discuss it.

The study of the Setta and SafeAir projects in section 9 reveals that engineers have
placed efforts in shifting the focus of the designer at higher levels of the design flow,
moving towards what we call a T-shaped lifecycle:

e In SafeAir, the Y-cycle has been proposed as a metaphor: regard the Y as a
smaller v put on top of the vertical bar of the Y; the v represents the focus on
higher level phases, and the vertical bar indicates (certified) automatic code gen-
eration and automatic code validation.

e Setta recommends a VVV-cycle (or 3V-cycle), in which the first V corresponds to
control engineering task with its rapid prototyping, the second V represents sys-
tems rapid prototyping, and the third V addresses system development for the final
target hardware. As seen in the Fig.2 of Setta, information is extracted from ele-
ments involved at second and third V’s, for feeding back as abstract parameters
(e.g., related to timing) to the virtual exploration performed in the first V.

12 2 Hard Real-Time System Development

Thus the SafeAir project introduces the concept of mapping, whereas the Setta project
introduces the concept of platform for virtual exploration, in which (some abstraction
of) the execution infrastructure is reflected at higher levels and earlier phases of the
design flow in support of the exploration.

We feel that this vision should be pushed further, by allowing for a platform-based,
multi-level virtual exploration. There is no reason to require that all parts of the sys-
tem be explored simultaneously with the same level of granularity. For example,
when specifying a subsystem to be provided by a supplier, it is desirable to detail the
considered subsystem while keeping the other subsystems it interacts with at more
abstract levels. Unfortunately, neither the V, nor the 3V, nor the Y, supports the
multi-level aspect as a metaphor.

The concept of the “T”-shaped lifecycle better reflects this. The horizontal bar of
the T refers to the tool assisted exploration of the design space, as described below.
The vertical bar of the T refers to the automatic mapping of the selected design down
to the execution platform.

Platform-Based Methodology

The central principle of this methodology [San02] is a paradigm shift in design, veri-
fication, and test methodology, which has emerged recently.

e The platform-based design paradigm is a meet-in-the-middle approach. It leverages
the power of top-down methods and the efficiency of bottom-up styles. The design
process is viewed as a stepwise refinement of a specification into a lower level ab-
straction chosen from a (restricted) library of available components. Components
are “computational” blocks and interconnect. This library is a platform. In this
view, a platform is a family of designs and not a single design. A platform defines
the design space that can be explored. Once a particular collection of components
of the platform is selected, we obtain a platform instance. The choice of the plat-
form instance and the mapping of the components of the specification into the
components of the platform instance represent the top-down process. In this proc-
ess, constraints that accompany the specification are mapped into constraints on
the components of the platform instance. Mapping often involves budgeting, since
a global constraint may have to be distributed over a set of components.

e The stepwise refinement continues by defining the selected platform instance as a
specification and using a lower level platform to march towards implementation.
Whenever a component is fully instantiated the stepwise refinement stops since
we have an implementation for that component.

e When selecting a platform instance and mapping constraints using budgeting, it is
important to guide the selection with parameters that summarize the characteristics
of the components of the platform. Delay, power consumption, size and cost are
examples of such parameters. When selecting a platform instance it is important to
be able to evaluate quickly and with the appropriate accuracy what the perform-
ance of the design will be. The selection of the parameters to use for guiding the
platform instance selection is one of the critical parts of platform-based design.

e The component selection process and the verification of the consistency between
the behaviour of the specification and the one of the platform instance can be car-

2.2 An Emerging Approach: Platform-Based Design 13

ried out automatically if a common semantic domain is found where the selection
process can be seen as a covering problem. The concepts of platform-based design
can be used to describe the entire design process from specification to algorithms,
from architecture selection to code generation and hardware design even when the
design style chosen is ASIC. The framework is the same. The platforms are differ-
ent. The number and the location of the platforms in the design abstractions, the
number and the type of components that constitute a platform, the choice of pa-
rameters to represent the components are critical aspects of the method.

e Platforms form a stack, from design specification to implementation. There are
platforms that demark boundaries that are critical in the electronics supply chain:
these articulation points warrant particular attention. We call an architecture plat-
form the articulation point between system architecture and micro-architecture.
Micro-architecture can be seen as a platform whose components are architectural
elements such as microprocessors, memories, interfaces. This articulation point is
where the application engineer maps his/her design into a “physical” support. To
find the common semantic domain we need to abstract these components via an
operating system, device drivers and communication mechanism. In this domain
the hardware components are seen as supporting the execution of the behaviour of
the specification. Another essential platform is the one that corresponds to the
layer that separates design from manufacturing.

The essence of the method is captured in the figure below where the articulation point
shown as the vertex of the two triangles represents the common semantic domain. In
particular, the figure focuses on the most important level of abstraction for our discus-
sion: the separation between application and implementation platform. The articula-
tion point is effective in decoupling the design of application versus the selection of
architecture and the successive refinements into an implementation. It shows that if
we are given a system platform then several applications can be mapped into it and
the parameters obtained by the design space export can be used to estimate the per-
formance of the application onto the platform of choice. By the same token, if the
application space is known, then the “platform instance” could be optimized accord-
ing to the needs of the application space.
Platform-based methodology sets some significant challenges:

e Characterizing complex components such as communication busses or sophisti-
cated microprocessors and DSPs, in terms of their architectural behaviour and
physical parameters (WCET, power consumption, heat dissipation...).

e Defining a common semantic domain where the mapping processes can be repre-
sented formally.

e Developing a framework where these principles could be effectively used. This
implies also populating the framework with synthesis, formal verification and
simulation tools.

e The platform-based design principles at the top-most level of abstraction call for a
semantic platform where models of computation could be integrated and chosen as
the first refinement step towards the final implementation. This implies that re-
search needs to be carried out in novel terms with respect to the most popular de-
sign methods that are based on well-known models of computation and their com-
position.

14 2 Hard Real-Time System Development

e

Platform
Mapping

0000080000000 000000 SYSTem P|0'|'f0r‘m (HW/S\

Platform
Design-Space
Export

e The platform-based design approach can serve as an integration back-bone for
particular design flows, tools and methodologies that are particularly suited for
specific application domains.

References

[San02] A. Sangiovanni-Vincentelli, Defining Platform-based Design, EEDesign, March
2002.

3 Current Design Practice and Needs in Selected
Industrial Sectors

3.1 Automotive Systems

Industrial Landscape

The overall automotive industry structure is different in the US versus Europe and
Japan that share some similarity. In the US, subsystems manufacturers are the results
of spin-offs from GM (Delphi) and Ford (Visteon) and cannot be considered as inde-
pendent as the European subsystem auto makers. In addition, Ford and Gm have
hardly invested in the recent past to improve substantially their design methods. It is
common belief, and we concur with this assessment, that the European automotive
industry is the most advanced in terms of quality and design approaches.

Today, European car manufacturers provide specifications to subsystem suppliers,
such as Bosch, Siemens and Magneti-Marelli, who design software and hardware
subsystems that may include mechanical parts (e.g. injectors and throttle bodies) [1].
These subsystems are based on Integrated Circuits (IC) that are procured from the
main IC suppliers such as Motorola, TI, Hitachi and ST and on Intellectual Property
(IP) that come from a variety of sources: for example, software companies, such as
WindRiver and ETAS. In general, volumes are large, and cost is a major driving
force. Once the subsystems are provided back to the car manufacturers, they have to
be integrated on the car and then the overall system must be tested. If the car manu-
facturer detects errors during the extensive testing period, which includes driving
under extreme conditions, a chain of engineering changes is initiated that may (and it
often does!) cause major delays in the design. The problems are today due for the
most part to software errors, to incorrect understanding of the specifications and un-
predictable side effects when the subsystems are interconnected. The loop is particu-
larly painful since testing is done when the car is almost ready for its launch on the
market.

Car manufacturers increasingly realize the importance of electronics in their busi-
ness: Daimler-Chrysler stated that more than 90% of innovation (and hence value
added!) in a car will be in electronics. BMW has indicated than more than 30% of the
cost of manufacturing a car resides in the electronic components. There is a trend in
the car manufacturing industry to bring more electronics competence in-house to
capture added value that today is going to subsystem suppliers. The strategy calls for
standards in the software and hardware domains that will allow plug-and-play of
subsystems thus reducing the strategic importance of any single subsystem supplier.
The OSEK [2] operating system requirements are an example of this policy. How-
ever, it is clear that without an overall understanding of the interplay of the subsys-
tems and of the difficulties encountered in integrating very complex parts, system
integration is increasingly becoming a nightmare. In addition, the subsystem suppliers
are trying to enlarge the perimeter of their competence to capture more added value.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 15-38, 2005.
© Springer-Verlag Berlin Heidelberg 2005

16 3 Current Design Practice and Needs in Selected Industrial Sectors

Hard Real-Time Context

Today’s car electronics systems can be classified into the following categories [1]:

e Infotainment/Telematics. Electronic subsystems devoted to information process-
ing, communication with outside world and entertainment [22]. The main features
are wide-band, adaptive real-time (ART) constraints, non-critical;

e Power train/Chassis. Main features are hard real-time constraints, safety critical,
fault tolerant, low band (e.g. engine, brakes, steering), with subsystems being iso-
lated from one another mostly for historical reasons;

e Cabin. Main features are real-time and non-critical (e.g., power windows, air con-
ditioning).

We focus on the second category of applications since it has hard real-time character-
istics.

Today’s car real-time and safety-critical electronics systems are implemented over
distributed architectures that generally include:

e Several Electronic Control Units (ECU’s) communicating via:
e One or more (for fault tolerant systems) networked broadcast buses controlled by
communication protocols (e.g. CAN [3], TTP [5], LIN [4], and Flex Ray [6])

In turn, each ECU includes:

e Application and diagnostic software;

e System software (e.g., RTOS and Communication layers);

e One or more micro-controllers with local memories and communication control-
ler(s) with one or multiple channels to support redundancy for fault tolerant sys-
tems and complex bus architectures such as constellations and star couplers;

e (Optional) Dual ported RAM’s for:

o Communications between bus controllers and micro-controllers within the
same ECU.
o Communications between CPU’s within the same ECU.

Automotive applications (e.g. X-By-Wire for steering and braking) have introduced a
new design dimension — the distributed nature of the system — that provides additional
complexities yet potentials for optimizations such as the reduction of the number of
needed ECUs, fewer mechanical parts, optimal performance, new functionalities
(including safety features). In fact, better use of each ECU may potentially reduce the
number of ECU’s in the distributed architecture. Notice that the re-distribution is not
always possible since in some applications the software is tied to a specific ECU

In a nutshell, the problem, as described, for example, in [7], [8], consists of distrib-
uting a pool of functions over the target architecture with a goal of satisfying the re-
quirements in terms of cost, safety, and real-time. Because of the distributed nature of
these applications, the communication protocol needs also to be accurately modelled.
A by-product of this methodology is that designers can experiment with new protocol
configurations.

3.1 Automotive Systems 17

State of the Practice

Figure 3.1 below illustrates the typical design flow for distributed systems of a car
manufacturer (source BMW). The manufacturer is responsible for the overall func-
tionality whereas the Tier 1 suppliers deliver the control algorithms and the hardware.
This flow applies to BMW in particular.

In particular, the OEMs define the electrical architecture of the vehicle and the
tasks that each component of the architecture must carry out. The architecture is in-
fluenced by the functionality that the OEMs want to offer the market and the avail-
ability of subsystems. The requirements for the subsystems are then discussed with
Tier 1 suppliers who are responsible for delivering the entire subsystem consisting of
hardware and software parts at the agreed price and performance. Often, OEMs re-
view design practices of the suppliers, recommend (or even impose) the use of par-
ticular components of the subsystem e.g., microprocessors and real-time operating
systems, and may require to include their own software modules in the solution. The
Tier 1 suppliers not only deal with the electronic part of the component but deliver
also mechanical components such as injectors. The integration of the subsystems is
carried out at the physical level with standard communication subsystems such as
CAN busses and at the software level with communication primitives offered by
OSEK compliant operating systems. It is in this phase that problems may arise. Inte-
gration is becoming a nightmare especially when faulty behaviour is hard to isolate.
This causes disputes with suppliers and obviously costly delays and even recalls.

Tier 1 suppliers themselves use other suppliers to deliver their products. Most of
the suppliers rely upon standard parts for the computing part of their products while
they design ASICs and custom chips for the power and analogue components. IC
suppliers work in close collaboration with Tier 1 suppliers to define new computing

Current Design Practices

[Requiraments

@ I. Analysis

“functional network”

/

g
Matlab

s aa

—

ASCET

lll. System Design
“real world assumption”
|

CAN BUS IV. Implementation
“automatic target code gen.”

Development Process

V. Integration & Calibration
“step into a real car”

VL. Production & After Sales
“handling at the garage”

]

Figure 3.1. Current Design Practices

18 3 Current Design Practice and Needs in Selected Industrial Sectors

platforms and to make minor modifications to their products. Recently, Tier 1 suppli-
ers requested Tier 2 suppliers to provide software layers (device drivers and BIOS)
that tend to isolate the hardware details of peripheral devices so that application pro-
grammers can develop their software in re-usable fashion.

L Analysis

The development process starts with the analysis phase, where a functional network (a
functional network is the overall system behaviour) is developed, and continues with
the specification phase, where algorithms for each of the functional components are
defined. The system design phase determines the distribution of the functionality onto
an architectural network. In the next phase, a composition of functional components is
implemented onto the target hardware and finally the system is calibrated in the car.
The design process follows the classical “V” diagram.

1I. Specification

The system functionality is specified by the car manufacturer based on an overall
analysis of the car performance and features. This functionality is decomposed into
subsystem specifications that are passed to Tier 1 suppliers. The decomposition is
performed by expert designers based on their experience and sometimes on prototypes
(lab cars). The specifications are usually given in an informal fashion via natural
language in a contract. The Tier 1 suppliers analyze the specifications and negotiate
the terms of the contract. The car manufacturer specifications may include also im-
plementation requirements and not only functional specifications, thus restricting the
design space for Tier 1 suppliers (for example, at times the micro-controllers to use
are listed in the contract). In addition, there is a growing trend for the car manufactur-
ers to require the use of internally developed software instead of relying fully on the
Tier 1 suppliers. To ease the integration problem, standards are being defined for the
communication among subsystems (e.g., TTP and Flex Ray) that have clean seman-
tics and guaranteed behaviour. An OSEK-compliant Operating System eases the inte-
gration problem.

Specifications given at different levels of abstractions are always a problem if a
rigorous design methodology is not in place that can deal with heterogeneity. In the
case of Tier 1 suppliers, the integration of foreign software modules is a severe prob-
lem especially for hard real-time systems.

1I1. System Design Algorithm Development

For safety-critical applications, the design of control algorithms that satisfy the func-
tional requirements is a critical step. This is common to both car manufacturers and
Tier 1 suppliers. In the recent past, algorithms were developed using pencils and pa-
per and were described using languages such as C or mathematical equations. Typi-
cally, the design of an algorithm requires both abstraction of the behaviour of the
remaining part of the system, and modelling the relevant part of the environment. The
result of this phase is the algorithm itself described as a single block or a hierarchical
sub-network. This phase is carried out either in a top down fashion (authoring) or in a
bottom-up fashion (usage of previously defined IP). Given the same system require-
ments, different algorithms may correctly implement the system functionality. The
exploration of these different solutions is performed during this phase. There is a

3.1 Automotive Systems 19

growing trend to utilize functional design tools such as the Mathworks tool set (e.g.,
Matlab and Simulink [11]) to capture the algorithms and to perform simulation on a
mathematical model of the plant to control.

1V. Implementation and Software Design

The algorithms are implemented on a selected architecture as software modules or
hardware components. Architecture selection is often an ad hoc process based on
experience and extrapolation of present products. The selection of the integrated cir-
cuits that compose an ECU is the result of a limited search among the IC providers
that are active in the automotive space and often are based on commercial relations
among companies more than on a technical assessment of performance/price ratio.
The architecture may be adjusted during the design phase if it has problems meeting
the constraints. New software needed for novel features is “grown” over existing
modules to limit the risks of malfunctioning. Extensive experimentation on rapid
prototyping systems or on actual cars is the preferred way to verify the correctness of
the system.

Software architectures are often old fashioned and are difficult not to say impossi-
ble to port from one platform to another. The software is not cleanly partitioned into
application code, communication, design drivers, and BIOS. Given the exponentially
growing complexity of the features to be implemented in software, the problem of
software design is becoming a serious obstacle to the development of new cars.

The most advanced Tier 1 suppliers have restructured their code so that porting be-
comes affordable, thus opening up new possibilities for cost reduction and perform-
ance improvement. In addition, automatic code generation from algorithmic specifica-
tions given in structured form using capture tools such as Simulink, State Charts, and
ASCET [13], is becoming a reality. In this domain, several companies offer this kind
of tools.

However, automatic code generation eases the problem of designing software that
represents correctly a given functionality but it does not solve the timing problem.
The timing aspects of the code depend on the definition of the tasks to be handled by
the RTOS, the scheduling policy used and by the performance of the ECU. A number
of companies and tools offers scheduling analysis. The objective of this phase is to
analyze the different scheduling policies (for example cooperative and pre-emptive
vs. pre-emptive only) in order to assess the near-to-optimal software architecture. The
scheduling policy analysis can be carried out off-line and statically, for example via
Rate Monotonic Analysis, or dynamically and on-line via interactive simulations. In
this phase, the analysis relies on time budgets (task periodicity, task execution times,
etc.) provided by the user.

V. Integration and Calibration
Once the Tier 1 suppliers deliver their subsystems, the car manufacturer integrates
them in the car. This step is a most difficult one in absence of tools that help analyz-
ing the behaviour and the performance of the subsystems before a prototype of the car
is available.

Tools in this domain are mainly internal tools. For example, in the BMW flow, the
design data are exported to a proprictary database. For example, BMW has adopted
Boardnet — a customization of the Oracle database. The proprictary database data are

20 3 Current Design Practice and Needs in Selected Industrial Sectors

then used to configure the downstream tools for emulation/measurement of the com-
munication protocols (for example a TTP-Cluster Prototype board). There is a trend
towards the use of communication structures that guarantee interaction patters that
can be verified for correctness and do not have unexpected behaviour. TTP and Flex
Ray are two approaches to this problem. However, while this approach is certainly a
welcome step to improve the integration problems, it is not a panacea. The Autosar
consortium has been recently founded to alleviate the integration problems by speci-
fying appropriate standards for interfaces among different components. The aim is
allowing the OEMs to decouple the tie between hardware and software that Tier 1
suppliers impose on their products making it easier to compose modules and to make
sure that the best architecture for the vehicle is selected. Concerns are rampant in the
automotive industry worldwide in view of recent recalls due to electrical problems in
some high visibility vehicles.

In calibration, a sub-set (calibration set) of the control and regulation parameters
(characteristic values, curves, maps) of the behaviour IP’s (typically control algo-
rithms) is tuned to obtain the required performance of the controlled system. This
phase pertains also to the tuning of the parameters of the overall system functionality.
The designer defines the calibration set selecting the tuneable parameters during the
export phase. Calibration is performed on testing test-cells and on test-tracks and is a
very expensive process. Calibration engineers today are more numerous that designers,
a symptom of the state of the design methodology in use today. Expensive tools are
available to facilitate calibration from companies such as ETAS and dSpace.

The calibration effort is large in OEMs and Tier 1 suppliers alike. This activity is
heuristic and can benefit greatly from a more structured approach. For example, the
parameters to set are many and they are not independent from each other. Often, cali-
brating a parameter to fix a problem ends up causing another problem to show up. It
will be most desirable to select a set of parameters and a calibration sequence that
guarantee that once a problem is corrected, it will stay that way throughout the opera-
tion. In addition, models used in today systems are based on table look-up resulting in
a parameter per point in the tables. Hence, there is a strong correlation between design
choices and calibration efforts. Unfortunately, because of the heuristic nature of the
calibration process, it is indeed very difficult to change the methodology and go to-
wards a more rigorous process since any change will result in the need of re-training a
set of artisans of the trade.

Integration and calibration is a phase where engineers and technicians need an ex-
tensive re-training and novel skills are badly needed. We see a strong correlation
between this situation and the training and education mission of the ARTIST2 Net-
work of Excellence (http:/www.artist-embedded.org/FP6/).

Challenges and Work Directions

This design flow poses several problems [1]:

e Lack of continuity: e.g. there exists a big gap between the requirement analysis
and the definition of the functional network, and between the software develop-
ment phase and the overall architecture net-list definition.

e Long turnaround time: the validation of the solution can be addressed only on the
car or (at best) with some physical prototyping hardware — very late in the design

3.1 Automotive Systems 21

cycle; the software development can only start once a hardware prototype is avail-
able and it is addressed on a single ECU.

e Suboptimal and overly conservative solutions: since the flow supports a “per-
ECU?” design style the design exploration concerns to exploring different schedul-
ing policies and not to the exploration of the overall distributed system including
the communication protocols. Several protocols have been introduced in the past
such as CAN, TTP, LIN, and will be introduced in the future such as FlexRay],
with the goal of providing more dependable and fault tolerant networks enabling
the step towards X-by-Wire technologies.

De S|g n Flow | Requirement Specification |
Algorithm Specificati l | 1
—>| Algorithni Analysis Algorithrln Design | EBn:rll?l:"erlz:;}.:;t 4—@

Beha‘rioral
Modeling

Virtual Prototyping

Architectural Modeling

Architecture

Behavior IPs |
Authoring
T
Mapping
Distributed [
Architecture Analysis
ECU Scheduling)) Synthesis
i * Export
Algorithm Physical Prototyping
Performance m |
Performance Simulation
Compile/Link
ILoad

Figure 3.2. A Reference Design Flow

Because of the above issues, the development and production costs are obviously
affected. As stated in [9],

Vehicle manufacturers traditionally focus on production cost rather than on devel-
opment cost — the sensors and the actuators, along with the bare ECU, represent al-
most the entire cost for electronics in the car. However, although software does not
have a “production” cost, it is not for free! The software development costs are sky-
rocketing: today, they are about twice as much as the development costs for hardware.

This investigation is only possible by addressing the integration step at the virtual
level, and not on the car, as it is presently done. Indeed, the entire automotive industry
is trying to move tests from cars to labs, where real conditions can be emulated or
simulated at a much lower cost. The cost for setting up an experiment on a car is
about $120-$500 per hour. The time needed to set it up is about 1 hour. The number
of tests that can be performed every day is 2.

22 3 Current Design Practice and Needs in Selected Industrial Sectors

The use of a virtual environment rather than prototyping hardware for designing
and testing can significantly reduce development and production costs. If designers
were able to simulate the distributed application on their host workstations rather than
in a test track, redundancy and fail-safe system tests could be repeated after every
change in the design. Flexibility is another advantage: derivative designs (variants)
can be supported more easily — there is no need to wait for the next hardware proto-
type to run the application software. Hence, car manufacturer goals, such as better
time-to-market and reduction of development and component costs can be achieved.
As BMW management pointed out:

One of the focuses and values of a system-level design methodology and tool set is
that redundancy and fail-safe system tests can be repeated after every change in the
design. However, a valuable use of any methodology and tool set is only possible if
interfaces to the approved and existing BMW development methods and tool chains
(from specifying functionality to implementing it onto an ECU) are supported by the
flow.

This sentence summarizes well why existing tools that are de-facto standards have
to be considered.

Finding design errors and near-to-optimal functional networks and HW/SW archi-
tectures, as early as possible in the design stage is only possible by applying novel
design methodologies and integrated tool environments that deploy the concept of
virtual integration platforms (see for example [8, 14, 15]). Please note that a func-
tional network includes the overall system functionality with the definition of the
subsystems and their interfaces independent from the target architecture.

A new design methodology is being developed by a number of automotive players
including BMW, Cadence, Etas, dSpace, PARADES, Magneti-Marelli, [1, 10, 19, 15]
including three main steps: algorithm specification, virtual prototyping, and physical
prototyping. We assume the designers, given an informal specification of the (sub)-
systems, are able to specify the requirements in some (semi)-formal way (e.g. UML
[16, 17]). The overall behaviour (functional network) and architecture net-list of the
distributed system constitutes the output of this phase.

The most advanced design systems being put together today (e.g., [15, 18]) can be
summarized as follows:

e Use of a virtual platform, for system testing and prototyping (HW/SW architecture)
via simulation.

e Use of virtual models of the application software and the target HW/SW architec-
ture (bus controllers, CPUs, RTOS schedulers, communication protocols) to create
a virtual prototype of the entire distributed application. The application software
models are imported from other tools [15], or can be authored within the system.
The architectural models are developed within the tool (e.g. the communication
protocol model is the subject of further chapters) using a standard C++ API.

e Use of virtual models of the environment/complex human-machine interac-
tions/test-benches that provide the stimuli to the system under testing — the models
are either imported from other tools such as Mathworks/Simulink or authored
within the system.

3.1 Automotive Systems 23

The AEE project (http://aee.inria.fr) involving the French car manufacturers and sup-
pliers has targeted the same goal by developing the AIL language. Based on UML, it
allows to specify in the same framework electronic embedded architectures, from the
highest level of abstraction to the lowest level: the Vehicle Project to capture require-
ments in terms of services taking into account vehicle variants, Functional Architec-
ture to decompose service in functions and sub-functions, Software Architecture to
describe functions with reusable software components cooperating through the ICEM
(Inter Component Exchange Manager) middleware, Hardware Architecture to describe
ECU’s, networks, and gateways if several networks are used, and finally Operational
Architecture to describe the mapping of Software Architecture onto Hardware Ar-
chitecture.

This language is used with a proprietary editing tool to create or update vehicle
data-bases. In addition, simulation, mapping, and code generation tools defined in the
project are applied to Vehicle Projects at different architecture levels, extracted from
the data-bases through API. Exchanges between car manufacturers and suppliers are
also modelled in this language to simplify and clarify these complex issues. They may
share parts of data-bases through a XML common format.

We believe that the major advantages of these emerging approaches are the shift from
a “per-ECU” tool-supported design style, where each ECU is considered separately,
the design exploration is limited to one ECU at the time and the integration step is
done later in the design process directly on the car), to:

e an integrated design style, where the entire network of ECU’s is modelled along
with the application and base software used to customize the platform for a par-
ticular car series, the integration is done at the virtual level.

e automatic configuration of tools for protocol analysis and implementation based
upon the results provided by the simulations of the virtual model. For example,
once the designer has decided how to distribute the pool of functions on each
ECU, a downstream code generation tool can use this information (number of
tasks needed, scheduling policies, etc) to generate the RTOS scheduler. At the
same time, the downstream tools for communication protocol analysis can be con-
figured based upon the configuration data determined at the virtual level (type of
protocol, frame packaging, communication cycle, redundancy management poli-
cies, etc.). Thus, a step that is currently manual or requires intensive user’s inter-
vention (e.g. the designer needs to explicitly specify the messages that are sent
over the network bus) is supported automatically in our flow.

e Simplified estimation of temporal performance during earliest design phases even
before implementation. Typical examples are software task execution times and
network communication latencies. The provision of these estimates may consid-
erably shorten algorithm and platform (single ECU or Network) exploration.

References

[1] A. Sangiovanni-Vincentelli, Automotive Electronics: Trends and Challenges,
Convergence 2000, Detroit (MI), USA, October 2000
[2] OSEK, http://www.osek-vdx.org

3.2

3

Current Design Practice and Needs in Selected Industrial Sectors

Robert Bosch, CAN Specification, Version 2.0, Technical Report ISO 11898,
Robert Bosch GmbH, 1991

LIN, http://www.lin-subbus.org

H. Kopetz and G. Gruensteidl, TTP — A Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems, in Proceedings of the 23rd IEEE International Sym-
posium on Fault-Tolerant Computing (FTCS-23), 1993. Toulouse, France: IEEE
Press

Flex Ray Consortium, http://www.flexray-group.com

T. Demmeler, P. Giusto, A Universal Communication Model for an Automotive
System Integration Platform, Proc. Of DATE 2001, March 2001.

Stefan Poledna, Markus Novak, TTP scheme fuels safer drive-by-wire,
http://www. eetimes.com/story/OEG20010306S0042, March 2001

Ulrich Freund, Alexander Burst, Graphical Programming of ECU Software — An
Interface Based Approach, white paper, ETAS GMBAh, 2001.

A. Ferrari, S. Garue, M. Peri, S. Pezzini, L.Valsecchi, F. Andretta, and W. Nesci,
The design and implementation of a dual-core platform for power-train systems,
Convergence 2000, Detroit (MI), USA, October 2000

Mathworks/Simulink, http://www.mathworks.com

Cadence Design Systems, Inc., Virtual Component Co-design (VCC), http://www.
cadence.com

ETAS, Ascet-SD Homepage, http://www.etas.de

Charles J. Murray, Auto Industry faces media revolution, March 2001 http://www.
eetimes.com/story/OEG20010306S0035,

Paolo Giusto, Jean-Yves Brunel, Alberto Ferrari, Eliane Fourgeau, Luciano
Lavagno, and Alberto Sangiovanni-Vincentelli, Automotive virtual integration plat-
forms: why’s, what’s, and how’s, Proc. Of the Int. Conf. on Comp. Des., July 2002.
Automotive UML homepage, http://www.automotive-uml.com/

Grant Martin, Luciano Lavagno, Jean Louis-Guerin, “Embedded UML: a merger
of real-time UML and co-design”, CODES 2001, Denmark, April 2001

Paolo Giusto, Thilo Demmeler, Peter Schiele, Translating Models of Computation
for Design Exploration of Real-Time Distributed Automotive Applications, DATE
2002.

G. Bombarda, G. Gaviani, P. Marceca, Power-train System Design: Functional and
Architectural Specifications, Convergence 2000, Detroit (MI), USA, October 2000

Aeronautics: A Case Study

This text is the result of a meeting held at Airbus France, in Toulouse, on February 7,
2003. The objective of this meeting was to study and report the practice of embedded
software development for one particular hard real-time system, namely flight control.
This text has been approved by the two participants from Airbus. The discussion
covers also closely related subsystems, e.g., some aspects of autopilot. Participants in
the meeting were:

e ARTIST: A. Benveniste, B. Bouyssounouse, P. Caspi.
e Airbus France: Hervé Le Berre (flight control), and Dominique Briére (System
senior expert).

3.2 Aecronautics: A Case Study 25

Industrial Landscape

There are several teams organized by specific skills, which cover the entire flight
control system in manual and automatic control mode. These cover all series of Air-
bus aircraft, over their whole lifecycle, from the upstream preliminary studies (Re-
search) through certification, down to the subsequent upgrades over the aircraft life-
time (new aircraft versions, in service problem analysis...).

The relevant skill areas and corresponding teams are: system architecture, flight
control surfaces, Certification/Validation, flight control laws, quality assurance. All
these teams belong to the same organizational “domain” (EYC) of the System Centre
of Competence (EY).

Flight Control System equipment (pilot controls, actuators, computers, sensors...)
are designed and developed by vendors following specifications issued by the EYC.
Note that flight control computers are now designed, qualified, manufactured by an
internal AIRBUS supplier.

Transversal the teams, there is an organization by programmes (e.g., A380). This is
an organization of integrated groups mixing different skills and focusing on one pro-
ject after the program launch (preliminary studies are performed by the skill depart-
ments); while this has considerable advantages for project development, it causes
difficulties in keeping background and knowledge throughout the different projects.
One responsibility of the skill department is to compensate these difficulties by select-
ing common methods and tools, by organizing exchange of experience, reviews, by
validating program main choices.

An important evolution in the A380 project consists of integrating together — in the
same computer — the flight control and autopilot functions (they were separate be-
fore). Thus, more functions will be integrated together. In A380, non critical functions
use IMA (Integrated Modular Avionics) modules. But critical functions still use spe-
cific hardware modules with their own architecture. There is a tendency to migrate
more functions under IMA.

Problem: there is no single engineer mastering the whole Flight Control computer
subsystem, due its complexity and criticality. This will not change in the future, the
tendency being to introduce new functions.

State of the Practice

High-Level System Requirements

Some new technologies are available from R&D as prototypes, and one important
first step is to decide which new technology to use — for example new data acquisition
principle or a new CPU core, or new communication buses at aircraft level ,or com-
puter level.

When the project is launched, some high level requirements are formulated includ-
ing performance and dependability issues. A key step in the design flow is the analy-
sis of dependability and fault containment. Quantitative dependability studies rely on
dedicated in-house modelling tools. The dependability exploration deals with rela-
tively small configuration faults. System architecture aspects are also set, for ergo-
nomic considerations and communality with other Airbus aircraft series. For instance,

26 3 Current Design Practice and Needs in Selected Industrial Sectors

the layout of the cockpit with side sticks. Energy, mass and power are considered as
well. These considerations lead to design choices for system and computer architec-
tures.

High level requirements are formulated in natural language. Nevertheless, their
traceability of these requirements is finely organized and carefully tracked. Tools
used are only text-and-paper. Cross-reading and cross-checking with some light-
weight in-house tools is performed.

The detailed architecture is then defined, describing the number of computers, and
the type of redundancy. Flight control computer is supplied by an internal airbus
team, for criticality reasons.

This part of the development process takes about one year. This phase iterates until
there is mutual agreement on the requirements between the Airbus and the suppliers.
Requirements may be: the computer shall accept up to 10 analogue inputs of such
type; the computer shall be able to handle a SCADE program of that given complex-
ity; MTBF for the computer is stated; environment condition to sustain are defined
(temperature, EMC, vibration...), requirements of maintainability (avoid that particu-
lar component, use of uploading etc.). Technical expertise for fine-tuning many of the
requirements resides with the suppliers.

Other aspects of the requirements consist in stating which notation or formalism
should be used; e.g., for flight control software specification, SCADE shall be used.
Guidelines of how SCADE should be used are also stated — how variables should be
named, how many boxes in a given diagram, and so on. Also the library of macros
and algorithms for use are specified. These libraries are provided in the form of
graphical notations, together with a set of math formulas (equations). The supplier
would translate this into C (for ex.).

All these requirement are set in documents called PTS (Purchaser Technical Speci-
fication, ~1000 requirements), and 3S (System Software Specification, slightly
shorter). They will become the common contractual documents for the aircraft manu-
facturer and the suppliers over the whole aircraft lifecycle, and are rigorously man-
aged.

Additional validation documents sustain PTS and 3S. (explanation, rationale, justi-
fication...).

Design and Specification of Flight Control Laws

This is a scientific and control engineering activity, developed using Matlab/Simul-
ink, with extended simulators. Flight simulators equipped with these control laws are
run. Again, this Matlab/Simulink specification is accompanied by a functional de-
scription. Multi-level simulations are performed extensively (from a detailed level up
to the encompassing the entire control law). The flight control laws are then translated
into SCADE.

The combination of the different operating modes with their control laws — the hy-
brid systems aspects — is not well supported by automatic control synthesis tech-
niques. Today, this is performed heuristically via extensive know-how and investiga-
tion, using SCADE notations. Other notations such as Stateflow or StateCharts could
be used as well. However, this is only a support for description, not a support for
assisted design (in the sense of “control design™).

3.2 Aecronautics: A Case Study 27

On the other hand, there is always the generic requirement that mode switching
should be “smooth”, but still it has to occur quickly; a good example is the shifting
from auto to manual pilot. Fine tuning occurs at this stage, and this is the part of early
design that is most important and costly. Overall, this is considered a bottleneck.

Detailed Formal Software Specification

This is launched in parallel with the former phase. There is a textual and informal
description of the software functions (i.e. functions that will be implemented in the
computer software code), in addition to the control laws. Software is mainly dedicated
to monitoring functions (failure detection, reconfiguration) and actuator control. This
is not considered as a specification, since it is regarded informal. Still it is useful to
have it in parallel with the formal specifications. This is called “Functional Descrip-
tion” (not “Requirement” since the latter term has a strict meaning regarding certifica-
tion procedures); this happens before SCADE programming. It is sort of a detailed
course to teach and explain how the flight control software works and it is useful for
validation/verification test writing. It is not desirable that formal traceability between
these informal requirements and the SCADE specifications is granted. The intent is to
help the engineer to understand why and how things work, not to specify what the
software does.

In parallel with the above activity, the detailed SCADE specification is started. A
coarse functional architecture is defined first. The coordination between the different
computers implementing the different control laws is studied at this stage.

The Airplane Definition Document is used to support the certification of the air-
craft. The SCADE specification belongs to this level of definition, it is thus part of
what is identified and strictly managed to allow for the certification of the aircraft.
Not everything is part of the documents supporting certification.

The story leading to the use of SCADE (formerly SAO) is interesting. To work
faster, some teams would capture requirements quickly for subsystems and would
prototype, in parallel with detailed system definition; then the integration of these
partial prototypes turned out to cause a lot of problems. Historically, before the A320
was launched as 1st flight-by-wire transport aircraft, the integration teams spent very
long time in software bug tracking and fixing. Most of the bugs found were due to
incorrect interpretations of the informal specifications forwarded by control and sys-
tems engineers to software engineers. This was the motivation for creating, for the
A320, the graphical notation SAO (less formal ancestor of SCADE) — a language
understood by both system and software engineers. This helped reducing software
bugs drastically by shifting inspection earlier in the design flow.

Airbus engineers are reluctant to create yet another formal notation above SCADE,
since the problem of supporting the correctness of the translation would immediately
appear. They consider that there is little risk in fact that SCADE would become too
low level a notation in the future; the reason is that engineers want to keep proper
understanding of the considered system, which should prevent from an excessive
increase in complexity. Another important aspect is that there is no such thing like a
“draft” modification, every modification is handled like a real and final modification,
i.e., the software development methodology is fully uniform; this approach was taken
for the A320; it slowed down the early phases but reduced the overall design time

28 3 Current Design Practice and Needs in Selected Industrial Sectors

drastically. Afterwards, cross-reading by independent teams is the rule, which con-
tributes to the validation.

When receiving the SCADE specification of the flight control laws from the flight
control law department, very few modifications are performed by the systems engi-
neering department. Modifications are discussed jointly with control engineers. Dis-
tortion between the two types of teams does not seem to be an issue.

Detailed Code
Detailed code is now produced for flight control computers by Airbus internal sup-
plier, who shared SCADE code with system designers. The use of a qualified SCADE
code generator allows to suppress unit testing, and consequently to significantly re-
duce the development cycle and to increase reactivity without impairing software
quality. Only crude sequencers are used for critical parts, not sophisticated RTOS
functionalities.

Suppliers for other control systems — not specified in detail by AIRBUS — are re-
sponsible for their development chain and validation techniques. They are encour-
aged, but not bound, to work with SCADE.

Deploying on Architectures

This is supported by co-simulation. The in-house desktop simulator OCASIM is used
for full virtual exploration of the whole flight control system in combination with the
aircraft flight mechanics’ real-time model with simplified plant, the rigid body modes
and, if necessary, the first flexible modes (this simulator handles only finite difference
equations; time is discrete, not continuous).

Current R&D activity aims at determining appropriate, specific hardware equip-
ment. Today only hardened special purpose machines are considered. But this is
probably not going to continue. Special purpose computers and other hardware are
getting rapidly obsolete. One possible idea is to consider ASICs, and have an in-house
processor in the form of a SW-IP. The SW-IP would be stable, but the actual circuit
could evolve (the lifetime of an aircraft can be as much as 40-50 years!). Engineers
now want to reduce the risks and costs due to re-certification. They want to re-use
software certification, provided it is portable; hardware will evolve to avoid obsoles-
cence.

Dynamic behaviour of architectures is a key issue. For this, advanced methods for
estimating WCET are absolutely crucial. To perform accurate timing analysis, having
dedicated processor with better predictability would be desirable. These types of
processors could be useful for other industries that develop real-time, safety critical
systems (e.g., automotive). If this were the case, the market demand for such proces-
sors would be ensured.

The choice of a specific bus is a global design choice, not under the responsibility
of the flight-control team. A chosen design constraint is that that the total loss of the
AFDX bus should not be critical in the A380. This means that the aircraft may be
difficult to pilot, but there is still a possibility for survival. This means that some vital
functions bypass the AFDX bus (Switch Ethernet).

In flight control, communications are based on point-to-point Arinc 429. For some
aircraft, the Safebus (Honeywell) is considered. The possibility of using TTP busses
is also under study, which may lead to drastic architectural evolutions. Field bus tech-

3.2 Aecronautics: A Case Study 29

nologies (e.g., CAN) become interesting and are also considered. Today, hydro/servo-
controllers do not communicate through the bus. Nevertheless, new servo-controllers
need power electronics; since there is electronics anyway, it becomes possible to use
numerical busses, not analogue ones; this opens the route to field busses. Field busses
may not be powerful enough to be used between computers. This area could be the
subject for important research.

The long-term driver for R&D has always been to reduce mass, while increasing
security. No new technology will be introduced if proof of improvement in these two
areas is not given. For example, this meant continuing with analogue technology for
large parts of the aircraft, even as the state of the art advanced far beyond this.

For deployment, the OCASIM-SCADE modeller is used for a combined architec-
ture-function simulation, and hardware equipment is considered. Part of the design is
explored in virtual but realistic detail, using a coarsely described environment. This is
done successively for different aspects, e.g., the flight control system with a model of
the aircraft and actual computer, and the real cockpit. In other cases, real equipment is
combined with a virtual aircraft.

The validation of all below-SCADE aspects (OS, etc) is under the responsibility of
the supplier.

Flight control software code is considered to be error-free, i.e. fully conform to the
SCADE specification. No flight tests are scheduled for software debugging.

Integrating Subsystems from Suppliers
Subsystem suppliers provide components. There is no software-only component. The
only components considered are whole equipments comprising plant+devicetHW/SW,
and the whole is subject to integration. The use of the current methodology has re-
duced the software problems in this integration phase virtually to zero regarding unit
tests. Multi-equipment simulation is performed with the OCASIM tool; these simula-
tions are not fully accurate, however, thus there can be surprises at this integration
stage. Fine-tuning of some parameters related to the technique used in the deployment
phase can be a cause. Testing is a combination of random testing and deterministic
testing — both are needed. Testing in successively refined environments is performed
—in each case, a mix of random and deterministic exploration is performed.
Adequately covering all possible scenarios is an issue. One sensitive example is
full-scale testing of the start-up phases. Once deployed, the aircraft should start is
dependably as an automobile. Unfortunately, the testing teams are reluctant to test all
possible configurations because it is a lengthy procedure.

In-flight Tests

Next step is the test flights with a real aircraft. Flight tests are dedicated to tuning the
flight control laws and procedures, flight envelope opening etc. System behaviour is
deeply monitored during flight test by recording thousands of SCADE parameters.
Post flight analysis is performed after all test flights. Any suspected misbehaviour is
analyzed, registered, explained, and if necessary corrected by modifying the SCADE
specification. In fact, during test flights, the computers themselves are instrumented.
Dedicated busses are used to continuously emit messages; some internal SCADE
variables are continuously monitored and checked against the expected behaviour in

30 3 Current Design Practice and Needs in Selected Industrial Sectors

the specification. A question is where to put probes in the software to properly assess
the implementation with respect to the SCADE specification.

The instrumented SCADE software is preserved in commercial use; this means
some code is unnecessary, but causes no harm. Removing instrumentation code would
require re-certification. In fact, the bus also preserves the possibility of collecting
specific data on demand.

It is worth noticing that a dedicated in-flight test computer linked to the operational
flight control computers allows online switching between different predefined
branches or gains within the flight control software, thus this flight “tool” allows to
shorten the development cycle. Overall, the goal is to leave fewer burdens on the
flight tests: rely more on simulations. This is in particular true for everything concern-
ing the computer — flight tests should play no role in commercial use.

An important trend is reducing the number of test flights — relying more heavily on
simulation for validating flight control.

In the A380, remote loading of the code will be possible. This will drastically re-
duce the cost of maintenance.

Links Between Airbus and the Research Community

There are four entities for R&D at Airbus. Each Airbus entity is now becoming more
specialized; e.g., Toulouse is responsible for flight control, but there are other groups
working in this subject.

Airbus prefers to establish links with leading laboratories, which are free to dele-
gate as they wish to other teams. Airbus engineers would like to rely on such “refer-
ence laboratories” for carrying out R&D work. For example ONERA and the LEEI on
electronics are such laboratories.

ARTIST could play such a role in its areas of expertise.

Skills and Education for the Future

Is there a need for specific skills and education for embedded software development
in aeronautics? For the moment, Airbus hires specialists of aeronautics or general
systems engineering, who then learn through practice how to develop the systems.
Airbus does not consider hiring embedded software development specialists per se.
They are careful that each newly hired engineer has the minimal skills and know-how
to develop embedded systems.

Courses on “computer engineering” in schools or universities within an aeronautics
curriculum is currently considered to be low level. It is acknowledged that such edu-
cation and training is not sufficient for complex systems.

Nevertheless, there is a need for well trained engineers with specific skill in com-
puter science. For instance, using SCADE Prover is in fact much more difficult than
SCADE programming and requires specific skills. On the other hand, it is important
that specialists of embedded software have a background for understanding the appli-
cation domain specialists.

3.3 Consumer Electronics: A Case Study 31

As a result of the discussion, we collected the following opinions:

o Availability. If embedded software specialists were available, Airbus would con-
sider hiring them, in order to master new methods and tools. Alternately, teaching
more embedded software within a system engineering curriculum could be another
solution.

o Scientific Engineering. Overall, Airbus would be happy to hire 10% of their engi-
neers specialized in embedded software. The main reason is their ability to perform
formal proofs of their system designs. This is required for shifting from empirical
engineering-through-practice to scientific engineering. The goal is to design in
such a way as to case certification and validation.

In-house Skills and Know-how. Training and education related to these skills is
performed by mixing experienced and new personnel in the same teams. No in-house
“school” is organized. Reuse of existing know-how is the major driving force.

A curriculum dedicated to embedded systems in aeronautics would have too lim-
ited an audience. This could make sense only if several similar industries express
similar needs.

Challenges and Work Directions

The biggest issue is to improve the overall combined simulation of architecture +
functions. Today, the in-house tools are considered rigorous and reliable, but they are
purely discrete time, and thus do not capture all desirable aspects. Capturing continu-
ous time with full confidence and accuracy would be important. Later on, covering
partial differential equations, in particular regarding structural and aero elastic dynam-
ics should be considered.

Another important issue is hybrid system development and exploration (discrete
mode switching + continuous systems/control); developing adequate synthesis meth-
ods is an issue for longer term research.

In general, there are powerful know-how and in-house methods; and there is a need
to support/criticize this know-how by the academic community. This requires coop-
eration in confidence and mutual understanding.

3.3 Consumer Electronics: A Case Study

In this section, we provide an overview of current practice within one particular
branch of consumer electronics, namely the development of software for mobile tele-
phones. The study is based on interviews and documentation provided by two large
European manufacturers who do not want their names to be disclosed. This means
that direct quotations have not been possible.

Industrial Landscape

Today’s mobile phones are typically based on three major subsystems, (1) the ana-
logue subsystem, which interfaces to the physical environment (R/F and audio/video),
(2) the codec part, which handles the HRT aspects of the involved protocol standards
— including the digital signal processing, (3) the application part, which handles the
non-HRT parts of the protocol stacks and the end-user functionality of the phone, i.e.

32 3 Current Design Practice and Needs in Selected Industrial Sectors

connection management (audio/video dialogue), user interface, phone books, games,
etc. For 1G and 2G phones, the analogue subsystem and parts of the codec system are
often developed by sub-vendors, whereas parts of the codec system and the core part
of the application subsystem normally is developed by the manufacturers and repre-
sents a major part of their IP. Most manufacturers are outsourcing the assembly of
phones to specialist companies.

The above indicates that the mobile phone companies have strong competences
within HW/SW architecture design, DSP algorithms, GSM/GPRS protocols, static
HRT analysis, and also the development and integration of basic application services.

Hard Real-Time Context

In typical 1G or 2G phones, the analogue subsystem consists of hardware compo-
nents, the codec part is formed by a number of DSPs, and the application part is han-
dled by a single additional processor. This architecture also reflects the partitioning
into major subtasks when a new series is developed:

e 1) Development of the codec part, i.e. assuring the conformance to current low
level protocol standards and in particular guaranteeing that the HRT protocol re-
quirements are fulfilled. This involves both a schedulability analysis at design
time and a thorough simulation of the implemented DSP algorithms.

e 2) Development of the non-HRT parts of the protocol stacks — e.g. channel alloca-
tion and connection management.

e 3) Development of the application part, i.e. providing the specified services and
their coordination.

Roughly speaking, the basics of part (1) and (2) were developed about a decade ago,
and since then, the majority of resources have been applied on new facilities for part
(3). This situation has two important consequences:

e The software architecture of the application part can be kept very simple, i.e. it
consists of a simple kernel supporting a few priority levels, a few cyclic (high pri-
ority) tasks doing the time critical parts, and a large number of (low priority) tasks
which implement the fast growing number of new facilities.

e The validation of a new release consists of a (simple/static) timing validation and a
(complex/error prone) functional validation to make sure that the new facilities do
not interact with existing features.

This means that the companies have been following a development process which is
focused on the validation of functional properties. Below, we provide a summary of
the method and point out some of challenges for the development of future mobile
phones.

State of the Practice

For both companies, their development process contains more or less the following
sequential phases:

1. System Specification
The general purpose of the system.

3.3 Consumer Electronics: A Case Study 33

2. Requirements Specification
The requirements to software, project estimates, and the project specifica-
tion with appropriate enclosures.

3. Architectural Specification
This provides the global design, where the overall architecture and behav-
iour is defined. Typically a mixture of MSC’s and ASN.1 definitions is the
applied notation. Interfaces to the environment (normally the GUI) and
other subsystems are also defined in this phase.

4. Module Specification
(or detailed design, which defines the detailed behaviour (e.g. using SDL
notation) and the detailed data structures — e.g. using class diagrams or
concrete programming language notation. In this phase MSC’s are used for
defining test scenarios, and the detailed test environment is also defined.

5. Implementation
Here the detailed design is transformed into actual code. The transforma-
tion may be automated by tool support. Also, may sometimes be auto-
mated. Also, the maintenance documentation is made in this phase.

6. Testing
Where one moves ‘backwards’ through the phases, i.c. first the individual
modules are tested using the previously defined module test scenarios (de-
fined as MSC’s). This part of the testing can sometimes be made automati-
cally using tools. Then the different (tested) components are integrated and
tested by taking the corresponding MSC’s and interface definitions into ac-
count. Finally, the acceptance test is performed based on requirements from
costumers and the experience of the developers.

As seen from the above description, the phases are treated according to the philoso-
phy of the V- model, i.e. each phase results in a refined design and also a definition of
the test scenarios that can be derived (manually) from the design:

Svslem Spec Syelem Test Report
\ Swetem Test Spee
Requirements Spe¢ -—-—-——-—-m-mormem—— Acept. Test Report
\ Acceptance lest Spec
Archileclural Spee smmm=m-emmammmmammmammem Tnilegr. Test Report

Intcgration Test Spec f

Module Tnterface Spec
Module Spec cmmmemmmmmemeeeeee Module L'est Beport

\\'fndulc Test Spec/

Program Source lext

As indicated above, work is done on automating the bottom layer of the model, i.e.
turning it into a Y-model.

The companies’ experiences with the above process are generally good — especially
for the ‘downwards’ path and also to some extent for the ‘upwards path’. However,
for the integration test and the system test, there is a lack of tool support for genera-

34

Current Design Practice and Needs in Selected Industrial Sectors

tion of tests with appropriate coverage (integration test) and with appropriate load and
timing (stress test/system test). As for the stress test, this has not been a severe prob-
lem until now, because most of the development efforts have been concentrating on
developing new application features which do not destroy the basic (low level) proto-
col performance — as mentioned above. However, for the integration test, this lack of
appropriate tool support has forced the companies to spend a huge part of the total
development costs on integration testing.

Challenges and Work Directions

Clearly, the mobile phone developers are currently faced with the following chal-

lenges:

1.

W

The upcoming 3G and 4G systems will be much more demanding on tim-
ing properties and the signal processing algorithms will be much more
complicated to develop.

The number of different applications will grow dramatically due to the pos-
sibilities offered by the increased bandwidth. A large amount of the appli-
cations will be installed directly from open sources.

The applications will partly be time critical (e.g. multimedia applications).
Resource consumption (speed, space, power) will be a highly competitive
parameter.

This means that the requirements to their future development process will change on a
number of important issues:

1.

Co-design. The growing complexity of levell-2 protocols means that the
actual distribution of HW/SW cannot be settled in the very beginning of the
development of a new product line — i.e. co-design techniques are neces-
sary.

Simulation for Resource Management. The introduction of power/space as
additional resource parameters implies the need for more advanced system
simulation than the discrete-time simulation seen so far — e.g. by using
tools based on Simulink.

QoS. The mixture of hard and adaptive (also called soft) timing properties
implies that the simplistic middleware architecture does not suffice any-
more, and the analysis of quality of service needs to be supported in gen-
eral as opposed to the present situation, where the analysis mostly has to be
made when changes are made to the level 1-2 protocols.

Functional and Timing Properties. The validation of a new product needs
to take both functional and timing properties into account. This clearly
makes the system test phase critical (as opposed to the present situation).
Component Technologies, Integration. The fast growing number of new
applications makes the need for reuse (i.e. component technologies) indis-
pensable. Also, the demands on time to market will make it impossible to
spend a large amount of development time on integration testing.

Based on the above observations it is clear that the developers of mobile phones have
to reconsider their development process so that future requirements can be handled.

3.4 Automation Applications 35

Also, the applied middleware must be revised in order to be able to handle both hard
and adaptive timing requirements. This calls for new competences not seen so far in
the mobile phone companies, e.g. HW/SW co-design, development of formal design
models to enable test and verification, middleware platforms supporting quality of
service, and real-time component technologies.

3.4 Automation Applications

Industrial Landscape

The following assessment is adapted from the study [IPA99]. Industrial automation is
applied to control and optimize production processes and to provide high-quality and
reliable products and services by minimizing material, cost and energy waste. Exam-
ples include systems for traffic control, chemical process control, distributed produc-
tion control, machine and plant control (e.g. hydraulic presses, machine tools with
several synchronized axles, coupled robots), and agent-based manufacturing. Many of
these systems exhibit safety critical behaviour and have to observe real-time con-
straints.

Automation technology for the general public and in the service sector covers a
broad spectrum of products and systems, ranging from smart products for everyday
life to modular multipurpose robots for personal and industrial services, service robots
interacting with the environment (e.g. for maintenance or security), or simply robots
for performing an autonomous function (e.g. transport). Trends for future services are
here to entertain, inform, support, and educate the members of our society (e.g. mu-
seum guide robots) and to relieve physical and mental stressing of human beings and
provide assistance in carrying out tasks (e.g. for repair tasks in dangerous environ-
ments or surgery assistants).

Architectures of Automation Systems and Its Hard Real-Time Context

Automation systems rely on smart sensors, actuators and other industrial equipment
like robotic and mechatronics components. Open and standardized communication
networks are employed for the communication as well as configuration and control of
the various automation components. The standard architecture consists of PLCs (Pro-
grammable Logic Controllers) or DCS (Distributed Control Systems), field bus sys-
tems, and PCs as man machine interfaces as well as intelligent sensor and actuators
(e.g. frequency converters). The field bus systems gather the signals from process
level or the sensors/actuators with field bus interfaces and are directly connected to
distributed or centralized control devices (e.g. PLCs). In Europe Siemens is the mar-
ket leader in PLCs (Simatic S7) and an important supplier of DCS systems (PCS7) as
well as CNC (Computerized Numerical Control) equipment. Further on, groups of
independent suppliers of distributed control equipment (e.g. Beckhoff, Moeller Elec-
tric, or the IDA-group [IDA]) strengthen their market share.

36 3 Current Design Practice and Needs in Selected Industrial Sectors

State of the Practice

The standard IEC 61131-3 of the International Electrotechnical Commission provides
a range of programming notations suitable for implementation on PLCs
[IEC93,Lew95]. It comprises basic notations close to those in electrical engineering
like contact plans, instruction lists, and function plans as well as graphical and textual
programming notations called sequential functions charts and structured text. Cur-
rently development of software in automation technology proceeds step by step along
the lifecycle using the notations of IEC 61131-3 and different tools used in the com-
panies and provided by different PLC vendors [FV02]. The design is done function
oriented and component based. The situation is quite similar for DCS in process in-
dustry [AAF03].

A problem is that different PLC vendors use their own variants of the standard with
different syntax, semantics and tool sets [BE02]. The approaches based on IEC
61131-3 are not well suited for the development of distributed applications and appli-
cations with hard real-time requirements. An attempt to overcome this shortcoming is
the standard IEC 61499, which embeds IEC 61131-3 and allows describing distrib-
uted systems. The IEC 61499 architecture allows event-driven function blocks and
may provide a framework to integrate run-time control and diagnosis applications and
simulation for distributed automation frameworks [VH02,VHKO02]. However, since
IEC 61499 embeds IEC 61131-3, the semantics remains formally ambiguous [BE02].
This hampers the integration of formal methods and tools for verification.

The standard IEC 61131-3 is implementation oriented and thus lacks of notations
for capturing high level requirements. Requirements engineering as such is not well
established as well as reuse of functional modules (software and hardware) [AAF03].
To cope with distributed (intelligent) systems in this field the description of commu-
nication and configuration of these systems needs to be solved more efficiently
[BVO02]. A multi-level-multi-agents architecture which integrates all levels necessary
for a comprehensive diagnosis into a diagnostic system has been developed [KDF02].
The integration of the engineering of safety aspects and aspects of functionality is not
yet solved neither the proceeding, nor modelling concept, nor the tool integration
[Fin02].

Challenges and Work Directions

As the applications of automation become more demanding, guaranteeing the quality
of the control software becomes more and more important. However, software devel-
opment in the area of automation technology is characterized by description tech-
niques (IEC standards) that represent only a low level of abstraction from the underly-
ing PLC hardware. Furthermore, the standards have ambiguous semantics that allows
different a interpretation by each vendor. These two factors have so far hampered the
use of formal techniques to specify and verify that the software meets the required
behavioural properties.

Individual research projects have demonstrated that formal methods are in princi-
ple able to improve the quality of software. Some projects have build formal models
of the existing description techniques of the IEC standards, e.g. of sequential function

3.4 Automation Applications 37

charts [BHO02]. But these formal models are often too large to be checked automati-
cally (via model checking techniques).

To overcome these difficulties we see the following research challenges:

Building faithful and abstract models of the underlying PLC hardware and net-
working structures, to enable formal analysis and bridge the gap between the re-
quirements and the implementation level. (For initial work see e.g.
[BV02][Die01].)

Investigating semantics of existing languages of the IEC standards and relate them
to the abstract models.

Using and adapting existing concepts from software development (e.g. suitable
UML profiles) to the application area of automation technology. (For initial work
see e.g. [K-etal02][KDF02].)

Modularity and reusability of software development in this application area.

e Developing tools to support the methods mentioned above.

References

[A1b02]

[AAF03]

[BEO02]

[BH02]

[BV02]

[Buc02]

[Die01]

[FV02]

[IDA]
[IEC93]

[K-etal02]

[KDF02]

[Lew95]

H. Albrecht. On Meta-Modelling for Communication in Operational Process Con-
trol Engineering. Accepted dissertation. VDI Fortschritt-Bericht, Series 8, No. 975,
20 ISBN 3-18-397508-4. VDI-Verlag, Duesseldorf, Germany.

R. Alznauer, K. Auer, and A. Fay. Wiederverwendung von Automatisierungs-
Informationen und -Loesungen, Automatisierungstechnische Praxis 45, Olden-
bourg-Verlag, 2003.

N. Bauer and S. Engell. A comparison of sequential function charts and statecharts
and an approach towards integration. Workshop: Integration of Software Specifica-
tion Techniques, pp. 58-69, ETAPS 2002.

N. Bauer and R. Huuck. A parametrized semantics sequential function charts. In:
Semantic Foundations of Engineering Design Languages, Satellite Event of
ETPAS 2002.

C. Biermann and B. Vogel-Heuser. Requirements of a process control description
language for distributed control systems (DCS) in process industry. In: Proceed-
ings of IECON’02, 28th Annual Conference of the IEEE Industrial Electronics So-
ciety, Sevilla, November 2002

G. Buch, Verteilte Architekturen in heterogenen Umgebungen. Congress Electric
Automation SPS/IPC/Drives, Nuernberg, Germany, November 2002.

H. Dierks. PLC-Automata: a new class of implementable real-time automata. TCS,
253:2001, 61--93.

K. Fischer and B. Vogel-Heuser. UML for real-time applications in automation, in
German: UML in der automatisierungstechnischen Anwendung -- Staerken und
Schwaechen, Automatisierungstechnische Praxis 44, Oldenbourg-Verlag, 2002.
IDA group: see http://www.ida-group.org

IEC International Standard 1131-3, Programmable Controllers, Part 3, Program-
ming Languages, 1993.

S. Klein, X. Weng, G. Frey, J.-J. Lesage, and L.Litz. Controller design for an FMS
using signal interpreted Petri Nets and SFC (I). American Control Conference,
ACC 2002, Anchorage, Mai 2002.

B. Koeppen-Seliger, S.X. Ding, and P.M. Frank. MAGIC — IFATIS: EC-Research
Projects; IFAC World Congr., Barcelona, Spain (2002).

R.W. Lewis. Programming industrial control systems using IEC 1131-3. The
Institution of Electrical Engineers, 1995.

38

[IPA99]

[NDS02]

[Fin02]

[VHO02]

[VHK02]

3

Current Design Practice and Needs in Selected Industrial Sectors

J. Neugebauer, M. Hoepf, T. Skordas, and M. Ziegler. The Role of Automation
and Control in the Information Society. Study supported by the EU and conducted
by Fraunhofer Institut Produktionstechnik und Automatisierung (IPA), Stuttgart,
October 1999.

P. Neumann, C. Diedrich, and R. Simon, Engineering of Field Devices using
Descriptions. 15th Triennial World Congress of the International Federation of
Automatic Control (IFAC 2002), Barcelona, Juli 2002.

A. Rink. Entwicklung einer Methode fueur die systemtechnische Auslegung ver-
teilter und sicherheitskritischer Fueuhrungsfunktionen fuer Fahrzeugantriebe. Dis-
sertation, Bergischen Universitaet Wuppertal, Fakultaet Elektrotechnik und Infor-
mationstechnik, Wuppertal, 2002.

V. Vyatkin and H.-M. Hanisch. Component design and validation of decentralized
reconfigurable control systems with IEC 61499, Proc. of the International Sympo-
sium on Advanced Control of Industrial Processes, pp. 215-220, June 2002, Ku-
mamoto, Japan.

V. Vyatkin, H.-M. Hanisch, and S. Karras, IEC 61499 as an architectural frame-
work to integrate formal models and methods in practical control engineering,
Congress Electric Automation SPS/IPC/Drives, Nuernberg, Germany, November
2002.

4 Tools for Requirements Capture and Exploration

This part covers the tools and technologies which play a role in capturing and exploring
requirements, in both functional and extra-functional aspects, for embedded systems
design, with emphasis on the coupling between the functionalities and the plant for con-
trol. We propose to consider the following methods, and to classify tools accordingly:

1. Overall dependability aspects in support of architecture definition.

2. Scientific engineering tools and physical systems modellers — of course
the central tool here is Matlab/Simulink.

3. System architecture modelling, using UML — and UML tools; extend the
discussion to state-based modelling in general, dedicated to the discrete
part of systems.

4.1 Definitions of Hard Real-Time Dependability Features

A real-time computer system must react to stimuli from the controlled object (or the
operator) within time intervals dictated by its environment. The instant before which a
result must be produced is called a deadline. If a result has utility even after the dead-
line has passed, the deadline is classified as soft, otherwise it is firm. If a catastrophe
could result if a firm deadline is missed, the deadline is called hard. Consider a rail-
way crossing a road with a traffic signal. If the traffic signal does not change to “red”
before the train arrives, a catastrophe could result. A real-time computer system that
must meet at least one hard deadline is called a hard real-time computer system or a
safety-critical real-time computer system. If some portion of the deadlines can be
missed, then the system is called an adaptive real-time computer system.

The design of a hard real-time system is fundamentally different from the design of
an adaptive real-time system. While a hard real-time computer system must sustain a
guaranteed temporal behaviour under all specified load and fault conditions, it is per-
missible for a adaptive real-time computer system to miss a deadline occasionally.

Dependability Requirements

The notion of dependability covers the meta-functional attributes of a computer sys-
tem that relate to the quality of service a system delivers to its users during an ex-
tended interval of time. (A user could be a human or another technical system.) The
following measures of dependability attributes are of importance [Lap92]:

Reliability

The reliability of a system is the probability that a system will provide the specified
service until time ¢, given that the system was operational at ¢t = ¢,. If a system has a
constant failure rate, then the reliability at time t is given by

R(t) =exp(=A(t—t,)),

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 3953, 2005.
© Springer-Verlag Berlin Heidelberg 2005

40 4 Tools for Requirements Capture and Exploration

where ¢ -, is given in hours. The inverse of the failure rate /A = MTTF is called the
Mean-Time-To-Failure MTTF (in hours). If the failure rate of a system is required to
be in the order of 10 failures/h or lower, then we speak of a system with an ultrahigh
reliability requirement.

Safety

This is reliability regarding critical failure modes. A critical failure mode is said to be
malign, in contrast with a non-critical failure, which is benign. In a malign failure
mode, the cost of a failure can be orders of magnitude higher than the utility of the
system during normal operation. Safety-critical (hard) real-time systems must have a
failure rate with regard to critical failure modes that conforms to the ultrahigh reli-
ability requirement.

Maintainability

It is a measure of the time required to repair a system after the occurrence of a benign
failure. Maintainability is measured by the probability M(d) that the system is restored
within a time interval d after the failure. In keeping with the reliability formalism, a
constant repair rate u (repairs per hour) and a Mean-Time to Repair (MTTR) is intro-
duced to define a quantitative maintainability measure.

Availability

It is a measure of the delivery of correct service with respect to the alternation of
correct and incorrect service, and is measured by the fraction of time that the system
is ready to provide the service. In systems with constant failure and repair rates, the
reliability (MTTF), maintainability (MTTR), and availability (4) measures are related

by
A = MTTF/ (MTTF+MTTR).

Security

A fifth important attribute of dependability — the security attribute — is concerned with
the ability of a system to prevent unauthorized access to information or services. Tra-
ditionally, security issues have been associated with large databases, where the con-
cerns are confidentiality, privacy, and authenticity of information. During the last few
years, security issues have also become important in real-time systems, e.g., a crypto-
graphic theft-avoidance system that locks the ignition of a car if the user cannot pre-
sent the specified access code.

Failures, Errors, and Faults

In this section, a short overview of the basic concepts that have been established in
the field of fault-tolerant computing is given. The Working Group 10.4 on Fault-
Tolerant Computing of the International Federation of Information Processing (IFIP)
has published a five-language book [Lap92] where these concepts are explained in
more detail. The core of this document details the three terms: fault, error and failure.

4.1 Definitions of Hard Real-Time Dependability Features 41

Deviation of actual service

Cause of ; tion of 4 sel
error (and failure): Subsystem under rom intended service:
Fault consideration Failure

Unintended state:
Error

Faults and Errors are States, Failures are Events

Computer systems are installed to provide dependable service to system users. A user
can be a human user or another (higher level) system. Whenever the service of a sys-
tem, as seen by the user of the system, deviates from the agreed specification of the
system, the system is said to have failed.

Failures
A failure is an event that denotes a deviation between the actual service and the speci-
fied or intended service, occurring at a particular point in real-time.

Errors

Most computer system failures can be traced to an incorrect internal state of the com-
puter, e.g., a wrong data element in the memory or a register. We call such an incor-
rect internal state an error. An error is thus an unintended state. If the error exists only
for a short interval of time, and disappears without an explicit repair action, it is called
a transient error. If the error persists permanently until an explicit repair action re-
moves it, we call it a permanent error. In a fault-tolerant architecture, every error must
be confined to a particular error containment region to avoid the propagation of the
error throughout the system. The boundaries of the error containment regions must be
protected by error detection interfaces.

Faults
The cause of an error, and thus indirect cause of a failure, is called fault.

Fault-Containment and Error Containment

In any fault-tolerant architecture it is important to distinguish clearly between fault
containment and error containment. Fault containment is concerned with limiting the
immediate impact of a single fault to a defined region, while error containment tries to
avoid the propagation of the consequences of a fault, the error. It must be avoided that
an error in one fault-containment region propagates into another fault-containment
region that has not been directly affected by the original fault.

Fault Containment

The notion of a fault-containment region (FCR) is introduced in order to delimit the
immediate impact of a single fault to a defined subsystem of the overall system. A
fault-containment region is defined as the set of subsystems that share one or more
common resources and may be affected by a single fault. Since the immediate conse-
quences of a fault in any one of the shared resources in an FCR may impact all sub-
systems of the FCR, the subsystems of an FCR cannot be considered to be independ-

42 4 Tools for Requirements Capture and Exploration

ent of each other [Kau00]. The following shared resources can be impacted by a fault:
computing hardware, power supply, timing source, clock synchronization service and
physical space.

For example, if two subsystems depend on a single timing source, e.g., a single os-
cillator or a single clock synchronization algorithm, then these two subsystems are not
considered to be independent and therefore belong to the same FCR. Since this defini-
tion of independence allows that two FCRs can share the same design, e.g., the same
software, design faults in the software or the hardware are not part of this fault-model.

Error Containment

An error that is caused by a fault in the sending FCR can propagate to another FCR
via a message failure, i.e., a sent message that deviates from the specification. A mes-
sage failure can be a message value failure or a message timing failure [Cri85]. A
message value failure implies that a message is either invalid or that the data structure
contained in a valid message is incorrect. A message timing failure implies that the
message send instant or the message receive instant are not in agreement with the
specification. In order to avoid error propagation by way of a sent message error-
detection mechanisms that are in different FCRs than the message sender are needed.
Otherwise, the error detection mechanism may be impacted by the same fault that
caused the message failure.

The 10” Challenge

Emerging X-by-wire applications require ultra-high dependability in the order of 10”
failures/h (115 000 years) or lower. Today’s technology cannot support the manufac-
turing of electronic devices with failure rates low enough to meet the reliability re-
quirements. Thus the reliability of an ultra-dependable system must be higher than the
reliability of each of its components. This can only be achieved by utilizing fault-
tolerant strategies that enable the continued operation of the system in the presence of
component failures [But91].

Since systems can only be tested to dependability in the order of 10* failures/h a
combination of experimental evidence and formal reasoning using a reliability model
is needed to construct the safety argument. The safety argument is a set of docu-
mented arguments in order to convince experts in the field that the provided system as
a whole is safe to deploy in a given environment.

The justification for building ultra-reliable systems from replicated resources rests
on an assumption of failure independence among redundant units. For this reason the
independence of Fault-Containment Regions (i.e. subsystems that share one or more
common resources and may be affected by a single fault) is of critical importance.
Thus any dependence of FCR failures must be reflected in the dependability model.
Independence of FCRs can be compromised by

Shared physical resources (hardware, power supply, time base, etc.);
External faults (EMI, heat, shock, spatial proximity);
Design;

[]
[]
[]
e Flow of erroneous messages.

4.1 Definitions of Hard Real-Time Dependability Features 43

From the dependability point of view, the future unit of hardware failure is considered
to be a complete chip. If complex systems constructed from components with interde-
pendencies are modelled, the reliability model can become extremely complex and
the analysis intractable [But91].

Relevant Challenges and Work Directions

Semantic Interface Specification

The behaviour of an interface is characterized by the temporal sequence of messages
it accepts, the messages it produces, the internal state of the interface and the data
transformations and/or actions that are performed by the interface. Whereas at the
syntactic level the message specification can be performed by any type of Interface-
Definition Language, e.g., the IDL of the OMG, and the temporal specification of
temporal-firewall messages can be performed by making use of the global time, the
proper specification of the high-level semantic properties of an interface by an inter-
face model is a very relevant research issue.

Composability of Services

i.e., the constructive construction of complex emergent services out of simple inter-
face services without unintended side effects, is an important property of any distrib-
uted architecture. Composability is a system issue, i.e. it must be supported at all
levels of the architecture, firstly by the elimination of property mismatches at any
level and secondly by the semantic integration of the interface models introduced
above.

Mixed-Criticality Systems

In the future we will see the emergence of many mixed-criticality systems, i.e., sys-
tems where services of different criticalities must be integrated into a single coherent
architecture. For example, in an automotive environment, safety critical drive-by-wire
functions, body electronics and multi-media services for entertainment should be
provided in single coherent architecture. Issues of service separation, integrity and
independence of fault-containment region, and replica determinism for critical ser-
vices under severe cost constraints are important research topics.

Security

Future embedded systems that are connected to the Internet must be concerned about
security. Issues of security intrusions, authentication, denial of service attacks, and the
like may become more relevant for distributed embedded systems than for many other
systems that are connected to the Internet.

Modular Certification

The certification of safety-critical functions is an important cost element in the devel-
opment of safety-critical applications. It would be a great advantage if the certifica-
tion can proceed in a modular fashion, i.e., if certification arguments that have been
developed for a particular subsystem can be used in a modular fashion. Modular certi-
fication depends very much on the partitioning properties provided by the distributed
architecture.

44 4 Tools for Requirements Capture and Exploration

Safety Case Analysis

The effort required for the certification of safety-critical real-time applications could
be significantly reduced, if a standardized procedure for the development of the safety
case is available. The safety process can be enhanced by the provision of a tool-bench
with the relevant tools for safety analysis, such as failure-mode-and effect analysis
(FMEA), dependability modelling, and security analysis.

Middleware Processor

In today’s embedded systems it is common to execute the middleware and the appli-
cation software on the same processor. The frequent interruptions of the application
by middleware processes that normally have only a short execution path makes the
analysis of the WCET of the application very difficult. If a separate processor is dedi-
cated to the middleware and the interface between the middleware and the application
processor is well-defined in the domains of time and value, then a more predictable
node behaviour can be expected.

Dynamic Reflective Systems

Dynamic reflective systems have capability to adapt their internal structure in a way
not foreseen by its developers in order to optimize the service in a dynamically chang-
ing environment. New resources, e.g., sensors and actuators must be dynamically
integrated as the system becomes aware of their existence. Dynamic reflective sys-
tems must have support reflection, i.e., the capability to reason about their own behav-
iour. Dynamic reflective systems are expected to become relevant for the embedded
system domain in the medium to long range.

Massively Parallel Systems

Massively parallel systems are distributed embedded system that consist of multitude
of nodes (can be many thousand) that enter and leave the system dynamically. The
nodes of massively parallel system have a high autonomy, both physical (e.g., power
supply) and behavioural in the sense that they can plan on their own for goal-oriented
behaviour. Research in massively parallel system is exploratory research with a long-
range perspective.

References

[But91] Butler, R.W., & Caldwell, J.L. & Di Vito, B.L. 1991. Design strategy for a for-
mally verified reliable computing platform. In Proceedings of the Sixth Annual
Conference on ‘Systems Integrity, Software Safety and Process Security’,
COMPASS’91, 24-27 Jun 1991, pp. 125 -133

[Cri85] Cristian, F., et al. 1985. Atomic Broadcast: From simple message diffusion to
Byzantine agreement. In Proceedings of the 15th IEEE Int. Symp. on Fault-
Tolerant Computing (FTCS-15). 1985. Ann Arbor, Michigan.

[Kau00] Kaufmann, L.F., and B.W. Johnson. 2000. Modelling of Common-Mode Failures
in Digital Embedded Systems. In Proceedings of the Reliability and Maintainabil-
ity Symposium 2000. Los Angeles, CA, IEEE Press.

[Lap92] Laprie, J.C. (Ed.). 1992. Dependability: Basic Concepts and Terminology — in
English, French, German, and Japanese. Springer-Verlag, Vienna, Austria.

4.2 Scientific Engineering Tools and Physical Systems Modellers 45

4.2 Scientific Engineering Tools and Physical Systems Modellers

Definition

Embedded software systems are generally attached to some physical system, for its
control, supervision, or for data processing purposes. These include aircraft control
and transport in general, manufacturing, energy production and distribution, robot-
ics. Consideration of embedded software systems, and of the physical processes
they interact with, should not be dissociated. These aspects should be addressed
jointly — by both the methods, the tools, and the education and training made avail-
able to engineers. The present building block is central to address these issues. This
type of technology is now considered central for key European industrial sectors,
such as automobile, aeronautics, transport, energy. “XX engineering” in general
typically makes extensive use of it. It is less central, but still used, in the telecom-
munications sector.

Position in the Design Flow

This building block sits in the phases of specification and design. It considers the
specification and design of functions in closed-loop with the plant. Related activities
are detailed next.

Modelling Physical Systems

The first task to perform is the joint exploration of physical models of the different
components, subsystems, or of the entire plant. The resulting models are hybrid in
many ways:

e They combine models related to the physics of the (sub)system under specifica-
tion, with its different modes of operation.

e They combine continuous time models (ordinary differential equations — ODE)
with sampled time models, and with discrete event models (automata...).

e For some advanced systems, they involve in addition partial differential equations
(PDE), or very high dimensional models. For example, modelling large, flexible
aircrafts may involve finite element models with a high number of vibration
modes.

In general, the designer would prefer to reuse models and assembly them, for rapid
exploration — note that physical models of components or subsystems are considered
an important Intellectual Property.

Modelling for Control, and Control Design

It is not possible to design control, based on the detailed, physical, model of the plant;
the latter is often too detailed, and generally highly nonlinear, and involves sometimes
PDEs. Therefore, it is advisable to have (possibly several) simplified models, with
qualified information about the approximations or uncertainties. Such simplified
models aimed at control design are again considered an important Intellectual Prop-
erty, and are sometimes patented.

46 4 Tools for Requirements Capture and Exploration

Virtual or Hardware-in-the-Loop Exploration and Testing

Automatic or assisted control design techniques are not comprehensive but only par-
tial, there is a need to test and evaluate in the context of the whole system the combi-
nation of several control functions and their supervision. This can be performed in
two major ways:

e Hardware-in-the-loop consists in embedding the entire digital control system on a
prototype hardware, which is put in a closed loop with the real physical system.
This is the solution of choice in automotive industry today, for developing the
chassis or engine control functions. For other industries (e.g., acronautics) this ap-
proach would require heavy experimental test beds (e.g., huge wind tunnels, not so
much available at least in Europe).

e Virtual testing is then preferred, it consists in testing a model of the entire control
system, in closed loop with a realistic physical model of the entire (sub)system.
Virtual testing requires mastering very complex models and their simulation.

Exporting Control Designs
Control designs or models of (possibly closed-loop) control systems need to be ex-
ported, in the following cases:

e The physical, continuous time part, of the model can be exported for reuse as
component in more powerful, possibly domain-specific, modellers.

e Since models of plants are recognized an important Intellectual Property, export-
ing such models is a useful service to provide. For protecting these IPs, it is often
preferred to export them, not as source model, but in some kind of “compiled
form”, where reverse engineering is made difficult.

e Models of plants can be components in a more general system model. By “more
general” system model, we mean general requirements on the overall system that
are not necessarily related to scientific engineering, but can be of much larger
scope. For example, the general documentation on hardware or software compo-
nents requires modelling of this kind.

e Digital control specifications need to be exported and transformed into embedded
software.

Description of the Technology

Modelling Physical Systems
As said before, the first task to perform is the joint exploration of physical models of
the different components, subsystems, or of the entire plant. The resulting models are
hybrid in many ways: They combine models related to the physics of the subsystem
under specification, with its different modes of operation; they combine continuous
time models with sampled time models, and with discrete event models (automata...);
for some advanced systems, they involve in addition partial differential equations
(PDE), or very high dimensional models. In general, the designer would prefer to
reuse models and assembly them, for rapid exploration, he would like to design his
control functions via a quick, tool based, exploration and tuning.

Generic scientific software for modelling and simulation (such as Matlab/Simulink
or SystemBuild), have made this ideal methodology possible for the following cases:

4.2 Scientific Engineering Tools and Physical Systems Modellers 47

e Small or medium size physical models, both continuous and discrete time. Model-
ling is performed using a sophisticated and flexible GUI, and simulation is imme-
diate. Models can be calibrated on recorded data sets using statistical learning or
identification techniques. Signal processing and system identification toolboxes
assist the designer. This is the typical state of practice for the physical modelling
of plant components, for each separate mode of operation. This is a major contri-
bution of the past two decades, and progress is still ongoing both in academia and
at vendors.

e Small or medium size hybrid models involving continuous/discrete time and dis-
crete events (automata). For this more complex case, modelling and simulation is
again available

The design of larger or more complex systems (e.g., in aeronautics, or even in the
automobile industry for the design of engines with advanced combustion control)
requires mastering much larger models involving both ODEs, PDEs, and DAEs (Dif-
ferential Algebraic Equations, generalized ODEs that are relations and not input-
output functions any more), possibly combined with discrete event systems for
capturing mode changes. Today, only domain specific tools are available for this, no
generic ones.

Modelling for Control, and Control Design

Advanced toolboxes for control design or optimization are available, to assist the
design engineer. This is another major contribution of the past two decades, and pro-
gress is still ongoing both in academia and at vendors.

Virtual or Hardware-in-the-loop Exploration and Testing

Testing and evaluating in the context of the whole system the combination of several
control functions and their supervision can be performed in two ways: hardware-in-
the-loop testing, and virtual testing. Hardware-in-the-loop testing is typically sup-
ported by the present building block. In contrast, virtual testing requires mastering
very complex models and their simulation, and is typically beyond the scope of ge-
neric tools covering the present building block.

Exporting Control Designs
Exporting control designs or models of control systems is more or less supported,
depending on the cases:

e Exporting the physical, continuous time part, of the model for reuse as component
in more powerful, possibly domain-specific, modellers. This service is provided
by some tools, it does not seem to require specific research.

e Exporting models as IPs, in some kind of “compiled form”, where reverse engi-
neering is made difficult. This service is generally supported.

e Exporting models as components in a more general system model. There is a
strong tendency that this type of engineering is supported by UML.

e Exporting digital control specifications to embedded software. This involves the
whole chain of software architecture and code generation, and software testing.
This is in part supported today, but this raises some difficulty we discuss below.

48 4 Tools for Requirements Capture and Exploration

Existing Tools

Matlab/Simulink

Matlab/Simulink (http://www.mathworks.com/) is the de facto standard in this area.
The history of its expansion is by itself of interest. Matlab started in the early eighties,
as an interpreted and un-typed language for handling matrices. Everything was de-
scribed as a matrix, and it was not required to declare its dimensions as they would be
evaluated at run time. Matlab was targeted to students, and was a low power/low cost
product. The next evolutionary step came later during the eighties, with the idea of
having third-party toolboxes dedicated to a particular class of problems (system iden-
tification, control synthesis,...). This positioned Matlab as the “lego block” of the
control science community, turning algorithms into software, and made its success.
Modelling came as the next issue, as modellers appeared in academia in the late eight-
ies — Simulink was issued in the early nineties. The nineties turned Matlab/Simulink
to a sophisticated tool for visualization and data handling, and completed the range of
services needed to perform XX engineering. This decade (and the end of the previous
one) has shown a significant move of Matlab/Simulink toward becoming a central
tool for industry, not academia any more. The percentage of third party products has
reduced drastically. New products addressing hardware-in-the-loop, code generation,
real-time workbench, and the like, are now offered (this is further discussed later in
the document). Perhaps the most interesting lesson from this is the fact that this tool
became central in the whole design process, by starting from a positioning very early
in the design steps. SystemBuild/MATRIXXx, formerly from Wind River, is similar to
the above product line, and occupies a similar segment. Due to its current unclear
legal status, we do not discuss it further here.

Other tools exist in this segment, but are of much narrower scope and audience.

Scilab

The SCILAB tool is a free software tool, developed at INRIA http://www-rocq. in-
ria.fr/scilab/ . It offers a core language comparable to Matlab, and an advanced Hy-
brid System modeller called SCICOS http://www-rocq.inria.fr/scilab/doc/ sci-
cos_html. This modeller provides means to specify the synchronization of the digital
part of the model without ambiguity, see below.

Modelica

The object-oriented modelling language Modelica is designed to allow convenient,
component-oriented modelling of complex physical systems, e.g., systems containing
mechanical, electrical, electronic, hydraulic, thermal, control, electric power or proc-
ess-oriented subcomponents. The free Modelica language and free Modelica libraries
are available. The development and promotion of Modelica is organized by the non-
profit Modelica Association http://www.modelica.org/ . Modelica simulation tools are
commercially available as part of Dymola, from Dynasim http://www.Dynasim.se/,
ready-to-use and have been utilized in demanding industrial applications, including
hardware-in-the-loop simulations.

4.2 Scientific Engineering Tools and Physical Systems Modellers 49

Relevant Challenges and Work Directions

Scientific engineering tools and physical systems modellers are an area in which ma-
jor breakthroughs, including assistance for modelling and simulation and control
design and optimization have occurred in the past decade. This has been such an im-
portant step that scientific engineering tools are now at the centre of the design flow
for several important industrial sectors (in particular automobile). Major challenges
remain, however:

o Medium-range physical Modelling Tools. Regarding small or medium size physical
models in both continuous and discrete time, progress is still being made towards
better models, simulators, and system identification and signal processing tech-
niques; improving the corresponding technologies is not considered to be the major
issue for the coming years, however.

o Complex Physical Modelling Tools. Regarding models of larger or more complex
systems involving both ODEs, PDEs, and DAEs (Differential Algebraic Equations,
generalized ODEs that are relations and not input-output functions any more), pos-
sibly combined with discrete event systems for capturing mode changes, only do-
main specific tools are available today, not generic ones. In addition, these tools
mainly address static aspects of the design (e.g., design of a mechanical structure),
not their use for control design, where models with dynamics are required. Not
surprisingly, having powerful modelling tools is a major focus of one Integrated
Project proposal in the area of acronautics for the 6th FP, dealing with the overall
concept and structure of the aircraft. Having generic modelling tools for complex
dynamical systems, industrially supported by a vendor, would be an important pro-
gress. However, this is somewhat beyond the scope of the present roadmap.

e Hybrid Systems. Whereas advanced toolboxes for control design or optimization
are available, to assist the design engineer, such tools are generally only effective
for each single mode of operation; there is a lack of support for the design of con-
trol in a Hybrid System context — e.g. designing jointly several control modes and
their switching mechanisms. For that reason, a multi-level hierarchical approach is
taken, starting from a tool-assisted design of low-level closed-loop control for
small components, up to a more heuristic design of the supervision of lower level
functions (e.g., handling mode changes and protection). Studies in Hybrid Systems
are needed to improve the assistance for this part of the design; however, no ge-
neric approach has been found yet in the academia toward getting tools for assisted
modelling and control synthesis for Hybrid Systems.

o Virtual Test beds. Virtual testing requires mastering very complex models and their
simulation. Progresses in “virtual test beds” are essential, but this topic is beyond
the scope of the present roadmap.

o Model Engineering. There is a strong tendency that so-called Model Engineering is
supported by UML; exporting to UML component models of scientific engineering
type is not yet formally sound and remains a challenge for the future.

e Timing and Synchronization Semantics of Hybrid Modelling Tools. In most widely
used hybrid system modelling tools, inadequate means are often provided to spec-
ify precisely how the different discrete times involved in the system should be syn-
chronized. For example, suppose that you specify that signal x has frequency
100Hz and signal y has frequency 150Hz: both signals will start their first step ex-

50 4 Tools for Requirements Capture and Exploration

actly at simulation time zero. But this simulation is not representative of what will
happen in the implementation, where “time zero” has no meaning. Therefore, a
more canonical way of specifying synchronizations is needed. Developing hybrid
system modelling tools in which the specification of discrete time/event system
models is performed rigorously, without ambiguity and without over-specification,
is important; advanced solvers supporting this are now available from research, and
some modelling tools provide this feature.

4.3 State-Based Design: Dealing with Complex Discrete Control

Definition

If the dominant source of complexity of a controller rests in its dependency on a large
set of discrete set of states, then modelling techniques supporting state-based design
are the choice formalism for the specification of controllers. The need to capture
complex state-behaviours for embedded system applications, in particular addressing
their reactive nature, has been discussed in a series of landmark papers by David
Harel, who introduced StateCharts as a succinct visual formalism to capture complex
state-dependent reactive systems. Key ingredients extending the classical concept of
finite state machines are the introduction of hierarchy and concurrency as modulariza-
tion constructs: while states of classical finite state-machines are unstructured, State-
Charts allow for

e states to be refined to complete state-machines: such a hierarchical state is typi-
cally used to capture some higher order mode of operation of the controller (such
as “initialization”, “normal operation”, “exception x has occurred”, “failure f has
occurred”), where the detailed reactions of the controller in such a mode are speci-
fied by the state-machine attached to this hierarchical state;

e orthogonal states which consist of orthogonal components each being refined by a
state chart, thus providing a direct modelling counterpart to the typical decomposi-
tion of controllers into sub-controllers running in parallel, each responsible for a
particular aspect of the global control task (such as separate state-machines for
monitoring critical sensors, for maintaining knowledge about plant states, for con-
trolling multiple actuators;

e communication and synchronization between components of a state chart, by e.g.
using broadcasting of events.

The basic concepts of state-charts have since been enriched by different means, in-
cluding:

e using extended state-machines which in addition to explicitly modelled control
states incorporate typed variables, conditions on these as guards, and means of up-
dating variables by some form of action language;

e real-time by e.g. allowing to use time-outs as guards in conditions, or setting timers
as part of the action language.

It has also been combined with such diverse modelling methods as:

4.3 State-Based Design: Dealing with Complex Discrete Control 51

e Functional Decomposition where a system is statically decomposed into subsys-
tems and state-charts are used to capture the reactive behaviour of subsystems, as
originally described in the seminal article by Harel et al;

e UML where state-charts are used to specify the behaviour of reactive classes, this
again being based on pioneering work of David Harel;

e Control Modelling Tools where state-charts are used to capture modes of the con-
trolled plant, and states can be used to select appropriate control laws depending
on the current mode of the plant.

Use and Positioning in Design Flow

Typical usage of state-based specification techniques range from specification of
electronic control units (in combination with modelling tools supporting functional
decomposition or UML tools), or in control-law design for hybrid controllers (in con-
junction with tools for modelling control laws, using a continuous time model, or with
tools for code-generation, working with a discrete time model).

There a range of use-cases based on such specifications in a typical design flow.
The following list follows the downward part of the V development cycle. As any
executable model, state-based specifications support early validation of complex
embedded systems. Of particular relevance are

e Simulation: including in particular co-simulation of a state-based controller with a
continuous plant model, to explore and validate the specification model of the
controller. Typically, modelling tools offer a range of animation capabilities sup-
porting the exploration of the design, such as highlighting active states and active
transitions, capturing traces from simulation-runs to allow re-run, generating sce-
narios from simulation runs, using animated panels to instrument simulation in an
application-like setting, etc

o Verification against requirements: StateCharts are perhaps one of the best studied
modelling techniques regarding interfaces to model-checkers (see the section on
verification), allowing with varying degrees of richness of modelling features the
verification of requirements against state-based models of reactive systems

e Test-case generation: there is a rich theory of test-case generation for simple mod-
els of state-based specifications, with recent extensions covering richer models

e Automatic code generation: today’s commercial modelling tools for state-based
design typically offer capabilities for automatic code generation not only for rapid
prototyping but also for production code.

Existing Tools

There are too many tools supporting state-based design to allow a complete survey
within this roadmap. We pick only representative examples from the different forms
of integration with modelling paradigms and elaborate on these.

o Functional Decomposition: The StatemateMagnum Product from I-Logix Inc. (see
www.ilogix.com) is widely used in avionics, space, and automotive applications
for capturing system-, subsystem- and ECU specifications. From its original con-
ception (involving with Amir Pnueli and David Harel key academic fathers) it has

52

4 Tools for Requirements Capture and Exploration

evolved to a comprehensive toolset allowing simulation, formal verification, auto-
matic test-case generation, and (in conjunction with Rhapsody in MicroC) produc-
tion quality code generation.

UML: Since StateCharts form part of the UML standard, any UML compliant
modelling tool such as RealTimeStudio Professional from Artisan (www. arti-
sansw.com), Rational RoseRT from Rational (www.rational.com), and Rhapsody
from I-Logix (www.ilogix.com) is supporting StateCharts for modelling the be-
haviour of reactive objects. As an example, the Rhapsody Product family provides
executable UML models with animated simulation, production quality code gen-
eration with support for multiple target languages (C, C++, Java, ADA, multiple
RTOS, and standard middleware layers such as Corba. Animated simulation as
well as scenario based test-case generation support model validation as well as re-
gression testing.

Control Modelling Tools: Most tools for control modelling support variants of
StateCharts in order to allow modelling of hybrid controllers as well as co-
modelling of plants and controllers. As an example, the Matlab-Simulink product
from the Mathworks Corporation (www.mathworks.com) can be enhanced with
the Stateflow product to support state-dependent activation of Simulink blocks in
animated simulation, as well as supporting embedded code generation through the
Stateflow Coder in Combination with the RealTimeEmbeddedCoder. Product
code quality code-generation for directly from Simulink-Stateflow models is also
offered from dSpace (www.dspaceinc.com) with its TargetLink code generation
tool. Esterel Technology (www.esterel.com) has recently acquired the Scade
Product for automatic code generation from discrete-time controller models,
which also includes limited capabilities for modelling state-machines. Similarly,
the ASCET-SD product from ETAS (www.etas.de) allows the integration of state-
machines in discrete-time controller models, offering production code quality code
generation.

Relevant Challenges and Work Directions

State-based modelling techniques as such are a mature and well understood design
paradigm. Research Challenges, however, originate when integrating these into richer
modelling paradigms, in particular, when extending simulation, verification, test-
generation, and code-generation to support this embedding. Challenging research
issues include

Co-verification: Addressing formal verification of models combining state-
machines with plant models: while there is rich body of research on hybrid system
verification (see the section on formal verification), efficient verification methods
scalable to industrial hybrid controllers are not available.

Addressing formal verification of UML models: the challenge here is to extend
the well-studied verification methods for state chart verification to complete UML
models, addressing such issues as inheritance, dynamic object creation and de-
struction, dynamically changing communication topologies, multiple active ob-
jects, etc.

4.3 State-Based Design: Dealing with Complex Discrete Control 53

Distributed real-time code generation: The challenge is to extend the well under-
stood principles of code generation from state-charts in its integration to richer
modelling paradigms to support distributed implementations using e.g. multiple
ECUs. While the time-triggered approach described in section 4.5.a is providing a
solution applicable for high-integrity components, it must be combined with more
flexible implementation schemes guaranteeing end-to-latencies or other real-time
constraints

S Tools for Architecture Design and Capture

Although some industries perform architecture design and capture, this is not recog-
nized a standard stage in the traditional design flow. But we believe it is an important
missing piece. Since this is more exploratory, we have taken a different approach, by
focusing on the important topic of architecture modelling and mapping, since it is a
key step toward platform-based design as we advocate.

Definition

The essential difference between embedded software and general software is about
the importance that execution time and other physical metrics bear on the quality of
the design. For embedded software, execution time, power consumption and memory
occupation are of paramount importance since they relate to implementation costs and
performance requirements. Software per se does not carry information about execu-
tion time, memory occupation and power consumption. These quantities depend on
the implementation platform that runs the software.

In traditional design methodologies, the line between functionality to implement
and its software representation is often blurred: designers often think of software both
as a representation of the functionality of their design and as implementation. If in-
tended as a representation of the functionality of a design, software carries an implicit
mathematical model, in general a Turing machine. In this case, the expressive power
of the model is such that little can be said about its properties and yet the model does
not carry any information about the physical properties of the implementation.

Following this line of reasoning, it is then natural to abstract the notion of software
at a higher level. In this case then, software implies that a particular functionality will
be implemented on a platform equipped with a software programmable component
that can run it. Hence, software is to be intended ONLY as an implementation repre-
sentation. In this case then, it is natural to decorate the representation with physical
parameters summarizing the properties of the hardware platform. If we take then the
higher level representation as a starting point of the design, the essential point of the
design process is how to proceed towards implementation, how to trace backward the
implementation against early specification, and how to choose the appropriate imple-
mentation platform.

The consensus of the system design community has evolved towards the so called
Y-chart view: the functionality of the design is associated via a mapping process to
elements of an architecture that is specified side-by-side. This view differs from the
top-down method promoted in the 1980s where the functionality is successively re-
fined into an implementation. In the modern view, an architecture can be defined
independently of the particular functionality to be implemented. In this case then, the
refinement process becomes a mapping process. This approach has become popular
because of the changes in the economics of IC design and manufacturing. The in-
creasing cost of mask making and design has been a forcing function towards the
adoption of platforms that can support a rather wide range of applications to maxi-

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 5462, 2005.
© Springer-Verlag Berlin Heidelberg 2005

5 Tools for Architecture Design and Capture 55

mize volume. The key to conjugate different applications and single implementation
architecture is the use of programmable or reconfigurable blocks that can be custom-
ized with no need to change the mask set to support different functionality. The exten-
sion of the concept of platform has brought to the limelight platform-based design, a
design methodology that exploits design re-use and formal techniques for representa-
tion and refinement of the design. In this method, a platform is a “library” of compo-
nents including interconnects. Design space exploration is the process of selecting
optimally the elements of the library to support a given functionality. In this view, it is
clearly very important to characterize the capabilities of the elements of the library in
terms of their physical properties, e.g., power consumption, speed of execution, and
size. The library and its characterization is non trivial and represents the bottom-up
component in platform-based design.

If a common semantic domain can be found between the higher level of abstraction
and the collection of components of the lower level platform, the optimal mapping
process and the corresponding selection of a platform instance can be often formal-
ized as a unate or binate covering problem. Then the concurrent mapping and plat-
form selection can be performed automatically, similar to what has been done for
years in the area of logic synthesis, where the higher level of abstraction is repre-
sented by a Boolean network, the common semantic domain as a two-input NAND
gate network and the mapping process as a binate covering problem of the network
with NAND gate sub-networks representing the elements of the library. The discov-
ery of a formal representation of two consecutive platforms and of their common
semantic domain is the essence of this design method. While there are successful
examples of this paradigm, much remains to be done to extend it to a large number of
design problems and levels of abstraction.

Position in the Design Flow

Architecture modelling and exploration would typically occur early in the design
flow, just after the specification and validation of the functions themselves. Architec-
ture exploration should precede code generation and related activities.

Existing Tools

Warning: the reader should be warned that the following list of tools may be biased.
The reason is that architecture modelling and mapping is not an established building
block. Hence there is no common agreement about what it really is, and which tools
are proper representatives.

e OCASIM (no web link available)
OCASIM is the in-house tool used at Airbus-France for the co-simulation of
SCADE designs with some abstract models of the plant for control; in performing
this, essential features of the computer architecture and sensor system are captured.
For example, uncertainties in timing due to sampling and delays in the communica-
tions can be handled. OCASIM is a purely discrete time modeller, meaning that
important aspects related to continuous time are abstracted.

56

5 Tools for Architecture Design and Capture

POLIS/VCC http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html
Polis was developed at the University of California, Berkeley, in the early 1990s. It
was a tool intended to help designing automotive safety-critical systems such as
engine controllers. The approach was based on a rigorous separation between func-
tion and architecture and it was the first incarnation of the Y-diagram. The func-
tionality of the system was captured with a network of Co-design Finite State Ma-
chines (CFSM). CFSMs implement a globally asynchronous-locally synchronous
model of computation. The semantics of each CFSM was captured with Esterel
while the interaction was asynchronous with a length one buffer to deposit mes-
sages waiting to be read. Buffer overwriting and consequent loss of information
could not be prevented a priori. This model of computation was adopted to support
the methodology used by automotive subsystem designers that could not afford the
loss of efficiency that would have resulted using a synchronous model of computa-
tion.

The methodology called for mapping of the functionality on a single CPU archi-
tecture. Mapping efficiency was quickly evaluated by running a performance
analysis based on a simple model of the execution of software on the CPU. To do
so, the CFSMs were turned into software for the part of the system to be mapped
on the CPU or into hardware for the parts mapped into ASIC-like logic.

The tool supported automatic and optimized software generation with a method
that was derived from the work on logic synthesis of the Berkeley group. The
method that gave the best results in terms of code execution time and memory oc-
cupation was based on Binary Decision Diagrams (BDD).

Because the structure of the code was highly optimized performance estimation
was quite accurate with respect to final implementation. Interactions among
CFSMs were handled by the RTOS. Polis had the possibility of automatically gen-
erating RTOS code that was tailored for the particular application thus resulting
into small and very efficient code.

To verify the functionality of the entire system a path to an FPGA rapid proto-
type board was provided. Because of the relatively small size of the board, the
functionality could be verified directly in the car, thus eliminating the need of ex-
pensive experiments on test-benches.

The basic ideas of the tool were the basis for a commercial offering by Cadence
called VCC. VCC was built on the same models of computation but extended the
applicability of the tool to multi-CPU systems such as the distributed systems
commonly found in cars. The models for processors were extended to cover a vari-
ety of different computing cores but automatic code generation and optimization
was not offered to the market. Mapped software is of two kinds: black box that
cannot be estimated and white box whose performance could be estimated. Several
architectures could be quickly evaluated by mapping the functionality to different
subsystems. VCC is the basis for SysDesign, a complete environment for automo-
tive system design that several other tools such as Simulink and ASCET-SD from
ETAS to capture the functionality of the design, Mathworks, dSpace and ETAS
tools for code generation and rapid prototyping. In this environment, different bus
and communication schema could be analyzed and compared. In addition, fault
analysis could be carried out at levels of abstraction as different as at the functional
and detailed architectural level.

5 Tools for Architecture Design and Capture 57

The tool was intended to support the design chain. In fact, it could be used by
software developer to analyze the performance of their code on a virtual prototyp-
ing environment as well as by the platform developer to select the most appropriate
platform for an application domain. The domain of application expanded from
automotive to wireless communication and multi-media.

Virtio (http://www.virtio.com)

According to the technical leaders of the corporation, the mission of the company
is the creation and distribution of virtual platforms — to both applications software
people as well as Hardware-dependent software designers. Virtual prototyping is
an advanced simulation technology combining high-speed instruction-set simula-
tors with memory transaction-level peripheral models. This technology is tuned in
several ways to software developers:

* It offers execution speeds of multi-million instructions per second, allowing to
boot operating systems like Windows CE in about 30 seconds.

* It integrates with industry-standard software development tools, such as Mi-
crosoft Platform Builder and Wind River’s Tornado II.

* It features virtualized physical connections, allowing for example to connect
the platform to a physical network and advanced user interfaces and ‘skin’ capa-
bilities to realistically emulate the system user experience

In addition, it features authoring tools to extend the base platform with user
components, supporting the ‘platform-based’ design flow.

The simulator is instruction set accurate, not cycle accurate. Because of the ab-
straction level supported, can certainly help software designers to understand the
actual performance of their software on the execution platform but it may suffer
some limitation in terms of accuracy.

VaST (http://www.vastsystems.com/)

This tool targets engineering and manufacturing of high performance, real-time
electronic systems integrating software, hardware and other technology compo-
nents. They provide the behavioural models (virtual processor model or VPM) for
the processors, buses and a few basic peripherals (e.g. a basic interrupt); customers
write the behavioural models for most of the peripherals. To be consistent with the
overall performance goals of the toolset, the models must be executable at least at
5-10MIPS.

The VPM is composed of two parts. In the first, which models the instruction
execution behaviour, an analyzer builds a custom virtual processor model (VPM)
based on all or some elective subset of the architectural elements required in the
processor, from the target code. This task seems to be “code dependent”, but it is a
totally automated process. This static analysis is analogous to ‘static timing analy-
sis’ in circuit simulation and the resulting model runs very fast. The code executed
by a VPM may be HLL C/C++ code or assembly/object level code.

The second part models the dynamic parts of the processor; these portions can-
not be determined prior to simulation. This includes the 1/O part of the processor
that communicates with the hardware: cache, virtual memory, interrupts, bus sig-
nals, and the like. For obvious reasons, the simulation speed on this portion is lim-
ited by the level of detail modelled, and, where communication with hardware oc-
curs, the speed of the hardware simulator during that communication.

5 Tools for Architecture Design and Capture

With a VPM, it is also possible to select the architectural elements and the level
of detail modelled in both the dynamic and static portions of the design. In this
way, processors can be customized for a particular use, or modelled as cores or se-
lectable catalogue components.

The speed of simulation is high and the accuracy good. The balance of these two
factors make it an interesting tool for the development of real-time embedded
software in conjunction with multi-processor architecture exploration and analysis
tools.

AXYS (http://www.AXY Sdesign.com/)

AXYS Design envisions that in the not too distant future semiconductor compo-
nents will be offered, evaluated and purchased primarily based on virtual software
prototypes of entire systems. These virtual prototypes, in form of executable, reus-
able models running in real-time on powerful workstations, will represent the func-
tional behaviours and timing of the actual system-on-chip (SoC) devices. The early
interactive communication between IP designers and their clients in the design of
next-generation communication and entertainment devices will become crucial to
their mutual success. The vision of virtual SoC prototyping and IP communication
will enable a substantial reduction in time and cost compared to traditional silicon
prototyping.

AXYS Design’s mission is to provide C/C++ based exploration, modelling and
verification solutions and services enabling designers to efficiently specify, design,
test, protect and deliver “above-RTL” models of their intellectual property and SoC
designs. AXYS Design’s solutions are used by hardware and software designers to
explore the suitability of certain architectures and start software development be-
fore actual silicon becomes available thus reducing overall time to market for com-
plex SoC products.

AXYS addresses platform and hardware-aware software development (MaxSim
Control Centre). AXYS offers multi-debugger support and accurate modelling. It
can support DSPs, where reading and writing from and to memory in the right
phases are essential for performance analysis.

The performance is lower than VaST (and Virtio) due to their use of a compiled-
code model, separate cache model, and very precise hardware timing. On the other
hand, the accuracy they can offer makes its use interesting for hardware designers
who develop platforms to be effective for a particular class of software applica-
tions.

Metropolis http://www.gigascale.org/metropolis/

Metropolis is an environment for design representation, analysis and synthesis un-
der development at the University of California at Berkeley, under the sponsorship
of the MARCO Gigascale System Research Center. The project involves a number
of other Universities such as CMU, MIT, Politecnico di Torino, Politecnico di Mi-
lano, Cataluna Polytechnic, Scuola di Sant’Anna as well as industry such as Intel,
Cypress, ST, Magneti-Marelli, PARADES and Cadence. The environment is not
limited to Architecture modelling and mapping but it deals with all aspects and
phases of design from conception to final implementation.

In particular, Metropolis is designed to provide an infrastructure based on a
model with precise semantics that remain general enough to support existing com-
putation models and accommodate new ones (for this reason it is called meta-

5 Tools for Architecture Design and Capture 59

model). This meta-model can support not only functionality capture and analysis,
but also architecture description and the mapping of functionality to architectural
elements. Metropolis uses a logic language to capture extra-functional and declara-
tive constraints. Because the model has a precise semantics, it can support several
synthesis and formal analysis tools in addition to simulation. The first design activ-
ity Metropolis supports, communication of design intent and results, focuses on the
interactions between people working at different abstraction levels and between
people working concurrently at the same abstraction level. The meta-model in-
cludes constraints that represent in abstract form requirements not yet implemented
or assumed to be satisfied by the rest of the system and its environment.

The second design activity, analysis, through simulation and formal verification
is designed to determine how well an implementation satisfies the requirements.
Proper use of abstraction can dramatically accelerate verification. The constant use
of detailed representations, on the other hand, can introduce excessive dependen-
cies between developers, reduce the interfacing requirements’ understand ability,
and diminish the efficiency of analysis mechanisms.

Metropolis addresses the third design activity, synthesis, throughout the abstrac-
tion levels used in a design. Setting parameters of architectural elements such as
cache sizes or designing scheduling algorithms and interface blocks are typical
problems, in addition to synthesis of the final implementations in hardware and
software. In Metropolis, a specification may mix declarative and executable con-
structs of the meta-model. This is automatically translated to semantically equiva-
lent mathematical models, to which the synthesis algorithms are applied.

One might argue that application domains and their constraints on attributes
such as cost, energy, performance, design time, and safety are so different that
there is insufficient economy of scale to justify developing tools to automate these
design activities. The Metropolis project, however, seeks to show that this is untrue
for at least a broad class of domains and implementation choices.

The choice of technique or algorithm for analysis and synthesis of a particular
design depends on the application domain and the design phase. For example,
safety-critical applications may need formal verification techniques, which require
significant human skills for use on realistic designs. On the other hand, formal
verification tools can execute simple low-level equivalence checks between various
abstraction levels in hardware design—such as logic versus transistor levels.

Thus, Metropolis is not intended to provide algorithms and tools for all possible
design activities. Instead, it offers syntactic and semantic mechanisms to compactly
store and communicate all relevant design information, and designers can use it to
plug in the required algorithms for a given application domain or design flow.

The model includes a parser that reads meta-model designs and a standard API
that lets developers browse, analyze, modify, and augment additional information
within those designs. For each tool integrated into Metropolis, a back-end uses the
API to generate required input by the tool from the design’s relevant portion. This
unified mechanism makes it easy to incorporate tools developed eclsewhere, as
demonstrated by integrating the Spin software verification tool into Metropolis.
TTPMatlink and TTPXX. http://www.tttech.com
MATLAB, Simulink und Stateflow are development and simulation tools well-
established and widely used in the automotive industry. TTPMatlink complements

60

5 Tools for Architecture Design and Capture

these tools by a block set that interprets the time-triggered communication behav-
iour into the simulation model.

TTPMatlink supports the development of distributed control systems. Once the
control application is designed and tasks are assigned to the nodes of the system,
the TTP communication messages that need to be exchanged must be defined. The
designer completes the cluster design process by configuring the communication
system (e.g. TDMA round duration, transmission rate, type of communication con-
troller). TTPMatlink enables the simulation of the distributed system in combina-
tion with the previously developed communication behaviour.

All design data created using TTPMatlink can be exported to TTPlan, the cluster
design tool for TTP-based systems. TTPlan constructs the TDMA communication
schedule and stores it in the MEDL (MEssage Descriptor List). The MEDL, which
includes the entire configuration of the communication schedule, is loaded into the
communication controller in the implementation phase. The node design divides
the application algorithms of the subsystems into tasks and specifies them.

The design data of the tasks can be exchanged in TTPBuild, the TTP node de-
sign tool. TTPBuild calculates the timing of the task for each node and generates
the fault-tolerant layer (FT-COM Layer).

In the next step the designer uses TTPMatlink and the Real-Time Workshop
Embedded Coder to produce code suitable for TTP/OS, the TTP real-time operat-
ing system, and the fault-tolerant layer (FT-COM Layer). For the design of the in-
put-output behaviour Simulink’s so called I/O block library is used in order to pa-
rameterize specific hardware products (TTPBy-Wire Box, TTPSensor Box). Gen-
erating the driver code for these I/0 blocks and putting it into the application code
makes the implementation of the input-output behaviour in control units simple.
After the C code has been compiled and linked, the machine code can be loaded
into the distributed system via the application download of TTPLoad. This can be
done directly from the user interface of TTPMatlink.

As evidenced by the above description, the pair of tools {Simulink/Stateflow,
TTPlan} play the role of a platform in this approach.

ModelBuild — now part of Sildex-V6 http://www.tni-world.com/sildex.asp
ModelBuild was developed within the SafeAir project as an architectural descrip-
tion editor. It is built on top of the commercial Sildex product http://www.tni-
valiosys.com/index.html marketed by TNI-Valiosys, based on the Signal synchro-
nous language. ModelBuild provides services to perform the integration of compo-
nents describing both hardware and/or software — currently, these components can
be imported from Sildex, Scade, Simulink, or Statechart descriptions.

To this end, a GALS (Globally Asynchronous Locally Synchronous) library has
been developed. It contains components for use in system descriptions; any wire
can be labelled with a protocol name. The GALS library contains Signal compo-
nents modelling communication protocols (including a FIFO service). New proto-
cols can be added. The following classes of components are distinguished:

* Active (i.e. synchronous) links that carry control along with data; they provide
triggering facility; triggering can be based on time.

* Passive (i.e. asynchronous) links that do not carry control, hence cannot trigger
actions.

5 Tools for Architecture Design and Capture 61

ModelBuild through so-called “trigger” components allows to explicitly specify
when an action takes place. Complex triggers have been modelled, including pre-
emptive tasks. A task attribute contains information such as task priority, nature
(cyclic, sporadic, background), timing properties like WCET (Worst Case Execu-
tion Time) or average execution time. Timing annotations are used for simulating a
behaviour; in some cases they can even be used to prove its correctness. Execution
time prediction is possible for RTOS-less architectures in cases that go far beyond
fixed-cycle sequencers and include run-time data-dependent decisions that affect
scheduling, not only from state to state, but even inside reactions (like mode
changes and processing of hazardous situations and events). Such dynamic analysis
gives the same level of confidence on systems with complex schedulers than what
was previously achieved by hand on fixed cyclic sequencers; this drastic improve-
ment is due to the automation of the verification process that allows schedulers
with thousands of states to be analyzed exactly. A dedicated library for the indus-
trial aeronautical ARINC653 real-time operating system standard has been pro-
vided as a result of SafeAir project.

e Polychrony http://www.irisa.fr/espresso/Polychrony

The Polychrony workbench is an academic platform-based design workbench
which provides a reference implementation of the SIGNAL synchronous language.
The goal of Polychrony is to implement mathematical models and formal methods
suitable for both refinement-based and component-based design of embedded sys-
tems. To this aim, the Polychrony workbench implements the polychronous model
of computation, it is proposed to provide sort of a continuum from synchrony to
asynchrony. Refinement-based design is supported by formal properties of input-
endochrony (controllability of a component by its environment) and flow-
invariance (invariance of flow-equivalence under specification refinement via pro-
tocol insertion), implemented by either static resolution of model checking. Com-
ponent-based design is implemented by the capture of existing designs (real-time
JAVA classes SpecC modules and provides Polychrony with the ability to be em-
ployed as a reference workbench for platform-based design. To allow for a seam-
less, correct-by-construction design of embedded systems and architectures, the
Polychrony workbench implements semantics-preserving model transformations
(hierarchization of control, synthesis of protocols) as well as a general notion of
morphism, which encompasses e.g., WCET analysis, into a generic abstract inter-
pretation framework consisting of the projection of a design model with respect to
a given, functional or extra-functional, behavioural aspect.

e SynDEXx http://SynDEx.org/
This is system-level CAD software, supporting the AAA (Algorithm Architecture
Adequation) methodology http://SynDEx.org/pub.htm to support the implementa-
tion of real-time embedded applications on distributed architectures. SynDEXx is a
graphical interactive software, which offers the following features:
* Functional specification through links to various notations, including the Syn-
chronous Languages, Scicos, AIL, AVS;
* Abstract modelling of a distributed architecture composed of processors of dif-
ferent types and/or dedicated integrated circuits (ASIC, FPGA), all together inter-
connected by different types of network models;

62

5 Tools for Architecture Design and Capture

* Profiling the mapping to architecture in terms of execution time for functions and
for data transfers, memory, surface, power consumption, etc;

* Automatic mapping (adequation) through heuristics for the distribution and the
scheduling of the algorithm onto the architecture taking into account communica-
tions, provided with a timing diagram simulating real-time performances;

* Automatic code generation of dedicated distributed real-time executives, or con-
figuration of general purpose executives like: RT-Linux, OSEK, etc. These execu-
tives are deadlock free and based on off-line scheduling policies. Dedicated execu-
tives which induce minimal over-head are built from processor-dependent execu-
tive kernels. Presently executives kernels are provided for: ADSP216X,
TMS320C4X, TMS320C6X, i80CI96, i80X86, MC68332, MPCS555 and Unix/Linux
workstations.

Relevant Challenges and Work Directions

Main problems for research are:

Characterization of complex components such as sophisticated microprocessors
and DSPs in terms of their physical parameters (WCET, power consumption, heat
dissipation...).

Choice of the common semantic domain where the mapping process can be repre-
sented formally.

Performance estimation of software running on microprocessor has been the sub-
ject of intense research over the past few years. Performance estimation belongs to
the general problem of characterization of mapped behaviour as expressed above.
Indeed performance estimation is in our opinion essential to characterize the qual-
ity of a mapping of functionality to a microprocessor, but it has to be understood
that estimation is not and cannot be 100% accurate. Being able to give an upper
bound for the difference between execution time on the final implementation and
its estimation is an open research issue.

From this discussion, it should be clear that mapping is central to embedded system
design. We believe that embedded software design cannot be carried out in a rigorous
fashion without considering mapping as a fundamental step of the methodology.

6 Tools for Programming, Code Generation, and
Design

6.1 Structure

Here we consider methods to produce code, or to generate it. We do not consider the
system level, but only the level of components or subsystems. To list the possible
methods, we need a three-dimensional classification:

1. Nature of the targeted subsystems:

a. continuous-dominated, e.g., power train or chassis for automobiles, and
flight control for aeronautics;

b. discrete-dominated, e.g., infotainment for automobile.
2. Considered method:

a. code generation chains associated with requirements capture methods and
tools, as listed in the corresponding section — Real-time workshop from
Mathworks, ASCET, TargetLink from dSpace, Rhapsody in MicroC, UML
tools supporting code generation.

b. synchronous languages and associated code generation.

c. direct programming in C, Ada (Hood, Spark-Ada), Java.
3. Level of code generation:

a. high-level (e.g., from synchronous languages to C);

b. back-end compilation (C to embedded code).

6.2 Code Generation from Synchronous Languages

Definition

Synchronous languages [SP-IEEE,Hal93,SP-IEEEQ3] are a family of high-level pro-
gramming languages devoted to the design of reactive software. A reactive program is
intended to interact permanently with its environment, at speed determined by this
environment (which cannot wait nor synchronize with the program). Almost all pieces
of software devoted to the control of physical devices are or contain such reactive
programs. In the synchronous paradigm, the execution of a program is a sequence of
atomic reactions to inputs coming from the environment.

The synchronous nature of the languages comes from the fact that they provide a
logical, deterministic, notion of concurrency: basically, all the concurrent processes
participate to each reaction of the program. An atomic reaction may involve a se-
quence of interactions between the concurrent processes. In these languages, concur-

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 6371, 2005.
© Springer-Verlag Berlin Heidelberg 2005

64 6 Tools for Programming, Code Generation, and Design

rency is a powerful way of decomposing program activities, without paying the price
of actual concurrency concerning complexity (non-determinism) and efficiency (run-
time scheduling). Popular synchronous languages can be imperative (Esterel [BG92],
Synccharts [André96]) or declarative (Signal [GLB87], Lustre [HCRP91], Scade).
Although many research topics are still in progress in this area (concerning, e.g., se-
mantics of synchrony, program verification and validation ...), we concentrate here on
the problem of code generation from these languages.

The automatic code generation from high level descriptions is of course an impor-
tant goal, both for reducing the design cost, and for increasing its quality. Synchro-
nous languages provide both a high level, clean and formal way of describing embed-
ded systems, and the ability to translate automatically these descriptions into efficient
code. In general, the translation is made into low level languages (e.g., C), for several
reasons: easy interfacing of the generated code with other pieces of program, inde-
pendence of the compiler with respect to the target executable code.

The primary goal of a designer of safety-critical embedded systems is convincing
him- or herself, the customer, and certification authorities that the design and its im-
plementation are correct. At the same time, he or she must keep development and
maintenance costs under control and meet extra-functional constraints on the design
of the system, such as cost, power, weight, or the system architecture by itself (e.g., a
physically distributed system comprising intelligent sensors and actuators, supervised
by a central computer). In the 1980s, these observations lead to the following deci-
sions for the synchronous languages:

e Concurrency
The languages must support functional concurrency, and they must rely on nota-
tions that express concurrency in a user-friendly manner. Therefore, depending on
the targeted application area, the languages should offer as a notation block dia-
grams (also called dataflow diagrams), or hierarchical automata, or some impera-
tive type of syntax, familiar to the targeted engineering communities. Later, in the
early nineties, the need appeared for mixing these different styles of notations. This
obviously required that they all have the same mathematical semantics.

o Simplicity
The languages must have the simplest formal model possible to make formal rea-
soning tractable. In particular, the semantics for the parallel composition of two
processes must be the cleanest possible.

o Synchrony
The languages must support the simple and frequently-used implementation mod-
els shown below, where all mentioned actions are assumed to take finite memory
and time.

Combining synchrony and concurrency, while maintaining a simple mathematical
model, is not so straightforward. Here, we discuss the approach taken by the synchro-
nous languages. Synchrony divides time into discrete instants. This model is perva-
sive in mathematics and engineering. It appears in automata, in the discrete-time dy-
namical systems familiar to control engineers, and in synchronous digital logic famil-
iar to hardware designers. Hence it was natural to decide that a synchronous program
would progress according to successive atomic reactions. Combining programs then
amounts to defining how to combine reactions; getting a clean mathematical concept

6.2 Code Generation from Synchronous Languages 65

to support this was by no means easy. It has led to a rich body of knowledge and
techniques including the so-called causality analysis, automatic program scheduling
generation, and finally code generation.

Position in the Design Flow

Although synchronous languages were first designed as programming languages, their
compilation is generally considered as automatic code generation by industrial users.
As a matter of fact, the level of expression of synchronous languages is the one of
usual specification formalisms used in the industry; in the normal approach, the cod-
ing phase consists in translating manually such specifications into low level pro-
gramming languages. The automatic code generation is intended to suppress not only
the manual coding phase, but also — and perhaps more importantly — the expensive
unit testing phase, which consists in testing the code of each module against their
individual specifications, in order to detect coding errors.

Existing Tools

Code generators were first developed in academic contexts [BG92, Ber92, GLB8&7,
BL90, HCRP91, HRRI1]. Industrial versions are now commercially available: from
Esterel-Technology (see http://www.esterel-technologies.com/v2/index.html) for
Esterel and Lustre-Scade, and from TNI-Valiosys (see http://www.tni-valiosys.
com/index.html) for Signal-Sildex.

Relevant Challenges and Work Directions

The ability of synchronous languages to be translated automatically into efficient code
is a major reason for their success. However, some important issues remain more or
less open.

o Code Quality
In new application domains, like automotive, there is a strong need for improving
the quality of the generated code, both concerning its size and its performances.
Important efforts are ongoing on the compiling of Esterel [Edw02, WBC+00] into
software. Moreover, in some application domains, users want to influence the
scheduling of computations within a synchronous instant, by specifying, for in-
stance, a response time between some data acquisition and a corresponding output.
Such “micro-scheduling” can be performed, to some extend, in the SAXO com-
piler [WBC+00]. Conversely, taking into account the target architecture and/or the
dependence graph, global scheduling of individual components can be computed;
this contributes to reduce OS overhead. More generally static analysis techniques
can be used to optimize the generated code.

o Code Certification
In the domains of critical software, automatic code generation has to cope with the
problem of code certification. In order to save efforts not only in manual code gen-
eration effort, but also in coding validation (unit testing), the automatically gener-
ated code must be certified, in the sense that certification authorities can accept it
without further validation. It is a major industrial concern. Presently, this can be

66

6 Tools for Programming, Code Generation, and Design

done by qualifying the code generator, which generally implies to develop the code
generator with the same norms that are applied to the embedded software devel-
opment (this is what happened for the Scade-KCG code generator). This increases
tremendously the cost of development of the code generator, and also the cost of
any change in the language or its compiler. An alternative solution [PSS98] is to
formally and automatically verify the correctness of the translation for each trans-
lated program. This very interesting track must be further explored, and is not yet
admitted by certification authorities.

Code Distribution

Another longstanding challenge is code generation for distributed architectures.
While some specific architectures, like TTA [Kop98], are perfectly convenient to
execute a synchronous program in parallel, the same problem for general architec-
tures is difficult. Some research works [ML94, BCT99, BCG99, CGP99, GM02]
concerned distributed implementations preserving the synchronous semantics,
while other approaches [Cas01] accept some relaxing of these strict semantics. Fi-
nally, work on distributed fault-tolerant implementations was also conducted
[DGLSO01, GLSS01].

On the Frontier of Synchrony

Applications suggest that the pure synchronous model should be made “less syn-
chronous”, in several ways. For instance, it is very common, in periodically sam-
pled systems, to have several periods, with loose communication between tasks on
different periods; this is not yet allowed in pure synchronous languages. Another
situation is the mixing of periodic sampling and event triggered reactions. More
generally, it raises the problem of implementing synchronous programs on top of a
real-time OS, allowing multi-tasking, interrupts, etc. These problems have been
studied in the context of polychronous model [SL97, AL96, GG99]. Research on
the frontiers between synchrony, polychrony, and asynchrony must be pursued.
Back to the languages

All the previous topics have some consequences on the extensions of languages.
Real-time constraints, “desynchronisations”, distributed implementation con-
straints, and so on, must be expressed in the source language. Moreover, a better
expression of program and data structures enables a better code generation
[Mor(02]. Also, declarative specifications of properties (e.g., assertions) could be
used during the compilation, through the use, for instance, of discrete control syn-
thesis techniques [ACMRO3]. So, the development of the languages is far from be-
ing terminated

References

[André 96] C. André. Representation and analysis of reactive behaviours: a synchronous ap-

proach. In IEEE-SMC’96, Computational Engineering in Systems Applications,
Lille, France, July 1996.

[ACMRO3] K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controller-synthesis

techniques to build property-enforcing layers. In European Symposium on Pro-
gramming, ESOP’03. Warsaw, Poland, April 2003.

[AL96] P. Aubry, P. Le Guernic. Synchronous distribution of Signal programs. In 29th

Hawaii International Conference on System Sciences, IEEE Computer Society
Press, Volume 1, 1996.

[BCGI9]

[BCT99]

[Ber92]
[BG92]
[BL90]

[CasO1]

[CGP99]

[DGLSO1]

[Edw02]

[GG99]

[GLBS87]

[GLSS01]

[GM02]

[Hal93]
[HCRP91]

[HRR91]

[Kop98]

[ML94]

[Mor02]

6.2 Code Generation from Synchronous Languages 67

A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In
J.C.M. Baeten and S. Mauw, editors, CONCUR’99. LNCS 1664, Springer Verlag,
1999.

A. Benveniste, P. Caspi, and S. Tripakis. Distributing synchronous programs on a
loosely synchronous, distributed architecture. Research Report 1289, Irisa, De-
cember 1999.

G. Berry. A hardware implementation of pure Esterel. ACM Workshop on Formal
Methods in VLSI Design, Miami, January 1991.

G. Berry and G. Gonthier. The Esterel synchronous programming language: de-
sign, semantics, implementation. Science of Computer Programming, 19(2), 1992.

A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the Signal
language. IEEE Transactions on Automatic Control, 35(5), May 1990.

P. Caspi. Embedded control: From asynchrony to synchrony and back. In 1st
International Workshop on Embedded Software, EMSOFT2001, Lake Tahoe,
USA, October 2001. LNCS 2211.

P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactive systems for
asynchronous networks of processors. In IEEE Trans. On Software Engineering,
25:3, May-June 1999.

C. Dima, A. Girault, C. Lavarenne, and Y. Sorel. Off-line real-time fault-tolerant
scheduling. In 9th Euromicro Workshop on Parallel and Distributed Processing,
PDP’01. Mantova, Italy, February 2001.

S. A. Edwards. An Esterel compiler for large control-dominated systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21,
2002.

T. Gautier, P. Le Guernic. Code generation in the SACRES project. In Towards
System Safety, Proceedings of the Safety-critical Systems Symposium, SSS’99,
Huntingdon, UK, Springer, 1999, 127-149.

T. Gauthier, P. Le Guernic and L. Besnard. Signal, a declarative language for
synchronous programming of real-time systems. Proc. 3rd Conf. on Functional
Programming Languages and Computer Architecture, LNCS 274, Springer Verlag,
1987.

A. Girault, C. Lavarenne, M. Sighireanu, and Y. Sorel. Fault-tolerant static sched-
uling for real-time distributed embedded systems. In 21st IEEE International
Conference on Distributed Computing Systems, ICDCS’01. Pheenix, USA, April
20(0Girault and C. Ménier. Automatic production of globally asynchronous locally
synchronous systems. In 2nd International Workshop on Embedded Software,
EMSOFT’02. Grenoble, France, October 2002, LNCS 2491.

N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
Pub., 1993.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9), September 1991

N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-
flow programs. 3rd Int. Symp. on Programming Language Implementation and
Logic Programming, LNCS 528, Springer Verlag, August 1991.

H. Kopetz. The time-triggered architecture. In ISORC ‘98, Kyoto, Japan, April
1998.

O. Maffeis and P. Le Guernic. Distributed implementation of Signal: scheduling
and graph structuring. In 3rd International School and Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, 1994.

L. Morel. Efficient compilation of array iterators for Lustre. In First Workshop on
Synchronous Languages, Applications, and Programming, SLAP’02, Grenoble,
April 2002.

68 6 Tools for Programming, Code Generation, and Design

[PSS98] A. Pnueli, M. Siegel, and O. Shtrichman. Translation validation for synchronous
languages. In K.G. Larsen, S. Skyum, and G. Winskel, editors, 5th International
Colloquium on Automata, Languages, and Programming, ICALP 1998. LNCS
1443, 1998.

[SL97] I. Smarandache and P. Le Guernic. Affine transformations in Signal and their appli-
cation in the specification and validation of real-time systems. In 4th International
AMAST Workshop on Real-Time Systems and Concurrent and Distributed Soft-
ware, LNCS 1231, 1997.

[SP-IEEE] A. Benveniste, G. Berry Eds. Another look at real-time programming. Special
Section of the Proceedings of the IEEE, 79(9), September 1991.

[SP-IEEE03] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, R. de
Simone. The synchronous languages 12 years later. Proceedings of the IEEE,
91(1), special issue on embedded systems, 64-83,January 2003.

[WBC+00] D. Weil, V. Bertin, E. Closse, M. Poisse, P. Venier, and J. Pulou. Efficient compi-
lation of Esterel for real-time embedded systems. In International Conference on
Compilers, Architecture, and Synthesis for Embedded System, CASES’00, San
Jose, USA, 2000.

[GTLO3] Le Guernic, P., Talpin, J.-P.,.Le Lann, J.-C. . Polychrony for system design.
http://www.irisa.fr/prive/talpin/papers/rr-jcsc02.ps.gz . Journal for Circuits, Sys-
tems and Computers. Special Issue on Application Specific Hardware Design/. (c)
World Scientific, April 2003. Available as /INRIA research report n. 4715/, De-
cember 2002.

6.3 Back-End Code Generation — Below C

Definition

Compilation of programming languages such as C and Ada to the machine language
of embedded processors. The area of Compilation for Embedded Systems is largely
driven by the demand for very high efficiency of compiled code. This includes design
goals like high performance and low code size, but more recently also low energy
code generation for portable systems. Only a small code quality overhead as com-
pared to hand-optimized assembly code is acceptable for real-life applications. This
asks for novel and aggressive code optimization technologies that make optimal use
of the specialized architectures of embedded processors.

Position in the Design Flow

High-level programming languages such as C/C++ and Ada are used as targets of
code generation from formal specifications (Code Generation in the SafeAir- Design
Flow) and as direct coding vehicles. Their use has boosted productivity and reduced
time-to-market in embedded software development.

Support for high-level language programming requires efficient compilers, mostly
for C and C++. While compiler construction for general-purpose processor is a quite
mature technology, the situation is different in the area of embedded systems. This is
due to two reasons: (a) a large variety of domain or application specific programma-
ble processors and (b) the need for extremely efficient code.

6.3 Back-End Code Generation — Below C 69

Retargetable Compilers

Due to the high efficiency requirements in embedded system design, there is a large
variety of domain-specific processors available on the semiconductor market, e.g.
special-purpose processors for audio and video signal processing (DSPs) or protocol
processing in networking applications (NPUs). Moreover, more and more system
houses tend to develop their own in-house processors for specific applications (ASIPs),
in order to achieve a cost reduction and better product differentiation. In order to save
development time and cost for C/C++ compilers for such processors, retargetable
compilers [1] are needed whose back ends can be quickly adapted to new target archi-
tectures. Particularly in the case of ASIP design, retargetable compilers are critical in
the design flow, since they support architecture exploration in order to determine the
optimal processor architecture for a given range of applications. Incorporating the
C/C++ compiler directly in the exploration flow, together with further tools like simu-
lator, debugger, assembler, and linker, permits to achieve an optimal hard-
ware/software match early in the design process. This idea of “compiler-in-the-loop”
architecture exploration (see fig.) has also been adopted by major semiconductor
vendors (e.g. Intel, STMicroelectronics, and Texas Instruments) and is expected to
gain even wider importance in the future.

Application

Assembler

Advanced Code Optimization for Embedded Processors

Traditionally, most embedded software applications have been coded in assembly
languages, a very tedious and error-prone method that results in low portability and
dependability. This has been necessary, since the need for the most efficient imple-
mentation prohibited the use of high-level language compilers. Only a small overhead
of compiled code versus hand-written assembly code is generally acceptable. With the
advent of more sophisticated code optimization technology [2] the use of C/C++ is
gaining growing importance, though. There are two major approaches to embedded
code optimization. First, compiler back ends have to take the detailed characteristics
of the target machines into account, e.g. hardware support in the form of SIMD in-

70 6 Tools for Programming, Code Generation, and Design

structions, predicated instructions, efficient use of the memory hierarchy, zero-
overhead loops, etc. As opposed to general-purpose “compiler-friendly” (i.e. RISC-
like) architectures, the design of an efficient optimizing compiler backend has a large
impact on the code quality. This has frequently been neglected in classical compiler
research and needs to be intensively addressed in the future in order to further opti-
mize embedded code quality and to keep pace with the fast developments in processor
architectures. The second approach is the use novel code optimization methodologies,
e.g. based on genetic algorithms, simulated annealing, branch-and-bound, that allow
obtaining high code quality even for irregular target machines by coupling different
backend phases such as scheduling and register allocation. Such approaches have
hardly been used in practice so far due to their comparatively high runtime require-
ments. However, in embedded code generation, higher compilation times are accept-
able, which may lead to a paradigm shift in code optimization technology.

Existing Approaches and Systems

There exist number different approaches to retargetable and optimizing code genera-
tion for embedded processors in research and industry. From the “traditional” com-
piler community, there are portable compilers like gcc [3] and lcc [4] which, however,
have problems with code quality for irregular targets like DSPs. Other retargetable
compiler systems, more targeted to embedded systems have been developed in
Europe (including CoSy [5], OCE [6], FlexWare [7]), U.S. (including SUIF [8], Ex-
pression [9], Mescal [10], Liberty [11]) and Asia (including ASIPMeister [12]). While
differing significantly in their detailed concepts, many of these approaches have
adopted the idea of using an architecture description language (ADL) to drive the
retargeting of compilers and other software tools. Using an ADL, the target machine
can be captured at a higher abstraction level and more concisely than with usual
hardware description languages (HDLs). As a consequence, only a single “golden”
reference model is required for the entire processor design flow. Industrial EDA
products, like CoWare’s LISATek product line [13], Axys” MaxCore [14], and Tar-
get” Chess [15] build on this concept to explicitly support compiler-based architecture
exploration and design of embedded processors. Current R&D efforts are aimed at
tuning existing ADLs towards a higher automation in compiler retargeting. While a
trend towards convergence in the area of ADL design is already visible, a unified
ADL that best fits usual system design flows still requires more research.

Relevant Challenges and Work Directions

e Programmable Architectures
Research into this direction needs to be broadened in order to explore even higher
code efficiency potentials and to keep pace with new developments in programma-
ble architectures (e.g. parallel DSPs for 3G mobile telephony or Network Proces-
sors for communication protocol processing).

e Handling Novel Code Optimization Techniques
Tools are needed to support automatic compiler generation or retargeting. Further
advances in this area will open up a large optimization potential for embedded sys-
tem industry, since compiler retargeting will no longer be a bottleneck in both
processor architecture optimization and application software development. To-

6.3 Back-End Code Generation — Below C 71

gether with novel code optimization techniques this will provide the required tech-
nology to achieve an optimal match between embedded software and the underly-
ing processor architectures.

o A Theory For Semantics-Preserving Program Transformations

Many embedded systems run in safety-critical applications. Correctness of opti-
mizing program transformations and, in fact, proofs for this will be mandatory. A
theory for semantics preserving program transformations is needed here.

Exploiting High-level Knowledge Present at the Specification Level

Automatically generated code, often encountered in Embedded Software, has spe-
cific properties. In general, it is much more disciplined than hand-written code
providing for high-precision static analyses. Efficiency of the compiled code could
be improved even more if high-level knowledge present at the specification level
could be made known to and exploited by the compiler. On the other hand, auto-
matically generated code often contains large amounts of redundant code. Removal
of this code by provably correct optimizations is mandatory.

References

— e

[1] Rainer Leupers, Peter Marwedel: Retargetable Compiler Technology for Em-
bedded Systems — Tools and Applications, Kluwer Academic Publishers. ISBN 0-
7923-7578-5, November 2001.

[2] Rainer Leupers: Code Optimization Techniques for Embedded Processors — Meth-
ods, Algorithms, and Tool, Kluwer Academic Publishers, ISBN 0-7923-7989-6,
November 2000.

] GNU C Compiler: http://gcc.gnu.org

1 LCC Compiler : http://www.cs.princeton.edu/software/lcc/

] Cosy Compiler System : http://www.ace.nl

] OCE: http://www.atair.co.at

] P. Paulin, F. Karim, P. Bromley: Network Processors: A perspective on market
requirements, processor architectures, and embedded S/W tools, Proc. DATE 2001

] Stanford University: http:/suif.stanford.edu
9] A. Halambi, P. Grun, et al. : Expression : a language for architecture exploration
through compiler/simulator retargetability, Proc. DATE 1999
[10] W. Qin, S. Malik: Automated Synthesis of Efficient Binary Decoders for Retarge-
table Software Toolkits, Proc. DAC 2003
[11] M. Vachharajani, N. Vachharajani, and D. August: The Liberty Structural Specifi-

cation Language: A High-Level Modeling Language for Component Reuse, ACM

SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), June 2004

[12] Shinsuke KOBAYASHI, Kentaro MITA, Yoshinori TAKEUCHI, Masaharu
IMALI, Rapid Prototyping of JPEG Encoder using the ASIP Development System:
PEAS-III, Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing 2003, Vol. 2, pp. 485-488, Apr., 2003

13] CoWare Inc.: http://www.coware.com

[14] Axys Design Automation: http://www.axys-design.com

Target Compiler Technologies: http://www.retarget.com

7 Tools for Verification and Validation

7.1 Building Blocks for Verification and Validation

Verification and validation consists in exploring the current design against side prop-
erties expressed as part of the requirements. Verification & validation can concern:

1. the specification level, at early stages of the design process, or
2. the embedded code, from C/Ada/Java, to assembly.

It includes:

1. testing, a well established technology, to be revisited based on advances in
formal methods and verification,

2. model checking and methods performing an exhaustive exploration of the
reachable state space, for discrete systems or systems abstracted into some
discrete approximation of them,

3. static analysis to explore embedded code — static analysis is a technique to
formally explore existing code, typically C or Java, by abstracting away
aspects of the code that are considered “second class” for the considered
purpose.

4. more exploratory techniques, such as source/object code validation, or the
use of theorem proving — code validation is a tool assisted technique to
formally assess the conformance of some object code against its source
code, it is a proof of validity for one given compilation, not a proof of the
compiler; theorem proving refers to tools and techniques for assisted rea-
soning on specifications or programs when undecidable properties are
considered.

7.2 Model Checking

Definition

Model checking is a technique that relies on building a finite model of a system of
interest and checking that a desired property holds in that model. Since the introduc-
tion of the term ‘model checking’ in the early eighties the technology has advanced
significantly and has been applied successfully in numerous industrial case-studies. In
the area of hardware verification the technology is now taken up by the industry.

The development of algorithmic techniques (e.g. partial order reduction, symme-
try-reduction, cone-of-influence, compositionality, abstraction) and data structures
(e.g. Binary Decision Diagrams) allows for automatic and exhaustive analysis of
finite state models with more than thousand components or state variables. Existing
model checkers has enabled analysis of interesting systems with more than 10400
reachable states.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 72 -84, 2005.
© Springer-Verlag Berlin Heidelberg 2005

7.2 Model Checking 73

Finite-state model checkers support analysis of qualitative properties, in particular
safety and liveness properties. However, there is a need for extensions allowing quan-
titative properties of embedded systems to be analyzed. These include real-time prop-
erties, properties of the evolution of the (continuous) environment of the embedded
control program, and performance properties. For real-time properties model-checking
tools based on the modelling formalism of timed automata exist: the successful appli-
cation of these tools to several industrial case studies demonstrates the maturity of
these tools. However, there remain significant research challenges in extending some
of the most successful techniques from finite-state model checking to the setting of
timed automata (e.g. symbolic data structures and partial order reduction).

Whereas timed automata allows explicit modelling and analysis of real-time con-
straints the extended model of hybrid automata allows for more general continuous
phenomena (of the environment) to be modelled. The technique of model checking is
also developing in the direction of performance analysis with a number of model-
checking tools based on various stochastic extensions of finite-state systems (Markov
Chains, Markov Decision Processes, Semi-Markov Processes) emerging.

Position in the Design Flow

Model checking may be applied throughout the entire span from specification,
through design to final implementation. MSC/LSC/sequence diagrams may be used at
the early specification phases and analyzed for potential inconsistencies (e.g. race
conditions) using model checking techniques. A prerequisite for applying the tech-
nique of model checking is the existence of a suitable (essentially) finite-state model.
Thus the technique is directly applicable to analysis of the control structure, both at
design and code level of a system. To make the technique applicable to general em-
bedded code finite-state abstractions need to be extracted either by application of
generic abstract interpretations or by other means of formal verification of the cor-
rectness of a suggested abstraction in particular with the use of theorem proving (e.g.
using the theorem prover PVS). In fact the introduction of abstractions plays a key
role in making model checking feasible (abstractions from infinite to finite state mod-
els) as well as efficient (abstractions from large models to smaller models). However,
for model checking to truly scale up it is imperative that it is complemented with
compositional methods allowing verification problems of large systems to be decom-
posed into verification problems of smaller systems. Lightweight theorem proving is
here useful in establishing that a particular suggested decomposition is indeed correct.

Finally, model checking may also be applied in the testing phase as a method for
automatically generating test suites tracking the satisfaction of a given system specifi-
cation model with a good coverage/confidence.

Existing Tools

The growing application of standard modelling formalisms (e.g. UML, SDL, State-
Charts, Simulink) in embedded software engineering practice provides an ideal basis
for industrial take-up of the model checking technology. Below we give pointers to
some main tools covering finite-state model checker, model checkers for real-time
and hybrid systems, stochastic model checkers and model checking applied (via ab-
straction) to source code.

74 7 Tools for Verification and Validation

Finite-state Model Checkers

e SPIN http://www.spinroot.com
This is a popular software tool that can be used for the formal verification of dis-
tributed software systems. The tool was developed at Bell Labs in the original Unix
group of the Computing Sciences Research Center, starting in 1980. The software
has been available freely since 1991, and continues to evolve to keep pace with
new developments in the field. In April 2002 the tool was awarded the prestigious
System Software Award for 2001 by the ACM.

o SMV
Developed by Ken McMillian was the first model checker using the symbolic veri-
fication (i.e. with the use of Binary Decision Diagrams). Presently a number of
variants of the tool exist including Cadence SMV (http://www-cad.eecs. berke-
ley.edu/~kenmcmil/), nuSMV (http://nusmv.irst.itc.it/) and SMV from CMU
(http://www-2.cs.cmu.edu/~modelcheck/smv.html)

o VisualSTATE http://www.iar.com/Products/VS/

This is a commercial tool supporting code generation from hierarchical state ma-
chine models compliant with UML standard. In addition the tool offer full verifica-
tion of a number of generic sanity properties (e.g. absence of deadlock) and simula-
tion capabilities. The model checker of VisualSTATE is based on the technique of
Compositional Backwards Reachability exploiting the (in)dependency as well as
hierarchical structure of a model.

o StatemateMagnum ModelChecker and ModelCertifier http://www.ilogix.com
These are commercial products available from I-Logix, Inc. (www.ilogix.com) of-
fering formal verification for embedded systems applications. Being tightly inte-
grated with Statemate, the tool supports the complete range of modelling features
of Statemate.

o FormalCheck http://www.cadence.com/datasheets/formalcheck.html
This is a commercial tool provides formal verification of complex control units us-
ing a collection of reduction techniques providing elegant methods for dealing with
the complex verification of large circuits. The tool is available from Cadence.

o Murphi description language http://verify.stanford.edu/dill/murphi.html
This is based on Dijkstra’s guarded commands and bears similarities to Misra and
Chandy’s Unity model. Murphi contains a number of strategies for reducing the
number of reachable states in particular by identifying and exploiting symmetries.

e FDR http://www.formal.demon.co.uk/FDR2 html
This tool is developed at Oxford University and is based on the theory of Commu-
nicating Sequential Processes, CSP and the notion of failures-divergence refine-
ment. A key technique in the tool is the application of (fast) compositional state-
minimization before analysis.

Model Checkers Based on Process Algebra

o Caesar/Aldebaran http://www.inrialpes.fr/vasy/cadp/
The Caesar/Aldebaran tool suite is maintained and developed mainly in
VASY/INRIA. This tool suite is built around the process algebra LOTOS. Exten-
sions for dealing with timed extensions of LOTOS (e.g. E-LOTOS and LOTOS-
NT) are currently moderately supported. The tool suite offers a range of techniques

7.2 Model Checking 75

for analyzing a system. These include various kinds of equivalence checking,
simulation tools, visualization tools and model checking tools. Almost all tech-
niques operate on finite state representations of the system.

muCRL http://'www.cwi.nl/~mcrl

The muCRL tool suite is maintained and developed mainly at the CWI and the
Eindhoven University of Technology. This tool suite is built around the process al-
gebra muCRL and timed muCRL. The tool support for timed muCRL specifica-
tions is gradually increasing. The tool suite offers tools and techniques that operate
on a symbolic representation of the state space of a system, which is not necessar-
ily finite state, and can include unbounded data types. This symbolic representation
(so-called “Linear Process Equations”) of a system is used by other tools to check
for equivalence, simulate behaviours and verify (first order) modal mu-calculus
formulae. Linear Process Equations, representing systems with a finite state space,
can serve as input to the tool suite Caesar/Aldebaran.

Real-Time and Hybrid Model Checkers

Kronos http://www-verimag.imag.fr/TEMPORISE/kronos/

This tool is developed at VERIMAG, Grenoble and is based on components of
real-time systems modelled as timed automata and correctness requirements
formulated in timed temporal logic.

UPPAAL www.uppaal.com

This is a tool environment for modelling, validating and verifying real-time sys-
tems modelled as networks of timed automata extended with discrete data types.
UPPAAL is developed and maintained in collaboration between DoCS, Uppsala
University, Sweden and BRICS, Aalborg University, Denmark.

HyTech http://www-cad.eecs.berkeley.edu/~tah/HyTech/

This is a tool for the analysis of embedded systems specified using linear hybrid
automata. The tool is developed at UC Berkeley.

Dydt http://www-verimag.imag.fr/~tdang/ddt.htm

This is a tool for reachability analysis of continuous and hybrids systems with lin-
ear differential inclusions; developed at VERIMAG.

CheckMate http://www.ece.cmu.edu/research/projects/checkmate.shtml

This is a verification tool for hybrid dynamic systems developed at CMU, having
both discrete/continuous dynamics.

Stochastic Model Checkers

ETMCC http://www7.informatik.uni-erlangen.de/etmec/

This is a model checker for continuous time Markov chains with requirements
specified in Continuous Stochastic Logic. The tools is developed in collaboration
between Erlangen University, Germany, and Twente University, The Netherlands.
PRISM http://www.cs.bham.ac.uk/~dxp/prism/

This is a probabilistic model checker being developed at the University of Bir-
mingham. The tool supports three models: DTMCs, CTMCs and MDPs with re-
spect to analysis of PCTL properties.

76 7 Tools for Verification and Validation

o RAPTURE http://www.irisa.fr/prive/bjeannet/prob/prob_1.html
This is a verification tool developed jointly by BRICS, Aalborg, INRIA, and
Twente University. The tool is designed to verify reachability properties of Markov
Decision Processes.

Model Checking for Source Code

e BANDERA http://www.cis.ksu.edu/santos/bandera/
This is a toolset designed to bridge the semantic gap between a non-finite-state
software system expressed as source code and the preferred input format for exist-
ing model checkers (essentially finite-state systems). The tool applies sophisticated
program analysis, abstraction and transformation techniques. The tool is developed
and maintained at Kansas University.

e BLAST http://www-cad.eecs.berkeley.edu/~tah/blast/
This is a software model checker for C programs using counterexample-driven
automatic abstraction refinement to construct an abstract model chick are model
checked for safety properties. The tool is developed at Berkeley University.

o VeriSoft http://www.bell-labs.com/project/verisoft/
This is a tool for systematically exploring the state spaces of systems composed of
several concurrent processes executing arbitrary code written in any language (e.g.
C or C++). The tool is developed and maintained by Bell Laboratories, Lucent
Technologies.

Relevant Challenges and Work Directions

Some significant problems need to be solved before this take-up will be fully realized:

o Semantic issues.
A necessary prerequisite in order to conduct model checking is that the given mod-
elling formalism is provided with a formal semantics;

o The missing link with scientific engineering formalisms.
The gap between the modelling formalisms currently favoured in embedded soft-
ware engineering (e.g. Simulink) and the modelling formalisms supported by cur-
rent verification tools should be bridged;

o FExpressing properties in a user friendly manner.
The various model checkers (as visualSTATE) should at least support verification
of a number of generic sanity properties (e.g. absence of deadlocks, no dead code).
However, to establish application specific properties these should be expressed in
some suitable specification language. A challenge is to design specification lan-
guages more ergonomic and intuitive (from a software engineer’s point of view)
than that of temporal logic which is favoured by most existing model checkers.

7.3 Static Program Analysis

Definition

Static program analysis executes an abstract version of a program’s semantics on
descriptions of data (abstract data) instead of concrete data. Both data domains usu-

7.3 Static Program Analysis 77

ally are lattices, the partial order representing precision. Often, abstraction and con-
cretization functions exist between the two domains mapping (sets of) concrete data
to their most precise description and mapping abstract data to the set of represented
concrete data. The abstract semantics of the program statements is applied iteratively
until a fixed point is reached. This fixed point describes properties of all program
executions at each program point. Static program analysis is thus semantics based
offering the chance of correctness proof, sometimes even the automatic derivation
from a given semantics.

Static Program Analysis is being used for the computation of safety properties of
embedded programs. Safety properties cover a host of relevant properties of safety-
critical systems. They state that certain run-time errors will not occur in any execution
of a program. Static analysis, by nature, is approximate. Since it often considers unde-
cidable problems, it cannot be both correct and complete at the same time. Therefore,
it is important that it “only errs on the safe side”. It should be always correct, but may
be incomplete. This manifests itself in the so-called “false alarms”, i.e., an exceptional
run-time situation is reported by the static analysis that in fact can not happen in any
execution of the program. It will be a decisive property for the acceptance of static
analysis tools in industry, whether the number of false alarms can be kept within rea-
sonable limits.

The effort needed by program-analysis tools is closely related to the complexity of
the program properties they try to determine. A trade-off between analysis speed and
precision is often possible. The precision of analyses for a given property, i.c., the
number of false alarms, often depends on, whether the used tool is a general purpose
analysis tool or one that is tailored to the application and the type of software to be
analyzed [BCCFMMO3].

Position in the Design Flow

Static Program Analyses are mostly performed on source-level code at the S/W-
Implementation and the Unit Validation stages of the design process. The support
tools are partly integrated in software-development environments. Analyses are per-
formed by software developers, often at suppliers, and by quality assurance personnel
at the contractor. The necessary training effort to educate personnel to do program
analysis tasks, in particular the interpretation of warnings is not low, but will amor-
tize. Licensing of such tools will often be on project basis, often also on the basis of
number of work stations, on which the tool is installed. It is meaningful to integrate
such tools into environments and have a combined license.

A relevant property of a hard real-time system is whether it will always react inside
the given time bounds. Often, rough estimates of the timing behaviour of a real-time
system under development are useful during the development process. These can be
obtained using methods based on the structure of the program; atomic statements are
given some standard execution time, and composed statements receive timing esti-
mates computed from the timing estimates of the components and a function corre-
sponding to the type of statement. Penalties for undesirable states in modern proces-
sors, e.g. cache misses, branch misprediction can be large. As soon as the programs
under consideration are rather small, the order of magnitude of these penalties can

78 7 Tools for Verification and Validation

exceed the order of magnitude of the execution time of the programs. Any run-time
estimation method has to be aware of this limitation.

The code implementing an embedded system may have been obtained by auto-
matic, semi-automatic, or non-automated development phases. In any case, correct-
ness of the result should be checked. Static program analysis on the implementation
level can be used to check whether invariants of the specification level are still satis-
fied by the implementation. This continues for the compilation task. Compiler cor-
rectness proofs are still not feasible. Alternatives are compilation-result checks, i.e.,
the check whether an individual program is correctly translated, cf. CVT. This re-
quires the use of a theorem prover with a corresponding compilation-time overhead.
An alternative is to compute corresponding invariants on both the software implemen-
tation and the machine code level by static analyses. The computed invariants may be
strong enough for the case under consideration and the overhead usually is much less.

Some analyses are only possible, once the machine-code level is reached. Reliable
and often precise upper bounds on the execution time of embedded programs can be
obtained when all the information about the hardware platform are known. The cur-
rent state of the art in determining the WCET consists in a combination of micro ar-
chitectural analysis predicting the behaviour of the processor components and implicit
path enumeration determining a path on which the upper bound is computed. The first
phase is realized using static program analysis, the second solving an integer linear
program representing the control flow of the program. The advantages of this ap-
proach to WCET determination over competing approaches are the following:

e The use of program analysis for the first phase and of ILP for the second splits the
task along the right border. ILP solving is the more costly task. This split leaves
only ILPs of reasonable size to be solved leading to acceptable overall analysis
times.

e Much precision is gained by regarding instructions in different contexts, i.e., by
using context- and flow-sensitive analysis methods.

e Under certain conditions depending on the predictability of the processor behav-
iour, both WCET and BCET can be determined giving the developer a feel for the
precision of the analysis.

e The use of ILP for the worst-case path determination allows the use of complex
user annotations to express knowledge about program behaviour. These annota-
tions can be translated into the ILP.

WCET tools, as described above, are used on the executable code. They are used by
the developers, in order to see whether the code satisfies the timing constraints and to
find out potential for performance improvement. The use of such tools depends on the
industrial sector. They will be distributed to and used by suppliers and they will be
used for in-house development and quality assurance. Technical inspection offices,
like the German TUVs, will ask their customers to use them before the certification
phase and use them for the certification process itself. Licensing costs will be high,
since the market is small and the development effort is high. The learning effort for
users of the tools can be kept small, provided the results of the analyses are visualized
adequately.

7.3 Static Program Analysis 79

Existing Tools

PolySpace Verifier is a general purpose tool for analyzing C and Ada programs for
run-time errors. http://www.polyspace.com/product datasheet/datasheets.htm

The Program Analyzer Generator, PAG, is a tool supporting the automatic genera-
tion of program analyses from specifications. http://www.absint.de/pag/

BANE is research tool for experimentation with program analyses.
http://www.cs.berkeley.edu/Research/Aiken/bane.html

The aiT WCET analyzers of AbsInt determine bounds on execution times by ab-
stract interpretation. http://www.absint.de/wcet.htm

Relevant Challenges and Work Directions

Static analysis is certainly a new and living area, which cannot be considered fully
mature and stable. Not surprisingly, research issues and advances needed are numer-
ous, and challenging:

Liveness vs. progress

Current research on static program analysis attempts to also verify liveness proper-
ties. The approach is to combine a static analysis with a progress property. This
progress property has to be proved with the help of a theorem prover.

Concurrency

The analysis of concurrent software has posed one of the biggest challenges to
static program analysis, as well as to program verification. Recently, the applica-
tion of Shape Analysis has advanced the limits of what could be analyzed by static
analysis. Multi-threaded software even with dynamically varying number of
threads and varying number of objects have been successfully tackled [YRSWO03].
Exploiting high-level knowledge present at the specification level

Automatically generated code, often encountered in Embedded Software, has spe-
cific properties. In general, it is much more disciplined than hand-written code
making verification easier and providing for high-precision static analysis
[AASO3]. However, the situation could be improved even more if high-level
knowledge present at the specification level could be made known to and exploited
by the compiler.

Scaling-up

The more powerful a static analysis is the more expensive it is in general. Powerful
analyses have problems of scaling-up. User annotations and assume-guarantee rea-
soning will be needed to solve this serious problem.

WCET

The determination of precise bounds on the execution times of real-time software
critically depends on the predictability of the processor architecture. They are the
more precise, the more predictable the processor architecture is. Processor architec-
tures started to being used today reach the limit of non-deterministic behaviour that
makes the computation of precise upper bounds possible. An interesting research
direction is to identify principles for the design of processors that perform well
both in the average and in the worst case [HLTWO03].

80 7 Tools for Verification and Validation

o Components
The advent of component-based design and middleware in the hard real-time do-
main introduces a completely new challenge. How does one guarantee real-time
behaviour of complex systems constructed from components using middleware and
sitting on top of a real-time operating system?

References

[BCCFMMO03] B.Blanchet, P.Cousot, R.Cousot, J.Feret, L.Mauborgne, A.Miné: A Static Ana-
lyzer for Large Safety-Critical Software, PLDI 2003

[HLTWO03] Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The Influence of Proc-
essor Architecture an the Design and the Results of WCET Tools, IEEE Transac-
tions on Real-Time Systems, 2003, to appear

[AAS02] Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: Abstract Interpretation-Based Timing Validation of
Hard Real Time Avionics Software Systems, submitted to the Performance and
Dependability Symposium, 2003

[YRSWO3] Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying Temporal Heap Properties
Specified via Evolution Logic, ESOP 2003

7.4 Testing Embedded Systems

Definition

Testing is the execution of the system under test in a controlled environment following
a prescribed procedure with the goal of measuring one or more quality characteristics
of a product. The best situation is when the required behaviour and quality is specified
in a requirements specification. The testing objective then becomes to demonstrate
whether the actual status of the product deviates from the specified status. Testing
helps finding potential defects and determining the risk of release of the product.

Testing is different from other validation techniques such as model-checking, static
analysis, review and inspection, walk-through and debugging, because it dynamically
executes the product in a realistic (but controllable) environment with actual concrete
input data, while comparing the actual and expected behaviour. The strength of test-
ing is the execution of the actual system in a realistic environment. On the other hand
it must be stressed that a fundamental limitation of testing is that only a very small
sample of the possible system behaviours can be evaluated. In any non-trivial applica-
tion the number of possible input values, input sequences, and environment conditions
is gastronomic, and often literally outnumber the atoms in the universe. Thus, the
required number of test cases needed for exhaustive (in the sense that a passing sys-
tem is guaranteed to be correct) testing is practically infinite. This is the theoretical
underpinning of the well-known statement that “testing can only show the presence of
errors, not their absence”. A central testing problem is therefore to engineer a suite of
effective test cases that contributes with useful knowledge (e.g. has a high likelihood
of detecting errors) about the system under test, and that can be executed in the
amount of time and resources allocated to the testing activity. Various techniques and
strategies have been formulated to aid selection of effective test cases. Examples
include boundary value analysis, equivalence class partitioning, branch and statement

7.4 Testing Embedded Systems 81

coverage), fault models, mutation analysis. These test criteria can be used as test de-
sign techniques as well as heuristic measures of the thoroughness of a test suite.

Testing is used to measure several quality characteristics such as functionality (in-
put-output behaviour, accuracy, security, compliance, interoperability), reliability
(maturity, fault tolerance, recoverability), usability (understandability, learnability,
operability), efficiency (performance, time behaviour, resource utilization), maintain-
ability (analyzability, changeability, stability, testability), and portability (adaptabil-
ity, installability, conformance, replaceability). Each quality characteristic is often
tested separately using specialized testing procedures. This leads to several different
kinds of testing, i.e., functional testing, reliability testing, usability testing, perform-
ance testing, etc.

Testing is performed at several levels during the development process: unit-level,
module- or component level, module/component integration level, or system level.
Different people, techniques and tools may be involved, depending on the level. Low-
level testing is the process of testing individual units or integrating these, and is usu-
ally done by the developers. The source code is normally available and visible, and
the goal is to construct a test suite that covers each statement or branch of the unit.
High-level testing is performed when application software, system software, and
hardware is integrated into a complete product. The system under test is usually
treated as a black box that can be interacted with manually or using programmable
environment emulators. Testing may be performed by separate testing- or quality
assurance-teams. Acceptance-testing is normally performed by the customers. Re-
gression-testing is used at all levels and involves re-executing existing test cases to
check whether changes to the system under test had the desired effects and no unde-
sired side effects. Testing is often performed to measure real-time execution time and
response times e.g. to check resource utilization or obtain an estimate for the worst-
case execution time. However, using this approach is very problematic because it is
difficult to obtain safe and accurate bounds.

Position in the Design Flow

Testing is mainly performed in the later stages of systems development where code
or integrated product is ready, but test related activities may start as soon as the
project is initiated. For example, explained in terms of the V-model, preparations of
test-ware and writing abstract test cases for acceptance testing can begin as soon as
system requirements have been stated. Test case and test-ware design for system
level testing may begin when a detailed specification exists. Similarly integration
testing may start when a detailed design specification exists, and unit level testing
when unit-code is available. In principle, only the execution and verdict assignment
need to be done late. Indeed, the view taken by the “Test Management Approach”
(TMAP) to test organization is to treat testing as a process in it self with its own
phases (preparation, test generation, test execution, and completion) that are
planned and controlled. Testing is thus a separate (but not independent) process that
runs concurrently with the normal development process, and not merely as a phase
in systems development.

82 7 Tools for Verification and Validation

Existing Tools

Testing is a very broad topic and is extremely diversified, and the required tools de-
pend on what level is being tested, the quality aspect being measured, the specific
application being tested, the programming language, etc. The tools are often very
specialized and dependent on the capabilities of the specific test execution equipment.
Consequently, the range of testing tools used by industry is extensive, and only a very
limited selection can be discussed here.

Here we consider tools from the three main testing activities: test organization, test
execution and test generation:

e Test Organization
This includes management and planning of the test process, allocation of resources,
test-ware management and consolidation for regression testing.

Tools support planning and control of tests, defect management, configuration
and version control to manage the system under test version, test-ware, test results
and logs, etc. An example of a tool in this category is TestDirector (Mercury).

e Test Execution
The means for execution of the specified tests are implemented, and the specified
tests executed, and verdicts are assigned.

Test execution of low-level tests includes tools for automatically generating test
input data, controlling the execution of test cases, automatic regression testing, report
generation, automatic stub generation, code-coverage analyzers, code-complexity
analyzers, timing analysis, path analysis. Many tools that support the test execution
activity are available. Examples of such tools include VectorCAST, Telelogic
TauTester, Rational Test RealTime, Cantata, Panorama C/C++, tcov, prof, Junit.

High-level tests are typically executed using specialized environment emulators
or signal/load generators to stimulate the system under test with typical, rare, or ex-
treme use- and load-patterns. In many cases the test cases and environment behav-
iour is handcrafted, and written in C or (general purpose or specialized) scripting
languages. In some industrial sectors it is common to use Matlab/Simulink to spec-
ify environment behaviour. System level real-time constraints are often tested in
this fashion. It is important to emphasize that the use-patterns are still generated
manually in an ad-hoc fashion, although tools exist for their construction. Also the
test oracle problem is not solved, and verdict assignment is done based on ad-hoc
log-file analysis.

o Test Generation
This activity includes analysis of the system under test and the specification basis,
formulation of a test strategy, and design and construction of a set of test cases.
The state-of-the-art is to manually specify test cases in natural language and then
translate them into the C—language or (often ad hoc) test scripting language, to use
spreadsheets to list the required test actions and expected behaviour, or to use cap-
ture-and-playback tools. Few standardized test notation languages exist; an excep-
tion is TTCN (Test and Test Control Notation) most widely deployed in the tele-
com sector. However, tools are emerging that utilizes design models (some form of
state machine notation) as basis for automatic test case generation, so-called speci-
fication or model driven testing. These tools are not only model based input stimuli
generators but also computes the expected responses. Most state-of-the-art test

7.4 Testing Embedded Systems 83

automation tools emphasize test management and execution, whereas relatively
few tools exist for automatic test generation. For this reason a number of examples
of model based test generation tools is mentioned explicitly below:

o Reactis Simulink Tester http://www.reactive-systems.com/

This generates test suites automatically from Simulink / Stateflow diagrams. Each
test consists of a sequence of stimulus / response pairs, where each stimulus as-
signs an input value to each in-port in the model and each response records an out-
put value for each out-port. The test suites are generated from coverage criteria of
the specification, e.g., transition or state coverage.

o Conformiq Test Generator http://www.conformiq.com/

This tool automatically generates test cases from UML state chart models. Simula-
tions of the models can be used to generate batches of test cases that can later be
executed. Alternatively, the models can be interpreted dynamically to facilitate on-
the-fly testing. Similarly, the Statemate MAGNUM ATG (I-Logix) tool uses
model-checking and simulation techniques to derive test sequences from state chart
models.

e RT-Tester (Bremen) and TorX (University of Twente)
http://www.verified.de/e_index.html
http://fmt.cs.utwente.nl/tools/torx/introduction.html
These are both tools with an underlying formal theory and are rooted in academia.
Both tools are for on-the-fly test generation and execution, where the specification
is continually probed for relevant input stimuli and used to check the validity of
output actions. RT-tester accepts specifications in a mixture of languages, but
mainly timed CSP, whereas TorX accepts Promela or LOTOS.

o TGV (Irisa/Verimag) and Telelogic TestComposer

http://www.irisa.fr/pampa/VALIDATION/TGV/TGV.html
http://www.telelogic.com/
These are SDL-based test case generators. Given an SDL specification and a test
purpose (or a specification coverage criterion) these tools construct a test case that
meets the test purpose, and stores this in TTCN format. Phact (Philips Research)
TestGen (INT, France) also produce TTCN test suites, but uses FSM checking ex-
periment based test generation. TTCN (test and test control notation) is a standard-
ized language dedicated to the specification of abstract test cases. Currently, TTCN
mostly used in the context of telecom applications, but the new version 3 aims
much broader. Given a TTCN test suite, tools exist to aid the construct the test har-
ness, i.e. TTCN to C compilers (e.g. Telelogic Tau Tester).

A common characteristic of the few commercial tools that exists is that they are lim-
ited in the models they allow (deterministic, purely functional) and lack a theoretic
foundation. Especially, explicit and systematic handling of real-time, probabilistic,
and hybrid properties are missing.

As mentioned earlier, a large variety of testing tools for embedded systems exist.
Some pointers can be found at:

http://www.testingfags.org/
http://www.cs.queensu.ca/Software-Engineering/tools.html
http://www.aptest.com/resources.html
http://www.dacs.dtic.mil/GoldPractices/practices/mbt/index.html

84 7 Tools for Verification and Validation

Relevant Challenges and Work Directions

Although testing is the by far most important practical validation technique for com-
puter software systems employed by industry, it has long been neglected as a field of
serious research. In the past decade, however, the study of the use of (formal) models
for the systematic generation and execution of sound test suites, the validation of test
suites, and the interpretation of test results has become an established field of re-
search. This had led to the development of new theories and tools to support the test-
ing of software systems that have been successfully applied in practice. In spite of this
initial success the standard testing practices of the industry at large is still appallingly
low. The reasons for this are:

1. Lack of information/education: industrial teams are unaware of the nature
and potential of more advanced methods and tools. This must be ad-
dressed by well-focused knowledge transfer campaigns.

2. The current techniques have a great potential but need to be improved and
address a number of practically relevant issues. A prime concern is scal-
ability, e.g. with respect to the number of components and structure of the
system, and in connection with system parameters ranging over large or
infinite domains. With embedded systems this problem is aggravated by
the need to take physical features of the system environment and the tight
integration of electronics, mechanics and control software into account,
thereby requiring handling of real-time, stochastic, and hybrid properties
during modelling, test generation and execution. This requires consider-
able research efforts to refine and extend existing theories and tools.

Given the fact that the cost of testing is estimated to take up between 30 and 50% of
the development cost of embedded systems, the potential of improvements in testing
methods and tool is enormous.

The main challenges to be address include development of theory and tools for ad-
vanced model-based test-generation and execution of real-time embedded systems.
Also, transfer of knowledge and practically applicable testing methods and tools to
industry is highly needed. Central issues are:

e a sound theoretical basis for test generation and -execution for real-time, stochastic,
and hybrid behaviours;

o the use of symbolic techniques for test data selection for system parameters with
large or infinite domains;

o the study of distributed and component based observation and testing techniques;

o the development of adequate notions of test coverage;

e the development of effective tool environments for test generation, execution and
interpretation;

o testable design of embedded systems.

8 Middleware for Implementing Hard Real-Time
Systems

We have decided to cover selected typical middleware for hard real-time, as these are
privileged targets for the design flows. Our list emphasise middleware that bring some
important advantages to design flows, namely the Time-Triggered ones. The reason is
that these middleware rely on a model of communication that adequately fits hard
real-time. Complementary information related to more traditional and general purpose
RTOS can be found in part III of this roadmap.

Aspects of real-time networks are also treated in section 24.

Approach

The Time-Triggered Architecture (TTA) provides a computing infrastructure for the
design and implementation of dependable distributed embedded systems [KopO3,
Mai02]. Tea’s basic building block is a node, i.e. a self-contained composite hard-
ware/software subsystem that can be used as a building block in the design of a larger
system. Two replicated communication channels connect the nodes to build a cluster.
To avoid medium access by a faulty node guardians are used that could be either local
at the nodes, or central at hubs, if the channels are connected in star topology (see
Figure 8.1).

Host Host
CNI CNI
Host Controller Controller Host Host Host Host Host
CNI CNI CNI CNI CNI CNI
Controller Controller Controller Controller Controller Controller
Star Coupler: Star Coupler J J J %
Host Host —
CNI CNI
Controller Host Host Controller
CNI CNI
Controller Controller

Figure 8.1. Star Topology vs. Bus Topology

Communication is performed according to a previously specified, periodic time divi-
sion multiple access (TDMA) schedule. The TTA obtains its synchronous behaviour
by the progression of real-time, i.e., there exists a global system time, which is used
for the arbitration of the communication medium. In the TTA this global time is
established using the local clocks of the nodes.

In an architecture using a TDMA scheme, time is split up into (non-overlapping)
pieces of not necessarily equal durations, which are called slots. These slots are

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 85-91, 2005.
© Springer-Verlag Berlin Heidelberg 2005

86 8 Middleware for Implementing Hard Real-Time Systems

grouped into sequences called TDMA rounds, in which every node occupies exactly
one slot. The knowledge, which node occupies which slot in a TDMA round is static,
available to all components a priori, and equal for all TDMA rounds. When the time
of a node’s slot is reached, the node is provided unique access to the communications
medium for the duration of the slot. After the end of one TDMA round, the next
TDMA round starts, i.e., after the sending of the node in the last slot of a TDMA
round, the node that is allowed to send in the first slot sends again.

Design Principles

Consistent Distributed Computing Base
In a distributed TT system it is a priori common knowledge at which instant a mes-
sage of a correct node must arrive at all other nodes. This common knowledge can be
used to design a consistent distributed computing base, such as the one realized in the
time-triggered architecture with the TTP protocol [Kop93]. TTP is based on a time-
division-multiple-access (TDMA) strategy to replicated communication channels. The
TTP protocol provides, in addition to fault-tolerant clock synchronization, a distrib-
uted membership service and a clique avoidance service. The membership service of
TTP informs consistently all correct nodes about the health state of all nodes within
two TDMA rounds. If a fault outside the fault hypothesis causes the formation of
cliques, the clique avoidance mechanism of TTP will force the minority clique into a
restart in order that a consistent distributed computing base remains available at all
times. The correctness of the membership protocol of TTP has been investigated by
formal methods [Rus00].

It is impossible to maintain a consistent distributed computing base in an ET sys-
tem that has to cope with faults [Fis85].

Unification of Interfaces — Temporal Firewalls

A suitable architecture must be based on a small number of orthogonal concepts that
are reused in many different situations in order to reduce the mental load required for
understanding large systems. In a large distributed system the characteristics of these
interfaces between the identified subsystems determine to a large extent the compre-
hensibility of the architecture. In the TTA, the communication network interface be-
tween a host computer and the communication network is the most important inter-
face. The CNI appears in every node of the architecture and separates the local proc-
essing within a node from the global interactions among the nodes. The CNI consists
of two unidirectional data-flow interfaces, one from the host computer to the commu-
nication system and the other one in the opposite direction.

We call a unidirectional data-flow interface elementary, if there is only a unidirec-
tional control flow [Kop99] across this interface. An interface that supports periodic
state messages with error detection at the receiver is an example of such an elemen-
tary interface. We call a unidirectional data-flow interface composite, if even a unidi-
rectional data flow requires a bi-directional control flow. An event message interface
with error detection is an example for a composite interface. Composite interfaces are
inherently more complex than elementary interfaces, since the correct operation of the
sender depends on the control signals from all receivers. This can be a problem in
multicast communication where many control messages are generated for every unidi-
rectional data transfer, and each one of the receivers can affect the operation of the

8 Middleware for Implementing Hard Real-Time Systems 87

sender. Multicast communication is common in distributed embedded systems. The
basic TTA CNI as depicted in Figure 8.2 is an elementary interface.

Global Time
1112
Control S: Ljs Control
_tev [SRS e
= £ .
PUSH |8 S| PULL \ Receiver
= Data =
|0 O
Data Data
flow N N J flow
Cluster Communication
System

Figure 8.2. Data Flow and Control Flow at a TTA Interface

The time-triggered transport protocol carries autonomously — driven by its time-
triggered schedule — state messages from the sender’s CNI to the receiver’s CNI. The
sender can deposit the information into its local CNI memory according to the infor-
mation push paradigm, while the receiver will pull the information out of its local
CNI memory. From the point of view of temporal predictability, information push
into a local memory at the sender and information pull from a local memory at the
receiver are optimal, since no unpredictable task delays that extend the worst-case
execution occur during reception of messages. A receiver that is working on a time-
critical task is never interrupted by a control signal from the communication system.
Since no control signals cross the CNI in the TTA (the communication system derives
control signals for the fetch and delivery instants from the progress of global time and
its local schedule exclusively), propagation of control errors is prohibited by design.
We call an interface that prevents propagation of control errors by design a temporal
firewall [Kop97]. The integrity of the data in the temporal firewall is assured by the
non-blocking write (NBW) concurrency control protocol [Kop93].

From the point of view of complexity management and composability, it is useful
to distinguish between three different types of interfaces of a node: the real-time ser-
vice (RS) interface, the diagnostic and maintenance (DM) interface, and the configu-
ration planning (CP) interface [Kop0O0]. These interface types serve different func-
tions and have different characteristics. For the temporal composability, the most
important interface is the RS interface.

Temporal Composability
In a composable architecture, the integration of a system out of components proceeds
without unintended side effects. For architecture to be composable, it must adhere to
the following four principles [KOO02]:
o Independent Node Development
Principle one of a composable architecture is concerned with design at the architec-
ture level. A composable architecture must distinguish distinctly between architec-

88 8 Middleware for Implementing Hard Real-Time Systems

ture design and node design. Components only be designed independently of each
other, if the architecture supports the exact specification of all component services
provided at the level of architecture design.

e Stability of Prior Services
The stability-of-prior-service principle ensures that the validated service of a com-
ponent is not refuted by the integration of the component into a system.

o Constructive Integration
The constructive integration principle requires that if n components are already in-
tegrated, the integration of the n+1* component may not disturb the correct opera-
tion of the already integrated components.

e Replica Determinism
If fault-tolerance is implemented by the replication of nodes, then the architecture
and the nodes must support replica determinism. A set of replicated nodes is rep-
lica determinate [Pol95] if all the members of this set have the same externally
visible state, and produce the same output messages at points in time that are at
most an interval of d time units apart. The implementation of replica determinism
is simplified if all nodes have access to a globally synchronized sparse time base
and use the time to the mutual exclusion problem.

Time-Triggered Protocols

TTP/C
The TTP/C protocol is a fault-tolerant time-triggered protocol that provides the fol-
lowing services:

e Autonomous fault-tolerant message transport with known delay and bounded jitter
between the CNIs of the nodes of a cluster by employing a TDMA medium access
strategy on replicated communication channels.

e Fault-tolerant clock synchronization that establishes the global time base without
relying on a central time server.

e Membership service to inform every node consistently about the “health-state” of
every other node of the cluster. This service can be used as an acknowledgement
service in multicast communication. The membership service is also used to effi-
ciently implement the fault-tolerant clock synchronization service.

e Clique avoidance to detect and eliminate the formation of cliques in case the fault
hypothesis is violated.

In TTP/C the communication is organized into rounds, where every node must send a
message in every round. A particular message may carry up to 240 bytes of data. The
data is protected by a 24 bits CRC checksum. The message schedule is stored in the
message-descriptor list (MEDL) within the communication controller of each node. In
order to achieve high data efficiency, the sender name and the message name is derived
from the send instant. The clock synchronization of TTP/C exploits the common knowl-
edge of the send schedule: every node measures the difference between the a priori
known expected and the actually observed arrival time of a correct message to learn
about the difference between the sender’s clock and the receiver’s clock. This infor-
mation is used by a fault-tolerant average algorithm to calculate periodically a correc-
tion term for the local clock in order to keep the clock in synchrony with all other

8 Middleware for Implementing Hard Real-Time Systems 89

clocks of the cluster. The membership service employs a distributed agreement algo-
rithm to determine whether the outgoing link of the sender or the incoming link of the
receiver has failed. Nodes that have suffered a transmission fault are excluded from the
membership until they restart with a correct protocol state. Before each send operation
of a node, the clique avoidance algorithm checks if the node is a member of the majority
clique. The detailed specification of the TTP/C protocol can be found at [TTP/C].

TTP/A

The TTP/A protocol is the time-triggered field bus protocol of the TTA. It is used to
connect low-cost smart transducers to a node of the TTA, which acts as the master of
a transducer cluster. In TTP/A the CNI memory element has been expanded at the
transducer side to hold a simple interface file system (IFS). Each interface file con-
tains 256 records of four bytes each. The IFS forms the uniform name space for the
exchange of data between a sensor and its environment. The IFS holds the real-time
data, calibration data, diagnostic data, and configuration data. The information be-
tween the IFS of the smart transducer and the CNI of the TTA node is exchanged by
the time-triggered TTP/A protocol, which distinguishes between two types of rounds,
the master-slave (MS) round and the multi-partner (MP) round. The MS rounds are
used to read and write records from the IFS of a particular transducer to implement
the DM and CP interface. The MP rounds are periodic and transport data from se-
lected IFS records of several transducers across the TTP/A cluster to implement the
RS service. MP rounds and MS rounds are interleaved, such that the time-critical real-
time (RS) service and the event-based DM and CP service can coexist. It is thus pos-
sible to diagnose a smart transducer or to reconfigure or install a new smart transducer
on-line, without disturbing the time-critical RS service of the other nodes. The TTP/A
protocol also supports a “plug-and-play” mode where new sensors are detected, con-
figured, and integrated into a running system on-line and dynamically. The detailed
specification of the TTP/A protocol can be found at [TTP/A].

FlexRay

FlexRay [FRay] is a combination of two different protocols: a time-triggered TDMA
scheme and a minislotting protocol for event-triggered transmission. FlexRay also
provides a mode that makes it compatible with Byteflight [Byte] — a data bus protocol
for automotive applications. FlexRay supports different modes of operation for clock
synchronization:

e adistributed fault-tolerant midpoint algorithm for the TDMA mode, and
e a master-slave algorithm for the Byte-flight mode.

The master-slave algorithm in turn can establish a reference based on either time or
external events. The distributed midpoint algorithm serves as a reference for a set of
TDMA slots with equal length. Following this set is a dynamic segment for events.
During the dynamic segment, the slot counter for the minislotting protocol is incre-
mented. If a node wants to send any event messages, it must wait until the slot counter
has reached the unique ID assigned to the message. Event messages can have differ-
ent lengths. The advantage of minislotting over CSMA/CA is that minislotting has no
restriction in communication speed. Similar to the TTP/C, FlexRay supports two
redundant communication channels for fault tolerance. Because of the lack of pub-

90 8 Middleware for Implementing Hard Real-Time Systems

lished fault hypothesis information, we do not know which types and frequencies of
faults the protocol intends to tolerate or how FlexRay tolerates all types of single-
component failures. A consortium is developing FlexRay, and it has not yet published
a specification.

TT-CAN

Time-triggered CAN [TTCAN] is an extension of the well established event-triggered
CAN protocol. Communication involves periodic transmissions of a reference mes-
sage by a time master. This reference message introduces a system wide reference
time. Alternatively, an external event can trigger the reference message. Based on this
reference, TT-CAN defines several so-called exclusive windows. These windows are
equivalent to the time slots in a TDMA system. TT-CAN assigns each exclusive win-
dow to a specific node, which can send a data frame. In addition, the protocol defines
arbitrating windows. Within these windows, all network nodes can transmit frames
according to the event-triggered CSMA/CA access scheme used by CAN. Because
CAN preserves the original CSMA/CA channel access protocol for event messages, it
is inherently limited to a 1 Mbit/s data transmission rate. Because CAN provides only
one communication channel and a master-slave algorithm handles clock synchroniza-
tion, TT-CAN cannot tolerate arbitrary, single-component failures. An interesting
feature of CAN is its acknowledgment and retransmission mechanism, which uses the
CSMA/CA principle. The sender transmits an acknowledgment bit at the end of the
frame, which is set to the logical true condition, and a recessive state on the channel
represents this condition. If any of the receiver nodes has experienced a reception
error, that node can immediately change the state to a dominant channel level, indicat-
ing the logical false condition. This mechanism can ensure consistent message deliv-
ery for most cases.

References

[Kop03] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceedings of the
IEEE, Special Issue on Modelling and Design of Embedded Software, 2003.

[Mai02] R. Maier, G. Bauer, G. Stoger and S. Poledna. Time-Triggered Architecture: A
Consistent Computing Platform. IEEE Micro, 2002, Volume 22(4) pp. 36-45.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability [real-time embedded
systems]; Computing & Control Engineering Journal, Volume 13(4), 2002, pp. 156
-162.

[Kop93] H. Kopetz and G. Gruensteidl. TTP — A Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems. In Proceedings of the 23rd IEEE International Sym-
posium on Fault-Tolerant Computing (FTCS-23). 1993. Toulouse, France: IEEE
Press.

[Fis85] M. Fischer, N. Lynch and M. Paterson. Impossibility of Distributed Consensus
with one Faulty Processor. Journal of the ACM, 1985. 32(2): p. 374-382.

[Rus00] J. Rushby. Formal Verification of Group Membership for the Time-Triggered
Architecture. 2000, SRI International: Menlo Park, CA.

[Kop99] H. Kopetz. Elementary versus Composite Interfaces in Distributed Real-Time
Systems. In Proceedings 4th International Symposium on Autonomous Decentral-
ized Systems, pages 26-33, 1999.

[Kop97]

[Pol95]

[Kop93]

[Kop00]

[TTP/C]
[TTP/A]

[Byte]
[FRay]
[TTCAN]

8 Middleware for Implementing Hard Real-Time Systems 91

H. Kopetz and R. Nossal. Temporal Firewalls in Large Distributed Real-Time
Systems. In Proceedings of IEEE Workshop on Future Trends in Distributed Com-
puting, pages 310-315, 1997.

S. Poledna. Fault-Tolerant Real-Time Systems: The Problem of Replica Determin-
ism. Kluwer Academic Publishers. 1995.

H. Kopetz and J. Reisinger. The Non-Blocking Write Protocol NBW: A Solution
to a Real-Time Synchronization Problem. In Proceedings of the 14th Real-Time
Systems Symposium, pages 131-137, 1993.

H. Kopetz. Software Engineering for Real-Time: A Roadmap. In Proceedings 22nd
International Conference on Software Engineering, pages 201-211, 2000.

TTTech Computertechnik AG. Specification of the TTP/C Protocol.

OMG. Smart Transducer Interface. Initial Submission, Object Management Group,
2001

http://www.byteflight.de/homepage.htm

http://www.flexray.com/

http://www.can-cia.de/can/ttcan/

9 Review of Some Advanced Methodologies

9.1 The Setta Project

Authors

C. Scheidler DaimlerChrysler
P. Puschner TU Vienna

S. Boutin Renault

E. Fuchs Dependable Computer Systems
G. Gruensteidl Alcatel Austria

Y. Papadopoulos University of York
M. Pisecky TTTech

J. Rennhack EADS Airbus

U. Virnich Siemens
Introduction

The overall goal of the project SETTA (Systems Engineering for Time Triggered
Architectures) was to push time-triggered systems—an innovative European-funded
technology for safety-critical, distributed, real-time applications such as fly-by-wire
or drive-by-wire—into future vehicles, aircraft, and train systems. To achieve this
goal, SETTA focused on the systems engineering of time-triggered systems. The
SETTA consortium consisted of leading European companies in the transport and
component supplier sector (DaimlerChrysler, Renault, Airbus Germany, Alcatel Aus-
tria, and Siemens VDO), innovative European high tech start-ups (TTTech,
DECOMSYS), and universities with an excellent reputation in real-time (University
of Technology at Vienna) and safety-critical systems (University of York).

SETTA addresses the systems engineering of safety-critical distributed real-time
systems with a special focus on time-triggered architectures (Kopetz and Gruensteidl,
1994; Scheidler, et al., 1997). An innovative methodology and a corresponding engi-
neering environment is developed which aims for a higher maturity at early develop-
ment steps. Key features are the support for virtual systems integration and the tighter
interconnection between the functional development process and the safety analysis
process. The supporting tool components are designed and implemented in the course
of the SETTA project. The methodology is evaluated by pilot applications from the
automotive, aerospace, and railway domain.

The SETTA Methodology

Current Drawbacks

Figure 9.1 shows the 3V lifecycle-process model which will be used to illustrate the
weaknesses in engineering of time-triggered systems. The original 3V model has been
firstly published by Mosnier and Bortolazzi (1997). The 3V model in Figure 9.1 has
been slightly adapted. Phases which traditionally put a major focus on the time-

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 92 -102, 2005.
© Springer-Verlag Berlin Heidelberg 2005

9.1 The Setta Project 93

triggered nature of the target system are coloured in dark grey. The 3V model consists
of three Vs representing the system simulation, prototyping, and product development
stages.

The first V covers the definition and simulation of the overall system functionality.
Software-in-the-loop simulation (SIL) is the primary methodology applied.

System Valid. by Prototype Prototype System System

Definition Simulation Definition Validation Definition Validation
Algorithm Global FMEA Verification Global FMEA Verification
Development Design FTA Design FTA
Local Verification Local Verification
Design Design
Coding Coding

Figure 9.1. 3V process model adapted on time-triggered systems

Implementation aspects, including the “time triggered” property of the target system,
are not considered in this systems-engineering phase.

The second V is characterized by rapid prototyping based on Hardware-in-the-loop
simulation (HIL). In this phase, hardware specific parameters become important. The
global design covers the mapping of tasks to computer nodes and the determination of
the message scheduling between the nodes. The local design addresses the scheduling
of tasks on each node.

The third V addresses the system development for the final target hardware. A
typical problem at this stage is the limited performance of the target system. Dead-
lines met by the oversized prototypical hardware might not be met on the target--a
situation that is not acceptable for the safety-critical systems targeted at in the SETTA
project.

At least four drawbacks in this lifecycle-process model can be identified.

1. There is a gap between the first and the second V. Due to constraints of the
target system, the assignment process of the second V may fail, thus invali-
dating the result of the preceding simulation stage of the first V. For exam-
ple, a distributed control application running stable at the first V might be-
have differently due to the timing constraints caused by message passing
between computer nodes.

2. A schedule verification tool on the global design level is lacking. The veri-
fication tool is needed to check the consistency of the message descriptor
list MEDL; the MEDL determines the message schedule and thus the run-
time behaviour of the final system). A verification tool is particularly de-
manded for the acceptance of the time-triggered technology in the aero-
space industry.

3. A timing verification tool on the local design level is lacking. Executing
code and measuring its execution time on the target is the current state-of-
the-art. However, this technique cannot guarantee to yield safe upper
bounds of the execution time.

94 9 Review of Some Advanced Methodologies

4. The functionnal development process and the safety analysis process are
decoupled. Tools supporting Fault-Tree Analysis (FTA), Event-Tree
Analysis (ETA) and Failure Mode and Effects Analysis (FMEA) are not
connected to simulation tools like Matlab/Simulink.

SETTA Design Flow Model
The aim of the SETTA project is to propose a design-flow model for time-triggered
systems that overcomes the four shortcomings identified before.

System Valid. by Prototype Prototype System System
Definition Simulation Definition Validation Definition Validation
Gl. Design FMEA ' Verification Global FMEA Verification Global FMEA Verification

TTACOM FTA TTPverify Design FTA Design FTA

i ocal fication Local Verification
Development it WCET tool Design
Coding \—}g/

Figure 9.2. SETTA 3V design flow model

A key component in the SETTA approach is a suite of simulation-building blocks
provided for the Matlab/Simulink environment. The simulation building blocks sup-
port virtual systems integration, in other words, the gap between the first V and the
second V is closed. Time-triggered systems are, in contrast to event-triggered sys-
tems, fully predictable in their runtime behaviour.

SETTA exploits this predictability at the modelling stage. Simulation-building
blocks model not only the core functionality of a system, but also the distributed na-
ture and the used communication mechanisms, which both affect the system’s behav-
iour. E.g., the effects of value discretisation, communication delays, and fault-
tolerance, which are typically abstracted in a system model and are a significant
source of problems in later implementation stages, are much easier dealt with, if they
are already part of the system model. Based on the virtual systems integration, system
manufacturers and component suppliers can co-operate in a much tighter way.

A schedule verification tool for the global design level is developed. Verification
on the global design level, currently performed at the prototyping or system develop-
ment stage, is mapped to the simulation stage. The verification tool developed within
the SETTA project verifies the MEDL which controls the simulation building blocks.
A timing verification tool for the local design level is developed. A specific WCET
tool for the simulation-building block set analyses the timing behaviour of the code
generated for each of the building blocks. An algorithm for fault-tree synthesis will be
developed and implemented which provides an intelligent interface between a func-
tional modelling tool (Matlab/Simulink from The Mathworks) and a fault tree analysis
tool (FT+ from Isograph).

To summarize, the main goal is to achieve a high maturity at early development
stages based on virtual systems integration. Activities currently performed at proto-
typing or product development stage are mapped to the simulation stage, as depicted
by the arrows in Figure 9.2. Although the tool components are developed by four

9.1 The Setta Project 95

different partners, SETTA aims for a fully integrated systems engineering environ-
ment. To achieve this goal, the tool components will be linked via different interfaces
which will be sketched in the following.

The simulation building blocks are triggered by a configuration file which de-
scribes the message scheduling on the bus interconnecting computer nodes. This file
can be checked by the scheduling verification tool. The WCET analysis will be inte-
grated into the Matlab/Simulink environment and is therefore also connected to the
simulation building blocks. The fault-tree synthesis algorithm extracts the structural
information out of Matlab/Simulink files which can be extended with the simulation
building blocks.

SETTA Tool Components and Validators

Tool Components

A suite of simulation-building blocks — product name: TTACOM - is developed in
the SETTA project which supports the virtual systems integration (involved partner:
Dependable Computer Systems). TTACOM is a Matlab/Simulink block set that al-
lows the development of distributed applications, including the Time-Triggered Pro-
tocol (TTP) bus. It contains blocks for configuring clusters, reading and writing mes-
sages, controlling the simulation progress over time, and a detailed graphical TTP
interface.

A schedule verification tool — product name: TTPverify — is developed in the
SETTA project (involved partner: TTTech). The purpose of this component is to
check the message descriptor list (MEDL) of time-triggered systems. The communi-
cation in time-triggered systems is statically scheduled. The communication control-
lers transmit data according to a predefined schedule which is stored in dedicated data
tables. To ensure correct system functionality, it is therefore of the utmost importance
to verify that these automatically generated data tables satisfy the overall require-
ments. For this purpose, a dedicated schedule verification tool will be specified which
can read the data tables and verify that they meet the requirements.

The WCET analysis tool that is being developed in the course of the SETTA pro-
ject (Kirner 2000) derives the WCET by means of static code analysis (involved part-
ner: Technical University of Vienna). This stands in contrast to the widely used
method of determining the WCET by measuring the duration of representative task
executions. This latter approach cannot provide a guaranteed execution-time bound.

Validators

The objective of the automotive validator is to evaluate the results of the SETTA
project in the automotive domain (involved partners: DaimlerChrysler, Renault, and
Siemens Automotive). The architecture chosen to be the validator for SETTA is a
part of an automotive chassis control system which consists of a brake-by-wire
system and an adaptive cruise control simulator. The brake-by-wire system consists
of a redundant brake pedal system provided by DaimlerChrysler and a brake actua-
tor provided by Siemens Automotive. The adaptive cruise control simulator pro-
vided by Renault models the dynamics of a vehicle on a highway. The system has
strict performance, timing, and safety requirements and contains two distributed
control loops.

96 9 Review of Some Advanced Methodologies

The objective of the automotive validator is to evaluate the results of the SETTA
project in the aerospace domain (involved partner: EADS Airbus). The architecture
chosen to be the validator for SETTA is the cabin pressure regulation system. This
system has strict performance, timing and safety requirements. Two independent
pressure control functions will be realized for backup reasons and will be imple-
mented as redundant components. Both controller functions will receive appropriate
information such as planned flight profile, current position, altitude, and current cabin
pressure from the air data/inertial reference system. Taking these parameters and the
actual cabin pressure into account, the pressure controller will calculate and command
the desired openings for the outflow valves.

In the SETTA project, Alcatel Austria provides the specific requirements from the
railway domain and validates the SETTA engineering methodology and tools by us-
ing a typical railway application. The main focus of the railway validator is the
evaluation of the schedule verification and timing verification tool.

References

[1] Kirner, R., R. Lang, P. Puschner (2000). Integrating WCET Analysis into a Mat-
lab/Simulink Simulation Model . Submitted for DCCS 2000: 16th IFAC Workshop
on Distributed Computer Control Systems, Sydney, Australia, 29th November —
Ist December.

[2] Kopetz, H., G. Gruensteidl, (1994). TTP — A Protocol for Fault-Tolerant Real-
Time Systems. IEEE Computer, Vol. 24 (1), pp. 14-23.

[3] Mosnier, F., J. Bortolazzi, (1997). Prototyping Car-Embedded Applications. In
Advances in Information Technologies: The Business Challenge, pp.744-751, 10S
Press.

[4] Scheidler, C., G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, C. Temple. (1997). Time-

Triggered Architecture— (TTA). In: Advances in Information Technologies: The
Business Challenge, pp. 758-765. 10S Press.

9.2 The SafeAir Project

The SafeAir project (http://www.safeair.org) main goal was to substantially improve
the design and development process of high complexity systems for aerospace and
other industrial applications of similar complexity, allowing maintaining the high
level of dependability in the face of an exponential growth in functionality. The pro-
ject has developed tools, training and the supporting methodology for designers of
embedded systems. The emphasis is on formal development of systems, providing
formal specification, model checking technology, qualification analysis and validated
code generation.

An ASDE (Avionics System Development Environment) tool-set implementing
synchronous technologies, methods and tools, that meet the high dependability needs
of real-time embedded systems with high complexity, has been developed and evalu-
ated in the SafeAir framework. This integrated environment strongly builds on exist-
ing best in class commercial front-end tools and on the verification and validation
technologies developed in the SACRES Esprit project (http://www.tni.fr/sacres/), now
expanded to an open tool-set, responsive to user needs.

9.2 The SafeAir Project 97

Authors

Drora Goshen and Vered Gafni, Israel Aircraft Industries. The author of the present
version is Thierry Gautier, INRIA. The SafeAir project was headed by Philippe Bau-
freton, Hispano-Suiza. Other participants were: Israel Aircraft Industries, Airbus
France, Airbus Deutschland GmbH, Siemens then Infineon, INRIA, OFFIS, the
Weizmann Institute, TNI-Valiosys, I-Logix, Telelogic.

Architecture of the ASDE Tool-Set

The ASDE is a coordinated open tool-set, which allows:

e The creation of coherent models of the System Under Development by using in a
coordinated manner various modelling and analysis tools.

e The investigation and maintenance of models created by using the coordinated
tool-set.

e The formal verification of the global model and sub-models with respect to the
required properties.

e The simulation of the behaviour specified by the overall model and by its sub-
models.

e Code generation & validation.

e Document generation.

Following are the main building blocks of the ASDE tool-set:

e ModelBuild (http://www.tni-valiosys.com/) is the framework of the design and
simulation tools (architectural description editor, Statemate, Sildex, SCADE and
Simulink).

e ModelVerify is (in a conceptual view) the framework of the verification and analy-
sis tools BOOST (http://www.infineon.com/) and HYBRID (http://www.offis.de/).

e SCADE KCG (http://www.esterel-technologies.com/) is a compiler that generates
executable C code of the design model or sub-models.

o CVT (http://www.wisdom.weizmann.ac.il) is a code validation tool applied either
to the C code (with respect to the SCADE source), or to machine code (with re-
spect to the C source).

e Polychrony http://www.irisa.fr/espresso/Polychrony is the IRISA synchronous
design academic prototype (based, as Sildex, on the Signal language), provided as
an added toolbox to ASDE, and that can be used for advanced experiments.

The environment allows an easy and transparent transformation of data from one tool
to the next one.

Methodology

An ASDE Implementation Process Methodology has been provided during the
SafeAir project to support the tool-set. The ASDE supports the following activities
throughout the different phases of a typical system development cycle:

98 9 Review of Some Advanced Methodologies

Development Cycle

Phase Activity Activity Description
No. | description
1 Specification Not supported by ASDE
2 | Design Properties Specification Establish formal requirements
Conceptual Modelling Establish Functionality & Op-
eration Concepts (Functional
Physical Modelling Analysis).

Evolve alternative designs

3 | Analysis and control | Simulation Verify (either by simulation or
formal verification) that each

. . design meets requirements.
Formal Verification & 4

4 | HWand S'W Code Generation S/W Implementation
Implementation

5 Unit integration & Code Validation S/W unit testing
testing

6 | System Integration Not supported by ASDE
& Verification

Figure 9.2 presents a top-level view of the Development cycle, the activities sup-
ported by ASDE, and their inter-relations. Each of these development activities con-
sists of a number of sub-activities that altogether concur at getting the result. The
System Engineering Process activities are used iteratively during the development
cycle. Therefore, the Implementation Process Methodology does not dictate any par-
ticular method of going through these activities, however, a recommended develop-
ment process is shown in Fig. 2. It shows that conceptual and physical modelling are
carried out concurrently, while using simulation as an analysis feedback for the de-
sign. In parallel, properties specification is performed. A formal verification of the
conceptual model can be done while an extended verification will be done on the
physical model, see below for the meaning of these terms.

System Design

The System Design Phase assumes as an input the natural language system specifica-

tion, and generates a global system design in terms of computational activities parti-

tioned into a concrete physical architecture and a properties specification of the system.
The System Design process consists of the following activities (Fig. 9.1):

o Conceptual Modelling
A conceptual model describes the partitioning of the system into conceptual (“logi-
cal”) subsystems/objects, the behaviour and the functional capabilities provided by
them, and data/signal flows between them. The Implementation Process Methodol-

9.2 The SafeAir Project 99

ogy is intended for the development of large-scale systems that consist of a number
of subsystems that operate concurrently, while interacting, to achieve the global
system functionality. In terms of the operational model we call such systems
“Globally Asynchronous, Locally Synchronous (GALS)”.

The ASDE tool-set provides several tools for the conceptual model development
and presentation (these equally apply to global behavioural and functional model
views). The initial design starts with an Architectural Editor that provides for
specification of asynchronous interconnected components. Then, each component
is separately refined as a synchronous module. For that purpose, Sildex, SCADE,
or Statemate are appropriate tools that completely support synchronous conceptual
modelling. Moreover, the tool-set allows integrated specifications that employ the
specific strength of each tool to generate better descriptions. It also allows the in-
corporation of special purpose tools such as MATLAB/Simulink.

Physical Modelling

The physical design model represents the implementation of the conceptual model
within a concrete physical architecture. The physical architecture describes the sys-
tem partitioning into physical subsystems/components and their interconnections.
The physical architecture describes the architectural modules (e.g., air-plane, en-
gine, computer, processors, etc.), channels through which signals flow, and their
connection to the physical modules. The architecture is refined by iterative decom-
position of the physical system into physical subsystems. The signal channels are
refined as needed by decomposition into lower-level channels, to suit the specifica-
tion of lower-level architectural modules. The physical architecture is usually de-
veloped after the conceptual modelling, but it can be done concurrently.

After review and approval of the conceptual and architectural models (see simu-
lation and formal verification sections, below) the physical model is actually con-
structed by allocation of the behavioural and functional elements of the conceptual
model to elements of the physical architecture, and signals flowing among them
are mapped to ports and channels.

Properties specification

The purpose of this activity is to provide a formal presentation of properties re-
quired for formal verification as described in the next section. State and temporal
properties can be formally expressed using the Properties Specification Language
(PSL) provided by ModelVerify. The input for this activity—called system formal-
ization—is the natural language specification in the first place, but also sometimes
common knowledge of the physical environment need to be formalized as well in
order to enable correct verification process described in the next section. In gen-
eral, properties must be classified either as “assertions” (assumed to be true in any
possible behaviour of the system under development), or “requirements” (required
to be true in any possible behaviour of the system under development). Naturally,
assertions and requirements play different roles in the verification process (as-
sumed versus to be verified). Hence, the correct classification of properties—under
the developer responsibility—is essential to the correctness of the verification proc-
ess and must be concluded by a careful analysis of the natural language specifica-
tion. ModelVerify provides for managing assertions and requirements in different
repositories. From a methodological point of view, since it is not realistic to have a

100 9 Review of Some Advanced Methodologies

“total” formal verification, critical requirements must be identified and verified
(this also means that only relevant assertions must be expressed formally).

A major quantitative improvement of the formal verification capabilities can be
achieved by abstractions. By this technique, the data (states, etc.) are analyzed to
identify equivalence classes. Thus, the size of explored graph is considerably re-
duced. ModelVerify is capable of performing some abstractions automatically. The
major abstraction efforts, however, remain a developer due.

System Analysis

o Formal Verification
Formal verification is intended for verification of temporal properties, required of
the system behaviours, using algorithms rather than simulation. Formal verification
is a crucial technique regarding critical systems since it results in an absolute an-
swer whether a design satisfies the system requirements, or not (in case of refuta-
tion it also provides a counter example). This is in contrast with simulation that
provides only partial coverage of the possible behaviours. However, formal verifi-
cation cannot fully replace simulation due to its complexity.

Formal verification should be carried out in various stages of the system devel-
opment depending on the specific activity. Also, like simulation, formal verifica-
tion can be applied to partial designs as well as to the complete model. Formal
verification consists of the following activities: 1) Properties Consistency Check.
2) Model Checking.

Properties consistency check is intended to verify that the specification ex-
pressed in the Properties Specification Language is consistent in the sense that it
does not contain logical contradictions (e.g., requirements that contradict each
other).

Model Checking is an algorithm that gets as input the assumed properties speci-
fied in the previous stage, the System under development specification produced
using ModelBuild, and a property to be verified—one of the required properties re-
pository. Then, the model checking is activated and after a while the developer will
get the result: either the required property is verified, or the required property is not
satisfied in which case an example of a behaviour that falsifies the requirement will
be given. Also, it should be possible to run automatically a simulation of the falsi-
fying behaviour in order to locate the mishap. Nevertheless, it must be emphasized
that often verification failures are due to under-specification of assumptions, mis-
understanding of the natural text intension, or just a mistake in its formalization. In
general, there are two verification stages: first, the “Formal Verification” that is
carried out on the functional design; second, the “Extended Formal Verification”
which considers in addition the physical architecture model.

o Simulation
Simulation is intended to verify the semantic correctness, completeness and consis-
tency of the conceptual and the physical models. It is based on running the (execu-
table) model design through pre-defined scenarios of the (simulated) environment
behaviour, and mental inspection of the results with respect to the system specifi-
cation. Simulation is first applied to the functional model in order to detect concep-
tual errors. Then, simulation is carried out again after completion of the physical
model. This time, it is intended to verify that the system functionality after physical

9.2 The SafeAir Project 101

subsystems partitions, and insertion of communication go-betweens, is still consis-
tent with the conceptual design. Usually, simulation is carried out in two levels:
subsystem level where part of the system is isolated and locally simulated, and sys-
tem level where the system is checked as a whole.

S/W Implementation

o Code generation
Following verification of the model, investigation of its properties through simula-
tion and adequate review, code is generated for architectural modules identified as
modules to be implemented in software. Code is also generated for simulation pur-
poses. The code is generated by the ASDE (SCADE/Lustre language) for each
CPU, based on the allocation of activities (functions) to architectural (physical)
modules, performed within the framework of the coordination of the conceptual
and design models.

e Cross compilation
The generated C code for each target CPU is compiled by a suitable cross compiler
outside the ASDE.

S/W Unit Testing (Code Validation)

As the last step in the generation of operational software, the CVT (Code Validation
Tool) validates automatically the correctness of the generated code for each proces-
sor, with respect to the SCADE/Lustre design. When the CVT is invoked to validate
C code (CVT-C), the generated C code is compared to the SCADE/Lustre design for
each processor: it verifies that the target C code is a correct implementation of the
“source” specification in Lustre. When the CVT is invoked to validate the binary code
(CVT-A), it verifies the translation from C to the assembly code.

Beyond SafeAir

Strong Points

The SafeAir methodology and its implementation through the ASDE toolset essen-
tially rely on commercially available frameworks and tool bases; it does not require
extensive developments of brand new technologies. Its strong points can be catego-
rized as follows:

o Moving from V-shaped to Y-shaped lifecycle. In this metaphor, the Y is regarded as
a smaller “v” put on the top of the vertical bar. The vertical bar represents auto-
matic code generation together with automatic code validation. As a result, the “v”
part of the cycle concentrates on higher level phases of the design flow.

e Providing a strong formal basis. All tools of the ASDE are supported by a strong
formal semantic basis; the meaning of each and every notation is made very pre-
cise. This makes it possible to rely on automatic embedded code generation, even
at a certified level (by using the SCADE certified code generator). As a wider and
more flexible mean to qualify the generated code, very advanced procedures of
automatic code cross-validation are proposed; they allow to check whether some
generated code actually refines its associated source code; this is different from
certifying the code generator, it rather consists of certifying a given pair of {source,

102 9 Review of Some Advanced Methodologies

object} codes. Then, following a more established background, extensive and pow-
erful verification tools dedicated to earlier phases of the design are available.

o Architecture of the embedded software is addressed. While several technologies
are now commercially available to generate embedded code for individual proces-
sors, the generation of the entire embedded architecture is still far from being rou-
tine. A central difficulty is the distributed nature of such architectures, and its (fre-
quent) hybrid synchronous/asynchronous style. The SafeAir methodology has pro-
vided a breakthrough in this respect by providing the ModelBuild service, which
allows emulating the deployment of a design over a distributed, possibly asynchro-
nous, architecture; this is again supported by a formally sound basis. This is a sig-
nificant step toward virtual architecture exploration.

o [ntegration of the different frameworks. The smoothness of the design flow is rec-
ognized as a key limiting factor in all methodologies relying on the combination of
different frameworks. The SafeAir project has addressed this issue by using the
Lustre-SCADE formalism as a common semantic platform.

Limitations
They can be categorized into two broad classes:

e The scope of the SafeAir methodology is too narrow. The integration with higher
stages of the design flow needs to be improved. Firstly, the integration with scien-
tific engineering tools and technologies is only partial. Secondly, the issue of how
to combine the advantages of the ASDE with the broader scope of UML method-
ologies has not been considered. Today, we see typically two concurrent progress
directions:

o Research toward integrated tool suites, from scientific engineering down to ar-
chitecture;

o Efforts aiming at extending the benefits of UML in the technical and real-time
industrial areas.

o With no doubt this concurrency is an obstacle toward progress.

e Virtual exploration is not provided to the needed level. Using the ASDE, the de-
signer can generate models of his application deployed on his architecture. Unfor-
tunately, he cannot back-animate his high-level specification in parallel with the
modelled architecture. To say it differently, he knows his high-level spec, he sees
the resulting detailed design, but he cannot see, by simulation, the link between
both. This prevents the designer from having, at the same time, tightly related high-
level and detailed views of his design. But it is precisely the essence of design by
virtual exploration to provide this facility. On the other hand, the formal verifica-
tion of programs is performed on the C code generated from these programs. This
is in the most general case, a too low-level approach since it prevents from verify-
ing properties on partial specifications, for which code cannot be generated. A
more general approach would be to check properties on partial (non deterministic)
designs; these partial designs would be progressively refined toward more detailed
designs from which, finally, code can be generated. In this approach, the proof sys-
tem should be applicable at any level of the model.

10 Executive Overview on Component-Based Design
and Integration Platforms

Component-Based Design is expected to increase software productivity, by reducing
the amount of effort needed to develop, update, and maintain systems. There are two
main benefits expected from component technology. First, it gives structure to system
design and system development, thus making system verification and maintenance
more tractable. Second, it allows reuse of development effort by allowing components
to be re-used across products and in the longer term by paving the way for a market
for software components.

Component based technology has become widespread in general program devel-
opment with platforms such as JavaBeans/EJB from Sun, .NET/COM from Microsoft,
and the manufacturer independent CORBA initiative from OMG. Adoption for the
development of embedded and real-time systems is significantly slower. Major rea-
sons are that real-time systems must satisfy requirements of timeliness, quality-of-
service, predictability, that they are often safety-critical, and that they must obey
stringent constraints on resource usage (memory, processing power, communication).
Existing wide-spread component technologies are inherently heavyweight and com-
plex, incurring significant overheads on the run-time platform; they do not in general
address timeliness, quality-of-service or similar extra-functional properties important
for embedded and real-time systems. Yet, in their present form they are used in large,
distributed, and not safety critical systems, e.g., in industrial automation, but they are
unsuitable for deployment in most embedded real-time environments.

For small real-time systems, component technologies have been developed for par-
ticular classes of systems, often as extensions of existing real-time operating systems
within specific development organizations, and their adoption outside these organiza-
tions is limited. To avoid large and resource-consuming run-time platforms, they do
not in general support run-time deployment of components. Composition of compo-
nents into (sub)systems is rather performed in the design environment, prior to compi-
lation, thus enabling static prediction of system properties and global optimisation of
resource utilization..

Based on a survey of selected component technologies in different industrial sec-
tors and the needs of industry, we find two important obstacles to wider adoption of
component technology for embedded and real-time systems.

e There is a lack of widely adopted standards for component technology. A compli-
cating factor is that different industrial sectors have different priorities concerning
the main characteristics offered by such a standard.

e A component technology for real-time systems should support specification and
prediction of timing and QoS-properties. Solutions to these problems are not well
enough developed and not well enough integrated into development tools.

Therefore we survey techniques for handling different functional and extra-functional
properties of component and system behaviour. A conclusion is that techniques exist

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 103 —113, 2005.
© Springer-Verlag Berlin Heidelberg 2005

104 10 Executive Overview on Component-Based Design and Integration Platforms

for handling such properties, but that further research is needed to improve the theory
of specifying and composing components, and to develop tool support.

After a survey of technical characteristics of main component technologies, we
also survey some efforts for standardization of component models and modelling
languages, paying special attention to developments pertinent to embedded and real-
time systems.

The survey concludes with a summary of important issues for success of compo-
nent-based development of embedded systems. Many of these are concerned with
extra-functional properties, and the special characteristics of embedded systems. Sat-
isfactory solution of these issues is considerably more challenging than the current
solutions to component-based systems. We indicate possible ways to arrive at solutions.

10.1 Motivation and Objectives

Component-Based Design and Development is perceived as key for developing ad-
vanced real-time systems in a both cost- and time effective manner. It can be seen a
qualitative jump in software development methodology, comparable to the transition
from assembly language programming to high level problem oriented languages
around 1970, or the transition from procedural programming to object oriented pro-
gramming around 1990.

Component Based Design is seen to increase software productivity, by reducing
the amount of effort needed to develop, update, and maintain systems. Benefits in-
clude the following:

e Giving Structure to Systems under Development. Component technology sup-
ports the structuring of complex systems early in the development process. In this
way, many integration and maintenance problems can be addressed early, at lower
cost.

o Reuse of Development Effort. Components can be re-used across several prod-
ucts or even product families. Re-use is made easer by defining product line archi-
tectures, in which components have given roles. New products can then re-use
components of previous products by slight modification or parameterisation.

e Supporting System Maintenance and Evolution. Systems are easier to maintain
if they have a clear structure, e.g., as a system composed of components. For leg-
acy systems, it sometimes pays off to decompose them into components in order
to make future upgrades and maintenance easier.

e Enabling a Market for Software Parts. Standardized component specifications
and technologies allow to integrate components produced by different suppliers.
Currently, for embedded systems, only large components are transferred between
different organizations, e.g., RTOS, databases, process and control components. If
a wider class of components were re-usable across a wider class of systems, it
would give higher returns on development investment. One vision for the future is
that application development follows a “drop & glue” approach, picking compo-
nents from a library incorporating the intellectual property of the system house, as
well as standardized components. This would give the system developer a range of
re-usable components supporting all layers in a system architecture. This vision
includes an open market of components, which are interoperable, and where inte-
gration problems are solved by standardized component frameworks.

10.2 Essential Characteristics 105

Component technology has gained wide adoption in the area of business data process-
ing, and is under continuous development. There are also signs of adoption for the
development of embedded and real-time systems. However, the pace is significantly
slower. Major reasons are that other concerns are of great importance for the devel-
opment of such systems. Real-time systems must satisfy constraints on extra-
functional properties such as timing (e.g., meeting deadlines), quality of service (e.g.,
throughput), and dependability (including reliability, safety, and security). It is impor-
tant that functional and extra-functional properties be predictable, in particular if the
system is safety-critical. Embedded systems must often operate with scarce resources,
including processing power, memory, communication bandwidth. These concerns are
not addressed by widely used component technologies.

There are many challenges to overcome in order to develop component technology
that is suitable for the many particularities of embedded systems. Therefore, this
roadmap presents a survey of selected topics important for component-based design
of embedded systems, based on which directions for further work are outlined. Our
aim is that it will serve as a guide to researchers whose work is motivated by the
emergence of component-based development in embedded systems design., It assists
by providing a survey of existing background work, and by providing directions for
advancing the state-of-the-art. The selection of topics is, of course, coloured by the
background of the authoring team, which has a strong representation of researchers
particularly engaged in modelling, specification, and verification of embedded and
real-time systems.

10.2 Essential Characteristics

Basic Concepts

There is some disagreement about the precise definition of basic terms in component
based software development. We therefore give a short treatment of basic concepts
and define how they will be understood in this document.

In component based software development a system is structured using compo-
nents. In classic engineering disciplines, a component is a self-contained part or sub-
system that can be used as a building block in the design of a larger system. It pro-
vides specific services to its environment across well-specified interfaces. Examples
are an engine in an automobile, or the heating furnace in a home. Ideally, the devel-
opment a component should be decoupled from development of the systems in which
it is used. Components should be reusable in different contexts.

In software engineering, there are many different suggestions for precise defini-
tions of components in component based software development. According to
[BBB'00], advocates of software reuse equate components to anything that can be
reused; practitioners using commercial off-the shelf (COTS) software equate compo-
nents to COTS products; software methodologists equate components with units of
project and configuration management; and software architects equate components
with design abstractions.

The best accepted definition in the software industry world is based on Szyperski’s
work [Szy98]:

106 10 Executive Overview on Component-Based Design and Integration Platforms

A component is a unit of composition with contractually specified interfaces and
fully explicit context dependencies that can be deployed independently and is
subject to third-party composition.

We largely follow this definition and in particular stress the separation between com-
ponent implementation and component interface. Ideally, there should be no context
dependencies that are not captured by the interface. However, in practice interfaces
capture only certain aspects of a component’s behaviour.

Szyperski [Szy98] tends to insist that components should be delivered in binary
from, and that deployment and composition should be performed at run-time. In this
report, we take a more liberal view, and consider a component as a software imple-
mentation that can be executed on a physical or logical device. This includes compo-
nents delivered in high-level languages, and allows build-time (or design-time) com-
position. This more liberal view is partly motivated by the special requirements for
embedded systems, as will be discussed in section 11.3.

There are two prerequisites that enable components to be integrated and work to-
gether:

e A component model specifies the standards and conventions that components must
follow to enable proper interaction.

o A component framework is the design-time and run-time infrastructure that man-
ages resources for components and supports component interactions.

There is an obvious correspondence between the conventions of a component model
and the supporting mechanisms and services of a component framework.

Component models and frameworks can be specified at different levels of abstrac-
tion. Some component models (e.g., COM) are specified on the level of the binary
executable, and the framework consists of supporting OS services. Some component
models (e.g., JavaBeans, CCM, or .Net) are specified on the level of processor inde-
pendent byte code. And yet other component models (e.g., Koala) are specified on the
level of a programming language (such as C). The framework can contain “glue code”
and possibly a runtime executive, which are bundled with the components before
compilation.

In component based system development, there is a clear distinction between two
perspectives of a component.

e The component implementation is the executable realization of a component,
obeying the rules of the component model. Depending on the component model at
hand, component implementations are provided in binary form, byte code, compi-
lable C code, etc.

e The component interface summarizes the properties of the component that are
externally visible to the other parts of the system, and which can be used when de-
signing the system. An interface may list the signatures of operations, in which
case it can be used to check that components interact without causing type mis-
matches. An interface may contain additional information about the component’s
patterns of interaction with its environment or about extra-functional properties
such as execution time; this allows more system properties to be determined when
the system is first designed. An interface that, in addition to information about op-

10.2 Essential Characteristics 107

eration signatures, also specifies functional or extra-functional properties is called
a rich interface.

The component implementations must of course conform to the properties stated in
their interfaces. In principle this presupposes that there are procedures and mecha-
nisms for checking or enforcing conformance, such as verification (simulation, test-
ing, run-time monitoring, formal verification, etc.) and code generation.

The information in component interfaces facilitates also the check for interopera-
bility between components. Rich interfaces enable verification of system require-
ments and prediction of system properties from properties of components. This allows
system properties to be verified and predicted early in the development lifecycle,
enables early design space exploration, and saves significant effort in the later system
integration phase. A research challenge today is to develop methods for predicting
system properties from component properties.

A contract is a specification of functional or extra-functional properties of a com-
ponent, which are observable in its interface. A contract can be seen as specifying
constraints on the interface of a component.

It is here important to keep in mind the role of extra-functional properties of em-
bedded systems, and their dependence on platform characteristics. Many important
properties of components in embedded systems, such as timing and performance,
depend on characteristics of the underlying hardware platform. Kopetz and Suri
[KS03] propose to distinguish between sofiware components and system components.
Extra-functional properties, such as performance, cannot be specified for a software
component in isolation. Such properties must either be specified with respect to a
given hardware platform, or be parameterized on (characteristics of) the underlying
platform. A system component, on the other hand, is defined as a self-contained hard-
ware and software subsystem, and can satisfy both functional and extra-functional
properties.

Closely related with component-based development is the software architecture of
a program or computing system, which is generally taken to denote:

“the structure or structures of the system, which comprise software components
[and connectors], the externally visible properties of those components [and
connectors] and the relationships among them.” [BCK98]

The architecture of a system is an early design decision, which to a large extent de-
termines global system parameters such as functionality, performance, resource con-
sumption, maintainability, etc. Descriptions of system architectures include descrip-
tions of component properties, visible through their interfaces, and enable informed
evaluations of different system architectures when selecting between them. Architec-
ture Definition Languages (ADLs) have been developed as languages for expressing
system architectures as compositions of software modules and/or hardware modules.
Typical concepts of ADLs are components, ports, connectors, etc. They can also
describe various classes of component properties. When used in Component-Based
Development, component properties expressed using an ADL should in principle also
be expressible in component interfaces. For example, Meta-H may decorate compo-
nents with properties such as execution time and failure modes. Component interfaces
must then be rich enough to allow description of such properties.

108 10 Executive Overview on Component-Based Design and Integration Platforms

ADLs concentrate on the description of a system, whose properties are the compo-
sition of properties visible in component interfaces. Complementing this, a compo-
nent technology specifies how such interfaces are implemented (possibly from inde-
pendently developed components), so that the resulting system implementation has
the properties described in its architecture. Since the purpose of this document is to
concentrate on components themselves, we refrain from giving an extensive overview
of ADLs. A few ADLs that are perceived as influencing the development of compo-
nent technology are described in section 14.

10.3 Role in Future Embedded Systems

If the technological and organizational challenges for component based development
of embedded systems are overcome, the benefits can be summarized as follows.

e Giving Structure to System Development. Component technology supports the
structuring of complex systems early in the development process. In particular, it
allows a structured resource and timing management, which is crucial for many
embedded systems. In current development practice, resource and timing prob-
lems are resolved during system integration with high cost. There is a strong trend
and desire to handle these problems on component level, thus solving the corre-
sponding integration problems a priori. This presupposes a component technology
with rich interfaces that support description of resource and timing properties.

e Reuse of Development Effort. Components can be re-used across several prod-
ucts or even product families. Re-use is made easer by defining product line archi-
tectures, in which components have given roles. Again, performance and Quality
of Service properties of products can be handled when defining a system architec-
ture, provided that component interfaces can express resource and quality-of-
service properties.

e Supporting System Maintenance and Evolution. Systems are easier to maintain
if they have a clear structure, e.g., as a system composed of components. For leg-
acy systems, it sometimes pays to refactor into components in order to ease future
upgrades and maintenance r.

e Enabling a Market for Software Parts. Standardized component specifications
and technologies allow us to integrate components produced by different suppli-
ers. Currently, for embedded systems, only large components are transferred be-
tween different organizations: RTOS, databases, process control components, etc.
In order for a wider class of components to be re-usable across a wider class of
systems, widely used component technologies must be developed that are able to
cope with the specific properties of components in embedded systems.

Expectations from component technology in major industries include to gain by struc-
turing system development; this gain is expected in the foreseeable future, and would
alone justify investments in component technology, in particular if it builds on current
development technology and processes There is some reluctance to make drastic
changes to development processes in order to support a radically new component
technology, even if it might be able to attain far greater gains, since there are high
risks involved in introducing new development technology and processes.

10.4 Overall Challenges and Work Directions 109

10.4 Overall Challenges and Work Directions

Findings, Synthesis, Needs

Here is a brief summary of the findings of this roadmap, concerning the current state
of the art, and needs for further development. It is structured under major headings.

Support for system development. Component technology can improve system de-
velopment by supporting system design early in the development process. Many inte-
gration and maintenance problems can be addressed early, at lower cost. System
properties can be predicted during system design. However, support for these activi-
ties is still not adequately developed to suit the needs of embedded system develop-
ment. In particular, there is still inadequate support for the extra-functional properties
that are characteristic for embedded systems. There is a need to further develop tech-
niques that address the following issues

e Specification of functional and extra-functional properties of components as
part of their interfaces. In particular, this concerns properties with system-wide
impact, such as memory and resource consumption, timing, performance, etc.
These are typically extra-functional properties characteristic for embedded sys-
tems. A complication is that extra-functional properties typically depend on the
underlying platform and execution environment, and it is not well understood how
to cope with this dependency in interface specifications

e Determination of QoS, timing, and resource properties of components. There
are several existing techniques for this, including measurement, simulation, and
static analysis of source code. Each technique has its advantages and limitations,
so they are suitable in different contexts. For software components of embedded
systems a difficult problem is that the results from measurement or simulation de-
pend on the measurement platform, hardware platform, the particular system con-
figuration and environment used for the measurements, etc. Such results may not
be valid on other platforms or in other system configurations.

e Prediction of system properties such as QoS, timing, and resource consump-
tion, from component properties expressed in component interfaces. Support for
this activity can potentially solve many integration problems early in the devel-
opment process, and aid in system evolution, e.g., when new modules are added.
The analysis of system properties from component properties is in general an in-
herently complex problem; the complexity can be mitigated by more efficient
analysis techniques, and by employing suitable architectures and design princi-
ples.

o Handling interference between components. Components have individual re-
quirements that can be violated when composed and deployed with other compo-
nents. Techniques are needed that ensure that component features do not interfere
with those of other components. Such interferences can be very subtle. An impor-
tant specific scenario where unexpected interferences may occur is when several
components, each implementing a piece of functionality, are mapped onto one
small hardware unit.

e Handling heterogeneous system descriptions. The interaction between compo-
nents of an embedded system is typically much more extensive than between

110 10 Executive Overview on Component-Based Design and Integration Platforms

components in the business processing domain, where, ¢.g., interaction via method
calls can suffice. Components can execute and communicate synchronously or
asynchronously, sometimes using different timing models. It is not well under-
stood how to understand systems whose components execute and communicate
using different paradigms.

Wider adoption of component technologies for embedded system design is
needed, in order to motivate investment in tools, platforms, component repositories,
etc. Issues that must be advanced include the following.

e Widely adopted component models. There is currently no wide-spread compo-
nent model that is suitable for the needs in embedded system development. Needs
vary between industrial sectors, whence we might see a development of different
models in different sectors.

e Implementation of Component Frameworks. There is a lack of implemented
platforms that are suitable for embedded systems. Such platforms should support a
suitable component model, not require a large supply of resources, and provide
well-chosen generic system functionalities, e.g., for safety, reliability, and avail-
ability. Since platform requirements vary between industrial sectors, it seems
plausible that different platforms will e developed for different sectors.

e Uniformisation of interface specifications. There is currently a variety of ap-
proaches for specifying functional and extra-functional component properties.
Convergence and standardization of these approaches is necessary to motivate in-
vestment in tools for verification of component properties, prediction of system
properties, etc.

e Component Certification. In order to transfer components across organizations,
techniques and procedures should be developed for conveying trust in the quality
of component implementations. This problem may need advances in component
verification (including testing, simulation, formal verification), and in procedures
for documenting the efforts made in verification.

e Tool support for different development activities, including tools to analyse and
predict system properties of systems.

e Standards and implementations of component frameworks must be developed
that suit different embedded systems application domains. A single technology
will not suit all the various domains, and in fact domain specific standardization
efforts are underway in several industrial sectors. A standard should preferably be
independent of a particular platform or vendor, to avoid future dominance by a
single platform provider.

Challenges and Work Directions

We conclude by summarizing some of the important research challenges, and indicate
directions for further work.

Extra-functional Properties in Component-Based Development of Embedded
Systems give rise to a number of hard technical problems.

e Specification of extra-functional properties has to meet many challenges.

10.4 Overall Challenges and Work Directions 111

o Dependency on the underlying platform could be addressed by contracts, or
specifications, that depend on properties provided by the platform interface.
Such dependencies could be expressed, e.g., by letting parameters in the speci-
fication depend on parameters of the platform, or by using other mechanisms.

o Uniformisation and Standardization of Specification formalism. This process
requires a more solid understanding of how to best specify extra-functional
properties at an appropriate level of understanding. Efforts are underway to ex-
tend UML notations with capabilities to express extra-functional properties.

e Determination of QoS, timing, and resource properties of components faces
several challenges

o Dependency on platform, configuration parameters, etc. This problem is espe-
cially relevant when properties are obtained by measurement or simulation,
since this needs a system context as driver for the measurements. Potential ap-
proaches to overcome the problem include to find ways to generate perform-
ance or timing models where the dependency on the environment is explicit,
and can be determined by appropriate measurements, or to find techniques to
generalize from one system environment to another. Static analysis of source
code does not suffer from this problem to the same extent, and has the poten-
tial to offer stricter guarantees, important in safety-critical applications. Tech-
niques for coping with the complexity of this technique should be further de-
veloped.

e Prediction of extra-functional system properties is in general an inherently
complex problem, which could be addressed as follows.

o There is a large supply of tools that analyze system functionality, performance,
timing, etc. using techniques from scheduling, formal verification, perform-
ance analysis, etc. Such tools and techniques should be linked to tools for
Component Based Development; an example where this is underway is Meta-
H, but there is a large untapped potential. To use this potential, techniques and
notations for component and system specifications must be further uniformised
and standardized.

In the foreseeable future, an important objective should be to leverage the
power of existing academic and commercial tools modelling, composition,
verification, analysis, simulation, etc., by connecting existing pieces into a
tool-chain for modelling and analysis of component-based real-time systems.

o Techniques for predicting and analyzing extra-functional system properties
must take into account both the interaction between components, as well as
their sharing of processing resources, making this a serious research challenge.
Techniques for addressing it should include:

— techniques to integrate components while preserving and guaranteeing es-
sential properties of component behaviour. Rules for composability should
be developed, which guarantee that if a components meets a property in a
certain context, then this property is preserved when its context changes.

— techniques that exploit compositionality, by developing techniques to pro-
vide or extract simple component interfaces, which enable the prediction of
global properties as well as checking that each component conforms to its

112

10 Executive Overview on Component-Based Design and Integration Platforms

interface. In order for such an approach to succeed, it is essential to mini-
mize the linking and dependencies between components.

— novel techniques for analysis of extra-functional properties that combine
the strong aspects of the different disciplines of scheduling theory, per-
formance analysis, model checking, etc.

e Handling interference between components. The problem of ensuring that com-
ponent features do not interfere with those of other components has been termed
the feature interaction problem in the telecommunications domain. We need prin-
ciples for ensuring that properties of a component are still valid in a large system
context.

The development of widely adopted component technologies for embedded sys-
tem design should be supported by working along several directions, including the
following.

e Widely adopted component models can be obtained in several ways.

o

o

Parts of established component technologies, such as COM, can be adapted for
embedded systems.

Component technologies that have proven successful in specific contexts can
be further developed.

Successful techniques for handling extra-functional properties should be
brought to standardization.

e Implementation of Component Frameworks is necessary for a wider adoption
of a component technology.

o

Platforms that support established component technologies and suit the needs
of embedded systems by using a constrained supply of resources, and having
predictable resource and timing behaviour, do not exist today, but should be
developed.

Suitable techniques by which platforms can provide services for run-time
composition and replacement, failure handling, system adaptation and recon-
figuration, should be developed and integrated in an RTOS.

Small OS platforms that are used for embedded systems can be extended with
new functionality and develop into a more powerful component technology.
There are several examples where a small OS platform has been extended with
design disciplines for component design, supported by design tools that solve
integration problems prior to compilation. This trend can be further developed.

e Development of application-specific system architectures that support the de-
velopment of components suiting specific needs in such an architecture. Such ar-
chitectures are being defined in several industrial sectors.

10.5

Document Structure

This document is structured as follows. In section 11, we present a view on the devel-
opment of component-based systems, as a basis for identifying key concerns for com-
ponent based development, in particular for embedded systems. section 12 presents
condensed reports on the state of the art, trends, and needs for component based de-

10.5 Document Structure 113

velopment in different industrial application sectors. In section 13, we concentrate on
presenting techniques used for specifying and analyzing important functional and
extra-functional properties of systems using information about component interfaces.

Section 14 presents major component models, and assesses some of their strengths
and limitations, in particular with respect to the aspects discussed in section 13. Fi-
nally, in section 15, we survey the situation with respect to standardization efforts, in
particular related to OMG, that are central to component technologies for real-time
systems.

11 Component-Based System Development

Component-Based Software Engineering (CBSE) uses methods, tools and principles
of general software engineering. However there is one distinction: CBSE distin-
guishes component development and system development with components. There
is a slight difference in the requirements and business goals in the two cases and there
exist different approaches.

e In component development, the main emphasis is on reusability: components are
built for reuse in many applications, many of them not yet existing. A component
should ideally be precisely specified, easy to understand, sufficiently general, easy
to adapt, easy to deliver and deploy, and easy to replace.

e System development with components is focused on the identification of reus-
able entities and relations between them, beginning from the system requirements
and from the availability of already existing components [BCK98, GAO95]. Much
implementation effort in system development is no longer necessary but there are
efforts required in dealing with components, including locating them, selecting
those most appropriate, adapting them, and verifying them [MSP"00].

We not only recognize different activities in the two processes, but also find that
many activities can be performed independently. In practice the processes are often
already separated, since third parties, independently of system development, develop
many components. Even components developed internally within an organization that
uses the same components in different products, are often treated as separate entities
developed separately. For this reason we can distinguish:

e Lifecycle of component-based systems
e Lifecycle of components

11.1 Lifecycle of Component-Based Systems

Development with components builds on advanced ideas of Object Oriented Design
and Pattern Based Design through its focus on the identification of reusable entities
and relations between them, starting from the system requirements. Different lifecycle
models, established in software engineering, can be used in Component-Based Devel-
opment, but modified to emphasize component-centric activities. Let us consider, for
example, the waterfall model using a component-based approach. The top half of
Figure 2.1 shows the phases of the waterfall model. Underneath are shown the ac-
companying activities in Component-Based Development.
Characteristic features of component-based development are the following.

e Identification of requirements is performed as in traditional development. How-
ever in the component-based approach, the mapping between system and compo-
nent requirements is important. Requirements for components should be identified
during system requirements elicitation, in order to reuse existing components.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 114119, 2005.
© Springer-Verlag Berlin Heidelberg 2005

e e b e]

11.1 Lifecycle of Component-Based Systems 115

------------------------ T I I e

p! i
:lrequiremems l—)-l design impl ement ation I-)-| test i—i-H releasze |-)-| mainte rance |
[Ha

find i—"l select - adapt Ia‘P| te st i—‘l-| deploy H replac: |

creghe

Figure 12.1. The CBD cycle compared with the waterfall model

The early design phase focuses on two essential steps:

o The logical view of the system is specified by a system architecture with com-
ponents and their interaction. In this view, components are represented by their
interfaces, possibly including specification of relevant extra-functional proper-
ties (in real-time systems this includes timing properties). The architecture
specification process is combined with finding, evaluating, selecting, and
adapting components that will perform the roles defined by the interfaces. The
logical design is in its essence model based development, because it focuses on
composing components such that the resulting model satisfies requirements.

o The structural view refines the system architecture consisting of component
implementations, to conform to a component framework, and various technol-
ogy-specific services. The refined component model may support analysis of
technology dependent properties usually associated with resources, such as
execution times.

The implementation phase includes adapting, composing, and deploying compo-
nents, using a component framework.

The verification (or test) phase performs system verification (e.g., by testing).
Rich component interfaces enable a significant part of system verification to be
performed in the design phase based on the developed models, thus saving signifi-
cant effort in the test phase.

The maintenance phase puts extra focus on the replacement and update of entire
components, possibly during system operation.

In summary, the activities that are specific to component-based systems development
are:

Specify logical and structural system architecture The architecture specification
process must take into account that the system requirements should be compatible
with those of available components; in this way the system design becomes an in-
terplay to match system and component requirements. Often the requirements
cannot be fulfilled completely, and a trade-off analysis is needed to adjust the sys-
tem architecture and to reformulate the requirements to make it possible to use ex-
isting components. In addition, the selection of a particular component technology
must be taken into consideration, as a component technology may require particu-
lar frameworks with a number of specific services such as component intercom-
munication.

Find and select components that may be used in the system. Available components
are collected for further investigation. To successfully perform this procedure, a

116

11 Component-Based System Development

reasonable number of candidates must be available The selection is a trade-off be-
tween requirements elicitations and system design. If the process focuses only on
requirements, it is very likely that components meeting all the requirements will
not be found. On the other hand, if components are selected too early, the resulting
system may not meet all the requirements.

Component repositories offer tool support for this process. Finding components,
testing them in a particular environment and storing them in component databases
are activities that can be separated from the system development, but obviously
the type of categorization and the search criteria offered by such a repository in-
fluences its usability.

Create proprietary components to be used in the system. In many cases, it will not
be possible to define the entire system from already existing components. Core
functionalities of the product are likely to be developed as they provide the com-
petitive advantage of the product. Parts created in this way should be designed as
components with well-defined interfaces to allow reuse in forthcoming applica-
tions and to facilitate maintenance. This usually requires more effort and lead-time
than adapting existing components.

Match component requirements with system requirements and verify system prop-
erties from component properties. A research challenge today is to predict the sys-
tem properties from those of components.. Emerging properties, i.e., the (typically
extra-functional) system properties not existing for the components, are of particu-
lar interest. For this purpose, rich interfaces are essential. Techniques for express-
ing rich interfaces and predicting system properties are discussed in section 13.
Adapt the selected components so that they suit the existing component model or
requirement specification. Some components can be directly integrated into the
system, some need to be modified through a parameterization process, some need
wrapping code for adaptation, etc.

Compose and deploy the components using a framework for components. A par-
ticular function is often implemented by several components. By introducing as-
semblies into the system, conflicts between the basic components can occur. It
may happen, for example, that assemblies include different versions of the same
basic component. In such a case a mechanism for re-configuring assemblies must
exist, either supported by the component framework, or used manually. The tradi-
tional V&V integration activities must be performed. However, they may become
easier if some of the work has been done when specifying the system architecture
(predicting system properties from component properties).

Replace earlier with later versions of components. This corresponds to system
maintenance. Implementations of components, and thus the entire system, may
evolve over time. Bugs may be eliminated or new functionality added. Elimination
of bugs in component implementations, which do not affect the interface, should
be completely transparent to the system behaviour. Ideally, this requires at most a
validation of the new implementation against its interface. Any evolution of the
system that affects its interface requires an additional validation at system level. If
functionality is added, a minimal validation consists in checking that the new
functionality is not used in an undesirable manner by other components. A
particular challenge is to upgrade or replace components during system operation.

11.3 Issues Specific for Embedded Systems 117

11.2 Lifecycle of Components

The component development process is in many respects similar to system develop-
ment; requirements must be captured, analysed and defined, the component must be
designed, implemented, verified, validated and delivered. When building a new com-
ponent the developers will reuse other components and will use similar procedures of
component evaluation as for system development. There are however some signifi-
cant differences:

e There is greater difficulty in managing requirements, caused by the interplay be-
tween component and system requirements.

e Precise component specifications are more important.

e Greater efforts are needed to develop reusable units,

e Verification against component specification must be more stringent and docu-
mented, in particular when transferring components between organizations.

e In a market for components, property rights and their protection become an issue.

The delivery result may be a component, tested and specified, perhaps even certified,
stored in a component library in a package suitable for distribution and deployment.
The next phase in the lifecycle is component deployment into a system. The deploy-
ment should be enabled without making changes in the rest of the system or the
framework, and should be automated.

11.3 Issues Specific for Embedded Systems

The design of real-time systems must consider constraints that do not apply to large
component and object-based systems such as business data processing systems. Addi-
tional constraints include the following.

e Real-time systems must satisfy constraints on extra-functional properties such as
timing (e.g., meeting deadlines), quality of service (e.g., throughput), and depend-
ability (including reliability, safety, and security).

e [t is often important that functional and extra-functional properties be statically
predictable, in particular if the system is safety-critical.

e Real-time systems must often operate with scarce resources (including processing
power, memory, and communication bandwidth).

Therefore, observations that hold for large business data processing systems may have
to be reconsidered for real-time and embedded systems.

e The definition of components by Szyperski [Szy98], emphasizes contractually
specified interfaces, fully explicit context dependencies, independent deployment,
and third-party composition. It seems biased towards component models where
components are deployed at run-time into the system, with run-time support for
component registration and composition. This fits well to the component models
that are used in non-critical, non-real-time, and resource-insensitive applications.
However it is not likely that this applies d to component models for embedded and
real-time systems [CL02, Ch. 13]. There is a wide range of embedded systems

118 11 Component-Based System Development

(from very small to extremely large systems) and there is a wide range of real-time
requirements (from hard real-time to adaptive real-time). While larger embedded
systems may be resource insensitive and thus apply widely used component tech-
nologies, smaller embedded systems cannot afford such resources.

e In widely used component technologies, the interfaces are usually implemented as
object interfaces supporting polymorphism by late binding. While late binding al-
lows connecting of components that are completely unaware of each other beside
the connecting interface, this flexibility comes with a performance penalty, which
may be difficult to carry for small embedded systems. Dynamic component de-
ployment is not be feasible for small embedded systems.

Taking into account all the constraints for real-time and embedded systems, we con-
clude that there are several reasons to perform component deployment and composi-
tion at design time rather than run-time:

e It allows composition tools to generate a monolithic firmware.

e It allows for global optimization,, e.g., in a static component composition known
at design time, connections between components can be translated into function
calls instead of using dynamic event notifications.

e Design-time composition allows specific adaptation of components and generated
code towards particular micro controller families and real-time operating system..

e Verification and prediction of system requirements can be done statically from the
given component properties.

Design time composition presupposes a composition environment that specifically
provides the following functionalities.

e Component composition support;

e Component adaptation and code generation for the application;

e Building the system by including selected components and components that are
part of the run-time framework;

e Static verification and prediction of system requirements and properties from the
given component properties.

There may also be a need for a run-time environment, which supports the component
framework. It may implement component intercommunication and control of the
behaviour of the components.

11.4 Summary and Conclusions

The development of an adequate technology for component-based development faces
many challenges. This is in particular true for real-time and embedded systems. Based
on the exposition in this section, we structure the issues into several groups

o Component specification: in the context of embedded systems, it is obvious that
interface specifications of components must go beyond syntactic information and
include functional and extra-functional characteristics and requirements. For real-
time systems the temporal attributes of components and systems are of main inter-
est. For embedded systems the properties specifying the resources and the proper-

11.4 Summary and Conclusions 119

ties related to dependability are important. However, there is still no consensus
about how components for real-time systems should be specified.

e Prediction of system properties from component properties: Even if we assume
that we can specify all the relevant properties of components, it is not necessarily
known how they will determine the corresponding properties of systems of which
they are composed. Moreover, existing component models do not provide support
for predictable composition. In this, one should aim for interfaces providing full
functional and extra-functional specifications of components are essential.

o Managing the interplay between achievable system requirements and component
specifications: is complex, as the possible candidate components usually lack one
or more required features. Further, the relations between the system requirements
and component requirements are complex.

e Architecture specification: the use of components has an impact on the choice of
the system architecture, as it must take into account not only the requirements, but
also the available components.

o Component models: Component models for real-time systems are still in the very
early phase of development. In general, existing component models do not support
the specification of functional and extra-functional properties, in particular timing
and QoS properties.

o Component evaluation and verification (possibly for certification): the trustwor-
thiness of a component, which is the reliability of component in relation to its in-
terface specification, is an important issue. The issue is difficult since the trend is
to deliver components in binary form and the component development process is
outside the control of component users. Protocols for component certification are
of great interest

e Component repositories: which address the issues of how to store and retrieve
components, how to index components in a component library, and how to find
“similar” components.

e Managing changes in component requirements: an important issue are changes to
components over time and possible conflicts arising from different coexisting ver-
sions of a component within the same system. A precise interface specification
should allow clarifying this issue.

o Update and replacement of components at run-time is useful for many real-time
systems. In the context of design-time composition, it is a challenge to combine
this feature with design-time optimization across component boundaries.

For all areas, it is evident that appropriate tools are essential for a successful compo-
nent-based development. In non real-time domains there exists various tools support-
ing model based and component-based development and they have proved to be suc-
cessful, but in the real-time domains there is a lack of such tools. There is thus a
unique opportunity for transferring essential results from research into industry
through development of tool suites.

12 Current Design Practice and Needs in Selected
Industrial Sectors

The current state of and the needs for component-based approach differ very much
between industrial domains. Types of embedded systems vary from ultra small de-
vices with simple functionality, through small systems with sophisticated functions,
strong real-time requirements, and low resource consumption requirements, to large,
possibly distributed systems, where the management of the complexity is the main
challenge. Further we can distinguish between systems produced in large quantities,
in which the low production costs are extremely important and low-volume products
in which the system dependability is the most important feature. Usually for high
volume products the time-to-market requirements are extremely important as well as
the variation of the products. All these different requirements have impact on feasibil-
ity, on use, and on approach in component-based development. In different domains
we can find very different component models and system and software architectures.

12.1 Automotive

Industrial Landscape

Cars are typically manufactured in volumes in the order of millions per year. To
achieve these volumes, and still offer the customer a wide range of choices, the prod-
ucts are built on platforms that contain common technology that have the flexibility to
adapt to different kinds of cars by adding different components or different variants of
the components. Computer-based “components” built in the vehicles are control sys-
tems, infotainment (information and entertainment) systems, and diagnostic systems.
Diagnostic systems are often an integrated part of the control system. Automotive
systems have contained embedded controllers for more than one century. One well
known example of an early embedded control system based on mechanical technol-
ogy is fuel injection in combustion engines, where the camshaft, mechanisms and the
cylinder valves constitute an embedded controller with parts for sensing, processing
and actuation. The introduction of computer based embedded control has been moti-
vated both by technical reasons — the need for improving performance or introducing
entirely new functions — and by market demands. Moving functionality from hard-
ware to software most notably also reduces the number of physical components and
thus, at least in principle, makes the production much simpler. Another driver for the
introduction of embedded control systems has been legislation. In the automotive
industry, on-board diagnostics (OBD) is today regulated through legislation. Another
area which has received considerably attention is the demand for increasingly effi-
cient diagnostics, service, and production functionality.

There is a wide span of requirements on the infrastructure in today’s vehicles. The
vehicle industry works with demands on functionality, reliability, and safety, but also
with demands related to product variation, extensibility and maintenance of delivered

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 120138, 2005.
© Springer-Verlag Berlin Heidelberg 2005

12.1 Automotive 121

products, and integration of supplier components [MFN04a,MFN04b,Mer03]. This
implies high requirements on flexibility in terms of adding or removing nodes or other
components. Moreover, part of the functionality has stringent requirements on real-
time performance and safety, e.g., safety critical control applications. Other parts of
the functionality, such as the infotainment applications, have high demands on net-
work throughput. Yet, other parts require only lightweight networks, as for example
locally interconnected lights and switches. All of these varying requirements in vehi-
cle networks are reflected in the architecture, implementation, and operation of a
modern in-vehicle network.

Component-Based System Development Context

Within the automotive industry, the component-based approach has a relatively long
tradition, as these systems are typically built from physical components that are either
developed in-house or provided by external suppliers. Today, the physical compo-
nents also include several computer nodes (or Electronic Control Units, ECUs)
equipped with software that implements vehicle functions. Typical functions provided
by nodes include power train controls, e.g., for fuel injection, active suspension, and
combustion, safety related controls (brakes, collision warning, etc), driver assistance
functions, comfort functions, and infotainment. A rapid development of electronic
components and replacement of mechanical components has increased the importance
of efficiency in development and production of embedded components: Modern ve-
hicular systems contain almost hundred computer nodes, and the development costs
of the electronic parts for high end models approached 40 % of the total costs [Gri03].
Even if this development is successful in many aspects, for example in the form of
reuse and time-to-market, the trend cannot continue in the same way as the systems
are becoming too complex and too costly with the current practice consisting essen-
tially in having an ECU dedicated to a single functionality.

In general, there has over the last decades been a strong trend to connect stand-
alone controllers by networks, forming distributed systems. The main driver for this
has been cost reduction, since the use of networks makes reduction of the necessary
cabling possible, or at least a possibility to bound the increase in length given the
drastic increase in the number of control units. Another and closely related trend has
been modularisation, where for example, an electronic control unit is physically inte-
grated into an engine, forming a sort of mechatronic module. Combining the concepts
of networks and mechatronic modules makes it possible to reduce both the cabling
and the number of connectors, the result of which is facilitated production and in-
creased reliability.

Notice also that the components are to a large extent provided by external suppli-
ers, who work with many different car companies (or OEMs, original equipment
manufacturers). The role of the OEM is thus to provide specifications for the suppli-
ers, so that the component will fit a particular car, and to integrate the components
into a product.

Limited resources (CPU & memory) require simple component models with as low
overhead as possible. The implications of that is there a requirement for resolving of
dynamic behaviour as much as possible at compilation/composition time: code gen-
eration, controlled component adaptation, generation of platform (framework) with

122 12 Current Design Practice and Needs in Selected Industrial Sectors

required services. Component models should also provide a means for specification of
(worst-case) execution time and memory consumption. These specific requirements
exclude utilization of general-purpose component models.

State of the Practice

An example of a contemporary car electronic architecture is that of the Volvo XC90.
The maximum configuration contains about 40 ECUs. They are connected mainly by
two CAN networks, one for power train and one for body functionality. From some of
the nodes, LIN sub networks are used to connect slave nodes into a subsystem. The
other main structure is a MOST [MOS99] ring, connecting the infotainment nodes
together, with a gateway to the CAN network for limited data exchange. Through this
separation, the critical power train functions on the CAN network are protected from
possible disturbances from the infotainment system. The diagnostics access to the
entire car is via a single connection to a single ECU. The partitioning of functionality
is decided by the location of the sensors and actuators used, but also by the combina-
tions of optional variants that are possible. If a car is sold with only a subset of the full
functionality, the amount of physical hardware installed is limited to the minimum
necessary. Network communication software provides a layer between the hardware
and the application software, so that communication can be described at a high level
of abstraction in the application, regardless of the low-level mechanisms employed to
send data between the nodes. Volcano [CRTM98] is a communication concept used
throughout the Volvo Car Corporation for managing network traffic. Through the
Volcano API the underlying network technology is hidden from the application engi-
neer. The Volcano concept also addresses vehicle manufacturer controlled integration
of components developed by suppliers. This is done through the use of the Volcano
API and by separate specification of the signals used by a component and the network
configuration. The network configuration is provided by the integrator and specifies
how signals are to be transferred over the network. Traditional real-time operating
systems are usually too resource consuming to be suitable for automotive applica-
tions, and do not provide the predictable timing that is needed. Therefore the new
standard OSEK has been developed. There are several suppliers of OSEK compliant
operating systems. All components interact with each other and with the application,
and must therefore have standardized interfaces, and at the same time provide the
required flexibility. To conserve hardware resources, the components are configurable
to only include the parts that are really necessary in each particular instantiation

The main benefits of the technology used today are improved and more flexible
functional behaviour of the vehicles, decreased time-to-market and production costs.
The trend to replace mechanical components with electronic components will con-
tinue and even increase.

The current development trends in automotive software call also for increasing
standardization of the software structure in the nodes (i.e. ECUs). In particular, the
use of code generation requires a clear interface between the support software and the
application, and the need to integrate software from different suppliers in the same
node also calls for a well-defined structure. One approach for solving this is the new
standard OSEK [OSE], which is a resource efficient and predictable real-time operat-
ing system.

12.1 Automotive 123

Challenges and Work Directions

As the number of ECUs increases, the entire system becomes more complex. The
system functions, controlling particular aspects at the system level (for example cruise
control) require input and output control of many components. This requires sharing
different types of resources (time, communication, memory, and CPU consumption).

While the system development is highly componentized, this is not true for soft-
ware development. ECUs include proprietary software, mostly owned by subcontrac-
tors. This makes the entire system inflexible and inefficient in utilizing resources,
makes it difficult to implement complex functions, and expensive to add new ECUs.
The next major step in designing these systems is to go from the current situation with
one node one supplier to a situation with one node several suppliers, i.e. there will be
several software components of different origins executing on a typical node. Also to
enable delivery of more complex applications, it must be possible to spread out soft-
ware components through several nodes. This requires changes in the design process
and new division of responsibilities.

e There is a need for increasing standardization of the software structure in the
nodes. In particular, the use of code generation requires a clear interface between
the support software and the application, and the need to integrate software from
different suppliers in the same node also calls for a well-defined structure.

e An important aspect is to create a more flexible software partitioning. The main
use for this is probably not to find the optimal partitioning for each car on a given
platform, since that would create too much work on the verification side, but to al-
low parts of the software to be reused from one platform to the next. This puts
even higher demands on the node architecture, since the application must be to-
tally independent from the hardware, through a standardized interface that is stable
over time. Therefore, further standardization work is needed, in particular for sen-
sor and actuator interfaces. A standard, or de-facto standard, component model for
small embedded systems in the automotive domain does not exist today. The ex-
isting component-based technologies require too many resources to be suitable for
small embedded systems. Developing and establishing an appropriate component
technology, including a supporting framework is one of the main research chal-
lenges.

e With increasing complexity, system reliability and safety become major problems.
A satisfactory handling of safety-critical functions, such as emerging brake- and
steer-by-wire systems, will require the integration of methods for establishing
functional and temporal correctness for each component, as well as system-wide
attributes such as safety and reliability. but also from the complexity of the in-
volved organizations; a vehicle is composed of hardware components coming
from a multitude of companies. It is not uncommon that a car manufacturer today
in-house only develops a few control units — a very low percentage of some 70
control units indeed. This means that system integrators in some cases are trying
to regain control and development of the control units because of their large im-
pact on the vehicle. Systems integration is complicated by the fact that manual
specifications are used, leaving room for misinterpretations, causing costly itera-
tions, and highly difficult systems integration.

124 12 Current Design Practice and Needs in Selected Industrial Sectors

The current practice, to dedicate an ECU for each particular service can not be main-
tained and a need for a methodology which is more economic in resources is needed.
The current approaches are only beginning to consider the deployment of model-
based development processes, and current methods and tool support are available for
single ECU based implementations only. In the context of high end cars, the TTA
Technology [KR93] has been used. It proposes a solution for using the synchronous
approach transparently in a distributed system. This is done by hiding distribution via
an implementation of a time based access protocol of each node to a common bus
with proven properties. It allows naturally sharing ECUs for several functionalities.
Nevertheless, the underlying middleware requires very high quality, and thus expen-
sive, components.

An example of an ongoing effort in the European automotive industry is the project
EAST-EEA [EASO03] with participation of all major European car manufacturers,
suppliers and software-tool providers, as well as research organizations and universi-
ties with connections to the automotive industry. The goal of EAST-EEA is to de-
velop a structure for the next generation of electronic automotive features. There are
two main activities to achieve this goal: (1) specification of middleware suitable for
the automotive industry, and (2) development of an Architecture Description Lan-
guage (ADL). The middleware specification will leverage on the automotive indus-
try’s positive experiences of the RTOS standard OSEK, and will support concepts and
provide services on a higher abstraction level than a current OS does. The ADL will
allow manufacturers and their suppliers to exchange requirements, specifications and
documentation about both hardware and software characteristics. The ADL will sup-
port system-descriptions on multiple abstraction levels, ranging from very high-level
feature specification to very implementation-close operational specifications.

12.2 Industrial Automation

Industrial Landscape

Industries in the industrial automation domain have long used approaches for pro-
gramming control systems, which employ some elements of component based devel-
opment. Typical application domains are in control of industrial processes, power
supply, industrial robots, where there are many strong European companies including
ABB, Siemens, Thales, etc.

Industrial automation domain comprises a large area of control, monitoring and op-
timization systems. They typically include large pieces of software that have been
developed over many years (often several decades). Most control systems are manu-
factured in rather large volumes, and must to a large extent be configurable to suit a
variety of customer contexts. They can be classified according to different levels of
control. Each layer has a predefined set of control tasks that are typically supported by
some computer system and which may or may not involve human interaction [CL02]:

e Process level concerns the process equipment to be controlled (for example, a
valve in a water pipeline, a boiler, etc.).

12.2 Industrial Automation 125

e Field level (or single control level) concerns sensors, actuators, drivers, etc. This
level comprises the interfacing equipment of a control system to the physical
process.

e Group control level concerns controller devices and applications which control a
group of related process level devices in a closed-loop fashion.

e Process control level concerns operator stations and processing systems with their
applications for plant-wide remote supervision and control and overview the entire
process to be controlled. This level may provide man-machine interface applica-
tions for different types of supervision and control activities, such as process state
visualization, alarm processing, process event handling, batch preparation, etc.

e Production or manufacturing management level concerns systems and applica-
tions for production planning. Applications at this level support the manage-
rial/administrative tasks in preparing for the next batch of work.

e Enterprise management level concerns systems which deal with enterprise-wide
control activities. These tasks are usually subsumed under the term Enterprise Re-
source Planning (ERP). They include human resources, supply chain management,
administrative order processing, finance and accounting, etc.

Notice that, even if the higher levels are not embedded, they are of uttermost impor-
tance as they need to be interoperable with the lower level which greatly influences
the possible choices of the component model and in fine the design choices. The inte-
gration requirements have in many cases led to a decision to use component technolo-
gies which are not appropriate for embedded systems but provide better integration
possibilities.

Depending on the level, the nature of the requirements and the implementation will
be quite different. In general, the lower the level, the stronger are the real-time re-
quirements (including timing predictability) and the resource limitations. Also, the
component based approach will include different concepts at different levels. While at
the lowest levels availability, timeliness, and reliability are the most important quality
requirements, at higher levels it will be performance, usability, and integrability. At
the process control level, the development environment is strictly separated form the
run-time environment and components are usually source software modules. Typi-
cally, synchronous languages [Hal93, Ber99b] have been developed and are used to
simplify the programming of reactive systems. On the basis of the synchrony hy-
pothesis, it is possible to define components, which can easily be composed at compi-
lation time into larger systems. The component models address extra-functional prop-
erties and constraints such as worst-case execution time and memory consumption
and allow specifying efficient functional interfaces (e.g. procedural interfaces). The
environment, supporting composition techniques (visual or script-based) is separated
from run-time environment. At the process control level and above, the system com-
plexity is the dominating characteristics, while hard real-time requirements are less
dominant. Furthermore, systems must be open to a wide variety of other systems and
standards. This allows utilizing (standard) component models, widely used in other
domains: desktop applications and distributed applications.

Also, dependent on the application area the requirements on timeliness will be dif-
ferent. In a typical industrial process automation (manufacturing, for example), fast
responses are not crucial, while in others (for example, distribution of electricity)
timeliness is extremely important.

126 12 Current Design Practice and Needs in Selected Industrial Sectors

Component-Based System Development Context

The core part of a control system or a robot is typically a real-time control system that
runs on a simple RTOS, or even without any OS. Other parts, such as I/O and com-
munication protocols are in many cases provided by suppliers. The system has to be
open to allow easy integration of new functionalities. Since the software usually sur-
vives many generations of hardware, it must be easy to port. Component-based devel-
opment has been practised for many years by developing and using the standard IEC
61131 [IEC95].

Industrial control systems are most often part of larger systems, e.g., an assembly
line for cars. Such systems are typically composed of many nodes that communicate
over field buses. Thus, a system must be open to a wide variety of other systems and
standards, implying that a component technology for industrial automation must be
compatible with component technologies such as .NET and CORBA.

In comparison with the situation in the automotive domain, one can roughly say
that the lower layers of industrial control systems have similar requirements and are
similar in structure but, at least until now, the interoperability requirements are higher
and the lifecycles longer. Another difference is that there is a strong tradition in soft-
ware development, bound to, e.g., standards for programming PLCs and IEC 61131
[IEC95].

State of the Practice

In the last years, the use of component-based technologies has rapidly expanded and
become the dominating development technologies in industrial automation. The tech-
nology mostly used in large systems is Microsoft COM, and to smaller extent differ-
ent implementations of CORBA, although neither COM nor CORBA provide support
for real-time. The systems using these technologies are adaptive-real-time systems.
Often a component technology is used as a basis for additional abstraction level sup-
port, which is specified either as standards or proprietary solutions. Some examples of
utilization of component technologies:

e Example 1: OPC Foundation [OPCO03], an organization that consists of more than
300 member companies worldwide, is responsible for specifications that standard-
ize the communication of acquired process data, alarm and event records, histori-
cal data, and batch data to multi-vendor enterprise systems and between produc-
tion devices. The specification is based on standards DCOM [BK98], XML-DA
and SOAP.

e Example 2: ABB Automation Products develops a next generation of automation
system architecture called Aspect Integrator Platform [CL02, Chap. 17], which is
the basis for the design of automation systems, such as open control systems for
continuous and batch type processes, traditional supervisory control and data ac-
quisition systems, and others. The architecture uses Microsoft’s COM technology,
but it determines system architecture and enables flexible system configurations.
The main concept is based on AspectObjects which are treated as components. An
AspectObject encapsulates all the assets called “Aspects” belonging to that object.
In this model the aspects are treated as object attributes. The attributes (as the As-
pectObject itself) are implemented as special COM objects.

12.2 Industrial Automation 127

e Example 3: Component-based development has been utilized for many years by
developing and using the standard IEC 61131 [IEC95]. It defines a family of lan-
guages that includes instruction lists, assembly languages, structured text, and a
high level language similar to Pascal, ladder diagrams, or function block diagrams
(FBD). Function blocks can be viewed as components and interfaces between
blocks are released by connecting in-ports and out-ports. Function block execution
may be periodic or event-driven. IEC 61131 is successfully used in development
of industrial process automation systems, for example in ABB and Siemens.

o Example 4: Controllers that fulfil real-time requirements (either adaptive or hard)
usually do not use component-based technology such as COM. However in some
cases (such as for ABB controllers) a reduced version of COM has been used on a
top of a real-time operating system [LCS02]. The reused version includes facili-
ties for component specification using the interface description language of COM,
and some basic services at run-time. These services have been implemented inter-
nally.

As a conclusion one can state that component-based approaches have a long tradition
in automation (especially by the use IEC 6113, which is not sufficient today) and
there is a clear trend to use widely spread technologies as much as possible which are
not the most appropriate ones for the domain.

Benefits from Using Component Technologies

The main reason for wide use of component-based technology in the automation
industry is the possibility of reusing solutions in different ranges of products, effi-
cient development tools, standardized specifications and interoperation, and integra-
tion between different products. For example, the main advantage of OPC is the use
of standard interfaces and communication protocols of control devices provided by
different vendors. Another benefit is transparency of data access, provided by the
middleware. Finally, component-based technologies enable seamless integration
with other type of systems, for example business and office applications.

Challenges and Work Directions

The problems of growing system complexity together with the requirements on
open, upgradeable, highly dependable and distributed systems pose many chal-
lenges which are in fact the central issues of component-based development in gen-
eral.

e System integration is today a central problem in development. Presently, this
results in a need for extensive testing and in integration problems for large sys-
tems. In fact, we are lacking well defined architectures suitable for industrial
control applications. Many integration problems are caused by inadequate tech-
niques for handling resources and timing properties in the development process.
Adequate support for resource and timing properties in a component technology
is a must. The problem is similar concerning predictability and quality of ser-
vice. Component models including the possibility to specify quality of service
and reliability related properties as well as tools supporting them are lacking.

128

12 Current Design Practice and Needs in Selected Industrial Sectors

Many systems have very high requirements on availability, which must be re-
flected in the development of system architecture, systems integration, etc. Sup-
port for high availability by a component framework is needed.

Improving efficiency of the development and maintenance process. A main goal
of the component-based approach is a significant improvement in the develop-
ment process. An efficient use of components requires tools for system devel-
opment with components; in particular tools for component composition. Con-
trollers, usually hard real-time systems with restricted resources, cannot directly
use de-facto standard technologies. They cither use dedicated, in fact proprie-
tary, component models or particular parts of de-facto standard technologies (for
example, interface specification, but without run-time support).

Increase lifetime of the products. Industrial automation systems have a long life
time, they can be in operation for more than twenty years. In that period many
assumptions change — the environment, the hardware platform, communication
standards, component models, languages, etc. Old technologies become obso-
lete. This poses huge problems for maintenance. To improve and even make the
maintenance possible, a means for system specification independent of the cur-
rent technology is required. Concepts such as Model Driven Architecture
[MDA] have the goal to allow flexible evolution of the applications and their
components. These technologies should be combined with the component-based
approach and be further developed.

Because of the dependency on one component technology vendor, there is a
standing risk: the current technology can become obsolete and the companies
are forced to migrate to new technology even if there are no requirements for
that. The controllers, usually hard real-time systems with restricted resources
cannot directly use de-facto standard technologies. They either use proprietary
component models or try to use particular parts of de-facto standard technolo-
gies (for example interface specification, but not run-time support). In the latter
case, the challenge is to identify a proper level of reuse of the technology. The
lowest level includes use of standardized interface specification, such as IDL
(Interface Definition Language), or COM binary interface, and implementation
of some standard interfaces.

Improving interoperability. Systems at the process control level must be able to
communicate to different types of field devices and use different protocols. For
this reason, it is important to define standards that contain more information than
general purpose standards or tools. OPC Foundation is one attempt to identify the
interoperability standards for process data. So far it is related to particular compo-
nent technologies (i.e. COM and .NET). An advantage of this is that the support in
form of applications and tools comes together with the standards. A disadvantage
is a dependency on a particular technology, operating system and a single vendor.
Similar standards independent of particular technology should be developed. The
systems on enterprise management level interoperate not only with the process
control systems but also with administration enterprise resource management and
similar tools. Such tools utilize in many cases successfully general-purpose com-
ponent models (COM, EJB, CORBA). This means that interoperability between
different application domains and different component models are required.

12.3 Consumer Electronics 129

12.3 Consumer Electronics

Industrial Landscape

For high-volume electronics products, like TV, VCR, and DVD, cost per product unit
is an important issue. These costs are largely determined by the hardware costs, and
lead to constraints on the software; for example, the available memory. In addition,
the diversity of these products increases, as does the complexity of the products due to
convergence of functionality.

Component-Based System Development Context

Consumer electronics products are developed and delivered in form of product fami-
lies which are characterized by many similarities and few differences and in form of
product populations which are sets of products with many similarities but also many
differences. Production is organized into product lines — this allows many variations
on a central product definition [Don00,Per98,Bal98]. A product line is a top-down,
planned, proactive approach to achieve reuse of software within a family or popula-
tion of products. It is based on the use of a common architecture and core functions
included into the product platform and basic components. The diversity of products is
achieved by inclusion of different components.

Due to market requirements to launch continuously new product versions, devel-
opment and production of products are separated from the development of compo-
nents. Similarly as in the automotive industry, product development is integration-
oriented; that is, products are built by integration of components and new features (i.e.
products) are achieved by integration of new components.

Traditionally, in the consumer electronics domain the products providers are also
developers of components (in difference to automotive industry). Very often, the
market advantages of products are achieved by development of new, technologically
advanced, components — these are presently still hardware components in most cases,
but importance of software components is growing rapidly.

State of the Practice

Because of the requirements for low hardware and production costs, general-purpose
component technologies are not used, but rather more dedicated and simpler proprie-
tary models have been developed.

An example of such a component model is the Koala component model used at
Philips [vO02,vOvdLKO00]. Koala is a component model and an architectural descrip-
tion language to build a large diversity of products from a repository of components.
Koala is designed to build consumer products such as televisions, video recorders, CD
and DVD players and recorders, and combinations of them. A Koala component is a
piece of code that can interact with its environment through explicit interfaces only.
The implementation of a Koala component is a directory with a set of C and header
files that may use each other in arbitrary ways, but communication with other compo-
nents is routed only through header files generated by the Koala compiler, based upon
the binding between components. As Koala components are delivered in the form of

130 12 Current Design Practice and Needs in Selected Industrial Sectors

source code, it is possible to statically analyze components and systems built by com-
posing them.

As a rule, the component models used in consumer electronics are proprietary
which requires internal support for their development and maintenance. Furthermore,
it requires development of a number of development tools: ADL, component reposi-
tory, composition languages, compilers, debugging and testing tools, configuration
tools, etc. Such development is usually not a core business of producers of consumer
electronics, and it requires an important amount of resources which could be shared
amongst several producers. The use of a proprictary technology makes it also more
difficult to use COTS components. There are increasing requirements for achieving
interoperability between proprietary and standard component technologies.

Benefits from Using Component Technologies

There are two main benefits in a component-based product line development:

e Reuse of already existing components and common architecture for many vari-
ants of the products,
e Separation of product development from component development.

The first benefit is achieved not only through reuse of the core functionality (which
includes the architecture solutions and components that build a core-functionality),
but also reuse of particular components in different product families. The second
benefit is realized by enabling larger development time for particular components
than the time for development of a specific product. Typically, products are released
two times per year, while development of a new component requires a year or a year
and a half.

There are other benefits resulting from using a component-based approach. The lat-
ter forces the software to be explicitly structured. Software components can only
interact through well-defined interfaces. In Koala, components can be parameterized
by the use of so-called diversity interfaces — which allow describing several parameter
dependent variants of interfaces. By binding components into a product, before the
actual compilation of the code, the memory footprint can be reduced: optimizations,
using static analysis, for example to discover unused parts, are done across compo-
nents without breaking the encapsulation provided by the components.

Challenges and Work Directions

On one hand, it becomes more and more important to develop products that comprise
several functions, previously being sold as separate products. Examples are TV sets
that have embedded DVD and VCR, and connections to the Internet. On other hand,
also interoperability requirements increase. TV sets are supposed to communicate
with PCs, mobile phones and similar. Pervasive systems implementing the “every-
thing anytime everywhere” paradigm, such as eHome systems are new visions of new
products in which consumer electronics plays an important role. This implies high
demands on interoperability. In addition to standard communication protocols, stan-
dard information models, standard component specifications and services are re-

124 Telecommunication Software Infrastructure 131

quired. This also implies achieving interoperability of systems built on different tech-
nologies.

Presently, the component models used in consumer electronics support only rudi-
mentary analysis and prediction of extra-functional properties of the components and
systems. There are increasing requirements for developing methodologies for reason-
ing about system properties derived from the component properties. Typical require-
ments are prediction of memory, CPU and power consumptions.

Component models in this domain cover composition at development (compila-
tion) time; runtime systems are monolithic applications, which make on-line updates
of components difficult. Although requirements for plug-and-play concept are not
highly prioritized, it is expected that this will be more important in the future. For this
reason a support for managing components at run-time will be required.

12.4 Telecommunication Software Infrastructure

Industrial Landscape

Telecom applications involve several domains, such as commercial information sys-
tems, network management, service management and real-time network and execu-
tion platforms. There are specialized units developing particular techniques and skills
(network traffic, middleware, software engineering, performance evaluation, architec-
ture, User interfaces...). Moreover, in general, services are developed, deployed and
provided by different business units. The telecommunication world is an increasingly
open world involving many actors, working all on the same infrastructure.

A main requirement in the telecommunication domain is that service design and
development needs to be fast, by nevertheless respecting all the actor expectations and
security requirements. Many context constraints exist in the domain: the complexity
of the infrastructure (middleware), the heterogeneity of the standards for protocol
exchanges as well as their continuous evolution, the emergence of new standards, the
absence of formal specification for many standards and many more [ITE, RNRO3].

Component-Based System Development Context

In the context of telecommunication infrastructure and services, components play and
have played a crucial role, and the majority of these components are embedded in
core network platforms or several types of devices: mobile, fixed, etc. Components
may be shared between different applications. These applications are in general not
deployed at the same time but are continuously added and modified, inducing a large
amount of work for functional integration, but also and even mainly, for performance
integration. Furthermore, components — or their specifications — are reused when new
services are developed in order to reduce the development cycle and to allow a large
commercial diversity with a relatively small technical diversity [ITE] and to ensure a
certain uniformity of the service behaviour.

Large telecom applications, such as switches, have to satisfy requirements on high
performance, massive concurrency (handling many calls simultaneously), high avail-
ability, robustness, etc. These requirements must be addressed by a suitable architec-
ture, which gives adequate support for all these requirements. An example of a

132 12 Current Design Practice and Needs in Selected Industrial Sectors

framework which has been developed with this in mind is the Erlang Open Telecom
Platform (OTP) [Erl], which is a run-time framework supporting massive concur-
rency and high availability of applications in the concurrent language Erlang.

State of the Practice

Currently, the application designers build new applications in a vertical fashion. A
vertical structure is contradictory with the need to rapidly build and modify (cus-
tomize) new services, to integrate them in a consistent way with existing ones and
to share common infrastructure and platforms (core network execution platforms or
embedded mobile devices), etc [KK00]. The analysis of real-time and QoS require-
ments, which are essential the service deployment and provision, can today not be
analyzed during the early stages of design, as QoS properties are well studied and
expressed only at a very low level (execution platform and network level). Conse-
quently, time or performance problems are mainly discovered once the application
is deployed and tested. This leads to expensive time to market development.

Also, due to the absence of formal specification of component interfaces and
composition rules and the lack of real-time and QoS property specifications at com-
ponent level, current practice consists more in creating new software components
(even at the specification level) rather than in reusing existing ones.

In the domain of Telecom, UML [UML.OMGO02] is extensively used in the con-
text of commercial information systems for the static system description (class
diagrams), but unfortunately it is not used for modelling of the dynamics of the
application. This is mainly due to the fact that current UML tools do not handle the
dynamic aspects (absence of appropriate tools and standard semantics). In the past,
and still currently, for some applications model based formal approaches are used.
The standards in the telecom domain, such as SDL [SDL,CCD+01,CDNO1], and
similar frameworks — for example ROOM [Sel96] or Erlang [Erl,OSER], a func-
tional language are used for the specification of protocols and services. Esterel
[Ber99a, CPP+01, CPP+02] or other synchronous formalisms have also been used
for synchronous applications, such as software radio. For performance prediction of
service platforms some commercial tools based on queuing theory — for example
SES workbench [SES], Opnet [OPN]) — are used. This means that for different
activities different, only informally related, models are used [MDVCO03].

Challenges and Work Directions

The challenge for the telecommunication domain for the future is to enable the
ubiquitous “anything, anytime, anywhere” concept, which means that a service
should be seen for an end user as a black box — or a least a grey box — respecting
functional and extra-functional properties (Quality of Service) independently of the
underlying platform. Due to the openness of the telecommunication architecture, a
multitude of services and service components are currently provided by several
companies and must be dynamically integrated and updated. Telecommunication
applications must be created in a secure and reliable way with short development
times in a multi-provider environment. There is a real need to go from a vertical
service development to a horizontal approach based on flexible, reliable and open

124 Telecommunication Software Infrastructure 133

software infrastructure (middleware). In order to achieve this goal, it is essential to
provide service designers with a software infrastructure offering an interface layer
or middleware hiding as much as possible the heterogeneity and the complexity of
the underlying layers. Only such interface layers consisting of component and con-
nectors with appropriate functional and extra-functional characterizations will allow
flexible evolution of the applications and their components, as well as consistent
integration of different applications developed by different providers. Concepts
such as Model Driven Architecture [MDA, Nic02] have the objective to help the
creation of such an infrastructure and provide a syntactic support for this. A re-
search goal for software infrastructure should be to integrate Model Driven Archi-
tecture concepts with component based development approaches and provide an
innovative and consistent development methodology from high level specifications
towards design. Formal validation of components, which must take into account
rich interface specifications, is crucial for a consistent composition of distributed
components. It is the only way to ensure a flexible and secure interface to the tele-
communication service designer.

e For service designers, the interest of components goes beyond interoperability.
Service components have individual requirements that might be violated when
composed and deployed with other service components. This problem, well-
known in the telecommunication world as the service interaction problem, must
be tackled taking into consideration real-time and performance aspects. Espe-
cially in the context of mobile telecommunication or WEB-services, real-time
aspects, quality of service and dynamic composition are important issues.

e Another important aspect is the definition of a methodology for component
based design, from the analysis steps towards implementation and testing, ap-
plied for component lifecycle and system lifecycle. There is a large consensus
for the use of standards, such as UML, SDL and MDA in the telecommunication
world, but research is necessary in order to take into account real-time aspects,
quality of service and deployment issues and to better integrate components and
composition in the software lifecycle.

e Component and system verification using formal techniques for real-time sys-
tems should be enforced. Its systematic use should enable quick and secure tele-
communication service creation answering questions like how to build an archi-
tecture based on a set of components (reused and/or shared by several services)
in such a way that we can guarantee the provision of complete applications re-
specting quality of services and safety requirements (especially security re-
quirements).

e Specific attention should be paid to mobile devices. They have to tackle several
critical constraints (memory size, energy consumption, time constraints, etc.).
They require continuous adding, removing or modification of components, and
different service negotiation procedures. Security and availability are require-
ments in any kind of environment (unreliable environment, different kinds of
communication modes, different performance properties). Specific components
are needed for different communication patterns.

134 12 Current Design Practice and Needs in Selected Industrial Sectors

12.5 Avionics and Aerospace

Industrial Landscape

Some of the characteristics for software development for avionics and aerospace in-
clude the following.

e Applications are highly safety- and mission-critical and must be able to satisfy
very hard real-time constraints. For example, Ariane 5 is inherently instable: its
position must be correctly controlled within each 10ms cycle, meaning that the
loss of sensor data of a single cycle leads to the potential loss of the rocket. For
this reason, such systems are inherently complex and expensive to design, up-
grade, and support.

e Some of theses systems have an extremely long lifetime (over 20 years for an
airplane) and will undergo several generations of upgrades and platform migra-
tions. Also the amount of software in this kind of systems has been dramatically
increasing. For example, in 1974, an Airbus 300B embedded just 500 Kbytes, to-
morrow Airbus 380 will embed 64 Mbytes and at horizon of 2015, a Gbyte of em-
bedded software is probably not a limit. In space applications, the trend is similar.

e Similar as in the telecom domain, an important difficulty, reported also in section
3.2 of this document, is that the development of avionics and space systems is di-
vided into several teams with specialized skills, and that no single person can
overlook anymore the entire flight computer and the rapid growth of the embed-
ded software makes this worse.

e Extensive model-based simulation and validation is performed since flight testing
is extremely costly.

One consequence of the facts mentioned above is that model-based approaches are
more advanced and applied than in other domains, e.g., as witnessed by the promi-
nence of the avionics application domain in many advanced technology projects (e.g.,
SafeAir http://www.safeair.org/project/, Mobies http://www.liacs.nl/marcello/ mo-
bij.html, and others).

Component-Based System Development Context

Presently, the approach for building a flight controller is a synchronous approach
(such as explained in section 3.2), which considers the entire system as a unique en-
tity with a single clock. Deployment on rapidly evolving distributed architectures
which might be based on different technologies (different kinds of buses,...), as well
as replication for increasing reliability and other safety and security related issues are
handled apart. The validation of the integrated system is a major problem. Compo-
nents play a role here, but they are mainly design time components as there is no
explicit notion of component based middleware used in any present development
process in this domain. More emphasis appears to be placed on predictability of
global system properties and global system architecture.

Nevertheless, there is a prominent desire is to continue the trend towards model-
based development, supporting it by integrated tool chains that can perform analysis
of properties like fault tolerance, timing, utilization, quality of service, etc. on models,

12.5 Avionics and Aerospace 135

and thereafter generate optimized code for target platforms. There exist some ap-
proaches which start to be used in this domain or in comparable domains (e.g. auto-
motive):

e The TTA Technology [KR93] proposes a solution for using the synchronous ap-
proach transparently in a distributed system. This is done by hiding distribution
via an implementation of a time based access protocol of each node to a common
bus with proven properties. This architecture is based on the existence of redun-
dancy of its physical nodes. It implements a particular dependability model and
does not handle other extra functional aspects, as for example security issues.
Moreover, its extreme requirements on the internal clocks of all components and
the important computational overhead, makes this technology probably inappro-
priate for space applications (where high reactivity is combined with slow compo-
nents due to problems with radiation).

e An example of technologies for handling component based systems that have been
developed for the avionics domain is Meta-H [Met]. Meta-H is a domain-specific
Architecture Description Language (ADL) dedicated to avionics systems which
has been developed at Honeywell Labs since 1993 under the sponsorship of
DARPA and the US Army. A significant set of tools (graphical editor, typing,
safety, reliability, and timing/loading/schedulability analyzers, code generator...)
has already been prototyped and used in the context of several experimentation
projects. Notice however, that Meta-H is very low level. Today, it is rather a lan-
guage for assembling existing pieces of code.

Also there is an ongoing new development of a standard called AADL (Avion-
ics Architecture Description Language [WKBO04] which has emerged from Meta-
H, and which will include in its forthcoming version V1 a UML profile for avion-
ics and space system. The usefulness of this extension will depend on its ability to
describe high level abstractions and the relevant properties of components.

Challenges and Work Directions

A major challenge in the domain is the adoption of a truly component based approach.
The encapsulation of functionalities concerning distribution, security, replication, in a
middleware consisting of components with guaranteed extra-functional properties will
be the key for making existing validation methods (applied today to the synchronous
model of the control) applicable to an integrated system. It makes the development of
the control application independent of the actually used architecture and supports
architectural changes during the lifetime of a system through the replacement of some
of individual middleware components as required.

In order to make this vision a reality, appropriate formalisms for representing high
level views of a given system architecture, including properties of components need
to be built. For example, in AADL, there exists a notion of connector, which needs to
be made general enough to represent a middleware component guaranteeing secure or
timely communication, etc. Also, the necessary infra-structure does not exist today
and must be built. As an example, the EU Integrated Project ASSERT proposes to
tackle this problem.

136 12 Current Design Practice and Needs in Selected Industrial Sectors

12.6 Summary and Challenges

Component-based development is practiced in several industrial domains. The com-
ponent-based approach at system level, where hardware components are designed
together with embedded software, has been successfully used for many years. Also
large-grain generic components like protocol stacks, RTOS, etc. have been used for a
long time. In addition to this, technology supporting a component-based approach has
been developed either in the form of dedicated proprietary component models or by
using reduced versions of some widely used component models.

e A major, short-term benefit of the component-based approach is that it imposes a
beneficial structure to system development. Component technology supports the
structuring of complex systems early in the development process. In this way,
many integration and maintenance problems can be addressed early, at lower cost.
Systems are easier to maintain if they have a clear structure, e.g., as a system
composed of components. The development of product-line architectures and of
standardized domain-specific architectural guidelines supports adequate system
structuring. Legacy systems can sometimes be structured into components in order
to make future upgrades and maintenance easier

e Component-based development allows integration problems to be handled in the
earlier phases of system design. Component properties that have global system
impact, notably properties of timing and resource consumption, can be specified in
interfaces in such a way that global resource usage can be predicted a priori,
avoiding hard problems in system integration.

e It is easier to achieve time-to-market requirements by separating the component
development process from system development process. Components can be re-
used across several products or even product families. Re-use is made easer by de-
fining product line architectures, in which components have given roles. New
products can then re-use components of previous products by modification or
parameterization.

A longer-term potential of component technology is to enable a Market for Software
Parts. However, this advantage is currently unclear, and would demand that compa-
nies make high initial investments in tools and technology.

A prerequisite for the further adoption of component technology in many sectors is
to define a more standardized software structure, encompassing domain-specific
guidelines for system architectures, and the functioning and interfaces of different
types of components. Such developments are underway, e.g., in the automotive and
avionics domains, and can lead to more efficient development processes, support for
exchange of software components between organizations. Further standardization of
component interfaces will support interoperability between products and between
components.

Technical needs from a component technology fall into several categories:

e Composition and integration of component-based systems requires technology for
specification of interfaces to be developed to the point that it can a priori guaran-
tee component interoperability. This is important, e.g., in the telecommunications

12.6 Summary and Challenges 137

domain where interoperability is crucial, in domains where manufacturers have
the role of system integrators, e.g., in the vehicle and industrial automation do-
main. Important properties for component interoperability in embedded systems
are component timing and resource properties, since these properties have system-
wide impact.

Embedded systems are typically resource constrained. This is a further motivation
why component technology must support specification of extra-functional proper-
ties (resources), so that system resource needs can be predicted and managed early
in system development. It is furthermore important that a system composed of
components can be optimized for speed and memory consumption, typically by
globally optimizing compilation. This applies to industrial sectors with large vol-
umes and small platforms that have constraints on, e.g., power consumption, such
as the automotive industry and small mobile devices. To support more advanced
component technologies for embedded systems, it is important to develop efficient
implementations of component frameworks (i.e., middleware), which have low
requirements on memory and processing power.

Predictability of system properties, in particular concerning QoS, is crucial in
many domains of embedded systems. This means that a component technology
should bring solutions to the following problems.

o Prediction of global system properties from component properties, as s speci-
fied in component interfaces. A current shortcoming is that methods for break-
ing down system timing requirements into component requirements are not
fully developed.

o Components have individual requirements that can be violated when composed
and deployed with other components. Techniques are needed that ensure that
components do not interfere with requirements of other components. Such in-
terferences can be obvious, such as violations of memory protection, or more
subtle. An important scenario where interferences will occur is when several
components, each implementing a piece of functionality, are mapped onto one
ECU.

o Determination of QoS, timing, and resource properties of components, e.g., by
measurement, simulation, static analysis, etc. An inherent difficulty is that
these properties depend not only on the component software, but also on the
underlying platform.

Embedded systems often have high requirements on safety, reliability, availability
and QoS, including their predictability. A proper solution to these generic re-
quirements needs to include

o Specification of relevant properties in component interfaces, together with
mechanisms to check adherence to interface specifications.

o Suitable generic mechanisms (e.g. middleware with guaranteed properties) in
component frameworks that allow building systems with high requirements on
safety, reliability, availability, etc.

o Mechanisms to analyze system-wide safety, properties, potentially using tech-
niques that are tailored for specific component frameworks.

138

12 Current Design Practice and Needs in Selected Industrial Sectors

Reuse of components across different organizations is sometimes hampered by the
lack of technology and procedures for verifying and certifying component imple-
mentations against their interface specifications.

The adoption of component technology is hampered by the lack of widely adopted
component technology standards which are suitable for real-time systems. This
can to a large extent be attributed to the special needs of the embedded systems
sector (resources, extra-functional properties). It may be unreasonable to expect a
single standard for embedded systems to emerge; a more likely scenario — already
starting to emerge — is that domain-specific component standards and frameworks
will be developed. Important considerations for such solutions are as follows.

o Interoperability between different component technologies is important. One
motivation is for users not to be bound to a single vendor of platforms or inte-
gration tools. There is also a trend towards open, extensible, and upgradeable
systems. Component technologies for embedded systems should therefore be
compatible with existing standards. Service negotiation is a natural part of
open embedded systems.

o Frameworks and middleware implementations available to industries in a
given domain.

o Tools that allow components to be developed and integrated. Such tools must
in most case provide adequate support for solving timing and resource prob-
lems when defining the system architecture. Current proprietary component
models for embedded systems are typically not widely enough used to moti-
vate the cost of developing such tool support.

Embedded systems are typically developed over a long time, implying that support
for maintenance of system evolution is an important consideration. The appropri-
ate level of specification of component and system properties should allow system
hardware and platforms to be exchanged and upgraded, as well as allowing com-
ponents to be reused in different contexts. This motivates an increased interest in
model based approaches to specification and development, including the MDA
approach. A suitable middleware layer can hide specific problems stemming from.

13 Components and Contracts

13.1 Introduction

One of the key desiderata in component-based development for embedded systems is
the ability to capture functional and extra-functional properties in component inter-
faces, and to verify and predict corresponding system properties. For real-time sys-
tems, this is perceived to be particularly important for properties such as timing and
quality-of-service.

In this section, we review existing techniques for capturing, verifying, and predict-
ing different properties of component and system behaviour. Properties of compo-
nents can be expressed in their contracts, hence the title of the section. The term con-
tract can very generally be taken to mean “component specification” in any form.

A contract is in practice taken to be a constraint on a given aspect of the interaction
between a component that supplies a service, and a component that consumes this
service. Component contracts differ from object contracts in the sense that to supply a
service, a component often explicitly requires some other service, with its own con-
tract, from another component. Therefore the expression of a contract on a compo-
nent-provided interface might depend on another contract from one of the component-
required interfaces. For instance, the throughput of component A doing some kind of
computation on a data stream provided by component B clearly depends on the
throughput of B.

It is indeed challenging to develop a practical framework for reasoning about com-
plex component properties (e.g., performance properties) stated in contracts, e.g., to
infer global system (performance) properties. A complete solution to this problem
requires powerful mathematical reasoning, e.g., about properties of stochastic proc-
esses. A pragmatic, more modest, approach to this problem, which does not need
powerful mathematical reasoning, is to agree on a small set of fixed contracts, or a
small set of fixed building blocks for contracts. For each contract, one can then in
advance develop techniques for monitoring or verifying that component implementa-
tions satisfy the contract, and techniques for inferring system properties from compo-
nent contracts. For instance, for performance properties, one can define a fixed set of
different levels of performance, and for each level define rules for run-time monitor-
ing and for component interoperability.

In simple cases, such a scheme can be seen as constructing a type system for speci-
fying properties. More complex cases may involve constraints expressed in some type
of logic, and thus checking beforehand that components interact correctly then need
some form of theorem proving techniques.

To structure the exposition into different types of component properties, we use the
classification of contracts proposed by Beugnard et al. [BJP99], where a contract
hierarchy is defined consisting of four levels.

e Level 1: Syntactic interface, or signature (i.c. types, fields, methods, signals, ports
etc., that constitute the interface).

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 139159, 2005.
© Springer-Verlag Berlin Heidelberg 2005

140 13 Components and Contracts

o Level 2: Constraints on values of parameters and of persistent state variables,
expressed, e.g., by pre- and post-conditions and invariants.

e Level 3: Synchronization between different services and method calls (e.g., ex-
pressed as constraints on their temporal ordering).

e Level 4: Extra-functional properties (in particular real-time attributes, perform-
ance, QoS (i.e. constraints on response times, throughput, etc.). We will separate
this level into two aspects

o 4a: timing properties (e.g. absolute time bounds)
o 4b: Quality of Service properties, typically given by performance measures,
often formulated in stochastic terms (e.g. average response time).

Currently, most component models support only level 1 contracts, while some models
support also other levels (see section 14). In the remainder of section 13, we will
survey techniques for capturing and reasoning about component and system properties,
discussing each aspect separately. We will use the four levels of the Beugnard hierar-
chy for structuring our treatment of different interface properties. Regarding level 4,
we make a separation between timing properties (e.g. absolute time bounds) and sto-
chastically formulated performance properties (e.g. average response time). In addi-
tion, we briefly treat reliability properties.
For each aspect, we will consider techniques for

e expressing properties of systems and components,

e predicting or verifying system properties from component properties, in particular
for doing this statically at design-time,

e checking that component properties are compatible (assumptions made in one
component specification are guaranteed by some other component specification),

e verifying that component implementations satisfy properties given in component
specifications, and

e compile-time and run-time support for enforcing system or component properties.

13.2 Level 1 — Syntactic Interfaces

Definition

By a syntactic interface, we understand here a list of operations or ports, including
their signatures (the types of allowed inputs and outputs), by means of which commu-
nication with a component is performed.

Generally speaking, a #ype can be understood as a set of values on which a related
set of operations can be performed successfully. Belonging to a given type usually
implies constraints that go beyond what value is denoted exactly, most notably how
the value is stored (required when operations are performed). Once types have been
defined, it is possible to use them in specifications of the form: if some input of type
tix is given, then the output will have type toy.

Type safety is the guarantee that no run-time error will result from the application
of some operation to the wrong object or value. A type system is a set of rules for
checking type safety (a process usually called type checking since it is often required
that enough information about the typing assumptions has been given explicitly by the

13.2 Level 1 — Syntactic Interfaces 141

designer or programmer, so that type checking becomes mostly a large bookkeeping
process).

“Static” type checking is performed at compile- (or bind-) time and ensures once
and for all that there is no possibility of interaction errors (of the kind addressed by
the type system). Not all errors can be addressed by type systems, especially since one
usually requires that type checking is easy; e.g., with static type checking it is difficult
to rule out in advance all risks of division-by-zero errors.

Type systems allow checking substitutability when components are combined: by
comparing the data types in a component’s interface, and the data types desired by its
environment client, one can predict whether an interaction error is possible (e.g. pro-
ducing a run-time error such as “Method not understood”).

Specification of System and Component Signatures

A system for specification of syntactic interfaces must include:

e A type system, together with a syntax (we can call it an Interface Description
Language, or IDL) for specifying signatures of operations/ports;

e A mapping from the (abstract) interface types to component implementations. For
instance, if components are given in some programming language (for example, if
they are written in C), and the interface types use the type system of C, then the
mapping is direct. If components are available in binary form, there must be an
agreed mapping from interface types to binary formats of component implementa-
tions.

e A notion of substitutability, which describes when the interfaces of two compo-
nents are compatible.

For embedded systems, the type system is usually rather simple, with a substitutabil-
ity amounting to equality (i.e. one may only substitute objects whose interface is the
same as the declared one). For run-time component frameworks, a little bit more
flexibility is usually allowed, with substitutability based on type extension or even a
more generally defined conformance relation.

For instance, every CORBA object has a type name, which is the same as the inter-
face name assigned in its IDL declaration. The operations that it can perform, and the
variables (and their types) that it understands, are all part of its type. Base types in-
clude three different precisions of integers and floating-point numbers plus fixed-
point, standard and wide characters and strings, etc. Constructed types include records
(“struct”s), unions, and enumerations. One can declare either fixed or variable length
structs, arrays, strings, and wstrings. There is an any type that can assume any legal
IDL type at runtime.

CORBA supports sub-typing by extension: one can create a subtype by extending
the base type’s list of operation signatures. But one must not redefine any of the base
type’s operations, and it only works in the absence of explicit self-reference. The
advantage of this scheme is that it is easy to implement and understand, the disadvan-
tage is that it is still quite restrictive since some safe substitutions are ruled out.

A proposal for a polymorphic type system suitable for embedded system design is
given by Lee and Xiong [LXO01] and incorporated in Ptolemy II. It combines several
types of polymorphism, including some standard coercions between numeric data

142 13 Components and Contracts

types. One design goal is that the check for substitutability should be efficient, since
one may have to carry it out at run-time.

Component Interoperability

Conformance is more generally defined as the weakest (i.e., least restrictive) substi-
tutability relation that guarantees type safety. Necessary conditions (applying recur-
sively) are that a caller must not invoke any operation not supported by the service,
and the service must not return any exception not handled by the caller. Conformance
has a property called contravariance: the types of the input parameters of a service
must conform in opposite to the types of its result parameters.

For example, if we have a type sign for the set of the three numbers -1, 0 and +1,
it is natural to see sign as a subtype of integer. Now consider a numerical func-
tion sign from integers to signs: this function can be used (substituted) in contexts
where a function accepting sign is expected, and in contexts where a function return-
ing integers is expected.

At first, the contravariant rule seems theoretically appealing. However, it is less
natural than covariance (where parameter types conform in the same direction), often
encountered in real world modelling (animals eat food, herbivores are subtypes of
animals, but they eat grass which is a subtype of food, not a super-type!), and is in-
deed the source of many problems. The most surprising one appears with operations
combining two arguments, such as comparisons. If the contravariant rule is used, the
type associated with equal for Child instances is not a subtype of the one of equal for
Parent instances. As soon as this kind of feature is considered (and they are com-
mon), the contravariant rule prevents a sub-typing relation between Child and Parent
(see [Cas95] for more details and solutions).

Trends and Conclusion

About 10 years after the debates on contravariance vs. covariance have peaked in the
0O research community, the dust has settled down somewhat. We can now identify
three main directions that have been taken to deal with this issue.

e Keep it simple: No-variance is used for IN parameters. That is the approach used
in mainstream languages such as CORBA, C++, Java, C# etc. For instance, if one
needs a specialized version of x.equal(y), the type checking (through down casting
on parameter x) must be done by hand by the programmer, and verified at runtime
only.

e (i1) Model reality: Covariance is used for IN parameters. This is the approach used
in Eiffel, which makes static type checking a non-local, non-incremental task. In-
deed, if no other restriction is made, type checking requires extensive program
analysis and looks much more like theorem proving than the simple bookkeeping
process it used to be.

e (iii) Make it complex: use parametric polymorphism in conjunction with reference
polymorphism, and have a type system where the types themselves can be seen as
variables. This is quite appealing as far as the expressive power of the type system
is concerned, but it still lacks a mainstream adoption.

13.3 Level 2 — Functional Properties 143

The conclusion is that as soon as one wants a minimum of flexibility for defining type
conformance between a provided interface and a required interface, static type check-
ing is no longer a simple bookkeeping process. So level 1 contracts do not have a very
different nature than contracts of other levels. In some cases, they can be defined with
restrictive rules to allow simple tools to process them, in other cases one could be
interested in having more flexibility at the price of more complex tools for static
checking, or even rely on runtime monitoring.

A concern in component-based design of embedded systems is that runtime moni-
toring of interface types may be desirable for building reliable systems, and because
one cannot completely trust component implementations. If components are deployed
at run-time, the check for substitutability must be performed with available computing
resources.

13.3 Level 2 — Functional Properties

Definition

Functional properties are used to achieve more than just interoperability. Level 2 in
the Contract Hierarchy is concerned with the actual values of data that are passed
between components through the interfaces, whose syntax is specified at Level 1 (the
preceding section). Typical properties of interest are constraints on their ranges, or on
the relation between the parameters of a method call and its return value. It is also
customary to include at level 2 properties of a persistent state of a component. In level
2 contracts, transactions are described as atomic, which means they are appropriate
for components with sequentialised or totally independent interactions.

Specification of System and Component Properties

Formalisms at level 2 provide means for describing partial functions or relations for
representing a component (or system) step. In constraint languages, as provided by
Eiffel/SCOOP [Mey91, Mey97] (dedicated to the Eiffel programming language),
OCL [WK98] (Object Constraint Language dedicated to UML), LSL (Larch Shared
Language) [GHG+93], JML (Java Modelling Language) [LB99], relations are ex-
pressed by means of invariants, pre- and post conditions. More classical notations are
for example Kahn networks [Kah74]. Logical formalisms are Unity [CM8&8] or TLA
[Lam94], with the difference that they allow also to express liveness properties, that
is, additional properties of infinite sequences of steps (fix points).

In practice, pre- and post conditions are rarely used in the context of large compo-
nents, but rather for small components, often describing data structures providing a
set of operations considered as atomic. One reason may be that the same type of inter-
faces is much harder to obtain for compositions of components.

Verifying Component Properties

There exist a number of tools using constraints for run-time monitoring which gener-
ate exceptions in case of violation of interfaces at run-time. This is the case for exam-
ple in Eiffel and for JML annotations of Java. It also exists in .NET. Run-time moni-

144 13 Components and Contracts

toring assumes that interface specifications are executable, and incurs a nontrivial
cost. Many frameworks use assertions in a test phase, often using a constraint lan-
guage. Here, aspect-oriented programming techniques [KLM+97], which allow to
compose different features when generating code for testing or for final implementa-
tion, can be used to introduce some degree of automation and to facilitate mainte-
nance.

There are research tools that perform static checking of JIML, such as ESC Java at
Compaq [ESC] based on (partial) static analysis methods, or in the Loop project at
University of Nijmegen [Loo] which is based on the use of interactive theorem
provers. Theorem provers are also used to verify invariants or temporal logic proper-
ties on TLA or Unity specifications. Such tools are primarily used in applications that
require highly dependable software. Even in the future, they might not become widely
used in standard component based development, but it is important that they exist for
demanding applications. Certainly, component manufacturers may want to use them,
to provide highly dependable component implementations conforming to contracts.
To some extent, the use of theorem provers can be seen as a form of experimentation,
which should result in automated procedures for various application domains.

Some of these formalisms are also used in the domain of hardware or on finite state
abstractions of components, where (symbolic) composition and model-checking are
applicable, and any of the many model-checkers developed in the last 2 decades can
be used.

The B-Method [Abr96], is based on a formalism of the same kind, but it provides
an integrated framework for systematic refinement from invariants to implementa-
tions of functional components.

Component Interoperability and System Properties

There are two aspects of interoperability: one is preservation of component properties
and general system properties like absence of deadlock, and the second is verification
of emerging global system properties corresponding to functional system require-
ments.

In the context of level 2 specifications, composition of interfaces can be seen as
composition of partial relations. Therefore, component interoperability amounts to
verify that composition does not require strengthening of preconditions (leading to
additional undefinedness). In simple cases, it can be sufficient to check that pre-
conditions are satisfied by corresponding post-conditions of connected interfaces.

The level 2 system properties are determined from the composed partial relation. In
general, its formal calculation requires more sophisticated mathematical machinery in
the form of fixed-point theory, as simpler representations in terms of invariants and
pre/post conditions cannot always be synthesized.

The situation concerning existing tool support is the same as for the verification of
components themselves. Run-time monitoring is the main approach, and alternative
methods consist in using interactive theorem provers, or, alternatively, a top-down
approach based on systematic refinement.

In the case of finite domains, the situation is more favourable, as representations of
compositions can be synthesized from representations of components.

13.4 Level 3 — Functional Properties 145

Existing academic tools for the static validation of component properties should be
pushed towards more automation and integrated into professional development tools.
The main problem of level 2 specifications is their applicability to distributed sys-
tems, due to the absence of means to express interactions as non atomic or to express
explicit concurrency. This can be improved by considering additional level 3 specifi-
cations. In practice, level 2 specifications can be used mainly for a single level of
components and when non-interference between transactions can be guaranteed by
construction (in general by sequentialising access to components), as for example in
the synchronous approach used in the context of safety critical applications.

13.4 Level 3 — Functional Properties

Definition

Level 3 in the Contract Hierarchy is concerned with the actual ordering between dif-
ferent interactions at the component interfaces and more importantly, they allow in-
teractions between a component and its environment to be considered non atomic.
Level 3 specifications provide the following facilities:

e description of transactions (input/output behaviours) not necessarily as atomic
steps.

e explicit composition operators avoid the obligation to provide an explicit in-
put/output relation taking into account all potential internal interactions. This has
the further advantage that a restricted use of a component does indeed allow to de-
rive stronger properties (only the actually occurring interactions need to be taken
into account, not all hypothetical ones)

e many level 3 formalism allow to express explicit control information, which makes
the expression of complex, history dependent input/output relations much easier

Indeed, formalisms at level 3 have explicit composition and communication primi-
tives.

Specification of System and Component Properties

There are several, formally comparable families of description techniques:

e Automata, including hierarchical state machines etc. as found in SDL, UML have
explicit composition operators which allow easily to represent complex compo-
nents by means of the same formalism.

e Process algebras are very similar in principle, and really focus on the notion of
composition.

e Temporal Logics are used for the description of global properties to be verified on
a component or a system (also for components specified with level 2 interfaces),
rarely as component characterizations to be used in further composition.

e Sequence Diagrams or Sequence Charts represent also global properties, but in
terms of a set of interesting scenarios and are mostly used to describe test cases.
They may be used to describe complete specification if the number of alternative
scenarios describing a transaction is relatively small.

146 13 Components and Contracts

In order to distinguish between or the required and offered parts in the context of
contract specifications, most of these formalisms use the distinction between inputs
and outputs. Timeouts or explicit timing restrictions can be used in some formalism to
restrict waiting for particular inputs or component reaction time. Most of these for-
malisms must handle unexpected inputs explicitly by providing complete specifica-
tions. A recent suggestion for extending automata-based formalisms with explicit
distinction of provided and required interfaces are interface automata [CAAH+02].

Verifying Properties and Component Interoperability

In the context of level 3 contracts, the expression of interfaces of complex compo-
nents is made possible due to explicit composition. In this case, the verification of
component properties and of system properties are of the same nature. However,
system verification can easily become intractable for systems consisting many com-
plex components (cf. the state explosion problem).

In academia, in the last two decades a large number of model-checking tools have
been developed, which allow to show that a composition of automata (describing
behaviours of components) satisfies some property (a desired component or system
property), described either as an automaton, a formula of temporal logic, or in the
form of a scenario (Message Sequence Chart [Mau96, IT00] or Live Sequence Chart
[DHO1]). These tools can be used to verify properties of relatively small descriptions,
i.e., mainly of medium-size components or systems. In order to make the verification
of complex systems that are compositions of components tractable, two kinds of
methods have been developed:

e abstraction, to hide the internal structure of sub-components and to synthesize the
externally visible behaviour of a component by abstracting, whenever possible
from interactions between internal components

e compositional verification techniques, which are similar in nature but based on
characterizations of components in terms of (temporal) properties and use of de-
ductive verification techniques

Most model-checkers work on finite-state systems only, but in the last years also tools
for checking decidable or semi-decidable properties of infinite-state systems (such as
parameterized systems, systems with counters or communication through lossy chan-
nels) have been developed. Nevertheless, at present these tools are not integrated with
any existing tool for component-based development.

For modelling languages like SDL or UML, which can be used to describe inter-
face behaviours, there exist case tools [USEO1, Ilo, Tel] with restricted simulation and
validation facilities, allowing to validate a composition of a set of components de-
scribed by their interface behaviour by simulation.

Nevertheless, none of these tools provides facilities for defining observation crite-
ria that are necessary to explicitly hide internal information. Industrial practice is
mainly based on testing and/or on model-based simulation. The step from a complete
functional model to an implementation, for example in C can be done automatically in
some contexts. For synchronous languages, and for SDL, automatic code generators
exist and are being used.

13.5 Level 4a — Timing Properties 147

It should be noted that system validation is in general not done for arbitrary envi-
ronments, but with a particular, restricted environment (including the underlying
platform) and a restricted number of possible interaction scenarios in mind. This re-
duces the amount of non-determinism and makes validation more feasible, which then
gets very close to testing of a restricted number of scenarios played by the environ-
ment. In this context, level 3 specification have the considerable advantage over level
2 specifications that encapsulation of internal activities need not be done a priori for
all uses of a components, but after restriction to a particular environment. This allows
for the derivation of stronger global properties.

Research Challenges

Currently, there exist many specialized tools, both academic and commercial, for
modelling, composition, verification, analysis, simulation, or other activity in the devel-
opment of component-based systems. In the foreseeable future, an important objective
should be to leverage the power of these tools, by connecting existing pieces into a tool-
chain for modelling and analysis of component-based real-time systems. Such tool chain
could, e.g., allow to model systems in a subset of UML, thereafter translate such models
into formats usable by other tools, e.g., for simulation and timing analysis.

The application of model checking techniques to component-based systems has to
tackle the well-known state space explosion problem. An important approach to veri-
fication large systems is to combine compositionality and abstraction techniques, by
providing a simple interface for each component, and verifying that: (i) the interfaces
of system components interact correctly, and (ii) that each component conforms to its
interface. In order for such an approach to succeed, it is essential to minimize the
linking and dependencies between components, as shown e.g., by Sharygina et al.
[SBKO1].

In certain applications, the interaction between components may be managed by
requiring that components be strictly independent of each other, or that their interac-
tion be in terms of access to a common data structure, under the control of, e.g., a
transaction manager. For many application areas, the identification of suitable restric-
tions on component interaction remains a challenge.

The complexity of system complexity must also be managed by developing tech-
niques to integrate components while preserving/guaranteeing essential properties of
component behaviour. Ongoing work on composition principles that formulate condi-
tions for guaranteeing the preservation of component properties during composition
can be found in [BGS00,GS02]. Principles that allow the inference of system proper-
ties directly from component properties would certainly provide more motivation for
the verification of components. An interesting research challenge is the study of archi-
tectures that support such composition principles.

13.5 Level 4a — Timing Properties

Definition

Timing requirements define constraints on the order of occurrence and on upper
and/or lower bounds of durations between events. We can distinguish between hard

148 13 Components and Contracts

real-time systems, where all the occurrences of the specified events must satisfy the
specified constraints, and adaptive real-time systems where the distribution of the
durations between the specified events over all occurrences within an execution must
obey some constraints, e.g., on average and variance etc. In this section, we consider
timing properties for hard real-time systems, for adaptive real-time and QoS we refer
to the next section.

Specifying Timing Requirements

In the current practice, time bounds can be associated with the duration between
events in an informal or (semi)formal requirements specification. Typical timing
properties are the following ones, where time requirements are expressed using physi-
cal time, e.g., seconds, some abstract time unit, cycles of some clock or number of
computation steps. When different requirements and definitions of a system are ex-
pressed using different notions of time, it is important that the relationship between
these different notions is well defined.

e When called, this method is computed within 20 ms (execution time property).

e This function is computed periodically, with a period of 50 ms (periodicity prop-
erty)

e packets are sent with a frequency of 50Hz and a maximal jitter of 1ms (periodicity
property)

e Component C receives data requests at most every 3 ms (inter arrival time prop-
erty)

e When the value of variable x exceeds 100, component C is notified within less
than 10 ms (reactivity property)

e If lightning strikes, transformers is shut off within 50 microseconds (response time
property)

e RPM does not exceed 50000 for more than a few seconds during the start phase.

e The response to this signal comes within 3 cycles (response time property)

e When component C gets a request every 2 to 3 cycles, it provides the response
within 2 cycles (conditional response time)

o the execution time of task T is 20 to 30 ms and its overall duration should not
exceed 100m.

Note that such properties can express both requirements and assumptions depending
how they are used.

Existing formalisms that allow the expression of time bounds are in fact exten-
sions of level 2 and level 3 formalisms extended with time. They include metric tem-
poral logics, i.e., temporal logics with quantitative constraints on the duration between
events, timed extensions of automata, sequence charts extended with time, timing
diagrams or general constraint languages, like OCL, extended with time. For example,
in Message Sequence Charts [IT00] and also in Sequence Diagrams in some UML
tools, time bounds can be assigned to the distance between two events. In Live Se-
quence Charts [DHO1], time dependent properties are expressed with timers, meaning
that durations cannot be measured, but only constrained. Timed automata are more
expressive: they specify constraints between events by means of so called “clocks”
measuring durations, which are reset to zero at the occurrence of one event, and then

13.5 Level 4a — Timing Properties 149

used in “guards” to restrict the possible occurrence times of other events. A notion of
urgency allows to distinguish between time constraints and time guards.

Temporal logics extended with time have rather limited expressive power. Se-
quence Diagrams define time constraints in the context of certain scenarios, and are
very cumbersome if the overall number of scenarios is big. Timed-automata based
formalisms naturally define constraints on all possible scenarios, but it is harder to
argue about particular “interesting” scenarios.

Some programming and modelling languages have an explicit notion of time. In
synchronous languages one can define behaviours occurring at certain cycles, where
cycles of various lengths (all multiples of a basic cycle) can exist. In the modelling
languages SDL and Room, a notion of global time and timers can be used. But all
these formalisms are aimed at the definition of time dependent behaviours, rather than
at expressing real-time requirements. ITU recommends time extended Message Se-
quence Charts for defining real-time requirements for SDL system models.

For UML, which contains both formalisms for functional behaviour descriptions
and for expressing requirements and constraints, recently a “profile for real-time,
scheduling and performance” has been defined [OMGO1b], including notions of tim-
ers, timed events, constraints on their time of occurrence and a large number of nota-
tions for which no semantics are given. These notions are defined for all of UML, but
have apparently been built with mainly timed Sequence Diagrams in mind.

A more elaborated RT-profile for UML, also based on a large number of intuitive
notations, but including semantics, is being developed in the OMEGA IST project
(http://www-omega.imag.fr/). Note that component timing properties depend in gen-
eral on a given platform and system con- figuration. They must therefore either be
properties of a system component (i.e., the running software together with platform
and run-time system) be parameterized by (characteristics of) the underlying platform,
compiler, etc.

Component Interoperability and System Properties

There is a vast literature on timing analysis, treating the problem of determining
whether a set of given system timing requirements can be met by a collection of com-
ponents with known timing parameters. The most common paradigm is schedulability
analysis, which takes as input component timing properties, system timing require-
ments (on response times, periods, deadlines, etc.), and properties of the scheduler
and platform. The output is an answer about feasibility and information about how the
scheduling should be performed. In the context of hard real-time systems, it is impor-
tant to answer the following questions: “to which extent a component based approach
is possible?” and what kind of “components” are useful in this context. For this pur-
pose, let us look at what is current practice:

Scheduling Periodic Tasks

Mainstream schedulability analysis assume that tasks are executed periodically or a
periodically with known maximal activation frequency. For each task a worst case
execution time is known or assumed, and where applicable also the worst case com-
munication requirements, overhead for context-switching, etc. on a given platform. A
simple framework is RMA, where all tasks are periodic, can be pre-empted, and have

150 13 Components and Contracts

a statically known pattern of access to shared resources. Under suitable conditions,
schedulability can be analyzed in a time proportional to the number of tasks. This
approach is present in Meta-H and Rubus and to some extent in PECOS. In general,
an integration platform need not perform the schedulability analysis itself; this can be
done by an external tool. Schedulability analysis can also be performed for distributed
platforms, if communication delays have known bounds. An example is the Volcano
system on CAN. This approach has also inspired the real-time profile of CORBA, and
in the area of languages, Java-RT and Posix. The approach is mature and has proven
practicality. In this context, a component may realize tasks or represent a shared “re-
source” used for the realization of certain sub-tasks. Its interface must, therefore,
specify its worst-case execution time for each task (or sub-task) for the platform under
consideration and the implied resource usage. It must also be stated whether pre-
emption is allowed, and whether multiple concurrent invocations are permitted.

Synchronous Approach

This paradigm enforces a very strict scheduling policy. Globally, the system is seen as
a sequential system that computes in each step or cycle a global output to a global
input. The effect of a step is defined by a number of transformation rules. Scheduling
is done statically by compiling the sets of rules into a sequential program implement-
ing these rules and executing them in some statically defined order. A uniform timing
bound for the execution of global steps is assumed (system requirement). In this con-
text, components are often “design-level components”, as the component-based de-
sign is compiled into a single sequential program later on. In this case the analysis of
the WCET (worst case execution time) of a single step is done on the target code
directly. An extension to the use of run-time components consists of generating code
containing calls to those components. Some component models, such as IEC61131-3
use this execution paradigm. In some sense, this approach is quite close to RMA,
where the “global period” plays the same role as the “global step”. TTA defines a
protocol for extending the synchronous languages paradigm to distributed platforms.
In this context, distributed components can be made easily interoperable as long as
they conform to the timing requirements imposed by the protocol. Another compo-
nent view consists in considering an entire synchronous system as a “component”
communicating (asynchronously) with its environment by buffering inputs from the
environment and/or relying on certain continuity properties of the environment. This
is sometimes called the GALS (Globally Asynchronous, Locally Synchronous) ap-
proach.

Generalizations

Currently under investigation in the research community are generalizations of sched-
ulability analysis to distributed systems and to more dynamic task sets, e.g. with re-
configuration (this is discussed in action 3). Another extension consists in considering
components with a more complex structure than entities realizing a set of periodic
tasks with a global WCET, e.g., components which have an internal state, as de-
scribed by a state machine, or systems with modes. Quite a number of tools have been
developed recently, aiming at analysis of this kind of systems, such as Taxys
[BCP+01], Prometheus [G"0s01], IF [BGMO02], or Times [AFM+02] . An ambitious
example of a model and framework supporting this and other paradigms is Ptolemy

13.5 Level 4a — Timing Properties 151

[RNHL99, Lee01] or Metropolis [BLP+02]. In this context component interoperabil-
ity is to some extent subsumed under the timing analysis done when checking that
system requirements can be met. This analysis includes checking that the components
can cooperate to satisfy the system timing requirements. In the context of adaptive
real-time system, composition frameworks as proposed in [BGS00] are very promising.

Verifying Component Properties

A difficult point in timing analysis is assessment of WCETs of tasks or of the code
implementing a global step of a synchronous system. In current practice, this is done
by measurements (on each particular target platform), or by simulation, e.g., by using
hardware simulators. Recently, there has been progress in static code-based prediction
of WCET by taking into account a very precise platform model [FHL+01, FW98].
Note that WCET calculation is becoming more and more complex, since new hard-
ware features of processors are increasingly unpredictable, and due to the sometimes
complex platform dependencies. In order to make assertions about upper bounds of
durations, both time-dependent characteristics of the external environment and of the
platform on which the component is executed, as well as knowledge about all re-
source usage, need to be known. Work on extracting timing information from periph-
erals and other devices remains to be done.

Research Challenges

Today, it is not a problem to find a language or notation for the description of timing
behaviours and timing requirements. There is a large number of formalisms (e.g.
timed automata) and standards (e.g. UML SPT) available for modelling though some
of them still need a formal semantics. The research challenges are in analysis. For
example, the SPT notation can be used to specify requirements on UML diagrams,
such as “this method should be executed within 10 milliseconds”. The difficulty is
really how to check that the requirement is guaranteed.

The timing behaviour of a hard real-time system depends on not only its components,
but also the execution platform as well as the environment where the system is em-
bedded. Thus the robustness and composability of analysis and implementation para-
digms are of particular importance for component-based development. By robustness
we mean that timing properties of a system are preserved or refined by any upgrading
or reconfiguration, of components.

Much research focuses on component models for specific frameworks and plat-
forms. Important advances have been made in the domain of execution time estima-
tion for individual tasks, as well scheduling analysis at design time. This is supported
by adapting traditional scheduling theory where parameters of some scheduling para-
digm are specified in the interface of components. Such specifications are also stan-
dardized [OMGO1b]. Classical scheduling theory assumes that system architectures
and components have a certain structure. A number of approaches exist which go
beyond the classical theories and propose techniques to extend timing analysis to less
constrained forms of component specifications (e.g., as timed automata).

152 13 Components and Contracts

For short-term research, a number of important problems remain to be solved:

e Integration of the analysis capacities of the above mentioned tools for both low-
level timing analysis based on abstract interpretation and for interoperability
analysis based on timed automata or other more general task descriptions. The
system TIMES [AFM+02] is a work in this direction.

e Extension of the well-understood, but restrictive paradigms provided by the syn-
chronous approach or by classical RMA analysis to more general frameworks. For
example, TTA is an approach extending the applicability of the synchronous ap-
proach to distributed systems. A system like Giotto [Hen01] extends it with more
dynamic scheduling of the tasks making up a step.

For long-term research, a challenging research task is to develop a paradigm that
encompasses the whole spectrum of approaches from the very strict synchronous
approach to the fully asynchronous approach, including distributed systems. Such a
paradigm must provide a semantic framework for composition of time-dependent
components, based on different communication and interaction modes. This will al-
low the verification of compositions of time-dependent systems and their properties at
modelling level.

A number of features, such as run-time update and dynamic reconfiguration of sys-
tems, which provide some of the motivation for using a component-based approach,
have so far been essentially avoided in systems with hard real-time requirements. It is
an interesting research question, whether such features can be reasonably included
into hard real-time systems.

Essentially, what is needed is the robustness of timing analysis. There are a number
of open and challenging problems in developing platform-independent analysis tech-
niques for all levels:

e For low-level WCET analysis, existing techniques and tools are available only for
specific hardware architectures and applicable under strict assumptions on the exe-
cution platform e.g. pipeline analysis will break up if pre-emption is allowed. It is
not an economical solution to develop a WCET tool for every platform and re-
calculate the WCET for all software components when hardware components are
upgraded or replaced. It is desirable to have WCET tools where standard hardware
components and features (e.g. pipeline) as input are parameters for analysis.

e For system-level analysis, a large amount of work has been done on schedulability
analysis (e.g. RMA) and consistency checking of timing constraints and require-
ments (e.g. model checking based on timed automata). However, the existing tech-
niques provide no guarantee that the analysis results will be valid after some change
on any part of the system or environment e.g. a component is upgraded or ported to
a different platform. It appears that the synchronous programming paradigm is a
promising approach to construct deterministic systems that are easy to verify. But
the problem is converted to check that the timing requirements from the environ-
ment are satisfied by a deterministic system, which is a difficult problem.

We should also emphasize that the components in a hard real-time system share
scarce resources. Handling resource sharing induces a number of interesting and diffi-
cult research problems e.g. synthesis of schedules optimizing resource usage (e.g.
power consumption) from application tasks.

13.6 Level 4b — Quality of Service 153

13.6 Level 4b — Quality of Service

This section addresses quality of service of component-based designs related to adap-
tive real-time issues. Hard real-time issues have been treated in the preceding section.

Definition

A quality of a system can in general be considered as a function mapping a given
system instance with its full behaviour onto some scale. The scale may be either
qualitative, in particular it may be partially or totally ordered. Or the scale is quantita-
tive, in which case the quality is a measure. The problem of realizing systems that
have certain guaranteed qualities, also known as their quality of service (QoS), in-
volves the representation of such qualities in design models or languages and tech-
niques to implement and analyze them as properties of implemented system instances.

While some definitions of ‘QoS’ include concepts such as security, where the scale
is not a measure, we here focus on quantitative measures, especially on those related
to time. In this area, there is a common further classification of system requirements,
distinguishing between hard real-time requirements, where the quality of any imple-
mented system instance must lie in a certain interval, and adaptive real-time require-
ments. Typical examples of such requirements are: “The average lifetime of the bat-
tery pack is 4 hours”, or “The probability of a buffer underrun is less than 0.001”.
This is the focus of this section; hard real-time systems are handled in the preceding
section.

Embedded System Context

Embedded systems designers are usually facing many challenges if they strive for
systems with predictable QoS. To incorporate these constraints in the embedded sys-
tems design process is a challenging issue, for the following reasons.

e The system dynamics is becoming ever more complex, making it more and more
difficult to observe or predict the QoS properly.

e The trend towards networked embedded systems raises issues like message buffer-
ing, interdependencies due to media sharing, and communication characteristics,
all influencing the system QoS.

e Applications involve more and more extra-functional features in the form of mul-
timodal interfaces and multimedia support, having impact on the QoS.

e Modelling and analysis facilities for QoS are (if at all) not well integrated into the
methods and tools available to embedded system designer, because QoS relates to
different design aspects than the functional design.

For reasons such as these, encapsulation of QoS properties inside a component is very
difficult. Most of the work already done focuses mainly on the definition of QoS
contracts. A workable approach appears to be to attach offered QoS properties (much
like post-conditions) to components, as well as required QoS properties (resembling
preconditions) [Sel02].

154 13 Components and Contracts

Specifying System and Component Requirements

Contract Languages. Research has progressed in the context of languages to specify
such contracts, and to attach them to component interfaces. We mention QuO/CDL
(http://quo.bbn.com), AQuA (http://www.crhc.uiuc.edu/PERFORM/ AQuA html),
QML [FK98], and AQML [Nee91]. A more descriptive overview can de found in part
III of this document. These languages are mostly syntactic extensions of CORBA’s
Interface Definition Language (IDL) tailored to express QoS properties. In order to be
useful in component based systems, contract languages must include facilities for
expressing properties typical of components, that is, their context dependencies
[WBGPO1]. A component provides a service under a given contract only if the sur-
rounding environment offers services with adequate contracts [Reu01]. Such depend-
encies are much more complex than the traditional pre/post-condition contract scheme
of object oriented programming. In the most general case, a component may bind
together its provided contracts with its required contracts as an explicit set of equa-
tions (meaning that offered QoS is equal to required QoS).

Therefore, a component oriented contract language includes constructs for:

e cxpression of QoS spaces (dimensions, units);

e primitive bindings between these spaces and the execution model (bindings to
observable events, conversion from discrete event traces to continuous flows, defi-
nition of measures);

e constraint languages on the QoS spaces (defining the operations that can be used
in the equations, form of these equations).

Verifying Component QoS Properties

In an ideal world, a component user (i.c., a designer that picks a component to include
it in a design) has precise information on the QoS behaviour of the component with
respect to its environment. Then, during component composition, some answers on
the QoS behaviour of the composed system could be computed.

In practice, contracts written in languages such as QML or QuO are compiled to
create stubs that monitor and adapt the QoS parameters when the system is opera-
tional. This QoS adaptation software is, in effect, equivalent to a controller for a dis-
crete system. In the approaches practiced today, the following issues limit the confi-
dence that a designer can put in QoS declarations of a component.

e The existing QoS contract languages are not equipped with a formal meaning, thus
do not provide a basis for formal proofs, nor can they be used to perform symbolic
computations.

e The QoS contracts often involve very complex dependencies.

e There are no techniques to prove that a given component implementation abides
by the QoS contracts of the component declaration.

e The runtime monitoring cannot fully observe and measure the component’s behav-
iour in the defined QoS space, because of technical limitations (e.g., under-
sampling events, distributed delay computation).

13.6 Level 4b — Quality of Service 155

QoS Contract Negotiation and Adaptation

Components are bound to be deployed in diverse architectures. As a consequence,
adaptive-real-time QoS properties are often considered as “promises”, and in practice
implemented with best-effort techniques. QoS contracts are thus not interpreted as
final and non-negotiable constraints (differing from the classical interpretation where
post condition failure means bad design). This implies that run-time violations of the
contractually agreed QoS can occur. In particular, the component characteristics of
“fully explicit context dependencies” and the possibility of being able to “be deployed
independently” are not met by these approaches. Instead the contracts are understood
as guidelines for what has to be achieved, and architectural choices by the designer
must make provision for variation as well as fallback (minimal) constraints.

Classical component [Bro96] (i.e., non QoS-aware) technologies already include
facilities for dynamic discovery of resource availability (in other words: level 2 con-
tract negotiation). QoS contract models must support adaptability even further, be-
cause a contract may be valid at some instant and invalid at a later time (while level 2
contracts stay valid once “discovered” in a given component execution). Such a sup-
port requires means of specifying variation in the QoS contract model, as well as
adequate contract monitoring support.

Since quality of service contracts may fail, contracted software in components
must be able to cope with failure situations. This software must therefore exhibit
capacities for adaptation, using techniques such as the ones described in this roadmap,
in Part III. Application domains such as components for mobile computing put an
emphasis on this relationship, because the highly varying quality of service of com-
munication resources has a major impact on the software architecture of mobile appli-
cations. Although the concept of quality of service contracts is exposed in Part II, the
notion of quality of service specification is shared by the QoS system development
group. Such a notion of QoS contracts should be used as a pivotal concept for coop-
eration between these communities.

Contract Monitoring

Since contracts must be monitored during component execution, the component infra-
structure must provide some support to the designer. Building contract monitors is a
difficult task, often more difficult than the design and coding of a component imple-
mentation.

Typical difficulties include:

e reliable access to execution events and to precise time for sampling;
e computing with distributed events;
e coordinating distributed monitors, etc.

Therefore, monitors must now be designed by specialists. A component implementa-
tion is then augmented by specific pieces of a contract monitor. Since time is often an
important factor of QoS contracts, the monitor code must be efficiently synchronized
with the service code of the component. Aspect-oriented programming [KLM+97]
and aspect-oriented design [CWO02] may provide efficient means of extending a com-

156 13 Components and Contracts

ponent with contract monitors when those are designed as aspects weaved with the
component architecture [HJPP02].

Predicting System Properties from Component Properties

Model-Based Approaches
We here survey techniques for statically analyzing system performance properties. A
workable modelling and analysis approach to embedded systems QoS is based on the
observation that networks, interfaces, and even circuits on chips [Con02, Ten00,
Ray02] can be understood and modelled as discrete systems exhibiting stochastic
behaviour, such as error rates, response time distributions, or message queue lengths.

Mathematically speaking, the QoS characteristics of a given embedded system in-
duce families of stochastic decision processes, ¢.g. Markov chains or semi-Markov
decision processes. However, these mathematical objects are too fine grained to be
directly specifiable by an average embedded systems designer. Therefore, one must
rely on modelling techniques and tools for stochastic processes.

Stochastic modelling and analysis research has given birth to many diverse formal-
isms, most of them accompanied with tools supporting a QoS-oriented design. This
section gives a brief account of the most prominent representatives.

Queuing Networks

Rooted in the early approaches to QoS estimation for analogue telecommunication
networks, queuing networks have since then been used to quantify the quality of
many communication system and multiprocessor networks. Queuing networks pro-
vide traffic-oriented modelling, where flows of jobs travel through a static structure
consisting of queues and processing units [Kle75, Kle76]. Various tools for modelling
and analysis of queuing networks exist, such asQnap2 (http://www.simulog.fr/
eps/mod]1.htm), and Opnet (http://www.opnet.com/), both being commercial products.

Stochastic Petri Nets

Stochastic Petri nets [Mol82, MCB84, SM91] are extending Petri nets with means to
specify stochastic phenomena, and hence allow one to build QoS models. They can
alternately be viewed as extension of queuing networks with dedicated means to
model resource contention and several other features which are difficult to model in
plain queuing networks [Chi98]. In this sense they are more appropriate for contem-
porary embedded and concurrent system design. Various academic tools exist, among
them GreatSPN (http://www.di.unito.it/greatspn/) and Mdbius (http://www.crhe.uiuc.
edw/PERFORM/mobius.html).

Hierarchical Models

Modular and hierarchical design has been one of the challenges in QoS modelling.
Among the first hierarchical methods is Hit [BMW&89], which allows one to capture
system functionalities and bind it to system resources in a layered approach (http://1s4-
www.cs.uni-dortmund.de/HIT/HIT.html). Other methods, including Quest (http:/www.
cs.uniessen.de/SysMod/QUEST/) [DHMC96] and LQNS (http://www.sce.carleton.ca/
rads/ek-rads-etc/software.html) [WHSB98] have developed this idea further. Among
others [ESCWO01] applies this approach to the UML setting.

13.6 Level 4b — Quality of Service 157

Compositional Models

Another approach to construct complex QoS models is the compositional one, where
systems are incrementally constructed out of smaller components. Typical representa-
tives are Pepa [Hil96], Imc [Her02], and Spades [DKB98]. Tool support exists, e.g. as
an add-on to the CADP toolkit (http://fmt.cs.utwente.nl/tools/pdac/) but is not as ex-
tensive as for the Petri net-based approaches.

Annotated Design Methods

Many formal and semiformal design notations have been decorated with QoS charac-
teristics, in order to allow for a QoS prediction on the basis of an integrated model.
This approach has been followed e.g. for MSC [Ker01], for SDL [DHMC96], and for
Statechart dialects [CHK99, GLMOO0]. The tools that have apparently been developed
for in-house case studies are not publicly available.

Reliability Modelling Methods

In the reliability analysis domain, slightly different techniques have emerged, which
we briefly review here for completeness. A standard approach is to associate compo-
nents with a reliability model, which involves fault events, error states, fault arrival
rates, and a Markov chain model of how the component responds to fault events. If
the system description describes how errors propagate between components, the reli-
ability models of individual components can be combined into a global Markov chain,
which can be analyzed using a separate tool for Markov chain analysis. This approach
is used in the Meta-H toolset, where the SURE/PAVE/PAWS tool (from NASA
Langley) is used to solve the resulting Markov chain.

Research Agenda

The above discussion suggests the following research strands to strengthen the devel-
opment of embedded systems with predictable QoS.

e Integration into the design process.

o Contracts: To enable a modular reasoning about QoS, pre/post condition style
contracts should be developed, allowing one to specify interfaces with re-
quired vs. guaranteed QoS [Sel02] along the work of e.g. QCCS [WPGSO02].
Since virtually any QoS measure is a stochastic quantity, both QoS guarantees
and QoS requirements must be expressible in a probabilistic setting (a simple
example would be: “in 95% of the cases an answer must come within 3 sec-
onds”)— as opposed to an absolute setting (“the answer must come within 3
seconds”). In full generality one needs means to express those quantities via
probability distributions which may be parameterized by the component input.

o Compositional reasoning. The size and complexity considerations ask for ma-
jor research endeavours with respect to management of the design for predict-
able QoS. Efforts must be undertaken to strengthen a compositional reasoning
with probabilistic quantities. Compositional methods so far focus on model
construction, while truly compositional analysis has not been tackled success-
fully. Layered analysis methods have received some attention, for instance in
the context of the SPT profile [PWO03], but produce notoriously imprecise QoS
results (where the inaccuracy relative to the true QoS can be unbounded). Bet-
ter, and more manageable, compositional methods are needed.

158 13 Components and Contracts

e Platform & resource dependency: QoS properties of systems can in general not be
deduced from the QoS characteristics of components alone. Platform dependencies
such as resource constraints, and communication infrastructure aspects play an im-
portant role usually not reflected at the component level. This makes it imperative
to reconsider the architectural approaches in such a way as to at least reduce the
dependencies of different parts of systems, or to make the platform dependencies
explicit parameters of the models.

e Semantics: A seamless QoS design process relies on a smooth but solid integration
of the QoS modelling and analysis concepts into a well-designed integrated formal-
ism, which is semantically deeper than a shallow annotational extension of the
UML. The existing QoS contract languages are useful for best effort-based runtime
policies, but do not possess a precise interpretation that can be used for rigid as-
sessment of contractual obligations. Put differently, we need QoS contract lan-
guages with precise semantics.

e Tools: Industrial-strength tools supporting an integrated QoS design process are
needed. On the long run, these tools are expected to emerge as extensions of exist-
ing component-oriented modelling and analysis tools. However, there is a disturb-
ing gap between component-oriented design methods, and the mainstream QoS
analysis tools which are flow oriented, as in Petri nets or queuing networks (where
tokens or jobs flow through a static structure). These are closer to scenario-based
notations, such as sequence diagrams, but do not fit so well to component-based
design. This gap hampers a seamless integration in the design process.

13.7 Specifying and Reasoning About Contracts: Summary and Analysis

From the various information of this section 13, it is clear that the main difficulties of
the contract based specification, verification and validation fall into a few general
categories:

1. Specification & Monitoring

o Harmonization of Specification Techniques: Current contract-based specifica-
tion techniques use notations and models that are quite different. In order to
fully support all aspects of component based design, these notations and mod-
els must be harmonized. This not a simple task: for instance, crossbreeding no-
tations and research results on behaviour specification and performance analy-
sis is not obvious; one needs a time model that is compatible with the behav-
iour notation as well as the component framework.

o Run-Time Monitoring: Contracts must in general be monitored during compo-
nent execution, unless there are guarantees that a component satisfies a con-
tract. For embedded systems, techniques for (automatically) constructing effi-
cient (using limited resources) monitors from contracts must be further devel-
oped. Aspect oriented programming [KLM+97] may provide structuring tech-
niques for adding monitors to a system

2. Environment Dependency

o Specifying Generic Contracts: Many component properties are highly depend-
ent on the environment, including other system parts as well as the system

13.7 Specifying and Reasoning About Contracts: Summary and Analysis 159

platform. It is highly non-trivial to express component properties in such a way
that these properties can be applied in a variety of environments. As an exam-
ple, properties of execution times of components depend crucially on the tim-
ing properties of the underlying platform. There are currently no widely usable
solutions for specifying the timing behaviour of a component in a platform-
independent way

o Implementing Generic Contracts: Platform-independent notations, techniques
and tools must be related to platform-dependent frameworks. As component
infrastructures are very different from one application domain (e.g. automotive
systems) to another (e.g. network based information systems), this is a nontriv-
ial issue: e.g. a network model may not match a real protocol implementation
on some platform, from both the behavioural and quality of service points of
view. One potential solution to this platform dependency problem could be the
implementation of architecture transformations along the lines of the MDA
approach.

o Measuring Extra-Functional Component Properties: Timing and performance
properties are usually obtained from components by measurement, usually by
means of simulation. Problems with this approach are that the results depend
crucially on the environment (model) used for the measurements and may not
be valid in other environments. Techniques should be developed for overcom-
ing these problems to obtain more reliable component property specifications.

3. Design & Analysis

o Adapting Well-Understood Design Principles: Many advances in component
technology have been obtained by adaptation of well-understood design tech-
niques to the component-based setting. An example is the use of classical
schedulability analysis and reliability analysis in some component technolo-
gies for real-time systems. There are many other practical techniques that
could potentially be adapted to and enrich component technology.

o Formal Verification: Functional, and some extra-functional, component prop-
erties can in principle be inferred by formal analysis of the software itself, us-
ing techniques like e.g. model checking, although this is often still difficult in
practice. The success of recent advances for functional and real-time system
properties prompt for further work to enlarge the scope of formal analysis
techniques. This should include also system diagnosis in the form of analysis
techniques that can identify the “bottlenecks” in a design, i.e. the components
that “cause” poor system behaviour

o Guidelines for Tractable Analysis of System Properties: The verification and
prediction of system properties from component properties is in the general
case an intractable problem, i.e., general techniques can cope only with sys-
tems of small or medium complexity. To master this complexity, we need
guidelines for structuring assemblies, in other words software methodologies
that help the designer to build “tractable” architectures by enforcing well cho-
sen restrictions.

4. Tool Development: Effective tool support must be developed for all the tasks
listed in this section

14 Component Models and Integration Platforms:
Landscape

This section provides an overview of existing component models and component
integration platforms. In some cases, particularly for proprietary component models,
there is a tight connection between the component model and a particular integration
platform, and sometimes also a particular ADL. In such cases we combine the de-
scriptions. Thereafter follow descriptions of (some) available toolsets and platforms
that support the component model.

The section considers each model under the following headings, as discussed in the
previous section:

e the component model, including its support for describing different properties in
component interfaces;

e component composition;

e verification and validation tools and techniques;

e supporting integration platforms.

Aspects of real-time middleware aspects are also covered in section 23.

14.1 Widely Used Component Models

In this subsection, we survey component models and platforms that have been devel-
oped not primarily for embedded systems. The deployment and composition of com-
ponents is typically performed at run-time.

Java Beans

Sun Microsystems initially introduced a client-side (or desktop) component model
(JavaBeans), and subsequently a server-side (or enterprise) component model (Enter-
prise JavaBeans). Both of these build on the Java-based approach to distributed appli-
cations [Mic02]. In the JavaBeans specification a bean is a reusable software compo-
nent that can be manipulated visually in a builder tool; this differentiates beans from
class libraries which cannot benefit from visual manipulation even if providing the
equivalent functionality. Some of the unifying features of JavaBeans are support for
property customisation (to control the appearance and programmatic behaviour of
beans), event handling (a communication metaphor based on delegation and event
listeners), persistence (serialisation of a bean’s state for later reloading or transmis-
sion over a network) and introspection (analysis and manipulation of a beans internal
structure: e.g. properties, events, methods and exceptions). A key characteristic of the
Java Beans component model is its simplicity — the specification of the model is only
114-pages long [Mic97].

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 160193, 2005.
© Springer-Verlag Berlin Heidelberg 2005

14.1 Widely Used Component Models 161

JavaBeans was primarily designed for the construction of graphical user interfaces
(GUIs). Customization of components plays an essential role and was originally em-
phasised to enable incremental specialization of GUIs from generic exemplars.

Technical Description

o Component types: A bean is a self-contained, reusable software unit that can be
visually composed into applets, applications, servlets, and composite components,
using visual application builder tools.

Programming a Java component requires definition of three sets of data: i)
properties (similar to the attributes of a class); ii) methods; and iii) events which
are an alternative to method invocation for sending data. A bean wishing to re-
ceive an event (listener) registers at the event source (the component launching the
event). In Java, events are objects created by a source and propagated to all regis-
tered listeners. For example: an alarming device (listener) asks a temperature
probe (source) to send it a message when the temperature value exceeds a certain
threshold so that a bell can be sounded.

o Syntactic Support in Interfaces: The model defines four types of interaction
points, referred to as ports:

o methods, as in Java;

o properties, used to parameterize the component at composition time, or as a
regular attribute in the object-orientation sense of the term during run time;

o event sources, and event sinks (called listeners) for event-based communication.

o Other Support in Interfaces: JavaBeans does not support behavioural or QoS
properties.

o Support for Introspection: A bean can be dynamically queried for its characteris-
tics (operations, attributes, etc.), through an introspection mechanism available to
all Java classes.

The component programmer can restrict the amount of information made available.
To do so, the Java component implements a Beanlnfo interface whose methods return
a list of properties, operations, etc.

e Supported Programming languages: code must be written in Java.
e Required “Middleware”/Framework Support: None.

Tools

There are several commercial programming environments, e.g., Sun’s Net Beans,
IBM’s Visual Age, and Borland’s JBuilder. These builders build assemblies visually
as a graph of components, where ports between beans are connected. Note that the
JavaBean component model by itself does not specify how to connect components;
this is done by the builder tool.

EJB (Enterprise Java Beans)

The EJB model is a server-side component model, which is rather different from
JavaBeans. The EJB specification defines its component architecture in terms of a
scalable runtime, based on containers (see below), that provides runtime services for

162 14 Component Models and Integration Platforms: Landscape

managing component activation, concurrency, security, persistency and transactions
[JFOO]. The EJB specification defines a component model by standardising the con-
tracts (context and callback interfaces) and services offered by the runtime environ-
ment, and the patterns of interaction between components.

Technical Description
e Component types: There are three types of EJB beans defined:

o Entity beans are application elements that embody data and are by nature
transactional and persistent; these beans may handle the persistency them-
selves (bean managed persistence) or delegate it to the container (container-
managed persistence);

o Session beans are used to model business processes in a transactional and se-
cure manner without the need for persistent storage (i.e. they last for the dura-
tion of a session);

o Message-driven beans are created by containers to asynchronously handle
messages from the Java Messaging Service (JMS) sent, for example, to a
queue transparently associated with the bean.

o Syntactic Support in Interfaces: Depending on the bean type, developers must
implement associated, pre-defined, call-back interfaces (e.g. EntityBean, Session-
Bean, MessageDrivenBean).

These callback interfaces are used by containers to manage and notify beans about
certain events (e.g. bean activation or passivation, instance removal, transaction com-
pletion, etc.). Moreover, each type of bean expects a specific interface or context from
the container (e.g. EntityContext, SessionContext, MessageDrivenContext) for getting
an entity bean’s primary key, identifying the bean’s caller, transaction demarcation,
ete.

e Other Support in Interfaces: The container provides a uniform interface to ser-
vices such as naming (Java Naming and Directory Service), security (pub-
lic/private key authentication and encryption), transactions (based on the Java
Transaction Service or OMG Object Transaction Service), and messaging (Java
Messaging Service).

o Support for Introspection: A bean can be dynamically queried for its characteris-
tics (operations, attributes, etc.), through an introspection mechanism available to
all Java classes. The component programmer can, however, restrict the amount of
information made available. To do so, the Java component implements a Beanlnfo
interface whose methods return a list of properties, operations, etc.

e Supported Programming languages: code must be written in Java.

e Required “Middleware”/Framework Support: Containers provide a level of indi-
rection between clients and bean instances. Each container provides objects, called
EJB objects, that expose bean functionality and intercept every method call before
delegating it to the bean. This EJB object is automatically generated and embodies
container-specific knowledge about bean activation, transactions, security and
networking [RAJO1]. Additionally, each EJB object implements the remote inter-
face that enumerates all business methods exposed/ implemented by the respective
bean.

14.1 Widely Used Component Models 163

EJB relies heavily on the Java Remote Method Invocation (RMI) platform to
support dynamic class loading, automatic activation, remote exceptions and dis-
tributed garbage collection [RAJO1]. RMI is a distributed architecture that uses a
RPC-based protocol to support inter-process communication. For example, the
EJBHome and EJBObject remote interfaces rely on the RMI infrastructure for
transparent distribution of component functionality.

o Deployment: The deployment of beans is in terms of EJB-jar files that package
bean classes, remote interfaces, home interfaces and bean property files, together
with an XML-based deployment descriptor that contains information on all the
packaged beans (e.g. home name, bean class name, primary key, container fields,
etc.) and their dependencies. Deployment descriptors also declare the middleware
services needed by components (e.g. lifecycle policy, persistence handling, trans-
action control), thus avoiding the non-standard manifest files that are used by
JavaBeans. [RAJO1].

Tools

The Java Development Kit (JDK) includes a set of classes and development tools (e.g.
an RMI compiler) to support the automatic generation of distribution classes (e.g.
stubs), glue code (e.g. container policies) and deployment descriptors, thus alleviating
developers’ efforts and responsibilities.

Summary

EJB standardises a distributed architecture for building component-based business
applications. EJB builds on the previous JavaBeans client-side component model and
particularly on the Java language, and essentially realises the WORA principle (Write
Once Run Anywhere) (albeit in a language-dependent manner). EJB also relies on the
RMI architecture, and simplifies and automates the development and distribution
process. In contrast to CORBA (see below), RMI not an open standard (although it
has the advantage over CORBA that it fully supports objects passed by value (via
serialisation). However, efforts have been made to make EJB portable to CORBA
systems, particularly through standard connectors (vendor specific bridges that link
different architectures) along with RMI-IIOP mappings [RAJO1]. Most crucially, the
EJB software engineering process is grounded in a set of tools and code generators
that automate the development and deployment process by hiding the cumbersome
details of handling distribution and component management policies (e.g. lifecycle,
security, transactions, persistence).

COM, DCOM, COM+

Microsoft’s Component Object Model [Cor95] dates back to 1995, and is typical of
early attempts to increase program independence and allow programming language
heterogeneity. COM has roots in Microsoft’s OLE (Object Linking and Embedding:
first version in 1991), which provided a standard way to embed or link data objects
(e.g. text, graphics, images, sound, video, etc.) inside document files, hence support-
ing the creation and management of compound documents. Unlike EJB and CORBA
(see below), COM provides a binary solution to interoperability and extensibility
[Bro96, Gos95] (see below). The Distributed Component Object Model (DCOM),

164 14 Component Models and Integration Platforms: Landscape

which supported inter-process communication across distributed machines through an
RPC-based protocol called Object RPC (ORPC) [Pat00], was introduced with Win-
dows NT 4.0. More recently, the component model was extended (and renamed
COM+) and integrated with Windows 2000 to support the development, configuration
and administration of distributed systems with automatic and integrated (Windows-
based) control over several aspects of business applications (e.g. security, synchroni-
sation, transactions, queues and events).

The COM component model is fundamentally an intra-address space model. COM
extends object-oriented design principles by hiding a component’s implementation
behind its interface(s) (encapsulation) and allowing components to be replaced by
different implementations of the same set (or super set) of interfaces (polymorphism)
without the need to recompile their clients. These principles are possible in COM
because component services (collections of interfaces) are separated from their im-
plementation through a binary-level indirection mechanism called a virtual table (cf.
C++ virtual functions or vtables) [Szy98]. This is the basis of the binary solution
referred to above. At runtime, an interface is a typed pointer (known as an Interface
Identifier or IID) to a specific virtual table that references the functions (methods)
implementing the services exposed by the interface. This binary interface convention
allows interoperability between software components written in different languages as
long as compilers can translate language structures into this binary form [Gos95].

Technical Description

o Component types: A COM component can be seen as an object at the binary level;
the implementation is hidden behind the component’s interface(s).

o Syntactic Support in Interfaces: COM defines interfaces at the level of binaries,
consisting of data and function declarations. There are standard protocols for call-
ing an interface, and for dynamically discovering and creating objects and inter-
faces. Independent development raises the possibility of naming conflicts between
interfaces and their implementations. To avoid this, COM requires developers to
assign a unique Interface Identifier (IID) and Class Identifier (CLSID) to each
newly specified interface and class implementation, respectively.

COM does not support inheritance; basic component composition is available
through:

o containment, in which a COM object contains other COM objects: the outer
object declares some of the inner object’s interfaces; at run-time it delegates
calls to these interfaces to the inner objects;

o delegation, this employs wrappers that insert behaviour before or after delegat-
ing method calls to inner classes;

o aggregation, in which the interface of the inner object is exposed without the
overhead of call indirection; aggregation requires the source code of both the
inner and outer objects to be changed.

o Other Support in Interfaces: COM does not support behavioural or QoS properties.

o Support for Introspection: components can be queried to discover their supported
interfaces.

o Supported Programming languages: code can be written in any programming
language as long as its compiler generates code that follows the binary interopera-

14.1 Widely Used Component Models 165

bility convention. Component interfaces are defined using Microsoft’s Interface
Definition Language (MIDL) which is an OSF/DCE-based adaptation of CORBA
IDL. The MIDL compiler generates marshalling classes and the type-related in-
formation (e.g. proxies, stubs, header files, type libraries) needed to accomplish
binary compatibility — i.e. joint deployment of components developed in different
languages.

o Required “Middleware”/Framework Support: component interfaces are separated
from their implementation through an indirection mechanism called a virtual table
(cf. C++ virtual functions or vtables) [Szy98]. At runtime, an interface is a typed
pointer to a specific virtual table that references the functions (methods) imple-
menting the services exposed by the interface. The framework employs a run time
engine that creates COM objects. COM objects are also automatically garbage col-
lected.

DCOM (1996) extends COM with distribution, based on the DCE RPC mechanism.
The component model itself is unchanged.

COM+ (1999) is an extension of DCOM that employs the container approach (see
text on EJB and CCM in sections 14.2.2 and 14.2.5), using the Microsoft Transaction
Server (MTS) runtime platform. The container intercepts calls to a component, and
can execute pre- and post-processing actions to implement various services. Typical
services offered include transactions, concurrency control, load balancing and role-
based security checks.

COM/COM+ Tools

The COM framework is rather specific to Windows platforms (although it is also
implemented on VxWorks). It is supported by several development tools on Windows
platforms, such as Visual Studio.

Summary. The COM+ component model focuses on the construction of enterprise
distributed applications. It tries to take domain-neutral aspects out of source code and
expose them through declarative attributes that can be used to control service context
(e.g. process synchronisation, security profiles, automatic transactions) [Box00]. Nev-
ertheless, it is not possible to add new attributes, hence limiting this mechanism for
the majority of COM developers. Additionally, COM+ type information management
is rather cumbersome, i.e. it uses disparate information formats (e.g. IDL, type librar-
ies, MIDL-generated strings embedded in proxy DLLs), sometimes with no mappings
between them. Furthermore, COM+ runtime type information (in the type library)
permits us to advertise only the types exported by a component but not component
dependencies [Box00].

NET

Microsoft’s .NET component model and framework supports the development of
distributed applications in different programming languages, and provides a run-time
platform with a number of services. .NET departs from the binary-level interoperabil-
ity adopted by COM/ COM+ as this was felt to be too limiting. Instead, a .NET com-
piler translates source code into an intermediate language called the Microsoft Inter-
mediate Language (MSIL), which is similar to Java Byte Code. The common lan-

166 14 Component Models and Integration Platforms: Landscape

guage runtime (CLR), which is similar to a Java Virtual Machine then takes the in-
termediate language and, on the fly, converts it into machine-specific instructions.

The CLR is able to recognise and execute portable executable (PE) files, which are
image files that combine MSIL code with metadata (stored in metadata tables and
heaps). This approach avoids the need for multiple and disparate metadata formats
(e.g. type libraries, headers and IDL files) and enables the generic use of reflection,
serialisation and dynamic code generation in a type safe manner [MGO02].

MSIL compilers are responsible for automatically emitting metadata into the PE
file (e.g. information describing types, members, references, inheritance, etc.). The
runtime environment then uses this binary metadata information (cf. managed data) to
locate and load classes, control memory usage, resolve invocation targets, manage
runtime context boundaries, enforce security and compile to a particular computer
architecture by using specific just-in-time (JIT) compilers. Metadata is .NET’s lan-
guage-neutral way of providing binary information describing: assemblies (e.g.
unique identification, dependencies on other assemblies, security permissions), types
(e.g. base classes, implemented interfaces, visibility), members (e.g. methods, fields,
properties, events) and attributes (i.e. extra metadata that modifies the properties of
types and members).

NET particularly addresses the programming of services for Web-based software
development. For this purpose, The .NET framework is complemented by a set of
unified class libraries for standard programming (e.g. I/O, math, etc.), for accessing
operating system services (e.g. network, thread, cryptography, etc.), for debugging
and for building enterprise services (e.g. transactions, events, messaging, etc.). These
libraries include a set of classes (called ASP.NET), which are tailored to the devel-
opment of Web-based applications. ASP.NET provides an infrastructure with a set of
controls that simplify both the server side (web forms that mirror the typical HTML
user interface, e.g. buttons, list boxes, etc.) and client-side programming (check client
capabilities and choose the appropriate interface). The ASP.NET infrastructure also
includes an HTTP runtime (different from the CLR) which is an asynchronous multi-
threaded execution engine that processes HTTP commands. The HTTP runtime em-
ploys a pipeline of HTTP modules that route HTTP requests to a specific handler (a
managed .NET class).

Technical Description

o Component types: the assembly is the NET abstraction that most resembles a
component. The manifest is the component descriptor; it gathers in a single place
all the information about an assembly: exported and imported methods and events,
code, metadata and resources. Because of the programming language approach,
the main .NET programming language, C#, which looks very much like Java, in-
cludes some features of a component model: e.g., (first class) events and extensi-
ble metadata. The compiler not only produces MSIL byte code but also generates,
in the manifest, the interface description of the component (the assembly), in the
form of a list of import and export types.

o Syntactic Support in Interfaces: the Common Type System (CTS) supports the
definition and use of types across different languages. Metadata provides a uni-
form mechanism for storing and retrieving information about types. Together,
these two facilities provide the basis of multilingual integration. Additionally,

14.1 Widely Used Component Models 167

NET provides a Common Language Specification (CLS) that describes a set of
language features (e.g. primitive and composite types, natural-sized types, refer-
ences, exceptions) and rules for using these features (e.g. defining, creating, bind-
ing and persisting types). This specification expresses a set of naming and design-
ing guidelines for mapping features between different languages [Cor01].
Extra-functional properties: NET does not provide any support for analysing
extra-functional properties. It supports metadata at run-time, which gives some
possibilities for checking properties at run-time. For example, contract-based in-
terfaces with pre- and post-conditions can be implemented using this feature.
NET does not provide any support for real-time applications. Further, it’s mem-
ory requirements and relatively poor performance have so far excluded it from the
embedded systems domain.

Lifecycle: Unlike when using traditional DLLs, the .NET model includes visibility
control, which allows assemblies (and their modules) to be local to an application,
and thus different DLLs with same name can run simultaneously. Further, each as-
sembly has versioning information about itself and about the assemblies it de-
pends on, provided either in the form of attributes in the code source or as com-
mand line switches provided when building the manifest. Version control is dele-
gated to the dynamic loader, which selects the right version, local or distant, based
on the assembly’s version information and on a set of default rules.

Overview of .NET Environments

Supported languages: in contrast to the (open) OMG approach (see below)
wherein separate formalisms (and files), are used to indicate component related in-
formation, languages and compilers being unchanged, .NET is a proprictary ap-
proach, in which the program contains information relevant to relationships with
other components, and the compiler is responsible for generating the information
needed at run-time. Current platforms include support for the C# and Visual Basic
languages among others.

Availability: NET is used in Microsoft Windows 2000 and XP platforms. Some
parts of it are ported to Windows CE. The Mono initiative (http://go-mono.com) is
developing an open source implementation of the .NET Development Framework.
Mono also includes a C# compiler, a runtime for the Common Language Infra-
structure and a set of class libraries. In addition, Rotor is a ‘shared source’ CLI
implementation (see http://www.microsoft.com/downloads/details.aspx?Family-
1d=3A1C93FA-7462-47D0-8E56-8DD34C6292F0&displaylang=en) that is sup-
ported by Microsoft.

Summary

.NET is Microsoft’s new paradigm for service development. It uses self-describing
components (assemblies) and a common language runtime to tackle the limitations of
COM/ COM+. Each .NET assembly sets the scope for type names, and explicitly
represents component dependencies. Moreover, assemblies avoid the fragmentation of
disparate meta-information sources because the metadata is automatically compiled
into the image PE file. Finally, .NET type information is extensible (via system at-
tributes), can be applied to different elements (e.g. classes, methods, properties) and is
available at runtime via reflection.

168 14 Component Models and Integration Platforms: Landscape

CORBA and CCM

The Common Object Request Broker Architecture (CORBA) is standardised by the
Object Management Group (OMG) as a middleware infrastructure and programming
model for assembling and deploying distributed applications. It is part of the Object
Management Architecture (OMA) [St00] which consists of

o the CORBA bus which maintains information about the location of components
and delivers requests and responses in a standard way.

e CORBAservices which are predefined objects supplying functions required by
most distributed applications (naming, events, security, etc.).

o CORBAfacilities that are object frameworks that standardise data management and
user interfaces.

e domain interfaces that are objects for specific domains such as finance, the health
industry, etc.

o application objects that are objects specific to the application.

CORBA has evolved over the years as reflected in the release of three main versions
of the standard. The first version simply defined a distributed object model that sepa-
rated interfaces from implementations. CORBA vl also specified a common set of
services and facilities that aided in the development of distributed applications by
integrating mechanisms for naming, event communication, lifecycle management, etc.

CORBA version 2 focused on ORB interoperability (vl did not impose an inter-
ORB protocol), and object activation management by defining the Internet Inter-ORB
Protocol (IIOP) which enables interoperability across multiple ORB products, and the
Portable Object Adapter (POA; see more below) which renders server objects port-
able and also offers various server-side configuration policies. The use of an IDL
compiler combined with the runtime ORB manages cross-language, cross-platform
and cross-location interoperation, while the TCP/IP-based IIOP protocol assures cross
vendor interoperability.

Finally, CORBA version 3, adopted in 2001, standardises the CORBA Component
Model (CCM) which adds features and services that enable the implementation, con-
figuration, assembly and deployment of distributed component-based applications.

The first two CORBA versions tackled interoperability through a distributed object
model, whereas v3 standardises a full component model. CCM increases integration
and flexibility by automating tedious and error prone tasks that are usually solved by
developers in ad hoc ways (e.g. deploying and installing implementations activating
and configuring services, performing lifecycle management, etc.). CCM has been
designed on the basis of much accumulated experience of using CORBA services.

The CCM is a server-side component model that is used to assemble and deploy
multilingual components. CCM standardises and automates the component develop-
ment cycle (from specification to deployment) by defining a middleware infrastruc-
ture and a set of support tools. The architecture supports the definition of interfaces
supported by the components, automates their implementation and packs the compo-
nents in assembly files (cf. JARs, DLLs) that can be automatically deployed on server
hosts. The architecture uses proven design patterns [GHJV94] that enable the automa-
tion of code generation and associated usage of a container infrastructure that medi-
ates component access to system services for handling security, transactions, events

14.1 Widely Used Component Models 169

and persistence [Cob00]. CCM focuses on the provision of the generic system ser-
vices required by server applications and implemented by the container, thus freeing
applications from complex and error prone tasks and allowing developers to concen-
trate on business logic details. In short, the goals of CCM are very closely related to
those of EJB.

Technical Description

Component types. these are similar to the corresponding EJB categories; i.e. ses-
sion and entity categories are supported.

Syntactic Support in Interfaces: A component interface is composed of ports,
which can be of several types:

o facets: named interfaces;

o receptacles: named connection points representing external dependencies on
other components’ facets (cf. required interfaces);

O event sources: emit events;

event sinks: consume events;

o attributes: named values, intended primarily for use in component configura-
tion.

@)

Other Support in Interfaces: None.

Support for Introspection: This is available via the Interface Repository which
maintains meta-information on available interfaces.

Supported Programming languages: CCM is a language independent model.
Required “Middleware”/Framework Support: CCM, like EJB, is based on the
notion of a container. A container is automatically generated for each component
implementation and constitutes the component’s view of the surrounding envi-
ronment [CCM]. The container shields components from the details of the under-
lying platform, and provides a framework (a standard runtime API) for seamless
and automatic integration of core services [Cob00]. The container provides a set
of uniform interfaces (called internal interfaces) that support communication with
standard system services like transactions, security, persistence, and event notifi-
cation). The types of internal interfaces available depends on the component cate-
gory (i.e., service, session, process and entity; cf. the related EJB definitions). The
container is also responsible for using callbacks to notify its hosted components of
certain events (e.g. related to persistence, transactions) [WSOO00].

Extra-functional properties: CCM does not provide any support for analysing extra
functional properties.

Lifecycle: For each component type there is an associated ‘home’ component that
is responsible for attributing primary keys and instantiating components. Further-
more, the container uses an activation framework (e.g. ServantActivater, Servant-
Locator) that exploits CORBA’s POA to control a component’s lifecycle (e.g. ac-
tivation, deactivation, lookup) according to a chosen policy. This way it is possi-
ble to control (depending on the component category) the activation and passiva-
tion of components, in co-operation with the persistence service, on a per-method,
per-transaction, per-component (via specific call-backs) or per-container basis
(this is slightly more general than the related EJB facility). Along with these life-
cycle policies, CCM also standardises management policies that determine the

170 14 Component Models and Integration Platforms: Landscape

way containers handle (on a component’s behalf) transactions, security, events and
persistence. The container intercepts requests from clients and, according to re-
quirements declared in the components XML configuration file, enables and exe-
cutes pre-processing strategies (e.g. activation, transaction, persistence, pooling,
caching) before delegating requests to the component. CCM explicitly supports
the development process with automated mechanisms to generate and configure
the runtime container [CCM]. Specifically, the CCM Component Implementation
Framework (CIF) defines a set of APIs and tools that automate the code genera-
tion of several management strategies (e.g. lifecycle, transactions, security, events
and persistence policies). This framework automatically exposes different aspects
of the implementation that may be embedded in a component’s implementation
[WSOO00]. CCM also standardises a declarative language, called the Component
Implementation Definition Language (CIDL), that is used to describe component
implementations and associated persistence requirements [WSO00]. A CIF com-
piler reads a component’s CIDL description and generates default component be-
haviour (e.g. introspection, activation, state management). The resulting imple-
mentations are called executors and provide hook methods that may be used by
developers to later add custom behaviour and adapt the default implementation
[WSO00].

The CIDL compiler is also responsible for generating component descriptors, which
are XML files used to define the component category (e.g. entity, session), features
(e.g. ports), policies (e.g. lifetime, transactions, security, events and persistence) and
segmentation (i.e. delineation of independently-deployable units). CCM defines sev-
eral XML descriptor file-types, i.e. component descriptor, software package descrip-
tor, assembly descriptor and property file descriptor, which conform to the WWW
Consortium’s Open Software Description (OSD). Component segments and descrip-
tors are joined in a package file, i.e. a archive file that contains one or more imple-
mentations of a component and the associated UML description files. Component
packages may be installed or grouped with other packages in an assembly file. De-
scriptor files are used at deployment-time to automatically create and configure the
required POA hierarchy and to resolve component dependencies.

CCM Environments

Few commercial implementations of EJB have been developed. To date, the most
prominent implementation has been developed in the context of the TAO CORBA
platform by the University of Washington [WSOO00].

Real-Time CORBA

Real-time CORBA (RT-CORBA) is an optional extension to CORBA that is designed
for applications with real-time requirements, such as avionics mission computing, as
well as those with stringent adaptive real-time requirements, such as telecommunica-
tions call processing. It is integrated with the CORBA 2.5 specification. RT-CORBA
provides standard interfaces and policies that allow applications to configure and
control the following system resources:

14.1 Widely Used Component Models 171

e Processor resources: thread pools, priority mechanisms, intra-process mutexes,
and a global scheduling service for real-time applications with fixed priorities.

e Communication resources: protocol properties and explicit bindings to server
objects using priority bands and private connections.

e Memory resources: buffering requests in queues and bounding the size of thread
pools.

RT-CORBA has the advantage of being platform independent, in that a wide variety
of programming languages support CORBA interfaces. RT-CORBA has a particular
potential benefit to the embedded, real-time systems market, as until recently, many
such systems have had to define highly platform specific approaches to implementing
many of the features proposed by the CORBA standard.

Analysis

RT-CORBA in itself only supports very general and abstract control over system
resources. It is up to the system designer to use the standard to configure the target
system to meet application requirements in a predictable way. In addition, RT-
CORBA has some shortcomings, such as not being suitable for dynamic real-time
systems since it is only focused on fixed-priority based systems, and such as not ad-
dressing consistency issues.

The OMG’s Dynamic Scheduling proposal [OMGO1a] aims to overcome the limi-
tations imposed by RT-CORBA in terms of dynamic scheduling. Static scheduling
systems can only cope with applications for which resource requirements are known a
priori. In such systems, offline analysis allows developers to predict the workload that
will be imposed. In contrast, dynamic systems are susceptible to experiencing unex-
pected dynamic changes at runtime.

The proposal also provides a framework that allows for the development of port-
able schedulers.

Overall Analysis

The models described in this section represent an evolution from initial light-weight
component models with support for component composition, to which support for
distribution is added. Later, to support common needs in business applications, the
models are extended to support an integrated container-based environment for auto-
mating the management of generic, extra-functional, properties such as transactions,
security, persistence and event notification. Only one of the models discussed, CCM,
is not tied to a particular language (such as Java) or operating system (such as Win-
dows). CCM was designed to align closely with the EJB specification and, apart from
language independence, these component models can broadly be considered concep-
tual equivalents [CCM]. Both support different types of components which automati-
cally determine the available container interfaces and the policies for managing com-
ponent state and persistence (component managed or container-managed). Further-
more, CCM and EJB define three approaches to the demarcating of transactions (i.e.
client-managed, container-managed and server-managed) while COM+ supports only
automatic transactions (MTS-managed). Moreover, COM+ defines only one type of
component. This leads to a simpler programming model, but also leads to limited
expressiveness and a deep dependence on the MTS environment. Despite being more

172 14 Component Models and Integration Platforms: Landscape

difficult and complex to learn and manage, CCM and EJB may be considered more
flexible and open than COM+ which builds of top of proprietary operating system
services. Nevertheless, COM+ is a binary standard that allows the integration of sev-
eral languages without compromising the performance.

Another significant aspect is the recurrent use of meta-information for describing
the structure and behaviour of components. Meta-information is widely used in CCM
(e.g. the interface repository), EJB (e.g. bean descriptors) and COM+ (e.g. type librar-
ies) but is particularly visible in .NET where the metadata is embedded in the image
files and then extracted using reflection to reason about the system and control as-
sembly, enforce security, manage serialisation, perform compiler optimisations, etc.
The combination of meta-information and reflection is an interesting approach for
managing type evolution.

Finally, it must be emphasised that these component models are inherently heavy-
weight and complex. In their present form they are not suitable for deployment in
most embedded environments. Nevertheless, they exhibit many potentially interesting
features that would clearly be of interest to developers of embedded systems. Re-
search is required to make such features available in component model environments
that are considerably more lightweight and which, probably, can be tailored to spe-
cific environments on a highly configurable what-you-want-is-what-you-pay-for ba-
sis.

Some initial work in this area has been carried out. For example, THINK (‘THINK
Is Not a Kernel’, http://sardes.inrialpes.fr/research/think.shtml) from Inria Alpes is a
minimal, low-level, component model that has been used to flexibly build software
configurations at the operating system level. This develops earlier OS-level efforts
such as Knit from the University of Utah, and the Spring Kernel, but adds modern
notions of independent run-time deployment of components, and support for multiple
interfaces. Similarly, the OpenCOM component model from Lancaster University,
UK, is a lightweight component model that is being used to develop low-level pro-
grammable networking software. This model incorporates lightweight reflective
mechanisms to assist in the run-time deployment and dynamic reconfiguration of
component compositions. Both of these component models (THINK and OpenCOM)
have the potential to be applied in embedded environments, although work is required
to validate this approach. Finally, Washington University, St Louis, has carried out
interesting research on slimlining the CCM for application to embedded environ-
ments. This has also involved extending the CCM with support for QoS specification
and validation.

14.2 Component Models for Embedded System Design

As the next step in this overview, we survey component models and platforms that
have been developed specifically for application to embedded systems. Typically,
component implementations are given in a compilable language (C being the most
common) and are composed before compilation (unlike the models examined in sec-
tion 14.1). Execution semantics are given by a run-time executive or a simple RTOS.

14.2 Component Models for Embedded System Design 173

Programmable Logic Controllers: The IEC 61131-3 Standard

Introduction

In the area of Industrial Automation, PLCs (Programmable Logic Controllers) are a
widely-used technology. However, for the last twenty years, the corresponding appli-
cations have been written in many different languages, resulting in problems for tech-
nicians, maintenance personnel and system designers. For instance, there are numer-
ous versions of the so-called ladder diagram language, and furthermore this language
is poorly equipped with facilities such as control over program execution, definition
and manipulation of data structures, arithmetic operations, and hierarchical program
decomposition.

These problems led to the constitution of a working group within the IEC (Interna-
tional Electrotechnical Commission), with the aim of defining a standard for the com-
plete design of programmable logic controllers. While previous efforts have been
made, IEC 61131 has received worldwide international and industrial acceptance. The
first document introducing the general concepts was published in 1992 and this was
followed by the definition of equipment requirements and tests. The core of the stan-
dard is now in its third part, published in 1993, which describes the harmonisation and
coordination of the already existing programming languages. The eight parts of the
standard are available at http://www.iec.ch.

Note that, due to the fact that there are many types of hardware, the aim is not to-
ward a single programming system for all controllers. Instead, certified IEC 61131-3
programming systems have an agreed degree of source code compatibility and have a
similar look and feel. Yet they will differ in debugging features, speed, etc.

PLCopen (www.plcopen.org) was founded in 1992 as an international organisation
of users and producers, with the aim of promoting the development and use of com-
patible software for PLCs. PLCopen offers tests for IEC 61131-3 compliance, but also
a course, designed for experienced or beginner PLC programmers who want to de-
velop software according to IEC 61131-3 and for support and implementation engi-
neers who modify systems programmed according to IEC 61131-3. There are also
smaller user-only organisations, e.g. EXERA, which propose tests for the compliance
of programming environments.

Technical Description

o Component types: An application is divided into a number of blocks.

o Supported languages: A block is written in any of the languages proposed in the
standard. There are two textual languages (ST, IL) and three graphical languages
(FBD, LD, SFC).

o Function Block Diagram (FBD) is used for the description and regulation of
signal and data flows through function blocks. It can nicely express the inter-
connection of control system algorithms and logic;

o Structured Text (ST) is a high level textual language, with a Pascal-like syntax;

o Instruction List (IL) is an assembler-like language, found in a wide range of
PLC’s;

o Ladder Diagram (LD) is a graphical language based on relay ladder logic,
which allows the connection of previously defined blocks; for historical rea-
sons, it is the most frequently used in actual PLC programs;

174 14 Component Models and Integration Platforms: Landscape

o Sequential Function Chart (SFC) is used to combine in a structured way units
defined in the four languages above; it mainly describes the sequential behav-
iour of a control system and defines control sequences that are time- and event-
driven. It can express both high-level and low-level parts of a program.

o Visibility of Underlying Hardware: While it aims at enhancing portability of PLC
programs, the IEC 61131-3 has several features referring to the actual underlying
hardware (variables can be linked to physical addresses, etc.)

o Syntactic Support: Each functional block has a set of in-ports and out-ports. IEC
61131-3 also requires strong data typing and provides support to define data struc-
tures which can be used to transmit information as a whole between different
units. More precisely, while a function simply computes its output from its input,
without internal variables, a function block consists of a set of data, together with
the algorithms handling these data, similarly to the definition of a class in an ob-
ject-oriented framework (no further comparison can be made, though). Input and
output parameters are formally defined to ensure a clean interface between differ-
ent function blocks. This notion thus appears as an important feature, meant to en-
courage the development of well-structured software: blocks can be viewed as the
basic components of a program. Since it is re-usable within a given program, but
also from outside, an increased use of such blocks can lead to the construction of
powerful libraries.

e Support for Functional/Extra-Functional Properties: Function block execution
may be periodic or event-driven. There is no support for analysing properties other
than syntactic properties.

Tools for the IEC 61131-3 Standard

Introduction
Today, all large suppliers of PLCs have announced IEC 61131-3 compliant develop-
ment systems. They propose different programming environments for code generation
for various hardware, with some architectural aspects as parameters. For instance:
Siemens with STEP7; Allen Bradley with Control Logic; and Schneider-Electric with
PL7PRO.

There are also smaller suppliers, either for PLCs only, or for programming plat-
forms only. Of course, due to developments in the industrial market producers may
not always be 100% standard compliant.

Assessment and Further Needs
The IEC 61131-3 standard is widely adopted. Compared with traditional program-
ming systems, it appears to be a major step forward. The new set of languages is said
[Lew98] to significantly improve the quality of PLC software, and in particular to
overcome the weaknesses of previous versions, especially with respect to the above
mentioned Ladder Programming. The improvement also concerns the communication
and software model. Finally, a major benefit for end-users using IEC 61131-3 com-
pliant products will be inter-system portability.

However, the IEC 61131-3 standard is not fully mature and the portability issue
remains an important problem. For instance, users feel the need to have textual files
that can be used to connect different platforms. Furthermore, some ambiguous seman-

14.2 Component Models for Embedded System Design 175

tics remain for the languages. Finally, new requirements emerge: systems will become
more distributed with more parallel processing. Therefore, new standards are under
development, such as the function block standard IEC 1499, not to replace the former
but to work in conjunction with it.

Koala

Introduction

Koala is a component model and an architectural description language that success-
fully works for consumer electronics devices. Koala is developed and used at Philips.
It was designed to build software control units for consumer products such as televi-
sions, video recorders, CD and DVD players and recorders, and combinations of these
(e.g. TV-VCRs). Koala is currently in use by a few hundred software engineers for
the creation of a family of televisions. More information on Koala can be found in
[vO02], [vOvdLKO0], and [FEHCO02].

Technical Description

e Component types: A Koala component is a piece of code that can interact with its
environment through explicit interfaces only. As a consequence, a basic Koala
component has no implicit dependencies to other Koala components.

o A Component Implementation is a directory containing a set of C and header
files that may use each other in arbitrary ways, but communication with other
components is routed only through header files generated by the Koala com-
piler, based upon the binding between components;

o The directory also contains a component definition file, describing among
other things the interfaces of the component;

o Visibility of Underlying Hardware: The Koala component model itself is abstract
and hardware-independent. Hardware dependency is encapsulated in particular
components. The entire development environment is tailored for the development
of particular product families which improves the efficiency of the development
process at the expense of generality.

e Syntactic Support: Connections between components are expressed in terms of
interfaces which are described as a small set of semantically related functions.
Koala identifies two types of interface: provides interfaces and requires interfaces.
Koala provides interfaces are similar to those known from COM and Java. A com-
ponent may provide multiple interfaces, which is a useful way of handling evolu-
tion and diversity. Koala requires interfaces identify interfaces of other compo-
nents and interfaces required from the environment of the component. All commu-
nication is routed through such requires interfaces. Koala interfaces can be
optional. An optional requires interface need not be connected — an optional pro-
vides interface need not be implemented. This allows components to fine tune
themselves to their environment, by observing what the environment can and can-
not deliver.

Connectors connect requires interfaces of one component to provides interfaces
of another component. Naturally, in compound components it is also possible to

176

14 Component Models and Integration Platforms: Landscape

connect provides interfaces of subcomponents to provides interfaces of the com-
pound component, and similarly for requires interfaces.

o Interface Compatibility: it is possible to connect a requires interface to a pro-
vides interface of a wider type; the provides interface should implement all of
the functions of the requires interface, but it may implement more than that;

o In addition, glue code can be added to the binding between interfaces. Simple
glue code can be written in an expression language within Koala; more com-
plicated code can be written in C. This allows the programmer to easily to
overcome a certain category of syntactic and semantic differences. A special
case of glue code is code that switches a binding between components. Such a
mechanism to select between components can be implemented in C, but it oc-
curs so frequently that a special concept for this is defined in the language: the
switch. The compiler converts a switch internally to a set of Koala expressions,
which has the advantage that it can perform certain optimisations, such as re-
ducing the switch to a straight binding if the switch is set to a position that is
known at compile time. The binding through the glue module and the switch
are examples of connectors. The Koala language defines no other connectors.

Support for Behavioural Properties: No extra-functional properties are specified
in the interfaces of components. In a system design, it is possible to specify the
ordering of tasks using precedence relations and mutual exclusion. There is also
support for deriving some system properties from components. For example, the
memory consumption of the system can be calculated form the memory consump-
tion of the constituent components, which is a parameterised value.

Support for Timing Properties: There is no support for timing properties.

Support for Performance Properties: There is no support for modelling perform-
ance properties.

Koala Tools

Supported languages for component implementations: A component resolves to an
implementation in C language. Koala uses the “Koala language” for constructing
applications from components by connecting component interfaces.

Supported development platforms: A proprietary development platform exists that
includes the Koala language and a C compiler which composes components.
Supported target platforms: Proprietary platforms only.

Status: The use of Koala is growing within Philips. There are plans to build addi-
tional development environment tools, such as visual composition and visual com-
ponent selection.

Availability: There are plans to publish Koala as an open source standard.

Degree of Automation: The Koala compiler composes components and makes
optimisations such as removing unused interfaces and resolving connections of
conditional types. Component binding is static based on C code. The compiler can
also optimise the memory usage of the application (the so-called footprint), by
eliminating functionality in a component that is not used. Most of the documenta-
tion (header files, etc.) must be created manually. This has not been seen as a large
overhead, although there are plans to improve this process by building a set of
supporting tools.

14.2 Component Models for Embedded System Design 177

o Run-Time Infrastructure: As in many small embedded systems, a system using the
Koala component model is a single-process image, built on a top of a small real-
time kernel with pre-emptive scheduling, which separates high frequency from
low frequency tasks. Separate activities can be allocated to light-weight threads,
which are managed by the kernel.

o Analysis Support for:

o Memory Footprint: The Koala component model and its implementation to
some extent allows calculating and predicting resource consumption. For ex-
ample, memory consumption can be estimated at composition time (compile
time) as mentioned; and this feature is built into the Koala compiler. For tech-
nical detail see [FEHCO02]. Using this calculation model it is possible to budget
the memory for particular components and, by a parameterisation of the inter-
face, to define the particular properties of the components.

o Library Support: Koala components are stored in a repository. The repository
is a set of packages, where each package is a set of component and interface
definitions, some of which are public, and some of which are private.

Summary
Koala is an example of the implementation of the component-based approach that
works successfully in a large industrial company. It is a good example of an evolu-
tionary approach to component-based development. The design and implementation
fulfils the following requirements [CLO2, Ch. 12] related to the component-based
approach:

e It devises a technique with which components can be freely composed into prod-
ucts, as the main approach to deal with diversity in a product population. The tech-
nique must work in resource-constrained environments such as televisions and
video recorders (which are typically 10 years behind PCs in computing power).

e Make the product architectures as explicit as possible, to manage complexity.

e Let components make as few assumptions as possible about their environment.

e Allow for parameterised components that are, when instantiated, as efficient as
dedicated components.

e Allow for various ways of connecting components; more specifically, allow for
adding glue code to connections between components.

These requirements are valid for many embedded and RT systems. Does this mean
that the Koala component model is so general that it is possible to use it in other do-
mains? In many aspects this appears to be the case. The basic principles, which are
derived from widely-acknowledged principles of Component Based Development, are
valid in general for embedded systems. In implementation, in some parts, domain
knowledge is implicitly built in (due to various reasons, e.g. to improve development
efficiency and performance). In order to use Koala as a general component-model for
embedded systems, some parts should be removed or explicitly separated as domain-
specific. The Koala component model provides a good basis for further improvement
of achieving predictability of extra functional properties.

The strong points of Koala are:

178 14 Component Models and Integration Platforms: Landscape

e Separation of the provided from the required interfaces of a component.

e Interaction with the environment, including the underlying hardware-dependent
services is exclusively via interfaces.

e There is a strict definition of the component development process, including qual-
ity assurance, and a form of component certification.

The weak points of Koala do not lie in the component model itself, but to a large
extent in the lack of tools supporting efficient development on a large scale. Cur-
rently, Koala developers must conform to rules that can be violated, unless checked
automatically. Potential tool functionality could include the following.

e tools that manage components (component repositories, component browsers,
visual environments, etc.);

e checks that a component has no other dependencies than through its explicit inter-
faces;

e generation of glue could to some extent be automated;

e support for the analysis and composition of timing and performance (and some
other properties) is rudimentary and can be further developed. One obstacle is that
many of these properties are hardware and platform dependent and thus cannot be
a part of a general model.

Rubus Component Model

Introduction

Rubus is a small Real-Time Operating System, developed by Arcticus Systems AB
(http://www.arcticus.se/). Rubus is divided into one part supporting time-triggered
execution, and one part supporting event-triggered execution. The time-triggered
execution part is intended to support hard real-time applications with a deterministic
execution mechanism. In order to support component-based development of hard real-
time systems, Arcticus Systems AB, together with Department of Computer Engi-
neering at Malardalen University, have developed a component model and associated
development tools for use with the Rubus operating system [IN02]. The component
model is used in projects within Volvo Construction Equipment Components AB. We
include a short description of this model, in order to illustrate how a component
model can be developed on top of a runtime execution platform.

Technical Description

o Component types: A basic Software Component consists of behaviour, persistent
state, a set of in-ports, a set of out-ports and an entry function. The entry function
provides the main functionality. A task provides the thread of execution for a
component. The entry function takes as an argument a set of in-ports, the persis-
tent state, and references to the out-ports. In [NGS+01], it is stated that entry func-
tion code may not contain any call to communication services. Instead, the com-
piler that compiles the system description automatically generates the communica-
tion infrastructure. For example, if an out-port of a component A is connected to
an in-port of a component B, the generated code (system task) will copy the in-
formation automatically under given synchronisation and timing requirements.

14.2 Component Models for Embedded System Design 179

The attributes of a task are Task Id, Period, Release Time, Deadline, and WCET.
In addition, precedence and mutual exclusion ordering between tasks can be speci-
fied.

Visibility of Underlying Hardware: System descriptions do not mention hardware
configurations; they are intended to be used by a schedule synthesis tool.

Syntactic Support: Each Component has in-ports and out-ports for communica-
tion. Tasks in the safety-critical part communicate without buffering. There is a
type system for data.

Support for Behavioural Properties: No functional properties are specified in the
interfaces of components. In a system design, it is possible to specify the ordering
of tasks using precedence relations and mutual exclusion.

Support for Timing Properties. Timing requirements are specified by release-time,
deadline, WCET and period. There is a tool for schedulability analysis.

Rubus Tools

Supported languages: The functionality of a system can be mode-dependent.
Temporal coordination between tasks is specified for each Mode by a sofiware
circuit or dataflow model which specifies the output-input connections between
tasks, and timing constraints on tasks and their composition. Precedence/exclusion
information can also be included.

Supported languages for component implementations: C.

Supported development platforms: Available on Windows and Linux platforms.
Supported target platforms: Rubus OS is ported to a number of target and pro-
gram development tools.

Status: Commercial product.

Degree of Automation: A tool designated “Rubus Visual Studio” exists. This man-
ages the components available and their associated source files, so that compo-
nents can be fetched from a library and instantiated into new designs.

Analysis Support for Timing Properties: Scheduling is derived automatically from
component descriptions, using task attributes and precedence/exclusion informa-
tion. Time-triggered tasks are statically scheduled, and event-triggered tasks are
scheduled on-line by fixed-priority pre-emptive scheduling. There is currently no
support for performance properties, reliability or safety analysis.

Support for Distribution: Rubus supports distribution over buses that support time
synchronisation (such as TTP and TT-CAN)

Summary

Rubus is an example of how a component model can be developed on top of an exist-
ing RTOS. The model makes system integration easier by allowing timing analysis to
be performed based on a system description. The development of the Rubus compo-
nent model has been a significant improvement for software development inside
Volvo CE. For future development, the Rubus platform may face a shortage of tools
that support component-based system development, in a similar way as was discussed
for Koala. There are currently no automated checks for:

confirming that components use only explicit interfaces for communication;
WCET (worst-case execution time) analysis of components;

180

14 Component Models and Integration Platforms: Landscape

allocation of tasks to processing nodes.

PECOS

Introduction
The PECOS project (http://www.pecos-project.org/) [CL02, NAD+02, WZS02, PEC],

fun

ded by the EC under the IST Program (project number: IST-1999-20398), aims to

enable component-based software development for embedded systems such as smart
cell phones, PDAs, and industrial field devices. In order to validate component-based
software development (CBSD) for embedded devices the project has developed
hardware and software for a field device as a case study of embedded systems with
real-time requirements.

The project has pursued four main activities:

CBSD processes: The PECOS process aims to enable CBSD for embedded sys-
tems, specifically for field devices. It addresses the major technological deficien-
cies of state-of-the art component technology with respect to extra-functional re-
quirements, such as limited CPU power, memory and hard real-time.

Component Model:

o Interfaces are defined by input ports and output ports, and connectors connect
compatible ports. Ports have basic types.

o Component Types: active components (with their own threads), passive com-
ponents (encapsulating behaviour without threads), event components (trig-
gered by events).

o The attributes of a component can specify memory consumption, WCET, cy-
cle time, priority.

ADL: The CoCo Component Language is used for the specification of compo-
nents, entire embedded devices, and architecture and system families. In CoCo, a
composite active component (with a thread) specifies execution rules (a so-called
schedule) for its subcomponents.

Lightweight composition techniques: CoCo provides the concept of abstract com-
ponents, and composition rules to allow composition checking.

Platforms and tools: A translation from CoCo to target languages such as C++ and
Java has been developed. The PECOS model is mapped to a prioritised, pre-
emptive, multithreaded system to realise the different components: passive, active
and event. A technique has been introduced to enable data exchange between
components. The developed tools are embedded in the open source ECLIPSE
framework as plug-ins.

Other Characteristics

Supported Languages. Includes a composition language CoCo that is translated to
C++ and Java. A CoCo component structure is mapped to a corresponding class
structure. Connectors are mapped to shared instance variables in the enclosing ob-
ject. Ports map to set and get methods.

14.3 Integration Platforms for Heterogeneous System Design 181

e Scheduling: The model does not specify anything regarding the scheduling of
components, what scheduler can be used and how schedules can be checked to see
if they are actually feasible. It only assumes that there is a scheduler.

e Availability: 1t is embedded in the ECLIPSE open source framework
http://www.eclipse.org/ as plug-ins. It can include any proprietary integration plat-
forms (developed by companies such as ABB, Boeing, Dassault, EADS, Thales).
To date, ABB has started to integrated the model with its proprietary platform.

Summary

PECOS is unique in the sense that it addresses several aspects of component-based
software engineering: development and lifecycle process, the provision of a compo-
nent model that deals with temporal and other extra-functional attributes, architectural
modelling and development tools. However the model is still not fully developed and
it remains to be seen how successful its implementation will be.

14.3 Integration Platforms for Heterogeneous System Design

In this section, we review some platforms that are intended for the modelling of sys-
tems that are typically composed of heterogeneous components. A system design is
represented as an architecture populated by interconnected components. Components
can often be represented in different languages, formalisms, or even modelling para-
digms.

Composition is performed at design time, and typically glue code is generated
automatically. The software components are wrapped with a run-time executive,
which schedules the (compiled and linked) components.

A major emphasis here is that the architecture description should be executable; so
that simulation can be used as the major tool for design V&V. Analysis techniques
can use information visible at the architectural level. Typical attributes could be pe-
riod, deadline, and execution time for schedulability analysis, code size, etc.

Meta-H

Introduction

Meta-H (http://www.htc.honeywell.com/metah/) is a domain-specific ADL dedicated
to avionics systems which was developed at Honeywell Labs in 1993 under the spon-
sorship of DARPA and the US Army. A significant set of tools (graphical editor,
typing, safety, reliability, and timing/loading/schedulability analyzers, code generator,
etc.) has already been prototyped and used in the context of several experimentation
projects. In 2001, Meta-H was taken as the basis of a standardisation effort aiming at
defining an Avionics Architecture Description Language (AADL) standard under the
authority of SAE. This emerging AADL is a domain-specific ADL developed to meet
the special needs of embedded real-time systems such as avionics systems. In particu-
lar, the language can describe standard control and data flow mechanisms used in
avionics systems, and important extra-functional aspects such as timing requirements,
fault and error behaviours, time and space partitioning, and safety and certification
properties.

182 14 Component Models and Integration Platforms: Landscape

Technical Description

Meta-H in itself is only an ADL, and furthermore it is still under development. The
rules for producing conformant component implementations are given by the current
Toolset. In this description, we therefore describe Meta-H together with this toolset.

e Component types include:

o Macro, which is a hierarchical composition of connected parts.

o Application, which is the highest level composition, and combines a software
architecture and a hardware architecture.

o processes, units of scheduling with a protected address space in a partitioned
system, and a unit of binding to a processor. The control structure of a process
must have a main outer loop, which calls the Meta-H dispatcher on each itera-
tion.

o packages and monitors (as in Ada).

e Visibility of Underlying Hardware: The underlying platform can be described by
means of a hardware architecture in terms of processors, memories, channels, and
devices. A mapping from Component types to Hardware may be provided.

e Syntactic Support: The interface of a process or macro contains declarations of
ports, packages, monitors, subprograms, out events, and in events. Components
are connected by connection declarations, giving:

o port connections that provide message transfer between ports.

o event connections that control signals, events, to an aperiodic process (process
dispatch), or to modes (for mode switch).

o equivalences that offer shared data and resources in terms of monitors and
packages. Connections are strongly typed. There is no inheritance.

e Support for Behavioural Properties: No functional properties are specified in the
interface of components. A system can be described in terms of modes which are
run-time configurations of active processes and connections. Mode interfaces con-
tain events. The run-time semantics describe how the run-time executive works
when invoking the processes in a system.

o Support for Timing Properties: Components of type process can have (worst-case)
execution times specified. This is the duration of the main outer loop on one invo-
cation. Processes can be given periods and deadlines in a given system. There is a
tool for schedulability analysis.

o Support for Performance Properties: None.

o Support for Reliability Analysis: Components can be equipped with reliability
models, which are Markov chains that relate fault events and error states. System
descriptions must describe how errors propagate between components. A reliabil-
ity analysis tool combines the reliability models of individual components into a
global Markov chain, and uses a separate tool (in this case SURE/PAVE/PAWS
tool from NASA Langley) or Markov chain analysis.

o Support for Safety Analysis: Each process has its own address space in an imple-
mentation. Safety levels and memory allocation properties can be declared for
components. The Meta-H partitioning analyzer tool can partially verify that no er-
ror in a component with lower safety level can propagate to a process with higher
safety level. In terms of safety/security modelling and analysis, the tool can check

14.3 Integration Platforms for Heterogeneous System Design 183

if the safety/security mechanisms provided by Meta-H will enforce a specified
safety/security policy. (e.g., rights of objects to access other objects.

Rubus Tools
Some are available at http://www.rl.af.mil/tech/programs/dasada/tools.html.

e Supported languages: Rubus accepts ADL specifications written in the emerging
SAE standard Avionics Architecture Description Language (AADL) in both
graphical and textual formats.

o Supported languages for component implementations: Ada, C; many concepts are
closely inspired by Ada.

o Supported development platforms: Windows NT and Solaris.

o Supported target platforms: Portable Ada 95 and POSIX targets are available;
application source code may be written in C or Ada.

e Status: Core toolset are fairly mature (beta-quality); but reliability analysis and
general system safety specification/analysis are at the proof-of-concept stage;
technologies for blended time driven/ event-driven workloads, dynamic reconfigu-
ration, and distributed hard real-time scheduling are the subject of ongoing re-
search.

o Availability: Available under zero fee license; ITAR.

e Degree of Automation: Automatic production of the executable image is possible.
Rubus can perform software/ hardware allocation, and generate tailored/efficient
middleware to integrate a system.

o Analysis Support for:

o Syntactic Properties: AADL syntax/semantic checking can translate textual to
graphical and graphical to textual AADL, and check compliance of source
components with AADL specifications.

o Functional Properties: 1t is currently being investigated how to (automatically)
extract hybrid automata models from the generated code in order to analyse the
target system.

o Timing Properties: Real-time schedulability modelling and analysis.

o Reliability Properties: See above.

o Safety Properties: See above.

Ptolemy II

Introduction
Ptolemy (http://www.ptolemy.eecs.berkeley.edu/) is a simulation and rapid prototyp-
ing framework for heterogeneous systems. The focus is on embedded systems, par-
ticularly those that mix technologies, including for example analogue and digital
electronics, hardware and software, and electronics and mechanical devices. The
focus is also on systems that are complex in the sense that they mix widely different
operations, such as signal processing, feedback control, sequential decision making,
and user interfaces. An overview of the Ptolemy project can be found in [Hyl03].

The Ptolemy software environment has been used for a wide range of applications
including signal processing, telecommunications, parallel processing, wireless com-
munication, network design, investment management, modelling of optical communi-

184 14 Component Models and Integration Platforms: Landscape

cation systems, real-time systems, and hardware/ software co-design. The Ptolemy
software has also been used as a laboratory tool for signal processing and communica-
tions courses. Currently, the Ptolemy software has hundreds of active users at various
sites worldwide in industry, academia, and government.

The first generation of Ptolemy, now called Ptolemy Classic, was written in C++.
The current version, Ptolemy II, is written in Java, and produces code in Java.

Since Ptolemy has to cater for many different modelling languages, it cannot de-
fine a component model with standardised of component interfaces and composition
at the implementation level (C or Java).

Technical Description
o Component types: Components, called Actors, are created in different Models of
Computation (MoC). Existing MoCs include:

o CSP with synchronous rendezvous as a communication mechanism.

o Continuous time, where components are described by algebraic or differential
relations between inputs and outputs.

o Discrete Events, where Actors communicate via events (consisting of a value
and a time stamp). Execution of an actor is typically event-triggered. The exe-
cution semantics is realised by a discrete-event simulator, which maintains a
global time-stamp-sorted queue of pending events. There is an experimental
Distributed DE model of computation, using ideas from distributed DE-
simulation:

= Finite State Machines, which can be used in different contexts.

= Process networks: these are Kahn process networks.

= Synchronous Dataflow: globally synchronous (discretely clocked) systems.
= Synchronous/Reactive: this is similar to the synchronous paradigm.

= Giotto: the time triggered approach developed in [HHKO1].

o Syntactic Support: Actors send and receive data through ports. Ptolemy Classic
can perform type conversions as in C. In the latest versions of Ptolemy II, there is
a polymorphic type system [LX01].

e Support for Behavioural Properties: Each Model of Computation defines an ab-
stract execution semantics. These can be used in simulation. Some support for
specifying behavioural properties as part of interfaces has been developed [LXO01].

o Support for Timing Properties: Some Models of Computation have an explicit
notion of time. This can be used in simulation to estimate execution times.

o Support for Performance Properties: Simulations may also be used to assess per-
formance.

o Support for Reliability Analysis.: This has not been directly addressed.

o Support for Safety Analysis: This has not been directly addressed.

Ptolemy II Tool

o Supported languages: There is a rich family of notations for graphical definition
of system structure.

o Supported languages for component implementations: In Ptolemy Classic, the
implementation language is C++. In Ptolemy II, this has changed to Java.

14.3 Integration Platforms for Heterogeneous System Design 185

o Supported development platforms: Windows, Linux, MacOS, X, Solaris. There is
one installation that runs entirely in applets. There are on-going experiments with
a distributed simulation platform.

o Supported target platforms: In Ptolemy Classic, C implementations can be de-
rived. Ptolemy Classic can generate assembly code for some programmable DSPs.
Ptolemy II can generate Java code from a design.

e Status: Research Prototype under development.

o Availability: Free for download.

o Degree of Automation: The Java Definitions of Components is parsed, and there is
support for the construction of code generators.

o Analysis Support: Analysis support is mainly by the ability to simulate a system.

o Functional Properties: In principle, Models in the FSM MoC can be parsed
and used by external model checking tool.

o Timing Properties: Timing properties are analysed by simulation. Some means
must be devised for importing the timing properties of the actual platform. In
some applications, one can use an external hardware simulator.

Analysis

Ptolemy has an important message for Model Based Development: the importance of
simulation in embedded systems design. Simulation of functionality and behaviour is
often the most practical approach to assess vague requirements like “pleasing” inter-
faces to human operators, and it may often be the only feasible way to assess per-
formance properties, because these are emergent and not deducible from individual
component properties. With respect to the latter properties, it is a research challenge
to develop methods that allow us to predict actual performance from simulation re-
sults.

Another important point about Ptolemy is that it demonstrate that heterogeneous
semantic models can and will exist in systems. There is no need to have a unified
computational model. The various models need only be linked, when they communi-
cate through interfaces, and they need only agree on the meaning of entities that are
part of the defined interface. Such a minimal agreement is exemplified in the Ptolemy
type system.

Metropolis

Introduction
Metropolis (http://www.gigascale.org/metropolis/) is a research project coordinated at
UC Berkeley. It is not a mature design environment; it is included here as an example
of a research effort which involves a component model, where components are com-
posed at a model level, which is at a higher level of abstraction than C or Java. Me-
tropolis develops an infrastructure such that heterogeneous components of a system
can be represented uniformly, and tools for formal methods can be applied naturally.
The core of the infrastructure is a meta-model of computation, which allows one to
model various communication and computation semantics in a uniform way. The
meta-model is defined in a variant of timed automata. By defining different commu-
nication primitives and different ways of resolving concurrency, the user can, in ef-

186 14 Component Models and Integration Platforms: Landscape

fect, specify different models of computation (MoCs). The meta-model is used to
represent the function of a system being designed, to generate executables for simula-
tion, and as input to formal methods built in Metropolis for both synthesis and verifi-
cation at various design stages. There are stated plans to translate specifications given
in many existing languages automatically to an appropriate semantics specified using
the meta-model.

A set of coordinated tools is being developed as part of the Metropolis project.

Analysis

Metropolis shares objectives with Ptolemy; but is much more ambitious with respect
to integration. It aims to replace the individual Java simulation classes for different
computational models with a uniform meta-model. Metropolis thus goes beyond a
conventional component concept, because it takes source level components and trans-
lates them into its own meta language before any simulation, verification, or code
generation takes place. Thus it eliminates some of the difficulties in specifying com-
ponent properties, at the expense of requiring translators from the respective source
languages.

A potential difficulty with the Metropolis approach is that the meta-model must be
very rich to encompass all desirable properties that one may want to analyse, e.g.,
performance of a final implementation might not be directly derivable from an opera-
tional semantics.

14.4 Hardware/Software Modelling Languages

In this section, we briefly mention some languages that are not component models,
but can be used to model embedded systems in a modular way. The models here are
mainly included to describe a part of the landscape that is adjacent to component
models.

SystemC

SystemC (http://www.systemc.org/) is intended to be a standardised, highly portable
technology for system-level models: an alternative to languages such as Verilog or
VHDL.

Similar to HDLs, users can construct structural designs in SystemC using modules,
ports, and signals. Modules can be instantiated within other modules, enabling struc-
tural design hierarchies to be build. Ports and signals enable communication of data
between modules, and all ports and signals are declared by the user to have a specific
data type. Commonly used data types include bits, bit vectors, characters, integers,
floating point numbers, vectors of integers, etc. As in VHDL, concurrent behaviour is
modelled using processes.

SystemC 2.0 aims at enabling system-level modelling, i.e., modelling of systems
above the RTL level of abstraction. One of the challenges in providing a system-level
design language is that there are a wide range of design-level models of computation.

14.5 Component Models and Integration Platforms: Summary and Conclusions 187

VHDL

VHDL is a hardware description language. It is used in a wide variety of contexts that
range from complete systems like personal computers on one hand to the small logical
gates on their internal integrated circuits on the other. It supports a module concept,
such that abstract behavioural models may hide implementation details. The language
VHDL covers the complete range of applications and can be used to model (digital)
hardware in a general way.

14.5 Component Models and Integration Platforms: Summary and
Conclusions

Current Trends

With respect to the evolution of different component technologies for real-time and
embedded systems, we can observe the following: A clear trend is to use widely
adopted component technologies for embedded systems. Examples are COM [LCS02]
and CORBA (or its adaptation to RT-CORBA). One tries to avoid the cost (in terms
of run-time resources) of these technologies by using only those parts of the technol-
ogy that are necessary. An advantage is that there is already infrastructure available
for these technologies, and that systems can interoperate with other system that use
these technologies. A disadvantage is that these technologies do not a priori support
several properties that are essential for embedded systems.

o Specialized Technologies. There are many efforts underway to define component
technologies for embedded systems, often dedicated to applications in a certain
domain. Examples are Koala and PECOS. These component models seem not to
spread very rapidly outside the organisation in which they were created. They
serve the purpose of improving the software development process of their organi-
sation. Some of these models define interfaces that are not just syntactic, but in-
clude some properties that are essential for their application domain.

An advantage of these models is that they can be tailor-made for their applica-
tion domain. Disadvantages are the lack of synergy across application domains,
that it is costly to develop tool support, and that such development is harder to jus-
tify for proprietary component technologies.

o High Level Integration Platforms. In the landscape, we have also included design
tools, in which systems are designed by putting together pieces that might be
termed components. Examples are Meta-H and Ptolemy. The functions of these
tools are in some sense analogous to, e.g., MATLAB/Simulink. The advantage is
that they support a variety of design notations. However, “components” can be as-
sembled only in the supporting tool, meaning that different developments must all
be developed in the same environment. In this perspective, these tools have simi-
larities to tools like SCADE or UML/SDL-based tools.

o Advanced Aspects are Still Evolving. Many efforts are dedicated to a proper han-
dling of extra-functional properties, including timing and QoS properties. There is
a variety of developments, and no clearly identifiable “mainstream winner”.

188 14 Component Models and Integration Platforms: Landscape

Summary and Conclusions

To summarise section 14, let us consider how the existing component technologies in
this section address the industrial needs described in section 12.6.

The existing component technologies contribute to structuring of system develop-
ment, but in different ways. Widely used component technologies offer infrastructure,
middleware, and tool support that solve tricky problems of component composition
and communication. They allow a separation between the component development
and system development processes. They do not give adequate support for alleviating
integration problems or support system predictability. The more specialised technolo-
gies focus on imposing a programming structure that supports reuse, the use of prod-
uct-line architectures, and in some cases allow global timing problems to be handled
in the system design phase.

Let us summarize technical contributions of existing component technologies.

e Rich interfaces: Few existing component technologies support specification of
functional or extra-functional component properties. There are some solutions,
developed in the context of specific operating systems, that utilise well-understood
principles of real-time scheduling, but they can be used only inside specific devel-
opment contexts. Some integration platforms allow components to be associated
with the specification of some properties in interfaces, but systems can be assem-
bled only in the context of a specific development environment..

e Constrained Resources: Widely used component technologies are not focused on
implementations on small platforms. However, using only a small part of a tech-
nology, or a simple one such as COM, is feasible in some embedded systems.
Some specialised technologies are built in the context of a static composition envi-
ronment, where the mapping and compilation onto the target platform can be op-
timized with respect to resource consumption. The same holds for more advanced
integration platforms, which differ in how much effort has been invested in gener-
ating small executables. Efficient implementations of component platforms for
smaller systems is still not a very advanced area.

e Predictability of system properties:

o Prediction of global system properties has been implemented using techniques
from real-time scheduling theory (e.g., in Rubus), and using simulation tech-
niques (for integration platforms). There is quite limited use of more advanced
system analysis techniques described in section 13.

o Checking non-interference between components is a problem for which sup-
port has not been adequately developed. Many technologies insist that all in-
teraction between components happen through explicit interfaces, but this is
not enough for guaranteeing component non-interference.

o Determination of QoS, timing, and resource properties of components, is
mostly done by measurement and simulation. There is some progress on static
analysis. The problem that these properties depend on the underlying platform
has not been adequately solved.

o Support for safety, reliability, availability, etc. has not been properly addressed.
There are implementation platforms that address these issues in specific contexts

14.6 Component Libraries: Approaches to Component Retrieval 189

(e.g., the TTP technology), but in many contexts, these problems are still solved in
an ad hoc manner, without adequate support from generic technologies. We are
still waiting for widely-applicable technologies that solve these problems in a
component environment.

o Wide adoption of a component technology for embedded systems is still not
emerging. There is a variety of developments, but no clearly identifiable “main-
stream winner”.

o Interoperability between different component technologies has not been ad-
dressed to a large extent.

o Middleware implementations for embedded systems exist in the form of oper-
ating systems, and some network technologies, but do not yet give full support
to a component technology and are not really widely adopted.

o Tools for component technologies in the embedded domain have not reached
sufficient maturity.

14.6 Component Libraries: Approaches to Component Retrieval

Software component reuse subsumes three basic subtasks: (1) Sofiware component
library construction — collection, selection, homogenization of a central, well-
maintained artefact repository, (2) Component indexing — attaching specifications to
the components, (3) Sofiware component retrieval — tools which mechanize the iden-
tification process. The process of the component retrieval has become especially im-
portant since the first successes of selling GUI-components via internet, when a num-
ber of internet markets have appeared with rising sizes of the component repositories
([HM02, TUCO3]).

The modern component markets provide simplified ways for the specification of
the search requirements, which can be easily understood and used, but hardly take
into account any specific characteristics of the software [MMMOS]. Since one has
currently quite restricted possibilities to define technical requirements on a desired
component, the search results have a quite small precision. In combination with re-
stricted descriptions of the available components (which are often not unified, incom-
plete, ambiguous, and in most cases informal) this makes the task of automatic re-
trieval ineffective for general applications and especially for the field of embedded
systems, where complicated behaviour of (reactive) components is of the most inter-
est, not only the signatures of the provided operations.

o Library construction. Identification of appropriate software components by their
specifications in a library has been investigated in [JC93, Mit93, YWRS92] and
others. From the reuse point of view, it is important to find the correct level of
granularity. Components of a large granularity usually require more external
components than components of a small granularity. Although fine-grained com-
ponents have less strong external dependencies, they introduce many unnecessary
interfaces into the system (which degrades its performance). Besides, they are
very specific, so less reusable.

e Library Organization. A premise for the search and final choice between the
found components is the availability of the appropriate abstraction, which pro-
vides the understanding, assessment and comparison of components. A /library

190

14 Component Models and Integration Platforms: Landscape

storage structure is an ordering on the (key, surrogate)-pairs, where key is an ab-
stract representation of the asset’s contents and surrogate is a unique abstract rep-
resentations of an actual asset. The abstraction process from the assets to the sur-
rogates is known as indexing or classification. Match predicates can be used to
order components by generality and organize a library hierarchically. A. Mili, R.
Mili, and R. Mittermeir [MMMO97] described such library organization in which
the components can be stored in a lattice-like fashion, using relational subsump-
tion as ordering in such a way that the most specific components become maximal
elements. J. Jeng and B. Cheng [JC94] described a two-tiered library organization.
The lower tier uses their modified subsumption test to order the library compo-
nents into disjoint clusters called sets of lattices. The upper tier applies a conven-
tional hierarchical clustering algorithm to combine these sets of lattices into a sin-
gle connected hierarchy. In J. Penix’s feature-based indexing method [Pen98], a
predefined set of features is used to construct an index. This set is checked off-line
against the library, using conditional plug-in as match condition, and each compo-
nent is indexed with the set of all matching features. In contrast to the other two
methods, feature-based indexing is an external library organization method, be-
cause it relies on the explicit and external set of features and not on any intrinsic
relation between the library components. T. Teschke [Tes03] developed a compo-
nent description language (CDL), concepts of the behavioural-subtyping-relation
match and introduced the specialization relation to compare the specific semantics
of activities and operations. This allows to improve the results of component
search in a repository by taking into account requirements from the models of
business processes.

Component retrieval The retrieval policy describes how components must be
related to the original user’s goal to be considered relevant. In exact retrieval,
components are considered relevant only if they satisfy the user’s goal exactly,
while proper retrieval also allows for more general components. In an approxi-
mate retrieval, a component is already relevant if it satisfies the user’s goal par-
tially. A partial solution can be defined semantically or syntactically.

When comparing the component search with the classical information retrieval
[SM83], one can observe their similarity (both are essentially the processes of the
content-based, goal-directed extraction of relevant text documents — assets — from
large collections), as well as differences between them: in the search space and in
the definition of the search requirements. While the current component markets
can provide at most 10 000 components in the observable search space, the infor-
mation retrieval approaches can provide the access to a larger amount of informa-
tion in effective way. The component search and information retrieval differ also
in their requirements on the quality of the obtained results. Two main characteris-
tics assessing the quality of the search results are precision — the rate of the rele-
vant documents in the set of all found documents — and recall — the rate of the
found relevant documents from the set of all available relevant documents. A task
within the classical information retrieval is to reach an appropriate compromise
between two measures. For the component retrieval, the precision is of the supe-
rior importance, because one is interested in the first turn on the best suitable
component(s) which can be integrated with minimal adaptation efforts [BR89,
GI9%4a, ZWI7].

14.6 Component Libraries: Approaches to Component Retrieval 191

Most component retrieval systems use a variety of methods developed within
the information retrieval which form a kind of continuum bounded, from one side,
by “controlled vocabulary” of the component specification, and from other side,
by “free vocabulary” ([FisO1]). For example, in signature matching [ZW93] the
types of the applied programming language are used: a component is retrieved if
its type is “compatible” under the applied type discipline to the query. The main
conceptual difficulty in this approach is an adequate definition of “compatible”
types which abstracts away “irrelevant” implementation details. Considering dif-
ferent levels of abstraction leads to different forms of signature matching, based
on the specialization/generalization of parameter types or their reordering.

Since signature matching is based on the syntax of the components (i.e., syntax
of their operations, attributes etc.), these methods alone are not sufficient for the
usage with embedded systems. Specification matching [ZW97] or deduction-
based software component retrieval exploit formal semantics extending the com-
ponent signatures with specifications of pre- and post-conditions. This kind of re-
trieval methods uses formal specifications and an automated theorem prover to
check whether a component matches a query. Deduction-based software compo-
nent retrieval has a unique conceptual advantage over all other component re-
trieval methods — it is the only method which retrieves proven matches only. The
disadvantage of this approach is their rising complexity problem. An integration
approach of the deduction based retrieval into deductive synthesis is introduced in
[FW99], based on a higher order logic interpretation of the deductive tableau ap-
proach.

Another existing approach to the component retrieval, behaviour sampling
[PP93], takes the basic assumption that already a sample of a few (input, output)-
pairs of an operation characterizes a component sufficiently. In practice, all behav-
iour sampling methods involve non-trivial up-front costs because the sampling
process requires a controlled environment. The precision of such methods can not
be guaranteed, since an operation can have unexpected behaviour on other inputs
from the environment. A similar approach was proposed in [MMM97], where an
additional refinement-relation is considered between the specifications as well as
correctness-relation between specifications and available components. Built out of
the behaviour sampling, [Poz01] proposed two-phased approach with automatic
generation of the component descriptions based on the analysis of the test results.
In the first phase, stateless components — individual operations — are partitioned in
the repository using generalized signature matching. Then components with states
are considered as modules with multiple operations, where abstract behaviour
sampling is applied abstracting from the values of the corresponding inputs and
outputs.

Adaptation phase. 1t is often the case that a component has to be adapted to
achieve interoperability with the environment. Adapters can be generated based on
a finite state machine interface semantics [SR02,YS97]]. Parameterized contracts
[Reu01]] are used to restrict a component’s provides- and requires-interface,
hence adapting the component to specific reuse contexts, which allows to perform
automatically a certain class of component adaptations without changing the code.
This also eases the granularity-reuse-problem by mapping of the functionality
which is actually requested from a component by a system to the functionality

192

14 Component Models and Integration Platforms: Landscape

which the component really requires to provide this requested functionality. By in-
tegrating deductive synthesis into the framework proposed by J. Penix [Pen9§],
the automatic adaptation tries to combine a component-oriented approach with a
generator-oriented approach to achieve a higher degree of reuse of components.

Nevertheless, the necessity of the component adaptation seems to be unaccept-

able for some development processes, since it violates the main principle of the
component-based methodology — allowing flexible adaptation of software to spe-
cific requirements by multiple reuse of the available components [Has02]. The
modern component repositories with retrieval methods could win more efficiency
by taking into consideration specific technical requirements from the development
processes.
Research results and tools. Most work on deduction-based retrieval is of theoreti-
cal nature, or describes only proof-of-concept “implementations” which are ex-
perimentally validated only with a small number of selected example proofs. Mitra
et al. [MRB96] proposed an informal algorithm to automatically map a design
function to a system level component. The complexity of the algorithm was expo-
nential in the worst case. Smith and de-Micheli [SM98] proposed methods for
component matching and verification of circuits using polynomials. Also, low
level component such as ALUs have been successfully reused [JD96]. In the con-
text of embedded systems the best result has been obtained in [RS00], a polyno-
mial-time component matching algorithm for system level components. Manna &
Waldinger [MW92] have already shown that in theory a notion of component re-
use can be built-into deductive tableaux.

Several component documentation systems, used in practice, show how the in-
formation retrieval technology can be applied to the component search. As an ex-
ample, LaSSIE [DBSB91] developed for the telecommunication branch provides a
natural language interface with a set of technical terms and compatibility-
relations. The domain knowledge is represented in form of frames, ordered in a
generalization/specialization hierarchy. Although the system does not allow a sat-
isfactory representation of the “part-whole” relation and has quite weak precision
of the component description, it allows to find also components which partially fit
the requirements. ROSA [GI94a, G194b] is a classification system, which provides
automatic extraction of lexical, syntactic, and semantic information from the natu-
ral language descriptions used for component indexing and in the process of com-
ponent search based on the similarity relation between requirements and compo-
nent descriptions. OntoSeek [GMV99] combines the usage of linguistic ontology
— to allow coupling between the user’s vocabulary and that of the repository — and
a structural formalism for the knowledge representation with a restricted
expressiveness. This leads to a higher precision and recall rates, based on the key-
words and (attribute, value)-pairs.

The AMPHION system [SWLPU94] follows the Manna-Waldinger-approach
to combine synthesis and retrieval but works in the very domain-specific setting of
astronomical subroutines. REBOUND-system [PA99] is an example of a working
prototype which is a combined component retrieval and adaptation system. Its re-
trieval subsystem is based on feature-based indexing. The original REBOUND-
system uses HOL-prover for classification, a later re-implementation (SOCCER)
relies on PVS. NORA/HAMMR [SF97, Fis01] is an advanced prototype retrieval

14.6 Component Libraries: Approaches to Component Retrieval 193

system based on the specification matching approach. To overcome the complex-
ity problem, the authors proposed a pipeline architecture with a number of filters
of increasing deductive strength. Dedicated rejection filters are used “upstream” to
rule out non-matches as early as possible and thus to prevent the “downstream”
confirmation filters (at the theorem proving process) from overflowing. The inte-
gration of a retrieval system with synthesis can only be semi-automatic even if re-
trieval works fully automatically, as shown in [FW99].

15 Standardization Efforts

This section provides an overview of standards that are relevant to the ARTIST com-
ponents working group. It is broadly split into two main sections: specification stan-
dards and implementation technology standards. The aim is to distinguish between
standards for specification and modelling, such as UML, that define modelling con-
cepts related to real-time modelling and components, and implementation standards,
which are focused at realizing these concepts at the implementation level.

15.1 Specification Standards

Over the last decade, there has been an increasing emphasis on the development of
modelling and specification languages appropriate for describing software engineer-
ing concepts. The Unified Modelling Language (UML™) was one of the first model-
ling languages to standardize software engineering concepts and related OMG stan-
dards are currently the de-facto route for incorporating new concepts into the software
industry. This section briefly introduces some of these key standards and describes
work currently being done to incorporate real-time components into existing stan-
dards such as UML.

UML 2.0

The Unified Modelling Language (UML) is now the de-facto industry language for
specifying and designing software systems. Since its inception in 1997, the scope of
the language has become ever wider. UML now provides support for a wide variety of
modelling domains, including real-time system modelling.

Unfortunately, the success of UML has come at a cost, resulting in a bloated and
complex language, as new modelling concepts have been repeatedly “mud-packed”
into the definition. Furthermore, the specification of the language (a meta-model of its
abstract syntax with weakly defined semantics) has also become difficult to manage
and hard to understand due to its size and complexity.

The UML 2.0 effort is an attempt by the OMG to address these shortcomings. The
aim is that UML should become a family of languages, each based on a common
semantic core. Thus, specific variants of UML will be defined for specific application
areas: e-business, real-time, systems engineering, warchouse meta-data and so on.
Another important aim is that UML 2.0 should be defined more precisely in order to
facilitate the more rigorous use of the language.

A number of consortia have submitted a variety of proposals to the OMG for the
revised standard, and the main difficulty was then to find a consensus among every
proposition. The work has been split into four main areas: infrastructure (the core
modelling concepts supported by UML), superstructure (the modelling concepts that
are used to model specific views of a system, e.g., state behaviour), OCL (the Object
Constraint Language that supports the semi-formal specification of constraints) and
diagram interchange (tool interchange of diagrammatical syntax). The intention is that

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 194203, 2005.
© Springer-Verlag Berlin Heidelberg 2005

15.1 Specification Standards 195

the infrastructure model will define the semantics for the core concepts used by UML.
The superstructure will then be defined in terms of this core, thus providing a firmer
interpretation of the UML language as a whole.

The task involved in refractory UML as a family of languages is not straightfor-
ward. Much work needs to be done to define an infrastructure that will successively
support the definition of a wide spectrum of languages. Furthermore, first class exten-
sion mechanisms are required to support the incremental extension and combination
of language components to create new languages. Finally, defining a semantic for
these language components is a significant challenge in itself — necessitating that
UML has a well defined semantic domain and appropriate semantic mappings.

Beside restructuring its architecture and improving its usability, the UML 2.0 lan-
guage has also been enriched with:

e Possibilities to organize interactions through interaction overview diagram. This
latter are very closed to the high-level message sequence chart.

e Activity diagram was revisited and is know a language by itself and is not more a
subset of usual state machines.

e Finally, the component concept was promoted and is gone from a just a peace of
code to a part of models (see next section for more details).

Component-Based Modelling with the UML

Components being the now most widespread structuring entities at implementation
level (seen as executables, binaries or library elements), the component paradigm
tends also to play such role at the modelling stage. One of the motivations is related to
the difficulty to have reusable components having totally known and mastered
dynamics, in particular, on real-time and concurrency aspects. Incoming component-
based approaches ([DW99, HS99, ABM00, GPJ02]) tend to use components as a
higher-level modelling artefact that may be used whatever the nature of the model
(specification design, implementation) and derived throughout the system develop-
ment through to implementation. Implementation part of a component becomes one of
its aspects only relevant for the implementation stage.

The evolution of this concept from UMLI1.x to UML 2.0 confirms this tendency.
Components in UML 2.0 are likely to get a more extensive treatment than in previous
versions of UML. Considered as a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a set of interfaces in the
UMLI1.x, components become more abstract structuring entities in UML 2.0. They
will be defined in the superstructure of UML 2.0. UML 2.0 components are then a
modular part of a system that may be modelled and refined throughout the develop-
ment lifecycle. A component is viewed as an autonomous unit within a system or
subsystem. It has one or more ports, and its internals are hidden and inaccessible other
than as provided by its interfaces. As a result, the aim is that components and subsys-
tems can be flexibly reused and replaced by connecting (“wiring”) them together via
their provided and required interfaces. Components also support reuse through an
import mechanism, which permits the elements of a component to be imported into
another component. UML 2.0 component model is very close to the main frame of the

196 15 Standardization Efforts

component model described in previous section 11 allowing thus to use very easily
UML as modelling language or ADL to support a CBSE methodology.

Although, this approach is not yet mature, at least due to the introduction of the
concept only in the incoming version of UML standard, some proposals already intro-
duce this notion in relation with real-time preoccupation through attaching real-time
QoS to the component interfaces [GPJ02]. In this context, component composition
issue at design stage becomes a question of QoS composition among the component
models. This raised a strong interest on MDA techniques that facilitate: model weav-
ing (http://www.qccs.org/) for the component composition; and the mapping and
transformation of abstract models into detailed models for the implementation synthe-
sis [GTTO2].

UML Profiles for Real-Time

The UML contains in native some capabilities to support real-time aspects: either for
qualitative aspects such as concurrency (Active objects, concurrent states, etc.) or for
quantitative aspects such as time event. Nevertheless, these real-time features of the
UML are not enough. For that reason, OMG has initiated a work dedicated to define a
UML profile specific to real-time systems development.

UML Profile for Scheduling, Performance and Time Specification

The UML profile for Scheduling, Performance, and Time Specification (in short SPT)
[OMGO1c] defines standard paradigms of use for modelling of time-, scheduling-, and
performance-related aspects of real-time systems. The intentions are to:

e Enable the construction of models that could be used to make quantitative predic-
tions regarding these characteristics.

e Facilitate communication of design intent between developers in a standard way.

e Enable inter operability between various analysis and design tools.

To support this, the specification defines (as a meta-model) a complete, but generic
model of some of the key concepts association with scheduling, performance model-
ling and times events. Main concepts introduced in the SPT profile are Quality-of-
Service (in short QoS) and Resource. From these concepts, it then defines in specific
sub-profiles more adequate concepts for performance and schedulability analysis.
Thus it includes models of the semantics and mappings to common real-time middle-
ware standards such as real-time CORBA.

To illustrate the usage of the SPT profile, one may consider the package dedicated
to model time and time values. Among other concepts, this package contains both
concepts of TimeValue and TimedAction.

The TimeValue concept is defined as follow: “It corresponds to a particular physi-
cal instant in time as measured by some reference clock in some inertial frame of
reference”. To use this conceptual element, the SPT profile proposes both following
possibilities:

e the «RTtime» stereotype — it enables to specify that model elements (e.g. Attrib-
utes of a class) are time values. This involves that such tagged elements have a
time semantics (see Figure 6.2).

15.1 Specification Standards 197

o the RTtimeValue Tagged-Value Type (in short TVL) — this latter may be sued only
to type tagged values of stereotype. For example, the tagged value RTstart of the
stereotype «RTaction» denotes a time value and is also typed with the TVL
RTtimeValue (Figure 16.2).

SpeedSonsor ==RTlime==
Data
value :int
acquisitionTime : Date ==RTtime== value : DateString

Figure 16.1. Example of usage of the stereotype «RTtime»

The TimedAction concept support the concept of activities that either have known
start and end times or that have a known duration. Its usage in UML models is
achieved through the stereotype «RTaction». This latter has several tagged value:
RTstart and RTend if the stereotyped element is characterized with start and end
times, and RTduration otherwise. All these tagged values are typed as RTtimeValue as
previously defined (Figure 16.2).

o
I

Starter SpeedRequlator
startRegulating{)
= -~
£
/
RTact = 4 ==RTaction==>
==k laction== RTduration=(4, ms
{RTstart={1, ms)} { (Ui
{RTend={4, ms)} |
I

Figure 16.2. Example of usage of the stereotype «RTaction» in a sequence diagram

The «RTaction» stereotype may be applied on a large scale of base classes of the
UML such as Message, Action, Method, etc. This last point is actually one of the
issues of the current standard version of the SPT profile that should be solved in the
next incoming version 2 of the profile (see later in this section about SPT v2). Indeed,
the semantics specified for each stereotype defined I the profile applies for all the
base class it can stereotyped. But sometimes it should be better to clarify some points
depending of the base class on which the stereotype is applied. For example, the se-
mantics of a Message element stereotyped by «RTaction» could mean that the action
attached to the message should have the RT features specified in the stereotype at-
tached to the message. Whereas the semantics of a Method element also stereotyped
«RTactiony applies directly on the method itself.

198 15 Standardization Efforts

UML Profile for SPT Specification

The UML profile for Scheduling, Performance and Time has been adopted and in use
since mid of 2003. In parallel some other OMG standards have been adopted such as
the UML profile for QoS and Fault Tolerance, UML2, etc.

All these new profiles have an influence on the current version of the Scheduling,
Performance and Time profile. Moreover, the profile has also been used in various
projects (AIT-WOODDES, OMEGA...) and a lot of feedback for improvement and
consolidation has been produced by these experiments. Finally, some of the issues
raised against the SPT version 1 has been deferred to new version of the profile be-
cause out of the scope of a simple revision task force of the profile. All these points
are arguments in favour of having a new version of the UML profile for SPT.

To achieve this purpose, the SPT2 will have to solve the following mandatory re-
quirements: (i) Express analysis profiles in terms of QoS Profile; (ii) Express profile
using UML 2 profile meta-model ; (iii) Harmonize the performance and schedulabil-
ity sub-profiles; (iv) Clarify Relationship with UML2; (v) And improve usability of
the profile. It is expected that the new version of the UML profile for SPT will be
available in the mid of 2005.

UML Profile for QoS and Fault Tolerance

This profile is a specification of UML extensions dedicated to adorn models with
Quality of Service (QoS) and Fault-Tolerance (FT) concepts (UML Profile for QoS
and FT Draft Adopted Specification, ptc/04-01-05). It is organized around five main
chapters. Both chapters 7 and 8 describe respectively the meta-model of the QoS
Framework and its resulting UML profile. The chapter 10 is a catalogue of QoS cov-
ering throughput, latency, security, etc. The chapter 12 enables the description of
models of risk analysis with UML, whereas the last chapter is dedicated to the de-
scription of fault tolerant architectures. In the rest of the section we will focus on the
three first chapters which are more related to real-time features modelling. This sec-
tion is then split in two sections respectively related to the framework and the cata-
logue of QoS.

QoS Framework
The QoS framework is described at the abstract level through the definition of its
meta-model in the one hand. But the framework is also described at the concrete level
via a projection of its meta-model in the UML technological space. This projection is
achieved by defining the UML profile matching the meta-model of the QoS frame-
work.

The meta-model of the QoS framework consists of three sub-packages describing
respectively characteristics, constraints and levels of QoS.

The QoS characteristics package provides the basics for defining specific QoS:

e QoS characteristics — this views defines the concepts enabling to model quantifi-
able extra-functional features (latency, safety, etc.) independently, or or-
thogonally, to functional features. QoS characteristics may have values that may
be quantified under different dimensions (absolute values, max. or min. values,
etc.). When defining one QoS characteristics for quantification of extra-functional
becomes too much complex it is then possible to cluster several more basic QoS

15.1 Specification Standards 199

characteristics into QoS categories. This latter concept is different with character-
istics in the sense that categories are not directly quantifiable, one need to go
through their clustered characteristics.

e QoS values —previous concepts provide a type view of the QoS framework. QoS-
Value and QoSDimensionSlot defined here are respectively instances of Qo-
SCharacteristic and QoSDimenssion.

e QoS context — this enables to describe the context of QoS characteristics, that is to
say the QoS characteristics and related model elements involved in a QoS con-
straint. It may be useful to do so when QoS expressions or constraints involve
several QoS characteristics.

The QoS constraint package provides means to limit the possible values of QoS char-
acteristic. The generic concept of QoSContraint is reified into the three following
concepts:

e QoS required — this ensures a client to specify which QoS it requires for a server
when operating the required service.

e QoS offered — this ensures to define the QoS associated to services provided by
model element (e.g. at the interface level of components).

e QoS contract — when linking a client and a server, respective required and offered
QoS has to match or connection has at least to result from a negotiation to map the
required with offered QoS. QoS contract is the proposed concept to support this
king of contact modelling.

The QoS level package provides facilities to model different running modes of appli-
cation in function of level of QoS it may offer or require.

The concrete syntax of the QoS meta-model is rendered under the form of a UML
profile. That means that from the QoS meta-model previously described, a set of
UML extensions (stereotypes and associated values) are defined in order to ensure
UML modelling of the QoS framework. The architecture of the UML profile follows
the architecture of the meta-model. It consists then of three sub-profiles. For example,
QoS categories are modelled with package stereotyped with «QoSCategory». Our
purpose is not here to describe in the minute the details of the profile but just to give
enough information to understand the pros. and cons. of the profile. For more details
about the UML extensions proposed in the context of the UML profile for QoS and
FT, the reader is pleased to refer to the OMG’ specification.

QoS Catalogue
The QoS catalogue consists in introducing specific QoS categories (e.g. performance,
latency, etc.). Every category is denoted through a UML design pattern using stereo-
types defined in the QoS framework.

For example, two types of latency characteristics could be:

e Latency as a generic characteristic for latency modelling on any kind of software
element
e Latency as an absolute limit on the time needed to accomplish a sub-task.

200 15 Standardization Efforts

MDA

The Model Driven Architecture (MDA™) is the OMG’s new flagship architecture
that aims to integrate its (and other) standards within a model driven approach to
system development [SOM00a, SOM00b, SOM02, MMO01]. MDA™ encapsulates
many important ideas — most notably the notion that real benefits can be obtained by
using modelling languages to integrate the huge diversity of languages used in the
development of systems.

In MDA™, modelling languages are categorized as being platform independent
(i.e. specification oriented) and platform independent (i.e. implementation oriented).
Note that a modelling language can be a language at any level of abstraction. Exam-
ples of platform independent languages include UML™ itself (when used for specifi-
cation). Middleware standards such as CORBA and programming level languages
(e.g. Java Beans) are examples of platform specific languages.

Mappings (a key component of MDA™) define the relationships between these
languages. By abstracting away from platform specific details, the intention is that
system development is driven through platform independent models that can be semi-
automatically translated into any platform specific language for which a standard
mapping has been defined. Thus, platform independence is obtained along with
greater flexibility in deployment — if a new technology emerges (e.g. .Net), then all
that is required is to apply a new set of mappings.

Platform independent and platform specific mappings are good examples of verti-
cal transformations. However, MDA™ goes potentially far beyond this. For example,
horizontal mappings between platform specific languages may be defined as a means
of integrated different modelling perspectives at the specification level (e.g. process
models, system artefacts, software specifications). In short, MDA™ offers a frame-
work that has the potential to model and integrate all aspects of system development.

Many vendors are already claiming support for MDA™ (e.g. a code generator
could be viewed as a mapping tool!). However, in practice there are significant issues
to be addressed. Mechanisms must be defined that support executable, but declarative
mappings between languages. The semantics of these languages must be defined well
enough to ensure that mappings are semantic preserving, whilst more powerful exten-
sion mechanisms are required to support the reuse of mappings. These and many
other issues are all currently being debated within the OMG (see www.omg.org/mda).

MDA and Current Industrial Real-Time UML Tools

In the real-time application area, this model-oriented trend is also very active and
promising. Currently, there are four main model-oriented industrial approaches sup-
ported by tools: UML-RT used with Rose-RT, ROPES with Rhapsody, ARTiSAN
and UML/SDL with the Tau UML/SDL suite.

Within UML-RT, an application is seen as a set of entities called “capsules”
which support logical concurrency. These capsules have a state machine as behaviour
specification and may exchange signals to communicate. Models built in this way are
said to be executable, meaning that at any moment in design, it is possible to produce
an executable application matching the UML™ model. In this case, the mapping is
achieved via code generation.

15.1 Specification Standards 201

For ROPES™ and ARTiSAN™ approaches, real-time application modelling is a
3-stage process: i) building a “functional”® model with class and state diagrams; ii)
building a specific tasking model with class diagrams containing only active objects (
execution tasks); iii) describing the mappings between the two models. The main
drawback of this “family” of methods is that it requires advanced real-time develop-
ment skills to build the tasking model and map it with the “functional” model. While
there are some “shortcuts” available ([AKZ97 p. 482]) to facilitate this activity, no
transformation rules are provided as could be done within a fully MDA™-based ap-
proach.

The approach proposed by Telelogic™ is based on the use of both UML™ and
SDL™ languages. It consists of building UML™ models at the analysis stages using
active objects as concurrency supports and SDL™ within design-time. Reference
document [ITU99] defines modelling rules for mapping a UML™-oriented model
into an SDL-oriented model. When SDL models are finished, the engineer may gen-
erate code to produce an executable application.

All these methodologies may be considered as MDA™.-based approaches for
mainly two reasons. Firstly, they clearly promote the model paradigm to develop
applications; and secondly, they provide code generation taking into account struc-
tural and behaviour specifications for model mapping to implementation languages
such as C, C++, JAVA, etc.

Nevertheless, they do not exploit all the potentialities of MDA ™. Their application
models are often only PSM-like for “executable” reasons.

For modelling purposes, the user is thus led very quickly to resort, for an executa-
ble model, to a programming language such as C++. Although action semantics have
been standardized by OMG [OMGO2] there are still only a few tools that have inte-
grated this feature, which allows building of executable models independently of any
programming language. While these approaches are usually based on a several stage
process, they do not provide the refinement mapping rules that could facilitate appli-
cation development and, above all, be highly useful in promoting seamless develop-
ment processes. Finally, the existing UML-based methods for real-time applications
still require considerable knowledge of real-time software technology (and the differ-
ent programming models promoted by these tools) to develop real-time systems.

Towards MDA Components

MDA approach has given rise to a particular interest of the RT community (e.g., edi-
tions of the Summer School on MDA for embedded systems held in Brest, Sept. 2002
and 2004, http://sancy.ensieta.fr/mda/). However, this subject remains largely open, in
particular, to identify and structure the various artefacts related to MDA, such as:
dedicated met models (e.g., for business domain and technical domain), specific target
models (also called PSMs Platform Specific Models), transformation procedures,
model weaving, mapping and transformation rules, in particular, concerning RT QoS,
but also for implementation synthesis, test generation, proof synthesis.

Incoming MDA-based workbenches will consist of various parts that may interoper-
ate:

e Documents (method book, guide lines, user guides, etc.).

202 15 Standardization Efforts

e Profiles (SPT, SPEM, EDOC, etc.).
e Tools (UML modeller, code generator, model transformer, etc.).

Moreover, these MDA parts may be plug on a bus in order they interoperate. For
example, the Eclipse initiative (www.eclipse.org) provides a specific plug-in, EMF
(Eclipse Modelling Framework), ensuring the construction of UML-based MDA
plug-ins of Eclipse.

Even if it is not well defined today, it seems logical that components will also play
this structuring role [BG02]. And near future should give rise to “MDA-Components”
whose nature could be clarified thanks standard stereotypes such as «Tool», «UML
Profile», «Documenty, etc.

In fact, currently not a lot of things have been set related to MDA and it still re-
mains a lot of work to do to clarify MDA and its related concepts. In particular, as
CBSE methodologies have been developed to support more efficient use of the com-
ponent artefact, model driven engineering methodologies have to be define to exploit
all the potentialities of the MDA technologies and related concepts.

15.2 Implementation Technology Standards

The majority of implementation standards relevant to components tend to focus on
middleware, i.e. the communication and interface aspects of components. Each of
these standards emphasizes the important of independence from the technology use to
implement the internal functionality of components. Because of this, we will not dis-
cuss the plethora of programming languages that can be used to implement compo-
nents in this section.

SOAP

SOAP provides a simple and lightweight mechanism for exchanging structured and
typed information between peers in a decentralized, distributed environment using
XML. As such, SOAP can be seen as an important standard for interchanging date
between distributed components. SOAP does not itself provide implementation spe-
cific semantics; rather it defines a simple mechanism for expressing application se-
mantics by providing a modular packaging model and encoding mechanisms for en-
coding data within modules. This allows SOAP to be used in a large variety of sys-
tems ranging from messaging systems to RPC.

SOAP consists of three parts:

e The SOAP envelope defines an overall framework for expressing what the content
of a message is.

e The SOAP encoding rules defines a serialization mechanism that can be used to
exchange instances of application-defined data types. These may be simple or
structured data types.

e The SOAP RPC representation defines a convention that can be used to represent
remote procedure calls and responses. Just as with CORBA, the key advantage of
SOAP is that it is platform independent and is not tied to any implementation spe-
cific messaging mechanism or software architecture.

15.3 Conclusions and Challenges 203

15.3 Conclusions and Challenges

All the above standards are relevant to the ARTIST component working group as they
each attempt to standardize a variety of aspects of real-time and component based
design in isolation. As a result, there are many opportunities for additional work to
unify both the real-time and component perspectives and also to provide a stronger
foundation for their definition and deployment. These include the following:

Integration of real-time and embedded QoS within the UML2 component model:
Currently, little consideration has been given to the expression of real-time and
QoS aspects in UML component models. Such an approach would require the
definition of additional notational facilities to facilitate the capture of these as-
pects, along with a definition of their semantics.

Traceability management/control of real-time QoS of a component all along the
development process: By providing a model of change management/control it
should be possible to provide support for the management of components
throughout its lifetime (an essential requirement for change management and up-
grades). Such a facility could potentially be based on an extension to emerging
process management modelling languages being developed in the industry such as
SPEM.

Definition of performance / schedulability analysis methodology well-suited for
such MDA component-based approaches: It is clear that the deployment of com-
ponents within an MDA lifecycle could be developed whereby components could
be specified in a platform independent way, and then mapped to various compo-
nent technologies. In order to achieve this, significant work needs to be done to
develop models of platform specific component languages and to define rules for
mapping from platform independent components to platform specific models or to
middleware standards such as CORBA and SOAP. These mappings must be
shown to be correct with respect to certain semantic preserving properties, includ-
ing QoS.

Link between extra-functional engineering requirements and real-time/embedded
QoS of UML-based models: By modelling extra-functional properties of real-time
systems, it should be possible to build rich component based modelling languages
that capture a variety of system engineering perspectives. This would tie in nicely
with work going on in the OMG to define a UML profile for systems engineering.

16 References

[AAGYS]

[ABMO00]

[Abro6]

[ACBS4]

[AFM02]

[AG94]

[AH96]

[AKZ97]

[Bal98]

[BBB'00]

[BCK98]

[BCP'01]

[Ber99a]
[Ber99b]

[BG02]

G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descrip-
tions of software architecture. ACM Trans. on Software Engineering and Method-
ology, 4(4):319-364, 1995.

C. Atkinson, J. Bayer, and D. Muthig. Component-based product line development
: The KobrA approach. In Software Product Lines: Experience and Research Di-
rections, Proc. Ist Int. Sofiware Product Line Conference (SPLC-1), Denver, CO,
USA, Aug. 2000, pages 289-309. Kluwer Academic, 2000.

J.-R. Abrial. The B book — Assigning Programs to Meanings. Cambridge University
Press, 1996.

M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalised stochastic
Petri nets for the performance evaluation of multiprocessor systems. ACM Trans.
on Computer Systems, 2(2):93-122, 1984.

T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: A tool
for modelling and implementation of embedded systems. In Proc. 8th Int. Conf.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’2002),
Grenoble, France, Apr. 2002, volume 2280 of Lecture Notes in Computer Science,
pages 460-464. Springer Verlag, 2002.

R. Allen and D. Garlan. Formalizing architectural connection. In Proc. 16th Int.
Conf. on Software Engineering (ICSE 94), Sorrento, Italy, May 1994, pages 71-80.
IEEE Comp. Soc. Press, 1994.

R. Alur and T. A. Henzinger, editors. Proc. 8th Int. Conf. Computer Aided Verifi-
cation (CAV’96), New Brunswick, NJ, USA, July-Aug. 1996, volume 1102 of Lec-
ture Notes in Computer Science. Springer Verlag, 1996.

M. Awad, J. Kuusela, and J Ziegler. Object-Oriented Technology for Real-time
Systems: A Practical Approach Using OMT and Fusion. Prentice Hall, 1997.

R. Balzer. An architectural infrastructure for product families. In Proc. 2nd Int.
ESPRIT ARES Workshop on Development and Evolution of Software Architectures
for Product Families, Las Palmas de Gran Canaria, Spain, Feb. 1998, volume
1429 of Lecture Notes in Computer Science, pages 158-160. Springer Verlag, 1998.
F. Bachmann, L. Bass, C.Buhman, S.Comella-Dorda, F.Long, J. Robert,
R. Seacord, and K. Wallnau. Technical Concepts of Component-Based Software
Engineering, Volume II. Technical Report CMU/SEI-2000-TR-008, Software En-
gineering Institute, Carnegie-Mellon University, May 2000.

L. Bass, P. Clements, and R. Kazman. Software Architecture In Practice. Addison
Wesley, 1998.

V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and
S. Yovine. Taxys = Esterel + Kronos. A tool for verifying real-time properties of
embedded systems. In Proc. 40th IEEE Conf. on Decision and Control
(CDC’2001), Orlando, FL, USA, Dec. 2001. IEEE Comp. Soc. Press, 2001.

G. Berry. The constructive semantics of Pure Esterel. Centre de Mathématiques
Appliquées, Ecole des Mines and INRIA, Sophia-Antipolis, France, July 1999.

G. Berry. The Esterel v5 language primer. Centre de Mathématiques Appliquées,
Ecole des Mines and INRIA, Sophia-Antipolis, France, April 1999.

J. Bézivin and S. Gérard. A preliminary identification of MDA components, 2002.
Position Paper, OOPSLA 2002 Workshop: Generative Techniques in the context
of Model Driven Architecture.

Artist FP5 Consortium: Embedded Systems Design, LNCS 3436, 204215, 2005.
© Springer-Verlag Berlin Heidelberg 2005

[BGM02]

[BGS00]

[BIP99]

[BK9S]

[BLP*02]

[BMWS9]

[Box00]
[BR89]

[Bro95]
[Bro96]
[Cas95]

[CCD'01]

[CCM]

16 References 205

M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validation environment for compo-
nent-based real-time systems. In Proc. 14th Int. Conf. Computer Aided Verification
(CAV°2002), Copenhagen, Denmark, July 2002, volume 2404 of Lecture Notes in
Computer Science, pages 343-348. Springer Verlag, 2002.

S. Bornot, G. Géssler, and J. Sifakis. On the construction of live timed systems. In
Proc. 6th Int. Conf. Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’2000), Berlin, Germany, Mar.-Apr. 2000, volume 1785 of Lecture
Notes in Computer Science, pages 109-126. Springer Verlag, 2000.

A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making components contract
aware. [EEE Computer, 32(7):38-45, 1999.

N. Brown and C. Kindel. Distributed component object model protocol —
dcom/1.0. Internet-draft, IETF, January 1998.

F. Balarin, L. Lavagno, C. Passerone, A.Sangiovanni-Vincentelli, Y. Watanabe,
and G. Yang. Concurrent execution semantics and sequential simulation algo-
rithms for the Metropolis meta-model. In Proc. 10th Int. Symp. on Hard-
ware/Software Codesign (CODES’2002), Estes Park, CO, USA, Apr. 2002. ACM
Press, 2002.

H. Beilner, J. Mater, and N. Weissenberg. Towards a performance modeling envi-
ronment: News on HIT. In Proc. 4th Int. Conf. Modeling Techniques and Tools for
Computer Performance Evaluation, Palma de Mallorca, Spain, Sep. 1998, pages
57-75. Plenum Press, 1989.

D. Box. House of COM: Is COM dead? MSDN Magazine, December 2000.

T.J. Biggerstaff and C. Richter. Reusability framework, assessment, and direc-
tions. In T. J. Biggerstaft and A. J. Perlis, editors, Software Reusability Volume I:
Concepts and Models, pages 1-17. ACM Press & Addison Wesley, 1989. Also ap-
peared in IEEE Software, 4(2):41-49, 1987.

K. Brockschmidt. /nside OLE (2nd ed.). Microsoft Press, 1995.

K. Brockschmidt. What OLE is really about, 1996.

G. Castagna. Covariance and contravariance: Conflict without a cause. 4ACM
Trans. on Programming Languages and Systems, 17(3):431-447, 1995.

P. Combes, L. Castaignet, F. Dubois, B. Nicolas, and B. Renard. Feature-driven
service analysis and design in an open architecture. In Proc. 7th Int. Conf. Intelli-
gence in next Generation Networks (ICIN'2001), Bordeaux, France, Oct. 2001,
2001.

The CORBA & CORBA Component Model (CCM) page.
http://www.ditec.um.es/~dsevilla/ccm.

[CAAH'02] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Jurdzinski, and F. Y. C. Mang.

[CDNO1]

[Chi98]

[CLO02]

[CM88]

Interface compatibility checking for software modules. In Proc. 14th Int. Conf.
Computer Aided Verification (CAV’2002), Copenhagen, Denmark, July 2002,
volume 2404 of Lecture Notes in Computer Science, pages 428-441. Springer
Verlag, 2002.

P. Combes, F. Dubois, and B. Nicolas. Une démarche associant UML et SDL pour
I’analyse, la conception et la validation de services de télécommunication. In Actes
3ieme Congres Modélisation des Systemes Réactifs (MSR’2001), Toulouse, France,
Oct. 2001, pages 309-324. Hermés Science Publications, 2001.

G. Chiola. Petri nets versus queueing networks: similarities and differences. In
Performance Models for Discrete Event Systems with Synchronisations: Formal-
isms and Analysis Techniques, pages 121-134. KRONOS, 1998.

I. Crnkovic and M. Larsson. Building Reliable Component-Based Software Sys-
tems. ArtechHouse, 2002.

K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.

206 16 References

[Cob00]

[Con02]

[CPP'01]

[CPP*02]

[CRTMY8]

[CW02]
[DBSBI1]
[DHO1]

[DHK99]

[DHM96]

[DKB9S8]

[Don00]

[Dou02]
[DW99]
[EASO03]
[ECWO1]

[Erl]

E. Cobb. CORBA Components: The industry’s first multi-language component
standard, June 2000. OMG meeting tutorial available at http://www.omg.org/cgi-
bin/doc?omg/00-06-01.

C. Constantinescu. Impact of deep submicron technology on dependability of
VLSI circuits. In Proc. 2002 Int. Conf. on Dependable Systems and Networks
(DSN°2002), June 2002, Bethesda, MD, USA, pages 205-214. IEEE Comp. Soc.
Press, 2002.

E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine. Taxys:
A tool for the development and verification of real-time embedded systems. In
Proc. 13th Int. Conf. Computer Aided Verification (CAV°2001), Paris, France,
July 2001, volume 2102 of Lecture Notes in Computer Science, pages 391-395.
Springer Verlag, 2001.

E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil. SAXO-RT, interpreting
Esterel semantics on a sequential execution structure. In Proc. Ist Workshop on
Synchronous Languages, Applications, and Programming (SLAP’2002), Grenoble,
France, Apr. 2002, volume 65(5) of Electronic Notes in Theor. Comp. Sci. Elsevier
Science, 2002.

L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano — a revolution in
on-board communications. Volvo Technology Report, 1998.

S. Clarke and R.J. Walker. Towards a standard design language for AOSD. In
Proc. Ist Int. Conf. on Aspect-Oriented Sofiware Development (AOSD’2002),
Univ. Twente, Enschede, NL, Apr. 2002, pages 113-119. ACM Press, 2002.

P. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W. Ballard. LaSSIE: a knowl-
edge-based software information system. Communications of the ACM, 34(5):34-
49, 1991.

W.Damm and D. Harel. LSCs: Breathing life into Message Sequence Charts.
Journal of Formal Methods in System Design, 19(1):45-80, 2001.

M. Dal Cin, G. Huszerl, and K. Kosmidis. Evaluation of safety-critical systems
based on guarded statecharts. In Proc. 4th IEEE Int. Symp. on High Assurance Sys-
tems Engineering, Washington, DC, USA, Nov. 1999, pages 37-45. IEEE Comp.
Soc. Press, 1999.

M. Diefenbruch, J. Hintelmann, and B. Miiller-Clostermann. The QUEST-
approach for the performance evaluation of SDL-systems. In Proc. IFIP TC6
WG6.1 Int. Conf. on Formal Description Techniques IX / Protocol Specification,
Testing and Verification XVI (FORTE 96), Kaiserslautern, Germany, Oct. 1996,
pages 229-244. Kluwer Academic, 1996.

P. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the speci-
fication of stochastic systems. In Proc. IFIP Working Conference on Programming
Concepts and Methods (PROCOMET’98), Shelter Island, NY, USA, June 1998,
pages 126-147. Chapman & Hall, 1998.

P. Donohoe, editor. Software Product Lines: Experience and Research Directions,
Proc. Ist Int. Software Product Line Conference (SPLC-1), Denver, CO, USA,
Aug. 2000. Kluwer Academic, 2000.

B. P. Douglass. Model driven architecture and Rhapsody. Technical report, I-
Logix, 2002.

D. F. D’Souza and A. C. Wills. Objects, components, and frameworks with UML :
the catalysis approach. ACM Press and Addison-Wesley, 1999.

EAST_EEA. http://www.east-eea.net, 2003.

H. El-Sayed, D. Cameron, and C. M. Woodside. Automation support for software
performance engineering. ACM SIGMETRICS Performance Evaluation Review,
29(1):301-311, 2001.

Erlang. http://www.erlang.org/.

[ESC]
[FEHC02]

[FHL'01]

[FisO1]
[FK98]

[FLV00]

[FW98]

[FW99]

[GAO95]

[GHG 93]

[GHIV94]

[GI94a]

[GI94b]

[GIS96]

[GLMO0]

[GMV99]

[Gos95]
[Gos01]

16 References 207

ESC Java webpage. http://research.compaq.com/SRC/esc/.

A. V. Fioukov, E. M. Eskenazi, D. K. Hammer, and M. R. V. Chaudron. Evalua-
tion of static properties for component-based architectures. In Proc. 28th
EUROMICRO Conference, Dortmund, Germany, Sep. 2002, pages 33-39. IEEE
Comp. Soc. Press, 2002.

C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-
life processor. In Proc. Ist Int. Workshop on Embedded Software (EMSOFT2001),
Tahoe City, CA, USA, Oct. 2001, volume 2211 of Lecture Notes in Computer Sci-
ence, pages 469-485. Springer Verlag, 2001.

B. Fischer. Deduction-Based Software Component Retrieval. PhD thesis, Univer-
sitdt Passau, Germany, November 2001.

S. Frolund and J. Koistinen. Quality-of-Service specifications in distributed object
systems. Distributed Systems Engineering, 5(4):179-202, 1998.

P. H. Feiler, B. Lewis, and S. Vestal. Improving predictability in embedded real-
time systems. Special report CMU/SEI-2000-SR-011, Carnegie Mellon Software
Engineering Institute, December 2000. 2000.

C. Ferdinand and R. Wilhelm. On predicting data cache behaviour for real-time
systems. In Proc. ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES’98), Montreal, Canada, June 1998, volume 1474
of Lecture Notes in Computer Science, pages 16-30. Springer Verlag, 1998.

B. Fischer and J. Whittle. An integration of deductive retrieval into deductive
synthesis. In Proc. 14th IEEE Int. Conf. on Automated Software Engineering
(ASE’99), Cocoa Beach, Florida, USA, Oct. 1999, pages 52-62. IEEE Comp. Soc.
Press, 1999.

D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6):17-26, 1995.

J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.
Larch: Languages and Tools for Formal Specification. Texts and Monographs in
Computer Science. Springer Verlag, 1993.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

M. R. Girardi and B. Ibrahim. Automatic indexing of software artifacts. In Proc.
3rd Int. Conf. on Software Reuse, Rio De Janeiro, Brazil, Nov. 1994, pages 24-32.
IEEE Comp. Soc. Press, 1994.

M. R. Girardi and B. Ibrahim. A similarity measure for retrieving software arti-
facts. In Proc. 6th Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE’94), Jurmala, Latvia, June 1994, pages 478-485. Knowledge Systems Insti-
tute, 1994.

J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Addison-
Wesley, 1996.

S. Gnesi, D. Latella, and M. Massink. A stochastic extension of a behavioural
subset of UML statechart diagrams. In Proc. 5th IEEE Int. Symp. on High-
Assurance Systems Engineering (HASE 2000), Albuquerque, NM, USA, Nov. 2000,
pages 55-64. IEEE Comp. Soc. Press, 2000.

N. Guarino, C. Masolo, and G. Vetere. OntoSeek: Content-based access to the
web. IEEE Intelligent Systems, 14(3):70-80, 1999.

C. Goswell. The COM programmer’s cookbook, 1995.

G. Gossler. Prometheus — a compositional modeling tool for real-time systems. In
Proc. Ist Workshop on Real-Time Tools (RT-TOOLS’2001), Aalborg, Demark,
Aug. 2001, 2001. Published as Technical report 2001-014, Uppsala University,
Department of Information Technology.

208

[GPJ02]

[Gri03]

[GS02a]

[GS02b]

[GTT02]

[Gur95]
[Hal93]

[Has02]

[HenO1]

[Her02]
[Hil96]

[HJPPO2]

[HMO02]
[HS99]
[Hyp]
[IEC95]
[Tlo]

[IN02]

[ITE]

16 References

S. Gérard, P. Petterson, and B. Josko. Methodology for developing real-time em-
bedded systems. Pub IST-1999-10069, CEE, Paris, France, 2002.

K. Grimm. Software technology in an automotive company: major challenges. In
Proc. 25th Int. Conf. on Software Engineering (ICSE’'2003), Portland, OR, USA,
May 2003, pages 498-505. IEEE Comp. Soc. Press, 2003.

G. Gossler and A. Sangiovanni-Vincentelli. Compositional modeling in Metropo-
lis. In Proc. 2nd Int. Conf. on Embedded Software (EMSOFT’2002), Grenoble,
France, Oct. 2002, volume 2491 of Lecture Notes in Computer Science, pages 93-
107. Springer Verlag, 2002.

G. Gossler and J. Sifakis. Composition for component-based modeling. In Proc.
1st Int. Symp. Formal Methods for Components and Objects (FMCO’2002), Lei-
den, The Netherlands, Nov. 2002, volume 2852 of Lecture Notes in Computer Sci-
ence, pages 443-466. Springer Verlag, 2002.

F. Gérard, F. Terrier, and Y. Tanguy. Using the model paradigm for real-time
systems development: ACCORD/UML. In Proc. Workshops on Advances in Ob-
ject-Oriented Information Systems (OOIS’2002), Montpellier, France, Sep. 2002,
volume 2426 of Lecture Notes in Computer Science, pages 260-269. Springer Ver-
lag, 2002.

Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specifica-
tion and Validation Methods, pages 9-36. Oxford University Press, 1995.

N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic,
1993.

W. Hasselbring. Component-based software engineering. In S. K. Chang, editor,
Handbook of Software Engineering and Knowledge Engineering Vol. 2: Emerging
Technologies, pages 289-306. World Scientific Publishing, 2002.

T. A. Henzinger. Giotto: A time-triggered language for embedded programming.
In Proc. Ist Int. Workshop on Embedded Software (EMSOFT 2001), Tahoe City,
CA, US4, Oct. 2001, volume 2211 of Lecture Notes in Computer Science, pages
166-184. Springer Verlag, 2001.

H. Hermanns. Interactive Markov Chains and The Quest for Quantified Quality,
volume 2428 of Lecture Notes in Computer Science. Springer Verlag, 2002.

J. Hillston. 4 Compositional Approach to Performance Modeling. Cambridge
University Press, 1996.

W.-M. Ho, J.-M. Jézéquel, F. Pennaneac’h, and N. Plouzeau. A toolkit for weaving
aspect oriented UML designs. In Proc. Ist Int. Conf. on Aspect-Oriented Software
Development (AOSD’2002), Univ. Twente, Enschede, NL, Apr. 2002, pages 99-
105. ACM Press, 2002.

M. Hau and P. Mertens. Computergestuetzte Auswahl komponentenbasierter An-
wendungssysteme. Informatik Spektrum, 25(5):331-340, 2002.

P. Herzum and O. Sims. Business Component Factory: A Comprehensive Over-
view of Component Based Development for the Enterprise. John Wiley and Sons,
1999.

Hyperformix. http://www.hyperformix.com.

IEC. Application and implementation of IEC 61131-3. Technical report, IEC,
Geneva, 1995.

Ilogix rhapsody. http://www.ilogix.com.

D. Isovic and C. Norstrém. Components in real-time systems. In Proc. 8th Int.
Conf. on Real-Time Computing Systems and Applications (RTCSA°2002), Tokyo,
Japan, Mar. 2002, 2002.

Technology Roadmap of Software Intensive Systems, the vision of ITEA. ITEA
Office Association, http://ww.itea-office.org.

[ITU96]

[ITU99a]

[ITU99b]

[JC93]

[JC94]

[JD96]

[JF00]
[JKK'01]

[Kah74]

[Ker01]

[KK94]

[KKO00]

[Kle75]
[Kle76]

[KLM'97]

[KM96]

16 References 209

International Telecommunications Union, ITU-TS. Recommendation Z.120: Mes-
sage Sequence Chart (MSC96), April 1996.

International Telecommunications Union, ITU-T. Recommendation Z.100: Speci-
fication and Description Language (SDL). http://www.sdl-forum.org, November
1999.

International Telecommunications Union, ITU-T. Recommendation Z.109: Lan-
guages for telecommunications applications — SDL combined with UML, Novem-
ber 1999.

J.-J. Jeng and B. H. C. Cheng. Using formal methods to construct a software com-
ponent library. In Proc. 4th European Software Engineering Conference
(ESEC’93), Garmisch-Partenkirchen, Germany, Sep. 1993, volume 717 of Lecture
Notes in Computer Science, pages 397-417. Springer Verlag, 1993.

J.-J. Jeng and B. H. C. Cheng. A formal approach to reusing more general compo-
nents. In Proc. 9th Knowledge-Based Software Engineering Conference
(KBSE’94), Monterey, California, USA, Sep. 1994, pages 90-97. IEEE Comp. Soc.
Press, 1994.

P. K. Jha and N. D. Dutt. High-level library mapping for arithmetic components.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(2):157-169,
1996.

H. Jubin and J. Friedrichs. Enterprise JavaBeans by Example. Prentice Hall, 2000.
C.Jones, M.-O. Killijian, H. Kopetz, E.Marsden, N.Moffat, M. Paulitsch,
D. Powell, B. Randell, A. Romanovsky, and R. Stroud. Revised version of DSoS
conceptual model. Project Deliverable for DSoS (Dependable Systems of Sys-
tems), Research Report 35/2001, Technische Universitit Wien, Institut fiir Tech-
nische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2001.

G. Kahn. The semantics of a simple language for parallel programming. In Proc.
IFIP Congress (Information Processing’74), Stockholm, Sweden, Aug. 1974, pages
471-475. North-Holland, 1974.

L. Kerber. Scenario-based performance evaluation of SDL/MSC-specified sys-
tems. In Performance Engineering — State of the Art and Current Trends, volume
2047 of Lecture Notes in Computer Science, pages 185-201. Springer Verlag, 2001.
K. H. Kim and H. Kopetz. A real-time object model RTO.k and an experimental
investigation of its potential. In Proc. 18th Int. Computer Software and Applica-
tions Conference (COMPSAC’94), Taipei, Taiwan, Nov. 1994, pages 392-402.
IEEE Comp. Soc. Press, 1994.

M. Kolberg and K. Kimbler. Service interaction management for distributed ser-
vices in a deregulated market environment. In Proc. 6th Int. Workshop on Feature
Interactions in Telecommunications and Software Systems (FIW’2000), Glasgow,
Scotland, May 2000, pages 23-37. 10S Press, 2000.

L. Kleinrock. Queueing systems — Volume 1: Theory. John Wiley and Sons, 1975.
L. Kleinrock. Queueing systems — Volume 2: Computer Applications. John Wiley
and Sons, 1976.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proc. 11th European Conf. Object-
Oriented Programming (ECOOP’97), Jyviskyld, Finland, June 1997, volume
1241 of Lecture Notes in Computer Science, pages 220-242. Springer Verlag,
1997.

B. B. Kristensen and D. C. M. May. Component composition and interaction. In
Proc. Int. Conf. on Technology of Object-Oriented Languages and Systems
(TOOLS PACIFIC’96), Melbourne, Australia, 1996.

210 16 References

[KR93]

[KS03]

[Lam94]

[LB99]

[LCS02]

[Lee03]
[Lew98]

[Loo]
[LXO01]

[Mau96]

[MDA]
[MDVC03]

[Mer03]
[Met]

[Mey91]
[Mey97]

[MFN04a]

[MFNO4b]

[MG02]

[Mic95]

H. Kopetz and J. Reisinger. The non-blocking write protocol NBW: A solution to a
real-time synchronization problem. In Proc. 14th Real-Time Systems Symposium
(RTSS’93), Raleigh-Durham, NC, Dec. 1993, pages 131-137. IEEE Comp. Soc.
Press, 1993.

H. Kopetz and N. Suri. Compositional design of RT systems: A conceptual basis
for specification of linking interfaces. In Proc. 6th IEEE Int. Symp. on Object-
Oriented Real-Time Distributed Computing (ISORC’2003), Hakodate, Hokkaido,
Japan, May 2003, pages 51-60. IEEE Comp. Soc. Press, 2003.

L. Lamport. The temporal logic of actions. ACM Trans. on Programming Lan-
guages and Systems, 16(3):872-923, 1994.

G. T. Leavens and A. L. Baker. Enhancing the pre- and postcondition technique for
more expressive specifications. In Proc. World Congress on Formal Methods in
the Development of Computing Systems (FM’99), Toulouse, France, Sep. 1999,
vol. I1, volume 1709 of Lecture Notes in Computer Science. Springer Verlag, 1999.
F. Liiders, I. Crnkovic, and A. Sjogren. Case study: Componentization of an indus-
trial control system. In Proc. 26th Int. Computer Software and Applications Con-
ference (COMPSAC’2002), Oxford, UK, Aug. 2002, pages 67-74. IEEE Comp.
Soc. Press, 2002.

E. A. Lee. Overview of the Ptolemy project. Technical Memorandum UCB/ERL
MO03/25, University of California, Berkeley, July 2003.

R. W. Lewis. Programming industrial control systems using IEC 1131-3. 1EE,
1998.

Loop project webpage. http://www.cs.kun.nl/~bart/LOOP/.

E. A. Lee and Y. Xiong. System-level types for component-based design. In Proc.
1st Int. Workshop on Embedded Software (EMSOFT’2001), Tahoe City, CA, USA,
Oct. 2001, volume 2211 of Lecture Notes in Computer Science, pages 237-253.
Springer Verlag, 2001.

S. Mauw. The formalization of message sequence charts. Computer Networks and
ISDN Systems, 28(12):1643-1657, 1996.

Model Driven Architecture. \www.omg.org/mda/.

W. Monin, F. Dubois, D. Vincent, and P. Combes. Looking for better integration
of design and performance engineering. In SDL 2003: System Design, Proc. 11th
Int. SDL Forum, Stuttgart, Germany, July 2003, volume 2708 of Lecture Notes in
Computer Science, pages 1-17. Springer Verlag, 2003.

Mercedes. Innovation — Research & Technology. http:/www.mercedes-
benz.com/com/e/home/innovation/, 2003.

Meta-H homepage. http://www.htc.honeywell.com/metah/.

B. Meyer. Eiffel: The Language. Prentice Hall, 1991.

B. Meyer. Object-Oriented Sofiware Construction. Prentice Hall, 1997. Second
edition.

A. Moller, J. Froberg, and M. Nolin. Industrial requirements on component tech-
nologies for embedded systems. In Proc. Int. Symp. on Component-Based Software
Engineering (CBSE7), Edinburgh, Scotland , May 2004, Lecture Notes in Com-
puter Science. Springer Verlag, 2004. To appear.

A. Moller, J. Froberg, and M. Nolin. Requirements on component technologies for
heavy vehicles. MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-150/2004-1-
SE, Milardalen Real-Time Research Centre, Mélardalen Univ., January 2004.

E. Meijer and J. Gough. Technical overview of the Common Language Runtime,
2002. White paper.

Microsoft Corporation. The component object model specification, October 1995.
24th ed.

[Mic01]
[MMO1]

[MMMO3]

[MMM97]

[MMMO98]
[MNO98]
[Mol82]

[MOS99]

[MRBI6]

[MS97]

[MSP00]

[MSZ01]

[MT89]
[MW92]

[NAD'02]

[Nee9l]

[NGS'01]

[Nic02]

[Ome]

16 References 211

Microsoft Corporation. .NET framework developer’s guide.
http://msdn.microsoft.com/library/default.asp, 2001.

J. Miller and J. Mukerji. Model driven architecture (MDA), July 2001. OMG,
Draft Specification ormsc/2001-07-01.

R. T. Mittermeir, R. Mili, and A. Mili. Building a repository of software compo-
nents: A formal specifications approach. In Proc. 6th Workshop on Institutionaliz-
ing Software Reuse (WISR 93), Owego, NY, USA, Nov. 1993, 1993.

A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software conponents: A
refinement based system. /EEE Transactions on Software Engineering, 23(7):445-
460, 1997.

A. Mili, R. Mili, and R. Mittermeir. A survey of software reuse libraries. Annals of
Software Engineering, 5:349-414, 1998.

N. Maiden and C. Ncube. Acquiring COTS software selection requirements. /EEE
Software, 15(2):46-56, 1998.

M. K. Molloy. Performance analysis using Stochastic Petri Nets. /EEE Trans. on
Computers, C-31(9):913-917, 1982.

MOST Cooperation, MOST specification framework Rev 1.1,
http://www.oasis.com/support/downloads/mosttechnology/MOSTSpecification Fr
amework 1V1.pdf, 1999.

R. S. Mitra, P. S. Roop, and A.Basu. A new algorithm for implementation of
design functions by available devices. [EEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 4(2):170-180, 1996.

L. Mikhajlov and E. Sekerinski. The fragile base class problem and its solution.
Technical Report 117, Turku Centre for Computer Science, Turku, Finland, May
1997.

M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S. E. Kraft, and S. E. Condon.
Investigating and improving a COTS-based software development. In Proc. 22nd
Int. Conf. on Software Engineering (ICSE’2000), Limerick, Ireland, June 2000,
pages 32-41. ACM Press, 2000.

P. Miiller, C. Stich, and C. Zeidler. Components work: Component technology for
embedded systems. In Proc. 27th EUROMICRO Conference: A Net Odyssey, War-
saw, Poland, Sep. 2001, pages 146-153. IEEE Comp. Soc. Press, 2001.

M. D. Mesarovic and Y. Takahara. Abstract Systems Theory, volume 116 of Lec-
ture Notes in Control and Information Sciences. Springer Verlag, 1989.

Z.Manna and R.J. Waldinger. Fundamentals of deductive program synthesis.
1IEEE Transactions on Software Engineering, 18(8):674-704, 1992.

O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A.P. Black, P.O. Miiller,
C. Zeidler, T. Genssler, and R. van den Born. A component model for field de-
vices. In Proc. IFIP/ACM Working Conference on Component Deployment
(CD’2002), Berlin, Germany, June 2002, volume 2370 of Lecture Notes in Com-
puter Science, pages 200-209. Springer Verlag, 2002.

S. Neema. System-Level Synthesis of Adaptive Computing Systems. PhD thesis,
Vanderbilt University, Nashville, TN, USA, May 1991.

C. Norstrom, M. Gustafsson, K. Sandstrém, J. Maki-Turja, and N.-E. Bankestad.
Experiences from introducing state-of-the-art real-time techniques in the automo-
tive industry. In Proc. 8th IEEE Int. Conf. on Engineering of Computer-Based Sys-
tems (ECBS’2001), Washington, DC, USA, Apr. 2001, pages 111-118. IEEE
Comp. Soc. Press, 2001.

B. Nicolas. MDA experiment in telecom industry. 1st MDA Summer School,
Brest, France, September 2002.

IST 33522 OMEGA project on Correct Development of Real-Time Embedded
Systems. http://www-omega.imag.fr/.

212 16 References

[OMGO1a]

[OMGO1b]
[OMGO1c]

[OMGO1d]

[Pet02]

[PP93]

[PW03]

[RAJO1]

[Ray02]
[Reu01]

[RLO2]

OMG. The COmmon Object Request Broker: Architecture and specification,
February 2001.

OMG. Dynamic scheduling, joint final submission, August 2001.

OMG. Response to the OMG RFP for schedulability, performance, and time (re-
vised submission), June 2001. OMG, RFP ad/2001-06-14.

OMG. A UML profile for enterprise distributed object computing, June 2001.
ptc/2001-12-04.

OMG. UML 1.4 with action semantics, 2002. OMG ptc/02-01-09.

OPC Foundation. \www.opcfoundation.org/, 2003.

OPNET. http://www.opnet.com/.

OMBG and R. Soley. Object management architecture guide, revision 3.0, 1995.
OSEK/VDX OS 2.2. http://www.osek-vdx.org.

J. Penix and P. Alexander. Efficient specification-based component retrieval.
Automated Software Engineering, 6(2):139-170, 1999.

T. Pattison. Programming Distributed Applications with COM+ and Microsoft
Visual Basic 6.0, 2nd edition. Microsoft Press, 2000.

PECOS project. http://www.pecos-project.org.

J. Penix. Automated Component Retrieval and Adaptation Using Formal Specifica-
tions. PhD thesis, Univ. Cincinnati, Ohio, USA, 1998.

D. E. Perry. Generic architecture descriptions for product lines. In Proc. 2nd Int.
ESPRIT ARES Workshop on Development and Evolution of Software Architectures

for Product Families, Las Palmas de Gran Canaria, Spain, Feb. 1998, volume

1429 of Lecture Notes in Computer Science, pages 51-56. Springer Verlag, 1998.
P. Peti. The concepts behind time, state, component, and interface — a literature
survey. Research Report 53/2002, Technische Universitidt Wien, Institut fiir Tech-
nische Informatik, Vienna, Austria, 2002.

A. Podgurski and L. Pierce. Retrieving reusable software by sampling behaviour.
ACM Trans. on Software Engineering and Methodology, 2(3):286-303, 1993.

D. C. Petriu and C. M. Woodside. Per