

Lecture Notes in Computer Science 4945
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefan Lucks Ahmad-Reza Sadeghi
Christopher Wolf (Eds.)

Research in
Cryptology

SecondWestern EuropeanWorkshop,WEWoRC 2007
Bochum, Germany, July 4-6, 2007
Revised Selected Papers

13

Volume Editors

Stefan Lucks
Bauhaus-Universität Weimar, Fakultät Medien
Bauhausstr. 11, 99423 Weimar, Germany
E-mail: stefan.lucks@medien.uni-weimar.de

Ahmad-Reza Sadeghi
Ruhr-Universität Bochum, Lehrstuhl für Systemsicherheit
Universitätsstr. 150, 44780 Bochum, Germany
E-mail: ahmad.sadeghi@trust.rub.de

Christopher Wolf
Ruhr-Universität Bochum
Horst-Görtz-Institut für Sicherheit in der Informationstechnik
Universitätsstr. 150, 44780 Bochum, Germany
E-mail: cbw@hgi.rub.de

Library of Congress Control Number: 2008935901

CR Subject Classification (1998): E.3, D.4.6, I.1, K.6.5, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-88352-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88352-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12536580 06/3180 5 4 3 2 1 0

Preface

The Western European Workshop on Research in Cryptology (WEWoRC 2007)
was the second of its kind. It was organized as a joint venture between the Horst
Görtz Institute for Security in Information Systems (HGI), and the Special Inter-
est Group on Cryptology (FG Krypto) of the German Computer Science Society
(Gesellschaft für Informatik e.V.). The aim was to bring together researchers in
the field of cryptology. The workshop focused on research from Masters and PhD
students, and brought them together with more experienced senior researchers.
The first workshop (WEWoRC 2005) was held in Leuven.

WEWoRC 2007 was held in the German Ruhr region, more particularly in
Bochum, during July 4–6, 2007. Formerly a mining town, Bochum is currently
growing into a knowledge-based economy. Aided by the city council, IT secu-
rity is a special focus for economic development. Hence, it provided the perfect
scenery for hosting this event. In total, we had 81 participants from 13 differ-
ent countries (Belgium, Finland, France, Germany, Iran, Japan, Luxembourg,
Malawi, Slovenia, Taiwan, Tunisia, UK, USA).

In total, we received 39 submissions of which 36 where chosen for present-
ing in 14 sessions. In addition, the program was enriched by two invited talks,
namely, by George Danezis on “Cryptography in Anonymous Communications”
and David Naccache on “Products of Small Primes in Cryptography and Error-
Correction.” Selecting papers for publication in these postproceedings was done
in two phases. In the first phase, during the workshop, the authors of 24 of the
36 talks were invited to submit a full paper for these postproceedings. In the
second phase, after we received the 24 invited submissions, these were reviewed
by the members of our Program Committee. Each paper was reviewed in a care-
ful refereeing process by at least three experts in the area. If one of the authors
was a member of the Program Committee, at least five reviews were requested.
We used a total of 73 reviews for finally selecting the 12 papers presented here.

We are very grateful to all the Program Committee members who devoted
much effort and valuable time to reading and selecting the papers. These post-
proceedings contain the final versions of each paper revised after the conference.
Since the revised versions were not checked by the Program Committee members
rigorously, the authors must bear full responsibility for the contents of their
papers. We also want to thank the external experts who assisted the Program
Committee in evaluating various papers.

Special thanks to our sponsors who made it possible to offer WEWoRC for
a competitive price. Their logos are on the first page of these post-proceedings.
Similarly, we want to mention the cooperation with our academic partners EI-
DMA and Ecrypt. In addition, we want to thank the local Organizing Committee
for their skillful, professional, and enthusiastic support of WEWoRC. Keep in
mind that all work was done voluntarily. Special thanks go in this context to the

VI Preface

Horst Görtz Institute, which kindly agreed to host the workshop in Bochum and
for allowing us to use the HGI infrastructure (both technical and administrative)
for WEWoRC.

Finally, we would like to thank all authors — including those whose submis-
sions were not successful, as well as the workshop participants from around the
world for their support, which made WEWoRC a big success.

December 2007 Stefan Lucks
Ahmad-Reza Sadeghi

Christopher Wolf

Organization

Program Committee

Ammar Alkassar Sirix AG, Germany
Frederik Armknecht NEC, Germany
N. Asokan Nokia Research Helsinki, Finland
Roberto Avanzi Ruhr University Bochum, Germany
Lynn Batten Deakin University, Australia
Alex Biryukov University of Luxembourg, Luxembourg
Johannes Blömer Paderborn, Germany
Colin Boyd Queensland University of Technology,

Australia
Lejla Batina KU Leuven, Belgium
Dario Catalano CNRS-ENS, France; Universitá di Catania,

Italy
Christophe Clavier Gemalto, France
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Steven Galbraith Royal Holloway, University of London, UK
Joachim von zur Gathen b-it Bonn, Germany
Willi Geiselmann TU Karlsruhe, Germany
Marc Girault France Telecom, France
Louis Goubin University of Versailles, France
Aline Gouget Gemalto, France
Helena Handschuh Spansion, France
Florian Hess TU Berlin, Germany
Erwin Hess Siemens, Germany
Ellen Jochemsz TU Eindhoven, The Netherlands
Dogan Kesdogan RWTH Aachen, Germany
Eike Kiltz CWI, The Netherlands
Ulrich Kühn Sirrix AG, Germany
Arjen Lenstra EPFL, Switzerland
Francoise Levy-dit-Vehel ENSTA, France
Gregor Leander Ruhr University Bochum, Germany
Stefan Lucks Bauhaus University Weimar, Germany
Keith Martin Royal Holloway, University of London, UK
Alexander May TU Darmstadt, Germany
Chris Mitchell Royal Holloway, University of London, UK
David Naccache ENS Paris, France
Heike Neumann Philips Semiconductors, Germany
Svetla Nikova KU Leuven, Belgium
Siddika Berna Ors Istanbul Technical University, Turkey

VIII Organization

Elisabeth Oswald Bristol, UK
Christof Paar Ruhr University Bochum, Germany
Kenny Paterson Royal Holloway, University London, UK
Bart Preneel KU Leuven, Belgium
Vincent Rijmen TU Graz, Austria; Cryptomathic, Denmark
Ahmad-Reza Sadeghi Ruhr University Bochum, Germany
Christian Tobias Utimaco, Germany
Rei Safavi-Naini University of Wollongong, Australia
Jörg Schwenk Ruhr University Bochum, Germany
Nicolas Sendrier INRIA, France
Stefaan Seys KU Leuven, Belgium
Heiko Stamer Kassel, Germany
Henk van Tilborg TU Eindhoven, The Netherlands
Pim Tuyls Philips, The Netherlands
Pascal Véron University of Toulon, France
Moti Yung Columbia University and RSA Laboratories,

USA
Michael Welschenbach SRC Security Research and Consulting,

Germany
Ralf-P. Weinmann TU Darmstadt, Germany
Thomas Wilke Kiel, Germany
Ralph Wernsdorf Rohde & Schwarz SIT GmbH, Germany
Christopher Wolf PwC Luxembourg; K.U.Leuven, Belgium
Po-Wah Yau Royal Holloway, University of London, UK
Erik Zenner Technical University of Denmark

Referees

Ali Akbar Sobhi Afshar
Carlos Aguilar-Melchor
Mohammad Reza Aref
Bechir Ayeb
Michael Beiter
Waldyr Benits
Nicolas T. Courtois
Léonard Dallot
George Danezis
Blandine Debraize
Jintai Ding
Taraneh Eghlidos
Mohammad Ehdaie
Thomas Eisenbarth
Jan-Erik Ekberg
Junfeng Fan
Ewan Fleischmann

Philippe Gaborit
Sebastian Gajek
Steven Galbraith
Timo Gendrullis
Benedikt Gierlichs
Tim Güneysu
Mabrouka Hagui
Rupert J. Hartung
Wei-Hua He
Marko Hölbl
Hideki Imai
Sebastiaan Indesteege
Kare Janussen
Fei-Ming Juan
Timo Kasper
Dalia Khader
Hedi Khammari

Anja Korsten
Paul Kubwalo
Kerstin Lemke-Rust
Lijun Liao
Stéphane Manuel
Mark Manulis
Gordon Meiser
David Naccache
Maŕıa Naya-Plasencia
Akira Otsuka
Christof Paar
Souradyuti Paul
Selwyn Piramuthu
Joris Plessers
Bart Preneel
Christoph Puttmann
Christian Rechberger

Organization IX

Andrea Röck
Ahmad-Reza Sadeghi
Kazuo Sakiyama
Sven Schäge
Dieter Schmidt
Thomas Schwarzpaul
Jörg Schwenk

Gautham Sekar
Nicolas Sendrier
Rie Shigetomi
Jamshid Shokrollahi
Dirk Stegemann
Yu-Ju Tu
Caroline Vanderheyden

Ingrid Verbauwhede
Tatjana Welzer
Fabian Werner
Ralph Wernsdorf
Rei Yoshida
Kazuki Yoshizoe

Silver Sponsors

Bronze Sponsors

Table of Contents

A Privacy Protection Scheme for a Scalable Control Method in
Context-Dependent Services . 1

Rei Yoshida, Rie Shigetomi, Kazuki Yoshizoe, Akira Otsuka, and
Hideki Imai

The GPS Identification Scheme Using Frobenius Expansions 13
Waldyr D. Benits Junior and Steven D. Galbraith

Searching for Messages Conforming to Arbitrary Sets of Conditions in
SHA-256 . 28

Marko Hölbl, Christian Rechberger, and Tatjana Welzer

Efficient Hash Collision Search Strategies on Special-Purpose
Hardware . 39

Tim Güneysu, Christof Paar, and Sven Schäge

Cryptography Based on Quadratic Forms: Complexity
Considerations . 52

Rupert J. Hartung

Towards a Concrete Security Proof of Courtois, Finiasz and Sendrier
Signature Scheme . 65

Léonard Dallot

Cryptanalysis of MOR and Discrete Logarithms in Inner Automorphism
Groups . 78

Anja Korsten

Preimages for Reduced-Round Tiger . 90
Sebastiaan Indesteege and Bart Preneel

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers with
Several Known Plaintexts . 100

Nicolas T. Courtois and Blandine Debraize

Combiner Driven Management Models and Their Applications 114
Michael Beiter

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers
the TPy6-A and the TPy6-B . 127

Gautham Sekar, Souradyuti Paul, and Bart Preneel

Cryptanalysis of Achterbahn-128/80 with a New Keystream
Limitation . 142

Maŕıa Naya-Plasencia

Author Index . 153

A Privacy Protection Scheme for a Scalable

Control Method in Context-Dependent Services

Rei Yoshida1, Rie Shigetomi2, Kazuki Yoshizoe1,
Akira Otsuka2, and Hideki Imai1,2

1 Chuo University, Imai Lab.,
Dept. of Electrical, Electronic, and Communication Engineering,

Faculty of Science and Engineering, Tokyo, Japan
{rei-yoshida,k-yoshizoe}@imailab.jp

2 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

{rie-shigetomi,a-otsuka,h-imai}@aist.go.jp
http://www.rcis.aist.go.jp/index-en.html

Abstract. Provision of context-dependent services is triggered when the
context satisfies an execution condition. To deliver these services, users’
contexts have to be determined by terminals such as GPS. However, GPS
has efficiency (it must collect as many contexts as possible to provide ser-
vices appropriately) and privacy problems (all data is concentrated on
one place). Previous studies have addressed only either one of the two
problems. We propose a scheme that protects users’ privacy while main-
taining efficiency by using the Randomized Response Technique.

Keywords: Context-dependent Service, Privacy Protection, Random-
ized Response Technique.

1 Introduction

Context is any information that can be used to characterize a person, a place,
or an object’s situation, or that is relevant to the interaction between a user
and an application [3]. A context-dependent service changes according to the
context of the user or his or her surroundings and supports his or her activity
in the real world. The development of devices such as GPS, mobile phones, and
non-contact IC cards makes these services possible. Examples are restaurant
recommendation services, navigation systems for GPS-equipped mobile phones,
and 24-hour home healthcare services.

This kind of service system consists of context acquisition terminals, servers,
and users. Context acquisition terminals, such as mobile phones with GPS or sen-
sor nodes, are connected with servers via a network. The server collects the values
that the terminals acquired via the network and determines whether it is an ap-
propriate time to execute the service by referring to the service’s execution condi-
tions. If the conditions are fulfilled, the service is provided to the user. Hereafter,
operation means the flow from context acquisition to the provision of service.

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R. Yoshida et al.

Context-dependent services have become popular because they are convenient
and efficient. However, these services have two problems, efficiency and user pri-
vacy. The first problem is that the server has to monitor a huge number of
contexts in real time to ensure appropriate service provision. This causes prob-
lems such as excessive computation load for the server and excessive bandwidth
consumption for the network. The user’s privacy is jeopardized when information
about all the contexts, such as the user’s name, location, and service provided,
is collected to one place.

The simplest solution to the efficiency problem is the periodical communica-
tion method. However, if the frequency of the periodical method is low, it misses
many appropriate chances to provide services. Uchida et al. proposed a system
that overcomes the efficiency problem by using a Bayesian network, adjusting
the communication cycle to eliminate unnecessary communication. We call this
method BN and describe it in detail in section 4.2. The authors’ simulation of the
BN method shows that the method is ten times more efficient than the existing
periodical method. However the BN method still had the privacy problem.

Therefore, we propose a system that solves both privacy and efficiency prob-
lems by using three controllers and Randomized Response Technique (RRT).
This method uses a certification controller, an execution controller, and a state
controller. Each controller controls one of three contexts: identity, service pro-
vided, or location history. Also, this simple segmentation method cannot update
a Bayesian network’s service provision information without violating privacy.
However, the Bayesian network needs past information because next service
provision is determined by this information. Our method uses RRT to collect
information while protecting privacy. RRT can protect a user’s privacy by ran-
domizing each response according to a certain known probability distribution,
and extract correct information because the randomized lies could be removed
by the equation(1). Our proposed method can solve both the privacy and the
efficiency problems of context-dependent services.

2 Examples

Examples of a context-dependent service are shown below:

1. Restaurant recommendation service
These services automatically display restaurant recommendations on user
terminals. The contexts they monitor are the user’s distance from a restau-
rant and the number of available tables in the restaurant. The recommended
restaurant must be within a certain distance and have an available table. If
the user registers his preferences beforehand, the service may also be able to
recommend a corresponding restaurant. If the recommended restaurant dis-
tributes coupons, the service can provide one to the user. Restaurants that
correspond to the user’s preferences are recommended based on these con-
texts. The problem of privacy arises due to the linkage of the user’s location
history, identity, and whether the user went to the recommended restaurant.

A Privacy Protection Scheme for a Scalable Control Method 3

2. Amusement park attraction recommendation service
This service automatically displays recommended attractions on the user’s
terminal. It monitors three contexts: the user’s distance from attractions,
wait times for attractions, and the authorization to enter certain attractions.
The nearer the attraction, and the shorter the waiting time, the more highly
recommended the attraction is. The service does not recommend attractions
that the user cannot enter because of restrictions on the user’s ticket. Attrac-
tions that the user can enter most easily are recommended based on these
contexts. The problem of privacy arises from the linkage of the contexts for
the user’s location history, identity, preference for attractions and type of
ticket.

3. Management of a user’s activity in an office
This service automatically locks or opens doors and limits computer access.
The contexts it monitors are a user’s location and authorized activity. If
there are areas of a building that are off-limits to the user based on his level
of authorization, the doors to those areas are open only when a user who
has authorization for those areas is close by. If the user is away from his or
her desk, the user’s PC is locked to protect logins. The problem of privacy
arises from the linkage of the user’s location history, identity and level of
authorization.

As mentioned above, context-dependent services face problems with high fre-
quency context collection for real-time control and user privacy. Our method
can solve these problems by adjusting the context collection cycle based on the
Bayesian network and simple segmentation of each context: location, authority,
and service execution.

3 Related Work

The problem of efficiency has been addressed in several previous studies [2,5,6,7].
Prabhakar et al. proposed a Q-index approach in which each mobile object is
assigned a safe region [5]. Queries are only necessary when an object crosses the
boundaries of a safe region. This method can reduce the number of unnecessary
location updates. Hu et al. proposed an efficient algorithm for safe region compu-
tation [7]. Cai et al. proposed that the objects monitor the query region [6]. Part
of a server’s computation workload is distributed to the objects. However, these
approaches can still violate a user’s privacy because all contexts are gathered in
one place.

The privacy problem has been addressed in a few previous studies [11,12,15].
Context Toolkit Project [11] is one of the first methods to address the privacy
problem in context-aware systems. Context Toolkit consists of context widgets,
interpreters, and aggregators. A special widget that acts as a gateway between
other widgets and applications provides basic access control to protect privacy.
Context Broker Architecture (CoBrA) [12] uses the Web ontology language,
OWL, to support context reasoning. The central entity of this architecture is
the server called the context broker. To protect user privacy, the broker enforces

4 R. Yoshida et al.

the privacy policies defined by users. However, these methods do not address
efficiency. To provide context-dependent services in the real world, the problems
of efficiency and privacy must be addressed.

There has been research on the problem of location privacy. The Mist protocol
[13] solved the problem of location privacy by implementing a routing protocol
combined with strong public key cryptography that allows the system to detect
the presence of users in a place, but not to positively identify them. The Mix
zone [14] introduces the concept of application zones and mix zones. When a
user enters a mix zone, his or her identity is mixed with all others in the mix
zone. Each time a user enters an application zone, he or she is assigned a new
pseudonym. A third party application provider receives the pseudonym, and an
untraceable user identity is associated with the user’s location. Because these
methods specialize in location privacy, it is difficult to use them for all context-
aware services.

Roussaki et al. addressed both problems [15]. Their method trusts the ser-
vice provider and aims to protect user’s privacy from a third party. To protect
privacy, the user’s terminal encapsulates and segments his context information
with pseudonyms. Also, the database servers are distributed based on location.
Since most users request information related to their current location, the au-
thors claimed the system is efficient. However, this method requires frequent
operations on each local database server and its goal is not the same as ours.

4 Preliminaries

This section introduces the notation and building blocks of our scheme. In sec-
tion 4.1, we notate some facts. In section 4.2, we introduce the BN method,
which solves the efficiency problem. In section 4.3 we introduce the RRT privacy
protection protocol.

4.1 Notation

Let k be a security parameter, q be a prime of length k, and Gq be a multiplicative
cyclic group of order q. Assume that p is a large prime and q, q|(p−1) is another
prime. ZZq has a unique subgroup G of order q.

4.2 BN Method

This section explains the BN method, which solves the problem of efficiency
using a Bayesian network.

Overview of BN method. In context-dependent services, constant location
updates degrade efficiency. One solution to this problem is to execute control
operations periodically. However, if the server executes operations at low fre-
quency, service provision may be delayed. The BN method detects low risk pe-
riod and reduce communications during such period. The risk detection is done
by Bayesian network which is trained by the past data.

A Privacy Protection Scheme for a Scalable Control Method 5

Fig. 1. Architecture of BN method

Figure 1 shows the architecture of the BN method. The BN method consists of
service providers SP , the server-side controller, SC, and the context acquisition
terminals, T . First, SP shows the service execution conditions to SC. Next, SC
collects context values from T at appropriate times. These times are determined
by calculating the probability of the execution conditions being satisfied and
each context’s effect on this probability. SC also informs each T of thresholds.
T sends its value to SC when SC requests it and the value is higher than a
threshold. Then, SC requests that SP provide the service when SC can verify
that the execution conditions are satisfied. Finally, the requested SP provides
the service to the user. Also, the Bayesian network is updated that the service
has been provided.

The simulation of the BN method by Uchida et al. shows that the method is
ten times more efficient than the existing periodical method.

Calculation of risk. The Bayesian network calculates the probability of service
being provided based on how the contexts shift. The future context can be
predicted by considering the current context with the Bayesian network.

For example, if only a small number of conditions are satisfied, there is a very
small probability that all conditions will be satisfied in the next moment. In con-
trast, if most conditions are satisfied, there is significant risk of missing a chance
to provide services. Therefore, their method reduces frequency of operations only
when few conditions are satisfied.

Certain contexts have predictable values, others do not. For example, if it is
known that a pedestrian user is in a certain place at a certain time and the
user’s speed and location are known, that user’s location after one minute can
be predicted with some certainty. Therefore, the predicted value of each context
is used instead of its exact value to determine whether to provide a service. In
contrast, a context such as the number of available tables at a restaurant is
difficult to predict. Data used in the past are used to determine which contexts
can be predicted with confidence.

However, a supposedly predictable context may shift unpredictably. For this
reason, the server-side controller informs each context acquisition terminal of
context thresholds. If a certain terminal detects that the context has reached a

6 R. Yoshida et al.

threshold, the terminal sends the context’s value to the controller without the
controller requesting it.

As mentioned above, the BN method eliminates unnecessary operations by
configuring cycles for collecting contexts and setting thresholds for each ter-
minal. The Bayesian network calculates the risk of missing chances to provide
service based on data used in the past, improving accuracy of calculation by up-
dating the Bayesian network with new information. For this reason, the Bayesian
network has to be updated that services have been provided.

Definition. BN method consists of four algorithms that are BNsetup, BNcollect,
BNservice, and Learning, which are defined below.

BNsetup: A probabilistic algorithm that, given information b to set up the Baye-
sian network, outputs the starting value of the Bayesian network Bn0.

(Bn0) ← BNsetup(b)

BNcollect: A probabilistic algorithm that, given the Bayesian network Bn, out-
puts C to collect.

(C) ← BNcollect(Bn)

BNservice: A probabilistic algorithm that, given the collected C and the Baye-
sian network Bn, immediately outputs an appropriate service S.

(S) ← BNservice(C, Bn)

Learning: A probabilistic algorithm that, given the existing Bayesian network
Bn and the result of service execution R, outputs a new Bayesian network
Bn′.

(Bn′) ← Learning(Bn, R)

4.3 Randomized Response Technique

This section explains the Randomized Response Technique (RRT) protocol,
which can collect statistical information while protecting user privacy.

Outline of RRT. RRT is commonly used to conduct polls on sensitive issues such
as drug abuse and criminal records[8]. The underlying idea is for the respondent
to randomize each response based on a certain known probability distribution.
When evaluating all the answers to the poll, an interviewer can recover the true
proportion of the poll by a simple method which is described in this section.

Respondents R answer a given question truthfully with some probability Pct >
1/2 and lie with a fixed and known probability 1 − Pct. A lie is defined as the
answer opposite to the answer of the truth. Assume that interviewers I cannot
know whether an answer is the truth or a lie. Therefore, the R’s privacy is
protected because the I cannot connect the answer and the R. Overall, if the
Pct is stabilized and I get a sufficient number of answers, I can statistically
predict true answers with an easy calculation.

A Privacy Protection Scheme for a Scalable Control Method 7

Definition. The general RRT flow is shown below. Participants in RRT are
an interviewer I and respondents R. This protocol consists of two algorithms:
(RRTsetup, RRTI) and one interactive protocol: RRTR.

RRTsetup: A probabilistic algorithm that, given a security parameter k, outputs
public key pkey (Public key is not necessary in certain implementation of
RRT) and Pct. Pct does not need to be set up here, but we do so for the sake
of simplicity.

(pkey, Pct) ← RRTsetup(1k)
RRTR: An interactive protocol between R and I in which R and I are given

public key pkey and probability of true Pct, and R is additionally given own
answer t. In the protocol, R sends to I t truth with probability Pct1/2 and
encrypts t with pkey if necessary. I checks probability Pct if it is possible,
decrypts t if needed, and collects information t′. I outputs t′, which has
probability Pct of being a lie.

〈t′, φ〉 ← RRTR〈I(pkey, Pct),R(t, pkey, Pct)〉
RRTI : Let πA be the proportion of the population whose type is t to all answers

N . A probabilistic algorithm that, given answers t′1, . . . , t
′
N and probability

of true Pct, outputs the true information πA using the simple calculation
below.

(πA) ← RRTI(t′1, . . . , t
′
N , Pct, pkey)

Then, if we define

PA = πAPct + (1 − πA)(1 − Pct),

then πA can easily calculate such that

πA =
PA − (1 − Pct)

2Pct − 1
. (1)

Cryptographic RRT. There are various methods for implementing RRT. This
section explains one of them which uses Oblivious Transfer[9]. We decide to use
this method because it has stability proof and can prevent some malicious acts
of respondents.

RRTsetup: I generates random a, b ← ZZq and chooses σ ∈ [1, n]. R prepares
n random bits μi ∈ 0,1 for i ∈ [1, n], such that

∑
μi = l if t = 1 and∑

μi = n − l if t = 0 when Pct = l/n. Additionally, R sets μn+1 = 1 − t.
RRTR: I sends (A,B,C)(ga, gb, gab−σ+1) to R. For i ∈ [1, n] R generates ran-

dom (ri, si), computes wig
riAsi , computes an encryption yi of μi using

viB
riE(Cgi−1)si as a key, and sends (wi, yi) to I.

RRTI : I computes wb
σ = vσ and decrypts yσ using vσ as the key, obtaining μσ.

I verifies the value of l and halts if the verification fails.

Using this method, R cannot know which answer I is going to use, and I
cannot know R’s real answer. In addition, only when R makes a correct input
that includes assigned proportion of lies, R can receive services. If R makes an
input with illegal proportion of lies (such as a 100% lie), I can determine that
it is wrong.

8 R. Yoshida et al.

5 Proposed System

Here, we explain our proposed method for solving the privacy and efficiency
problems.

5.1 Architecture of Proposed Method

We begin by explaining our system. Figure 2 shows the architecture of the
method.

Fig. 2. Architecture of proposed method

The entities are service providers SP , context acquisition terminals T , user’s
terminals U , the certification controller Cc, the execution controller Ce, and the
state controller Cs. Cc is entrusted to the trusted third certification authority. Cs

is the server that comprehends whole states, such as the BN method’s controller.
Ce is a controller for verification of certification and determination of service
execution, such as applications provided from SP , to each user. To safeguard
privacy, our method separates user identity, location history, and service history.
To protect privacy while maintaining efficiency, we use a simple segmentation
in which Cc, Cs, and Ce each have responsibility for one of these segments. This
simple segmentation is natural because the certification controller is a trusted
certification authority such as a credit company, the execution controller is a
user’s application, and the state controller is a server such as a mobile phone
company. Therefore, we assume that these three entities are separated.

5.2 Requirements

Our proposed method fulfills the following requirements.

– Correctness:
The service provider can provide an appropriate service to the user only if
the user has the legitimate right to receive the service.

A Privacy Protection Scheme for a Scalable Control Method 9

– Efficiency:
The service provider can execute services at appropriate times based on real-
time monitoring when redundant operations have been eliminated based on
predictions.

– Privacy:
Anonymity: Only the user must be able to connect his or her own personal

data with the records of services provided to him or her. SP can only
know whether the user has the right to receive the service.

Nontraceability: Only the user can connect his or her personal data with
his or her location history. Cs must be unable to connect location history
with the user’s rights and service history.

History separation: It must not be able to connect service execution his-
tory with the user’s location history. However, this requirement is diffi-
cult to achieve, because these histories must be connected when training
the Bayesian network.

5.3 Construction

The flow of our system is shown below. The participants in our systems are the
service provider SP , context acquisition terminals T and the user’s terminal U ,
the certification controller Cc, the execution controller Ce, and the state controller
Cs. Our method consists of two algorithms (Certificationissue,Certificationverify)
in addition to the BN method and RRT protocol.

Initialization. Set up security parameter k, pkey, which is a public key, and
probability Pct using RRT. (pkey, Pct) ← RRTsetup(1k).

Setup. SP shows which users each service can be provided to Cc. SP shows
to Ce, Pct and the location each service can be executed. SP shows the
information, b, needed to set up the Bayesian network to Cs and generates
Bn0, which is initial value of the Bayesian network, Bn. (Bn0) ← BNsetup(b).

Issuance of right. Cc issues certificates which show the user’s rights to
receive services, to U as a context of user’s authority (CC). (CC) ←
Certificationissue(U).

Service recommendation. Cs collects C′, which is context without personal
data, at appropriate times (C′) ← BNcollect(Bn) and informs each termi-
nals of acceptable values of contexts as thresholds in the same way as BN
method’s controller. T sends the value to Cs when the value is higher than
a threshold value. When Cs has checked whether the execution conditions
are satisfied, Cs informs Ce that service S satisfied all execution conditions.
(S) ← BNservice(C′, Bn).

Service execution. Ce gets CC issued by Cc as context of the U ’s authority.
When U has the authority to be provided the S, Ce requests the service
execution of SP . (t) ← Certificationverify(S, CC). SP provide the service
to U .

Learning. Ce sends t of determination of the service execution to Cs using
RRT and Cs receives t′. 〈t′, φ〉 ← RRTR〈Cs(pkey), Ce(t, pkey, Pct)〉. Cs gets

10 R. Yoshida et al.

true information πA by calculation (πA) ← RRTI (t′1, . . . , t
′
N , Pct, pkey) and

updates Bn′ with it. (Bn′) ← Learning(Bn, πA).
However, this update is executed at an appropriate time (when there will

be small effect on service execution).

6 Discussion

6.1 Requirements

Here, we discuss the requirements of Correctness, Efficiency, and Privacy.

Correctness. The user’s rights to receive services are checked by a certificate,
which is issued by a trusted third party. Because the certificate is assumed to be
trustworthy, Correctness is achieved.

Efficiency. Our method only checks on the user’s right to receive services upon
each service execution. Also, the certification controller pre-certifies authority, so
it has little effect on efficiency. It only increases the number of communications
between the state controller and the execution controller. Therefore, Efficiency
depends on the BN method.

Our method uses RRT for sending information from the execution controller
to the state controller and while protecting privacy. True information can be
collected from the set of information that includes lies, and Efficiency improves
as the amount of collected information increases.

In this instance, the amount of calculation our method must do increases due
to use of CRRT using Oblivious Transfer. However, if the information is collected
at midnight, when there is small effect on service, the Efficiency surpasses that
of the old simple frequency method while maintaining reasonable service quality.
The other problem of information gathering is discussed in section 6.2.

Privacy. Here, we discuss whether our method satisfies the Privacy require-
ment. As discussed in section 5.1, our method separates information.

Anonymity: The server cannot identify a user to whom the server is providing
service. The certification controller cannot access information about service
execution. This maintains user anonymity.

Nontraceability: The state controller cannot identify a user from whom the
state controller collects contexts. The certification controller cannot access
information about a user’s location history. Therefore, the user is untrace-
able.

Learning-independence: The state controller is not able to access information
about service execution without RRT. It is assumed that RRT can separate
service provision and location history. Also, the server cannot access a user’s
location history from the state controller. Because as location history and
execution history are periodically processed, information could not be ex-
tracted using timing. Therefore, each kind of record is independent of the
others.

A Privacy Protection Scheme for a Scalable Control Method 11

6.2 History Separation

The probability that service will be provided is predicted and set up based
on data used in the past by a Bayesian network, which needs to be updated
whenever service is provided.

The execution controller informs the state controller of information it has col-
lected with RRT. The state controller cannot know which information is true;
it can only check the percentage of lies. Also, the state controller can get true
information by using RRT. Therefore, if there are a sufficient number of samples,
the state controller can update the Bayesian network. However, the state con-
troller must monitor all users without revealing personal data, and the particular
service cannot be reflected to the Bayesian network.

In this paper, we assume the use of CRRT with Oblivious Transfer. However
any implementation of RRT is affordable if it has the ability to prevent the user
from manipulating the probability of lies.

7 Conclusion

We proposed a method that solves both the efficiency and privacy protection
problems of context-dependent services. For efficiency, we rely on the state con-
troller’s efficiency. We used the BN method, which is described in [2], because
it is the most efficient method currently known. To solve the privacy problem,
we use three controllers to separate the user’s identity, location history, and ser-
vice history. This simple segmentation does not affect efficiency because these
functions are normally separated, but there is still the problem of updating the
Bayesian network with service provision information. We propose using RRT be-
tween Cs and Ce, which allows BN to be updated while protecting privacy and
maintaining efficiency.

References

1. Yoshida, R., Shigetomi, R., Imai, H.: A Privacy Protection Scheme for a Scalable
Control Method in Context-dependent Services. In: Proc. Society of Information
Theory and Its Applications, SITA 2006, pp. 327–330 (2006) (in Japanese)

2. Uchida, W., Kasai, H., Kurakake, S.: A Scalable Execution Control Method for
Context-dependent Services. In: Proc. IEEE Int’l Conf. on Pervasive Services
(ICPS 2006), pp. 121–130 (2006)

3. Dey, A.K., Abowd, G.D., Salber, D.: A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. HCI Jour-
nal 16(2-4), 97–166 (2001)

4. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int.
J. Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

5. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W.G., Hambrusch, S.: Query index-
ing and velocity constrained indexing:Scalable techniques for continuous queries
on moving objects. IEEE Transactions on Computers 15(10), 1124–1140 (2002)

12 R. Yoshida et al.

6. Cai, Y., Hua, K.A., Cao, G.: Processing Range-Monitoring Queries on Heteroge-
neous Mobile Objects. In: Proc. 2004 IEEE Int’l Conf. on Mobile Data Manage-
ment(MDM 2004), pp. 27–38 (2004)

7. Hu, H., Xu, J., Lee, D.L.: A Generic Framework for Monitoring Continuous Spa-
tial Queries over Moving Objects. In: Proc. 2005 ACM SIGMOD Int’l Conf. on
Management of Data, pp. 479–490 (2005)

8. Warner, S.L.: Randomized Response:A Survey Technique for Eliminating Evasive
Answer Bias. Journal of the American Statistical Association 60(309), 63–69 (1965)

9. Ambainis, A., Jakobsson, M., Lipmaa, H.: Cryptographic Randomized Response
Technique. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
425–438. Springer, Heidelberg (2004)

10. Kikuchi, H., Akiyama, J., Nakamura, G., Gobioff, H.: Stochastic Voting Protocol
To Protect Voters Privacy. In: 1999 IEEE Workshop on Internet Applications, July
26-27, pp. 103–111 (1999)

11. Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the Development
of Context-Enabled Applications. In: Conference on Human Factors in Computing
Systems 1999 (May 1999)

12. Chen, H., Finin, T., Joshi, A., Kagal, L.: Intelligent Agents Meet the Semantics
Web in Smart Spaces. IEEE Internet Computing 8(6), 69–79 (2004)

13. Al-Muhtabi, J., Cambell, R., Kapadia, A., Mickunas, D., Yi, S.: Routing through
the mist:Privacy preseving communication in ubiquitous computing environments.
In: Int’l conf of Distributed Computing Systems(ICDCS 2002), Vienna, Austria
(July 2002)

14. Beresford, A., Stajano, F.: Mix zones:User privacy in location-aware services. In:
IEEE Annual Conf.e on pervasive Computing and communications Workshops,
Florida, USA (March 2004)

15. Roussaki, I., Strimpakou, M., Pils, C., Kalatzis, N., Neubauer, M., Hauser, C.,
Anagnostou, M.: Privacy-Aware Modelling and Distribution of Context Informa-
tion in Pervasive Service Provision. In: Proc. IEEE Int’l Conf. on Pervasive Services
(ICPS 2006), pp. 150–160 (2006)

16. IST Daidalos Research, http://www.ist-daidalos.org/

http://www.ist-daidalos.org/

The GPS Identification Scheme Using Frobenius

Expansions�

Waldyr D. Benits Junior�� and Steven D. Galbraith� � �

Mathematics Department,
Royal Holloway University of London,

Egham, Surrey TW20 0EX, UK
{w.benits-junior,steven.galbraith}@rhul.ac.uk

Abstract. The Girault-Poupard-Stern (GPS) identification scheme is
designed for public key cryptography on very restricted devices. We pro-
pose a variant of GPS for Koblitz elliptic curves using Frobenius expan-
sions. The idea is to use Frobenius expansions throughout the protocol,
so there is no need to convert between integers and Frobenius expan-
sions. We give a security analysis of the proposed scheme.

Keywords: Elliptic Curves, Frobenius expansions, GPS identification
scheme.

1 Introduction

The GPS public key identification scheme is a three move challenge-response
protocol based on the Schnorr signature scheme [16]. It was first described by
Girault [9] and later developed by Poupard and Stern [14] (also see [8]).

Recall that a public key identification scheme allows a prover to convince a
verifier that she possess the private key. In a three move protocol, the prover
sends a commitment (which can be computed in advance, i.e. offline), then re-
ceives a challenge and answers with a response (this is the “online step”, which
must be performed in realtime). The verifier then performs a computation in-
volving the commitment, challenge, response and public key and outputs either
accept or reject.

The idea of the GPS scheme is to make the online phase as fast and simple
as possible, so that it can be easily performed by very low power devices. Fur-
ther improvements to speed-up the online phase were proposed by Girault and
Lefranc [10]. Okamoto, Katsuno and Okamoto [13] give an approach to reduce
the bandwidth of the online step at the expense of the size of the public key.

A typical application of GPS (see [8]) is “on-the-fly” authentication at a road
toll. Each car has a low cost smart card in which a GPS protocol runs. The

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.

�� This author thanks the Brazilian Navy for support.
� � � This author supported in part by EPSRC Research Grant EP/D069904/1.

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 13–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 W.D. Benits Junior and S.D. Galbraith

time required to transmit data and to perform online calculations is very small,
hence the car does not need to stop at the toll to be authenticated. The offline
operations may be calculated while the car is driving along. Note that we assume
that the verifier (i.e., toll gate) has significant computational resources, so that
the verification step can be done quickly.

Many of the original proposals for the GPS scheme were based in (Z/NZ)∗

where N is an RSA modulus, or F∗
p where p is a large prime. However, since

the computational device has extremely limited power it is more natural to
work with elliptic curves, especially Koblitz curves over finite fields of small
characteristic. The GPS protocol as described in [8] can be implemented with
such elliptic curves, and the security results apply to this case. Using elliptic
curves can give a significant speedup to the offline generation of the commitment
and the verification step, as well as having lower memory and power consumption
requirements. Due to the nature of the GPS protocol, using elliptic curves does
not have any effect on the running time of the online step.

One can speed up the offline operations on Koblitz curves significantly by
using Frobenius expansions to compute the required point multiplications. How-
ever, to implement the GPS protocol would require conversion between Frobenius
expansions and integers and this would lead to extra code on the device (i.e.,
silicon area) and extra computational cost. Hence, the motivation of the present
paper is to develop a GPS system which uses Frobenius expansions throughout.
This will lead to fast and simple offline operations while still keeping the online
operation fast (though the arithmetic of the online operation is more complicated
than standard integer arithmetic and so is not as fast as standard GPS).

2 The Original GPS Scheme

The original Schnorr scheme [16] uses an element g ∈ Z∗
p of prime order q dividing

p− 1. A prover holds a private key s ∈ Zq and a public key I = g−s (mod p). In
the three step protocol, the prover generates a secret random r, computes the
commitment X = gr (mod p) and sends X to the verifier. The verifier then
generates a random challenge c and sends it to the prover. After receiving c, the
prover computes the response y = r + sc (mod q) and sends y to the verifier.
The computation of y is the only online step. Finally, the verifier checks whether
or not X ≡ gyIc (mod p). If X �≡ gyIc (mod p), the verifier rejects the proof.
This round can be repeated l times, but in practice, we usually take l = 1.

The main idea of the GPS protocol is to eliminate the modular reduction per-
formed during the response step. In other words, the response is just y = r + sc.
This makes the computation more efficient, and it reduces the code footprint
on the device (since there is no need to implement arithmetic modulo q). The
modular reduction in the computation of y is used to prove the zero knowledge
property of Schnorr signatures, hence a new proof of security is required for GPS
and the parameters have to be carefully chosen (see [8, 14]). In [8] the interactive
protocol is proven to have statistical zero knowledge. The original proposal by

The GPS Identification Scheme Using Frobenius Expansions 15

Girault [9] used the group (Z/NZ)∗ where N is an RSA modulus. Later work
[8] proposed any cyclic group for which the discrete logarithm problem is hard.

An improvement to the original scheme, for which the online step is just a
single addition, was presented by Girault and Lefranc [10]. It requires that the
challenge (or alternatively, the private key) have a specific sparse form. The
below table gives the reader an idea of the bitlengths of the integers (s, c, r) for
an 80-bit security level of the private key and probability of successful forgery
at most 1/235. For more details see [8, 10].

Table 1. Numerical Example of GPS scheme

Scheme bitlength of s bitlength of c bitlength of y

Standard GPS 160 35 275
Girault-Lefranc 160 940 1180

3 Koblitz Curves and Frobenius Expansions

In this section, we briefly review some properties of Koblitz elliptic curves [11]
and how we can perform point multiplication efficiently using Frobenius expan-
sions. A Koblitz curve is an elliptic curve E defined over a small finite field Fq

such that the group E(Fqm) is suitable for cryptography for some m > 1. The
most popular choice is curves over F2 and so we give the details in this case only.

Let Ea : y2 + xy = x3 + ax2 + 1, with a ∈ {0, 1} be an elliptic curve defined
over F2. Denote by O the point at infinity. Let Ea(F2m) be the group of F2m-
rational points on Ea. We assume that #Ea(F2m) has a large prime factor. The
2-power Frobenius map is

τ : Ea(F2m) → Ea(F2m)
(x, y) 	→ (x2, y2)
O 	→ O.

Let t = (−1)1−a. Then τ satisfies the equation τ2(P) − [t]τ(P) + [2]P = O for
all points P ∈ E(F2m) (see [11]). In other words,

[2]P = [t]τ(P) − τ(τ(P)).

Note also that τ satisfies τm(P) = P for all P ∈ E(F2m).
Instead of computing [n]P for a large integer n, one can represent n as a

Frobenius expansion

N∑
i=0

niτ
i, ni ∈ {−1, 0, 1}.

See Solinas [20] for an algorithm to write n in this form. One can then compute
[n]P as

∑N
i=0 niτ

i(P). In practice, the computation can be twice as fast as the
standard double-and-add scalar multiplication (see [12] for the comparison).

16 W.D. Benits Junior and S.D. Galbraith

We call two Frobenius expansions a, b equivalent if [a]P = [b]P for all P ∈
E(F2m) and write a ≡ b. Note that Frobenius expansions are not unique (for
example, 1 ≡ −1+ tτ − τ2 and 1 ≡ τm) though one can use a non-adjacent form
of degree < m which is unique (see Solinas [19, 20]).

Definition 1. For n ∈ N we define the set of τ-adic expansions of length n to
be

Tn =
{
x0 + x1τ + x2τ

2 + · · · + xn−1τ
n−1 | xj ∈ {−1, 0, 1}

}
. (1)

For x ∈ Tn let i � n− 1 be the largest index such that xi �= 0. We say that x has
degree i, denoted deg(x) = i. The number of non-zero coefficients xj is called
the weight.

We emphasize that we consider elements of Tn as polynomials and not as en-
domorphisms. We interchangeably use the terminology Frobenius expansion and
τ-adic expansion for such polynomials.

One can store a τ -adic expansion as a bitstring using Huffman encoding: for
example coefficient 0 is represented as 0, coefficient 1 as 10 and coefficient −1
as 11. Hence a τ -adic expansion of length n and weight w requires n + w bits
(hence, we typically require ≈ 5n/3 bits for a random τ -adic). If a non-adjacent
form1 is used then this can be shortened to n + 1 bits.

We now briefly mention the algorithms to convert between Frobenius expan-
sions and integers. Given an integer n, Algorithm 1 of [20] outputs a Frobenius
expansion in non-adjacent form equivalent to n. This algorithm only involves
elementary integer operations. One problem is that the resulting Frobenius ex-
pansion typically has degree much larger than the original bitlength of n, so
Solinas gives a method (Routine 62 in Section 5.2 of [20]) to output the remain-
der after division by τm−1. This latter algorithm requires many integer divisions.
To convert a Frobenius expansion

∑
i niτ

i to an integer: let q be the order of
P , compute the eigenvalue of Frobenius λ on 〈P 〉 (λ is a root of x2 − tmx + 2m

(mod q) where tm is the trace of the 2m-power Frobenius) and then compute
n =

∑
i niλ

i modulo q. In other words, this algorithm requires arithmetic modulo
a large prime.

3.1 Arithmetic on τ -Adic Expansions

For our protocol we will need to add and multiply Frobenius expansions. The
subtlety is that we require the result to have coefficients only in {−1, 0, 1}.
Any coefficients which are outside this set must be reduced using the relation
2 = tτ − τ2, and this can lead to an increase in the degree of the expansion.
There are two options for performing arithmetic:

1. Compute with coefficients in Z and reduce to coefficients in {−1, 0, 1} at the
end;

2. Perform the basic arithmetic operations so that all values have coefficients
in {−1, 0, 1} at all times.

1 A non-adjacent form is when no two consecutive coefficients can both be non-zero.

The GPS Identification Scheme Using Frobenius Expansions 17

Algorithm 1 presents an efficient addition algorithm of the second type. The
important feature of this algorithm is that, although the carry values c0, c1 are
integers, the arrays a, b and d only ever contain entries in the set {−1, 0, 1}.
Hence this algorithm may be suitable for implementation on smart cards.

Algorithm 1. Efficient τ -adic addition
System Parameters: Frobenius polynomial τ 2 − tτ + 2 where t = ±1.
Input: τ -adic expansions a and b.
Output: d ≡ (a + b).
1. deg = max(deg(a), deg(b))
2. c0 = 0, c1 = 0, i = 0 and d = 0
3. while (i � deg) or (c0 �= 0) or (c1 �= 0) do
4. x = a[i] + b[i] + c0

5. c0 = c1 and c1 = 0
6. if (x < −1) or (x > 1) then
7. q = sign(x) × (|x| div 2)
8. x = x − 2q
9. c0 = c0 + tq

10. c1 = c1 − q
11. end if
12. [Optional randomisation step]
13. d[i] = x
14. i = i + 1
15. end while
16. Return d

The optional randomisation step in line 12 will be needed in the protocol.
It is the following: if i is less than some parameter K′ then generate a uniform
random b ∈ {−1, 0, 1} and arrange that x = b by adding (b − x)(τ i − τm+i).
This corresponds to taking an equivalent representation for the sum. Note that
this operation may increase the degree of the result by m and requires storing
a ‘carry’ to be included when computing the (m + i)-th term2. Note that the
randomisation method of Ebeid and Hasan [6] does not give uniform output of
the low-degree coefficients and so it is not sufficient for our protocol.

Even with the non-randomised version, one sees that the degree can increase
significantly if the carry values c0, c1 take non-zero values of large enough abso-
lute value. Indeed, from Algorithm 1 one can derive a non-deterministic method
to construct, given a τ -adic a, a τ -adic b such that deg(a+ b) > deg(b) � deg(a)
(note that the difference deg(a+b)−deg(b) is bounded for fixed a). For example,
given a = 1+τ3−τ5 one can choose b = −τ5+τ7 so that the result of computing
a+ b using Algorithm 1 is 1+ τ3 − tτ6 + tτ8 − τ9. Indeed, it is clear that one can
choose the first deg(a) coefficients of b at random, so there are at least 3deg(a)

such choices for b (due to the choices available when constructing b there are

2 We are using the polynomial 1 − τm, but could use any polynomial equivalent to
zero and with constant coefficient 1.

18 W.D. Benits Junior and S.D. Galbraith

many more choices for b, see heuristic 1 below). Similarly, one can choose b such
that deg(a+ b) < deg(a) (for example, for the above a take b = −τ3 + τ5 so that
a + b = 1); again there are about 3deg(a) possible choices.

Our variant of the GPS protocol will require computing y = r + sc where r, c
and s are all Frobenius expansions. The multiplication s × c can be performed
by repeated shifting and addition using Algorithm 1 (possibly combined with
a Karatsuba approach). Note that the arithmetic coming from Algorithm 1 is
not associative (for example (1 + 1) + −1 �= 1 + (1 +−1)) though all results are
equivalent. There are several natural algorithms for computing sc and, due to
lack of associativity, they will generally give different results. For the analysis of
the protocol we assume that a fixed algorithm is used for computing sc in the
protocol and the proof of Theorem 2.

Clearly, the product sc can have degree larger than deg(s) + deg(c) but in
practice it is not very much bigger. We have performed a number of experiments
using MAGMA [5]: For (C,S) = (23, 160) and randomly chosen c ∈ TC and
s ∈ TS we found that deg(s× c) � deg(s)+deg(c)+5 with high probability (for
more details of our experimental results see [2]).

Definition 2. For S, C ∈ N, we define

Φ = (S − 1) + (C − 1) + 5 = S + C + 3

and
TΦ,R =

{
y ∈ TR : yn �= 0 for some n such that Φ � n < R

}
.

Our protocol will compute r+sc where deg(r) is much bigger than deg(s)+deg(c)
and it is important to ensure that the degree is not likely to increase. For a given
choice of sc of degree Φ there seem to be � 3Φ × 2K−1 values for r satisfying
deg(r) < Φ+K and deg(r+sc) � Φ+K. Hence, the probability that deg(r+sc) �
Φ + K can be estimated as 1

3 (2/3)K−1 = 1/31+log3(3/2)(K−1) ≈ 1/30.63+0.37K. If
K is sufficiently large then the probability of this event for randomly chosen
r is negligible. Our experiments showed that for (C,S,K) = (23, 160, 20), the
probability of deg(r + sc) �= deg(r) over random c ∈ TC , s ∈ TS and r ∈ TΦ+K is
approximately 0.00004 � 1/30.37×20+0.63 ≈ 0.0001.

Hence we propose the following heuristic. We say that a probability P is
negligible if it decays exponentially (e.g., O(1/3K)) and is overwhelming if 1−P
is negligible.

Heuristic 1. Fix s ∈ TS . Suppose K ∈ N is sufficiently large and let R =
Φ + K. Then the probability over r ∈ TR that there exists some c ∈ TC such that
deg(r + sc) � R is negligible. More precisely,

#{r ∈ TR : ∃ c ∈ TC with deg(r + sc) � R} = O(3Φ2K−1) = Õ(3Φ+0.63K−0.63).

We also need to know how likely it is that deg(r+sc) � Φ. The above arguments
indicate there should be at most 3Φ such choices for r. Thus, we can state the
following heuristic:

The GPS Identification Scheme Using Frobenius Expansions 19

Heuristic 2. Fix s ∈ TS . Suppose K ∈ N is sufficiently large and let R =
Φ + K Then the probability over r ∈ TR that there exists some c ∈ TC such that
deg(r + sc) < Φ is negligible. More precisely,

#{r ∈ TR : ∃ c ∈ TC with deg(r + sc) < Φ} = O(3Φ).

A further subtlety of our basic (i.e., without randomisation) addition algorithm is
that there is not necessarily a unique τ -adic solution x to the equation a+x = b.
For example, it is easy to check that −1+x = 1+τ has no solution in T3. Similarly,
one can check that −1+x = −τ+τ2 has the two (necessarily equivalent) solutions
x = 1− τ + τ2 and x = −1 when τ2 − τ +2 = 0. The extra randomisation in line
12 of Algorithm 1 is included precisely to ‘smooth out’ this issue. In particular,
it greatly reduces the probability that an equation of the form a + x = b cannot
be solved in the important case when deg(a) < deg(b).

4 GPS on Koblitz Curves with Fast Scalar Multiplication

The standard GPS scheme works for any abelian group for which the DLP is
hard. In particular, one can use a Koblitz curve E(F2m) and convert integers into
Frobenius expansions to perform fast scalar multiplications. We briefly give the
details: Fix P ∈ E(F2m) of order r and generate the key pair {s, I = [−s]P}. We
write x̃ for a τ -adic representation of an integer x. The prover picks a random
integer r, converts it into τ -adic r̃, computes the commitment X = [r̃]P and
sends X to verifier. The verifier picks a random integer c and returns it to
prover. The answer step is the same as the standard GPS (i.e., compute y =
r + sc ∈ Z) and the verification becomes checking that X = [y]P + [c]I (which
can be efficiently computed as [ỹ]P + [c̃]I).

This method is very efficient, however there is the additional cost of converting
an integer to a Frobenius expansion (plus the extra code footprint this requires).
As noted by Solinas [19, 20], in any cryptographic protocol, instead of choosing a
random integer and converting to a τ -adic expansion one can directly choose a τ -
adic. This idea could be used for r in the standard GPS protocol, but one would
still need to convert back to an integer for the computation y = r+sc ∈ Z in the
online step. As mentioned earlier, the conversion algorithm requires modular
arithmetic which is not otherwise needed as part of the GPS protocol. This
results in additional overhead in running time and code on the device. We will
see in the next section that these additional costs can be avoided if we use
random τ -adics instead of random integers.

5 τ -GPS

When using τ -adic expansions instead of integers, we will get much faster compu-
tations for I = [−s]P , X = [r]P and, in the verification step, for X = [y]P +[c]I.
Figure 1 shows the τ -GPS scheme. We can repeat the protocol l times (though
usually l = 1). We represent an element x picked at random from a set X by:
x

r←− X .

20 W.D. Benits Junior and S.D. Galbraith

System Parameters: S , R, C ∈ N, P ∈ E(F2m)

Private key: s
r←− TS

Public key: I = [−s]P

PROVER VERIFIER
Commitment

r
r←− TR

X = [r]P
X ��

Challenge
c�� c

r←− TC
Response
if c �∈ TC then abort
compute y = r + sc ∈ TR

if y �∈ TR then abort
y ��

if y �∈ TR reject

X
?
= [y]P + [c]I

If “YES” accept,
otherwise, reject.

Fig. 1. τ -GPS

As with the original GPS protocol it is essential for the prover to perform
a size check on the challenge c (otherwise, a dishonest verifier can send, for
example, c = τR and recover the prover’s secret). The size check on y does not
seem to be essential for security, but we include it to ease the security analysis.
Heuristic 1 implies that the probability of aborting in the protocol is negligible.

Note that the computation of sc can be performed using the non-randomised
version of Algorithm 1; the extra randomisation of the K′ lowest order coefficients
is only required when performing the addition with r. For further implementation
details see Section 8.

6 Security Analysis

We closely follow [8] for our security analysis. In particular, we use the same
security model as in [8]. We first consider attacks which recover the private
key. Then, we analyse the sizes of the random τ -adic expansions such that the
scheme is secure, i.e. the τ -GPS protocol really is a zero knowledge proof of the
private key. Our analysis follows the approach of [7] and proves completeness,
zero knowledge and soundness.

6.1 Discrete Logarithms

Given (P, I) it must be infeasible for an attacker to compute the private key s
(similarly, given (P, X) to compute r). One could solve the DLP to get λ ∈ N

The GPS Identification Scheme Using Frobenius Expansions 21

such that −I = [λ]P and then convert λ to a Frobenius expansion. Hence, we
require the DLP in 〈P 〉 to be hard. A standard choice is the Koblitz curve
E(F2163).

Alternatively, one could try to compute s ∈ TS directly from (P, I). We call
this the τ -DLP which we define below. This seems to be hard computational
problem.

Definition 3. The Frobenius expansion discrete logarithm problem (de-
noted τ-DLP) is: Given P, Q ∈ E(F2m) and S to find x ∈ TS (if it exists) such
that Q = [x]P .

For a full discussion of the τ -DLP, see [3]. Here, we merely remark that there
is a variant of the Pollard kangaroo method which is expected to solve the
τ -DLP in O(2

S
2 +ε) group operations, where the choice of ε is closely related to

the probability of success in that method. As we have not verified in practice for
large enough values of S yet, let us assume that, in the worst case, the method
works well for ε = 0. Hence we require S � 160. As discussed in [3] there seems
to be no loss of security by taking s to be in non-adjacent form, so we assume
this in the below analysis.

6.2 Completeness

We want to show that GPS with τ -adic expansions is complete.

Theorem 1 (Completeness). Suppose R � Φ + K, for sufficiently large K ∈
N. Then, a prover who possess a valid key pair (s, I = [−s]P) is accepted with
overwhelming probability by a verifier.

Proof. Clearly, the prover can compute y = r + sc. The verification step is:

[y]P + [c]I = [r + sc]P + [c][−s]P = [r]P + [sc]P + [−sc]P = [r]P = X,

which is successful. Finally, since R � Φ + K, from Heuristic 1 we expect that
y ∈ TR with overwhelming probability. �

6.3 Size of r – The Zero Knowledge Proof

As with any public key identification or signature scheme it is important to show
that runs of the protocol do not leak information about the private key. For the
original GPS scheme it is proved in [8] that the protocol has statistical zero
knowledge. Due to the strange properties of addition of Frobenius expansions
using Algorithm 1 we seem to be unable to prove statistical zero knowledge and
instead show computational zero knowledge with respect to a computational
assumption.

First we remark that the τ -GPS protocol does leak information about s if
one omits the extra randomisation step in the computation of y = r + sc. We
give a brief sketch of the idea. Suppose a dishonest verifier inspects the constant

22 W.D. Benits Junior and S.D. Galbraith

coefficients of all polynomials, and always chooses c such that c0 = 1. Then
y0 = r0+s0 and if r0 is uniformly distributed then the distribution of y0 depends
on the value of s0. More precisely, if s0 = 1 then the output distribution of y0 in
this case is 0 with probability 2/3 and 1 with probability 1/3; if s0 = 0 then y0

has uniform distribution in {−1, 0, 1}; if s0 = −1 then y0 = 0 with probability
2/3 and −1 with probability 1/3.

The above method can be extended to recover the first few coefficients of s.
However, the randomisation of the first K′ coefficients destroys the attack if K′

is sufficiently large. Similarly, it seems hard to mount the attack on the K′-th
coefficient, since that is influenced by carry values propagating from addition of
lower-degree terms.

We now state the computational assumption on which our security result
relies.

Definition 4. Let C,S,K and K′ be parameters. Define Φ = S + C + 3 and
R = max{C + S + 3 + K, m + K′}. Let s ∈ TS and I = [−s]P . Let M =
E(F2m) × TC × TR. Let f : E(F2m) → TC be a function. Define the distribution
on M

Ms,f,1 = {(α = [r]P, β = f(α), γ = r + sβ) : r ∈ TR}

where r is selected from TR uniformly at random and where the computation r+
sβ is performed using Algorithm 1 with randomisation of the first K′ coefficients.
Define the distribution on M

MI,f,2 = {(α, β, γ) : γ ∈ TΦ,R, α = [γ]P + [β]I, β = f(α)}

where γ is selected uniformly at random.

We stress that these distributions are not the same. For example, in MI,f,2

there can be points α ∈ E(F2m) which are not of the form [r]P for some r ∈ TR
(though they will typically be of the form [r′]P for some r′ ∈ TR′ where R′ −R
is small). More importantly, the distributions on γ are not the same in both
cases: in the latter case γ is uniform in TΦ,R whereas due to the properties of
addition using Algorithm 1 it is not clear whether the distribution of γ in the
former case is close to uniform.

We now make a computational assumption regarding these distributions.

Assumption 1. Let A be an algorithm running in polynomial time which is
given I (but not s) and which samples elements from the distributions Ms,f,1

and MI,f,2. Then we claim that A cannot distinguish the two distributions,
namely that it does not have non-negligible advantage in being able to identify
whether a given triple (α, β, γ) was drawn from Ms,f,1 or MI,f,2.

Theorem 2 (Zero Knowledge). Let C,S,K and K′ be security parameters
and define Φ = C + S + 3 and R = max{Φ + K, m + K′}. Assume Heuristics
1, 2 and Assumption 1 above. Then the τ-GPS protocol has computational zero-
knowledge if l and 3C are polynomial and if K and K′ are sufficiently large.

The GPS Identification Scheme Using Frobenius Expansions 23

Proof. We follow the proof of Theorem 2 of [8], but we cannot use exactly the
same proof due to the strange properties of addition of Frobenius expansions
using Algorithm 1. Let A1 be a dishonest verifier, who instead of picking chal-
lenges at random, chooses them based on previous iterations of the protocol, in
order to try to obtain some knowledge about the private key. Following [8] we
denote by c(X, hist, ωA) the challenge chosen, depending on the commitment
X , the history hist of the protocol so far, and the random tape ωA.

We now define an algorithm which simulates a round, using a random tape ωA,
without any knowledge of the secret s. The protocol is said to be computational
zero knowledge if the (computationally bounded) adversaryA cannot distinguish
between the simulation and runs of the real protocol.

Step 1. Use ωA to choose random values c̄ ∈ TC and ȳ ∈ TΦ,R.
Step 2. Compute X̄ = [ȳ]P + [c̄]I
Step 3. If c(X̄, hist, ωA) �= c̄ then return to Step 1, else return (X̄, c̄, ȳ).

We must show that, for any fixed random tape ωA, it is computationally
infeasible to distinguish the simulation from genuine runs of the protocol. This is
exactly the computational assumption stated above, where f(X) is the function
c(X, hist, ωA).

In other words, if the adversary A can distinguish between the simulation and
the real protocol then it immediately solves the computational assumption. This
completes the proof. �

In practice we conjecture that K = 136 and K′ = 51 are sufficient to obtain 80
bits of security. The motivation for this choice is as follows. First, 3K

′ ≈ 280,
so the probability of guessing the randomness used in line 12 of Algorithm 1 is
negligible. Second, 3Φ+0.63K−0.63/3Φ+K = 30.37K+0.63 ≈ 280, where 3Φ+0.63K−0.63

comes from Heuristic 1 and 3Φ+K = 3R is the total number of possibilities for r
in TR, so the probability of learning anything about sc from r + sc seems to be
negligible.

6.4 Size of the Challenge c

The last task is to prove soundness of the scheme. We want to show that if
the prover does not know the private key s, she can only be accepted by a
verifier with very small probability. To do this we will show that if an adversary
is accepted by a verifier with non-small probability, then she can recover the
private key.

Theorem 3 (Soundness). An adversary who does not know the private key is
only accepted by a verifier with very small probability.

Proof. Let us suppose that an adversary A is accepted with probability ε > 1
3C .

Using the standard rewinding argument presented in Appendix B of [8] (inspired
by [17]) we conclude that such an adversary A will be able to answer to two
different challenges, c1 and c2 with y1 and y2, such that [y1]P + [c1]I = X =
[y2]P + [c2]I.

24 W.D. Benits Junior and S.D. Galbraith

So, we have [(y1 − y2)]P = [(c2 − c1)]I and hence we can solve the DLP of I
to the base P . Note that as we are working with elliptic curves the curve order
is known, so there is no difficulty with solving this equation. �

Therefore, we need C to be large enough such that the probability of cheating be
very small. In practice, more than 235 possibilities is enough to prevent an online
attacker from guessing the right value for c. Since #TC = 3C we need C � 23.

7 Suggested Parameters

We have seen that one can take m = 163, C = 23, S = 160, K = 136 and
K′ = 51. This gives R = max{Φ + K, m + K′} = max{322, 214} = 322 which
we summarise in Table 2. The first number in each column is the value of the
parameter and the second number (between parenthesis) is the number of bits
needed to represent an element of the set (using 5n

3 bits to represent a τ -adic of
length n and n + 1 bits if it can be chosen in non-adjacent form). We remark
that, in principle, it should be possible to find better binary encodings for τ -adic
expansions which require fewer than 5n

3 bits.

Table 2. Numerical Example of GPS scheme with τ -adic expansions

S C R
160 (161) 23 (38) 322 (537)

To speed up the computation of s × c we can use the Girault-Lefranc trick
(see [10] for details). In other words, we insist that challenges c have at least
S − 1 zero coefficients between each pair of non-zero coefficients. It follows that
computing s × c does not require Algorithm 1. This transforms the online step
y = r + sc into a single addition using Algorithm 1 with randomisation of the
first K′ coefficients.

In order to define C in this case we need to know how many τ -adic expansions
with degree less than C, hamming weight h and at least S − 1 zero coefficients
between each pair of non-zero coefficients exist. The proofs are elementary and
ommitted due to lack of space.

Theorem 4. The number of τ-adic expansions of degree less than C and with
at least S − 1 zero coefficients between each pair of non zero coefficients is

ZC,S =
�C+S−1

S �∑
h=1

2h
[(C − h(S − 1)

h

)
+

S−1∑
i=1

(
C − i − (h − 1)(S − 1)

h − 1

)]
. (2)

It follows that if S = 160 then we need C = 797 to get ZC,S > 235. This results in
R = 1096. Note that one can transmit/store c using much fewer than 729 bits.
However, r and y are not sparse, so would need around 1825 bits to represent.

The GPS Identification Scheme Using Frobenius Expansions 25

Table 3. Parameters for Girault-Lefranc variant τ−GPS

S C R
160 (161) 797 (798) 1096 (1827)

8 Performance Analysis

We give more detail about how to efficiently compute each of the three steps of
the GPS protocol.

Step 1: We are supposed to choose a random element r ∈ TR (where R may
be 322 or 1096) and compute X = [r]P . Note that R is larger than m.
In practice it would be more efficient to reduce r modulo τm − 1 before
performing the computation of X (this may lead to coefficients outside the
set {−1, 0, 1}).

A more efficient alternative is as follows. Choose a random r′ ∈ Tm and
compute X = [r′]P . It is only necessary to store r′, requiring ≈ 5m/3 bits.
Indeed, one could choose r′ in non-adjacent form, in which case at most
m + 1 bits are required.

When the long value r is needed in the online step we can simply choose
the coefficients rj randomly subject to the constraint that for 0 � i < m we
have

�(n−i)/m�∑
j=0

rjm+i = r′i

which can be done efficiently. Note that this variant is not covered by our
security analysis since not all possible values of r ∈ TR can arise. A security
analysis of this case is a topic for future research.

Step 2: The computation of r + sc is done using repeated calls to Algorithm 1.
One could also use the Karatsuba idea to speed-up the polynomial multipli-
cation. For more details of improvements see [10].

Step 3: To compute [y]P + [c]I one can reduce y (and c if necessary) modulo
τm − 1. One can also use the standard multiexponentiation and precompu-
tation techniques to speed this up (see [1]).

We now briefly compare τ -GPS with the elliptic curve GPS variant of Sec-
tion 4. The standard GPS has lower bandwidth than τ -GPS and the online
computations are simpler and we expect them to be faster for standard GPS.
The offline computations are quite efficient in both cases (especially when com-
pared with GPS over an RSA modulus). A further advantage of standard GPS
is that the security assurance is statistical zero knowledge rather than compu-
tational zero knowledge. The advantage of τ -GPS is that it does not require
conversion between integers and Frobenius expansions.

26 W.D. Benits Junior and S.D. Galbraith

We now list some extensions and avenues for future research. See [2] for further
details.

– As usual, one can obtain a signature scheme from the τ -GPS scheme using
the Fiat-Shamir heuristic (see [8]). This gives rise to an online/offline sig-
nature scheme which is typically more efficient than the schemes of Shamir
and Tauman [18].

– One can generalise to elliptic curves over larger fields Fp, in which case the
coefficient set is not {−1, 0, 1} but {−(p− 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2}.

– In the case of characteristic greater than two one could use Edwards elliptic
curves [4].

– One can use an intermediate between Girault-Lefranc and standard GPS for
computing s × c efficiently for smaller C.

– Finding more efficient bit representations for τ -adic expansions (possibly by
working with elliptic curves over fields larger than F2) is a topic for future
research.

9 Conclusion

We presented the GPS identification scheme using τ -adic expansions. This speeds
up the running time of the offline steps compared with standard GPS. The
paper shows that cryptographic protocols can be made to operate with Frobenius
expansions instead of integers, and this idea may have wider applications.

We now give our recommendations on efficient identification protocols for
constrained devices. First, since the resources on the device are limited we rec-
ommend using Koblitz elliptic curves (rather than RSA moduli as proposed in
[9, 10]). If there are no constraints on the offline computation time then we
suggest using the standard GPS protocol or Girault-Lefranc. If the offline com-
putation time is also limited then it is natural to improve the performance of
the offline steps using Frobenius expansions. The precise choice of protocol then
depends on the application:

– If bandwidth is the most precious resource then we recommend Schnorr
signatures.

– If computation time of the online stage is the most precious resource then
we recommend the Girault-Lefranc method [10].

– If both bandwidth and computation time are precious then we recommend
the standard GPS scheme [8].

– If code area and/or power consumption are the most precious resources then
we recommend τ -GPS.

References

1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.:
Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics
and its Applications. Chapman & Hall/CRC, Boca Raton (2006)

2. Benits, W.: Applications of Frobenius expansions in elliptic curve cryptography,
PhD thesis in preparation

The GPS Identification Scheme Using Frobenius Expansions 27

3. Benits, W., Galbraith, S.: The Frobenius expansion DLP, preprint
4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:

Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833. pp. 29–50. Springer,
Heidelberg (2007)

5. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user
language. Journal of Symbolic Computation 24, 235–265 (1997)

6. Ebeid, N., Hasan, M.A.: On τ -adic representations of integers. Designs, Codes and
Cryptography 45(3), 271–296 (2007)

7. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryp-
tology 1(2), 77–94 (1988)

8. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature
schemes based on groups of unknown order. J. Crypt. 19(4), 463–487 (2006)

9. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

10. Girault, M., Lefranc, D.: Public key authentication with one (online) single addi-
tion. In: Joye, M., et al. (eds.) CHES 2004. LNCS, vol. 3156. pp. 413–427. Springer,
Heidelberg (2004)

11. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576. pp. 279–287. Springer, Heidelberg (1992)

12. Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic
two. Journal of Cryptology 11(4), 219–234 (1998)

13. Okamoto, T., Katsuno, H., Okamoto, E.: A fast signature scheme based on new
on-line computation. In: Boyd, C., Mao, W. (eds.) Information Security. LNCS,
vol. 2581. pp. 111–121. Springer, Heidelberg (2003)

14. Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentica-
tion and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403. pp. 422–436. Springer, Heidelberg (1998)

15. Rivest, R.L., Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to algorithms,
2nd edn. MIT Press and McGraw-Hill (2001)

16. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435. pp. 239–252. Springer, Heidelberg (1990)

17. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

18. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139. pp. 355–367. Springer, Heidelberg (2001)

19. Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer,
Heidelberg (1997)

20. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptogra-
phy 19(2-3), 195–249 (2000)

Searching for Messages Conforming to Arbitrary

Sets of Conditions in SHA-256

Marko Hölbl1, Christian Rechberger2, and Tatjana Welzer1

1 Faculty of Electrical Engineering and Computer Science, University of Maribor,
Maribor, Slovenia

marko.holbl@uni-mb.si

http://www.feri.uni-mb.si
2 Institute of Applied Information Processing and Communications (IAIK), Graz

University of Technology, Graz, Austria
http://www.iaik.tugraz.at/research/krypto

Abstract. Recent progress in hash functions analysis has led to colli-
sions on reduced versions of SHA-256. As in other hash functions, differ-
ential collision search methods of SHA-256 can be described by means
of conditions on and between state and message bits. We describe a tool
for efficient automatic searching of message pairs conforming to useful
sets of conditions, i. e. stemming from (interleaved) local collisions. We
not only considerably improve upon previous work [7], but also show the
extendability of our approach to larger sets of conditions.

Furthermore, we present the performance results of an actual imple-
mentation and pose an open problem in this context.

Keywords: hash function, SHA-256, conditions, differential collision
search.

1 Introduction

Owing to the recent cryptanalytic results on MD5 [11], SHA-1 [1,9,10] and similar
hash functions, the influence of these attacks on members of the SHA-2 family
(i.e. SHA-224, SHA-256, SHA-384 and SHA-512) [8] is an important issue.

Although SHA-256 is considered as the successor of SHA-1 [8] and hence a
very important cryptanalytic target, it received comparatively little analysis in
from the open cryptographic community [4,5,6,7,12].

Review of previous work. In [7] Mendel et al. presented message pairs for a
collision of SHA-256 reduced to 18 steps and a complex collision characteristic
covering 19 steps. Their attacks is an extension of the analysis by Chabaud
and Joux [2], and Rijmen and Oswald [9]. The 18-step collision in [7] is an
example of using a single local collision. The basic idea of local collisions is to
cancel out differences as soon as possible after they are introduced. All collision
search attacks on members of the SHA-2 family (SHA-224, SHA-256, SHA-384,
SHA-512) as well as its predecessors (SHA, SHA-1, to some extent also MD4,
MD5 and others) use local collisions as their basic building block. The 19-step
characteristic is an example of how to interleave several local collision.

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 28–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.feri.uni-mb.si
http://www.iaik.tugraz.at/research/krypto

Searching for Messages Conforming to Arbitrary Sets of Conditions 29

Discussion of new results. The step transformations employed by all these
hash functions prevent deterministic propagations of differences. However it is
possible to explicitly write out the equations that need to be met such that
differences propagate as expected. Subsequently these equations will be refereed
to as sufficient conditions.

Using the set of sufficient conditions that describe local collisions in SHA-256,
we develop a tool for automatic searching of such messages that conform to these
conditions. In this paper we present details about the tool and give performance
results of efficient searching of messages conforming to large sets of condition
for SHA-256, i. e. several interleaved local collisions simultaneously. In fact the
method is general enough to allow to find a pair of conforming messages for any
consistent set of conditions.

Since many applications did already migrate from SHA-1 to SHA-256, it is
vital to have information on its resistance against various cryptanalytic methods.
The methods presented in this paper will serve as a building block to estimate the
workload for collision attacks on SHA-256 (and all other members of the SHA-2
family for that matter) following newly devised differential characteristics.

Organization of this paper. We give a short review of SHA-256 in Section 2.
Section 3 describes the algorithm in detail. Additionally, it presents details on
the outline of the algorithm (Section 3.3), the data structure used to store the
set of sufficient conditions (section 3.1), ’intelligent’ sorting of sufficient condi-
tions (Section 3.2), details on parts of the algorithm covering direct message
modification (Section 3.3), modification over the Σ function (Section 3.3) and
the correction approach in case of ’special’ sufficient conditions (Section 3.3).
During our development, we came across several problems part of which we
resolved. The details are described in Section 3.4. Furthermore, performance
measurements and comparison with previous results (in [7]) regarding message
searching is given in Section 4. We conclude the paper in Section 5.

2 Review of SHA-256

The following notation will be used through the whole paper (Table 1). We
only give a brief description of SHA-256, to the extent needed for understanding
the paper. A complete description of SHA-256 can be found in [8]. SHA-256 is
an iterated cryptographic hash function based on a compression function that
updates the eight 32-bit state variables A, . . . , H according to the values of 16
32-bit words M0, . . . , M15 of the message. The compression function consists of
64 identical steps as presented in Fig. 1. The step transformation employs the
bitwise Boolean functions fMAJ and fIF , and two GF(2)-linear functions

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x) ,

Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x) .

The i-th step uses a fixed constant Ki and the i-th word Wi of the expanded
message. The message expansion works as follows. An input message is padded

30 M. Hölbl, C. Rechberger, and T. Welzer

Table 1. Notation

notation description

Ai . . . Hi state variables at step i of the compression function
A ⊕ B bit-wise XOR of state variable A and B
A + B addition of state variable A and B modulo 232

ROTRn(A) bit-rotation of A by n positions to the right
SHRn(A) bit-shift of A by n positions to the right

N number of steps of the compression function

Ai CiBi Di FiEi HiGi

0

f M
AJ

f IF
Ai+1 Ci+1Bi+1 Di+1 Fi+1Ei+1 Hi+1Gi+1

1

Ki

Wi

Fig. 1. One step of the state update transformation of SHA-256

and split into 512-bit message blocks. Let ME denote the message expansion
function. ME takes as input a vector M with 16 coordinates and outputs a
vector W with N coordinates. The coordinates Wi of the expanded vector are
generated from the initial message M according to the following formula:

Wi =

{
Mi for 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i < N

Taking a value for N different to 64 results in a step-reduced (or extended)
variant of the hash function. The functions σ0(x) and σ1(x) are defined as fol-
lows: σ0(x) = ROTR7(x)⊕ROTR18(x)⊕SHR3(x) and σ1(x) = ROTR17(x)⊕
ROTR19(x) ⊕ SHR10(x).

3 The Message Search

According to Mendel et al. a 9-step local collision for SHA-256 is possible [7].
Furthermore, they give a characteristic (in Table 2) from which a set of conditions
can be derived (Table 3 from [3]). Employing these conditions we develop a tool
for automatic searching of messages conforming the set of sufficient condition.

Searching for Messages Conforming to Arbitrary Sets of Conditions 31

Table 2. Example of a local collision for SHA-256 [7]

Step W’ A’ B’ C’ D’ E’ F’ G’ H’ HW

01 80000000 80000000 0 0 0 80000000 0 0 0 2
02 22140240 0 80000000 0 0 20040200 80000000 0 0 5
03 42851098 0 0 80000000 0 0 20040200 80000000 0 5
04 0 0 0 0 80000000 0 0 20040200 80000000 5
05 80000000 0 0 0 0 80000000 0 0 20040200 4
06 22140240 0 0 0 0 0 80000000 0 0 1
07 0 0 0 0 0 0 0 80000000 0 1
08 0 0 0 0 0 0 0 0 80000000 1
09 80000000 0 0 0 0 0 0 0 0 0

Table 3. Sufficient conditions for the SHA-256 local collision given in Table 2 [3]

no type condition

01 hard E04,09 = 0
02 hard E04,18 = 0
03 hard E04,29 = 0
04 hard E04,31 = 1
05 hard E05,09 = 1
06 hard E05,18 = 1
07 hard E05,29 = 1
08 hard E07,31 = 0
09 hard E08,31 = 1
10 hard Z02,06 ⊕ W02,06 = 1
11 hard E03,09 ⊕ W02,09 = 0
12 hard Y02,09 ⊕ W02,09 = 1
13 hard E03,18 ⊕ W02,18 = 0
14 hard Y02,18 ⊕ W02,18 = 1
15 hard Z02,20 ⊕ W02,20 = 1
16 hard Z02,25 ⊕ W02,25 = 1
17 hard E03,29 ⊕ W02,29 = 0
18 hard Y02,29 ⊕ W02,29 = 1
19 hard A01,31 ⊕ A00,31 = 0
20 hard E01,31 ⊕ E00,31 = 0
21 hard Z03,03 ⊕ W03,03 = 1
22 hard Z03,04 ⊕ W03,04 = 1
23 hard Z03,07 ⊕ W03,07 = 1
24 hard E02,09 ⊕ E01,09 = 0
25 hard Z03,12 ⊕ W03,12 = 1
26 hard Z03,16 ⊕ W03,16 = 1
27 hard E02,18 ⊕ E01,18 = 0
28 hard Z03,18 ⊕ W03,18 = 1
29 hard Z03,23 ⊕ W03,23 = 1
30 hard Z03,25 ⊕ W03,25 = 1
31 hard E02,29 ⊕ E01,29 = 0
32 hard A03,31 ⊕ A01,31 = 0
33 hard A04,31 ⊕ A03,31 = 0
34 hard Z06,06 ⊕ W06,06 = 1
35 hard Z06,20 ⊕ W06,20 = 1
36 hard Z06,25 ⊕ W06,25 = 1
37 hard E05,31 ⊕ E04,31 = 0
38 hard E03,31 ⊕ Z03,30 ⊕ W03,30 = 1
39 easy W02,09 ⊕ W06,09 = 1
40 easy W02,18 ⊕ W06,18 = 1
41 easy W02,29 ⊕ W06,29 = 1

An important new aspect of our work is that we employ a particular order in
which conditions are considered. In this section the data structure for sorting the
sufficient conditions, the prerequisites for the tool (sorting of sufficient condition)
and details about the search algorithm are presented.

32 M. Hölbl, C. Rechberger, and T. Welzer

Table 4. The matrix data structure for the sufficient conditions

index saved value

1 sufficient condition 1 - message word

2 sufficient condition 1 - step

3 sufficient condition 1 - bit

4 sufficient condition 2 - message word

5 sufficient condition 2 - step

6 sufficient condition 2 - bit

7 sufficient condition 3 - message word

8 sufficient condition 3 - step

9 sufficient condition 3 - bit

10 sufficient condition 4 - message word

11 sufficient condition 4 - step

12 sufficient condition 4 - bit

13 sufficient condition 5 - message word

14 sufficient condition 5 - step

15 sufficient condition 5 - bit

15 right side value

3.1 The Data Structure for Storing Sufficient Conditions

In Table 3 Z and Y denote the outputs of Σ0(x) and Σ1(x). Z and Y can be
written in expanded form as follows:

Zi,j = Ai,j+2 ⊕ Ai,j+13 ⊕ Ai,j+22,
Yi,j = Ei,j+6 ⊕ Ei,j+11 ⊕ Ei,j+25.

The expanded form of sufficient conditions is used by the search tool which
makes the search easier.

After the sufficient conditions have been expanded, we defined a matrix data
structure for storing the sufficient conditions. The matrix is of size 16 × nrSC,
where nrSC is the number of sufficient conditions. The line of a matrix is of
length 16, because of potential maximum of 5 parts of a sufficient condition:

e.g. E03,31 ⊕ Z03,30 ⊕ W03,30 = 1 is expanded to
E03,31 ⊕ E03,05 ⊕ E03,10 ⊕ E03,24 ⊕ W03,30 = 1.

Each part of the sufficient condition (which consist of message word, step and bit)
is stored in one array element. The total of 16 is calculated due the the following
formula (maximum number of sufficient conditions is 5): 5 sufficient conditions ×
3 array elements for storing one sufficient condition + right side value = 16.
For better readability the matrix structure is depicted in Table 4.

3.2 Sorting of Conditions

The order with which conditions are dealt with has an impact on the runtime
of the algorithm we are about to propose. Here we describe the criteria that are

Searching for Messages Conforming to Arbitrary Sets of Conditions 33

useful to determine a good order for the conditions. The priorities of the rules
bellow are defined by their sequence numbers (1 is applied first, 2 second, etc.).

1. Sufficient conditions are sorted in such a way, that parts with larger step
numbers are sorted before parts with lower ones: Ai,j ⊕ Ai+1,j = v is trans-
formed to Ai+1,j ⊕ Ai,j = v due to the fact that Ai+1,j includes step i + 1
and Ai,j step i. This must be done for the whole set of sufficient conditions.

2. Sufficient conditions are sorted together as to the step of their first part:
Ei+1,j ⊕Ei,j = v and Ei+1,j ⊕Ei,j+1 = v are sorted together regarding they
both apply for step i+1 (Nevertheless that they also include a part applying
for the step i).

3. Shorter sufficient conditions are sorted before longer ones. Namely, shorter
sufficient condition include less degrees a freedom regarding the modification
possibilities: Ei,j ⊕ Wi,j = v is sorted before Ei,j ⊕ Zi,j ⊕ Wi,j = v.

4. Sufficient conditions consisting of parts including state update variables E
are sorted before those including A. Example: Ei,j⊕Wi,j = v is sorted before
Ai,j ⊕ Ai,y = v.

3.3 The Search Algorithm

After the sufficient conditions have been transformed into the form described
in 3.1 and sorted according to the rules in section 3.2, we execute the search
algorithm. It includes several steps which are summarized below and further
explained into detail in the sequel sub-sections.

check current sufficient condition SCk

if (current SCk not fulfilled)
if (the current part of SCk includes Wi,j)

correct appropriate bit in Wi,j

if (current part of SCk includes Ai,j or Ei,j)
correct appropriate bit in Wi−1,j

if (direct correction is not possible (modification of Wi−1,j resp Wi,j)
if (current part of SCk includes Ai,j)

correct over Σ0 by correcting Wi−2 (2 steps back)
or
correct the appropriate register of the IV

if (current part of SCk includes Ei,j)
correct over Σ1 by correcting Wi−2 (2 steps back)
or
correct the appropriate register of the IV

if (’special’ sufficient condition)
correct Wi−5 by going 5 steps back
or
correct the appropriate register of the IV

else
generate a new random message and start from the beginning

34 M. Hölbl, C. Rechberger, and T. Welzer

As can be seen from above, we firstly try to correct messages directly in order to
fulfill a specific sufficient condition. In case this is not possible, we try indirect
corrections over Σ function. Nevertheless, we still correct message word W , but
we apply corrections to different bits and have to go two steps back (Wi−2).
When we are dealing with so-called ’special’ sufficient conditions, we have an
additional possibility to change W 5 steps back (i.e. Wi−5). If none of the above
corrections can be applied, we have to generate a new random messages and
start the algorithm from the beginning.

Direct corrections. Direct correction of messages is applied to every part
of a particular sufficient conditions SCk. In case of sufficient condition Ei,j ⊕
Ei,j+1 ⊕ Ei,j+2 ⊕ Ei,j+3 ⊕ Wi,j+4 = v, the algorithm tries to correct Wi−1,j ,
Wi−1,j+1, Wi−1,j+2, Wi−1,j+3 or Wi−1,j+4. When flipping the appropriate bit,
it checks if the the flip influences any previous conditions SC1 . . . SCi−1. If so,
the flip is undone. This is only true if we are correcting A or E parts of sufficient
conditions, because we have to go one step back. When dealing with part of
sufficient conditions which include message word Wi (e.g. Wi,j+4), the check is
only done in cases where i < step, because we are flipping bits of messages word
applying to previous steps. In case where i = step checking is redundant, because
Wi only influence successive steps.

if (part of SCk is of type Wi,j)
if (i = step)

correct Wi,j without checking
if (i < step)

if (bit flip in Wi,j influences SC1 . . . SCi−1)
undo bit flip

else
correct Wi,j

if (part of SCk is of type Ai,j or Ei,j)
if(bit flip in Wi−1,j influences SC1 . . . SCi)

undo bit flip
else

correct Wi−1,j

Corrections over SIGMA. In case where no direct correction is possible,
corrections over Σ functions are employed. If we wanted to correct Ei,j over
Σ1, the following messages word are potentially corrected: Wi−2,j+6, Wi−2,j+11

or Wi−2,j+25. As the bit flip is applied, the tool checks if the bit flip influences
any previous conditions for steps 1 . . . s. If so, the flip is undone. In case of A
parts, the corrections is done similarly, except for the following change: messages
word that corrected are Wi−2,j+2, Wi−2,j+13 or Wi−2,j+22 (because function Σ0

is employed).

if (current SCk part = A part)
if (bit flip in Wi−2,j+2, Wi−2,j+13 or Wi−2,j+22 influence SC1 . . . SCi)

do not correct

Searching for Messages Conforming to Arbitrary Sets of Conditions 35

else
correct either Wi−2,j+2, Wi−2,j+13 or Wi−2,j+22

if(current SCk part = E part)
if (bit flip in Wi−2,j+6, Wi−2,j+11 or Wi−2,j+25 influence SC1 . . . SCi)

do not correct
else

correct either Wi−2,j+6, Wi−2,j+11 or Wi−2,j+25

Corrections of ’special’ sufficient conditions. When dealing with ’special’
sufficient conditions, we apply an additional correcting approach besides the
once mentioned earlier. In case of an E part sufficient condition, corrections are
done 5 steps back. When this is not possible, the corresponding register in the
initialization vector (IV) is corrected - i.e. with regard to the current step we
correct either register A, B, C or D. Registers of the IV are corrected as follows:

– register A in the IV is corrected when step = 4,
– register B in the IV is corrected when step = 3,
– register C in the IV is corrected when step = 2,
– register D in the IV is corrected when step = 1,

When the step i ≥ 5, corrections on Wi−5,j are employed. As in the previous cases
the effect of bit flip on conditions for steps 1 . . . s − 4 must be checked. In case
of an A part ’special’ sufficient condition, we flip bits in Wi−1, j. Additionally,
influences on conditions for steps 1 . . . s have to be checked.

if (A part)
if (bit flip in Wi−1,j influence SC1 . . . SCi)

do not flip bit
else

correct Wi−1,j

if (E part)
if (1 ≤ step ≤ 4)

correct D, C, B or A in the IV
if (step ≥ 5)

if (bit flip in Wi−1,j has influence on conditions for steps 1 . . . s − 4)
do not flip bit

else
correct Wi−5,j

3.4 Problems Encountered during Development of the Tool

Firstly, SHA-256 employs a complex step update operation (Fig. 1). It simulta-
neously updates two state variables, thus makes message search difficult. Hence,
we have to consider that message word Wi influences both state variables Ai

and Ei.
Secondly, particular sufficient conditions interfere with each other. A specific

bit of a state variable is included in multiple sufficient conditions in the same step.

36 M. Hölbl, C. Rechberger, and T. Welzer

An example two such conditions are sufficient conditions A01,31 ⊕A00,31 = 0 and
E01,31 ⊕E00,31 = 0. This limits the capabilities for bit changing through message
word modification. We tried to solve this problem by checking the influence of bit
flips on previous sufficient conditions which were already fulfilled. An exception
are bit overlaps of message words Wi and state variables Ai resp. Ei. In this case,
the specific bits are changed, because Wi has influence on the successive step.

Thirdly, some sufficient conditions include not only state variable conditions
but also message word conditions which influence sufficient conditions in succes-
sive steps. An example is sufficient condition Z02,06 ⊕W02,06 = 1. When making
message modification of Wi in successive steps we also have to consider these.
In case we change the message word Wi (step i), we would have to check the
sufficient conditions in the previous step (namely i − 1). Thus, this limits the
message modification possibilities.

Fourthly, there are ’special’ types of sufficient conditions, e.g. (E03,09⊕W02,09 =
0). This type of conditions include a state variable from the current (e.g. Ai resp.
Ei) step and a message word Wi − 1 from the previous step. In this case it is
impossible to modify message word from step i − 1 in order to flip a bit in step
i. In such cases we try to correct over Σ functions and by going 5 steps back (as
described in section 3.3.

In some special cases bit carries play an important role. Nevertheless bit i is
changed in Wi, which should influence the same bit in the state variable of step
i+1, the flip also influences other bits. We solve such problems by checking influ-
ences of bit flips on sufficient conditions and undo them if necessary.

4 Performance

The tool was tested on 4 sets of conditions corresponding to 1 . . . 4 local collisions.
It should be noticed, that so-called easy condition (conditions including only mes-
sage words W and no state update variables A or E) were not counted in the per-
formance results as they are easy to fulfill on beforehand. Therefore the actual
number of sufficient conditions ranges from 38 . . .92. We derived these sets from
the original set of 41 by Mendel et al. ([7]). The performance measurements are
summarized in table 5.

For smaller sets, the time taken to find a message is low (5 ms). As the number
of sufficient conditions gets larger the time complexity raises very fast. For the
largest set of conditions, the time complexity is approximately 2, 5 minutes. Simi-
larly, the number of randomly generated messages increases from 7 to 183.323 and
the number of SHA-256 step operations needed to find a message from 2.299 for
40 sufficient conditions to 1.956.071 for 100. The number of randomly generated
messages refers to the number of messages which had to be generated if we start
from the beginning (if not other correction was possible). For further details the
reader should refer to Section 3.3.

In comparison with previous results by Mendel et al. [7], we observe a large im-
provement of searching speed. Furthermore our results are first results on multiple

Searching for Messages Conforming to Arbitrary Sets of Conditions 37

Table 5. Performance measurements

our results results of
[7]

number of sufficient conditions 38 56 74 92 38

number of randomly generated
messages

7 200 2.211 183.323 /

number of SHA-256 step opera-
tions

2.229 60.782 922.780 1.956.071 /

time taken [s] 0, 005 0, 151 1, 988 154, 266 0, 5

sets of conditions for SHA-256 and open up possibilities of searching messages
conforming to even larger sets of conditions.

5 Conclusion and Outlook

We presented the problems of finding message pairs conforming to simple char-
acteristics for SHA-256 and their respective conditions. SHA-256 is the only hash
function within the MD4 family of hash functions in which this problem seems to
be hard even in the first steps. As a main reason, we identified cyclical dependen-
cies between condition due to the fact that two chaining variables are updated in
every step instead of only one in all previous designs.

We significantly improve upon previous work [7] by 1) tracking of bit flips back-
wards through building blocks like Σ and 2) intelligent sorting of conditions. The
results still indicate an exponential growth in runtime(albeit with a now much
lower constant than before). It is an open question if practical methods with non-
exponential runtime can be found.

Acknowledgements. We would like to thanks the anonymous reviewers for their
helpful remarks and questions.

References

1. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

2. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

3. De Cannière, C., Mendel, F., Pramstaller,N., Rechberger, C., Rijmen, V.: SHA Eval-
uation Report for CRYPTREC, January 21 (2006)

4. Gilbert, H., Handschuh, H.: Security analysis of SHA-256 and sisters. In: Matsui, M.,
Zuccherato, R. (eds.) SAC 2003. LNCS, vol. 3006. pp. 175–193. Springer, Heidelberg
(2003)

5. Hawkes, P., Paddon, M., Rose, G.G.: On corrective patterns for the SHA-2 family.
Cryptology ePrint Archive, Report /207 (August 2004), http://eprint.iacr.org/

http://eprint.iacr.org/

38 M. Hölbl, C. Rechberger, and T. Welzer

6. Matusiewicz, K., Pieprzyk, J., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis
of simplified variants of SHA-256. In: Proceedings of WEWoRC 2005, LNI P-74, pp.
123–134 (2005)

7. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047. pp. 126–143. Springer,
Heidelberg (2006)

8. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure Hash
Standard (August 2002), http://www.itl.nist.gov/fipspubs/

9. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376. pp. 58–71. Springer, Heidelberg (2005)

10. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621. pp. 17–36. Springer, Heidelberg (2005)

11. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494. pp. 19–35. Springer, Heidelberg (2005)

12. Yoshida, H., Biryukov, A.: Analysis of a SHA-256 variant. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897. pp. 245–260. Springer, Heidelberg (2006)

http://www.itl.nist.gov/fipspubs/

Efficient Hash Collision Search Strategies on

Special-Purpose Hardware

Tim Güneysu, Christof Paar, and Sven Schäge

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{gueneysu,cpaar}@crypto.rub.de, sven.schaege@nds.rub.de

Abstract. Hash functions play an important role in various crypto-
graphic applications. Modern cryptography relies on a few but suppos-
edly well analyzed hash functions which are mostly members of the
so-called MD4-family. This work shows whether it is possible to sig-
nificantly speedup collision search for MD4-family hash functions using
special-purpose hardware. A thorough analysis of the computational re-
quirements for MD4-family hash functions and corresponding collision
attacks reveals that a microprocessor based architecture is best suited
for the implementation of collision search algorithms. Consequently, we
designed and implemented a (concerning MD4-family hash-functions)
general-purpose microprocessor with minimal area requirements and,
based on this, a full collision search unit. Comparing the performance
characteristics of both ASICs with standard PC processors and clus-
ters, it turns out that our design, massively parallelized, is nearly four
times more cost-efficient than parallelized standard PCs. Although with
further optimizations this factor can certainly be improved, we believe
that special-purpose hardware does not provide a too significant benefit
for hash collision search algorithms with respect to modern off-the-shelf
general-purpose processors.

Keywords: Hash functions, Special-purpose Hardware, Crypto Attacks.

1 Introduction

Many basic and complex cryptographic applications make extensive use of cryp-
tographic hash functions. They offer valuable security properties and computa-
tional efficiency. In combination, these features are particularly interesting for
accelerating asymmetric cryptographic protocols. Usually, the security of a cryp-
tographic protocol is dependent on all its elements. If just one primitive can be
found with security flaws, the whole protocol might become insecure. Finding
successful attacks against widespread cryptographic hash functions would affect
a variety of popular security protocols and have unforeseeable impact on their
overall security [11, 12].

In February 2005 Wang et al. presented a new attack method against the
popular Secure Hash Algorithm (SHA-1). It reduces the computational attack
complexity to find a collision from 280 to approximately 269 compression function

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 39–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{gueneysu,cpaar}@crypto.rub.de
sven.schaege@nds.rub.de

40 T. Güneysu, C. Paar, and S. Schäge

evaluations [22] leading to the announcement that SHA-1 has been broken in
theory. In 2006, it was further improved to about 262 compression function calls
[24]. However, still this attack is supposed to be theoretical in nature, because
the necessary number of computations is very high.

For practical attacks, all theoretical results have to be mapped to an exe-
cutable algorithm, which subsequently has to be launched on an appropriate
architecture. Basically, there are two ways to design such architectures, namely
standard and special-purpose hardware.

Generally, both FPGA and ASIC architectures require higher development
costs than PC based systems. However, at high volumes special-purpose hard-
ware is usually superior to PC clusters with respect to cost-efficiency.

The main issue of this work is whether it is possible to develop alternative
hardware architectures for collision search which offer better efficiency than the
aforementioned standard PC architectures. Given a certain amount of money,
which hardware architecture should be invested in to gain best performance
results for collision search and make practical attacks feasible?

Our solution is a highly specialized, minimal ASIC microprocessor architec-
ture called μMD. μMD computes 32-bit words at a frequency of about 303 MHz.
It supports a very small instruction set of not more than 16 instructions and,
in total, can be fit on an area of just 0.022 μm2. For collision search, μMD is
connected via a 32-bit bidirectional bus to an on-chip memory and I/O module,
resulting in a standalone collision search unit called μCS.

In literature, there are a few publications that deal with practical issues of
collision search algorithms [3, 4]. Most of the work is dedicated to rather the-
oretical problems. Current implementations of MD5 collision search algorithms
for PC systems are given in [8, 10, 20]. Joŝĉák [8] compares their performances
in detail. However, other types of architectures are not considered. To our best
knowledge, this is the first work that analyzes implementation requirements for
collision search algorithms from an algorithmic and architectural perspective.

This work is structured as follows. Section 2 gives an introduction to the basic
features of MD4-family hash functions. In contrast to this, Section 3 gives an
overview over current attacking techniques on MD4-family hash functions. In
Section 4, we derive from these techniques concrete design and implementation
requirements for our target architecture. Subsequently, in Section 5, we give
a detailed description of our final collision search architecture. In Section 6,
we then develop a metric to adequately compare the performances of different
hardware circuits for collision search. This metric is then applied to our final
architecture, providing detailed information on its performance. We close with
a short conclusion.

2 Hash Functions of the MD4-Family

A (cryptographic) hash function is an efficiently evaluable mapping h which
maps arbitrary-sized messages to fixed-size hash values [7, 14]:

h : {0, 1}∗ → {0, 1}n.

Efficient Hash Collision Search Strategies on Special-Purpose Hardware 41

There are at least three features a secure hash function is expected to have;
(first) preimage resistance, second preimage resistance, and collision resistance.
Successful attacks on collision resistance, i.e. finding two distinct messages that
map to the same hash value, are computationally much more promising, hence
most attacks in the literature focus hereon.

To cope with variable input length, hash functions of the MD4-family pad the
input message M such that it can be divided into fixed-size message blocks

M = M1|M2| . . . |Mq−1,

where each block Mi for i = 1, . . . , q − 1 is r bits long. These blocks are then
successively processed by a so called compression function f .

f : {0, 1}n × {0, 1}r → {0, 1}n

To impose chaining dependencies between successive message blocks the com-
pression function also processes the output, i.e. the so-called chaining value cv,
of the preceding computation. The first chaining value cv1 is a fixed initialization
vector IV . The output of the computation of the last message block is defined
to be the output of the entire hash function. Hash functions of the MD4-family
differ mainly in the design of their compression function and their initialization
vector.

cv1 = IV

cvi+1 = f(cvi, Mi), 1 ≤ i ≤ q − 1
h(M) = cvq

Hash functions of the MD4-family are constructed in line with the Merkle-
Damg̊ard Theorem [15, 16]. This theorem delivers a useful security reduction
stating that the security of a hash function can be concluded from the security
of its compression function: if it is computationally infeasible to find two distinct
pairs of inputs to a compression function that map to the same output (pseudo
collision), then it is hard to find a collision of the hash function. Therefore,
most attacks on hash functions of the MD4-family actually target compression
functions. However, there is no general way known to exploit a single (random)
pseudo collisions.

Practically, there are two ways to find useful colliding messages. They differ in
the number of message blocks required to generate a collision. Single block colli-
sions generate a collision using a single pair of distinct message blocks. Contrarily,
multi-block collisions use several pairs of messages that, successively computed
in a predefined order, result in a colliding output. Usually, the intermediate
outputs of the compression function only differ in very few bit positions. Such
situations are referred to as near collisions [1].

3 Attacks on MD4-Family Hash Functions

Generally, there are two types of attacks on MD4-family hash functions, generic
and specific attacks.

42 T. Güneysu, C. Paar, and S. Schäge

Generic attacks are attacks that are applicable to all (even ideal) hash func-
tions. Using a generic attack for finding a collision for a hash function with
output size n requires computational complexity of O(2

n
2). This result is due to

the so-called birthday attack [25]. The birthday attack basically exploits a prob-
abilistic result that is commonly known as the birthday paradox or the birthday
collision.

Specific attacks try to exploit the knowledge of the inner structure of the
hash function and its inherent weaknesses. In this way, it is possible to construct
collisions to a certain extent. Specific attacks are always dedicated to a single
hash function. However, there are some general methods to develop such attacks
on MD4-family hash functions.

At present, successful attacks can be divided into two phases. The first phase
launches a differential attack [2] on the inner structure of the compression func-
tion [5]. Essentially, this method exploits the fact that collisions can adequately
be described using differences. A collision is just a pair of messages with a dif-
ference unequal to zero that maps to a zero output difference. Differences may
propagate through parts of the compression function in a predictable way. There-
fore, the goal is to find conditions under which useful differences propagate with
a high probability. All these identified conditions, the so-called differential path,
are then mapped into a search algorithm. Assuming a random traversal over the
differential path, the number of conditions reflects the search complexity of the
algorithm.

The second phase of a specific attack consists of utilizing the remaining free-
dom of choice for the message bits. Of course, this freedom can be used to
predefine parts of the input messages. However, another and very popular appli-
cation is to exploit it for a significant acceleration of the collision search. In the
literature one can find single-step modifications [23], multi-step modifications
[9, 13, 19, 23], and tunneling [10]. Roughly speaking, these techniques consist of
determining bits in the computation path such that, if altered in an appropriate
way, they do not influence preceding, yet fulfilled conditions. Randomly choosing
new message pairs and checking if all conditions up to this position are satisfied
can mean high computational costs and have a high probability of failure. In-
stead, by exploiting these methods, it is possible to deduce new message pairs
with the same characteristic based on a single pair of messages satisfying all con-
ditions so far. Usually this deduction is computationally much cheaper and less
probable to fail. Advantageously, the number of new messages increases expo-
nentially with the number of found bits. This provides for a significant increase
in efficiency.

4 Architecture Requirements

When analyzing MD4-family hash functions and their corresponding collision
search algorithms, one can find several important hints how a suitable hardware
architecture should be designed.

Efficient Hash Collision Search Strategies on Special-Purpose Hardware 43

The computation process starts by randomly choosing two messages with a
fixed difference, what practically rises the need for a pseudo random number
generator. Then, it applies computations of the compression function (step iter-
ations) to the state variables. Since hash functions of the MD4-family have been
developed also with respect to PC based architectures, all step computations
require similar operation sets. By implementing a few boolean, arithmetic and
bit rotation operations, all requirements of the entire MD4-family can be met.

However, the collision search algorithms require additional arithmetic and
flow operations. Instead of choosing new messages and recomputing all steps so
far, the aforementioned acceleration techniques rather adapt new messages to
fulfill conditions. Therefore, step equations have to be rearranged and solved
for the message bits. For MD4-family hash functions, such rearrangements are
not difficult. However, they require additional operations like the subtraction
operator, which is usually not used in the original hash function specifications.

Subsequent to many computations, single data dependent bits are compared
with conditions of the differential path. When satisfied, the algorithm proceeds,
otherwise it returns to an earlier position in the computation path. Computa-
tionally, this requires (conditional) branches.

Hash functions of the MD4-family have been developed for fast software exe-
cution on standard PCs [18]. They operate on data units with popular processor
word lengths 32-bit or 64-bit, and all their operations consist of typical processor
instructions. As a consequence, the target hardware for the collision search algo-
rithm should also work on 32-bit or 64-bit words. There are frequent operations
in the hash function, like modular additions and bit rotations that do not only
operate on a single pair of bits but propagate changes among neighboring bits as
well. In contrast to bit-wise defined operations, like AND, OR, NOT, the actual
effect of such operations heavily depends on the processor word length. When
operands are divided up into subparts (e.g., chunks of 8 bits), the original im-
pact across several bit positions may require additional processing. To guarantee
compliance with the specified hash algorithm (or its collision search algorithm)
these results have to be corrected in a post processing step.

Collision search algorithms can hardly be parallelized on lower hierarchical
levels due to their strictly sequential structure. Useful situations are confined to
operations within the step function where the evaluation of two modular addi-
tions can be computed concurrently. In almost all other cases this is not possible,
since most operations also process the result of their immediate predecessor.

Besides multi-step modifications, we believe that tunneling will become a
standard tool for improving collision search based on differential patterns. Un-
fortunately, tunneling highly parameterizes the computation path using loop
constructions. This requires efficient resource reuse. In combination with fre-
quent instruction branching, this fact renders hardware acceleration techniques
like pipelining hardly useful.

For MD5 [18], there exist several efficient collision search algorithms [8, 10, 20].
Joŝĉák [8] and Stevens [21] compare their performances in more detail, where
Klima’s collision search (CS) approach [10] turns out to be one of the fastest.

44 T. Güneysu, C. Paar, and S. Schäge

In contrast to most of the other ones, this algorithm extensively makes use of
tunneling. CS is divided into two parts, reflecting the structure of a multi col-
lision. The first part searches for a near collision of the compression function,
given the standard initialization vector. The second part generates an appropri-
ate pseudo collision. The algorithm CS uses the standard initialization vector
IV for MD5 although it can easily be altered to work with distinct initialization
vectors IV ′ �= IV . The differential path used in this algorithm is fixed and based
on [13].

5 Architecture Design

5.1 Design Process

The development process can be divided into several phases. In the first step
we designed the basic processor μMD using a VHDL integrated development
environment.

For a verification and performance analysis, we additionally required appro-
priate memory devices containing the program code and constants and offering
enough space for storing temporary variables. We denote the assembly of those
components with μCS.

For simulation purposes, we developed tools to automatically load the ROM
modules of μCS with the content of dedicated binary files. To generate these
files, we had to develop a dedicated assembly language. In the next step we
had to program ACS, the assembly version of CS, to gather information on the
required memory space of μMD and determine some basic facts about its runtime
behavior. Unfortunately, it is currently not possible to thoroughly analyze ACS
long-run behavior in the simulation model for gaining average values. It is even
hardly possible to observe a single collision, when the algorithm is once started.

5.2 Microprocessor Design

For the given reasons, we developed a minimal 32-bit microprocessor architecture
μMD for fast collision search. It uses a very small instruction set, consisting
of sixteen native commands, see Table 5 in the Appendix. In particular, this
is sufficient for the execution of all algorithms of the MD4-family. Moreover,
it suffices for the execution of current and (probably) future collision search
algorithms, like CS. For the choice of our instruction set we compacted the results
from Section 4 and used a processor reference design for μMD based on [17].
Furthermore, we designed the instruction set to maximize reuse of program code
wherever possible. As a result, we also implemented a sufficiently large hardware
stack and indirect load and store operations. In combination, they provide a
comfortable access to parameterized subfunctions.

5.3 Collision Search Unit

μCS is our final integrated circuit for collision search. Roughly spoken, it consists
of a single μMD unit, additional memory and I/O logic. To start a computation,

Efficient Hash Collision Search Strategies on Special-Purpose Hardware 45

Address Multiplexer

ALU
Instruction
Decoder

Stack [1]

Stack [3]

Stack [2]

z-
flag

Accumulator
Instruction

Register

Instruction
Multiplexer

Control Unit

LDSTACK

INC
LDPC

L
D

O
P

L
D

A
L

U

Z
ST

A
T

E

A
C

C
U

O
U

T
L

D
A

C
C

U

DO
PUSH

RNW

ADDRESS BUS

DATA BUS

ZALU

32

4

13

32

PCOUT

1732 32

13

13

13

13

13

13

Program Counter

Fig. 1. Simplified architecture of collision search processor μMD

µMD

µCS
32

32

CLK

RST

RDY

Data

Addr.

RNW

WE

WE

WE

17

11

Data

Addr.

32

9

Data

Addr.

32

2

Data

Addr.

32

8

Data

Addr.

32 I/O

Memory
Controller

Program
ROM

RAM
IO

Controller

Constant
ROM

PRNG

Fig. 2. Simplified schematic of collision search unit μCS

it requires an initial seed for the integrated PRNG. By carefully choosing this
seed, we can guarantee that each μCS unit computes a different partition of
the entire search space. When a collision is found, the corresponding message
words are returned. Except for the PRNG initialization phase and the collision
output sequence, there is no further I/O communication required. This decisively
supports parallelization approaches making the overhead for additional control
logic negligible. Figure 2 shows a simplified schematic of the collision search unit.

6 Implementation

Compared to general-purpose processors, μMD is small. μMD requires about
6k gate equivalents (GE), μCS roughly 210k GE. In an FPGA implementation,
it uses about 9 percent (498 slice flip flops, 1266 4-input look-up-tables) of the
slices of a low-cost Spartan3 XC3S1000 FPGA. For this device, the final clock
frequency was reported with 95 MHz after synthesis.

46 T. Güneysu, C. Paar, and S. Schäge

6.1 Collision Search ASIC

Synthesizing μCS for standard cells (UMC 130 nm) requires 0.960 mm2 chip
area. The sole processor μMD can be realized with only 0.027 mm2 what is just
2.77% of the chip area for the full μCS unit.

As we expected, the vast majority of chip area is used for the implementation
of memory logic.

For comparison reasons, we also tested collision search on a standard PC
processor. We used a Pentium 4, 2.0 GHz machine (Northwood core) with ap-
proximately 55 million transistors on a die size of 146 mm2 build in 130 nm
circuit technology [6].

We define time T as the average time for a single unit to find a collision.
Unfortunately, μMD and μCS have not been built yet so simulated values will
be used instead. For μCS this measure is computed based on the average number
C of cycles required to find a collision and the corresponding frequency f . Instead
of f we can also use the reciprocal clock cycle period t.

T =
C

f
= C · t

When implemented in our dedicated assembly language, the execution of CS in
the complete simulation model is too inefficient to achieve reliable values. In the
following, we will estimate the average number of clock cycles needed to find a
collision for MD5. As a reference we use the average number of cycles needed by
the Pentium 4 PC.

Although directly implemented in assembly, we believe the required average
number of clock cycles for the execution of CS to be higher than that of the
original CS being implemented in the C programming language. This is due to
two major points.

Firstly, in contrast to standard PC processors, most μMD instructions con-
sume two clock cycles. We assume that this fact roughly doubles the number of
required clock cycles compared to the Pentium 4.

Secondly, unlike Pentium 4 systems, μMD does not make use of instruction
pipelining for memory access operations. This means, that store and load op-
erations cause the ALU of μMD to halt until their completion. On μCS, these
operations are not only used to load and store data but also to fetch new instruc-
tions and to control the I/O including the PRNG. We believe this fact increases
the number of required clock cycles by a factor of four.

6.2 Performance Comparison

Altogether, we estimate CS executed on μMD to require roughly eight times
more clock cycles than on a Pentium 4. Assuming equal production constraints
(same price per chip area, see Equation 1), each of our solutions is much more
effective than a comparable Pentium 4 architecture when comparing the area-
time product P = A · T .

Efficient Hash Collision Search Strategies on Special-Purpose Hardware 47

Table 1. Processor performance - average time T to find a collision

Architecture Cycles C Frequency f Period t Time T

μCS 480·109 cycles 102.9 MHz 9.71 ns 4660.8 s

μMD 480·109 cycles 228.8 MHz 4.37 ns 2097.6 s

Pentium 4 60·109 cycles 2 GHz 0.5 ns 30 s

Table 2. Processor comparison for area-time product P

Architecture Time T Area A P = A · T
μMD 2097.6 s 0.027 mm2 55.9

Pentium 4 30 s 146 mm2 4380

Table 2 compares the performance characteristics of μMD with those of a
standard Pentium 4 processor. It is obvious, that μMD has better characteristics
than the Pentium 4 processor. The performance of μMD for collision search is
about 62 times better than the Pentium’s. When we use an off-the-shelf standard
PC for parallelization, we have to consider the costs for a motherboard with
a network card that supports Preboot Execution Environment (PXE) (e 80),
fan (e 12), RAM (e 25), power supply (e 25), additional equipment for the
network infrastructure (network cables, switches), and a control server. Using
these standard PCs, the processors are connected to each other by standard
network equipment. Altogether, we believe the costs to be approximately e 200,
whereas we assume the Pentium 4 2.0 GHz to have a price of roughly e 50
leading to an overall parallelization overhead Op of 300%. From a Pentium 4
processor, we estimate the price per chip QA area to be

QA =
50 e

146 mm2 = 0.343
e

mm2
. (1)

The parallelization of μCS however, requires only few additional logic per unit.
In combination with low-throughput bus connection of μCS units, this provides
an optimal scaling solution without noticeable additional costs. For our solution,
we assume the area overhead to be almost negligible (less than 5%).

Based on these considerations, we believe that our full collision search solu-
tion is noticeably more effective for collision search than parallelized Pentium 4
processors.

Table 3 presents our estimates for the design where Qs reflects the price for a
single standalone unit of the corresponding architecture. In contrast, Qp is the
average price for a single unit after parallelization.

Obviously, for finding a single MD5 collision per second one has to spend
e 6000 in (30) parallelized standard PCs (see Figure 3). Assuming similar con-
straints for manufacturing ASICs and excluding any NRE costs, the asset cost
for the same performance invested in parallelized μCS units is about e 1600.
So, it is almost four times more cost-efficient than the Pentium 4 standard PC
architecture (see Table 4).

48 T. Güneysu, C. Paar, and S. Schäge

Table 3. Comparison of Pentium 4 and μCS architectures

Metric Pentium 4 μCS

Costs per area QA 0.343 e

mm2 0.343 e

mm2

Chip area A 146 mm2 0.960 mm2

Chip cost Qs 50 e 0.33 e
Overhead Op 300 % 5 %

System cost Qp 200 e 0.35 e
AT-Product P 4380 4472.6

Time T per unit 30 s 4660.8 s

Costs R for a collision per second 6000 e 1608.40 e

Table 4. Performance ratio of μCS compared to Pentium 4

Architecture Costs R for a collision per second Ratio R/RP4

Pentium 4 PC 6000 e 100 %

μCS 1608.4 e 26.8 %

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

s econds to find a collis ion

co
st

s
in

 €

Pentium 4
uCS

Fig. 3. Costs for equipment to find a MD5 collision per time

6.3 Estimates for SHA-1

We believe that a comparable implementation of a SHA-1 collision search algo-
rithm in dedicated and parallelized collision search units has even better perfor-
mance characteristics. This is mainly due to the fact, that SHA-1 needs much
less constants than MD5, thus radically reducing the costs for (constant) ROMs.
We assume that a collision search algorithm for SHA-1 can be programmed sim-
ilarly compact. Although SHA-1 spans more steps, what surely the size of the
corresponding collision search algorithm, the program code will not considerably
reflect this. This can be concluded from the unique implementation of subrou-
tines which can be called on demand using only few additional instructions.

The average number of required clock cycles to find a collision is primarily de-
pendent on the available theoretical results. Currently, attacks on SHA-1 have a

Efficient Hash Collision Search Strategies on Special-Purpose Hardware 49

complexity of about 262 compression function evaluations. For practical attacks,
we believe this number to be still very large.

Given e 1 million, an attacker can buy enough standard PC equipment to
find a MD5 collision within 6 ms on average based on the assumptions above.
Invested in our collision search unit it would take only 1.61 ms. In [8], finding
MD5 collisions based on CS has been reported to have a complexity of about
7.7 · 230 MD5 step operations. The current bound for SHA-1 collisions is 262

compression function evaluations, while each such evaluation is composed of 80
step function evaluations. Assuming an actual complexity bound of 270 step
operations and a similar execution time for a single step operation in MD5 and
SHA-1, finding collisions for SHA-1 takes about 237 times more than for MD5.
We can also conclude how long it would take to find a single SHA-1 collision with
equipment for e 1 million. Invested in standard PCs, it would take 6 ms·237 ≈ 26
years. Using our collision search units, this time would be only 1.61 ms·237 s ≈ 7
years. Assuming Moore’s law to hold for the next years, a successful attack for
e 1 million in one year using a parallel μCS architecture should be possible in
2012 (less than next five years).

7 Conclusion

In this work we analyzed the hardware requirements of current and future colli-
sion search algorithms for hash functions of the MD4-family. We used our results
to develop an appropriate hardware platform.

The heart of our design is a very small microprocessor μMD with only six-
teen instructions. At the same time, it provides very effective means to support
program code reuse, what greatly helps to keep the size of our overall collision
search unit μCS small.

In the context of MD4-family hash functions, μMD is general-purpose, mean-
ing that it is appropriate for the execution of all (32-bit) MD4-family hash
functions and also of all corresponding current and future collision search algo-
rithms.

In contrast to standard PCs, the final collision search unit needs only very
little additional logic. This reduces its price and greatly eases parallelization
approaches.

We believe that our design approach is much better suited for collision search
than standard PCs. When money is spent on collision search, our design, mas-
sively parallelized, is nearly four times more cost-efficient than parallelized P4
standard PCs. Since this performance factor with respect to general-purpose
processors is not too significant, further optimizations like an improved instruc-
tion fetch unit might lead to a better performance. These optimizations might
be necessary to justify the additional efforts (like NRE and manufacturing costs)
when favoring a special-purpose hash collision unit over standard off-the-shelf
processors.

50 T. Güneysu, C. Paar, and S. Schäge

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152. pp. 290–305. Springer, Heidelberg (2004)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1990)

3. De Cannière, C., Mendel, F., Rechberger, C.: On the Full Cost of Collision Search
for SHA-1. Presentation at ECRYPT Hash Workshop 2007 (May 2007)

4. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284.
pp. 1–20. Springer, Heidelberg (2006)

5. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462. pp. 56–71. Springer, Heidelberg (1998)

6. Intel Corporation. Intel Pentium 4 Processor Specification Update (May 2007),
http://www.intel.com

7. M. Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-
Universität Bochum (2005), http://www.cits.rub.de/MD5Collisions/

8. Joŝĉák, D.: Finding Collisions in Cryptographic Hash Functions. Master’s thesis,
Univerzita Karlova v Praze (2006),
http://cryptography.hyperlink.cz/2006/diplomka.pdf

9. Klima, V.: Project Homepage (2006),
http://cryptography.hyperlink.cz/MD5 collisions.html

10. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006/105 (2006), http://eprint.iacr.org/

11. Lenstra, A., de Weger, B.: On the possibility of constructing meaningful hash
collisions for public keys. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574. Springer, Heidelberg (2005)

12. Lenstra, A., Wang, X., de Weger, B.: Colliding X.509 Certificates (2005),
http://eprint.iacr.org/

13. Liang, J., Lai, X.: Improved Collision Attack on Hash Function MD5. Cryptology
ePrint Archive, Report 2005/425 (November 2005), http://eprint.iacr.org/

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

15. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1990. LNCS, vol. 435. Springer, Heidelberg (1990)

16. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1990. LNCS, vol. 435. Springer, Heidelberg (1990)

17. Reichardt, J., Schwarz, B.: VHDL-Synthese, 3rd edn. Oldenbourg (2003)
18. Rivest, R.: The MD5 Message-Digest Algorithm, Request for Comments (RFC)

1321 (1992), http://www.ietf.org/rfc.html
19. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved Collision Attack on MD5.

Cryptology ePrint Archive, Report 2005/400 (November 2005),
http://eprint.iacr.org/

20. Stevens, M.: Fast Collision Attack on MD5. Cryptology ePrint Archive, Report
2006/104 (2006), http://eprint.iacr.org/

21. Stevens, M.: On Collisions for MD5. Master’s thesis, Eindhoven University of Tech-
nology, Department of Mathematics and Computing Science (June 2007)

22. Wang, X., Yin, Y.L., Yu, X.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://www.intel.com
http://www.cits.rub.de/MD5Collisions/
http://cryptography.hyperlink.cz/2006/diplomka.pdf
http://cryptography.hyperlink.cz/MD5_collisions.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ietf.org/rfc.html
http://eprint.iacr.org/
http://eprint.iacr.org/

Efficient Hash Collision Search Strategies on Special-Purpose Hardware 51

23. Wang, X., Yu, X.: How to Break MD5 and other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494. pp. 19–35. Springer, Heidelberg (2005)

24. Wang, X.: Cryptanalysis on hash functions. Presentation at Information-
Technology Promotion Agency (IPA), Japan (October 2006),
http://www.ipa.go.jp/security/event/2006/crypt-forum/pdf/Lecture 4.pdf

25. Yuval, G.: How to Swindle Rabin. Cryptologia 3(3), 187–189 (1979)

Appendix: Instruction Set for μMD

Table 5. Instruction set of μMD processor

Opcode Value Z-flag Cycles Description

RL 0x0000 not altered 2 Rotate A’s bits to the left. The rotation width
is found at the specified memory address.

STA 0x0001 not altered 2 Store A to absolute memory or IO address

STI 0x0010 not altered 3 Store A to indirect memory or IO address

LDI 0x0011 not altered 3 Load A from indirect memory or IO address

LDA 0x0100 not altered 2 Load A from absolute memory or IO address

ADD 0x0101 possibly altered 2 Add
`

mod 232
´

specified memory word to A

SUB 0x0110 possibly altered 2 Subtract
`

mod 232
´

the specified memory
word from A

OR 0x0111 possibly altered 2 Compute logical OR of A and specified mem-
ory word

AND 0x1000 possibly altered 2 Compute logical AND of A and specified mem-
ory word

XOR 0x1001 possibly altered 2 Compute logical XOR of A and specified mem-
ory word

JMP 0x1010 not altered 2 Jump to specified address

JE 0x1011 not altered 2 Jump to specified address if z-flag is set to ’0’

JNE 0x1100 not altered 2 Jump to specified address if z-flag is not set to
’0’

CALL 0x1101 not altered 2 Push incremented program counter onto the
stack and jump to specified address

RET 0x1110 not altered 3 Jump to address stored in top of stack. Pop
top of stack

NOT 0x1111 possibly altered 1 Compute logical NOT of A

http://www.ipa.go.jp/security/event/2006/crypt-forum/pdf/Lecture_4.pdf

Cryptography Based on Quadratic Forms:

Complexity Considerations

Rupert J. Hartung

Johann Wolfgang Goethe Universität Frankfurt a. M.
Postfach 11 19 32; Fach 238

60054 Frankfurt a. M., Germany
hartung@mi.informatik.uni-frankfurt.de

http://www.mi.informatik.uni-frankfurt.de

Abstract. We study the computational problem Trafo of finding an
integral equivalence transform between two given quadratic forms. This
is motivated by a recent identification scheme based on this problem [10].
We prove that for indefinite forms over Z, its hardness is concentrated
in dimensions 3 and 4. Moreover, over the field of rational numbers the
complexity of Trafo is closely related to that of factoring. However, for
definite forms over Z, as well as for forms over finite fields, the transfor-
mation problem is solvable in polynomial time.

1 Introduction

Lattice-based cryptography has been a vivid field in cryptologic research ever
since its proposal (see [2], [12], [13], [11], [9]). Lattice cryptosystems are based on
variants of either the Shortest Vector Problem (SVP) of finding a shortest non-
zero vector in a given lattice, or the Closest Vector Problem (CVP) of finding
the closest vector in a given lattice relative to a given point in space. A main
advantage of this family of cryptosystems is considered to be the fact that SVP
and CVP have been proven to be NP-complete (partially under randomized
reductions, see [16], [17]). This is taken as a hint that this type of primitives
may still be secure in the (still hypothetical) age of quantum computers because
cryptographic schemes based on NP-hard problems seem to withstand attacks
by quantum computers (see [3]).

However, the NP-hardness proofs fail for these problems in bounded dimen-
sion. Accordingly, lattice cryptography intrinsically requires lattices of high di-
mension. This leads to large cryptographic keys and slow schemes.

Lattices correspond to definite quadratic forms via their Gram matrices. Thus
turning towards indefinite forms may be the right idea to overcome the prob-
lems of lattice cryptography. Indeed, in [10], an identification scheme has been
proposed based on the transformation problem on indefinite quadratic forms of
dimension 3 over Z. It was shown there that under a reasonable number-theoretic
assumption, this problem is NP-hard under randomized reductions if restricted
to small transforms. This strengthens the analogy to lattice cryptography. By
contrast, the identification scheme from [10] uses only few arithmetic operations

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 52–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.mi.informatik.uni-frankfurt.de

Cryptography Based on Quadratic Forms: Complexity Considerations 53

per round, and by the argumentation there keys of 200 or 300 bits in size should
be sufficient for practical security of the scheme.

The aim of this article now is to abstract from this concrete scheme and the
specific suggestions on parameters and keys. We consider the underlying prob-
lem, the transformation problem, and study its complexity for various families of
quadratic forms over various rings R. It will turn out that the choice of indefinite
forms over R = Z of dimension n = 3 taken in [10] is in some sense ‘optimal’
(among forms over Z, Q, and finite fields). This may shed some light on how to
design other cryptographic schemes based on quadratic forms.

Outline. This article is organized as follows: In Sect. 2, we introduce quadratic
forms together with the computational problem Trafo; subsequently, we discuss
the cryptographic application. Our main results are contained in Sect. 3 and
Sect. 4. In Sect. 3, we study Trafo over fields. We show that over prime fields,
Trafo is tractable in random polynomial time; by contrast, over the rationals
Q, the transformation problem is closely linked to factoring. Then, in Sect. 4,
we show that TrafoZ does not become any easier if restricted to dimensions 3
and 4. Finally, we mention the hardness result on a variant of Trafo.

This paper makes essential use of the arithmetic theory of quadratic forms.
A comprehensive account of this topic can be found in the textbook by Cassels
[5], which we will frequently refer to.

2 Preliminaries

2.1 Quadratic Forms

A quadratic form (or simply form) is a homogeneous polynomial of degree 2 over
some unique factorization domain R, which we assume not to be of characteristic
2; thus f = xtAx with A ∈ 1

2Rn×n symmetric, with integral main diagonal, and
an indeterminate vector x = (x1, . . . , xn)t. If A is a diagonal matrix, then we
use the abbreviation f = 〈a1, . . . , an〉 :=

∑n
i=1 aix

2
i . If f , g are forms, their

orthogonal sum f ⊥ g is the form f(x) + g(y), where x and y are disjoint sets of
variables. The number of variables n is called the dimension, and

det f := detA

the determinant of the quadratic form f . For T ∈ Rn×n let f T denote the form
xt T tAT x. Two forms f, g are called equivalent (or R-equivalent) over R if there
is a matrix T ∈ GLnR such that g = fT ; denoted by f ∼R fT . The equivalence
class of f is simply called the class of f . Note that GLnZ = {S ∈ Zn×n | detS =
±1} and GLnK = {S ∈ Kn×n | det S �= 0} for a field K.

A quadratic form f is said to represent m ∈ R if there is v ∈ Rn \ {0} such
that f(v) = m. It is said to represent m primitively if v can be chosen primitive,
i.e. gcd(v1, . . . , vn) = 1.

A quadratic form f (over Q or Z) is called indefinite if it represents both
positive and negative numbers, and definite if it represents either only positive
or only negative numbers. Lattices are closely related to positive definite forms.
A quadratic form is called isotropic if it represents 0, and anisotropic otherwise.

54 R.J. Hartung

2.2 The Transformation Problem

We consider the following computational problem. In the crypto scheme of
Sect. 2.3, it will appear as the problem of extracting the secret key from the
public key.

TrafoR(P) The transformation problem over R
PARAMETERS: Set P of properties of quadratic forms, domain R.
INPUT: quadratic forms f, g satifying all properties from P and f ∼R g.
OUTPUT: S ∈ GLnR such that g = f S (where n is the dimension of f).

The parameter set P allows us to restrict to forms satisfying certain properties,
e.g. indefiniteness, or dim f = 3. For each choice of P , we regard TrafoR(P) as
a computational problem on its own.

Note that we do not insist that a specific S should be constructed. In the
identification scheme below, any matrix which is a solution to the transformation
problem would enable a deceiver to pass (i.e. break) the scheme.

The transformation problem on definite forms. Note that for fixed dimension,
the transformation problem for definite forms can be solved in polynomial-time
(although the complexity seems to be devastating as the dimension increases).
We shall use this fact later on. The key ideas are due to Plesken and Pohst [19],
see also the discussion in [20].

As a subroutine, they use a method to enumerate short vectors of a lattice,
in particular, to solve the SVP (see [15]). It is a vivid line of research to improve
SVP algorithms and their analysis [24], and thus to make the transformation
procedure tractable in slightly higher dimensions. However, as we are interested
in problems in fixed low dimensions, we view this problem as settled.

2.3 Cryptographic Application

In [10], an identification scheme has been proposed according to the following
outline:

Public key: Equivalent forms f0, f1,
Secret key: S ∈ GLnR such that f0 S = f1.

1. Prover P picks T ∈ Rn×n (according to some distribution);
computes g := f0T , and sends g,
2. Verifier V sends a random one-bit challenge b ∈R {0, 1},
3. P sends Q := S−bT , and V checks that fbQ = g.

As noted beforehand, this is the generic outline of the scheme. The concrete pro-
posal in [10] uses the concept of LLL-reduction for indefinite quadratic forms (see
[23] and [14]) as a key ingredient to smoothen the employed probability distri-
butions. According to [10], the scheme then is statistically zero-knowledge for
R = Z, n = 3 under some additional hypothesis on the distribution in question.

Moreover, the generic scheme as presesented here is a proof of knowledge in
general, in the sense that a fraudulent prover P̃ which passes the scheme with

Cryptography Based on Quadratic Forms: Complexity Considerations 55

the same commitment g on both challenges b = 0, 1 can compute an equivalent
secret key. Namely, if P̃ replies with matrices Q0, Q1, satisfying

f0 Q0 = g and f1 Q1 = g,

then the matrix S′ := Q0Q
−1
1 satisfies

f0 S′ = f1,

which is exactly the equation characterizing the secret key.
It should be noted that the fraudulent prover’s trivial probability of success

amounts to as much as 1
2 , simply by guessing the challenge b in advance. There-

fore, the protocol has to be repeated polynomially many times to make his chance
negligible.

It is possible that there are other suitable choices of parameters in this generic
protocol than those of [10]. For instance, a different random distribution on
integer matrices might allow for a simple proof of the zero-knowledge property.

In this paper, we shall ignore issues about random distributions and concen-
trate on how the complexity of the underlying computational problem changes
with the use of different rings and families of quadratic forms. Since the protocol
is a proof of knowledge, the study of the underlying problem means determining
the security agains malicious provers. We will come to the conclusion that the
choice R = Z, n = 3 is in some sense the “right” choice: Choosing a different di-
mension than 3 or 4 does not add to the complexity of the problem, whereas using
forms over the rationals Q, or over finite fields, is likely to decrease complexity.

We shortly note that there may be other alternatives not considered here.
For instance, indefinite quadratic forms over the ring of integers of an algebraic
number field may be a good candidate as they feature many similarities with
those over Z, see [18].

3 Choice of the Base Ring

For forms over fields we need the well-known

Lemma 1 (Completion of the square). Let K be a field of characteristic �=
2. Then every quadratic form over K is equivalent to a diagonal form.- Moreover,
for fixed dimension, the transformation implied can be computed in polynomial
time.

Proof. See [5, ch. 2, lm. 1.4]. �

Though polynomial time in theory, diagonalization over Q may yield coefficients
with prohibitively large enumerators and denominators in practice, see [23, in-
trod.]. This is due to the fact that the number of steps performed may be ex-
ponential in n, where n is the dimension of the form. Note that Lemma 1 only
makes a statement for fixed n.

56 R.J. Hartung

3.1 Finite Fields

By TrafoF with the property set omitted, we mean the transformation problem
on all regular quadratic forms over F without restrictions.

Theorem 1. Let p be an odd prime and let F be the finite field with p elements.
Then TrafoF is solvable in random polynomial time.

Proof. Let F-equivalent forms f, g over F be given. Use Lemma 1 to transform
each of them into diagonal shape, say

f T1 = 〈a1, . . . , an〉 and g T2 = 〈b1, . . . , bn〉

with Ti ∈ GLnF. Then determine which of the ai, bi are squares in F. This can
be done in polynomial time by computing Jacobi symbols. Build a permuta-
tion matrix Πi for each form such that f T1Π1 = 〈s1, . . . , sk, qk+1, . . . , qn〉 and
g T2Π2 = 〈s′1, . . . , s′�, q′�+1, . . . , q

′
n〉 such that all qi, q′i are squares and all si, s′i

are non-squares. Without loss of generality, we may assume that k ≥ �. Let
s := s1 (if k �= 0). Then s−1

i s, (s′i)
−1s are square for all i. By [8, sec. 2.3.2], we

can compute square roots

r2
i = qi, (r′i)

2 = q′i, t2i = s−1
i s, and (t′i)

2 = (s′i)
−1s

in random polynomial time for all i for which the respective right hand side is
defined. Then

f ′ : = f T1Π1S1 = 〈s, . . . , s︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

〉, and

g′ : = g T2Π2S2 = 〈s, . . . , s︸ ︷︷ ︸
� times

, 1, . . . , 1︸ ︷︷ ︸
n−� times

〉,

where S1, S2 are diagonal matrices with diagonal entries t1, . . . , tk, rk+1, . . . , rn

and t′1, . . . , t
′
�, r

′
�+1, . . . , r

′
n, respectively. As f ′ and g′ are F-equivalent, their de-

terminant may only differ by a square in F. Hence k − � is even. Therefore it
suffices for the completion of the algorithm to construct a transformation of the
form 〈s, s〉 into the form 〈1, 1〉.

Note that there are x, y ∈ F satisfying sx2 + sy2 = 1 by [5, ch. 2, lm. 2.2].
Such a solution can be found efficiently e.g. using [1]. Then find x′, y′ such that

det
(

x x′

y y′

)
= s−1

(e.g. by choosing x′ uniformly at random and solving for y′, until success). Then
the form

h := 〈s, s〉
(

x x′

y y′

)
has the right first coefficient and the right determinant. Therefore, another ap-
plication of Lemma 1 transforms it into the form 〈1, 1〉. This completes the
description of the algorithm. As argued in the single steps, it runs in random
polynomial time. �

Cryptography Based on Quadratic Forms: Complexity Considerations 57

3.2 The Rational Number Field

For the field of rational numbers, by contrast, we observe that solving the trans-
formation problem is essentially equivalent to factoring integers. This is made
precise by Theorem 3.

The classical theory of quadratic forms provides us with quite strong tools to
decide equivalence of rational quadratic forms. We review some important facts
from [5, ch. 3,4,6].

By Lemma 1, every form f over Q is equivalent to a form 〈a1, . . . , an〉. For
every prime number p, the Hasse-Minkowski invariant cp(f) is an invariant of
the class of f ; it is defined by

cp(f) =
∏

1≤i<j≤n

(
ai, aj

p

)
,

where
(
a, b
p

)
is the norm residue symbol modulo p: It satisfies

(
a, b
p

)
= 1 if and

only if
a = x2 − by2

is solvable for x, y in the field Qp of p-adic numbers, and
(
a, b
p

)
= −1 otherwise [5,

sec. 3.2]. We only need the following rules to compute it: The symbol is bilinear,
i.e. (

a, bc

p

)
=
(

a, b

p

)(
a, c

p

)
, and (1)(

1, a

p

)
= 1 (2)

for all a, b, c ∈ Q\{0}; moreover, if p is odd, a, b ∈ Z and p � | a, b, then(
a, b

p

)
= 1, and (3)(

a, p

p

)
=
(

a

p

)
, (4)

where (
a

p

)
=

⎧⎨⎩
1 if a is a square mod p (and p � | a),
0 if p|a,

−1 else

is the Legendre symbol modulo p.
Now consider the field R of real numbers. A form 〈a1, . . . , an〉 can be easily

transformed into the form 〈sign (a1), . . . , sign(an)〉 over R because every positive
real number has a square root in R.

Let f , g be rational quadratic forms of the same dimension and the same
integral determinant. If they are equivalent over Q, they obviously have to be
equivalent over R. The converse holds in the following sense:

58 R.J. Hartung

Theorem 2 (Hasse Principle). Let f , g be quadratic forms of dimension n
and determinant d with integral coefficients. Then f and g are Q-equivalent if
and only if

(i) they are R-equivalent, and
(ii) cp(f) = cp(g) for all primes p|d.

See [5, ch. 6] for a proof. �
Let p, q ≡ 1 mod 4 be distinct primes, and let N := pq. Recall that then the
equation

x2 ≡ −1 mod N

is solvable (for x ∈ Z). The integer factorization problem is not likely to become
significantly easier if restricted to such numbers; compare it to the well-known
hardness hypothesis for Blum integers [4]. Denote by Sqrt the problem of com-
puting a square root of −1 modulo a given N = pq, p, q ≡ 1 mod 4.

Denote by � polynomial-time reducibility and by �r random polynomial-time
reducibility of computational problems. We write TrafoQ

n for
TrafoQ(Pn), where Pn stands for the property dim f = n.

Theorem 3. Let P consist of the properties of being indefinite anisotropic. Then

(a) Sqrt �r TrafoQ(P). One oracle call suffices.
(b) Denote by Fact the problem of factoring integers and let n ∈ N. Then

TrafoQ

n � Fact.

For an instance (f, g) of TrafoQ

n , it suffices to call the oracle once to factor
(det f)(det g).

As there is no modular square root algorithm known which is essentially faster
than factoring the modulus, we may informally state that the transformation
problem is ‘almost’ equivalent to factoring.

The problem Sqrt should not be confused with the problem of computing
arbitrary square roots modulo N , which is known to be probabilistically equiva-
lent to factoring N . However, to find a root of −1 only, there might theoretically
be a different method.

Proof. (a) Let N be an instance of Sqrt. Define

f := 〈1,−N〉, g := 〈−1, N〉.

Obviously, these are indefinite, and they are anisotropic by [5, ch. 4, lm. 2.4].
We claim that f and g are Q-equivalent. Obviously, f and g are equivalent
over the reals, as both are R-equivalent to the form 〈1,−1〉. Moreover, we
can compute Hasse-Minkowski invariants as follows: Let N = pq. Then

cp(f) =
(

1, −N

p

)
= 1

Cryptography Based on Quadratic Forms: Complexity Considerations 59

by (2), and

cp(g) =
(
−1, N

p

)
=
(
−1, p

p

) (
−1, q

p

)
︸ ︷︷ ︸

=1

=
(
−1
p

)
= 1.

Here the first equality follows from (1), the next one is due to (3) and (4) and
the last equality sign holds because −1 is a square modulo N . An analogous
computation works for q instead of p. Hence by the Hasse principle Theorem 2
f ∼Q g.

Now let S=(sij) ∈ GLnQ satisfy f S=g. Then St

(
1
−N

)
S =

(
−1

N

)
,

whence s2
11 − s2

21N = −1. Compute minimal k ∈ N such that σ11 :=
ks11, σ21 := ks21 are integers (via the Euclidean Algorithm). Write k = N �k0

with N � | k0. Then the equation

σ2
11 − σ2

21N = −k2
0 N2� (5)

holds in Z. We claim that we can assume � = 0 without loss: Indeed, other-
wise (5) implies σ11 = σ′

11N for some σ′
11 ∈ Z. Hence

(σ′
11)

2N − σ2
21 = −k2

0N
2�−1.

But now it follows that σ21 = σ′
21N with σ′

21 ∈ Z. Thus

(σ′
11)

2 − (σ′
21)

2N = −k2
0 N2(�−1),

analogously to (5). Inductively we can achieve � = 0.
Now (5) with � = 0 implies

σ2
11 ≡ −k2

0 mod N. (6)

If γ := gcd(k0, N) �= 1, then γ is p or q, and the factorization of N allows to
compute square roots of −1 modulo p and q, and combine them by means
of the Chinese Remainder Theorem.

Otherwise, gcd(k0, N) = 1, and we can compute k̄ ∈ Z such that k̄ k0 ≡ 1
mod N . Then (6) implies that (σ11k̄)2 ≡ −1 mod N.

(b) Let (f, g) be an instance of TrafoQ, and let n := dim f . Then φ := f ⊥
(−g) is isotropic (recall that f ⊥ (−g) is the form f(x) − g(y), where x =
(x1, . . . , xn)t, y = (y1, . . . , yn)t are disjoint vectors of variables).

Retrieve the factorization of det φ = (−1)n(det f)(det g) from the oracle.
Then an algorithm by Simon ([22], see also [23]) constructs an isotropic
vector (0, 0)t �= (v1, v2)t ∈ Q2n for φ in deterministic polynomial time.

If f(v1) = 0 then also g(v2) = 0. At least one of the vi �= 0, hence both
f and g are isotropic as f ∼ g. If v1 �= 0 �= v2, then these are isotropic
vectors for f, g; if without loss v2 = 0, then the factorization of det g can
be employed again to construct a primitive isotropic vector v′2 for g. Now if
v1, v2 are isotropic vectors for f, g, it is easy and well-known that one can

60 R.J. Hartung

find matrices Hi ∈ GLnQ with f H1 = h0 ⊥ f1 and g H2 = h0 ⊥ g1 for some
(n − 2)-ary forms f1, g1, where h0 is the “hyperbolic plane”

(
0 1
1 0

)
, see [5,

ch. 2, lm. 2.1 and its cor. 1]. By Witt’s lemma ([5, ch.2, cor. 1 of thm. 4.1]),
f1 ∼Q g1. We recursively call the procedure outlined here, yielding eventually
a transformation f1S = g1. Then return

T := H1

⎛⎝1
1

S

⎞⎠H−1
2

since then f T = g.
If, however, a := f(v1) �= 0, then also g(v2) = a. Extend the vectors v1

and v2, respectively, to bases of Qn, so that we obtain matrices Ui ∈ GLnQ

with
f U1 = 〈a〉 ⊥ f2 and g U2 = 〈a〉 ⊥ g2

for (n − 1)-ary forms f2,g2, and if the recursion produces f2S = g2,
then output T := U1

(
1 0
0 S

)
U−1

2 .
Finally, this recursion will be called at most n times so that we have

established a polynomial-time algorithm. �

4 Concentration in Dimensions 3, 4

Let us now turn to the transformation problem over Z. In the last section we
have seen that the factorization of the determinant is closely related to the
transformation problem over Q. By a similar argument as there it can be shown
that Trafo is at least as hard as factoring. However, as all existent algorithms
for Trafo involve exhaustive search on a set of exponential size, the factorization
of the determinant seems not to help much in finding transformations, and we
want to separate this moderate obstacle from the actual core of the problem.

Thus denote by FTrafo instead of Trafo the problems where the factorization
of the determinants of all given forms is included in the input. From now on, we
drop the superscript R, as we restrict ourselves to R = Z.

Theorem 4. Denote by Fn(d) the properties det f = d and dim f = n for a
quadratic form f .

Let n ≥ 5. let d ∈ Z be odd and squarefree and let the factorization of d be
given. Then

FTrafo(Fn(d)) � FTrafo(Fn−2(d))

This has the following striking consequence.

Corollary 1. Let F denote the properties “det f is odd and squarefree” and
“dim f ≥ 3” for a quadratic form f , and F3,4 for additionally “dim f ∈ {3, 4}”.
Then

FTrafo(F) � FTrafo(F3,4)

Cryptography Based on Quadratic Forms: Complexity Considerations 61

Proof. To reduce an instance of FTrafo(Fn) to one of FTrafo(F3,4), apply the
theorem

⌊
n−3

2

⌋
times.

A form of dimension n has n(n+1)
2 = Θ(n2) coefficients. Hence an instance

of FTrafo(Fn) also has at least that size. Therefore, we have concatenated the
reduction of the theorem only polynomially many times, which forms another
polynomial-time reduction. �

This corollary is very important for the understanding of the complexity of
Trafo. It implies that if Trafo(F) is hard at all, then Trafo(F3,4) necessarily is
hard. We now that indefiniteness is necessary for hardness, and the restrictions
on the determinant do not seem to make the problem significantly easier. Hence
we can argue heuristically in a similar vein for Trafo beyond dimension two
instead of Trafo(F).

Therefore to understand the problem Trafo, it suffices to analyse the problem
Trafo(F3,4).

In the proof of the theorem, we will consider equivalence over local rings Zp,
with p a prime or Z∞ = R (see [5, ch. 7]). f , g are said to belong to the same
genus if f ∼Zp g for all symbols p. Obviously, this is necessary for f ∼Z g (from
now on denoted by f ∼ g).

Moreover, in [21] a polynomial-time algorithm is presented which given an
isotropic integral form f of dimension n ≥ 3 and given the factorization of its
odd squarefree determinant d, computes a matrix S ∈ GLnZ such that f S has
an associated matrix of the shape⎛⎝0 1

1 0
A0

⎞⎠
for some matrix A0 of an (n − 2)-dimensional form f0. In other words, the
algorithm find a transformation from f to the form

2x1x2 + f0(x3, . . . , xn).

This works essentially as follows: Using the factorization of d, the algorithm
computes a primitive isotropic vector for f , and takes this vector as the first
column of S1. Then by the aid of the Euclidean Algorithm, we enforce that the
coefficient a12 in the associated matrix of f is the greatest common divisor of
a12, . . . , a1n. Then by the analogues of size reduction in lattice theory, we can
annullate a13, . . . , a1n. The squarefreeness of the determinant implies a12 = 1.
Similary as for the first line, we obtain a23 = . . . = a2n = 0. Finally, a special
transformation leads to a22 = 0.

Proof. (of theorem.) Let (f, g) be an instance of Trafon(d). By Meyer’s theo-
rem [5, sec. 6.1], f is either definite or isotropic since n ≥ 5. As noted in the
introduction, for definite forms the problem can be efficiently solved, so assume
indefiniteness. As d is squarefree, f can be efficiently transformed into f S1 with
matrix of the shape

62 R.J. Hartung ⎛⎝0 1
1 0

A0

⎞⎠
for some matrix A0 of an (n−2)-dimensional form f0 by [21], using the factoriza-
tion of det f . Analogously, find a form g0 for g according to the same procedure.
Now by Witt’s lemma for p-adic integers [5], f0 ∼Zp g0 for all symbols p �= 2.
Since d is odd, it follows that f0 and g0 belong to the same genus. But by [5,
p. 202f.], we deduce that f ∼ g because dim f0 ≥ 3 and d is squarefree. Ob-
viously, S0 with f0S0 = g0 can be extended to a matrix solving the original
problem. �

5 NP-Hardness

We keep to the base ring R = Z. In [10], it is proved that a decisional variant
of the transformation problem is NP-hard under randomized reductions, condi-
tional on what we call the special Cohen-Lenstra heuristic. More precisely, we
introduce the following variant of Trafo:

DITrafo Decisional Interval Transformation Problem
PARAMETERS: Set P of properties of quadratic forms.
INPUT: n ∈ N, n-ary quadratic forms f, g satifying all properties from

P , matrices A, B ∈ (Z ∪ {±∞})n×n, factorization of det f .
DECIDE: Whether there is T ∈ GLnZ, Aij ≤ Tij ≤ Bij for all i, j such

that f T = g.

Note that DITrafo is polynomial-time equivalent to the problem of actu-
ally computing a transformation with coefficients in the given intervals, by a
straightforward divide-and-conquer algorithm.

The special Cohen-Lenstra Heuristic (sCLH) builds on a famous conjecture in
algebraic number theory, originally published in [6] and [7]. As a tiny (yet impor-
tant) special case, it implies that class numbers of real quadratic number fields
Q[

√
p], p prime, equal one with high probability. Very roughly, our assumption

stipulates that in this special case, convergence (of frequencies to probability) is
not too slow.

Recall that the complexity class RP (random polynomial time) consists of all
decicion problems for which there is a probabilistic polynomial-time algorithm
which accepts every ‘yes’-instance with probability ≥ 1

2 , and rejects every ‘no’-
instance.

Theorem 5. Let M ∈ N. Let P consist of the properties dim f = 3, and f in-
definite anisotropic for a quadratic form f . If the special Cohen-Lenstra heuristic
holds true, then DITrafo(P) is NP-hard under randomized reductions with one-
sided error; more precisely:

NP ⊆ RPDITrafo(P). (7)

Cryptography Based on Quadratic Forms: Complexity Considerations 63

Equation (7) means that every problem from NP can be solved in random poly-
nomial time, given a DITrafo(P)-oracle. For details on the sCLH, the theorem,
and its proof, see [10].

6 Conclusion

We have analyzed the complexity of Trafo. Our goal was to find, or exclude, pos-
sible key pairs for the identification scheme in Sect. 2.3. We found out that over
finite prime fields, the transformation problem is easy, whereas over the ratio-
nals, it is only as hard as factoring. This leaves us with the natural choice R = Z

as a base ring. The hardness of Trafo over Z is supported by the NP-hardness
results from [10]. Moreover, the concentration of complexity in dimensions 3 and
4 allows for small keys and thus highly efficient cryptographic applications.

References

1. Adleman, L.M., Estes, D.R., McCurley, K.S.: Solving bivariate quadratic congru-
ences in random polynomial time. Mathematics of Computation 48(177), 17–28
(1987)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst- case/average-case
equivalence. In: Proceedings of the 29th annual ACM symposium on theory of
computing, El Paso, TX, USA, May 4-6, 1997, pp. 284–293. Association for Com-
puting Machinery (1997)

3. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM Journal of Computing 26(5), 1510–1523 (1997)

4. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo- random number
generator. SIAM Journal of Computing 15, 364–383 (1986)

5. Cassels, J.W.S.: Rational quadratic forms. Mathematical Society Monographs,
vol. 13. Academic Press, London (1978)

6. Cohen, H., Lenstra jun, H.W.: Heuristics on class groups of number elds, Number
Theory. In: Proc. Journ. arith., Noordwijkerhout 1983. LNCS, vol. 1068, pp. 33–62.
Springer, Heidelberg (1984)

7. Cohen, H., Martinet, J.: Class groups of number elds: Numerical heuristics. Math-
ematics of Computation 48(177), 123–137 (1987)

8. Crandall, R., Pomerance, C.: Prime numbers: A computational perspective.
Springer, Heidelberg (2001)

9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryp- tosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

10. Hartung, R.J., Schnorr, C.-P.: Public key identification based on the equivalence
of quadratic forms. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708,
pp. 333–345. Springer, Heidelberg (2007)

11. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: Digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)

12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

64 R.J. Hartung

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature
scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–228.
Springer, Heidelberg (2001)

14. Ivanyos, G., Szánto, Á.: Lattice basis reduction for indefinite forms and an appli-
cation. Journal on Discrete Mathematics 153(1-3), 177–188 (1996)

15. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Research 12(3), 415–440 (1987)

16. Khot, S.: Hardness of approximating the shortest vector problem in lattices. Jour-
nal of the ACM 52(5), 789–808 (2005)

17. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic
perspective. The Kluwer International Series in Engineering and Computer Science,
vol. 671. Kluwer Academic Publishers, Dordrecht (March 2002)

18. O’Meara, O.T.: Introduction to quadratic forms, Grundlehren der mathematischen
Wissenschaften in Einzeldarstellungen, vol. 117. Springer, Heidelberg (reprinted,
2000)

19. Plesken, W., Pohst, M.E.: Constructing integral lattices with pre- scribed mini-
mum. I, Mathematics of Computation 45, 209–221 (1985)

20. Plesken, W., Souvignier, B.: Computing isometries of lattices. Mathematics of
Computation 45, 209–221 (1985)

21. Schnorr, C.-P.: Reduction of quadratic forms reconsidered (preprint, 2004)
22. Simon, D.: Quadratic equations in dimensions 4, 5 and more (preprint, 2005)
23. Simon, D.: Solving quadratic equations using reduced unimodular quadratic forms.

Mathematics of Computation 74(251), 1531–1543 (2005)
24. Stehlé, D., Hanrot, G.: Improved analysis of Kannan’s shortest lattice vector al-

gorithm. In: Menezes, A.J. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007)

Towards a Concrete Security Proof of Courtois,

Finiasz and Sendrier Signature Scheme

Léonard Dallot

GREYC, UMR 6072, Caen, France
leonard.dallot@info.unicaen.fr

Abstract. Courtois, Finiasz and Sendrier proposed in 2001 a practi-
cal code-based signature scheme. We give a rigorous security analysis
of a modified version of this scheme in the random oracle model. Our
reduction involves two problems of coding theory widely considered as
difficult, the Goppa Parametrized Bounded Decoding and the Goppa
Code Distinguishing.

1 Introduction

Code-based cryptography was introduced by McElliece [14], two years after the
introduction of public key cryptography by Diffie and Hellman [8] in 1976. In
1986 Niederreiter proposed [16] an equivalent code-based cryptosystem [12]. But
the first practical code-based signature scheme was proposed in 2001 by Courtois,
Finiasz and Sendrier in [7]. It adapts the Full Domain Hash approach of Bellare
and Rogaway [1] to Niederreiter’s encryption scheme. Even if some arguments
of its security are given, to the best of our knowledge no formal reductionist
security proof was given.

Reductionist security was introduced by Goldwasser and Micali in 1984 [10].
In this approach, a cryptographic scheme is based on one ore more algorithmic
problems that are supposed to be hard to solve. The scheme is secure as long
as the underlying algorithmic problem is difficult. The works proposed by Bel-
lare and Rogaway in [1] and [2] show the importance of taking into account the
tightness of the reduction for practical applications of provable security. The
reduction is tight when breaking the scheme leads to solve the considered algo-
rithmic problem with a sufficient probability (ideally one).

Code-based cryptography uses two difficult problems of coding theory. The
first one is a NP-complete problem [3], the Bounded Distance Decoding problem.
The second problem is the Goppa Code Distinguishing, widely considered as
difficult [18].

We propose a reductionist security proof in the random oracle model [1] of
a modified version of the signature scheme proposed by Courtois, Finiasz and
Sendrier. This proof covers both the security against a key recovering attack
usually related to the indistinguishability of a permuted Goppa code, and the
security against a decoding attack related to the difficulty of the bounded de-
coding problem. Using a sequence of games, as proposed by Shoup in [19], we
propose an evaluation of the tightness of our reduction.

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 65–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

leonard.dallot@info.unicaen.fr

66 L. Dallot

The paper is organized as follows. In Section 2 we present notions on signa-
ture schemes. Section 3 presents the security model of our analysis. Some basic
concepts of coding theory are given in Section 4. In Section 5, we present a mod-
ified version of the signature scheme proposed by Courtois, Finiasz and Sendrier.
Section 6 contains our main result (Theorem 1) with its proof.

2 Signature Schemes

A signature σ is a bit string dependent of some secret (the secret key SK) only
known by the signer and the signed message m. A public value (the public key
PK) allows anyone to check the validity of the signature. The following definition
is based on [11] and [6].

Definition 1 (Signature Scheme). A signature scheme S is defined by three
algorithms:

– GenS(1κ), the key generator algorithm, is a probabilistic algorithm which,
given some security parameter κ outputs a pair of a public key and a secret
key (PK, SK) and possibly sets public parameters.

– SignS(m, SK), the signing algorithm takes as input a message m and a secret
key SK and ouputs a signature σ.

– VerifyS(m′, σ′, PK), the verification algorithm takes a message m′, a candi-
date signature σ′ and a public key PK as input. It outputs a bit that equals
1 if the signature is accepted and 0 otherwise. We also require that if σ ←
Sign(m, SK), then Verify(m, σ, PK) = 1.

A very common practice to build signature schemes from a public-key cryp-
tosystem is the “hash and decrypt” paradigm: the message is hashed, possibly
some padding is added and this value is decrypted using the private key. This
was introduced by Bellare and Rogaway in [1] using RSA [17] as public-key
cryptosystem and is known as FDH (Full Domain Hash).

3 Security Model

The Random Oracle Model (ROM). A hash function is an application H :
{0, 1}∗ → {0, 1}n where n is fixed. Preimage resistance and second preimage
resistance are generally considered as two prerequisites of a hash function [15].

The random oracle methodology was also introduced by Bellare and Rogaway
in [1]. In this model, a hash function is seen as an oracle which produces a uni-
formly distributed random value for each new query. Provably secure schemes in
the random oracle model generally use both algorithmic assumptions and hash
functions. Additionally, practical attacks and cryptanalysis of such schemes as-
sume that hash functions are random. The random oracle model guarantees that
such an attack cannot be successful unless the algorithmic assumption is false.

Thus, a security proof in the random oracle model gives arguments showing
that a real attack — provided that it does not contradict any other assumption
of the proof — underlines an undesirable property in the hash function.

Towards a Concrete Security Proof 67

Attack Model. The analysis of a cryptographic protocol requires to modelize an
adversary, namely setting his goals and his means. Once this is done, the defined
adversary serves to solve an algorithmic problem. In other words, the existence
of an adversary that is able to break the scheme implies a polynomial algorithm
that solves the problem. This approach is comparable to the method of proving
that a given decision problem is NP-complete.

The usual attack against a signature scheme is an existential forgery in a
chosen message attack (EF-CMA). A (τ, qH, qΣ)-adversary A knows the public
key PK and can obtain qH hash values for bitstrings of his choice from an
(idealised) hash oracle H and qΣ signatures for messages of its choice from a
signature oracle Σ. We impose that each signature query implies a additional
hash query. After at most τ processing time, the adversary attempts to output a
valid forgery, that is a pair (m∗, σ∗) such that Verify(m∗, σ∗, PK) = 1. Obviously,
the adversary must output as forgery a signature not obtained form Σ for the
message m∗. Another additional hash query can be made to verify the validity
of its forgery. Thus the total number of hash queries is q′H = qH + qΣ + 1.

An existential forgery in a chosen message attack can be viewed as a game
played between the adversary and a challenger. The challenger runs the genera-
tion algorithm, sets the oracles and gives the adversary the public key. He also
controls the oracle. Descriptions of games are given as an algorithm the chal-
lenger runs. We call the success of a (τ, qH, qΣ)-adversary A for an existential
forgery in a chosen message attack the probability that A wins the EF-CMA-
game:

SuccEF−CMA
S (A) = Pr[A wins EF-CMA game].

We can now formally define the security of a signature scheme.

Definition 2. A signature scheme S is (ε, τ, qH, qΣ)-EF-CMA-secure if for any
(τ, qH, qΣ)-adversary A:

SuccEF−CMA
S (A) ≤ ε.

Remark 1. EF-CMA security includes security against a key recovering attack.
Indeed, an adversary who can recover the private key of the signer can easily
compute a signature for a message of its choice and then outputs this message
and its signature as an existential forgery.

4 Coding Theory Background

Let Fq be the field with q elements. A (n, k)-code C is a linear subspace of
dimension k of the linear space Fn

q . Elements of Fn
q are called words and elements

of C are codewords. A code is usually given in the form of a (n−k)×n parity check
matrix H . The codewords of C are words x that satisfy HxT = 0. A syndrome
s ∈ Fn−k

q is a vector s = HxT for a word x. The Hamming weight of a word x
denoted by wt(x) is the number of non-zero positions. A syndrome s is said to
be decodable according to a t-error correcting code if there exists a word x ∈ Fn

q

68 L. Dallot

such that HxT = s and wt(x) ≤ t. We recall that decoding a syndrome s is
retrieving such a word x.

Goppa Codes are subfield subcodes of particular alternant codes [13]. They
are widely used in code-based cryptography. For given integers m and t Goppa
codes are of length n = 2m, of dimension k = n − mt and are t-correcting. The
density of decodable syndromes is approximately 1

t! [7]. We denote by DecodeH

the decoding algorithm associated with a Goppa Code of parity check matrix H .
In order to establish the security of code-based cryptographic schemes, we

shall consider the Goppa Parameterized Bounded Decoding problem (GPBD)
introduced in [9] and [18]. This problem is a variant of a NP-hard problem of
coding theory, namely the Bounded Decoding problem [3].

Definition 3 (Goppa Parameterized Bounded Decoding problem
(GPBD) [9]).

Input: A (n − k) × n binary matrix H and a syndrome s ∈ F2
n−k

Ouput: A word e ∈ Fn
2 such that wt(e) ≤ n−k

log2 n and HeT = s

The resolution of this problem can be viewed as a game played between a chal-
lenger and decoder Dec. The challenger gets a random binary (n, k)-code C and
a random syndrome s ∈ F2

n−k. It gives the parity check matrix H of C and the
syndrome s to the decoder. Dec outputs a word e. If the syndrome of e is equal
to s and e satisfy the weight property, then Dec wins the game. A description of
GPBD game is given in Fig. 2. The notations x

R← D denotes a random selection
of x over a given distribution D. If D is a set, R← denotes an uniformly distributed
selection over the set. We call the success of the decoder Dec the probability that
it wins the game:

SuccGPBD(Dec) = Pr[Dec wins GPBD game]

Definition 4. The Goppa Parameterized Bounded Decoding problem is said to
be (τ, ε)-hard if for any decoder D running in time at most τ we have
SuccGPBD(D) ≤ ε.

Input: An adversary A
(SK, PK) ← GenS(1κ);1

Set the oracles H and Σ;2

(m∗, σ∗) ← AΣ,H(PK);3

if VerifyS(m∗, σ∗, PK) = 1 and Σ did not provide σ∗ then4

A wins the game5

else6

A loses the game7

end8

Fig. 1. EF-CMA Game

Towards a Concrete Security Proof 69

Input: A decoder Dec

(C, H)
R← Binary(n, k);1

s
R← Fn−k

2 ;2

e ← Dec(H);3

if HeT = s and wt(e) ≤ n−k
log2 n

then4

Dec wins the game5

else6

Dec loses the game7

end8

Fig. 2. GPBD Game

Since GPBD problem is stated for random codes and since practical code-based
cryptography generally uses Goppa codes, we also have to consider the Goppa
Code Distinguishing problem (GD) presented in [18]. A distinguisher D for a
permuted Goppa Code is an algorithm which takes as input a parity check matrix
H and outputs a bit. D outputs 1 with probability Pr[H R← Goppa(n, k) : D(H) =
1] if H is a random binary parity check matrix of a Goppa code Goppa(n, k)
and outputs 1 with probability Pr[H R← Binary(n, k) : D(H) = 1] if H is a
random binary matrix Binary(n, k). We call the advantage of a distinguisher D
the following quantity:

AdvGD(D) =∣∣∣Pr[H R← Goppa(n, k) : D(H) = 1] − Pr[H R← Binary(n, k) : D(H) = 1]
∣∣∣

Definition 5. The Goppa Code Distinguishing is said to be (τ, ε)-hard if for any
distinguisher D running in time at most τ we have AdvGD(D) ≤ ε.

5 Code-Based Signatures: Courtois, Finiasz and Sendrier
Scheme

Courtois, Finiasz and Sendrier proposed in [7] the first practical signature scheme
based on coding theory. The FDH approach assumes that all the hash values
can be inverted by decryption. But in code-based cryptography, only decodable
syndromes can be decrypted. To overcome this difficulty, the authors proposed
to adapt the FDH approach (see Section 2) to permit multiple hash values for
the same message by concatenating to the message a counter before hashing.
If the decryption (i.e. the decoding) fails, the counter is incremented until a
decodable hash value is found.

We propose to replace the counter by a random value uniformly distributed
over {1, . . . , 2n−k}. The Gen and Verify algorithms remains the same as in the
original scheme CFS (called CFS1 in the original paper).

70 L. Dallot

– GenmCFS(1κ): Select n, k and t according to κ. Pick a random parity check
matrix H0 of a (n, k)-binary Goppa code C0 decoding t errors. This code
remains secret. The public code is obtained by randomly permuting the
coordinates of C0 and then choosing a random parity check matrix. Choose
a random (n−k)×(n−k) non-singular matrix U , a random n×n permutation
matrix P and a hash function h : {0, 1}∗ −→ Fn−k

2 . The public key is
H = UH0P and the private key is (U, H0, P). Set t = n−k

log2 n .
– SignmCFS(m, H0):

1. i
R← {1, . . . , 2n−k}

2. x′ = DecodeH0

(
U−1h(m‖i)

)
3. If no x′ was found go to 2
4. output (i, x′P)

– VerifymCFS(m, x′, i′, H): compute s′ = Hx′T and s = h(m‖i). The signature
is valid if s and s′ are equals.

Remark 2. The modified scheme uses n − k bits (144 bits with the original
parameters) to store the counter instead of log2 t! bits in average (around 19
bits) in the original construction. The reason of our modification is that the
counter gives to an adversary a piece of information he may exploit in an attack.
If i is the signature counter, no hash values for counter j < i are decodable.

6 Proving Security of mCFS

To prove the security of the mCFS scheme, we will use the methodology of Shoup
[19] by producing a sequence of games relating the EF-CMA game (Fig. 1) to
the GPBD game (Fig. 2). Each game is a slight modification of the preceding
game in a way that the difference between two games can be evaluate. Thus the
quality of the reduction can be easily quantified. Since the challenger can control
the oracles he is able to produce simulations of oracles that force the adversary
to solve the GPBD game. We state the following:

Theorem 1. Suppose that the Goppa Parametrized Bounded Decoding Prob-
lem and the Goppa Code Distinguishing are respectively (τGPBD, εGPBD) and
(τGD, εGD)-hard. Then the modified CFS scheme is (ε, τ, qH, qΣ)-EF-CMA-secure
in the random oracle model, where:

ε = (qH + qΣ + 1)εGPBD + εGD + 2 − (1 − 1
2n−k

)qH+qΣ+1 − (1 − qΣ

2n−k
)qH

and
τ ≥ τGPBD − (qH + qΣ + 1) · Ts(n, k)

where Ts(n, k) is the syndrome computation time of a (n, k)-Goppa Code.

Proof. Let A be a (τ, qH, qΣ)-adversary against the modified mCFS scheme. Let
Game 0 (Fig. 3) be the standard EF-CMA game adapted to the scheme. We

Towards a Concrete Security Proof 71

Input: An adversary A
(H0, U, P, H) ← GenmCFS(n, k);1

Set the oracles H and Σ;2

(m∗, σ∗, i∗) ← AΣ,H(H);3

if

{
H(m∗ i∗) = Hσ∗T

wt(σ∗) ≤ t
and Σ did not provide σ∗ then

4

A wins the game5

else6

A loses the game7

end8

Fig. 3. game 0: mCFS EF-CMA game

denote by Pr[Si] the probability that A wins the game i. We have Pr[S0] =
SuccEF−CMA

mCFS (A).
To simplify the proof, we will consider that hash queries are made on pairs

(m, i) of messages and indexes. Oracles H and Σ maintain lists ΛH and ΛΣ

respectively of queries with the corresponding output values. Since the oracles
are controlled by the challenger, each simulated oracle may access these lists.
The list ΛH is extended to store an additional decoding value. For any message
m and any counter i, ΛH(m, i) = (s, x) where s is the output syndrome and x
its decoding. ΛΣ(m) is then equals to (i, x). We also use an additional list Λ
which applied to m return a counter Λ(m). If there is no value associated with
an entry in a list, we denote the output by ⊥.

Game 1. In this game, the challenger replaces the hash oracle H by a simulation
H′ (Fig. 4). H′ uses the list Λ to fix for each message which counters leads to a
decodable syndrome (Fig. 4, Lines 1 to 3). Thus, they are two situations for any
query (m, j): either j �= Λ(m) or j = Λ(m).

When j �= Λ(m) H′ has the same behaviour as a random oracle (Fig. 4,
Lines 5 to 11). When j = Λ(m) H′ builds a t-decodable syndrome and stores its
decoding value in the list ΛH: it first gets a random word x of weight t in Fn

2

(Fig. 4, Line 13), then it computes its syndrome s as output (Fig. 4, Line 14).
H′ stores the values s and x into ΛH. Of course, H′ checks if he has an ouput
value stored in his list for the query (Fig. 4, Lines 6 and 12).

At the end of the simulation, the oracle H′ has produced qH + qΣ + 1 syn-
dromes. Some of them are produced by the modified part of the oracle (when
j = Λ(m)). Let M be the random variable that represents the number of syn-
dromes produced by the modified part.

Pr[S1] = Pr[(S1 ∩ (M = 0)) ∪ (S1 ∩ (M > 0))]
≤ Pr[S1 ∩ (M = 0)] + Pr[S1 ∩ (M > 0)]
≤ Pr[S1 ∩ (M = 0)] + Pr[M > 0]

Pr[S1 ∩ (M = 0)] corresponds to the case where the adversary wins Game 1
with syndrome produced by a random oracle. This is exactly Game 0. Hence
Pr[S1 ∩ (M = 0)] = Pr[S0].

72 L. Dallot

Input: A pair (m, j)
Output: A syndrome s
if Λ(m) =⊥ then1

Λ(m)
R← {1, . . . , 2n−k};2

end3

(s, x) ← ΛH(m, j);4

if j �= Λ(m) then5

if s =⊥ then6

s
R← Fn−k

2 ;7

ΛH(m, j) ← (s,⊥);8

end9

return H(m, j) = s;10

else11

if s =⊥ then12

x
R← {w ∈ Fn

2 |wt(w) ≤ t};13

s ← HxT ;14

ΛH(m, j) ← (s, x);15

end16

return H(m, j) = s;17

end18

Fig. 4. H′: simulation of H (Game 1)

Input: A message m
Output: A signature (i, σ)
if Λ(m) =⊥ then1

Λ(m)
R← {1, . . . , 2n−k};2

end3

H′(m, Λ(m));4

(s, x) ← ΛH(m, Λ(m));5

Λ(m) ←⊥;6

return Σ(m) = (i, x);7

Fig. 5. Σ′: simulation of Σ (Game 1)

M respects a binomial distribution of parameters 1
2n−k and qH + qΣ + 1 and

then Pr[M > 0] = 1 − (1 − 1
2n−k)qH+qΣ+1. It follows:

|Pr[S1] − Pr[S0]| ≤ 1 − (1 − 1
2n−k

)qH+qΣ+1

Game 2. In this game, the challenger replaces the signature oracle by a sim-
ulation Σ′ (Fig. 5). Since Σ′ queries H′ on (m, Λ(m), H′ stores the decoding
value of its output. Thus Σ′ no more need the private key to produce signatures.
Σ′ also deletes Λ(m) in order that two different signature queries for the same
message does not produce the same signature, according to the modified scheme.

Towards a Concrete Security Proof 73

Input: A parity check matrix H
Output: A bit b
t ← n−k

log2 n
;1

Set the oracles H′ and Σ′;2

(m∗, σ∗, i∗) ← AΣ′,H′
(H);3

if

{
H′(m∗‖i∗) = Hσ∗T

wt(σ∗) ≤ t
and Σ′ did not provide σ∗ then

4

output 15

else6

output 07

end8

Fig. 6. D(H) (game 4)

A may query H′ on messages he already queried to Σ′. Then, H′ return
a syndrome produced by the modified part of the oracle. This happens with
probability at most qΣ

2n−K . Let S be the number of such syndromes.

Pr[S2] = Pr [(S2 ∩ (S = 0)) ∪ (S2 ∩ (S > 0))]
≤ Pr[S2 ∩ (S = 0)] + Pr[S2 ∩ (S > 0)]
≤ Pr[S1] + Pr[S > 0]
≤ Pr[S1] + 1 −

(
1 − qΣ

2n−k

)qH
Game 3. In this game the challenger replaces the generation algorithm GenmCFS

by a random selection of a parity check matrix of a binary Goppa code. This
code is used as the public key. Since neither the hash oracle or the signature
oracle no more use the private key and the hash function, the simulation is not
altered and then:

Pr[S3] = Pr[S2].

Game 4. In this game, the challenger replaces the random binary Goppa code
by a random binary code. Then we can build the distinguisher presented Fig. 6.
If H is a permuted binary Goppa code, D proceeds as Game 3 and therefore

Pr[H R← Goppa(n, k) : D(H) = 1] = Pr[S3].

If H is a random binary code, D proceeds as Game 4 and therefore

Pr[H R← Binary(n, k) : D(H) = 1] = Pr[S4].

Then, AdvGD(D) = |Pr[S3] − Pr[S4]|. Since we suppose the distinguish of per-
muted Goppa code problem as (τGD, εGD)-hard

|Pr[S3] − Pr[S4]| ≤ εGD

Game 5. In this game (Fig. 7), the challenger modify the winning condition.
This game is conditioned by the adversary making its forgery on a particular

74 L. Dallot

Input: An adversary A
c

R← {1, . . . , qH + qΣ + 1};1

H∗ R← Binary(n, k);2

t ← n−k
log2 n

;3

Set the oracles H′ and Σ′;4

(m∗, σ∗, i∗) ← AΣ′,H′
(H∗);5

if

{
H′(m∗, i∗) = H∗σ∗T

wt(σ∗) ≤ t
and

{
Σ′ did not provide σ∗

c-th query to H′ was (m∗, i∗)
then

6

A wins the game7

else8

A loses the game9

end10

Fig. 7. Game 5

Input: An adversary A
c

R← {1, . . . , qH + qΣ + 1};1

H∗ R← Binary(n, k);2

t ← n−k
log2 n

;3

s∗ R← s ∈ Fn−k
2 ;4

Set the oracles H′ and Σ′;5

(m∗, σ∗, i∗) ← AΣ′,H′
(H∗);6

if

{
H′(m∗, i∗) = H∗σ∗T

wt(σ∗) ≤ t
and

{
Σ′ did not provide σ∗

c-th query to H′ was (m∗, i∗)
then

7

A wins the game8

else9

A loses the game10

end11

Fig. 8. Game 6

hash query: the challenger first gets a random c
R← {1, . . . , qH + qΣ + 1}. A wins

the game if, in addition to the preceding winning conditions, the c-th query to
H′ was made on (m∗, i∗).

This event, independent from the choice of the adversary, has probability
1

qH+qΣ+1 and then, we have:

Pr[S5] =
Pr[S4]

qH + qΣ + 1

Game 6. In this game (Fig. 8), the challenger modify the hash oracle to output
a random syndrome s∗ to the c-th query. The probability space is not modified
and then Pr[S6] = Pr[S5].

Towards a Concrete Security Proof 75

With the restriction made in game 5, the challenger knows A will make its
forgery on the result s∗ of the c-th query (m∗, i∗) to the hash oracle. Hence if A
wins the game we have: {

Hσ∗T = H′(m∗, i∗) = s∗

wt(σ∗) ≤ t = n−k
log2 n

Then the adversary wins the GPBD game and SuccGPBD(A) = Pr[S6]. From
the hypothesis, SuccGPBD(A) ≤ εGPBD and finally,

Pr[S6] ≤ εGPBD

Sum up. From this sequence of games we have:

1. Pr[S0] = SuccEF−CMA
mCFS (A)

2. |Pr[S0] − Pr[S1]| ≤ 1 −
(
1 − 1

2n−k

)qH+qΣ+1

3. |Pr[S1] − Pr[S2]| ≤ 1 −
(
1 − qΣ

2n−k

)qH
4. Pr[S2] = Pr[S3]
5. |Pr[S4] − Pr[S3]| ≤ εGD

6. Pr[S4]
qH+qΣ+1 = Pr[S5] = Pr[S6] = SuccGPBD(A) ≤ εGPBD

Using triangular inequality on 2 and 3, we obtain

|Pr[S0] − Pr[S2]| ≤ |Pr[S0] − Pr[S1]| + |Pr[S1] − Pr[S2]|
≤ 2 −

(
1 − 1

2n−k

)qH+qΣ+1 −
(
1 − qΣ

2n−k

)qH
Let f(n, k, qH, qΣ) = 2 −

(
1 − 1

2n−k

)qH+qΣ+1 −
(
1 − qΣ

2n−k

)qH . From 4 and 5, we
have:

|Pr[S0] − Pr[S4]| ≤ |Pr[S0] − Pr[S2]| + |Pr[S2] − Pr[S4]|
≤ εGD + f(n, k, qH, qΣ).

Since Pr[S4] = (qH + qΣ + 1)Pr[S5] = (qH + qΣ + 1)Pr[S6],

|Pr[S0] − (qH + qΣ + 1)Pr[S6]| ≤ εGD + f(n, k, qH, qΣ)

Finally, since Pr[S6] ≤ εGPBD and Pr[S0] = SuccEF−CMA
mCFS (A), we have:

SuccEF−CMA
mCFS (A) ≤ (qH + qΣ + 1)εGPBD + εGD + f(n, k, qH, qΣ)

The running time of the simulation is the running time of A and the time needed
to compute the qH+qΣ+1 hash values. This time is at most qH+qΣ+1 syndrome
computations. This gives the formula for τ .

6.1 Discussion

The basic idea of our proof resembles to the proof of Bellare and Rogaway [1]
that FDH RSA ist secure in the ROM: define the simulated hash value as the
application of the one-way function of a randomly chosen signature.

76 L. Dallot

The above reduction is clearly not tight: the probability of solving the GPBD
problem severely decreases when the number of queries qH and qΣ increases.
The most restrictive parameter is qH since the number qΣ of signatures can be
arbitrary bounded while the number qH of hash queries is unbounded. This cost
in the reduction is essentially due to the bet made on the query used for the
forgery.

To tighten the proof of FDH RSA, Coron [6] proposed a simulation of the
hash oracle which “hides” with a given probability the RSA challenge into the
answers of the oracle. This hiding is realised by multiplicating the application of
the one-way function and the challenge. This leads to a new random instance of
RSA. Then, the final probability that breaking RSA FDH scheme leads to solve
RSA only depends of the number qΣ of signature queries. Unfortunately this
approach cannot be used in our proof since building a new challenge for GPBD
from another syndrome may increase the weight of the corresponding signature.

7 Conclusion

We have studied the security of a modified version of the first practical signa-
ture scheme based on coding theory proposed by Courtois, Finiasz and Sendrier
in 2001. This security proof relies on the difficulty of the Goppa Parametrized
Bounded Decoding (GPBD) problem and the Goppa Code Distinguishing (GD)
problem. Thanks to the security proof of the mCFS scheme, it can be possible
to build provable special signature schemes such as undeniable [5] or blind [4]
signature schemes.

Unfortunately the reduction is not tight and finding a better reduction or
proving the optimality of our proof (i.e. prove there can not exist a better one)
remains an open problem.

Acknowledgements. I would like to thank D. Vergnaud for the idea of this
paper, F. Laguillaumie and A. Otmani for usefull discussions.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

2. Bellare, M., Rogaway, P.: The exact security of digital signatures – how to sign
with rsa and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070.
pp. 399–416. Springer, Heidelberg (1996)

3. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability
of certain coding problems. IEEE Trans. Inform. Th. 24 (1978)

4. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology
– CRYPTO 1982, Lecture Notes Computer Science, p. 153. Springer, Heidelberg
(1982)

5. Chaum, D., van Anderpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

Towards a Concrete Security Proof 77

6. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–236. Springer, Heidelberg (2000)

7. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001)

8. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform.
Th. 22(6), 644–654 (1976)

9. Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs d’erreurs en
cryptographie à clef publique. PhD thesis, INRIA – Ecole Polytechnique (October
2004) (in French)

10. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tems Sciences 28(2), 270–299 (1984)

11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

12. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Nieder-
reiter’s public-key cryptosystems. IEEE Trans. Inform. Th. 40(1), 271–273 (1994)

13. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland mathematical library, Amsterdam (1977)

14. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Tech-
nical report, DSN Progress report # 42-44, Jet Propulsion Laboratory, Pasadena,
Californila (1978)

15. Menezes, A.J., Vanstone, S.A., van Oorschot, P.C.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton (1996)

16. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15(2), 159–166 (1986)

17. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. CACM 21 (1978)

18. Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs
d’erreurs. Habilitation à diriger les recherches, Université Pierre et Marie Curie,
Paris 6, Paris, France (March 2002) (in French)

19. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs
(manuscript, November 2004) (revised, May 2005; January 2006)

Cryptanalysis of MOR and Discrete Logarithms

in Inner Automorphism Groups

Anja Korsten

Universität Tübingen, Wilhelm-Schickard-Institut für Informatik,
Sand 14, 72076 Tübingen, Germany

akorsten@informatik.uni-tuebingen.de

Abstract. The MOR cryptosystem was introduced in 2001 as a new
public key cryptosystem based on non-abelian groups. This paper demon-
strates that the complexity of breaking MOR based on groups of the form
GL(n, q) ×θ H (H a finite abelian group) is (with respect to polyno-
mial reduction) not higher than the complexity of the discrete logarithm
problem in small extension fields of IFq. Additionally we consider the
construction of a generic attack on MOR.

Keywords: public key cryptography, non-abelian group, MOR cryp-
tosystem, discrete logarithm problem, inner automorphism problem.

1 Introduction

In recent years there has been considerable interest in public key cryptosystems
on non-abelian groups, e.g. braid groups or linear groups. Paeng et al. introduced
the MOR cryptosystem in 2001, see [7]. This ElGamal-type public key cryptosys-
tem uses the fact that there is no subexponential-time algorithm known to solve
the discrete logarithm problem in the inner automorphism group Inn(G) of a
non-abelian group G.

Paeng et al. propose the semidirect product SL(2, p)×θ ZZp as a group for the
MOR cryptosystem, but MOR on this group is insecure, as shown by Tobias in
[11,12,13]. The presented attacks enable an adversary to derive significant parts
of the plaintext or even the secret encryption exponent. These attacks use special
properties of SL(2, p) and do not work for semidirect products of GL(n, q) by
an arbitrary abelian group. However, we present a ciphertext-only attack which
shows that the security of MOR on such groups solely depends on the difficulty
of the discrete logarithm problem in small extension fields of IFq. Furthermore
we use the idea of the attack to develop a generic reduction of the security of
MOR to the underlying group G.

2 The MOR Cryptosystem

Let G be a non-abelian finite group with a set of generators {γ1, . . . , γl} for
l ∈ IN. We assume that the representation problem in G is efficiently solvable,

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 78–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cryptanalysis of MOR and Discrete Logarithms 79

i.e. there exists a polynomial time algorithm that computes the representation
of an element of G as a product of the generating elements.

We will consider the group Inn(G) of inner automorphisms of G. The elements
of this group are of the form

Ig : G → G, x 	→ gxg−1

for g ∈ G. Note that (Ig)a = Iga for a ∈ IN, and that Ig = idG if and only if
g ∈ Z(G). It follows that the inducing element of an inner automorphism is not
necessarily unique, but we have Ig = Ih iff g ∈ h · Z(G).

In the setting of the MOR cryptosystem the inner automorphism induced by
an element g ∈ G will be represented as the set

Ig = {Ig(γi) : 1 ≤ i ≤ l},

where each of the Ig(γi) is again represented as a product of the γi
′s. With

this representation it is possible to hide the element g in Ig . This is essential for
MOR which is described as follows, see also [7,11].

Public Key Encryption Scheme: MOR

Key generation: Bob chooses an arbitrary element g ∈ G\Z(G): the private
key is a mod ord(Ig), the public key is (Ig, Iga).
Encryption:

1. Alice takes a plaintext m ∈ G\Z(G).
2. Alice chooses an arbitrary private encryption exponent b mod ord(Ig) and

computes (Iga)b = Igab .
3. Alice computes E := Igab (m) and ϕ := (Ig)b.
4. Alice sends (E, ϕ) to Bob.

Decryption: Bob receives a ciphertext (E, ϕ) and uses his private key a to
compute

ϕ−a(E) = Ig−ab (E) = Ig−ab (Igab (m)) = m.

From this description it is immediately clear that MOR is broken if we are able
to compute a from the public key (Ig, Iga), i.e. by solving a discrete logarithm
problem in < Ig >.

Definition 1. The discrete logarithm problem (DLP) is defined as follows:
Given g ∈ G and h ∈ < g > find a ∈ IN such that ga = h. We write a ∈
DLP(g, h).

Due to the representation of inner automorphism used for MOR, we consider
two other computational problems:

The general discrete logarithm problem (gDLP) is defined as follows: Given
g ∈ G and h ∈ < g > ·Z(G) find a ∈ IN and z ∈ Z(G) such that ga = zh. We
write a ∈ gDLPG(g, h).

80 A. Korsten

The inner automorphism problem (IAP) is defined as follows: Given Ig ∈
Inn(G) by Ig = {Ig(γi) : 1 ≤ i ≤ l} find h ∈ G such that Ih = Ig. We write
h ∈ IAPG(Ig).

Remark 1. For g ∈ G, x, y ∈ Z(G), and a ∈ IN we have

DLP(g, ga) ⊆ gDLP(g, ga) = gDLP(xg, yga).

Note that the solution of an instance (g, h) of the gDLP in a group G is unique
modulo |<g> / <g> ∩ Z(G)|. Naturally, the problem is trivial if g ∈ Z(G).

A solution of the IAP is not necessarily unique. In fact we have for h ∈ G:

Ih = Ig ⇔ h ∈ g · Z(G),

i.e. IAPG(Ig) = g · Z(G).

We refer to a computational problem P1 as polynomial-time reducible to a prob-
lem P2 (i.e. P1 ⇒P P2) if there exists a deterministic polynomial-time algorithm
that solves P1 and that may use an (unspecified) algorithm for P2 as a sub-
routine. We also consider probabilistic algorithms. In this paper a probabilistic
polynomial-time algorithm always refers to a polynomial Las-Vegas-algorithm
(corresponding to the complexity class ZPP). With respect to such algorithms we
define a computational problem to be efficiently solvable, if there exists a proba-
bilistic polynomial time algorithm that solves P . And in the same way as above,
we define P1 probabilistic polynomial-time reducible to P2, i.e. P1 ⇒ZPP P2.

Recall that the multiplication in a semidirect product G ×θ H of two groups
G and H is defined via a morphism θ : H → Aut(G) as

(g1, h1) · (g2, h2) = (g1θh1(g2), h1h2).

3 Reducing MOR on GL(n, q) ×θ H
In [7] Paeng et al. propose to use the semidirect product SL(2, p) ×θ ZZp as
a group for an implementation of the MOR scheme. On this group MOR has
been analysed and found insecure by Tobias and Paeng et al. in [8,11,13]. Tobias
describes two attacks that enable an attacker to determine the plaintext message
up to one unknown variable without compromising the secret key. The techniques
presented in his work use two properties:

A1 The special type of the homomorphism θ : ZZp → Inn(SL(2, p)) and the
fact that the center of SL(2, p) is trivial allow an immediate reduction of
MOR on SL(2, p)×θ ZZp to MOR on SL(2, p).

A2 In a MOR cryptosystem using the group SL(2, p), a ciphertext is a conju-
gate of the plaintext, and thus both texts have the same eigenvalues. This
is enough information to calculate two linear equations in the entries of
these matrices. The additional (and efficient) computation of an element of
the centralizer of the enciphering matrix allows an adversary to obtain a
third linear equation. These equations relate the four unknown entries of the
plaintext matrix up to only one unknown variable.

Cryptanalysis of MOR and Discrete Logarithms 81

In view of these attacks we propose to analyse MOR in a more general case
for which the attacks described above do not work. Consider groups of the type

GL(n, q) ×θ H

where q = pm is a prime power, n ∈ IN, H is any finite abelian group, and θ is an
efficiently computable homomorphism of H into Aut(GL(n, q)). For our purpose,
it is sufficient to assume that group operations in the semidirect product can be
efficiently computed and the representation problem is efficiently solvable.

Every automorphism in Aut(GL(n, q)) is a composition of an inner auto-
morphism, a central automorphism, a field automorphism and a contragredient
transformation. For a detailed description of this automorphism group we refer
the reader to [2,4].

By choosing a group for MOR in this way, we avoid an easy reduction as in
A1 and also the attack A2.

3.1 The DLP in Inn(GL(n, q))

Before looking at MOR on the semidirect product, we analyse the DLP in
Inn(GL(n, q)). This is done for two reasons: 1. The attack A2 is less efficient
with growing n, thus we should also consider MOR on GL(n, q). 2. In order to
conduct the analysis of MOR in Sec. 3.2 we need to look at the reducibility of
the DLP in Inn(GL(n, q)).

Let G1 and G2 be two matrices that generate GL(n, q), for details see [10].

Reduction 1 - DLP in Inn(GL(n, q)). Let (IC , ICa) be an instance of
the DLP in Inn(GL(n, q)). If we solve the IAP for IC and ICa , we obtain the
sets C · Z(GL(n, q)) = C · IF∗

q and Ca · IF∗
q respectively. Let V ∈ C · IF∗

q and
W ∈ Ca · IF∗

q , then by Remark 1 we have

gDLP(V, W) = gDLP(C, Ca) = DLP(IC , ICa).

Thus, efficiently solving the IAP in GL(n, q) reduces the DLP in Inn(GL(n, q))
to the gDLP in GL(n, q).

Proposition 1. The IAP in GL(n, q) is efficiently solvable.

Proof. Let IC ∈ Inn(GL(n, q)). From Ḡi := IC(Gi) (i = 1, 2) we derive a system
of linear equations for the unknown variable X ∈ GL(n, q)

XG1 − Ḡ1X = 0n (1)
XG2 − Ḡ2X = 0n (2)

(which is satisfied by X = C). This system of 2n2 linear equations in n2 variables
with coefficients in IFq is efficiently solvable. Naturally, the zero matrix 0n is a
solution, but it is the only singular solution:

Let A �= 0n be a simultaneous solution of (1) and (2). Then

AGi = ḠiA and thus AGi = CGiC
−1A,

82 A. Korsten

which implies
(C−1A)Gi = Gi(C−1A).

Since G1 and G2 generate GL(n, q), the matrix C−1A centralizes GL(n, q) and
thus also the IFq-vectorspace generated by GL(n, q) which is Mn(q). Therefore
C−1A is of the form c ·En, c ∈ IFq. Since A �= 0n, we have C−1A ∈ Z(GL(n, q)),
and thus A ∈ C · Z(GL(n, q)) = IAP(IC). �

Corollary 1. DLP in Inn(GL(n, q)) ⇒P gDLP in GL(n, q).

Reduction 2 - gDLP in GL(n, q). We will now discuss a further reduction
of the gDLP using an eigenvalue attack.

Proposition 2. If the Jordan canonical form of a matrix in GL(n, q) and the
corresponding transformation matrix are efficiently computable, then there exists
d ≤ n such that

gDLP in GL(n, q) ⇒P DLP in GL(n, qd).

Proof. Let V ∈ GL(n, q), W ∈ IF∗
q · < V > and λ ∈ IFqd be an eigenvalue of V

for some d ≤ n. Consider the matrix

V̂ = λ−1 · V ∈ GL(n, qd). (3)

If λ1, . . . , λs are the eigenvalues of V , then λ−1λ1, . . . , λ
−1λs are the eigenvalues

of V̂ ; and one of these equals 1. Without loss of generality we assume λ−1λ1 = 1.
Let J(V̂) be the Jordan canonical form of V̂ , and let T be the corresponding

transformation matrix, i.e. T V̂ T−1 = J(V̂). For a ∈ gDLPGL(n,qd)(V̂ , W) there
exists ka ∈ IF∗

q such that

J(V̂)a = (T V̂ T−1)a = T V̂ aT−1 = kaTWT−1.

In this equation, J(V̂)a as well as TWT−1 are upper triangular matrices. The
elements on the diagonal of J(V̂)a are

1, (λ−1λ2)a, . . . , (λ−1λs)a,

where 1 is in position (i, i) for some 1 ≤ i ≤ n, Let w be the entry in position
(i, i) of TWT

−1. Then we have

ka = w−1. (4)

Now we know ka, and thus the problem of solving the gDLP for V̂ and W is
reduced to the DLP in GL(n, qd) for V̂ and kaW . �

Note that in order to compute the Jordan canonical form and the transformation
matrix in Proposition 2 we would need to do computations in the field IFqt , where
t = lcm{d1, . . . , ds} for λi ∈ IFqdi , and t ∈ O(n!). Hence, an algorithm using the
straight-forward strategy in the proof of Proposition 2 would have exponential

Cryptanalysis of MOR and Discrete Logarithms 83

running time. In order to make the reduction efficient, we use the idea of the
previous proof to modify an algorithm by Menezes-Wu, see [6]. Their algorithm
actually yields a probabilistic polynomial-time reduction of the DLP in GL(n, q)
to the DLP in some small extension fields of IFq and is modified as follows:

Algorithm 1. (Reduction of the gDLP in GL(n, q) to the DLP in IFqmi , 1 ≤
i ≤ s.) Changes to the original algorithm from [6] are emphazised.

Input: Matrices V, W ∈ GL(n, q) with V a = zW for some z ∈ IF∗
q .

Output: l ∈ gDLPGL(n,q)(V, W).

I. Use Ben-Or’s Las-Vegas algorithm (see [1]) to compute one eigenvalue λ ∈
IFq̂ of V .

II. Compute V̂ = λ−1V ∈ GL(n, q̂) (as in (3)).
Observe that now 1 is an eigenvalue of V̂ .

III. Start the Menezes-Wu algorithm with V̂ and W in GL(n, q̂):
1. Use the Hessenberg algorithm to find the characteristic polynomial pV̂ (x)

of V̂ .
2. Find the factorization of pV̂ (x) over IFq̂ using Ben-Or’s Las-Vegas algo-

rithm (see [1]): pV̂ (x) = fe1
1 fe2

2 · · · fes
s , where each fi is an irreducible

polynomial of degree di.
Let the roots of fi in IFq̂di be αij , 1 ≤ j ≤ di. Note that we may conve-
niently represent the field IFq̂di as IFq̂[x]/(fi(x)). In this representation,
we simply have αi1 = x and αij = xq̂j−1

mod fi(x) for 1 ≤ j ≤ di.
Since 1 is an eigenvalue of V̂ , one of the f ′

is is equal to x− 1. Rearrange
the factorization of pV̂ (x) such that f1 = x − 1. Then, d1 = 1 and
α11 = 1.

3. For i from 1 to s do the following:
3.1 For l = 1, . . . , c, c+1 compute (V̂ −αi1I)l and rl = rank(V̂ −αi1I)l,

where c is the smallest positive integer such that rc = rc+1.
3.2 Find an eigenvector μi corresponding to αi1 by solving (V̂ −αi1I)y =

0.
3.3 Construct a matrix Qi ∈ GL(n, q̂di) with first column μi.
3.4 If i = 1, compute D1 = Q−1

1 WQ1.

If i ≥ 2, compute Di = Q−1
i ŴQi.

3.5 If i = 1, then the (1,1) entry of D1 is w (as in (4)).
Set Ŵ = w−1

1 W and l mod ord(α11) = l mod1 = 1.
If i ≥ 2, then the (1,1) entry of Di is αl

i1. Obtain l mod ord(αi1) by
solving the DLP in IFq̂di for the instance (αi1, α

l
i1).

4. Let t be the maximum of the values c found in step 3.1. If t > 1 then
the value l modp{t} is computed in this step, see [6].

5. Compute l mod ord(V̂) using the Chinese remainder theorem (where
ord(V̂) = lcm{ord(αij)} · p{t}).

84 A. Korsten

Remark 2. The running time of Algorithm 1 is probabilistic polynomial: The
original algorithm of Menezes-Wu is a probabilistic polynomial-time algorithm
(see [6]); the changes performed in Algorithm 1 do not alter the complexity.

Corollary 2. DLP in Inn(GL(n, q)) ⇒ZPP DLP in IFqi , i = 1, . . . , n..

3.2 Reduction of MOR on GL(n, q) ×θ H
For C ∈ GL(n, q) and h ∈ H let the pair(

I(C,h), I(C,h)a

)
(5)

of inner automorphisms of GL(n, q)×θH be the public key for a MOR encryption
in this group. Under the assumption that we are able to solve the DLP in small
extensions of the finite field IFq, we will succesfully compute an equivalent of the
secret key a or other information which allows us to decipher any message(

(M ′, s), I(C,h)b

)
(6)

where
(M ′, s) = I(C,h)ab(M, s). (7)

Since H is abelian, the second component s of the plaintext is sent in clear and
the actual ciphertext is

M ′ = p(ab) · θhab(M) · θs(p(ab)−1), (8)

where p(x) :=
∏x−1

i=0 θhi(C). For s = 1 a MOR encryption on GL(n, q) ×θ H is
immediately reduced to GL(n, q). Hence, we assume that s �= 1.

In this paper we will consider θ(H) as a subgroup of one of the four basic
automorphism groups of GL(n, q), i.e. for h ∈ H

1. θh ∈ Inn(GL(n, q)), or
2. θh ∈ AutC(GL(n, q)), where θh(A) ∈ IF∗

q · A for all A ∈ GL(n, q), or
3. θh ∈ < ct >, where ct(A) = (A−1)t for all A ∈ GL(n, q), or
4. θh ∈ < f >, where f is the generator of the field automorphisms.

Since every automorphism of GL(n, q) is a product of basic automorphisms, it
can be shown that the results in each of these cases will lead to the general case.

Theorem 1. Let H be an abelian group and θ : H → Aut(GL(n, q)) be a
homomorphism, where θ(H) is a subgroup of one of the four basic automorphism
groups of GL(n, q). Then the MOR cryptosystem on the group GL(n, q) ×θ H
succumbs to a ciphertext-only attack by an adversary, who is able to solve the
DLP in small extension fields of IFq, i.e. in IFqi , i = 1, . . . , n.

Proof. For the security analysis we will define two functions, which extract useful
information from (5) and (6).

Cryptanalysis of MOR and Discrete Logarithms 85

Definition 2. Let A ∈ GL(n, q). Given (5) and (6), and without knowing a or
b, we are always able to compute the following values, where x ∈ {1, a, b}:

1) Since I(C,h)x(A, 1) = (Ip(x)(θhx(A)), 1), we define

Ψ1(x, A) := Ip(x)(θhx(A)). (9)

Note that for A ∈ Z(GL(n, q)) we have Ψ1(x, A) = θhx(A).

2) Since I(C,h)x(A, s) = (p(x) θhx(A) θs(p(x)−1), s), we define

Ψ2(x, A) := p(x) θhx(A) θs(p(x)−1). (10)

Note that we also know
Ψ2(ab, M) = M ′. (11)

We know look at each of the four cases seperately. The first case is discussed in
detail and we give a summary of our approach in the other cases.

CASE 1: θ(H) ≤ Inn(GL(n, q)). If θh is an inner automorphism, then there
exists H ∈ GL(n, q) such that

θh = IH .

For x ∈ {1, a, b} we have (but are not able to compute)

p(x) =
x−1∏
i=0

θhi(C) =
x−1∏
i=0

IHi (C)

= C HCH−1 H2CH−2 . . . Hx−1CH−(x−1) (12)
= (CH)xH−x.

Step 1. Consider Ψ1 and only the public key (5). From (12) and for x ∈ {1, a}
and any matrix A ∈ GL(n, q) we derive

Ψ1(x, A) = Ip(x)(θhx(A))

= (CH)xH−xθhx(A)Hx(CH)−x (13)
= (CH)xH−xIHx(A)Hx(CH)−x = I(CH)x(A).

This yields the inner automorphisms ICH and I(CH)a . By Corollary 2 we effi-
ciently solve the DLP for ICH and I(CH)a in Inn(GL(n, q)) and derive

a′ ∈ DLP(ICH , I(CH)a) (14)

Note that this computation can be done before any message (6) has been sent.

Step 2. Now, consider the encrypted message (6). Since we know s, we are able
to calculate S ∈ IAP(θs) such that

θs = IS .

86 A. Korsten

This is not necessarily the same generating element of θs, which is used for the
encryption, but we will see that the matrix S is sufficient for our purpose. (The
matrix, which is used for encryption, is some IF∗

q-multiple of S).
Since θ(H) is abelian, we have

IHS = ISH .

It follows that

[S, H] = SHS−1H−1 = c · En ∈ Z(GL(n, q)). (15)

for some c ∈ IF∗
q . Since det[S, H] = 1, c is even a n-th root of unity in IF∗

q .
Now consider Ψ2. From (12) and (15) we compute for x ∈ {1, a} and some

A ∈ GL(n, q)

Ψ2(x, A) = p(x) θhx(A) θs(p(x)−1) (16)
= (CH)xH−x · HxAH−x · SHx(CH)−xS−1

= (CH)x · AcxS · (CH)−x · S−1

= I(CH)x(AcxS)S−1.

Since we know S (except for a IF∗
q -multiple), A, and I(CH)x , we are able to

extract c, ca, cb ∈ IF∗
q . From these we can efficiently compute

cab ∈ IF∗
q .

As in Step 1. (13) we efficiently compute I(CH)b . Using a′ we derive

I(CH)ab .

The encrypted part of the message is of the form

M ′ = I(CH)ab (McabS)S−1. (17)

Since we know S (except for a IF∗
q-multiple), cab, and the inner automorphism

I(CH)ab , we are able to compute the plaintext

M = I(CH)−ab (M ′ · S) · (cabS)−1.

Note that knowing a′ is equivalent to knowing the secret key a. In this case MOR
on GL(n, q) ×θ H is insecure.

CASE 2: θ(H) ≤ Autc(GL(n, q)). There exists c ∈ IF∗
q whence the en-

crypted part of the message is of the form

M ′ = ICab(c · M). (18)

Using Ψ1 and the invariance of the trace function under conjugation we compute
the inner automorphisms IC , ICa and ICb . Solving a DLP we derive ICab . Thus
we are able to recover an IF∗

q -multiple of the message M . In this case we gain
sufficient information (i.e. the plaintext) such that MOR on GL(n, q) ×θ H is
insecure.

Cryptanalysis of MOR and Discrete Logarithms 87

CASE 3: θ(H) ≤ < ct >. Now, the encrypted part of the message is of the
form

M ′ =
{

Ip(ab)(M) , if θs = id
p(ab) · M · p(ab)t , if θs = ct

(19)

In the first case use Ψ1 to compute Ip(1), Ip(a), and Ip(b). Solving a DLP in
Inn(GL(n, q)) we derive Ip(ab) and thus the message M . In the second case use
Ψ1 and Ψ2 to compute p(1), p(a), and p(b). Solving a DLP in GL(n, q) we derive
p(ab) and thus the message M . In both cases we compute an equivalent to the
secret key a. Hence, MOR on GL(n, q) ×θ H is insecure.

CASE 4: θ(H) ≤ < f >. The encrypted part of the message is of the form

M ′ = p(m)kab · p(abm) · θabm

h (M) · θs((p(m)kab · p(abm))−1). (20)

Since we know s, we are able to calculate θs. From Ψ1 we derive θh. Using Ψ1

and the extended euklidian algorithm we compute abm = a · b mod m, where
m = logp q. We can also efficiently compute p(m) and p(abm). Using Ψ2 we
compute Ip(m), Ip(m)ka , and Ip(m)kb . Solving a DLP in Inn(GL(n, q)) we derive
kab = ab−abm

m and thus the message M and an equivalent to the secret key a.
Hence, MOR is insecure in this case. �

Remark 3. Note that a similar analysis is possible with SL(n, q) in a semidirect
product with any finite abelian group.

4 Generic Security Analysis of MOR

In order to break the security of the MOR cryptosystem in the generic case,
it is sufficient to be able to solve the DLP in a cyclic subgroup of an inner
automorphism group of the group G. To the author’s best knowledge, the only
algorithms known, which can be applied to the DLP in an inner automorphism
group, are generic algorithms which have exponential running time. In [7] it
is argued that even if the discrete logarithm problem in the underlying group
G is efficiently solvable, their cryptosystem is applicable to G. Thus, if we are
able to efficiently reduce the DLP from Inn(G) to G and there exist (at least)
subexponential algorithms for solving the DLP in G, this advantage of the MOR
construction is annuled.

In the following we will give some results on the general interrelation between
the DLP in an inner automorphism group Inn(G) and the DLP in G.

Theorem 2. (DLP in an inner automorphism group, I) Let G be a group and
g ∈ G. If a solution of the IAP for Ig in G is computable in polynomial time, then

DLP in < Ig > ⇔P gDLP in <g> .

Proof. ⇒ : Let (Ig , Ih) be an instance of the DLP in < Ig >. If we solve the
IAP for both inner automorphisms we obtain x ∈ g · Z(G) and y ∈ h · Z(G).
Note that Ig = Ix and Ih = Iy . If we solve the gDLP for the instance (x, y) we

88 A. Korsten

obtain a ∈ IN such that xa = y. With Remark 1 it follows that a ∈ gDLP(x, y) =
gDLP(g, h) = DLP(Ig, Ih).

⇐ : Let (g, h) be an instance of the gDLP in G. Lift this instance to < Ig >,
i.e. (Ig, Ih). For a solution a ∈ DLP(Ig , Ih) we have (Ig)a = Ih and it follows
that ga ∈ h · Z(G). Thus a ∈ gDLP<g>(g, h). �
Thus the security of the MOR cryptosystem depends on the difficulty of the
gDLP in G and the difficulty of calculating solutions for the IAP in Inn(G).
Certain conditions on the order of g allow a further reduction.

Theorem 3. (DLP in an inner automorphism group, II) Let G be a group and
g ∈ G such that gcd(ord(g), |Z(G)|) = 1. If a solution of the IAP for Ig in G is
computable in polynomial time, then

DLP in < Ig > ⇔P DLP in <g> .

Proof. By theorem 2 we need to prove that the DLP and the gDLP in <g> are
equivalent.
1. Since the condition gcd(ord(g), |Z(G)|) = 1 guarantees the uniqueness of the
solution of the gDLP, we have DLP in <g> ⇒ gDLP in <g>.

2. Let |Z(G) |= m and (g, h) be an instance of the gDLP in < g >. Since
gcd(ord(g), m) = 1, a solution a ∈ gDLP(g, h) is unique modulo ord(g). We also
have a ∈ DLP(gm, hm) and a is a unique solution modulo ord(gm) = ord(g). It
follows that DLP(gm, hm) = gDLP(g, h). �
Note that the theorem also holds if gcd(ord(g), | Z(G) |) is small, i.e. in
O(log ord(g)). This theorem implies that in certain cases it is indeed impor-
tant for the security of MOR whether the discrete logarithm problem in the
underlying group is efficiently solvable. Especially groups, where the order of
the center and its factor group are coprime, must not be used.

5 Conclusion

We showed that MOR on groups of the type GL(n, q)×θH is insecure in the sense
that an attacker, who is able to compute discrete logarithms in small extensions
of IFq, is also able to break MOR. As the DLP in finite fields offers high security,
the semidirect products considered in this paper should be discarded for practical
reasons: computations in these are more costly than in the corresponding finite
fields IFqi . Thus an ElGamal-type cryptosystem in IFqi is more efficent with the
same security. The question, whether there exist groups on which MOR is secure,
remains open. When studying MOR on other groups the considerations of the
previous section must be taken into account.

References

1. Ben-Or, M.: Probabilistic algorithms in finite fields. IEEE Symposium on Founda-
tions of Computer Science 22, 394–398 (1981)

2. Dieudonné, J.: On the automorphisms of classical groups. Memoirs of the American
Mathematical Society 2 (1951)

Cryptanalysis of MOR and Discrete Logarithms 89

3. ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196. pp. 10–18. Springer, Heidelberg (1985)

4. Korsten, A.: The Discrete Logarithm Problem in Semidirect Products and the
Reduction of the MOR Cryptosystem, Diplomarbeit, University of Tübingen, Ger-
many (2005)

5. Lee, I.S., Kim, W.H., Kwon, D., Nahm, S., Kwak, N.S., Baek, Y.J.: On the security
of MOR public key cryptosystem. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329. pp. 387–400. Springer, Heidelberg (2004)

6. Menezes, A.J., Wu, Y.: The discrete logarithm problem in GL(n,p). Ars Combina-
toria 47, 23–32 (1998)

7. Paeng, S.H., Ha, K.C., Kim, J.H., Chee, S., Park, C.: New public key cryptosystem
using finite non abelian groups. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139.
pp. 470–485. Springer, Heidelberg (2001)

8. Paeng, S.H., Kwon, D., Ha, K.C., Kim, J.H.: Improved public key cryptosystem
using finite non abelian groups, Cryptology ePrint Archive (2001),
http://eprint.iacr.org/2001/066

9. Paeng, S.H.: On the security of cryptosystem using automorphism groups. Infor-
mation Processing Letters 88, 293–298 (2003)

10. Taylor, D.: Pairs of generators for matrix groups, I. The Cayley Bulletin 3, 76–85
(1987)

11. Tobias, C.: Security analysis of the MOR cryptosystem. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567. pp. 175–186. Springer, Heidelberg (2002)

12. Tobias, C.: Security analysis of MOR using GL(2, R) × ZZp. WOSIS 2, 170–179
(2004)

13. Tobias, C.: Design und Analyse kryptographischer Bausteine auf nicht-abelschen
Gruppen, PhD thesis, University of Giessen (2004)

http://eprint.iacr.org/2001/066

Preimages for Reduced-Round Tiger�

Sebastiaan Indesteege�� and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

{sebastiaan.indesteege,bart.preneel}@esat.kuleuven.be

Abstract. The cryptanalysis of the cryptographic hash function Tiger
has, until now, focussed on finding collisions. In this paper we describe
a preimage attack on the compression function of Tiger-12, i.e., Tiger
reduced to 12 rounds out of 24, with a complexity of 263.5 compression
function evaluations. We show how this can be used to construct second
preimages with complexity 263.5 and first preimages with complexity
264.5 for Tiger-12. These attacks can also be extended to Tiger-13 at the
expense of an additional factor of 264 in complexity.

Keywords: Tiger, hash functions, preimages.

1 Introduction

A cryptographic hash function is expected to possess three properties: colli-
sion resistance, preimage resistance and second preimage resistance. While other
properties exist, the above three are the most well known.

Collision resistance: It is difficult to find two distinct messages m �= m′ that
hash to the same result, i.e., h(m) = h(m′).

Preimage resistance: When given a hash result y (for which it holds that
∃x : h(x) = y), it is difficult to find a message m which hashes to y, i.e.,
h(m) = y.

Second preimage resistance: When given a message m, it is difficult to find
a message m′ �= m that hashes to the same result as the given message, i.e.,
h(m) = h(m′).

There are generic attacks that apply to any hash function and whose time com-
plexity only depends on the size of the hash result. Collisions for a hash function
with an n-bit result can be found in time 2n/2 using a birthday attack [6], and
preimages can be found by brute force in time 2n. Weaker attacks may aim

� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government, by the IAP Programme P6/26 BCRYPT
of the Belgian State (Belgian Science Policy), and by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

�� F.W.O. Research Assistant, Fund for Scientific Research – Flanders (Belgium).

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 90–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Preimages for Reduced-Round Tiger 91

at finding pseudo-collisions, where slight differences in the hash results are al-
lowed, or pseudo-near-collisions, where differences may also appear in the initial
chaining values.

All attacks on the cryptographic hash function Tiger [1] have so far been
collision attacks. Kelsey and Lucks [3] showed a collision attack on Tiger re-
duced to 16 rounds with a complexity of 244 compression function evaluations.
Mendel et al. [4] extended this to a collision attack on 19 rounds of Tiger with a
complexity of 262 compression function evaluations. In both papers some weaker
attacks (e.g. pseudo-collisions) for a larger number of rounds were also shown.
These results were further improved by Mendel et al. [5] towards a pseudo-near-
collision for the full hash function and a pseudo-collision for 23 rounds of Tiger.

We focus on finding preimages for reduced variants of Tiger instead. More
specifically, we describe a method to find first and second preimages for 12 and
13 rounds reduced Tiger. This method is conceptually similar to Dobbertin’s
preimage attack on reduced MD4 [2]. Our attack finds first and second preim-
ages for Tiger-12 with a complexity of 264.5 and 263.5 compression function eval-
uations, respectively. It can be extended to Tiger-13, where the complexities
become 2128.5 and 2127.5, respectively. As Tiger has a digest size of 192 bits,
the theoretical complexity for finding first or second preimages is 2192 compres-
sion function evaluations. To the best of our knowledge, this is the first result
concerning preimages for reduced round Tiger.

The structure of the paper is as follows. In Sect. 2, the Tiger hash function
is described, along with the notation that will be used throughout the paper.
Section 3 describes a preimage attack on three rounds of Tiger. The three round
preimage attack is then used as a building block to construct preimages for the
compression function of Tiger-12 and Tiger-13 in Sect. 4. Then, in Sect. 5 it is
shown how first and second preimages for these reduced variants of the Tiger
hash function can be constructed. Finally, Sect. 6 presents our conclusions.

2 Description of Tiger

Tiger [1] is an iterative cryptographic hash function, designed by Anderson and
Biham in 1996. It has an output size of 192 bits. Truncated variants with a digest
size of 160 and 128 bits were also defined. It was designed for 64-bit architectures
and hence all words are 64 bits wide and arithmetic is performed modulo 264.
Tiger uses the little-endian byte ordering.

First, the message to be hashed is padded by appending a single “1”-bit and
as many “0”-bits as necessary to make the message length 64 bits less than the
next multiple of 512 bits. Then the message length (in bits) is appended as a
64-bit unsigned integer. After this procedure, the padded message consists of an
integer number of 512-bit blocks. Then, Tiger’s compression function is applied
iteratively to each 512-bit block of the padded message.

Tiger’s compression function operates on a 192-bit chaining value and a 512-
bit message block. The message block is split into eight 64-bit words Xi. The
192-bit chaining value is split into three 64-bit words which are used as the

92 S. Indesteege and B. Preneel

Table 1. Notations

X + Y Addition of X and Y modulo 264

X − Y Subtraction of X and Y modulo 264

X × Y Multiplication of X and Y modulo 264

X ⊕ Y Bit-wise exclusive or of X and Y

X Bit-wise complement of X
X
 n Logical left bit shift of X by n positions
X � n Logical right bit shift of X by n positions
X||Y The concatenation of X and Y

Xi The i-th expanded message word
Yi The i-th intermediate value of the key schedule algorithm

Ai, Bi, Ci State variables at the output of round i, 0 ≤ i < 24
Ki The round constant used in round i, 0 ≤ i < 24

K−1
i Multiplicative inverse of Ki modulo 264

T1,. . . ,T4 The four 8-to-64-bit S-boxes used in Tiger

Ai Bi Ci

Ai−1 Bi−1 Ci−1

Xi

Ki

� � �

��������

��������

����������������

−
�

×
�

+

�

�

��

��
+
�

�

odd� �

even� �

Fig. 1. The state update transformation of Tiger

initial state variables A−1, B−1 and C−1. The compression function consists of
three passes of 8 rounds of a state update transformation (24 rounds in total),
each using one Xi to update the three state variables Ai, Bi and Ci. Table 1
summarises the notations used in this paper.

The i-th round of Tiger (0 ≤ i < 24) is depicted in Fig. 1. Equivalently, the
state update transformation can be described by the following equations:

Ai = Ki × (Bi−1 + odd (Ci−1 ⊕ Xi)) ,
Bi = Ci−1 ⊕ Xi ,
Ci = Ai−1 − even (Ci−1 ⊕ Xi) .

(1)

Preimages for Reduced-Round Tiger 93

In every round, a round constant Ki is used. These constants are given by:

Ki =

⎧⎨⎩
5 if 0 ≤ i < 8 ,
7 if 8 ≤ i < 16 ,
9 if 16 ≤ i < 24 .

(2)

The non-linear functions odd(·) and even(·) are defined as follows.

odd(c7|| . . . ||c0) = T4[c1] ⊕ T3[c3] ⊕ T2[c5] ⊕ T1[c7] ,
even(c7|| . . . ||c0) = T1[c0] ⊕ T2[c2] ⊕ T3[c4] ⊕ T4[c6] .

(3)

Here, ci denotes the i-th byte of a 64-bit word, using the little-endian byte
ordering, i.e., c0 is the least significant byte.1 Both functions use four 8-to-64-
bit S-boxes, T1 through T4. Note that both functions only use four out of eight
input bytes, and thus map 32 bits to 64 bits. They are called odd(·) and even(·)
because they operate on the odd, respectively even bytes of the input word.

The first eight message words Xi, 0 ≤ i < 8, are taken directly from the message
block. The message words X8,. . . ,X15 are derived from X0, . . . , X7 using an algo-
rithm which the designers of Tiger refer to as the key schedule algorithm [1]. Then,
using the same algorithm, X16,. . . ,X23 are determined from X8,. . . ,X15. This key
schedule algorithm consists of two passes, given by the following equations:

Y0 = X0 − (X7 ⊕ A5 . . .A5x) ,
Y1 = X1 ⊕ Y0 ,
Y2 = X2 + Y1 ,
Y3 = X3 −

(
Y2 ⊕ (Y1 � 19)

)
,

Y4 = X4 ⊕ Y3 ,
Y5 = X5 + Y4 ,
Y6 = X6 −

(
Y5 ⊕ (Y4 � 23)

)
,

Y7 = X7 ⊕ Y6 .

X8 = Y0 + Y7 ,
X9 = Y1 −

(
X8 ⊕ (Y7 � 19)

)
,

X10 = Y2 ⊕ X9 ,
X11 = Y3 + X10 ,

X12 = Y4 −
(
X11 ⊕ (X10 � 23)

)
,

X13 = Y5 ⊕ X12 ,
X14 = Y6 + X13 ,
X15 = Y7 − (X14 ⊕ 01 . . .EFx) .

(4)

Finally, after 24 rounds, the initial state variables are fed forward, using a com-
bination of exclusive or, subtraction and addition.

A� = A−1 ⊕ A23 ,
B� = B−1 − B23 ,
C� = C−1 + C23 .

(5)

The 192-bit output of the compression function is A�||B�||C�, i.e., the concate-
nation of A�, B� and C�.

3 Preimages for Three Rounds of Tiger

In this section we describe a solution due to Mendel et al. [4] to the problem of
finding preimages for three rounds of the state update transformation of Tiger.
1 Note that there was a misinterpretation of the byte order in [3,4]. The attacks de-

scribed there can however be modified to overcome this problem [5].

94 S. Indesteege and B. Preneel

There is always exactly one solution, which can be found in constant time.
Although rather straightforward, it will prove to be a useful building block in
preimage attacks on a larger number of Tiger rounds.

More in detail, we are given A−1, B−1, C−1, A2, B2 and C2 and want to
determine the three message words X0, X1 and X2 such that the constraints
originating from the state update transformation are satisfied. Note that, without
knowing any of the message words, all the state variables in these three rounds
can already be determined. Indeed, from (1) it follows that

A1 = C2 + even (B2) ,
B1 =

(
A2 × K−1

2

)
− odd (B2) ,

B0 =
(
A1 × K−1

1

)
− odd (B1) ,

A0 = K0 × (B−1 + odd (B0)) ,
C0 = A−1 − even (B0) ,
C1 = A0 − even (B1) .

(6)

Note that each Ki as given in (2) is coprime with 264 so its multiplicative inverse
modulo 264 exists and can be computed easily. Knowing the state variables, it
is trivial to determine X0, X1 and X2.

X0 = C−1 ⊕ B0 ,
X1 = C0 ⊕ B1 ,
X2 = C1 ⊕ B2 .

(7)

This procedure is fully deterministic and always gives exactly one solution. The
time complexity of this procedure is equivalent to three rounds of Tiger.

Of course this can equally be applied to any three consecutive rounds of Tiger,
as part of a larger attack. To conclude, control over three consecutive expanded
message words yields complete control over the intermediate state of Tiger.

4 Preimages for the Compression Function of Tiger-12

In this section, we first describe a method to find preimages for the compression
function of Tiger, reduced to 12 rounds. Then we extend this to Tiger-13, i.e.,
Tiger reduced to 13 rounds.

Given the algorithm from Sect. 3, one can easily find sets of expanded message
words Xi which ensure that the output of the compression function of Tiger (or
a round-reduced version thereof) is equal to some desired value. However, if
the number of attacked rounds is greater than eight there is no guarantee that
these expanded message words satisfy the constraints from the key schedule
algorithm. For eight or less rounds of Tiger, the message expansion becomes
trivial, as each of the first eight expanded message words is under direct control
of an adversary. Hence also finding preimages for these variants of Tiger is trivial
by making arbitrary choices and using the algorithm from Sect. 3 for the last
three rounds.

The circular dependency can be broken by guessing some intermediate vari-
able(s) and later verifying if the guess was correct. If the guess was wrong, the

Preimages for Reduced-Round Tiger 95

attack is simply repeated. Hence the time complexity of the attack is highly
dependent on the probability that the correct guess was made. Since we assume
that every value for the guessed variables is equally likely, this probability is
equal to 2−n where n is the total number of guessed bits.

Conceptually, this approach is very similar to the work of Dobbertin [2] on
finding preimages for a reduced variant of MD4. Of course the similarity only
exists on a very high level, due to the fact that MD4 and Tiger are very different
hash functions.

4.1 Algorithm

In this section, a detailed description of the algorithm for finding preimages for
the compression function of Tiger-12 is given. As we are given the desired input
and output chaining values, the feed-forward given in (5) can easily be removed.
Therefore, the state variables A−1, B−1, C−1, A11, B11 and C11 are known at
the beginning of the attack.

1. Make arbitrary choices for the message words used in the four last rounds,
(i.e. X8, X9, X10 and X11). The state update transformation can be used in
the backwards direction to determine A7, B7 and C7, as follows:⎧⎨⎩

Ai−1 = Ci + even (Bi) ,
Bi−1 =

(
Ai × K−1

i

)
− odd (Bi) ,

Ci−1 = Bi ⊕ Xi .
for i = 11, . . . , 8 (8)

2. Guess Y7, an intermediate value of the key schedule algorithm. This 64-bit
guess is the only guess that will be made in the attack. It will be verified in
the final step of the attack.

3. The message words X8 through X11 are normally computed from the key
schedule. These equations can easily be inverted to find the intermediate
values Y0, Y1, Y2 and Y3 for which the values chosen in step 1 will appear:

Y0 = X8 − Y7 ,
Y1 = X9 +

(
X8 ⊕

(
Y7 � 19

))
,

Y2 = X10 ⊕ X9 ,
Y3 = X11 − X10 .

(9)

This step is deterministic and always leads to a single solution. Looking
further at the key schedule, the message words X1 through X3 can also be
determined uniquely:

X1 = Y1 ⊕ Y0 ,
X2 = Y2 − Y1 ,
X3 = Y3 +

(
Y2 ⊕

(
Y1 � 19

))
.

(10)

4. Choose X7 (there are 264 choices) and compute X0 using the key schedule:

X0 = Y0 + (X7 ⊕ A5A5A5A5A5A5A5A5x) (11)

96 S. Indesteege and B. Preneel

5. Now, the first four expanded message words (i.e. X0 through X3) are known.
The state update transformation can thus be used in the forward direction
to calculate A3, B3 and C3.⎧⎨⎩

Ai = Ki × (Bi−1 + odd (Ci−1 ⊕ Xi)) ,
Bi = Ci−1 ⊕ Xi ,
Ci = Ai−1 − even (Ci−1 ⊕ Xi) .

for i = 0, . . . , 3 (12)

Similarly, as X7 is known, the state update transformation can be applied
in the backwards direction to calculate A6, B6 and C6.

A6 = C7 + even (B7) ,
B6 =

(
A7 × K−1

7

)
− odd (B7) ,

C6 = B7 ⊕ X7 .
(13)

6. Note that, because A3, B3, C3, A6, B6 and C6 are now known, the algorithm
from Sect. 3 can be applied to determine the unique solution for X4, X5 and
X6.

A5 = C6 + even (B6) ,
B5 =

(
A6 × K−1

6

)
− odd (B6) ,

B4 =
(
A5 × K−1

5

)
− odd (B5) ,

A4 = K4 × (B3 + odd (B4)) ,
C4 = A3 − even (B4) ,
C5 = A4 − even (B5) ,
X4 = C3 ⊕ B4 ,
X5 = C4 ⊕ B5 ,
X6 = C5 ⊕ B6 .

(14)

7. Finally, apply the key schedule, which is given in (4), to compute the correct
value for Y7 from the message words X0 through X7, all of which have now
been determined. Verify if the guess for Y7 made in step 2 is correct. If it is,
a preimage has been found. If not, restart from step 4 with a different choice
for X7.

The probability that the guess for Y7 is correct is 2−64 so we expect to find a
preimage after 264 tries. Note that one attempt requires just 8 rounds of the state
update transformation and 5 equations of the key schedule algorithm, which is
only about 2/3 of the computations of a compression function evaluation. For
simplicity, we assume that every equation of the key schedule algorithm takes
an equivalent amount of work. Hence, the overall complexity of the attack is
equivalent to slightly less than 263.5 evaluations of the compression function.

4.2 Extension to Tiger-13

The attack can be extended to 13 rounds, by additionally guessing the value
of X12 before the attack and verifying if the guess was correct afterwards. This
again happens with a probability of 2−64, yielding a total complexity of 2127.5.
While it is theoretically possible to make an extension towards 14 rounds of
Tiger, this hardly has an advantage over a simple exhaustive search.

Preimages for Reduced-Round Tiger 97

5 First and Second Preimages for Tiger-12

The technique that has been developed in the previous section will now be
applied to construct first and second preimages for Tiger-12. An extension of
this construction to Tiger-13 is also possible.

5.1 Second Preimages for Tiger-12

Figure 2 shows how second preimages for Tiger-12 can be constructed, for
(padded) messages with at least two message blocks and no padding bits in
the first message block. This is equivalent to the requirement that the given
message is at least 512 bits long.

In order to circumvent any issues that arise from the padding (which includes
the message length) we choose the length of the preimage to be equal to that
of the given message. We can hence reuse the last message block from the given
message. All message blocks from the beginning up to the second to last message
block can be chosen arbitrarily. This leaves us with exactly one message block,
the central block in Fig. 2. Because the chaining values are known before and
after this block, the attack from Sect. 4 can be applied. Of course a trivial gen-
eralisation where more than one message block is copied from the given message
exists. In this case, the attack is applied to an earlier message block instead.

This procedure to find second preimages adds negligible overhead to the attack
as described in Sect. 4. Hence, the time complexity remains at 263.5 evaluations
of the Tiger-12 compression function.

5.2 First Preimages for Tiger-12

Finding first preimages is a bit more involved due to the fact that there is no
given message which can be used to easily circumvent issues originating from
the padding. To construct first preimages for Tiger-12, we proceed as follows.

First we choose the message length such that only a single bit of padding
will be placed in X6 of the last message block. This is equivalent to choosing a
message length of k ·512+447 bits, where k is a positive integer. Next, as shown

. . .

. . .

. . . �

�

�
12

rounds
of

Tiger

�

Arbitrary

M ′
n−2 �= Mn−2

�

�

�

+

−

�+

�

�

�

�

�

�
12

rounds
of

Tiger

�

Apply Attack

M ′
n−1

�

�

�

+

−

�+

�

�

�

�

�

�
12

rounds
of

Tiger

�

Copy

M ′
n = Mn (incl. padding)

�

�

�

+

−

�+

�

�

�

�

�

�A�
n

B�
n

C�
n

Fig. 2. Constructing second preimages for Tiger-12

98 S. Indesteege and B. Preneel

. . .

. . .

. . . �

�

�
12

rounds
of

Tiger

�

Arbitrary

Mn−2

�

�

�

+

−

�+

�

�

�

�

�

�
12

rounds
of

Tiger

�

Arbitrary

Mn−1

�

�

�

+

−

�+

�

�

�

�

�

�
12

rounds
of

Tiger

�

Apply Attack

Mn (incl. padding)

�

�

�

+

−

�+

�

�

�

�

�

�A�
n

B�
n

C�
n

Fig. 3. Constructing first preimages for Tiger-12

in Fig. 3, all message blocks besides the last one are chosen arbitrarily and the
attack is applied to this last block.

By choosing the message length in this way, X7 of the last message block
contains the message length as a 64-bit integer, which is fixed. Hence we can no
longer choose X7 freely during step 4 of the attack. By using the freedom in the
choice of Y7 in step 2 instead, the attack still works. Because step 3 is now also
repeated, a larger part of the key schedule has to be redone on every attempt.
The complexity figure of 263.5 compression function evaluations can however be
maintained because even with the larger part of the key schedule, the work of
a single attempt does not exceed 70% — a fraction 2−0.5 — of a compression
function evaluation. But additionally, we have to verify if the last bit of X6

is a “1”, as dictated by the padding rule. This happens with probability 2−1,
resulting in an overall complexity of 264.5 compression function evaluations.

Note that the first preimages constructed in this way do not contain an integer
number of bytes, which may not be acceptable. This problem can be solved by
choosing the message length equal to k·512+440 bits instead. The only difference
is that X6 of the last message block now contains an entire byte of padding. The
probability that this byte turns out to be correct after executing the attack
is only 2−8, and hence the overall complexity increases to 271.5 compression
function evaluations.

5.3 Extension to Tiger-13

Both attacks can be extended to Tiger-13, as explained in Sect. 4.2. The com-
plexities become 2127.5 for second preimages, 2128.5 for first preimages and 2135.5

for first preimages of an integer number of bytes. A similar extension to Tiger-14
could be made, but as previously explained it does not give any advantage over
an exhaustive search.

6 Conclusion

In this paper we have shown preimage attacks on reduced variants of the Tiger
hash function. A method to find preimages for the compression function of

Preimages for Reduced-Round Tiger 99

Tiger-12 and Tiger-13 with a complexity of 263.5 and 2127.5, respectively, was
described. It was shown how to construct first and second preimages for these
variants of Tiger based on this method. To the best of our knowledge, this is the
first result with respect to preimages of the Tiger hash function.

Acknowledgements

Wewould like to thankFlorianMendel,ChristianRechberger,HirotakaYoshida for
interesting discussions, and the anonymous reviewers for their helpful comments.

References

1. Anderson, R., Biham, E.: Tiger: A Fast New Hash Function. In: Gollmann, D. (ed.)
FSE 1996. LNCS, vol. 1039. pp. 89–97. Springer, Heidelberg (1996)

2. Dobbertin, H.: The First Two Rounds of MD4 are Not One-Way. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372. pp. 284–292. Springer, Heidelberg (1998)

3. Kelsey, J., Lucks, S.: Collisions and Near-Collisions for Reduced-Round Tiger. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047. pp. 111–125. Springer, Heidelberg
(2006)

4. Mendel, F., Preneel, B., Rijmen, V., Yoshida, H., Watanabe, D.: Update on Tiger.
In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329. pp. 63–79.
Springer, Heidelberg (2006)

5. Mendel, F., Rijmen, V.: Cryptanalysis of the Tiger Hash Function. In: Kurosawa,
K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833. pp. 536–550. Springer, Heidelberg
(2007)

6. Preneel, B.: Cryptographic primitives for information authentication – state of the
art. In: Preneel, B., Rijmen, V. (eds.) State of the Art in Applied Cryptography.
LNCS, vol. 1528. pp. 50–105. Springer, Heidelberg (1998)

Specific S-Box Criteria in Algebraic Attacks on

Block Ciphers with Several Known Plaintexts

Nicolas T. Courtois1 and Blandine Debraize2,3

1 University College of London, Gower Street, London, UK
2 Gemalto, Meudon, France

3 University of Versailles, France

Abstract. In this paper we study algebraic attacks on block ciphers
that exploit several (i.e. more than 2) plaintext-ciphertext pairs. We
show that this considerably lowers the maximum degree of polynomi-
als that appear in the attack, which allows much faster attacks, some of
which can actually be handled experimentally. We point out a theoretical
reason why such attacks are more efficient, lying in certain types of mul-
tivariate equations that do exist for some S-boxes. Then we show that
when the S-box is on 3 bits, such equations do always exist. For S-boxes
on 4 bits, the existence of these equations is no longer systematic. We
apply our attacks to a toy version of Serpent, a toy version of Rijndael,
and a reduced round version of Present, a recently proposed lightweight
block cipher. It turns out that some S-boxes are much stronger than oth-
ers against our attack.

Keywords: algebraic attacks on block ciphers, Rijndael, Serpent, multi-
variate equations, Gröbner bases, design of S-boxes, algebraic immunity.

1 Introduction

Algebraic attacks on block ciphers [5, 6] study different ways of describing the
problem of recovering the secret key as a system of multivariate equations, espe-
cially those that make these systems efficiently solvable. In typical block ciphers
such as AES or DES, one or two plaintext-ciphertext pairs give enough infor-
mation to uniquely describe the key. Thus most cryptanalytic work done on this
topic only considered systems of equations produced by only one or two plaintext-
ciphertext pairs (see [6, 15, 16, 17, 18, 19]). Algebraic attacks have only been
proven powerful on some very special ciphers like in [3, 4, 8, 18]. But very little is
known about the resistance of the other block ciphers to algebraic attacks.

We will call here a plaintext-ciphertext pair, a P-C Pair. In this paper we
show that using several plaintext-ciphertext pairs can considerably decrease the
complexity of an algebraic attack. It will allow to keep all the polynomials at
very low degree during the computation of Gröbner bases algorithm. We consider
mostly the cases where the S-Boxes are very small (on 3 or 4 bits) and show that
there is a specific reason why such small S-boxes are more vulnerable against
algebraic attacks. For the toy cipher CTC proposed in [8] we are able to explain

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 100–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers 101

the reason why it is possible to break as many as 6 rounds of it. We also apply our
attack methodology to reduced-round versions of Present, a new RFID-oriented
block cipher proposed in [20]. We will see that the resistance of a few rounds of
Present against algebraic attacks is not as good as announced by the authors.

This paper is organised as follows: in Section 2 we will briefly describe the the-
ory of algebraic attacks, in Section 3 we describe our toy ciphers and analyse the
computations we made on them, and in Section 4 we propose some cryptanalytic
attacks that exploit the vulnerabilities of small S-boxes considered. Finally, in
Section 5 we prove that very small S-boxes are always vulnerable to such attacks,
and derive a new security criterion for S-boxes. Finally, Section 6 concludes the
paper.

2 Preliminaries – Algebraic Attacks

Two stages are necessary to perform an algebraic attack on a block cipher:

2.1 Writing the Equations

The way one must write the system of equations completely depends on the
algorithm used at the second stage of the attack. For algorithms belonging to
the Gröbner Bases family, it is well known that the more overdefined is a system
is, the more efficient will be the attack, see [2].

In this paper we use a very straightforward simple method for writing the
equations of our toy cipher: the linear diffusion and key injection parts are de-
scribed by the very equations that define it, and the S-boxes are defined by a
basis of a system of all implicit quadratic equations that exist for this S-box.

2.2 Solving the Equations

One of the most powerful tool to solve this system of algebraic equations are
linear algebra based algorithms like XL ([7]) or Gröbner basis algorithm like F4
or F5 ([11, 12]). In a nutshell (more details below), XL is an algorithm which
aim is to solve a system of algebraic equations, while F4 computes a Gröbner
basis of the ideal defined by the set of equations. We define a Gröbner basis of an
ideal below. Both algorithms extend the idea of Gaussian elimination of systems
of linear equations. All the algorithms such as XL, F4, F5 (and other) have two
main distinct steps, that can be summarized as follows:

– Expansion[D]: This stage consists in multiplying some polynomials by
some monomials. The maximum degree of the obtained polynomials is D.

– Linearization: Each different monomial in the equations is considered as a
new variable. Then the linear system is solved by Gaussian elimination.

The exact method how these stages are computed depends on the algorithm
and its implementation. However in all the three cases (XL, F4, F5) the com-
plexity of the attack essentially depends on the complexity of the gaussian elim-
ination when D is maximal : T w, where T is the number of variables of the

102 N.T. Courtois and B. Debraize

linear system, and w depends on the chosen algorithm. We choose here w = 3,
corresponding to the most practical algorithm. After the Expansion step, the
number of variables T of the system we consider is then the number of mono-
mials appearing in all the polynomials of the system. Thus if n is the number
of variables of the algebraic system and D the maximal degree of the equations
occurring during the computation, an theoretical estimation of this complexity
is O(

(
n
D

)3). In practice, the complexity may decreases with the sparsity of the
equations.

To perform the Gaussian elimination, we need an ordering < on the mono-
mials. XL algorithm only needs a total order, while Gröbner bases algorithms
require a more precise type of ordering. We give some useful definitions below.

Let k be a field and k[x1, ..., xn] its ring of polynomials in n variables. We use
the following notation to represent a monomial: if a = (a1, ..., an), we write xa

for xa1
1 ...xan

n , and |a| = a1 + ... + an (|a| is the degree of xa). One should notice
that a constant monomial is also included and it is represented by (0, ..., 0).

Definition 2.3 (monomial ordering). A monomial ordering on the set of all
the monomials in k[x1, ..., xn] is a total order on monomials that is also well
founded (a well-ordering) and compatible with multiplication.

We can now define the leading monomial< of a polynomial p to be the greatest
monomial occurring in p according to the order <. The most commonly used
monomial orderings are lexicographical order and degree reverse lexicographical
order, see [14].

Now we can define a Gröbner basis:

Definition 2.4 (Gröbner basis). Let<be a monomial ordering on k[x1, ..., xn].
Let I ⊂ k[x1, , xn] be an ideal. A Gröbner basis of I is a finite set of generators
g1, ..., gm of I such that every leading monomial of a polynomial p ∈ I is a
multiple of a leading monomial of a generator gk.

Gröbner basis algorithms can be directly used to recover the solution of a set of
equations (see [14]).

In the F4 algorithm, as explained above, two main stages are performed.
Unlike in the simple XL algorithm, these two stages are repeated again and
again (see algorithm 2.1). After Gaussian elimination is performed, some new
polynomials of degree less than D may appear. We call such polynomials degree
falls. In this case, a new expansion[D] is performed on these polynomials. On
the contrary, if no such polynomial appear, the degree is incremented and an
expansion[D+1] is performed. With F4, this expansion step is performed in such
a way that many unnecessary polynomials are not included in the matrix before
the Gaussian elimination, but we will not get into these details here.

Each expansion followed by a Gaussian elimination will be called a step in
the F4 algorithm.

The notion of degree fall is very important in this paper. For a system S,
we call the Maximal Degree of S (MD(S)) the maximal D such that an Ex-
pansion[D] is necessary to recover the Gröbner basis. With both XL and F4,

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers 103

Algorithm 2.1. F4 algorithm summary
INPUT : a system S of equations {p1, ..., pm} describing an ideal I
OUTPUT: a Gröbner basis of I
D ←− 1 + min1≤i≤k degree(pi)
while S is not a Gröbner basis of I:

E ←− Expansion[D](S)
S ←− Gaussian elimination(E)
if S does not contain degree falls

D ←− D + 1
return S

the appearance of degree falls after a step at degree at most D is a necessary
condition for MD(S) to be D. Indeed, if the solution is unique, it has the form

x1+ a1 = 0
...

xn+ an = 0,

where the xis are the unknowns whose values are looked for and the ais are
constants: these equations are the final degree falls of degree 1. But, of course,
the appearance of degree falls after a step at degree D is not a sufficient condition
for the system to be solved at degree D (when MD(S) is D).

To perform our computer simulations, we used our implementation of the
algorithm F4, and another algorithm called ElimLin, see 2.2. The maximal degree
of the polynomials during the computations is fixed to 2 in this algorithm. Given
the very large number of variables in the original systems resulting from block
ciphers, this is in fact the maximal degree for which it is conceivable to work

Algorithm 2.2. ElimLin algorithm
INPUT : a system S of GF(2) equations {p1, ..., pm} of maximal degree 2

describing an ideal I
Apply a total order on the monomials of S
S ←− Gaussian elimination(S)
L ←−Number of linear equations in S
while L > 0:

for i = 1 to L:
v ←− greatest variable of the linear equation li
l′i ←− li ⊕ v
Substitute v by l′i in all the equations of S except from li

Apply a total order on the monomials of S
S ←− Gaussian elimination(S)
L′ ←− Number of linear equations in S
L ←− L − L′

return S

104 N.T. Courtois and B. Debraize

given that RAM and disk space in today’s computers is quite limited. It appears
that overall, in this paper we do not obtain better results with the F4 version
of the computer algebra system MAGMA (see [13]) than with our fairly basic
version of ElimLin.

3 Computer Simulations

When the number of variables or when D is large, Gaussian elimination has to
be performed on huge matrices. Currently the large amount of memory needed
does not allow to make simulations on many real life ciphers. This motivates the
research done on toy ciphers: in these ciphers the S-boxes are quite small (3-4
bits) and the linear layer is relatively simple.

3.1 Description of Our Toy Ciphers: ToyBlock, ToyBlockS and
ToyBlockR

This toy cipher is a very simple block cipher. It is inspired by Serpent, as it
combines bijective 4-bit S-boxes and linear transformations. Several versions are
possible (they will be called ToyBlockS and ToyBlockR). It takes blocks of 4B
bits. The first round is the round number 1. Each ToyBlock is made of r rounds,
and each round is made of:

– A bitwise XOR of the current state Zi with the derived key, where i + 1 is
the number of the next round. The plaintext is then Z0. I.e:

Xi+1 = Zi ⊕ Ki,

where Ki is the derived key and Xi+1 the state of the inputs of the S-boxes.
This gives the following for the bit j of the state, j = 0..4B − 1:

Xi+1,j = Zi,j ⊕ Ki,j,

– A layer of B parallel 4 bits S-boxes. Each S-box is either the S-box number
2 of the block-cipher Serpent, see [1]1, or the reduction of the Rijndael S-box
proposed by Cid et al, see [15]. The bit number j that is an output of the
layer of the S-boxes of round number i is called Yi,j .

– A linear layer. This linear layer is very similar to the one proposed in [9]. It
is defined for every i in 1, ..., r as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Zi,1987.j+257 mod (4.B) = Yi,j ⊕ Yi,j+137 mod (4.B)

if j �= 257 mod (4.B)
Zi,1987.j+257 mod (4.B) = Yi,j ⊕ Yi,j+137 mod (4.B) ⊕ Yi,j+274 mod (4.B)

if j = 257 mod (4.B).

1 Choosing a different S-box or using several different S-boxes among the Serpent
S-boxes should give very similar attacks as our, yet make results more difficult to
interpret.

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers 105

The key schedule is a simple permutation of the key bits:

Ki,j = K0,(j+i mod (4.B)),

where K0 is the secret key.
We call a general version with r rounds and B S-boxes ToyBlock(r,B). If the

S-box is the S-box of Serpent, we call it ToyBlockS. When it is the reduction of
the Rijndael S-box of [15], it is called ToyBlockR. The Serpent S-box is a random
S-box, as explained in [1], whereas the Rijndael-type one is non-random. Both
can be described by a system of implicit quadratic equations.

3.2 First Simulations on ToyBlockS and ToyBlockR

We first applied F4 on ToyBlockS(3,4) and ToyBlockS(3,6). We wrote the sys-
tem of equations S and S′ provided by one single random plaintext6ciphertext
pair for ToyBlockS(3,4) and ToyBlockS(3,6). Then we applied F4 (our imple-
mentation and the implementation of the computer algebra system Magma (see
[13])) on each system. We were not able to find the solution in reasonable time,
and could conclude that the necessary degrees D = MD(S) and D′ = MD(S′)
are both at most 4. This degree leads to a theoretical complexity of respectively
253 and 273 (see section 2.2).

However, it was possible to solve the system describing 32 P-C pairs of Toy-
BlockS(3,4) in 3 minutes and to solve the system describing 64 P-C pairs of
ToyBlockS(3,6) in 51.54 minutes with ElimLin. In this example, it is still bigger
than the exhaustive search of the key. But this shows that in some cases, by us-
ing several P-C pairs, we can decrease the maximum degree of polynomials that
are used in the computation from 4 to 2, and thus greatly improve the feasibility
and the complexity of algebraic attacks.

We made the same computations on ToyBlockR(3,4) and ToyBlockR(3,6). We
could neither recover the key by applying F4 or ElimLin on the system describing
one P-C pair nor on the systems describing several P-C pairs.

Some other simulations were made on ToyBlockS(6,3) and ToyBlockR(6,3).
In these simulations all the computations were made on polynomials of degree at
most 2. This means that the maximal degree D in algorithm 2.1 is here 2. Our
aim is not to systematically find the solution, but to look at the number of degree
falls appearing. The results of these computations are given in Table 1. The third
line in Table 1, called “Rounds concerned” gives the number of the rounds where
some variables are implied in the new linear equations found for ToyBlockS. For
example when 8 P-C pairs are used, the number of new linear equations increases
and the new linear equations imply variables of the third round.

Table 1. Number of linear equations found at degree 2 for ToyBlock(6,3)

Number of P-C pairs 1 2 4 8 16 32 64

Linear eqs. for ToyBlockS(6,3) 0 15 57 151 345 740 1702
Rounds concerned ToyBlockS(6,3) 0 1, 2, 5, 6 1, 2, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6

Linear eqs. for ToyBlockR(6,3) 0 0 0 0 0 0 0

106 N.T. Courtois and B. Debraize

The result of the comparisons between computations on ToyBlockS and com-
putations on ToyBlockR shows that the shape of the implicit equations describ-
ing the cipher has a large influence concerning the appearance of degree falls
during the computations of F4 on the systems describing this type of cipher. We
analyse theses differences of shape in Section 3.3.

3.3 Analysis of the Simulations

In the next sections we will write the exclusive or operation (XOR) additively: as
“+” in GF (2). The ToyBlockS S-box provides 21 quadratic linearly independent
equations in the input and output bits. These equations completely define the
S-box. Four of them have a special property:

x2 +x3 + x4 + x1x3 + y1 = 0
x1 +x2 + x4 + x1x4 + y2 + y3 + y4 + 1 = 0

and

x1 +y1 + y2 + y3 + y2y3 + y2y4 = 0

x1 +x2 + x3 + y3 + y4 + y2y3 + y3y4 + 1 = 0,

where the xis are input variables and yis output variables. The first group have
degree 2 monomials only in xi and the second group have degree 2 monomials
only in yi. This property turns out to have a huge impact on algebraic crypt-
analysis. We call this kind of equations respectively “X2 equations” and “Y 2

equations”. We will show that the degree falls appearing during the simulations
of section 3 are caused by this property.

Let us consider for example the toy cipher ToyBlockS(5,2). Let us consider
two P-C pairs. We denote x0,i and y0,i the variables of input and output of one
S-box of the first pair and x1,i and y1,i the variables of the second pair (here we
only consider the leftmost S-box of the first round).

The following equations are true, the left part corresponding to the first P-C
pair and the right part to the second one:

x0,1 + k0 + z0,1 = 0 x1,1 + k0 + z1,1 = 0
x0,2 + k1 + z0,2 = 0 x1,2 + k1 + z1,2 = 0
x0,3 + k2 + z0,3 = 0 x1,3 + k2 + z1,3 = 0
x0,4 + k3 + z0,4 = 0 x1,4 + k3 + z1,4 = 0
x0,2 + x0,3 + x0,4 + x0,1x0,3 + y0,1 = 0 x1,2 + x1,3 + x1,4 + x1,1x1,3 + y1,1 = 0
x0,1 + x0,2 + x0,4 + x0,1x0,4 + y0,2+ x1,1 + x1,2 + x1,4 + x1,1x1,4 + y1,2+

y0,3 + y0,4 + 1 = 0 y1,3 + y1,4 + 1 = 0

The zi,j are the plaintext bits. We can choose for example z0,1 = 0, z0,2 = 1,
z0,3 = 1, z0,4 = 1, and z1,1 = 1, z1,2 = 0, z1,3 = 0, z1,4 = 0. Then, by substitution
we derive the following true equations:

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers 107

y0,1 + k1 + k2 + k3 + k0 + k0k2 + 1 = 0 y1,1 + k1 + k3 + k0k2 = 0
y0,2 + y0,3 + y0,4 + k1 + k3 + k0k3 + 1 = 0 y1,2 + y1,3 + y1,4 + k0 + k1 + k0k3 = 0

The first equation of the first pair has the same degree 2 monomials than the
first equation of the second pair, and this happens also for the second equations.
This comes from the special structure of the equations.

If the monomial ordering is chosen such that degree 2 monomials are greater
than degree 1 monomials (like degree reverse lexicographical order), after the
next Gaussian elimination, we obtain linear equations between y0,i, y1,i variables
and some key variables:

y0,1 +y1,1 + k0 + k2 + 1 = 0
y0,2 +y0,3 + y0,4 + y1,2 + y1,3 + y1,4 + k0 + k3 + 1 = 0

Thereby we obtain linear equations mixing variables of the input of the second
round of the two pairs and key variables.

The substitution used here is completely equivalent to the first step of F4,
where the expansion is performed on the linear equations. Indeed, in this case, if
the monomial ordering is chosen in such a way that the xi variables are greater
than the other variables, they are multiplied by other xi variables and ki variables
during the expansion step. During the Gaussian elimination of the first step of
F4, all the polynomials which leading monomials are of the type xixj or xikj

are reduced with these expanded linear polynomials. In the “X2 equations”, the
only remaining degree 2 monomials are of the type kikj . Then after the Gaussian
elimination we obtain the same new linear equations as those described above.

If we use 3 P-C pairs, we will obtain 6 such linear equations between the
variables of the input of the second round. But only 4 of them are linearly inde-
pendent. Actually, all the new equations can be parameterized by the variables of
the first P-C pair and the key bits. Then by using n P-C pairs we automatically
obtain 2n−2 new linear equations per S-box in the variables of the beginning of
the second round and the key bits. For example, for ToyBlockS(5,2), we obtain
4n − 4 such linear equations.

Now let us consider the family of the block ciphers that have the same struc-
ture as ToyBlockS, this meaning that it is made of several rounds composed of
three layers: (i) XOR of the round key, (ii) layer of B parallel S-Boxes and (iii)
a linear layer, followed by (i’) a final XOR of the round key. We suppose to sim-
plify that the parallel S-boxes are all identical. Then we can show the following
result:

Proposition 3.4. Let us suppose the S-box is described by r quadratic equa-
tions, t of them being “X2 equations”, and t′ of them being “Y 2 equations”.
Then after the first step of F4 applied to the equations describing n P-C pairs,
at least B(tn − t) + B(t′n − t′) linear degree falls appear.

The proof of this proposition is given in [21].

108 N.T. Courtois and B. Debraize

Remark 1. Let us consider the following ratio: “number of linear equations/
number of P-C pairs” for ToyBlockS(5,2). Its value is 4n−4

n = 4 − 4
n . Then

by increasing the number of P-C pairs we increase the number of new linear
equations per P-C pair.

Those linear equations are found at the first “step” of F4 in degree 2. Of course it
does not happen the same way for the other rounds at further steps of the algo-
rithm. But by computing the other “steps”, we observe experimentally that we
obtain some other linearly independent degree falls. Importantly, the more P-C
pairs we use, the largest is the ratio “total number of linear degree falls”/“number
of P-C pairs”.

We have shown that if the equations of the S-Box have some special properties,
using several P-C pairs decreases the value of the maximal degree D in the
algorithm F4. But as the number of variables of the system of equations increases
at the same time, it is difficult to know in which cases it improves the complexity
of such attacks. In Section 4, we propose some methods to exploit this weakness
and show by our simulations that in some cases it improves the complexity of
algebraic attacks on block ciphers of the ToyBlock type.

Remark 2 (Observation on Small Rijndael-type S-box). The equations describing
the S-box of ToyBlockR does not contain any “X2 equation” nor “Y 2 equation”.
This is the reason for which we are not able to improve the complexity of F4 at
degree 2 on this cipher by using several P-C pairs, and the reason for which we
do not obtain any degree fall either.

4 Guess-and-Determine and Chosen Plaintext Attacks

4.1 Guessing Some Key Bits

A guess-and-determine or guess-then-algebraic attack seems to be the most nat-
ural way to go further. Indeed, guessing some key bits has the same effect as the
method described before: getting rapidly new linear equations. This is true for
one P-C pair. For example, if four consecutive bits of secret key corresponding to
the input of an S-Box are guessed, the variables of the output of the S-boxes of
the first round are known. If only a part of the input key bits are guessed, some
quadratic equations describing the S-Box may become linear. In both cases, new
linear equations in the variables of the beginning of the second round appear.

More interestingly, guessing variables allows to gain immediately linear equa-
tions mixing variables of several different rounds. For example, if 4 key variables
are guessed for ToyBlockS(4,3), we obtain 1 linear equation mixing variables of
the second round and the third round with one P-C pair. With four P-C pairs,
we obtain 5 such equations, and with 16 P-C pairs, we obtain 33 such equations.

Moreover, even if a part of the final complexity is purely exponential, these
kind of attacks are easy to test on a PC as it suffices to fix a certain number
of variables in the system of equations. The larger this number is, the easier to
solve is this resulting system, in terms of time and memory complexity.

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers 109

4.2 Chosen Plaintext Attacks

Method. As we use several P-C pairs, another natural direction is to try to
choose carefully the plaintexts. Let us fix the value of the first plaintext. A first
idea is to change only the bits corresponding to the input of one or a few S-boxes
in the other plaintexts. This way, many of the other S-boxes output values of
the first round are exactly the same in all the P-C pairs. Therefore we gain new
very short linear equations for free.

When some key bits are guessed there is an experimentally even better method.
It consists in choosing in a precise way the bits that differ between the P-C pairs
at the place where the key bits xored to this part of the input are known. It means
that if the key bits k0, k1, k2, k3 are guessed, the bits of plaintext corresponding to
the input of the leftmost S-Box will differ, but not the other bits of plaintext. For
example as we know the four key bits, it is possible to choose two plaintexts such
that the output of the S-box number 1 differ only from one bit. Then, as the diffu-
sion allows it here, only two S-boxes of the second round have a different output.
We still gain equalities, thus linear equations mixing variables of the beginning of
the third round. This method increases the number of required P-C pairs. But in
our experimentations as the number of concerned S-boxes in never more than two,
this number is never more than 256.

Computations on ToyBlock. We made some computations to test the effi-
ciency of these kind of attacks. Let us explain our method. Brute force is the
exhaustive search of the key. If we fix all but a key bits, an attack will be faster
than brute force if the running time is less than 2aE, where E is the time to
check one potential possibility for the key. When the number of P-C pairs is more
than 2, this system has a unique solution that gives the key bits. Exact figures
are hard to evaluate because they depend on an optimised implementation of the
cipher. Here we will assume that one encryption takes 300 CPU clocks and that
the CPU runs at 3 GHz. Then E ≈ 2−35 hours. Thus, if we fix all key bits except
35, an attack done in less than 1 hour on a PC will be faster than brute force.

By applying our substitution algorithm on the quadratic system describing
4 random P-C pairs of ToyBlockS(4,32) with 88 variables fixed, we were not
able to recover the key. But by applying the same software on 4 carefully chosen
P-C pairs (as described above), we could recover it in 20 minutes. We were also
able to recover the key for ToyBlockS(5,32) with 16 P-C pairs and 84 variables
guessed in 32 hours. Therefore it breaks ToyBlockS faster than the exhaustive
search of the 128 key bits for 5 rounds with a complexity of 2124.

This result shows that using several P-C pairs is a non-negligible improvement
in the complexity of algebraic attacks. Indeed, our computations showed that
it is completely impossible to recover the key with such a guess-then-algebraic
chosen plaintext attack with the knowledge of only one P-C pair. This is an
interesting development in algebraic cryptanalysis on block ciphers. In the past,
the only computations on GF(2) equations describing the problem of the key
recovery on toy block ciphers we are aware of, have been proposed in [15, 16],
and did not allow to recover the key for systems larger than one 8-bit S-box or
two 4-bit S-Boxes.

110 N.T. Courtois and B. Debraize

The Real-life Cipher Present. In [20], a new RFID-oriented block cipher has
been presented by Bogdanov et al. It is a 32 rounds SPN block cipher. The block
length is 64 bits and two key length of 80 and 128 bits are supported. Each of its
rounds is made of a XOR of the round key Ki, a linear bitwise permutation and
a layer of 16 parallel 4 bits S-boxes. All the S-boxes are identical. Compared to
ToyBlockS, Present is very similar. The S-box seems to have exactly the same
properties: it can be described by 21 linearly independent implicit quadratic
equations, 2 of them are “X2-equations” and 2 of them are “Y 2-equations”. We
note that it has a weaker linear layer as it is a simple bit permutation. Its key
schedule is however stronger than ToyBlock’s as a part of it is nonlinear. The
authors of Present considered algebraic attacks, and explain that even consider-
ing a system consisting of seven S-boxes, i.e. a block size of 28 bits, they were
unable to get a solution in a reasonable time to a two-round version of the re-
duced cipher [20]. We implemented the system of equations corresponding to 64
P-C pairs of the real cipher reduced to 5 rounds and by fixing the first 12 bits
of the key and 20 bits of roundkey (the 4 last bits of each round key except the
first one) and we were able to recover the solution in 1.82 hours. This breaks
5-round reduced version of the 80 key-bits Present cipher.

It is far from breaking the real cipher, but shows that the authors have not
thought about algebraic attacks that use of several P-C pairs concerning this
type of attacks. It appears also that they did not consider guess-then-algebraic
attacks.

5 Towards New Design Criteria for S-Boxes?

First we prove that “X2 equations” and “Y 2 equations” always exist for 3 bits
S-boxes. This comes from the following theorem:

Theorem 5.1 ([5]). For any n×m S-box, F : (x1, . . . , xn) 	→ (y1, . . . , ym), and
for any subset T of t out of 2m+n possible monomials in the xi and yj , if t > 2n,
there are at least t− 2n linearly independent I/O equations (algebraic relations)
involving (only) monomials in T , and that hold with probability 1, i.e. for every
(x, y) such that y = F (x).

Application: For n = m = 3, the dimension of the space T of all equations of
type ∑

αijxixj +
∑

βixi +
∑

γiyi +
∑

δ = 0

is 1 + 3 + 3 + 3 = 10 while 2n = 8. Thus there are always at least 2 = 10 − 8 of
“X2 equations”. By the same argument, there are also always at least two “Y 2

equations”. �

Remark 3. This result explains why the fast algebraic attacks on CTC from
[8] are so efficient. Indeed, the CTC S-box can be represented by 14 linearly
independent implicit quadratic equations, 3 of them being “X2 equations” and
3 of them being “Y 2 equations”. By using several P-C pairs, many linear degree
falls are obtained at the beginning of the computation.

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers 111

5.1 Larger S-Boxes and Resulting Security Recommendations

We cannot prove the same result for 4 bits S-boxes. Many random S-boxes like
all of the 8 Serpent S-boxes have “X2 equations” and “Y 2 equations”. However,
certain S-boxes have no such equations, for example the Rijndael-type S-box on 4
bits. Still, this only protects against one algebraic attack at degree 2. What about
higher degrees? Results similar to the above theorem, can be quite easily shown
for higher degree equations. For example at degree 3, if we have “X3 equations”,
this meaning that the cubic monomials of the equation only mix variables of the
input of the S-box, then we have degree falls (of degree 2) implying variables of
several P-C pairs. But it is very difficult to measure the impact of such equations
on algebraic attacks with several P-C pairs, as in this case the obtained degree
falls have degree 2 instead of 1. For example, we computed and obtained as
many as 47 “X3 equations” and 48 “Y 3 equations” for the AES S-box on 8-bits.
Lack of theory, and insufficient computing power available, make it difficult to
evaluate the importance of these equations in attacks on reduced-round AES.

S-box Criteria. Thus it seems that a desirable property for an S-box is just to
avoid “X2 equations” and “Y 2 equations”. Indeed, it allows to avoid linear rela-
tions between variables of several P-C pairs. Our study shows that the Serpent
and Present S-boxes are more vulnerable to algebraic attacks than the AES S-
box which does not have any “X2” nor “Y 2 equations”. But Serpent and Present
have both 32 rounds, the AES has only 10 (which is already a lot w.r.t. to our
attacks anyway). In general, algebraic attacks are still too badly theoretically
understood to make meaningful extrapolations for a larger number of rounds.

6 Conclusion

This paper initiates the study of specific S-box criteria that make algebraic key
recovery attacks much more efficient when several plaintext-ciphertext pairs are
used. These S-box criteria are based on a particular type of the S-box multivari-
ate equations, that we showed to produce many linear degree falls during the
computation of Gröbner bases algorithms suc as XL, F4, F5 or the simplest pos-
sible - ElimLin. We showed that all 3-bit S-boxes are vulnerable, i.e. whatever
is the S-box used. For S-boxes on 4 bits, the weakness is no longer systematic.

On the one hand, toy versions of Serpent and the lightweight cipher Present are
shown to be vulnerable. On the contrary to what the designers of Present have
claimed, we showed that it is possible to break 5 rounds of Present with a sim-
ple guess-then-algebraic attack with a very low quantity of plaintext/ciphertext
pairs. A similar attack was obtained for ToyBlockS. In real life, these ciphers have
as many as 32 rounds. This is quite far away from what experimental algebraic
cryptanalysis can ambition to break in a near future.

On the other hand, it appears that the 4-bits version of a Rijndael-type S-box
has no equations of the types we exploit in this paper. We showed that it is then
much more resistant than many other S-boxes of the same size against this type
of algebraic attacks. The real AES S-box seems to be also very resistant against
these attacks.

112 N.T. Courtois and B. Debraize

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent, a flexible Block Cipher With
Maximum Assurance First AES Candidate Conference, Ventura California (1998),
http://www.cl.cam.ac.uk/∼rja14/serpent.html

2. Ars, G., Faugère, J.-C., Sugita, M., Kawazoe, M., Imai, H.: Comparison between
XL and Gröbner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

3. Courtois, N.: The Inverse S-box, Non-linear Polynomial Relations and Cryptanal-
ysis of Block Ciphers. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005.
LNCS, vol. 3373, pp. 170–188. Springer, Heidelberg (2005)

4. Courtois, N., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on KeeLoq,
preprint (2007), http://eprint.iacr.org/062/

5. Courtois, N. Bard G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Cryptography and Coding, 11-th IMA Conference, Cirencester, UK (De-
cember 18-20, 2007) (to appear), eprint.iacr.org/2006/402/; Also presented at
ECRYPT workshop Tools for Cryptanalysis, Krakow (September 24-25, 2007)

6. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501. pp.
267–287. Springer, Heidelberg (2002)

7. Courtois, N., Shamir, A., Patarin, J., Klimov, A.: Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807. pp. 392–407. Springer, Heidelberg (2000)

8. Courtois, N.T. : How Fast can be Algebraic Attacks on Block Ciphers? In: Biham,
E., Handschuh, H. Lucks, S. Rijmen, V. (eds.) Proceedings of Dagstuhl Seminar
07021, Symmetric Cryptography (January 2007),
http://drops.dagstuhl.de/portals/index.php?semnr=07021,
http://eprint.iacr.org/2006/168/ ISSN 1862 - 4405

9. Courtois, N.: CTC2 and Fast Algebraic Attacks on Block Ciphers Revisited,
http://eprint.iacr.org/2007/152/

10. Dunkelman, O., Keller, N.: Linear Cryptanalysis of CTC,
http://eprint.iacr.org/2006/250/

11. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 61–88 (1999),
www.elsevier.com/locate/jpaa

12. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Workshop on Applications of Commutative Algebra,
Catania, Italy, April, 3-6. ACM Press, New York (2002)

13. MAGMA, High performance software for Algebra, Number Theory, and Geometry,
— a large commercial software package, http://magma.maths.usyd.edu.au/

14. Buchberger, B., Winkler, F.: Gröbner Bases and Application. London Mathemat-
ical Society, vol. 251. Cambridge University Press, Cambridge

15. Cid, C., Murphy, S., Robshaw, M.J.B.: Small Scale Variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557. pp. 145–162. Springer, Hei-
delberg (2005)

16. PhD Thesis, http://gwenole.ars.ifrance.com/
17. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.), ASI-

ACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

http://www.cl.cam.ac.uk/~rja14/serpent.html
http://eprint.iacr.org/062/
eprint.iacr.org/2006/402/
http://drops.dagstuhl.de/portals/index.php?semnr=07021
http://eprint.iacr.org/2006/168/
http://eprint.iacr.org/2007/152/
http://eprint.iacr.org/2006/250/
www.elsevier.com/locate/jpaa
http://magma.maths.usyd.edu.au/
http://gwenole.ars.ifrance.com/

Specific S-Box Criteria in Algebraic Attacks on Block Ciphers 113

18. Buchmann, J., Pyshkin, A., Weinmann, R.-P.: Block Ciphers Sensitive to Gröbner
Basis Attacks. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860. pp. 313–
331. Springer, Heidelberg (2006)

19. Lim, C.-W., Khoo, K.: Detailed Analysis on XSL Applied to BES. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593. pp. 242–253. Springer, Heidelberg (2007)

20. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poshmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727. pp. 450–466.
Springer, Heidelberg (2007)

21. Debraize, B.: Versailles University, France, PhD Thesis, (to be published, 2008)

Combiner Driven Management Models and

Their Applications

Michael Beiter

Universität Tübingen
Wilhelm-Schickard Institut für Informatik

Sand 14, 72076 Tübingen, Germany
beiter@informatik.uni-tuebingen.de

http://www.michael.beiter.org

Abstract. In this paper, we will study the question of performing arbi-
trary updates in secret sharing schemes when shares of unaffected parties
shall remain unchanged. We will introduce a new phase in the lifetime
of secret sharing schemes to simplify constructions of multi-time secret
sharing schemes and propose management models that allow unlimited
updates from arbitrary schemes without need for broadcasts. As an ex-
ample, we give an implementation based on Shamir’s threshold scheme.

Keywords: secret sharing, management models, multi-time secret shar-
ing, threshold schemes with update capabilities.

1 Introduction

To protect a secret from abuse or to add redundancy for increased reliability, it is
common practice to use secret sharing schemes, in particular threshold schemes
as introduced by Shamir [11] and Blakley [3].

Setting up a secret sharing scheme is a rather expensive process, as secure
channels for share distribution are obligatory: enrollment of new participants
who were not issued with any private information at system setup is impossible
in a broadcast only network. The reason for this is that each new participant
needs to receive some private information from one of the scheme’s parties. This
may be the dealer, but it can also be one of the existing shareholders in so called
dealer free environments (see e.g. [10] and others).

To minimize these setup costs, most secret sharing schemes are designed for
quite a long lifetime. During a scheme’s lifetime, it is to be expected that demand
for enrollment or disenrollment of participants may arise. In some cases, it even
may be required to alter the parameters of a threshold scheme or the access
structure of a general secret sharing scheme.

The trivial solution for enrollment as well as disenrollment or updating is to
design a new scheme and redistribute new shares. Usually, however, this is not
an option. Especially in urgent cases, e.g. when a share is known to be disclosed
or an immediate change in the access structure shall be enforced, there must

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 114–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Combiner Driven Management Models and Their Applications 115

exist a way to act fast. Hence, the question of how to alter the access structure
of secret sharing schemes is of importance.

In this paper, we will study the question of performing arbitrary updates in
secret sharing schemes. We will introduce a new phase in the lifetime of secret
sharing schemes to simplify constructions of multi-time secret sharing schemes.
Moreover, we will propose new management models where two trusted entities
are present: the dealer, who knows the shared secret, and the combiner, who sup-
ports the recreation process. In the proposed models, the dealer remains active
during runtime and maintains a secure connection to the combiner. These mod-
els allow unlimited updates of arbitrary secret sharing schemes without need for
broadcasts. Most importantly, the shares of unaffected parties remain unchanged
in update operations. As an example, we give an efficient implementation based
on Shamir’s threshold scheme which is ideal from a shareholder’s point of view.

2 Related Work

2.1 Dynamic Secret Sharing

Threshold schemes with disenrollement capabilities were introduced by Blakley
et al. [4], and have been discussed in several publications (e.g. [5] [6] [8]). A
threshold scheme protects a secret g among v participants so that i participants,
u ≤ i ≤ v, can recreate g and less than u participants can’t uniquely determine
g. Barwick et al. deal with the question of altering the parameters of thresh-
old access structures in [1] and [2]. They call changes of u and v in a (u, v)
threshold scheme an update of the scheme. Updates can be activated by broad-
cast messages. However, these schemes are dedicated solutions that enlarge the
participants’ shares.

We call secret sharing schemes that allow unlimited updates of their access
structure fully dynamic secret sharing schemes.

The updating of shares is related to, but at the same time different, from
the updating of access structures: as the latter changes the set of participants,
updating of shares keeps the access structure unchanged. Updating a certain
share is useful when, for instance, a shareholder lost his share but still should
be able to join recreations. This operation is possible when the scheme provides
the ability to disenroll and add participants to active schemes: the disenrollment
operation disables the lost share and adding a new participant allows to assign
the affected participant a new one.

However, there may exist schemes which do not provide the disenrollment or
enrollment operations or which can carry out share updating more efficiently. As
a consequence, we separate the issue of updating of shares from enrollment and
disenrollment.

2.2 Components of a Secret Sharing Scheme

Usually, secret sharing schemes are based on three main components:

116 M. Beiter

1. The set of participants and the access structure
Defining the access structure based on the power set of the participants set
is common in research (e.g. [15]):

Definition 1. Let T be a set of participants with nT shareholders t1, . . . , tnT

and P(T) the power set of T . Furthermore let K be the set of all shares taken
from K which represent the set of all possible shares.

For each secret g ∈ G, where G is the set of all possible secrets, the set
of participant sets Z ⊆ P(T) which can recreate g is called access structure
of g. The elements Zi ∈ Z are called authorized subsets concerning Z. The
remaining subsets Z̄ := P(T)\Z are called unauthorized subsets concerning
Z. An access structure Z contains nZ authorized subsets Z1, . . . , ZnZ .

Usually Z is assumed to be monotone, that is Z ∈ Z and Z ⊆ Z ′ ⊆ T
implies Z ′ ∈ Z.

2. The distribution function with a collection of supported operations
The distribution function according to Stinson ([15]) assigns shares to the
involved parties so that recreating the secret using a given set of shares is
possible if and only if the set of shares conforms with an authorized subset.
Informally, a distribution function and a scheme based on this function is
perfect if the probability of an unauthorized subset to guess a protected secret
is not increased through the knowledge of their share set ([15]). Distribution
functions which are based on certain assumptions like the difficulty of the
discrete logarithm problem are called conditionally secure, and so are the
schemes based on these functions.

Each distribution function supports a certain set of operations. This
includes five obligatory base operations: to initialize the secret g and a share
ki, to map and transfer a share ki to a participant tj and to recreate g
using a set of provided shares. Depending on the distribution function, there
may be additional operations available. These include, but is not limited to
operations for updating both a shared secret and a participant’s share or to
update the parameters of a threshold scheme.

3. The management model with a set of supported operations
A management model describes the infrastructure that is available in the
secret sharing scheme. This includes for instance the type of parties involved,
and the nature of their connections. The model usually distinguishes various
phases, in which the parties may interact with each other using the available
links.

In [9], Martin gives an overview of a number of different models which
allow dynamic access structures for unconditionally secure secret sharing
schemes. He distinguishes two phases: in the initialization or setup phase, the
dealer computes the shares and distributes them among the participants. In
the running phase, actions like access structure updates or secret recreation
can be performed.

Martin lists twelve management models and categorizes them with respect
to presence/non-presence of the dealer during the setup and running phase

Combiner Driven Management Models and Their Applications 117

and the type of connection between dealer and participants in these phases.
Not all of these models are capable of accomplishing every type of access
structure change.

Each model must implement a minimum set of parties and connections.
This includes the participants and, at least in perfect secret sharing schemes,
some secure connection in the initialization phase.

2.3 The Combiner as an Entity in Secret Sharing

In the case of what we call a public recreation, all participants attending the
recreation process pool their shares and compute the secret. This form of recre-
ation actually is what Shamir proposed [11], but broadcasting their shares and
trusting other participants to honestly do the same is far too credulous: this
approach is higly vulnerable against cheating (e.g. [14], [17])).

Schemes that keep the shares safe (e.g. computationally secure schemes like
[6], [7] and others) only disclose the protected secret during recreation. However,
in public recreation, both shares and secret are revealed.

In any case, to construct a multi-time secret sharing scheme that shall be used
several times, it is necessary that both the participants’ shares and the recreated
secret remain private at all times. While the former can be achieved with various
techniques, the latter is only possible with a trusted authority which performs
the recreation and triggers a predefined action.

It is common practice in secret sharing to use a so called combiner as an
entity which recreates the secret and triggers a certain action. Although there
are schemes that do not rely on a combiner (e.g. [7]), this entity usually is
implicitly present. However, in most established secret sharing schemes, the term
“combiner” is used rather abstractly: in these schemes, the combiner can be any
arbitrary entity like a not further specified third party, a tamper proof device,
a group of participants in case of public recreation or even a single one of the
shareholders. However, there are usually no further statements as to who the
combiner is and what his abilities are.

Simmons proposed prepositioned secret sharing schemes, in which the dealer
computes an activation secret during initialization ([12],[13]). This activation se-
cret does not need to be published, but can be joined with a tamper proof device:
the scheme becomes available when the tamper resistant module is activated.

This allows creation of schemes with some sort of veto capabilities: the com-
biner receives an additional share that is obligatory for recreating the secret but
is not sufficient to recreate the secret. Even more, using the combiner’s secret
information and some shares provided by the participants, the secret can be
recreated if and only if the provided shares represent an authorized subset of the
access structure.

One can think of various applications based on this type of infrastructue:

– Schemes can be protected against wildcat recreations where an authorized
subset of corrupt participants meets and recreates the secret g. As the col-
lection of distribution functions is known, they can compute shares of other
participants, which opens the way to attacks like identity theft.

118 M. Beiter

– A related approach is the creation of a true “single try secret sharing scheme”
to prevent cheating: in a recreation attempt, a cheater may learn about
the shares of other shareholders, prevent the recreation and recreate the
secret for himself if an authorized subset was present. Instead of using the
known counteractive measures against cheating, the combiner can enforce a
single recreation attempt by destroying his mandatory share after the first
recreation attempt.

It is worth noting that the dealer, say the authority that is totally aware of
the protected secret and any other information necessary for constructing and
altering the scheme, can never be the combiner, as this would run contrary to
the point of secret sharing: in a secret sharing scheme, we have no information
sufficient for itself stored at any publicly accessible point during the running
phase. It is fundamental that the private information in form of the secret is
computed at the time of recreation.

The combiner in turn differs fundamentally from the dealer: to add new share-
holders, the dealer must know which shares he has already assigned to and which
secrets he needs to share. The combiner in contrast must prevent an accumula-
tion of knowledge: when a secret sharing scheme is run as a multi-time secret
sharing scheme, accumulation of private shares and recreated secrets is unavoid-
able during recreation. The combiner as a trustworthy entity is characterized by
the fact that he destroys secret knowledge as soon as possible.

As the combiner handles the recreation, triggers a predefinied action and
usually keeps the participants’ shares ki and the recreated secret g private, the
shareholders have to trust him only insofar as he does not reveal their shares (as
would be the case in conventional public recreation) and actually triggers the
action as expected, which is a moderate level of trust.

There are models in which the dealer remains active after the initialization
phase, e.g. to alter the access structure during runtime ([9]), which is an ex-
ception to the paradigm of an non existent single point of failure. However, the
dealer assures that this private information is protected at its best, which in-
cludes that the place of storage is not publicly accessible. This is contrary to the
requirements of an efficient recreation, where public access is obligatory. Hence,
in schemes relying on these models, the combiner and the dealer also need to be
separated.

In known schemes, the combiner e.g. as a tamper proof device and the dealer
are separated in time: the dealer distributes shares to the participants and the
combiner, but is no longer available during runtime. In the following, we will
discuss models where both the dealer and the combiner can always be present.

3 Combiner Driven Management Models

3.1 A Third Phase in the Life Cycle of Secret Sharing Schemes

We now refine Martin’s categorization of phases in the life cycle of secret sharing
schemes ([9]) insofar as we propose a recreation phase with secure or broadcast

Combiner Driven Management Models and Their Applications 119

Initialization phase

Running phase

If enrollment is supported

Recreation phase

In multi-time secret sharing schemes

Fig. 1. Phase change possibilites

connections between the parties. As we will see in the following, multi-time
secret sharing schemes in particular are only possible when the recreation phase
with secure connections is explicitly present. For conventional single-time secret
sharing schemes, the always implicitly present recreation phase with broadcast
connections between the participants is sufficient.

In multi-time secret sharing, it is necessary to switch between the running and
the recreation phase: in a recreation attempt, the phases change from running
over recreation back to running. Thus we can define the life cycle of a secret
sharing scheme as follows (see figure 1):

– A newly created scheme starts in the initialization phase: the secret is de-
termined, the distribution function is selected and the participants are ini-
tialized with their shares. Afterwards, the scheme switches to the running
phase.

– Depending on the model’s and the distribution function’s abilities, the ac-
cess structure can be updated during the running phase. We define that
the scheme switches into the initialization phase during enrollments, as the
enrollment of shareholders is an initialization process.

– As soon as a (not necessarily authorized) subset of participants requests
a recreation, the scheme switches into the recreation phase. Depending on
the security policy and on whether the scheme is a single- or multi-time
secret sharing scheme, the scheme’s lifetime may end at this point, no matter
whether the recreation was successful or not:

The lifetime of single-time secret sharing scheme always ends after the first
successful recreation at the latest. In multi-time secret sharing schemes, the
scheme may switch back into the running phase after a recreation attempt.

3.2 The Combiner as a Trusted Party

We propose new management models that allow creation of schemes which can
perform general updates as described in chapter 2.1. In the proposed models,
the combiner is an additional trusted entity which has a secure link to the dealer
and can optionally store a certain amount of private information. The dealer,
who knows the shared secret, is active in both the initialization and the running

120 M. Beiter

phase. As the combiner will rely on the privacy of his secret information and the
secure connection to the dealer to enforce certain actions, we concede that these
capabilities may be lost when the premises no longer exist.

In the proposed combiner driven schemes, the dealer has the ability to ac-
tivate the scheme and influence the result of the recreation process with the
private information he transmits to the combiner. On the one hand, this makes
the scheme’s “deactivation” possible. On the other hand, the secret g can be
altered after the scheme has been activated, which is an extension of the prepo-
sitioned schemes proposed by Simmons ([12],[13]). We will show in chapter 4 that
in schemes based on the proposed models, the participants’ shares can remain
unchanged in update operations.

There are two variants of the proposed model which are both based on three
parties: the dealer, the combiner and the participants. Each of these three parties
is present in the intialization, running and recreation phase. However, their level
of activity and the type of connections between the parties vary:

– During the initialization phase, the dealer has secure connections to the
participants and the combiner. The combiner and the participants cannot
initiate any communcation in this phase.

– In the running phase there is only a secure link between the dealer and the
combiner. No other communication of any kind can take place.

– The dealer is not active during the recreation phase and hence he has no
connection to the combiner. The sort of link between the combiner and the
participants depends on the variant of the model:
• In variant A, the combiner has a secure connection to the participants.
• In variant B, the combiner can only communicate with the participants

via broadcast messages.

Note that there is never any direct communication between the participants in
model A and B.

Variant A is the more powerful model as the combiner has a secure connection
to the participants during the recreation phase. This model allows the creation
of multi-time secret sharing schemes, as the shares as well as the recreated secret
remain private at all times. The combiner can drop the multi-time property by
downgrading the secure connection during recreation from a secure to a broad-
cast connection. This results in a model switch to model B. If the combiner does
not store any private information, but is just a trusted entity used for recreation
and so gaining a multi-time secret sharing scheme, the participants can decide
to recreate the secret by public recreation. This is reasonable when the combiner
(and some cloned instances if applicable) is unavailable e.g. due to a denial of
service attack. The decision to carry out a public recreation results in a model
change from model A to a conventional model where neither a dealer nor a com-
biner are present during recreation and only broadcast connections between the
participants are available.

In variant B, the combiner only has a broadcast connection to the sharehold-
ers. Schemes based on this model are limited to one time secret sharing: we
assume that a connection cannot be “upgraded”, i.e. a broadcast connection

Combiner Driven Management Models and Their Applications 121

shall not become a secure connection, as this would not make sense in reality.
To protect schemes settled in this model against wildcat recreations, the com-
biner here usually holds some private information which is vital for recreating
the secret.

To summarize, the secure connection between combiner and participants dur-
ing the recreation phase is optional and only necessary to provide multi-time
secret sharing. The secure connection between dealer and combiner allows up-
dating of private information on the part of the combiner during runtime. This
can be used to create fully dynamic secret sharing schemes. The rather strong
requirement of a secure connection between dealer and combiner ist softened in
practice, as it is needed for updating only. The connection’s type may vary from
temporary physical contact up to a full featured public key infrastructure.

4 A Fully Dynamic Secret Sharing Schemes Realizing
Threshold Access Structures

In the following, we will give an implementation for a secret sharing scheme that
realizes threshold access structures in combiner driven management models. Let
T = {t1, . . . , tv} be the set of participants and P(T) the power set of T . Then
Z = {A ⊆ P(T) : |A | ≥ u} is the access structure of a (u, v) threshold scheme
(u ≤ v).

The proposed construction is based on Shamir’s threshold scheme as described
in [11], with the difference that a polynomial of a larger degree will be used. This
modification of Shamir’s scheme allows general updates of the access structure,
which includes enrollment, disenrollment and changes of the threshold. Further-
more, the shared secret can be updated in active schemes.

It is worth mentioning that Shamir’s original scheme can benefit e.g. from
multi-time secret sharing or wildcat recreation protection by settling it in a
combiner driven model.

Construction. Let IFp be a finite field of prime order p, G = {0} × IFp the set
of all possible secrets and K = IFp × IFp the set of all possible shares. Further,
let g = (0, yg) ∈ G be the secret and ki ∈ K ⊂ K the share of party ti, 1 ≤ i ≤ v.
For a (u, v) threshold access structure, we create a polynomial f of degree v
instead of degree u − 1 as Shamir does in [11].

The dealer determines the shares ki = (xi, yi), 1 ≤ i ≤ v by choosing the yi

randomly and the xi �= 0 pairwise distinct. Afterwards, he interpolates the v
points and the secret point (0, yg) by a polynomial f using the Newton method.
In the unlikely case that deg(f) �= v, the dealer restarts the procedure.

When deg(f) = v, the dealer computes v − u + 1 pairs (ci, f(ci)), 1 ≤ i ≤
v − u + 1, ci �= 0, x1, . . . , xv, and passes them to the combiner. The shares
k1, . . . , kv are distributed to the participants via a protected channel, the dealer
securely stores the Newton polynomial f .

For numerical efficiency, the dealer uses Newton interpolation instead of La-
grange interpolation, for instance, to calculate g and k1, . . . , kv. Using Newton

122 M. Beiter

interpolation requires the dealer to evaluate O(v2) divisions to interpolate the
polynomial. However, in contrast to Lagrange interpolation, the dealer computes
so called divided differences as intermediate results. In later steps, the dealer can
reuse these divided differences to evaluate the polynomial at a certain point in
O(v) steps. Most importantly, adding a new participant, which amounts to inter-
polate a polynomial through an additional point, can be achieved with only O(v)
operations. Hence, this approach is also more efficient in recreation or updating
operations.

However, the dealer must store the divided differences, which increases the
amount of required storage space by O(v2). A detailed discussion of Newton
interpolation can be found for instance in [16] pp. 43 ff.

Recreation. The recreation of the shared secret is only possible with assistance
of the combiner: no authorized subset of u participants or more has enough shares
to interpolate f and hence to determine g. Depending on the number of parties
initiating the recreation process, the combiner will contribute at least one and
up to v − u + 1 shares, interpolate the polynomial f and compute the secret
information f(0) = yg. This has the advantage that the combiner can check
that no wildcat recreations occur, which assures that g is kept secret under any
circumstances.

Since the combiner contributes up to v − u + 1 shares, some steps can be
precomputed to calculate the Newton polynomial: having received the additional
shares (ci, f(ci)) from the dealer, the combiner precomputes the first v − u + 1
steps of the Newton polynomial and caches this as an intermediate result. Using
the precomputed part of the Newton polynomial, the combiner can compute the
polynomial using u shares and check any remaining parties by insertion.

General Updates of Threshold Access Structures. To answer the question
of how to carry out general updates on threshold access structures, we will have
a look at the six possible operations. We will show now that in combiner driven
schemes not only enrollment or disenrollment operations but also updates of
shares and secret as well as changes in the security policy are possible:

1. Participants decrease from v to ṽ and ṽ < v
2. Participants increase from v to v̂ and v̂ > v
3. Threshold decrease from u to ũ and ũ < u
4. Threshold increase from u to û and û > u
5. Updating shares in active schemes
6. Updating the secret in active schemes

We presume that the combiner as a trusted entity follows the protocol correctly.
This includes in particular that the combiner honestly follows the dealer’s in-
structions to delete or replace, respectively, the shares under his control.

1. Participants’ Decrease. To disenroll a participant tk from all authorized sub-
sets, it must be assured that his share (xk, yk) is no longer a point of the graph of
f . Therefore, we create a new polynomial f∗ that has all points (xi, yi), 0 ≤ i ≤ v,

Combiner Driven Management Models and Their Applications 123

in common with f except the point (xk, yk). To achieve this, the dealer chooses
y∗

k randomly in IFp and interpolates the Newton polynomial f∗ with the new
(xk, y∗

k) instead of (xk, yk).
Since the disenrolled user is not removed from the scheme but only de-

activated, the degree of the polynomial remains v. So the dealer checks for
deg(f∗) = v, computes v − u + 1 pairs (ci, f

∗(ci)), 1 ≤ i ≤ v − u + 1, which
replace the corresponding former pairs (ci, f(ci)) and passes them to the com-
biner. The dealer does not have to inform the parties of the disenrollment, nor
is there any need to communicate with the removed participant: the shares ki of
the remaining participants are unchanged, and the share kk = (xk, yk) becomes
invalid after the combiner has updated his data.

The dealer can disenroll multiple parties by chosing multiple new polynomial
values for the corresponding shares. It is easy to see that using this combiner
driven management model, there are no limitations regarding any maximum
disenrollment capacity or even any changes in u or v.

In the lifetime of a secret sharing scheme, the dealer should touch the share of
each party only for creation and revocation: if a participant is disenrolled several
times, there is indeed a small chance that the randomly chosen pair (xk, y∗

k)
matches the original (xk, yk) and reactivates the share. In order to circumvent
this, the dealer must keep records of deactivated parties.

2. Participants’ Increase. Adding one or more new parties is straight forward:
as v increases to v̂ > v, the dealer needs to recompute the polynomial f , as its
degree must also increase by v̂ − v.

The dealer chooses v̂ − v pairs (xi, yi) ∈ IFp × IFp, v + 1 ≤ i ≤ v̂, where yi

is random, the xi are pairwise distinct and xi �= 0, x1, . . . xv. Using the stored
Newton polynomial, the dealer computes a new Newton polynomial f∗ using
the additional shares. This does not affect any of the existing shares k1, . . . , kv

or the secret g. As stated above, the dealer must choose different values for the
new yi if deg(f∗) �= v̂.

As in the initial construction, the dealer computes v̂− u+ 1 pairs (ci, f
∗(ci)),

1 ≤ i ≤ v̂ − u + 1, ci �= 0, x1, . . . xv̂, and passes them to the combiner. The v̂ − v
created shares kv+1, . . . , kv̂ are distributed to the new participants via a secure
channel, the Newton polynomial f∗ is stored by the dealer.

Trying to keep the degree of the polynomial small by reusing xi from disen-
rolled shareholders is possible for non-perfect schemes: the dealer could assign
an “unused” xi from a disenrolled shareholder ti together with a new, random
yj to a new participant tj . However, each time a xi is reused, the probability
of assigning a yj which has already been used for a past participant holding
xi increases. Another security concern for reusing is that a group of m former
holders of a particular xi could conspirate and so decrease the set of possible yj

by m to p − m. Indeed, this is no issue in practice, as p will usually be much
larger than m.

If no secure channels are present, the enrollment operation is not available.

3. Threshold Decrease. The success of a recreation attempt depends on the
number of shares the combiner can contribute: as described before, the combiner

124 M. Beiter

contributes 1 ≤ s ≤ v−u+1 shares, if v−s+1 participants attend the recreation
process.

To decrease the threshold u to a ũ < u, the number of shares the combiner
can contribute needs to be increased to v− ũ+1 > v−u+1: the dealer computes
v − ũ + 1 pairs (ci, f(ci)), 1 ≤ i ≤ v − ũ + 1, ci �= 0, x1, . . . xv, and transmits
them to the combiner via a secure channel.

As the combiner already holds u shares, this operation can be performed with
a relatively low bandwidth consumption of u− ũ shares: it is sufficient to merely
transfer only a set of additional shares. This implies that the dealer keeps records
on which shares he has already made avaliable to the combiner.

4. Threshold Increase. According to the operations required for threshold de-
crease, an increase of u to û > u can be performed by decreasing the number of
shares hold by the combiner to v−û+1 < v−u+1. To achieve this, the dealer can
either compute v− û+1 pairs (ci, f(ci)), 1 ≤ i ≤ v− û+1, ci �= 0, x1, . . . xv and
transmit them to the combiner via a secure channel or issue a delete command
making the combiner invalidate û − u shares.

While the former is a rather bandwidth consuming operation, the latter can be
performed at comparatively low cost: the dealer needs to keep track of the shares
he assignes to the combiner. To invalidate a number of shares, it is sufficient for
the dealer to transmit a delete request for the required number of shares. To keep
the dealers’ share records valid, the combiner deletes for instance the first û− u
shares. This allows a small message footprint of log p bits. In comparison, issuing
a set of new shares for the combiner requires the transmission of a message of
size (v − û + 1) · 2 log p bits.

5. Updating shares in Active Schemes. In the described scheme updating of
shares can be conducted by slightly modifying the disenrollment operation: after
the disenrollment is complete, the new randomly chosen share is not destroyed
but transmitted via a secure channel to the shareholder.

6. Updating the Secret in Active Schemes. In this scheme, the operation of up-
dating the secret is closely related to the question of disenrolling shareholders in
active schemes. To update the secret, we slightly alter the disenrollment process:
the dealer choses a new secret g∗ �= g in {0}×IFp whereas the participants shares
remain unchanged. Then he interpolates a new polynomial f∗ of degree v with
the new (0, g∗) instead of (0, g). Finally, the dealer calculates a new share set for
the combiner by insertion. After transfering these v − u + 1 shares via a secure
connection to the combiner, the new secret is active.

Final Considerations. It is easy to see that the proposed scheme is perfect if,
as mentioned in paragraph 2., no xi of disenrolled participants are reused. To
proof this, the combiner is considered an extra participant with multiple shares.

An evaluation of the scheme’s efficiency according to Stinson’s definition ([15])
results in a shareholder information rate of 1. However, the combiner’s informa-
tion rate will usually be smaller. That is why the proposed scheme is generally
not ideal.

Combiner Driven Management Models and Their Applications 125

5 Conclusions

In this work, we proposed a recreation phase as a new phase in the lifetime of
secret sharing schemes to simplify the construction of truly multi-time secret
sharing schemes. We introduced the combiner as a trustworthy entity with a
secure connection to the dealer during runtime and the ability to store a certain
amount of private information. The secure connection to the dealer, who knows
the shared secret, allows strong update operations like changes in the security
policy of threshold schemes while the participants’ share size can remain ideal.
Most importantly, the shares of unaffected parties remain unchanged in update
operations. The rather strong requirement of a secure connection between dealer
and combiner is softened by the fact that this connection is only obligatory
during update operations. Update operations can be enforced without the need
of communication with the affected participants. Instead of broadcast messages
to all shareholders, only a comparatively small message must be sent to the
combiner via a secure channel.

As an example, we gave an efficient implementation based on Shamir’s thresh-
old scheme which is ideal from a shareholder’s point of view.

We mention that the described ideas allow the implementation of a scheme
that realizes general non-monotone access structures. These thoughts are not
limited to single secret sharing schemes but are easily transferable to multi secret
sharing schemes.

Acknowledgements

The author thanks Keith Martin and the anonymous reviewers for their helpful
observations and comments.

References

1. Barwick, S.G., Jackson, W.-A., Martin, K.M., O’Keefe, C.: Optimal updating of
ideal threshold schemes. Australasian Journal of Combinatorics 36, 123–132 (2006)

2. Barwick, S.G., Jackson, W.-A., Martin, K.M.: Updating the parameters of a thresh-
old scheme by minimal broadcast. IEEE Transactions on Information Theory 51(2),
620–633 (2005)

3. Blakley, G.R.: Safeguarding Cryptographic Keys. In:Proceesings AFIPS 1979, Na-
tional Computer Conference, vol. 48, pp. 313–317 (1979)

4. Blakley, B., Blakley, G.R., Chan, A.H., Massey, J.L.: Threshold schemes with dis-
enrollment. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 540–548.
Springer, Heidelberg (1993)

5. Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully dynamic secret sharing
schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125.
Springer, Heidelberg (1994)

6. Cachin, C.: On-Line Secret Sharing. In: Boyd, C. (ed.) Cryptography and Coding
1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995)

126 M. Beiter

7. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Dynamic Threshold Cryptosystems: A
New Scheme in Group Oriented Cryptography. In: Proceedings of PRAGOCRYPT
1996. International Conference on the Theory and Applications of Cryptology, pp.
370–379 (1996)

8. Martin, K.M.: Untrustworthy Participants in Secret Sharing Schemes, In: Cryp-
tography and Coding III, pp. 255–264. Oxford University Press, Oxford (1993)

9. Martin, K.M.: Dynamic access policies for unconditionally secure secret sharing
schemes. In: Proceedings of IEEE Information Theory Workshop (ITW 2005),
Awaji Island, Japan (2005)

10. Pedersen, T.: A Threshold Cryptosystem without a Trusted Party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

11. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

12. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO
1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1988)

13. Simmons, G.J.: Prepositioned shared secret and/or shared control schemes. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
436–467. Springer, Heidelberg (1990)

14. Simmons, G.J.: An introduction to shared secret and/or shared control schemes
and their applications. In: Contemporary Cryptology, pp. 441–497. IEEE Press,
Los Alamitos (1992)

15. Stinson, D.R.: An explication of secret sharing schemes. In: Designs, Codes and
Cryptography, pp. 357–390. Kluwer Academic Publishers, Dordrecht (1992)

16. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Heidelberg
(2002)

17. Tompa, M., Woll, H.: How To Share a Secret with Cheaters. Journal of Cryptology,
133–138 (1988)

New Attacks on the Stream Cipher TPy6 and

Design of New Ciphers
the TPy6-A and the TPy6-B�

Gautham Sekar, Souradyuti Paul, and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001, Leuven-Heverlee, Belgium
{gautham.sekar,souradyuti.paul,bart.preneel}@esat.kuleuven.be

Abstract. The stream ciphers Py, Pypy and Py6 were designed by
Biham and Seberry for the ECRYPT-eSTREAM project in 2005. The
ciphers were promoted to the ‘Focus’ ciphers of the Phase II of the eS-
TREAM project. However, due to some cryptanalytic results, strength-
ened versions of the ciphers, namely, the TPy, the TPypy and the TPy6
were built. In this paper, we find hitherto unknown weaknesses in the
keystream generation algorithms of the Py6 and its stronger variant the
TPy6. Exploiting these weaknesses, a large number of distinguishing at-
tacks are mounted on the ciphers, the best of which works with 2224.6

data and comparable time. In the second part, we present two new ci-
phers derived from the TPy6, namely, the TPy6-A and the TPy6-B,
whose performances are 2.65 cycles/byte and 4.4 cycles/byte on Pentium
III. As a result, to the best of our knowledge, on Pentium platforms the
TPy6-A becomes the fastest stream cipher in the literature. Based on
our security analysis, we conjecture that no attacks lower than the brute
force are possible on the ciphers TPy6-A and TPy6-B.

1 Introduction

At first, we recall a brief history of the Py-family of ciphers.

Timeline: the Py-family of Ciphers

– April 2005. The ciphers Py and Py6, designed by Biham and Seberry,
were submitted to the ECRYPT project for analysis and evaluation in the
category of software based stream ciphers [2]. The impressive speed of the
cipher Py in software (about 2.5 times faster than the RC4) made it one of
the fastest and most attractive contestants.

� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government, by the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), and in part by the European Commis-
sion through the IST Programme under Contract IST-2002-507932 ECRYPT. The
first and the second authors are supported by IWT SoBeNeT project and an IBBT
(Interdisciplinary Institute for Broadband Technology) project respectively.

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 127–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

128 G. Sekar, S. Paul, and B. Preneel

– March 2006 (at FSE 2006). Paul, Preneel and Sekar reported distin-
guishing attacks with 289.2 data and comparable time against the cipher Py
[7]. Crowley [4] later reduced the complexity to 272 by employing a Hidden
Markov Model.

– March 2006 (at the Rump session of FSE 2006). A new cipher, namely
Pypy, was proposed by the designers to rule out the aforementioned distin-
guishing attacks on Py [3].

– May 2006 (presented at Asiacrypt 2006). Distinguishing attacks were
reported against Py6 with 268 data and comparable time by Paul and Pre-
neel [8].

– October 2006 (presented at Eurocrypt 2007). Wu and Preneel showed
key recovery attacks against the ciphers Py, Pypy, Py6 with chosen IVs. This
attack was subsequently improved by Isobe et al. [6].

– January 2007. Three new ciphers TPypy, TPy, TPy6 were proposed by
the designers [1]; the ciphers can very well be viewed as the strengthened
versions of the previous ciphers Py, Pypy and Py6.

– February 2007. Sekar et al. published attacks on TPy and TPypy, each of
which requires 2281 data and comparable time [9].

– August 2007 (presented at SAC 2007). Tsunoo et al. showed a distin-
guishing attack on TPypy with a data complexity of 2199 [13].

– October 2007 (presented at ISC 2007). Sekar et al. showed attacks on
TPy, the best of which requires 2268.6 data and comparable time [10].

– December 2007 (presented at Indocrypt 2007). Sekar et al. showed
related-key attacks on the Py, the Pypy, the TPy and the TPypy, each
requiring 2192 data and comparable time [11].

In this paper, we detect new bias-inducing internal states of the TPy6 to build
distinguishing attacks on the cipher. The bias-inducing states are similar in spirit
to those of the other distinguishing attacks on the Py-family [8,10], however, they
were not known so far. The characterization of the bias-inducing states is given
in full detail in Theorem 1.

We also design two new ciphers the TPy6-A and the TPy6-B by changing the
variable rotations of the keystream generation of the TPy6 to constant rotations.
This simple change makes the new ciphers (1) operate with fewer instructions
and (2) conjecturally more secure than the TPy6.

2 Notation and Convention

Algorithm 1 describes the keystream generation part of the TPy6 and the Py6.
The notation we followed is described below.

– The mth bit (m = 0 denotes the least significant bit or lsb) of the first
output-word generated at round n is denoted by On(m). The second output-
word is not used anywhere in our analysis.

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers 129

– Pn, Yn+1 and sn are the inputs to the algorithm at round n. When this con-
vention is followed, we see that On = (ROTL32(sn, 25)⊕Yn[64])+Yn[Pn[26]]-
the index ‘n’ is maintained throughout the expression.

– The ROTL32(x, k) denotes that the variable x is cyclically rotated to the
left by k bits.

– Yn[m], Pn[m] denote the mth elements of array Yn and Pn respectively.
– Yn[m]i, Pn[m]i denote the ith bit (i = 0 denotes the lsb) of Yn[m], Pn[m]

respectively.
– The symbol ‘&’ denotes the and operator.
– The operators ‘+’ and ‘−’ denote addition modulo 232 and subtraction modulo

232 respectively, except when used with expressions which relate two elements
of array P . In this case they denote addition and subtraction over Z.

– The symbol ‘⊕’ denotes bitwise exclusive-or and
⋂

denotes set intersection.
– In On(i), sn(i) and Yn[Pm[X]]i, the index representing bit position, i.e., i

denotes i mod 32.
– Y c

n [Pm[X]]i denotes the complement of Yn[Pm[X]]i.
– The pseudorandom bit generation algorithm of a stream cipher is denoted

by PRBG.

Algorithm 1. The keystream generation algorithm of the TPy6 (and the Py6)
Require: Y [−3, ..., 64], P [0, ..., 63], a 32-bit variable s
Ensure: 64-bit random output

/*Update and rotate P*/
1. swap (P [0], P [Y [43]&63]);
2. rotate (P);

/* Update s*/
3. s+ = Y [P [18]] − Y [P [57]];
4. s = ROTL32(s, ((P [26] + 18)&31));

/* Output 4 or 8 bytes (least significant byte first)*/
5. output ((ROTL32(s, 25) ⊕ Y [64]) + Y [P [8]]);
6. output ((s ⊕Y [−1]) + Y [P [21]]);

/* Update and rotate Y */
7. Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [48]];
8. rotate(Y);

3 Distinguishing Attacks on the Py6 and the TPy6

We detect a large number of input-output correlations of TPy6 and Py6 that
allow us to build distinguishers. The weak states which lead to the best distin-
guishing attack are outlined in the following theorem.

Theorem 1. O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7) = 0 if the following 17 conditions
are simultaneously satisfied.

130 G. Sekar, S. Paul, and B. Preneel

1. P1[26] ≡ −18 mod 32 (event E1), 2. P2[26] ≡ 7 mod 32 (event E2), 3.
P3[26] ≡ −4 mod 32 (event E3), 4. P7[26] ≡ 3 mod 32 (event E4),
5. P8[26] ≡ 3 mod 32 (event E5), 6. P1[18] = P2[57] + 1 (event E6), 7. P1[57] =
P2[18] + 1 (event E7), 8. P7[18] = P8[18] + 1 (event E8),
9. P7[57] = P8[57] + 1 (event E9), 10. P3[18] = 62 (event E10), 11. P1[8] =
P3[57] + 2 (event E11), 12. P1[18] = 3 (event E12),
13. P3[8] = 0 (event E13), 14. P1[57] = P7[8] + 6 (event E14), 15. P7[48] = 60
(event E15), 16. P6[48] = P8[8] + 2 (event E16),
17. d7(i−7) ⊕d8(i−7) ⊕ c1(i) ⊕d3(i) ⊕d1(i+7) ⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕ c8(i+7) ⊕
e8(i+7) = 0.1

Proof. First, we state and prove two lemmata which will be used to establish the
theorem.

Lemma 1. If

1. P1[26] ≡ −18 mod 32, 2. P3[26] ≡ −4 mod 32, 3. P7[26] ≡ 3 mod 32, 4.
P8[26] ≡ 3 mod 32

then the following equations are satisfied:

1. O1(i) = s0(i+7) ⊕ Y1[P1[18]]i+7 ⊕ Y c
1 [P1[57]]i+7 ⊕ Y1[256]i ⊕ Y1[P1[8]]i

⊕ c1(i) ⊕ d1(i+7),
2. O3(i+7) = s2(i) ⊕ Y3[P3[18]]i ⊕ Y c

3 [P3[57]]i ⊕ Y3[256]i+7 ⊕ Y3[P3[8]]i+7

⊕ c3(i+7) ⊕ d3(i),
3. O7(i+7) = Y7[P7[18]]i−7 ⊕ Y c

7 [P7[57]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[8]]i+7

⊕Y6[P6[48]]i+7 ⊕ c7(i+7) ⊕ d7(i−7) ⊕ e7(i+7),
4. O8(i+7) = Y8[P8[18]]i−7 ⊕ Y c

8 [P8[57]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[8]]i+7

⊕Y7[P7[48]]i+7 ⊕ c8(i+7) ⊕ d8(i−7) ⊕ e8(i+7).

Proof. From Figure 1, we get

Yn[i] = Yn+1[i − 1] (1)

when −2 ≤ i ≤ 64. When i = −3,

Yn+1[64] = (ROTL32(si, 14)⊕ Yn[−3]) + Yn[Pn[48]].

Generalizing (1), we have

Yn[i] = Yn+k[i − k] (2)

when −3 ≤ i − k ≤ 63. Line 5 of Algorithm 1 gives

O7 = (ROTL32(s7, 25) ⊕ Y7[64]) + Y7[P7[8]]. (3)

1 The terms c, d, e are the carries generated in certain expressions, the descriptions
of which can be found in the proof of Theorem 1.

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers 131

A

B

C

X

Y

B

C

Y

D

A1

C

D

A1

E

B1

− 3

− 2

− 1

63

64

Y Yn Y n+ 2n+ 1

Fig. 1. The figure shows the update of the S-box Y . Yn[i] = Yn+1[i − 1] when −2 ≤
i ≤ 64. Yn+1[64] = A1 when i = −3 and A1 = (ROTL32(sn, 14) ⊕ A) + Yn[Pn[48]].
Generalizing the above, we can write Yn[i] = Yn+k[i − k] when −3 ≤ i − k ≤ 63.

Let the c7 denote the carry in the above equation. Since ROTL32(s7, 25)i =
s7(i−25 mod 32),

O7(i) = s7(i−25 mod 32) ⊕ Y7[64]i ⊕ Y7[P7[8]]i ⊕ c7(i). (4)

Lines 3 and 4 of Algorithm 1 give us

s7 = ROTL32(s6 + Y7[P7[18]] − Y7[P7[57]], P7[26] + 18 mod 32) (5)
⇒ s7(j) = s6(j−k mod 32) ⊕ Y7[P7[18]]j−k mod 32 ⊕ Y c

7 [P7[57]]j−k mod 32

⊕ d7(j−k mod 32) (6)

where k = P7[26] + 18 mod 32, d7(i) = f7(i) ⊕ g7(i) and d7(0) = 1 (f7 and g7 are
the carry terms in (5) which are explained in Sect. 4.2). For simplicity, henceforth
we denote X(i mod 32) by X(i). Thus (6) becomes,

s7(j) = s6(j−k) ⊕ Y7[P7[18]]j−k ⊕ Y c
7 [P7[57]]j−k ⊕ d7(j−k). (7)

If j = i − 25 mod 32, then (7) becomes

s7(i−25) = s6(i−k−25) ⊕ Y7[P7[18]]i−k−25 ⊕ Y c
7 [P7[57]]i−k−25 ⊕ d7(i−k−25). (8)

Substituting (8) in (4), we get,

O7(i) = s6(i−k−25) ⊕ Y7[P7[18]]i−k−25 ⊕ Y c
7 [P7[57]]i−k−25 ⊕ Y7[64]i

⊕Y7[P7[8]]i ⊕ c7(i) ⊕ d7(i−k−25). (9)

Next, we have

Y7[64] = (ROTL32(s6, 14)⊕ Y6[−3]) + Y6[P6[48]], (10)
Y7[64]i = s6(i−14) ⊕ Y6[−3]i ⊕ Y6[P6[48]]i ⊕ e7(i) (11)

where e7 is the carry term in (10). Substituting (11) in (9), we get,

O7(i) = s6(i−k−25) ⊕ s6(i−14) ⊕ Y7[P7[18]]i−k−25 ⊕ Y c
7 [P7[57]]i−k−25 ⊕ Y6[−3]i

⊕Y7[P7[8]]i ⊕ Y6[P6[48]]i ⊕ c7(i) ⊕ d7(i−k−25) ⊕ e7(i). (12)

132 G. Sekar, S. Paul, and B. Preneel

Now, if k = −11 (i.e., k ≡ −11 mod 32 ⇒ P7[26]+18 ≡ −11 mod 32 ⇒ P7[26] ≡
3 mod 32) then s6(i−k−25) ⊕ s6(i−14) = 0. Hence, when P7[26] ≡ 3 mod 32, (12)
becomes

O7(i) = Y7[P7[18]]i−14 ⊕ Y c
7 [P7[57]]i−14 ⊕ Y6[−3]i ⊕ Y7[P7[8]]i

⊕Y6[P6[48]]i ⊕ c7(i) ⊕ d7(i−14) ⊕ e7(i). (13)

By similar arguments, when P8[26] ≡ 3 mod 32,

O8(i) = Y8[P8[18]]i−14 ⊕ Y c
8 [P8[57]]i−14 ⊕ Y7[−3]i ⊕ Y8[P8[8]]i

⊕Y7[P7[48]]i ⊕ c8(i) ⊕ d8(i−14) ⊕ e8(i). (14)

From (9), we get

O1(i) = s0(i−k−25) ⊕ Y1[P1[18]]i−k−25 ⊕ Y c
1 [P1[57]]i−k−25 ⊕ Y1[64]i

⊕Y1[P1[8]]i ⊕ c1(i) ⊕ d1(i−k−25). (15)

When k = 0 (i.e., P1[26] ≡ −18 mod 32), the above equation reduces to

O1(i) = s0(i+7) ⊕ Y1[P1[18]]i+7 ⊕ Y c
1 [P1[57]]i+7 ⊕ Y1[64]i ⊕ Y1[P1[8]]i

⊕ c1(i) ⊕ d1(i+7). (16)

Similarly, when P3[26] ≡ −4 mod 32, we have

O3(i+7) = s2(i) ⊕ Y3[P3[18]]i ⊕ Y c
3 [P3[57]]i ⊕ Y3[64]i+7 ⊕ Y3[P3[8]]i+7

⊕ c3(i+7) ⊕ d3(i). (17)

From (13) and (14), we derive the following results:

O7(i+7) = Y7[P7[18]]i−7 ⊕ Y c
7 [P7[57]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[8]]i+7

⊕Y6[P6[48]]i+7 ⊕ c7(i+7) ⊕ d7(i−7) ⊕ e7(i+7), (18)
O8(i+7) = Y8[P8[18]]i−7 ⊕ Y c

8 [P8[57]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[8]]i+7

⊕Y7[P7[48]]i+7 ⊕ c8(i+7) ⊕ d8(i−7) ⊕ e8(i+7). (19)

This completes the proof. �

Now we state the second lemma.

Lemma 2. s0(i+7) = s2(i) if the following conditions are simultaneously satis-
fied,

1. P1[26] ≡ −18 mod 32,
2. P2[26] ≡ 7 mod 32,
3. P1[18] = P2[57] + 1,
4. P1[57] = P2[18] + 1.

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers 133

Table 1. Terms generated in O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7), given the events E1

to E7 simultaneously occur (the terms are grouped by their bit positions)

Bit position: i − 7 Bit position: i Bit position: i + 7

Y7[P7[18]] Y1[64] Y1[P1[18]]

Y7[P7[57]] Y1[P1[8]] Y1[P1[57]]

Y8[P8[18]] Y3[P3[18]] Y3[256]

Y8[P8[57]] Y3[P3[57]] Y3[P3[8]]

Carries Carries Y6[P6[48]]

Y6[−3]

Y7[P7[8]]

Y7[P7[48]]

Y7[−3]

Y8[P8[8]]

Carries

Proof. Equation (5) gives us:

s1 = ROTL32(s0 + Y1[P1[18]]− Y1[P1[57]], P1[26] + 18 mod 32).

The first condition (P1[26] ≡ −18 mod 32) reduces this to

s1 = s0 + Y1[P1[18]]− Y1[P1[57]].

Therefore,

s2 = ROTL32(s0 + Y2[P2[18]] − Y2[P2[57]] + Y1[P1[18]]− Y1[P1[57]],
P2[26] + 18 mod 32).

Conditions 3 and 4, when used with (1), reduce the above equation to

s2 = ROTL32(s0, P2[26] + 18 mod 32).

Finally, with condition 2 (i.e., P2[26] ≡ 7 mod 32), the previous equation be-
comes

s2 = ROTL32(s0, 25)
⇒ s2(i) = ROTL32(s0, 25)i = s0(i−25)

= s0(i+7). (20)

This completes the proof. �

Now we observe that, when the conditions listed under (i) Lemma 1 (i.e., events
E1, E3, E4 and E5) and (ii) Lemma 2 (i.e., events E1, E2, E6 and E7) are si-
multaneously satisfied, then the expression O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7) is
the XOR of the terms which are listed in Table 1 (grouped according to the bit
positions).2 Similarly, the ‘carries’ in Table 1 are elaborated in Table 2.
2 Note that none of the terms listed in Table 1 is of the form Ac because we used the

fact that Ac ⊕ Bc = A ⊕ B in (16), (17), (18) and (19).

134 G. Sekar, S. Paul, and B. Preneel

Table 2. Carry terms generated in O1(i)⊕O3(i+7)⊕O7(i+7) ⊕O8(i+7) grouped by their
bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

d7 c1 d1

d8 d3 c3

c7

e7

c8

e8

If the Y -terms in Table 1 are pairwise equated (this is achieved when the
events E8 through to E16 occur) then we get

O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7)

⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕ c8(i+7)

⊕ e8(i+7). (21)

Now, when the RHS of (21) equals zero (i.e., E17 occurs) we get

O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = 0.

This completes the proof of Theorem 1. �

4 Computation of the Bias

In this section, we quantify the bias in the outputs of TPy6 (and hence Py6)
induced by the fortuitous events similar to the one described in Sect. 3. Now
it is important to note that there may be more than one set of 17 conditions
possible, where each of them results in O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = 0
(let us assume that there are n such sets). In Theorem 1, we listed one such set.
Our experiments suggest that these n sets are mutually independent, however,
a formal proof of that is nontrivial.

Each of the events E1 to E5 occurs with approximate probability 1
32 and each

of the events E6 to E16 occurs with probability which is approximately 1
64 . Let

p denote the probability that condition 17 is satisfied. Let F denote the event⋂16
j=1 Ej . Therefore,

P [F] = (
1
32

)5 · (1
64

)11.

We see that there are n F -like events (i.e., the intersection of 16 conditions). Let
Fn denote the union of these n events. Since, each event occurs with approxi-
mately the same probability,

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers 135

P [Fn] ≈ n · P [F]

≈ n · (1
32

)5 · (1
64

)11

= n · 1
291

.

From Table 1, we get the maximum number of ways that terms of a particu-
lar column can be pairwise equated and hence the upper bound on n can be
calculated to be 2 · 2 · 945 = 3780, that is n < 3780.

4.1 Formulating the Bias

Now, we establish a formula to compute P [O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7) = 0],
under the assumption of a perfectly random key/IV setup and the uniformity
of bits when Fn does not occur.Our experiments suggest that it is infeasible to
find a set of conditions such that the overall bias (computed on the basis of the
aforementioned assumption of randomness in the event that Fn does not occur)
is canceled or reduced in magnitude. Therefore, this assumption is reasonable.
Let T denote O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7). Then using Bayes’ rule we get

P [T = 0] = P [T = 0|Fn ∩ E17] · P [Fn ∩ E17] + P [T = 0|F c
n ∪ Ec

17] · P [F c
n ∪ Ec

17]
= P [T = 0|Fn ∩ E17] · P [Fn ∩ E17] + P [T = 0|F c

n ∩ E17] · P [F c
n ∩ E17]

+ P [T = 0|Fn ∩ Ec
17] · P [Fn ∩ Ec

17] + P [T = 0|F c
n ∩ Ec

17] · P [F c
n ∩ Ec

17]

= 1 · (n · p · 1
291

) +
1
2
· (1 − n · 1

291
) · p + 0 · P [Fn ∩ Ec

17]

+
1
2
· (1 − n · 1

291
) · (1 − p)

=
1
2

+ n · (2p − 1) · 1
292

. (22)

Hence, we see that the distribution of the outputs (O1(i), O3(i+7), O7(i+7), O8(i+7))
is biased. The bias is equal to n · (2p−1) · 1

292 . In the following section, we provide
formulas to compute p, i.e., the probability that E17 occurs; or more generally,
the probability that the 17th condition of each of the n F -like events occurs, i.e.,
P [d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7) ⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕ c8(i+7) ⊕
e8(i+7)] = 0.

4.2 Biases in the Carry Terms

In this section, we provide formulas to calculate the bias in the carry terms. The
carry terms c and e are generated in expressions of the form (S ⊕ X) + Z. We
now proceed to calculate P [cl(i) = 0] assuming that S, X and Z are uniformly
distributed and independent. Under this assumption, P [Si = 0] = P [Xi = 0] =
P [Zi = 0] = 1

2 , that is, the probability that the carry bit at position i equals zero
depends only on i. Stated otherwise, P [c(i) = 0] = P [e(i) = 0]. Let P [c(i) = 0]
be denoted by pi. Since there is no carry on the lsb, p0 = 1.

136 G. Sekar, S. Paul, and B. Preneel

1 0 1 0 1 0 10

0 0

00

1 1 1 1 1 1

111111

0

0 0

0

0 0 0 00

011111

1

1111 0 0 0 0

0+ 0 +

10
1 + 1 + 1 = (3) = (0 1 1)

S = 85

X= 123

Z = 245

g

f

Carries

SUM = 197

(modulo 256)

Fig. 2. An example showing how the carries are generated when three 8-bit variables
S = 85, X = 123 and Z = 245 are added

Using Bayes’ rule we get

pi =
pi−1

2
+

1
4
.

Details of the calculation are provided in the full version [12]. Solving this re-
cursion, given p0 = 1, we get

pi =
1
2

+
1

2i+1
. (23)

Now, the carry terms f and g are generated in expressions of the form S+X−Z.
This can be rewritten as S+X+Zc+1 since the additions in these two expressions
are modulo 232. The presence of two carries in S +X +Z is demonstrated using
the Figure 2. The carries generated in S + X + Zc + 1 can be thought of as
carries generated in S +X +A where A = Zc and the carries on the lsb f(0) = 1,
g(0) = 0. Let qi denote P [f(i) = 0] and ri denote P [g(i) = 0]. Hence, q0 = 0,
r0 = 1 and r1 = 1. Now we have Table 3.

From Table 3, using Bayes’ rule we get

qi =
1
2

+
5 · qi−1 · ri−1

8
− qi−1

4
− ri−1

4
, (24)

ri+1 =
1
2
− qi−1 · ri−1

4
+

3 · qi−1

8
+

3 · ri−1

8
. (25)

Using the initial conditions, q0 = 0, r0 = 1 and r1 = 1, qi and ri are computed
recursively. Since dm(i) denotes fm(i) ⊕ gm(i) for any m > 0,

1. P [d7(i−7) = 0] = P [d8(i−7) = 0] = qi−7 mod 32 · ri−7 mod 32

+ (1 − qi−7 mod 32) · (1 − ri−7 mod 32),
2. P [c1(i) = 0] = 1

2 + 1
2i+1 ,

3. P [d3(i) = 0] = qi · ri + (1 − qi) · (1 − ri),

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers 137

Table 3. Truth table for computing qi and ri+1 using qi−1 and ri−1 (NR=Not Re-
quired)

f(i−1) g(i−1) S(i−1) X(i−1) Z(i−1) f(i) g(i+1) Probability

0 0 0 0 0 0 0
qi−1·ri−1

8

0 0 0 0 1 0 0
qi−1·ri−1

8

0 0 0 1 0 0 0
qi−1·ri−1

8

0 0 0 1 1 1 0 NR

0 0 1 0 0 0 0
qi−1·ri−1

8

0 0 1 0 1 1 0 NR

0 0 1 1 0 1 0 NR

0 0 1 1 1 0 0
qi−1·ri−1

8

0 1 0 0 0 0 0
qi−1·(1−ri−1)

8

0 1 0 0 1 1 0 NR

0 1 0 1 0 1 0 NR

0 1 0 1 1 1 0 NR

0 1 1 0 0 1 0 NR

0 1 1 0 1 1 0 NR

0 1 1 1 0 1 0 NR

0 1 1 1 1 0 1
qi−1·(1−ri−1)

8

1 0 0 0 0 0 0
(1−qi−1)·ri−1

8

1 0 0 0 1 1 0 NR

1 0 0 1 0 1 0 NR

1 0 0 1 1 1 0 NR

1 0 1 0 0 1 0 NR

1 0 1 0 1 1 0 NR

1 0 1 1 0 1 0 NR

1 0 1 1 1 0 1
(1−qi−1)·ri−1

8

1 1 0 0 0 1 0 NR

1 1 0 0 1 1 0 NR

1 1 0 1 0 1 0 NR

1 1 0 1 1 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 0 0 1 0 NR

1 1 1 0 1 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 1 0 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 1 1 0 1
(1−qi−1)·(1−ri−1)

8

4. P [d1(i+7) = 0] = qi+7 mod 32 · ri+7 mod 32

+ (1 − qi+7 mod 32) · (1 − ri+7 mod 32),
5. P [c3(i+7) = 0] = P [c7(i+7) = 0] = P [e7(i+7) = 0] = P [c8(i+7) = 0]

= P [e8(i+7) = 0] = 1
2 + 1

2(i+7 mod 32)+1 .

Using the above formulas, the value of p can be computed for any given i.
Running simulation, we find that the maximum bias in the chosen outputs occurs
when i = 25 which corresponds to p = 0.5 − 2−34.2. Hence, (22) gives us

138 G. Sekar, S. Paul, and B. Preneel

P [T = 0] =
1
2
− n

2125.2

⇒ P [T = 1] =
1
2

+
n

2125.2
,

when i = 25. Substituting n = 3780 in the above equation, we get:

P [T = 1] =
1
2

+
1

2113.3
. (26)

This is an upper bound on the probability that the outputs (O1(i), O3(i+7),
O7(i+7), O8(i+7)) of TPy6 (and hence Py6) are biased. From Sect. 3, we found
that n ≥ 1. From the previous discussion, we see that n < 3780. Hence, 1 ≤ n <
3780. If n = 1, then P [T = 1] = 1

2 + 1
2125.2 . Thus,

1
2
(1 +

1
2124.2

) ≤ P [T = 1] <
1
2
(1 +

1
2112.3

). (27)

5 The Distinguisher

A distinguisher is an algorithm which distinguishes a given stream of bits from
a stream of bits generated by a perfect PRBG. The distinguisher is constructed
by collecting sufficiently many outputs (O1(25), O3(0), O7(0), O8(0)) generated
by as many key/IVs. To compute the minimum number of samples required to
establish the distinguisher, we use the following corollary of a theorem from [5].

Corollary 1. If an event e occurs in a distribution X with probability p and
in Y with probability p(1 + q) then, if p = 1

2 , O(1
q2) samples are required to

distinguish X from Y with non-negligible probability of success.

In the present case, e is the event O1(25) ⊕ O3(0) ⊕ O7(0) ⊕ O8(0) = 0, X is the
distribution of the outputs O1, O3, O7 and O8 produced by a perfectly random
keystream generator and Y is the distribution of the outputs produced by TPy6.
From (27), p = 1

2 and the highest value of q = 1
2112.3 . Hence O(1

(2−112.3)2
) =

O(2224.6) output samples are needed to construct the best distinguisher with a
non-negligible probability of success.

6 A Family of Distinguishers

In Sect. 3 we found that the outputs at rounds 1, 3, 7 and 8 are biased allowing
us to build a distinguisher. It is found that there exist plenty of 4-tuples of biased
outputs. The generalization is presented in the following theorem.

Theorem 2. The distribution of the outputs (Or(i), Or+2(i+7), Ot(i+7), Ou(i+7))
of the TPy6 are biased for many suitably chosen (r, t, u)’s where r > 0; t, u ≥ 5;
t �∈ {r, r + 2, u}; u �∈ {r, r + 2, t}.

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers 139

We omit the proof as it is similar to the proof furnished for Theorem 1. This
allows us to construct a family of distinguishers for the cipher TPy6. It seems
possible to combine these huge number of distinguishers in order to construct
one single efficient distinguisher; however, any concrete mathematical model to
combine them is still an interesting open problem. Another major implication of
the above generalization theorem is the fact that the TPy6 outputs will remain
always biased no matter how many initial outputwords are discarded from the
keystream.

7 Two New Ciphers: The TPy6-A and the TPy6-B

The Py-family of stream ciphers has been subject to extensive analysis ever since
the Py and the Py6 were proposed in April 2005. The impressive speeds of the
ciphers in software, particularly of the Py6 and the TPy6, have motivated us to
modify the TPy6 to rule out all the attacks described in the previous sections of
the paper. Firstly, many attacks on the Py, in particular, [4], [6], [7] and [14] can
be easily translated to attacks on the Py6. However, due to smaller internal state
of the TPy6, the attack described in [9] does not apply to the TPy6. Secondly, the
speed of execution of Py6 on Pentium-III is about 2.82 cycles/byte which is very
fast. These observations make the TPy6 and the Py6 more favorable to be used
as fast stream ciphers than the Py. The TPy6 is resistant to the attacks described
in [6], [14]. In order to generate a fast and secure stream cipher, we redesign the
TPy6 where the variable rotation of a 32-bit term s in the round function is
replaced by a constant, non-zero rotation term. The resultant cipher is named
the TPy6-A. It is shown that this tweak clearly reduces one addition operation in
each round (thereby, the performance is improved) and makes the cipher secure
against all the existing attacks on the Py6 and the TPy6. A relatively slower
version, where one outputword is removed from each round of the TPy6, is also

Algorithm 2. Round functions of the TPy6-A and the TPy6-B
Require: Y [−3, ..., 64], P [0, ..., 63], a 32-bit variable s
Ensure: 64-bit random (TPy6-A) or 32-bit random (TPy6-B) output

/*Update and rotate P*/
1. swap (P [0], P [Y [43]&63]);
2. rotate (P);

/* Update s*/
3. s+ = Y [P [18]] − Y [P [57]];
4. s = ROTL32(s, 19); /*Tweak: variable rotation in the TPy6 replaced by a con-

stant non-zero rotation*/
/* Output 8 bytes (least significant byte first)*/

5. output ((ROTL32(s, 25) ⊕ Y [64]) + Y [P [8]]);/*this step is removed for TPy6-B*/
6. output ((s ⊕Y [−1]) + Y [P [21]]);

/* Update and rotate Y */
7. Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [48]];
8. rotate(Y);

140 G. Sekar, S. Paul, and B. Preneel

proposed. The speeds of execution of the TPy6-A and the TPy6-B on Pentium-
III are 2.65 cycles/byte and 4.4 cycles/byte. Our security analysis conjectures
that the TPy6-A and TPy6-B are immune to all attacks better than brute force.
Algorithm 2 describes the PRBGs of the TPy6-A and the TPy6-B. Note that
the key/IV setup algorithms of the ciphers are identical with the key/IV setup
of the TPy6.

7.1 Security Analysis

Due to limit on space, we omit the security analysis of the ciphers, for which,
the reader is kindly referred to the full version of this paper [12].

8 Conclusions and Open Problems

The first contribution of the paper is the development of a family of distinguishers
from the outputs at rounds r, r+2, t and u of the cipher TPy6 (and Py6), where
r > 0; t, u ≥ 5; t �∈ {r, r + 2, u}; u �∈ {r, r + 2, t}. The best distinguisher works
with data complexity 2224.6. It is reasonable to assume that these weak states
can be combined to mount a more efficient attack on TPy; however, methods to
combine many distinguishers into a single yet more efficient one is still an open
problem. TPy6 and Py6. Exploiting the weaknesses in the key setup algorithm
of the TPy6, a distinguisher with data complexity 2172.8 is built on the cipher.
The second contribution is a proposal of two new, extremely fast stream ciphers
TPy6-A and TPy6-B, which rule out all the existing attacks on the TPy6 and
are conjectured to be immune to all attacks better than brute force.

References

1. Biham, E., Seberry, J.: Tweaking the IV Setup of the Py Family of Ciphers – The
Ciphers Tpy, TPypy, and TPy6, January 25 (2007),
http://www.cs.technion.ac.il/biham/

2. Biham, E., Seberry, J.: Py (Roo): A Fast and Secure Stream Cipher using Rolling
Arrays. ecrypt submission (2005)

3. Biham, E., Seberry, J.: Pypy (Roopy): Another Version of Py. ecrypt submission
(2006)

4. Crowley, P.: Improved Cryptanalysis of Py. In: Workshop Record of SASC 2006 -
Stream Ciphers Revisited, ECRYPT Network of Excellence in Cryptology, Leuven,
Belgium, pp. 52–60 (February 2006)

5. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

6. Isobe, T., Ohigashi, T., Kuwakado, H., Morii, M.: How to Break Py and Pypy
by a Chosen-IV Attack. eSTREAM, ECRYPT Stream Cipher Project, Report
(2006)/060

7. Paul, S., Preneel, B., Sekar, G.: Distinguishing Attacks on the Stream Cipher Py. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 405–421. Springer, Heidelberg
(2006)

http://www.cs.technion.ac.il/biham/

New Attacks on the Stream Cipher TPy6 and Design of New Ciphers 141

8. Paul, S., Preneel, B.: On the (In)security of Stream Ciphers Based on Arrays and
Modular Addition. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 69–83. Springer, Heidelberg (2006)

9. Sekar, G., Paul, S., Preneel, B.: Weaknesses in the Pseudorandom Bit Generation
Algorithms of the Stream Ciphers TPypy and TPy. Cryptology ePrint Archive,
Report 2007/ 075 (2007), http://eprint.iacr.org/2007/075.pdf

10. Sekar, G., Paul, S., Preneel, B.: New Weaknesses in the Keystream Generation
Algorithms of the Stream Ciphers TPy and Py. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 249–262. Springer,
Heidelberg (2007)

11. Sekar, G., Paul, S., Preneel, B.: Related-key Attacks on the Py-family of Ciphers
and an Approach to Repair the Weaknesses. In: Srinathan, K., Rangan, C.P., Yung,
M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 58–72. Springer, Heidelberg
(2007)

12. Sekar, G., Paul, S., Preneel, B.: New Attacks on the Stream Cipher TPy6 and
Design of New Ciphers the TPy6-A and the TPy6-B, Cryptology ePrint Archive,
Report 2007/436, http://eprint.iacr.org/2007/436.pdf

13. Tsunoo, Y., Saito, T., Kawabata, T., Nakashima, H.: Distinguishing Attack against
TPypy. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876.
Springer, Heidelberg (2007),
http://dblp.uni-trier.de/rec/bibtex/conf/sacrypt/2007

14. Wu, H., Preneel, B.: Differential Cryptanalysis of the Stream Ciphers Py, Py6
and Pypy. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 276–290.
Springer, Heidelberg (2007)

http://eprint.iacr.org/2007/075.pdf
http://eprint.iacr.org/2007/436.pdf
http://dblp.uni-trier.de/rec/bibtex/conf/sacrypt/2007

Cryptanalysis of Achterbahn-128/80 with a New

Keystream Limitation

Maŕıa Naya-Plasencia�

Projet CODES, INRIA Paris-Rocquencourt, France
Maria.Naya Plasencia@inria.fr

Abstract. This paper presents two key-recovery attacks against the
modification of Achterbahn-128/80 proposed by the authors at SASC
2007 due to the previous attacks. The 80-bit variant, Achterbahn-80,
was limited to produce at most 252 bits of keystream with the same pair
of key and IV, while Achterbahn-128 was limited to 256 bits. The attack
against Achterbahn-80 has complexity 264.85 and needs fewer than 252

bits of keystream, and the one against Achterbahn-128 has complexity
2104 and needs fewer than 256 keystream bits. These attacks are based
on the previous ones. The attack against Achterbahn-80 uses a new idea
which allows us to reduce the required keystream length.

Keywords: eSTREAM, stream cipher, Achterbahn, cryptanalysis, cor-
relation attack, linear approximation, parity check, key-recovery attack.

1 Introduction

The invention of public-key cryptography in the mid 1970’s was a great progress.
However, symmetric ciphers are still widely used because they are the only ones
that can achieve high-speed or low-cost encryption. Today, we find symmetric
ciphers in GSM mobile phones, in credit cards... Stream ciphers then form a
subgroup of symmetric ciphers. In synchronous additive stream ciphers, the ci-
phertext is obtained by combining with a bitwise XOR the message with a secret
binary sequence of the same length. This secret sequence is usually a pseudo-
random one, that is generated with the help of a secret key by a pseudo-random
generator, and it is called the keystream. Such pseudo-random generators are ini-
tialized by the secret key and they build in a deterministic way a long sequence
that we cannot distinguish from a random one if we do not know the secret
key. The eSTREAM project is a project launched by the European network
ECRYPT about the conception of new stream ciphers. About thirty algorithms
have been proposed in April 2005. Actually, in phase 3 of the project, 16 are

� This work was supported in part by the European Commission through the IST
Programme under Contract IST-2002-507932 ECRYPT and by the ANR-06-SETI-
013 project RAPIDE. The information in this document reflects only the author’s
views, is provided as is and no warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability.

S. Lucks, A.-R. Sadeghi, and C. Wolf (Eds.): WEWoRC 2007, LNCS 4945, pp. 142–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation 143

still being evaluated. Achterbahn [3, 5] is a stream cipher proposal submitted
to the eSTREAM project that passed to phase 2 but not to phase 3 of eS-
TREAM. After the cryptanalysis of the first two versions [8, 10], it moved on
to a new one called Achterbahn-128/80 [4] published in June 2006. Achterbahn-
128/80 corresponds to two keystream generators with key sizes of 128 bits and
80 bits, respectively. Their maximal keystream length was limited to 263, but,
in order to avoid the attacks presented in [9, 11], the maximal keystream length
was re-limited to produce at most 252 bits of keystream with the same pair of key
and IV for Achterbahn-80, while Achterbahn-128 was limited to 256 bits. This
paper presents two key-recovery attacks against this modification to Achter-
bahn-128/80, proposed by the authors at SASC 2007 [6]. The attack against
Achterbahn-80 has complexity 264.85 and needs fewer than 252 bits of keystream,
and the one against Achterbahn-128 has complexity 2104 and needs fewer than
256 keystream bits. These attacks are based on the previous ones. The attack
against Achterbahn-80 uses a new idea which allows us to reduce the required
keystream length.

The paper is organized as follows. Section 2 presents the main specifications
of Achterbahn-128/80. Section 3 then describes a distinguishing attack against
Achterbahn-80. Section 4 presents a distinguishing attack against Achterbahn-
128. Section 5 describes how this previous distinguishing attacks can be trans-
formed into key-recovery attacks.

2 Achterbahn-128/80

Achterbahn-128 and Achterbahn-80 are composed of a number of feedback shift
registers whose outputs are taken as inputs of a Boolean combining function and
where the keystream is the output of this function at each instant t.

FSR 1

FSR 2

FSR n

�

�

�

�
�

�
�

�
��

	
	

	
	

	
		

�
...

f keystream

2.1 Main Specifications of Achterbahn-128

Achterbahn-128 consistis of 13 binary nonlinear feedback shift registers (NLF-
SRs) denoted by R0, R1, . . . , R12. The length of register i is Li = 21 + i for
i = 0, 1, . . . , 12. These NLFSRs are primitive in the sense that their periods Ti

are equal to 2Li − 1. Each sequence which is used as an input to the Boolean

144 M. Naya-Plasencia

combining function is not the output sequence of the NLFSR directly, but a
shifted version of itself. The shift amount depends on the register number, but it
is fixed for each register. In the following, xi = (xi(t))t≥0 for 0 ≤ i ≤ 12 denotes
the shifted version of the output of the register i at time t. The output of the
keystream generator at time t, denoted by S(t), is the one of the Boolean com-
bining function F with the inputs corresponding to the output sequences of the
NLFSRs correctly shifted, i.e. S(t) = F (x0(t), . . . , x12(t)). The algebraic normal
form of the 13-variable combining function F is given in [4]. Its main crypto-
graphic properties are: balancedness, algebraic degree 4, correlation immunity
order 8, nonlinearity 3584, algebraic immunity 4.

2.2 Main Specifications of Achterbahn-80

Achterbahn-80 consists of 11 registers, which are the same ones as in the above
case, except for the first and the last ones. The Boolean combining function, G,
is a sub-function of F :

G(x1, . . . , x11) = F (0, x1, . . . , x11, 0).

Its main cryptographic properties are: balancedness, algebraic degree 4, correla-
tion immunity order 6, nonlinearity 896, algebraic immunity 4. As we can see,
Achterbahn-128 contains Achterbahn-80 as a substructure.

2.3 The Key-Loading Algorithm

The key-loading algorithm uses the key K of 128/80 bits and an initial value
IV of 128/80 bits. The method for initializing the registers is the following one:
first of all, all registers are filled with the bits of K||IV . After that, Register i is
clocked a−Li times where a is the number of bits of K||IV , and the remaining
bits of K||IV are added to the feedback bit. Then, each register outputs one bit.
Those bits are taken as inputs of the Boolean combining function, which outputs
a new bit. This bit is now added to the feedbacks for 32 additional clockings.
Then we overwrite the last cell of each register with a 1, in order to avoid the
all zero state.

This algorithm has been modified in relation to the initial versions of Achter-
bahn. The aim of this modification is to prevent the attacker from recovering
the key K from the knowledge of the initial states of some registers.

2.4 Keystream Maximal Length

In the first version of Achterbahn-128/80, the maximal keystream length was
limited to 263. As this version was attacked [9, 11], the authors proposed a new
limitation of the keystream length [6], which was 252 for Achterbahn-80 and
256 for Achterbahn-128. We present here two attacks against both generators,
which are based on the previous ones. The attack against the 80-bit variant,
Achterbahn-80, has complexity 264.85 and needs fewer than 252 keystream bits.
The attack against Achterbahn-128 requires 2104 operations and fewer than 256

keystream bits.

Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation 145

3 Distinguishing Attack against Achterbahn-80

Now, we describe a new attack against Achterbahn-80 with a complexity of 264.85

where a linear approximation of the output function is considered. The attack is
a distinguishing attack but it also allows to recover the initial states of certain
constituent registers.

This attack is very similar to the previous attack against Achterbahn-80 pre-
sented in [11]. It relies on a biased parity-check relation between the keystream
bits which holds with probability

p =
1
2
(1 + η) with |η| � 1,

where η is the bias of the relation. The attack exploits an s-variable linear ap-
proximation � of the combining function G. For now on we denote by Ti,j the
least common multiple of the periods of Registers i and j. We build the parity-
check equations, as the ones introduced in [10] and used in [11] derived from �:

�(t) =
s∑

j=1

xij (t)

at 2m different instants (t+τ), where τ varies in the set of the linear combinations
with 0 − 1 coefficients of Ti1,i2 , Ti3,i4 , . . . , Ti2m−1,i2m . In the following, this set is
denoted by 〈Ti1,i2 , . . . , Ti2m−1,i2m〉, i.e.,

I = 〈Ti1,i2 , . . . , Ti2m−1,i2m〉 =

⎧⎨⎩
m∑

j=1

cjTi2j−1,i2j , c1, . . . , cm ∈ {0, 1}

⎫⎬⎭ .

We know that: ∑
τ∈I

xi1 (t + τ) + . . . + xi2m (t + τ) = 0,

this leads to a parity-check sequence �� defined by:

��(t) =
∑
τ∈I

�(t + τ) =
∑
τ∈I

(
xi2m+1 (t + τ) + . . . + xis(t + τ)

)
.

Note that each term with index i2j−1 is associated to the corresponding term
i2j to build the parity check, because it enables us to eliminate the influence of
2m registers in a parity-check with 2m terms only.

Approximation of the combining function. Following this general principle, our
attack exploits the following linear approximation of the combining function G:

�(x1, . . . , x11) = x1 + x3 + x4 + x5 + x6 + x7 + x10.

It is worth noticing that, since the combining function G is 6-resilient, any
approximation of G involves at least 7 input variables. Moreover, the highest bias
corresponding to an approximation of G by a 7-variable function is achieved by
a function of degree one as proved in [2].

For �(t) = x1(t)+ x3(t)+ x4(t)+ x5(t)+ x6(t) + x7(t) + x10(t), the keystream
(S(t))t≥0 satisfies Pr[S(t) = �(t)] = 1

2 (1 − 2−3).

146 M. Naya-Plasencia

Parity-checks. Let us build a parity-check as follows:

��(t) = �(t) + �(t + T3,7) + �(t + T4,5) + �(t + T3,7 + T4,5).

Therefore, this corresponds to s = 7 and m = 2 in the general description of
the attack. The terms containing the sequences x3, x4, x5, x7 vanish in ��(t), so
��(t) depends exclusively on the sequences x1, x6 and x10. Thus, we have

��(t) = σ1(t) + σ6(t) + σ10(t),

where

σi(t) = xi(t) + xi(t + T3,7) + xi(t + T4,5) + xi(t + T3,7 + T4,5).

The period T4,5 is 251 and the period T3,7 is smaller than 249 as T3 and T7 have
common factors, so to build those parity checks we need less than the maximal
keystream length allowed.

Adding four times the approximation has the effect of multiplying the bias
four times, so

σ(t) = S(t) + S(t + T3,7) + S(t + T4,5) + S(t + T3,7 + T4,5)

where (S(t))t≥0 is the keystream satisfies

Pr[σ(t) = σ1(t) + σ6(t) + σ10(t)] =
1
2
(1 + η)

with η = 2−4×3.
We now decimate σ(t) by the period of Register 1, which is involved in the

parity-check, so we create like this a new parity-check:

σ′(t) = σ(t(222 − 1)).

Now, we have that σ′(t) is an approximation of (σ6(t(222 −1))+σ10(t(222 −1)))
with biais +η or −η. Then, if we did as in the previous attack in [11], the one
before the new keystream limitation, where we performed an exhaustive search
for the initial states of Registers 6 and 10, we would need

23×4×2 × 2 × (58 − 2) × ln(2) = 230.29

parity-checks σ′(t) to detect this bias. As we are decimating by the period of the
Register 1, we would need 230.29 × 222 = 252.29 keystream bits to perform the
attack, and it is over the limitation, so we cannot do that.

In the previous attack we took only the first bit of the keystream and dec-
imated by the period of the first register 230.29 times. What we do now is to
consider the first four consecutive shifts of the keystream and for each one, we
obtain a sequence of 230.29

4 = 228.29 bits by decimating it by the period of the
first register 228.29 times. Thus, we consider the first 250.29 bits of the keystream
and we compute the 4 × 228.29 = 230.29 parity checks:

S (t(222 − 1) + i) + S(t(222 − 1) + i + T3,7) + S(t(222 − 1) + i + T4,5) +
S (t(222 − 1) + i + T3,7 + T4,5)

Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation 147

for i ∈ {0, . . . , 3} and 0 ≤ t < 228.29. This way, the required number of keystream
bits is reduced to 228.29×222 = 250.29 and respects the maximal keystream length
permitted.

Thus, we perform an exhaustive search over Registers 6 and 10, adapting to
our new situation the algorithm introduced in [11]. We will have to compute, for
each one of the previously mentioned sequences, so for each i ∈ {0, 1, 2, 3}, the
following sum:

S =
228.29−1∑

t′=0

σ(t′T1 + i) ⊕ ��(t′T1 + i)

Using the decomposition

228.29 = 2T6 + T ′ with T ′ = 225.83,

we obtain

S =
228.29−1∑

t′=0

σ(t′T1 + i) ⊕ ��(t′T1 + i)

=
T ′∑

k=0

2∑
t=0

σ((T6t + k)T1 + i) ⊕ ��((T6t + k)T1 + i)

+
T6−1∑

k=T ′+1

1∑
t=0

σ((T6t + k)T1 + i) ⊕ ��((T6t + k)T1 + i)

=
T ′∑

k=0

2∑
t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i) ⊕ σ6((T6t + k)T1 + i)

+
T6−1∑

k=T ′+1

1∑
t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i) ⊕ σ6((T6t + k)T1 + i)

=
T ′∑

k=0

[
(σ6(kT1 + i) ⊕ 1)

(
2∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)

+ σ6(kT1 + i)

(
3 −

2∑
t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)]

+
T6−1∑
k=T ′

[
(σ6(kT1 + i) ⊕ 1)

(
1∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)

+ σ6(kT1 + i)

(
2 −

1∑
t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)]
,

where σ(t), σ6(t) and σ10(t) are the parity checks computed at the instant t with
the keystream, the sequence generated by Register 6 and the one generated by

148 M. Naya-Plasencia

Register 10 respectively. Note that we have to split the sum at T ′, because for
k ≤ T ′ we have to sum the parity checks at 3 instants but for k > T ′ we only
have to sum them at 2 instants, since T ′ + 2 × T6 = 228.29. The sum can be
written in the previous way since σ6((T6t + k)T1 + i) is constant for fixed values
of k and i. The attack then consists of the following steps:

– We choose an initial state for Register 6, e.g. the all-one initial state. We
compute and save a binary vector V6 of length T6, V6[k] = σ6(k), where the
sequence with whom we are computing σ6(k) is generated from the chosen
initial state. The complexity of this state is T6 × 22 operations.

– For each possible initial state of Register 10 (so 231−1 possibilities):
• we compute and save four vectors V10,i, where i ∈ {0, 1, 2, 3}, each one

composed of T6 integers of 2 bits.

V10,i[k] =
q∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i),

where q = 2 if k ≤ T ′ and q = 1 if k > T ′. The time complexity of this
step is:

22
(
3 × 225.83 + 2(227 − 1 − 225.83)

)
(7 + 2) = 22 × 228.29 × 23.1 = 233.49

for each possible initial state of Register 10, where 22 is the number of
vectors that we are computing, 7 corresponds to the number of operations
required for computing each (σ(t) + σ10(t)) and 228.29 × 2 is the cost of
summing up 228.29 integers of 2 bits.

• For each possible p from 0 to T6 − 1:
∗ we define V6,i of length T6, ∀i ∈ {0, 1, 2, 3}: V6,i[k] = V6[k + p + i

mod T6].
Actually, (V6,i[k])k<T6

corresponds to (σ6(k))k<T6
when the initial

state of Register 6 corresponds to the internal state obtained after
clocking (i + p) times Register 6 from the all-one initial state.

∗ With the eight vectors that we have obtained

(V10,0, . . . , V10,3, V6,0, . . . , V6,3),

we compute for each i ∈ {0, 1, 2, 3}:

Wi =
T ′∑

k=0

[(V6,i[k] ⊕ 1)V10,i[k] + V6,i[k] (3 − V10,i[k])] +

T6−1∑
k=T ′+1

[(V6,i[k] ⊕ 1)V10,i[k] + V6,i[k] (2 − V10,i[k])] .

When we do this with the correct initial states of Registers 6 and
10, we will find an important bias for the four Wi.

Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation 149

The complexity of this point would be, for each p 22 × T6 × 8 = 232, so
232 × 227 = 259. The total number of memory accesses for each possible
initial state of Register 10 is

4 × T6 + 4 × 2 × T6 = 230.3,

where the first term corresponds to the storage of V10,i and the second
one corresponds to the accesses to V6,i and V10,i to compute Wi. But we
can speed up the process by defining a new vector,

V ′
10,j [k] = V10,j [k] + ct

where ct = 0 if k ≤ T ′ and ct = 0.5 if k > T ′.
Then, for each i we are going to compute:

T6−1∑
k′=0

(−1)V6,i[k+p]

(
V ′

10,i[k] − 3
2

)
+ (T ′ × 1.5 + (T6 − T ′) × 1).

The issue is now to find the p that maximizes this sum, this is the same
as computing the maximum of the crosscorrelation of two sequences of
length T6. We can do that efficiently using a fast Fourier transform as
explained in [1, pages 306-312]. The final complexity for computing this
sum will be in T6 log2(T6).

Thus, the total complexity of this state will be 4T6 log2(T6) ≈ 234.

We now compute the false alarm and the non detection probabilities. First of
all we consider as the bias threshold S = 0.55 × η = 2−12.86. Let n be the
length of the sequences used and i be the number of sequences. The false alarm
probability for i sequences is the probability that, while trying wrong initial
states of Registers 6 and 10 (which would generate random sequences) we find a
bias higher than 2−12.86 or lower than −2−12.86 for all the i Wj . Using Chernoff’s
bound on the tail of the binomial distribution we get:

Pfa4(S) = (Pfa1(S))i ≤ (2e−2S2n)i,

where Pfa1 is the false alarm probability for one sequence. In our case n = 228.29

and i = 4, so Pfa4 = 2−64.29. The number of initial states that will pass the
test without being the correct one will be (256 − 1) × 2−64.29 = 2−8.29. The
non detection probability is the probability that while trying the correct initial
states of Registers 6 and 10 we find a bias between −2−12.86 and 2−12.86. For
one sequence it will be:

Pnd1(S) ≤ 2e−2(η−S)2n,

So the probability of non detection for i sequences, that is, the probability of
not detecting the threshold at one of the i Wj will be:

Pnd4(S) = 1 − (1 − Pnd1(S))i.

150 M. Naya-Plasencia

It is used only for the correct initial states. As we can see, it increases with i,
the number of used sequences. In our case, i = 4, leading to Pnd4(S) = 2−9.43.

The time complexity is, finally

2L10−1 ×
[
233.69 + 4T6 log2 4T6

]
+ T6 × 22 = 264.85 steps.

The required number of keystream bits is

228.29 × T1 + T3T7 + T4T5 = 250.29 + 248.1 + 251 < 252.

The memory used is
230 + 229 = 230.58,

where 230 is the size of the four V10,i vectors and 229 of the V6,i vectors.

4 Distinguishing Attack against Achterbahn-128

Now, we present a distinguishing attack against the 128-bit version of Achter-
bahn which also recovers the initial states of two registers.

We consider the following approximation of the combining function F :

�(x0, . . . , x12) = x0 + x1 + x2 + x3 + x4 + x7 + x8 + x9 + x10.

Then, for �(t) = x0(t)+x1(t)+x2(t)+x3(t)+x4(t)+x7(t)+x8(t)+x9(t)+x10(t),
we have Pr[S(t) = �(t)] = 1

2 (1 + 2−3).

Parity-checks. If we build a parity check as follows:

���(t) =
∑

τ∈〈T3,8,T1,10,T2,9〉
�(t + τ),

the terms containing the sequences x1, x2, x3, x8, x9, x10 will disappear from
���(t), so ���(t) depends exclusively on the sequences x0, x4 and x7:

���(t) =
∑

τ∈〈T3,8,T1,10,T2,9〉
x0(t + τ) + x4(t + τ) + x7(t + τ) = σ0(t) + σ4(t) +σ7(t),

where σ0(t), σ4(t) and σ7(t) are the parity-checks computed on the sequences
generated by Registers 0, 4 and 7. Adding eight times the approximation has
the effect of multiplying the bias eight times, so the bias of

σ(t) =
∑

τ∈〈T3,8,T1,10,T2,9〉
S(t + τ),

Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation 151

where (S(t))t≥0 is the keystream, is 2−8×3. So:

Pr[σ(t) + σ0(t) + σ4(t) + σ7(t) = 1] =
1
2
(1 − ε8).

This means that we need 23×8×2 × 2× (74− 3)× ln(2) = 254.63 values of σ(t) +
σ0(t) + σ4(t) + σ7(t) to detect this bias, when we perform an exhaustive search
on Registers 0, 4 and 7.

We use the previously proposed algorithm for the attack of Achterbahn-128
for computing the sum σ(t) + σ0(t) + σ4(t) + σ7(t) over all values of t. This
algorithm has a lower complexity than an exhaustive search for the initial states
of the Registers 0, 4 and 7 simultaneously. We use it considering Register 0 and
Register 4 together.

The complexity is going to be, finally

2L0−1 × 2L4−1 ×
[
254.63 ×

(
24 + 24.7

)
+ T7 log T7

]
+ T7 × 23 = 2104 steps.

The required keystream length is:

254.63 + T1,10 + T2,9 + T3,8 = 254.63 + 253 + 253 + 253 < 256 bits.

The memory used is
232 + 228 = 232.08,

where 232 is the size of the V0−4 vector and 228 of the V7 vector.

5 Recovering the Key

As explained in the previous attacks [11] and introduced in [9], we can recover
the key with a variant of a meet-in-the-middle attack once we have found the
initial state of some registers. The time complexity of this part of the attack is
smaller than the one of the previously described distinguishing attack that we
need to get the initial states of several registers. So the complexity of the total
key-recovery attack is the same one as for the distinguishing attacks.

6 Conclusion

We have proposed an attack against Achterbahn-80 in 264.85 steps where fewer
than 252 bits are needed. That is 264.85 boolean operations, which makes it much
more efficient than a brute force attack. The memory needed for this attack is
230.58. An attack against Achterbahn-128 is also proposed in 2104 steps where
fewer than 256 bits of keystream are required. The memory needed is 232. After
that we can recover the key of Achterbahn-80 with a complexity of 240 in time
and 241 in memory (the time complexity is less than for the distinguishing part
of the attack). For Achterbahn-128 we can recover the key with a complexity
of 273 in time and 248 in memory. After those attacks, the authors proposed a
new keystream limitation for both Achterbahn-128/80 [7]. This new limitation
is 244. With this limitation the known attacks are not applicable.

152 M. Naya-Plasencia

References

1. Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison Wesley, Read-
ing (1985)

2. Canteaut, A., Trabbia, M.: Improved Fast Correlation Attacks Using Parity-Check
Equations of Weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

3. Gammel, B.M., Gottfert, R., Kniffler, O.: The Achterbahn stream cipher. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/002 (2005),
http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf

4. Gammel, B.M., Gottfert, R., Kniffler, O.: Achterbahn-128/80. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/001 (2006),
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn p2.pdf

5. Gammel, B.M., Gottfert, R., Kniffler, O.: Status of Achterbahn and tweaks. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/027 (2006),
http://www.ecrypt.eu.org/stream/papersdir/2006/027.pdf

6. Gammel, B.M., Gottfert, R., Kniffler, O.: Achterbahn-128/80: Design and analysis.
In: ECRYPT Network of Excellence - SASC Workshop Record, pp. 152–165 (2007)

7. Gammel, B.M., Gottfert, R.: On the frame length of Achterbahn-128/80. In: IEEE
Information Theory Workshop on Information Theory for Wireless Networks, pp.
91–95 (2007)

8. Hell, M., Johansson, T.: Cryptanalysis of Achterbahn-version 2. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 45–55. Springer, Heidelberg
(2007)

9. Hell, M., Johansson, T.: Cryptanalysis of Achterbahn-128/80. IET Information
Security 1(2) (2007)

10. Johansson, T., Meier, W., Muller, F.: Cryptanalysis of Achterbahn. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 1–14. Springer, Heidelberg (2006)

11. Naya-Plasencia, M.: Cryptanalysis of Achterbahn-128/80. In: Biryukov, A. (ed.)
FSE 2007. LNCS, vol. 4593, pp. 73–86. Springer, Heidelberg (2007)

http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/027.pdf

Author Index

Beiter, Michael 114
Benits Junior, Waldyr D. 13

Courtois, Nicolas T. 100

Dallot, Léonard 65
Debraize, Blandine 100

Galbraith, Steven D. 13
Güneysu, Tim 39

Hartung, Rupert J. 52
Hölbl, Marko 28

Imai, Hideki 1
Indesteege, Sebastiaan 90

Korsten, Anja 78

Naya-Plasencia, Maŕıa 142

Otsuka, Akira 1

Paar, Christof 39
Paul, Souradyuti 127
Preneel, Bart 90, 127

Rechberger, Christian 28

Schäge, Sven 39
Sekar, Gautham 127
Shigetomi, Rie 1

Welzer, Tatjana 28

Yoshida, Rei 1
Yoshizoe, Kazuki 1

	Title Page
	Preface
	Organization
	Table of Contents
	A Privacy Protection Scheme for a Scalable Control Method in Context-Dependent Services
	Introduction
	Examples
	Related Work
	Preliminaries
	Notation
	BN Method
	Randomized Response Technique

	ProposedSystem
	Architecture of Proposed Method
	Requirements
	Construction

	Discussion
	Requirements
	History Separation

	Conclusion
	References

	The GPS Identification Scheme Using Frobenius Expansions
	Introduction
	The Original GPS Scheme
	Koblitz Curves and Frobenius Expansions
	Arithmetic on τ-Adic Expansions

	GPS on Koblitz Curves with Fast Scalar Multiplication
	τ-GPS
	Security Analysis
	Discrete Logarithms
	Completeness
	Size of r – The Zero Knowledge Proof
	Size of the Challenge c

	Suggested Parameters
	Performance Analysis
	Conclusion
	References

	Searching for Messages Conforming to Arbitrary Sets of Conditions in SHA-256
	Introduction
	Review of SHA-256
	The Message Search
	The Data Structure for Storing Sufficient Conditions
	Sorting of Conditions
	The Search Algorithm
	Problems Encountered during Development of the Tool

	Performance
	Conclusion and Outlook
	References

	Efficient Hash Collision Search Strategies on Special-Purpose Hardware
	Introduction
	Hash Functions of the MD4-Family
	Attacks on MD4-Family Hash Functions
	Architecture Requirements
	Architecture Design
	Design Process
	Microprocessor Design
	Collision Search Unit

	Implementation
	Collision Search ASIC
	Performance Comparison
	Estimates for SHA-1

	Conclusion
	References
	Appendix: Instruction Set for μMD

	Cryptography Based on Quadratic Forms: Complexity Considerations
	Introduction
	Preliminaries
	Quadratic Forms
	The Transformation Problem
	Cryptographic Application

	Choice of the Base Ring
	Finite Fields
	The Rational Number Field

	Concentration in Dimensions 3, 4
	NP-Hardness
	Conclusion
	References

	Towards a Concrete Security Proof of Courtois, Finiasz and Sendrier Signature Scheme
	Introduction
	Signature Schemes
	Security Model
	Coding Theory Background
	Code-Based Signatures: Courtois, Finiasz and Sendrier Scheme
	Proving Security of \textsc{mCFS}
	Discussion

	Conclusion
	References

	Cryptanalysis of MOR and Discrete Logarithms in Inner Automorphism Groups
	Introduction
	The MOR Cryptosystem
	Reducing MOR on $GL(n,q)\times_\theta \mathcal{H}$
	The DLP in $Inn(GL(n, q))$
	Reduction of MOR on $GL(n,q)\times_\theta \mathcal{H}$

	Generic Security Analysis of MOR
	Conclusion
	References

	Preimages for Reduced-Round Tiger
	Introduction
	Description of Tiger
	Preimages for Three Rounds of Tiger
	Preimages for the Compression Function of Tiger-12
	Algorithm
	Extension to Tiger-13

	First and Second Preimages for Tiger-12
	Second Preimages for Tiger-12
	First Preimages for Tiger-12
	Extension to Tiger-13

	Conclusion
	References

	Specific S-Box Criteria in Algebraic Attacks on Block Ciphers with Several Known Plaintexts
	Introduction
	Preliminaries – Algebraic Attacks
	Writing the Equations
	Solving the Equations

	Computer Simulations
	Description of Our Toy Ciphers: ToyBlock, ToyBlockS and ToyBlockR
	First Simulations on ToyBlockS and ToyBlockR
	Analysis of the Simulations

	Guess-and-Determine and Chosen Plaintext Attacks
	Guessing Some Key Bits
	Chosen Plaintext Attacks

	Towards New Design Criteria for S-Boxes?
	Larger S-Boxes and Resulting Security Recommendations

	Conclusion
	References

	Combiner Driven Management Models and Their Applications
	Introduction
	Related Work
	Dynamic Secret Sharing
	Components of a Secret Sharing Scheme
	The Combiner as an Entity in Secret Sharing

	Combiner Driven Management Models
	A Third Phase in the Life Cycle of Secret Sharing Schemes
	The Combiner as a Trusted Party

	A Fully Dynamic Secret Sharing Schemes Realizing Threshold Access Structures
	Conclusions
	References

	New Attacks on the Stream Cipher TPy6 and Design of New Ciphers the TPy6-A and the TPy6-B
	Introduction
	Notation and Convention
	Distinguishing Attacks on the Py6 and the TPy6
	Computation of the Bias
	Formulating the Bias
	Biases in the Carry Terms

	The Distinguisher
	A Family of Distinguishers
	Two New Ciphers: The TPy6-A and the TPy6-B
	Security Analysis

	Conclusions and Open Problems
	References

	Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation
	Introduction
	Achterbahn-128/80
	Main Specifications of Achterbahn-128
	Main Specifications of Achterbahn-80
	The Key-Loading Algorithm
	Keystream Maximal Length

	Distinguishing Attack against Achterbahn-80
	Distinguishing Attack against Achterbahn-128
	Recovering the Key
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

