

Lecture Notes in Artificial Intelligence 5118
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Mehdi Dastani Amal El Fallah Seghrouchni
João Leite Paolo Torroni (Eds.)

Languages, Methodologies
and Development Tools
for Multi-Agent Systems

First International Workshop, LADS 2007
Durham, UK, September 4-6, 2007
Revised Selected and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Mehdi Dastani
Utrecht University, Intelligent Systems Group
3508 TB Utrecht, The Netherlands
E-mail: mehdi@cs.uu.nl

Amal El Fallah Seghrouchni
LIP6, University Pierre and Marie Curie
104, Avenue du Président Kennedy
75016 Paris, France
E-mail: amal.elfallah@lip6.fr

João Leite
Universidade Nova de Lisboa
Departamento de Informática
2829-516 Caparica, Portugal
E-mail: jleite@di.fct.unl.pt

Paolo Torroni
DEIS, University of Bologna
V.le Risorgimento 2, 40136 Bologna, Italy
E-mail: paolo.torroni@unibo.it

Library of Congress Control Number: 2008931313

CR Subject Classification (1998): I.2.11, I.6, H.3.5

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-85057-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85057-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12442829 06/3180 5 4 3 2 1 0

Preface

This book contains the proceedings of the first international workshop on lan-
guages, methodologies and development tools for multi-agent systems (LADS
2007), which took place on 4–6 September 2007 in Durham, UK. This workshop
was part of MALLOW 2007, a federation of workshops on Multi-Agent Logics,
Languages, and Organisations.

The LADS 2007 workshop addressed both theoretical and practical issues
related to developing and deploying multi-agent systems. It constituted a rich
forum where leading researchers from both academia and industry could share
their experiences on formal approaches, programming languages, methodologies,
tools and techniques supporting the development and deployment of multi-agent
systems. From a theoretical point of view, LADS 2007 aimed at addressing issues
related to theories, methodologies, models and approaches that are needed to
facilitate the development of multi-agent systems ensuring their predictability
and verification. Formal declarative models and approaches have the potential of
offering solutions for the specification and design of multi-agent systems. From
a practical point of view, LADS 2007 aimed at stimulating research and dis-
cussion on how multi-agent system specifications and designs can be effectively
implemented and tested.

This book is the result of a strict selection and review process. From 32
papers originally submitted to LADS 2007, and after 2 rounds of reviews, we
selected 15 high-quality papers covering important topics related to multi-agent
programming technology, such as: theories, methodologies, techniques and prin-
ciples of multi-agent systems. The book also contains an invited paper, in which
Dave Robertson reports on the aims and achievements of the OpenKnowledge
project.

We would like to thank all authors, invited speakers, programme committee
members, and additional reviewers for their outstanding contribution to the
success of LADS 2007. We would also like to thank all the sponsors. We are
particularly grateful to Rafael Bordini and the MALLOW organisers for their
technical support and for hosting LADS 2007.

May 2008 Mehdi Dastani
Amal El Fallah Seghrouchni

João Leite
Paolo Torroni

Conference Organisation

Programme Chairs

Mehdi Dastani (Utrecht University, The Netherlands)
Amal El Fallah Seghrouchni (University of Paris 6, France)
João Leite (Universidade Nova de Lisboa, Portugal)
Paolo Torroni (University of Bologna, Italy)

Programme Committee

Marco Alberti (University of Ferrara, Italy)
Natasha Alechina (University of Nottingham, UK)
José Júlio Alferes (New University of Lisbon, Portugal)
Matteo Baldoni (University of Turin, Italy)
Federico Bergenti (University of Parma, Italy)
Juan A. Bot́ıa (Murcia University, Spain)
Lars Braubach (University of Hamburg, Germany)
Jean-Pierre Briot (University of Paris 6, France)
Keith Clark (Imperial College London, UK)
Yves Demazeau (Institut IMAG, Grenoble, France)
Jürgen Dix (Clausthal University, Germany)
Ulle Endriss (University of Amsterdam, The Netherlands)
Michael Fisher (The University of Liverpool, UK)
Paolo Giorgini (University of Trento, Italy)
Jorge J. Gómez-Sanz (Universidad Complutense Madrid, Spain)
Shinichi Honiden (NII, Tokyo, Japan)
Jomi F. Hübner (Universidade Regional de Blumenau, Brazil)
Peep Küngas (SOA Trader, Ltd., Tallin, Estonia)
Jiming Liu (Hong Kong Baptist University, Hong Kong)
John W. Lloyd (Australian National University, Canberra, Australia)
Alessio Lomuscio (Imperial College London, UK)
Viviana Mascardi (University of Genova, Italy)
John-Jules Ch. Meyer (Utrecht University, The Netherlands)
Juan Pavón (Universidad Complutense de Madrid, Spain)
Alexander Pokahr (University of Hamburg, Germany)
Birna van Riemsdijk (Ludwig Maximilians Universität München, Germany)
Sebastian Sardiña (RMIT University, Melbourne, Australia)
Ichiro Satoh (NII, Kyoto, Japan)
Leon Sterling (University of Melbourne, Australia)
Patrick Taillibert (Thales Airborne Systems, Elancourt, France)
Leon van der Torre (University of Luxembourg, Luxembourg)

VIII Organisation

Gerhard Weiß (Software Competence Center Hagenberg, Austria)
Michael Winikoff (RMIT University, Melbourne, Australia)
Pinar Yolum (Bogazici University, Istanbul, Turkey)
Yingqian Zhang (Delft University, The Netherlands)

Local Organisation

Rafael H. Bordini (Local Chair, Durham University, UK)
Berndt Farwer (Durham University, UK)
Patricia Shaw (Durham University, UK)

External Reviewers

Samir Aknine
Dirk Bade
Cristina Baroglio
Nils Bulling
Federico Chesani
Enrico Denti
Akin Gunay
James Harland
Peter Novak
Katia Potiron
Yasuyuki Tahara
John Thangarajah
Sicco Verwer
Gregory Wheeler

Sponsoring Institutions

Department of Electronics, Computer Sciences and Systems, University of
Bologna

Centro de Inteligência Artificial (CENTRIA), Universidade Nova de Lisboa

Table of Contents

Invited Paper

Open Knowledge – Coordinating Knowledge Sharing through
Peer–to–Peer Interaction . 1

Dave Robertson et al.

Agent Reasoning and Semantics

Probabilistic and Logical Beliefs . 19
John W. Lloyd and Kee Siong Ng

An Argumentation Based Semantics for Agent Reasoning 37
Sanjay Modgil

Goal Selection Strategies for Rational Agents . 54
Nick A.M. Tinnemeier, Mehdi Dastani, and John-Jules Ch. Meyer

Declarative Languages and Technologies

A Common Basis for Agent Organisation in BDI Languages 71
Anthony Hepple, Louise Dennis, and Michael Fisher

Adjusting a Knowledge-Based Algorithm for Multi-agent
Communication for CPS . 89

Egon van Baars and Rineke Verbrugge

Methodologies and Design

Extending the MaSE Methodology for the Development of Embedded
Real-Time Systems . 106

Iman Badr, Hisham Mubarak, and Peter Göhner

Measuring Complexity of Multi-agent Simulations – An Attempt Using
Metrics . 123

Franziska Klügl

DCaseLP: A Prototyping Environment for Multi-language Agent
Systems . 139

Viviana Mascardi, Maurizio Martelli, and Ivana Gungui

A Step Towards Fault Tolerance for Multi-Agent Systems 156
Katia Potiron, Patrick Taillibert, and Amal El Fallah Seghrouchni

X Table of Contents

Development Frameworks

The Webbridge Framework for Building Web-Based Agent
Applications . 173

Alexander Pokahr and Lars Braubach

Specifying Interaction Space Components in a FIPA-ACL Interaction
Framework . 191

Ernesto German and Leonid Sheremetov

Enabling the Reuse of Platform-Dependent Agents in Heterogeneous
Agent-Based Applications . 209

Giancarlo Fortino, Alfredo Garro, and Wilma Russo

Introducing a Process Infrastructure for Agent Systems 225
Christine Reese, Matthias Wester-Ebbinghaus, Till Dörges,
Lawrence Cabac, and Daniel Moldt

Facilitating Agent Development in Open Distributed Systems 243
Mauro Gaspari and Davide Guidi

simpA: A Simple Agent-Oriented Java Extension for Developing
Concurrent Applications . 261

Alessandro Ricci, Mirko Viroli, and Giulio Piancastelli

Author Index . 279

Open Knowledge

Coordinating Knowledge Sharing through Peer–to–Peer
Interaction

Dave Robertson1, Fausto Giunchiglia2, Frank van Harmelen3,
Maurizio Marchese2, Marta Sabou4, Marco Schorlemmer5, Nigel Shadbolt6,
Ronnie Siebes3, Carles Sierra5, Chris Walton1, Srinandan Dasmahapatra6,

Dave Dupplaw6, Paul Lewis6, Mikalai Yatskevich2, Spyros Kotoulas3,
Adrian Perreau de Pinninck5, and Antonis Loizou6

1 Informatics, University of Edinburgh, UK
2 Information and Communication Technology, University of Trento, Italy

3 AI Department, Vrije Universiteit Amsterdam, Netherlands
4 Knowledge Media Institute, Open University, UK

5 Institut d’Investigació en Intel·ligència Artificial, Barcelona, Spain
6 Electronics and Computer Science, University of Southampton, UK

Abstract. The drive to extend the Web by taking advantage of auto-
mated symbolic reasoning (the so-called Semantic Web) has been dom-
inated by a traditional model of knowledge sharing, in which the focus
is on task-independent standardisation of knowledge. It appears to be
difficult, in practice, to standardise in this way because the way in which
we represent knowledge is strongly influenced by the ways in which we
expect to use it. We present a form of knowledge sharing that is based
not on direct sharing of “true” statements about the world but, instead,
is based on sharing descriptions of interactions. By making interaction
specifications the currency of knowledge sharing we gain a context to in-
terpreting knowledge that can be transmitted between peers, in a manner
analogous to the use of electronic institutions in multi-agent systems. The
narrower notion of semantic commitment we thus obtain requires peers
only to commit to meanings of terms for the purposes and duration of
the interactions in which they appear. This lightweight semantics allows
networks of interaction to be formed between peers using comparatively
simple means of tackling the perennial issues of query routing, service
composition and ontology matching. A basic version of the system de-
scribed in this paper has been built (via the OpenKnowledge project);
all its components use established methods; many of these have been
deployed in substantial applications; and we summarise a simple means
of integration using the interaction specification language itself.

1 Introduction

To coordinate the sharing of knowledge in an automated way on a large scale is
an aim shared by many areas of computing. In some areas the challenge of scale
is especially difficult because the environment for knowledge sharing is open,

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 1–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D. Robertson et al.

in the sense that we cannot prescribe which programs will choose to interact
in sharing knowledge. One solution to this problem would be to develop so-
phisticated agent architectures to make individual programs more adaptive and
resilient. In practice, however, the architectures of most internet-based systems
are not specifically agent-oriented. A second approach, and the one taken in
this paper, is to take the approach adopted in electronic institutions and use a
formal model of the intended interaction in different social contexts in order to
provide the necessary constraints on interaction and synchronisation of message
passing. We motivate our approach by comparison to the aspirations of semantic
web systems but, in Section 6, we discuss the relevance of our approach across
a broader range of large scale coordination systems.

Semantic Web efforts encourage designers to specify pages and programs in
a knowledge representation language. What fundamentally distinguishes the Se-
mantic Web from traditional knowledge representation is not the formal repre-
sentations of pages and programs but the way these representations are used
in automated processing. The use we have in mind is to improve the accuracy
of Web searches and to allow components (especially those that are programs
operating as Web services) to be connected automatically rather than simply be
discovered individually. It simplifies our explanation, without loss of generality,
if we think of all components (pages and programs) as peers1 capable of sup-
plying information in some formal language: a page supplies information about
that page; a program generates information, perhaps requiring input informa-
tion in order to do so (we return to the data-centric versus process-centric view
in Section 6.1). This way of attempting to share knowledge between peers en-
counters elementary problems, familiar from traditional software and knowledge
engineering:

– When two different components supply exactly the same formal expression
this does not imply that they mean the same thing. Conversely, when they
supply different formal expressions they may mean the same thing. In tradi-
tional knowledge (and software) engineering we avoid this problem by reach-
ing a consensus amongst component designers on an ontology. To obtain an
ontology one needs an oracle to decide which formal terms to use. There
are only two sources of oracle: human or mechanical. Neither source scales
well. Human oracles can only agree in small groups for narrow tasks or do-
mains. Mechanical oracles need to acquire domain knowledge via automated
learning methods, none of which has scaled beyond narrow tasks or domains.

– Only some combinations of components work well together, even when the
meanings of their appropriate inputs and outputs correspond, because of as-
sumptions made deep within the design of components. In traditional knowl-
edge (and software) engineering this problem is detected through integration

1 We use the word “peer” in this paper simply to underline that no component is
given special authority over others, other than via the manner in which components
interact with humans and with each other. We use “peer” rather than “agent” in
order to emphasise that the programs we coordinate need not be built to an agent
architecture.

Open Knowledge 3

testing: by running assemblies of components comprising the system and
checking for defects such as range errors (where the type of an input is
correct but its value is outside the range anticipated by the component’s
designers). It is infeasible to test all ranges for all variables for all compo-
nents so integration testing only covers some small subset of the possible
interactions.

– Components may fail without warning, either because they are removed or
as a consequence of their environment. Traditionally this problem is solved
by ensuring that the components are in a shared, controlled environment.
No such controls are available in an open environment, in which we may not
always know who, what or where are our peers.

– Even without the problems above, theoretical results (e.g. [8]) show that
in general it is impossible to guarantee consistently shared common knowl-
edge in asynchronous distributed systems. The engineering solution to this
problem is to provide mechanisms for establishing synchronisation between
appropriate components, but for this we must have a frame of reference to
bound the synchronisation - otherwise synchronisation itself falls foul of the
general consistency problem.

As an example, suppose we want to find the addresses of expert researchers on
wave energy in Scotland. A conventional Web search using Google doesn’t find
this information easily because the information about who is an expert is hard to
infer from conventional Web pages and the large number of pages discussing wave
energy tend to swamp out the few home pages of expert researchers and their
groups. A semantic web approach might do better if appropriate information
services could be combined. Suppose that an expert finding service does exist
and it offers to supply as output a set, S, of names of specialists if given as input a
request for experts in some country, X , and discipline, D. A simple specification
of this service (made much simpler then, say, an OWL-S, specification since we
need only a simple example here) might be this:

service : expert finder
input : request experts(country(X), discipline(D))

output : specialists(X, D, S)
operation : get experts(X, D, S)

Suppose also that two address finding services exist in Scotland, allowing one
to send a request for the address of a person with a given name, P , and receive
an address, A, for him or her. One of these services is run by a UK address
company (uk address); the other by the University of Edinburgh (univ ed).
Both, by coincidence, have identical specifications:

service : address finder
input : request address(person(P))

output : address(P, A)
operation : get address(P, A)

4 D. Robertson et al.

A semantic web search engine could not obtain the set of addresses we require
using only these service specifications (assuming that the specifications connect
to actual services via some grounding mechanism not discussed here) because it
is missing some vital functionality:

Functionality 1. Interaction specification: Wherever there is distributed com-
putation there is an issue of control over message passing between services. The
expert finder service supplies a set, S, of names of experts but the address finder
service deals with individual names. Something must infer that we should take each
element of S and pass it to the address finder, collecting the results.We cannot al-
ways infer this by examining only the types and values of variables - just like normal
programming, someone or something must supply the necessary control structure.

Functionality 2. Interaction coordination: We need to know that some form
of interaction involving expert finder and address finder would be useful for
the task. Notice that our task is not, and could not be, specified with the services
because the engineers of those services could not be assumed to predict all the
possible tasks of which they might be a part. To provide any automation we
must separately obtain a formal description of the interaction we might need.
And this description will most likely be provided using language terms that are
different from those used by the services which want to interact with a given
service. Some mechanism must make sure that the services are fed appropriate
information. The variable, D, in the expert finder service will need to be bound
to the name of some scientific discipline that the service recognises and it is
unlikely to recognise all conceivable discipline descriptions. Will it accept “wave
energy”? We don’t know simply by looking at the type of the variable.

We have described major problems associated with the aspiration of semantic
web efforts. These are traditional engineering problems but their traditional so-
lutions do not apply in open environments. The key to solving these, we shall
argue, is in making specifications of interactions an integral part of knowledge
exchange between peers. In Section 2 we summarise a compact but expressive
formal language for specifying and computing interactions. We then describe
the basic mechanisms needed to support this computation in an open environ-
ment: ontology alignment (Section 3.1), discovery (Section 3.2) and visualisation
(Section 3.3). Section 4 then combines these elements within a minimal model
of interaction, shareable between peers. Finally, since we view this as an evolu-
tionary manifesto, in Section 6 we compare our approach to the major existing
paradigms.

2 Interaction Specification

The functional requirement we must satisfy here is: given that a peer has been
given a model of interaction, use this computationally to control its own be-
haviour and communicate to other relevant peers the behaviours expected of
them for this interaction.

Open Knowledge 5

Model := {Clause, . . .}
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or number

Fig. 1. LCC syntax

From previous implementations by the authors using the system described be-
low, there are several different ways in which a peer might exploit an interaction
model with a precise computational behaviour:

– It might simply run this model locally, sending messages to other peers but
not allowing them to be privy to the broader picture of interaction contained
in the model. This is a traditional server-based style of coordination.

– It might distribute appropriate components of the model to those peers with
which it interacts, on the assumption that each of them will separately run
that component - producing a distributed computation.

– It might use the model as a form of script which it passes entire to the
next peer with which it needs to interact - producing complex interactions
amongst many peers via pairwise interactions between peers.

None of these computational models is optimal. Server or script based com-
putation keeps the interaction model in one piece, giving advantages in imposing
constraints on interaction that apply across groups of peers. On the other hand,
a server based computation means that peers other than the one acting as server
have little control over the course of the interaction; while a script based com-
putation only works for interactions that can be deconstructed into a series of
pairwise interchanges. Since no winning execution strategy is known, it makes
sense to use an interaction modelling language that has a semantics independent
of any one of these strategies but that is capable of being executed by any of
them.

The need to supply this sort of information has been recognised by many in
the semantic web community. The most direct solution is to specify the process
of service combination, and the roles undertaken by the services in that process,
in an executable language. We give in Figure 2 a specification for our running
example in one such language: the Lightweight Coordination Calculus (LCC)
which is the core language used in the OpenKnowledge project. Figure 1 defines
the syntax of LCC. An interaction model in LCC is a set of clauses, each of which

6 D. Robertson et al.

a(expert locator(X, D, L), C) ::
request experts(X,D) ⇒ a(expert finder, E) then
specialists(X,D, S) ⇐ a(expert finder, E) then
a(address collector(S, L), C)

a(address collector(S, L), C) ::
request address(P) ⇒ a(address finder, F)← S = [P |Sr] ∧ L = [A|Lr] then
address(P,A) ⇐ a(address finder, F) then
a(address collector(Sr, Lr), C)

or

null ← S = [] ∧ L = []

a(expert finder, E) ::
request experts(X,D) ⇐ a(expert locator(X, D, L), C) then
specialists(X,D, S) ⇒ a(expert locator(X, D, L), C)← get experts(X,D, S)

a(address finder, F) ::
request address(P) ⇐ a(address collector(S), C) then
address(P,A) ⇒ a(address collector(S), C)← get address(P,A) then
a(address finder, F)

Fig. 2. Example interaction model

defines how a role in the interaction must be performed. Roles are described by
the type of role and an identifier for the individual peer undertaking that role.
The definition of performance of a role is constructed using combinations of
the sequence operator (‘then’) or choice operator (‘or’) to connect messages
and changes of role. Messages are either outgoing to another peer in a given role
(‘⇒’) or incoming from another peer in a given role (‘⇐’). Message input/output
or change of role can be governed by a constraint defined using the normal
logical operators for conjunction, disjunction and negation. Notice that there is
no commitment to the system of logic through which constraints are solved -
so different peers might operate different constraint solvers (including human
intervention).

Returning to the example of Figure 2, each of the four clauses defines the
message passing behaviour of a role in the interaction. The first clause defines
the role we wish some peer (identified by name C) to perform: that of a locator
for experts which, given a country, X and a discipline, D, identifies a list of
addresses, L. To undertake this role, C must send a message to an expert finder,
E, requesting names of experts and then receive a set of names, S from E before
taking the role of an address collector. The second clause defines the address
collector role which involves recursing through the set of names, requesting, and
then receiving, an address for each from an address finder, F . The third and
fourth clauses define our earlier expert finder and address finder services in
terms of the message passing required by each of them. Note that these make
specific commitments to the temporal behaviours of the services in our interac-
tion (for instance we prescribe that an expert finder is contacted only once in
this interaction while an address finder may be contacted many times).

Open Knowledge 7

It is not the task of this paper to explain LCC in detail or to justify its use
rather than some other process specification language (for that argument see
[16]). For our current purposes, the salient features of LCC are:

– It is an executable specification language, providing the features common
to such languages (such as variables, data structures and recursion). All of
these were needed to deal with even our simple running example.

– Despite its specificity in terms of data and control structure, so we know
precisely how we want our services to interact, there remain obstacles to
achieving that interaction:
• Which specific terms will work when communicating between services?

This is discussed in Section 3.1.
• How do we know which actual services to use? In our LCC specification

the variables E and F are unbound but messages must be sent to specific
services. This is discussed in Section 3.2.

• What happens if our peers are human operated? For example, the oper-
ation get experts(X, D, S) in the third clause of Figure 2 might involve
asking a human who the experts are. At that point the human needs to
know enough of the interaction’s context to give an informative reply
(see Section 3.3).

Principle 1. Interaction models are declarative, executable specifications that
may be understood independently of any particular peer or execution model. The
conditions under which they are run, however, requires more run-time support
than a traditional executable specification language.

3 Interaction Coordination

The functional requirement we must satisfy here is: given a peer with no knowl-
edge of how to interact with others to perform some task, obtain for it a descrip-
tion of an appropriate interaction.

One way to do this might be through synthesis, either fully automated (e.g.
[4]) or interactive (e.g. [12]), so that peers could compose appropriate service
clusters for whatever task arises. Although an important means of initiating
some kinds of interaction specification, synthesis is unlikely to be the main source
of this functionality for three reasons. First, as in Section 1, the specifications
we need are non-trivial to synthesise automatically and would require specialist
expertise to synthesise interactively. Second, synthesis can be time consuming
and peers in a semantic web are likely to need fast responses. Third, and per-
haps most importantly, sharing information about useful interactions is a way to
propagate experience about effective knowledge sharing - so obtaining a model
of interaction that has been widely used and is popular with one’s peers may in
many cases be better (and much easier) than building one from scratch. We now
consider two key enablers for this from of sharing: dynamic ontology matching
and peer-to-peer interaction model sharing.

8 D. Robertson et al.

3.1 Dynamic Ontology Matching

In our introduction we argued that traditional methods of ontology matching
do not scale to open knowledge sharing systems. Our focus on interaction has
not, however, eradicated the issue. Instead, we have a different form of ontology
matching problem to consider: matching terms that appear dynamically in the
course of an interaction. Being autonomously and independently defined inside
each peer, most of these terms will be semantically heterogeneous. Thus, while
one peer could have expert finder as its service role, the others could have
person finder, expertICT finder, expert broker, and so on. Notice that while
the first and the fourth role denote services which are essentially equivalent,
the second is more general than expert finder, while the third is less general.
It is a fact that these terms are always used in the context of some local, a
priori defined, often left implicit, ontological description of the world. And this
influences not only the specific equivalent terms used to describe a concept but
also the level of generality of the concept itself.

The solution we propose is to construct semantic mappings (e.g. more or less
general, equivalent to, disjoint from) existing between the terms used during in-
teraction. One such example is the mapping 〈expert finder, person finder, LG〉,
stating that expert finder is less general (LG) than person finder. These map-
pings are those defined and used in C-OWL [14]. Their main advantage over “syn-
tactic mappings”, namely mappings which return an affinity measure in the
interval [0,1] (see, e.g., the mappings constructed by the state of the art system
COMA [9]), is that the information carried by the semantic relation can then be
exploited in many ways, for instance when fixing mismatches (see “Term match-
ing” below).

We discover semantic mappings, using the method implemented in the S-
Match system [7]. This is applied in at least three different phases:

– Role matching: Aligns the different ways in which roles are described when
initiating or joining an interaction. An example is the mapping
〈expert finder, person finder, LG〉.

– Term matching: Aligns (structured) terms within the clause defining a role
in order to undertake an interaction. An example is matching get address,
which in one peer could take two arguments (e.g. name of a person and
his/her address) and in another three arguments, where the third argument
(e.g. Type of Comm) could discriminate whether we need an address for
personal or work communication.

– Query / Answer matching: Takes place when running an interaction model
and deals with the semantic heterogeneity arising from the statement of a
query and in the values returned in its answers. For example, an interaction
model specifying that the address finder needs to look up the address for
Stephen Salter by invoking the get address(′Stephen Salter′, A) operation
is not guaranteed (as we are with the ontology of messages) to match per-
fectly to the operation the peer actually can perform. Perhaps the operation
used by the peer is find address and the surname is expected first (as in
′Salter, Stephen′).

Open Knowledge 9

The kind of (semantic) matching that we need here differs from the previous
approaches in that it is not done once and for all, at design time on stati-
cally defined ontologies, but, rather, it is performed at run-time. This moves the
problem of ontology (and data) integration, widely studied in the literature, to
the problem of ontology coordination. As discussed in [6], the problem of data
and ontology coordination is characterised by various new difficulties (beyond
the obvious requirement of very fast response times). Coordination is dynamic so
exactly what needs to be coordinated depends on what is interacting. Peers have
partial knowledge of their network so cannot always predict which other peers
will interact with them. Ontology matches made in this way without prior con-
sensus are therefore intended to support query answer sets that are good enough
for the interaction in hand but not necessarily complete or always correct.

This form of dynamic semantic matching might at first sight seem a harder
problem than conventional static matching. We can, however, utilise our coordi-
nation framework to turn it into a more limited, easier problem. From Principle 1,
interaction models are shareable resources. So too are mappings used with them.
This cuts down the number of new mappings that are needed as models are re-
used. Furthermore, the context in which mappings are constructed is much more
limited than with traditional ontology mapping. Since the purpose of mappings
is to ensure that a specific interaction model functions correctly then the only
issue is whether the meaning associated with the particular use of an operation
required of a peer corresponds to an operation it can do. This is a much less de-
manding task than the general task of mapping entire ontologies between peers,
for two reasons. First, we need consider only the fragment of the ontology that
applies to a specific interaction. Second, the commitments we make in a mapping
can be weaker and more easily judged: for instance, mapping “visit to Italy” to
“holiday trip” may make perfect sense for an interaction with a holiday service
even though the mapping does not hold in general.

Principle 2. Models of interactions are developed locally to peers. However,
they must be shared in order to achieve interaction coordination. This is achieved
by dynamically matching, at run time, terms in theinteraction models. This hap-
pen both when synthesising them and when running them to answer specific
queries. Dynamic semantic matching does this by considering the terms in the
context (defined as a local ontology) of the involved peers.

3.2 Interaction Model Sharing and Discovery

The obstacle to a peer wishing to acquire an interaction model in an open system
is knowing who to ask and how to ask. We cannot expect a peer to know all
other peers or to know the details of an interaction. We can expect, however,
that each peer knows about some distributed discovery service(s) and that each
peer knows some features of the interaction in which it is willing to participate.
These features need not be complex - keyword matching may suffice. In our
running example, a peer with no knowledge of how to find addresses of experts
might ask the discovery service for interaction models described by the keywords

10 D. Robertson et al.

{expert, address}. The task of the semantic discovery system is then to locate
interaction models with these features and peers that want to participate in
these interactions across the peer network.

Principle 2 separates interaction models from services, with the advantage
that interactions can be shared. To make them work, however, they must con-
nect to specific services. This requires choice. In our running example we must
choose, when binding F (the address finder) whether we use uk address or
univ ed? That may depend on the names suggested as wave energy experts
by the expert finder service. If ’Stephen Salter’ were a name suggested then
univ ed might be the best choice (since Salter is a professor at Edinburgh). If
not, then uk address might be a better bet because it is more general. Hence
the context set by earlier interactions conditions subsequent choices of services.

There are three (non–exclusive) ways to tackle this issue:

Sharing of experience between peers: The most direct way to overcome
problems like those above is (like traditional Web search engines) to re-
fer to records of past experience. If we know, for example, that someone else
had used the LCC specification in our example successfully with the variable
bindings E = e find, F = univ ed, X = ′Scotland′ and D = ′wave energy′

then if we were to ask a similar query we might follow a similar binding pat-
tern. A detailed description of the method currently used for this appears
in [2].

Using the semantic discovery service: To facilitate ranking of peers or in-
teraction models, the semantic discovery service can calculate and main-
tain statistical information about keywords and contexts from all interaction
models and all peers in the system. A description of the semantic discovery
service appears in [19].

Collaborative recommendation of interaction models and services: By
identifying emergent groups amongst peers, based on sharing of interaction
models between peers, groups of users that are likely to use services under
similar contexts can be inferred. In addition we can require that the local
ontologies of peers in the same cluster (or at least those segments relevant to
the candidate interaction protocols) can be automatically mapped to each
other. In this setting the problem of choosing the best candidate component
is reduced to collaborative filtering. The appropriateness of interaction mod-
els retrieved by the system and specific services can be assessed based on
the frequency of their use within the community, while the added mapping
requirement can ensure that the input parameters will be provided in the
format expected by the service.

Principle 3. The choice of interaction models and peers to occupy roles in them
is determined by a distributed discovery service. Evidence of role performance in
interactions may be routed to this service. Interaction models in need of role
performers and role performers in need of related interaction models consult this
service.

In recent years, a wide variety of resource discovery systems have been proposed
and developed. Most of them, like UDDI and Napster, support attribute-based

Open Knowledge 11

retrieval. Their major disadvantage is that they are centralised approaches. To
alleviate these problems, many peer-to-peer indexing systems have been pro-
posed, and basic methods such as distributed hash tables, latent semantic in-
dexing and semantic overlays have been developed.

We assume that data or services are described through sets of terms which
we call descriptions and that the system contains a large number of such de-
scriptions. Our routing methods extend the work described in [18] to provide
statistical information about terms. Initially, peers use a distributed hash table
to muster data and group descriptions by term. Since we make no assumptions
of shared ontologies, different terms may be used for similar concepts. In [17] a
method for automatic word sense discrimination is proposed. Words (or in our
case terms) and their senses are represented in a real-valued high-dimensional
space where closeness in the space corresponds to semantic similarity. As input
for this method we use the descriptions for each term. From the representations
of terms in the high-dimensional space, we can then extract information about
term generality, term popularity, related terms and homonyms.

3.3 Visualisation for User Interaction and Interaction Monitoring

There are two constraints in the interaction model for our running example of
Figure 2: get experts(X, D, S) in the third clause and get address(P, A) in the
fourth clause. We have assumed that each of these would be satisfied automati-
cally via a service call. Sometimes, however, constraints may need to be satisfied
by human interaction if all automated means of constraint satisfaction fail. A
variant of our example might involve the satisfaction of get experts(X, D, S) by
a human expert who expresses an opinion on the set, S, of experts in a given
country, X , in domain of expertise, D. When these interactive constraints must
be satisfied then it is necessary to link interaction model specifications to vi-
sualisation specifications (which then can be interpreted via a Web browser or
similar mechanism). There are several (non-exclusive) ways to do this:

– By carrying the visualisation specification with the interaction model. This
allows interaction model designers to customise visualisations to interactions.

– By providing alternative visualisation methods on peers. This allows limited
local customisation to account for style choices.

– By building customised visualisers for very heavily used interaction models.
This is appropriate for tasks where the visualisation is the inspiration for the
interaction model - for example if we wished to have a complex geospatial
visualisation on peers but maintain consistency across peers of information
viewed within that visualisation framework.

– By generating visualisation directly from the structure of an interaction
model. This is appropriate for tasks such as monitoring the state of an in-
teraction or investigating a failure - a facility not essential to all users but
essential for some.

Principle 4. Interaction models must permit versatility in visualisation: pro-
viding default visualisations for common structures but also allowing customisa-
tion of visualisation by both peers and interaction model designers. This can be

12 D. Robertson et al.

achieved by adopting a standard, declarative markup language for visualisation
that each peer may interpret without needing to understand the deeper semantics
of the constraints themselves.

4 A Minimal, Most General Interaction Model

We have used the interaction model of Figure 2 as an illustrative example of the
various reasoning components needed for peer-to-peer discovery, sharing and
collaboration. This example is domain specific (as are most interactions) but we
can also specify more general forms of interaction. The most general of these
describes how a peer manages other interaction models.

Figure 3 gives a minimal specification of peer interaction (reduced to its
essentials to save space). It describes the key roles of a peer: discovery and
sharing of interaction models; and collaboration driven from interaction mod-
els communicated between peers. In the definition: P is an interaction model;
S is the state of the interaction in which the peer currently is engaged; O is
the set of onology mapping applying to S; M is a message; X , is the unique
identifier of a peer; locate(K,P) means the peer can find a P , described by
keyword list, K; add to interaction cache(P) adds P , to the cache known to
the peer; in interaction cache(P) select P , from the cache known to the peer;
match(M,P ,S,O, M ′,P ′,S′,O′) extends O, adapting (P ,S), to peer giving
(P ′,S′,O′); expand(M,P ,S,S′, M ′, Z) expands S given M , yielding M ′ sent
to per Z; and completed(M,P ′,S′) means thatM completes this interaction for
this peer.

a(peer,X) ::
(a(discoverer,X) or a(collaborator,X) or a(sharer,X)) then
a(peer,X)

a(discoverer,X) ::
descriptors(K) ⇐ a(discoverer, Y) then
discovered(P) ⇒ a(discoverer, Y)← locate(K,P)

or

descriptors(K) ⇒ a(discoverer, Y) then
add to interaction cache(P)← discovered(P) ⇐ a(discoverer,Y)

a(collaborator,X) ::
m(M,P ,S ,O) ⇐ a(collaborator, Y) then

m(M ′,P ′′,S ′′,O′) ⇒ a(collaborator,Z)← match(M,P ,S ,O, M ′,P ′,S ′,O′) ∧
expand(M ′,P ′,S ′,P ′′,S ′′, Z)

or

m(M,P ,S ,O) ⇒ a(collaborator,Z)← routing(M,P ,S ,O, Z) or
null ← completed(M ′,P ′,S ′)

a(sharer,X) ::
share(P) ⇒ a(sharer,Y)← in interaction cache(P) or
add to interaction cache(P)← share(P) ⇐ a(sharer,Y)

Fig. 3. Interaction model for a basic peer

Open Knowledge 13

Figure 3, of course, is not complete because it does not define important
aspects of routing, ontology matching, etc. that we discussed in earlier sections.
For these the reader is referred to the papers cited in appropriate earlier sections.
Our point here is that even the basic knowledge sharing operations of a peer can
be understood in terms of shareable interaction models.

5 The OpenKnowledge Kernel

The previous sections are language oriented - they discuss the issues tackled
in the OpenKnowledge project with respect to interaction models expressed
in LCC. Many different systems could address these issues but the first (to
our knowledge) actually to do is the OpenKnowledge kernel system, currently
available to download as open source Java code from www.openk.org. In this
section we briefly sketchthe main functional elements of the kernel system from
the point of view of the subscribe-bootstrap-run cycle through which interactions
are deployed. Readers with an interest in more detailed description of the kernel
are referred to the tutorial and manual sections of www.openk.org.

Interactions in OpenKnowldge take place via a cycle of subscription (when
peers say they want to take part in interactions); bootstrapping (to initiate a fully
subscribed interaction) and running (to perform the bootstrapped interaction):

Subscription to an interaction model: When a peer needs to perform a
task it asks the discovery service for a list of interaction models match-
ing the description of the task. Then, for each received interaction model,
the peer compares the (Java) methods in its local component library with
the constraints in the entry role in which it is interested. If the peer finds an
interaction model whose constraints (in the role the peer needs to perform)
are covered by these methods, then the peer can subscribe (via subscription
negotiator) to that interaction model in the discovery service. The subscrip-
tion, through a subscription adaptor, binds the Interaction Model to a set of
methods in the peer. A subscription can endure for only a single interaction
run or for many, possibly unlimited, interaction runs (for example, a buyer
will likely subscribe to run a purchase interaction once, while a vendor may
want to keep selling its products or services).

Bootstrapping an interaction: When all the roles in the interaction model
have subscriptions, the discovery service selects a random peer as a coordina-
tor. The coordinator then bootstraps and runs the interaction. The bootstrap
involves first asking the peers who they want to interact with, among all the
peers that have subscribed to the various roles, then creating a team of mu-
tually compatible peers and finally - if possible - asking the selected group
of peers to commit to the interaction.

Running an Interaction: This part of the cycle is handled by the randomly
chosen coordinator peer. The coordinator peer runs the interaction locally
with messages exchanged between local proxies of the peers. However, when
the coordinator encounters a constraint in a role clause, it sends a mes-
sage, containing the constraint to be solved, to the peer performing the

14 D. Robertson et al.

role, The subscription adaptor on the peer calls the corresponding method -
found during the comparison at subscription time (see above). The peer then
sends back a message to the coordinator with the updated values of variables
and the boolean result obtained from satisfying the constraint. The kernel’s
matcher allows the components on the peer and the interaction models to
be decoupled. The peer compares the constraints in the roles in which it
is interested with the methods in its local components and creates a set of
adaptors that maps the constraint in the roles to similar methods.

The OpenKnowledge kernel is intended as the main vehicle for deploying LCC
and as the point of reference for programmers (particularly Java programmers)
who wish to extend on our framework. Although the current paper focuses on
issues connected to deployment of coordination in a peer to peer setting, an
equally important aspect of our use of interaction models is at the level of speci-
fication and analysis. Here we have found that by viewing interactions as share-
able specifications we can re-apply traditional formal methods in novel ways, for
example in model checking [13], matchmaking [10], dynamic ontology mapping
[3] and workflow [11]. In this activity it is crucial to have a compact, declarative
language in which we can specify interactions independent of the infrastructure
used to deploy them.

6 Comparison to Current Paradigms

In the main part of this paper we have motivated, through example, the use of
shared, explicit models of interaction to provide context for knowledge sharing.
We used the aspirations of the semantic web community as a focus for our
arguments but our approach has relevance more broadly across communities
involved in the coordination of knowledge sharing. We consider some of these
below.

6.1 The Data-Centric and Process-Centric Semantic Web

One view of the Semantic Web is data-centric, where nodes are data sources
with which we associate formal specifications of content. The onus is on curators
of data (or engineers of services supplying data) to author their specifications
appropriately so that generic systems can discover and use data, guided by this
additional information. The intention in doing this is to describe key aspects
of the semantics of content - so called, semantic annotations. The difficulty in
practise with using only semantic annotations is that to gain consensus on what
the annotations should be it is necessary for them to be used for practical pur-
poses by the peer group to which they are relevant. From this it follows that
the data-centric paradigm needs to be supported by a way of sharing patterns
of usage and knitting them into semantic annotations. The interaction models
described in this paper are a means of expressing such patterns. Peer-to-peer
routing makes it possible to share these on a large scale. Various forms of on-
tological alignment (including manual alignment) can then be applied to allow

Open Knowledge 15

peers to select (and collectively reinforce) specific patterns of usage that work
when combining data.

The need to represent potential interactions has long been recognised, hence
the process specification elements of OWL-S. In OWL-S, however, an interaction
process is associated with a service (and with its data) rather than being sep-
arately defined. By separating interaction specifications from data annotations
we obtain three crucial advantages:

– We no longer have to define generic processes for services. Instead we expect
to have many, perhaps very domain specific, interaction models that we then
align more narrowly with services.

– We no longer have to aim for broad ontological consensus across services
because data is used via narrow alignments.

– By losing the above two restrictions we are able to knit together services
with less sophisticated formal languages.

6.2 Web Service Architecture

Our approach is intended to complement and extend a traditional Web service
architecture by addressing a number of restrictions. The key extensions that we
are proposing, and the restrictions that they address, are summarised below:

– The Web Service Architecture, while distributed, is not inherently peer-to-
peer. In particular, there is no support for efficient routing of messages be-
tween services, service discovery is performed in a centralised manner using
registries, and there is the assumption that services will always be available
at a fixed location. In our Peer-based architecture we relax these restrictions.
We provide efficient query routing between components to prevent bottle-
necks, we support component discovery using distributed search techniques,
and we can cope with components that are not always available through
dynamic substitution.

– The lightweight interaction models that we define avoid problems associ-
ated with dynamic service composition. Our models define precisely how
interaction should be performed with individual components, and also how
composition of components should be performed. We do not rely upon com-
plex planning operations or require the construction of detailed workflows
by users, although our methods do not exclude these methods where appro-
priate.

– The basic Web services architecture does not contain any support for assess-
ing trust across services when conducting interactions. Because our methods
maintain explicit models of interaction to coordinate services we can apply
a repertoire of trust assessment methods to these: from evidence based or
provenance-based methods through to methods based on statistical analysis
(on groups of interactions) or social analysis (on groups of peers with shared
interactions). Importantly, we can associate different measures of trust with
appropriate interactions, since one measure will not fit all situations.

16 D. Robertson et al.

6.3 Grids

In [1] three generations of grids are identified: first generation, where proprietary
solutions are aimed mainly at sharing computational resources of large super-
computing centres for high-performance applications; second generation, where
(through middleware and standardisation) grids have become more ubiquitous;
and third generation, which shifts to a service-oriented architecture, and the
use of meta-data to describe these services. In this third generation, services
are given well-defined, machine-processable meaning so as to enable autonomic
configuration of the grid and assembly of services - the so-called “semantic grid”
elaborated in [5].

Our approach is consistent with the semantic grid vision but without our
methods being predicated on sophisticated underlying Grid infrastructure. Tra-
ditional grid systems connect together specific services (or types of service) in
stable networks - the aim being to do as much as possible to make these networks
robust, secure and resistant to failure. We concentrate on specifying interactions,
which may take place with different combinations of services in an open, peer-
to-peer environment where the only essential infrastructure requirement is the
ability to pass messages between peers. In this sense, our aim is an “everyman’s
grid” in the sense that we aim to maintain integrity of interaction (a key grid
objective) without requiring specialist (centralised) infrastructure or computing
resources to do so and at a very low entry cost.

7 Conclusions

The need for coordinated interactions between software components is growing
quickly with the increase in numbers and diversity of programs capable of sup-
plying data on the Internet. Although multi-agent, semantic web and grid com-
munities have traditionally taken different approaches to tackling this problem,
we have argued in this paper that a substantial area within these communities
is (from a coordination point of view) a shared problem that may be tackled by
developing shareable, formal models of interaction. In Section 2 we described a
simple language (LCC) for this purpose. In Section 3 we described the demands
placed on this language for automated inference during knowledge sharing. To
conclude the language description, we use LCC to describe the bare essentials
of the peer interaction process; then in Section 5 we briefly describe the imple-
mented OpenKnowledge kernel system currently available from www.openk.org.
Finally, in Section 6, we compared this approach across semantic web, web service
and grid approaches to coordination. Our aim throughout has been to demon-
strate that a basic, common core of interaction specification is appropriate across
these areas.

The methods described in this paper have already been applied to a variety
of domains. For example, [20] describes how to use interaction models for exper-
iment specification in astrophysics and [15] describes a novel result in protein
structure prediction using our methods. Despite these early successes we still
have a long way to go before achieving these sorts of peer to peer coordination

Open Knowledge 17

routinely on a large scale. What we now know is that the basic infrastructure can
be built. What remains to be seen is whether this infrastructure has resonance
with the social settings in which people wish to share knowledge.

Acknowledgements

This research is funded by the OpenKnowledge project (www.openk.org).

References

1. Berman, F., Fox, G., Hey, A. (eds.): Grid Computing: Making the Global Infras-
tructure a Reality. John Wiley & Sons, New York (2003)

2. Besana, P., Robertson, D.: How service choreography statistics reduce the ontology
mapping problem. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 44–57. Springer, Heidelberg
(2007)

3. Besana, P., Robertson, D.: How service choreography statistics reduce the ontology
mapping problem. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 44–57. Springer, Heidelberg
(2007)

4. Blyth, J., Deelman, E., Gil, Y.: Automatically composed workflows for grid envi-
ronments. IEEE Intelligent Systems (July/August 2004)

5. De Roure, D., Jennings, N.R., Shadbolt, N.R.: The semantic grid: A future e-
science infrastructure. In: Berman, F., Fox, G., Hey, A.J.G. (eds.) Grid Computing
- Making the Global Infrastructure a Reality, pp. 437–470. John Wiley and Sons
Ltd., Chichester (2003)

6. Giunchiglia, F., Zaihrayeu, I.: Making peer databases interact: A vision for an
architecture supporting data coordination. In: Klusch, M., Ossowski, S., Shehory,
O. (eds.) CIA 2002. LNCS (LNAI), vol. 2446. Springer, Heidelberg (2002)

7. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an imple-
mentation of semantic matching. In: Bussler, C., Davies, J., Fensel, D., Studer, R.
(eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)

8. Halpen, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed en-
vironment. Journal of the ACM 37(3), 549–587 (1990)

9. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proceedings of Very Large Data Bases Conference (VLDB), pp.
610–621 (2001)

10. Lambert, D., Robertson, D.: Matchmaking and brokering multi-party interactions
using historical performance data. In: Fourth International Joint Conference on
Autonomous Agents and Multi-agent Systems (2005)

11. Li, G., Chen-Burger, J., Robertson, D.: Mapping a business process model to a
semantic web services model. In: IEEE International Conference on Web Services
(2007)

12. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

18 D. Robertson et al.

13. Osman, N., Robertson, D.: Dynamic verification of trust in distributed open sys-
tems. In: Twentieth International Joint Conference on Artificial Intelligence (2007)

14. Bouquet, P., Giunchiglia, F., Van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
C-OWL: contextualizing ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

15. Quang, X., Walton, C., Gerloff, D., Sharman, J., Robertson, D.: Peer-to-peer exper-
imentation in protein structure prediction: an architecture, experiment and initial
results. In: International Workshop on Distributed, High-Performance and Grid
Computing in Computational Biology (2007)

16. Robertson, D.: Multi-agent coordination as distributed logic programming. In: De-
moen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer,
Heidelberg (2004)

17. Schutze, H.: Automatic word sense discrimination. Computational Linguis-
tics 24(1), 97–123 (1998)

18. Siebes, R.: pnear - combining content clustering and distributed hash tables. In:
Proceedings of the IEEE 2005 Workshop on Peer-to-Peer Knowledge Management,
San Diego, CA, USA (July 2005)

19. Siebes, R., Dupplaw, D., Kotoulas, S., Perreau de Pinninck, A., van Harmelen, F.,
Robertson, D.: The openknowledge system: an interaction-centered approach to
knowledge sharing. In: Proceedings of the 5th International Conference on Coop-
erative information Systems, Portugal (November 2007)

20. Walton, C., Barker, A.: An Agent-based e-Science Experiment Builder. In: Pro-
ceedings of the 1st International Workshop on Semantic Intelligent Middleware for
the Web and the Grid, Valencia, Spain (August 2004)

Probabilistic and Logical Beliefs

J.W. Lloyd1 and K.S. Ng2

1 Computer Sciences Laboratory
College of Engineering and Computer Science

The Australian National University
jwl@cecs.anu.edu.au

2 National ICT Australia
keesiong.ng@nicta.com.au

Abstract. This paper proposes a method of integrating two different
concepts of belief in artificial intelligence: belief as a probability distri-
bution and belief as a logical formula. The setting for the integration is
a highly expressive logic. The integration is explained in detail, as its
comparison to other approaches to integrating logic and probability. An
illustrative example is given to motivate the usefulness of the ideas in
agent applications.

1 Introduction

The term ‘belief’ has two meanings in artificial intelligence: in robotics and
vision [1], a ‘belief’ is generally a probability distribution; in logical artificial
intelligence, a ‘belief’ is a logical formula. In this paper, we give a definition of
belief that encompasses both meanings and investigate the use of this concept
for agent applications.

This work is set in the context of the more general problem of integrating
logic and probability, a problem that is currently attracting substantial interest
from researchers in artificial intelligence [2,3,4,5,6,7]. Consequently, to set the
scene and also to provide a contrast with the approach to integration adopted
in this paper, we now briefly discuss the most common approach in literature.

Unfortunately, there does not seem to be any widely agreed statement of
exactly what the problem of integrating logic and probability actually is, much
less a widely agreed solution to the problem [8,9,10,11]. However, the following
quote from [10], which contains an excellent overview of the problem especially
from the philosophical point of view, captures the generally agreed essence of
the problem: “Classical logic has no explicit mechanism for representing the
degree of certainty of premises in an argument, nor the degree of certainty in a
conclusion, given those premises”. Thus, intuitively, the problem is to find some
way of effectively doing probabilistic reasoning in a logical formalism that may
involve the invention of ‘probabilistic logics’. The discussion below is restricted
to recent approaches that have come from the artificial intelligence community;
these approaches usually also include a significant component of learning [11].

The standard logical setting for these approaches is first-order logic. Imag-
ine that an agent is operating in some environment for which there is some

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 19–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 J.W. Lloyd and K.S. Ng

uncertainty (for example, the environment might be partially observable). The
environment is modelled as a probability distribution over the collection of first-
order interpretations (over some suitable alphabet for the application at hand).
The intuition is that any of these interpretations could be the actual environ-
ment but that some interpretations are more likely than others to correctly
model the actual world and this information is given by the distribution on the
interpretations. If the agent actually knew this distribution, then it could an-
swer probabilistic questions of the form: if (closed) formula ψ holds, what is the
probability that the (closed) formula ϕ holds? In symbols, the question is: what
is Pr (ϕ |ψ)?

We formalise this situation. Let I be the set of interpretations and p a prob-
ability measure on the σ-algebra of all subsets of this set. Define the random
variable Xϕ : I → R by

Xϕ(I) =

{
1 if ϕ is true in I

0 otherwise,

with a similar definition for Xψ. Then Pr(ϕ |ψ) can be written in the form

p(Xϕ = 1 |Xψ = 1)

which is equal to

p(Xϕ = 1 ∧ Xψ = 1)
p(Xψ = 1)

and, knowing p, can be evaluated.
Of course, the real problem is to know the distribution on the interpretations.

To make some progress on this, most systems intending to integrate logical and
probabilistic reasoning in artificial intelligence make simplifying assumptions.
For a start, most are based on Prolog. Thus theories are first-order Horn clause
theories, maybe with negation as failure. Interpretations are limited to Herbrand
interpretations and often function symbols are excluded so the Herbrand base
(and therefore the number of Herbrand interpretations) is finite. Let I denote
the (finite) set of Herbrand interpretations and B the Herbrand base. We can
identify I with the product space {0, 1}B in the natural way. Thus the problem
amounts to knowing the distribution on this product space. At this point, there
is a wide divergence in the approaches. For example, either Bayesian networks
or Markov random fields can be used to represent the product distribution. In
[4], the occurrences of atoms in the same clause are used to give the arcs and the
weights attached to clauses are used to give the potential functions in a Markov
random field. In [6], conditional probability distributions are attached to clauses
to give a Bayesian network. In [3], a program is written that specifies a generative
distribution for a Bayesian network. In all cases, the logic is exploited to give
some kind of compact representation of what is usually a very large graphical
model. Generally, the theory is only used to construct the graphical model and
reasoning proceeds probabilistically, as described above.

Probabilistic and Logical Beliefs 21

Here we follow a different approach. To begin with, we use a much more ex-
pressive logic, modal higher-order logic. The higher-orderness will be essential to
achieve the desired integration of logic and probability. Also, the modalities will
be important for agent applications. Furthermore, in our approach, the theory
plays a central role and probabilistic reasoning all takes place in the context of
the theory.

The next section gives a brief account of the logic we employ. In Section 3,
the definition of a density and some of its properties are presented. Section 4
presents our approach to integrating logic and probability. Section 5 considers
the idea that beliefs should be function definitions. Section 6 gives an extended
example to illustrate the ideas. Section 7 gives some conclusions and future
research directions.

2 Logic

We outline the most relevant aspects of the logic, focussing to begin with on the
monomorphic version. We define types and terms, and give an introduction to
the modalities that will be most useful in this paper. Full details of the logic,
including its reasoning capabilities, can be found in [12].

Definition 1. An alphabet consists of three sets:

1. A set T of type constructors.
2. A set C of constants.
3. A set V of variables.

Each type constructor in T has an arity. The set T always includes the type
constructor Ω of arity 0. Ω is the type of the booleans. Each constant in C
has a signature. The set V is denumerable. Variables are typically denoted by
x, y, z, Types are built up from the set of type constructors, using the symbols
→ and ×.

Definition 2. A type is defined inductively as follows.

1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk
is a type. (Thus a type constructor of arity 0 is a type.)

2. If α and β are types, then α → β is a type.
3. If α1, . . . , αn are types, then α1 × · · · × αn is a type.

Int is the type of the integers and Real is the type of the reals. (List σ) is
the type of lists whose items have type σ. Also σ → Ω is the type of sets whose
elements have type σ, since sets are identified with predicates; {σ} is a synonym
for σ → Ω used when we are intuitively thinking of a term as a set of elements
rather than as a predicate.

The set C always includes the following constants.

1. � and ⊥, having signature Ω.
2. =α, having signature α → α → Ω, for each type α.
3. ¬, having signature Ω → Ω.

22 J.W. Lloyd and K.S. Ng

4. ∧, ∨, −→, ←−, and ←→, having signature Ω → Ω → Ω.
5. Σα and Πα, having signature (α → Ω) → Ω, for each type α.

The intended meaning of =α is identity (that is, =α x y is � iff x and y are
identical), the intended meaning of � is true, the intended meaning of ⊥ is false,
and the intended meanings of the connectives ¬, ∧, ∨, −→, ←−, and ←→ are as
usual. The intended meanings of Σα and Πα are that Σα maps a predicate to
� iff the predicate maps at least one element to � and Πα maps a predicate to
� iff the predicate maps all elements to �.

We assume there are necessity modality operators �i, for i = 1, . . . , m.

Definition 3. A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.
2. A constant in C having signature α is a term of type α.
3. If t is a term of type β and x a variable of type α, then λx.t is a term of

type α → β.
4. If s is a term of type α → β and t a term of type α, then (s t) is a term of

type β.
5. If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a

term of type α1 × · · · × αn.
6. If t is a term of type α and i ∈ {1, . . . , m}, then �it is a term of type α.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form
(Πα λx.t) are written as ∀αx.t (in accord with the intended meaning of Σα and
Πα). Thus, in higher-order logic, each quantifier is obtained as a combination of
an abstraction acted on by a suitable function (Σα or Πα).

The polymorphic version of the logic extends what is given above by also
having available parameters which are type variables (denoted by a, b, c, . . .).
The definition of a type as above is then extended to polymorphic types that
may contain parameters and the definition of a term as above is extended to
terms that may have polymorphic types. We work in the polymorphic version of
the logic in the remainder of the paper. In this case, we drop the α in ∃α, ∀α,
and =α, since the types associated with ∃, ∀, and = are now inferred from the
context.

An important feature of higher-order logic is that it admits functions that can
take functions as arguments and return functions as results. (First-order logic
does not admit these so-called higher-order functions.) This fact can be exploited
in applications, through the use of predicates to represent sets and densities to
model uncertainty, for example.

As is well known, modalities can have a variety of meanings, depending on the
application. Some of these are indicated here; much more detail can be found in
[13], [14] and [12], for example.

In multi-agent applications, one meaning for �iϕ is that ‘agent i knows ϕ’.
In this case, the modality �i is written as Ki. A weaker notion is that of belief.
In this case, �iϕ means that ‘agent i believes ϕ’ and the modality �i is written
as Bi.

Probabilistic and Logical Beliefs 23

The modalities also have a variety of temporal readings. We will make use of
the (past) temporal modalities � (‘last’) and � (‘always in the past’).

Modalities can be applied to terms that are not formulas. Thus terms such
as Bi42 and �A, where A is a constant, are admitted. We will find to be par-
ticularly useful terms that have the form �j1 · · ·�jrf , where f is a function
and �j1 · · ·�jr is a sequence of modalities. The symbol ��� denotes a sequence of
modalities.

Composition is handled by the (reverse) composition function ◦ defined by
((f ◦ g) x) = (g (f x)).

The logic has a conventional possible-worlds semantics with higher-order in-
terpretations at each world.

3 Densities

This section presents some standard notions of measure theory, particularly that
of a density, which will be needed later [15].

Definition 4. Let (X, A, μ) be a measure space and f : X → R a measurable
function. Then f is a density (on (X, A, μ)) if (i) f(x) ≥ 0, for all x ∈ X, and
(ii)

∫
X f dμ = 1.

There are two main cases of interest. The first is when μ is the counting
measure on X , in which case

∫
X f dμ =

∑
x∈X f(x); this is the discrete case.

The second case is when X is Rn, for some n ≥ 1, and μ is Lebesgue measure;
this is the continuous case.

A density f gives a probability ν on A by the definition

ν(A) =
∫
A

f dμ,

for A ∈ A. In the common discrete case, this definition specialises to

ν(A) =
∑
x∈A

f(x).

If (X, A, μ) is a measure space, then Density X denotes the set of densities
on (X, A, μ).

Some (higher-order) functions that operate on densities will be needed. The
following two definitions give natural ways of ‘composing’ functions whose
codomains are densities.

Definition 5. Let (X, A, μ), (Y, B, ν), and (Z, C, ξ) be measure spaces. The
function : (X → Density Y) → (Y → Density Z) → (X → Density Z) is
defined by

(f g)(x)(z) =
∫
Y

f(x)(y) × g(y)(z) dν(y),

for f : X → Density Y , g : Y → Density Z, x ∈ X, and z ∈ Z.

24 J.W. Lloyd and K.S. Ng

Specialised to the discrete case, the definition is

(f g)(x)(z) =
∑
y∈Y

f(x)(y) × g(y)(z).

Definition 6. The function

§ : Density Y → (Y → Density Z) → Density Z

is defined by

(f § g)(z) =
∫
Y

f(y) × g(y)(z) dν(y),

where f : Density Y , g : Y → Density Z, and z ∈ Z.

Specialised to the discrete case, the definition is

(f § g)(z) =
∑
y∈Y

f(y) × g(y)(z).

We can define conditional densities. Consider a function f : Density X × Y
that defines a product density. Then we can express the conditional density
obtained by conditioning on values in X by the function f1 : X → Density Y
defined by

f1(x)(y) =
f(x, y)∫

Y
f(x, y) dν(y)

,

for x ∈ X and y ∈ Y . Clearly, f1(x) is a density. Conditioning on the other
argument is analogous to this.

Marginal densities can also be defined. Consider a function

f : Density X × Y × Z

that defines a product density. Then we can form the marginal density over the
first argument by the function f1 : Density X defined by

f1(x) =
∫
Z

∫
Y

f(x, y, z) dν(y) dξ(z),

for x ∈ X . By Fubini’s theorem, f1 is a density. This is easily extended to
marginalising in arbitrary products.

4 Integrating Logic and Probability

This section provides an overview of our approach to integrating logic and proba-
bility. The key idea is to allow densities to appear in theories. For this reason, we
first set up some logical machinery for this. In the logic, we let Density σ denote

Probabilistic and Logical Beliefs 25

the type of densities whose arguments have type σ. Any term of type Density σ,
for some σ, is called a density. We also make available the functions from
Section 3 that compose functions whose codomains are densities. Condition-
alisation and marginalisation are also easily expressed.

The idea is to model uncertainty by using densities in the definitions of (some)
functions in theories. Consider a function f : σ → τ for which there is some
uncertainty about its values that we want to model. We do this with a function

f ′ : σ → Density τ,

where, for each argument t, (f ′ t) is a suitable density for modelling the uncer-
tainty in the value of the function (f t). The intuition is that the actual value of
(f t) is likely to be where the ‘mass’ of the density (f ′ t) is most concentrated.
Of course, (unconditional) densities can also be expressed by functions having a
signature of the form Density τ .

This simple idea turns out to be a powerful and convenient way of modelling
uncertainty with logical theories in diverse applications, especially agent appli-
cations. Note carefully the use that has been made of the expressive logic here.
Functions whose values are densities are higher-order functions that cannot be
modelled directly in first-order logic.

As well as representing knowledge, it is necessary to reason with it. We em-
ploy a declarative programming language called Bach for this purpose. Bach is
a probabilistic modal functional logic programming language. Programs in the
language are equational theories in modal higher-order logic. The reasoning sys-
tem for the logic underlying Bach combines a theorem prover and an equational
reasoning system [12,16]. The theorem prover is a fairly conventional tableau the-
orem prover for modal higher-order logic. The equational reasoning system is,
in effect, a computational system that significantly extends existing declarative
programming languages by adding facilities for computing with modalities and
densities. The proof component and the computational component are tightly
integrated, in the sense that either can call the other. Furthermore, this synergy
between the two makes possible all kinds of interesting reasoning tasks. For agent
applications, the most common reasoning task is a computational one, that of
evaluating a function call. In this case, the theorem-prover plays a subsidiary
role, usually that of performing some rather straightforward modal theorem-
proving tasks. However, in other applications it can just as easily be the other
way around with the computational system performing subsidiary equational
reasoning tasks for the theorem prover.

Here is an example to illustrate the ideas introduced so far.

Example 1. We model the following scenario, which is one of the main examples
used in [3]. An urn contains an unknown number of balls that have the colour blue
or green with equal probability. Identically coloured balls are indistinguishable.
An agent has the prior belief that the distribution of the number of balls is a
Poisson distribution with mean 6. The agent now draws some balls from the urn,
observes their colour, and then replaces them. The observed colour is different
from the actual colour of the ball drawn with probability 0.2. On the basis of

26 J.W. Lloyd and K.S. Ng

these observations, the agent should infer certain properties about the urn, such
as the number of balls it contains.

It was claimed in [3] that this problem cannot be modelled in most existing
first-order probabilistic languages because the number of balls in the urn is
unknown. Interestingly, the problem can be modelled rather straightforwardly if
we define densities over structured objects like sets and lists. The following is a
suitable graphical model.

�� ��

�� �	
numOfBalls ���� ��

�� �	
setOfBalls ���� ��

�� �	ballsDrawnd
���� ��

�� �	observations

In the simulation given by the following Bach program, a number n is selected
from the Poisson distribution and a set s of balls of size n is constructed. A ball
is represented by an integer identifier and its colour: Ball = Int × Colour . The
balls in s are labelled 1 to n, and the colours are chosen randomly. Given s, a
list is constructed consisting of d balls by drawing successively at random with
replacement from s. The observed colours of the drawn balls are then recorded.

colour : Colour → Ω

(colour x) = (x = Blue) ∨ (x = Green)

numOfBalls : Density Int
(numOfBalls x) = (poisson 6 x)

poisson : Int → Density Int

(poisson x y) = e−xxy/y!

setOfBalls : Int → Density {Ball }
(setOfBalls n s) = if ∃x1 · · · ∃xn.((colour x1) ∧ · · · ∧ (colour xn) ∧

(s = {(1, x1), . . . , (n, xn)}) then 0.5n else 0

ballsDrawn : Int → {Ball } → Density (List Ball)
(ballsDrawn d s x) =

if ∃x1 · · · ∃xd.((s x1) ∧ · · · ∧ (s xd) ∧ (x = [x1, . . . , xd])) then (card s)−d else 0

observations : (List Ball) → Density (List Colour)
(observations x y) = if (length x) = (length y) then (obsProb x y) else 0

obsProb : (List Ball) → (List Colour) → Real
(obsProb [] []) = 1
(obsProb (# (x1, y1) z1) (# y2 z2)) =

(if (y1 = y2) then 0.8 else 0.2) · (obsProb z1 z2)

joint : Int → Density (Int × {Ball } × (List Ball) × (List Colour))
(joint d (n, s, x, y)) =

(numOfBalls n) · (setOfBalls n s) · (ballsDrawn d s x) · (observations x y)

Probabilistic and Logical Beliefs 27

The function card returns the cardinality of a set and length returns the size
of a list. The functions setOfBalls and ballsDrawn are defined informally above;
formal recursive definitions can be given.

Marginalisations and conditionalisations of the given density can be com-
puted to obtain answers to different questions. For example, the following gives
the probability that the number of balls in the urn is m after the colours
[o1, o2, . . . , od] from d draws have been observed:

1
K

∑
s

∑
l

(joint d (m, s, l, [o1, o2, . . . , od])),

where K is a normalisation constant, s ranges over { s | (setOfBalls m s) > 0 },
and l ranges over { l | (ballsDrawn d s l) > 0 }. The elements of these two sets
are automatically enumerated by Bach during execution of the query.

At this stage, it is interesting make a comparison with other approaches to in-
tegrating logic and probability. Perhaps the main point is the value of working
in a higher-order logic. All other logical approaches to this integration that we
know of use first-order logic and thereby miss the opportunity of being able to
reason about densities in theories. This is an important point. (Classical) logic
is often criticised for its inability to cope with uncertainty: witness the quote in
the introduction. In contrast, our view is that higher-order logic is quite capa-
ble of modelling probabilistic statements about knowledge directly in theories
themselves, thus providing a powerful method of capturing uncertainty. In first-
order logic, there is a preoccupation with the truth or falsity of formulas, which
does seem to preclude the possibility of capturing uncertainty. However, looked
at from a more general perspective, first-order logic is impoverished. It is not
natural to exclude higher-order functions – these are used constantly in everyday
(informal) mathematics. Also the rigid dichotomy between terms and formulas
in first-order logic gets in the way. In higher-order logic, a formula is a term
whose type just happens to be boolean; also it is just as important to compute
the value of arbitrary terms, not only formulas. Higher-order logic is essentially
the language of everyday mathematics and no-one would ever claim situations
involving uncertainty and structural relationships between entities cannot be
modelled directly and in an integrated way using mathematics – therefore they
can also be so modelled using higher-order logic.

Another significant difference concerns the semantic view that is adopted. In
the most common approach to integration explained above there is assumed to be
a distribution on interpretations and answering queries involves performing com-
putations over this distribution. In principle, this is fine; given the distribution,
one can answer queries by computing with this distribution. But this approach is
intrinsically more difficult than computing the value of terms in the traditional
case of having one intended interpretation, the difficulty of which has already led
to nearly all artificial intelligence systems using the proof-theoretic approach of
building a theory (that has the intended interpretation as a model) and proving
theorems with this theory instead. Here we adopt the well-established method
of using a theory to model a situation and relying on the soundness of theorem

28 J.W. Lloyd and K.S. Ng

proving to produce results that are correct in the intended interpretation [12].
We simply have to note that this theory, if it is higher-order, can include densi-
ties that can be reasoned with. Thus no new conceptual machinery at all needs to
be invented. In our approach, whatever the situation, there is a single intended
interpretation, which would include densities in the case where uncertainty is
being modelled, that is a model of the theory. Our approach also gives fine con-
trol over exactly what uncertainty is modelled – we only introduce densities in
those parts of the theory that really need them. Furthermore, the probabilistic
and non-probabilistic parts of a theory work harmoniously together.

5 Beliefs

In this section, we discuss suitable syntactic forms for beliefs. There are no gen-
erally agreed forms for beliefs in the literature, other than the basic requirement
that they be formulas. For the purpose of constructing multi-agent systems, we
propose the following definition.

Definition 7. A belief is the definition of a function f : σ → τ having the form

���∀x.((f x) = t),

where ��� is a (possibly empty) sequence of modalities and t is a term of type τ .
The function f thus defined is called a belief function. In case τ has the form

Density ν, for some ν, we say the belief is probabilistic.
A belief base is a set of beliefs.

Typically, for agent j, beliefs have the form Bjϕ, with the intuitive meaning
‘agent j believes ϕ’, where ϕ is ∀x.((f x) = t). Other typical beliefs have the
form BjBiϕ, meaning ‘agent j believes that agent i believes ϕ’. If there is a
temporal component to beliefs, this is often manifested by temporal modalities
at the front of beliefs. Then, for example, there could be a belief of the form�2BjBiϕ, whose intuitive meaning is ‘at the second last time, agent j believed
that agent i believed ϕ’. (Here, �2 is a shorthand for ��.)

To motivate Definition 7, we now consider a probabilistic extension of the
rational agent architecture described in [17].

For this purpose, let S be the set of states of the agent and A the set of actions
that the agent can apply. The set S is the underlying set of a measure space that
has a σ-algebra A and a measure μ on A. Often (S, A, μ) is discrete so that A

is the powerset of S and μ is the counting measure. The dynamics of the agent
is captured by a function

transition : A → S → Density S.

In the discrete case, transition(a)(s)(s′) is the conditional probability that, given
the state is s and action a is applied, there will be a transition to state s′.

Various specific rationality principles could be used; a widely used one is
the principle of maximum expected utility [18, p.585] (namely, a rational agent

Probabilistic and Logical Beliefs 29

should choose an action that maximises the agent’s expected utility, where the
utility is a real-valued function on the set of states). If this principle is used, it is
assumed that the utility function is known to the agent and that the maximum
expected value of the utility corresponds closely to the external performance
measure. Under the principle of maximum expected utility, the policy function

policy : Density S → A

is defined by

policy(s) = argmax
a∈A

Es § transition(a)(utility),

for each s ∈ Density S. Here Es § transition(a)(utility) denotes the expectation of
the random variable utility : S → R with respect to the density s § transition(a)
(where § was defined in Section 3). If the current state density is s, then the
action selected is thus the one given by policy(s).

In many complex applications, the agent is not given the definition of the
function transition (or cannot be given this definition because it is impracti-
cal to specify it precisely enough); in such cases, the agent essentially has to
learn the transition function from its experience in the environment. A common
complication then is that the number of states may be very large, so large in
fact that it is quite impractical to attempt to learn directly the definition of the
function transition. Instead, an obvious idea is to partition the set of states into
a much smaller number of subsets of states such that the states in each subset
can be treated uniformly and learn a transition function over equivalence classes
of states. We now explore this idea, showing how the expressivity of the logic
can be exploited to turn this idea into a practical method that assists in the
construction of agents.

It will be important to employ two different ways of partitioning the states.
For this reason, two collections of functions on states are introduced. These are

ei : S → Vi,

where i = 1, . . . , n, and

rj : S → Wj ,

where j = 1, . . . , m. Each function ei, for i = 1, . . . , n, is called an evidence
feature and each function rj , for j = 1, . . . , m, is called a result feature. Each ei
and rj is a feature that picks out a specific property of a state that is relevant to
selecting actions. Evidence features are so-called because they pick out properties
of the state that suggest the action that ought to be selected. Result features are
so-called because they pick out properties of the state which result from applying
an action that can be usefully employed in the calculation of its utility. An
interesting fact that emerges from applying these ideas to practical applications
is how different the evidence features are compared with the result features [17].

Typically, the cardinality of the product spaces V1×· · ·×Vn and W1×· · ·×Wm

are much smaller than the cardinality of S. Often, some Vi and Wj are simply

30 J.W. Lloyd and K.S. Ng

the set of booleans. In an application that is at least partly continuous, they
could be R. There are two key functions associated with this construction. The
function

(e1, . . . , en) : S → V1 × · · · × Vn

is defined by

(e1, . . . , en)(s) = (e1(s), . . . , en(s)),

for each s ∈ S. The space V1 × · · · × Vn is assumed to have a suitable σ-algebra
of measurable sets on it, so that (e1, . . . , en) is a measurable function. If μ is the
measure on S, then (e1, . . . , en)−1 ◦ μ is the measure imposed on V1 × · · · × Vn.
(Note that (f ◦ g)(x) means g(f(x)).) Similarly, the function

(r1, . . . , rm) : S → W1 × · · · × Wm

is defined by

(r1, . . . , rm)(s) = (r1(s), . . . , rm(s)),

for each s ∈ S. The space W1 × · · · × Wm is also assumed to have a suitable
σ-algebra of measurable sets on it, so that (r1, . . . , rm) is a measurable function.
Similarly, (r1, . . . , rm)−1 ◦ μ is the measure imposed on W1 × · · · × Wm.

Now, instead of the transition function

transition : A → S → Density S,

one works with a function

transition ′ : A → V1 × · · · × Vn → Density W1 × · · · × Wm.

The motivation for doing this is that transition ′ should be more amenable to be-
ing learned because of the much smaller cardinalities of its domain and codomain.
Some precision is lost in working with V1 × · · · × Vn and W1 × · · · ×Wm instead
of S in this way, as discussed below; to make up for this, informative choices of
the evidence and result features need to be made. The policy is now defined by

policy(s) = argmax
a∈A

Es § ((e1,...,en) ◦ transition ′(a))(utility ′),

for each s ∈ Density S. Here

utility ′ : W1 × · · · × Wm → R.

The result features are intended to be chosen so that (r1, . . . , rm) ◦ utility ′ gives
the utility of each state. Note that

(e1, . . . , en) ◦ transition ′(a) : S → Density W1 × · · · × Wm,

Probabilistic and Logical Beliefs 31

so that s § ((e1, . . . , en) ◦ transition ′(a)) is a density on W1 × · · · × Wm.
If the action selected by the policy is amax , then the state density that results

by applying this action is

s § ((e1, . . . , en) ◦ transition ′(amax) ◦ (r1, . . . , rm)).

Here, since (r1, . . . , rm) : S → W1 × · · · × Wm, it follows from [15, Theorem
4.1.11] that one can define the function

(r1, . . . , rm) : Density W1 × · · · × Wm → Density S

by

(r1, . . . , rm)(h) = (r1, . . . , rm) ◦ h,

for each h ∈ Density W1 × · · · × Wm. Thus

(e1, . . . , en) ◦ transition ′(amax) ◦ (r1, . . . , rm) : S → Density S

and so

s § ((e1, . . . , en) ◦ transition ′(amax) ◦ (r1, . . . , rm)) : Density S,

as required.
Now consider this question: what makes up the belief base of such an agent?

Clearly, the definitions of the evidence and (some of the) result features should
be in the belief base. Further, the definitions of the functions transition , utility
and policy should also be in the belief base. And these are all the beliefs the
agent needs to maintain about the environment in order to act rationally. This
concludes our motivation for Definition 7.

At this point, the advantages and disadvantages of introducing features are
clearer. The main advantage is that they can make learning the transition func-
tion feasible when otherwise it wouldn’t be because of the vast size of the state
space. The main disadvantage is that some precision in the update of the state
density during the agent cycle is lost since this is now mediated by passing
through V1 × · · · ×Vn and W1 × · · · ×Wm. This shows the crucial importance of
finding suitable features; if these can be found, and experience has shown that
this can be hard for some applications, then the loss of precision is likely to
be small and there is everything to gain. Choosing the ‘right’ (general form of)
features is generally a problem that has to be solved before deployment by the
designer of the agent, although some techniques are known that allow agents to
discover such information autonomously. For example, it is likely that the fea-
tures will need to capture beliefs about the beliefs of other agents, beliefs about
temporal aspects of the environment, and will have to cope with uncertainty.
The logic of this paper is ideal for the representation of such properties. Agents
can learn the precise definition of a feature (whose general form is given by an
hypothesis language) during deployment by machine learning techniques. This
eases the task of the designer since only the general forms of the features need

32 J.W. Lloyd and K.S. Ng

specifying before deployment. In a dynamic environment, this adaptive capabil-
ity of an agent is essential, of course.

The above description generalises the agent architecture presented in [17]
by admitting probabilistic beliefs in addition to non-probabilistic ones. Using a
density to model the uncertain value of a function on some argument is better
than using a single value (such as the mean of the density). For example, if the
density is a normal distribution, then it may be important that the variance is
large or small: if it is large, intuitively, there is less confidence about its actual
value; if it is small, then there could be confidence that the actual value is the
mean. Such subtleties can assist in the selection of one action over another.
Similarly, learning tasks can exploit the existence of the density by including
features based on the mean, variance, higher moments, or other parameters of
the density in hypothesis languages.

We now examine the form that beliefs can take in more detail. Some beliefs
can be specified directly by the designer and the body of the definition can be
any term of the appropriate type. In particular, some of these beliefs may be
compositions of other probabilistic beliefs in which case the composition oper-
ators introduced in Section 3 will be useful. Some beliefs, however, need to be
acquired from training examples, usually during deployment. We propose a par-
ticular form for beliefs of this latter type. We consider beliefs that, for a function
f : σ → τ , are definitions of the following form.

���∀x.((f x) = (1)

if (p1 x) then v1

else if (p2 x) then v2

...
else if (pn x) then vn

else v0),

where ��� is a (possibly empty) sequence of modalities, p1, . . . , pn are predicates
that can be modal and/or higher order, and v0, v1, . . . , vn are suitable values.
Such a belief is a definition for the function f in the context of the modal
sequence ���. Note that in the case when τ has the form Density ν, for some ν,
the values v0, v1, . . . , vn are densities.

While the above form for acquired beliefs may appear to be rather specialised,
it turns out to be convenient and general, and easily encompasses beliefs in many
other forms [19,20]. Also this decision-list form of beliefs is highly convenient for
acquisition using some kind of learning algorithm [21,22,23,24]. Towards that
end, the Alkemy machine learning system [22,23] is being extended with the
ability to acquire modal and probabilistic beliefs.

6 Illustration

Here is an extended example to illustrate the ideas that have been introduced.

Probabilistic and Logical Beliefs 33

Example 2. Consider a majordomo agent that manages a household. There are
many tasks for such an agent to carry out including keeping track of occupants,
turning appliances on and off, ordering food for the refrigerator, and so on.

Here we concentrate on one small aspect of the majordomo’s tasks which is
to recommend television programs for viewing by the occupants of the house.
Suppose the current occupants are Alice, Bob, and Cathy, and that the agent
knows the television preferences of each of them in the form of beliefs about the
function likes : Program → Density Ω. Let Bm be the belief modality for the
majordomo agent, Ba the belief modality for Alice, Bb the belief modality for
Bob, and Bc the belief modality for Cathy. Thus part of the majordomo’s belief
base has the following form:

BmBa ∀x.((likes x) = ϕ) (2)
BmBb ∀x.((likes x) = ψ) (3)
BmBc ∀x.((likes x) = ξ) (4)

for suitable ϕ, ψ, and ξ. We will now look at the form of a belief about likes .
Methods for acquiring these beliefs were studied in [25].

Figure 1 is a typical definition acquired incrementally using real data. In the
beginning, the belief base contains the formula

Bm�Ba∀x.((likes x) = λy.if (y = �) then 0.5 else if (y = ⊥) then 0.5 else 0).

The meaning of this formula is “the agent believes that, at all times in the past,
Alice has no preference one way or another over any program”. After 3 time
steps, this formula has been transformed into the last formula in Figure 1. In

Bm Ba ∀x.((likes x) =

if (projTitle ◦ (= “NFL Football”) x) then λy.if (y = �) then 1 else if (y = ⊥) then 0 else 0

else if (projTitle ◦ (existsWord (= “sport”)) x) then λy.if (y = �) then 0.7

else if (y = ⊥) then 0.3 else 0

else (�likes x))

�Bm Ba ∀x.((likes x) =

if (projGenre ◦ (= Documentary) x) then λy.if (y = �) then 0.9 else if (y = ⊥) then 0.1 else 0

else if (projGenre ◦ (= Movie) x) then λy.if (y = �) then 0.75 else if (y = ⊥) then 0.25 else 0

else (�likes x))

�2Bm Ba ∀x.((likes x) =

if (projGenre ◦ (= Documentary) x) then λy.if (y = �) then 1 else if (y = ⊥) then 0 else 0

else if (projGenre ◦ (= Drama) x) then λy.if (y = ⊥) then 0.8 else if (y = �) then 0.2 else 0

else (�likes x))

�3Bm�Ba∀x.((likes x) = λy.if (y = �) then 0.5 else if (y = ⊥) then 0.5 else 0).

Fig. 1. Part of the belief base of the agent

34 J.W. Lloyd and K.S. Ng

general, at each time step, the beliefs about likes at the previous time steps each
have another � placed at their front to push them one step further back into
the past, and a new current belief about likes is acquired. Note how useful parts
of previously acquired beliefs are recycled in forming new beliefs.

We have seen the general form of beliefs (2)-(4). Given these beliefs about the
occupant preferences for TV programs, the task for the majordomo agent is to
recommend programs that all three occupants would be interested in watching
together. To estimate how much the group as a whole likes a program, the agent
simply counts the number of positive preferences, leading to the definition of
aggregate below. To deal with the fact that user preferences are not definite but
can only be estimated, we compose aggregate with the function combinePrefs to
form groupLikes , where combinePrefs brings the individual preferences together.

combinePrefs : Program → Density Ω × Ω × Ω

Bm ∀p.∀x.∀y.∀z.((combinePrefs p (x, y, z)) =
(Balikes p x) × (Bblikes p y) × (Bclikes p z))

aggregate : Ω × Ω × Ω → Density Ω

Bm ∀x.∀y.∀z.((aggregate (x, y, z)) =

λv.
1
3
((I (x = v)) + (I (y = v)) + (I (z = v))))

groupLikes : Program → Density Ω

Bm ∀x.((groupLikes x) =
((combinePrefs aggregate) x)).

Here, I : Ω → Int is the indicator function defined by (I �) = 1 and (I ⊥) = 0.
The version of combinePrefs given above makes an independence assumption

amongst the densities Balikes p, and so on. It may be that there are some
dependencies between these densities that could be learned. In this case, a more
complicated definition of combinePrefs would be substituted for the one above.
Analogous comments apply to aggregate.

Now let us look more closely at what the architecture of the agent would
look like if the rational agent architecture were used for this task. The function
groupLikes is the latter component of one of the evidence features, say e1. (The
initial component of e1 maps from states to programs.) There are likely to be
other evidence features as well. For example, there may be an evidence feature
that determines whether all the occupants are free to watch the program at the
time it is on. Once all the evidence and result features have been determined,
the function

transition ′ : A → V1 × · · · × Vn → Density W1 × · · · × Wm

that is learned by Alkemy would be used along with the utility to give a rational
policy to select an appropriate action (to recommend or not recommend any
particular program.)

Probabilistic and Logical Beliefs 35

Note that, for this example, elements in V1 have type Density Ω. This means
that the hypothesis language used to learn transition ′ should take account of
properties of the density. In such a simple case as a density on the booleans,
there are not many possibilities; different thresholds on the probability of �
could be tried, for example.

7 Conclusion

This paper has shown how to integrate logical and probabilistic beliefs in modal
higher-order logic. The key point is that the expressive power of the logic allows
densities and other probabilistic concepts to appear in beliefs. Our approach
is based on the well-established method that uses theories to model situations,
and reasoning procedures, such as theorem-proving and equational reasoning, to
determine the values of terms (in the intended interpretation). The integration
of logic and probability does not force any restriction on the logic employed;
indeed, it is the expressive power of the logic that makes the integration actually
possible. In fact, the logic we employ is considerably more expressive than those
used in all other approaches to integration that we are aware of. Reasoning about
probabilistic beliefs is realised through the Bach programming language that
has special implementational support for this. In particular, there is support for
operations, such as marginalisation, on large product densities. Also the standard
compositional operations on densities can be neatly encoded in Bach. Beliefs can
be acquired with the Alkemy learning system.

Future work includes completing the implementations of Bach and Alkemy,
and applying the technology in challenging application areas, such as cognitive
robotics and vision.

Acknowledgments

NICTA is funded through the Australian Government’s Backing Australia’s Abil-
ity initiative, in part through the Australian Research Council.

References

1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge
(2005)

2. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

3. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: Prob-
abilistic models with unknown objects. In: Kaelbling, L., Saffiotti, A. (eds.) Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence, pp.
1352–1359 (2005)

4. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–
136 (2006)

5. Milch, B., Russell, S.: First-order probabilistic languages: Into the unknown. In:
Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
vol. 4455, pp. 10–24. Springer, Heidelberg (2007)

36 J.W. Lloyd and K.S. Ng

6. Kersting, K., De Raedt, L.: Bayesian logic programming: Theory and tool. In:
Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

7. Shirazi, A., Amir, E.: Probabilistic modal logic. In: Holte, R., Howe, A. (eds.)
Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 489–495
(2007)

8. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28(1), 71–88 (1986)
9. Halpern, J.: An analysis of first-order logics of probability. Artificial Intelligence 46,

311–350 (1989)
10. Williamson, J.: Probability logic. In: Gabbay, D., Johnson, R., Ohlbach, H., Woods,

J. (eds.) Handbook of the Logic of Inference and Argument: The Turn Toward the
Practical. Studies in Logic and Practical Reasoning, vol. 1, pp. 397–424. Elsevier,
Amsterdam (2002)

11. De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explo-
rations 5(1), 31–48 (2003)

12. Lloyd, J.: Knowledge representation and reasoning in modal higher-order logic
(2007), http://users.rsise.anu.edu.au/∼jwl

13. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

14. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications. Studies in Logic and The Foundations of Math-
ematics, vol. 148. Elsevier, Amsterdam (2003)

15. Dudley, R.: Real Analysis and Probability. Cambridge University Press, Cambridge
(2002)

16. Lloyd, J., Ng, K.S.: Reflections on agent beliefs. In: Baldoni, M., Son, T., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS(LNAI), vol. 4897, pp.
122–139. Springer, Heidelberg (2007)

17. Lloyd, J., Sears, T.: An architecture for rational agents. In: Baldoni, M., et al. (eds.)
DALT 2005. LNCS (LNAI), vol. 3904, pp. 51–71. Springer, Heidelberg (2006)

18. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn.
Prentice-Hall, Englewood Cliffs (2002)

19. Rivest, R.: Learning decision lists. Machine Learning 2(3), 229–246 (1987)
20. Eiter, T., Ibaraki, T., Makino, K.: Decision lists and related boolean functions.

Theoretical Computer Science 270(1-2), 493–524 (2002)
21. Lloyd, J., Ng, K.S.: Learning modal theories. In: Muggleton, S., Otero, R.,

Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 320–334.
Springer, Heidelberg (2007)

22. Lloyd, J.: Logic for Learning. Cognitive Technologies. Springer, Heidelberg (2003)
23. Ng, K.S.: Learning Comprehensible Theories from Structured Data. PhD thesis,

Computer Sciences Laboratory, The Australian National University (2005)
24. Buntine, W.L.: A Theory of Learning Classification Rules. PhD thesis, School of

Computing Science, University of Technology, Sydney (1992)
25. Cole, J., Gray, M., Lloyd, J., Ng, K.S.: Personalisation for user agents. In: Dignum,

F., et al. (eds.) Fourth International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2005), pp. 603–610 (2005)

http://users.rsise.anu.edu.au/~jwl

An Argumentation Based Semantics for Agent
Reasoning

Sanjay Modgil

Department of Computer Science, Kings College London

Abstract. A key challenge for agent architectures and programming paradigms
is to account for defeasible reasoning over mental attitudes and to provide as-
sociated conflict resolution mechanisms. A growing body of work is looking to
address these challenges by proposing argumentation based approaches to agent
defeasible and practical reasoning. This work conforms to Dung’s seminal ar-
gumentation semantics. In this paper we review our previous work in which we
extend Dung’s semantics to allow for inclusion of arguments that express pref-
erences between other arguments. In this way we account for the fact that pref-
erence information required to resolve conflicts is itself defeasible and may be
conflicting. We then propose the extended semantics as a semantics for agent
defeasible and practical reasoning, and substantiate this claim by showing how
our semantics can characterise, and indeed provide a framework for extending,
existing approaches to agent reasoning over beliefs, goals, and actions.

1 Introduction

A key challenge for agent architectures and programming paradigms is the need to
formalise defeasible (non-monotonic) and practical reasoning, and associated conflict
resolution mechanisms for mental attitudes such as beliefs, desires, intentions and obli-
gations. Conflicts can arise within mental attitudes. For example, two beliefs may log-
ically contradict, or two goals may logically preclude realisation of each other. Plans
can be represented in terms of atomic actions related to the adopted goals (intentions)
they are intended to realise [9],[20]. Alternative plans for realising a given intention can
be viewed as conflicting (in the sense that one must be chosen at the expense of the
other), or two plans for realising different intentions can be said to conflict if resource
bounds preclude their joint execution. Conflicts can also arise between mental attitudes;
e.g. a desire derived goal conflicting with an obligation derived goal [8]. Hence, non-
monotonic formalisms such as Default Logic [21], have been adopted as a semantics
for agent reasoning [23]. For example, the BOID architecture characterises generated
candidate goal sets as extensions of a prioritised default logic theory in which rules for
inferring goals are modelled as defaults, and a prioritisation of these defaults resolves
conflicts between mental attitudes [8]. Consider two default rules respectively inferring
the conflicting desire derived goal of ‘being on the beach’ and obligation derived goal
of ‘being at work’. Prioritising the former rule over the later will result in the gener-
ation of a single extension containing the goal to be on the beach. Indeed, goals are
generated through the interaction of beliefs, intentions, desires and obligations, and pri-
oritisations on these attitudes to resolve conflicts, correspond to different agent types

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 37–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 S. Modgil

(12 primitive types are identified in [8]). For example, a selfish agent will prioritise
desire over obligation derived goals, whereas a social agent will adopt the reverse pri-
oritisation. Default Logic semantics have also been proposed for primitives in agent
programming languages [22]. For example, the GenGoals and GenPlan primitives in
[9] are defined in terms of generation of prioritised default logic extensions of goals,
respectively plans.

In recent years, a growing body of work (e.g. [2],[4],[12],[14],[20]) has proposed ar-
gumentation based approaches to agent defeasible and practical reasoning. These works
propose logical formalisms that conform to Dung’s seminal argumentation semantics
[11] (and its variants). A Dung argumentation framework consists of a set of arguments
Args and a binary conflict based relation R on Args (R ⊆ Args × Args). A ‘calcu-
lus of opposition’ is then applied to the framework to evaluate the winning (justified)
arguments under different extensional semantics. The underlying logic, and definition
of the logic’s constructed arguments Args and relation R, is left unspecified, thus en-
abling instantiation of a framework by various logical formalisms. Dung’s semantics
have thus become established as a general framework for non-monotonic reasoning,
and, more generally, reasoning in the presence of conflict. A theory’s inferences can be
defined in terms of the claims of the justified arguments constructed from the theory
(an argument essentially being a proof of a candidate inference - the argument’s claim
- in the underlying logic). Indeed, many of the major species of logic programming
and non-monotonic logics (e.g. default, autoepistemic, non-monotonic modal logics)
turn out to be special forms of Dung’s theory [6,11]. Hence, Dung’s semantics can be
seen to generalise and subsume the above Default Logic semantics proposed for agent
architectures and programming languages.

To determine a unique set of justified arguments invariably requires preference in-
formation to resolve conflicts between pairs of attacking arguments. The role of pref-
erences has been formalised in both the underlying logical formalisms that instantiate
a Dung framework, and at the abstract level of the framework itself. Examples of the
former (e.g., [19]) define the relation R in terms of the conflict based interaction be-
tween two arguments, and a preference based on their relative strength. Examples of
the latter (e.g., [1] [5]) augment Dung’s framework to include a preference ordering on
arguments. Hence, given a conflict based attack relation R on the arguments, a defeat
relation R′ is defined, where defeat represents a successful attack by additionally ac-
counting for the relative strengths of (preferences between) attacking arguments. The
justified arguments are then evaluated on the basis of the defeat relation R′.

However, the preference information required to determine the success of an attack is
often assumed pre-specified as a given ordering, and external to the logical formalism.
This does not account for the fact that preferences may vary according to context, and
because information sources (be they agents or otherwise) may disagree as to the crite-
ria by which the strengths of arguments should be valuated, or the valuations assigned
for a given criterion. Hence, to facilitate agent flexibility and adaptability, requires
argumentation based reasoning about, as well as with, defeasible and possibly conflict-
ing preference information. For example, a ‘social’ agent uniformly prioritises argu-
ments for obligation derived goals above arguments for desire derived goals. However,
certain contexts may warrant selfish behavior. Such behavioural heterogeneity requires

An Argumentation Based Semantics for Agent Reasoning 39

argumentation based reasoning as to which prioritisation (agent type) is appropriate in
a given context. In a practical reasoning context, consider two ‘instrumental’ arguments
(that can be understood as denoting unscheduled plans as in [12],[20],[?]) each of which
relate alternative drugs for realising a medical treatment goal. Different clinical trials
reporting on the relative efficacy of the drugs may lead to contradictory preferences,
requiring that the agent justify selecting one clinical trial valuation over another.

Requirements for reasoning about preferences have been addressed in works extend-
ing the object level logical languages for argument construction with rules for deriving
priorities amongst rules, e.g., in default logic [7] and logic programming [14,19]. One
can then construct ‘priority arguments’ whose claims determine preferences between
other mutually attacking arguments to determine the successful attacks (defeats). Argu-
ments claiming conflicting priorities may be constructed and preferences between these
can be established on the basis of other priority arguments. However, these works are
restricted to basing argument strength on a single criterion; one based on the priorities
of the argument’s constituent rules. In previous work [16] we extended Dung’s abstract
argumentation theory so as to allow for argumentation about preferences between argu-
ments. An extended framework can include ‘preference arguments’ that claim prefer-
ences between other arguments. This is achieved by defining a new attack relation that
originates from a preference argument, and attacks an attack between the arguments
that are the subject of the preference claim. In section 2 of this paper we present an
improved (in the sense that it simplifies) version of the extended semantics described
in [16] (more fully described, with associated proofs, in [17]). In the spirit of Dung’s
abstract approach, no commitment is made to how preferences are defined in the under-
lying logical formalism instantiating the extended framework. Thus, if C is a preference
argument expressing that an argument A is preferred to an argument B, then this pref-
erence may be based on any criterion for valuating argument strength, including criteria
that relate to the argument as a whole, such as the value promoted by the argument
[5]. We therefore claim that the extended semantics can serve as a general semantics
for flexible and adaptive agent defeasible and practical reasoning. We substantiate this
claim in sections 3 and 4. In section 3 we show how logic programming approaches such
as [14,19] can be formalised as instances of our extended framework. We illustrate with
examples demonstrating reasoning about preferences between conflicting arguments
for beliefs and goals. In section 4 we show how our framework provides for extend-
ing an existing argumentation based formalism for agent practical reasoning ([4]) so
as to accommodate defeasible reasoning about preference information that is assumed
pre-defined in [4]. Finally, we conclude and discuss future work in section 5.

2 Argumentation Semantics That Accommodate Defeasible
Reasoning about Preferences

A Dung argumentation framework is of the form (Args,R) where R ⊆ (Args×Args)
can denote either attack or defeat. A single argument A ∈ Args is defined as acceptable
w.r.t. some S ⊆ Args, if for every B such that (B, A) ∈ R, there exists a C ∈ S such
that (C, B) ∈ R. Intuitively, C ‘reinstates’ A. Dung then defines the acceptability of a
set of arguments under different extensional semantics. The definition is given here, in

40 S. Modgil

which S ⊆ Args is conflict free if no two arguments in S are related by R, and F is a
characteristic function of a framework, such that:

– F : 2Args �→ 2Args
– F (S) = {A ∈ Args|A is acceptable w.r.t. S}.

Definition 1. Let S ⊆ Args be a conflict free set. Then:

– S is admissible iff each argument in S is acceptable w.r.t. S (i.e. S ⊆ F (S))
– S is a preferred extension iff S is a set inclusion maximal admissible extension
– S is a complete extension iff each argument which is acceptable w.r.t. S is in S (i.e.

S = F (S))
– S is a stable extension iff ∀B /∈ S, ∃A ∈ S such that (A, B) ∈ R
– S is the grounded extension iff S is the least fixed point of F .

Consider the following example in which two individuals P and Q exchange arguments
A, B . . . about the weather forecast:

P : “Today will be dry in London since the BBC forecast sunshine” = A
Q : “Today will be wet in London since CNN forecast rain” = B
P : “But the BBC are more trustworthy than CNN” = C
Q : “However, statistics show that CNN are more accurate than the BBC” = C′

Q : “And basing a comparison on statistics is more rigorous and rational than basing a
comparison on your instincts about their relative trustworthiness” = E

Arguments A and B symmetrically attack, i.e., (A, B),(B, A) ∈ R. {A} and {B} are
admissible. We then have an argument C that claims that A is preferred to B. Hence B
does not successfully attack (defeat) A, but A does defeat B. Evaluating admissibility
on the basis of this binary defeat relation, {A} and not {B} is admissible. The impact
of argument C could conceivably be modelled by letting C attack B (see Δ1 in figure 1
in which an attack is visualised as an arrow from the attacker to the attacked). This
would yield the required result, but if an argument D then attacked A (e.g. D = “the
BBC forecast is for Glasgow and not London”) then {B} would still not be admissible
(Δ2 in figure 1). This is clearly inappropriate. C expresses a preference for A over B,
but if A is attacked (and defeated) by another argument, then we should recover B.
Intuitively, C is an argument about the relationship between A and B. Specifically, in
expressing a preference for A over B, C is an argument for A’s repulsion of, or defence
against, B’s attack on A, i.e., C defence attacks B’s attack on A (Δ3 in figure 1) so that
B’s attack on A does not succeed as a defeat. B’s attack on A is, as it were, cancelled
out, and we are left with A defeating B. Now, if D attacks A we will recover {B} as
an admissible extension (Δ4 in figure 1). Of course, given C′ claiming a preference for
B over A and so defence (d) attacking A’s attack on B, then we will have that {A}
and {B} are now both admissible, since neither defeats the other. Intuitively, C and C′

claim contradictory preferences and so attack each other (Δ5 in figure 1). These attacks
can themselves be subject to d attacks in order to determine the defeat relation between
C and C′ and so A and B. In the example, E d attacks the attack from C to C′ (Δ6 in
figure 1), and so determines that C′ defeats C. Hence, C’s d-attack on B’s attack on A
is cancelled out, and we are left with B defeating A; the discussion concludes in favour
of Q’s argument that it will be a wet day in London.

An Argumentation Based Semantics for Agent Reasoning 41

B A

C

Δ1

B A

C

Δ5
C'

B A

C

Δ2

D

B A

C

Δ3

B A

C

Δ4

D

B A

C

Δ5
C'

E

Fig. 1.

We now formally define the elements of an Extended Argumentation Framework:

Definition 2. An Extended Argumentation Framework (EAF) is a tuple (Args, R, D)
such that Args is a set of arguments, and:

– R ⊆ Args × Args
– D ⊆ (Args ×R)
– If (C, (A, B)), (C′, (B, A)) ∈ D then (C, C′), (C′, C) ∈ R

Notation 1. We may write A ⇀ B to denote (A, B) ∈ R. If in addition (B, A) ∈ R,
we may write A � B. We may also write C � (A ⇀ B) to denote (C, (A, B)) ∈ D,
and say that C defence (d) attacks A’s attack on B.

From hereon, definitions are assumed relative to an EAF (Args, R, D), where argu-
ments A, B, . . . are assumed to be in Args, and S is a subset of Args. We now for-
mally define the defeat relation that is parameterised w.r.t. some set S of arguments.
This accounts for an attack’s success as a defeat being relative to preference arguments
already accepted in some set S, rather than relative to some externally given preference
ordering.

Definition 3. A S-defeats B, denoted by A →S B, iff (A, B) ∈ R and ¬∃C ∈ S s.t.
(C,(A, B)) ∈ S. A strictly S-defeats B iff A S-defeats B and B does not S-defeat A.

Example 1. Let Δ be the EAF: A � B, C � (A ⇀ B)

A and B S-defeat each other for S = ∅, {A} and {B}.
B {C}-defeats A but A does not {C}-defeat B (B strictly {C}-defeats A).

We now define the notion of a conflict free set S of arguments. One might define such
a set as one in which no two arguments attack each other. However, when applying
argumentation to practical reasoning, it may be that if B asymmetrically attacks A, but
A is preferred to B, then neither B or A defeat each other, and so both may end up being
justified arguments. This is appropriate only when the arguments are not inherently

42 S. Modgil

contradictory. For example, in [4], arguments relating to deciding a course of action
appeal to values [5]. If A is an argument for a medical action a, appealing to the value
of health, and B is an argument claiming that a is prohibitively expensive, then B
asymmetrically attacks A, and B appeals to the value of cost. If a given value ordering
ranks the value of health above cost, then B does not defeat A, and both arguments may
then be justified; one commits to the action while accepting that it is expensive. Since
in what follows, an admissible extension of an EAF is defined on the basis of a conflict
free set, we need to allow for the above when defining a conflict free set:

Definition 4. S is conflict free iff ∀A, B ∈ S: if (B, A) ∈ R then (A, B) /∈ R, and
∃C ∈ S s.t. (C,(B, A)) ∈ D.

In [16] we suggest that special attention be given to symmetric EAFs in which prefer-
ence arguments can only d-attack attacks between arguments that symmetrically attack:

Definition 5. Let Δ = (Args, R, D) be an EAF. We say that Δ is a symmetric EAF
iff: if (C, (B, A)) ∈ D, then (A, B) ∈ R.

The restriction on D is appropriate when the arguments are inherently contradictory,
as when arguing about beliefs. This is because no conflict free subset S of Args in a
symmetric EAF (and so admissible extension) can contain arguments that attack, since
it could not satisfy the condition in definition 4. 1

We now define the acceptability of an argument A w.r.t. a set S for an EAF. Consider
figure 2-a) in which the acceptability of A1 w.r.t. S is under consideration. B1 →S A1,
and A1 reinstates itself via the defeat A1 →S B1. However, the latter defeat is based
on an attack A1 ⇀ B1 that is itself under attack: B2 � (A1 ⇀ B1). We therefore
need to check that A1 →S B1 is ‘defeat reinstated’ by an argument in S that S-defeats
B2. In general, X →S Y is defeat reinstated iff for any Z s.t. (Z ,(X, Y)) ∈ D, there is
a Z ′ ∈ S s.t. Z ′ →S Z .

In figure 2-a) A1 →S B1 is ‘defeat reinstated’ by A2 ∈ S. In general, an argument
X can then be said to be ‘locally’ acceptable w.r.t. a set S if for any Y that S-defeats X ,
there is a Z ∈ S such that Z S-defeats Y and this defeat is defeat reinstated. However,

B1

A1

B2

 A2

B3

a)

S

B1

C1

A

S

B2

C2C

B

b)

Fig. 2. A1 is not acceptable w.r.t. S in a). A is acceptable w.r.t. S in b).

1 Note that other restrictions on D may be appropriate. E.g in logic programming systems such
as [19], if B claims what was assumed non-provable (through negation as failure) by a rule in
A, then B asymmetrically attacks A, and defeats A irrespective of their relative preference.
One would then preclude such attacks from being d-attacked by preference arguments.

An Argumentation Based Semantics for Agent Reasoning 43

local acceptability does not suffice in the sense that the obtained notion of admissibility
(as defined in definition 1) does not satisfy the property that if X is acceptable w.r.t. an
admissible S, then S ∪ {X} is admissible. This result is shown by Dung’s fundamen-
tal lemma in [11]. Intuitively, S represents a coherent ‘position’ defending each of its
contained arguments. Having established such a position in the course of an argument,
one would want that a proposed argument A that is defended by the position, does not,
when included in the position, undermine the position that defends it. Referring to fig-
ure 2-a), S is admissible under local acceptability. B3 is locally acceptable w.r.t S, but
S′ = S ∪ {B3} is not admissible since A1 is not locally acceptable w.r.t S′ (because
the presence of B3 now invalidates the defeat from A2 to B2). What is required when
checking the acceptability of A1 w.r.t. S is not only that A1 →S B1 is defeat reinstated,
but that the defeat’s reinstater A2 →S B2 is itself defeat reinstated. It is not, since no
argument in S S-defeats B3. In general:

Definition 6. Let S ⊆ Args in (Args, R, D). Let RS = {X1 →S Y1, . . . , Xn →S Yn}
where for i = 1 . . . n, Xi ∈ S. Then RS is a reinstatement set for C →S B, iff:

• C →S B ∈ RS , and
• ∀X →S Y ∈ RS , ∀Y ′ s.t. (Y ′,(X, Y)) ∈ D, there ∃X ′ →S Y ′ ∈ RS

Definition 7. A is acceptable w.r.t. S ⊆ Args in (Args, R, D), iff ∀B s.t. B →S A,
∃C ∈ S s.t. C →S B and there is a reinstatement set for C →S B.

Under this definition of acceptability, Dung’s fundamental lemma is satisfied (see [16]).
In figure 2-b), A is acceptable w.r.t. S given the reinstatement set {C →S B, C1 →S

B1, C2 →S B2} for C →S B. With the above definition of acceptability, extensional
semantics for EAFs are now given by definition 1, where conflict free defined as in
definition 4, for the stable semantics, ‘A S-defeats B’ replaces ‘(A, B) ∈ R’, and (for
technical reasons) the domain of an EAF’s characteristic function F is restricted to the
set of all conflict free subsets of Args.

For the complete, preferred and stable semantics, an argument is sceptically justified
if it belongs to all extensions, and credulously justified if it belongs to at least one exten-
sion. The grounded semantics return a single extension, and so are inherently sceptical.
In [16] we show that for symmetric EAFs, S is an admissible extension obtained on
the basis of local acceptability iff S is an admissible extension obtained on the basis
of acceptability in definition 7. Hence, the extensions of a symmetric EAF can equiv-
alently be defined under local acceptability, and Dung’s fundamental lemma holds for
such EAFs under local acceptability. In [16] we also show the following results that
have been shown to hold for Dung argumentation frameworks (the importance of these
results are discussed in more detail in [16] and [11]). Let Δ be any EAF. Then:

1. The set of all admissible extensions of Δ form a complete partial order w.r.t. set
inclusion

2. For each admissible S there exists a preferred extension S′ of Δ such that S ⊆ S′

3. Δ possesses at least one preferred extension.
4. Every stable extension of Δ is a preferred extension but not vice versa.
5. Defining a sequence F1 = F (∅), Fi+1 = F (Fi), then Fi+1 ⊇ Fi (where each Fj in

the sequence is conflict free)

44 S. Modgil

Suppose an EAF Δ is defined as finitary iff for any argument A or attack (B, C), the set
of arguments attacking A, respectively (B, C), is finite. Referring to the sequence in 5
above, one can also show that the least fixed point (grounded extension) of a symmetric
Δ is given by

⋃∞
i=1(Fi). For arbitrary EAFs we can not guarantee that the fixed point

obtained in 5 is the least fixed point (the existence of a least fixed point is guaranteed
by the monotonicity of F, which only holds for symmetric EAFs). This means that the
grounded extension of an EAF that is not symmetric is defined by the sequence in 5.

To conclude, we have defined an extended semantics that allows for representation
of arguments that express preferences between other arguments. No commitments are
made to the underlying logics for argument construction, or to the criteria used to valu-
ate the strength of, and so preferences between, arguments. This work is to be contrasted
with approaches that extend the underlying object level logical languages with rules for
deriving priorities amongst rules. In the following section we provide support for our
claim that the above extended semantics can serve as a semantics for agent defeasible
and practical reasoning, in the sense that given an agent theory T defined in a logic
based formalism L, then α is an inferred belief or goal, or chosen action iff α is the
claim of a justified argument of the extended argumentation framework instantiated by
the arguments and attacks defined by the theory T in L.

3 Argumentation Based Reasoning about Goals

In this section we illustrate how inferences obtained in logic programming formalisms
that facilitate defeasible reasoning about rule priorities (e.g.[14],[19]), can be charac-
terised in terms of the claims of the justified arguments of an instantiated EAF. We
will adopt an approach to reasoning about goals in [14], in which subsets of a set of
agent rules for deriving goals are associated with one of five agent’s needs or motiva-
tions (based on Maslow’s work in cognitive psychology [15]): Physiological, Safety,
Affiliation (Social), Achievement (Ego) and Self-Actualisation). Simplifying the rep-
resentation in [14], one can express an agent’s default personality by rules of the form
Rdef : true ⇒ hp(rmX , rm

′
Y) expressing that a rule with name rX associated with mo-

tivation m has higher priority than a rule with name rY associated with motivation m′

(where X and Y range over the rule name indicies used). Exceptional circumstances
may warrant prioritisation of a specific m′ over m goal: Rexcep : S ⇒ hp(rm

′
Y , rmX)

(where S denotes a conjunction of first order literals with explicit negation). Hence, if S
holds, then one can construct an argument A1 based on Rdef and A2 based on Rexcep.
Given an argument based on Roveride : true ⇒ hp(Rexcep, Rdef), then A2 defeats
A1, so that an argument for a goal based on rm

′
Y will now defeat an argument for a

goal based on rmX . Note that in agent architectures [8]and programming paradigms [9]
that address conflict resolution amongst goals, rules for deriving goals are expressed as
conditionals of the form a →M b [8] or modal rules of the form a → Mb [9] where a
and b are propositional, respectively propositional modal, wff, and M ∈ {B(Belief),
O(Obligation), I(Intention), D(Desire)}. As mentioned in the introduction, a pri-
oritised default logic semantics resolves conflicts amongst the goals generated by differ-
ent mental attitudes.The relationship with [14] is clear. Agent personalities represented
by orderings on motivations, correspond with agent types represented by orderings on

An Argumentation Based Semantics for Agent Reasoning 45

mental attitudes in [9] and [8]. However, behavioural heterogeneity and adaptability is
limited in the latter works, in the sense that an altruistic agent’s goals will always be
characterised by default extensions that contain obligation (social) derived goals at the
expense of conflicting desire (ego) derived goals.

In what follows we formalise reasoning of the above type in [19]’s argument based
logic programming with defeasible priorities (ALP-DP). To simplify the presentation,
we present a restricted version of ALP-DP - ALP-DP* - that does not include negation
as failure (as this is not needed for any of the examples). We describe ALP-DP* argu-
ments, their attacks, and how priority arguments define preferences. We refer the reader
to [19] for details of the proof theory.

Definition 8. Let (S, D) be a ALP-DP* theory where S is a set of strict rules of the
form s : L0∧ . . .∧Lm → Ln, D a set of defeasible rules r : L0∧ . . .∧Lj ⇒ Ln, and:

– Each rule name r (s) is a first order term. From hereon we may write head(r) to
denote the consequent Ln of the rule named r.

– Each Li is an atomic first order formula, or such a formula preceded by strong
negation ¬.

We also assume that the language contains a two-place predicate symbol ≺ for express-
ing priorities on rule names. Strict rules are intended to represent information that is
beyond debate. We assume that any S includes the following strict rules expressing
properties on the relation ≺.

• o1 : (x ≺ y)∧ (y ≺ z) → (x ≺ z) • o2 : (x ≺ y)∧ ¬(x ≺ z) → ¬(y ≺ z)
• o3 : (y ≺ z) ∧ ¬(x ≺ z) → ¬(x ≺ y) • o4 : (x ≺ y) → ¬(y ≺ x)

Definition 9. An argument A based on the theory (S, D) is:

1. a finite sequence [r0, . . . , rn] of ground instances of rules such that:

• for every i (0 ≤ i ≤ n), for every literal Lj in the antecedent of ri there is
a k < i such that head(rk) = Lj . If head(rn) = x ≺ y then A is called a ‘single-
ton priority argument’.

• no distinct rules in the sequence have the same head;
or:
2. a finite sequence [r01 , . . . rn1 ,. . .,r0m , . . . rnm], such that for i=1 . . .m, [r0i , . . . rni]

is a singleton priority argument. We say that A is a ‘composite priority argument’
that concludes the ordering

⋃m
i=1 head(rni)

In [19], arguments are exclusively defined by 1). Here, we have additionally defined
composite priority arguments so that an ordering, and hence a preference, can be claimed
(concluded) by a single argument rather than a set of arguments. Note that from hereon
we will, for ease of presentation, show only propositional examples. Also, abusing the
notation, arguments will be represented as sequences of rule names rather that the rules
these names identify. The following example adopts the categorisation of goals in the
BOID architecture [8] and programming paradigm [9]. Rules named inti represent goals
committed to in previous deliberations. Rules named beli allow for derivation of beliefs,
and act as a filter on desire and obligation derived goals derived by rules named desi and

46 S. Modgil

obi respectively. The filtering rules ensure that agents do not engage in wishful thinking.
This could be expressed as an agent type, by prioritising these filtering rules above desire
and obligation rules. Here, we make the filtering rules strict.

Example 2. Let S = {o1 . . . o4} ∪ {bel1 : cheap room → ¬close to conf,
bel2 : close to conf → ¬cheap room}, and D be the set of rules:

- bel3 :⇒ remaining budget high soc1 :⇒ des1 ≺ ob1

- int1 :⇒ go to conference self1 :⇒ ob1 ≺ des1

- des1 : go to conference ⇒ close to conf def agent type :⇒ self1 ≺ soc1

- ob1 : go to conference ⇒ cheap room
- exception soc : remaining budget high ⇒ soc1 ≺ self1

- overide social :⇒ def agent type ≺ exception soc

The following are a subset of the arguments that can be constructed:

A1 = [int1, des1] is an argument for the desire derived goal to be close to the confer-
ence, given the intention to go to the conference.
A2 = [int1, ob1] is an argument for the obligation derived goal to book a cheap room.
B1 = [soc1] and B2 = [self1] respectively express social and selfish agent types.
C1 = [def agent type] expresses that the reasoning agent is by default a social agent,
and C2 = [bel3, exception soc] expresses exceptional conditions (when the remain-
ing project funds are high) under which the agent behaves selfishly. Finally, D1 =
[overide social] expresses that the selfish agent type warranted by exceptional con-
ditions overrides the default social behaviour.

The following definitions assume arguments are relative to a theory (S, D). [19] defines:

Definition 10. For any arguments A, A′ and literal L:

– A is strict iff it does not contain any defeasible rule; it is defeasible otherwise.
– L is a conclusion of A iff L is the head of some rule in A
– If T is a sequence of rules, then A + T is the concatenation of A and T

[19] motivates definition of attacks between arguments that account for the ways in
which arguments can be extended with strict rules:

Definition 11. A1 attacks A2 iff there are sequences S1 and S2 of strict rules such
that A1 + S1 is an argument with conclusion L and A2 + S2 is an argument with a
conclusion ¬L.

By definition, if A1 attacks A2 then A2 attacks A1. Note that A1 may attack A2 on a
number of conclusions and corresponding concatenations of strict rules. In example 2,
A1 and A2 attack each other since A1 + [bel2] has the conclusion ¬cheap room and
A2 has the conclusion cheap room. Also B1 + [o4] has the conclusion ¬(ob1 ≺ des1)
and so B1 attacks and is attacked by B2. To determine a preference amongst attacking
arguments ALP-DP* defines the sets of relevant defeasible rules to be compared:

Definition 12. If A+S is an argument with conclusion L, the defeasible rules RL(A+
S) relevant to L are:

An Argumentation Based Semantics for Agent Reasoning 47

1. {rd} iff A includes defeasible rule rd with head L
2. RL1(A + S) ∪ . . . ∪ RLn(A + S) iff A is defeasible and S includes a strict rule s

: L1 ∧ . . . ∧ Ln → L

For example, Rcheap room(A2) = {ob1} and R¬cheap room(A1 + [bel2]) = {des1}. We
define ALP-DP*’s ordering on these sets and hence preferences amongst arguments,
w.r.t. an ordering concluded (as defined in definition 9-2) by a priority argument:

Definition 13. Let C be a priority argument concluding the ordering ≺. Let R and R′

be sets of defeasible rules. Then R′ > R iff ∀r′ ∈ R′, ∃r ∈ R such that r ≺ r′.

The intuitive idea behind the above definition is that R can be made better by replacing
some rule in R with any rule in R′, while the reverse is impossible. Now, given two
arguments A and B, it may be that they attack on more than one conclusion. Given a
priority ordering≺ concluded by an argument C, we say that A is preferred≺ to B if for
every pair (L, L′) of conclusions on which they attack, the set of A’s defeasible rules
relevant to L is stronger (>) than the set of B’s defeasible rules relevant to L′.

Definition 14. Let C be a priority argument concluding≺. Let (L1, L
′
1), . . . , (Ln, L

′
n)

be the pairs on which A and B attack, where for i = 1 . . . n, Li and L′
i are conclusions

in A and B respectively. Then A is preferred≺ to B if for i = 1 . . . n, RLi(A + Si) >
RL′

i
(B + S′

i)

In example 2, B1 concludes des1 ≺ ob1, and so Rcheap room(A2) > R¬cheap room
(A1), and so A2 is preferreddes1≺ob1 to A1. We can now instantiate a symmetric EAF
with the arguments, their attacks, and priority arguments claiming preferences and so d
attacking attacks:

Definition 15. The EAF (Args, R, D) for a theory (S, D) is defined as follows. Args
is the set of arguments given by definition 9, and ∀A, B, C ∈ Args:

1. (C,(B, A)) ∈ D iff C concludes ≺ and A is preferred≺ to B
2. (A, B),(B, A) ∈ R iff A and B attack as in definition 11

Note that it can be shown that if (C,(B, A)) and (C′,(A, B)) ∈ Rd then C and C′ attack
each other as in definition 11. The following result is a special case of proposition 8 in
[16] which shows an equivalence for full ALP-DP with negation as failure:

Proposition 1. Let Δ be the EAF defined by a theory (S, D) as in definition 15. Then
L is the conclusion of a justified argument as defined in [19] iff L is the conclusion of
an argument in the grounded extension of Δ.2

For example 2 we obtain the EAF Δ1 in figure 3. D1, C2, B2 and A1 are sceptically
justified under all the semantics. Intuitively, the normally social agent can behave self-
ishly if the remaining budget for the project is high. We conclude with another example
that illustrates argumentation to resolve conflicts amongst goals derived from the same
class of mental attitudes. The example also illustrates how argumentation over beliefs
is incorporated into argumentation over goals.

2 Note that all of Dung’s extensional semantics can be defined for an ALP-DP theory’s EAF. In
[19] only the grounded, stable and complete semantics can be defined.

48 S. Modgil

A1

A3 A5 = (A4 + [bel5,bel11])

A2

C1

B2

B1
A6Δ2 =A1 A2

B2

B1

D1Δ1=

C1

C2

Fig. 3. EAFs Δ1 and Δ2

Example 3. Let (S, D) be a theory where S={o1 . . . o4} ∪ {bel7 : forecast storm →
¬forecast calm, bel8 : forecast calm→¬forecast storm, bel9 : close to conf→
¬close to beach, bel10 : close to beach → ¬close to conf}

D is the set of defeasible rules:

- int1 :⇒ go to conference
- des1 : go to conference ⇒ close to conf
- des2 : go to conference ⇒ close to beach
- bel3 bravo :⇒ forecast calm
- bel4 bbc :⇒ forecast storm
- bel5 : forecast storm ⇒ beach hotel closed
- bel11 : beach hotel closed → ¬close to beach
- bel6 :⇒ bel3 bravo ≺ bel4 bbc
- realistic :⇒ des2 ≺ bel11
- wishful :⇒ bel11 ≺ des2

- def agent type :⇒ wishful ≺ realistic

Amongst the arguments that can be constructed, we obtain:

A1 = [int1, des1] and A2 = [int1, des2] are mutually attacking arguments for the desire
derived goals of being close to the conference and being close to the beach respectively.

A3 = [bel3 bravo] and A4 = [bel4 bbc] are also mutually attacking arguments for con-
tradictory weather forecasts, and A3 also mutually attacks A5 = [bel4 bbc, bel5, bel11]
which expresses the belief that if the forecast is for storms then the beach side hotel
will be closed and so the agent cannot be close to the beach. Hence, A5 also mutually
attacks A2.

A6 = [bel3 bravo ≺ bel4 bbc] claims that the bbc is acknowledged to be the more
reliable than the bravo channel, and so expresses that A4 and A5 are preferred to A3.

B1 = [realistic] and B2 = [wishful] characterise agent types that respectively give
priority to belief over desire, and desire over belief derived goals. C1=[def agent type]
expresses that the default agent behaviour is realistic.

The EAF Δ2 instantiated by the above arguments is shown in figure 2. Since the
agent is realistic and the BBC more reliable than Bravo, C1, B1, A6, A5 and A1 are
sceptically justified under all the semantics. The agent adopts the goal of being close to
the conference.

An Argumentation Based Semantics for Agent Reasoning 49

4 Argumentation Based Reasoning over Actions

A number of works apply argumentation to decide a preferred course of action, includ-
ing logic programming formalisms of the type described in the previous section, and
agent programming paradigms such as [9], in which mutually conflicting or ‘incoher-
ent’ candidate sets of plans are also characterised in terms of prioritised default logic
extensions. In works such as [2] and [12], tree structured instrumental arguments are
composed by chaining propositional rules, and relate the root node top level goal to
sub-goals, and primitive actions in the leaf nodes (these arguments can be thought of
as unscheduled plans). Given conflict free sets of instrumental arguments, the preferred
sets are chosen solely on the basis of those that maximise the number of agent goals
realised. These works have been extended in [20] to accommodate decision theoretic
notions. An instrumental argument additionally includes the resources required for exe-
cution of the leaf node actions. The strength of, and so preferences amongst, instrumen-
tal arguments is then based on their utility defined in terms of numerical valuations of
the ‘worth’ of the goals and cost of the resources represented in the arguments. A more
general conception of how to valuate the strength of arguments for action is partially
realised in [4]. In this work, arguments for alternative courses of action for realising
a given goal instantiate a value based argumentation framework (VAF) [5]. A given
ordering on values (an ‘audience’) advanced by arguments, is then used to determine
relative preferences and so defeats amongst arguments:

If A attacks B, then A defeats B only if the value advanced by B is not ranked higher
than the value advanced by A according to some audience a.

Examples of values include cost, safety, efficacy (of the action w.r.t. goal) e.t.c. In
[18] we proposed an extension to VAF that associates for a given value V , the degree
to which an argument promotes or demotes a value. In this way, one can prefer A1 for
action a1 to A2 for action a2, if both promote the same value, but the later does so to
a lesser degree. Note that the same can be seen to apply to goals, so that, for example,
a preference between two conflicting arguments for obligation derived goals may be
based on the relative ‘strength’ or ‘importance’ of the obligations. In general then, one
can consider arguments for goals or actions as being associated with, or advancing,
meta-level criteria (be they motivations, values, etc), where:

1. The degree to which a criterion is advanced may vary according to context and or
perspective

2. The ordering on criteria may vary according to context and or perspective

Both cases may warrant argumentation based resolution of conflicting preferences. In
what follows, we illustrate some of the above ideas with an example taken from [18] that
we now formalise in an EAF. We thus demonstrate how the extended semantics provide
for integration of object level argumentation about action and metalevel reasoning about
values and value orderings. The example builds on a schemes and critical questions
approach to value based argumentation over action [4], whereby an argument for an
action instantiates the following presumptive scheme AS1:

In the current circumstances R, we should perform action A, to achieve new circum-
stances S, which will realise some goal G, which will promote some value V

50 S. Modgil

An extensive set of critical questions associated with AS1 are then described. If A1
is an argument instantiating AS1, then the critical questions serve to identify arguments
that attack A1. For example, an argument A2 stating that the action in A1 has an un-
safe side-effect, asymmetrically attacks A1. A2 is identified with the critical question:
does the action have a side effect which demotes some value? A2 may then itself be
attacked by arguments identified by A2’s critical questions, and so on. Every argument
advances a value. The arguments, their attacks, and a value ordering, instantiate a VAF,
and based on the derived defeat relation, the justified arguments are evaluated under
Dung’s preferred semantics. In the following example, we will assume arguments in-
stantiating schemes and critical questions. [4] described formal construction of these
arguments in an underlying BDI type logic. We also assume arguments for possibly
conflicting valuations of arguments and value orderings. Formal construction of these
arguments is described in [18].

A1 A2

B2

B1 A3
D1 D2

E1

Δ = B1 B2

C1

Fig. 4.

Example 4. Consider Δ in fig.3 in which A1 and A2 are arguments for the medical
actions ‘give aspirin’ and ‘give chlopidogrel’ respectively. These arguments instantiate
AS1 and refer to beliefs, actions, goals and values, as described in [4]. A1 and A2 both
promote the value of efficacy. They symmetrically attack since they claim alternative
actions for the goal of preventing blood clotting. Argument B1 is based on clinical trial
1’s conclusion that A2’s chlopidogrel is more efficacious than A1’s aspirin at prevent-
ing blood clotting. Hence B1 � (A1 ⇀ A2). However, B2 is based on clinical trial 2’s
conclusion that the opposite is the case. Hence B1 � B2. At this stage neither A1 or
A2 are sceptically justified under any semantics. However, C1 is an argument claiming
that trial 1 is preferred to trial 2 since the former uses a more statistically robust design.
Hence, C1 � (B2 ⇀ B1). Now A2 and not A1 is sceptically justified. However, A3
promoting the value of cost, states that chlopidogrel is prohibitively expensive. We now
have an example of an asymmetric attack: A3 ⇀ A2. However, D1 � (A3 ⇀ A2)
where D1 is a value ordering ranking efficacy over cost. Hence, A3 does not defeat A2
and so A2 remains sceptically justified. Here, we see that A3 is also sceptically justi-
fied. Administering chlopidogrel is the preferred course of action, while acknowledging
that it is costly. It’s just that efficacy is deemed to be more important than cost. How-
ever, D2 now ranks cost over efficacy. Now neither A2 or A1 are sceptically justified.
Finally, E1 is a utilitarian argument stating that since financial resources are low, use of
chlopidogrel will compromise treatment of other patients, and so one should preferen-
tially rank cost over efficacy (such a trade of is often made in medical contexts). Hence,
A1 is now sceptically justified; aspirin is now the preferred course of action.

An Argumentation Based Semantics for Agent Reasoning 51

5 Discussion and Future Work

In this paper we describe an extended Dung semantics that meets requirements for
agent flexibility and adaptability, when engaging in defeasible reasoning about beliefs
and goals, and practical reasoning about actions. We claim that the extended semantics
can serve as a semantics for agent defeasible and practical reasoning. In our view what
appropriately accounts for the correctness of an inference for a belief, or goal, or choice
of an action, is that the inference or choice can be shown to rationally prevail in the face
of opposing inferences or choices. Dung’s, and our extended semantics, in abstracting
to the level of a ‘calculus of opposition’, provides logic neutral, rational means for
establishing such standards of correctness.

This paper supports the above claim by formalising agent reasoning about goals in an
existing logic programming based formalism [19] that facilitates defeasible reasoning
about priorities. It remains to show that other non-monotonic formalisms accommodat-
ing reasoning about preferences in the object level, can instantiate extended argumenta-
tion frameworks. A notable example is the work of [10] in which defeasible logic rules
for agent reasoning are extended with graded preferences, so that one can conclude
preferences between mental attitudes contingent on mental attitudes in premises of the
rules. We also discussed how the BOID architecture [8] and programming paradigm
[9], neither of which accommodate defeasible reasoning about preferences, relate to the
logic programming formalism described. This suggests that our extended argumentation
semantics can serve as a framework in which to further develop existing agent reason-
ing formalisms of the above kind, in order to facilitate argumentation based reasoning
about preferences, and so agent flexibility and adaptability. We also referred to works
formalising construction of arguments in a BDI type logic for value based argumen-
tation over action [4], and works formalising construction of arguments for valuations
and value orderings [18], and showed how such arguments can instantiate an EAF.

The issue of how arguments for goals and actions interact remains to be addressed in
future work. For example, a goal g may be selected at the expense of goal g′. However,
it may be that no feasible plan exists for realising g (in the sense that resources are not
available or that the plan is prohibitively expensive). Of course, arguments about the
feasibility of plans can be used to express preferences between arguments for goals.
For example, an argument that there is no feasible plan for g expresses a preference
for the argument for g′ over the argument for g. However, this requires that arguments
for plans be constructed for all candidate goals, which may be computationally very
expensive. The two stage process whereby goals are selected, and then arguments for
plans are constructed and chosen is more efficient.

We also note that the inherently dialectical nature of argumentation has led to devel-
opment of formal frameworks for argumentation based dialogues (see [3] for a review),
where, for example, one agent seeks to persuade another to adopt a belief, or when
agents communicate in order to deliberate about what actions to execute, or to nego-
tiate over resources. These dialogues illustrate requirements for communicating and
challenging reasons for preferring one argument to another. We aim to address these
requirements by developing frameworks for argumentation based dialogues that build
on the extended semantics described in this paper.

52 S. Modgil

Acknowledgements. This work was funded by the EU 6th framework project ASPIC
(www.argumentation.org). Thanks to Martin Caminada, Trevor Bench-Capon, and P.M.
Dung for useful and enjoyable discussions related to the work in this paper.

References

1. Amgoud, L.: Using Preferences to Select Acceptable Arguments. In: Proc. 13th European
Conference on Artificial Intelligence, pp. 43–44 (1998)

2. Amgoud, L., Kaci, S.: On the Generation of Bipolar Goals in Argumentation-Based Negoti-
ation. In: Proc. 1st Int. Workshop on Argumentation in Multi-Agent Systems, pp. 192–207
(2004)

3. ASPIC Deliverable D2.1: Theoretical frameworks for argumentation (June 2004),
http://www.argumentation.org/PublicDeliverables.htm

4. Atkinson, K.M., Bench-Capon, T.J.M., McBurney, P.: Computational Representation of
Practical Argument. Synthese 152(2), 157–206 (2006)

5. Bench-Capon, T.J.M.: Persuasion in Practical Argument Using Value-based Argumentation
Frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

6. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence 93, 63–101 (1997)

7. Brewka, G.: Reasoning about priorities in default logic. In: Proc. 12th National Conference
on Artificial Intelligence (AAAI 1994), pp. 940–945 (1994)

8. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.W.N.: Goal Generation in the BOID
Architecture. Cognitive Science Quarterly Journal 2(3-4), 428–447 (2002)

9. Dastani, M., van der Torre, L.: Programming BOID-Plan Agents: Deliberating about Con-
flicts among Defeasible Mental Attitudes and Plans. In: Proc 3rd international Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 706–713 (2004)

10. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Preferences of Agents in Defea-
sible Logic. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 695–704.
Springer, Heidelberg (2005)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

12. Hulstijn, J., van der Torre, L.: Combining Goal Generation and Planning in an Argumentation
Framework. In: 15th Belgium-Netherlands Conference on AI, pp. 155–162 (2003)

13. Hindriks, K., de Boer, F., van der Hoek, W., Ch, J.-J.: Agent Programming in 3APL. In:
Autonomous Agents and Multi-Agent Systems, vol. 2(4), pp. 357–401 (1999)

14. Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous agents. In:
2nd Int. Joint Conference on Autonomous Agents and Multiagent Systems, pp. 883–890
(2003)

15. Maslow, A.: Motivation and Personality. Harper and Row, New York (1954)
16. Modgil, S.: An Abstract Theory of Argumentation That Accommodates Defeasible Rea-

soning About Preferences. In: 9th European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, pp. 648–659 (2007)

17. Modgil, S.: Reasoning About Preferences in Argumentation Frameworks. Technical Report,
http://www.dcs.kcl.ac.uk/staff/modgilsa/
ArguingAboutPreferences.pdf

18. Modgil, S.: Value Based Argumentation in Hierarchical Argumentation Frameworks. In:
Proc. 1st International Conference on Computational Models of Argument, pp. 297–308
(2006)

http://www.argumentation.org/PublicDeliverables.htm
http://www.dcs.kcl.ac.uk/staff/modgilsa/ArguingAboutPreferences.pdf
http://www.dcs.kcl.ac.uk/staff/modgilsa/ArguingAboutPreferences.pdf

An Argumentation Based Semantics for Agent Reasoning 53

19. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

20. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In:
Proc. 5th Int. Joint Conference on Autonomous agents and Multiagent systems, pp. 347–
354 (2006)

21. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
22. van Riemsdijk, B., Dastani, M., Meyer, J.: Semantics of declarative goals in agent program-

ming. In: 4th Int. Joint Conference on Autonomous agents and Multiagent systems, pp. 133–
140 (2005)

23. Thomason, R.: Desires and defaults: a framework for planning with inferred goals. In: 7th
International Conference on Knowledge Representation and Reasoning, pp. 702–713 (2002)

Goal Selection Strategies for Rational Agents

Nick A.M. Tinnemeier, Mehdi Dastani, and John-Jules Ch. Meyer

Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Abstract. In agent theory and agent programming, goals constitute
the motivational attitude of rational agents and form the key concept
in explaining and generating their pro-active behavior. Pursuing multi-
ple goals simultaneously might pose problems for agents as the plans for
achieving them may conflict. We argue that a BDI-based agent program-
ming language should provide constructs to allow an agent programmer
to implement agents that: 1) do not pursue goals with conflicting plans
simultaneously, and 2) can choose from goals with conflicting plans. This
paper presents an explicit and generic mechanism to process incompati-
ble goals, i.e., goals with conflicting plans. The proposed mechanism can
be integrated in existing BDI-based agent programming languages. We
discuss different strategies to process incompatible goals based on a given
conflict relation and show some properties and relations between these
strategies.

1 Introduction

To facilitate the implementation of cognitive agents, BDI-based agent program-
ming languages provide constructs to implement agent concepts such as beliefs,
goals and plans. Examples of these programming languages are Jadex [1], Jack
[2], Jason [3], 3APL [4], IMPACT [5], CLAIM [6], GOAL [7], CANPLAN2 [8]
and 2APL [9]. In these agent programming languages, belief constructs can be
used to implement the (incomplete) information the agent has about its world,
whereas goal constructs can be used to implement the states the agent desires
to achieve. In agent theory and agent programming, goals constitute the moti-
vational attitude of rational agents and form the key concept in explaining and
generating their pro-active behavior [10,11,12]. In pursuing its goals an agent
uses (partial) plans which specify the actions that should be taken to achieve its
goals. In general, most BDI-based agent programming languages allow an agent
to have multiple goals at the same time. When an agent has more than one
goal, different strategies are possible for adopting plans to achieve these goals.
A strategy that is commonly used in many agent programming languages, for
example in both 3APL[4] and 2APL [9], is to adopt a plan for each goal and to
execute all generated plans at the same time (in an interleaving mode).

Pursuing multiple goals simultaneously might be beneficial for an agent, it
also poses problems. Goals might be incompatible with each other in the sense

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 54–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Goal Selection Strategies for Rational Agents 55

that the plan for reaching one goal possibly conflicts with the plans for other
goals. Consider for example a household agent with the capability of cleaning
rooms. Suppose that the agent has two goals: to have cleaned room one and five.
Although it is possible for the agent to achieve one goal after the other, trying
to achieve them simultaneously by first making a step in the direction of one
room and then in the direction of the other would clearly be irrational. So, the
goals that an agent has committed to by adopting plans might pose constraints
for the adoption of plans to pursue other goals. Furthermore, confronted with
different incompatible goals, an agent should still be able to choose among goals.
Therefore, we argue that a BDI-based agent programming language should pro-
vide constructs to allow an agent programmer to implement agents that: 1) do
not pursue incompatible goals simultaneously, and 2) can choose from possibly
incompatible goals. Most agent programming languages, however, lack construc-
tions that sufficiently deal with these issues in an explicit way. It should be
noted that such constructs are different from a goal (event) selection function
as proposed, for example, by Jason [3]. These selection functions are too generic
and are not devised to process incompatible goals. In fact, our proposal can be
considered as a specific instantiation of such a function.

One might argue that it is the responsibility of the agent programmer to
implement its agents in such a way that its goal base will never contain incom-
patible goals. For example, the programmer should ensure that a goal is added
to its goal base after the existing plans for incompatible goals are fully executed
and the goals are either achieved or dropped. However, we believe that adding a
goal to the goal base should not depend on the existence of incompatible goals,
as in agent programming the goals of an agent can in principle be incompatible
or even inconsistent (cf. [13,14]). Moreover, we believe that an agent programmer
may not know at design time which goals it will adopt during its execution such
that it becomes a cumbersome task, if not impossible, to write such an agent
program. A generic mechanism to process incompatible goals facilitates the im-
plementation of pro-active agents and eases the task of agent programmers. A
different solution to avoid that an agent pursues incompatible goals is to use the
notion of atomic plans as introduced in 2APL. Atomicity of a plan ensures that
the plan is executed at once without interleaving its actions with the actions of
other plans. This mechanism can be used to avoid the interleaved execution of
the plans for incompatible goals, i.e., to avoid simultaneous pursuit of incom-
patible goals. This solution is, however, too restrictive as it does not allow the
actions of an atomic plan to be interleaved with the plans of compatible goals.

In this paper, we propose an explicit and generic mechanism to process in-
compatible goals. In order to illustrate that the proposed mechanism can be
integrated in arbitrary BDI-based agent programming languages, we present the
proposed mechanism in the context of a simple agent programming language
that can be extended to existing BDI-based agent programming languages. Ac-
cording to this proposal, an agent programmer should specify a conflict relation
between only those sub-goals for which a planning rule is specified. It should be
noted that in most BDI-based agent programming languages, all (sub-)goals for

56 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

which planning rules are specified, are known at design time. It should also be
noted that these planning rules could be applied to adopt plans for arbitrary
goals not known at design time. We discuss different strategies to process in-
compatible goals based on a given conflict relation and show some properties
and relations between these strategies. In particular, we present in section 2 a
simple generic BDI-based agent programming language by specifying its syntax
and operational semantics. Then, the actual contribution of this paper starts
in section 3, in which we extend the programming language with a goal con-
flict relation, discuss different strategies to process incompatible goals and show
their properties and relations. In section 4 we discuss related work and section
5 concludes this paper and discusses some directions for future research.

2 An Agent Programming Language

In this section we provide the syntax and semantics of a logic-based agent pro-
gramming language that is needed to let us present the notion of goal selection
strategies later on. The language provided here is based on 2APL [9], but does
not reflect its complete syntax and semantics. Instead, we provide a simplified
version that is self-contained and can be used to illustrate the different notions
of a goal selection strategy. In contrast to 2APL and many logic-based agent
programming languages in which the beliefs and goals of the agent are modelled
in a subset of first-order logic, the programming language presented here uses
a subset of propositional logic, because the focus of this paper is on goal selec-
tion strategies. Extending the language to a computational subset of first-order
logic (e.g. Horn clauses) is rather straightforward and does not pose any serious
technical diffculties.

Furthermore, 2APL provides external actions by which the agent can change
its environment, communicative actions to communicate with other agents, and
rules to react to external events. All of these constructs are left out in the
language presented here, because they are not needed to illustrate the idea of
goal selection strategies. In the next section this simplified language will be
extended with some goal selection strategies.

2.1 Syntax

An agent has beliefs about its environment, and goals to denote the desirable
situation it wants to realize. As mentioned earlier, these are modelled in a subset
of propositional logic.

Definition 1 (belief and goal language). Let the set P be the set of atomic
propositions. The belief language LB with typical element β, and goal language
LG with typical element κ are then defined as:

– if ϕ ∈ P then ϕ,¬ϕ ∈ LB
– if ϕ ∈ (P \ {�,⊥}) then ϕ,¬ϕ ∈ LG
– if κ, κ′ ∈ LG then κ ∧ κ′ ∈ LG

Goal Selection Strategies for Rational Agents 57

The symbol |= will be used to denote the standard entailment relation for propo-
sitional logic.

The beliefs of the agent can thus be represented by literals, i.e. positive and neg-
ative atomic propositions. A belief that the agent is in room three, for instance,
can be represented as in room 3. The goals of the agent can be represented by a
conjunction of literals, for instance, cleaned1 and cleaned2 to denote the goals
of having cleaned room one and two.

To reach its goals, an agent needs to act. A plan describes a sequence of actions
an agent should perform in order to reach its goals. For the sake of simplicity
and to focus on goal selection strategies we assume only a set of basic actions
by which the agent can modify its beliefs, and an action by which the agent can
adopt new goals.

Definition 2 (plan language). Let Act with typical element a be the set of
basic actions an agent can perform. The set of plans Plan with typical element
π is then defined as:

– Act ⊆ Plan
– if κ ∈ LG then adopt(κ) ∈ Plan
– if π1, π2 ∈ Plan then π1; π2 ∈ Plan

In the following we will use ε to denote the empty plan and identify ε; π and π; ε
with π. Furthermore, we assume that every plan is ended by ε.

An agent can possibly know of more than one plan to pursue a single goal. Which
plan is the best depends on the current situation. To choose and generate an
appropriate plan, the agent uses so-called planning goal rules. These rules are of
the form κ ← β | π. The informal meaning of such a rule is that the agent can
use a plan π to reach a goal κ in case the agent believes β.

Definition 3 (planning goal rules). The set of goal planning rules RPG is
defined as:

RPG = {(κ ← β | π) : κ ∈ LG and β ∈ LB and π ∈ Plan}

2.2 Semantics

In this section we define the operational semantics of the agent programming
language as defined in the previous section in terms of a transition system. A
transition system is a set of derivation rules for deriving transitions for this
language. A transition is a transformation of one configuration C into another
configuration C′, denoted by C −→ C′. Each transition corresponds to a single
computation step for the presented (agent) programming language. A configu-
ration represents the state of an agent at each point during computation.

Definition 4 (agent configuration). Let Σ = {σ : σ ⊆ LB and σ �|= ⊥} be
the set of consistent belief sets, and let Γ = {κ ∈ LG : κ �|= ⊥} be the set of
goals. An agent configuration is then defined as a tuple 〈σ, γ, Π, PG〉 where σ ∈ Σ
is the belief base, γ ⊆ Γ is the goal base, Π ⊆ (LG × Plan) are the plans, and
PG ⊆ RPG are the planning goal rules.

58 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

The plan base of the agent is a set of pairs (κ, π), where κ denotes the state of
affairs that is supposed to be reached by the sequence of actions denoted by π.
We use κ to keep track of the goals the agent is working on.

Note that in contrast to the belief base, the individual goals in the goal base
are consistent, but different goals can be inconsistent. An agent can thus have
as goal in room 3 while it also has a goal ¬in room 3. We say that an agent has
a goal κ when κ is derivable from the goal base of that agent. As the goal base
can be inconsistent we cannot use the same entailment relation as we use for the
belief base. Instead, we define a goal entailment relation to be used for the goal
base (cf. [13,14]). As it would be irrational for an agent to have goals that are
already believed to be achieved, the belief base of the agent is also used for this
goal entailment relation.

Definition 5 (goal entailment). Let γ ⊆ Γ be a goal base, and let σ ∈ Σ be a
belief base. The goal entailment relation |=g is then defined in the following way:

(γ, σ) |=g κ ⇔ (∃γi ∈ γ : γi |= κ) and σ �|= κ

An agent with belief base σ and goal base γ is thus said to have a goal κ if and
only if κ is derivable from at least one of the goals in goal base γ and is not
entailed by the belief base.

The agent can update its belief base by performing basic actions. For this
purpose we use a function update : Act × Σ → Σ that takes as arguments a
basic action and a belief base, and evaluates to a new belief base as a conse-
quence of executing the basic action. The transition rule defined below defines
the semantics of executing a basic action, which can be executed in case the goal
for which the plan is generated is still a goal of the agent (condition (γ, σ) |=g κ).
A goal of the agent is removed from its goal base if the goal is believed to be
reached after having executed the belief update operation (3rd where-clause of
R1). Moreover, it would be irrational for an agent to execute a plan for a goal
already believed to be reached. Therefore, the plans that were generated for this
goal are removed from the plan base (2nd where-clause of R1). In defining the
transition rules below an agent configuration C = 〈σ, γ, Π, PG〉 is assumed. The
set of planning rules PG will be omitted whenever possible, since this component
does not change during the agent’s execution.

R1 (belief update). Let C = 〈σ, γ, Π, PG〉 be an agent configuration, and let
a ∈ Act and (κ, a; π) ∈ Π.

update(a, σ) = σ′ and (γ, σ) |=g κ

〈σ, γ, Π〉 −→ 〈σ′, γ′, Π ′′〉

where
1) Π ′ = (Π \ {(κ, a; π)}) ∪ {(κ, π)}
2) Π ′′ = Π ′ \ {(κ′, π′) ∈ Π ′ : (γ, σ′) �|=g κ′}
3) γ′ = γ \ {γi ∈ γ : σ′ |= γi})

Goal Selection Strategies for Rational Agents 59

Note that under the interpretation of the goal entailment relation a goal
in room 1 ∧ battery loaded differs from having two separate goals in room 1
and battery loaded in the goal base. The first goal is only achieved once the
agent believes in room 1 ∧ battery loaded, while the single goal in room 1 is
achieved if it believes in room 1 even when it does not believe battery loaded.

Agents can adopt new goals by performing an adopt action. The goal is added
to the goal base only if the goal is not already believed to be achieved. The
following two transition rules capture a goal adoption. The first rule captures
the case in which the goal is not already believed to be achieved, whereas the
second rule captures the case in which the goal is already believed to be achieved.
In the latter case the plan execution proceeds without any changes in the agent’s
belief and goal bases.

R2 (goal adoption 1). Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ, adopt(κ′); π) ∈ Π and (γ, σ) |=g κ and σ �|= κ′

〈σ, γ, Π〉 −→ 〈σ, γ ∪ {κ′}, Π ′〉

where Π ′ = (Π \ {(κ, adopt(κ′); π)}) ∪ {(κ, π)}

R3 (goal adoption 2). Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ, adopt(κ′); π) ∈ Π and (γ, σ) |=g κ and σ |= κ′

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = (Π \ {(κ, adopt(κ′); π)}) ∪ {(κ, π)}

When an agent has executed all the actions of a plan, this plan is removed from
the plan base. Removing a plan from the plan base does not affect the goal base
of the agent. When the plan failed in establishing the desired state, the goal
remains in the goal base of the agent, such that the agent can try again to reach
its goal with a possibly different plan. The next transition rule is for removing
empty plans from the plan base.

R4 (empty plan). Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ, ε) ∈ Π

〈σ, γ, Π〉 −→ 〈σ, γ, Π \ {(κ, ε)}〉

As already mentioned, an agent uses planning goal rules for generating plans
by which it hopes to reach its goals. An agent can apply a goal planning rule
κ ← β | π if κ is a goal of the agent, β is derivable from the agent’s belief base,
and the agent is not already working on a plan for κ. In defining the transition
rule for plan generation we first define the set of applicable planning rules with
respect to an agent configuration.

60 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

Definition 6 (applicable rules). Let C = 〈σ, γ, Π, PG〉 be an agent configura-
tion, and let κ ∈ LG. The set of applicable planning goal rules for goal κ w.r.t.
configuration C is then defined as:

appl(κ, C) =

{κ ← β | π ∈ PG : (γ, σ) |=g κ and σ |= β and ¬∃π′ ∈ Plan : (κ, π′) ∈ Π}

When a goal planning rule is applicable the plan will be added to the agent’s
plan base. The following rule captures this situation.

R5 (plan generation). Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ ← β | π) ∈ appl(κ, C)
〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = Π ∪ {(κ, π)}

In order to show some properties of the behavior of an agent, we define the
notion of an agent execution. Given a transition system consisting of a set of
transition rules, an execution of an agent is a sequence of configurations that
can be generated by applying transition rules to the initial configuration of
that agent. An agent execution thus shows a possible behavior of the agent. All
possible executions for an initial configuration show the complete behavior of an
agent.

Definition 7 (agent execution). An execution of an agent in transition sys-
tem T is a (possibly infinite) sequence of agent configurations 〈C0, C1, . . .〉 such
that for each for i ∈ N, Ci −→ Ci+1 can be derived from T . We use the term
initial configuration to refer to C0.

Recall that (κ, π) ∈ Π means that a plan has been generated to achieve a state
denoted by κ. We assume that in the initial configuration the associated κ to
each plan in the plan base is in fact a goal of the agent. Under this assumption
we can show that R1, . . . , R5 ensures that the associated κ to each plan in the
plan base in all derived configurations is in fact a goal of the agent. In other
words, the agent will never adopt a plan for which the corresponding κ is not a
goal of the agent.

Proposition 1. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi, Πi, PG〉, and let T consist of the rules R1, . . . ,R5. Given that
∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi : (γi, σi) |=g κ

Proof. By induction on the depth of the execution. We have ∀(κ, π) ∈ Π0 :
(γ0, σ0) |=g κ by assumption. Now assume that ∀(κ, π) ∈ Πk : (γk, σk) |=g κ for
arbitrary k ≥ 0. Now we have to prove that after application of one of R1, . . . ,R5
it holds that ∀(κ, π) ∈ Πk+1 : (γk+1, σk+1) |=g κ. For R2, R3 and R4 this
is trivial as they do not change the belief and goal bases. Assume that a plan

Goal Selection Strategies for Rational Agents 61

(κ, π) ∈ Πk+1 is adopted by application of rule R5. From definition 6 and that
γk = γk+1 after application of R5 it follows that (γk+1, σk+1) |=g κ. Now assume
that a goal is removed from the goal base by application of rule R1. From the fact
that if a goal is removed, also all the plans that are associated to this goal are
removed we conclude that ∀(κ, π) ∈ Πk+1 : (γk+1, σk+1) |=g κ still holds. ��

3 Goal Selection Strategies

The previous section defined a simplified version of an agent programming lan-
guage. In this section we consider several possible goal selection strategies for
this agent programming language. Central to the notion of a goal selection strat-
egy is that we relate those goals that cannot be pursued simultaneously. For this
purpose we extend the previously defined agent configuration with a binary re-
lation R on the set of goals. We call such an extended agent configuration a goal
strategy agent.

Definition 8 (goal strategy agent). Let 〈σ, γ, Π, PG〉 be an agent configura-
tion. A goal strategy agent is a tuple 〈σ, γ, Π, PG,R〉 where R ⊆ (LG ×LG) is a
goal selection strategy.

The main idea of R is thus that it specifies which goals are incompatible with
each other. To work on two goals that might hinder the achievement of one
another would be irrational. Consequently, we desire that if two goals are in-
compatible the agent should not be working on plans for these goals at the same
time.

Definition 9 (non-conflicting plan base). Let C = 〈σ, γ, Π, PG,R〉 be a goal
strategy agent. The plan base in C is R-non-conflicting iff:

∀(κ, π), (κ′, π′) ∈ Π : (κ, κ′) �∈ R and (κ′, κ) �∈ R

In the sequel we consider several notions of a goal selection strategy by intro-
ducing the relations R<> (incompatibility), R≺

d (disruptive precedence) and R≺
c

(cautious precedence) as concrete instances of R. We study some of the possi-
ble semantics of these relations by providing alternative definitions of the plan
generation rule R5.

3.1 Incompatibility of Goals

Goals the agent has already committed to by having adopted a plan constrain
the possibility for the pursuit of other goals [15]. A rational agent is expected
to refrain from adopting a plan that hinders the achievement of the goals the
agent is currently committed to. In this subsection we define the incompatibility
relation R<> to relate goals that cannot be pursued at the same time. We adapt
the previously defined plan generation rule R5 to ensure that the agent generates
its plans in such a way that the plan base remains non-conflicting.

62 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

Definition 10 (goal incompatibility relation). A goal incompatibility rela-
tion R<> ⊆ (LG × LG) is a set of pairs of goals such that:

– (κ, κ′) ∈ R<> ↔ (κ′, κ) ∈ R<>

– (κ, κ′) ∈ R<> → κ′ �= κ

Intuitively, when (κ, κ′) ∈ R<> this means that the goal κ cannot be pursued
in parallel with the goal κ′. Note that the incompatibility relation is symmetric
and anti-reflexive, meaning that two distinct goals are always incompatible with
each other and no goal can be incompatible with itself. The next transition rule
redefines rule R5 for plan generation, now taking the incompatibility of goals
into account.

R5.1 (incompatibility). Let C = 〈σ, γ, Π, PG,R<>〉 be a goal strategy agent
with R<> being an incompatibility relation

(κ ← β | π) ∈ appl(κ, C) and ∀κ′ ∈ LG : (κ′, π′) ∈ Π → (κ, κ′) �∈ R<>

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = Π ∪ {(κ, π)}

In words, a plan can be generated for κ if there is an applicable planning rule
for κ, and none of the current plans the agent is working on are for a goal
that is incompatible with κ. Returning to the example of section 1, in this new
transition system we can prevent the household agent from trying to clean the
rooms one and five at the same time by defining the goals clean1 and clean5 as
incompatible with each other, i.e. (clean1, clean5), (clean5, clean1) ∈ R<>.
When the household agent has for example adopted a plan for cleaning room
one, it will not adopt a plan for cleaning room five as long as it is still working
on cleaning room one. Note that in case the adopted plan finished, but failed to
clean room one, the agent can either try again to clean room one or it can start
working on cleaning room five instead.

Similar to proposition 1 we show for rules R1, . . . , R4, R5.1 that the agent will
never adopt a plan for which the corresponding κ is not a goal of the agent when
in the initial configuration the associated κ to each plan in the plan base is in
fact a goal of the agent. Although not needed for proving that the plan base of
the agent remains non-conflicting during its execution, we provide this property
for the sake of completeness.

Corollary 1. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi, Πi, PG,R<>〉, and T consists of the rules R1, . . . ,R4 and
R5.1. Given that ∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi :
(γi, σi) |=g κ

Proof. This follows from proposition 1 and the fact that R5.1 is a more restrictive
version of R5. ��

The bottom line of R<> is to ensure that if the agent started with a non-
conflicting plan base, the plan base of the agent remains non-conflicting. Given

Goal Selection Strategies for Rational Agents 63

that the agent starts with a non-conflicting plan base, we show that the plan
base stays non-conflicting for all executions in the transition system consisting
of the rules R1, . . . , R4, R5.1.

Proposition 2. Let 〈C0, C1, . . .〉 be an agent execution in transition system T
consisting of the rules R1, . . . ,R4 and R5.1. Given that the plan base in C0 is
R<>-non-conflicting then the plan base in Ci is R<>-non-conflicting ∀i ∈ N.

Proof. By induction on the depth of the execution. The plan base of C0 is non-
conflicting by assumption. Now assume that the plan base of Ck is non-conflicting
for arbitrary k ≥ 0. The only way in which the plan base can become conflicting
is by adoption of a plan to the plan base. Suppose that in configuration Ck+1 a
plan for goal κ has been adopted by applying R5.1. From the premises of R5.1
it directly follows that ∀(κ′, π) ∈ Πk+1 : (κ, κ′) �∈ R<>. From the symmetry of
R<> we conclude that ∀(κ′, π) ∈ Πk+1 : (κ′, κ) �∈ R<>, which means that the
plan base of Ck+1 is also non-conflicting. ��

3.2 Precedence of Goals

The above defined incompatibility relation ensures that the agent refrains from
adopting plans for goals that hinder the achievement of goals the agent is cur-
rently pursuing. It does not, however, guarantee a certain order in which the
agent tries to achieve its goals. Under the interpretation of the incompatibility
relation R<> the choice between two incompatible goals for which no plan is
adopted yet is non-deterministic. Sometimes, however, when an agent is faced
with such a choice, one goal should have precedence over the other. Suppose, for
instance, that the household agent cannot clean rooms in case its battery charge
is low. Therefore, one would expect the agent to first achieve its goal to have
its battery loaded (denoted by battery loaded) before pursuing a goal to clean
a room. In this subsection we provide the precedence relation R≺ enabling the
agent not only to avoid pursuing goals that cannot be achieved simultaneously,
but also to choose between such incompatible goals. Later we provide two dif-
ferent behaviours for plan generation under R≺. We will distinct between these
two by naming them R≺

d and R≺
c .

Definition 11 (goal precedence relation). Aprecedence relationR≺ ⊆(LG×
LG) is a set of pairs of goals such that:

– (κ, κ′) ∈ R≺ and (κ′, κ′′) ∈ R≺ → (κ, κ′′) ∈ R≺

– (κ, κ′) ∈ R≺ → (κ′, κ) �∈ R≺ and κ′ �= κ

The intuitive meaning of the precedence relation is as follows. When some goals
κ and κ′ are related by R≺, i.e. (κ, κ′) ∈ R≺, these goals are not to be pursued
simultaneously, and when both κ and κ′ are goals of the agent the achievement
of κ has precedence over the achievement of κ′. Precedence implies an order in
which goals are pursued. The relation R≺ is irreflexive, i.e. no goal can have
precedence over itself, and transitive. When, for example, the goal to have the
battery loaded precedes the goal to have room one clean (the room of the boss),

64 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

and cleaning room one on its turn precedes a goal to have cleaned room two,
then it seems not unreasonable to assume that the goal of having the battery
loaded also precedes the goal to have cleaned room two. Note that irreflexivity
and transitivity together imply asymmetry.

Suppose, for example, that in generating its plans an agent is faced with a
choice between two goals battery loaded and clean1. Furthermore, assume
that (battery loaded, clean1) ∈ R≺. If the agent has not adopted a plan
for one of them and does not have any goals with higher precedence than
battery loaded, then one might expect this agent to adopt a plan to load its
battery. If, however, the agent was already working on a plan for cleaning room
one before the goal battery loaded was adopted, then applying a planning goal
rule for battery loaded results in a conflicting plan base. In the following we
propose two different strategies, disruptive and cautious precedence, to keep the
plan base non-conflicting by providing two transition rules for plan generation
with precedence.

Disruptive Precedence

Disruptive precedence implements a strategy in which the agent stops pursuing
goals with less precedence the moment a plan can be adopted for a goal with
higher precedence. Plans the agent is already executing might thus be disrupted
in case a plan is adopted for a more important goal. The transition rule defined
below implements this strategy.

R5.2 (disruptive precedence). Let C = 〈σ, γ, Π, PG,R≺
d 〉 be a goal strategy

agent where R≺
d is a precedence relation.

(κ ← β | π) ∈ appl(κ, C) and ∀κ′ ∈ LG : (γ, σ) |=g κ′ → (κ′, κ) �∈ R≺
d

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = (Π ∪ {(κ, π)}) \ {(κ′, π′) ∈ Π : (κ, κ′) ∈ R≺
d }

In words, an applicable planning goal rule for κ is applied if no other goal has
precedence over κ. Note that in contrast to transition rule R5.1 in the premises
only conflicting goals are taken into account instead of plans in the plan base. It
might thus seem that there are plans (κ′, π′) in the plan base of the agent such
that (κ′, κ) ∈ R≺

d , which means that the agent has plans for goals that precede
κ, and therefore conflict with κ. However, this will never be the case because the
premises ensures that the agent has no goal that precedes κ, and as we show by
the following corollary, every κ′ associated to a plan of the agent is also a goal
of the agent.

Corollary 2. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi, Πi, PG,R≺

d 〉, and T consists of the rules R1, . . . ,R4 and R5.2.
Given that ∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi : (γi, σi) |=g κ

Proof. This follows from proposition 1 and the fact that R5.2 is a more restrictive
version of R5. ��

Goal Selection Strategies for Rational Agents 65

When a planning rule for a goal κ is applied, all plans associated with goals that
are to be preceded by κ are dropped. This way it is ensured that the goal κ for
which a plan has been adopted does not conflict with plans for goals with less
precedence. At this point we are able to show that if the agent starts with an
empty plan base, with rules R1, . . . , R4 and R5.2 it is guaranteed that the plan
base stays non-conflicting in the rest of the execution.

Proposition 3. Let 〈C0, C1, . . .〉 be an agent execution in transition system T
consisting of the rules R1, . . . ,R4 and R5.2 and let the plan base in C0 be empty.
Then the plan base in Ci is R≺

d -non-conflicting ∀i ∈ N.

Proof. By induction on the depth of the execution. In C0 the plan base is non-
conflicting, because Π = ∅. Assume that for arbitrary k ≥ 0 the plan base of Ck
is non-conflicting. Now we have to prove that when a plan for goal κ is adopted
by rule R5.2 for all plans in Ck+1 for a goal κ′ it holds that (κ, κ′), (κ′, κ) �∈ R≺

d .
The premises of rule R5.2 ensures that (κ′, κ) �∈ R≺

d for any goal κ′. From
Π0 = ∅ and corollary 2 it follows that ∀(κ′, π) ∈ Πk : (γ, σ) |=g κ′, we can thus
conclude that ∀(κ′, π) ∈ Πk+1 : (κ′, κ) �∈ R≺

d . That there are no plans in the
plan base for κ′ such that (κ, κ′) ∈ R≺

d follows from the fact that all these plans
are dropped once a plan for κ has been adopted. ��

When the goal of the household robot to have loaded its battery should precede
a goal to have a room clean, and the agent is not cleaning a room already,
the agent should postpone the adoption of a plan for cleaning a room until its
battery is loaded. In the following we show that for rules R1, . . . , R4, R5.2 such
behaviour can indeed be expected. More generally, when the agent has adopted
a goal κ that has precedence over some other goal κ′, then if the agent has not
adopted a plan for κ′ it will not do so as long as κ is still a goal of the agent.
Recall that κ is a goal of the agent as long as the state denoted by κ is not
believed to be reached.

Proposition 4. Let transition system T consist of the rules R1, . . . ,R4 and
R5.2. Let C0 = 〈σ0, γ0, Π0, PG,R≺

d 〉 be an initial configuration where (γ0, σ0) |=g

κ, (γ0, σ0) |=g κ′, ∀π ∈ Plan : (κ′, π) �∈ Π0 and (κ, κ′) ∈ R≺
d . Then for ev-

ery execution with initial configuration C0 in T it holds that ∀i≥0 : ((∀0≤j≤i :
(γj , σj) |=g κ) → ∀π ∈ Plan : (κ′, π) �∈ Πi)

Proof. By induction on the depth of an execution 〈C0, C1, . . .〉 with all of the
above assumptions about C0. Then ∀π ∈ Plan : (κ′, π) �∈ Π0 by assumption.
Assume that up to arbitrary k ≥ 0 it holds that ∀0≥i≥k : ((γi, σi) |=g κ and ∀π ∈
Plan : (κ′, π) �∈ Πi). Now we have to prove that it cannot be that (γk+1, σk+1) |=g

κ and ∀π ∈ Plan : (κ′, π) ∈ Πk+1 which can only happen after application of
R5.2. As the condition ∀κ ∈ LG : (γk, σk) |=g κ → (κ, κ′) �∈ R≺

d of the premises
of rule R5.2 is not satisfied, we can conclude that ∀π ∈ Plan : (κ′, π) �∈ Πk+1.

��

Note that in the above proposition no assumptions are made about whether the
agent is already working on a plan for κ or not. Even if no plan is adopted for κ

66 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

and there are no applicable planning rules, the agent will not adopt a plan for
goals that are to be preceded by κ. As a consequence, the execution of the agent
might block when all goals of the agent are to be preceded by a goal for which
no plan can be adopted. It is the responsibility of the designer to avoid such
behaviour in case this is deemed undesirable. The designer should then ensure
that the agent can always find an appropriate plan for such an important goal.
A weaker version of R5.2 can be introduced such that a rule for κ′ can be applied
when there are no applicable rules for more important goals.

Cautious Precedence

By dropping plans for goals with less precedence immediately after a PG-rule
for some goal with higher precedence is enabled the agent might give up too
soon. Particularly in situations in which goals with higher precedence are often
adopted the agent might never finish a plan for some of its goals. The agent
would then never reach those goals. For example, when the boss’ room needs a
lot of cleaning, the agent might never finish a plan for cleaning the other rooms.
Therefore, we also propose a more cautious form of precedence, in which the
agent persists to plans it has already adopted. With such a strategy the agent
is more cautious about dropping plans. This strategy is captured by rule R5.3
as defined below.

R5.3 (cautious precedence). Let C = 〈σ, γ, Π, PG,R≺
c 〉 be a goal strategy

agent where R≺
c is a precedence relation.

(κ ← β | π) ∈ appl(κ, C) and ∀κ′ ∈ LG : (γ, σ) |=g κ′ → (κ′, κ) �∈ R≺
c and

∀κ′ ∈ LG : (κ′, π′) ∈ Π → (κ, κ′) �∈ R≺
c

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = Π ∪ {(κ, π)}

The first clause of the premises of R5.3 states that an agent can apply an ap-
plicable planning goal rule for a goal κ if no other goal has precedence over κ.
The second clause of the premises states that the agent is not already working
on a goal κ′ with less precedence than κ. The agent will thus persist working
on a plan for a goal even though a goal planning rule for a goal with higher
precedence is applicable. Note that when the plan for such a conflicting goal κ′

failed to achieve this goal, the agent will not retry with another plan as long
as κ is still a goal of the agent. Under the assumption that no new goals with
higher precedence than κ are adopted, the agent will adopt a plan for κ as soon
as all plans for goals with lower precedence than κ are completed.

Note that just like in transition rule R5.2 only conflicting goals are taken
into account instead of plans in the plan base. To avoid that a plan for a goal
κ is adopted while there already is a plan (κ′, π) in the plan base such that
(κ′, κ) ∈ R≺

c , it is needed that every κ′ associated to a plan of the agent is also
a goal of the agent. This is shown by the corollary below.

Goal Selection Strategies for Rational Agents 67

Corollary 3. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi, Πi, PG,R≺

c 〉, and T consists of the rules R1, . . . ,R4 and
R5.3. Given that ∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi :
(γi, σi) |=g κ.

Proof. This follows from proposition 1 and the fact that R5.3 is a more restrictive
version of R5. ��

Next, we show that similar to proposition 3, in a transition system consisting of
the rules R1, . . . , R4 and R5.3 the plan base of the agent stays non-conflicting
during the execution of an agent that started with an empty plan base.

Proposition 5. Let 〈C0, C1, . . .〉 be an agent execution in transition system T
consisting of the rules R1, . . . ,R4 and R5.3 and let the plan base in C0 be empty.
Then the plan base in Ci is R≺

c -non-conflicting ∀i ∈ N.

Proof. Observe that rule R5.3 is a more restricted version of R5.2 and ensures
that no goal κ is adopted when ∃(κ′, π) ∈ Π : (κ, κ′) ∈ R≺

c . The proof is therefore
similar to the proof of proposition 3. ��

Just like we have shown for rules R1, . . . , R4, R5.2 we show that with rules
R1, . . . , R4, R5.3 an agent that has not already adopted a plan for a goal κ′

will not do so as long as the agent has a goal κ with higher precedence, i.e.
(κ, κ′) ∈ R≺

c .

Proposition 6. Let transition system T consist of the rules R1, . . . ,R4 and
R5.3. Let C0 = 〈σ0, γ0, Π0, PG0,R≺

c 〉 be an initial configuration where (γ0, σ0) |=g

κ, (γ0, σ0) |=g κ′, ∀π ∈ Plan : (κ′, π) �∈ Π0 and (κ, κ′) ∈ R≺
c . Then for every exe-

cution with initial configuration C0 in T it holds that ∀i≥0 : ((∀0≤j≤i : (γj , σj) |=g

κ) → ∀π ∈ Plan : (κ′, π) �∈ Πi)

Proof. Similar to the proof of proposition 4. ��

Note that just as with disruptive precedence, the execution of the agent might
block when all goals of the agent are to be preceded by a goal for which no plan
can be adopted.

3.3 A Brief Comparison of the Proposed Mechanisms

We have already shown that all three transition systems guarantee that if a
plan base is non-conflicting initially it remains non-conflicting during the agent’s
execution. We have not shown, however, to what extent the different transition
systems differ from each other. We omit a formal proof that the behaviour of
a transition system with disruptive precedence differs from one with cautious
precedence, as we believe that the difference should be clear; the first will drop
a plan for less important goals immediately after a planning rule is applied for
a goal with higher precedence, while the latter will wait for plans associated
to goals with less precedence to finish before applying a planning rule for a
goal with higher precedence. We will, however, as a final property show that

68 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

both forms of plan generation with the precedence relation generate different
behaviour than plan generation with incompatibility. The crux is that with the
rules R1, . . . , R4, R5.1 no order of the pursuit of goals is assured.

Proposition 7. Let transition system T1 consist of rules R1, . . . ,R4, R5.1,
transition system T2 of R1, . . . ,R4, R5.2, and transition system T3 of R1, . . . ,R4,
R5.3. Neither transition system T2 nor T3 can generate the same behaviour as
T1.

Proof. Assume that ∀π ∈ Plan : (κ, π) �∈ Π0, (κ′ ← β|π) ∈ appl(κ′, C0), and
that R<> = {(κ, κ′), (κ′, κ)}. Recall that if a rule for κ is applicable then κ is a
goal of the agent (by definition 6). Then after applying R5.1 for (κ′ ← β|π), in
C1 it holds that (κ′, π) ∈ Π1 and (γ1, σ1) |=g κ. According to proposition 4 and
proposition 6 such an execution is not possible in T2 nor in T3. ��

4 Related Work

Related to our work is the work presented in [16], which describes the structure
of a goal model which can be used by an agent to reason about goals during
its deliberation process and means-ends reasoning. As part of this model an
inconsistency operator is provided to denote that the success of one goal implies
the failure of another. Also a preference operator is provided to express that in
case of inconsistency between goals one goal is preferred to another.

Also related to our work is the goal deliberation strategy as proposed in [17].
This strategy allows agent developers to specify the relationship between incom-
patible goals in order to avoid negative interference in pursuing multiple goals.
This relation also implies a precedence of one goal over another. In fact, their
mechanism of avoiding the pursuit of incompatible goals closely resembles our
notion of disruptive precedence, provided that in contrast to our incompatibility
relation, their incompatibility relation is not a transitive one.

The main difference between our work and that of [16] and [17] is that our
proposal is not limited to a specific platform, but can be integrated in exist-
ing BDI-based agent programming language. Furthermore, [16] and [17] do not
provide a formal semantics of the proposed constructions. The lack of a formal
semantics makes it hard to compare different approaches extensively.

Another solution that involves avoiding negative interference in pursuing mul-
tiple goals is the one proposed in [18]. Possible conflicts are detected and avoided
by annotating plans and goals with detailed summary information about their
effects, pre-conditions, and in-conditions. Just as also observed in [17] we believe
that acquiring and assigning such information to goals and plans is a cumbersome
task for an agent programmer. Also, in contrast to our approach, it is not possi-
ble to enforce that one goal precedes another. Moreover, as we have integrated
the goal selection strategies in transition rules we believe that our approach can
be directly used to build agent interpreters that can process incompatible goals.

Goal Selection Strategies for Rational Agents 69

5 Conclusion and Discussion

In this paper, we have introduced three types of goal selection strategies as an
explicit and generic mechanism to process incompatible goals. These mechanisms
prevent an agent from simultaneously pursuing goals that are incompatible with
each other, and enable the agent to choose from possibly incompatible goals in
adopting plans to reach its goals. We have presented the proposed mechanism
in the context of a simple agent programming language that can be extended to
most BDI-based agent programming languages. The three goal selection strate-
gies are implemented as conditions for the application of goal planning rules.
These strategies are integrated in the transition rules for PG-rule applications.
It should be noted that our account of precedence might look like a preference re-
lation. However, it should be emphasized that the precedence relation is defined
as a programming construct to help an agent to choose a goal from a (possibly)
incompatible set of goals. It is not a concept agents reason about.

In the current proposal different strategies are studied separately. We empha-
sise that all proposed mechanisms should be present in an agent programming
language. We are currently investigating new relations that can be used to de-
note the incompatibility of goals. For example, as mentioned before, we also
envisage a variant of the precedence rules that does not prevent the generation
of new plans for less important goals in case there is no applicable PG-rule for
the most important goal.

As for now, R is defined on only the head of PG-rules, which refer to goals
the agent might have. A possible extension would be to define R on the entire
PG-rules, allowing for a more fine grained specification of incompatibility. Our
choice for the head of the rules is intentional. There are many cases for which
two goals are incompatible irrespective of the plan being used to achieve these
goals (in case of our example the agent cannot be in two rooms at the same
time). For those cases this would mean that every possible pair of plans should
be marked as incompatible. Extending our mechanism to the more fine grained
one as mentioned above, is quite straightforward, though.

Further, for now it is the task of the agent programmer to specify which goals
are incompatible with each other. We are interested in a mechanism that detects
incompatibility automatically. Suppose, for example, that the agent believes that
to clean a room it should be in that room. Then when it also believes that it
cannot be in two different rooms at the same time, it should deduce that goals
to have cleaned different rooms are incompatible.

Finally, we observe that in the current approach the precedence of goals is
fixed, while in some cases precedence might depend on a specific context, e.g.,
the current beliefs of the agent. For example, it may often be the case that
the goal κ1 is preferred to κ2 in summer and κ2 to κ1 in winter, or κ1 and κ2

are normally compatible, unless the agent is very short of money. This topic
is closely related to preference change, which is not the focus of this paper.
Therefore, investigating how the precedence relation can be extended taking the
context into account remains for further research.

70 N.A.M. Tinnemeier, M. Dastani, and J.-J.Ch. Meyer

Acknowledgments

This research was supported by the CoCoMAS project funded through the Dutch
Organization for Scientific Research (NWO).

References

1. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In:
[19], pp. 149–174

2. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Jack intelligent agents:
An industrial strength platform. In: [19], pp. 175–193

3. Bordini, R., Hübner, J., Vieira, R.: Jason and the Golden Fleece of agent-oriented
programming. In: [19], pp. 3–37

4. Dastani, M., van Riemsdijk, M., Meyer, J.: Programming Multi-Agent Systems in
3APL. In: [19], pp. 39–67

5. Dix, J., Zhang, Y.: IMPACT: A Multi-Agent Framework with Declarative Seman-
tics. In: [19], pp. 69–122

6. Fallah-Seghrouchni, A.E., Suna, A.: CLAIM and SyMPA: A Programming Envi-
ronment for Intelligent and Mobile Agents. In: [19], pp. 95–122

7. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.J.: A Verification Framework
for Agent Programming with Declarative Goals. Journal of Applied Logic (2007)

8. Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning.
In: Proc. of AAMAS (2008)

9. Dastani, M., Meyer, J.: A Practical Agent Programming Language. In: Proc. of
the fifth Int. Workshop on Programming Multi-agent Systems (2007)

10. Winikoff, M., Padgham, J.H.L., Thangarajah, J.: Declarative and Procedural Goals
in Intelligent Agent Systems. In: Proc. of the Eighth Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2002) (2002)

11. Dastani, M., van Riemsdijk, M.B., Meyer, J.: Goal types in agent programming.
In: Proc. of AAMAS, pp. 1285–1287 (2006)

12. van Riemsdijk, M.B., Dastani, M., Meyer, J., de Boer, F.S.: Goal-oriented modu-
larity in agent programming. In: Proc. of AAMAS, pp. 1271–1278 (2006)

13. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming
with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000.
LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

14. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of declarative goals in
agent programming. In: Proc. of AAMAS, pp. 133–140 (2005)

15. Bratman, M.: Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

16. Morreale, V., Bonura, S., Francaviglia, G., Centineo, F., Cossentino, M., Gaglio, S.:
Goal-Oriented Development of BDI Agents: The PRACTIONIST Approach. In: IAT
2006:Proc. of the IEEE/WIC/ACMint. conf. on IntelligentAgentTechnology (2006)

17. Pokahr, A., Braubach, L., Lamersdorf, W.: A Goal Deliberation Strategy for BDI
Agent Systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,M.N.
(eds.)MATES2005.LNCS (LNAI), vol. 3550, pp. 82–93. Springer,Heidelberg (2005)

18. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & Avoiding Interference
Between Goals in Intelligent Agents. In: Proc. of the 18th Int. Joint Conference on
Artificial Intelligence (2003)

19. Bordini, R., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

A Common Basis for Agent Organisation

in BDI Languages�

Anthony Hepple, Louise Dennis, and Michael Fisher

Department of Computer Science, University of Liverpool, Liverpool, U.K.
{A.J.Hepple,L.A.Dennis,MFisher}@liverpool.ac.uk

Abstract. Programming languages based on the BDI style of agent
model are now common. Within these there appears to be some, lim-
ited, agreement on the core functionality of agents. However, when we
come to multi-agent organisations, not only do many BDI languages have
no specific organisational structures, but those that do exist are very di-
verse. In this paper, we aim to provide a unifying framework for the core
aspects of agent organisation, covering groups, teams and roles, as well
as organisations. Thus, we describe a simple organisational mechanism,
and show how several well known approaches can be embedded within
it. Although the mechanism we use is derived from the MetateM pro-
gramming language, we do not assume any specific BDI language. The
organisational mechanism is intended to be independent of the underly-
ing agent language and so we aim to provide a common core for future
developments in agent organisation.

1 Introduction

As hardware and software platforms become more sophisticated, and as these
are deployed in less predictable environments, so the level of autonomy built
into such systems has increased. This has allowed systems to work effectively
without detailed, and constant, human intervention. However, autonomous sys-
tems can be hard to understand and even harder to develop reliably. In order to
help in this area, the concept of an agent was introduced to capture the abstrac-
tion of an autonomously acting entity. Based on this concept, new techniques
were developed for analysing, designing and implementing agents. In particular,
several new programming languages were developed explicitly for implementing
autonomous agents.

We can simply characterise an agent as an autonomous software component
having certain goals and being able to communicate with other agents in order
to accomplish these goals [29]. The ability of agents to act independently, to re-
act to unexpected situations and to cooperate with other agents has made them
a popular choice for developing software in a number of areas. At one extreme
there are agents that are used to search the Internet, navigating autonomously
in order to retrieve information; these are relatively lightweight agents, with

� Work partially supported by EPSRC under grant EP/D052548.

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 71–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 A. Hepple, L. Dennis, and M. Fisher

few goals but significant domain-specific knowledge. At the other end of the
spectrum, there are agents developed for independent process control in un-
predictable environments. This second form of agent is often constructed using
complex software architectures, and has been applied in areas such as real-time
process control [20,25]. Perhaps the most impressive use of such agents is in
the real-time fault monitoring and diagnosis carried out on NASA Deep Space
One [22].

The key reason why an agent-based approach is advantageous for modelling
and programming autonomous systems, is that it permits the clear and concise
representation, not just of what the autonomous components within the system
do, but why they do it. This allows us to abstract away from low-level control
aspects and to concentrate on the key feature of autonomy, namely the goals the
component has and the choices it makes towards achieving its goals. Thus, in
modelling a system in terms of agents, we often describe each agent’s beliefs and
goals, which in turn determine the agent’s intentions. Such agents then make
decisions about what action to perform, given their beliefs and goals/intentions.
This kind of approach has been popularised through the influential BDI (Belief-
Desire-Intention) model of agent-based systems [25]. This representation of be-
haviour using mental notions has several benefits. The first is that, ideally, it
abstracts away from low-level issues: we simply present some goal that we wish
to be achieved, and we expect it to act as an agent would given such a goal.
Secondly, because we are used to understanding and predicting the behaviour
of rational agents, the behaviour of autonomous software should be relatively
easy for humans to understand and predict too. Not surprisingly, therefore, the
BDI approach to agent modelling has been successful and has led to many novel
programming languages based (at least in some part) upon this model; these
are often termed BDI Languages. Although a wide variety of such languages
have been developed [2] few have strong and flexible mechanisms for organising
multiple agents, and those that do provide no agreement on their organisational
mechanisms. Thus, while BDI languages have converged to a common core re-
lating to the activity of individual agents [9], no such convergence is apparent in
terms of multi-agent structuring.

Our overall aim is to provide a common logically based framework for BDI
style agent programming (which incorporates organisational aspects) to facilitate
agent verification [4]. As a result a clear goal is to develop a simple, intuitive
and semantically consistent organisation mechanism. In this paper we show how
a simple model can, in BDI languages, encompass many proposed models of
multi-agent organisation and teamwork. The formal semantics of this approach
is considered in detail in [10].

Paper Structure. Section 2 surveys some of the leading approaches to agent
organisation that have already been proposed and illustrates their diverse nature.
In Section 3 we describe the structuring mechanism we propose for unifying the
multi-agent concepts. Section 4 demonstrates how our framework can be used to
model concepts such as joint-intentions, roles, etc., which form the basis of the

A Common Basis for Agent Organisation in BDI Languages 73

approaches surveyed in Section 2. Finally, in Section 5, we provide concluding
remarks and outline future work.

2 Approaches to Agent Organisation

In this section we overview some of the key approaches to the organisation of
agents that have been proposed. It is important to note that we are particularly
concerned with rational agents, predominantly using the BDI model of compu-
tation. While we have not listed all approaches, the selection we give covers
many of the leading attempts at teamwork, organisational structuring and role-
based computation. In addition, while we are primarily interested in developing
BDI languages with clear logical semantics and logic-based mechanisms, we also
consider organisational approaches beyond this class.

2.1 Cohen and Levesque: Joint Intentions

With a respected philosophical view on agent co-operation, Cohen and Levesque
produced a significant paper ‘Teamwork’ [8] extending previous work [6,7,21].
They persuasively argue that a team of agents should not be modelled as an
aggregate agent and propose new (logical) concepts of joint intentions, joint
commitments and joint persistent goals to ensure that teamwork does not break
down due to any divergence of individual team members’ beliefs or intentions.
The authors’ proposals oblige agents working in a team to retain team goals until
it is mutually agreed amongst team members that a goal has now been achieved,
is no longer relevant, or is impossible. This level of commitment is stronger than
an agent’s commitment to its individual goals which are dropped the moment
it (individually) believes they are satisfied. Joint intentions can be reduced to
individual intentions if supplemented with mutual beliefs.

2.2 Tidhar, Cavedon and Rao: Team-Oriented Programming

Tidhar [27] introduced the concept of team-oriented programming with social
structure. Essentially this is an agent-centred approach that defines joint goals
and intentions for teams but stops short of forcing individual team members
to adopt those goals and intentions. An attempt to clarify the definition of a
‘team’ and what team formation entails is made using concepts such as ‘mind-set
synchronisation’ and ‘role assignment’. Team behaviour is defined by a temporal
ordering of plans which guide (but do not constrain) agent behaviour. A social
structure is proposed by the creation of command and control teams which assign
roles, identify sub-teams and permit inter-team relationships. In [5], the authors
formalise their ideas of social structure with concepts of commitment expressed
using modal logic. This allows the formal expression of commitment between
teams, such as

team A intends to achieve task B for the sake of team C.

74 A. Hepple, L. Dennis, and M. Fisher

2.3 Ferber, Gutknecht and Michel: Roles and Organisations

Ferber et al. [13] present the case for an organisational-centred approach to
the design and engineering of complex multi-agent systems. They cite disadvan-
tages of the predominant agent-centred approaches such as: lack of access rights
control; inability to accommodate heterogeneous agents; and inappropriate ab-
straction for describing organisational scenarios. The authors propose a model
for designing language independent multi-agent systems in terms of agents, roles
and groups. Agents and groups are proposed as distinct first class entities al-
though it is suggested that an agent ought to be able to transform itself into a
group. (We will see later that this is close to our approach.)

In [14], Ferber continues to argue for an organisational-centred approach,
advocating the complete omission of mental states at the organisational level,
defining an organisation of agents in terms of its capabilities, constraints, roles,
group tasks and interaction protocols. Clearly articulated here is a manifesto of
design principles.

2.4 Pynadath and Tambe: TEAMCORE

Pynadath et al. [24] describe their interpretation of team-oriented programming
that aims to organise groups of heterogeneous agents to achieve team goals. A
framework for defining teams is given that provides the following concepts:

Team—an agent without domain abilities;
Team-ready—agents with domain abilities that interface with team agents;
Sub-goal—a goal that contributes to the team goal; and
Task—the allocation of a sub-goal to a team-ready agent.

An implementation of their framework, TEAMCORE, provides organisational
functionality such as multicast communication between agents, assigning tasks,
maintaining group beliefs and maintaining hierarchies of agents (by role). Het-
erogeneous agents are accommodated by wrapper agents that act as proxies for
the domain agent.

2.5 Fisher, Ghidini and Hirsch: Groups as Agents

Beginning within the context of executable temporal logics [1], Fisher et al.
produced a series of papers [15,16,17,18] that developed the MetateM language
into a generalised approach for expressing dynamic distributed computations. As
we will see more about this model in Section 3, we just provide a brief outline
here.

Organisational structuring within the MetateM language [15] consists of
a simple nested grouping structure where groups comprise communicating ele-
ments (objects, agents, or other software components). The key aspect of this
approach is that groups themselves are also agents, providing a homogeneous,
simple, yet expressive, model. In [16], it is argued that systems composed of com-
ponents as diverse as objects, web services and abstract features can be modelled
with this general approach.

A Common Basis for Agent Organisation in BDI Languages 75

2.6 Hübner, Sichman and Boissier: Roles and Permissions

Hübner et al. believed that the agent organisational frameworks proposed prior
to their 2002 paper [19] overlooked the significant relationship between structural
and functional properties of an organisation. Thus, in [19], they propose a three
component approach to the specification of agent organisations that combines
independent structural and functional specifications with a deontic specification,
the latter defining among other things the roles (structural) having permission
to carry out group tasks (functional). The approach provides a proliferation of
constructs for specifying multi-agent systems, including the ability to concisely
express many additional aspects, such as

– the ability to specify compatibility of group membership, akin to the members
of a government expressing a conflict of interest.

– enabling the cardinality of group membership to be defined and thus defining
a well formed group as a group who’s membership is between its specified
minimum and maximum size.

– control of the organisation’s goal(s), with an ability to specify sequential,
branching and parallel execution of sub-goals.

– the ability to express a variance in the agents’ permissions over time.

It is argued that such an approach improves the efficiency of multi-agent systems
by focusing agents on the organisation’s goals. Indeed, we note that of all the
proposals discussed in this section this approach provides the developer with
the widest vocabulary with which to express agent behaviour when defining the
organisation.

2.7 Dignum, Esteva, Sierra and Vázquez-Salceda: Institutions

These authors made formal [12] and practical [11,28] contributions to a method
of agent organisation that enjoys much current popularity [23]. An electronic
institution aims to provide an open framework in which agents can contribute to
the goals of society without sacrificing its own self-interest; the implication being
that an autonomous agent will be motivated to participate in the institution by
its desire to satisfy it own goals, but that its participation will be structured by
the framework in such a way that institutional goals are achieved. A key concept
is that of institutional norms.

In [12], the institution remains independent of agent-architecture by modelling
agents as roles, of which there are two types — internal and external (to the
institution) — with different rights. A dialogue defines valid locutions, a scene is
a unit of interaction within an institution and a performative structure defines
an objective as a network of scenes. In an attempt to allow more agent autonomy
these ideas were refined and in [28] more concepts were introduced, including
landmarks that can be used to guide agents through an interaction when a
prescriptive dialogue is considered too constraining.

Perhaps the most noteworthy aspect of these proposals is the change of focus
from the agents themselves onto the interactions that take place between agents.

76 A. Hepple, L. Dennis, and M. Fisher

2.8 Summary

It should be noted that none of the above organisational approaches can com-
prehensively model all forms of co-operative multi-agent systems. Rather they
represent attempts to discover practical and beneficial ways of specifying dis-
tributed computational systems, and facilitating the focus of computation on a
system’s main purpose whilst not compromising the autonomy of the system’s
components. In achieving this aim it may be convenient to categorise groups of
agents in terms of cohesion and co-operation. For instance, a group of agents
may be individually autonomous, existing as a group solely due to their prox-
imity to one another rather than their co-operation. In contrast, the word team,
implies a high degree of co-operation and adhesion with an organisation fitting
somewhere in between. As Cohen stated in [8]

“teamwork is more than co-ordinated individual behaviour”.

Thus, the more expressive proposals reviewed here enable the specification of
more cohesive groups but often at significant cost to the agents involved.

3 Structuring Mechanisms

The approach we propose is based on that of MetateM described previously
in [15]. However, we advocate this grouping approach, independent of the un-
derlying language for agents. The aim of our grouping structure is to provide a
simple organisational construct that enables the definition of a variety of multi-
agent systems, ranging from unstructured collections of uncoordinated agents
to complex systems that are often described using the high-level abstractions
described in the last section.

The basic restrictions we put on any underlying language is that, as in most
BDI-based languages, there are logically coherent mechanisms for explicitly de-
scribing beliefs and goals. As in the MetateM framework, the grouping approach
involves very few additional constructs within the language [10]. Specifically, we
require just two additional elements within each agent’s state. We also, as is
common, require that first-class elements such as beliefs, goals and plans, can
be communicated between agents. Delivery of messages should be guaranteed,
though the delay between send and receipt is not fixed. Finally, we expect asyn-
chronously concurrent execution of agents.

3.1 Extending Agents

Assuming that the underlying agent language can describe the behaviour of an
agent, as has been shown for example in [9], we now extend the concept of agent
with two sets, Content and Context. The agent’s Content describes the set
of agents it contains, while the agent’s Context describes a set of agents it is
contained within. Thus, the formal definition of an agent is as follows [17].

A Common Basis for Agent Organisation in BDI Languages 77

Agent ::= Behaviour: Specification
Content: P(Agent)
Context: P(Agent)

Here, P(Agent) are sets of agents and Specification is the description of the
individual agent’s behaviour, given as appropriate in the target BDI language.

Context

Content

Behaviour

On the right, we provide a graphical representa-
tion of such an agent. The agent (the circle) resides
within a Context and itself comprises its own be-
havioural layer and its Content. This Content can
again contain further agents. Note that, for formal
development purposes, the Behaviour may well be a
logical specification.

The addition of Content and Context sets to each
agent provides significant flexibility for agent organ-
isation. Agent teams, groups or organisations, which might alternatively be seen
as separate entities, are now just agents with non-empty Content. This allows
these organisations to be hierarchical and dynamic, and so, as we will see later,
provides possibilities for a multitude of other co-ordinated behaviours. Similarly,
agents can have several agents within their Context. Not only does this allow
agents to be part of several organisational structures simultaneously, but it allows
the agent to benefit from Context representing diverse attributes/behaviours.
So an agent might be in a context related to its physical locality (i.e. agents in
that set are ‘close’ to each other), yet also might be in a context that provides
certain roles or abilities. Intriguingly, agents can be within many, overlapping
and diverse, contexts. This gives the ability to produce complex organisations,
in a way similar to multiple inheritance in traditional object/concept systems.
For example, see Fig. 1 for sample configurations.

Fig. 1. A selection of possible organisation structures

78 A. Hepple, L. Dennis, and M. Fisher

An important aspect is that this whole structure is very dynamic. Agents can
move in and out of Content and Context sets, while new agents (and, hence,
organisations) can be spawned easily and discarded. This allows for a range of
structures, from the transient to the permanent. From the above it is clear that
there is no enforced distinction between an agent and an agent organisation. All
are agents, all may be treated similarly.

While it may seem counter-intuitive for an organisation to have beliefs and
goals, many of the surveyed systems required team constructs such as tasks or
goals that can naturally be viewed as belonging to a team/group agent. Some
also required control agents to manage role assignment and communication which
in this framework can be handled by the containing agent itself if so desired. On
the other hand it is possible to distinguish between agents (with empty Content)
and organisations (with non-empty Content) and for a programmer to exclude
certain constructs from organisations in order to allow an organisation-centred
approach, if required.

Finally, it is essential that the agent’s internal behaviour, be it a program or
a specification, have direct access to both the Content and Context sets. As
we will see below, this allows each agent to become more than just a ‘dumb’
container. It can restructure, share information and behaviour with, and control
access to its Content. To describe fragments of the agent’s behaviour during the
rest of the paper, we will use simple IF...THEN...ELSE statements. Again,
this does not prescribe any particular style of BDI language.

3.2 Communication

The core communication mechanism between agents in our model is broadcast
message-passing. The use of broadcast is very appealing, allowing agent-based
systems to be developed without being concerned about addresses/names of the
agents to be communicated with. The potential inefficiency of broadcast commu-
nication is avoided by the use of the agents’ Content and Context structures. By
default, when an agent broadcasts a message, that message is sent to all mem-
bers of the agent’s Context set and forwarded to agents within the same context.
This, effectively, produces multicast, rather than full broadcast, message-passing.

This is clearly a simple, flexible and intuitive model, and the system developer
is encouraged to think in this way. However, it is useful to note that multicast,
or ‘broadcast within a set’, is actually implemented on top of point-to-point
message passing! We will assume that the BDI language has a communication
construct that can be modelled as the action send(recipient, m) which means
that the message m has been sent to the agent recipient, and a corresponding
received(sender, m) which becomes true when the recipient agent receives the
message m from sender. Let us consider an example where an agent wishes to
broadcast to all other members of one of its Context sets. For simplicity, let us
term this context set ‘group’. An agent wishing to ‘broadcast’ a message, m, to
members of the group sends a message, send(group, broadcast(m)), to the group
agent alone, as illustrated in Fig. 2.

A Common Basis for Agent Organisation in BDI Languages 79

Fig. 2. Broadcast within a Group

The effect of sending a broadcast message to the group agent is that the group
acts as a proxy and forwards the message to its Content, modifying the message
such that the message appears to have originated from the proxy. In this way
agents maintain their anonymity within the group.

IF received(from, broadcast(m))
THEN for each x in {Content \ from} send(x, m)

Being an agent-centred approach to multi-agent organisation there does not
exist an (accessible) entity that references all agents in the agent space, thus
true broadcast is not possible. However a number of recursive group broadcasts
can be specified, allowing a message to be propagated to all agents with an
organisational link to the sender.

For example, reaching all accessible agents requires the sending agent to send a
message to all members of its Context and Content sets and for each first-time
recipient to recursively forward that message to the union of their Context
and Content (excluding the sender). Clearly this is not an efficient method of
communication as it is possible for agents to receive multiple copies of the same
message, and so it may not be practical in very large societies, but what it lacks
in sophistication it makes up for in simplicity and clarity [16].

IF received(from, broadcastAll(m)) AND not received(, m)
THEN for each x in {Content∪ Context}

send(x, m) AND send(x, broadcastAll(m))

Perhaps more useful than indiscriminate broadcasting would be the case of an
agent who wants to reach all other members of the ‘greatest’ organisation to
which it belongs. This requires a message to propagate up through the agent
structure until it reaches an agent with an empty context, at which point the mes-
sage is sent downwards until all members and sub-members have been reached.

To illustrate this, consider the situation of agent E in Fig. 3(a), who wants
to send a message to its entire organisation— the organisation specified by A.

80 A. Hepple, L. Dennis, and M. Fisher

Fig. 3. (a) Nested Organisations. (b) Propagation of Messages

A propagateUp(m) message originates from agent E who sends it to agent B.
B’s context is non-empty so the message continues upwards to A. Since A is the
widest organisation to which E belongs (it has an empty Context set), it modifies
the message, converting it to propagateDown(message) and broadcasts it along
with the message to all members of its Content. Upon receipt of this message,
agents B and G send it to their Content and so it continues until the message
reaches an agent with an empty Content as illustrated by Fig. 3(b). This might
be specified as follows.

IF received(, propagateUp(m)) AND Context �= ∅
THEN for each x in {Context}

send(x, propagateUp(m))

IF received(, propagateUp(m)) AND Context = ∅
THEN for each x in {Content}

send(x, m) AND send(x, propagateDown(m))

IF received(, propagateDown(m)) AND Content �= ∅
THEN for each x in {Content}

send(x, m) AND send(x, propagateDown(m))

3.3 Refining and Restricting Communications

Further restriction of communication is possible by, for example, restricting the
type of communications agents can make. Employing the concept of speech
acts [26] we can use the group agent as a communication filter that restricts
intra-group messaging to those messages that conform to permissible protocols
or structures.

If, for example, a fact-finding agent contains a number of agents with access
to information resources, it may be necessary to restrict their communication to
inform speech acts. In such circumstances it is possible to modify the default
behaviour by imposing a message filter.

IF received(from, broadcast(m))AND informFilter(m)
THEN for each x in {Content \ from} send(x, m)

A Common Basis for Agent Organisation in BDI Languages 81

Fig. 4. Filtering communication by group

See Fig. 4 for an example of this. In this way filters can be adapted for many
purposes, enabling organisations to maintain:

relevance — ensuring communication is relevant to group goals and intentions;
fairness —allowing each member of a group an equal opportunity to speak; and
legality — assigning permissions to group members to restrict communication.

3.4 Communication Semantics

The above variations on broadcast define varying semantics for a message. A
key feature of the grouping approach is that the semantics of communication is
flexible and, potentially, in the hands of the programmer. Such semantics can
also, potentially, be communicated between agents in the form of plans allowing
an agent to adopt different semantics for communication as its Context changes.

Adherence to particular common communication protocols/semantics also al-
lows groups to establish the extent to which a member is autonomous (e.g., a
group can use a semantics for achieve speech acts which forces recipients to
adopt the communicated goal). This is important because organisational ap-
proaches vary from those in which group behaviour is specified by the organi-
sation and imposed on its members with little option for autonomy to those in
which group behaviour emerges from an appropriate combination of individual
agents without any explicit coordination at all.

4 Common Multi-agent Structures

In this section we will examine some of the key structuring mechanisms that are
either explicit or implicit within the approaches surveyed in Section 2, and show
how each might be represented appropriately and simply, using the approach
outlined above. Table 1 lists the mechanisms identified by our surveyed authors
as being useful in the specification of agent co-operation. We believe that our
approach is flexible enough to model all of these but for brevity we will only
demonstrate a sample of them.

82 A. Hepple, L. Dennis, and M. Fisher

Table 1. Multi-agent organisation concepts

4.1 Sharing Information

Shared beliefs. Being a member of all but the least cohesive groups requires
that some shared beliefs exist between its members. Making the contentious as-
sumption that all agents are honest and that joining the group is both individual
rational and group rational, let agent i hold a belief set BSi. When an agent
joins a group1 j it receives beliefs BSj from the group and adds them to its
own belief base (invoking its own belief revision mechanism in case of conflicting
beliefs). The agent in receipt of the new beliefs may or may not disseminate
them to the agents in its content, depending on the nature and purpose of the
group. Once held, beliefs are retained until contradicted.

Joint beliefs. Joint beliefs are stronger than shared beliefs. To maintain the
levels of cohesion found in teams each member must not only believe a joint
belief but must also believe that its team members also believe it. Let us assume
the agent is capable of internal actions such as addBelief (Belief ,RelevantTo)
adding Belief to its belief base, and recording the context that Belief is relevant
to, and removeBeliefs(Context). Upon joining a group, an agent is supplied
the beliefs relevant to that context, which it stores in its belief base along with
the context in which they hold. This behaviour is captured in the rule below.

IF received(from,membershipConfirm(beliefSet))
THEN for each b in {beliefSet} addBelief (b, from).

The presence of such Context meta-information can be used to specify bound-
aries on agent deliberation, thus mitigating the complexity caused by introducing
another variable. When leaving a Context an agent might either choose to drop
the beliefs relevant to that Context or to retain them.
1 Let us refer to such an agent as a group to distinguish it from the agent within its
Content.

A Common Basis for Agent Organisation in BDI Languages 83

4.2 Sharing Capabilities

Let agent Agi have a goal G, for which a plan P exists. However, Agi does not
have plan P and therefore must find an agent that does. Two options available
to Agi are to find an agent Agj , who has P , and either: request that Agj carries
out the plan; or request that Agj sends P to Agi so that Agi can carry out the
plan itself. The first possibility suggests a closer degree of co-operation between
agents i and j, perhaps even the sub-ordination of agent j by agent i. Whereas,
in the second possibility, agent i benefits from information supplied by j.

In the first scenario we might envisage a group in which a member (or the
group agent itself) asks another member to execute the plan. In the second case,
we can envisage agents i and j sharing a plan. This second scenario is typical
if groups are to capture certain capabilities— agents who join the Content of
such a group agent are sent (or at least can request) plans shared amongst the
group. Either scenario can be modelled using our approach.

4.3 Joint Intentions

An agent acting in an independent self-interested way need not inform any other
entity of its beliefs, or changes to them. On the other hand, an agent who is
working, as part of a team, towards a goal shared by itself and all other members
of the team has both an obligation and a rational interest in sharing relevant
beliefs with the other team members [8]. This gives an agent a persistent goal
with respect to a team. Such that the agent must intend the goal whilst it is
the team’s mutual belief that the goal is valid (not yet achieved, achievable and
relevant)— it must not give up on a goal nor assume the goal has been achieved,
independently. The implications of this impact on agent’s individual behaviour
when it learns, from sources external to the group, that the goal is no longer
valid. In such a situation the team/group agent maintains its commitment to
the invalid goal but informs its team members of the antecedent(s) that lead it
to believe the goal is invalid. Only when the agent receives confirmation that the
entire team share its belief does it drop its commitment.

The intuitive implementation of this joint intention is not via a team construct
but as an extension of an agent’s attributes, however, increases in expressiveness
of this sort are often accompanied by increased complexity. The organisational
or team construct may overcome this problem but we believe that our simple
group approach is sufficient to implement joint intentions, mutual beliefs and
common goals. Consider the scenario given in Fig. 5.

Agent A. On joining group T , agent A accepts goal JI and confirms its adoption
of the goal. Whilst T remains a member of A’s Context, A informs T of all
beliefs that are relevant to JI. Finally, all communications from agent T must be
acknowledged, with an indication of the agent’s acceptance (or non-acceptance)
of the information.

84 A. Hepple, L. Dennis, and M. Fisher

Fig. 5. Communicating Joint Intentions

A simple specification of this might be:

IF received(from, jointIntention(JI)) AND inContext(from)
THEN achieve(JI) AND send(from, ack(JI))

IF belief(ϕ) AND there is x in {Context} relevantTo(ϕ, x)
THEN send(x, inform(ϕ))

IF goal(γ) AND there is x in {Context} relevantTo(γ, x)
THEN achieve(γ) .

Thus, an agent is obliged to inform its group of beliefs relevant to jointly held
intentions and will maintain a goal whilst it remains relevant to its Context.

Agent T. Evaluates group beliefs and communicates both the adoption, and
dropping, of intentions when mutual agreement is established. Since T has details
of the agents in its Content and can send messages to interrogate them, it can
maintain knowledge of common information and behaviours, and reason with
this knowledge.

4.4 Roles

The concept of a role is a common abstraction used by many authors for a variety
of purposes [14,19,28], including:

– to define the collective abilities necessary to achieve a global goal.
– to provide an agent with abilities suitable for team activity.
– to constrain or modify agent behaviour for conformance with team norms.
– to describe a hierarchy of authority in an organisation of agents and hence

create a permissions structure.

Roles are most obviously integrated into our framework as further agents whose
Content is those agents fulfilling the role and whose Context is the organisation
to which the role belongs. However in some cases, in particular strict hierarchies,
it may be possible to associate roles directly with the organisational agent. Below
we examine a variety of such role types and consider in more detail how each
could fit into our model.

A Common Basis for Agent Organisation in BDI Languages 85

Ability roles. Let plan P be a complex plan that requires abilities x,y and z
if it is to be fulfilled. An agent A is created (without any domain abilities of its
own) to gather together agents that have the necessary abilities. Agent A might
generate a new agent in its Content for each of the abilities required to fulfil
plan P .

Fig. 6. Roles according to abilities

When agents with abilities x, y or z join the Content of agent A, A adds
them to the Content of the appropriate group (agent), analogous to assigning
roles.

A talented agent might become a member of several ability sets. The ability
set, itself an agent, may be a simple container or could exhibit complex behaviour
of its own. One basic behaviour might be to periodically request (of the agents
in its Content) the execution of its designated ability. Note that, in the case of
an ability that is hard to carry out, it may be provident to include many agents
with that ability. Similarly, the desired ability might be a complex ability that
must be subjected to further planning, resulting in a number of nested abilities.

Roles in society. Joining an institution, organisation or team of agents com-
monly involves the adoption of the norms of that institution, organisation or
team. Whether these norms are expressed as beliefs, goals, preferences or com-
munication protocols, our approach allows them to be transmitted between group
members, particularly at the time of joining. For example, if team membership
requires that members acknowledge receipt of messages then each new member
of a group might be given the new rule (behaviour)

IF received(ag, θ) THEN send(ag, ack(θ)) .

A stronger constraint might require an agent to believe all messages received
from its Context:

IF received(ag, θ) AND ag ∈ Context
THEN addBelief (θ, ag) AND send(ag, ack(θ)) .

86 A. Hepple, L. Dennis, and M. Fisher

Of course, agents can not be certain that another agent will keep with given con-
straints or comply with norms of the society, the most it can do is demand formal
acknowledgement of its request and a commitment to do so. Group membership
can be denied if an agent fails to satisfy the entry criteria.

Authority roles. None of the structures discussed usefully reflect hierarchies
of authority. Each allow almost arbitrary group membership, with transitive and
cyclic structures possible making them unsuitable for expressing a hierarchy of
authority, which by its nature must be acyclic with exactly one root.

A common use for such a hierarchy is for creating channels of communica-
tion. Our approach to grouping enables communication restrictions for free, as
agents may only communicate with their immediate superiors (context), or their
direct subordinates (content). Communication to peers (by multicast) can only
be achieved by sending a single broadcast message to the agent common to the
contexts of the intended recipients. The receiving [superior] agent will, if it deems
it appropriate, forward the message to the other agents in its content.

5 Concluding Remarks

In this paper, we have proposed a simple but clear model for multi-agent struc-
turing in agent languages based on varieties of the logical BDI approach. Al-
though derived from work on MetateM, we propose this as a general approach
for many languages. To support this, we first show how simple and intuitive the
approach is and how the underlying structures of any appropriate language can
be modified. (Note that more detailed operational semantics for our grouping
approach in logic-based BDI languages is given in [10].) We then showed, in
a necessarily brief way, how many of the common teamwork and organisation
aspects can be modelled using our approach.

In order to evaluate the approach, we have also implemented it in AgentSpeak
(actually, Jason [3]) and have developed several simple examples of dynamic or-
ganisations. This simple additional layer has so far proved to be convenient and
powerful. Obviously, the Content/Context approach has also been extensively
used in previous work on MetateM [16,17,18]. In addition, it has been incor-
porated in the semantics of AIL [9], a common semantics basis for a number of
languages, including AgentSpeak and 3APL; see [10] for formal details.

5.1 Future Work

Our immediate aim with this work is to apply the model to larger applications,
particularly in the areas of ubiquitous computing and social organisations. This
will give a more severe test for the approach and will highlight any areas of
difficulty.

As mentioned above, the approach is being integrated into the AIL seman-
tics [9], which provides a common semantics basis for a number of BDI languages.
Since translations from AgentSpeak, 3APL, etc are being produced, we also aim
to translate the organisational aspects used into the above model.

A Common Basis for Agent Organisation in BDI Languages 87

Finally, since the aim of the work on AIL is to provide generic verification
techniques for BDI languages (that can be translated to AIL) [4]. In extending
the AIL semantics, we also aim to provide verification techniques for teams, roles
and organisations developed within BDI languages.

References

1. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M. (eds.): The Im-
perative Future: Principles of Executable Temporal Logic. Research Studies Press
(1996)

2. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley, Chichester (2007)

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-Agent Pro-
grams by Model Checking. Journal of Autonomous Agents and Multi-Agent Sys-
tems 12(2), 239–256 (2006)

5. Cavedon, L., Rao, A.S., Tidhar, G.: Social and Individual Commitment. In: Cave-
don, L., Wobcke, W., Rao, A. (eds.) PRICAI-WS 1996. LNCS, vol. 1209, pp.
152–163. Springer, Heidelberg (1997)

6. Cohen, P.R., Levesque, H.J.: Intention is Choice with Commitment. Artificial In-
telligence 42(2-3), 213–261 (1990)

7. Cohen, P.R., Levesque, H.J.: Confirmations and Joint Action. In: Proc. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 951–959. Elsevier,
Amsterdam (1991)

8. Cohen, P.R., Levesque, H.J.: Teamwork. Technical Report 504, SRI International,
California, USA (1991)

9. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common
Semantic Basis for BDI Languages. In: Dastani, M., et al. (eds.) ProMAS 2007.
LNCS (LNAI), vol. 4908, pp. 124–139. Springer, Heidelberg (2008)

10. Dennis, L.A., Fisher, M., Hepple, A.: Language Constructs for Multi-Agent Pro-
gramming. In: Sadri, F., Saton, K. (eds.) CLIMA 2007. LNCS (LNAI), vol. 5056.
Springer, Heidelberg (2008)

11. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor.
In: Proc. 1st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 1045–1052. ACM, New York (2002)

12. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the For-
mal Specification of Electronic Institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

13. Ferber, J., Gutknecht, O.: A Meta-model for the Analysis and Design of Organi-
zations in Multi-agent Systems. In: Proc. 3rd International Conference on Multi-
Agent Systems (ICMAS), pp. 128–135. IEEE, Los Alamitos (1998)

14. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Orga-
nizational View of Multi-agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J.
(eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

15. Fisher, M.: MetateM: The Story so Far. In: Bordini, R.H., Dastani, M., Dix, J.,
Seghrouchni, A.E.F. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 3–22.
Springer, Heidelberg (2006)

88 A. Hepple, L. Dennis, and M. Fisher

16. Fisher, M., Ghidini, C., Hirsch, B.: Programming Groups of Rational Agents.
In: Dix, J., Leite, J.A. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3259, pp. 16–33.
Springer, Heidelberg (2004)

17. Fisher, M., Kakoudakis, T.: Flexible Agent Grouping in Executable Temporal
Logic. In: Intensional Programming II. World Scientific, Singapore (2000)

18. Hirsch, B.: Programming Rational Agents. PhD thesis, Department of Computer
Science, University of Liverpool (June 2005)

19. Hübner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional,
and Deontic Specification of Organizations in Multiagent Systems. In: Bitten-
court, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128.
Springer, Heidelberg (2002)

20. Jennings, N.R., Wooldridge, M.: Applications of Agent Technology. In: Agent Tech-
nology: Foundations, Applications, and Markets, pp. 3–28. Springer, Heidelberg
(1998)

21. Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On Acting Together. In: Proc. 8th
American National Conference on Artificial Intelligence (AAAI), pp. 94–99. AAAI
Press, Menlo Park (1990)

22. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.: Remote Agent: To Boldly Go
Where No AI System Has Gone Before. Artificial Intelligence 103(1-2), 5–48 (1998)

23. Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara,
N., Matson, E. (eds.): COIN 2006. LNCS (LNAI), vol. 4386. Springer, Heidelberg
(2007)

24. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Towards Team-Oriented
Programming. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 233–247.
Springer, Heidelberg (2000)

25. Rao, A.S., Georgeff, M.: BDI Agents: from Theory to Practice. In: Proc 1st Inter-
national Conference on Multi-Agent Systems (ICMAS), pp. 312–319. AAAI Press,
Menlo Park (1995)

26. Smith, I.A., Cohen, P.R.: Toward a Semantics for an Agent Communications Lan-
guage Based on Speech-Acts. In: Proc. American National Conference on Artificial
Intelligence (AAAI), pp. 24–31. AAAI Press, Menlo Park (1996)

27. Tidhar, G.: Team-Oriented Programming: Preliminary Report. Technical Report
1993-41, Australian Artificial Intelligence Institute, Melbourne, Australia (1993)

28. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing Multiagent Systems.
Journal of Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

29. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review 10(2), 115–152 (1995)

Adjusting a Knowledge-Based Algorithm for

Multi-agent Communication for CPS

E. van Baars and R. Verbrugge

Ordina Vertis B.V., Kadijk 1, 9747 AT Groningen, The Netherlands
egon@vanbaars.com

Department of Artificial Intelligence, University of Groningen,
P.O. Box 407, 9700 AK Groningen, The Netherlands

L.C.Verbrugge@rug.nl

Abstract. Using a knowledge-based approach we adjust a knowledge-
based algorithm for multi-agent communication for the process of co-
operative problem solving (CPS). The knowledge-based algorithm for
multi-agent communication [1] solves the sequence transmission problem
from one agent to a group of agents, but does not fully comply with the
dialogue communication. The number of messages being communicated
during one-on-one communication between the initiator and each other
agent from the group can differ. Furthermore the CPS process can re-
quire the communication algorithm to handle changes of initiator. We
show the adjustments that have to be made to the knowledge-based algo-
rithm for multi-agent communication for it to handle these properties of
CPS. For the adjustments of this new multi-agent communication algo-
rithm it is shown that the gaining of knowledge required for a successful
CPS process is still guaranteed.

1 Introduction

For cooperative problem solving (CPS) within multi-agent systems, Wooldridge
and Jennings give a model of four consecutive stages [2]. Dignum, Dunin-Kȩplicz
and Verbrugge present a more in-depth analysis of the communication and
dialogues that play a role during these four stages [3,4]. At every stage one
agent of the group acts as an initiator, communicating with the other agents of
the group. For a successful process of CPS, the agents have to achieve an ap-
proximation of common knowledge through communication. This makes reliable
knowledge-based communication essential for teamwork. Agents communicate to
each other by a communication system consisting of a connection in a commu-
nication medium between agents, together with a protocol by which the agents
send and receive data over this connection. To be reliable, the connection has to
satisfy the fairness condition, leaving the protocol responsible for the liveness
and safety properties [5,6]. Besides the liveness and safety properties a protocol
used in teamwork has to satisfy the requirements of CPS.

Van Baars and Verbrugge [1] derive a knowledge-based algorithm for multi-
agent communication. The algorithm ensures the liveness and safety property,

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 89–105, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 E. van Baars and R. Verbrugge

but does not satisfy the other requirements of CPS 1. This algorithm solves the
sequence transmission problem [5] from one agent to a group of agents. How-
ever, the communication during CPS is not a one-way transport of data as in the
sequence transmission problem, but a dialogue. The next message is not prede-
fined, but depends on the answers from the receivers [4]. A CPS process starts
with an initiator communicating individually to the other agents, referred to as
one-on-one communication. After a successful one-on-one communication, the
initiator communicates the outcome to all the agents of the group, referred to as
one-on-group communication. After a successful one-on-group communication,
the initiator starts to communicate one-on-one again. Although ‘one-to-group’
is a more common term used in for example computer science to refer to broad-
casting protocols, we rather use ‘one-on-group’ to underline that dialogue type
protocols are used.

One of the properties of CPS dialogues is that the number of messages com-
municated between the initiator and the other agents can differ per agent during
one-on-one communication. If for example the initiator asks whether the abilities
of the agents are sufficient for a goal, then some of the agents can answer di-
rectly. Other agents need more information to determine whether their abilities
are sufficient and they answer with a request. This property is referred to as the
asynchronous communication property.

Another property of a CPS process is that the initiator can change. At the
different stages of CPS the initiator has to have different abilities [2,4]. If an agent
has all the required abilities, then it can fulfill the role of initiator throughout
the whole process of CPS. If not, then different agents can fulfill the role of
initiator at different stages. During the transition from one-on-one to one-on-
group communication, the initiator always stays the same, because the initiator
agent during one-on-one communication is the only agent who has sufficient
group knowledge to start communicating one-on-group [3]. At the transition
from one-on-group to one-on-one communication, however, any agent from the
group can bid to become the initiator. This property is referred to as the changing
initiator property.

The knowledge-based algorithm from [1] cannot handle asynchronous commu-
nication, because it uses only one index. Introducing a separate index for each
sender-receiver pair solves this problem, but only for the situation where the
initiator does not change. The initiator is the sender and it increments the in-
dices, the other agents are the receivers. When the initiator changes, the sender
becomes one of the receivers and one of the receivers becomes the sender. This
means that another agent now increments the indices, which can lead to several
messages with the same index but containing different data, or to parallel com-
munication processes. Introducing a two-index mechanism, where the sender and
a receiver both increment their own index, partially solves these problems. The
remaining problem is that an initiator change does not become general knowl-
edge. The solution for this problem is a procedure that is not embedded in the
algorithm. In this paper we show that the algorithm from [1] can be modified

1 A simulation of the protocol can be found at www.ai.rug.nl/alice/mas/macom

www.ai.rug.nl/alice/mas/macom

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 91

to handle the asynchronous communication property and the changing initia-
tor property. The modified multi-agent communication algorithm guarantees a
stream of accumulating messages during a CPS process, meeting the require-
ments of CPS concerning the gaining of group knowledge.

As to the methodology of this research, we use knowledge-based protocols based
on epistemic logic and analyse them using the formalism of interpreted multi-
agent systems. In this formalism, one views the sender and receivers as agents,
and the communication channel as the environment. For each of these, their
local states, actions and protocols can be modeled. The semantics is based on
runs, which can be seen as sequences of global states (tuples of local states of
agents plus environment) through discrete time. This knowledge-based approach
to communication protocols has been pioneered in the work of Halpern and col-
leagues [5,7]. Because of the use of epistemic logic, it fits very well to multi-agent
systems based on BDI architectures. Nowadays in theoretical computer science,
another formalism, that of strand spaces, has become very popular, especially in
the context of security protocols. Halpern and Pucella have shown that strand
spaces can be translated into interpreted multi-agent systems, but not vice versa,
because strand spaces are less expressive: some interesting interpreted multi-
agent systems cannot be expressed as a strand space [8].

The rest of the paper is structured as follows. Section 2 and section 3 present
the problems that arise in the flexible context of teamwork and their possible
solutions, while section 4 gives the new knowledge-based algorithm incorporating
the feasible solutions. Section 5 presents a proof that approximations of common
knowledge are indeed attained. Finally, section 6 closes the paper with some
conclusions and ideas about further research.

2 Adjusting the Algorithm for Asynchronous
Communication

To handle the asynchronous communication property, a separate index is needed
for every sender-receiver communication. This solution works for the situation
where the initiator stays the same. For example we take one group G consisting
of three agents R1, R2, and R3, G = {R1, R2, R3}. Agent R3 is the initiating
(sending) agent, temporarily denoted as S3, and the two other agents R1 and
R2 are the receivers. The index that S3 uses to communicate with R1 starts at
100 and the index that S3 uses to communicate with R2 starts at 200. Let us
work out an example. S3 sends three messages to R1, which are received and
answered by R1. These answers can be an answer to a question or request sent
by S3 or just an acknowledgement if S3 sent a statement.

In the notation below, the agents are identified by the numbers 1,2 and 3. If an
agent acts as a sender or receiver, then this is denoted by S1 or R1 respectively.
The agents exchange messages and the arrow -> indicates the direction of each
message. The messages are of the form (100,_,data). The first field contains
a sequence number. The second field contains the group information. In the case
of one-on-one communication the value of this field is ‘_’ and in the case of

92 E. van Baars and R. Verbrugge

one-on-group communication the value of this field is ‘G’. The last field contains
the data that is sent.

1. S3 (100,_,data)-> R1

2. S3 <-(100,_,answ) R1

3. S3 (101,_,data)-> R1

4. S3 <-(101,_,answ) R1

5. S3 (102,_,data)-> R1

6. S3 <-(102,_,answ) R1

This moves the index for the next message to be sent to R1 to 103. S3 commu-
nicates two messages with R2, which are answered by R2, as follows:

1. S3 (200,_,data)-> R2

2. S3 <-(200,_,answ) R2

3. S3 (201,_,data)-> R2

4. S3 <-(201,_,answ) R2

This moves the index for the next message to be sent to R2 by S3 to 202. During
both these one-on-one communications, S3 has reached the goal for this phase
and is now ready to communicate the outcome one-on-group to R1 and R2.
To announce the outcome, S3 has to communicate two messages one-on group,
which are answered by R1 and R2:

1. R1 <-(103,G,data) S3 (202,G,data)-> R2

2. R1 (103,_,answ)-> S3 <-(202,_,answ) R2

3. R1 <-(104,G,data) S3 (203,G,data)-> R2

4. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

After this successful one-on-group communication, S3 enters the next stage in
order to communicate one-on-one again with the others in G. The indices for the
next message to R1 and R2 are 105 and 204, respectively. Introducing a separate
index for each sender-receiver pair in the communication solves the problem of
the different numbers of messages sent during the one-on-one communication
phase. Does this solution also work for the situation where the initiator changes
after one-on-group communication?

3 Adjusting the Algorithm for Changing Initiators

The last example from the previous section ends with a successful one-on-group
communication. Let us go from there while R2 now takes over the role of ini-
tiator, temporarily denoted as S2. The previous initiator S3 is denoted again as
R3. The communication between S2 and R1 is straightforward. Because S2 did
not communicate tot R1 before, S2 sets a new index. The last communication
between S2 and R3 was the message (203, ,answ), sent from R2 to S3. Now, S2

wants to send some data to R3. Which index does it have to use? One possibility
could be that S2 sets a new index for this communication, starting for example
at 400. Another possibility is that S2 continues with the index used by S3 while
communicating one-on-group to R2. In this case, S2 can use the same index

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 93

number, 203, as used during its last answer message to S3. Alternatively S2 can
use the next index number, 204. Let us develop these three options. The last two
communication lines of the previous one-on-group communication are taken as
a starting point and are repeated in the examples.

Option 1, S2 sets new index:

1. R1 <-(104,G,data) S3 (203,G,data)-> R2

2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

3. R3 <-(400,_,data) S2

4. R3 (400,_,answ)-> S2

5. R3 <-(401,_,data) S2

Option 2, S2 reuses the last index number:

1. R1 <-(104,G,data) S3 (203,G,data)-> R2

2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

3. R3 <-(203,_,data) S2

4. R3 (204,_,answ)-> S2

5. R3 <-(204,_,data) S2

Option 3, S2 uses the next index number:

1. R1 <-(104,G,data) S3 (203,G,data)-> R2

2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

3. R3 <-(204,_,data) S2

4. R3 (204,_,answ)-> S2

5. R3 <-(205,_,data) S2

All the above options show some anomalies in the index numbering with respect
to being an accumulating stream of messages. For option 1, two different consec-
utive communication streams run between agent 2 and agent 3. This can lead to
parallel communication streams if agent 3 continues communicating as initiating
agent S3 to agent 2, while agent 3 as receiver R3 also receives messages from
S2. Two parallel communication processes between two agents about the same
process are prone to communication errors and should be avoided.

For option 2, two anomalies can occur. The first one is that in one-on-one
communication the receiver increases the index with every answer instead of the
sender. So, when R3 sends an answer, it acknowledges an index it did not receive
yet. The second anomaly can arise at the second time agent 2 sends a message
with the same index. If the previous message was just an acknowledgement,
then there is no problem. Acknowledgements do not occupy an index number,
otherwise we would end up with acknowledging acknowledgements [9]. If R2 sent
data instead of just an acknowledgement to agent 3 in the first message, then
agent 2 cannot send another message with the same index number. When agent
3 answers with just an acknowledgement, agent 2 does not know whether agent
3 acknowledged the first or the second message. For option 3, agent 3 might
send a next message (204, ,data) to agent 2 and receive from agent 2 a message
(204, ,data) instead of (204, ,answ). Thus, both agents sent a data message with
index 204 and also received a data message while both agents expected an answer
message. This situation should be avoided.

94 E. van Baars and R. Verbrugge

3.1 Two-Index Mechanism to the Rescue

How can these problems be solved? The transmission control problem (TCP)
makes use of two indices per connection [9,10]. One index is configured by the
sender and the other index is configured by the receiver. Thus every message
contains a sequence number as well as an acknowledgement of the last consec-
utive sequence number that is received. Could this two-index system solve the
index numbering problems? Let us look at a one-on-one communication process
ending with a one-on-group communication. Agent S3 sends two messages to
agent R1 which are answered by agent R1, and sends one message to agent R2

which is answered by agent R2. Next, agent S3 sends one message one-on-group
to agent R1 and R2 which is answered by both agents after which agent S3 starts
communicating one-on-one to agent S1 and S2 again. In his first message to an
agent, the sender conveys only its own sequence number. When the receiver re-
ceives this, it initiates its own sequence number and answers with a message
containing this number together with the acknowledged sequence number from
the sender. Thus after two messages, the sender and receiver know one another’s
sequence numbers. The messages are now of the form (100,200,_,data). The
first field contains the sequence number of the agent that sends the message.
The second field contains the acknowledged sequence number of the message the
agent is reacting to. The third field contains the group information and the last
field contains the data that is sent.
1. R1 <-(100,_,_,data) S3

2. R1 (200,100,_,answ)-> S3

3. R1 <-(101,200,_,data) S3 (300,_,_,data) --> R2

4. R1 (201,101,_,answ)-> S3 <-(400,300,_,answ) R2

5. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

6. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2

This works straightforwardly, so let us look how this two-index mechanism works
when the initiator changes. Lines 5 and 6 from the previous communication
schema are used as starting point, and agent 2 becomes the sender. The first op-
tion with the one index mechanism is that S2 sets a new index to communicate
with R3. There are already two indices between S2 and R3, so it is not necessary
to set a new index. S2 and R3 start communicating one-on-one, continuing the
use of the indices they already used during the previous one-on-group commu-
nication. This eliminates the problem of two parallel communication processes
between both agents. Now two options are left for S2 when using the two-index
number mechanism. The first option is to reuse the last index number and the
second option is to use the next index number. Worked out, these options look
as follows.

Option 1, S2 reuses the last index number:
1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2

3. R3 <-(401,301,_,data) S2

4. R3 (302,401,_,answ)-> S2

5. R3 <-(402,302,_,data) S2

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 95

Option 2, S2 uses the next index number:

1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2

3. R3 <-(402,301,_,data) S2

4. R3 (302,402,_,answ)-> S2

5. R3 <-(403,302,_,data) S2

For option 1, the anomaly of the receiver increasing the index (as happened with
one index) does not occur. However, the second anomaly still exists. Agent 2 still
sends two messages with the same index number containing different data. For
option 2, agent 2 sends two messages with the same acknowledgement number,
but it increases its own sequence number. Again a similar problem can arise
as with the single index mechanism. It is possible that agent 3 sends a next
message, (302,401, ,data), to agent 2 while it receives from agent 2 a message
(402,301, ,data) instead of (402,302, ,answ). As can be seen, the index numbering
is now completely messed up. Both agents will not know how to proceed so this
situation should be avoided.

3.2 Who’s the ‘Boss’

Using a two-index mechanism solves some but not all of the problems that arise
while the initiator changes. The problems that are left have a single cause. When
a new agent becomes the initiator, this is not general knowledge. Another agent
from the group can start acting as an initiator while the current initiator con-
tinues acting as an initiator as well. This leads to problems between these two
agents as discussed in section 3.1, but also leads to problems for the other agents
in the group, continuing to act as receivers. These agents start getting one-on-
one communication messages about the next stage from different agents acting
as initiator. Obviously this is not a workable situation. To solve this problem,
the algorithm has to provide a mechanism that prevents multiple concurrent
initiators.

An initiator change takes place at the transition from a successful one-on-
group communication to the next one-on-one communication process. The solu-
tion for preventing multiple concurrent initiators is that if any new agent wants
to act as initiator, then this agent notifies the current initiator of this fact. Ev-
ery potential new initiator sends a request with its acknowledgement of the last
one-on-group message. The current initiator now knows whether there are other
candidate initiators and can decide whether it continues as an initiator itself,
or allows one of the other agents to act as initiator. If the current initiator de-
cides to stay on, then it continues communicating one-on-one concerning the
next stage. As soon as an agent that announced itself as a new initiator receives
the first one-on-one communication message from the sender, it knows that it
should not act as initiator. If the current initiator decides that one of the other
agents can take over, then it sends a message one-on-one to this agent confirming
that it is the new initiator. After the initiator for the next stage receives this
message, it knows its new role and starts communicating messages one-on-one

96 E. van Baars and R. Verbrugge

concerning the next stage. As soon as the other agents that announced them-
selves as new initiator receive the first one-on-one communication message from
the new initiator, they know that they should not act as initiator. We assume
that agents involved in CPS are cooperative, so if one of the other agents has
better resources for being the new initiator, then the current initiator transfers
the role of initiator to that agent.

Let us develop two examples. In both, the current initiator and two other
agents want to act as initiator. In the first example, the initiator changes, while
in the second example, the initiator stays the same. An agent announcing itself
as a potential initiator for the next stage is represented by the value init in the
data field. If the current initiator decides that another agent can have the role
of initiator, then it sends a message containing answ into the data field.

Example 1, S2 as initiator after init request from R1 and R2.

1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,init)-> S3 <-(401,301,_,init) R2

3. S3 (302,401,_,answ)-> R2

4. R3 <-(402,302,_,data) S2 (500,_,_,data)-> R1

5. R3 (303,402,_,answ)-> S2 <-(600,500,_,answ) R1

6. R3 <-(403,303,_,data) S2 (501,600,_,data)-> R1

Example 2, S3 stays the initiator after init request from R1 and R2.

1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,init)-> S3 <-(401,301,_,init) R2

3. R1 <-(103,202,_,data) S3 (302,401,_,data)-> R2

4. R1 (203,103,_,answ)-> S3 <-(402,302,_,answ) R2

5. R1 <-(104,203,_,data) S3 (303,402,_,data)-> R2

6. R1 (204,104,_,answ)-> S3 <-(403,303,_,answ) R2

In the above two examples, no anomalies in the index numbering are present.
The combination of the two-index mechanism with the mechanism regulating
the change of initiator handles the problems that could occur when the initiator
changes during the CPS process.

4 CPS Specific Algorithm

In sections 2 and 3 it was shown which adjustments had to be made to ensure the
group’s appropriate gain of knowledge for the asynchronous communication and
changing initiators. Let us have a look at the adjusted algorithm. The messages
from the algorithm from [1] have the following form:

Ksource(destination,−, group, position,−, data).

The fields filled with “−” are the checksum and window size fields, dealing with
package mutation errors and congestion control [10,11]. As discussed in section 3,
an algorithm for CPS needs an index mechanism consisting of two indices. The
window size is used for the sliding window [9] mechanism which is not used

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 97

during dialogue. This allows us to use the window size field as the second index
field. Because the checksum field does not contribute to the gaining of knowledge,
it is filled with “−”. The first index contains the sequence number of the agent
who sends the message, and the second index field contains an acknowledgement
of the sequence number of the message this agent reacts to. These fields are called
the sequence field and the acknowledgement field, respectively. The message used
by the CPS algorithm has the following form:

Ksource(destination,−, group, sequence, acknowledgement, data)

Here follows a description of the fields in the messages used in the CPS algorithm.

source = source port where this message is sent from [S, Ri];
Ksource = the source who sends this message knows this message;
destination = destination port of message [S, Ri];
group = group receivers to which the message is sent [RG,−] (“−” means that
the sender communicates only to the destination (one-on-one communication));
sequence = sequence number of message from agent who sends this message;
acknowledgement = sequence number of message that agent is reacting to;
data = data that has to be transmitted.

The next table explains variables and functions used in the CPS algorithm:

Acknowledgement
ack Ri : Used by S. Acknowledged sequence number received from Ri

seqSRi : Used by S. Sequence number of messages S is sending to Ri

seqS : Used by Ri. Sequence number of messages Ri is receiving from S
seqRi : Used by Ri. Sequence number of messages Ri is sending to S
seqRi : Used by S. Sequence number of messages S is receiving from Ri

Data
compose() : Used by S and Ri. Agent makes up the data it wants to send

4.1 CPS Algorithm

The algorithm consists of four parts. Both sender and receiver have an algo-
rithm that handles incoming messages and an algorithm that handles outgoing
messages. The lines in bold face are the lines from the algorithm and the lines
between curly brackets contain some comments on them. The numbers at the
beginning and at the end of the comments represent the line numbers at which
the commented block of code begins or ends, respectively.

Sender (incoming packages)

1 for (i = 1 to n) do
{For all agents who sender is sending to, ... }

2 ack Ri = seqSRi

{... initialize the acknowledgement number.}
3 end
{ack Ri’s initialized}

98 E. van Baars and R. Verbrugge

4 while true do
{Get ready for receiving acknowledgements from the receivers, ... [11]}

5 when received KRi(S,−,−, seqRi, seqSRi, data) do
{You have received a package. Prepare for processing, ... [10]}

6 if (seqSRi = ack Ri + 1) do
{If this acknowledgement from Ri is equal to the next ack Ri, ... [9]}

7 ack Ri = seqSRi

{... this is the new current acknowledgement from Ri, ...}
8 store KSKRi(S,−,−, seqRi, seqSRi, data)

{... store that you know that Ri knows it.}
9 end

{[6] ... acknowledgement from Ri, and highest group acknowledgement
updated.}

10 end
{[5] ... finished processing of incoming package.}

11 end
{[4].}

Sender (outgoing packages)

1 for (i = 1 to n) do
{For all receiving agents.}

2 if not seqSRi do
{If S did not communicate to Ri before}

3 seqSRi = x
{Initiate own sequence number for Ri at x}

4 end
{seqSRi initiated.}

5 end
{seqSRi for all receiving agents initiated.}

6 while true do
{Start sending sequence of messages, ... [20]}

7 compose(data)
{... ,make up the data for this package, ...}

8 store KS(−,−, G,−,−, data)
{... and store this information in your knowledge base.}

9 while (∃ ack Ri �= seqSRi) do
{While not all receivers acknowledged the package with sequence seqSRi, ... [15]}

10 for (i = 1 to n) do
{... and for all receiving agents, ... [14]}

11 if not KSKRi(−,−, G, seqRi + 1, SeqSRi, data) do
{... check if package ‘seqSRi’ has not been acknowledged yet by Ri, ... [13]}

12 send KS(Ri,−,G, seqSRi, seqRi, data)
{... (re)send the package to Ri.}

13 end
{[11] ... A package that was unacknowledged by Ri, has been resent.}

14 end
{[10] ... A package has been resent to all agents that didn’t acknowledge it.}

15 end
{[9] ... all agents Ri have acknowledged package with sequence number seqSRi.}

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 99

16 for (i = 1 to n) do
{For all receiving agents, ... [19]}

17 seqRi = seqRi + 1
{Sequence number of next message from Ri is known. Increment seqRi.}

18 seqSRi = seqSRi + 1
{Increment own sequence number for Ri.}

19 end
{[16] ... Sequence numbers for and from Ri updated.}

20 end
{[6].}

Receiver (incoming packages)

1 while true do
{Get ready for receiving sequence of messages, ... [5]}

2 when received KS(Ri, G,−, seqS, seqRi, data) do
{You have received a package (from S). Prepare for processing, ... [4]}

3 store KRiKS(−,−, G, seqS, seqRi, data)
{Store the received package.}

4 end
{[2] ... finished processing incoming package.}

5 end
{[1].}

Receiver (outgoing packages)

1 when KRiKS(Ri,−,G, x,∅, data)
{The first message is received.}

2 seqS = x
{The first sequence number from S is x.}

3 seqRi = y
{Initiate own sequence number at y.}

4 while true do
{Get ready to acknowledge incoming packages, ... [11]}

5 compose(data)
{Make up the data for this message. (Possibly a request to act as initiator.)}

6 while not KRiKS(Ri,−,G, seqS + 1, seqRi, data) do
{Still not received package with ’seqS+1’ (and ’seqRi’), ... [8]}

7 send KRi(S,−,−, seqRi, seqS, data)
{... (re)send data package.}

8 end
{[6] ... You’ve received message seqS+1 wiht acknowledgement seqRi}

9 seqS = seqS+1
{You know the sequence number of the next message. Increment seqS.}

10 seqRi = seqRi+1
{Increment own sequence number, seqRi.}

11 end
{[4].}

100 E. van Baars and R. Verbrugge

5 Analysis of Epistemic Properties of the Algorithm

For the adjustments discussed in section 2 and 3, we showed informally that they
ensure the required knowledge gaining for CPS. In this section we prove that
if the adjusted algorithm is used during CPS communication, then the agents
achieve an approximation of general knowledge.

5.1 Logical Background: Knowledge and Time

When proving properties of knowledge-based protocols, it is usual to use seman-
tics of interpreted systems I representing the behaviour of processors over time
(see [7]). We give a short review. At each point in time, each of the processors
is in some local state. All of these local states, together with the environment’s
state, form the system’s global state at that point in time. These global states
form the possible worlds in a Kripke model. The accessibility relations are de-
fined according to the following informal description. The processor R “knows”
ϕ if in every other global state having the same local state as processor R, ϕ
holds. In particular, each processor knows its own local state; for the environ-
ment, there is no accessibility relation. The knowledge relations are equivalence
relations, obeying the well-known epistemic logic S5Cn (see [7]), including the
knowledge axiom Kiϕ ⇒ ϕ, i = 1, ..., n, as well as axioms governing general and
common knowledge such as EGϕ ⇔

∧
i∈G Kiϕ and CGϕ ⇒ EG (ϕ ∧ CGϕ). We

use abbreviations for general knowledge at any finite depth. Inductively, E1
Gϕ

stands for EGϕ and Ek+1
G ϕ is EGϕ

(
Ek
Gϕ

)
.

A run is a (finite or infinite) sequence of global states, which may be viewed as
running through time. Time here is taken as isomorphic to the natural numbers.
There need not be any accessibility relation between two global states for them
to appear in succession in a run. Time clearly obeys the axioms of the basic
temporal logic Kt (see [12]), in which the following principle (A) is derivable:

(A) P (�ϕ) → �ϕ

To further model time, we extend S5Cn with the following mixed axiom:

KT1. Ki�ϕ → �Kiϕ, i = 1, ..., n

This axiom holds for systems with perfect recall [13]. Halpern et al. [13] present
a complete axiomatization for knowledge and time, however in this article we
only need the axiom KT1.

As for notation, global states are represented as (r, m) (m-th time-point in
run r) in the interpreted system I. In particular for the temporal operators, we
have the following truth definitions:

(I, r, m) |= �ϕ iff (I, r, m′) |= ϕ for all m′ ≥ m
(I, r, m) |= Pϕ iff (I, r, m′) |= ϕ for some m′ < m

5.2 Proof of the Increase of Group Knowledge

For the readability of the proof, the form of the package is shortened to
Ksource(sequence, data). We assume that the group stays unchanged and we

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 101

assume that the sender S sends to a receiver Ri and vice versa, so the destination
and group field are left out. Furthermore, we assume that no mutation errors
occur, so the checksum field is also left out. We only use the sequence number in
the proof; the acknowledgement number is left out. In the next table we present
some relevant formulas with their informal meanings.

Formulas Descriptions
KRi (p, α) Receiver i knows that the p-th data segment is α;

similar for KS (p, α)
KRi (p,−) Receiver i knows the value of the p-th data segment;

similar for KS (p,−)
EG (p, α) Every agent in group G knows that the p-th data segment is α
EG (p,−) Every agent in group G knows the value of the p-th data segment
Ek
Gϕ Group G has depth k general knowledge of ϕ

RG G is the current group of receivers
Pϕ At some moment in the past on this run, ϕ was true
�ϕ ϕ is now true and will always be true on this run

Theorem 1. Let R be any set of runs consistent with the knowledge-based al-
gorithm from section 4 where:

– the environment allows for deletion and reordering errors, but no other kinds
of error;

– The safety property holds (so that at any moment the sequence Y of data
elements received by each Ri is a prefix of the infinite sequence X of data
elements on S’s input tape).

Then for all runs in R and all k ≥ 0, j ≥ 0 the following hold:

[Forth]: Ri stores KRiKS (j + k, α) → �KRiKS (EGKS)k (j, α) .

[Back i]: S stores KSKRi (j + k,−) → �KSKRiKS (EGKS)k (j,−) .

[Back G]: S stores KSEG (j + k,−) → �KS (EGKS)k+1 (j,−) .

In the proof below we use a general principle from temporal logic (A), and some
consequences we can derive from the assumptions of the theorem (B & C).

A P (�ϕ) → �ϕ
B Because R is consistent with the knowledge-based algorithm, S and Ri store

all relevant information from the packages that they receive. Moreover, pack-
ages that are sent have the following form: KRiϕ or KSϕ, from which the
following can be concluded. If Ri receives KSϕ, then Ri stores KRiKSϕ,
thus also �KRiKSϕ. Similarly for S.

C Under the same assumption of R being consistent with the knowledge-based
algorithm, system R can be viewed as a system of perfect recall. Now we
have in general that KS�ϕ → �KSϕ, see axiom KT1.

Proof
We prove theorem 1 by induction on k. First we look at the situation for k = 0.
From B follows the Forth-part for (k = 0) namely

102 E. van Baars and R. Verbrugge

Ri stores KRiKS (j, α) → �KRiKS (j, α) . (1)

Ri sends an acknowledgement only if it received a package. Together with A and
B we have:

if Ri sends KRi (j,−) then P (Ri stores KS (j, α)) , (2)

so P�KRiKS (j, α) , and �KRiKS (j, α) .

S only stores an acknowledgement if it also received it from Ri, thus it knows
that Ri has sent it in the past.

If S stores KSKRi (j,−) then KSP (Ri sends KRi (j,−)) ... (3)

With A, C and the fact proven at (2) it can now be derived that:

KSP (�KRiKS (j,−)) , and KS�KRiKS (j,−) , so �KSKRiKS (j,−) . (4)

If (3) and (4) are combined, then we have the Back i-part of the theorem for
the j-th data segment (k = 0).

S receives acknowledgements from all the receivers and is able to retrieve
information out of this. We go back two steps and look at another knowledge
level of S instead of the knowledge level between S and just one receiver.

S only stores acknowledgements it received. If S has received acknowledge-
ments of a certain package from RG where G = {1, ..., n} then S knows that
Ri<i=1..n> have sent these acknowledgements in the past.

If S stores KSEG (j,−) then KSP (Ri<i=1..n> sends KRi (j,−)) ... (5)

With A, C and the fact proven at (2) it can now be deduced that:

KSP (�EGKS (j,−)) , and KS�EGKS (j,−) , so �KSEGKS (j,−) . (6)

If (5) and (6) are combined, then we have the Back G-part of the theorem for
the j-th data segment (k = 0). What knowledge about the j-th data segment
emerges for k �= 0? This is shown in the induction step.

Induction step. Suppose as induction hypothesis that Back i, Back G and
Forth are valid for k − 1, with k ≥ 1. Now a proof follows that Forth, Back i,
and Back G are also valid for k.

[Forth]: S only starts sending packages with position mark (j + k) if it has
received from all the receivers Ri an acknowledgement for package with position
mark (j + (k − 1)):

S sends KS (j + k, α) → P (S stores KSEG (j + (k − 1) ,−)) . (7)

With the Back G-part of the theorem for k − 1 and A, the following can be
deduced:

S sends KS (j + k, α) → �KS (EGKS)k (j,−) . (8)

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 103

Ri knows this fact. So if Ri receives a package from S with position mark j + k,
then Ri knows that S has sent this package somewhere in the past. From the
fact given at (8) together with A and B, the following can be derived:

Ri stores KRiKS (j + k, α) → �KRiKS (EGKS)k (j,−) . (9)

This is exactly what the Forth-part of the theorem says.

[Back i]: Ri only sends an acknowledgement for the (j + k)-th data element
if he stored KRiKS (j + k,−) in the past. With A, now the following can be
derived:

Ri sends KRi (j + k,−) → �KRiKS (EGKS)k (j,−) . (10)

S knows this fact. So if S receives an acknowledgement from Ri for the (j + k)-th
data segment, then S knows that Ri has sent this acknowledgement in the past.
Using A and B it can now be concluded that:

S stores KSKRi (j + k,−) → �KSKRiKS (EGKS)k (j,−) , (11)

and this is exactly the Back i-part of the theorem.

[Back G]: S receives acknowledgements from all Ri. At a certain time S has
received an acknowledgement for the (j + k)-th data segment from all Ri. Thus,

S stores KSEG (j + k,−) .

With A and B it can now be concluded that:

S stores KSEG (j + k,−) → �KS (EGKS)k+1 (j,−) , (12)

and this is exactly the Back G-part of the theorem.

6 Conclusion and Future Work

This research falls in the tradition of using interpreted multi-agent systems to
analyze communication protocols, and extends knowledge-based analysis of file
transmission protocols such as [5,10,14]. Our aim has been to make communi-
cation protocols much more flexible than file transmission protocols, in order
to adapt them to dialogue-based cooperative problem solving (CPS). There,
more interactive inter-group communication is needed than can be achieved by
simple broadcasts from an initiator to the rest of his team. In this paper a
knowledge-based algorithm for multi-agent communication [1] is adjusted for di-
alogue communication in teamwork. It is shown how the protocol handles the
different numbers of messages between the initiator and different members and
the changing initiator property, guaranteeing the knowledge gain required for
CPS. An algorithm supporting the dynamic properties of CPS communication
provides a flexible approach for CPS.

This research complements other literature that aims to make Wooldridge’s
and Jennings’ CPS model [2] more flexible, for example, [15] where the needed

104 E. van Baars and R. Verbrugge

group attitudes for teamwork are adjusted to properties of the environment and
the organization. Durfee et al. present another model of CPS [16]. Their idea
of partial global planning interleaves plan execution with stages of gradually
specifying the global plan in more detail. This seems to be an appropriate model
for long term software development projects, where teams change over time. It
would be interesting to see whether communication during CPS based on such
more flexible models can be handled similarly to the knowledge-based algorithm
presented here, by a modular approach that can be instantiated for specific
models of CPS.

In the present work, we have concentrated on the types of dialogues needed
during team formation. Future work will include an investigation how protocols
establishing binary social commitments during plan formation can be devel-
oped and analyzed in an interpreted multi-agent systems framework. Chopra
and Singh have presented relevant work on commitment protocols, based on the
formalism of transition systems [17]. Lomuscio and Sergot [14] investigate the
possibility of applying deontic logic in order to study agents’ violations of file
transmission protocols. We have not yet investigated this issue for our protocols,
but it is interesting future research. It is also interesting to design a logic exactly
suited to communication protocols such as the one-to-many protocol from [1]
and the CPS adjusted algorithm given here, in a similar fashion as the sound
and complete system TDL developed by Lomuscio and Woźna for authentication
protocols [18]. For such a system with a computationally grounded semantics of
interpreted systems, it may even be possible to develop model checking tech-
niques in order to check relevant properties automatically.

Acknowledgements

We would like to thank three anonymous referees for their helpful comments.

References

1. van Baars, E., Verbrugge, R.: Knowledge-based algorithm for multi-agent commu-
nication. In: Bonanno, G., et al. (eds.) Proceedings of the 7th Conference on Logic
and the Foundations of Game and Decision Theory, University of Liverpool, pp.
227–236 (2006)

2. Wooldridge, M., Jennings, N.R.: The cooperative problem-solving process. Journal
of Logic and Computation 9(4), 563–592 (1999)

3. Dignum, F., Dunin-Kȩplicz, B., Verbrugge, R.: Creating collective intention
through dialogue. Logic Journal of the IGPL 9(2), 289–303 (2001)

4. Dunin-Kȩplicz, B., Verbrugge, R.: Dialogue in teamwork. In: Fonseca, J.M., et
al. (eds.) Proceedings of The 10th ISPE International Conference on Concurrent
Engineering: Research and Applications, Rotterdam, A.A. Balkema, pp. 121–128
(2003)

5. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: Simple knowledge-
based derivations and correctness proofs for a family of protocols. In: Proceedings
of the 6th ACM Symposium on Principles of Distributed Computing, pp. 269–
280 (1987); Full version including proofs appeared in Journal of the ACM 39(3),
449–478 (1992)

Adjusting a Knowledge-Based Algorithm for Multi-agent Communication 105

6. van Baars, E.: Knowledge-based algorithm for multi-agent communication. Mas-
ter’s thesis, Department of Artificial Intelligence, University of Groningen (2006),
www.ai.rug.nl/alice/mas/macom

7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

8. Halpern, J.Y., Pucella, R.: On the relationship between strand spaces and multi-
agent systems. ACM Trans. Inf. Syst. Secur. 6(1), 43–70 (2003)

9. Postel, J.: Transmission control protocol (TCP). Technical Report RFC 793, Inter-
net Society (September 1981), ftp://ftp.rfc-editor.org/in-notes/rfc793.txt

10. Stulp, F., Verbrugge, R.: A knowledge-based algorithm for the internet protocol
TCP. Bulletin of Economic Research 54(1), 69–94 (2002)

11. Douglas, D.E.: Internetworking with TCP/IP. Principles, Protocols and Architec-
tures, vol. 1. Pearson Prentice Hall, Upper Saddle River (2006)

12. Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes, vol. 7. Center
for Studies in Language and Information, Palo Alto (1992)

13. Halpern, J., van der Meyden, R., Vardi, M.: Complete axiomatizations for reasoning
about knowledge and time. SIAM Journal on Computing 33(3), 674–703 (2004)

14. Lomuscio, A., Sergot, M.: A formulation of violation, error recovery, and enforce-
ment in the bit transmission problem. Journal of Applied Logic 2, 93–116 (2004)

15. Dunin-Kȩplicz, B., Verbrugge, R.: A tuning machine for cooperative problem solv-
ing. Fundamenta Informaticae 63, 283–307 (2004)

16. Cox, J.S., Durfee, E.H., Bartold, T.: A distributed framework for solving the multi-
agent plan coordination problem. In: Dignum, F., Dignum, V., Koenig, S., Kraus,
S., Singh, M.P., Wooldridge, M. (eds.) AAMAS, pp. 821–827. ACM, New York
(2005)

17. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocols. In: Nakashima,
H., Wellman, M.P., Weiss, G., Stone, P. (eds.) AAMAS, pp. 1345–1352. ACM, New
York (2006)

18. Lomuscio, A., Woźna, B.: A complete and decidable security-specialised logic and
its application to the TESLA protocol. In: Stone, P., Weiss, G. (eds.) Proceedings
of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 145–152. ACM Press, New York (2006)

www.ai.rug.nl/alice/mas/macom
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 106–122, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Extending the MaSE Methodology for the Development
of Embedded Real-Time Systems

Iman Badr, Hisham Mubarak, and Peter Göhner

Universität Stuttgart, Institute of Industrial Automation and Software Engineering (IAS),
Pfaffenwaldring 47

70550 Stuttgart, Germany
{Iman.Badr,Hisham.Mubarak,Peter.Goehner}@ias.uni-stuttgart.de

Abstract. Embedded real-time systems play an important role in various
application areas like plant automation, product automation or car electronics.
In recent years, a considerable growth in the functionality has been observed.
At the same time, expectations on systems’ flexibility at runtime are growing
steadily. The agent-oriented software engineering approach is well suited for
the development of decentralised, complex software systems with high
flexibility. A number of software engineering methodologies have been
introduced for developing agent-oriented systems. However, none of the
existing methodologies is intended for the development of embedded real-time
systems. This work presents concepts that extend the Multi-agent Systems
Engineering (MaSE) methodology for the development of agent-oriented
embedded real-time systems. The proposed concepts have been integrated in the
traditional engineering process of MasE and evaluated by applying the extended
process to the development of a flexible agent-oriented embedded system for
the control of an elevator model.

Keywords: Agent-Oriented Software Development, Real-Time Systems,
Embedded Systems.

1 Introduction

Embedded systems are systems that are integrated logically and physically in a device
or a larger system. Their application spectrum ranges from simple devices like mobile
phones and house held devices up to the complex ones like aircrafts and industrial
process controllers, to name a few. Regardless of the diversity of their application
domain, all embedded systems are required to synchronise their execution with the
technical process of the encapsulating device. Traditionally, the development of real-
time systems was targeted for closed predefined hardware structures. More and more
the structure of systems hardware is becoming dynamic with the addition, removal
and upgrade of components. Current systems are thus required to adapt to dynamic
changes in the structure of the hardware as well as to flexibly deal with unforeseeable
events that may occur in the working environment. Therefore, the development of

 Extending the MaSE Methodology 107

such systems represents a challenge of achieving flexibility without violating
invariant requirements, especially real-time requirements which are considered crucial
for these systems.

With their special nature in tackling the complexity of distributed applications and
adapting their behaviour to stochastic, dynamically changing environments, software
agents represent a suitable approach for developing flexible embedded systems. Such
development is supposed to be based on and guided by systematic methodologies that
result in exhibiting the required controlled flexibility. However, the appealing
concepts of agents are not complemented with powerful comprehensive methodolo-
gies that provide the needed support along the different application domains.
Concerning the embedded real-time systems domain, the available agent-oriented
methodologies provide no support for indispensable features namely, timeliness and
concurrency. Therefore, the employment of agents in real-time systems may lead to
possible violations of the timeliness requirements. Consequently, the potential of the
agent-based paradigm in dealing with complexity and adapting to dynamic conditions
has not been utilised in the embedded systems field.

In order to pave the way for the employment of agents in the embedded real-time
systems domain and capitalise on their flexibility, this work aims at bridging the gap
between the embedded systems domain and the available agent-oriented software
engineering. Towards achieving this objective, the Multi-agent Software Engineering
(MaSE) methodology [1] was extended with timeliness concepts that customise it for
the embedded systems domain.

This paper is organised as follows. Section 2 overviews the special requirements
and conventional development trends of embedded systems. Section 3 focuses on the
MaSE methodology by first reviewing the comparative study that led to its selection
and then discussing its limitations in capturing the special characteristics of embedded
systems. Section 4 proposes a set of extensions that overcome these limitations.
Section 5 illustrates the proposed extensions with a case study. Section 6 presents
concluding remarks and an outlook on future work.

2 Embedded Systems

Unlike information systems whose development is targeted basically to the
satisfaction of the customer needs, embedded systems have to satisfy the goals and
desires of the customer while at the same time complying with the requirements and
constraints enforced by its controlled process. To illustrate, consider an embedded
system of a typical automatically controlled washing machine. Such system is
expected to provide a user interface that allows for acquiring the user input
concerning the required washing program. In addition, it is obliged to react on the
right time to the events continually emerging from the technical washing process like
an event signaling the fall of the water level under a certain threshold. Failing to react
to such events on the right time may cause undesired effects or for safety critical
systems may bring about dangerous or even fatal effects.

108 I. Badr, H. Mubarak, and P. Göhner

2.1 Distinguishing Characteristics

In light of the previously mentioned example, two basic distinguishing characteristics
of embedded systems could be identified.

2.1.1 Timeliness
To synchronise their operation with the controlled physical process, embedded
systems are required to work under timing constraints that stem basically from the
technical system. In other words, embedded systems are real-time systems whose
input, processing and output have to be performed under predefined timing
requirements, which usually result from the physical laws governing the controlled
technical process. [2]. For example, an automobile engine system controls the amount
of proper fuel to be injected into the combustion chamber of each cylinder. For such
an example, a delay in terms of a few microseconds may lead to opening the valve at
an incorrect point of time which results in the mechanical damage of the engine [3].
In general, real-time systems are classified according to the nature of their real-time
requirements into soft and hard real-time systems. While soft real-time systems work
under relatively flexible timing constraints which when violated can lead to lowering
the performance but can still be tolerated, hard real-time systems have much more
strict constraints whose violation can lead to a failure or can be dangerous.

2.1.2 Concurrency
Embedded real-time systems are concurrent by nature in that they have to react to
several sensors and control multiple actuators simultaneously to achieve the required
performance on the right time. Concurrency raises several challenges like scheduling,
synchronisation, and communication of tasks. Tasks are either executed periodically
or are triggered by events whose occurrence time is not determined a priori. Each task
works under timing constraints and has to meet a certain deadline [2]. The objective
of a real-time system is to satisfy the requests of all tasks in a way that all deadlines
can be met. However, due to limited resources, this is not always possible. Therefore,
priorities of tasks have to be considered in scheduling to make sure that time critical
tasks with hard deadlines are not delayed.

2.2 Conventional Development Trends

The engineering trends of embedded systems have featured major changes all over the
years. During its early stages, embedded systems were developed in an ad-hoc
manner, where the system was realised by engineers having little knowledge of
computer science. They tended to satisfy the requirements at hand by sketching a
block diagram of the system to be implemented with special considerations to saving
hardware resources at the expense of the software capacity. Software was just limited
to stand-alone implementation running on a microcontroller with no operating system.
With increasing market needs, more attention was given to adding software
functionalities to enhance the utilisation of the system which resulted in an increasing
complexity of the software [3]. Currently, the industrial trend is characterised by
designing embedded systems with in-house methods that are specifically tailored to

 Extending the MaSE Methodology 109

their application domain. In general, a co-design approach is adopted as a natural
model for conceiving the strong interrelation between hardware and software [4].

2.3 Modelling Techniques

Due to their inherent complexity, embedded real-time systems depend heavily on
computational models for their analysis and design. They serve in formally specifying
the temporal and concurrent aspects of the behaviour of the system in an
unambiguous manner that simplifies implementation and testing. In general, real-time
systems are usually modelled by state-oriented models that stress the control and
reactive aspects of the system by capturing the effect of the external events coming
from the environment on the states of the system. These models attach special
importance to temporal and concurrency issues. Out of the existing models, finite
state machines and Petri-nets are most commonly used for modelling the behaviour of
embedded systems [5].

2.4 Flexibility Requirement

The embedded systems industry is featuring exponential growth motivated by the
increasing availability of cheaper and more powerful hardware components. Due to
the relatively long lifetime of devices incorporating embedded systems, it is highly
demanding to design an embedded system in such a way that allows for modifications
to the hardware structure – by adding or removing components – with no or minimal
effects on the existing software. Consequently, the conventional approach of
designing closed software which is tightly coupled with the underlying hardware
components does not offer sufficient flexibility in face of the new challenges. This
motivates investigating new approaches of software engineering like the agent-
oriented paradigm, which represents a good approach for distributed, ill-structured
and dynamic systems [6].

3 The MaSE Methodology

Mulit-agent Systems Engineering (MaSE) is a generic agent-oriented software
development methodology [1]. The engineering process of MaSE is based on a top-
down software engineering approach that supports the analysis and design phases
through seven steps, which can be performed in an iterative fashion. The whole
process with the steps and the corresponding artefacts is depicted by Fig.1. As
illustrated in the figure, MaSE adopts a goal-oriented analysis by deriving the system
goals from a set of system requirements – whose generation is assumed to be outside
the scope of MaSE. The system is next modelled as a set of roles which are assigned
the identified goals. During the design phase, the identified roles are grouped together
to form agents that are designed to play the incorporated roles. The design phase
extends up to the deployment stage, where a decision on the distribution of agents to
the available physical platforms is taken.

110 I. Badr, H. Mubarak, and P. Göhner

Fig. 1. The software engineering process of MaSE

3.1 The Selection of MaSE

This work builds on a previous study that resulted in the selection of MaSE as the
agent-oriented methodology with the best relative potential for the embedded systems
domain [7]. During the course of this work, a two-phase evaluation process was
conducted.

The first phase served in deciding on an initial set of methodologies that represent
good candidates for further deeper investigation out of the excessive number of the
currently available methodologies that amount to twenty different methodologies [8].
The evaluation criteria for this phase considered broad aspects like the soundness of
concepts, the suitability to the embedded systems domain, the coverage of the
development process, and the tool support. This initial evaluation resulted in the
selection of Gaia [9], MaSE [10], Prometheus [11], and PASSI [12].

 Extending the MaSE Methodology 111

During the second phase, the four methodologies were assessed against a
framework of attributes according to the well-known feature-based evaluation
method. The evaluation criteria covered twenty seven different features grouped into
five categories that examine the support of the methodologies to aspects related to the
application domain, the development process, the agent-oriented features, the system
to be developed, , and the flexibility this system is supposed to exhibit. Assessing the
four methodologies according to this evaluation framework resulted in the choice of
MaSE as the methodology with the best relative potential for the application for the
flexible embedded systems.

3.2 Limitations of MaSE for the Embedded Systems Domain

In spite of its good support for agent-oriented concepts like goals and roles, MaSE
fails to capture some of the essential characteristics of the embedded real-time
systems domain. By examining the applicability of MaSE to the flexible embedded
systems, a number of limitations have been identified.

3.2.1 Requirements Engineering
The lack of support to the requirements engineering phase may not have a noticeable
impact on the modelling of traditional information systems, whose development is
based on user requirements that can be acquired based on conventional methods of
software requirements engineering. However, the integrated nature of the embedded
systems results in a set of constraints that stem from the technical system and from the
existing system hardware. Such constraints may conflict with or limit the user
requirements and need thus to be considered at the early development stages. The
temporal requirements of the technical system, the response time of the computational
nodes, as well as the topology of the hardware components are all examples of
possible factors that can greatly constrain the required system behaviour. The formal
specification of these constraints is not straightforward and should be based on a
careful analysis of the physical aspects of the system. Therefore, a methodology that
attempts to cater for the embedded real-time application domain has to give clear
support to how requirements are to be specified in light of the enforced constraints.

3.2.2 Environmental Support
In spite of the important role played by the environment in the agent-oriented
paradigm, where an agent is by definition situated in an environment with which it
interacts, MaSE fails to support this feature and provides no mechanism for explicitly
modelling the environment, nor for modelling the interaction between the system and
its environment. Considering the embedded systems domain, the role of the
environment becomes even stronger because of its integrated nature within an
encapsulating device or system. Consequently, identifying the boundaries of the
modelled system and designating it from its environment aids in a better
understanding of the system concerned. In addition, modelling the interaction
between the system and its environment is of a big significance to embedded systems
due to their reactive nature, where the internal behaviour of the system is highly
shaped by external events emerging from the environment.

112 I. Badr, H. Mubarak, and P. Göhner

3.2.3 Temporal Dimension of the Modelled Behaviour
While real-time requirements and constraints greatly shape the behaviour of an
embedded real-time system whose performance is always judged by how far it
satisfies its temporal requirements, this aspect is totally absent from the development
process of MaSE and from the other methodologies that have been surveyed [7]. This
is viewed as the greatest obstacle hindering the application of agent-oriented
methodologies to the embedded systems domain. Hence all aspects of the system
behaviour including internal behaviour of agents as well as inter-agent
communications have to explicitly consider the temporal factor as a central shaping
factor in the analysis and design phases.

The concurrent behaviour of the system is another aspect which is closely related
to timeliness since it deals with the way the system works on satisfying several
temporal requirements simultaneously. MaSE provides limited support by the
concurrent tasks model generated during the analysis phase (see Fig. 1). It is assumed
that each role fulfils its goals through the concurrent execution of a number of tasks.
While the execution details of each task is modelled by a finite state automaton, the
concurrency involved in managing the collective execution of these parallel tasks is
not explicitly supported.

4 Proposed Extensions

In order to deal with the limitations of MaSE in conceiving flexibility to embedded
systems, the whole engineering process has been refined as illustrated in Fig. 2.1 First,
a new phase for requirements engineering has been introduced. Second, modifications
have been suggested to the already existing analysis and design phases.

4.1 Requirements Engineering Phase

Requirements serve in the identification of the qualitative along with the quantitative
characteristics of the system [13]. They are usually viewed from two levels of
abstraction. At a higher level of abstraction, requirements are described from the user
perspective and are referred to as the user requirements. This view however is refined
by the system developer in light of the existing constraints which results in a detailed
modelling of system services and constraints which is referred to as the system
requirements [14].

This twofold representation of requirements is adopted during this phase to serve
in generating a refined set of systems requirements that takes the constraining effects
of the technical system as well as the system hardware into consideration. This is
made possible by the application of two steps that cover the modelling and the
refinement of requirements, as illustrated in Fig 2.

User requirements are classified into process requirements and flexibility
requirements. While the former relates to the basic operation of the system, the latter
is associated with extra requirements that serve in exhibiting a degree of flexibility
during operation. This classification serves in the refinement stage by exposing the

1 New and modified artefacts are differentiated from conventional ones by denoting them with

thick and dashed boarders respectively.

 Extending the MaSE Methodology 113

Fig. 2. The software engineering process of the extended MaSE methodology

flexibility requirements to feasibility analysis that can result in the elimination or
modification these requirements, which turn out infeasible under consideration of the
system constraints.

The following steps illustrate how the system requirements are modelled and
refined.

1. Elicitation and analysis of process requirements
This step is concerned with the classification of the user requirements into process
and flexibility requirements. Process requirements are further analysed and taken
as the initial set of the system requirements.

2. Elicitation and analysis of systems constraints
The goal of this step is to extract the system constraints which results in the
generation of the system model. This involves physical as well as behavioural

114 I. Badr, H. Mubarak, and P. Göhner

analysis of the system concerned. While the former considers the static
characteristics of the technical as well as the automation system, the latter
attempts to study the expected behaviour of the system based on the process
requirements in order to extract the relevant constraints.

3. Analysis of the flexibility requirements
At the end, the flexibility requirements which resulted from the classification of
the first step undergo a feasibility test based on the generated system model with
the corresponding constraints. Since different aspects of flexibility may be catered
for, the system modeller is advised to focus on the required aspects of flexibility.
For this purpose, this step aims at establishing a view of the required flexibility.
Two modelling artefacts of the SysML [15] notation are used for this purpose:
view and viewpoint diagrams. While a view captures a certain perspective of the
system, a viewpoint embodies the rules for developing a certain view. The refined
flexibility requirements serve in complementing the system requirements.

It is worth noting that the generation of the system requirements is a gradual process
that takes place by iterating back and forth through the previously mentioned steps.
The system requirements are modelled by a requirements diagram based on the
SysML notation. One of the advantages of this notation is the support for associating
the identified requirements with the corresponding constraints.

4.2 Environmental Support

During the requirements engineering phase, a systematic analysis of the physical
structure of the automation system along with the expected behaviour of the system is
carried out to extract the enforced constraints. For the sake of this analysis, the system
boundaries are identified in the form of a context diagram. By defining the boundaries
of the system, a distinction is made between the system and the external environment
represented in the form of external terminators that may be affected by or have an
effect on the analysed system. These terminators could symbolise external systems,
input/output devices, or people. A decision should be made during this stage on
whether to model sensors and actuators as part of the system or as external
terminators.

Interactions between the system and its external environment are captured in the
form of finite state machines (FSMs). The reactive nature of the system is modelled
by analysing external events and how they affect the internal state of the system. This
analysis of events is performed under consideration of the temporal characteristics of
these events and whether they are periodic or sporadic. The resulting FSMs are
complemented with a set of events descriptors.

4.3 Adding Timeliness and Concurrency Support

In this section, the extensions that serve in overcoming the drawbacks of MaSE with
respect to the support of timeliness and concurrency are highlighted.

4.3.1 Extending Goals
A goal in MaSE represents a “system-level objective” which is formulated in a way
that reflects what the system is trying to achieve [16]. Analysing the system from the

 Extending the MaSE Methodology 115

point of view of “what” the system is trying to achieve fails to explicitly capture the
essence of the embedded real-time systems whose correctness depends not only on
fulfilling the required goals but also on the timeliness of that fulfillment. It follows
that goals of real-time systems have to be specified in a two-fold formulation: what is
being aimed at, and when it is supposed to be achieved. In other words, while
identifying goals, it is important to reason about the existence of possible deadlines
for these goals. A deadline can either be absolute or relative; periodic or aperiodic; at
a specified point in time or during an interval. In addition, a goal may reflect a hard or
a soft real-time requirement. For example, one of the goals of a fire alarm system
could be the activation of alarm in no more than time t. This reflects a hard
requirement which, when violated, could lead to dangerous consequences like the
spread of fire. Although not all goals can be assigned temporal parameters, it is
recommended to examine possible temporal requirements or constraints and to
associate them with the specified goals.

4.3.2 Extending Roles
Roles in MaSE are defined by an abstract model that associates roles with the
corresponding goals which they are supposed to achieve. However, this model fails to
capture the internal characteristics of roles that help in achieving the assigned goals.
Therefore, the role model of the Gaia methodology [17] was adopted and extended to
represent these characteristics. Roles in Gaia are defined in terms of schemas
compromising four attributes: permissions, activities, protocols, and responsibilities.
First, permissions are access rights of this role to software or hardware resources.
Second, activities and protocols represent functionalities of this role. While activities
can be carried out internal to the role, protocols describe the interaction of this role
and other roles. Finally, responsibilities are categorised into liveness and safety
properties describing the expected behaviour that an agent playing that role should
bring about and the undesired behaviour which should be avoided respectively. Under
this field, the temporal constraints associated with the goals assigned to the role of
concern are formulated in the form of temporal logic.

The identified role schemas are further analysed to generate a tentative time table
by associating the identified activities with the corresponding temporal constraints
recorded under the safety field. The dynamics of roles is then modelled by timed Petri
nets [18], which support modelling concurrent events and activities and the dynamic
behaviour of the role in dealing with them. Temporal requirements recorded by the
time table of the role are considered and used to annotate in the associated Petri-net.

The specification of the internal behaviour of each role is described in the
concurrent tasks model in section 4.4.2.

4.3.3 Organisational Model
In complement to extending goals and roles with temporal requirements, the whole
system should be realised in such a way to guarantee the satisfaction of these
requirements at run time. Enforcing temporal requirements at run-time is considered
starting from the analysis phase by viewing the system as an organisation of agents
similar to human organisations where the freedom of members in selecting their
actions is controlled by the policies and rules of their organisation. This organisational
view has been proposed by other agent-oriented methodologies like Gaia [19] and

116 I. Badr, H. Mubarak, and P. Göhner

Message [20]. From our point of view, a multi-agent system is conceived as a set of
groups sharing a set of goals that they strive to achieve. The system as a whole as well
as the individual groups is constrained by policies and rules. In order to allow for the
satisfaction of these constraints, additional coordination roles may be identified. The
multi-agent system is modelled during the analysis phase by an organisational model
that results from the identification of groups, roles, and the governing policies (see
Fig. 2). In addition, interaction patterns among organisational members are modelled
by timed Petri-nets and incorporated into the organisational model.

4.4 Process-Related Extensions

In addition to the aforementioned extensions which were motivated by the need to
tailor MaSE for the embedded real-time systems domain, a number of slight
modifications to the process were necessary for the sake of consistency and
convenience.

4.4.1 Integration of the System Model
The proposed system model which captures the constraints enforced by the
underlying hardware and technical system was integrated in the engineering process.
As illustrated in Fig. 2, the generation of several artefacts is based either directly or
indirectly on the system model. Referring to this model during the analysis and design
of the system is crucial due to the constrained nature of embedded systems.

4.4.2 The Concurrent Tasks Model
This model captures the details of the internal tasks of each role in the form of finite
state machines. Traditionally, this model is generated in MaSE during the analysis
phase based on the role model. Focusing on the deep details of tasks during the
analysis phase can lead to immature design decisions. Consequently, in the proposed
extended methodology, this generation of this model is shifted to the design phase.

To further support the specification of temporal requirements, the finite state
machines are replaced with timed automata [21]. Adopting timed automata at this
stage allows for keeping compatibility with the traditional notation of finite state
machines, while at the same time giving the possibility to specify all relevant
temporal requirements. These temporal requirements for internal tasks of each role
are directly derived from the refined role model as described in section 4.3.2.

4.4.3 Detailed Design
The support of MaSE extends up to the system deployment by capturing the
distribution of agents along the available platforms in the form of a UML-based
deployment diagram. This step is complemented in the extended methodology by
accompanying it with the generation of the agent architecture model to form the
detailed design step. The role of the agent architecture diagram in MaSE is the
identification of the internal architecture of agent classes. This is either done by
defining components from scratch or by the reuse of existing architecture templates
[1]. With respect to the embedded systems domain with its various computational
platforms and limited resources, such a decision is greatly affected by the deployment
platform. Therefore, in the extended MaSE methodology, the agent architecture is

 Extending the MaSE Methodology 117

generated based on the deployment diagram to design the internal architecture of
agents under consideration of the characteristics of the computational platform they
are going to be deployed on.

5 Evaluation of the Extended MaSE Methodology

To assess its applicability to embedded systems, the extended MaSE methodology has
been evaluated based on an elevator system model. This model consists of two shafts
each of which consists of four floors and comprises a cabin that is controlled by a
microcontroller. The two microcontrollers are interconnected to each other and to the
peripherals by means of a CAN bus. On every floor, four position sensors are
available at different levels to control the motion of the cabin of every shaft. These
sensors serve in accelerating and decelerating the cabin while moving upwards or
forwards to bring it to the correct position on the requested floor.

The traditional control of the elevator system is based on the separate control of
each shaft by the corresponding microcontroller. In the case of a microcontroller
failure, the corresponding cabin is left uncontrolled which can bring about bad
consequences like halting the cabin between floors. Furthermore, if one of the
positioning sensors breaks down, the control of the cabin fails to bring it to the
required place. Therefore, a flexible control of the elevator model was required to
increase the availability and robustness of the system by dynamically detecting and
compensating failed components with working ones on the right time.

An agent-based embedded control has been developed for the described elevator
model and has shown considerable enhancement of the system availability in case of
failures. The development of the software has been guided by the extended MaSE,
where the proposed concepts were shown to facilitate the analysis and design
processes. A comprehensive coverage of the modelling process is beyond the scope of
this work. The evaluation of the proposed concepts is rather illustrated by focusing on
the new artefacts.

One of the flexibility requirements states that the system should continue to operate
normally in case of the failure of one of the microcontrollers. Such requirement has to
be analysed during the requirements engineering phase in light of the physical
characteristics of the elevator system incorporated in the system model. By examining
the system model, this requirement was shown to be doable based on the capacities
and interconnectivity of the microcontrollers. However, further analysis is essential to
reason about the implications of fulfilling the requirement concerned. Fig. 3 captures
the model resulting from the feasibility analysis of this requirement.

As illustrated in the figure, requirements and constraints were derived to elaborate
on and limit the original requirement respectively. For example, one of the derived
requirements states that mutual probing between the two microcontrollers is required
for the dynamic detection of a failure of one of them. Furthermore, the period of this
probing has to be specified in a way that guarantees controlling the cabin whose
microcontroller is not working by the other working microcontroller on the right time.
As stated by the derived constraint, this period should be calculated from the distance
between the consecutive sensors as well as from the velocity of the cabin to insure the

118 I. Badr, H. Mubarak, and P. Göhner

Fig. 3. Illustration of the view/viewpoint modelling of the fault tolerance aspect of flexibility

correct positioning of the cabin on the right time. Physical information like velocity
and distances between each two consecutive sensors is collected and recorded in the
system model.

The goal hierarchy of the system is depicted in Fig.4. Constraints that were
extracted during the requirements engineering phase and incorporated in the
requirements diagram are propagated to the corresponding goals in the goal hierarchy.
Goal 1.1.1 is an example of a time-constrained goal which states that a passenger
request has to be acknowledged within 500 ms. The distinction between hard and soft
real-time requirements is visualised by colouring each of them with a different colour.

By examining the goal hierarchy, a number of roles can be identified and classified
into two groups. The resulting organizational structure which is part of the
organizational model is depicted in Fig.5. As illustrated in the figure, the system
consists of two groups of roles. First, the shaft control group is responsible for the
basic control of a single shaft through the coordination of three different roles.
Second, the flexible control aims at exhibiting the required flexibility that results from
the cooperation between the controllers of at least two shafts. The flexible control
group is formed by at least two roles of type controller representative. This role has a
dependency association with the controller role from the shaft control group. This
dependency relation dictates that the controller representative role be combined with
the controller role in one agent. Policies governing membership inside groups are
stated in the form of group descriptors as part of the organizational model.

 Extending the MaSE Methodology 119

Fig. 4. The goal hierarchy of the elevator control system

Fig. 5. The organizational structure of the elevator system

To realize the required flexible control, agents controlling their shafts by assuming
the controller role form a flexible control group, in which they take on the controller
representative role. This role aims at establishing a partnership with the other
members of the same flexible control group. The partnership between two agents
dictates the mutual probing and data exchange as illustrated by the fault tolerance
(Fig.3). The dynamics of this partnership behaviour which is exhibited by the
controller representative role is captured by Fig. 6. The two tokens inside the initial

120 I. Badr, H. Mubarak, and P. Göhner

Fig. 6. A Petri-net depicting the behaviour of the controller representative role

state p1 model the number of available partnerships. This means that an agent playing
this role is allowed a maximum of two other agents concurrently. Transition t2
represents the action of probing the partner by sending it a message which is
controlled by time d1, that can be calculated from the probing period illustrated in
Fig.3. One of two alternatives is then possible: either an acknowledgement from the
partner is received or not. The former event is denoted by E1 and causes the role to
continue in its periodic probing. The latter event is denoted by E2 and causes after the
elapse of time-out (d2) the firing of T3. Firing t3 results in reporting the partner as
defect and in assuming the control of its cabin.

6 Conclusion and Future Work

The development of flexible embedded systems – which tailor their behaviour to their
dynamic environment while meeting their strict temporal requirements – is gaining an
increasing attention from academia and industry. One possibility of realising
flexibility is through the employment of autonomous software agents which have
shown proved potential in exhibiting flexibility in the information technology field.
However, the application of agents in the embedded systems domain has been
hindered by the lack of concepts and methodologies that equip agents with real-time
capabilities that facilitate the development of embedded real-time systems and allow
for fulfilling temporal requirements at run time. This limitation of the agent-oriented
software engineering has motivated this research whose objective was to extend an
agent-oriented methodology for the embedded real-time systems domain.

This work is an extension to a previous study which resulted in the selection of the
MaSE methodology for showing the best relative potential for the embedded systems
domain based on a criteria-based evaluation specially tailored to the embedded
systems domain [7]. During the course of this work, weaknesses of MaSE with

 Extending the MaSE Methodology 121

respect to the development of flexible embedded real-time systems were identified
and analysed. Basically, MaSE was found to suffer from a lack of support to the
requirements engineering, the environmental modelling, and real-time specifications.
These weaknesses have been tackled by the introduction of a requirements
engineering phase which captures the timeliness constraints enforced by the
underlying technical system and system hardware Environmental modelling is
supported as well during the requirements engineering phase through the identify-
cation of the boundaries of the system as a step in analysing its physical characteris-
tics. In addition, timeliness support was proposed by extending goals and roles with
real-time specifications. Finally, process-related modifications have been applied to
MaSE to allow for the integration of the proposed concepts.

The extended methodology has been applied to the development of an agent-
oriented flexible control of an elevator system model. Further application examples
from the embedded systems domain are being currently worked on, such as the
control for an industrial continuous wood press. Results of this practical evaluation
will be used to further improve and refine the extended MaSE methodology.

Acknowledgement

This work has been carried out in the scope of the project AVE [22] on agent-oriented
real-time systems. The project AVE is kindly funded by the German Research
Council (DFG, Deutsche Forschungsgemeinschaft) under GO 810/15-1 and VO
937/5-1.

References

1. Wood, M.F.: Multiagent systems engineering: A methodology for analysis and design of
multiagent systems. Master’s thesis, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB Ohio, USA (2000)

2. Lauber, R., Göhner, P.: Prozessautomatisierung 1, 1st edn. Springer, Heidelberg (1999)
3. Kopetz, H.: Real-Time Systems Design Principles for Distributed Embedded Applications.

Kluwer Academic Publishers, Dordrecht (1997)
4. Voros, N.S., et al.: Hardware/Software Co-Design of Complex Embedded Systems. An

Approach Using Efficient Process Models, Multiple Formalism Specification and
Validation via Co-Simulation. Design Automation for Embedded Systems 8, 5–49 (2003)

5. Gajski, D., et al.: Specification and Design of Embedded Systems. P.T.R. Prentice Hall,
Englewood Cliffs (1994)

6. Parunak, H.V.D.: Practical and industrial applications of agent-based systems.
Environmental Research Institute of Michigan (ERIM) (1998)

7. Mubarak, H., Göhner, P., Wannagat, A., Vogel-Heuser, B.: Evaluation of agent oriented
methodologies for the development of flexible embedded real-time systems in automation.
atp international, issue 1/2007, Oldenbourg Industrieverlag, München (2007)

8. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group
Publishing, Hershey (2005)

122 I. Badr, H. Mubarak, and P. Göhner

9. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing Multiagent Systems: The Gaia
Methodology. ACM Transactions on Software Engineering and Methodology, July 2003,
vol. 12(3), pp. 317–370 (2003)

10. DeLoach, S.A.: Analysis and Design using MaSE and agentTool. In: 12th Midwest
Artificial Intelligence and Cognitive Science Conference (MAICS) (2001)

11. Padgham, L., Winikoff, M.: The Agent-Oriented Software Engineering handbook. In:
Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.) Methodologies and Software
Engineering for Agent Systems, July 2004, ch. 11, pp. 217–234. Kluwer Publishing,
Dordrecht (2004)

12. Cossentino, M., Potts, M.: A CASE tool supported methodology for the design of multi-agent
systems. In: Proceedings of the 2002 International Conference on Software Engineering
Research and Practice (SERP 2002), Las Vegas, USA (June 2002)

13. Balzert, H.: Lehrbuch der Software-Technik. Band 1. 2. Auflage. Elsevier, Amsterdam
(2001)

14. Sommerville, I.: Software Engineering, 6th edn. Addison-Wesley, Reading (2001)
15. OMG SysML Specification,

 http://xml.coverpages.org/OMG-SysML-Specification060504.pdf
16. DeLoach, S.A., Wood, M.: Multiagent Systems Engineering: the Analysis Phase.

Technical Report, Air Force Institute of Technology, AFIT/EN-TR-00-02 (2000)
17. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-Oriented

Analysis and Design. Autonomous Agents and Multi-Agent Systems 3, 285–312 (2000)
18. David, R., Alla, H.: Discrete, continuous, and hybrid Petri nets. Springer, Heidelberg

(2005)
19. Zambonelli, F., Jennings, N., Wooldridge, M.: Multi-Agent Systems as Computational

Organizations: The Gaia Methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.)
Agent-Oriented Methodologies. Idea Group (2005)

20. Garijo, F., et al.: The MESSAGE Methodology for Agent-Oriented Analysis and Design.
In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies. Idea Group
(2005)

21. Carlson, J.: Languages and methods for specifying real-time systems, MRTC report,
Mälardalen Real-Time Research Centre, Mälardalen University (2002)

22. AVE - Agenten für flexible und verlässliche eingebettete Echtzeitsysteme (2007),
 http://www.ias.uni-stuttgart.de/forschung/projekte/ave.html

Measuring Complexity of Multi-agent

Simulations – An Attempt Using Metrics

Franziska Klügl

Department for Artificial Intelligence,
University of Würzburg

Am Hubland, 97074 Würzburg
kluegl@informatik.uni-wuerzburg.de

Abstract. The variety of existing agent-based simulations is overwhelm-
ing. However – especially when comparing agent-based simulation to
other simulation paradigms, a reference frame is missing that allows char-
acterizing shortly and discriminating between simulation models. In this
contribution, I address this problem by introducing metrics for measuring
properties of agent-based simulations for finally being able to character-
ize the complexities involved in developing such a model.

1 Introduction

Multi-agent simulation forms an innovative modeling and simulation paradigm
that possesses a great potential for developing models on a level of detail and in
application areas, where it was not possible neither to formulate nor to handle
models before. Due to the intuitive structure of a model based on the analogy
between agents and the active elements in the original system, modeling and
simulation may become a research and analysis method for domain experts that
ignored such approaches before.

However, there are several drawbacks that hinder people from constructing
and experimenting with valid and useful multi-agent models [Klügl et al., 2004].
Most of these drawbacks are consequences of the flexible design and possibly
high level of detail which is resulting in formal and conceptual arbitrariness.
Meanwhile, there is a countless set of existing agent-based models which can not
be compared directly. Re-implementation attempts often fail as the documenta-
tion of the models must remain incomplete. This is basically due to the fact that
the particular dynamics are depending on modeling decisions on a very detailed
level. A full documentation containing all necessary details mostly cannot be
given within the scope of a conference or journal contribution. Thus, the actual
complexity of a model is hidden.

In this paper, we will introduce one approach for characterizing the complexity
of an agent-based simulation model. Sources of complexity reside in the envi-
ronmental characteristics, the agent structures and dynamics, as well as in the
overall organization and interaction design. Instead of discussing the sources for
complexity on a coarse level, we will define metrics that can be used for measur-
ing different aspects of agent-based models. The motivation of our attempt for

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 123–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

124 F. Klügl

defining metrics is to analyze and compare aspects of complexity of agent-based
simulation. At this point of research, we are not addressing issues like classical
software metrics, like deriving production cost etc.

In the remainder of the paper we will shortly characterize agent-based sim-
ulation in general, followed by a coarse introduction to software metrics and
especially to the state of art in agent software metrics. Before section 5 gives
a list of suggestions for metrics of agent-based simulation models, we introduce
examples that will be used for their illustration. After a list of example compu-
tations, a short conclusion is given.

2 Agent-Based Simulation

Agent-based simulation applies the concept of multi-agent systems to the ba-
sic structure of simulation models. Active components are identified as agents
and programmed using agent-related concepts and technologies. An agent-based
model consists of simulated agents that “live” in a simulated environment in vir-
tual time. The environment may play an important role as it frames the agent
behaviors and interactions. The individual environment of an agent may consist
of other agents, but also may be enriched with resources or objects without agent
characteristics associated with flexible, autonomous behavior [Klügl, 2001].
Agent-based simulations allow the observation of model dynamics on at least
two levels: the agent level and the global level. Locality of interaction can be
based on explicit representation of space or on abstract non-spatial relation-
ships.

Agent-based simulation forms a very attractive paradigm for several simu-
lation application domains. The most obvious is the simulation of emergent
phenomena in social science, traffic, biology, etc. Emergent phenomena are “un-
foreseen” patterns or global behaviors [Holland, 2000] which are not derivable
from properties of its constituents.

The potential of agent-based simulation is not only restricted to emergent
phenomena or self-organization studies. It also forms a elegant basic paradigm
for variable structure models [Uhrmacher, 1996] with changing agent numbers
and agent relations.

Additionally, systems that are quite successfully treated using traditional
methods can be modeled using agent-based simulation in a more precise and
detailed way. A good example is the influence of human workers onto produc-
tion throughput, especially integrating “intelligent” strategies to cope with non-
standard situations.

Due to its attractiveness, the number of available and published agent-based
simulations became uncountable. Thus, some abstract way of characterizing and
classifying these models would be very useful not only for developing appropriate
design methodologies, identifying best practices of use, but also for evaluation
of tools, etc.

Measuring Complexity of Multi-agent Simulations 125

3 Metrics for Agent-Based Software

3.1 Metrics in General Software Engineering

The idea of measuring general properties of software has been attracting re-
searcher for many years. Software metrics were proposed for this aim. They can
be seen as the mapping from a piece of software to the domain of numbers.
Such functions usually characterize certain properties concerning size, complex-
ity, cost, design, etc.

The mostly known metric in software engineering, and basically the one that
is generally used, is the Lines Of Code (LOC) metric that forms the basis for
different heuristics about duration of implementation/modifications, cost, over-
all error probabilities, etc. A description of such conventional metrics can be
found in [Conde et al., 1986] or [Thaller, 2000]. They also give a introduction to
the Halstead metrics that are based on operator and operand numbers for pre-
dicting program volume and effort. However, their expressiveness is discussed
controversially.

Also in the simulation area, early attempts for defining metrics for simula-
tion models have been tried. For example, [Wallace, 1987] suggests a “Control
and Transformation Metric” that basically consists of counting input/output
variables per node combined with the number of nodes in some graphical repre-
sentation.

As multi-agent systems are often implemented using/based on object-oriented
programming languages, metrics for those languages may be useful also in
the agent context. Structural metrics like weighted methods per class, depth
of inheritance tree or coupling between object classes etc., were suggested in
[Chidamber and Kemerer, 1994]. Metrics that focus on the coupling between
classes can be found in [Briand et al., 1997]. However, as expected, they seem
to be too low-level for being meaningful for agent-based software, as well as for
agent-based simulation models.

3.2 Metrics in Agent-Based Software Engineering

From sources of complexity in agent-based system design, like discussed in
[Wooldridge, 2002], only a small step seems to be necessary to suggestions of mea-
suring complexity. Indeed, there are several suggestions. The work of Wille,
Dumke and co-workers ([Wille et al., 2004], [Dumke et al., 2000]) seems to be the
most extensive; however they only give a long list of informal metric suggestion
without detailing a procedure for computing them. [Far and Wanyama, 2003] in-
troduce metrics for measuring agent complexity in order to facilitate system de-
composition based on a survey of sources of complexity for agent-based systems.
Gómez-Sanz et al. [Gómes-Sanz et al., 2006] focus on cost estimation. They iden-
tify different descriptive variables, e.g. number of rules or number of state ma-
chines for characterizing behavior or number of mental entities or number of goals
for describing the informational complexity of the agents. Gómez-Sanz et al. relate
these variables to the LOC metric based on data from three EU projects, also in

126 F. Klügl

their early development phases. Metrics were actually applied resulting in figures
that could be related to actual costs generated in these projects.

Particular metrics for measuring performance of organizational design were
suggested in [Robby et al., 2006]. Another example for the use of specific metrics
in agent-based system engineering is [Woodside, 2001] that evaluates scalability
of systems of mobile agents.

However, agent-based simulation models can not be treated like most other
agent software at least for two reasons: the first is the relevance of the simulated
environment [Klügl et al., 2005], the second is determined by the relation with
a reference or original system that has to be guaranteed. This becomes the
more cumbersome, the more details the model has integrated. Thus, simplicity
of a model is essential as a minimal set of assumptions is a prerequisite for
feasible validation. The ability for comparing model complexity is thus central
for evaluating model design.

4 Example Application

Before presenting our suggestions for metrics, we shortly give information about
models that we will use as examples for illustration throughout the metric in-
troduction and later to test the metrics.

Our first example is the Sugarscape model [Epstein and Axtell, 1996]. Agents
move over the discrete Sugarscape map (50 × 50 cells), locally searching and
harvesting sugar. Sugar is a renewable resource carried by every cell characterized
by a maximum capacity. Only the current sugar stock is perceivable by the agents
within some individual range. The cells are arranged so that two sugar hills exist.
Agents possess a sugar-consuming metabolism and personal sugar storage. They
always move to the next perceivable cell with maximum sugar stock that is not
yet occupied. Agents may starve or die of some age limit and produce offsprings.
This is the model that is described in the first chapters of the Epstein & Axtell
book. In later chapters, this model is enhanced by a second resource, named
spice, as a basis for modeling trade and other social phenomena. We will only
deal with basic versions of the model. To show how small details affect the metrics
we compare two variants of the Sugarscape model: a first one without maximum
age and reproduction, the second with maximum age and sexual reproduction.

The second example we are using for illustration, is the Tribute model of
R. Axelrod [Axelrod, 1995]. It consists of 10 agents arranged in a ring. Agents
are randomly selected for activation. Activated agents evaluate the vulnerability
of direct neighbors or neighbors of committed agents for deciding whether to
demand tribute or not. The addressed agent evaluates the costs of fighting and
decides for paying tribute or fighting. These actions have effect on the wealth
of the involved agents and on their commitment to each other which later influ-
encing their decision making. A global environment distributes a small value of
wealth as a basic income after three activations.

These two models can be seen as basic prototypes for agent-based simulations.
The Sugarscape model resembles a very simple land-use-type model where agents

Measuring Complexity of Multi-agent Simulations 127

interact with their local environment in the first instance and only secondly
with other agents depending on the resources they have acquired form their
environment. Interaction is mainly mediated by the environment. The Tribute
model can be seen as a representative for a second kind of models that focus
on interaction-induced structures. Locality is modeled based on agent-agent re-
lations represented in network-type structures. Interactions between agents pro-
duce some remains in the mental structures of the agents that again influences
future interactions.

The third example we use for demonstration is the SBBpedes model. It was
developed for a large simulation study of the pedestrian behavior in the SBB
railway station Bern [Klügl and Rindsfüser, 2007]. It is particular compared to
many other pedestrian simulations as the agent behavior has integrated also
simple planning activities beyond pure locomotion. In contrast to the two previ-
ously sketched models, it is a model used in a successful real-world application.
When entering the railway station, agents determine their destination as far as
possible ahead (e.g. they cannot select the door of the train they will board when
the train did not yet arrive at the platform) and then construct a coarse plan
on the area-level (which stairway to take ...). This plan is executed using some
standard collision-free locomotion model. Meanwhile, they continuously moni-
tor their surrounding for determining whether it is still reasonable to pursue the
coarse plan. Depending on its current situation, a simulated pedestrian adapts
its plan or uses intermediate destinations on a lower level for bypassing obsta-
cles, etc. The simulation reproduced the real situation during the most busiest
morning hours with about 80 trains on 12 platforms and all together about 45000
boarding, alighting and transferring travelers. It was used for evaluating layout
alternatives and a planned change in train schedule and platform assignment.

5 Suggestions for Metrics

Even this small list of three possible agent-based simulation models shows that
there is a variety of dimensions for characterizing them. Examples start with
environmental structures, to organizational forms, agent architectures, but also
in more technical terms of agent interaction, communication language... Thus,
the question arises, whether a detailed, yet informal description may help char-
acterizing the complexities involved in the design and implementation of such an
agent-based simulation. Metrics on the other hand, have the advantage of being
objective and exact – if they are appropriate for capturing the intended proper-
ties. Model metrics – in analogy to software metrics – can be seen as functions
that map the model to a numeric value that characterizes some property of the
model.

In the following, we distinguish between overall system-level metrics, metrics
for measuring the complexity of the environment. These metrics that are relevant
for the complete model, will be followed by agent-level metrics and interaction
metrics. Whereas the first refer to some more standard-like metrics, the other
three directly address the three basic aspects of an agent-based simulation model:
Environment, Agents and Interactions.

128 F. Klügl

5.1 System-Level and Environmental Metrics

On the overall system level one may tackle metrics that are not surprising, start-
ing from the population sizes and their dynamics. However, even those metrics
are not trivial as their values are scenario-dependent. That means, the metrics
can only be used to characterize one particular, completely specified simulation
run, for characterizing a complete model, especially with stochastic elements -
means over more than one run have to be used.

NAT: Number of Agent Types is a measure for heterogeneity of the model.
It basically resembles the number of classes like an object-oriented metric and
can be easily computed in simulation models, respectively in their implemen-
tations. However, there are different sources of heterogeneity for agent-based
simulation models. With NAT we refer to the most basic one: structural dif-
ferences. When every agents is using a different architecture for reasoning,
then NAT equals the number of agents. When heterogeneity is based on
different parameter values, the NAT metric is not very significant. For ex-
ample, if parameters like thresholds or weights are set individually by some
random process, they may effectively produce completely different behavior;
yet all agents structurally belong to the same class and NAT = 1. This is
the case for the Sugarscape model, where actually k = 6 different perception
radius’ may be combined with 6 different metabolism value, resulting in 36
different agents. In the SBBpedes model all agents are different as individual
desired speed is a continuous value and drawn from a random distribution.
The Tribute model is particular, in the beginning all agents are actually
the same, however due to random activation and flexible decision making,
the situation may become fully heterogenous. Thus, some additional metric
might be interesting - especially in the case of adaptive and learning agents
that counts agents that are in any form different.

NRT: Number of Resource Types like the NAT-Metric, but for passive en-
tities of the environment.

MNA: Maximum Number of Agents is probably the most obvious mea-
sure for the size of the simulated situation – the maximum number of agents
that are concurrently present during a simulation run. There is a conceptual
problem when the maximum number is only adopted at the beginning of the
simulation. This happens e.g. when the question is tackled how many agent
can be supported by a particular environment like in Sugarscape. In such
cases, one may doubt the meaningfulness of such a measure as the number of
agents is intentionally set too high in the beginning. The number of agents
to which the simulation is converging to, would make more sense.

Another idea may be to use the sum of agents that are existing in the
simulated environment over the complete simulation time. In the SBBpedes
example, the maximum number of agents concurrently simulated is about
9000, the overall number sums up to about 45000. Also this difference accents
the dynamics of a system.

MNR: Minimum Number of Resources is the analogue to the maximum
number of agents. We list the minimum here as often the question is

Measuring Complexity of Multi-agent Simulations 129

addressed what minimum number of resources is needed to support a
maximum number of agents.

One may argue that only resources should be counted that may be actu-
ally used by an agent – see e.g. in the Sugarscape world there are 2500 cells,
but a not negligible share of them does not carry any sugar (cell capacity
equals zero). In some simulations, inanimate objects are used for decorating
the environment in order to produce nice animations. Whereas in the first ex-
ample the relation between cells with and without sugar may be interesting,
decoration elements should be ignored.

MDA: Maximum Delta of Agent Population is a measurement for the
variability of population numbers over a given interval of time, typically
one simulation step. It forms the rate of population change, thus it is a mea-
sure of model dynamics that is mostly only measurable during a simulation
run. In models that contain probabilistic aspects related to agent lives, the
actual dynamics may vary from time interval to interval as well as between
runs. Also here, the initial phase with potentially higher death rates should
be distinguished from the converged state.

MDR: Maximum Delta of Resource Population is the analogue to the
MDA metric.

ARR: Agent-Resource Relation is the number of agents divided by the
number of resources. Here mean and variation are interesting.

MRS: Maximum Resource Status Size. Resources may be differently com-
plex. Obstacles may only possess some purely spatial attributes like extent,
form and position. Other resource objects may carry sophisticated infor-
mation. This metric counts the maximum number of status variables of
resources. The question what are status variables, may arise. In the sim-
ple Sugarscape model, a cell possesses only one status variables, namely the
sugar storage. Every cell needs two additional parameter, namely the growth
rate and maximum sugar capacity. Although the latter two influence the sta-
tus, they are parameter, no state variables. The state of a resource may also
be used as data container for agents; for example in the SBBpedes simulation
(see below) a train is a resource that carries data about length or number
of doors which would be counted as parameters. On the other hand, a train
object is also used to manage information about its travelers. How many
have already arrived at their goal? Information like this forms the status of
a train resource.

MRP: Maximum Resource Parameter. This metric computes the maxi-
mum number of parameter that influence the values of the status variables.
Following the examples of MRS, the growth rate or maximum stock form
parameters. Other examples are initial values. Resources may also carry
(static) information used not to update the status of the resource, but used
by agents to guide their behavior according to this information. This con-
stant information items are also subsumed under this metric.

NASh: Number of Agent Shapes. This is a measure for spatial complexity.
How many different geometries may agents possess? This makes only sense
in simulation with map-based spatial representation.

130 F. Klügl

NRSh: Number of Resource Shapes is the analogue to the NASh metric:
How many different geometries do occur in the set of resources?

5.2 Agent Metrics

Whereas the metrics above aim at measuring population size and environmental
complexity, the agents and their interactions naturally form another source of
complexity for an agent-based model that is worthwhile being measured.

All following metrics are measures for individual agents. Thus, for character-
izing a complete model, they have either to be aggregated or computed for a
“typical” agent. Aggregation can consist of averaging over all agents, using the
maximum or minimum, or simply summing up.

ACR: Architectural Complexity Rank. Complexity of the agent architec-
ture might be a reasonable measure. Unfortunately, indicators for it are not
obvious despite of several existing classifications for agent architectures. We
suggest to simply classify the architectures into one of three sets along their
complexity and use this rank as a metric:
1. Behavior-describing architectures are all rule-based structures that

aim at reproducing individual behavior based on directly describing it.
They do not claim to resemble actual cognitive processes of decision
making but are more like a black box description of observed behavior.
Examples are rule- and activity-based descriptions of behavior with hard-
wired behavior representations.

2. Behavior-configuring architectures are quite common in agent-based
system as they combine pre-defined behavior structure with a flexible
goal- or utility-based architecture. Behavior is described using task- or
activity representations like skeletal plans. For action selection and thus
actual production of agent behavior, the appropriate plan-like data struc-
tures are selected and refined based on some goals and interpreted for
fitting them to the current situation of the agent. This is actually the
category of BDI architectures.

3. Behavior-generating architectures are using traditional AI planning
from first principles. Basic representation is a set of operators with pre-
and post-conditions which are selected and ordered for achieving a partic-
ular goal state. Thus, the agent generates a sequence of actions without
predefined skeletons.

APM: Action Plasticity Metric. For being really sensitive, the ACR metric
has to be combined with additional measures for describing the behavioral
plasticity and variability. Plasticity denotes the potential adaptivity of be-
havior in reaction to environmental influences. This predominantly means
the extent of the behavioral repertoire and the flexibility in its application.
For discrete actions, this metric is computed by simply counting possible
actions. When actions are parameterized, the range of the parameters has
to be multiplied. As an illustration take the following example of a simple
pedestrian simulation: the agents may move with a standard speed, that
means move is one atomic action without further need for refinement. In

Measuring Complexity of Multi-agent Simulations 131

addition, the agents may have the possibility to turn in reaction to obstacles.
The angle is a parameter for the turn action. If e.g. only turning actions with
a angle of 45◦ and 90◦ in both directions are allowed, the action space metric
would overall return 1 + 1 ∗ 4 = 5. If the angle has a continuous range, the
metric would return ∞. Unfortunately, an additional continuous parameter
would not affect the outcome of the metric. In this case, it could be more
descriptive to introduce an additional metric describing the basic types of
actions. Yet, the idea of APM consists in denoting the most basic degree of
freedom in action selection.

SPK: Size of Procedural Knowledge. Another metric influencing behavior
plasticity is the size of the procedural knowledge that is available for an
agent. Its computation must be dependent on the particular form of archi-
tecture. One may think of several options for defining this metric aiming at
finding a more or less unified definition for the different architecture classes.
However, we did not find a solution that would fulfil this requirement.

Thus, we reduce the computation of SPK to the following computations:
In behavior-describing architectures, SPK equals the number of rules that
define the agent behavior. In behavior-configuring architectures, the number
of plan skeletons is counted, including explicitly represented partial plan
skeletons when they are arranged in some hierarchical structure. In these
two cases, a set of additional metrics would be useful for characterizing the
complexity of the rules or plan skeletons themselves, as the rules, as well as
the plan skeletons may be differently complex. These metrics may count the
number of conditions, generality of conditions, number of branching elements
in the skeleton, etc. Metrics for rule-based systems were already developed
in the early 90ies, see for example [Chen and Suen, 1994].

The computation of the SPK of behavior-generating architectures also
needs some discussion: The number of possible action sequences would be
the first idea for a definition. However, it would be hardly comparable to the
number of plan skeletons as the latter may contain more than one paths per
skeleton according to conditioned expansion in hierarchical representations.
Also, the number of operators would not be a good measure, as it does not
represent the potential complexity of the procedural knowledge of the agent.
Despite of the potential combinatoric explosion, there seems to be no other
reasonable way than to define the SPK for behavior-generating architectures
as the number of reasonable possible action sequences.

NCR: Number of Cognitive Rules. Denotes the share of actions that affect
the internal beliefs or status of an agent. One may also call these cognitive
rules responsible for updating the mental models. They can be an interesting
indicator for the reasoning complexity of the agent, although NCR is ignoring
the variety of used data structures and algorithms. At least, one may derive
a measure for the independence of actions from that information – as far
as the environment is not used as an external memory. However, in general
the usefulness of this metric can be doubted in the current form of vague
definition.

132 F. Klügl

5.3 Interaction-Related Metrics

Interactions between agents express dynamics and structure on the agent-system
level beyond mere system size.

SPII: Sum of Public Information Items. A good measure for the size of
the external interface seems to be the number of concurrently publicly ac-
cessible variables or information items.

In the Tribute model, the wealth and commitments of every agent is
common knowledge. That means, every agent knows about the wealth and
the commitment status of every other agent. Consequently, we have a value
of 1 × n + n × (n − 1) as the available information items for a single agent;
For n = 10, the resulting metric returns 100.

Sugarscape is another example that illustrates the dilemma of this ap-
proach. Here, interaction is strictly local. Every agent interacts only with its
local neighbors or the cells within its perception radius. It can only perceive
the current sugar stock of such a cell. Thus, there is no global knowledge, but
information is accessible in general as far as the cell is near enough to the
agents position. In Sugarscape, an agent may just perceive the sugar storage
of cells within their range (only in the four directions) – which consists of
an area of 4 × k cells. With k = 6 and 300 agents- this would mean that for
every agent SPII = 24, and in the sum 7200 data items are concurrently
available for all.

This kind of metric becomes more meaningful, if we divide this value
by the number of actually available data containers. In the Tribute model
this would result in the same value as all data units are accessible for all
agents at every point in time. In the Sugarscape model we have to divide it
by the number of all available status units. This results in 7200/2500 = 2.88
- basically this means that with the initial agent numbers the intersection
between two sets of perceived sugar cells contains almost 3 cells. However,
after only a few steps, the population is decreasing and concentrating on
the cells with higher sugar values. In a population of only 50 agents, this
measure would result in a value of 50 × (4 × 6)/2500 = 0.48. When the
relation between environmental information and agent needs is lower than
1, it indicates that situations may occur where the perception radius of the
agents do not intersect. However, as the agents concentrate on a small region,
this measure might be misleading.

One might suspect that this metric might not work for purely message-
based multi-agent systems. However, it is a question of abstraction. The
SPII metric deals with information units independently from their mode of
transfer.

NEA: Number of External Accesses. In addition to the number of avail-
able information units, an interesting property is how often external data
is accessed by the agent in its behavior definition. Basically this is an ab-
straction from some message counting metric. Especially together with the
SPII metric, this metric promises to form an interesting measure for the
amount of external information that the agent may actually processes per

Measuring Complexity of Multi-agent Simulations 133

time step. It nicely discriminates between highly interactive simulations and
models where the agents only once access information and then process this
potentially outdated information.

NAR: Number of Agent References. A metric addressing the coherence of
the agent system is the mean number of agent references stored in the inter-
nal models. This is basically a measure for the degree of connection within
the agent system. As this value may be varying over time, we may distin-
guish between NAR-mean and NAR-stdev. Also, minimum and maximum
number of references as well as the time-related delta of these values may be
interesting as they indicate the dynamics of the system in terms of relations
between agents.

NRR: Number Resource References. The number of references that an
agent memorizes for addressing resources. Using this metric, we can e.g.
distinguish between models contain more or less detailed elements of owner-
ship.

NMA: Number of Mobility Actions. This metric only makes sense when
there is an actual map where the agents may change their local position
and thus their immediate surroundings. It is measured in number of move
actions per agent per time step. In combination of the SPII and NEA metrics,
it shows the dynamics of relations.

This compilation of suggestions for metrics in agent-based simulations covers
a variety of relevant aspects, yet is far for being complete. Metrics quantifying
aspects of protocols and conversations are missing. Examples may be the number
of conversations, the mean number of message per conversation, etc. Such metrics
would support some form of higher level description of interactions. Another area
that is under-represented are more organization-structure oriented metrics, like
the number of roles, size of groups, etc. Another ides might be the distinction
along different relations (acquaintance, dominance,...) between the agents.

One aspect that complicates the computation of relevant quantities are varia-
tions of a model for experimentation. As mentioned before, the numbers of agents
and resources, etc. are modified during experimentations, the maximum number
of agents depends on the concrete environmental conditions of the scenario, etc.

5.4 Feedback Loops and Other Missing Aspects

Although the metrics given above are attractive due to their simplicity and
option for automatic, non-human-done computation, one may wonder whether
they really capture the actually necessary aspects.

Even for humans, the existence of feedback loops – especially multi-level loops
– is hard to determine just based on a static model specification or implementa-
tion. Every change of a status value, every interaction can be part of an feedback
loop. Hidden feedback loops form the backbone for every complex problem.

If the number of positive and negative feedback loops, sub-divided into one-
level and multi-level feedback loops could be determined based on human intel-
ligence, these numbers would be really useful as a metric for complexity. Would

134 F. Klügl

be, because it is quite unclear how this should happen for agent-based simula-
tions. Feedback-based analysis can be found in the System Dynamics methodol-
ogy [Forrester, 1961]. However, such macro models are much less complex than
agent-based approaches.

There are two additional aspects that we only treated very coarsely: Metrics
for adaptive agents and a more detailed elaboration of metrics related to inter-
action dynamics. However, we suppose that these are even more complex than
the metrics that we proposed there.

5.5 Language-Specific Metrics

Using traditional programming languages for implementing an agent-based sim-
ulation, clearly only general metrics can be applied. If the simulation is imple-
mented based on a particular framework and architecture, more specific and
meaningful metrics can be defined. This specially applies to the metrics related
to the agents action selection module: APM (Action Plasticity Metric), the SPK
(Size of Procedural Knowledge) and the NCR (Number of Cognitive Rules).
However, without reference to specific architectures, the identification of such
variables is quite hard. Sometimes, it even violates the requirement of objectiv-
ity and automatic computation.

Thus, in an agent-based system implemented using the JADE framework
(jade.tilab.com), the number of behaviors of agent may be interesting. Such
behaviors form the basic structure for behavior definition. Also for agents us-
ing the PRS architecture [Ingrand et al., 1992] or one of its legacies like JACK
(www.agent-software.com), the number and size of Knowledge Areas per agent
determines the complexity and sophisticated-ness of agent behavior. Similar
metrics may be meaningful for agents designed based on the RAP architec-
ture [Firby, 1989]. Analogous metrics may be found in any agent system and
simulation when it is based on some form of high-level structure.

This is also the case with SeSAm (www.simsesam.de) which is used as im-
plementation basis for all example computations in the next section. We did
this to avoid tampering based on different implementation styles. In SeSAm, the
behavior of agents is structured along a graph, named “reasoning engine” that
contains activities – which are some form of script – and rules that are used
for controlling the transition between activities. The state of an agent consists
of a set of state variables with potentially complex data structures. Thus, in
SeSAm, among others, the number of parallel reasoning engines, number and
size of activities and rules per graph, number of variables, may provide interest-
ing measures of the size and complexity of a model. A set of specific metrics for
SeSAm has been suggested in [Bülow, 2005].

5.6 Test and Assessment

For demonstrating potential of metrics for agent-based simulation, we want to
give some example computations for the models shortly described in section
4. For reducing effects of potentially hidden implementation details, all models
were implemented using the same simulation environment: We used the above

Measuring Complexity of Multi-agent Simulations 135

mentioned SeSAm, as it provides a convenient high-level languages combined
with visual programming. An additional reason was, that we were quite familiar
with the modeling facilities provided by it. Thus, re-implementation implied
minor effort for the Sugarscape and Tribute model. The SBBpedes project was
originally implemented using SeSAm.

The results of our computations are shown in table 1. One has to keep in
mind that we did not aim at studying the outcome of the respective models, but
we were searching for general measures of complexity for characterizing these
models.

One may notice large differences in the size of the simulation in terms of
agent numbers. In contrast to Sugarscape, one may notice that the SBBpedes
model does not converge, the high number of agents is really an extreme value.
However, for determining the number of agents where the situation converges,
simulation runs had to be done – due to the random processes, the runs had to
be repeated several times and simulation run times are depending on the number
of agents.

One may see that the Sugarscape models show an interesting population dy-
namic. The number of agents is dynamic - with a higher dynamic in variant II

Table 1. Application of metrics onto three example model implementations. All models
contain stochastic elements, therefore at some places only rough numbers are given,
when the exact number slightly varies between two runs.

Metric Sugarscape I Sugarscape II Tribute SBBpedes

NAT 1 1 1 1+4
NRT 1 1 0 5
Initial NA 300 300 10 110
MNA ca. 15 (conv.) ca 1350 10 ca. 9000
MNR 2500 2500 0 140
MDA -13, +0 -40, +74 -0, +0 -14,+21
MDR 0 0 0 0
ARR 0.12 0.56 indef. 36
MRS 1 1 0 11
MRP 2 2 0 16
NASh 1 1 1 1 + 250
NRSh 1 1 0 250

ACR 1 1 1 1+3
APM 26 27 12 ∞
SPK 2 4 4 26
NCR 0 0 2 3 (plan) + 2 (move)

SPII 2.88 2.88 100 0
NEA 24 (for k = 6) 24 9+9=18 min. 1
NAR 0 2+23 9 0
NRR 1 1 0 1 to 8 (planned path)
NMA 1 1 0 1

SeSAm-NA 2 5 8 23
SeSAm-NR 3 7 11 59

136 F. Klügl

than variant I, even higher than in the SBBpedes model. The Tribute model does
not possess any form of explicit population dynamics. However, some agents be-
come incapable of acting due to their low wealth, even when they are activated
they cannot decide for fighting as they simply cannot afford to do. This is not
expressed by the current set of metrics - a metric denoting the effective number
of active agents would be necessary. An interesting detail is the missing resource
dynamics in the SBBpedes model (MDR = 0). This shows an implementation
detail: Trains are always existing throughout the complete simulation run. First
to wait for activation, then secondly for waiting until all travelers have arrived
at their particular destination.

Concerning the agent-level metrics, one may see that the agent model of SBB-
pedes is slightly larger than the other two and indeed the design and implemen-
tation was quite effortful especially for selecting the appropriately parameterized
action.

Large differences can be found in the between the values of the different
metrics in the third part concerning agent-interaction metrics. One may notice
that here the entries of the SBBpedes model are mostly zero whereas the Trib-
ute model, as well as the Sugarscape contain much higher values. However, the
numbers support the characterization that we initially used to introduce these
two models: Sugarscape as the example for a land-use model, Tribute as a merely
interaction-based model concerning the emergence of political actors.

The SBBpedes model is larger than the others in terms of mere agent numbers
as well as in extend of agent behavior. However, the interaction between agents is
comparatively simple. No agent possess explicit information about other agents
within its belief model. Direct interactions are seldom.

The main question that remains is - of what use are these numbers? Up to
now, the metrics can be used for demonstrating “areas” (in terms of subsets
of metrics) of higher complexity relative to other models. We have seen that
the metrics are actually able to discriminate between models. For an absolute
complexity measure, the set of isolated metrics has to be re-considered, poten-
tially extended and solicited. Then, these basic metrics have to be weighted and
combined resulting in a characteristic that can be used for supporting the man-
agement of a simulation study, for estimating simulation effort or for evaluating
simulation tools.

6 Conclusion

What does complexity of an agent-based model in relation to a user (modeler,
stake-holder, domain expert, etc.) mean? Basically it consists of understandabil-
ity for the human and is connected with the predictability of the model dynamics
and output. Understandability means clarity of structures and relations. It is also
influenced by size and heterogeneity of the individual agents as well as of the
overall system. Predictability refers to the effort and skills of the modeler needed
for traceability of behavior and interactions. These are properties that we tried
to address using the abstraction mechanism of metrics.

Measuring Complexity of Multi-agent Simulations 137

Despite of a lot of scientific effort, software metrics are still controversially
discussed in practice. We suggested a set of metrics and illustrated them by
applying them to a set of existing, and partially well-known models. Although
we concentrated on mere size-related metrics, their application allowed to expose
details of complexity characterizing the individual models. The metrics also allow
to discriminate between two slightly different variants of the Sugarscape model.
Consequently, one may state that this set of metrics seems to be a good starting
point towards evaluating and comparing agent based simulation models.

Clearly, several aspects were left to future efforts. The next steps involve the
development of more dynamics-related metrics and the application to more simu-
lation models for finally reaching the goal of a short and precise characterization
of agent-based simulation model complexity.

References

[Axelrod, 1995] Axelrod, R.: A model of the emergence of new political actors. In:
Gilbert, N., Conte, R. (eds.) Artificial Societies: The Computer Simulation of
Social Life, p. 19. UCL Press (1995)

[Briand et al., 1997] Briand, L., Devanbu, P., Melo, W.: An investigation into coupling
measures for C++. In: Proceedings of the 1997 (19th) International Conference
on Software Engineering, pp. 412–421 (1997)

[Bülow, 2005] Bülow, M.: Metriken für Multiagentensimulationen in SeSAm. Master’s
thesis, Institute of Computer Science, University of Würzburg (2005)

[Chen and Suen, 1994] Chen, Z., Suen, C.Y.: Complexity metrics for rule-based expert
systems. In: International Conference on Software Maintenance, 1994, pp. 382–391
(1994)

[Chidamber and Kemerer, 1994] Chidamber, S.R., Kemerer, C.F.: A metrics suite for
object oriented design. IEEE Trans. Software Engineering 20, 476–493 (1994)

[Conde et al., 1986] Conde, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering
Metrics and Models. Benjamin/Cummings (1986)

[Dumke et al., 2000] Dumke, R.R., Koeppe, R., Wille, C.: Software agent measure-
ment and self-measuring agent-based systems. Technical Report 11, Fakultät für
Informatik, Uni. Madgeburg (2000)

[Epstein and Axtell, 1996] Epstein, J.M., Axtell, R.: Growing Artificial Societies. So-
cial Science from the Bottom Up. Random House Uk Ltd. (1996)

[Far and Wanyama, 2003] Far, B.H., Wanyama, T.: Metrics for agent-based software
development. In: IEEE CCECE 2003. Canadian Conference on Electrical and
Computer Engineering, May 2003, vol. 2, pp. 1297–1300 (2003)

[Firby, 1989] Firby, J.: Adaptive Execution in Complex Dynamic Worlds. PhD thesis,
Yale University (1989)

[Forrester, 1961] Forrester, J.: Industrial Dynamics. Pegasus Communications (1961)
[Gómes-Sanz et al., 2006] Gómes-Sanz, J.J., Pavón, J., Garijo, F.: Estimating cost for

agent-oriented software. In: Müller, J., Zambonelli, F. (eds.) AOSE 2005. LNCS,
vol. 3950, pp. 218–230. Springer, Heidelberg (2006)

[Holland, 2000] Holland, J.H.: Emergence. From Chaos to Order. Oxford University
Press, Oxford (2000)

[Ingrand et al., 1992] Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for
real-time reasoning and system control. IEEE Expert 7(6), 34–44 (1992)

138 F. Klügl

[Klügl, 2001] Klügl, F.: Multiagentensimulation – Konzepte, Anwendungen, Tools. Ad-
dision Wesley (2001)

[Klügl et al., 2005] Klügl, F., Fehler, M., Herrler, R.: About the role of the environment
in multi-agent simulations. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 127–149. Springer, Heidelberg (2005)

[Klügl et al., 2004] Klügl, F., Oechslein, C., Puppe, F., Dornhaus, A.: Multi-agent
modelling in comparison to standard modelling. Simulation News Europe 40, 3–9
(2004)

[Klügl and Rindsfüser, 2007] Klügl, F., Rindsfüser, G.: Large-scale agent-based pedes-
trian simulation. In: Müller, J.P., Petta, P., Klusch, M., Georgeff, M. (eds.)
MATES 2007. LNCS (LNAI), vol. 4687, pp. 145–156. Springer, Heidelberg (2007)

[Robby et al., 2006] Robby, DeLoach, S.A., Kolesnikov, V.A.: Using design metrics for
predicting system flexibility. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS,
vol. 3922, pp. 184–198. Springer, Heidelberg (2006)

[Thaller, 2000] Thaller, G.E.: Software-Metriken – einsetzen, bewerten, messen, 2nd
edn. Verlag Technik (2000)

[Uhrmacher, 1996] Uhrmacher, A.M.: Object-oriented and agent-oriented simulation-
implications for social science applications. In: Doran, J., Gilbert, N., Müller, U.,
Troitzsch, K.G. (eds.) Social Science Micro Simulation- A Challenge for Computer
Science. Lecture Notes in Economics and Mathematics, pp. 432–447. Springer,
Berlin (1996)

[Wallace, 1987] Wallace, J.C.: The control and transformation metric: Toward the mea-
surement of simulation model complexity. In: Thesen, A., Grant, H., Kelton, W.D.
(eds.) Proceedings of the 1987 Winter Simulation Conference, pp. 597–603 (1987)

[Wille et al., 2004] Wille, C., Brehmer, N., Dumke, R.R.: Software measurement of
agent-based systems - an evaluation study of the agent academy. Technical Report
Preprint No. 3, Faculty of Informatics, University of Magdeburg (2004)

[Woodside, 2001] Woodside, M.: Scalability metrics and analysis of mobile agent sys-
tems. In: Wagner, T.A., Rana, O.F. (eds.) AA-WS 2000. LNCS (LNAI), vol. 1887,
p. 234. Springer, Heidelberg (2001)

[Wooldridge, 2002] Wooldridge, M.: An Introduction to Multi-Agent Systems. John
Wiley, Chichester (2002)

DCaseLP: A Prototyping Environment
for Multi-language Agent Systems

Viviana Mascardi, Maurizio Martelli, and Ivana Gungui

Dipartimento di Informatica e Scienze dell’Informazione – DISI,
Università di Genova, Via Dodecaneso 35, 16146, Genova, Italy

{mascardi,martelli}@disi.unige.it, iva sim@yahoo.it

Abstract. This paper describes DCaseLP, a multi-language prototyping en-
vironment for Multi-Agent Systems. DCaseLP provides tools, languages, and
methodological suggestions for engineering a MAS prototype from the late re-
quirement analysis to the prototype implementation and testing. Full support for
validating the MAS model by running the prototype in the JADE platform is
offered. DCaseLP and its ancestor, CaseLP, have been employed to develop
many applications in collaboration with Italian companies, thus demonstrating
the feasibility of the proposed approach.

Keywords: Multi-Agent System, Multi-Language, Agent-Oriented Software En-
gineering, Rapid Prototyping.

1 Introduction

The correct and efficient engineering of heterogeneous, distributed, open, and dynamic
applications is one of the technological challenges faced by Agent-Oriented Software
Engineering (AOSE). Researchers and practitioners agree that engineering a software
system involves a non negligible amount of risk. The client requirements may be un-
stable, unclear, or incomplete, and this increases the risk to develop systems that will
not match the client’s desiderata. The feasibility of algorithms, be they developed from
scratch for the project, or adapted to it, may not be completely known in advance, rais-
ing the risk to use algorithms that, in some scenarios, do not behave as expected. The
adequacy of the output of the design stage for the implementation stage, may need to
be validated in some systematic way, in order to ensure that the systems’ functionalities
devised during the design stage are met by the implemented system. Ignoring these and
many other risks (see [4]) may cause enormous losses of time and money. According to
The Standish Group report published in 1995 [26],

the average is only 16.2% for software projects that are completed on-time and
on-budget. In the larger companies, the news is even worse: only 9% of their
projects come in on-time and on-budget. And, even when these projects are
completed, many are no more than a mere shadow of their original specifica-
tion requirements.

The risk for a project to fall among those that fail meeting their requirements on
time, budget, and functionalities, is very high. This is particularly true when the system

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 139–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 V. Mascardi, M. Martelli, and I. Gungui

to develop is as complex as a MAS. However, the risk intrinsic to the development of a
MAS could be mitigated by following a prototyping approach.

A prototype is not something to be delivered to a client, usually. One of the reasons
is precisely the purpose of the prototype: proof of concept. It intends to show the client
what the final software product will look like, in order to gain a full understanding of the
client’s requirements before starting the implementation of the product. Developing a
working prototype does not require a great deal of time. This means early availability of
parts of a product that the customer can evaluate, and the opportunity to detect any pos-
sible inaccuracies. Early detection of inadequacies allows to reduce development costs,
and indeed the construction of prototypes is a well known technique for early detection.
The iterative prototyping process ensures the flexibility to revise the requirements or
critical design choices several times before committing to any final decision. Finally,
efficiency is not a key feature: a prototype does not need to be extremely efficient, and
therefore it can be produced using (not efficient) methods and tools that are suitable for
validation of the initial requirements, but not necessarily for the implementation of the
final product. Of course, one has to trade off between the cost of prototype development
and the risks being considered.

In this paper we describe the DCaseLP framework for MAS prototyping. DCaseLP
stands for Distributed Complex Applications Specification Environment based on Logic
Programming. Although initially born as a logic-based framework, as the acronym it-
self suggests, DCaseLP has evolved into a multi-language prototyping environment
that integrates both imperative (object-oriented) and declarative (rule-based and logic-
based) languages, as well as graphical ones. The rationale behind DCaseLP is that
MAS development requires engineering support for a diverse range of non-functional
properties, such as understandability of the MAS at various conceptual levels, integra-
bility of heterogeneous agent architectures, usability, re-usability, and testability.

We may rephrase B. Henderson-Sellers1 and observe that, in order to support these
properties, there are three options:

1. have a suite of inflexible methodologies, each specifically designed for supporting
one or more properties, in an ad-hoc way, or

2. have a comprehensive methodology and permit a level of freedom for adapting it
to the properties it must support, or

3. have a comprehensive framework that permits flexible instantiation and methodol-
ogy assembly.

Creating either one pre-determined set of inflexible AOSE methodologies (option 1),
or one monolithic and all-comprehensive methodology (option 2) to support all the
properties relevant for MAS engineering is not feasible. Rather, we expect that differ-
ent methods and approaches, harmonised in a coherent way within a unique framework,
will be suitable for modelling, verifying, or implementing various properties. By pro-
viding the MAS developer with an open set of languages, where new languages can

1 Agent-oriented methodologies – the value of method engineering, presentation held at Agents-
vic, Melbourne, 2004, available at
http://www.agents.org.au/20040827AOSE-Brian.pdf

http://www.agents.org.au/20040827AOSE-Brian.pdf

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 141

be plugged if needed, and allowing for the choice of the most suitable one to model,
implement, and test each property, DCaseLP moves one step towards the modular ap-
proach to AOSE proposed by [17,18]. These ideas, that we applied since the beginning
of our project in 1996,2 are currently gaining a wide consensus also for the final product
development and maintenance stages [16].

The languages and tools that DCaseLP integrates are UML and an XML-based lan-
guage for the analysis and design stages, Java, JESS and tuProlog for the implemen-
tation stage, and JADE for the testing stage. Software libraries for translating UML
class diagrams into code and for integrating JESS and tuProlog agents into the JADE
platform are also provided.

There are many motivations behind supporting these languages as part of an inte-
grated environment:

1. The ability to describe the MAS’s architecture and interaction strategies in UML3

may be exploited by any average skilled software developer who wants to generate
code starting from those diagrams. He/she needs to know how to draw UML class and
sequence diagrams, without needing a deep knowledge of the language in which code
is generated. In fact, the generated code contains comments that explain what should
be added inside it in order to make it executable, and make code completion easy to be
faced.

2. JESS, the Java Expert System Shell [13], allows the developer to supply
knowledge in the form of declarative rules that are processed by means of the Rete
algorithm [11]. It is a very expressive and concise language, suitable for implementing
lightweight and fast expert agents that may easily access and reason about Java objects.

3. Computational logic and logic programming in particular are very suitable to im-
plement sophisticated, self-aware agents able to reason about themselves and the other
agents in the MAS [20]. tuProlog [10] provides a light Prolog engine written in Java. It
may be used to build rational agents that behave according to the “strong” agent notion,
namely entities conceptualised in terms of mental attitudes and able to perform some
reasoning about their mental state.

4. Finally, as far as the importance and usefulness of JADE is concerned, we may
quote [2] that describes JADE as “probably the most widespread agent-oriented mid-
dleware in use today.”

The paper is organised in the following way: Section 2 puts DCaseLP into its re-
search context by analysing six tools that share a similar aim; Section 3 discusses the
AOSE stages that DCaseLP addresses; Section 4 describes the libraries that DCaseLP
provides to the user; Section 5 discusses the most recent applications of DCaseLP;
and finally Section 6 evaluates DCaseLP with respect to the related work, and
concludes.

2 At that time, the project name was CaseLP – without D, since no support to distribution was
given yet.

3 At the time of writing, only the translation from UML class diagrams to code is fully sup-
ported by DCaseLP. We have already developed a separate translator from sequence diagrams
to Prolog agent skeletons, http://www.disi.unige.it/person/MascardiV/
Software/WEST2EAST.html, and we are currently integrating it in DCaseLP.

http://www.disi.unige.it/person/MascardiV/Software/WEST2EAST.html
http://www.disi.unige.it/person/MascardiV/Software/WEST2EAST.html

142 V. Mascardi, M. Martelli, and I. Gungui

2 Related Work

The features that better characterise DCaseLP are:

– support to MAS development, from requirements to implementation and testing,
thanks to the availability of libraries that semi-automatise the generation of code
starting from high-level specifications;

– support to multi-language development, thanks to the availability of libraries that
allow the integration of different languages within the same middleware, JADE;

– support to AOSE, thanks to the identification of a set of engineering steps to face
during MAS development, and the availability of tools and languages for facing
them.

In this section we relate DCaseLP to its research context by analysing six toolkits that
offer a good support to these features. An evaluation of these tools and a comparison
with DCaseLP are given in Section 6, after DCaseLP has been fully described.

AgentTool and AgentTool III. AgentTool [8] is a Java-based graphical development
environment created by the Multiagent & Cooperative Robotics Laboratory. Currently,
there is an ongoing project for releasing AgentTool III (aT3, http://macr.cis.
ksu.edu/projects/agentTool/agentool3.htm) to support the design of
MASs. aT3 will be released as an Eclipse plug-in, and will provide predictive perfor-
mance metrics to allow the designer to make intelligent trade-offs. It will also generate
code for FIPA compliant frameworks. The support to MAS development provided by
AgentTool consists of a set of editors that allow the developer to define the high-level
system behavior in a graphical way: the types of agents as well as the possible com-
munications that may take place between agents may be defined via the editors. This
system-level specification is then refined for each type of agent in the system. Once
the system has been completely specified, skeletal Java code with empty methods is
produced. Once completed by hand by the developer, the Java agents may be run as
any Java application. No ad-hoc monitoring and debugging facilities are provided. A
good support to multi-language specification is provided by AgentTool: in fact, it al-
lows the MAS developer to describe its MAS in a graphical way, providing an interface
for specifying the goal hierarchy, use cases, sequence, role and agent diagrams. Agent-
Tool allows to use different graphical languages for different specification stages. How-
ever, the language in which the high-level specifications are translated into executable
code is only one: Java. As far as support to AOSE is concerned, AgentTool supports
the Multiagent Systems Engineering (MaSE) methodology [9] that consists of captur-
ing goals; refining roles; creating agent classes; constructing conversations; assembling
agent classes; designing the system.

The INGENIAS Development Kit (IDK). The INGENIAS Development Kit (IDK),
http://ingenias.sourceforge.net/, is a tool supporting MAS development
thanks to the availability of the INGENIAS Editor, the main development tool for IN-
GENIAS methodology. The editor is the replacement of Rational Rose or other UML
based tools for those researchers that work with software agents, and supports alpha
version of AUML protocol diagrams. As far as support to multi-language development

http://macr.cis.ksu.edu/projects/agentTool/agentool3.htm
http://macr.cis.ksu.edu/projects/agentTool/agentool3.htm
http://ingenias.sourceforge.net/

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 143

in INGENIAS Development Kit is concerned, the INGENIAS Editor includes several
code generation modules, among which the JADE protocol generator, that generates
JADE agents that implement protocols defined with INGENIAS diagrams, and the
Prolog generator, a basic, non complete, translation of INGENIAS elements to Pro-
log predicates. The support to AOSE in INGENIAS Development Kit is ensured by its
adherence to the INGENIAS MAS design methodology defined by [14]. INGENIAS
describes the elements that constitute a MAS, according to five viewpoints: organiza-
tion, agent, goals/tasks, interactions, and environment.

The Jack Platform. JACK [24] is an agent-oriented development environment cre-
ated by the Agent Oriented Software Pty Ltd, and conceived to be an environment
for creating, running and integrating commercial Java-based multi-agent software us-
ing a component-based approach. JACK supports MAS development by supplying a
lightweight implementation of the BDI architecture. Moreover, JACK provides the core
architecture and infrastructure for developing and running software agents in distributed
applications, and a JDE (JACK Development Environment) that offers a high-level
design tool, a graphical plan editor and graphical tracing of plan execution, that provide
a powerful and flexible program development environment. JACK does not support
multi-language development: Java is the only language provided to implement both the
agents’ knowledge and their behaviour. MAS development in JACK does not follow a
principled AOSE methodology, although the BDI approach offers a way to validate the
model of the application.

MadKit. MadKit [15] is a highly customisable, scalable, generic multi-agent distributed
platform for developing and executing distributed applications. MadKit supports MAS
development by providing a set of tools which are useful to the developer of multi-agent
applications, like the system agents, that are the main tools that a MadKit developer uses
to explore, launch, visualise and trace agents; the communicator, an agent which allows
to build distributed applications without being concerned about distribution; and an ed-
itor and animator of diagrams that can be used to view and manipulate information
represented as graphs. A “graphic shell” launches the kernel and loads the interfaces
for the various agents managing them in a global GUI. MadKit provides a good sup-
port to multi-language development. It is possible to program MadKit agents in several
languages: Java, Python, Scheme (Kawa), BeanShell and JESS. Even if MadKit
does not follow any specific AOSE approach, one of the software tools it provides is
SEdit (Structure Editor). This tool allows the design and animation of structured di-
agrams containing nodes and arrows between them, and helps the MAS developer in
engineering the MAS in a correct way.

The Mozart Programming System. The Mozart Programming System [25] is an ad-
vanced development platform for intelligent, distributed applications. It implements Oz
3, the latest in the Oz family of multi-paradigm languages based on the concurrent
constraint model. By combining concurrent and distributed programming with log-
ical constraint-based inference, Oz is suitable for MAS development. The developer
that implements a distributed application must not be concerned with details regarding
the underlying network, that is open and fault-tolerant. Besides this, Oz is a multi-

144 V. Mascardi, M. Martelli, and I. Gungui

paradigm high-level programming language which supports declarative programming,
object oriented programming, constraint programming, and concurrency. Thus Mozart,
being based upon Oz, provides a true support to multi-language development. However,
graphical tools for modelling the MAS or for animating diagrams describing the archi-
tecture of the MAS are not supported by the Mozart platform: no support to any SE
methodology is given.

The ZEUS Platform. Zeus [21] is an open source agent development tool kit written in
Java and created as part of the Midas and Agentcities research projects at BT in the late
1990’s and early 2000’s. A version of Zeus is available under an open source license
from http://sourceforge.net/projects/zeusagent. As far as support
to MAS development is concerned, Zeus provides editors for entering the specifications
of all the artifacts needed for building a MAS. In particular, it provides an Ontology
Editor for specifying the ontology used by the agents in the MAS, and an Agent Edi-
tor for specifying agents and their tasks, social context, and social abilities. The Code
Generation Editor allows the developer to automatically generate code from the specifi-
cations entered by means of the Agent Editor. Visualiser and deployment tools use user-
friendly graphic interfaces that facilitate the MAS deployment. Multi-language issues
are not faced by Zeus: Zeus agents are programmed by entering their characterizing
features through the Agent Editor panel by means of forms that impose the usage of a
Zeus-dependent input language. The Java agent code can be automatically generated
when all these features have been defined. No output language other than Java is sup-
ported. Finally, as far as AOSE support is concerned, the approach that Zeus suggests
for building a MAS consists of five stages: ontology creation, agent creation, utility
agent configuration, task agent configuration, and agent implementation.

3 DCaseLP: An Integrated AOSE Approach and Environment

DCaseLP provides the languages and tools that support a MAS developer in the en-
gineering stages from late requirements analysis to prototype testing. In the following
sections we outline these engineering stages. The suggested AOSE approach is based
upon existing proposals.

3.1 Modelling Stage (Analysis and Design)

The analysis stage is mainly role-driven. We share the belief that roles are the key ab-
straction in MAS modelling with several researchers in the AOSE field. Role modelling
allows the MAS developer to specify what the system can do, without going into the
details about how the system will do it. Roles are played by agent classes. To make
an example, Seller and Buyer are two roles that may be played by the fruitSeller and
fruitBuyer agent classes respectively, as well as by a fruitExchanger class that plays
both of them. In order to define roles and interactions taking place among them, the
MAS developer may follow the guidelines given in [5], where modularity, high cohe-
sion, parsimony, completeness, and low coupling are used as characterising criteria for
qualifying roles.

http://sourceforge.net/projects/zeusagent

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 145

Once the role model is well understood, the developer needs to define how com-
munication among entities playing different roles takes place; which roles should be
assigned to which agent class; and how many instances of each agent class are required
for the given application.

The language that DCaseLP provides to the user in order to cope with these aspects
is UML, along the lines of [3,5]. The tool that allows the integration of role models
defined using UML into DCaseLP consists of a set of XSL configuration files that
define the rules for translating XMI representations of UML diagrams into executable
code.

The first issue to address refers to the activity of defining interactions among the
roles needed in the MAS under development. A “Protocol Diagram” may be defined to
this aim. A suitable notation is provided by UML sequence diagrams where - according
to the AUML philosophy [22] - roles are used instead of classes or objects as the entities
involved in the interaction.

In order to identify the agent classes needed by the application, and assign roles to
them, the developer may consider that both access points for information, expertise,
and services, and entities that are responsible for controlling some kind of activity, are
good agent class candidates [5]. This assignment of roles to classes may be modelled as
an “Architecture Diagram”, namely, a UML class diagram where UML classes may be
either agent roles or agent classes (according to their stereotype), and “plays” relation-
ships between agent classes and agent roles are defined. For each agent class defined in
the modelling stage, the corresponding code implementing the class behaviour should
be defined in the implementation stage.

The number of instances of each agent class depends on the MAS under develop-
ment. Clearly decoupling agent classes from agent instances enforces the modularity
and re-usability of the agent class model. Agent instances are assigned to their cor-
responding agent classes in the “Agent Diagram”, a UML class diagram that includes
agent classes and agent instances. When the MAS is going to be implemented, the initial
state of each agent instance must be defined by encoding it in the chosen language.

3.2 Implementation Stage

The implementation of the MAS prototype must be coherent with the specification
given in the previous step. Ensuring this coherence is a demanding task for the developer
of the prototype, but DCaseLP may reduce this burden by providing a semi-automatic
translator from UML into JESS, that is one of the implementation languages offered
by DCaseLP.

During the implementation stage, the integration of external software comes into
play. To this aim, DCaseLP follows the Wrapper Agent model, [12], defined by the
Foundation for Intelligent Physical Agents, FIPA, with agents that act as “wrappers ”
for the external pieces of code. The external packages which can be accessed by the
prototype are all the ones that Java, tuProlog and JESS provide interfaces for.

DCaseLP provides a set of libraries for integrating in JADE agents whose behaviour
is entirely programmed in tuProlog or JESS, and not simply a way of executing tuPro-
log or JESS pieces of code from inside JADE agents. From a developers point of view,
the difference is substantial. By “integrating tuProlog and JESS agents into JADE”,

146 V. Mascardi, M. Martelli, and I. Gungui

we mean the ability to specify the complete behaviour of the agent, including its ability
to communicate with other agents running into a JADE platform, in tuProlog and
JESS and, then, execute these specifications. A developer that is able to write tuProlog
or JESS code, but that is not able to program in Java (and thus, is not able to define
JADE agents), can define active and communicating agents, and run them in JADE,
without even knowing the structure and definition of JADE agents. This is possible be-
cause we have extended both tuProlog and JESS with primitives that allow them to
communicate with agents running in a JADE platform (no matter if they are tuProlog,
JESS, or pure JADE agents) in a completely transparent way. This is obviously dif-
ferent from, and more sophisticated than, providing the means to integrate code into
JADE agents, but still constraining the developer to use and know the JADE package.

3.3 Testing and Evaluation Stage

The execution of the MAS prototype allows the MAS developer to test and evaluate the
analysis, design, and implementation choices that were made during development.

DCaseLP libraries provide no direct support to MAS testing, which exploits monitor-
ing and debugging tools offered by JADE. However, the output of this stage impacts on
the previous ones where DCaseLP has an active role; for this reason we briefly discuss
it. We identified a set of general evaluation criteria, which are relevant for most MAS
applications, that help the MAS developer to identify the possible sources of errors
made in the previous stages, according to the evaluation outcomes.

– Load Balancing and Load Peaks. The amount of work done by each agent in the pro-
totype can be monitored by measuring the number of exchanged messages (for example,
by using the Sniffer agent provided by JADE). By means of these measurements, the
developer can identify the overloaded agents and may then decide to modify the archi-
tecture of the MAS, for example by defining a different assignment of roles to agent
classes.
– Implementation of Communication Protocols. Implementation of the communication
protocols can be tested by monitoring which messages are received by which agent, and
whether there are agents that receive messages that they do not understand. If this is the
case, there may be a mis-implementation of the protocols related to the roles the agents
must play in the MAS.
– MAS Topology. During the simulation, the “neighbours” of each agent, i.e., the set
of agents it can exchange messages with, can be set up. This allows the developer to
experiment various interconnection topologies.

4 DCaseLP Architecture

DCaseLP has been implemented in order to provide

1. a support to the steps described in Section 3, and
2. a transparent integration between Java, JESS, and tuProlog agents running in a

JADE platform (Figure 1).

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 147

Fig. 1. DCaseLP packages

The result of our work consists of the following packages:

1. the Java UMLInJADE package that contains the Java classes and the XSL style
sheets for translating UML diagrams created with any UML modelling tool4 and
exported into XMI, into (ad-hoc) intermediate XML models and, from these, to
create the files containing the code for running the JESS agents into JADE.

2. the Java jessInJADE package, that contains the classes that implement JESS
agents, to be run in the JADE environment, and whose behaviour is fully specified
by means of the JESS language.

3. the Java tuPInJADE package, that contains the classes that implement tuProlog
agents, to be run in the JADE environment, and whose behaviour is fully specified
by means of the tuProlog language.

The three packages, together with their manuals and tutorials, are available from
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.
html. Examples of use of DCaseLP are also provided from the above URL, together
with the code for the electronic commerce application discussed in Section 5.

4.1 The UMLInJADE Package

The UMLInJADE package provides the means to translate, in a semi-automatic way, the
high level specification of the MAS, consisting of the Protocol, Architecture and Agent
diagrams introduced in Section 3, given either in UML (usable only for Architecture
and Agent diagrams) or in an XML intermediate format (available for all of them), into
JESS agents.

The protocol diagram sets the interaction rules among roles that will be played by
classes of agents. There is only one way to specify protocol diagrams in a format
that can be automatically translated into code, namely, using our XML intermediate for-
mat. Currently, we cannot define protocol diagrams directly in ArgoUML (http://
argouml.tigris.org), which is the UML editor that we currently use for draw-
ing UML diagrams and for exporting them into XMI. In fact, ArgoUML does not sup-
port the definition of UML sequence diagrams (and protocol diagrams are expressed
using the same notation of sequence diagrams). Other UML editors such as Posei-
don (http://www.gentleware.com/index.php), that support the definition

4 In our experiments, we used ArgoUML.

UMLInJADE
jessInJADE
tuPInJADE
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.html
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.html
UMLInJADE
http://argouml.tigris.org
http://argouml.tigris.org
http://www.gentleware.com/index.php

148 V. Mascardi, M. Martelli, and I. Gungui

Fig. 2. FIPA propose protocol

of sequence diagrams, export them into an XMI format that is not compliant with our
translation program. We are currently working to a definition of a new translation pro-
gram from XMI to our XML intermediate format, that is compliant with Poseidon, in
order to overcome this limitation of the current release of DCaseLP.

To show how our intermediate XML looks like, we use it to describe the propose
protocol suggested by FIPA (Figure 2), where a Seller role substitutes the role of Ini-
tiator, and a Buyer role substitutes the role of Participant; a fragment of the resulting
intermediate XML specification is shown below. The structure of our XML notation is
trivial, with roles characterised by a role name and by the ordered list of messages that
they send or receive, eventually embedded into “or”, “xor”, and “and” tags.

1 <protocoldiagram>
2 <role><name>Seller</name>
3 <msgs><msg><sender>Seller</sender>
4 <receiver>Buyer</receiver>
5 <act>PROPOSE</act></msg>
6 <xor-thread>
7 <thread><msg>
8 <sender>Buyer</sender><receiver>Seller</receiver>
9 <act>REJECT PROPOSAL</act></msg></thread>
10 <thread><msg>
11 <sender>Buyer</sender><receiver>Seller</receiver>
12 <act>ACCEPT PROPOSAL</act></msg></thread>
13 </xor-thread></msgs></role>
.....
n </protocoldiagram>

The architecture diagram expresses the relationships that exist between roles and
classes of agents. It can be specified either by means of a UML class diagram like the
one shown in Figure 3, or in the XML intermediate format.

The agent diagram states which agent classes have which instances. Like the archi-
tecture diagram, it can be specified either by means of a UML class diagram (like the
one shown in Figure 4), or in intermediate XML format. The UMLInJADE package
defines the Specif2Code class, that is used to perform the translation from the high
level description of the MAS (either given by means of UML and exported into XMI,

UMLInJADE
Specif2Code

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 149

Fig. 3. An architecture diagram

Fig. 4. An agent diagram

or by means of the intermediate XML format) into partial JESS agents that behave ac-
cording to the interaction protocols, and are organised according to the architecture and
agent diagrams. The Java code necessary to load and run a JESS agent into a JADE
platform is also automatically generated.

The usage of UMLInJADE.Specif2Code is simple: from a command line, the
developer just needs to type in javaUMLInJADE.Specif2Code and enter the in-
formation on the location of the XMI or XML files to translate, that are input by means
of a set of interactive windows.

In order to execute the MAS resulting from the translation of the high level specifi-
cation, the generated JESS code, that we will name JESS “skeleton” and that is put by
the translator into a directory named jecode, must first be completed (see Section 4.2).
The completed JESS code must be kept in the directory where it was generated and its
name must not be changed, for ensuring its integration into JADE.

Once all the JESS skeletons have been completed, the JADE MAS can be built
and its simulation can start. First of all, the Java “stubs” necessary for integrating the
JESS skeletons into JADE, and automatically generated by the translation program

UMLInJADE.Specif2Code
java UMLInJADE.Specif2Code

150 V. Mascardi, M. Martelli, and I. Gungui

taking the architecture diagram into account, must be compiled. Supposing that the
Java stubs are compiled into the jacode directory, and that the MAS agent diagram
is the one specified in Figure 4, then the MAS simulation in JADE can be started by
entering the command java jade.Boot fB1:fruitBuyer fB2:fruitBuyer
fS1:fruitSeller fS2:fruitSeller fE1:fruitExchanger from the ja-
code directory.5 This command launches a JADE platform (first argument, jade.
Boot) containing an agent namedfB1, and whose behaviour is given by the JESS pro-
gram integrated in JADE by the Java fruitBuyer stub. In the same way, there are an
agent instance fB2with class fruitBuyer, an instance fS1with class fruitSel-
ler, and so on. The names of the agent classes are directly obtained by the architec-
ture diagram. The agent diagram has a one-to-one correspondence with the command
line typed to start the simulation. In fact, the command line has one argument for each
agent instance specified in the diagram, and the argument consists of the agent name
separated by a colon from the agent class.

4.2 The jessInJADE Package

The jessInJADE package defines two classes, jessAg and jessBhv. Every JESS
agent must be defined by means of a Java class that extends jessAg, which, in turn,
extends the JADE Agent class by adding to it the capability, for an agent written in
JESS, to exchange messages with any JADE agent. The class jessBhv defines the
behaviour of a JESS agent.

In order to integrate a JESS piece of code into a JADE agent, we provide both the
skeleton of a JESS agent, and the Java stub that is necessary to integrate the JESS
agent into JADE. The JavaStubSkeleton code can be found in the jessInJADE
directory. Once opened in a text editor and completed (self-explaining comments in the
code indicate where the developer must add his/her own code), theJavaStubSkele-
ton behaves like a JADE agent whose only activity is to execute the JESS code ob-
tained by editing and completing the jessAgentSkeleton file. This file (also found
in the jessInJADE directory) must be edited by the developer, and completed with the
JESS rules and initial facts that characterise the agent’s behaviour and initial beliefs.

If the developer takes advantage of the translation process from the UML and XML
specifications of protocol and architecture diagrams into JESS code, one Java stub
and one JESS skeleton are automatically created for each agent class involved in the
MAS. In other words, the JESS rules that characterise the agent’s behaviour do not
need to be encoded by the developer, since they are automatically generated in order
to comply with the protocol given in the XML intermediate format. Since the protocol
specifies neither the agent’s initial state, nor the conditions under which a message is
sent, the developer still needs to manually complete the code, but his/her work is less,
and easier, than writing a JESS agent from scratch. On the other hand, the Java stub
that is generated by the Specif2Code method, is ready to use and does not need to
be edited.

The built-in predicates defined by the jessInJADE package include a send func-
tion, that sends an ACLMessage to an agent running in a JADE platform, and a

5 We have substituted fruitBuyer1, etc, with fB1, etc, for readability.

java
jade.Boot
fB1:fruitBuyer
fB2:fruitBuyer
fS1:fruitSeller
fS2:fruitSeller
fE1:fruitExchanger
jade.
Boot
fB1
fruitBuyer
fB2
fruitBuyer
fS1
fruitSel-
ler
jessInJADE
jessAg
jessBhv
jessAg
Agent
jessBhv
JavaStubSkeleton
jessInJADE
JavaStubSkele-
ton
jessAgentSkeleton
jessInJADE
Specif2Code
jessInJADE
send
ACLMessage
fruitBuyer1
fB1

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 151

receive function. The input of the send function is the fact ACLMessage whose
template is predefined in any JessAg. The slots defined for the ACLMessage fact
are the same as the one present in a JADE ACLMessage, namely communicative act
(or “performative”), content of the message, sender, receiver, and eventually other argu-
ments. The receive function returns a reference to the first ACLMessage available
in the mail box of the agent, and nil if no message is available.

4.3 The tuPInJADE Package

The tuPInJADE package contains the following files:

– JadeShell42P.java and JadeShell42PGui.java represent a tuProlog
agent and, as the name suggests, behave as a general “agent shell” for a tuPro-
log agent in JADE that incorporates a Prolog inference engine. When launched
in a JADE platform, the tuProlog agent needs an input file containing the Prolog
theory defining the agent behaviour. The input file may be either supplied from the
command line (JadeShell42P.java), or by browsing the file system by means
of a GUI (JadeShell42PGui.java).

– TuJadeLibrary.java is a Java library necessary for a tuProlog agent to com-
municate in a JADE platform. It defines the communicative predicates based on the
facilities that JADE offers to its agents for communication in a platform and with
other platforms.

Once a JadeShell42P or JadeShell42PGui agent has been loaded into a
JADE platform, it looks for the tuProlog file that contains the agents’s theory. This
theory must define a “main” predicate that implements the agent’s behaviour. If such a
predicate exists, the tuProlog engine is created and, by default, it contains the standard
tuProlog libraries and the theory input when loaded.

Every time that this agent is scheduled by JADE it automatically tries to prove the
“main.” goal. If the resolution does not succeed then an error message is displayed to
the user.

The built-in predicates of tuProlog agents defined in the TuJadeLibrary in-
clude a send(Performative,Content,Receiver,Protocol,Cid) pred-
icate, together with a blocking receive (blocking receive(Performative,
Content,Sender)) and a not blocking receive (receive(Performative,
Content,Sender)).

Once a th file containing the tuProlog theory th for an ag agent has been de-
fined, ag can be loaded into a JADE platform by typing java jade.Boot ag:
tuPInJADE.JadeShell42P(th) from a command line (or java jade.Boot
ag:tuPInJADE.JadeShell42PGui, for taking advantage of a GUI for browsing
the file system).

5 Applications

The most recent application that we have developed with DCaseLP, described by [23],
deals with an electronic implementation of different auction mechanisms.

receive
send
ACLMessage
JessAg
ACLMessage
receive
ACLMessage
nil
tuPInJADE
JadeShell42P.java
JadeShell42PGui.java
JadeShell42P.java
JadeShell42PGui.java
TuJadeLibrary.java
JadeShell42P
JadeShell42PGui
TuJadeLibrary
java
jade.Boot
ag:
tuPInJADE.JadeShell42P(th)
java
jade.Boot
ag:tuPInJADE.JadeShell42PGui

152 V. Mascardi, M. Martelli, and I. Gungui

There are many different auction mechanisms that can be classified according to
their features (see for example [19]). The first distinction can be made between open
and sealed-bid auctions. In the open auction mechanisms, the seller announces prices
or the bidders call out the prices themselves, thus it is possible for each agent to observe
the opponents’ moves. The most common type of auctions in this class is the ascending
(or English) auction, where the price is successively raised until no one bids anymore
and the last bidder wins the object at the last price offered. The descending (or Dutch)
auction, works in the opposite way w.r.t. the English one, and essentially belongs to
the sealed-bid class. The sealed-bid auction mechanism is characterised by the fact that
offers are only known to the respective bidders (as the name suggest, offers are submit-
ted in sealed envelopes). In the first-price sealed-bid auction each bidder independently
submits a single bid without knowing the others’ bid, and the object is sold to the bid-
der who made the best offer. The second-price sealed-bid auction works exactly as the
first-price one except that the winner pays the second highest bid.

Considering that the Dutch auction mechanisms is completely equivalent to the first-
price sealed-bid auction, we only implemented the English, first-price sealed-bid, and
second-price sealed-bid mechanisms.

Following the steps sketched in Section 3, for each auction mechanism, we have
analysed the interaction between the Auctioneer role and the Bidder role, and a Pro-
tocol Diagram has been produced. In the design phase, the internal behaviour and the
customisable features of each class of agent have been studied. Finally, each agent has
been implemented as a tuProlog agent, and integrated into DCaseLP by exploiting the
functionalities offered by the tuPInJADE package, thus achieving the goal of provid-
ing a tuProlog library of customisable agents for simulating auction mechanisms.

We have ran experiments with all the implemented mechanisms under the hypothe-
ses, that, according to the “Revenue Equivalence Theorem” (RET, described by [27]),
lead to the existence of an optimal bidder’s strategy. We programmed our test bidders
with these strategies and we verified that all the simulated auctions gave the same rev-
enue to the auctioneer and the same payoff to the bidders. The fact that RET is satisfied
(up to some error clearly due to discretisation) can be seen as a check for the correctness
of the implementation.

The code developed as part of this application can be downloaded from http://
www.disi.unige.it/person/MascardiV/Software/DCaseLP.html.

Many applications had also been developed using the ancestor of DCaseLP, Ca-
seLP. For example, the Kicker project, based on a previous “freight train traffic” ap-
plication [6], was developed within the framework of the EuROPE-TRIS Project as
a result of an industrial collaboration with the Information Systems Division of Italian
Railways (Ferrovie dello Stato s.p.a.), and dealt with the train dispatching problem.

Another application of CaseLP was the design and development of a working proto-
type of a vehicle monitoring system, which was carried out in collaboration with Elsag
s.p.a. and discussed by [1].

Finally, a prototype of a multimedia, multichannel, personalised news provider,
[7], was developed in collaboration with Ksolutions s.p.a. as part of the ClickWorld
project, a research project partially funded by the Italian Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR).

tuPInJADE
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.html
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.html

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 153

The above mentioned applications demonstrated that the CaseLP environment could
be used effectively to engineer a real application modelled as a MAS in very heteroge-
neous domains.

We are currently working on making all these applications compliant with DCa-
seLP. Since CaseLP is implemented in Sicstus Prolog, and DCaseLP integrates
tuProlog, the syntactic differences between these two Prolog implementations prevent
us from running the applications developed with CaseLP in DCaseLP “as they are”.
However, the conversion from the two Prolog formats should be almost easy, and we
plan to test soon DCaseLP on the applications already developed with its ancestor.

6 Conclusions and Future Work

By comparing DCaseLP with AgentTool, INGENIAS Development Kit, JACK,
MadKit, Mozart, and Zeus, we may observe that all the seven systems provide a good
support to MAS development (AgentTool provides a strong support to the analysis and
design stages, but poor support to the deployment and testing of the MAS, while the
other tools cover all the development phases). The support that DCaseLP offers to this
stage is not an original contribution, since it entirely relies on the support offered by the
JADE platform, which is similar to that offered by the six systems we have analysed
(apart from AgentTool). The advantage of using JADE is that it is FIPA-compliant.

The multi-language development feature is very well supported by MadKit, and
fairly well supported by INGENIAS Development Kit. Instead, JACK, AgentTool,
and Zeus do not offer facilities for integrating agents written in languages different
from the their respective agent implementation language. Mozart allows the developer
to program agents using Oz 3, that offers multi-paradigm features. Obviously, devel-
oper must know Oz 3 for programming his/her MAS.

Finally, the toolkits that better face the engineering of the MAS are AgentTool and
INGENIAS Development Kit, both built for supporting an existing AOSE method-
ology (Mase and INGENIAS, respectively). MadKit allows the developer to define
diagrams that can be animated by integrating user-defined Java code, while JACK,
Mozart and Zeus offer some guidelines and tools, but no AOSE support at all.

In the end, we may conclude that DCaseLP is comparable with these toolkits under
most respects. An advantage of DCaseLP is that it integrates a Prolog engine, which
is not supported by any of the other toolkits apart from INGENIAS Development Kit.
However, while INGENIAS Development Kit provides the means for generating ba-
sic, non complete Prolog predicates from INGENIAS elements, DCaseLP provides a
seamless integration of Prolog agents within the JADE platform. On the other hand,
a feature that is currently missing in DCaseLP is a unifying formal semantics of the
agents and the MAS, despite the language they are modelled or implemented in. In
the end, DCaseLP complements the related work by taking into account Logic Pro-
gramming languages, that is considered in a limited way only by one of the mentioned
toolkits. The advantages of exploiting Logic Programming for implementing intelligent
software agents have been depicted in the Introduction of this paper.

It is part of our future work to formally describe the meaning of protocol, architec-
ture and agent diagrams, and their relationships with the generated JESS code. We are

154 V. Mascardi, M. Martelli, and I. Gungui

also working on the automatic translation of all of these diagrams into tuProlog (ad-
vances on the translation of protocol diagrams has been done as part of the “West2East”
project, http://www.disi.unige.it/person/MascardiV/Software/
WEST2EAST.html, but no translation of architecture and agent diagrams has been
performed yet), and on the definition of a translation program that takes as its input the
XMI representations of diagrams produced by Poseidon, instead of those produced by
ArgoUML.

Another direction of our research involves the integration of ontologies within
DCaseLP, and the experimentation of its suitability as a tool for prototyping Service-
Oriented systems. This last activity is carried out within the “Iniziativa Software Fin-
meccanica” project,http://www.iniziativasoftware.it/. Finmeccanica is
the main Italian industrial group operating globally in the aerospace, defence and se-
curity sectors. The “Iniziativa Software”, set up in April 2006, is a network of public-
private laboratories where researchers from both the academia and Finmeccanica work
together for applying the results obtained from the academic partners, to the industrial
needs. We will also exploit the results obtained in collaboration with Finmeccanica
for the industrial projects carried out within the Sistemi Intelligenti Integrati Tecnolo-
gie (S.I.I.T.) society, a non-profit consortium aimed at promoting the development of a
technological district in the Italian region of Liguria, in the field of integrated intelligent
systems.

Acknowledgements. This work was partially supported by the research project “In-
iziativa Software CINI - Finmeccanica” and by the Italian project MIUR PRIN 2005
“Specification and verification of agent interaction protocols”. The authors are grateful
to the anonymous reviewers for their thoughtful and constructive comments.

References

1. Appiani, E., Martelli, M., Mascardi, V.: A multi-agent approach to vehicle monitoring in
motorway. Technical report, Computer Science Department of Genova University (2000);
DISI TR-00-13, Poster session of the Second European Workshop on Advanced Video-Based
Surveillance Systems, AVBS (2001)

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley, Chichester (2007)

3. Bergenti, F., Poggi, A.: Exploiting UML in the design of multi-agent systems. In: Omicini,
A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000. LNCS (LNAI), vol. 1972, pp. 106–113.
Springer, Heidelberg (2000)

4. Carr, M.J., Konda, S.L., Monarch, I., Ulrich, F.C., Walker, C.F.: Taxonomy-based risk iden-
tification. Technical report. Carnegie Mellon University, Pittsburgh, Pennsylvania (1993)
CMU/SEI-93-TR-6 ESC-TR-93-183

5. Collins, J., Ndumu, D.: ZEUS methodology documentation, Part I: The role modelling guide
(1999), http://more.btexact.com/projects/agents/zeus/

6. Cuppari, A., Guida, P.L., Martelli, M., Mascardi, V., Zini, F.: An Agent-Based Prototype for
Freight Trains Traffic Management. In: Larsen, P.G. (ed.) FM 1999. Springer, Heidelberg
(1999)

7. Delato, M., Martelli, A., Martelli, M., Mascardi, V., Verri, A.: A multimedia, multichan-
nel and personalized news provider. In: Ventre, G., Canonico, R. (eds.) MIPS 2003. LNCS,
vol. 2899, pp. 388–399. Springer, Heidelberg (2003)

http://www.disi.unige.it/person/MascardiV/Software/WEST2EAST.html
http://www.disi.unige.it/person/MascardiV/Software/WEST2EAST.html
http://www.iniziativasoftware.it/
http://more.btexact.com/projects/agents/zeus/

DCaseLP: A Prototyping Environment for Multi-language Agent Systems 155

8. DeLoach, S.A., Wood, M.F.: Developing multiagent systems with AgentTool. In: Castel-
franchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 46–60. Springer,
Heidelberg (2001)

9. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering. Int. J. of
Software Engineering and Knowledge Engineering 11(3), 231–258 (2001)

10. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java-Prolog integration in tuProlog. Sci.
Comput. Program 57(2), 217–250 (2005)

11. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem. Artif.
Intell. 19(1), 17–37 (1982)

12. Foundation for Intelligent Physical Agents. FIPA agent software integration specification.
Experimental, 15-08-2001 (2001), http://www.fipa.org/specs/fipa00079/

13. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems (In Action series). Manning
Publications (2002)

14. Gomez-Sanz, J., Pavon, J.: Agent oriented software engineering with INGENIAS. In: Marı́k,
V., Müller, J.P., Pechoucek, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691. Springer,
Heidelberg (2003)

15. Gutknecht, O., Ferber, J.: MadKit: a generic multi-agent platform. In: AGENTS 2000: Pro-
ceedings of the fourth international conference on Autonomous agents, Barcelona, Spain, pp.
78–79. ACM Press, New York (2000), http://www.madkit.org/

16. Henderson-Sellers, B.: Evaluating the feasibility of method engineering for the creation of
agent-oriented methodologies. In: Pechoucek, M., Petta, P., Zsolt Varga, L. (eds.) CEEMAS
2005. LNCS (LNAI), vol. 3690, pp. 142–152. Springer, Heidelberg (2005)

17. Juan, T., Martelli, M., Mascardi, V., Sterling, L.: Creating and reusing AOSE features (2003),
http://www.cs.mu.oz.au/∼tlj/CreatingAOSEFeatures.pdf

18. Juan, T., Martelli, M., Mascardi, V., Sterling, L.: Customizing AOSE methodologies by
reusing AOSE features. In: Rosenschein, J.S., Sandholm, T., Wooldridge, M., Yokoo, M.
(eds.) Proceedings of the Second International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2003), pp. 113–120. ACM Press, New York (2003)

19. Klemperer, P.: Auctions: Theory and practice. Princeton University Press, Princeton (2004)
20. Mascardi, V., Martelli, M., Sterling, L.: Logic-based specification languages for intelligent

software agents. TPLP 4(4), 429–494 (2004)
21. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: ZEUS: A toolkit for building distributed

multiagent systems. Applied Artificial Intelligence 13(1-2), 129–185 (1999)
22. Odell, J., Parunak, H.V.D., Bauer, B.: Representing Agent Interaction Protocols in UML. In:

Ciancarini, P., Wooldridge, M. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 121–140. Springer,
Heidelberg (2001)

23. Roggero, D., Patrone, F., Mascardi, V.: Designing and implementing electronic auctions in
a multiagent system environment. In: Proceedings of the WOA 2005, Dagli Oggetti Agli
Agenti (2005)

24. The JACK Home Page. The Agent Oriented Software Group (2006),
http://www.agent-software.com/shared/home/index.html

25. The Mozart Home Page. The Mozart Programming System. Last release: (June 15, 2006),
http://www.mozart-oz.org/

26. The Standish Group. CHAOS (1995) (accessed on January 30, 2008),
http://www.projectsmart.co.uk/docs/chaos-report.pdf

27. Vickrey, W.: Auction and bidding games. In: Recent advances in Game Theory, pp. 15–27.
Princeton University Conference, Princeton (1962)

http://www.fipa.org/specs/fipa00079/
http://www.madkit.org/
http://www.cs.mu.oz.au/~tlj/CreatingAOSEFeatures.pdf
http://www.agent-software.com/shared/home/index.html
http://www.mozart-oz.org/
http://www.projectsmart.co.uk/docs/chaos-report.pdf

A Step Towards Fault Tolerance for Multi-Agent

Systems

Katia Potiron1,2, Patrick Taillibert1, and Amal El Fallah Seghrouchni2

1 Thales Systèmes Aéroportés
2 avenue Gay Lussac

78852 Elancourt – France
{katia.potiron,patrick.taillibert}@fr.thalesgroup.com

2 Laboratoire Informatique de Paris 6
104 avenue du Président Kennedy

75016 Paris – France
{amal.elfallah}@lip6.fr

Abstract. Robustness, through fault tolerance, is a property often put
forward in order to advocate MAS. The question is: What is the first step
to be fault tolerant? Obviously the answer is: to know faults. The claim
of this paper is that existing fault classification suitable for distributed
systems does not fit completely MAS needs among other things because
of autonomy, the main characteristic of their components. Actually au-
tonomy is the very distinctive concept of agents and has unquestionable
worthwhile properties. But do these properties have no compensation?

After these observations on the need for fault classification the ques-
tion would be about its usages for fault tolerance.

To answer these questions the paper will, after a short presentation of
the fault classification which prevails in fault tolerance community, show
that autonomy induces a need for significant extension to this classifi-
cation. It will then make a special review of this extension and present
some expectations with regard to the programing of fault tolerant MAS
and the behavior of two general fault handlers.

Keywords: Fault tolerance, MAS design, autonomy, Fault classification.

1 Introduction

Autonomy is one of the major characteristics of agents, and one issue of the MAS
domain has been to precisely define this concept. In this paper, we consider a
point that most definitions have in common: autonomy allows agents to take
their decisions on their own, see for example [1,2,3].

Agents, taking their decisions on their own, gain some independence with
regard to other agents. They can go on and thus survive even if no other agent
is available. This aspect of autonomy makes agents more robust.

But, as a consequence of this decision making, the behavior of an agent is not
completely foreseeable for the agents interacting with it. The question here can
be: How to interact with autonomous agents? Agents eventually have to make

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 156–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Step Towards Fault Tolerance for Multi-Agent Systems 157

some assumptions about the behavior of the other agents. But what is to be
done if an agent does not fulfill these expectations? In brief, agents taking their
decisions by themselves can, voluntarily or not, be responsible for faults which
other agents will experience.

From a software engineering point of view, autonomy can be perceived as the
fact that the agent designer does not know exactly the specifications neither the
internal laws nor the internal state of other agents during their execution. Even if
MAS are distributed systems, Autonomy is the break point opposing their design.

Faults are a concern for MAS designers, especially because agents are inter-
acting with unpredictable agents. To deal with faults, the designer must have
some precise information on the faults MAS are subject to. Faults are generally
defined as judged or hypothesized causes of an error. They are not dangerous
when handled properly because only errors have direct effect on the system.
Nonetheless, since not all faults can be detected during the system design and
tests, their handling must be considered as a natural feature of computing sys-
tems. Errors are deviations of one or more of the external state of the system
from correct service state. And Failures are events that occur when the deliv-
ered service deviates from the correct service. We will here be concerned by fault
tolerance that represent all means to avoid service failures in the presence of
faults. Some work on MAS was done with regard to this domain.

For example, some research on exception handling for MAS [4,5] deals with
exceptional situations. In this researches, exceptions are detected as situations
not suitable with the expectations of the agent. More practically, they are defined
as the messages that materialize fault detection as it creates an error [6].

Another line of research in MAS is the replication of agents, a well-known fault
tolerance method which deals particularly with physical faults [7,8]. ”Prevention
of harmful behaviors” [9] which deals with the emergence of harmful behaviors
of agents and ”fault tolerant agents communication language” which deals with
crash failure detection [10] are other approaches. Some lines of research in MAS
never refer to fault tolerance but gives good piece of work for it, as computational
trust and reputation [11] to deal with malicious agents or planning [12] to deal
with unexpected situations. In all these researches, it is not clear what kinds of
fault are taken into consideration and hence their efficiency with regard to fault
tolerance.

Our final goal is to find a way to build MAS where fault tolerance is naturally
a property of the agents and the system (achievable without a specific effort of
the designer). To obtain such a good property, fault tolerance must be ”made for
MAS” and hence take into account specificities of MAS, particularly autonomy
of agents. The fault classification presented in this paper is our first step as
it gives a tool for designers to specify and evaluate systems and agents. The
paper will be organized as follow. Section 2 presents fault classification issue and
method. Section 3 explains our contribution on classification of MAS faults. A
study of the usefulness of such a classification is presented in section 4 and the
last section concludes our paper and presents our perspectives.

158 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

2 Conventional Fault Classification

The seminal work in fault classification is the work done by [6,13,14] that began
in the early 80’s. To make their classification, the authors studied a wide group of
faults including faults like short-circuits in integrated circuit, programmer’s mis-
takes, electromagnetic perturbations or inappropriate man-machine interactions.

In [14], faults are classified according to seven attributes1 (Phase of creation
or occurrence, system boundaries, dimension, phenomenological cause, objec-
tive, capability, persistence). Each attribute has a set of exclusive values (for
example values related to the attribute ”phase of creation” are: ”development”
or ”operational”), as shown on Tab.1.

A fault is described as a complete assignment of a single value to each at-
tribute. Doing so the seven attributes and their values give 192 possible combi-
nations. Not all these combinations were kept by the authors, because not all
are relevant. Thus a fault cannot be malicious and accidental at the same time.
The 25 faults remaining, that are named DSFaults (Distributed Systems Faults)
in this paper, are illustrated in the fault classification tree presented on Fig.1.

Table 1. Attributes to describe faults and their values

Attributes Values Definitions

Phase of creation Operational Occur during service delivery of the use phase
or occurrence Development Occur during (a) system development including gen-

eration of procedures to operate or to maintain the
system, (b) maintenance during the use phase

System Internal Originate inside the system boundary
boundaries External Originate outside the system boundary and propa-

gate errors into the system by interaction or inter-
ference

Dimension Hardware Originate in, or affect, hardware
Software Affects software, ie., programs or data

Phenomenolo- Natural Caused without human participation
gical cause Human-made Result from human actions

Objective Malicious Introduced with the malicious objective of causing
harm to the system

Non-malicious Introduced without a malicious objective

Capability Accidental Introduced inadvertently
Deliberate Result of a decision
Incompetence Result from a lack of professional competence by the

authorized human(s), or from inadequacy of the de-
velopment organization

Persistence Permanent Presence is assumed to be continuous in time
Transient Presence is bounded in time

1 In [13], there were eight attributes as capability was separated into: 1) intent with
deliberate and non-deliberate faults as values and 2) capability with accidental and
incompetence faults as values. But the intent viewpoint appeared redundant.

A Step Towards Fault Tolerance for Multi-Agent Systems 159

Fig. 1. Fault classes combinations

Fig. 2. Groups of fault examples

It is then possible to characterize the large number of everyday or specialized
terms denoting faults as the set of fault classes they belong to. Some illustrative
examples are given on the boxes at the bottom of Fig.2. The faults are also shown
to belong to three major non-exclusive groups representing some practical points
of view (two first lines of Fig.2) and described as follow:

– Development faults: faults occurring during development.
– Physical faults: faults affecting hardware.
– Interaction faults: external faults.

The knowledge of all possible fault classes allows the system designer to decide,
during the system specifications, which fault classes should most be taken into
consideration.

The next section will investigate this fault classification using a MAS point
of view. As matter of fact, the fault classification presented here is, in particu-
lar, suitable for distributed systems (which MAS are) but, as explained in the
introduction, MAS have some specificities (particularly the autonomy), which
motivate further investigations on the fault classification. Our goal is to empha-
size the pertinent faults for MAS (belonging to Fig.1) and to demonstrate that
new specific faults are needed. This is the purpose of the next section.

3 MAS Faults Classification

MAS are separated components interacting each other to achieve some goal as
in the case of distributed systems. What introduce the following findings:

160 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

– Since they are made of programs, MAS are vulnerable to all faults grouped
as development faults;

– Since they are distributed programs, MAS are vulnerable to all faults grouped
as physical faults;

– Since they are composed of interacting programs, MAS are vulnerable to all
faults grouped as interaction faults.

The classification tree presented (Fig.1) is entirely relevant for MAS.
But, since MAS are composed of autonomous components we argue that an

extension to the DSFaults classification is necessary. To do that, a new value
is given to the first attribute of the DSFaults classification. Specific faults of
MAS are investigated and classified from the agents point of view and from an
”external to the MAS” point of view.

3.1 A New Value for the First Attribute ”Phase of Creation or
Occurrence”

The autonomy of the agents is the most salient difference between MAS and
classical distributed systems. It is perceived by agents as the impossibility to
predict the behavior of other agents. This unpredictability is the point studied
here as possible fault source.

When considering these faults for the first time, we tried to classify them
with one of the two existing values of the first classification attribute: ”phase
of creation or occurrence”2. These attributes presented into (Tab.1) are ”Devel-
opment faults” what means faults occurring during system development (they
occur before the execution of the considered program) and ”Operational faults”
what means faults occurring during service delivery of the use phase (they oc-
cur when executing the considered system interacting with programs or human
beings). But the result was not what we expected:

1. These faults cannot be considered as development faults because autonomy
is a natural feature of agents.

2. These faults cannot be considered as operational faults because they are
not linked to service delivery but linked to the autonomous behavior of the
agents. Classical systems are created only with the aim of service delivery
whereas for agents, created as autonomous and maybe proactive, the intent
is different. This is why the faults resulting from the autonomous behavior
of agents can not be considered as operational fault.

This makes us consider autonomy as a new value of the attribute ”phase of cre-
ation or occurrence”. Autonomy value will represent faults occurring during the
”autonomous behavior” of an agent. When employing: ”autonomous behavior”
we mean all actions that autonomy allows to the agents, as for example:

– Not to respond to a request (”the power to say no”) or respond negatively
whether or not it is included into the interaction protocol.

2 Phase of creation or occurrence is related to the moment when the fault is made.

A Step Towards Fault Tolerance for Multi-Agent Systems 161

– To make a fault in order to incapacitate another agent.
– Not doing what was promised.

Concerning the three non-exclusive fault groups (development faults, physical
faults or interaction faults) presented on Fig.2, faults which first attribute is
valued as ”autonomy” cannot be considered as belonging exclusively to anyone.
The next section will show that possible behavioral faults includes faults like
intentional spam (which belong to the physical fault group), default of response
(which belong to the interaction fault group) or wrong response (which belong
to the development fault group). So we named these faults: Behavioral faults
and consider it as a fourth non-exclusive group of faults presented in Fig.6.

The introduction of a new value for an attribute creates 96 new possible
combinations among which the following analysis shows that 12 correspond to
relevant new fault classes. As the faults perception is a matter of perspective
we will present these new fault classes using two different points of view: agent
centered (section 3.2) and ”external to the MAS” centered (section 3.3).

3.2 Agent Centered Analysis

A behavioral fault, on an agent-centered point of view, is equivalent to the
”freedom” that autonomy gives to other agents and their unpredictability. If an
agent displays autonomy this is not a fault from the perspective of the agent,
the considered act is a fault only for the agent in interaction with it. We give
six examples to illustrate some corresponding situations.

1. An agent A, from time to time, voluntarily commits a fault to interfere with
an agent B. For example sending a wrong message because it have chosen
not to follow a correct interaction protocol (if the protocol was not correct
it would be a development fault).

2. Voluntarily committed fault as example 1, but permanent.
3. An agent A evaluates that it has no time to respond and so agent B does

not receive any answer (duration of faults is time bounded and link to the
context of the agent A).

4. Not voluntarily committed fault as example 3, but not bounded in time.
5. Physical attacks between agents like temporary spam.
6. Physical attacks as example 5 but permanent.

For these faults, the values of the attributes are:

– Phase of creation or occurrence: Autonomy.
– System boundaries: External ; because its source is in the other agent (an

”internal to the agent” fault would be a development fault).
– Dimension: Software; autonomy comes from the agent implementation (ex-

amples 1 to 4) or Hardware, autonomy cannot come from hardware but
can influence it (examples 5 and 6).

– Phenomenological cause: Natural ; autonomy does not allow a human be-
ing to dictate its behavior to the agent.

162 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

Fig. 3. External behavioral faults

– Objective: Non-malicious (examples 3 and 4) or Malicious (examples 1, 2,
5 and 6).

– Capability: Deliberate; results from the decision of an agent.
– Persistence: Transient ; if the decision context is bounded in time (exam-

ples 1, 3 and 5) or Permanent (examples 2, 4 and 6).

This classification is represented by the tree of fault classes number 32 to 37 on
Fig.3, for a more global view see Fig.5.

3.3 System Centered Analysis

A behavioral fault in the ”external MAS”-centered point of view is comparable
to the incompetence to handle the autonomy of the agents. This refers to how
an agent can handle the autonomous behavior of the agents it is in interaction
with. Faults are observable for an ”external MAS” point of view only if an
agent is incompetent to handle some autonomous behavior. This explains the
introduction, with the new faults, of some new combination of values concerning
the attributes objective and capability. From an external point of view the faults
can be made by one agent with a malicious intent and is perceived at the user
level only because of the incompetence of the system to handle the fault. We
give six examples to illustrate some corresponding situations:

1. An agent overloads the network creating temporary problems considering
messages transmission time.

2. Physical fault as example 1 but not bounded in time.
3. An agent is incompetent to realize its goal because of another agent reaction

(request refusal) and temporarily has no other way to realize its goal.
4. Incompetence fault as example 3 but permanent.
5. An agent creates voluntarily a temporary fault to prevent another agent

from accomplishing its goal.
6. Malicious fault as example 5 but permanent.

A Step Towards Fault Tolerance for Multi-Agent Systems 163

Fig. 4. Internal behavioral faults

Fig. 5. New fault classes combinations

For these faults the values of the attributes are:

– Phase of creation or occurrence: Autonomy.
– System boundaries: Internal ; because its source is into the MAS.
– Dimension: Software; autonomy comes from the agent implementation (ex-

amples 3 to 6),or Hardware, autonomy cannot come from hardware but
can influence it (examples 1 and 2).

– Phenomenological cause: Natural ; autonomy does not allow a human be-
ing to dictate his behavior to the agent.

– Objective: Non-malicious (examples 3 and 4) or Malicious (examples 1, 2,
5 and 6).

– Capability: Incompetence; results of an agent incompetence to adapt itself
to the non-expectable behavior of the other agents or to changes in the
environment.

– Persistence: Transient ; if the decision context is bounded in time (exam-
ples 1, 3 and 5), or Permanent (examples 2, 4 and 6).

164 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

This classification is represented by the tree of fault classes number 26 to 31 on
Fig.4, for a more global view see Fig.5.

3.4 Faults Review

To begin a review of new faults introduced, named AAFaults (Autonomous
Agent Faults) in this paper, Fig.5 shows the new fault classification tree.

As shown at the bottom of Fig.3 and Fig.4 (and summarized on last line
of Fig.6), some faults can be gathered into fault classes examples. Malicious
software fault group is named intentional fault group, since they are faults com-
mitted intentionally by agents. External non-malicious deliberate fault group is
named answer mistake, since they are committed without bad intention. Inter-
nal non-malicious incompetence fault group is named incompetence fault group,
since they result from the agent incompetence with regard to other agents au-
tonomy. Hardware fault group is named physical interference as they are close
to this example class.

Moreover some behavioral faults can be classified as development, physical or
interaction faults like shown on Fig.6.

Faults 26 to 31 are development faults as these faults come from agents or
system incompetence to handle autonomous behavior of agents. They can create
some service outage and can force system in a degraded mode or, at worst, stop
the execution.

Faults 32 to 37 are interaction faults because all are external to the considered
system. They can create some local service failure (not always observable from
an external point of view).

Some of these faults can also be viewed as physical faults (faults 26, 27, 36
and 37) because of their influence on hardware.

Fig. 6. Behavioral faults example classes

4 Validity of Our Approach

4.1 Faults Comparison

In order to analyze the relevance of the behavioral faults (named AAFaults)
we proposed, we made a comparison to evaluate their similarity with regard
to the pre-existing DSFaults. To do this, we compute a similarity measurement
representing the number of common values of the attributes describing two faults,
and defined as:

Similarityab =
∑
ij δij .

A Step Towards Fault Tolerance for Multi-Agent Systems 165

Fig. 7. Comparison of fault 32 to DSFaults

Table 2. Faults comparison

�����AAF
MoS

3 4 5

26 5, 8, 9, 13, 17, 19 11
27 3, 4, 6, 7, 12, 16, 18 5, 8, 9, 10
28 8, 9, 13, 17, 22, 23 3, 11, 25
29 4, 6, 7, 12, 16 10, 9, 8, 1, 2, 24 3
30 3, 4, 11, 20, 25
31 1, 2, 5, 8, 9, 10, 21, 24 3, 4
32 4, 13, 15, 18, 22, 25 19, 21, 23 20
33 2, 5, 12, 19, 23, 24 4, 18, 20 21
34 2, 11, 12, 14, 17, 19, 21, 24 13, 15, 22, 25 23
35 1, 3, 4, 7, 9, 10, 13, 18, 22, 25 2, 12, 16, 21, 23, 24
36 5, 11, 12, 14, 17, 21, 23 13, 15, 20 19
37 4, 7, 9, 10, 13, 15, 16, 20 5, 12, 21 18

With i (resp. j) in the set of values describing fault a (resp. b) and δij the
Kronecker symbol 3.

For example, the similarity measurement of faults 20 and 32 is shown on Fig.7.
Fault 20 is described as: ”Operational, External, Software, Human-made,

Malicious, Deliberate, Temporary”.
Fault 32 is described as: ”Autonomy, External, Software, Natural, Mali-

cious, Deliberate, Temporary”.
Their similarity score is equal to 5.
The biggest possible similarity score is six since the first attribute (”phase

of creation or occurence”) always have a different value between DSFaults and
AAFaults. Results are presented on Tab.2, lines are AAFaults, columns are sim-
ilarity scores and the values are the DSFaults having with AAFault the corre-
sponding similarity score.

General review: Tab.2 shows that some DSFaults are very similar to AAFaults.
But the first observation is that there are no similarity score better than 5.
3 δij = 0 if i �= j; δij = 1 if i = j.

166 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

This tends to confirm the necessity of introducing AAFaults since they are not
redundant what would have been the conclusion if the similarity score were 6.

Another observation that can be done is that fault number 3 (a development
fault) is most present as similar fault. It is not possible to make some conclusions
right now but some questions can be raised. Did this means that autonomy is, in
term of software development, near to the capability to violate specifications (it is
the characteristic of fault 3)? Did the fact this fault is viewed five times implies
that MAS are more subject to some kind of faults than classical distributed
systems?

Since different fault classes can lead to very similar errors, comparison of
faults is a good mean to improve MAS fault tolerance. If behavioral faults can
be considered similar to other faults in the given classification, we can think that
being tolerant to these faults gives some tolerance to the other faults.

4.2 Analysis of the Difference between DSFaults and AAFaults

The similarity score study we made underlines some similarities between DS-
Faults and AAFaults but also some differences that are now explained.

On natural faults: All faults introduced by our study are natural faults since
autonomy is a natural component of the agents. Difference is that, for DSFaults,
phenomenological cause being natural only verifies non-malicious and physical
faults. Some explanation comes when taking into account the fact that agents
are programs allowed to be malicious; they can act not only at physical level but
also at interaction level. The consideration we made on autonomy would tend
to unify humans-made faults and faults made by agents.

On malicious faults: Malicious faults are not anymore only human-made. Au-
tonomy introduces into the MAS entities that have some specificities usually
belonging to humans (autonomy and independence). Particularly in open MAS,
agents are not always cooperative, they are able to decide to make malicious
actions towards other agents.

One interesting point to emphasize here is behavioral faults prevention. A
simple way to prevent all non-malicious behavioral faults is to send a preventing
message. For example if an agent has too many messages to consider, it can
send (without reading the messages to save some time) a cancel message or if
it cannot deliver a result in time, ask for a delay. Prevention messages does
not increase the number of messages exchanged since they are only used for
exceptional situations and since a fault handling mechanism is required anyway.
However this is not well suitable to malicious faults, because the prevention can
be useless if a fault is made with a malicious objective.

On interaction faults: Half of AAFaults are interaction faults. They are re-
ally close to interaction DSFaults; one outstanding point is that they differ ac-
cording to their classification as natural (Fig.5). The closeness of DSFaults and
AAFaults drives us towards the conclusion that, at least for interaction faults,
some DSFault tolerance methods can be used, or adapted to MAS in order to

A Step Towards Fault Tolerance for Multi-Agent Systems 167

handle groups of interaction faults belonging to DSFaults and AAFaults. These
adapted methods could be able to handle interaction faults due to autonomy as
well as those due to operational context.

All these observations lead to the consideration that faults related to agent
autonomy can be treated partly as human interaction faults and partly as de-
velopment or physical faults because their effects will be very similar.

Preliminary conclusion. We have seen first that the autonomy of the agents is
source of faults. But theoretically, with fault comparison and connection it seems
possible to consider that if agents are tolerant to behavioral faults they can be
tolerant to some other faults (particularly development and interaction faults)
making it possible to factorize the processing necessary to tolerate these faults.
It seems that, contrary to what would be expected, fault tolerance methods
used for distributed systems cannot guaranty the handling of behavioral faults
because of the fundamental difference of assumptions made by interacting with
autonomous agents. But some practical tests must be done to confirm these
expectations.

Since the aim of this paper is to study fault tolerance suitable for MAS the
next section will present some perspectives based on the classification and fac-
torization of faults.

5 Prospects about Building Fault Tolerant MAS

As said in introduction the goal we had by making this fault classification was
to find a way to build fault tolerant MAS. The presented fault classification was
done to identify the faults MAS may be subject to, and also to permit MAS
designers and developers to specify fault tolerance with regard to the needed
properties (presented in subsection 5.1.) and to analyze the adapted handlers
(presented in section 5.2.).

5.1 Specifying Fault Tolerance for Agents and Platforms

Specifications: A necessary step for a MAS designer would be to choose which
faults the system (all the MAS including the agents and the platform) must be
tolerant to. Especially a significant piece of work must be done on defining which
faults must be handled by the platform or by the agents. The classification will
then facilitate MAS specifications. Following are some examples of specification
of faults depending on MAS specificities:

– The platform would have to deal with all physical faults 5 to 19 plus 26,
27, 36 and 37 (because the platform is low level and aware of hardware
problems). But agents will have to handle the interaction faults not con-
tained into physical faults as 20 to 25 plus 28 to 35. And development faults
must be handled at their corresponding level (development faults occurring
respectively into the platform/agent handled at the platform/agent level).

168 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

– In a close MAS, if there are no malicious agents there are no reason that
faults 26, 27, 30 to 33, 36 and 37 occur.

– For some other MAS, it will not be considered that agents can commit
physical faults. So faults 26, 27, 36 and 37 have no reason to be taken into
consideration by agent designer.

Diagnosis: The next issue of fault tolerance is diagnosing faults. As other pro-
grams, MAS would have to make some assumptions on faults they face because of
the difficulty to diagnose exactly the faults. Doing so they will be able to choose
the corresponding fault handler. For practical purpose, general diagnosis meth-
ods exist. Some are particularly based on temporal duration of faults [15] and
evaluate faults as permanent, intermittent or transient to evaluate appropriate
handler. This is to be worth studied.

Choice and monitoring of the handlers: After fault diagnosis an agent (or a
sentinel [16,4]) would have to choose some handlers to manage faults (note that
in this article the term handler refers to any method permitting to handle faults).
This could be a way of using this classification. It is possible to classify handlers
with the same attributes and same values that the faults they can handle. Making
so, the choice of the handler can be done by matching diagnosed properties of a
fault and classification of the handlers.

After a presentation of our generic protocol, the next section will present an
example of study of the faults handled by two handlers.

5.2 Specifying Generic Handlers

Since creating agents interacting with autonomous agents is a really important
point for MAS to be fault tolerant, one of our work has been to find a generic
protocol to handle some possible issues in agents communications. Looking for
a generic protocol permit to facilitate the development of the agents and make
a step to generate automatically fault tolerant agents whereas specific handlers
are an extra work for the designer as well as a source of fault.

ReSend protocol is a protocol presented by the authors in [17]. It was de-
signed for agents to handle some interaction faults based on the argument that
a retry method can be used in a cooperative way. By retry we mean the method
consisting in trying to send another time a message for which the agent has not
received an expected answer.

The agent can obtain some useful information at its knowledge level using
a method quite similar to a retry: When an agent thinks that it should have
received a response to a message sent before, it can send another message en-
capsulating the previous one to explain the issue to the other agent. The used
performative, to ”explain the issue to the other agent”, correspond to an ”ex-
pressive” speech act as defined in [18].

The message encapsulation makes our method different from a retry and not
confusable with a stutter (repetition of the same message potentially due to a
development fault). It is thus possible to the agent to identify the moment the

A Step Towards Fault Tolerance for Multi-Agent Systems 169

Table 3. ReSend description

Name ReSend

Description ReSend allow an agent i to tell an agent j that i desires that j process the
expression φ sent before for which one i had not perceived any realization.

Message The ReSend performative contains the expression φ corresponding to the
performative sent before the agent i considers an exception.

Formal 〈i, resend(j, φ)〉 ≡ 〈i, inform(j, Uiφ ∧ Iiφ)〉
model FP : Iiφ ∧ Ui(BjIiφ ∨Bjφ)
[19] RE : BjIiφ

Fig. 8. Summary table for handled faults for Retry and ReSend

fault appeared and then diagnose it with their common knowledge. For example,
if an agent does not receive any response to a request and use our method to
handle this fault, the other agent can respond that it has already answered to
the request and that the first message may have been lost.

A formal description is given by Tab.3.
We classified this protocol with regard to the values of the attributes of the

faults it can handle and compared it with the retry method, the results are
summarized in Fig.8. Note that the following study and table present the values
for which the handlers are potentially adapted. We do not guaranty that the
following handlers can handle every single fault having the corresponding values.

The retry method is possibly suitable for faults with the following values:

– Phase of creation or occurrence: suitable for operational faults as a loss
of a message; not suitable for development fault (since the same message
will be treated as a message received at a bad time or by the same faulty
instruction) and not suitable for autonomous behavior (since sending the
same message have no other value than sending a new request and will not
make the agent change its internal state since it gives no new information).

– System boundaries: suitable for external faults since the method is made
to handle faults at the communication level.

170 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

– Dimension: not suitable for software faults for the same reason that it is
not suitable for development faults.

– Phenomenological cause: not a discriminating attribute since the method
is suitable for all its values.

– Objective: suitable for non-malicious faults since the other agent will only
try to help with the fault if it wants to.

– Capability: not suitable for deliberate faults since it does not imply any
possible change in the internal state of the other agent, and not suitable for
incompetence faults since it will be treated always by the same instruction.

– Persistence: not suitable for permanent faults since sending the same mes-
sage if nothing in the environment change will change nothing.

Hence, the retry method is adapted for faults 13 and 14.
The ReSend method is possibly suitable for faults with the following values:

– Phase of creation or occurrence: suitable for operational faults as a loss
of a message, suitable for development fault since the message will be treated
as a new message and so by another instruction and suitable for autonomous
behavior since sending a message corresponding to an expressive speech act
have a different meaning than sending the same request and will influence
the internal state of the agent as it gives new information.

– System boundaries: suitable for external faults since the method is made
to handle faults at the communication level.

– Dimension and Phenomenological cause: not discriminate attributes
since the method is suitable for all the values of the attributes.

– Objective: suitable for non-malicious faults since the other agent will only
try to help with the fault if it wants to.

– Capability: suitable for accidental faults since some of this faults are tem-
porary, suitable for deliberate faults since it implies a change in the internal
state of the other agent, and not suitable for incompetence faults since it will
be treated always with the same abilities.

– Persistence: not suitable for permanent faults since sending a message, if
nothing in the environment or in the internal state of the agent change, will
change nothing.

Hence, the ReSend method is adapted for faults 11, 13, 14, 15, 19, 20, 22, 23,
28, 32, 34 and 36.

6 Conclusion

After a summary of the existing fault classification which prevails in fault toler-
ance community, this paper has shown that autonomy induces a need of signifi-
cant extension to this classification. To do so, it studied one of the consequence
of autonomy that the behavior of an agent is not completely foreseeable for the
other interacting agents. It implies that agents taking their decisions by them-
selves can, voluntarily or not, be responsible for faults which other agents will
experience.

A Step Towards Fault Tolerance for Multi-Agent Systems 171

Then the paper has pointed out the pertinent faults and demonstrated which
specific faults were possible for MAS. Autonomy was added as a value of ”phase
of creation” attribute, representing faults occurring during an autonomous be-
havior. We defined a new group of faults named Behavioral faults. The paper
has also presented a special review of these 12 faults.

Finally this paper pointed out some prospects concerning the use of our clas-
sification to determine what faults must be handled by agents to be able to
interact with autonomous agents in a dependable way and presented a complete
study and comparison of two generic handlers.

Future work may be done to give a complete analysis of the faults that may
be handled by the agent or the platform, to study an exhaustive list of generic
handlers and to obtain fault tolerance as a natural property of MAS with as less
as possible efforts from the designer.

We would conclude citing [13]: ”More combinations may be identified in the
future”.

Acknowledgments

We acknowledge the comments received from Caroline Chopinaud, Sylvain
Dekoker, Paul-Edouard Marson and Michaël Soulignac.

References

1. d’Inverno, M., Luck, M.: Understanding autonomous interaction. In: Wahlster, W.
(ed.) 12th European Conference on Artificial Intelligence, pp. 529–533. John Wiley
and Sons, Chichester (1996)

2. Hexmoor, H.: Stages of autonomy determination. In: IEEE Computer Society (ed.)
IEEE Transactions on Systems, Man, and Cybernetics, pp. 509–517 (2001)

3. Castelfranchi, C., Falcone, R.: From automaticity to autonomy: the frontier of
artificial agents. In: Hexmoore, H., Castelfranchi, C., Falcone, R. (eds.) Agent
Autonomy, pp. 103–136. Kluwer Academic Publishers, Dordrecht (2003)

4. Klein, M., Dellarocas, C.: Exception handling in agent systems. In: Etzioni, O.,
Müller, J.P., Bradshaw, J.M. (eds.) Proceedings of the Third International Confer-
ence on Autonomous Agents (Agents 1999), Seattle, WA, USA, pp. 62–68. ACM
Press, New York (1999)

5. Platon, E., Sabouret, N., Honiden, S.: A definition of exceptions in agent-oriented
computing. In: O’Hare, G., O’Grady, M., Dikenelli, O., Ricci, A. (eds.) Engineering
Societies in the Agent World 2006 (2006)

6. Laprie, J.-C.: Dependable computing and fault tolerance: Concepts and terminol-
ogy. In: 15th IEEE Symposium on Fault-Tolerant Computing (FTCS-15), Vuibert,
pp. 2–11 (1985)

7. Fedoruk, A., Deters, R.: Improving fault-tolerance by replicating agents. In: Pro-
ceedings of the first international joint conference on Autonomous agents and mul-
tiagent systems: part 2, Bologna, Italy, pp. 737–744. ACM Press, New York (2002)

8. Guessoum, Z., Faci, N., Briot, J.P.: Adaptive replication of large-scale multi-agent
systems: towards a fault-tolerant multi-agent platform. In: Proceedings of the
fourth international workshop on Software engineering for large-scale multi-agent
systems, St. Louis, Missouri, pp. 1–6. ACM Press, New York (2005)

172 K. Potiron, P. Taillibert, and A. El Fallah Seghrouchni

9. Chopinaud, C., Fallah-Seghrouchni, A.E., Taillibert, P.: Prevention of harmful be-
haviors within cognitive and autonomous agents. In: European Conference on Ar-
tificial Intelligence, pp. 205–209 (2006)

10. Dragoni, N., Gaspari, M.: Crash failure detection in asynchronous agent commu-
nication languages. Autonomous Agents and Multi-Agent Systems 13(3), 355–390
(2006)

11. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artificial Intelligence Review 24(1), 33–60 (2005)

12. de Weerdt, M., ter Mors, A., Witteveen, C.: Multi-agent planning: An introduction
to planning and coordination. In: Handouts of the European Agent Summer School,
pp. 1–32 (2005)

13. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. In: IEEE Computer Society (ed.) IEEE
Transactions on dependable and secure computing, pp. 11–33 (2004)

14. Arlat, J., Crouzet, Y., Deswarte, Y., Fabre, J.C., Laprie, J.C., Powell, D.: Tolérance
aux fautes. In: Akoka, I.W.J. (ed.) Encyclopédie de l’Informatique et des Systèmes
d’Information, Vuibert, pp. 241–270 (2006)

15. Lin, T.H., Shin, K.G.: A bayesian approach to fault classification. In: ACM SIG-
METRICS Performance Evaluation Review archive, vol. 18(1), pp. 58–66. ACM
Press, New York (1990)

16. Hägg, S.: A sentinel approach to fault handling in multi-agent systems. In: Second
Australian Workshop on Distributed AI in conjunction with the Fourth Pacific
Rim International Conference on Artificial Intelligence, pp. 181–195 (1996)

17. Potiron, K., Taillibert, P., Fallah-Seghrouchni, A.E.: Gestion des exceptions dans
les conversations entre agents autonomes. In: Actes des Journées Francophones sur
les Systèmes MultiAgent (JFSMA 2007), pp. 211–220 (2007)

18. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language (1969)
19. FIPA: FIPA communicative act library specification. In for Intelligent Physical

Agents, F. (ed.) Rapport technique (2000)

The Webbridge Framework for Building

Web-Based Agent Applications

Alexander Pokahr and Lars Braubach

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr,braubach}@informatik.uni-hamburg.de

Abstract. Web applications represent an important category of appli-
cations that owe much of their popularity to the ubiquitous accessibil-
ity using standard web browsers. The complexity of web applications is
steadily increasing since the inception of the Internet and the way it is
perceived changes from a pure information source to a platform for ap-
plications. Many different web frameworks exist that support recurring
and tedious development tasks in order to simplify the process of building
web applications. Most of the currently available web frameworks adhere
to the widely accepted Model 2 design pattern that targets a clean sepa-
ration of model, view and controller parts of an application in the sense
of MVC. Nevertheless, existing frameworks are conceived to work with
standard object-oriented business applications only and do not respect
the particularities and possibilities of agent applications. Hence, in this
paper a new architecture, in accordance with the Model 2 design pat-
tern, is proposed that is able to combine the strengths of agent-based
computing with web interactions. This architecture is the basis for the
Jadex Webbridge framework, which enables a seamless integration of the
Jadex BDI framework with state-of-the art JSP technology. The usage
of web technology in combination with agents is further exemplified by
an electronic bookstore case study.

1 Introduction

One key reason for the popularity of web applications is that they can be ac-
cessed via browsers in a standardized way. In this respect, they facilitate the
execution of arbitrary applications without the need for installing or updating
software components. These properties make web applications desirable even for
more advanced and complex business tasks. Intelligent agents have been used
for enterprise scale applications [2,4,11] for quite a long time. Nevertheless, few
works exist that aim at a systematic integration of agent and web technology
allowing to easily build web-based agent applications. Despite the many agent
frameworks available, only limited support exists on how to build agent applica-
tions employing the web as user interface. Such a setting requires answering some
fundamental questions about how interactions should be managed between the
web and the application layer and what responsibilities agents should overtake
in such a scenario.

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 173–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 A. Pokahr and L. Braubach

A systematic integration between both layers will reduce the gap between the
request/response style of browser-based interaction and the autonomous and
concurrent nature of agent-based task execution. It will allow exploiting the full
power of the agent paradigm to build the application logic and tie the web inter-
face seamlessly to it. For example, in the backend of a logistics transportation
system, agents could concurrently negotiate with different subcontractors for
establishing a complex multimodal transportation route while processing a sin-
gle user request. In this paper we propose an architecture and a corresponding
framework, which provide such a systematic integration and therefore foster the
efficient development of web-based agent applications.

The rest of the paper is structured as follows. In the next section an archi-
tecture for building web-based agent applications will be presented. In section 3
the realization of the architecture within the Jadex Webbridge framework is de-
scribed. Thereafter, an example application will be discussed in section 4, which
illustrates the usage of the web framework in a typical e-commerce scenario. In
section 5 our approach will be discussed in the context of existing approaches
including non-agent based frameworks as well as related agent-based solutions.
Finally, we will conclude the paper with a summary and an outlook on planned
future work in section 6.

2 Architecture

The aim of this paper is to integrate an agent-based approach with web applica-
tion technology. Main focus is to increase efficiency and usability for developers
confronted with the task to build a web-based agent application. While inter-
operability with web browsers could be hand-crafted into agent applications, a
generic web/agent framework allows developers to concentrate on the application
problem, abstracting away from technical details.

The primary objective of the approach is to separate the agent-specific parts
of an application from the web-specific parts such as HTML pages. This en-
ables modularization and maintainability of the code-base during development
and additionally supports the specialization of developers (e.g. web engineers
vs. agent programmers). During building the web representation, the developer
should not be concerned with agent-specific aspects, whereas during the devel-
opment of the business logic using agents, details of the web layer should not be
of great importance.

To achieve the desired independence between the web front-end and the agent
application an extra layer has to be introduced, which performs the necessary
mediation operations. This “glue tier” therefore allows to transparently map
between details of the agent and the web layer (cf. Fig. 1). In its general form,
the problem and its solutions are not specific to agent applications. As can be
seen from the large number of web frameworks today (cf. section 5), a multitude
of design choices exists for an implementation of mediation layers between a
web front-end and some application logic. The design and implementation of the
specific agent-oriented solution proposed in this paper is influenced by existing

The Webbridge Framework for Building Web-Based Agent Applications 175

Web Frontend
(HTML pages, images, servlets, etc.)

Webbridge
(glue for transparent mapping)

Agent Application
(agents reacting to user requests)

<html>
…

</html>

<html>
…

</html>

…

…

Fig. 1. The Webbridge as glue between agent and web layer

approaches and frameworks, but is motivated by the fact that the application
programmer should only be concerned with the abstract and intuitive concepts
of the agent paradigm. To this end, a well-established design pattern for con-
ventional web applications is used as a starting point and is extended in a way
suitable for developing agent-based applications.

2.1 Traditional Model 2 Architecture

Foundation of the proposed architecture is the widely used and accepted Model 2
design pattern [8], which adopts the Model-View-Controller (MVC, cf. [12]) ap-
proach for web development. The main idea behind this pattern is the separation
of concerns, where each of the three proposed aspects plays a fundamentally dif-
ferent role. The model represents the domain-specific representation of the data
on which the application operates. It is used by the view, which has the pur-
pose to render the data in a user-friendly manner. In between, the controller
serves as a connector that translates interactions with the view into actions to
be performed on the model. By separating an application into the three distinct
parts the application components become more manageable and can be reused
or exchanged independently of each other, e.g. alternative views could be used
for rendering a data model.

In contrast to the MVC pattern which was conceived for desktop applications
with a toolkit-based user interface, Model 2 transfers the original ideas to the
web and adapts them to the request/reply-based interaction pattern of web
browsers. Model 2 has been conceived by web developers who realized that it is
quite difficult to use the original MVC architecture for web applications, because
the view part cannot play an active role in the system. All actions in Model 2
are caused by a user that interacts with its browser. The browser then sends

176 A. Pokahr and L. Braubach

View
(JSP)
View
(JSP)

Controller
(Servlet)

Controller
(Servlet)

BrowserBrowser Model
(Java beans)

Model
(Java beans)

1) Request 2) Create

4) Extract

3) Forward

5) Response

DataData

Fig. 2. Model 2 architecture (following [8])

a request and receives a response, but usually does not have the possibility to
react to changes in the data model of the application.

In Model 2 the data model is kept in data bases and the data is cast into
Java beans [9] for transmission and presentation. The view is typically expressed
within JavaServer Pages (JSPs) [7] and the controller is represented by servlets
[6]. A typical Model 2 scenario for Java web applications is depicted in Fig. 2.
A browser request is issued by a user and invokes a controller servlet (1). This
servlet performs the request processing, produces results in form of Java beans
(2) and additionally decides which JSP to forward the request to (3). The only
responsibility of the JSP is rendering the result page by utilizing the data gen-
erated from the servlet (4). The generated view is then sent back to the browser
and presented to the user (5). This architecture takes advantage of the predom-
inant strengths of both techniques, using JSP to generate the presentation layer
and servlets to perform computation-intensive tasks.

As stated above the Model 2 architecture provides several benefits and allows
for building complex web applications in a clean way. Additionally, its practical
importance is emphasized e.g. by many non agent-based web frameworks that
build on it and refine and extend its basic functionality. Hence, the direct usage
of the Model 2 architecture would be beneficial but is hindered by the tight tech-
nology coupling via servlets and JSPs. Modifications to the Model 2 architecture
are necessary for employing the advantages of agent technology for web-based
applications. These modifications should be carefully designed to preserve the
benefits of the architecture and to enable the developer to continue using estab-
lished technologies such as JSPs and JavaBeans, which have proven their value
for web-based applications.

2.2 Extending Model 2 for Agents

In a web-based agent application, the agents are responsible for the execution
of the application logic. In the traditional Model 2 architecture, the application
logic is executed by the controller, which is realized as a Java servlet. To achieve
the seamless integration of agents with the web, a conservative extension of the

The Webbridge Framework for Building Web-Based Agent Applications 177

ControllerController

Coordinator
Agent

Coordinator
Agent

View
(JSP)
View
(JSP)

Delegate
Servlet

Delegate
Servlet

BrowserBrowser

1) Request

2) Delegate

9) Response

7) Forward

Model
(Java beans)

Model
(Java beans)

8) Extract

3) Find and delegate

5) Pass back model6) Pass back model

4) CreateApplication
Agent

Application
Agent

DataData

Fig. 3. Agent-based Model-2 architecture

Model 2 architecture is proposed, which allows the execution of agent behavior
inside the controller. This extension allows the application functionality to be de-
signed and implemented with different interacting agents. As only the controller
is changed with respect to the original Model 2 architecture, the web front-end
can still be realized using the well established JSP and JavaBeans technologies.

Figure 3 shows the extended Model 2 architecture proposed in this paper.
To avoid application logic being scattered between the agents and the controller
servlet, web requests from the browser (1) that require the execution of applica-
tion logic are completely forwarded to the agent layer. Forwarding is performed
in a two-step process. First the request is transferred from the delegate servlet to
a generic coordinator agent (2), which acts as a mediator between the agent sys-
tem and the web layer. The coordinator is responsible for finding an application
agent that is able to process the request (3). If no suitable agent is available, the
coordinator can also decide to create a new agent instance for the request. Once
a suitable application agent has been identified, the coordinator sends a message
to the agent, which contains the details about the request. As the request is
transformed to an agent message by the coordinator, the application agent does
not need to know, if the request comes from the web layer or another source.
After the application agent has processed the request and generated the model
data (4), it sends the result back to the coordinator (5), which forwards it to the
servlet (6). Finally, a JSP page is selected (7), which reads the results created
by the application agent (8) and displays it to the user (9).

3 Framework Realization

To simplify the development of applications following the architecture presented
above, a generic software framework has been developed based on the Jadex
BDI (belief-desire-intention) agent system [3,16]. The framework, called Jadex
Webbridge, enables application developers to focus on the three core aspects
of an application, i.e. the application logic using agents, visualization via JSP

178 A. Pokahr and L. Braubach

Controller

Application AgentApplication Agent

Web Interaction
Capability

message
exchange

specifies

lookup/
create
agent

Coordinator AgentCoordinator Agent

Delegate ServletDelegate Servlet

Coordinator Capability

handle_request
goal

find_app_agent
goal

custom plan

find_plan

Default
Preprocessor

custom plan

server_plan

request_plan

custom plan

TCP
connection

web_request
goal

request_plan

Legend

E

Extension Point Goal Plan Control Flow Communication

Custom
Preprocessor

service()

web.xml
delegate servlet
coordinator …

B
ro

sw
er Ping Capability

Ping Capability

E

E

E

E

process
web data

re
di

re
ct

to
 J

S
P

Fig. 4. Framework components

pages, and the domain data utilizing Java objects. The sources, binaries and
documentation of the framework can be obtained as an add-on to the Jadex
BDI agent system as described at the corresponding web page.1 In addition, a
simple example application can be directly accessed online.2

Following the presented architecture, the delegate servlet and the coordina-
tor agent are responsible for mediating between these elements. Both have been
realized as generic reusable components as part of the Webbridge framework.
They are accompanied by a generic agent module, called web interaction ca-
pability, which can be included by the developer into application agents and
handles all communication aspects with the coordinator. In the following sub-
sections, the purpose and operation of each of these three main components of
the Webbridge framework is described. The basic structure of these components
and their interplay is shown in Fig. 4, which zooms further into the Controller
part of Fig. 3.

3.1 Delegate Servlet

The delegate servlet has the purpose of transferring the processing of web re-
quests to the agent layer and to finally trigger the creation of a result page. It
1 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/addons.php
2 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/webbridge

puzzle.php

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/addons.php
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/webbridge_puzzle.php
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/webbridge_puzzle.php

The Webbridge Framework for Building Web-Based Agent Applications 179

does so by forwarding web requests to a coordinator agent using a determinate
TCP connection. To tell the servlet how to establish the connection, the ad-
dress of the coordinator agent can be specified in the configuration file of the
web application (web.xml). After the request has been processed, the delegate
servlet obtains the result from the coordinator agent and forwards the data to
suitable JSP page. The application objects that are contained in the result from
the application agent are copied into the forwarded request, such that they are
accessible from within the selected JSP page. A default JSP page can be defined
in the application configuration, but can be overridden in the result, in case
different pages should be displayed depending on the outcome of the request
processing.

An important responsibility of the delegate servlet is to ensure that applica-
tion data (represented as Java objects) can seamlessly be exchanged between the
web and the agent layer. A generic XML encoding for JavaBeans is provided,
such that application objects can easily be included in the result obtained from
the agent layer. On the other hand, the values of parameters in the web re-
quest are restricted to simple strings, as sent by the browser. To be able to
include application objects into web pages, the framework provides an exten-
sible pre-processing mechanism (cf. Fig. 4, left), which automatically converts
string values from the web request into corresponding application objects.

3.2 Coordinator Agent

The handling of web requests in the agent layer could be based on many different
strategies. Those strategies can be implemented by the developer by providing
application specific implementations of the coordinator agent. A default imple-
mentation of the coordinator agent is provided as part of the framework, which
is based on reusable components providing useful extension points and therefore
supporting the easy implementation of alternative application specific strate-
gies. In the default strategy that is used, when the developer does not provide
own extensions, the coordinator agent forwards web requests from the delegate
servlet as messages to a specific application agent instance belonging to the cor-
responding web session. In this strategy, the kind of application agent suitable
for handling a specific request can be defined in the web application configura-
tion file, such that the application developer does not have to alter the code of
the coordination agent, unless another strategy is desired. The application agent
type is included in the request sent from the delegate servlet to the default co-
ordinator agent. When no application agent of the requested kind exists for the
corresponding session, the default coordinator agent will automatically create a
new instance. Moreover, unused application agents are automatically removed
from the agent platform after a configurable session timeout.

As different applications may have different requirements regarding the re-
quest handling, the default strategy is realized in a way that allows it to be
easily extended or adapted. The coordinator agent functionality is implemented
in a reusable module called coordinator capability (cf. Fig. 4, middle). It exposes
an interface in the form of goals that are created during the handling of a request.

180 A. Pokahr and L. Braubach

Moreover, the capability already contains default plans to handle these goals.
To specify different courses of action, the developer may include the capability
in a custom agent and define alternative plans for handling these goals. When
the coordinator receives a request, a handle request goal is automatically created,
containing the details of the request. The default plan for handling this goal
starts by creating another goal find app agent with the purpose of finding (and
maybe creating) a suitable application agent. In order to check if the desired
application agent already (or still) exists the default find plan uses a simple ping
mechanism, which is readily available via the included Ping capability. After
an agent has been found or newly created, the plan sends a message with the
request data to this agent. The default plan for handling the find app agent goal
realizes the session handling described above.

The two goals provide different entry points for extending or changing the
request handling. By defining new plans for the find app agent goal, developers can
realize different strategies for how a web request gets dispatched to application
agents. Alternatively, by directly reacting to the handle request goal, plans can
be created to process web requests without the need for additional application
agents (e.g. doing all processing in the coordinator agent or delegating to other
software components). Alternative plans can be developed to handle various
types of requests in different situations. For the selection of suitable plans, BDI-
style reasoning is applied, such that e.g. plans get selected according to pre- or
context-conditions and alternative plans are tried, when some selected plan fails.

3.3 Web Interaction Capability

Using the default strategy described in the last section, web requests are for-
warded by the generic coordinator agent as messages to an application agent,
which is implemented by the application developer. To simplify the development
of application agents, the Webbridge framework provides a reusable module,
called web interaction capability (cf. Fig. 4, right), which manages the commu-
nication with the coordinator agent. The web interaction capability is included
in an application agent and automatically handles request messages sent by the
coordinator. For each message a goal of type web request is created, which has
to be handled by plans, created by the application developer. The result of the
goal processing is automatically communicated back to the coordinator.

From the viewpoint of application developers, the web interaction capability
converts web requests into goals that belong to the application agent. Therefore,
the details of the web request handling are abstracted away from agent program-
mers allowing them to focus on the behavior of the application agent by setting
up custom plans to handle the different kinds of web request goals.

3.4 Application Development

To further illustrate the purpose of the framework components, this section
presents important activities that can be employed for building a web-based

The Webbridge Framework for Building Web-Based Agent Applications 181

agent application using the framework. The main purpose of the Webbridge
framework is to support the interactions of a user with the application agents.
Therefore, the web interface development for the application should be based
on a use-case analysis of the user with the system. In this respect, first those
interactions have to be identified that are handled via the web. Depending on the
application scenario other interaction forms such as email might be necessary
as well. Then, the semantics of the individual interactions have to be defined
in terms of the requested actions, the used application concepts, the response
possibilities and the allowed protocol flow in general. These specifications are
subsequently used to develop the web and agent tier quite independently and
additionally provide the link between both.

For the connection between the web and agent tier, the application objects
have to be designed and implemented. The application objects play an important
role in the development, because these objects serve as glue between the view and
agent parts of the application. These objects are used in both and are exchanged
between them. The application objects store beliefs of the agents and are used
in the presentation tier to provide dynamic content which is extracted out for
textual presentation. This approach allows for a homogeneous and transparent
view on the data in the whole framework.

The main tasks for realizing the web tier consist in designing the request and
result web sites. Request web sites provide interaction points via forms and have
to deliver form data to the processing agents. To facilitate the transformation of
the plain text of the forms into meaningful application objects usually custom
web data preprocessors have to be constructed that will be automatically invoked
by the Webbridge framework. Result pages are produced as responses to user
requests and therefore have the purpose to render the processing outcomes in a
user-friendly way. Therefore, for each result page the required application objects
have to be specified, from which necessary information can be extracted and
incorporated into the generated page.

For the agent tier one preparatory task consists in defining a strategy for
web request processing. This strategy has to specify which agent types are gen-
erally responsible for processing web requests and what agent instances handle
which requests. As default strategy the Webbridge framework provides a session-
oriented model in which agent instances are created for each user visiting a site.
If this is not sufficient and a more elaborate scheme is needed existing exten-
sion points in the Webbridge architecture can be exploited. The second task
for realizing the agent tier concerns the provision of the application logic for
processing web requests. This task is supported by the underlying idea that
web requests are transformed to agent goals, which can be handled in the same
way other goals are processed. The realization of the application logic further
has to consider, which application objects are required in the web tier. Thirdly,
the dialog control of the application has to be realized by ensuring that actions
can only invoked when the context allows this. This task is simplified by the
general BDI mechanisms that allow pre- and context conditions being specified

182 A. Pokahr and L. Braubach

for plans. Hence, the validity of a request can be declaratively specified and is
automatically verified by the system.

For the development of the web and agent tiers existing IDEs such as the
eclipse wtp (web tools platform) can be used. This is possible for the web tier
because the Webbridge framework does not change the syntax / semantics of
any of the web documents. Similarly, the development of Webbridge agents does
not alter the syntax / semantics of Jadex agents and therefore the IDE’s stan-
dard XML editor for the agent definition files and the IDE’s Java editor for the
plans is satisfactory. Moreover, the configuration and deployment of the web tier
and the agent-based application logic can be performed following the standard
procedures for Java web applications and Jadex agents, respectively.

To conclude, the Webbridge framework provides a set of concepts and com-
ponents allowing to partition an application into a web and an agent tier. Tasks
on the web tier do not differ from traditional web development and also on the
agent tier most of the web interaction complexities are hidden via the Webbridge
framework.

4 Example Application

In this section, important aspects of an example application developed with
the Jadex Webbridge framework are explained. The application represents an
electronic bookstore and is inspired by the book “Developing Intelligent Agent
Systems: A Practical Guide” [15]. In this scenario customers are allowed to
search for and order books through a web-based user interface. Other use cases
of customers of the system include managing their account/profile and checking
the state of an order. Additionally, the system performs several backend tasks. It
has to manage a stock of books and to reorder books from wholesalers in certain
intervals.

The application development of the bookstore was guided by the Prometheus
methodology [18] and consisted mainly of an analysis, design and implementation
of the problem domain. The analysis and design of the application generally
followed the descriptions of the book and refined the modeling artifacts until
they could be directly implemented. The complete application logic of the system
was realized in a multi-agent system as a set of collaborating agents that interact
with each other to provide the overall bookstore functionality.

A typical functionality in the bookstore scenario, treated here in more detail,
is the management of the shopping cart allowing a customer to add, remove
items and finally to check out. In this respect the sales assistant agent is of
vital importance as it represents a personal shopping assistant for a customer.
For each customer arriving at the web site an individual sales agent is created,
which means that the default Webbridge strategy that creates session agent on
demand is sufficient and therefore employed.

To show how the web/agent interaction is supported by the Webbridge frame-
work, in the following important code snippets from the bookstore application
will be presented and explained next.

The Webbridge Framework for Building Web-Based Agent Applications 183

−

− −
− −

−
− −
− −

−
−

− −
− −

−
−

− −
− −

−

−
− −

− −
−

−

Fig. 5. Web.xml application configuration cutout

4.1 Application Configuration

The basic configuration of the web related parts of the bookstore application
defines which web requests are managed by what parts of the agent tier and
therefore provides the necessary link between both parts. This configuration is
defined the within the standardized web.xml file [7], which mainly determines
which servlets are responsible for what URLs.

Figure 5 shows a relevant cutout of the bookstore web.xml and mainly consists
of servlet descriptions and their URL-mappings respectively. In the example,
only the specification of the DelegateServlet and its mapping are shown. It uses
the default DelegateServlet of the Webbridge framework (lines 2-18) and ad-
ditionally defines several parameter values (lines 5-16). Among these are the
contact address of the coordinator agent (lines 5-8), the class name of the ap-
plication agent type (lines 9-12) and the class name of the bookstore specific
webdata preprocessor (lines 13-16). In the mapping part it is defined that the
DelegateServlet is the default handler for all page requests (lines 20-23). If some
parts of the application should be generated by other means e.g. via normal

184 A. Pokahr and L. Braubach

−

Fig. 6. Mapping HTTP request parameters to application objects

JSPs more specific mappings can be defined which have precedence over the
DelegateServlet. In the bookstore example, e.g. further JSPs containing general
information about the store and contact details have been defined in the full
web.xml definition.

In general, the Webbridge framework uses an established and standardized
way for the web application configuration. Therefore, the application can be
deployed using an arbitrary web container such as Apache Tomcat3 or IBM
WebSphere4. Webbridge specific settings are defined in form of parameters of
existing elements.

4.2 Preprocessing of Web Requests

Starting point of the scenario is that a human user is surfing at the web site
of the electronic bookstore and decides to order some books after her fancy.
When adding a book to the shopping cart an “addOrderItem HTTP request” is
automatically generated by the browser. The request contains the item’s ISBN
and the amount of items to be added and is processed by the delegate servlet.

For seamless integration between the web and the agent layer, the application
agent (i.e. the sales assistant agent of the bookstore) should not be required
to handle details of HTTP-based interaction, such as parsing URL-patterns and
MIME-encoding of request parameters. Therefore, the handling of these details is
performed in the delegate servlet, which forwards only domain-level information
based on the defined application concepts. The mapping between data received
from a web form and domain-level objects are achieved using the extensible
preprocessing mechanism provided by the Webbridge framework.

3 http://tomcat.apache.org/
4 http://www.ibm.com/software/websphere

http://tomcat.apache.org/
http://www.ibm.com/software/websphere

The Webbridge Framework for Building Web-Based Agent Applications 185

Fig. 7. XML definition file excerpt from the SalesAssistant agent

In the bookstore scenario the data from the “addOrderItem” web form are
represented as simple strings, while the sales assistant agent only handles book-
store application concepts containing objects such as an OrderItem. Therefore,
the domain-dependent BookstorePreprocessor is used by the delegate servlet to ex-
tract the values from the request (see fig. 6, lines 6, 7) and create a new domain
object of type OrderItem (line 8). The ordered item is subsequently added to the
agent-based request (line 9) which will be sent to the coordinator agent.

The preprocessing facility of the Webbridge framework therefore solves the
problem of different representations within the web and the agent tier in a
generic manner by converting textual data to directly processable application
objects.

186 A. Pokahr and L. Braubach

4.3 Request Execution in the Agent Layer

The coordinator agent processes the request by determining if it belongs to an
ongoing conversation. In this case the request will be directly transformed into an
agent message and forwarded to the corresponding application agent. Otherwise
the coordinator first needs to instantiate a new application agent whose type
is specified directly within the request. In this example, sales assistant agents
are responsible for handling the user interaction, i.e. for each web session a
corresponding sales assistant agent is created, which stays alive until the user
leaves the site (as determined by a lack of activity for some time).

The agent definition file of the sales assistant is shown in Fig. 7. It includes
the Webbridge functionalities via the web interaction capability (line 3). This
capability mainly exports the web request goal so that it is sufficient for the sales
assistant agent to react on all domain-dependent kinds of web request goals. In
order to do this it is necessary that the web request goal is declared and connected
to the exported original one within the capability (lines 7-13). The goal exposes
two in-parameters containing the domain-dependent goal type (line 9) and the
agent-based web request (line 10) and one out-parameter for the agent-based
response (line 11, 12).

The application code is contained in plans, which are used to process the
web request goals that are automatically created by the generic web interaction
capability. The reasoning engine uses the goal parameters to find matching plans,
which are executed in turn until one plan produces a suitable result. In the exam-
ple, the additem plan (lines 17-29) matches web request goals of type addOrderItem
(line 24-26). Because of the preprocessing described earlier, the agent only has
to cope with application specific objects like the OrderItem (lines 18-20). The
plan body (omitted here) whose creation is specified within the plan head (line
21) contains the agent-based application logic to handle the customer request.
One purpose of this plan is simply to update the shopping cart of the customer
and store the result in the response object of the goal. In making use of the
advantages of the agent-based design, the sales assistant agent further interacts
with other agents in the backend of the bookstore application. It checks the
availability of the item by querying a so-called stock manager agent and at the
same time determines possible delivery options by negotiating with a delivery
manager agent. The results of these possibly lengthy additional interactions are
not passed back to the user in the context of the initial web request. Instead,
they are stored locally in the beliefbase of the sales assistant, which is then able
to instantly present this information to the user, if requested.

The example highlights the general capability of the Webbridge framework
reducing the effort of processing a web request. This is achieved by a trans-
formation of the request to an agent goal retaining the full flexibility of agent
reasoning capabilities. Furthermore, extension points within the webbridge archi-
tecture allow the realization of different strategies with respect to the assignment
of request to agents.

The Webbridge Framework for Building Web-Based Agent Applications 187

− −

Fig. 8. JSP page for the shopping cart of a customer

4.4 Result Page Generation

The visual part of the bookstore front-end is developed using JSP technology.
This means, that the application logic in the agent layer produces dynamic ap-
plication objects, which are used in the web layer to fill in the gaps of HTML
templates, specified in the JSP language. Fig. 8 shows one such JSP page, specif-
ically the order status page. It has the purpose to display the current orders of a
customer together with the expected delivery dates. When the user requests the
order status, the sales assistant agent will retrieve the corresponding information
from the database. The information is stored in the user context, represented as
a list of customer orders, each containing a list of order items.

The JSP page therefore imports the required context, order, and item classes
from the bookstore domain model (lines 2-4). The context object that is pro-
duced by the sales assistant agent is obtained from the request (line 5). The
information in the context about open orders and order items is used to gener-
ate HTML code for the list of open orders and associated delivery dates (lines
12-19).

The Webbridge framework simplifies the development for web designers /
programmers, because the JSP pages do not have to deal with agent-related as-
pects of the application. This is achieved by supporting an application dependent

188 A. Pokahr and L. Braubach

domain model, which allows representing all required domain data in form of
Java objects. These Java objects are managed by the agents in the backend (e.g.
stored in beliefs or an external database) and are made available to the web layer
by the Webbridge framework.

5 Related Work

Regarding agents and the web, there are basically two different strands of related
work that need to be considered. On the one hand, a huge amount of work has
been carried out in the context of traditional Model 2 Java web frameworks. In
this area many different frameworks have emerged that are able to satisfy nearly
any kind of developer needs. One of the first and best-known frameworks is
Jakarta Struts [5], which is still widely used and also features a large developer
community. Struts directly adopts the Model 2 pattern and introduces user-
defined actions that perform the work of the application and finally create Java
beans that can be processed in the view. Due to some limitations of Struts
many fundamentally different Model 2 approaches such as Spring MVC [13] and
JavaServer Faces (JSF) [10] have been proposed. A detailed comparison of many
traditional web frameworks can be found e.g. in [8]. To be able to use the existing
web frameworks in combination with agent technology it is necessary to embed
the agents in a web framework friendly manner. This approach is e.g. followed
by the Agentis AdaptivEnterprise Suite [17], which converts agents into J2EE
application server components and makes them accessible for web frameworks in
this way. Nevertheless, this approach limits the exploitation of agent technology
as important functionalities such as the application flow and dialog management
are typically handled by web frameworks cannot be delegated to the agent layer.

On the other hand, approaches need to be investigated that build up a web
framework especially for agent technology and are therefore directly comparable
with our architecture. Stunningly, this strand of research is nearly non-existent
today. Instead, in the agent community a large body of research has been carried
out in the field of interface agents aiming at the improvement of human com-
puter interaction e.g. [14] but this does not directly contribute to the problem
addressed in this paper. The only generic approach is provided by the JACK
WebBot solution5 which can be used to equip JACK agent applications with a
web front-end. The approach is similar to ours as also the controller part repre-
sents the mediator component between the web and the agent layer. Although
the WebBot architecture is very flexible, it does not provide a clean framework
approach. Instead, the agent programmer has to design and implement generic
functionalities such as agent session management by herself and cannot make use
of predefined modules for that purpose. Additionally, it does not allow consis-
tently using the same application objects on all tiers and hence requires tedious
conversions being done by the application instead of the framework.

Besides the WebBot architecture, also some ad-hoc solutions exist, which use
external interfaces provided by an agent platform (e.g. the JadeGateway class in
5 http://www.agent-software.com

http://www.agent-software.com

The Webbridge Framework for Building Web-Based Agent Applications 189

JADE [1] or the HabitatGateway class in Tryllian’s ADK6). As such interfaces
only provide generic access to the agent platform, most of the technical details
concerning the connection of agents with the web layer have to be handcrafted
by the developers in these approaches.

6 Conclusion and Outlook

This paper has presented an architecture and a framework for simplifying the
development of web-based agent applications as these kinds of systems gain
steadily more importance in the context of business solutions. To achieve an in-
tegration between the web and the agent world a novel agent-based architecture
conformant to the well-known Model-2 design pattern has been proposed. The
agentified Model 2 architecture intentionally refines only a small part of the orig-
inal architecture by refining the controller component. This allows a developer
to use agents for the application functionality while preserving the usability of
the existing and well suited Model 2 techniques for rendering (JSPs) and model
representation (JavaBeans). One crucial aspect of this extended architecture
is the partitioning of the controller into three distinct functionalities: delegate
servlet, coordinator agent and application agents. The delegate has the main
purpose to forward business tasks that originate from browser requests to the
coordinator agent. The coordinator processes requests by distributing them to
domain-dependent application agents. A main advantage of the proposed generic
architecture consists in the separation of concerns established by Model 2. The
architecture therefore cleanly detaches the web layer from the agent layer and
facilitates their largely independent development.

Moreover, the Jadex Webbridge framework has been presented, which imple-
ments the aforementioned architecture. The main characteristic of this frame-
work is the support for agent technology in the context of web applications. The
framework provides ready-to-use and extensible functionalities realizing the del-
egate servlet and the coordinator agent. Additionally a web interaction module
(capability) is provided that encapsulates the generic functionalities needed by
application agents. This capability transfers web requests to web request goals
which can be handled in the same way as any other ordinary agent goal. The ca-
pability automatically handles all interactions with the coordinator and reduces
the task of the agent developer to writing plans for the domain logic of pursuing
web request goals.

Future work will be targeted at improving the processing of web interactions.
Currently, web interactions are short-lived meaning that request goals are created
whenever a user issues a new browser request so that the interaction state has to
be preserved within the agent’s beliefs. A more advanced approach would allow
to treat a conversation as a whole e.g. within a plan allowing the agent to manage
the interaction in a similar sense as normal message-based protocols. This would
extend the semantics of an interaction goal from a short-term interaction to a
whole workflow (e.g. the book buying use case in the example presented).
6 http://www.tryllian.com

http://www.tryllian.com

190 A. Pokahr and L. Braubach

References

1. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems with
JADE. John Wiley & Sons, Chichester (2007)

2. Benfield, S., Hendrickson, J., Galanti, D.: Making a strong business case for multi-
agent technology. In: Proc. of Autonomous Agents and Multiagent Systems (AA-
MAS 2006), pp. 10–15. ACM Press, New York (2006)

3. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI Agent System Combining
Middleware and Reasoning. In: Software Agent-Based Applications, Platforms and
Development Kits, pp. 143–168. Birkhäuser Verlag, Basel (2005)

4. Castro, J., Kolp, M., Mylopoulos, J.: Developing agent-oriented information sys-
tems for the enterprise. In: Proc. of the 2nd Int. Conf. on Enterprise Information
Systems (ICEIS 2000), pp. 9–24. ICEIS Secretariat (2000)

5. Cavaness, C.: Programming Jakarta Struts. O’Reilly Media, Sebastopol (2004)
6. Coward, D.: Java Servlet, Specification Version 2.3. Sun Mircosystems (2001)
7. Delisle, P., Luehe, J., Roth, M.: JavaServer Pages, Specification Version 2.1. Sun

Mircosystems (2006)
8. Ford, N.: Art of Java Web development: Struts, Tapestry, Commons, Velocity,

JUnit, Axis, Cocoon, InternetBeans, WebWorks. Manning Publications (2003)
9. Hamilton, G.: JavaBeans, Specification Version 1.01. Sun Mircosystems (1997)

10. Holmes, J., Schalk, C.: JavaServer Faces: The Complete Reference. McGraw-Hill
Osborne Media, New York (2006)

11. Jennings, N.R., Wooldridge, M.J.: Agent Technology - Foundations, Applications
and Markets. Springer, Heidelberg (1998)

12. Krasner, G., Pope, S.: A description of the model-view-controller user inter-
face paradigm in the smalltalk-80 system. Journal of Object Oriented Program-
ming 1(3), 26–49 (1988)

13. Ladd, S., Davison, D., Devijver, S., Yates, C.: Expert Spring MVC and Web Flow.
APress (2006)

14. Maes, P.: Agents that reduce work and information overload. Communications of
the ACM 37(7), 30–40 (1994)

15. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley & Sons, Chichester (2004)

16. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In:
Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent
Programming: Languages, Platforms and Applications, pp. 149–174. Springer, Hei-
delberg (2005)

17. Taylor, P., Evans-Greenwood, P., Odell, J.: Agents in the enterprise. In: Australian
Software Engineering Conference (ASWEC 2005), pp. 9–24. IEEE, Los Alamitos
(2005)

18. Winikoff, M., Padgham, L.: The Prometheus Methodology. In: Methodologies and
Software Engineering For Agent Systems, pp. 217–234. Kluwer, Dordrecht (2004)

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 191 – 208, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Specifying Interaction Space Components in a
FIPA-ACL Interaction Framework

Ernesto German and Leonid Sheremetov

Mexican Petroleum Institute
Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan,

Distrito Federal, Mexico
{egerman,sher}@imp.mx

Abstract. Despite the acceptance of FIPA-ACL as a standard for agent com-
munications, there exist a gap between its specification and infrastructures sup-
porting interactions among agents. The hypothesis we study in this paper is that
interaction space components must be specified and described in depth by tak-
ing into account an explicit six-layered FIPA-ACL communication model.
Based on this model, generic components are developed for a FIPA-ACL inter-
action framework. An implementation of interaction components is described
within the CAPNET agent platform in an integrated way with the agent interac-
tion architecture. The use of interaction space components for engineering agent
interactions is illustrated by example.

Keywords: FIPA-ACL, Interaction Framework, Interaction Space.

1 Introduction

Communication is central to Multi-Agent System (MAS), for without it, any benefits
of interaction vanish and the agency degenerates into a collection of individuals with
a chaotic behaviour. Going far beyond dealing with communication issues at the level
of data and physical message transport, Agent Communication Languages (ACL) are
complex structures composed of different components that specify the message con-
tent syntax and meaning, message parameters such as the sender and receiver, and the
pragmatics of the intention of the message. Furthermore, interaction also includes
interpretation and validation that the message has been correctly interpreted.

In spite of many efforts on designing flexible and robust agent interactions, very
little attention has been paid so far on providing support for runtime processing of
such interactions using higher level concepts than messages. Indeed, current MAS
infrastructures (such as languages, toolkits, frameworks and platforms) are limited
mostly to simple message sending and receiving for processing agent interactions [1].
Although interaction protocol is a higher level concept than messages, they are sup-
ported at runtime only for controlling the sequence of messages but not for processing
the whole set of activities involved in ACL interaction. Nevertheless, the increasing

192 E. German and L. Sheremetov

complexity of MAS integration requires more effective interactive behaviors based on
message semantics and pragmatics [2], [3].

Though FIPA-ACL has become a standard to engineer agent-to-agent interactions,
two main objectives of this language, autonomy and interoperability, are not
addressed in MAS engineering. Our experience in developing MAS with current
FIPA-ACL infrastructures shows that interactions typically have been engineered
using ad-hoc communication assumptions made for reasons of communication effi-
ciency or developer convenience [4], [5]. Furthermore, awareness of these assump-
tions is critical to properly interpret and understand messages at runtime, becoming
autonomy and interoperability almost impossible to achieve [6]. So, while application
specific agents are useful to test and validate different approaches to develop agents,
their interaction components are extremely difficult to generalize, re-use and extend
for agents integration in open networking applications without participation of their
developers.

Till now, the FIPA communication model has focused more on how agents could
communicate by separately specifying different components. However, little work has
been done on explicitly specifying organization and integration of these components
to enable message processing by agents. In our previous work a FIPA-ACL interac-
tion framework was described through three high level concepts: interaction space,
interaction models and interaction architecture [7].

The focus of this paper is the specification of the interaction space components and
their implementation within the CAPNET agent platform. We deal with the problems
of implementing and interpreting interactions by explicitly arranging and engineering
different layers found in the FIPA-ACL specification1. The paper considers a six-
layered communication model which is inspired in a recently revised FIPA communi-
cation model [8]. These layers go from physical transport and encoding to internal
agent processing of syntax, semantics and pragmatics of messages.

In particular, we think that explicit support for interaction components helps to fill
the gap between FIPA-ACL specification and implementation of runtime interaction
processing. To facilitate the engineering of MAS interactions we developed interac-
tion space components as an important step to address the previously mentioned prob-
lems of interaction engineering. Our approach considers that these interaction compo-
nents are worth when integrated in an agent interaction framework.

The structure of the paper is the following. In section 2 the specification of an
explicit FIPA communication model is provided. Section 3 describes the generic
interaction space components composing each layer of the model. Section 4 gives
details of the interaction space components implementation within the CAPNET
agent platform. In section 5 the process of instantiation of interaction space compo-
nents in an agent application is illustrated by example from MAS managing transpor-
tation logistics of offshore oil platforms. It is also explained how these components
are useful to validate interactions at runtime by the agent interaction architecture.
Finally, some related works are discussed and conclusions are given.

1 Foundation for Intelligent Physical Agents. FIPA Communicative Act Library Specification

http://www.fipa.org/specs/fipa00037/ and FIPA ACL Message Structure Specification
http://www.fipa.org/specs/fipa00061/

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 193

2 FIPA Communication Model

The standard FIPA Communication model starts on top of the OSI reference model
[9] extending the application layer. In Fig. 1, the components of this model are
shown. An envelope encapsulates FIPA-ACL messages before they are transmitted
over a Transport Protocol. Messages are units of communication expressed in FIPA-
ACL. Each message stores the content of the communication, which is expressed in a
Content Language. The content contains symbols which belong to an ontology named
in the message. Interaction protocols are components engaged in controlling se-
quences of related messages in order to maintain conversations between agents. Enve-
lope, message and content are encoded using data structures (EnvelopeEncod-
ingScheme, ACLEncodingScheme, CLEncodingScheme) such as XML, string for-
mats and bit efficient schemas, rather than binary codifications.

TransportProtocol

ContentLanguage

FIPA-ACL

Ontology

InteractionProtocol

Envelope

Message

Content

Symbol

isTransmittedOver

isExpressedIn

belongsTo

isExpressedIn

belongsTo

1 1

contains
1

1..*

1

1

contains

1

1
1

1

1 1

contains

1

0..*

1..* 1

EnvelopeEncodingScheme

ACLEncodingScheme

CLEncodingScheme

isRepresentedIn

isRepresentedIn

isRepresentedIn

Fig. 1. Components of the FIPA communication model

The engineering perspective developed in this paper (Fig. 2), is inspired in a re-
cently revised FIPA communication model [8], and supports six FIPA-ACL computa-
tion layers: Message Transport, Message Encoding, Content Expression Syntax, Con-
tent Expression Semantics, Communicative Acts and Interaction Protocols. At the
message transport layer, agents look for and use asynchronous message transport
services to interchange messages through physical network protocols. At the layer of
message encoding, the message structure and encoding are validated because agents
serialize messages through the network. Furthermore, message information such as
agent identifiers, type of message and payload require parsers. The layer of content
expression syntax is a layer where agents recognize the entities built-in into the con-
tent of messages by determining whether the content structure is correct in accordance
with a common content language representation.

The layer of content expression meaning (semantics) refers to the use of ontologies
to validate the meaning of content by explicitly representing domain symbols. At the

194 E. German and L. Sheremetov

Message Transport

FIPA
Communication

Model

Message Encoding

Content Expression
Syntax

Content Expression
Semantics

Communicative
Acts

Interaction
Protocols

Message Transport
Services

Message Parsers

Content Languages

Ontologies

Interaction Models

Interaction
Protocols

Generic IP

Generic IM
Generic KB

Generic
Ontology

Generic CL

Generic
Parser

Generic
MTS

Agent Based
Computing

CAPNET
Platform

FIPA-ACL
Interaction
Framework

Interaction
Space

Components

Development
Tools

Fig. 2. FIPA communication model: an engineering perspective

layer of communicative acts agents have to manage messages taking into account the
pragmatics of each type of communicative act. Almost all communicative acts entail
access to a Knowledge Base (KB) where application domain information is stored in
order to validate their pragmatics. Interaction protocols is the layer where occurs the
validation of communications that use a pre-defined sequence of messages among the
involved agents.

From the engineering perspective, we focus on interaction space components and
activities required for validating and interpreting messages at each layer of the model.
The approach based on layers is taken to better organize and build the interaction
components because it lets specifying not only components themselves but also com-
putation in the context of runtime message validation process described in [7]. In the
following sections, we describe the components needed at each layer and their im-
plementation within the CAPNET agent interaction framework.

3 Interaction Space Components

The Interaction Space (IS) is an environment that stores interaction components of the
agent that can be accessed in order to validate interactions at runtime. It is integrated
by the following components: message transport services, message parsers, content
languages, ontologies, interaction models, interaction protocols and a knowledge
base. Interaction space extends FIPA-ACL interaction infrastructure and forms a part
of agent architecture (Fig. 2). An Interaction Model (IM) represents a modular unit
permitting the validation of a simple interaction. IM includes five modules for pro-
gramming validation of content syntax and semantics, feasibility preconditions,
rational effect of messages and interaction termination. Interaction models let pro-
grammers design and implement validation code for different communicative acts

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 195

taking into account the requirements of both communication and application. In each
module of the interaction models, components of the interaction space are resolved
and used at runtime. For example, a content language component is invoked in the
module to validate syntax of content and an ontology component is invoked in the
module to validate semantics of content.

The Agent Interaction Architecture (AIA) is defined as a component to control
creation and processing of interactions through validation of interaction models
within the interaction space of an agent. Transport services and message parsers com-
ponents are also invoked within the AIA.

3.1 Message Transport Service

Let us consider the layers of the interaction space. The first layer is composed of
message Transport Services (TS). TSs are components that agents use to exploit sev-
eral available network infrastructures. Concrete networking technologies are available
along distributed computing infrastructures so that different TSs could be imple-
mented for exploiting the advantages of each type of technology such as SOAP-XML
for web services-based agents, HTTP for web-based agents and TCP for remote ob-
ject-oriented agents. Since some of these communication services are commonly used
in known MAS infrastructures, in this framework they are considered to be part of the
interaction space like specific components that will be invoked dynamically when
agents need their services.

Although each TS has its own implementation features they can be implemented
using common interfaces in order to be added to the interaction space of the agent.
Basically, this type of services must provide functionality to process the sending and
receiving of transport messages. Transport-message is the communication unit at this
layer of the model and includes FIPA-ACL message as the payload and the envelope.

3.2 Message Parser

At the layer of message encoding, each message is either encoded or decoded2 by a
component called a message parser. The main activity of parsers is to find out
whether the structure of the message complies with FIPA-ACL. This is a first level of
syntactic validation of the message. Typically, several message parsers can be avail-
able as software components. These parsers must be implemented following a well
defined interface to generate and parse messages represented through different codifi-
cation schemas specified by FIPA3. The information about parser components is ex-
plicitly available in the interaction space. With this information, agent interaction
architecture can dynamically analyze the message requirements applying the specific
parser.

3.3 Content Language

Agent communication is designed to represent the content of messages following
certain common criteria in such way that content can be understood by both sides of

2 Encode means what is usually called “generate” or “format” and decode is similar to parse.
3 See FIPA-ACL Message Representation Library at http://fipa.org/specs/fipa00068/index.html

196 E. German and L. Sheremetov

Table 1. Content entities for FIPA-ACL communicative acts

Communicative act Content entities
accept-proposal, agree, cfp, failure, propose, refuse,
reject-proposal, request-when, request-whenever

action, proposition

request, cancel action, message
confirm, disconfirm, inform, inform-if, query-if proposition
inform-ref object reference
not-understood action, message, proposition
propagate, proxy object reference, message,

proposition
query-ref, subscribe object reference

the communication. Since agents could manage different content languages, similar
basic elements should be used. Based on the specification of each communicative act
of FIPA-ACL, five content entities that can be part of message content are implicitly
defined: actions, propositions, domain objects, references to objects and FIPA-ACL
messages (Table 1).

We define a Generic Content Language (GCL) component based on the basic con-
tent entities. The GCL also contains a set of content objects which are useful to build
message content combining one or more basic entities. Every concrete CL should give
only one content object per communicative act. For example the “request-when“
communicative act combines an action and a proposition in the content. So that the
request-when content object must be composed of such two entities. Since every en-
tity and content object is designed to be used in a serialized way in messages, they
must give two functions. The first one is used to serialize the entity in an encoded
format in such way that it can be part of the message. The second one does the oppo-
site task: from a serialized representation gets the entity information and re-builds the
entity. The validation criteria for each concrete CL are left to the CL programmer’s
choice because they depend on the particular requirements of each type of entity.

3.4 Ontology

The communication model of FIPA-ACL is based on the assumption that two agents
try to interact sharing a common ontology of the domain in order to give meaning to
the entities represented in a message’s content. For a given domain, agents can decide
to access ontologies explicitly represented and stored. In this paper, we consider that
ontologies engineering must share common design lines. That is why, we propose to
define a Generic Ontology (GO) as software component. Based on GO, concrete
ontologies can be built and added as part of the interaction space of agents and can be
accessed to validate the semantics of message’s content at runtime.

The GO is basically formed by all content entities given by generic content lan-
guage but messages. GO has two parts. In the first one, collections for actions, propo-
sitions, domain objects and object references store the information about the domain.
In the second part, there are a set of validation functions for each type of content en-
tity forming the ontology and one validation function for each type of communicative

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 197

act. The criteria for internal organizing, storing and validating the entities in the
ontology are left open for developers of concrete implementations.

3.5 Interaction Model

An interaction model is a key concept of the framework for implementing the com-
municative acts layer of the FIPA Communication model. An IM is seen as an inter-
action component for validating single-message interactions. For each communicative
act, the IM is composed of the modules covering five validation phases: validation of
the content structure with a specific content language, validation of content semantics
with a specific ontology, validation of feasibility preconditions, validation of rational
effect, and validation of the termination conditions.

Depending on the interaction requirements of each agent, different interaction
models implemented according with supported interaction capabilities such as com-
municative acts, content languages and ontologies are required. Each IM is stored in
the interaction space to be automatically used when messages fit its requirements. The
idea is that IMs can be as reusable for different application agents as possible or at
least ready to be refined by specializing functionality.

When agents interact and try to achieve pragmatics of communicative acts (feasi-
bility preconditions and rational effects), almost always they have to store, query or
modify concrete information about the application. The knowledge base (KB) is an
interaction space component used to complete several types of interactions.

Being consistent with the knowledge model (composed of a basic set of content en-
tities) given by the FIPA-ACL and followed in both the generic CL and generic on-
tology, the KB must give the possibility of managing actions, propositions and do-
main objects in order to allow agents to reason about the requirements of communica-
tive acts. For example, when a request message is going to be sent or is being re-
ceived, the agent has to check whether or not the action is stored in its KB. Regardless
any concrete implementation of the KB, this software component must provide func-
tions to add, query and remove actions, propositions and domain objects.

3.6 Interaction Protocol

The framework requires interaction protocols to attend interactions composed of more
than one message. To build concrete IPs, we propose to define a generic interaction
protocol as a component with IP common attributes. The specification for a Generic
Interaction Protocol (GIP) is given by a unique name of IP, a name of the content
language, a name of the ontology and the implementation engaged in controlling the
execution sequence and states of the IP. Each agent is able to know the set of proto-
cols it can use at runtime when interactions occur because they are stored in the inter-
action space. How IPs are invoked and executed is a matter of agent interaction archi-
tecture and it is out of the scope of this paper.

4 CAPNET Interaction Space

The current version 2.0 of the CAPNET agent platform [10] is empowered with the
interaction framework described in this paper (Fig. 2). In the CAPNET, each type

198 E. German and L. Sheremetov

of interaction component is implemented following an object oriented design. The
InteractionSpace class is a container of concrete objects representing capabilities that
can be used dynamically by the validation process of the AIA.

Each concrete component has its own unique descriptive information so that mes-
sage attributes can be used to resolve at runtime invocation of the correct component,
depending on the communication requirements. Each interaction component is engi-
neered by following interfaces and base classes that represent generic component
functionality. Components can be implemented by reusing and extending them, thus
exploiting the runtime polymorphic advantages for checking and resolving types.

4.1 Message Transport Services

To help the messaging system to work dynamically (and eventually to make agents
more autonomous) CAPNET transport services are implemented by following the
IGenericTransportService interface (Fig. 3-a). This interface defines methods for
sending (sendMessage) and receiving (receiveMessage) messages. The base class
BaseTransportService declares attributes for transport service type (MTSType) and
address (address).

Fig. 3. CAPNET Message Transport Services (a) and Parsers (b)

At the moment, we have implemented two concrete message transport services. In
the first one (RemotingTransportService), we configure a TCP connection by using
distributed .NET framework remote objects for intranet agent applications. The sec-
ond service (HttpTransportService) is an HTTP server infrastructure based on re-
quest-response connections to send and receive messages beyond local area networks
and for web based agent applications. One single instance of each TS should be added
to the interaction space to make them available at runtime.

4.2 Message Parsers

In the CAPNET implementation, the IGenericMessageParser interface describes the
generic functionality of parser components. Two methods are described to cover the
parsing of messages: from the side of the sender agent, format should be used for
converting a message to its textual representation ready to be communicated by a

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 199

transport service. Parse is the method for checking message syntax and for recovering
the message information from a textual representation when a message is received by
the receiver agent. As shown in Fig. 3-b, the basic class BaseParser can be extended
by concrete classes like xmlParser and fipaStringParser. While the former parser
serializes messages by using XML formats and conventions, the latter represents
messages in string format.

4.3 Content Languages

CAPNET CLs design is based on the Generic Content Language specification and is
implemented by the GenericCL class (see Fig. 4-a). GenericCL class has a CLName
attribute to assign a unique identifier of the CL. Also this class is composed of a set of
basic entity classes (explained in section 3.3) that implements the ISerialization inter-
face supporting methods for serialization syntax validation (validateDescription) and
for converting the entity to a serializable format (setDescription).

Fig. 4. CAPNET Content Language implementation

Following these design rules, we have developed two concrete CL classes in the
CAPNET (Fig. 4-b). CAPNET-CL [11] is a proprietary language based on FIPA-
RDF0 to represent the syntax of entities. FIPA-SL0 is the implementation of the
FIPA-SL0 specification. Both CLs inherit from GenericCL class and implement each
entity by the ISerialization interface.

4.4 Ontologies

For engineering ontologies, CAPNET offers the GenericOntology class which is
composed of several common ontology attributes (Fig. 5). Ontologies must have a
unique name for identifying them in the interaction space (OntoName). The attribute
CLName is the name of the content language, the entities managed by the ontology

200 E. German and L. Sheremetov

Fig. 5. Design of ontologies in CAPNET

belong to. As established in the Generic Ontology, this software component contains
collections for storing actions, propositions, domain objects and references to domain
objects (ActionsSet, PropositionsSet, DomainObjectsSet and ObjectReferencesSet
respectively).

Concrete ontologies must implement the IOntology interface to offer common
functionality. This interface has functions to search entities (searchAction, search-
Proposition, and so on) and to add entities (addAction, addProposition, and so on).
Finally, the interface includes methods to validate the content object of each type of
communicative act supported by the ontology (validateInform, validateRequest, vali-
dateQueryRef, and so on). We have developed the CAPNETOntology concrete class
by using the CAPNET-CL entities.

4.5 Interaction Models

Interaction Models are software components based on the GenericInteractionModel
class. Some of them are illustrated in Fig. 6-a. When a message is going to be proc-
essed, the AIA looks for an IM that fits the message requirements.

To control the execution of concurrent IMs at runtime, a set of common attributes
identified for interaction models were implemented. InteractionId is a unique number
to internally identify each individual interaction. IMName is used to identify
the communicative act of the interaction. The field message indicates what message
the IM object is related to at runtime. CLName and OntologyName attributes store
the names of the content language and ontology used to represent and validate syntax
and semantics of the entities included in the message content. The same type of com-
municative act can be implemented by different interaction models combining differ-
ent content languages and ontologies because an agent can participate in different
application domains. Each IM developed for a specific agent must implement the
IInteractionModel interface where the five phases of IM validation cycle are defined
(validateCL, validateOntology, validateFP, validateRE and validateTermination).

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 201

Fig. 6. CAPNET Interaction models (a) and protocols (b)

4.6 Knowledge Base

The CAPNET KB was implemented by the KnowledgeBase class. This component is
formed by collections to store actions, propositions and domain objects derived from
generic classes. Moreover, in our implementation we have found two special types of
collections to temporally store monitors. Monitors are propositions and domain ob-
jects to be monitored at runtime and are useful to implement some interaction models
like request-when, request-when-ever, subscribe, inform-if and query-if making the
agent be aware of entities that have changed their attributes.

Although, having a knowledge base in the agent interaction space can help the
agent to perform internal reasoning activities, in this paper we focus on the necessary
functionality to carry out interactions. In this sense, the knowledge base class has
methods to add, search and remove specific entities and methods to add, update and
remove entity monitors when interactions take place at runtime.

4.7 Interaction Protocols

Each interaction protocol is implemented as a software component that includes nec-
essary attributes to dynamically determine its execution. We propose the
GenericInteractionProtocol base class to encapsulate such attributes that agent inter-
action architecture can read when messages require the use of a specific IP.

In the case of the CAPNET IP development, the base class considers that each
IP has a unique name (such as FIPA-REQUEST, FIPA-CNP, and so on), a timeout
(a configurable amount of time the agent is going to wait for the next message in the
sequence), content language and the ontology as shown in Fig. 6-b. Concrete IP
classes inherit from the base class and also should implement the IInteractionProtocol

202 E. German and L. Sheremetov

interface where run and initConversation methods are defined to allow agents concur-
rently execute several IPs. Run is used to create a new thread of execution when the
IP is instantiated in the agent interaction architecture. InitConversation implements
the real strategy of controlling the sequence of messages.

5 Example

In this section we show an example that illustrates the use of the main interaction
components in the context of the proposed framework. It shows how a particular
agent interaction space is constructed and used during execution as part of the AIA. A
complete description of the AIA and the validation process can be found in [8].

5.1 Description of the Example

The example is an excerpt from the MAS for transportation logistics of offshore oil
production [5]. Boats and ships are required for supplies transportation. These trans-
portation services are offered by third party providers that the MAS have to find out
and request for. This scenario represents an open and flexible environment where
heterogeneous agents should interact by using different interaction components. An
example MAS is composed of several oil platform agents that request specific sup-
plies to a supplier agent. Supplier agent receives requests, looks for the requested
supplies, and negotiates the marine transport services offered by transport agents. To
engineer the interactions we have built agents by using the interaction space compo-
nents of the CAPNET platform. The example is coded in Visual Basic .NET compati-
ble with the .NET framework 1.1. Table 2 shows the interaction components incorpo-
rated in each type of agents.

Table 2. Interaction Space components

Agents TSs Parser CLs Ontology IMs IPs
Supplier http

TCP-
Remoting

XML
FIPA-
string

CAPNET-
CL
FIPA SL0

transport
supply

request
requestWhen
inform

FIPA-request,
FIPA-
Contract-Net

Platform TCP-
remoting

XML
FIPA-
string

CAPNET
CL
FIPA SL0

supply request
inform

FIPA-request

Transport http XML
FIPA-
string

CAPNET
CL
FIPA SL0

transport
supply

requestWhen
inform

FIPA-request,
FIPA-
Contract-Net

5.2 Instantiation of Interaction Space Components

The supplier agent has two transport services (http and TCP-Remoting) because
it needs to interact with Platform (internal) and Transport (external) agents. In the
prototype, agents use XML and fipa-string parsers to validate syntax of FIPA-ACL
messages. Resolving which parser will be used is a task done dynamically by the
agent interaction architecture by checking the message field encoding for every

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 203

message and by invoking the required parser component. TSs and parsers are stored
in collections of the interaction space (ts and p in code 4).

When created, application agents get object instances of the CAPNETCL and FI-
PASL0 classes and store them in the interaction space (Code 1). Interacting with
CAPNET management agents (Agent Management System and Directory Facilitator),
they use FIPASL0 as content language and while communicating among themselves
they exchange messages codified in CAPNET-CL.

Code 1. The content languages instances are created

capnetcl = New CAPNETCL(CONTENT_LANGUAGE_CAPNET-CL)
sl0 = New FIPASL0(CONTENT_LANGUAGE_SL0)
cl = New Hashtable
cl.Add(capnetcl.CLName, capnetcl)
cl.Add(sl0.CLName, sl0)

The MAS works with transport and supply domain ontologies. The Supplier and

Transport agents load both ontologies. Platform agents only need supply ontology
(Code 2). Internally, these ontologies are based on the CAPNETOntology class and
uses CAPNET-CL to represent concrete entities. The supply ontology defines the
planningSupply action to allow Platform agents request supplies from Supplier agent.
This ontology also declares domain object references that can be considered as valid
supplies in this domain. In the transport ontology the transportSupplies action also is
defined to negotiate transport services among Supplier and Transport agents. Every
action is also stored in the KB in order to be executed at runtime (Code 4).

Code 2. Segment of the supply ontology creation

ontSupp = New CAPNETOntology("supply", capnetcl.CLName)
PlanSupplyAct = New
CAPNETCL.RDF0Action("planningSupply")
PlanSupplyAct.setact("planningSupply")
PlanSupplyAct.setactor("SupplyAgent")
ontSupp.AddAction(PlanSupplyAct)
Dim d1, d2, d11 As CAPNETCL.RDFObjectRef
d1 = New CAPNETCL.RDFObjectRef ("PERF-WATER", "No")
ontSupp.AddObjectReference(d1)
d2 = New CAPNETCL.RDFObjectRef ("DRINK-WATER", "No")
ontSupp.AddObjectReference(d2)
d11 = New CAPNETCL.RDFObjectRef("BUMP-A", "No")
ontSupp.AddObjectReference(d11)
Dim o As New Hashtable
o.Add(ontSupp.OName + ontSupp.CLName, ontSupp)

The agents require several interaction models in order to execute specific commu-

nication acts supported by the MAS (Code 3). For example, Platform agents use
requestIM for requesting the action planningSupply to Supplier agent (and whatever
supported action). Typically when they request the action, they receive the answer as

204 E. German and L. Sheremetov

an inform message that is managed by an InformIM. This interaction can also be
carried out by applying the fipa-request interaction protocol when synchronous com-
munication is preferred. In other interactions, Supplier agent uses requestWhenIM to
ask Transport agents to execute the action transportSupplies for the supplies assigned
to it only when the required supplies are ready to be transported. When each interac-
tion component and collection is created, the agent programmer must create the Inter-
actionSpace instance as it is shown in Code 4.

Code 3. Creation of Interaction Models

requestWhenIM = New RequestWhenIM(ACL_REQUEST_WHEN)
requestIM = New RequestIM(ACL_REQUEST)
InformIM = New InformIM(ACL_INFORM)
Dim IM As New Hashtable
IM.Add(requestIM.IMName + capnetcl.CLName +
ontoSupp.OName, requestIM)
IM.Add(requestWhenIM.IMName + capnetcl.CLName +
ontoSupp.OName, requestWhenIM)
IM.Add(IIM.IMName + capnetcl.CLName + ontoSupp.OName,
InformIM)

Code 4. Creation of the Interaction Space of agents

Dim actions As New Hashtable
actions.Add(PlanSupplyAct.Name, PlanSupplyAct)
Dim kb As New KBManager(Props, Objects, actions)
iSpace As New InteractionSpace(ts,p,kb,cl,o,IPs,IM)

5.3 Example of Message Validation Processing

Let us illustrate the message validation process by example of Supplier agent receiv-
ing a request message from the Platform agent. Fig. 7 shows a fragment from its AIA
within the CAPNET Basic Agent illustrating how components are instantiated and
invoked by the validation process at runtime.

The interaction starts on the side of the Platform agent requesting the planning-
Supply action. While sending the message, the messaging mechanism invokes the
TCP-Remoting TS as indicated in the message by the programmer. On the side of the
Supplier agent also connected to a TCP-Remoting, the message is received by the
messaging mechanism. After that, messaging gets the XML parser to validate the
structure of this message because the message is encoded with XML syntax. Then, if
it is correct, the mechanism looks for an interaction model in order to satisfy the mes-
sage requirements (related to the type of communicative act, name of CL and name of
ontology). If an IM is registered in the Interaction Space, it clones the registered ob-
ject and returns the IM copy to messaging (requestIM in this case).

Every phase of the IM is executed by the corresponding engines of the validation
process. It depends upon the agent’s role what validation cycle the architecture will

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 205

Fig. 7. Agent interaction architecture of the Supplier agent receiving request message

follow. In the example, the receive validation cycle is activated in order to process the
received message. The validation is made by an instance of the requestIM class. The
interaction model is passed to the CLEngine component which enqueues the interac-
tion model and asynchronously invokes its validateCL module. The CAPNET CL
component is cloned from the IS and is used to validate the requestContentObject by
invoking its validateDescription method.

The results of the validation are stored in the CLEngine and are made available for
the validation cycle. If the IM validation fails then the message does not comply with
the syntax of that content language. If validation is successful then the interaction
model is passed to the ontology engine component where the IM validateOntology
module is invoked. The meaning of the content is validated in this module by getting
a copy of the supply ontology component from the IS and by invoking its validateRe-
quest method where the requested action description (planningSupply) is validated as
part of the ontology.

For the next phase, the validation process passes the IM to the Simple Interaction
Engine (SIEngine). This engine invokes the interaction model validateRE module. In
this module, the requested action (planningSupply) is obtained from the message con-
tent, searched in the KB (where the capability is implemented by an executable action)
and executed. The receive validation cycle finishes when the validateTermination is
invoked and results are communicated back to the Platform agent. For composed inter-
actions, the processing mechanism is similar to the simple interaction but when the
rational effect is validated, the interaction model is delivered to the engine for com-
posed interactions (CIEngine) in order to be managed by an interaction protocol.

206 E. German and L. Sheremetov

6 Related Work and Discussion

Research work in agent technology is focused on moving away from the hand-crafted
agents to the agents able to participate in particular institutional space enabling them
to determine capabilities at runtime [12]. In such institutions, communicative interac-
tions take place in open interaction frameworks and exist only thanks to common
agreements on the basis of a shared set of conventions [13]. Nevertheless, relatively
little effort has been put so far to model, design, and implement crosscutting agent
interaction concerns which depend largely on the ability of software engineering
techniques and methods to support the explicit separation of concerns throughout the
design and implementation stages [14].

In the literature, there are also reported communication layered approaches like the
efficient agent communication in wireless environments presented in [15] and the
communication model based on interactions, conversations and ontologies described
in [16] which only covers specific issues but not as an integrated complete infrastruc-
ture that we have considered in this paper. We follow a layered approach similar to
the levels defined in the Model Driven Architecture (MDA) [17] for generic compo-
nent types, type instances and application instances. A rigorous comparison with
MDA levels is out of the scope of this paper.

Concerning presented approach, we briefly emphasize three issues i) how auton-
omy is improved, ii) what type of interoperability is enabled and iii) interaction engi-
neering concerns. Our approach to agent’s autonomy is oriented to process interac-
tions. Agents are able to determine by themselves whether or not they can process
unforeseen messages at runtime depending on their own interaction capabilities. This
is achieved by having both explicitly represented interaction components and an inter-
built agent interaction architecture. It is fairly different from that of representative
works like Jadex and Jason presented in [18], which employ a reasoning architecture
for deducing agent’s actions from internal domain model but not for processing ACL
interactions.

Interoperability refers to the programmer’s ability to take into account at design
time the interaction capabilities of the agents in order to reduce interaction among
software developers. It permits development of agent interactions using common
interaction space components. Upper level of interoperability could be reached when
agents developed within different agent infrastructures try to interoperate using the
same interaction components. To reach this level of interoperability we need other
platforms implement interaction components following the proposed generic compo-
nents. Then experiments could be provided to test this issue in practice. Our work is
different than other similar approaches found in the literature [19] [20] because it
provides interoperability for each layer of the communication model.

Finally, the use of interaction space components releases developers from writing
bulk of code to validate each stage of communication. Agent interaction architecture
is provided once by the basic agent and it takes the control of agent interaction proc-
essing. Without it, development of interactions would require writing code to control
each scenario of message processing and for each agent in the MAS. That technique
of programming is inflexible, repetitive and prone error because validation of mes-
sages at each layer is completely a duty of the developer. As an outcome, we promote
the separation of concerns by reusing, extending and sharing different interaction
components.

 Specifying Interaction Space Components in a FIPA-ACL Interaction Framework 207

7 Conclusions

In this paper we pointed out the interaction space components that are required to
carry out message processing at runtime within the FIPA-ACL interaction framework.
We organized the FIPA-ACL communication model through six layers to accomplish
agent interactions: transport services, message parsers, content languages, ontologies,
communicative acts and interaction protocols. Based on this model, interaction com-
ponents were identified as part of each layer and arranged as core components of our
FIPA-ACL interaction framework.

We proposed that every interaction component should be stored into the agent in-
teraction space as software components that could be accessed at runtime by the agent
architecture. Interaction components were defined as generic software components in
order to specify their basic functionality in accordance with the expected activities
they have to manage at each layer of the communication model. These interaction
components are implemented within the CAPNET agent platform. We show by ex-
ample of the MAS for offshore oil platform logistics how the interaction components
can be created in CAPNET agents.

The experiments to measure productivity and the level of maturity of the software
that can be produced with this approach are in progress. The first results show that
though the interaction architecture is time consuming for each layer of the validation
process, this effect on the efficiency is diminished by the concurrency model which is
managed by the multi-threaded interaction architecture for each validation engine, so
that multiple messages can be processed at the same time and in the correct order. On
the other hand, the results also show that developers can reuse IS components at each
layer of the interaction model reducing considerably the time to build agent interac-
tions. We are convinced that proposed agent interaction architecture improves auton-
omy, interoperability and interaction engineering of complex MAS.

Acknowledgments. The first author would like to thank CONACYT and the IMP for
supporting the Ph. D. studies that originated this research.

References

1. Winikoff, M.: Implementing Commitment-Based Interaction. In: International Conference
on Autonomous Agent and Multi-Agent Systems (AAMAS 2007), Hawaii (May 2007)

2. Omicini, A., Ossowski, S., Ricci, A.: Coordination Infrastructures in the Engineering of
Multiagent Systems. Methodologies and Software Engineering for Agent Systems – An
AgentLink Perspective. In: Bergenti, F., Gleizes, M., Zambonelli, F. (eds.) Coordination
Infrastructures in the Engineering of Multiagent Systems, Kluwer, Dordrecht (2004)

3. Serrano, J.M., Ossowski, S.: On the Impact of Agent Communication Languages on the
Implementation of Agent Systems. In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R.
(eds.) CIA 2004. LNCS (LNAI), vol. 3191, pp. 92–106. Springer, Heidelberg (2004)

4. Sheremetov, L., Martínez, J., Guerra, J.: Agent Architecture for Dynamic Job Routing in
Holonic Environment Based on the Theory of Constraints. In: Mařík, V., McFarlane, D.C.,
Valckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 124–133. Springer,
Heidelberg (2003)

208 E. German and L. Sheremetov

5. Sheremetov, L., Contreras, M., Valencia, C.: Intelligent Multi-Agent Support for the Con-
tingency Management System. J. of Expert Systems with Applications 26(1), 57–71
(2004)

6. Chaib-Draa, B., Dignum, F.: Trends in Agent Communication Language. Computational
Intelligence 18(2), 89–1015 (2002)

7. German, E., Sheremetov, L.: An Agent Framework for Processing FIPA-ACL Messages
Based on Interaction Models. In: Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS,
vol. 4951, pp. 88–102. Springer, Heidelberg (2008)

8. Poslad, S.: Review of FIPA Specifications, IEEE FIPA Revision of FIPA Specifications
Group, Foundation for intelligent Physical Agents (September 2006),

 http://www.fipa.org
9. Zimmermann, H.: OSI Reference Model–The ISO Model of Architecture for Open Sys-

tems Interconnections. IEEE Transactions on Communications 28(4), 425–432 (1980)
10. Contreras, M., Germán, E., Chi, M., Sheremetov, L.: Design and Implementation of a

FIPA Compliant Agent Platform in. NET. J. of Object Technology 3(9), 5–28 (2004)
11. Sheremetov, L., Batyrshin, I., Filatov, D., Martínez-Muñoz, J.: An Uncertainty Model for

Diagnostic Expert System Based on Fuzzy Algebras of Strict Monotonic Operations. In:
Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 165–
175. Springer, Heidelberg (2006)

12. Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., Winikoff, M.: Open Agent Sys-
tems? In: Luck, M., Padgham, L. (eds.) AOSE 2007, vol. 4951, pp. 73–87. Springer, Hei-
delberg (2008)

13. Fornara, N., Vigano, F., Colombetti, M.: Agent Communication and Institutions Reality.
Agent Communication, State of the Art Survey. In: van Eijk, R., Huget, M., Dignum, F.
(eds.) AC 2004. LNCS (LNAI), vol. 3396, pp. 1–17. Springer, Heidelberg (2005)

14. Garcia, A., Chavez, C., Choren, R.: Enhancing Agent-Oriented Models with Aspects. In:
International Conference on Autonomous Agents and Multi Agent Systems (AAMAS
2006), Japan (May 2006)

15. Helin, H., Laukkanen, M.: Efficient Agent Communication in Wireless Environments. In:
Unland, R., Klusch, M., Calisti, M. (eds.) Software Agent-based Applications, Platforms
and Development Kits, pp. 307–330. Birkhäuser, Basel (2005)

16. van Aart, C.: Organizational Principles for Multi-Agent Architectures, pp. 139–176. Birk-
häuser, Basel (2005)

17. Kleppe, A., Warmer, J., Bast, W.: MDA Explained, The Model Driven Architecture: Prac-
tice and Promise. Addison-Wesley, Reading (2003)

18. Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Programming Multi-
Agent Systems. Kluwer Academic Publishers, Dordrecht (2005)

19. Pasha, M., Faroog-Ahmad, H., Ali, A., Suguri, H.: Semantic Grid Interoperability Between
OWL and FIPA SL. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS (LNAI),
vol. 4088, pp. 714–720. Springer, Heidelberg (2006)

20. Suguri, H., Kodama, E., Miyazaki, M.: Assuring Interoperability in Heterogeneous,
Autonomous and Decentralized Multi-Agent Systems. In: Proceedings of 6th International
Symposium on Autonomous Decentralized Systems (ISADS 2003), pp. 17–24. IEEE
Computer Society, Los Alamitos (2003)

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 209–224, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Enabling the Reuse of Platform-Dependent Agents in
Heterogeneous Agent-Based Applications

Giancarlo Fortino, Alfredo Garro, and Wilma Russo

Department of Electronics, Computer and Systems Science (DEIS),
University of Calabria, Rende (CS), 87036 Italy

{g.fortino,garro,w.russo}@unical.it

Abstract. There is an increasing interest in the development of applications
which involve agents operating on (mobile) agent-based platforms of different
types (heterogeneous agent-based applications). In this context, a relevant and
emerging issue concerns the possibility of integrating platform dependent
agents (i.e. agents which were specifically developed for a particular agent plat-
form) in these applications. This issue becomes particularly important in the
development of inter-organization agent-based applications where different
organizations, which usually adopt different agent platforms and related appli-
cations for offering their services, may attempt to join to constitute a new (vir-
tual) organization or, simply, to jointly offer new services to users. This paper
presents a solution for enabling the reuse of platform-dependent agents in het-
erogeneous agent-based applications. The proposed solution is a natural en-
hancement of JIMAF and makes it the only full-fledged interoperability
approach which, without requiring any modification to the platforms made in-
teroperable, fully addresses the main interoperability issues of migration, execu-
tion, and communication among heterogeneous mobile agent platforms and also
provides platform-dependent agent-based code reuse.

1 Introduction

Open and heterogeneous computing environments, like those based on the Internet,
require suitable software engineering paradigms and technologies for designing and
implementing applications which usually involve distributed and heterogeneous com-
ponents collaborating on common goals or competing to maximize their results.

Agents [20] are one of the most diffuse paradigms for tackling the development of
distributed applications, as witnessed by both the large number of available agent
platforms [1, 2, 7, 8, 13, 16, 17, 24] and the variety of platform-dependent agent-
based applications [5]. However, agents developed for a specific agent platform are
usually not able to execute on, migrate to, and communicate with agents operating on
other different platforms.

To allow for the development of heterogeneous agent-based applications (i.e. appli-
cations which involve agents operating on agent-based platforms of different types),
several solutions which attempt to address the interoperability issues of execution,
migration, and communication have been proposed [4, 11, 22, 28, 30, 6, 14, 21, 23])

210 G. Fortino, A. Garro, and W. Russo

but only few [6, 14, 21, 23] do not require to access and modify the platforms as they
provide interoperability by adding an application-level adaptation layer which is able
to support the development of heterogeneous agent-based applications.

Another relevant and emerging issue concerns the possibility of using code
(agents) which was specifically developed for a particular agent platform (i.e. plat-
form-dependent and non-interoperable agents) in a heterogeneous agent-based appli-
cation. In fact, the development of inter-organization agent-based applications is
becoming increasingly important as different organizations, which usually adopt dif-
ferent agent platforms for implementing specific applications and offering specific
services, may attempt to join to constitute a new (virtual) organization or, simply, to
jointly offer new services to users. This goal can be achieved by either completely de-
veloping ex novo applications or by developing new heterogeneous agent-based ap-
plications which also reuse the existing platform-dependent agent code.

This paper presents a solution for integrating platform-dependent code in heteroge-
neous agent-based applications. The proposed solution is a natural enhancement of
the Java-based Interoperable Mobile Agent Framework (JIMAF) [9, 10, 18], a
framework which can be layered atop available Java-based agent platforms [19].
JIMAF allows for the development of Interoperable Mobile Agents (IMAs) which are
able to execute on heterogeneous Java-based agent platforms, to migrate among them
and to communicate regardless of the platforms on which the agents operate. The en-
hancement proposed in this paper makes JIMAF the only full-fledged interoperability
approach which, without requiring any modification to the platforms which are made
interoperable, fully addresses the main interoperability issues as well as provides plat-
form-dependent code reuse.

In particular, the proposed solution exploits wrapping techniques [11, 14, 25] by
means of special agents called Interoperable Wrapper Agents (IWAs). IWAs act as
mediators capable of interacting both with JIMAF-based agents (i.e. interoperable
agents programmed by using JIMAF), exploiting JIMAF-based communication
mechanisms, and with platform-dependent agents by using platform-dependent com-
munication mechanisms.

The remainder of this paper is organized as follows. Section 2 explains the main
JIMAF-based components of a heterogeneous agent-based application which also in-
volves platform-dependent agents. Section 3 describes a case study of a virtual or-
ganization in the insurance domain which highlights the easiness of using JIMAF for
the development of new heterogeneous agent-based applications which are capable of
reusing exiting platform-dependent agents. Section 4 discusses the more relevant so-
lutions presented in the literature which address the important issue of integrating
platform-dependent agents in heterogeneous agent-based applications; finally, conclu-
sions are drawn and future works delineated.

2 Definition and Implementation of a Heterogeneous Agent-Based
Application

The main JIMAF-based components of a heterogeneous agent-based application
which also involves platform-dependent agents are shown in Figure 1. In particular,

 Enabling the Reuse of Platform-Dependent Agents 211

VOYAGERIMA

AJANTA

IMA

IWA

PDA

AGLETS

IMA
IWA

JADE

IMA IWA

PDA

IWA PDA

PDA

GRASSHOPPER

IWA

PDA

PDA
PDA

PDA

PDA

PDA
PDA

PDA

PDA

PDAPDA

JIMAF

IMA

MAB

MAB

IMA

IWA

Platform-Dependent
Communication

JIMAF-based
Communication

Migrating IMA

Agent Platform

Agent

IMA

IMA

Fig. 1. Architecture of a JIMAF-based Application

the components which support the interoperability issues of execution, migration and
communication are the following:

− Interoperable Mobile Agents (IMAs), which are JIMAF-based agents able to mi-
grate, execute, and communicate atop each platform made interoperable by JIMAF
(currently Aglets [1], Ajanta [2], Grasshopper [13], Voyager [24], and JADE [17]).
These agents constitute the interoperable part of the heterogeneous agent-based
application written according to JIMAF.

− Mobile Agent Bridges (MABs), which are special-purpose stationary IMAs, pro-
vided by JIMAF and capable of supporting the migration of IMAs between hetero-
geneous agent platforms; in particular a MAB is capable of receiving a migrating
IMA from a source agent platform and injecting it into the heterogeneous target
agent platform.

The components which enable the use of Platform-Dependent Agents (PDAs), which
are agents already available and/or developed ad hoc for a specific platform to fulfil
specific services and/or tasks, are the Interoperable Wrapper Agents (IWAs). IWAs
are special JIMAF-based agents which wrap PDAs and are then capable of communi-
cating both with PDAs of the specific platforms and with IMAs, thus enabling the re-
use of platform-dependent agents in a heterogeneous agent-based application.

Communication between IMAs and PDAs is mediated by IWAs, whereas commu-
nication among IMAs is based on asynchronous messages enabled by a proxy-based
infrastructure.

In the next Subsections the main aspects related to the definition and implementa-
tion of the above-mentioned components are presented.

212 G. Fortino, A. Garro, and W. Russo

1*1 * 1*

1

1
1

1

1
1

1

Agent
<< from ajanta.agent>>

MobileAgent
<<from de.ikv .grasshoppe r.agency>>

Thread

Aglet
<<from co m.ibm.aglet >>

Agent
<<from jad e.core>>

1

Event Location AgentDescriptor EventForwarderEventQueue

IEventQueue
<<interface>>

AgentProxy

IAgentProxy
<<interface>>

InteroperableAgent

BridgeAgent WrapperAgent

IAgent
<<interface>>

1

AjantaAgent AgletsAgent GrasshopperAgent JadeAgent VoyagerAgent

Interoperable Mobile Agent
Layer Classes Adaptation Layer Classes Platform-dependent Mobile Agent

Layer Classes

Fig. 2. The UML class diagram of the JIMAF framework

2.1 Programming Interoperable Mobile Agents

The solution to the interoperability problem offered by JIMAF consists in program-
ming Java-based agents (IMAs) which are able to execute on heterogeneous Java-
based agent platforms, to migrate among them and to communicate regardless of the
platforms on which the agents operate.

IMAs are programmed by using the Java classes provided by the JIMAF frame-
work (see Figure 2) according to an event-driven agent model. In particular, an IMA
is composed of: (i) a platform-neutral High-Level Part (HLP), which does not change
during the agent lifecycle and defines the specific behaviour of the agent; (ii) a Low-
Level Part (LLP), which depends on the specific agent platform where the agent is
operating and changes when the agent migrates to an agent platform of a different
type (heterogeneous migration).

As the LLP is provided by JIMAF, to define the behaviour of an IMA it is neces-
sary to only define its HLP by extending the InteroperableAgent class to specify the
lifecycle of the IMA. In particular, the lifecycle of the IMA is driven by its LLP in the
context of which it is always executed (i.e. the LLP lends its thread to the HLP). The
lifecycle is enclosed in the onArrival, run and onDeparture methods of the HLP in-
voked by the LLP, in this precise sequence. These methods must be overridden and
the events, to be handled and/or generated by the IMA for proactively driving its tasks
and lifecycle or communicating with other IMAs, must be specified. Figure 3 reports
a skeleton of the HLP of an IMA which describes each of the above-mentioned meth-
ods and highlights how to extend them.

 Enabling the Reuse of Platform-Dependent Agents 213

import jimaf.interoperable.*;

public class AnInteroperableMobileAgent extends InteroperableAgent {
/* TODO: declare additional application –dependent data structures here */
/* TODO: declare additional application –dependent methods here */

public AnInteroperableMobileAgent(AgentDescriptor ad /*, additionalParams*/) {
super(ad);
 /* TODO: set additionalParams here */

}

public void onArrival(){
/* The onArrival method, which is invoked when an IMA is created and when a migrating
 * IMA arrives at a new location, provides the creation of the proxy component
 * communication among IMAs and the binding/rebinding of an IMA to its proxy */
super.onArrival();
/* TODO: add additional operations here */

}

public void run(){
/* The run method implements the execution of the Event Processing Cycle (EPC) that
 * cyclically picks up an event from the event queue of the IMA, processes it according
 * to the IMA behaviour (as defined in the handleEvent method),and ends when an
 * event of the Move or Termination type is processed */
/* TODO: add additional operations here */
super.run();

}

public void onDeparture(){
/* The onDeparture method handles the migration of the IMA, if any, or its termination */
/* TODO: add additional operations here */
super.onDeparture();

}

public void handleEvent(Event ev){
/* The handleEvent method specifies what are the events that an IMA is able to
 * handle and how an IMA handles each of these events */
/* TODO: add the handling of additional events here */
super.handleEvent(ev); // to handle the “migrate”, “terminate”, and “info” events

}
}

Fig. 3. The Java Skeleton of the HLP of an IMA

String[] argsAd=new String[]{hostName,userName,serverName,agentName,serverPort,type};
AgentDescriptor ad = new AgentDescriptor(argsAd);
AnInteroperableAgent myIMA_HLP = new AnInteroperableAgent(ad /*, additionalParams*/);
APlatformDependentAgent myIMA_LLP = new APlatformDependentAgent(myIMA_HLP, /*,
additionalParams*/);
myIMA_LLP.start();

Fig. 4. The creation of an IMA

During its lifecycle an IMA can create other IMAs, communicate with IMAs and
migrate through heterogeneous agent platforms. The following describes how these
main tasks are programmed: while the creation task is exemplified in Figure 4, the
other tasks are exemplified in Figure 8 of Section 3 in reference to the case study.

The creation of an IMA (see Figure 4) requires the creation of: (i) an AgentDe-
scriptor which contains the information related to the agent’s identity; (ii) the HLP of
the IMA by passing the AgentDescriptor as a parameter; (iii) the LLP of the IMA,
which depends on the specific agent platform on which the IMA is being created, by
passing the HLP as a parameter.

An IMA can communicate with other IMAs through asynchronous messages im-
plemented as asynchronous events (JIMAF events) which are created by specifying
the sender, the receiver, the event type, and an object representing its content, and
sent by invoking the send method provided by the InteroperableAgent class. In par-
ticular, the proxy URL of the receiver, which must be known by the sender, can be
obtained by invoking the lookup method of the InteroperableAgent class.

214 G. Fortino, A. Garro, and W. Russo

An IMA can send an event to itself for proactively driving its tasks and lifecycle.
To migrate, an IMA sends itself an event of the migrate type which specifies the tar-
get location in its content. This event (transparently) allows for both homogeneous
(i.e. the source and the target platforms are of the same type) and heterogeneous mi-
gration. Homogeneous migration of an IMA is fully supported by its LLP, exploiting
the specific mechanisms of the source agent platform, whereas heterogeneous migra-
tion is fully supported by an infrastructure based on Mobile Agent Bridges (MABs).
MABs are provided by JIMAF and are capable of receiving a migrating IMA from a
source agent platform and injecting it into the heterogeneous target agent platform [9].

2.2 Programming Interoperable Wrapper Agents

JIMAF exploits wrapping techniques for enabling the reuse of platform-dependent
agents in the context of a heterogeneous agent-based application. The provided solu-
tion is based on Interoperable Wrapper Agents (IWAs). An IWA is a special JIMAF-
based agents which wraps platform-dependent agents and acts as a mediator capable of
interacting both with the IMAs by using JIMAF-based events as well as with the plat-
form-dependent agents by using the platform-dependent communication mechanisms.

In particular, an IWA is a stationary IMA whose HLP is constituted of a class
which extends the WrapperAgent abstract class furnished by JIMAF (see Figure 2)
and whose LLP depends on the hosting platform.

import jimaf.interoperable.*;

public class AnInteroperableWrapperAgent extends WrapperAgent {
/* TODO: declare additional application –dependent data structures here */
/* TODO: declare additional application –dependent methods here */

public AnInteroperableWrapperAgent(AgentDescriptor ad /*, additionalParams*/) {
super(ad);
 /* TODO: set additionalParams here */

}

public void onArrival(){
super.onArrival();
/* TODO: add additional operations here */

}

public void run(){
/* TODO: add additional operations here */
super.run();

}

public void onDeparture(){
/* TODO: add additional operations here */
super.onDeparture();

}

protected Object translate(Event evtReq){
/* TODO: extend the translate method to support the adaptation of the communication
 * content from JIMAF-based events to platform-dependent formats */

}

protected Event constructReply(Object rs){
/* TODO: extend the constructReply method to support the adaptation of the
 * communication content from platform-dependent formats to JIMAF-based events */

}

public void handleEvent(Event ev){
/* TODO: extend the handleEvent method to handle the JIMAF-based events sent
 * by an IMA to the IWA for requesting the services offered by the platform-dependent
 * agents wrapped by the IWA */
super.handleEvent(ev);

}
}

Fig. 5. The Java Template class of an IWA

 Enabling the Reuse of Platform-Dependent Agents 215

Fig. 6. Sequence diagram of the interaction between an IMA and a PDA, mediated by an IWA

As an IWA is a stationary IMA, its lifecycle, creation and communication with
IMAs are as described in Section 2.1. In addition, in order to allow an IWA to access
all the platform-dependent communication mechanisms which are required for inter-
acting with platform-dependent agents, the WrapperAgent class must be properly
extended by overriding the translate, constructReply and handleEvent methods.
Figure 5 reports a skeleton of the HLP of an IWA which describes each of the above-
mentioned methods and highlights how to extend them.

A general interaction between an IMA and a PDA, mediated by an IWA, in which
the interaction initiator is the IMA, is shown in Figure 6. In particular, the IMA sends
its request (evtReq) to the IWA that, in turn, translates its content into a platform-
dependent format through the translate method and incorporates this content into a
platform-dependent request which is sent to the PDA. As soon as the IWA obtains the
reply from the PDA, it constructs the reply event (evtRep) through the constructReply
method and sends this event to the IMA.

3 A Case Study

The following describes a JIMAF-based solution for implementing a complex insur-
ance service offered by a virtual organization. In particular, the proposed JIMAF-
based application concerns the problem of determining the price that a user must pay
for a complex insurance product which comprehends policies of various types and is
offered by a virtual insurance company which is composed of different insurance
companies, each of which is specialized in a particular insurance service (e.g. automo-
tive, life, home and medical insurance). The price of the complex product required by
the user is determined from the price of each component, as established on the basis
of the user’s data (age, sex, income, etc.) by the insurance company which handles
that kind of product within the virtual insurance network. Each insurance company
has a proprietary agent-based pricing service running on a specific agent platform.

This problem could be effectively approached through the mobile agent paradigm
by employing a mobile agent which, on the basis of both the insurance products
which compose the complex insurance product and the user’s data, migrates to the lo-
cations of each member insurance company of the virtual insurance network, and de-
termines the price of the complex product by exploiting the local available pricing
services. As demonstrated in the literature [27], such a solution is particularly effec-
tive for reducing the time necessary to complete an otherwise complex task. However,

216 G. Fortino, A. Garro, and W. Russo

this solution requires that the mobile agent not only is capable of migrating among
heterogeneous agent platforms and executing on these platforms but also of interact-
ing with the platform-dependent agents developed and deployed for offering the spe-
cific pricing services; JIMAF, due to its features, can be effectively exploited for the
implementation of this solution. In particular, the JIMAF-based solution for pricing a
complex insurance product offered by a virtual insurance company is not expensive
as it exploits the already available PDAs (PricingAgents) for handling the pricing ser-
vices, and easy to develop as it only requires the definition and implementation of:

− an IMA (RoamingInsuranceAgent) which, according to the composition of the
complex insurance product to price, roams through the heterogeneous agent plat-
forms where the single pricing services are managed by the PricingAgents, con-
tracts the price of each single insurance product and departs for the next location;

− a set of local IWAs (PricingWrapperAgents), one for each type of platform which
may be included in the itinerary. Each PricingWrapperAgent mediates the commu-
nication between the RoamingInsuranceAgent and a local platform-dependent
PricingAgent by using the wrapping techniques as illustrated in Section 2.2. In par-
ticular, at each location of the itinerary, the RoamingInsuranceAgent interacts
through JIMAF-based events with the local PricingWrapperAgent, which, in turn,
interacts with the local PricingAgent through the interaction mechanisms provided
by the specific platform.

Figure 7 reports the class diagram of a JIMAF-based solution for an itinerary
which includes Aglets, Ajanta, Grasshopper, JADE, and Voyager platforms highlight-
ing the PricingWrapperAgent and the PricingAgent for the JADE platform.

InteroperableAgent
<<from jimaf.interoperable>>

RoamingInsuranceAgent

JadePricingWrapperAgentJadePricingAgent

Agent
<<from jade.core>>

0..*

11

0..*

<
<

interacts>>

<<interacts>>

Voyager

Grasshopper Ajanta

0..*

0..*

0..*

0..*

0..*

0..*

<
<

interacts>>

<<
interacts>>

<
<

interacts>>

JADE

WrapperAgent
<<from jimaf.interoperable>>

Aglets

<<
interacts>>

0..*

0..*

JadeAgent

IAgent <<interface>>
<<from jimaf.interoperable>>

InteroperableAgent
<<from jimaf.interoperable>>

InteroperableAgent
<<from jimaf.interoperable>>

RoamingInsuranceAgentRoamingInsuranceAgent

JadePricingWrapperAgentJadePricingWrapperAgentJadePricingAgentJadePricingAgent

Agent
<<from jade.core>>

Agent
<<from jade.core>>

0..*

11

0..*

<
<

interacts>>

<<interacts>>

Voyager

Grasshopper Ajanta

0..*

0..*

0..*

0..*

0..*

0..*

<
<

interacts>>

<<
interacts>>

<
<

interacts>>

JADE

WrapperAgent
<<from jimaf.interoperable>>

Aglets

<<
interacts>>

0..*

0..*

JadeAgentJadeAgent

IAgent <<interface>>
<<from jimaf.interoperable>>

IAgent <<interface>>
<<from jimaf.interoperable>>

Fig. 7. The JIMAF-based solution for pricing a complex insurance product offered by a virtual
insurance company

 Enabling the Reuse of Platform-Dependent Agents 217

In the following subsections the programming of the RoamingInsuranceAgent and
the PricingWrapperAgents is described to show both the definition of the behaviors
of the identified agents and the use of the relevant features of JIMAF described in
Section 2:

− event-based programming of an IMA and IWA for the proactive driving of their
behaviour and for their intercommunication;

− programming of heterogeneous transparent migration of an IMA through the gen-
eration of events of the migrate type;

− communication between IMAs (RoamingInsuranceAgent) and PDAs (Pricin-
gAgents) mediated by IWAs (PricingWrapperAgents).

The complete code of this JIMAF-based application can be requested from the
JIMAF website [18].

3.1 Programming the RoamingInsuranceAgent

The specification of the behavior of the RoamingInsuranceAgent requires only the
definition of its HLP (see Section 2.1) as the LLP of an IMA, which depends on the
agent platforms hosting it during its lifecycle, is already provided by JIMAF (cur-
rently for the Aglets, Ajanta, Grasshopper, JADE, and Voyager platforms). In particu-
lar, the definition of the HLP, given the skeleton reported in Figure 3, was carried out
by specifying, along with the definition of application-dependent data structures and
auxiliary methods, the onArrival and the handleEvent methods whose implementation
is reported in Figure 8.

In the onArrival method the RoamingInsuranceAgent performs the following ac-
tivities: (i) after its creation, it computes its itinerary on the basis of the description of
the complex insurance product to be priced and finally migrates onto the first platform
of the itinerary; (ii) after each subsequent migration, it constructs an event (PriceRe-
quest) to be sent to the PricingWrapperAgent which is running on the current hosting
platform; this event contains the URL of the proxy of the RoamingInsuranceAgent
(URLSender), the URL of the proxy of the PricingWrapperAgent (URLReceiver), the
event type (PriceRequest), and the event content (evtArgs) related to the user’s data
for pricing the specific insurance product; (iii) after the completion of its itinerary, it
computes the price of the complex insurance product through the computeTotalPrice
method at the starting location (startingLocation).

In the handleEvent method the RoamingInsuranceAgent reacts to the following
events:

− the PriceReply event by extracting the single product price from the content of the
event, which was sent by a PricingWrapperAgent, and by adding it to the gathered
prices. In addition, if the itinerary has not been completed, the RoamingInsur-
anceAgent generates a migrate event with itself as target (URLSender=URLReceiver)
and the next location of the itinerary as content; otherwise, the agent generates and
sends a Finish event to itself;

− the Finish event by generating a migrate event for migrating to the startingLoca-
tion on which the gathered prices will be analyzed to compute the total price of the
complex insurance product.

218 G. Fortino, A. Garro, and W. Russo

public void onArrival(){
super.onArrival();
if (roamingStarted==false) { // the agent is starting the roaming task

startingLocation = getInfo().getCurrentLocation();
if (locationsToVisit>=1) {

roamingStarted=true;
URLSender = myInfo.getName(); URLReceiver = myInfo.getName();
evtTag = "migrate";
evtArgs = (Location)(itinerary.elementAt(locationIDNumber));
send(new Event(URLSender, URLReceiver, evtTag, evtArgs));

}
} else if (roamingComplete==false) { // the agent is carrying out the roaming task

URLSender = myInfo.getProxyURL();
AgentDescriptor AgDReceiver = (AgentDescriptor)
(pricingWrapperAgents.elementAt(locationIDNumber));
URLReceiver = AgDReceiver.getProxyURL();
evtTag = "PriceRequest";
evtArgs = priceQueries.elementAt(locationIDNumber);
send(new Event(URLSender, URLReceiver, evtTag, evtArgs));

}
else // the roaming task has been completed and
 // the agent returned on the starting location

computeTotalPrice();
}

public void handleEvent(Event ev){
if (ev.getTag().equals("PriceReply")){

prices.add(locationIDNumber, analysePrice(ev.getArgs()));
locationIDNumber++;
if(locationIDNumber==locationsToVisit) {

roamingComplete=true;
URLSender = myInfo.getName(); URLReceiver = myInfo.getName();
evtTag = "finish";
evtArgs = null;
send(new Event(URLSender, URLReceiver, evtTag, evtArgs));

}
else { // the itinerary has not been completed

URLSender = myInfo.getName(); URLReceiver = myInfo.getName();
evtTag = "migrate";
evtArgs = (Location)(itinerary.elementAt(locationIDNumber));
send(new Event(URLSender, URLReceiver, evtTag, evtArgs));

}
}
else if (ev.getTag().equals("finish")){

URLSender = myInfo.getName(); URLReceiver = myInfo.getName();
evtTag = "migrate"; evtArgs = startingLocation;
send(new Event(URLSender, URLReceiver, evtTag, evtArgs));

}
super.handleEvent(ev);

}

Fig. 8. The onArrival and the handleEvent methods of the RoamingInsuranceAgent class

3.2 Programming the PricingWrapperAgents

As discussed in Section 2.2, for each platform which can be visited by the Roam-
ingInsuranceAgent, a specific PricingWrapperAgent was developed. In particular,
each PricingWrapperAgent was defined by extending the WrapperAgent class so to
obtain its HLP as its LLP is furnished by JIMAF.

The PricingWrapperAgents defined for Aglets, Grasshopper, Voyager, and Ajanta
exploit similar communication mechanisms based on synchronous messages. In par-
ticular, the definition of their HLP, on the basis of the skeleton reported in Figure 5,
was carried out by specifying, along with the application-dependent data structures
and auxiliary methods, the translate, constructReply and the handleEvent methods
whose implementation with reference to Ajanta is reported in Figure 9.

 Enabling the Reuse of Platform-Dependent Agents 219

protected Object translate(Event evtReq){
return evtReq.getArgs();

}

protected Event constructReply(Object rs){
return new Event(myInfo.getProxyURL(), URLPartner,"PriceReply", rs);

}

public void handleEvent(Event ev){
if (evtReq.getTag().equals("PriceRequest")){

String PRICE_REQUEST = (String) translate(evtReq);
URLPartner = evtReq.getURLSender();
try{

Object rs = null;
IAjantaPricingAgent IajantaPricingAgent = null;
try{

NRAccess nameReg = agHost.getNameReg();
AgentNREntry agentNR = (AgentNREntry)
nameReg.lookup(AjantaPricingAgentURN);
AgentServerNREntry serverNR = (AgentServerNREntry)
nameReg.lookup(agentNR.getServerURN());
URL rmiRegURL = serverNR.getRMIRegURL();
String lookupString = "//"+ rmiRegURL.getHost()+":" + rmiRegURL.getPort()+"/"+
AjantaPricingAgentURN.toString();
IajantaPricingAgent = (IAjantaPricingAgent) Naming.lookup(lookupString);
rs = IajantaPricingAgent.priceRequest(PRICE_REQUEST);

}
catch(Exception e){System.out.println(e);}
Event evtRep = constructReply(rs);
send(evtRep);

}catch(Exception e){e.printStackTrace();}
}
super.handleEvent(ev);

}

Fig. 9. The translate, constructReply and the handleEvent methods of the AjantaPricingWrap-
perAgents class

protected Object translate(Event evtReq){
String myURL = getInfo().getName();
String evtTag = Integer.toString(PRICE_REQUEST);
Object evtArgs = evtReq.getArgs();
return new Event (myURL,null,evtTag,evtArgs);

}

protected Event constructReply(Object rs){
String myURL = getInfo().getName();
String evtTag = "PriceReply";
Object evtArgs = ((Event)rs).getArgs();
return new Event (myURL,URLPartner,evtTag,evtArgs);

}

public void handleEvent(Event ev){
if (evt.getTag().equals("PriceRequest")){

URLPartner = evt.getURLSender();
Event priceRequest = (Event) translate(evt);
IAgent myLLP = getSpecificAgent();
myLLP.send(pricingServiceLookUpString,priceRequest);

}
else if (evt.getTag().equals(Integer.toString(PRICE_REPLY))){

Event priceReply = costructReply(evt);
send(priceReply)

}
super.handleEvent(ev);

}

Fig. 10. The translate, constructReply and the handleEvent methods of the JadePricingWrap-
perAgent class

As JADE only provides communication mechanisms based on asynchronous mes-
sages, the HLP of the PricingWrapperAgent for JADE (JadePricingWrapperAgent
class) does not directly exploit the platform-dependent communication mechanisms but

220 G. Fortino, A. Garro, and W. Russo

delegates their exploitation to its LLP. Figure 10 shows the translate, constructReply
and the handleEvent methods implemented by JadePricingWrapperAgent class. In
particular:

• the translate method extracts the event content (i.e. the data for pricing the specific
insurance product) and returns a JIMAF event which can be exploited for the gen-
eration of a suitable ACL-message to be sent to the JadePricingAgent;

• the constructReply method generates a JIMAF PriceReply event whose content has
been obtained from the data provided by the JadePricingAgent;

• the handleEvent method handles: (i) the PriceRequest event by invoking the trans-
late method and transmitting the obtained event to the JadePricingAgent through
the send method of the LLP which exploits the asynchronous communication
mechanism of JADE; (ii) the PRICE_REPLY event by invoking the constructRe-
ply method and transmitting the obtained event to the RoamingInsuranceAgent.

4 Related Work

The development of heterogeneous agent-based applications requires to address dif-
ferent interoperability issues, the most relevant ones concerning how to allow agents
to migrate among, to execute on, and to communicate from/to heterogeneous agent
platforms, without neglecting security concerns. In [9], proposals which address these
issues were discussed and compared with JIMAF.

In this section the solutions presented in the literature, which address the other im-
portant issue of using non-interoperable code (i.e. code which was specifically devel-
oped for a particular agent platform) in the context of a heterogeneous agent-based
application, will be discussed and compared with the solution provided by JIMAF. In
particular, two main classes of approaches can be identified, the first one concerns
those approaches which carry out agent code translation among specific heterogeneous
platforms, and the second one concerns approaches based on the direct or mediated
interaction of heterogeneous agents (universal servers, middle agents, standards-
based).

Approaches based on code translation [30, 15] enable the use of code developed
for a specific platform by migrating and executing on this platform agents coming
from heterogeneous platforms and which have been previously converted for enabling
their execution. In particular, in [30] the use of converters able to dynamically trans-
late agents from a source agent platform into a different target agent platform is pro-
posed and exemplified by defining a converter between the Aglets and the Voyager
platforms. While this solution does not require changing the already available agents,
it only partially addresses the interoperability issues as it does not support communi-
cation interoperability between agents running on heterogeneous platforms. In [15] a
middleware approach for supporting interoperability of migration and execution
among heterogeneous agent platforms is presented. The approach is centred on the
concept of incarnation agent: when a mobile agent decides to migrate to a different
type of mobile agent platform, an incarnation agent is created. Such an agent: (i) ex-
tracts the procedure and execution status of the migrating agent; (ii) translates
them into a common representation; (iii) migrates to the destination agent platform;

 Enabling the Reuse of Platform-Dependent Agents 221

(iv) creates, at the destination platform, a new agent by applying to the common
representation obtained for the migrating agent the translation rules specific of the
destination platform. For migrating on a platform of a different type, an agent must
therefore be partially reprogrammed as it must explicitly invoke a migration function
for triggering the described process.

Approaches based on direct or mediated interaction of heterogeneous agents en-
compass solutions focused on the exploitation of universal servers [28], standards
[22, 11, 29, 3], and middle agents [12, 25, 26].

A definition of a universal server which is able to host agents coming from differ-
ent agent platforms is presented in [28]. This approach does not require any modifica-
tion to the previously developed agents which, reaching the universal server, can
interact both locally with any other agent hosted on the universal server and remotely
with agents whose type is that of the origin agent platform. However, the agents
which reach the universal server cannot migrate back, thus losing the important capa-
bility of mobility.

Standards-based approaches can be based on agent-specification [22, 11], proto-
col-definition [29] and web service technologies [3].

The most significant agent-specification based approaches are MASIF (Mobile
Agent Systems for Interoperability Facility) [22] and FIPA (Foundation of Intelligent
and Physical Agents) [11]. These approaches require that the agent code is compliant
with the standards or, if the agent code is not compliant, they require the development
of a wrapper agent which then acts as a mediator between the non-standard entity and
the standard compliant agents [11]. Although agent-specification based approaches
are not restricted to any specific technology or programming language, the main ob-
stacle to their wide adoption is that most of the currently available agent platforms are
not compliant with these standards and, to become compliant, agent platforms must
be radically modified both in their architecture and programming model.

A protocol-definition solution is presented in [29] where it is proposed an agent
interaction technique which involves ontologies, representation in UML of ontology-
specific content language, and dynamic exchange of interaction protocols. This tech-
nique regards only FIPA compliant agents which, however, need to be reprogrammed
on the basis of the proposed agent architecture; moreover, as for specification-based
approaches, wrapper agents must be developed for supporting the use/reuse of non-
FIPA-compliant entities [11].

An approach based on web service technologies, which provides an adaptation
layer among heterogeneous agent platforms, is proposed in [3]. In particular, while in-
teractions among heterogeneous agent platforms are mediated by web services, which
interact by using SOAP messages so enabling communication among heterogeneous
agents, heterogeneous migration is based on a code translation technique.

Several approaches for supporting code reuse in the context of heterogeneous
agent-based applications rely on interactions, among heterogeneous agents, mediated
by middle agents [12, 25, 26].

In [12] a multi-agent system interoperator is defined, which is an entity that only
enables agents of heterogeneous platforms to dialogue with each other without being
aware of the interoperator itself. An interoperator which only allows agents in the
RETSINA system to communicate with OAA (Open-Agent Architecture) agents and
vice-versa is also described.

222 G. Fortino, A. Garro, and W. Russo

In [25] and [26] different types of middle agents (Brokers, Facilitators, and
Matchmakers) are introduced. In particular, Brokers and Facilitators mediate the
communication between agents by adapting, if necessary, the formats of the ex-
changed messages. The proposed middle agents exploit a shallow-parsing template
approach which relaxes the constraint that interacting agents must share a common
language for describing the content and format of messages. However, it is worth not-
ing that, in order to communicate with another agent using the proposed approach, an
agent must be able to interact with a middle agent by adopting a specific communica-
tion protocol, a common capability description language, and a common ontology.

The solution provided by JIMAF for supporting the use of platform-dependent
code in heterogeneous agent-based applications belongs to the class of approaches
centred on middle agents. In particular, a JIMAF-based Interoperable Wrapper Agent
(IWA) can be seen as a special kind of middle agent which wraps platform-dependent
agents and acts as a mediator capable of interacting both with the JIMAF-based Inter-
operable Mobile Agents (IMAs) by using JIMAF-based events as well as with the
platform-dependent agents, by using the platform-dependent communication mecha-
nisms. As an IWA is a special IMA devoted to this mediation task, this solution is
naturally and fully integrated in the solution offered by JIMAF to address the main in-
teroperability issues of migration, execution, and communication among heterogene-
ous mobile agent platforms.

5 Conclusions

Due to the increasing interest in applications involving agents operating on heteroge-
neous agent platforms (heterogeneous agent-based applications), several solutions,
which attempt to address the main interoperability issues of execution, migration, and
communication among heterogeneous agent platforms, have been proposed.

In this paper we have presented a solution to another relevant and emerging issue
concerning the possibility of enabling the reuse of platform-dependent agents in a
heterogeneous agent-based application. In particular, the proposed solution relies on
special agents called Interoperable Wrapper Agents (IWAs) which act as mediators
capable of interacting both with JIMAF-based agents, i.e. Interoperable Mobile
Agents (IMAs) programmed by using the JIMAF framework, and with Platform-
Dependent Agents (PDAs). This solution is an enhancement of JIMAF which makes
JIMAF the only full-fledged approach to interoperability as it fully addresses the main
interoperability issues while providing platform-dependent agents reuse. The rele-
vance of this enhancement has been demonstrated through a significant case study
which highlights the ease, effectiveness and efficacy of developing heterogeneous
agent-based applications which are also able to reuse exiting platform-dependent
agents.

Efforts are currently underway to: (i) support the development of wrapper agents
by means of a semi-automatic process for the generation of the code skeleton of the
wrapper agents; (ii) evaluate the effectiveness of the features of interoperability and
code reuse offered by JIMAF so to support the development of heterogeneous agent-
based applications in several business domains; (iii) investigate the effectiveness of
the exploited wrapping techniques for granting the access to the resources of the
agents platforms.

 Enabling the Reuse of Platform-Dependent Agents 223

References

1. Aglets mobile agent system, documentation and software (2002),
 http://aglets.sourceforge.net/

2. Ajanta mobile agent system, documentation and software (2003),
 http://www.cs.umn.edu/Ajanta/

3. Artail, H., Kahale, E.: MAWS:A platform-independent framework for mobile agents using
Web services. Journal of Parallel and Distributed Computing 66, 428–443 (2006)

4. Bellavista, P., Corradi, A., Stefanelli, C.: Corba solutions for interoperability in mobile
agent environments. In: Proceedings of the 2nd International Symposium on Distributed
Objects and Applications (DAO 2000), Antwerp, The Netherlands, September 21-23,
2000, pp. 283–292 (2000)

5. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE, a white paper. J. Exp. in search
of innovation 3(3), 6–19 (2003)

6. Braun, P., Trinh, D., Kowalczyk, R.: Integrating a New Mobility Service into the Jade
Agent Toolkit. In: Karmouch, A., Pierre, S. (eds.) MATA 2005. LNCS, vol. 3744, pp.
354–363. Springer, Heidelberg (2005)

7. Cybele Agent Infrastucture, documentation and software (2007),
 http://www.opencybele.org

8. FIPAOS Agent Platform, documentation and software (2003),
 http://sourceforge.net/projects/fipa-os/

9. Fortino, G., Garro, A., Russo, W.: Achieving Mobile Agent System interoperability
through software layering. In: Information and Software Technology, pp. 322–341. El-
sevier B.V., Amsterdam (2008)

10. Fortino, G., Garro, A., Russo, W.: Enhancing JADE Interoperability through the Java-
based Interoperable Mobile Agent Framework. In: Proceedings of the 5th IEEE Interna-
tional Conference on Industrial Informatics (INDIN); Special session on Agent Theories
and Practice for Industry (ATPI), Vienna, Austria (July 2007)

11. Foundation of Intelligent and Physical Agents, documentation and specifications (2007),
 http://www.fipa.org

12. Giampapa, J.A., Paolucci, M., Sycara, K.: Agent interoperation across multiagent system
boundaries. In: Proceedings of the 4th International Conference on Autonomous Agents,
pp. 179–186. ACM Press, New York (2000)

13. Grasshopper mobile agent system, IKV++ GmbH, documentation and software (2003),
 http://www.grasshopper.de/

14. Grimstrup, A., Gray, R., Kotz, D., Breedy, M., Carvalho, M., Cowin, T., Chacon, D., Bar-
ton, J., Garret, C., Hofmann, M.: Toward Interoperability of Mobile-Agent Systems. In:
Suri, N. (ed.) MA 2002. LNCS, vol. 2535, pp. 106–120. Springer, Heidelberg (2002)

15. Hasegawa, T., Cho, K., Kumeno, F., Nakajima, S., Ohsuga, A., Honiden, S.: Interoperabil-
ity for mobile agents by incarnation agents. In: Proceedings of the 2nd Int. Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 1006–1007. ACM Press, New
York (2003)

16. JACK Agent Platform, documentation and software (2007),
 http://www.agent-software.com/shared/products/index.html

17. JADE, Java Agent DEvelopment framework, documentation and software (2007),
 http://jade.tilab.com

18. JIMAF (Java-based Interoperable Mobile Agent Framework), documentation and software
(2006), http://lisdip.deis.unical.it/software/jimaf/

19. Lakos, J.: Large Scale C++ Software Design. Addison-Wesley, Reading (1996)

224 G. Fortino, A. Garro, and W. Russo

20. Luck, M., McBurney, P., Preist, C.: A Manifesto for Agent Technology: Towards Next
Generation Computing. Autonomous Agents and Multi-Agent Systems 9(3), 203–252
(2004)

21. Magnin, L., Pham, V.T., Dury, A., Besson, N., Thiefaine, A.: Our Guest Agents are Wel-
come to Your Agent Platforms. In: Proceedings of the Symposium on Applied Computing
(SAC 2002), Madrid, Spain, March 10-13, pp.107–114 (2002)

22. MASIF (Mobile Agent System Interoperability Facility) specification, OMG TC Docu-
ment orbos/98-03-09 (1998),

 ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf
23. Misikangas, P., Raatikainen, K.: Agent migration between incompatible agent platforms.

In: Proceedings of the 20th Int’l Conference on Distributed Computer Systems, Taipei,
Taiwan, April 10-13, 2000, pp. 4–10. IEEE Computer Society Press, Los Alamitos (2000)

24. Objectspace Voyager, documentation and software (2003),
 http://www.recursionsw.com/products/voyager

25. Payne, T., Paolucci, M., Singh, R., Sycara, K.: Facilitating Message Exchange though
Middle Agents. In: Proceedings of the 1st Int. Joint Conference on Autonomous Agents
and Multiagent Systems. ACM Press, New York (2002)

26. Payne, T., Singh, R., Sycara, K.: Communicating agents in open multi-agent systems. In:
Proceedings of the 1st GSFC/JPL Workshop on Radical Agent Concepts (WRAC),
McLean, VA, USA (2002)

27. Picco, G.: Mobile Agents: An Introduction. Journal of Microprocessors and Microsys-
tems 25(2), 65–74 (2001)

28. Pinsdorf, U., Roth, V.: Mobile Agent Interoperability Patterns and Practice. In: Proceed-
ings of 9th Annual IEEE Int’l Conference and Workshop on the Engineering of Computer-
Based Systems (ECBS), Lund, Sweden, April 8-12, pp. 238–244 (2002)

29. Purvis, M.K., Cranefield, S., Nowostawski, M., Ward, R., Carter, D., Oliveira, M.A.:
Agentcities interaction using the opal platform. In: Proceedings of the Workshop on Chal-
lenges in Open Agent Systems, 1st Int. Joint Conference on Autonomous Agents and Mul-
tiagent Systems. ACM Press, New York (2002)

30. Tjung, D., Tsukamoto, M., Nishio, S.: A Converter Approach for Mobile Agent Systems
Integration: A Case of Aglets to Voyager. In: Proceedings of the 1st Int. Workshop on
Mobile Agents for Telecommunication Applications (MATA 1999), Ottawa, Canada, Oc-
tober 6-8, pp. 179–195 (1999)

Introducing a Process Infrastructure

for Agent Systems

Christine Reese, Matthias Wester-Ebbinghaus,
Till Dörges, Lawrence Cabac, and Daniel Moldt

University of Hamburg, Department of Informatics,
Vogt-Kölln-Str. 30, D-22527 Hamburg

http://www.informatik.uni-hamburg.de/TGI

Abstract. Within open distributed systems the realization of a span-
ning application is an open problem. While the local functionality can
be implemented based on established approaches, the overall control of
the processes to form a consistent and correct application remains diffi-
cult. Workflow management systems (WFMS) are one solution for pro-
cess control. In combination with distributed systems further issues have
to be solved and are investigated here under different perspectives like
Petri nets (to provide a true concurrency semantics of the concepts) and
agents (to provide a powerful middleware and a more abstract modeling
paradigm than objects or components).

In this paper we coin the phrase process infrastructure. The idea is to
provide all means to model, build, control and maintain the processes
within open agent networks as special distributed systems by combining
the above mentioned concepts and techniques. To gain such a powerful
process infrastructure, we started to build prototypes, which stepwise
introduce some implementations of the advanced concepts. The poten-
tial of our proposed solution lies in its flexibility and rigorous formal
precision. Thanks to the latter the models are directly executable. The
approach introduces autonomous and adaptive handling of processes in
specific units (agents), which use and produce the necessary infrastruc-
ture to handle processes in different contexts on all levels.

1 Introduction

Collaborative business scenarios raise the question of how to integrate the coop-
erating enterprises. One has to deal with cross-organizational processes charac-
terized by distributed entities that have distinct (and purposefully hidden) local
knowledge in addition to the common global knowledge within the network. The
corresponding localization of data, behavior and decision making requires an
exact conceptualization of the organization-spanning business processes that ex-
plicitly includes the participants’ information and communication technologies.

Several authors (see Section 2.2, Related Work) propose to integrate the con-
cepts of agents, workflows and traditional computer science techniques to build
better applications. Multi-agent applications represent an important subclass of

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 225–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 C. Reese et al.

such distributed, concurrent and large applications. The overall goal of our work
is to improve the development of multi-agent systems. In [1,2,3] we presented
(parts of) the conceptual framework. Now we present the concept of a process
infrastructure for open agent networks together with an implemented workflow
agent as its key component. The conceptual lifecycle and implementation details
have not been published before. The workflow agent encapsulates a process to
allow for autonomous and flexible handling of system spanning processes, en-
abled through the process infrastructure. The process infrastructure facilitates
the instantiation, maintenance, modification and termination of processes at the
conceptual and the technical level.

We start with an approach to processes, workflow and multi-agent systems
(MAS) and the basic concepts in Sections 2 and 3. The specification of our
process infrastructure is presented in Section 4, followed by a short glimpse at a
running prototype and application examples in Section 5.

2 Processes, Workflows and Multi-agent Systems

First of all, we introduce our terminology and outline the underlying concepts
as well as their interconnections. Then we elaborate on related work in the areas
of (distributed) workflow management systems and present concepts stemming
from the field agent networks.

2.1 Terminology

In the domain of system-spanning cross-organizational process management, our
focus is on open agent networks. We provide a generic infrastructure for the sup-
port. This infrastructure is made up of agents as the technical term for flexible
and autonomous encapsulated entities with problem-solving capabilities. Agents
make up multi-agent systems which are our target technology environment. The
agents designed here rely on well-established mechanisms of workflow manage-
ment and enrich those.

Processes and Petri Nets. We use Petri nets for both modeling and pro-
gramming purposes. Petri nets have operational semantics that makes them
specifically tailored for process-oriented models. They are a well-known means
for modeling the concepts of concurrency, independence, precedence and conflict
when regarding activities. The term process has a specific meaning in Petri net
terminology. Petri net processes are a recognized alternative for describing the
behavior of Petri nets by firing sequences. Processes are themselves Petri nets
from the class of causal nets, where no forward branching is allowed for the
places. We refer to [4] for a thorough introduction to Petri nets.

Reference nets (introduced by Kummer in [5], in German) as a higher-order
Petri net formalism show some extensions compared to conventional colored Petri

Introducing a Process Infrastructure for Agent Systems 227

nets. They implement the nets-within-nets paradigm where a surrounding net
(the system net) can have nets as tokens (the object nets). To facilitate commu-
nication between nets, synchronous channels permit a fusion of two transitions
at a time for the duration of one occurrence and thus enable bi-directional in-
formation flows. In addition, reference nets may carry complex Java inscriptions
and consequently offer the possibility of Petri net-based Programming – using
the multi-formalism Petri net editor and simulator Renew as an integrated
development environment.

Agents. The Petri net-based multi-agent framework Mulan (introduced by
Rölke et al. in [6]) allows for the modeling and execution of multi-agent applica-
tions with reference nets. The Capa extension by Duvigneau et al. [7] expands
the Mulan specifications to reach compliance with the Fipa1 standards. An
agent has a specific behavior which is based on its goals, its knowledge and
its environment. The behavior of Mulan and Capa agents is specified using
reference nets called protocol nets. Agents are hosted on platforms that are con-
nected through a technical communication infrastructure and together form the
multi-agent system. Agents communicate asynchronously in terms of the agent
communication language Fipa-Acl and domain specific ontology. One factor
defining the interrelationships between the agents are services, where agents can
be service providers or consumers. We deal with different types of agents ac-
cording to the roles they embody and the services they offer. The agents use
a (distributed) directory service in order to identify and contact companions.
This service is named directory facilitator (DF), and together with the agent
management system (AMS), is standardized by the Fipa.

Workflow Management Systems. A workflow is “the computerized facili-
tation or automation of a business process, in whole or part” as defined by the
WfMC2 in the workflow reference model. A Workflow is composed of tasks, an
executable task with case data is called a workitem and a workitem that is as-
signed all necessary resources and a user to do the work is called an activity.
Each workitem in a workflow instance is communicated to users according to
their capabilities and rights (modeled as their roles). The execution of activities
is managed : it can be monitored, controlled or stopped. Management systems
for distributed or inter-organizational workflows are particularly interesting. A
plethora of products, research efforts and projects exist that address this aspect
(see Section 2.2, Related Work).

One especially suitable possibility to handle the arising complexity of such sys-
tems is agent-based workflow management. Another basic way to handle com-
plexity is to use nested structures, as it is possible with the nets-within-nets
concept provided by reference nets. Additionally, Petri nets are eminently apt to
represent workflows. Van der Aalst introduced Workflow Petri nets and published

1 Fipa: Foundation for Intelligent Physical Agents. http://www.fipa.org (2007)
2 WfMC: Workflow Management Coalition (WfMC). http://www.wfmc.org/

228 C. Reese et al.

on verification and analysis of those: [8,9,10]. Jacob used reference nets to design
and implement a workflow management system which runs locally but provides
an rmi interface for clients [11].

2.2 Related Work

The general aim to support distributed, heterogeneous or open systems is ad-
dressed from several directions in different approaches. We believe that the out-
comes are converging towards general flexible infrastructures providing support
for processes. Grid technology combined with Service Oriented Architectures is
one of those approaches. For example Böhme and Saar [12] address integration
of services based on different communication frameworks in order to develop
an open software platform for adaptive services discovery, creation, composition
and enactment. They do not look at Fipa agents although they are easy to in-
tegrate since agents can also provide services described in WSDL3. Their notion
of workflow does not stress the management part as specified by the WfMC.
Distributed workflows related to Grid technology are researched for example by
Burchard et al. [13]. In this area, it is important to distinguish between concepts
and realization of concepts. The concepts for agents and Web Services are differ-
ent, but both concepts can be realized using the technologies of the other. So we
need to distinguish between concepts and techniques. For example, Blake names
dynamic service composition “agent based workflow services” [14]. He refers to
agents as concepts, whereas the Fipa sees agents as a means of realization. Also,
the term workflow in this work does not refer to workflow management notions
of the WfMC.

In the sense of general distributed workflow management, a lot of related
work exists, even agent-based or using Petri nets. None of these aims at pro-
viding process support to open agent networks, however, parallel development
of similar ideas occurred as the field is quickly evolving: (a) van der Aalst tried
to handle complexity through inheritance: [15,16] (b) Blake’s work with respect
to inter-organizational workflows [17] is related to ours, but focuses on auto-
matic configuration and management of low-level services; (c) Buhler and Vidal
cover adaptive and distributed workflows: [18,19]; (d) the CrossFlow European
project4 [20], its main point is to out-source parts of a process and to connect
several WFMS for this purpose; (e) Purvis et al. developed Jbees [21], using Web
Services [22], agents and Petri nets. This approach is similar to ours. However, it
does not support the intensive use of agent concepts as middleware technology
for the implementation. Purvis in [23] does the same steps we published in [2]:
transfer the workflow terminology to agent terminology (f) ADEPT is a general
flexible distributed workflow control (see [24,25]), not aimed at intra-agent pro-
cess control and not aimed at a general service for agents in open environments.
ADEPT is designed to combine dynamic workflow changes with a distributed
3 WSDL: Web Service Description Language. http://www.w3.org/TR/wsdl20/ (2007)
4 CrossFlow: Cross-organizational workflow support in virtual enterprises esprit

project 28635. http://www.crossflow.org/flyer.html (Last visited: Jan 2008)

Introducing a Process Infrastructure for Agent Systems 229

execution of workflows, taking performance issues into account [26]. Bauer, Re-
ichert and Dadam also work on distributed WFMS under the aspect of load
balancing [27]. (g) Also related to our work is the work by M.P. Singh et al.
[28]. One principal point in their research is the investigation of longest running
workflows.

2.3 Agent Networks

Since the early stages of standardization for agent communication through Fipa,
open test environments were provided. To facilitate the vision of the possibilities
of general open agent environments as a competition technique to Web Services
and conceptually on a higher level than these, the European project Agentcities
was created. Agentcities provided an open agent testbed for agent-based ser-
vices and cooperations (which is now offline). A central node provides directory
services for platforms, agents and services. The successor openNet5 introduces
a hierarchical and scalable network approach. Both agent networks introduce
special agents that need to be provided by each participating agent platform
and make up the network as such.

3 Conceptual Scope

This section introduces the basic ideas and concepts before in the next sections
a prototype is designed. Some technical aspects are mentioned here since tools
generally have an impact on the ideas (compare notion of a Think Tool in [29]).
Furthermore, this section spans a frame of possible implementations. Sect. 4
chooses one possibility which is refined, until it reaches the concrete prototype
described in Sect. 5.

To summarize, using the introduced concepts and techniques, we design a
process infrastructure for open agent networks using Mulan as a conceptual
view on agent systems and Capa as an agent platform. We use Petri nets to
define the behavior of agents as well as for the definition of the precedence
relation of workflows.

3.1 What Is an Infrastructure for Agent Networks?

An infrastructure in the sense of our work consists of (a) technical aspects with
a certain quality-of-service, (b) preconditions for participants and (c) a suffi-
cient amount of participants because the infrastructural services are not useful
as such, but become useful through usage. The process infrastructure for open
agent networks as far as developed here focuses on point a: enactment services
for system spanning processes as well as monitoring and explicit representation
of processes, enabling a holistic view on spanning processes. Spanning processes

5 openNet (agent network). http://x-opennet.net/ (2005) (Last visited: Jan 2008)

230 C. Reese et al.

and fragmented processes are two views on the same thing which is inherent to
distributed systems.

We now consider the infrastructure that could result from a synthesis of
Agentcities and openNet: agents and agent-based services are supported by pro-
viding technical services with a certain quality (such as servers for directory
services under fix addresses) under certain preconditions (such as specifications
on how to connect and what agents to provide) and by assembling a certain
amount of users. The explicit support of spanning processes as described above
is missing. The standard interaction protocol specifications of Fipa could be seen
as an existing support for processes, but apart from that there is no support for
application specific processes.

3.2 WFMS and Agents

On the way from pure forms of organizing a complex software (workflow man-
agement system or multi-agent system) to an integrated process infrastructure
for agents, we merge workflow management technology and agent technology in
the following way:

Level 1. Starting point: multi-agent systems on the one hand and workflow man-
agement systems on the other.

Level 2. Use agents to provide a flexible architecture for a workflow management
system.

Level 3. Change the interface of the resulting agent-based workflow management
system so that agents can use it.

Level 4. Develop some generic services using the workflow management function-
ality to provide process management for a special kind of multi-agent
system. The interactions and processes would be organized using the
workflow management functionality so that it is possible to explicitly
describe overall execution processes, observe them and manage changes
and instantiation of processes. The resulting multi-agent system would
be said to use a process infrastructure.

Level 5. Transfer the characteristics of inter-agent processes to intra-agent com-
munication regarding complex agents, supporting the notion of agents
encapsulating sub-agents, or distributedly implemented agents on logi-
cal platforms.

3.3 Design Approach

The design is done with the approach “Petri net-based agent oriented software
engineering” (PAOSE, described in [30] and [31]). This approach uses mainly the
following diagrams: use case diagrams and agent interaction protocol diagrams
(AIP) from (A)UML, and multi-agent diagrams based on class diagrams. All
diagram types are supported as drawing plugins within Renew, the AIP plugin
allows for Petri net code generation and round-trip engineering.

Introducing a Process Infrastructure for Agent Systems 231

3.4 Central Concepts in Relation to the Technical Framework

The envisioned process infrastructure has some special conceptual requirements
to the framework. Following some of those developed within the project will be
mentioned.

– The relation between two agents where one agent created the other needs
special attention, because the creator agent should be especially trusted by
the created agent. Capa does not support this natively but it can be simu-
lated by a special interaction design where a reactive initialization protocol
can only be invoked once in the created agent.

– An agent that represents a complex part of a system needs to have a defined
agent-internal communication framework. In Capa, this consists of the no-
tion of a Decision Component – a reference net that can provide bidirectional
communication channels to protocol nets, that is having access to the agent’s
knowledge base and that can establish connections to legacy systems or a
GUI component of an agent.

– The connection to an existing agent network is not exactly necessary for
the conceptual development of an agent-based workflow management sys-
tem, but the process infrastructure is especially meant for the use in such
a network. The main precondition for the framework here is the Fipa com-
pliant message transport integrated in Capa from beginning on. In order to
implement the prototype, Capa was extended to join Agentcities [32] and
to openNet [33].

– In order to realize the concept agent-implemented-by-agents, ongoing work
aims at nesting Capa agents one into the other.

3.5 Distribution of Agents and Processes

We transfer the basic idea of nested structures to agents: one agent is imple-
mented using several agents which henceforth are internal agents. The sur-
rounding agent acts as a platform for the internal agents. The first step to
this viewpoint is to consider the protocol nets as agents, communicating with
other protocol nets via the previously mentioned decision components, using
the knowledge base as a common resource. Another viewpoint is to regard a
multi-agent system as one distributedly implemented agent, either with or even
without an explicit representation of that single agent. Stockheim et al. present
a holonic way to structure multi-agent systems using one agent that represents a
multi-agent system: multi-multi-agent systems [34]. Our approach works differ-
ently by regarding the constituting parts as within the representative part which
is not necessarily the only part that communicates with outside agents.

In this idea, one workflow management system (WFMS) agent is made up
of several specialized agents, and one level higher, several WFMS agents can be
combined to implement one distributed WFMS agent. In an open agent network,
the directory services would be used for dynamic addressing of distributedly
implemented WFMS agents.

232 C. Reese et al.

A process as such may be distributed through fragmentation. Fragmentation
of Petri nets for workflows has been elaborated in previous work: [2,3]. Workflow
fragment nets as introduced in the cited work are place-bordered Petri nets,
arranged in star shape with a control Petri net which represents the overall
workflow. Conflicts can be handled using a distributed lock mechanism.

3.6 Vision: Process Control within Agents

An arbitrary agent bears part of the overall process control within itself. All such
parts of process control together form a global workflow management system
(in analogy, all sending and receiving facilities within each agent in a MAS
form the overall message transport system). To reach this in the long run, we
aim at the transfer of the process control between agents to the process control
within an agent. Such a generic process control would change the communication,
coordination and cooperation of agents in open networks.

This can be reached by building a hierarchical MAS where the super-MAS im-
plements a distributed WFMS and each simple MAS implements a local WFMS.
The workflow views of the subordinate ones culminate in the super-MAS.

All the features of extensive process support would apply to agent-internal
processes as well as to interactions between agents. Regarding agent interactions,
managed processes are as ubiquitous as a transport service and each agent, not
only special agents like in the level before, can use the service with respect to
initiate, monitor, control, change or stop processes while the rights and roles are
a means to organize information.

4 Process Infrastructure

The following concepts are developed in three steps. First, an agent-based work-
flow management system corresponding to Level 3 in Sect. 3.2 is designed, then
the mobile workflow agent is described and as the third step, the process infra-
structure within an open agent network like openNet is described.

Using the concepts introduced in this section, a process infrastructure can be
developed to control /monitor multi-agent systems.

4.1 An Agent-Based Workflow Management System

For the agent-based workflow management system, the following three types of
roles were identified: (1) agent roles: e.g. workflow management system (WFMS),
workflow engine (WFE), workflow enactment service (WFES), accountmanager,
database agents for tasks, workflows; (2) user roles refine the agent role “user”,
e.g. administrator or task executor; and (3) application specific roles are refine-
ments of user role “task executor”. WFMS is an agent that conceptually contains
the constituting agents WFE, WFES etc. (compare [1]).

Introducing a Process Infrastructure for Agent Systems 233

The design process of interactions resulted in interactions for session handling,
subscription with WFMS for up-to-date workitem and activity lists, instantia-
tion and finishing of workflows as well as interactions to handle workitems and
activities.

The ontology contains simple concepts such as “workitem” or predicates to
make statements like “current workitems of”. Agent actions like “instantiate
workflow” are special concepts that are used to define request messages.

4.2 The Workflow Agent

Additional flexibility is added to the system by introducing an agent that repre-
sents a workflow as such. This workflow agent represents an additional indirec-
tion and a flexible connection between the creation (instantiation), the execution
and changes to a workflow instance: the workflow agent knows the circumstances
of creation (instantiation) including information about the requester, the home
management system and the workflow definition. The workflow agent also knows
the circumstances of (possibly distributed) execution. The workflow agent can
be given extra constraints besides the mere execution as well as extra degrees
of freedom regarding changes. When a change is to be made or a decision to be
taken about the future execution, all this information can be used by the work-
flow agent. The goal of the workflow agent is to get its workflow specification
executed satisfying the initiator of the workflow while having constraints like
the abilities of the environment to execute certain tasks. The workflow agent
is pro-active each time the workflow agent starts a conversation. Depending on
the constraints and the environment, the workflow agent decides about the next
conversation and other agents to contact.

To distribute the execution of a workflow, the workflow agent may be im-
plemented through various workflow fragment agents (using star shape as men-
tioned in paragraph Distribution of Agents and Processes) or as a mobile agent.

A design decision for the prototype is to let the local workflow enactment
service (WFES) create a workflow agent instead of, e.g. the external user creating
a workflow agent to act on the user’s behalf. This way, the workflow agent can
be seen as a trusted part of the WFMS.

The workflow agent makes the interaction of WFES and workflow engine
(WFE) agents more flexible. Possibilities to reassign the work of executing a
workflow (meaning mainly the conflict-solving) include: (a) The mobile work-
flow agent just transports the workflow definition and gives it to the local WFE
for execution (we choose this for a prototype). (b) The workflow agent trans-
ports and executes the workflow definition and subsequently interacts with the
local WFES which knows about specifics of the local environment (WFMS) like
users and their capabilities. Intermediate positions are possible with different
granularities, such as the workflow agent giving tasks one-by-one to the local
WFE.

The workflow agent is equipped with initial information which cannot be
changed from the outside after creation (such as a workflow definition and creator

234 C. Reese et al.

address).6 The different sub-goals of the workflow agent (finding an appropriate
WFMS to execute the workflow, traveling, execution and finishing the workflow
and finally going back to the creation place) are coordinated in a life cycle.

4.3 Workflow Management for Open Agent Networks

As described in Sect. 2.3, open agent networks provide technology for an in-
frastructure where directory services, identity services and message transport
services are combined and provided.

An agent-based workflow management system as introduced as Level 3 in
Sect. 3.2 could be deployed in an open agent network to design agent applications
with some processes organized by the workflow management service. An agent
that wants to use this WFMS needs to have access to such an agent network,
and needs to be aware of the interaction protocols the WFMS prescribes.

A process infrastructure as introduced as Level 4 could provide a workflow
view on all distributed processes in an agent network. A workflow view includes
views on the current state of running processes as well as on planned and past
processes (logging).

In a process infrastructure as envisioned in Level 5, each agent can use a
generic process control for its internal processes, especially for but not restricted
to the case that the implementation of an agent is again distributed.

5 Realization

This section introduces the realized prototype as well as four examples in order
to illustrate the concepts detailed in the paper.

5.1 The Agent-Based Workflow Management System

To summarize, the agent-based workflow management system can manage users,
roles, task definitions, form specifications, sub workflows and rules to combine
roles and tasks to rights. Users (Executors or Administrators) can log in and
change configurations or execute tasks in running workflows. This means, that
the basic usage scenario of a WFMS is supported. This agent-based WFMS is
qualitatively different from other WFMS because the underlying concepts and
techniques are particularly flexible and powerful.

The following scenarios were realized beside some internal scenarios not listed
here: Login/ Logout; Connect to / Disconnect from Dispatcher; Instantiate
Workflow; Offer Workitem/Activity List; Request Workitem; Confirm/Cancel
Activity; Workflow End Reached.

The ontology is specified using Protégé7 with a code generator for Java classes.
It contains 8 predicates, 24 concepts and 24 agent action concepts.
6 Changes to the workflow at run-time depend on the abilities of the workflow agent.

If it incorporates the necessary functionality, the workflow in its narrower meaning
can be changed by the workflow agent itself.

7 Protégé: http://protege.stanford.edu/ (Last visited: Jan 2008)

Introducing a Process Infrastructure for Agent Systems 235

5.2 The Workflow Agent

Upon workflow instantiation, the WFES creates a workflow agent, the coarse
lifecycle is shown in Fig. 1. Five main states of the Workflow Agent are dis-
played: created, arrived (pending), idle, workflow execution and done. The state
idle is the most interesting state: here the decision component of the work-
flow agent is active and decides on the next pro-active action, depending on
the agent’s knowledge about its home platform, about the workflow execution
status and about the next appropriate WFMS where to execute (part of) the
workflow definition. Transitions between states represent interactions that con-
sist of several intermediate states. Within these interactions, the agent’s knowl-
edge about the workflow status, about the next appropriate WFMS, and about
the home platform are used. Numbers on those interaction transitions denote
an example decision sequence. The agent is able to pro-actively (3) search for
appropriate workflow management systems that offer execution functionality for
its workflow. If an appropriate WFMS is known to the agent, it can decide to (4)
migrate to the corresponding platform. Upon arrival the agent needs to localize
and is then able to enter its idle state on this platform. Here, the workflow
(or parts thereof) can be executed (6) by the local workflow enactment service
(WFES) and a workflow engine (WFE). The workflow agent awaits some sort of
execution information (7) from the engine. Steps three to seven can be iterated
until the workflow is completely processed. Then the agent can (8) migrate back
to its home platform and (10) terminate the execution of the workflow. The
interaction transitions map to protocol reference nets and the two migration
interactions include a suspension state as in the basic Fipa lifecycle for agents.

To implement the workflow agent, the ontology was completed with the ad-
ditional concept to communicate a workflow-state, two concepts for agent-
internal knowledge representation as well as two additional predicates used by
the workflow enactment service agent to initialize the freshly created workflow
agent.

Figure 2 shows an example interaction sequence diagram of the workflow
agent. Generally, messages are indicated with the performative and the named
agent action. On Platform 1, the workflow enactment service agent (WFES) and
the workflow definition database agent are involved as well as the Fipa standard
agents AMS (agent management service) and DF (directory facilitator). The
workflow agent is created by the AMS and receives its initialization information
which is only possible once. Numbers map to numbers in Fig. 1. Each activa-
tion (except from (7)) on the workflow agent life-line represents a pro-actively
started interaction and the life-line parts in between represent the idle state of
the workflow agent (except from (6) to (7)). On Platform 2, the workflow man-
agement system agent (WFMS) represents the whole system to other agents
that are not logged in and is therefore contacted first by the workflow agent.
The answer contains the address to the subrole agent workflow enactment ser-
vice (WFES) on Platform 2, so after the migration the workflow agent contacts
it directly to ask for the appropriate workflow engine (WFE) agent to enact
its workflow. The execution of the workflow by the WFE agent on platform 2

236 C. Reese et al.

Fig. 1. Coarse Lifecycle of the Workflow Agent

requires some interactions (not displayed in the figure) involving WFMS subrole
agents as well as users that are logged into the WFMS.

5.3 Application Examples

This section will give four examples in order to illustrate the concepts detailed
in the paper. The order of the examples represents development and evolution
over time.

The Phoneshop [11] is an application that models the ordering, data checking,
payment and shipping of phones. It is implemented as a workflow application
in the Renew workflow engine by Jacob [11] in one overall workflow and two
sub-workflows (one for payment data checking and one for shipping details).
Employees can log in via an RMI (Remote Method Invocation) client application
and are informed about tasks and activities. The Phoneshop offers possibilities
of control and monitoring on the process level and allows to gather structured
and unstructured data through task-forms, manual tasks, triggering of external
application and automatic execution of tasks as sub-workflows. Forms, tasks
and roles of participants and rules for execution are defined in a data base.
Workflows are defined as reference workflow nets. These introduce the concept
of a task transition into the Petri net formalism, which allows for notification of
executors, cancellation and confirmation of task execution.

The Agent-Based Settler Game serves as a complex example for the design
and implementation of an application with distributed processes using agent
technology [32,35]. It is a board game where player agents compete for resources
of different kinds like currencies (wood, wool, grain etc.), building space on an
island board or status (e.g., having the longest road). For several years now
this serves as an application with the right degree of complexity to illustrate

Introducing a Process Infrastructure for Agent Systems 237

Fig. 2. Sample Interactions of the Workflow Agent

agent-based software development using the PAOSE approach (Petri net-based
agent oriented software engineering), designed along the agent role abstractions
and the processes of agent interactions. Each interaction protocol (IP) is imple-
mented as multiple protocol reference nets (one for each participant of the IP) so
that the overall process and decision taking is completely distributed. While very

238 C. Reese et al.

powerful concepts and approaches were used for designing this application, the
overall workflows were only implicitly modeled through the entirety of all agent
behaviors, e.g. interaction protocols are not executed, but instead the protocol
nets within each agent.

The Travel Agency. In the Travel Agency example application, a user requests
a complex service (book a trip), resulting in a workflow to be executed. This
workflow consists of parts that cannot be executed within the Travel Agency
itself, like booking a room is done via a hotel and booking a flight is done
through an airline. So the instantiated workflow is not completely specified and
the workflow agent searches the DF for workflow management services that can
execute (parts of) the workflow and migrates there. The remote WFMSs offer
the experts and the environment where it is possible to execute some parts of
the workflow.

Usually, this is solved by two workflows depending on each other: a travel
agency cannot book a room, but can request to book a room or to reserve a room
at a hotel. The workflow agent now offers the possibility to explicitly represent
the interface of the different workflow environments to each other by a single
workflow. The details of the execution remain hidden within the respective local
workflow management system.

The Travel Agency is based on the agent based workflow management system
prototype introduced in this paper. It prototypically shows that the concepts
of multi-agent applications, which have a strong process-oriented character, and
the concepts from workflow systems can be combined. Agent applications such
as the Settler Game offer flexibility, while workflow applications such as the
Phoneshop have a clear process-oriented design. In the Travel Agency processes
have been designed to offer both, clearness and flexibility.

The Change Request Management. In [36] we envision an integrated en-
vironment for collaborative, distributed work, which can eventually lead to an
agent technology-based IDE for the development of agent applications. One frag-
ment of the IDE is the management of change requests in software development,
which has been presented in [37]. However, the presented example did not suffi-
ciently cover flexibility, extensibility, adaptability, the possibility for individual
configuration and the distribution of the application environment. The agent
processes were defined by the underlying control that was handled by a con-
ventional workflow system. The process infrastructure introduced in this work
provides the missing features on the way to a full fletched and flexible distributed
development environment for agent applications.

This kind of usage of our process infrastructure should allow for the support
of application processes by software processes.

Implementing these processes with agents allows to introduce the desired flex-
ibility etc. that is needed for such applications, which are distributed and should
also support distributed coordination and cooperation.

Introducing a Process Infrastructure for Agent Systems 239

6 Conclusion

Building on our previous work, which introduced a multi-multi-agent systems
architecture enriched with a WFMS-like interface, in this paper we present the
conceptual framework for a process infrastructure of open agent networks as well
as the central modeling, implementation, and prototyping ideas and concepts for
a specific instantiation of such an architecture.

On the conceptual level the result of this paper is the presentation of a specific
vision of a process infrastructure for open agent networks. It summarizes and
gives an overview over a research project that lasted three years. To obtain
the overview, most technical details were omitted. Compared to the previous
publications, this paper shapes the term process infrastructure regarding the
specific vision, elaborates the workflow agent and makes the central modeling
ideas explicit.

On the technical level the result of this project is a model and a prototype of an
agent based workflow management system with an especially flexible architecture
and a mobile agent representation of instantiated workflows. The underlying
agent framework Capa was connected to the open agent network openNet, thus
realizing an agent-based workflow management system as described as the third
level in Section 3.2 (WFMS and Agents) and the mobile workflow agent realizes
parts of the fourth level towards the vision of the process infrastructure (Level
five).

As the overall structuring concepts agents and multi-agent systems are used.
The intensive use of abstraction and hierarchical, but flexible structuring of such
multi-agent systems allows to implement a process infrastructure, which encom-
passes the necessary features to cope with the requirements to conceptually cover
distributed, autonomous, concurrent, and complex applications. Therefore, we
presented the notion of a process infrastructure for open agent networks.

The main advantage of our process infrastructure is that it is based on ho-
mogeneous and powerful techniques mentioned above. This allows for the imple-
mentation of a powerful system for the controlling and monitoring of complex
applications. An important component is the workflow agent, which provides
flexibility and autonomy of processes. We provide a general means to model
and build systems based on true concurrency formalism, which is structured by
agent concepts in such a way that processes can be adapted to the application’s
requirements. While the overhead for small applications is relatively large, the
principle architecture should scale very well. In this direction further research
has been done, but the realm has not been fully explored yet. The conceptual
framework is applied within two other projects: a distributed integrated devel-
opment environment mentioned in the Change Request Management example
and a new approach of software development, i.e. organization oriented software
development. While the first research area is targeted more towards practical
application, the second area relies more on the conceptual framework to allow
for expressive modeling of ULS (Ultra Large Systems). Both applications are
directed to support the modeling on Levels four and five. This will allow for an
IT-alignment. Thus we work for a smooth support of complex applications by

240 C. Reese et al.

an expressive framework, which incorporates the means to model and implement
all central issues of such systems in a direct way.

References

1. Reese, C., Markwardt, K., Offermann, S., Moldt, D.: Distributed business processes
in open agent environments. In: Manolopoulos, Y., Filipe, J., Constantopoulos, P.,
Cordeiro, J. (eds.) ICEIS 2006 - Proceedings of the Eighth International Con-
ference on Enterprise Information Systems: Databases and Information Systems
Integration, Paphos, Cyprus, May 2006, pp. 81–86 (2006)

2. Reese, C., Ortmann, J., Offermann, S., Moldt, D., Lehmann, K., Carl, T.: Archi-
tecture for distributed agent-based workflows. In: Henderson-Sellers, B., Winikoff,
M. (eds.) AOIS 2005. LNCS (LNAI), vol. 3529, pp. 42–49. Springer, Heidelberg
(2006)

3. Reese, C., Ortmann, J., Offermann, S., Moldt, D., Markwardt, K., Carl, T.: Frag-
mented workflows supported by an agent based architecture. In: Carbonell, J.,
Siekmann, J. (eds.) AOIS 2005. LNCS (LNAI), vol. 3529, pp. 200–215. Springer,
Heidelberg (2006)

4. Girault, C., Valk, R.: Petri nets for systems engineering: a guide to modelling,
verification and applications. Springer, Heidelberg (2003)

5. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
6. Rölke, H., Moldt, D., Köhler, M.: Modelling the structure and behaviour of petri

net agents. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075,
pp. 224–241. Springer, Heidelberg (2001)

7. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent Architecture for a Multi-agent
Platform. In: Giunchiglia, F., Odell, J., Weiß, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 59–72. Springer, Heidelberg (2003)

8. Aalst, W.v.d.: Workflow verification: Finding control-flow errors using petri-net-
based techniques. In: Business Process Management, pp. 161–183 (2000)

9. Aalst, W.v.d.: WOFLAN: A Petri-net-based workflow analyser. In: Desel, J., Silva,
M. (eds.) ICATPN 1998. LNCS, vol. 1420. Springer, Heidelberg (1998)

10. Aalst, W.v.d.: Verification of workflow nets. In: Application and Theory of Petri
Nets. LNCS, pp. 407–426. Springer, Heidelberg (1997)

11. Jacob, T., Kummer, O., Moldt, D., Ultes-Nitsche, U.: Implementation of workflow
systems using reference nets – security and operability aspects. In: Jensen, K. (ed.)
Proc. of CPN (2002), August 28–30, vol. 560. DAIMI PB, Aarhus, Denmark (2002)

12. Böhme, H., Saar, A.: Integration of heterogenous services in the adaptive services
grid. In: Proceedings GSEM 2005, Erfurt, Germany. LNI, pp. 220–232 (2005)

13. Burchard, L.O., Schneider, J., Linnert, B.: Distributed workflow management. In:
Proceedings of the Workshop Grid-Technologie für den Entwurf technischer System
(2005)

14. Blake, M.B., Gomaa, H.: Object-oriented modeling approaches to agent-based
workflow services. In: de Lucena, C.J.P., Garcia, A.F., Romanovsky, A.B., Castro,
J., Alencar, P.S.C. (eds.) SELMAS 2003. LNCS, vol. 2940, pp. 111–128. Springer,
Heidelberg (2004)

15. Aalst, W.v.d.: Inheritance of Business Processes: A Journey Visiting Four Notori-
ous Problems. In: Petri Net Technology for Communication-Based Systems. LNCS,
vol. 2472 / 2003, pp. 383–408. Springer, Heidelberg (2003)

Introducing a Process Infrastructure for Agent Systems 241

16. Aalst, W.v.d., Anyanwu, K.: Inheritance of interorganizational workflows to en-
able business-to-business E-commerce. In: Proceedings of the Second International
Conference on Telecommunications and Electronic Commerce (ICTEC 1999),
Nashville, Tennessee, pp. 141–157 (1999)

17. Blake, M.: An agent-based cross-organizational workflow architecture in support
of web services. In: Proceedings of the 11th IEEE WETICE 2002, Pittsburgh, PA,
June 2002. IEEE Computer Society Press, Los Alamitos (2002)

18. Buhler, P., Vidal, J.M.: Towards adaptive workflow enactment using multiagent
systems. Information Technology and Management Journal 6(1), 61–87 (2005)

19. Buhler, P.A.: A Software Architecture for Distributed Workflow Enactment with
Agents and Web Services. PhD thesis, Department of Computer Science and En-
gineering, College of Engineering and Information Technology, University of South
Carolina (2004)

20. CrossFlow, W.: Cross-organisational workflow crossflow esprit e/28635: Architec-
ture description (d3a). Report, CrossFlow consortium (1999)

21. Fleurke, M., Ehrler, L., Purvis, M.: Jbees – an adaptive and distributed framework
for workflow systems. In: Ghorbani, A., Marsh, S. (eds.) Workshop on Collabora-
tion Agents: Autonomous Agents for Collaborative Environments (COLA), Na-
tional Research Council Canada, Institute for Information Technology, pp. 69–76
(2003)

22. Savarimuthu, B.T.R., Purvis, M., Purvis, M., Cranefield, S.: Agent-based integra-
tion of web services with workflow management systems. The Information Science
Discussion Paper Series 2005/05 (2005)

23. Purvis, M., Purvis, M., Haidar, A., Savarimuthu, B.T.R.: A distributed workflow
system with autonomous components. In: Barley, M., Kasabov, N. (eds.) PRIMA
2004. LNCS (LNAI), vol. 3371, pp. 193–205. Springer, Heidelberg (2005)

24. Reichert, M., Dadam, P.: A framework for dynamic changes in workflow manage-
ment systems. In: DEXA Workshop, pp. 42–48 (1997)

25. Reichert, M., Rinderle, S., Dadam, P.: Adept workflow management system: Flex-
ible support for enterprise-wide business processes. In: van der Aalst, W.M.P., ter
Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 370–379.
Springer, Heidelberg (2003)

26. Reichert, M., Bauer, T., Dadam, P.: Enterprise-wide and cross-enterprise workflow
management: Challenges and research issues for adaptive workflows. In: Enterprise-
wide and Cross-enterprise Workflow Management: Concepts, Systems, Applications
(1999)

27. Bauer, T., Reichert, M., Dadam, P.: Intra-subnet load balancing in distributed
workflow management systems. Int. J. Cooperative Inf. Syst. 12(3), 295–324 (2003)

28. Singh, M.P., Huhns, M.N.: Multiagent systems for workflow. International Journal
of Intelligent Systems in Accounting, Finance and Management 8, 105–117 (1999)

29. Moldt, D.: Petrinetze als Denkzeug. In: Farwer, B., Moldt, D. (eds.) Report FBI-
HH-B-265/05: Object Petri Nets, Process, and Object Calculi, University of Ham-
burg, Department for Computer Science, pp. 51–70 (2005)

30. Cabac, L., Dörges, T., Duvigneau, M., Reese, C., Wester-Ebbinghaus, M.: Appli-
cation development with Mulan. In: International Workshop on Petri Nets and
Software Engineering (PNSE 2007), pp. 145–159 (2007)

31. Moldt, D.: Paose: A way to develop distributed software systems based on Petri
nets and agents. In: Barjis, J., Ultes-Nitsche, U., Augusto, J.C. (eds.) Proceedings
of The Fourth International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems (MSVVEIS 2006), Paphos, Cyprus,
May 23-24, 2006, pp. 1–2 (2006)

242 C. Reese et al.

32. Reese, C., Duvigneau, M., Köhler, M., Moldt, D., Rölke, H.: Agent–based settler
game. In: Agentcities Agent Technology Competition, Barcelona, Spain (2003)

33. Offermann, S., Ortmann, J., Reese, C.: Agent based settler game. In: Pechoucek,
M., Steiner, D., Thompson, S. (eds.) openNet Networked Agents Demonstration for
AAMAS 2005. Part of NETDEMO, demonstraion at international conference on
Autonomous Agents and Multi Agent Systems, AAMAS-2005, pp. 129–130 (2005)

34. Stockheim, T., Nimis, J., Scholz, T., Stehli, M.: How to build multi-multi-agent
systems: the Agent.Enterprise approach. In: 6th International Conference on En-
terprise Information Systems (ICEIS 2004), Porto, Portugal (2004)

35. Cabac, L., Duvigneau, M., Köhler, M., Lehmann, K., Moldt, D., Offermann, S.,
Ortmann, J., Reese, C., Rölke, H., Tell, V.: PAOSE Settler demo. In: First Work-
shop on High-Level Petri Nets and Distributed Systems (PNDS) 2005, University
of Hamburg, Department for Computer Science (2005)

36. Lehmann, K., Cabac, L., Moldt, D., Rölke, H.: Towards a distributed tool platform
based on mobile agents. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M.,
Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 179–190. Springer,
Heidelberg (2005)

37. Markwardt, K., Moldt, D., Offermann, S., Reese, C.: Using multi-agent systems for
change management processes in the context of distributed software development
processes. In: Sadiq, S., Reichert, M., Schulz, K. (eds.) The 1st Int. Workshop on
Technologies for Collaborative Business Process Management, pp. 56–66 (2006)

Facilitating Agent Development in Open

Distributed Systems

Mauro Gaspari1 and Davide Guidi2

1 Dipartimento di Scienze dell’Informazione, University of Bologna, Italy
2 Knowledge Media Institute, The Open University, United Kingdom

Abstract. One of the main reasons behind the success of the Web is
that many “regular users” are able to create Web pages that, using hy-
perlinks, incrementally extend both the size and the complexity of the
Web itself. The development of agents in the Web infrastructure should
ideally be driven by the same paradigm: users being able to write simple
or advanced agents. These agents will then provide capabilities using a
set of resources, such as standard Web pages, Web services and, of course,
other agents. However, agents providing advanced services will never be
developed in the same way as Web pages have been created in the past.
In fact programming agents is a complex task that needs adequate skills
and tools in order to be carried out successfully. As a consequence, only
few people are currently able to contribute to their development. The
question that arises is whether this gap could be possibly reduced in the
future. In this paper we address this question presenting NOWHERE,
an open agent communication infrastructure which facilitates the pro-
gramming task in open distributed multi-agent systems.

1 Introduction

Agent platforms usually provide a programming environment and common ser-
vices to applications developed as agents. These environments can include high-
level programming tools for the development of intelligent agents capable of
reasoning, planning, and acting in a changing environment, together with com-
munication mechanisms supporting agent interaction. This paper focuses just on
communication facilities, which have a fundamental role to increase the power of
agents in open distributed Multi-Agent Systems (MAS). Agent platforms embed
specific tools to support inter-agent communication. Many of them are based on
the speech act theory, which is also the approach followed by the current stan-
dard, the FIPA ACL [6]. Jade [1], for instance, is one of the most used agent
platforms both in academia and in industry, and uses FIPA ACL to provide
communication facilities. While FIPA ACL includes human like high-level prim-
itives, it does not have specific features for geographically distributed MAS where
agents may crash or simply become unreachable for a while. In fact, if we aim to
develop robust implementations of agents in these systems, we have to consider
agent failures, and a number of extra speech act primitives should be added to
the agent code. Additionally, several low-level issues should be considered, such

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 243–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

244 M. Gaspari and D. Guidi

as detecting failures, establishing correct timeouts, establishing correct actions
to handle failures and so on. As a result of having to deal with these issues the
programming task is more difficult and the high-level programming style of the
speech act based approach is partially lost.

In this paper, we try to tackle this problem presenting NOWHERE, a mod-
ular and open agent communication infrastructure, which has been designed to
facilitate the programming task in open, geographically distributed, multi-agent
systems. NOWHERE supports a simple programming model which facilitates
the development of agents in open distributed systems and works in a reason-
able class of application domains. This model supports communication among
Knowledge-Level (KL) agents [8], which are agents only concerned with the use,
request and supply of knowledge, exploiting an advanced ACL (FT-ACL) [3])
including high-level primitives to deal with failures of agents. Using Knowledge-
Level agents, the available communication primitives are those of the ACL, and
the programmer does not have to explicitly handle many low-level issues, such
as network, timeout and concurrency related problems. Thus the programming
task becomes simpler.

This paper is organized as follows. In Section 2 we give a sketch of the
NOWHERE platform architecture and we present how the FT-ACL primitives
have been embedded in a real programming language (Java). Then we compare
our approach with a state-of-the-art agent architecture, presenting some details
of the FIPA contract-net specification implemented using Jade and NOWHERE.
We conclude the paper with a few remarks.

2 The NOWHERE Platform

In the NOWHERE platform each agent consists of two main components: a
Dispatcher, that provides the Knowledge Level layer, and a Facilitator, a separate
component that deals with low-level aspects, such as sending and retrieving
messages providing fault tolerance. These two components communicate together
by means of the TCP protocol, using a simple Connector interface. While the
Dispatcher is a relatively simple component that mainly provides ACL primitives
to a specific programming language, the Facilitator hides the whole complexity
of the platform, as shown in Figure 1.

NOWHERE differs from other agent architectures in the way it manages
faults. The Facilitator component contains a failure handler mechanism that
is able to discover crashes of agents. It is based on a set of transparent timeouts
that are automatically managed by the architecture.

In order to physically send messages, the Facilitator uses a pluggable Network
Layer. Using different Network Layers as plugins, NOWHERE can be adapted to
very different scenarios. Currently NOWHERE features a Jabber Network Layer
and a JXTA Network Layer. Using the Jabber Network Layer it is possible to
exploit the Jabber protocol (or the Google Talk protocol) to send and receive
messages. Due to the fact that the Jabber network follows a client/server model,
the resulting architecture will be very fast, providing support for agents with

Facilitating Agent Development in Open Distributed Systems 245

Fig. 1. The NOWHERE architecture

realtime properties. On the other hand, using the decentralised JXTA Network
Layer, the resulting architecture will provide better scalability, with more latency
in the communication. Of course other Network Layer plugins, such as ad-hoc
ones, can be added.

2.1 NOWHERE’s Agent Communication Language

NOWHERE is designed to support various kinds of communication primitives
based on FT-ACL [3]. It includes a subset of FIPA communication acts based
on the speech-act theory [13] extended with multicast content-based requests
of knowledge. Thus, currently it is not FIPA compatible. The base language
that we present is the NOWHERE core language1 that supports asynchronous,
non-blocking primitives.

One of the main features of FT-ACL is the ability to deal with crash fail-
ures of agents. According to a well known classification of process failures in
distributed systems [10], an agent is faulty in an execution if its behaviour de-
viates from the one coded in the running algorithm; otherwise, it is correct. A
faulty agent crashes if it stops prematurely and does nothing from that point on.
FT-ACL manages faults considering only crash failures. This is a common fault
assumption in distributed systems, since several mechanisms can be used to de-
tect more severe failures and to force a crash in case of detection. FT-ACL deals
with crash failures of agents allowing the programmer to choose which actions
to invoke for each interaction they perform in the MAS, using a continuation
based mechanism.
1 NOWHERE also supports an extended language that uses blocking primitives for

the development of realtime agents in sequential programming languages [9].

246 M. Gaspari and D. Guidi

The following Java-like pseudo code describes a sample genericRequestprim-
itive, like for example askOne, illustrating how FT-ACL continuations work.

1 public static void main(String args[]) {
2 ... some code ...

3 genericRequest(recipientAgent, content, onAnswer, onFail);

4 ... other code ...

5 }
6 public void onAnswer(Message replyMessage){
7 // Here we handle the success continuation

8 // of the genericRequest primitive

9 }
10 public void onFail(){
11 // Here we handle the failure continuation

12 // of the genericRequest primitive

13 }

In the code presented above there is a main function (main, lines 1-5) that at
some point sends a message to the agent recipientAgent using the performa-
tive (i.e., message type) genericRequest (line 3). A typical request primitive is
usually implemented using only two arguments: the recipient (recipientAgent)
and the content of the request that must be sent (content). Instead, using the
FT-ACL style, a communication primitive also includes a success and a failure
continuation, onAnswer and onFail respectively. These parameters are functions
that allow the programmer to specify the success and the failure continuation as-
sociated to genericRequest.Due to the fact that the language uses non-blocking
primitives, after the execution of genericRequest, the control flow immediately
passes to the next instructions, contained in the “... other code ...” block,
line 4. When the reply message is received, the success continuation onAnswer
(lines 6-8) is executed, with the parameter replyMessage instantiated with the
reply. Otherwise if a communication error arises, then the failure continuation
onFail (lines 10-13) will be executed. Note that the behaviour of the success
continuation onAnswer is specific for a request performative. If we consider other
types of performative the role of the success continuation can be different. For
example the success continuation can be activated when a message is received by
the recipient agent to acknowledge that an inform performative is successfully
executed. The interaction patterns supported by FT-ACL for different classes of
performatives are described in details in [4].

Agents written using FT-ACL are also easy to program because these Knowl-
edge Level properties hold ([3]):

(1) The programmer does not have to manage physical addresses of agents ex-
plicitly.

(2) The programmer does not have to handle communication faults explicitly.
(3) Communication is Starvation free.
(4) Communication is Deadlock free.

Facilitating Agent Development in Open Distributed Systems 247

Although NOWHERE communication primitives are deadlock free, it is not
guaranteed that applications implemented in NOWHERE are deadlock free in
general. For example, if an agent implements a shared resource using a wrong
allocation policy, then a resource deadlock may occur.

2.2 Language Primitives

Language primitives are those of FT-ACL [3]. They support inter-agent commu-
nication and provide mechanisms to exchange messages and invoke services. A
Message object encapsulates the content of the communication in a language-
independent way, so that agents written in different languages are able to ex-
change messages, for example with the inform primitive. Simple or complex
capabilities can be shared among agents using a Service object. Services differ
from messages because they have a description that holds information about
several aspects, including the name of the service, its parameters and the data
types used. These services are described using a subset of WSDL [2], the stan-
dard XML format for Web services. Technically, we use the Type, Message and
PortType parameters to describe the service. The remaining parameters (Bind-
ing, Port and Service) are used to describe how to physically access the service.
Instead, NOWHERE uses its own low level network to access these services.

Services are invoked with specific FT-ACL communication primitives, for in-
stance askOne, askEverybody and tell. Intuitively, all the primitives that deal
with requests of knowledge. In the NOWHERE architecture, a service descrip-
tion is contained in a Description object. To invoke a service and to send a reply
NOWHERE provides a Request and a Response template, that can be retrieved
from the description object. Both the Request and the Response templates are
objects containing relevant information extracted from the service description,
such as the name of the parameters of the service. In order to invoke a service
(to provide a response), a Request (a Response) template must first be filled in
with the correct information. Due to the fact that these templates contain part
of the service description, they simplify the actions of invoking and replying to
a service.

The communication primitives provided by NOWHERE are shown in Table 1.
Due to space constraints we only present the details of those used in the subse-
quent case study. The interested reader will find a detailed description of all the
implemented performatives in [9].

One-to-one knowledge exchange
Communication between two agents can be achieved using the inform primitive,
the very basic communication method provided by NOWHERE. The syntax of
this primitive is:

inform(recipientAgent, message)

where recipientAgent is the unique ID (identifier) of the recipient agent and
message represents the message containing the information to be sent. The

248 M. Gaspari and D. Guidi

Table 1. Language Primitives

One-to-one knowledge exchange

inform(recipientAgent, message)

informACK(recipientAgent, message, onAnswer[, onFail])

Using functions to manage specific messages

handler(message, function)

Managing Services

Description loadDescription(WSDL Description)

Description makeDescription(targetNS, operation,

parameters, returnParameters)

Using functions to manage specific services

handler(request, function)

Providing and Requesting services

askOne(recipientAgent, request, onAnswer[, onFail])

tell(recipientAgent, response)

Service publishing

register(description)

Anonymous service request

askEverybody(request, onAnswer[, onFail])

allAnswers()

inform primitive is used to send a message to another agent, without any feed-
back about the delivery status. No actions are undertaken by the sender agent
if the recipient receives the message, as well as no actions are performed if the
message is not delivered for some reason.

Request/Response Performatives
To invoke a service, a Description object (that stores the data about the ser-
vice) must first be generated from a standard WSDL file. The loadDescription
primitive is provided for this purpose. It parses a WSDL file either from a local
resource or from the Web, returning a NOWHERE Description object. The

Facilitating Agent Development in Open Distributed Systems 249

askOne primitive must be used to invoke a service provided by another agent.
The syntax is:

askOne(recipientAgent, Request, onAnswer[, onFail])

The recipientAgent parameter represents the target agent, while the name
of the service, together with its parameters, is contained in the Request object.
The onAnswer and the onFail parameters are the associated continuations. They
represent the names of the functions that will handle the answer and the failure,
respectively. The NOWHERE architecture automatically calls one of these two
functions, depending on the result of the service invocation.

Anonymous interaction mechanism
NOWHERE provides support for multicasting a service invocation to a set of
agents. This mechanism is also known as content-based request of knowledge,
because a service is invoked specifying its content rather than the name of the
agent that provides it. This behavior is realized by the askEverybody primitive,
whose syntax is:

askEverybody(Request, onAnswer, onFail)

The parameters are the same as in the askOne primitive seen before, except
that in this case the recipient agent is not specified. It is the facilitator that will
send the request to all (and only) the agents that provide the specified service.
Every time that a reply is received, the onAnswer function will be called. Instead,
the onFail function will be called only if no agents replied at all. Inside the
onAnswer function it is possible to check if the current reply is the last one using
the allAnswers predicate. The allAnswers is a Boolean predicate that returns
true if the current response is the last reply for the associated askEverybody,
false otherwise.

3 Transparent Timeouts

Timeouts are used to provide a framework that can be adaptable to different
situations. The timeouts used in NOWHERE are called “transparent timeouts”
because they are managed by the architecture itself, so that the user does not
have to deal with them. In NOWHERE, timeouts are countdown timers that
are activated when a certain primitive is issued or, in some cases, received. Each
timeout is associated to a custom message containing an action to do when
the countdown timer reaches zero. Usually the action is to execute the failure
continuation for the associated primitive.

Every timeout object contains:

– A message, which encodes the action to be taken when the countdown timer
reaches zero.

– Two extra parameters: the agentType and agentReactiveness.

250 M. Gaspari and D. Guidi

The message associated with every countdown timer is automatically sent
using the Facilitator when the countdown reaches zero.

The value for the countdown is calculated using the properties agentType
and agentReactiveness which are associated to each agent. The agentType
property can be considered an upper bound of the time that the agent will wait.
It defines the maximum time that an agent will wait for external replies. If no
replies are given during this time, then the failure continuation is fired. The
agentReactiveness is instead the minimum time that an agent will wait for an
answer.

Every communication primitive can be associated to a custom couple of
agentType and agentReactiveness properties. The agentReactiveness prop-
erty affects how the interaction with the recipient agent will be managed by the
Facilitator. A low value will force the Facilitator to check the recipient agent
very frequently, in order to promptly find crashes. On the other hand, using
high values the Facilitator will accept network lags or temporary failures of the
recipient agent. For the implementation of the askOne communication primitive,
these properties are managed using the following algorithm:

1 - The Agent executes the askOne primitive.
2 - The associated Facilitator sends the message containing the primitive.
3 - The Facilitator starts a countdown timer set to the lower value between

agentReactiveness and agentType.
4 - When the Facilitator receives the reply before that the countdown

reaches zero, it will halt the countdown and forward the received
message to the dispatcher (the success continuation fires).

5 - When the Facilitator receives a NeedMoreTime message before that the
countdown reaches zero, the agentType value will be decremented by
the actual number of milliseconds already passed since the countdown
started. The algorithm continues to step 3.

6 - When the countdown reaches zero, the message associated to the
countdown timer will be forwarded to the Dispatcher
(the failure continuation fires).

The algorithm has a loop (lines 3-5) which will end with the success or fail-
ure continuation, in lines 4 and 6. The NeedMoreTime message is automati-
cally generated and managed by the Facilitator. Timeouts are contained in the
CountdownRepository, a structure that provide two basic mechanisms: stop,
to halt a specific timer, and restart, to restart it.

In order to explain this algorithm we introduce a simple scenario, in which
AgentA executes an askOne primitive in order to invoke a service from AgentB.
Four different cases can be obtained:

1. AgentB replies in due time: the time waited by AgentA for the reply is less
than the maximum allowed time set by AgentA (agentType). This case is
illustrated in Figure 2, where FA and FB indicate the Facilitator of AgentA
and the Facilitator of AgentB respectively.

Facilitating Agent Development in Open Distributed Systems 251

2. AgentB has already crashed when AgentA invokes the service. This case is
illustrated in Figure 3.

3. AgentB receives the request, but it crashes (or a network error occurres)
before replying, so that AgentA never receives a proper reply. This case is
illustrated in Figure 4.

4. AgentB does not reply in due time, that is AgentA does not receive the
reply in the maximum allowed time (specified by agentType). This case is
considered in Figure 5.

Fig. 2. Success Invocation of a Service

Fig. 3. Failure Invocation of a Service (AgentB is already Crashed)

The agentType parameter associates an agent to a specific class of agents
with similar interactive characteristics. In principle, any numeric value can be
associated to this parameter using the setAgentType primitive. NOWHERE
suggests a predefined set of default values:

– Real Time Agent, for agents that need a reply in 2 seconds.
– Web Agent, for agents that need a reply in 4 seconds.
– Worker Agent, for agents that need a reply in 1 minute.

252 M. Gaspari and D. Guidi

Fig. 4. Failure Invocation of a Service (AgentB Crashes before Replying)

– Truster Agent, for agents that can wait indefinitely for a reply. This is needed
for example when the sender agent wants to dispatch a task and it does not
know a priori how much time the task will take. Of course, if the recipient
crashes before receiving a reply, the Facilitator of the sender agent will fire
a failure continuation.

These values were defined according to the work made by Nielsen in [11], one
of the standard reference for the Web usability.

Fig. 5. AgentB does not Reply in Due Time

4 Case Study: The FIPA Contract Net Protocol

The purpose of this case study is to compare the solution obtained using the
NOWHERE approach to the solution provided by Jade, a state-of-the-art agent

Facilitating Agent Development in Open Distributed Systems 253

platform. We choose a slightly modified version of the classic Contract Net proto-
col [14], fully described in the FIPA specification [7]. The Contract Net protocol
allows an agent to distribute tasks among a set of agents by means of negotiation.
The modified version considers only a single manager agent, the Initiator, and
a set of worker agents, the Responders. Moreover, the FIPA Contract Net also
includes rejection and confirmation communicative acts which are not modeled
in this case study.

In the following we just recall the basic principles of the protocol, described
in detail in the FIPA specification. A representation of this protocol is given
in Figure 6 which is based on extensions to UML1.x [12]. The sequence dia-
gram describes the inter-agent transactions needed to implement the protocol,
where the diamond symbol indicates a decision that can result in zero or more
communications being sent, depending on the conditions it contains.

Fig. 6. FIPA Contract Net protocol (source: FIPA specification)

According to the FIPA specification, the Initiator agent sends a call for pro-
posal (cfp) act, soliciting a proposal from every other m agents, specifying the
task to be done. Responders receiving the call for proposals are viewed as poten-
tial contractors and are able to generate n responses. Of these, j are proposals to
perform the task, specified as propose acts. The Responder’s proposal includes
the preconditions that the Responder is setting out for the task, which may be

254 M. Gaspari and D. Guidi

the price, time when the task will be done, etc. Alternatively, the i=n-j Respon-
ders may refuse to propose. Once the deadline passes, the Initiator evaluates the
received j proposals and selects agents to perform the task; one, several or no
agents may be chosen.

Being a FIPA compliant platform, Jade adheres as much as possible to FIPA
specifications. For this reason Jade implements ad-hoc mechanisms for the FIPA
Contract Net, providing facilities that simplify the programming task. In fact,
the task of the programmer is just to extend the two Java classes provided for the
Initiator and for the Responder role. In order to handle proposals from Respon-
der agents, for example, the developer must only write the proper code inside
a function named handlePropose. The Jade architecture will then invoke this
function properly, for each received proposal. In the Jade platform these ad-hoc
mechanisms are called behaviours, and are used to easily implement well defined
actions, like doing repetitive tasks (using the CyclicBehaviour), simultaneously
executing different tasks (using the ParallelBehaviour) or, as in this example,
starting a FIPA Contract Net interaction protocol.

For the comparison we proceed in this way: first we introduce the algorithm
used in the Jade platform (adapted from an example found in the Jade software
distribution) and then we provide an equivalent solution for the NOWHERE
architecture. For space limitations, we only analyze the Initiator agent. However,
the Responder agent is based on a straightforward reactive algorithm.

4.1 The Initiator Agent - Jade

The algorithm implemented by the Initiator agent is composed of 3 main steps:

1. Find the set of available Responder agents;
2. Send a cfp message to Responder agents;
3. Select and accept the best proposal;

1 & 2 - Find the set of available agents and send a cfp message to them.
The source code for the first two steps is presented in Figure 7. In the Jade
platform the task of finding other agents is delegated to the Directory Facilita-
tor component. In order to find other agents, the Initiator should first fill in a
Service Description object (lines 1-2). The Service Description object contains
information about the resource that we want to find. In this case we used a type
tag to identify Responder agents. (line 2). The next block of code, lines 3-10,
performs a query on the Directory Facilitator and retrieves a list of the available
Responder agents. The second step is to send a cfp message to every Responder
agent found in the previous step. In lines 11-18 a proper cfp message is created,
specifying every collected agent as receiver, if there are any (line 11). Addition-
ally, the agent sets a maximum timeout of 10 seconds for the proposals (line 17)
and the name of the task to be dispatched (line 18). The newly created message
is then automatically sent using the ContractNetInitiator behaviour in the
third step.

Facilitating Agent Development in Open Distributed Systems 255

// Step 1: Find the set of available Responder agents

1 ServiceDescription sd = new ServiceDescription();

2 sd.setType("Responder");

3 DFAgentDescription df = new DFAgentDescription();

4 df.addServices(sd);

5 DFAgentDescription[] agentList = null;

6 try {
7 agentList = DFService.search(this, df);

8 } catch (Exception e) {
9 e.printStackTrace();

10 }
11 if (agentList != null && agentList.length > 0) {

// Step 2: Send a cfp message to Responder agents

12 ACLMessage msg = new ACLMessage(ACLMessage.CFP);

13 for (int i = 0; i < agentList.length; ++i) {
14 msg.addReceiver(((DFAgentDescription)agentList[i]).getName());

15 }
16 msg.setProtocol(FIPANames.InteractionProtocol.FIPA CONTRACT NET);

17 msg.setReplyByDate(new Date(System.currentTimeMillis() + 10000));

18 msg.setContent("dummy-action");

Fig. 7. Initiator Agent - Jade solution - first fraction

3 - Select and accept the best proposal
The code used for the third step is shown in Figure 8. Again, replies from
Responder agents are managed exploiting Jade’s FIPA Contract Net behaviour.
The messages are handled using the handleAllResponses function (lines 20-
44). This function is automatically called by the Jade infrastructure when all
the replies have been received. The code in lines 21-38 selects the best proposal,
sending a REJECT message to the less competitive replies. The proposal are
simply evaluated comparing them against the bestProposal variable that stores
in every iteration the best proposal received. Replies to the Responder agents
are stored in the acceptances Java Vector, and are then automatically sent.
Finally, the code in lines 39-42 accepts the best proposal received.

4.2 The Initiator Agent - NOWHERE

The solution developed for the NOWHERE platform is shown in Figure 9.
Thanks to the anonymous interaction mechanism, there is no need to search
for Responder agents. The cfp message can be sent directly to all the Responder
agents, that are automatically discovered. In this case the anonymous interac-
tion mechanism relies on an agent capability, that is used to find Responder
agents. This capability is provided by all the agents that want to act as Re-
sponder agents, and it is described by an external WSDL file, which can be
something similar to the one presented in Figure 10. This WSDL description is
then loaded in the architecture using the loadDescription primitive (line 2),

256 M. Gaspari and D. Guidi

// Step 3: Managing replies from Responder agents

19 addBehaviour(new ContractNetInitiator(this, msg) {
20 protected void handleAllResponses \

(Vector responses, Vector acceptances) {
21 int bestProposal = -1;

22 AID bestProposer = null;

23 ACLMessage accept = null;

24 Enumeration e = responses.elements();

25 while (e.hasMoreElements()) {
26 ACLMessage msg = (ACLMessage) e.nextElement();

27 if (msg.getPerformative() == ACLMessage.PROPOSE) {
28 ACLMessage reply = msg.createReply();

29 reply.setPerformative(ACLMessage.REJECT PROPOSAL);

30 acceptances.addElement(reply);

31 int proposal = Integer.parseInt(msg.getContent());

32 if (proposal > bestProposal) {
33 bestProposal = proposal;

34 bestProposer = msg.getSender();

35 accept = reply;

36 }
37 }
38 }

// Step 4: Evaluate the proposals and accept the best offer

39 if (accept != null) {
40 accept.setPerformative(ACLMessage.ACCEPT PROPOSAL);

41 acceptances.addElement(accept)

42 }
43 } // This closes the addBehaviour function (line 19)
44 }); // This closes the if branch of line 11, Fig. 7
45 }

Fig. 8. Initiator Agent - Jade solution - second fraction

which returns a Description object from a WSDL file. The code in line 4 sets
the timeout to 10 seconds, accordingly to the Jade’s version. A Request object
is then instantiated with proper values and sent to Responder agents using an
askEverybody primitive (lines 5-7). The handlePropose function (lines 9-20)
will then be called every time the Initatior agent will receive a reply. As in the
Jade solution, this function will select the best proposal, sending a REJECT
message to the less competitive agents (line 17). Being a synchronized method,
the handlePropose function will avoid concurrency problems when accessing
the bestProposal variable.

4.3 Discussion

The first thing to observe is that the solution obtained with Jade exploits a set of
ad-hoc facilities to manage interactions in the Contract Net protocol. Even using

Facilitating Agent Development in Open Distributed Systems 257

1 bestProposal = -1;

2 Description cfp = loadDescription("http://maya.unibo.it/cnp.wsdl");

3 public void startAgent() {
4 this.setAgentType(10000);

5 Request r = cfp.getRequest();

6 r.setParameter("taskName", "dummy-action");

7 askEverybody(r, "handlePropose", null);

8 }
9 public synchronized void handlePropose(Message m) {
10 Response r = cfp.retrieveResponseFromMessage(m);

11 int proposal = (Integer) r.getParameter("proposal");

12 if (proposal > bestProposal) {
13 bestProposal = proposal;

14 bestProposer = m.getSender();

15 }
16 else

17 inform(m.getSender(), new Message("REJECT PROPOSAL")

18 if (allAnswer() && bestProposer != null)

19 inform(m.getSender(), new Message("ACCEPT PROPOSAL")

20 }

Fig. 9. Initiator Agent - NOWHERE solution

these facilities for Jade the source code of the solution based on NOWHERE is
much compact.

Analyzing in details the Jade solution, we can observe that two main features
are provided by the Jade’s FIPA Contract Net behaviour:

– the facility to automate some tasks, like to automatically reply to Responder
agents with rejection or acceptance of proposals storing the answers in a
vector (Fig. 8, lines 30 and 42);

– the facility that allows the developer to consider just the correct proposals
in the handleAllResponses function, so that the developer does not have
to deal with faulty agents.

While these features make the programming task easier, Jade provides them
only for the Contract Net implementation. On the contrary, the NOWHERE
approach provides a general purpose built-in mechanism which can be used in
many contexts. The anonymous interaction mechanism, for example, can be used
to send a message to every agent in the network that satisfies a set of specific
criteria (such as to be a Responder agent). Regarding failures, both solutions add
functions to handle low-level communication problems, implementing an appro-
priate handleFailure function. Again, the NOWHERE architecture provides
these features as built-in. Thus they can be used for implementing any kind
of interaction protocol. The general idea behind NOWHERE is to simplify the
agent programming task, allowing the developer to concentrate in writing the
code he/she is working on, avoiding as much as possible the need to explicitly

258 M. Gaspari and D. Guidi

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="contractNetProtocol"

targetNamespace="http://www.maya.ei.unibo.it/wsdl/cnp.wsdl"

xmlns:tns="http://www.maya.ei.unibo.it/wsdl/cnp.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<message name="DoTaskRequest">

<part name="taskName" type="xsd:string"/>
</message>
<message name="DoTaskResponse">

<part name="taskResult" type="xsd:string"/>
</message>
<portType name="DoTask">
<operation name="doTask">
<input message="tns:DoTaskRequest"/>
<output message="tns:DoTaskResponse"/>

</operation>
</portType>

</definitions>

Fig. 10. The Contract Net Protocol WSDL Description

write code to handle failures. Moreover, the NOWHERE architecture provides a
fault tolerant system that implements a much more sophisticated algorithm than
a simple communication timeout. With regard to inter-agent communication, is
important to note that NOWHERE agents can be realised in any program-
ming language including AI languages or knowledge representation languages,
provided that they react to a well defined protocol based on the standard prim-
itives of the ACL. Further advantages of using FT-ACL primitives is that they
satisfy a set of well defined properties [3]. The resulting communication will then
be free from problems like communication deadlock and starvation.

The FIPA contract net protocol does not take into consideration failures of
Responder agents receiving the ACCEPT PROPOSAL message. However, using the
continuations mechanism, it is easy to add this feature. A transaction mechanism
can be realized using the (more lightweight) continuations, for example with
following pseudocode:

21 public void askProposer(String proposer)

22 askOne(proposer, acceptRequest, contractNetOk, getNextProposal)

23 public void getNextProposal()

24 if (proposal.hasNext())

25 askProposer(proposals.next())

The askProposer function (line 21-22) is used to send a request for the ac-
ceptation of the proposal to a Responder agent, whose name is specified as
a parameter. The contractNetOk function will be executed if the Responder
agent replies correctly. Otherwise, the getNextProposal function (lines 23-25) is

Facilitating Agent Development in Open Distributed Systems 259

executed. The effect of the compensation is to restart the acceptation phase,
sending a request to the agent author of the second best proposal, and so on.

5 Conclusions

In this paper we have presented NOWHERE, a communication infrastructure
that facilitates agent development supporting Knowledge Level agents. Inter-
agent communication is performed by means of an advanced Agent Commu-
nication Language (FT-ACL) based on the speech act theory, as well as other
popular ACLs such as FIPA ACL [6] and KQML [5]. However, the expressive
power of these languages is very different. For example, FIPA ACL sends ev-
ery communication performative as content of asynchronous message passing.
On the contrary the FT-ACL performatives used in NOWHERE can be clas-
sified according to a few well defined patterns [4], each one with a different
concurrent semantics. Every performative implements a complex behaviour that
is fundamentally different from a simple send primitive. The comparison between
different solutions to the Contract Net Protocol, provided in this paper, helps
to highlight the effects of the adoption of this approach.

References

1. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent devel-
opment environment. In: AGENTS 2001: Proceedings of the fifth international
conference on Autonomous agents, pp. 216–217. ACM Press, New York (2001)

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (wsdl) 1.1 (2001), http://www.w3.org/TR/wsdl

3. Dragoni, N., Gaspari, M.: Crash failure detection in asynchronous agent commu-
nication languages. Autonomous Agents and Multi-Agent Systems 13(3), 355–390
(2006)

4. Dragoni, N., Gaspari, M.: Performative patterns for designing verifiable acls. In:
Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149,
pp. 375–387. Springer, Heidelberg (2006)

5. Finin, T., Labrou, Y., Mayfield, J.: KQML as an Agent Communication Language.
In: Software Agents, pp. 291–316. MIT Press, Cambridge (1997)

6. FIPA Communicative Act Library Specification, Document number: SC00037J
(2002), http://www.fipa.org/

7. FIPA Contract Net Interaction Protocol Specification (2002),
http://www.fipa.org/specs/fipa00029/SC00029H.pdf

8. Gaspari, M.: Concurrency and Knowledge-Level Communication in Agent Lan-
guages. Artificial Intelligence 105(1-2), 1–45 (1998)

9. Guidi, D.: A communication infrastructure to support knowledge level agents on
the web. Technical Report UBLCS-2007-06, Department of Computer Science, Uni-
versity of Bologna (2007)

10. Mullender, S.: Distributed Systems. Addison-Wesley, Reading (1993)

http://www.w3.org/TR/wsdl
http://www.fipa.org/
http://www.fipa.org/specs/fipa00029/SC00029H.pdf

260 M. Gaspari and D. Guidi

11. Nielsen, J.: Usability Engineering. MA Academic Press, London (1993)
12. Odell, J., Parunak, H.V.D., Bauer, B.: Representing agent interaction protocols in

UML. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS,
vol. 2222, pp. 121–140. Springer, Heidelberg (2002)

13. Searle, J.: Speech Acts. Cambridge University Press, Cambridge (1969)
14. Smith, R.G.: The Contract Net Protocol: High Level Communication and Control

in a Distributed Problem Solver. IEEE Transactions on Computers 29(12), 1104–
1113 (1980)

simpA: A Simple Agent-Oriented Java Extension

for Developing Concurrent Applications

Alessandro Ricci, Mirko Viroli, and Giulio Piancastelli

DEIS, Alma Mater Studiorum – Università di Bologna, Italy
{a.ricci,mirko.viroli,giulio.piancastelli}@unibo.it

Abstract. More and more aspects of concurrency and concurrent pro-
gramming are becoming part of mainstream programming and software
engineering, as a result of several factors, such as the widespread avail-
ability of multi-core / parallel architectures and Internet-based systems.
Java has been one of the first mainstream languages providing a first-
class native support for multi-threading, with basic low level fine-grained
concurrency mechanisms. Besides this fine-grained support to concur-
rency, the identification of higher-level—more coarse-grained—support
is important as soon as programming and engineering complex concur-
rent applications is considered, helping to bridge the gap between system
design, implementation and testing.

Accordingly, in this paper we present simpA, a library-based extension
of Java which introduces a high-level coarse-grained support to proto-
typing complex, multi-threaded / concurrent applications: Java program-
mers are provided with an agent-oriented abstraction layer on top of the
basic OO layer to organize and structure applications.

1 Introduction

The widespread diffusion and availability of parallel machines given by multicore
architectures is going to have a significant impact in mainstream software devel-
opment, shedding a new light on concurrency and concurrent programming in
general. Besides multi-core architectures, Internet-based computing and Service-
Oriented Architectures / Web Services are further main driving factors introduc-
ing concurrency issues in the context of a large class of applications and systems,
no more related only to specific and narrow domains, such as high-performance
scientific computing.

As noted in [20], if on the one hand concurrency has been studied for about 30
years in the context of computer science fields such as programming languages
and software engineering, on the other hand this research has not had a strong
impact on mainstream software development. As a main example, Java has been
one of the first mainstream languages providing a first-class native support for
multi-threading, with basic low level concurrency mechanisms. Such a support
has been recently extended by means of a new library added to the JDK with
classes that implement well-known and useful higher-level synchronisation mech-
anisms such as barriers, latches, semaphores, providing a fine-grained and effi-
cient control on concurrent computations [10]. Besides this fine-grained support

M. Dastani et al. (Eds.): LADS 2007, LNAI 5118, pp. 261–278, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

262 A. Ricci, M. Viroli, and G. Piancastelli

to concurrency, it appears more and more important to introduce higher-level ab-
stractions that “help build concurrent programs, just as object-oriented abstrac-
tions help build large component-based programs” [20]. Agents and multi-agent
systems (MASs)—in their most general characterisation—are very promising
abstractions for this purpose, natively capturing and modelling decentralisation
of control, concurrency of activities, and interaction / coordination of activites:
therefore, they can be considered a good candidate for defining a paradigm for
mainstream concurrent programming, beyond OO.

Accordingly, in this paper we present simpA, a library-based extension of
Java which provides programmers with agent-oriented abstractions on top of the
basic OO layer, as basic building blocks to define the architecture of complex
(concurrent) applications. simpA is based on the A&A (Agents and Artifacts)
meta-model, recently introduced in the context of agent-oriented programming
and software engineering as a novel basic approach for modelling and engineering
multi-agent systems [17,19]. Agents and artifacts are the basic high-level coarse-
grained abstractions available in A&A (and simpA): the former is used in A&A to
model (pro)-active and activity-oriented components of a system, encapsulating
the logic and control of such activities, while the latter is used to model function-
oriented components of the system, used by agents to support their activities.

The remainder of the paper is organised as follows. Section 2 describes in
more detail the basic abstraction layer introduced by the A&A meta-model;
Section 3 describes the simpA framework and technology; Section 4 provides
some discussion about the overall approach. Finally, Section 5 and Section 6
conclude the paper with related works and a brief sum up.

2 Agents and Artifacts

As recently remarked by Liebermann [11]:

“The history of Object-Oriented Programming can be interpreted as a
continuing quest to capture the notion of abstraction—to create compu-
tational artifacts that represent the essential nature of a situation, and
to ignore irrelevant details.”

Metaphors and abstractions continue to play a fundamental role for computer sci-
ence and software engineering in general, in providing suitable conceptual means
to model, design and program software systems. The metaphors and abstractions
at the core of A&A are rooted in human cooperative working environments, in-
vestigated by socio-psychological theories such as Activity Theory (AT) [12].
This context is taken here as a reference example of a complex system, where
multiple concurrent activities are carried on in a coordinated manner, interact-
ing within some kind of working environment: humans do work concurrently
and cooperatively in the context of the same activities, interacting both directly,
by means of speech-based communication, and indirectly, by means of artifacts
and tools that are shared and co-used. In such systems, it is possible to easily
identify two basic kinds of entity: on the one side human workers, as the entities

simpA: A Simple Agent-Oriented Java Extension 263

Fig. 1. (Left) An abstract representation of an application according to the A&A pro-
gramming model, as a collection of agents (circles) sharing and using artifacts (squares),
grouped in workspaces. (Right) An abstract representation of an artifact, with in evi-
dence the usage interface, with commands (control) to trigger the execution of opera-
tions, the observable properties and the manual.

responsible of pro-actively performing some kinds of activity; on the other side
artifacts and tools, as the entities that workers use to support their activities,
being resources (e.g. an archive, a coffee machine) or instruments mediating and
coordinating collective activities (e.g. a blackboard, a calendar, a task scheduler).

By drawing our inspiration from AT and human working environments, A&A
defines a coarse-grained abstraction layer in which two basic building blocks
are provided to organise an application (system), agents and artifacts. On the
one hand, the agent abstraction—in analogy with human workers—is meant
to model the (pro-)active part of the system, encapsulating the logic and the
control of activities. On the other hand, the artifact abstraction—analogous to
artifacts and tools in human environments—is meant to model the resources
and the tools created and used by agents during their activities, individually
or collectively. Besides agents and artifacts, the notion of workspace completes
the basic set of abstractions defined in A&A: a workspace is a logic container
of agents and artifacts, and can be used to structure the overall sets of entities,
defining a topology of the working environment and providing a way to frame
the interaction inside it (see Fig. 1, left).

2.1 Agent and Artifact Abstractions: Core Properties

In A&A the term “agent” is used in its etymological meaning of an entity “who
acts”, i.e. whose computational behaviour accounts for performing actions in

264 A. Ricci, M. Viroli, and G. Piancastelli

some kinds of environment and getting information back in terms of perceptions.
In A&A agents’ actions and perceptions concern in particular the use of artifacts
and direct communication with other agents. The notion of activity is used
to group related actions, as a way to structure the overall (possibly complex)
behaviour of the agent. So an agent in A&A is an activity-oriented component,
in the sense that it is designed to encapsulate the logic, execution and control
of some activities, targeted to the achievement of some objective. As a state-full
entity, each agent has a long-term memory, used to store data and information
needed for its overall work, and a short-term memory, as a working memory used
to store temporary information useful when executing single activities.

An agent can carry on multiple activities concurrently, and each activity func-
tions as a scope for actions, perceptions and local information useful only for the
specific activity. Here it’s worth remarking that the notion of agent in simpA is
not meant to be comparable with models and architectures as typically found
in the context of goal-oriented / cognitive agents platforms, such as Jason [3],
2APL [5], Jadex [15] or alike: here the objective is not maximising flexibility
and autonomy so as to play in unpredictable and complex environments, but
having a basic simple abstraction which would make it natural and straightfor-
ward to design and program complex active behaviours, providing some strong
encapsulation properties for state and control of activities.

Dually to agents, artifacts are function-oriented components, i.e. designed to
provide some kind of functionality that can be used by agents. The functionality
of an artifact is structured in terms of operations, whose execution can be trig-
gered by agents through artifact usage interface (see Fig. 2, left). Similarly to
the notion of interface in case of objects or components, the usage interface of
an artifact defines a set of operation controls that agents can use to trigger and
control operation execution (like the control panel of a coffee machine), each one
identified by a label (typically equals to the operation name to be triggered) and
a list of input parameters. In this use interaction there is no control coupling:
when an agent triggers the execution of an operation, it retains its control (flow)
and the execution of the operation on the artifact is carried on independently
and asynchronously. This property is a requirement when the basic notion of
agent autonomy is considered.

The information flow from the artifact to agents is modelled in terms of observ-
able events generated by artifacts and perceived by agents. Besides the controls
for triggering the execution of operation, an artifact can define some observable
properties, as labelled tuples whose value can be inspected by agents dynami-
cally, without necessarily executing operations on it (like the display of a coffee
machine).

So, from the programmer’s perspective, agents and artifacts provide two rad-
ically different programming models to specify their computational behaviour:
the former as active entities encapsulating tasks to do and a related agenda
of activities, the latter as passive entities encapsulating a state and procedure-
based behaviour but not the control of such a behaviour, which is exposed and
governed by agents through the usage interface.

simpA: A Simple Agent-Oriented Java Extension 265

Fig. 2. An agent using an artifact, by triggering the execution of on operation (left,
step 1a) and observing the related events generated (right, step 1b)

2.2 Agent-Artifact Interaction: Use and Observation

The interaction between agents and artifacts mimics the way in which humans
use their artifacts. Let’s consider a coffee machine, for a simple but effective
analogy. The set of buttons of the coffee machine represents the usage interface,
while the displays used to show the state of the machine represent artifact ob-
servable properties. The signals emitted by the coffee machine during its usage
represent observable events generated by the artifact.

The interaction takes place by means of a use action (stage 1a in Fig. 2, left),
which is provided to agents so as to trigger and control the execution of an oper-
ation over an artifact. The observable events possibly generated by the artifact
executing an operation are collected by agent sensors, that are those parts of the
agent (body) connected to the environment where the agent is situated. Sensors
play here a fundamental role, that of perceptual memory, whose functionality
accounts for keeping track of stimuli arrived from the environment, possibly ap-
plying filters and specific kinds of “buffering” policy. Besides the generation of
observable events, the execution of an operation by an artifact typically results
in updating the artifact inner state and possibly artifact observable properties
(Fig. 2, right).

Then, a sense action is provided to agents to explicitly retrieve / be aware
of the observable events possibly collected by their sensors (stage 1b in Fig. 2,
right); in other words, there is an “active sensing” model for managing per-
ceptions, since sensing—making the agent aware of the stimuli collected by the
sensors—is an action that must be explicitly performed by the agent itself.

As mentioned previously, no control coupling takes place between an agent
and an artifact with the execution of an operation. However, the triggering of an
operation is a synchronisation point between the agent (user) and the artifact
(used): if the use action is successfully executed, then it means that the execution
of the operation on the artifact has started.

266 A. Ricci, M. Viroli, and G. Piancastelli

3 The simpA Framework and Technology

simpA is an extension of the Java platform that supports the A&A abstractions
as first-class concepts, namely, as basic high-level building blocks to program
concurrent applications1. This approach contrasts most existing ones modifying
object-oriented abstractions (classes, objects, methods) to model concurrency
aspects—such as e.g. [2]. Rather, we introduce a new abstraction layer based on
A&A, and use true object-orientation to model any basic low-level data structure
used to program agents and artifacts, and any information kept and exchanged
by them through interactions. This approach leaves concurrency and high-level
organisation aspects orthogonal to the object-oriented abstraction layer: we ar-
gue that this approach could lead to a more coherent programming framework
for complex applications.

simpA extension is realised as a library, exploiting Java annotations to define
the new programming constructs required: consequently, a simpA program can
be compiled and executed using the standard Java compiler and virtual machine,
without the need of a specific extension of the Java framework (preprocessors,
compilers, class loaders, or JVM patches). This choice has the advantage to
maximise the reuse of an existing widely diffused platform (Java). Indeed, on
the one side using the library / annotations solution to implement a language
and a platform extension has some revelant drawbacks, which derive from the
fact that agents and artifacts are not true real first-class abstractions for the lan-
guage and the virtual machine. Accordingly, part of the ongoing work is devoted
towards the definition and the prototype implementation of a new full-fledged
language and platform independent from Java. On the other side, we exploited
annotations here to clearly distinguish and separating the implementation of
agent and artifact concepts from the object-oriented part, and at the same time
to enforce encapsulation at the language level for defining such parts: so, for
example, activities are defined as annotated parts of the agent (class), without
the need of creating further classes.

In the remainder of the section we give a more concrete taste of the A&A
approach by describing how an application based on agents and artifacts can
be designed and programmed on top of simpA. Table 1 reports the source code
of a simple application, used here as a reference to exemplify the programming
of agents and artifacts. The application creates a simple Cafeteria workspace,
composed by a single Waiter agent using two instances of a CoffeeMachine
artifact. The CoffeeMachine artifact mimics the behaviour of a coffee machine:
it can be used to make either coffee or tea. Essentially, it provides a usage
interface with controls for selecting the type of drink (coffee or tea) first, then
for making the drink. Then, while making the drink, it provides a usage interface
to adjust the sugar level and possibly to stop the operation (for short drink).
The Waiter agent is programmed with the objective to make coffee and tea by
exploiting two different coffee machines, and to deliver either both if they are

1 simpA technology is open-source and is available at simpA web site
http://www.alice.unibo.it/simpa

simpA: A Simple Agent-Oriented Java Extension 267

ready within a certain amount of time, or just the coffee if the tea production
lasts too long.

A simpA application is typically booted by setting up the workspace(s), creat-
ing an initial set of artifacts—two CoffeeMachines in the example—and spawn-
ing the initial set of agents—a single Waiter in this case. For this purpose,
the Simpa class and the ISimpaWorkspace interface provide suitable services to
initialise and configure the working environment, composed by one or multiple
workspaces. In the example there is one single workspace in a single node: actu-
ally it is possible to create multiple workspaces possibly spread among different
network nodes and agents can join and work simultaneously in multiple (possibly
remote) workspaces.

This example is part of the basic examples provided in simpA distribution,
available on simpA web site.

3.1 Defining Agents

A requirement in simpA was to make the approach as agile as possible, min-
imising the number of classes to be introduced for defining both agents and
artifacts. For that reason a one-to-one mapping has been adopted: just one class
is needed to define an agent template or an artifact template. Accordingly, to
define a new agent (template), only one class must be defined, extending the
alice.simpa.Agent base class provided by simpA API. The class name corre-
sponds to the agent template name. The elements defining an agent, activities
in particular, are mapped into class elements, suitably annotated. By defining a
template, it is possible at runtime to spawn an instance of such type of agent.
The execution of an agent consists in executing the activities as specified in its
template, starting from the main one.

Agent long-term memory is realised as an associative store called memo-space,
where the agent can dynamically attach, associatively read and retrieve chunks
of information called memo. A memo is a tuple, characterised by a label and
an ordered set of arguments, either bound or not to some data object (if some
is not bound, the memo is hence partially specified). A memo-space is just a
dynamic set of memos: a memo is identified by its label, and only one instance
of a memo can exist at a time. Each agent has internal actions to atomically and
associatively access and manipulate the memo space: to create a new memo, to
get / remove a memo with the specified label and / or content, and so on. It
is worth remarking here that instance fields of an agent class are not used: the
memo-space is the only data structure adopted for modelling agent long-term
memory.

Agent activities can be either atomic—i.e. not composed by sub-activities—or
structured, composed by some kinds of sub-activity. Atomic activities are imple-
mented as methods with the @ACTIVITY annotation, with no input parameters
and with void return type. The body of a method specifies the computational be-
havior of the agent corresponding to the accomplishment of the activity. Method
local variables are used to encode data-structures representing the short-term
memory related to the specific activity. By default, the main activity of an agent

268 A. Ricci, M. Viroli, and G. Piancastelli

is called main, and must be defined by every new agent template. By referring
to the example reported in Table 1, a Waiter agent has four atomic activities:
makeOneCoffee, makeOneTea, deliverBoth, deliverJustCoffee.

Structured activities can be described as activities composed (hierarchically)
by sub-activities. The notion of agenda is introduced to specify the set of the
potential sub-activities composing the activity, referenced as todo in the agenda.
Each todo specifies the name of the subactivity to execute, and optionally a
pre-condition. When a structured activity is executed, the todos in the agenda
are executed as soon as their pre-conditions hold. If no pre-condition is spec-
ified, the todo is immediately executed. Then, multiple sub-activities can be
executed concurrently in the context of the same (super) activity. A structured
activity is implemented by methods with an @ACTIVITY WITH AGENDA annota-
tion, containing todo descriptions as a list of @TODO annotations. Each @TODO
must specify the name of the related sub-activity to execute and optionally a
pre property specifying the precondition that must hold in order to execute the
todo. A todo can be specified to be persistent : in that case, once it has been
completely executed, it is re-inserted in the agenda so as to be possibly executed
again. This is useful to model cyclic behaviour of agents when executing some
activity. Todo preconditions are expressed as a boolean expression, with and /
or connectors (represented by , and ; symbols, respectively) over a basic set
of predefined predicates. Essentially, the predicates make it possible to specify
conditions on the current state of the activity agenda, in particular on (i) the
state of the sub-activitities (todo), if they completed or aborted or started, and
on (ii) the memos that could have been attached to the agenda. Besides holding
information useful for activities, memos are used then also to coordinate activ-
ities, by exploiting in the specification of a pre-condition the predicate (memo),
which tests the presence of a memo in the agenda.

By referring to the example reported in Table 1, the Waiter has a structured
main activity, with four todos: making a coffee (makeOneCoffee) and making a
tea (makeOneTea), as activities that can be performed concurrently as soon as the
main activity starts, and then either delivering the drinks (deliverBoth) as soon
as both the drinks are ready, or deliver just the coffee (deliverJustCoffee) if
tea is not available after a specific amount of time. At the end of the activities, the
primitive memo is used to create memos about the drinks (labelled with drink1
and drink2), annotating information related to the fact that coffee and tea are
done. In the case of makeOneTea activity, the memo tea not ready is created
instead if the agent does not perceive that tea is ready within a specific amount of
time. In deliverJustCoffee and deliverBoth activities the primitive getMemo
is used instead to retrieve the content of a memo.

To perform their activities agents typically need to interact with their working
environment, in particular with artifacts by means of use and sense actions as
described in previous section. For this purpose, the use and sense primitives are
provided respectively to trigger the execution of an operation over an artifact,
and for perceiving the observable events generated by the artifact as effect of

simpA: A Simple Agent-Oriented Java Extension 269

the execution. Before describing in detail agent-artifact interaction, in next sub-
section we describe how to program artifacts.

3.2 Defining Artifacts

Analogously to agents, also artifacts are mapped onto a single class.
An artifact template can be described by a single class extending the
alice.simpa.Artifact base class. The elements defining an artifact—its inner
and observable state and the operations defining its computational behaviour—
are mapped into class elements, suitably annotated. The instance fields of the
class are used to encode the inner state of the artifact and observable properties,
while suitably annotated methods are used to implement artifact operations.

For each operation control listed in the usage interface, a method annotated
with @OPERATION and with void return type must be defined: the name and pa-
rameters of the method coincide with the name and parameters of the operations
to be triggered.

Operations can be either atomic, executed as a single computational step rep-
resented by the content of the @OPERATION method, or structured, i.e. composed
by multiple atomic steps. Structured operations are useful to implement those
services that would need multiple interactions with—possibly different—agents,
as users of the artifact, and that cannot be provided “in one shot”. The execu-
tion of an operation can be figured out then as a process composed by linear
execution of atomic operation steps. Operation steps are implemented by meth-
ods annotated with @OPSTEP, and can be triggered (enabled) by means of the
nextStep primitive specifying the name of the step to be enabled and possibly
its parameters. For each operation and operation step a guard can be specified,
i.e. a condition that must be true in order to actually execute the operation /
step after it has been enabled (triggered). Guards are implemented as boolean
methods annotated with the @GUARD annotation, with same parameters as the
operation (step) guarded. The step is actually executed as soon as its guard is
evaluated to true. Guards can be specified also for an operation, directly. Also
temporal guards are supported, i.e. guards whose evaluation is true when a spe-
cific delta time is elapsed after triggering. To define a temporal guard, a tguard
property must be specified inside the @OPSTEP annotation in the place of guard:
the property can be assigned with a long value greater than 0, indicating the
number of milliseconds that elapse between triggering and actual execution.

Multiple steps can be triggered as next steps of an operation at a time: As
soon as the guard of a triggered step is evaluated to true, the step is executed—in
mutual exclusion with respect to the steps of the other operations in execution—
and the other triggered steps of the operation are discarded. If multiple steps are
evaluated to be runnable at a time, one is chosen according to the order in which
they have been triggered with the nextStep primitive. It is worth remarking
that, in the overall, multiple structured operations can be in execution on the
same artifact at the same time, but with only one operation step in execution
at a time, enforcing mutual exclusion in accessing the artifact state.

270 A. Ricci, M. Viroli, and G. Piancastelli

Table 1. An example of simpA application, composed by a single Waiter agent using
two instances (cmOne and cmTwo) of the CoffeeMachine artifact

public class TestCafeteria {
public static void main(String[] args){

ISimpaWorkspace wsp =
Simpa.createWorkspace("Cafeteria");

wsp.createArtifact("cmOne","CoffeeMachine");
wsp.createArtifact("cmTwo","CoffeeMachine");
wsp.spawnAgent("waiter","Waiter");

} }

public class Waiter extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="makeOneCoffee"),
@TODO(activity="makeOneTea"),
@TODO(activity="deliverBoth",

pre="completed(makeOneCoffee),
completed(makeOneTea)"),

@TODO(activity="deliverJustCoffee",
pre="completed(makeOneCoffee),

memo(tea_not_ready)"),
}) void main(){}

@ACTIVITY void makeOneCoffee() throws Exception {
SensorId sid = linkDefaultSensor();
ArtifactId id = lookupArtifact("cmOne");

use(id, new Op("selectCoffee"));
use(id, new Op("make"), sid);
sense(sid, "making_coffee");

Perception p = null;
IPerceptionFilter filter = new GenericFilter(

"property_updated", "sugarLevel");

focus(id, sid);
do {

use(id, new Op("addSugar"));
p = sense(sid, filter);

} while (p.doubleContent(1) < 0.5);

Perception p1 = sense(sid,"coffee_ready",5000);
memo("drink1", p1.getContent(0));

}

@ACTIVITY void makeOneTea() throws Exception {
SensorId sid = linkDefaultSensor();
ArtifactId id = lookupArtifact("cmTwo");

use(id, new Op("selectTea"));
use(id, new Op("make"), sid);
try {

Perception p = sense(sid, "tea_ready", 6000);
memo("drink2", p.getContent(0));

} catch (NoPerceptionException ex) {
memo("tea_not_ready");
throw new ActivityFailed();

}
}

@ACTIVITY void deliverBoth() {
log("delivering "+

getMemo("drink1").getContent(0) + " " +
getMemo("drink2").getContent(0));

}

@ACTIVITY void deliverJustCoffee() {
log("delivering only "+

getMemo("drink1").getContent(0));
}

}

@ARTIFACT_MANUAL(
states={"idle","making"},
start_state="idle")

class CoffeeMachine extends Artifact {

@OBSPROPERTY String selection = "";
@OBSPROPERTY double sugarLevel = 0.0;

int nCupDone = 0;
boolean makingStopped;

@OPERATION(states={"idle"})
void selectCoffee() {

updateProperty("selection", "coffee");
}

@OPERATION(states={"idle"})
void selectTea() {

updateProperty("selection", "tea");
}

@OPERATION(states={"idle"})
void make() {

if (selection.equals("")) {
signal("no_drink_selected");

} else {
makingStopped = false;
switchToState("making");
signal("making_" + selection);
nextStep("timeToReleaseDrink");
nextStep("forcedToReleaseDrink");

}
}

@OPSTEP(tguard=3000)
void timeToReleaseDrink() {

releaseDrink();
}

@OPSTEP(guard="makingStopped")
void forcedToReleaseDrink() {

releaseDrink();
}

private void releaseDrink() {
signal(selection + "_ready", drink, sugarLevel);
updateProperty("selection", "");
updateProperty("sugarLevel", 0);
switchToState("idle");

}

@GUARD boolean makingStopped() {
return makingStopped;

}

@OPERATION(states={"making"})
void addSugar() {

double sl = sugarLevel + 0.1;
if (sl > 1){ sl = 1; }
updateProperty("sugarLevel", sl);

}

@OPERATION(states={"making"})
void stop() {

makingStopped = true;
}

}

simpA: A Simple Agent-Oriented Java Extension 271

To be useful, an artifact typically should provide some level of observabil-
ity. This is achieved either by generating observable events through the signal
primitive or by defining observable properties. In the former case, the primi-
tive generates observable events that can be observed by the agent using the
artifact—i.e. by the agent which has executed the operation. An observable
event is represented by a tuple, with a label (string) representing the kind of
the event, and a set of arguments, useful to specify some information content. In
the latter case, observable properties are implemented as instance fields anno-
tated with the OBSPROPERTY annotation. Any change of the property by means
of the updateProperty primitive would generate an observable event of the
type property updated(PropertyName) with the new value of the property as
content. The observable events is observed by all the agents that are focussing
(observing) the artifact. More on this will be provided in next subsection, when
describing agent-artifact interaction.

Finally, the usage interface of an artifact can be partitioned in labelled states,
in order to allow a different usage interface according to the specific function-
ing state of the artifact. This is realised by specifying the annotation property
states when defining operations and observable properties, specifying the list of
observable states in which the specific property / operation is visible. The prim-
itive switchToState is provided to change the state of the artifact (changing
then the exposed usage interface).

In the example reported in Table 1, the CoffeeMachine artifact has two basic
functioning states, idle and making, with the former used as starting state. In
the idle state, the usage interface is composed by selectCoffee, selectTea
and make operations, the first two used to select the drink type and the third one
to start making the selected drink; in the making state, the usage interface is com-
posed by addSugar and stop operations, the first used to adjust the sugar level
during drink-making and the last possibly to stop the process for having shorter
drinks. Also, the artifact has two observable properties, selectionwhich reports
the type of the drink currently selected, and sugarLevel which reports current
level of sugar: when, for example, selection is updated by updateProperty, an
observable event property updated("selection") is generated. The operations
selectCoffee and selectTea are atomic, instead make is (can be) structured: if
a valid drink selection is available, then two possible alternative operation steps
are scheduled, timeToReleaseDrink and forcedToReleaseDrink. The first one
is time-triggered, and it is executed 3 seconds after triggering. The second one is
executed as soon as makingStopped guard is evaluated to true. This can happen
if the agent user executed the stop operation while the coffee machine is mak-
ing the coffee. In both cases, step execution accounts for releasing the drink, by
signaling a proper event of the type coffee ready or tea ready, updating the
observable properties value and switching to the idle state.

Some other artifact features are not described in detail here for lack of space.
Among them we mention: linkability—which accounts for dynamically composing
artifacts together through link interfaces, which are interfaceswith operations that
are meant to be invoked (linked) by other artifacts—and artifact manual—which

272 A. Ricci, M. Viroli, and G. Piancastelli

concerns the possibility to equip each artifact with a document, written by the ar-
tifact programmer, containing a formal machine-readable semantic-based descrip-
tion of artifact functionality and usage instructions (operating instructions). The
manual canbe inspecteddynamically by agents (bymeans of a specific action called
readManual): this is a first step enabling scenarios—typically in the context of open
systems—where agents would be able to select and use artifacts that are added dy-
namically to their working environment,without having a pre-programmedknowl-
edge about their functionality and use [21]. The interested reader is forwarded to
the documentation available at simpA web site.

3.3 Agent-Artifact Interaction

Artifact use is the basic form of interaction between agents and artifacts. Ac-
tually, also artifact instantiation and artifact discovery are realised by means
of using proper artifacts—a factory and a registry artifacts—, which are avail-
able in each workspace. However two high-level auxiliary actions are provided,
makeArtifact and lookupArtifact, which encapsulate the interaction with
such artifacts.

Following the A&A model, artifact use by a user agent involves two basic
aspects: (1) executing operations on the artifact, and (2) perceiving—through
agent sensors—the observable events generated by the artifact.

Agents execute operations on an artifact by using the interface controls pro-
vided by the artifact usage interface. The use basic action is provided for this
purpose, specifying the identifier of the target artifact, the operation to be trig-
gered and optionally the identifier of the sensor used to collect observable events
generated by the artifact. When the action execution succeeds, the return param-
eter returned by use is the operation unique identifier. If the action execution
fails—because, for instance, the interface control specified is not part of arti-
fact usage interface—an exception is generated. An agent can link (and unlink)
any number of sensors (of different kinds) by means of specific internal actions
(linkSensor, unlinkSensor, and linkDefaultSensor, to link a new default
type of sensor), according to the strategy chosen for sensing and observing the
environment.

In order to retrieve events collected by a sensor, the sense internal action
is provided. The action suspends the execution of the activity until either an
event is collected by the sensor, matching the pattern optionally specified as a
parameter (for data-driven sensing), or a timeout is reached, optionally specified
as a further parameter. As a result of a successful execution of a sense, the event
is removed from the sensor and a perception related to that event—represented
by an object instance of the class Perception—is returned. If no perception is
sensed for the duration of time specified, the action generates an exception of
the kind NoPerceptionException. A custom filter for pattern matching can be
specified (with classes implementing IPerceptionFilter): by default pattern-
matching is based on regular-expression patterns, matched over the event type
(a string).

simpA: A Simple Agent-Oriented Java Extension 273

Finally, a support for continuous observation is provided. If an agent is inter-
ested in observing every event generated by an artifact—including those gener-
ated as a result of the interaction with other agents—two primitives can be used,
focus and unfocus. The former is used to start observing the artifact, specifying
a sensor to be used to collect the events and optionally the reg-ex filter to define
the set of events to observe. The latter one is used to stop observing the artifact.

In the example reported in Table 1, in the makeCoffee activity the agent
uses the coffee machine cmOne (discovered by the lookupArtifact action) by
executing first a selectCoffee operation, ignoring possible events generated by
such operation execution, and then a make, specifying a sensor to collect events.
Then the agent, by means of a sense, waits to observe a making coffee event,
meaning that the artifact started making coffee. The agent then interacts with
the machine so as to adjust the sugar level: this is done by focussing on the
artifact and acting upon the addSugar operation control, until the observable
property reporting the sugar level reaches 0.5. Then the activity is blocked until
coffee ready event is perceived. While performing a makeOneCoffee activity,
the agent carries on also a makeOneTea activity: as a main difference there, if
the agent does not observe the tea ready event within six seconds after having
triggered the make operation, then a memo tea not ready is inserted and the
activity fails (by means of the generation of an exception).

3.4 Inter-Agent Interactions

simpA provides also a very basic support for direct communication between
agents, with a tell(ReceiverId,Msg) primitive to send a message to another
agent, and a listen(SensorId,Filter)—analogous to focus primitive—to
specify sensors to be used to collect the messages). So, also for direct com-
munication, sensors and sensing primitives are exploited to collect and be aware
of perceptions, in this case related to the arrival of a message.

4 Discussion

The main objective of simpA is to simplify the prototyping of complex applica-
tions involving elements of concurrency, by introducing high-level abstractions
on top of the basic object-oriented layer.

As a first benefit, the level of abstraction underlying the approach is meant to
promote an agile design of the application and then to reduce the gap between
such design and the implementation level. At the design level, by adopting a
task oriented approach as typically promoted by agent-oriented methodologies
[8], the task-oriented and function-oriented parts of the system are identified,
driving to the definition of the agents and artifacts as depicted by the A&A
model, and then to the implementation in simpA.

Then, the approach aims at providing agile but quite general means to organ-
ise and manage complex active and passive behaviours. For active behaviours,
the notion of activity and the hierarchical activity model adopted in the agent

274 A. Ricci, M. Viroli, and G. Piancastelli

abstraction make it possible to describe articulated active behaviours in a quite
synthetic and readable way, abstracting from the complexity related to threads
creation, management and coordination. Besides the notion of activity, the
very notion of agent as the state-full entity responsible for activity execution
strengthen the level of encapsulation adopted to structure active parts. For pas-
sive behaviours, the model of artifact adopted allows the programmer to specify
complex functionalities (operations) possibly shared and exploited by multiple
agents concurrently, without the need to explicitly use lower-level Java mecha-
nisms such as synchronised blocks or wait / notify synchronisation primitives.
On the one side, mutual exclusion in accessing and modifying artifact inner state
is guaranteed by having only one operation step in execution at a time. On the
other side, possible dependencies between operations can be explicitly took into
account by defining the operation (step) guards.

Besides the individual component level, the approach has been conceived to
simplify the development of systems composed by multiple agents that work
together, coordinating their activities by exploiting suitable coordination arti-
facts [14]. More generally, the problems that are typically considered in the
context of concurrent programming involving the interaction and coordination
of multiple processes—examples are producer-consumer, readers-and-writers,
dining-philosophers—can be naturally modelled in terms of agents and artifacts,
providing solutions that in our opinion aremore clear and “high-level”with respect
to those mixing object-oriented abstractions—threads and low-level synchronisa-
tion mechanism—as in the case of Java. For instance, producers-consumers prob-
lems are naturally modelled in terms of producer and consumer agents sharing
and exploiting a bounded buffer artifact; readers-and-writers problems in terms
of reader and writer agents that use a suitably designed rw-lock coordination arti-
fact to coordinate their access to a shared resource; dining-philosophers, in terms
of a set of philosopher agents sharing and using a table, which encapsulates and
enforces those coordination rules that make it possible to handle mutual exclusion
in using chopsticks and to avoid deadlock situations. For the interested readers,
these and other problems are included among the examples provided in simpA dis-
tribution, not reported here for lack of space.

Finally, the notion of artifact can be naturally used also to model and program
GUI components in applications: actually simpA provides a direct support to
develop graphical user interfaces as artifacts mediating the interaction between
human users and application agents. Generally speaking, such kinds of artifacts
expose a usage interface both for humans—in terms of GUI controls—and for
agents, and generate observable events that can be observed by agents, which
can, in turn, change the GUI through its usage interface. Examples about GUI
realised as artifacts are provided in simpA distribution.

5 Related Works

simpA model and technology are strictly related to the research work on
CARTAGO [18] and artifacts in general [17]. While simpA introduces a specific

simpA: A Simple Agent-Oriented Java Extension 275

programming model for programming agents, CARTAGO is focussed solely on
artifacts—programming and API for agents to use them—and conceptually it
can be integrated with heterogeneous agent platforms, including cognitive agent
platforms, extending them to support artifact-based environments.

The artifact abstraction at the core of simpA and CARTAGO is a generalisa-
tion of coordination artifacts—i.e. artifacts encapsulating coordination function-
alities, introduced in [14]. In A&A artifacts are the basic building blocks that
can be used to engineer the working environments where agents are situated:
agent environment then play a fundamental role here in engineering the overall
MAS as first-order entity that can be designed so as to encapsulate some kind
of responsibility (functionality, service). This perspective is explored in several
research works appeared recently in MAS literature: a survey can be found in
[22]. By providing a general-purpose programming model for artifacts, simpA
gives the possibility to program any kind of coordination artifacts, from sim-
ple synchronizers (such as latch, barriers, etc.) to more complex ones, such as
tuple spaces [7] or tuple centres [13]. Actually, an important difference with re-
spect to existing coordination technologies for distributed systems is that these
ones are not typically designed for agent models / platforms, but for object-
oriented environments or a-like, and so without agent autonomy in mind. For
instance, JavaSpaces [6] provides API to exploit kinds of tuple spaces in Java
applications, providing operations which can directly block the control flow of
the thread invoking the operation: an example is given by the take or in opera-
tion. Conversely, artifacts realised in simpA, including coordination artifacts like
tuple spaces, are designed and programmed following the basic programming
model for artifacts defined by A&A, which explicitly preserve agent autonomy
in agent-artifact interaction.

Quite obviously, simpA is not the first approach providing an agent-oriented
abstraction layer on top of the flat Java. JADE2 is probably the most known and
used case, providing a general-purpose middleware that complies with the FIPA
specifications for developing peer-to-peer distributed agent based applications.
A main conceptual and practical difference between simpA and JADE concerns
the high-level first-class abstractions adopted to organise a software system: in
JADE there are agents interacting by means of FIPA ACL, in simpA there are
agents and artifacts. Then, besides the support for FIPA ACL, JADE adopts a
behaviour-based programming model for programming agents. From this point
of view, activities in simpA are similar to behaviours in JADE, with the main
difference that in simpA the definition of structured activities composed by sub-
activities is done declaratively by defining the activity agenda, while in JADE is
done operationally, by creating and composing objects of specific classes. Besides
JADE, other well-known agent-oriented platforms have been developed as an
extension of the Java platform: we cite here JACK3, and JADEX [15], which
differently from JADE and simpA provide a first-class support for programming

2 http://jade.tilab.com/
3 http://www.agent-software.com/

276 A. Ricci, M. Viroli, and G. Piancastelli

intelligent agents, based on the BDI architecture and the FIPA standards. These
approaches—as most of the other cognitive agent programming platforms—are
typically targeted to the engineering of distributed intelligent systems for com-
plex application domains, not for concurrent programming in general.

Finally, simpA is strongly related to the research in the context of object-
oriented concurrent programming (OOCP), extending the basic OO paradigm
toward concurrency4. In this context, a large amount of approaches have been
proposed since the beginning of the 80’s; it is not possible to report here a full
list of all the approaches: the interested reader is forwarded to surveys such as
[4,23]. Among the main examples, active objects [9] and actors [1] have been
the root of entire families of approaches. The approach proposed in this paper
shares the aim of actor and active objects approaches, i.e introducing a general-
purpose abstraction layer to simplify the development of concurrent applications.
Differently from actor-based approaches, in A&A and simpA also the passive
components of the systems are modelled as first-class entities (the artifacts),
besides the active parts (actors in actor-based systems). Differently from active-
object-based approaches—where typically active objects are objects with further
capabilities—, in simpA a strong distinction between active and passive entities
is promoted: agents and artifacts have completely different properties, with a
clear distinction at the design level of their role, i.e. encapsulating pro-active
/ task-oriented behaviour (agents) and passive / function-oriented behaviour
(artifacts).

6 Conclusion

More and more concurrency is going to be part of mainstream programming
and software engineering, with applications able to suitably exploit the inher-
ent concurrency support provided by modern hardware architecture—such as
multi-core architectures—and by network-based environments and related tech-
nologies, such as Internet and Web Services. This calls for—quoting Sutter and
Larus [20]—“higher-level abstractions that help build concurrent programs, just
as object-oriented abstractions help build large componentised programs”.

Along this line, in this paper we presented simpA, a library extension over
the basic Java platform that aims at simplifying the development of complex
(concurrent) applications by introducing a simple high-level agent-oriented ab-
straction layer over the OO layer. Future work will be devoted on finalising a
formal model for simpA basic programmming model on the one side, and defining
a full fledged simpA language and virtual machine on the other side, independent
from the Java language.

4 In the context of the object-oriented research community, a first paper on simpA
has been presented at the conference ”Principle and Practice of Java Programming”
(PPPJ’07) [16]. Given the context, that paper focusses more on the features of
simpA with respect to existing approaches in the context object-oriented / Java-
based concurrent programming.

simpA: A Simple Agent-Oriented Java Extension 277

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

2. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#.
ACM Trans. Program. Lang. Syst. 26(5), 769–804 (2004)

3. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented
programming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Platforms and Applications, pp. 3–
37. Springer, Heidelberg (2005)

4. Briot, J.-P., Guerraoui, R., Lohr, K.-P.: Concurrency and distribution in object-
oriented programming. ACM Comput. Surv. 30(3), 291–329 (1998)

5. Dastani, M., Hobo, D., Meyer, J.-J.: Practical extensions in agent programming
languages. In: Proceedings of the Sixth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2007). ACM Press, New York
(2007)

6. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns, and Practice.
The Jini Technology Series. Addison-Wesley, Reading (1999)

7. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

8. Iglesias, C., Garrijo, M., Gonzalez, J.: A survey of agent-oriented methodologies.
In: Müller, J., Singh, M.P., Rao, A.S. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555,
pp. 317–330. Springer, Heidelberg (1999)

9. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for
concurrent programming. In: Pattern languages of program design 2, pp. 483–499.
Addison-Wesley Longman Publishing Co., Inc., Boston (1996)

10. Lea, D.: The java.util.concurrent synchronizer framework. Sci. Comput. Pro-
gram. 58(3), 293–309 (2005)

11. Lieberman, H.: The continuing quest for abstraction. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 192–197. Springer, Heidelberg (2006)

12. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer
Interaction. MIT Press, Cambridge (1996)

13. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3), 277–294 (2001)

14. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: Proceedings
of the 3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), vol. 1, pp. 286–293. IEEE computer Society, Washington
(2004)

15. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In: Bor-
dini, R., Dastani, M., Dix, J., Seghrouchni, A. (eds.) Multi-Agent Programming,
Kluwer, Dordrecht (2005)

16. Ricci, A., Viroli, M.: simpA: An agent-oriented approach for prototyping concur-
rent applications on top of java. In: Amaral, V., Veiga, L., Marcelino, L., Cunning-
ham, H.C. (eds.) Proceedings of the 5th International Conference, Principles and
Practice of Programming in Java (PPPJ 2007), Lisbon, Portugal, September 2000,
pp. 185–194 (2000)

278 A. Ricci, M. Viroli, and G. Piancastelli

17. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: The A&A approach
for engineering working environments in MAS. In: Durfee, E., Yokoo, M., Huhns,
M., Shehory, O. (eds.) 6th International Joint Conference Autonomous Agents &
Multi-Agent Systems (AAMAS 2007), pp. 601–603 (2007)

18. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg (2007)

19. Ricci, A., Viroli, M., Omicini, A.: The A&A programming model and technology for
developing agent environments in MAS. In: Dastani, M., El Fallah Seghrouchni, A.,
Ricci, A., Winikoff, M. (eds.) Programming Multi-Agent Systems. LNCS (LNAI),
vol. 4908, pp. 89–106. Springer, Heidelberg (2008)

20. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM Queue: To-
morrow’s Computing Today 3(7), 54–62 (2005)

21. Viroli, M., Ricci, A.: Instructions-based semantics of agent mediated interaction.
In: Proceedings of the 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004), vol. 1, pp. 102–109. IEEE Computer
Society, Washington (2004)

22. Weyns, D., Parunak, H.V.D. (eds.): Journal of Autonomous Agents and Multi-
Agent Systems. Special Issue: Environment for Multi-Agent Systems, vol. 14(1).
Springer, Heidelberg (2007)

23. Yonezawa, A., Tokoro, M. (eds.): Object-oriented concurrent programming. MIT
Press, Cambridge (1986)

Author Index

Badr, Iman 106
Braubach, Lars 173

Cabac, Lawrence 225

Dasmahapatra, Srinandan 1
Dastani, Mehdi 54
Dennis, Louise 71
Dörges, Till 225
Dupplaw, Dave 1

El Fallah Seghrouchni, Amal 156

Fisher, Michael 71
Fortino, Giancarlo 209

Garro, Alfredo 209
Gaspari, Mauro 243
German, Ernesto 191
Giunchiglia, Fausto 1
Göhner, Peter 106
Guidi, Davide 243
Gungui, Ivana 139

Hepple, Anthony 71

Klügl, Franziska 123
Kotoulas, Spyros 1

Lewis, Paul 1
Lloyd, John W. 19
Loizou, Antonis 1

Marchese, Maurizio 1
Martelli, Maurizio 139
Mascardi, Viviana 139

Meyer, John-Jules Ch. 54
Modgil, Sanjay 37
Moldt, Daniel 225
Mubarak, Hisham 106

Ng, Kee Siong 19

Perreau de Pinninck, Adrian 1
Piancastelli, Giulio 261
Pokahr, Alexander 173
Potiron, Katia 156

Reese, Christine 225
Ricci, Alessandro 261
Robertson, Dave 1
Russo, Wilma 209

Sabou, Marta 1
Schorlemmer, Marco 1
Shadbolt, Nigel 1
Sheremetov, Leonid 191
Siebes, Ronnie 1
Sierra, Carles 1

Taillibert, Patrick 156
Tinnemeier, Nick A.M. 54

van Baars, Egon 89
van Harmelen, Frank 1
Verbrugge, Rineke 89
Viroli, Mirko 261

Walton, Chris 1
Wester-Ebbinghaus, Matthias 225

Yatskevich, Mikalai 1

	Title Page
	Preface
	Organisation
	Table of Contents
	Open Knowledge
	Introduction
	Interaction Specification
	Interaction Coordination
	Dynamic Ontology Matching
	Interaction Model Sharing and Discovery
	Visualisation for User Interaction and Interaction Monitoring

	A Minimal, Most General Interaction Model
	The OpenKnowledge Kernel
	Comparison to Current Paradigms
	The Data-Centric and Process-Centric Semantic Web
	Web Service Architecture
	Grids

	Conclusions
	References

	Probabilistic and Logical Beliefs
	Introduction
	Logic
	Densities
	Integrating Logic and Probability
	Beliefs
	Illustration
	Conclusion
	References

	An Argumentation Based Semantics for Agent Reasoning
	Introduction
	Argumentation Semantics That Accommodate Defeasible Reasoning about Preferences
	Argumentation Based Reasoning about Goals
	Argumentation Based Reasoning over Actions
	Discussion and Future Work
	References

	Goal Selection Strategies for Rational Agents
	Introduction
	An Agent Programming Language
	Syntax
	Semantics

	Goal Selection Strategies
	Incompatibility of Goals
	Precedence of Goals
	A Brief Comparison of the Proposed Mechanisms

	Related Work
	Conclusion and Discussion
	References

	A Common Basis for Agent Organisation in BDI Languages
	Introduction
	Approaches to Agent Organisation
	Cohen and Levesque: Joint Intentions
	Tidhar, Cavedon and Rao: Team-Oriented Programming
	Ferber, Gutknecht and Michel: Roles and Organisations
	Pynadath and Tambe: TEAMCORE
	Fisher, Ghidini and Hirsch: Groups as Agents
	H¨ubner, Sichman and Boissier: Roles and Permissions
	Dignum, Esteva, Sierra and V´azquez-Salceda: Institutions
	Summary

	Structuring Mechanisms
	Extending Agents
	Communication
	Refining and Restricting Communications
	Communication Semantics

	Common Multi-agent Structures
	Sharing Information
	Sharing Capabilities
	Joint Intentions
	Roles

	Concluding Remarks
	Future Work

	References

	Adjusting a Knowledge-Based Algorithm for Multi-agent Communication for CPS
	Introduction
	Adjusting the Algorithm for Asynchronous Communication
	Adjusting the Algorithm for Changing Initiators
	Two-Index Mechanism to the Rescue
	Who’s the ‘Boss’

	CPS Specific Algorithm
	CPS Algorithm

	Analysis of Epistemic Properties of the Algorithm
	Logical Background: Knowledge and Time
	Proof of the Increase of Group Knowledge

	Conclusion and Future Work
	References

	Extending the MaSE Methodology for the Development of Embedded Real-Time Systems
	Introduction
	Embedded Systems
	Distinguishing Characteristics
	Conventional Development Trends
	Modelling Techniques
	Flexibility Requirement

	The MaSE Methodology
	The Selection of MaSE
	Limitations of MaSE for the Embedded Systems Domain

	Proposed Extensions
	Requirements Engineering Phase
	Environmental Support
	Adding Timeliness and Concurrency Support
	Process-Related Extensions

	Evaluation of the Extended MaSE Methodology
	Conclusion and Future Work
	References

	Measuring Complexity of Multi-agent Simulations – An Attempt Using Metrics
	Introduction
	Agent-Based Simulation
	Metrics for Agent-Based Software
	Metrics in General Software Engineering
	Metrics in Agent-Based Software Engineering

	Example Application
	Suggestions for Metrics
	System-Level and Environmental Metrics
	Agent Metrics
	Interaction-Related Metrics
	Feedback Loops and Other Missing Aspects
	Language-Specific Metrics
	Test and Assessment

	Conclusion
	References

	DCaseLP: A Prototyping Environment for Multi-language Agent Systems
	Introduction
	Related Work
	DCaseLP: An Integrated AOSE Approach and Environment
	Modelling Stage (Analysis and Design)
	Implementation Stage
	Testing and Evaluation Stage

	DCaseLP Architecture
	The UMLInJADE Package
	The jessInJADE Package
	The tuPInJADE Package

	Applications
	Conclusions and Future Work
	References

	A Step Towards Fault Tolerance for Multi-Agent Systems
	Introduction
	Conventional Fault Classification
	MAS Faults Classification
	A New Value for the First Attribute ”Phase of Creation or Occurrence”
	Agent Centered Analysis
	System Centered Analysis
	Faults Review

	Validity of Our Approach
	Faults Comparison
	Analysis of the Difference between DSFaults and AAFaults

	Prospects about Building Fault Tolerant MAS
	Specifying Fault Tolerance for Agents and Platforms
	Specifying Generic Handlers

	Conclusion
	References

	The Webbridge Framework for Building Web-Based Agent Applications
	Introduction
	Architecture
	Traditional Model 2 Architecture
	Extending Model 2 for Agents

	Framework Realization
	Delegate Servlet
	Coordinator Agent
	Web Interaction Capability
	Application Development

	Example Application
	Application Configuration
	Preprocessing of Web Requests
	Request Execution in the Agent Layer
	Result Page Generation

	Related Work
	Conclusion and Outlook
	References

	Specifying Interaction Space Components in a FIPA-ACL Interaction Framework
	Introduction
	FIPA Communication Model
	Interaction Space Components
	Message Transport Service
	Message Parser
	Content Language
	Ontology
	Interaction Model
	Interaction Protocol

	CAPNET Interaction Space
	Message Transport Services
	Message Parsers
	Content Languages
	Ontologies
	Interaction Models
	Knowledge Base
	Interaction Protocols

	Example
	Description of the Example
	Instantiation of Interaction Space Components
	Example of Message Validation Processing

	Related Work and Discussion
	Conclusions
	References

	Enabling the Reuse of Platform-Dependent Agents in Heterogeneous Agent-Based Applications
	Introduction
	Definition and Implementation of a Heterogeneous Agent-Based Application
	Programming Interoperable Mobile Agents
	Programming Interoperable Wrapper Agents

	A Case Study
	Programming the RoamingInsuranceAgent
	Programming the PricingWrapperAgents

	Related Work
	Conclusions
	References

	Introducing a Process Infrastructure for Agent Systems
	Introduction
	Processes, Workflows and Multi-agent Systems
	Terminology
	Related Work
	Agent Networks

	Conceptual Scope
	What Is an Infrastructure for Agent Networks?
	WFMS and Agents
	Design Approach
	Central Concepts in Relation to the Technical Framework
	Distribution of Agents and Processes
	Vision: Process Control within Agents

	Process Infrastructure
	An Agent-Based Workflow Management System
	The Workflow Agent
	Workflow Management for Open Agent Networks

	Realization
	The Agent-Based Workflow Management System
	The Workflow Agent
	Application Examples

	Conclusion
	References

	Facilitating Agent Development in Open Distributed Systems
	Introduction
	TheNOWHEREPlatform
	NOWHERE’s Agent Communication Language
	Language Primitives

	Transparent Timeouts
	Case Study: The FIPA Contract Net Protocol
	The Initiator Agent - Jade
	The Initiator Agent - NOWHERE
	Discussion

	Conclusions
	References

	$\sf simpA}: A Simple Agent-Oriented Java Extension for Developing Concurrent Applications
	Introduction
	AgentsandArtifacts
	Agent and Artifact Abstractions: Core Properties
	Agent-Artifact Interaction: Use and Observation

	ThesimpA Framework and Technology
	Defining Agents
	Defining Artifacts
	Agent-Artifact Interaction
	Inter-Agent Interactions

	Discussion
	Related Works
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

