ITEXTS IN COMPUTER SCIENCE




TEXTS IN COMPUTER SCIENCE

Editors

David Gries, Cornell University
Fred B. Schneider, Cornell University



TEXTS IN COMPUTER SCIENCE

Apt and Olderog, Verification of Sequential and Concurrent
Programs, Second Edition

Alagar and Periyasamy, Specification of Software Systems

Back and von Wright, Refinement Calculus: A Systematic
Introduction

Beidler, Data Structures and Algorithms: An Object-Oriented
Approach Using Ada 95

Bergin, Data Structures Programming: With the Standard
Template Library in C++

Brooks, C Programming: The Essentials for Engineers and
Scientists

Brooks, Problem Solving with Fortran 90: For Scientists and
Engineers

Burger and Burge, Digital Image Processing: An Algorithmic
Introduction Using Java

Dandamudi, Fundamentals of Computer Organization and Design

Dandamudi, Introduction to Assembly Language Programming:
For Pentium and RISC Processors, Second Edition

Dandamudi, Introduction to Assembly Language Programming:
From 8086 to Pentium Processors

Fitting, First-Order Logic and Automated Theorem Proving,
Second Edition

Grillmeyer, Exploring Computer Science with Scheme
Homer and Selman, Computability and Complexity Theory
Immerman, Descriptive Complexity

Jalote, An Integrated Approach to Software Engineering, Third
Edition

(continued after index)



Ming Li
Paul Vitanyi

An Introduction to Kolmogorov
Complexity and Its Applications

Third Edition

with 49 figures

@ Springer



Ming Li Paul Vitanyi

Cheriton School of Computer Science Centrum voor Wiskunde en Informatica
University of Waterloo Kruislaan 413

Waterloo, ON N2L 3G1 1098 SJ Amsterdam

Canada The Netherlands

mli@uwaterloo.ca paul.vitanyi@cwi.nl

ISBN: 978-0-387-33998-6 e-ISBN: 978-0-387-49820-1

DOI: 10.1007/978-0-387-49820-1
Library of Congress Control Number: 2008923041

© 2008 Ming Li and Paul Vitanyi; © 1997, 1993 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Cover image by Blair Somerville
Printed on acid-free paper

springer.com



To our wives, Wenhui and Pauline



Preface to the
First Edition

“We are to admit no more causes of natural things” (as we are told
by Newton) than “such as are both true and sufficient to explain their
appearances.” This central theme is basic to the pursuit of science, and
goes back to the principle known as Occam’s razor: “if presented with
a choice between indifferent alternatives, then one ought to select the
simplest one.” Unconsciously or explicitly, informal applications of this
principle in science and mathematics abound.

The conglomerate of different research threads drawing on an objec-
tive and absolute form of this approach appears to be part of a single
emerging discipline, which will become a major applied science like in-
formation theory or probability theory. We aim at providing a unified
and comprehensive introduction to the central ideas and applications of
this discipline.

Intuitively, the amount of information in a finite string is the size (num-
ber of binary digits, or bits) of the shortest program that without ad-
ditional data, computes the string and terminates. A similar definition
can be given for infinite strings, but in this case the program produces
element after element forever. Thus, a long sequence of 1’s such as

11111...1
~ ~ -
10,000 times

contains little information because a program of size about log 10,000
bits outputs it:

for 7:=1 to 10,000
print 1

Likewise, the transcendental number m = 3.1415. .., an infinite sequence
of seemingly random decimal digits, contains but a few bits of informa-
tion. (There is a short program that produces the consecutive digits of 7
forever.) Such a definition would appear to make the amount of informa-
tion in a string (or other object) depend on the particular programming
language used.

Fortunately, it can be shown that all reasonable choices of programming
languages lead to quantification of the amount of absolute information in
individual objects that is invariant up to an additive constant. We call
this quantity the ‘Kolmogorov complexity’ of the object. If an object
contains regularities, then it has a shorter description than itself. We
call such an object ‘compressible.’

The application of Kolmogorov complexity takes a variety of forms, for
example, using the fact that some strings are extremely compressible;
using the compressibility of strings as a selection criterion; using the fact
that many strings are not compressible at all; and using the fact that



viii

Preface to All Editions

some strings may be compressed in principle, but that it takes a lot of
effort to do so.

The theory dealing with the quantity of information in individual objects
goes by names such as ‘algorithmic information theory,” ‘Kolmogorov
complexity,” ‘K-complexity,” ‘Kolmogorov—Chaitin randomness,” ‘algo-
rithmic complexity,” ‘stochastic complexity,” ‘descriptional complexity,’
‘minimum description length,” ‘program-size complexity,” and others.
Each such name may represent a variation of the basic underlying idea
or a different point of departure. The mathematical formulation in each
case tends to reflect the particular traditions of the field that gave birth
to it, be it probability theory, information theory, theory of computing,
statistics, or artificial intelligence.

This raises the question about the proper name for the area. Although
there is a good case to be made for each of the alternatives listed above,
and a name like ‘Solomonoff-Kolmogorov—Chaitin complexity’ would
give proper credit to the inventors, we regard ‘Kolmogorov complex-
ity’ as well entrenched and commonly understood, and we shall use it
hereafter.

The mathematical theory of Kolmogorov complexity contains deep and
sophisticated mathematics. Yet one needs to know only a small amount
of this mathematics to apply the notions fruitfully in widely divergent
areas, from sorting algorithms to combinatorial theory, and from induc-
tive reasoning and machine learning to dissipationless computing.

Formal knowledge of basic principles does not necessarily imply the
wherewithal to apply it, perhaps especially so in the case of Kolmogorov
complexity. It is our purpose to develop the theory in detail and outline
a wide range of illustrative applications. In fact, while the pure theory of
the subject will have its appeal to the select few, the surprisingly large
field of its applications will, we hope, delight the multitude.

The mathematical theory of Kolmogorov complexity is treated in Chap-
ters 2, 3, and 4; the applications are treated in Chapters 5 through 8.
Chapter 1 can be skipped by the reader who wants to proceed immedi-
ately to the technicalities. Section 1.1 is meant as a leisurely, informal
introduction and peek at the contents of the book. The remainder of
Chapter 1 is a compilation of material on diverse notations and disci-
plines drawn upon.

We define mathematical notions and establish uniform notation to be
used throughout. In some cases we choose nonstandard notation since
the standard one is homonymous. For instance, the notions ‘absolute
value,” ‘cardinality of a set,” and ‘length of a string’ are commonly de-
noted in the same way as | - |. We choose distinguishing notations | - |,
d(-), and (), respectively.



Preface to the First Edition ix

Briefly, we review the basic elements of computability theory and prob-
ability theory that are required. Finally, in order to place the subject
in the appropriate historical and conceptual context we trace the main
roots of Kolmogorov complexity.

This way the stage is set for Chapters 2 and 3, where we introduce the
notion of optimal effective descriptions of objects. The length of such a
description (or the number of bits of information in it) is its Kolmogorov
complexity. We treat all aspects of the elementary mathematical theory
of Kolmogorov complexity. This body of knowledge may be called algo-
rithmic complexity theory. The theory of Martin-Lof tests for random-
ness of finite objects and infinite sequences is inextricably intertwined
with the theory of Kolmogorov complexity and is completely treated.
We also investigate the statistical properties of finite strings with high
Kolmogorov complexity. Both of these topics are eminently useful in
the applications part of the book. We also investigate the recursion-
theoretic properties of Kolmogorov complexity (relations with Gddel’s
incompleteness result), and the Kolmogorov complexity version of infor-
mation theory, which we may call ‘algorithmic information theory’ or
‘absolute information theory.’

The treatment of algorithmic probability theory in Chapter 4 presup-
poses Sections 1.6, 1.11.2, and Chapter 3 (at least Sections 3.1 through
3.4). Just as Chapters 2 and 3 deal with the optimal effective description
length of objects, we now turn to optimal (greatest) effective probabil-
ity of objects. We treat the elementary mathematical theory in detail.
Subsequently, we develop the theory of effective randomness tests under
arbitrary recursive distributions for both finite and infinite sequences.
This leads to several classes of randomness tests, each of which has a
universal randomness test. This is the basis for the treatment of a math-
ematical theory of inductive reasoning in Chapter 5 and the theory of
algorithmic entropy in Chapter 8.

Chapter 5 develops a general theory of inductive reasoning and ap-
plies the developed notions to particular problems of inductive infer-
ence, prediction, mistake bounds, computational learning theory, and
minimum description length induction in statistics. This development
can be viewed both as a resolution of certain problems in philosophy
about the concept and feasibility of induction (and the ambiguous no-
tion of ‘Occam’s razor’), as well as a mathematical theory underlying
computational machine learning and statistical reasoning.

Chapter 6 introduces the incompressibility method. Its utility is demon-
strated in a plethora of examples of proving mathematical and com-
putational results. Examples include combinatorial properties, the time
complexity of computations, the average-case analysis of algorithms such
as Heapsort, language recognition, string matching, pumping lemmas in



X Preface to All Editions

Acknowledgments

formal language theory, lower bounds in parallel computation, and Tur-
ing machine complexity. Chapter 6 assumes only the most basic notions
and facts of Sections 2.1, 2.2, 3.1, 3.3.

Some parts of the treatment of resource-bounded Kolmogorov com-
plexity and its many applications in computational complexity theory
in Chapter 7 presuppose familiarity with a first-year graduate theory
course in computer science or basic understanding of the material in
Section 1.7.4. Sections 7.5 and 7.7 on universal optimal search and log-
ical depth only require material covered in this book. The section on
logical depth is technical and can be viewed as a mathematical basis
with which to study the emergence of life-like phenomena—thus form-
ing a bridge to Chapter 8, which deals with applications of Kolmogorov
complexity to relations between physics and computation.

Chapter 8 presupposes parts of Chapters 2, 3, 4, the basics of information
theory as given in Section 1.11, and some familiarity with college physics.
It treats physical theories like dissipationless reversible computing, in-
formation distance and picture similarity, thermodynamics of computa-
tion, statistical thermodynamics, entropy, and chaos from a Kolmogorov
complexity point of view. At the end of the book there is a comprehen-
sive listing of the literature on theory and applications of Kolmogorov
complexity and a detailed index.

We thank Greg Chaitin, Péter Gacs, Leonid Levin, and Ray Solomonoff
for taking the time to tell us about the early history of our subject and
for introducing us to many of its applications. Juris Hartmanis and Joel
Seiferas initiated us into Kolmogorov complexity in various ways.

Many people gave substantial suggestions for examples and exercises,
or pointed out errors in a draft version. Apart from the people already
mentioned, these are, in alphabetical order, Eric Allender, Charles Ben-
nett, Piotr Berman, Robert Black, Ron Book, Dany Breslauer, Harry
Buhrman, Peter van Emde Boas, William Gasarch, Joe Halpern, Jan
Heering, G. Hotz, Tao Jiang, Max Kanovich, Danny Krizanc, Evange-
los Kranakis, Michiel van Lambalgen, Luc Longpré, Donald Loveland,
Albert Meyer, Lambert Meertens, lan Munro, Pekka Orponen, Ramamo-
han Paturi, Jorma Rissanen, Jeff Shallit, A.Kh. Shen’, J. Laurie Snell,
Th. Tsantilas, John Tromp, Vladimir Uspensky, N.K. Vereshchagin, Os-
amu Watanabe, and Yaacov Yesha. Apart from them, we thank the many
students and colleagues who contributed to this book.

We especially thank Péter Gécs for the extraordinary kindness of read-
ing and commenting in detail on the entire manuscript, including the
exercises. His expert advice and deep insight saved us from many pit-
falls and misunderstandings. Piergiorgio Odifreddi carefully checked and
commented on the first three chapters. Parts of the book have been



Preface to the
Second
Edition

Preface to the Second Edition xi

tested in one-semester courses and seminars at the University of Ams-
terdam in 1988 and 1989, the University of Waterloo in 1989, Dartmouth
College in 1990, the Universitat Polytecnica de Catalunya in Barcelona
in 1991/1992, the University of California at Santa Barbara, Johns Hop-
kins University, and Boston University in 1992/1993.

This document has been prepared using the ETEX system. We thank
Donald Knuth for TEX, Leslie Lamport for 'TEX, and Jan van der Steen
at CWI for online help. Some figures were prepared by John Tromp using
the xpic program.

The London Mathematical Society kindly gave permission to reproduce
a long extract by A.M. Turing. The Indian Statistical Institute, through
the editor of Sankhya, kindly gave permission to quote A.N. Kolmogorov.

We gratefully acknowledge the financial support by NSF Grant DCR-
8606366, ONR. Grant N00014-85-k-0445, ARO Grant DAALO03-86-K-
0171, the Natural Sciences and Engineering Research Council of Canada
through operating grants OGP-0036747, OGP-046506, and International
Scientific Exchange Awards ISE0046203, ISE0125663, and NWO Grant
NF 62-376. The book was conceived in late Spring 1986 in the Valley of
the Moon in Sonoma County, California. The actual writing lasted on
and off from autumn 1987 until summer 1993.

One of us [PV] gives very special thanks to his lovely wife Pauline
for insisting from the outset on the significance of this enterprise. The
Aiken Computation Laboratory of Harvard University, Cambridge, Mas-
sachusetts, USA; the Computer Science Department of York University,
Ontario, Canada; the Computer Science Department of the University
of Waterloo, Ontario, Canada; and CWI, Amsterdam, the Netherlands
provided the working environments in which this book could be written.

When this book was conceived ten years ago, few scientists realized
the width of scope and the power for applicability of the central ideas.
Partially because of the enthusiastic reception of the first edition, open
problems have been solved and new applications have been developed.
We have added new material on the relation between data compression
and minimum description length induction, computational learning, and
universal prediction; circuit theory; distributed algorithmics; instance
complexity; CD compression; computational complexity; Kolmogorov
random graphs; shortest encoding of routing tables in communication
networks; resource-bounded computable universal distributions; average
case properties; the equality of statistical entropy and expected Kol-
mogorov complexity; and so on. Apart from being used by researchers
and as a reference work, the book is now commonly used for graduate
courses and seminars. In recognition of this fact, the second edition has



il Preface to All Editions

Preface to the
Third Edition

How to Use
This Book

been produced in textbook style. We have preserved as much as possible
the ordering of the material as it was in the first edition. The many ex-
ercises bunched together at the ends of some chapters have been moved
to the appropriate sections. The comprehensive bibliography on Kol-
mogorov complexity at the end of the book has been updated, as have
the ‘History and References’ sections of the chapters. Many readers were
kind enough to express their appreciation for the first edition and to send
notification of typos, errors, and comments. Their number is too large
to thank them individually, so we thank them all collectively.

The general area of reasoning based on shortest description length con-
tinues to coalesce. Simultaneously, the emphasis in handling of informa-
tion in computers and communication networks continues to move from
being random-variable based to being individual-outcome based. Prac-
tically speaking, this has resulted in a number of spectacular real-life
applications of Kolmogorov complexity, where the latter is replaced by
compression programs. The general area has branched out into subareas,
each with its own specialized books or treatments. This work, through
its subsequent editions, has been both a catalyst and an outcome of
these trends. The third edition endeavors to capture the essence of the
state of the art at the end of the first decade of the new millennium. It
is a corrected and greatly expanded version of the earlier editions. Many
people contributed, and we thank them all collectively.

The technical content of this book consists of four layers. The main
text is the first layer. The second layer consists of examples in the main
text. These elaborate the theory developed from the main theorems. The
third layer consists of nonindented, smaller-font paragraphs interspersed
with the main text. The purpose of such paragraphs is to have an ex-
planatory aside, to raise some technical issues that are important but
would distract attention from the main narrative, or to point to alter-
native or related technical issues. Much of the technical content of the
literature on Kolmogorov complexity and related issues appears in the
fourth layer, the exercises. When the idea behind a nontrivial exercise is
not our own, we have tried to give credit to the person who originated
the idea. Corresponding references to the literature are usually given in
comments to an exercise or in the historical section of that chapter.

Starred sections are not really required for the understanding of the se-
quel and can be omitted at first reading. The application sections are not
starred. The exercises are grouped together at the end of main sections.
Each group relates to the material in between it and the previous group.
Each chapter is concluded by an extensive historical section with full



How to Use This Book xiii

references. For convenience, all references in the text to the Kolmogorov
complexity literature and other relevant literature are given in full where
they occur. The book concludes with a References section intended as a
separate exhaustive listing of the literature restricted to the theory and
the direct applications of Kolmogorov complexity. There are reference
items that do not occur in the text and text references that do not occur
in the References. We added a very detailed Index combining the index
to notation, the name index, and the concept index. The page number
where a notion is defined first is printed in boldface. The initial part of
the Index is an index to notation. Names such as ‘J. von Neumann’ are
indexed European style ‘Neumann, J. von.’

The exercises are sometimes trivial, sometimes genuine exercises, but
more often compilations of entire research papers or even well-known
open problems. There are good arguments to include both: the easy
and real exercises to let the student exercise his comprehension of the
material in the main text; the contents of research papers to have a com-
prehensive coverage of the field in a small number of pages; and research
problems to show where the field is (or could be) heading. To save the
reader the problem of having to determine which is which: “I found this
simple exercise in number theory that looked like Pythagoras’s Theorem.
Seems difficult.” “Oh, that is Fermat’s Last Theorem; it took three hun-
dred and fifty years to solve it ...,” we have adopted the system of rating
numbers used by D.E. Knuth [The Art of Computer Programming, Vol-
ume 1: Fundamental Algorithms, Addison-Wesley, 1973. Second Edition,
pp. xvii—xix]. The interpretation is as follows:

00 A very easy exercise that can be answered immediately, from the
top of your head, if the material in the text is understood.

10 A simple problem to exercise understanding of the text. Use fifteen
minutes to think, and possibly pencil and paper.

20 An average problem to test basic understanding of the text and
may take one or two hours to answer completely.

30 A moderately difficult or complex problem taking perhaps several
hours to a day to solve satisfactorily.

40 A quite difficult or lengthy problem, suitable for a term project,
often a significant result in the research literature. We would expect
a very bright student or researcher to be able to solve the problem
in a reasonable amount of time, but the solution is not trivial.

50 A research problem that, to the authors’ knowledge, is open at the
time of writing. If the reader has found a solution, he is urged to
write it up for publication; furthermore, the authors of this book
would appreciate hearing about the solution as soon as possible.



Xiv

Preface to All Editions

This scale is logarithmic: a problem of rating 17 is a bit simpler than
average. Problems with rating 50, subsequently solved, will appear in
a next edition of this book with rating about 45. Rates are sometimes
based on the use of solutions to earlier problems. The rating of an ex-
ercise is based on that of its most difficult item, but not on the number
of items. Assigning accurate rating numbers is impossible—one man’s
meat is another man’s poison—and our rating will differ from ratings by
others.

An orthogonal rating M implies that the problem involves more math-
ematical concepts and motivation than is necessary for someone who
is primarily interested in Kolmogorov complexity and applications. Ex-
ercises marked HM require the use of calculus or other higher mathe-
matics not developed in this book. Some exercises are marked with a e;
and these are especially instructive or useful. Exercises marked O are
problems that are, to our knowledge, unsolved at the time of writing.
The rating of such exercises is based on our estimate of the difficulty of
solving them. Obviously, such an estimate may be totally wrong.

Solutions to exercises, or references to the literature where such solutions
can be found, appear in the Comments paragraph at the end of each
exercise. Nobody is expected to be able to solve all exercises.

The material presented in this book draws on work that until now was
available only in the form of advanced research publications, possibly not
translated into English, or was unpublished. A large portion of the ma-
terial is new. The book is appropriate for either a one- or a two-semester
introductory course in departments of mathematics, computer science,
physics, probability theory and statistics, artificial intelligence, cognitive
science, and philosophy. Outlines of possible one-semester courses that
can be taught using this book are presented below.

Fortunately, the field of descriptional complexity is fairly young and the
basics can still be comprehensively covered. We have tried to the best of
our abilities to read, digest, and verify the literature on the topics covered
in this book. We have taken pains to establish correctly the history of the
main ideas involved. We apologize to those who have been unintention-
ally slighted in the historical sections. Many people have generously and
selflessly contributed to verify and correct drafts of the various editions
of this book. We thank them below and apologize to those we forgot. In
a work of this scope and size there are bound to remain factual errors
and incorrect attributions. We greatly appreciate notification of errors
or any other comments the reader may have, preferably by email, in
order that future editions may be corrected.



Outlines of

One-Semester

Courses

I. Course on
Basic
Algorithmic

Complexity and

Applications

[I. Course on
Algorithmic
Complexity

[11. Course on
Algorithmic
Randomness

IV. Course on
Algorithmic
Information
Theory and
Applications

Outlines of One-Semester Courses XV

We have mapped out a number of one-semester courses on a variety of
topics. These topics range from basic courses in theory and applications
to special-interest courses in learning theory, randomness, or information
theory using the Kolmogorov complexity approach.

PREREQUISITES: Sections 1.1, 1.2, 1.7 (except Section 1.7.4).

TypPE OF COMPLEXITY THEORY APPLICATIONS
plain complexity 2.1, 22,23 4.4, Chapter 6
prefix complexity 1.11.2, 3.1 5.1, 5.1.3, 5.2, 5.4
3.3, 34 8.2, 8.3, 84
resource-bounded complexity 7.1, 7.5, 7.7 7.2, 7.3,7.6, 7.7
TypPE OF COMPLEXITY BASICS RANDOMNESS  ALGORITHMIC
PROPERTIES
state X symbol 1.12
plain complexity 2.1,2.2,23 24 2.7
prefix complexity 1.11.2) 3.1 3.5 3.7, 3.8
3.3,34
monotone complexity 4.5 (intro) 4.5.4
RANDOMNESS TESTS COMPLEXITY FINITE INFINITE
ACCORDING TO USED STRINGS SEQUENCES
von Mises 1.9
Martin-Lof 2.1, 2.2 2.4 2.5
prefix complexity 1.11.2, 3.1, 3.3, 3.4 3.5 3.6, 4.5.6
general discrete 1.6 (intro), 4.3.1 4.3
general continuous 1.6 (intro), 4.5
4.5 (intro), 4.5.1
TypPE OoF COMPLEXITY BASICS ENTROPY SYMMETRY OF
USED INFORMATION
classical 1.11 1.11 1.11
information theory
plain complexity 2.1, 2.2 2.8 2.8
prefix complexity 3.1,3.3,34 8.1 3.8, 3.9.1
resource-bounded 7.1 Exercises 7.1.12
7.1.13
applications 8.3 8.1.1, 8.5, Theorem 7.2.6
8.4 8.6 Exercise 6.10.15



XVi Preface to All Editions

V. Course on
Algorithmic
Probability
Theory,
Learning,
Inference, and
Prediction

VI. Course on
the
Incompressibility
Method

VII. Course on
Randomness,
Information, and
Physics

THEORY Basics UNIVERSAL APPLICATIONS
DISTRIBUTION TO INFERENCE

classical 1.6, 1.11.2 1.6

probability

algorithmic 2.1, 22,23 8

complexity 3.1, 3.3, 34

algorithmic discrete 4.2, 4.1 4.3.1, 4.3.2

probability 4.3 (intro) 4.3.3,4.3.4, 4.3.6

algorithmic contin. 4.5 (intro) 4.5.1, 4.5.2 5.2

probability 4.5.4,4.5.8

Solomonoft’s 5.1, 5.1.3, 5.2 5.2.5,5.3.3, 54 5.1.3

inductive inference 5.3, 8 5.4.5

MDL and nonproba- 5.4 5.4, 5.5

bilistic statistics

Chapter 2 (Sections 2.1, 2.2, 2.4, 1.11.5, 2.8), Chapter 3 (mainly Sec-
tions 3.1, 3.3), Section 4.4, and Chapters 6 and 7. The course covers the
basics of the theory with many applications in proving upper and lower
bounds on the running time and space use of algorithms.

Course IIT and Chapter 8. In physics the applications of Kolmogorov
complexity include theoretical illuminations of foundational issues. For
example, the approximate equality of statistical entropy and expected
Kolmogorov complexity, the nature of entropy, a fundamental resolution
of the Maxwell’s Demon paradox. However, also more concrete applica-
tions such as information distance, normalized information distance and
its applications to phylogeny, clustering, classification, and relative se-
mantics of words and phrases, as well as thermodynamics of computation
are covered.



Contents

Preface to the First Edition . . . . . . . ... ... ... .... vii
Preface to the Second Edition . . . .. ... ... ... .... xi
Preface to the Third Edition . . . . .. ... ... ... .... xii
How to Use This Book . . . ... ... ... .......... xii
Outlines of One-Semester Courses . . . . . . . .. ... .... XV
Contents . . . . . . . . . xvii
List of Figures . . . . . . .. .. ... .. o .. xxi
Preliminaries 1
1.1 A Brief Introduction . . . . . . ... .. ... ... 1
1.2 Prerequisites and Notation . . ... .. ... ... .... 7
1.3 Numbers and Combinatorics . . . . .. .. .. ... ... 8
1.4 Binary Strings . . . . .. ... .. o 12
1.5 Asymptotic Notation . . . .. ... .. .. ... ..... 15
1.6 Basics of Probability Theory . . . . .. .. ... ..... 18
1.7 Basics of Computability Theory . . .. .. .. ... ... 24
1.8 The Roots of Kolmogorov Complexity . . . . .. .. ... 47
1.9 Randommness . . . ... .. ... ... ... ... 49

1.10 Prediction and Probability . . . .. .. .. ... .. ... 59



xviii

Contents

1.11 Information Theory and Coding . . . . .. ... ... ..
1.12 State x Symbol Complexity . . . ... ... ... ....
1.13 History and References . . . . .. ... ... ... ....

Algorithmic Complexity

2.1 The Invariance Theorem . . . . ... .. ... ... ...
2.2 Incompressibility . . . . . .. ...
2.3 C as an Integer Function . . . .. ... ... ... ....
2.4 Random Finite Sequences . . . . . . . .. ... ... ..
2.5 *Random Infinite Sequences . . . .. ... ........
2.6 Statistical Properties of Finite Sequences . . . .. .. ..
2.7 Algorithmic Propertiesof C . . . . . . ... ... ....
2.8 Algorithmic Information Theory . . . . .. ... ... ..
2.9 History and References . . . ... ... ... ... ....

Algorithmic Prefix Complexity

3.1 The Invariance Theorem . . . . .. ... .. ... ... ..
3.2 *Sizes of the Constants . . . . ... ... .........
3.3 Incompressibility . . . . . ... ..o oo
3.4 K as an Integer Function . . . . . .. .. ... .. ....
3.5 Random Finite Sequences . . . . . . ... .. ... .. ..
3.6 *Random Infinite Sequences . . . . ... .........
3.7 Algorithmic Propertiesof K . . . . ... ... .. ....
3.8 *Complexity of Complexity . . . . . . .. ... ......
3.9 *Symmetry of Algorithmic Information . . ... ... ..

3.10 History and References . . . ... . ... ... .. ....

Algorithmic Probability

4.1 Semicomputable Functions Revisited . . . . . . . ... ..
4.2 Measure Theory . . . . . . . ... ... ... ...
4.3 Discrete Sample Space . . . . . ... ...
4.4  Universal Average-Case Complexity . . . ... ... ...
4.5 Continuous Sample Space . . . . . . . ... .. ... ...
4.6 Universal Average-Case Complexity, Continued . . . . . .

4.7 History and References . . . . ... ... ... ......

101
104
116
126
133
143
165
174
186
192

197
200
206
211
216
218
220
239
241
244
255



Contents Xix

5 Inductive Reasoning 339
5.1 Introduction . .. ... .. ... ... .. ... 339
5.2 Solomonoft’s Theory of Prediction . . . .. .. ... ... 348
5.3 Simple Pac-Learning . . . . . . .. ... ... ... 370
5.4 Hypothesis Identification by MDL . . . . .. ... .... 382
5.5 Nonprobabilistic Statistics . . . . ... ... ... .... 401
5.6 History and References . . . . . ... ... ... ..... 431
6 The Incompressibility Method 441
6.1 Three Examples . . . . . . ... ... ... ... ... 442
6.2 High-Probability Properties . . . . . . .. ... ... ... 448
6.3 Combinatorics . . . . . . . . ... 451
6.4 Kolmogorov Random Graphs . . . . . ... .. ... ... 461
6.5 Compact Routing . . ... ... ... ... .. ..... 469
6.6 Average-Case Analysis of Sorting . . . . ... .. ... .. 476
6.7 Longest Common Subsequence . . . . ... ... ..... 486
6.8 Formal Language Theory . . . . ... ... ... . .... 490
6.9 Online CFL Recognition . . .. ... ... ... ..... 497
6.10 Turing Machine Time Complexity . . . . .. .. ... .. 502
6.11 Communication Complexity . . ... ... ... .. ... 516
6.12 Circuit Complexity . . . . . .. .. .. ... ... .... 521
6.13 History and References . . . .. .. ... .. ... .... 524
7 Resource-Bounded Complexity 531
7.1 Mathematical Theory . . . . ... ... ... ... .... 532
7.2 Language Compression . . . . . ... ... ........ 550
7.3 Computational Complexity . . . . . .. ... ... .... 562
7.4 Instance Complexity . . . . . . . .. ... ... ... ... 571
7.5 Ktand Universal Search . . . . . ... ... ... .. ... 577
7.6 Time-Limited Universal Distributions . . . . . . . . ... 582
7.7 Logical Depth . . . ... .. ... .. ... ... 589
7.8 History and References . . .. ... .. ... ... .... 596



XX

Contents

8 Physics, Information, and Computation
8.1 Information Theory . .. .. ... ... .. ... ....
8.2 Reversible Computation . . . . . . .. .. ... ... ...
8.3 Information Distance . . .. .. ... .. ... ... ...
8.4 Normalized Information Distance. . . . . . .. . ... ..
8.5 Thermodynamics. . . . . . . . ... ... ... .. ....
8.6 Entropy Revisited . . . . ... ... ... ... ..
8.7 Quantum Kolmogorov Complexity . . . . . ... ... ..
8.8 Compression in Nature . . . ... ... ... ... ....

8.9 History and References . . . .. ... .. ... ... ...

References

Index

601
602
629
641
660
674
686
696
711
714

723

765



List of Figures

1.1
1.2
1.3

1.4

2.1
2.2
2.3
24

2.5

3.1
3.2
3.3
3.4
3.5

4.1

Turing machine . . .. .. ... ... . 0L 28
Inferred probability for increasingn . . . . ... .. ... 61
Binary tree for F(1) =0, E(2) = 10, E(3) = 110, E(4) =

111 . e 74
Binary tree for E(1) =0, E(2) = 01, E(3) =011, E(4) =

OL11 . . . o 75
The graph of the integer function C(z) . ... ... ... 127
The graph of the integer function C(z|l(x)) . . . . . . .. 129
Test of Example 2.4.1 . . . . .. ... ... ... 135
Complexity oscillations of initial segments of high—complexity
infinite sequences . . . . . . .. ... L oL 146
Three notions of ‘chaotic’ infinite sequences . . . . . . . . 155
The 425-bit universal combinator U’ in pixels . . . . . . . 210
The graphs of K (z) and K(z|l(x)) . . . .. ... ... .. 217

Complexity oscillations of a typical random sequence w . 224
K-complexity criteria for randomness of infinite sequences 224

Complexity oscillations of @ . . . . . .. ... ... ... 226

Graph of m(z) with lower bound 1/(z -logx - loglogx---) 269



xxii

List of Figures

4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

8.10
8.11
8.12

Relations between five complexities with I(z) =n . . . . 308
Trivial consistent automaton . . . . . ... ... ... .. 341
Smallest consistent automaton . . . . .. .. ... .. .. 341
Table of sample dataset . . ... ... ... ... ... 393
Imperfect decision tree . . . . .. .. ... ... ..... 394
Perfect decision tree . . . . . . ... 395
Kolmogorov’s structure function (ML estimator) . . . . . 406
Relations among the structure functions . . . . . .. . .. 409
Graph of h,(7) in strip around h(¢) . . . .. ... .. .. 411
Some shapes of the structure function . . . . . .. .. .. 412
Positive randomness and negative randomness . . . . . . 438
Single-tape Turing machine . . . . . . .. ... ... ... 443
The two possible nnis on (u,v): swap B «» C or B <« D . 483

The nni distance between (i) and (ii) is two . . . . . . . . 484
Multitape Turing machine . . . ... .. ... ... ... 497
A rate-distortion function for Hamming distortion . . . . 616
Denoising of the noisy cross . . . . . . ... ... ..... 621
Reversible Boolean gates . . . . . ... ... ... .. .. 631
Implementing reversible AND gate and NOT gate . . . . 632
Controlling billiard-ball movements . . . . .. ... ... 633
A billiard-ball computer . . . . . . . ... ... ... 634
Combining irreversible computations of y from = and z

from y to achieve a reversible computation of y from x . 649

Reversible execution of concatenated programs for (y|x)

and (z|y) to transform z into z . . . . . ... ... ... 650
The evolutionary tree built from complete mammalian

mtDNA sequences . . . . ... ... L. 665
Clustering of heterogeneous file types . . . . . .. .. .. 667
Carnot cycle . . . ... ... ... 676
Heat engine. . . . . . . ... ... L. 676



8.13
8.14
8.15
8.16
8.17

8.18
8.19
8.20

List of Figures

State space . . . . . ...
Atomic spin in CuOs at low temperature . . . . ... ..
Regular ‘up’ and ‘down’ spins . . . . . ... .. ... ..
Adiabatic demagnetization to achieve low temperature

Algorithmic entropy: left a random micro state, right a
regular microstate . . . . . .. ..o Lo

Szilard engine . . . .. ... oL oL
The maze: a binary tree constructed from matches . . . .

Time required for Formica sanguinea scouts to transmit
information about the direction to the syrup to the for-
agerants . . . .. ..o o o



Preliminaries

1.1
A Brief
Introduction

Suppose we want to describe a given object by a finite binary string. We
do not care whether the object has many descriptions; however, each
description should describe but one object. From among all descriptions
of an object we can take the length of the shortest description as a
measure of the object’s complexity. It is natural to call an object ‘simple’
if it has at least one short description, and to call it ‘complex’ if all of
its descriptions are long.

But now we are in danger of falling into the trap so eloquently described
in the Richard-Berry paradox, where we define a natural number as
“the least natural number that cannot be described in fewer than twenty
words.” If this number does exist, we have just described it in thirteen
words, contradicting its definitional statement. If such a number does not
exist, then all natural numbers can be described in fewer than twenty
words. We need to look very carefully at the notion of ‘description.’

Assume that each description describes at most one object. That is,
there be a specification method D that associates at most one object
x with a description y. This means that D is a function from the set
of descriptions, say Y, into the set of objects, say X. It seems also
reasonable to require that for each object x in X, there be a description
y in Y such that D(y) = z. (Each object has a description.) To make
descriptions useful we like them to be finite. This means that there are
only countably many descriptions. Since there is a description for each
object, there are also only countably many describable objects. How do
we measure the complexity of descriptions?

M. Li and P.M.B. Vitanyi, 4n Introduction to Kolmogorov Complexity and Its Applications, 1
DOI: 10.1007/978-0-387-49820-1_1, © Springer Science + Business Media, LLC 2008



1. Preliminaries

Taking our cue from the theory of computation, we express descriptions
as finite sequences of 0’s and 1’s. In communication technology, if the
specification method D is known to both a sender and a receiver, then
a message r can be transmitted from sender to receiver by transmitting
the sequence of 0’s and 1’s of a description y with D(y) = x. The cost of
this transmission is measured by the number of occurrences of 0’s and
1’s in y, that is, by the length of y. The least cost of transmission of x
is given by the length of a shortest y such that D(y) = x. We choose
this least cost of transmission as the descriptional complexity of z under
specification method D.

Obviously, this descriptional complexity of x depends crucially on D.
The general principle involved is that the syntactic framework of the
description language determines the succinctness of description.

In order to objectively compare descriptional complexities of objects, to
be able to say “x is more complex than z,” the descriptional complexity
of x should depend on x alone. This complexity can be viewed as related
to a universal description method that is a priori assumed by all senders
and receivers. This complexity is optimal if no other description method
assigns a lower complexity to any object.

We are not really interested in optimality with respect to all description
methods. For specifications to be useful at all, it is necessary that the
mapping from y to D(y) be executable in an effective manner. That
is, it can at least in principle be performed by humans or machines.
This notion has been formalized as that of partial recursive functions.
According to generally accepted mathematical viewpoints it coincides
with the intuitive notion of effective computation.

The set of partial recursive functions contains an optimal function that
minimizes description length of every other such function. We denote
this function by Dg. Namely, for any other recursive function D, for all
objects x, there is a description y of x under Dg that is shorter than any
description z of z under D. (That is, shorter up to an additive constant
that is independent of z.) Complexity with respect to Dy minorizes the
complexities with respect to all partial recursive functions.

We identify the length of the description of x with respect to a fixed spec-
ification function Dy with the ‘algorithmic (descriptional) complexity’
of z. The optimality of Dy in the sense above means that the complexity
of an object  is invariant (up to an additive constant independent of
x) under transition from one optimal specification function to another.
Its complexity is an objective attribute of the described object alone: it
is an intrinsic property of that object, and it does not depend on the
description formalism. This complexity can be viewed as absolute infor-
mation content: the amount of information that needs to be transmitted
between all senders and receivers when they communicate the message



Example 1.1.1

1.1. A Brief Introduction 3

in absence of any other a priori knowledge that restricts the domain of
the message.

Broadly speaking, this means that all description syntaxes that are pow-
erful enough to express the partial recursive functions are approximately
equally succinct. All algorithms can be expressed in each such program-
ming language equally succinctly, up to a fixed additive constant term.
The remarkable usefulness and inherent rightness of the theory of Kol-
mogorov complexity stems from this independence of the description
method.

Thus, we have outlined the program for a general theory of algorithmic
complexity. The four major innovations are as follows:

1. In restricting ourselves to formally effective descriptions, our defi-
nition covers every form of description that is intuitively acceptable
as being effective according to general viewpoints in mathematics
and logic.

2. The restriction to effective descriptions entails that there is a uni-
versal description method that minorizes the description length or
complexity with respect to any other effective description method.
This would not be the case if we considered, say, all noneffective
description methods. Significantly, this implies Ttem 3.

3. The description length or complexity of an object is an intrinsic
attribute of the object independent of the particular description
method or formalizations thereof.

4. The disturbing Richard-Berry paradox above does not disappear,
but resurfaces in the form of an alternative approach to proving
Kurt Godel’s (1906-1978) famous result that not every true math-
ematical statement is provable in mathematics.

(Go6del’s incompleteness result) Godel proved that in every consis-
tent powerful enough theory, there are true but unprovable statements.
He constructed such a statement. Here we use the incompressibility ar-
gument to show in a very simple manner that there are, in fact, infinitely
many such undecidable statements.

A formal system (consisting of definitions, axioms, rules of inference) is
consistent if no statement that can be expressed in the system can be
proved to be both true and false in the system. A formal system is sound
if only true statements can be proved to be true in the system. (Hence,
a sound formal system is consistent.)

Let = be a finite binary string. We write “z is random” if the shortest
binary description of x with respect to the optimal specification method



1. Preliminaries

Example 1.1.2

Dy has length at least that of the literal description of x. A simple
counting argument shows that there are random z’s of each length.

Fix any sound formal system F' in which we can express statements like
“z is random.” Suppose F' can be described in f bits—assume, for exam-
ple, that this is the number of bits used in the exhaustive description of
F'in the first chapter of the textbook Foundations of F. We claim that
for all but finitely many random strings x, the sentence “z is random”
is not provable in F'. Assume the contrary. Then given F', we can start
to search exhaustively for a proof that some string of length n > f is
random, and print it when we find such a string. This is an « satisfying
the “z is random” sentence. This procedure to print x of length n uses
only logn+ f bits of data, where log denotes the binary logarithm, which
is much less than n. But x is random by the proof, which is a true fact
since F' is sound, and hence its shortest effective description has binary
length at least n. Hence, F' is not consistent, which is a contradiction.

&

This shows that although most strings are random, it is impossible to
effectively prove them random. In a way, this explains why the incom-
pressibility method in Chapter 6 is so successful. We can argue about
a ‘typical’ individual element, which is difficult or impossible by other
methods.

(Lower bounds) The secret of the successful use of descriptional com-
plexity arguments as a proof technique is due to a simple fact: the over-
whelming majority of strings have almost no computable regularities.
We have called such a string ‘random.” There is no shorter description
of such a string than the literal description: it is incompressible. Incom-
pressibility is a noneffective property in the sense of Example 1.1.1.

Traditional proofs often involve all instances of a problem in order to
conclude that some property holds for at least one instance. The proof
would be simpler if only that one instance could have been used in
the first place. Unfortunately, that instance is hard or impossible to
find, and the proof has to involve all the instances. In contrast, in a
proof by the incompressibility method, we first choose a random (that
is, incompressible) individual object that is known to exist (even though
we cannot construct it). Then we show that if the assumed property did
not hold, then this object could be compressed, and hence it would not
be random. Let us give a simple example.

A prime number is a natural number that is not divisible by natu-
ral numbers other than itself and 1. By the celebrated result of J.S.
Hadamard (1865-1963) and C.J.G.N. de la Vallée Poussin (1866-1962)
it is known that the number 7(n) of primes less than or equal to n sat-
isfies m(n) ~ n/lnn, where In denotes the natural logarithm. For more



1.1. A Brief Introduction 5

detailed results about 7(n) see Exercise 1.5.8 on page 17. We first prove
a weak result due to G.J. Chaitin: For infinitely many n, the number of
primes 7(n) satisfies

logn
m(n

= Joglogn o(1). (1.1)
The proof method is as follows. For each n, we construct a descrip-
tion from which n can be effectively retrieved. This description will in-
volve the primes less than n. For some n this description must be long,
which shall give the desired result. Formally, assume that p1,p2,...,0m
is the list of all the primes less than n. Then, the integer number
n = pi'ps?---p&r can be reconstructed from the vector of the expo-
nents. Each exponent is at most logn and can be represented by loglogn
bits. The description of n can be given in mloglogn bits provided we
know the value loglogn enabling us to parse the constituent blocks of
exponents. Thus, we prefix the description with a prefix-free code for
loglogn in (1 + o(1))logloglogn bits. (Prefix codes and their lengths
are described in Section 1.11.1.) It can be shown that for every integer
I > 0 there is a natural number n of binary length [ ~ logn that cannot
be described in fewer than [ bits (n is random), whence Equation 1.1
follows.

Can we do better? This is slightly more complicated. Let [(x) denote
the length of the binary representation of . We shall show that for all
n, the number of primes 7(n) satisfies

1 n

m(n) >

~ ¢(n) Inn’ (1.2)

where ¢(n) = O((loglogn)!T¢) for an arbitrary small € > 0. We argue
as follows: Every integer n can be described by the string E(m)n/pm,
where the binary string E(m) is a prefix-free encoding of m, which is
concatenated with the binary string representation of the integer n/py,,
and p,, is the largest prime dividing n. For random n, the length of
this description, {(E(m)) 4+ logn — log p,,, must exceed logn. Therefore,
log prm < I(E(m)). Tt is known (and easy) that we can set [(E(m)) <
logm + loglogm + log e(m), Section 1.11.1. Hence, p,, < Ny, with ng, =
e(m)mlogm. Since there are infinitely many primes (Equation 1.1), we
have proven that for the special sequence of values of ni,no,... the
number of primes 7(ny,) > N/ (€(Nm) logngy,), for every m > 1. Let
us denote ¢, = Nypy1/nm. For every n with n, < n < n,i1 we
have n,, < n < ¢unm, with ¢,, — 1 for m — oo. Therefore, Equa-
tion 1.2 holds for all n if we absorb both ¢, and loge in ¢(n). (Note
that logn = (loge)lnn.) The idea of connecting primality and prefix
code-word length is due to P. Berman, and the present proof is partially
due to J.T. Tromp.



1. Preliminaries

Example 1.1.3

Chapter 6 introduces the incompressibility method. Its utility is demon-
strated in a variety of examples of proving mathematical and computa-
tional results. These include questions concerning the average-case anal-
ysis of algorithms (such as Shellsort, Heapsort and routing), sequence
analysis, formal languages, combinatorics, graphs, time and space com-
plexity of machine models, language recognition, communication com-
plexity, circuit complexity, and string matching. Other topics such as the
use of resource-bounded Kolmogorov complexity in the analysis of com-
putational complexity classes, the universal optimal search algorithm,
and logical depth are treated in Chapter 7. <&

(Prediction) We are given an initial segment of an infinite sequence
of zeros and ones. Our task is to predict the next element in the se-
quence: zero or one? The set of possible sequences we are dealing with
constitutes the sample space, in this case, the set of one-way infinite
binary sequences. We assume some orobability distribution p over the
sample space, where u(x) is the probability of the initial segment of a
sequence being z. Then the probability of the next bit being 0, after
an initial segment x, is clearly pu(0|z) = w(20)/u(z). This problem con-
stitutes, perhaps, the central task of inductive reasoning and artificial
intelligence. However, the problem of induction is that in general we do
not know the distribution pu, preventing us from assessing the actual
probability. Hence, we have to use an estimate.

Now assume that p is computable. (This is not very restrictive, since any
distribution used in statistics is computable, provided the parameters
are computable.) We can use Kolmogorov complexity to give a very
good estimate of p. This involves the so-called universal distribution
M. Roughly speaking, M(z) is close to 27!, where [ is the length in
bits of the shortest effective description of x. The distribution M has
the property that it assigns at least as high a probability to z as any
computable p (up to a multiplicative constant factor depending on u but
not on x). What is particularly important to prediction is the following:

Let S,, denote the p-expectation of a particular form of the error we
make in estimating the probability of the nth symbol by M. Then it can
be shown that the sum ) S, is bounded by a constant. In other words,
if S,, is smooth then it converges to zero faster than 1/n. Consequently,
any actual (computable) distribution can be estimated and predicted
with great accuracy using only the single universal distribution.

Among other things, Chapter 5 develops a general theory of inductive
reasoning and applies the notions introduced to particular problems of
inductive inference, prediction, mistake bounds, computational learning
theory, and minimum description length induction methods in statis-
tics. In particular, it is demonstrated that data compression improves
generalization and prediction performance. &



1.2
Prerequisites
and Notation

1.2. Prerequisites and Notation 7

The purpose of the remainder of this chapter is to define several concepts
we require, if not by way of introduction, then at least to establish
notation.

We usually deal with nonnegative integers, sets of nonnegative integers,
and mappings from nonnegative integers to nonnegative integers. A, B,
C,... denote sets. N, Z, Q, R denote the sets of nonnegative integers
(natural numbers including zero), integers, rational numbers, and real
numbers, respectively. For each such set A, by AT we denote the subset
of A consisting of positive numbers.

We use the following set-theoretic notation: x € A means that z is a
member of A. In {x : 2 € A}, the symbol : denotes set formation. A J B
is the union of A and B, A B is the intersection of A and B, and A
is the complement of A when the universe A|J A is understood. A C B
means A is a subset of B; A = B means A and B are identical as sets
(have the same members).

The cardinality (or diameter) of a finite set A is the number of elements
it contains and is denoted by d(A). If A = {as,...,a,}, then d(A) = n.
The empty set {}, with no elements in it, is denoted by @. In particular,
d(@) =0.

Given z and y, the ordered pair (x,y) consists of z and y in that order.
A x B is the Cartesian product of A and B, the set {(z,y) : ¢ € A and
y € B}. The n-fold Cartesian product of A with itself is denoted by A™.
If R C A2, then R is called a binary relation. The same definitions can be
given for n-tuples, n > 2, and the corresponding relations are n-ary. We
say that an n-ary relation R is single-valued if for every (z1,...,2n—1)
there is at most one y such that (z1,...,2,-1,y) € R. Consider the do-
main {(z1,...,on—1) : there is a y such that (x1,...,2,-1,y) € R} of a
single-valued relation R. Clearly, a single-valued relation R C A"~ ! x B
can be considered as a mapping from its domain into B. Therefore, we
also call a single-valued n-ary relation a partial function of n — 1 vari-
ables (‘partial’ because the domain of R may not comprise all of A"~1).
We denote functions by ¢,,... or f,g,h,.... Functions defined on the
n-fold Cartesian product A™ are denoted with possibly a superscript
denoting the number of variables, like (™ = ¢(™) (21, ..., z,).

We use the notation (-) for some standard one-to-one encoding of N'™
into . We will use (-) especially as a pairing function over N to associate
a unique natural number (x,y) with each pair (x,y) of natural numbers.
An example is (z,y) defined by y + (z + y + 1)(x + y)/2. This mapping
can be used recursively: (z,y, z) = (z, (y, 2)).

If ¢ is a partial function from A to B, then for each x € A either
¢(x) € B or ¢(z) is undefined. If = is a member of the domain of ¢,



8 1. Preliminaries

1.3
Numbers and
Combinatorics

Example 1.3.1

then ¢(z) is called a value of ¢, and we write ¢p(z) < oo and ¢ is called
convergent or defined at x; otherwise we write ¢(x) = oo and we call ¢
divergent or undefined at x. The set of values of ¢ is called the range of
¢. If ¢ converges at every member of A, it is a total function, otherwise
a strictly partial function. If each member of a set B is also a value of
¢, then ¢ is said to map onto B, otherwise to map into B. If for each
pair z and y, x # y, for which ¢ converges ¢(x) # ¢(y) holds, then ¢ is
a one-to-one mapping, otherwise a many-to-one mapping. The function
f A — {0,1} defined by f(x) = 1 if ¢(x) converges, and f(z) = 0
otherwise, is called the characteristic function of the domain of ¢.

If ¢ and ¢ are two partial functions, then ¢ (equivalently, ¥ (¢(z)))
denotes their composition, the function defined by {(z,y) : there is a
z such that ¢(x) = z and 1(z) = y}. The inverse ¢~ of a one-to-one
partial function ¢ is defined by ¢=1(y) = z iff ¢(x) = y.

A set A is called countable if it is either empty or there is a total one-to-
one mapping from A to the natural numbers A'. We say A is countably
infinite if it is both countable and infinite. By 24 we denote the set of
all subsets of A. The set 2V has the cardinality of the continuum and is
therefore uncountably infinite.

For binary relations, we use the terms reflezive, transitive, symmetric,
equivalence, partial order, and linear (or total) order in the usual mean-
ing. Partial orders can be strict (<) or nonstrict (<).

If we use the logarithm notation logx without subscript, then we shall
always mean base 2. By In z we mean the natural logarithm log, x, where
e=2.T1....

We use the quantifiers 3 (there exists), V (for all), 3°° (there exist
infinitely many), and the awkward V> (for all but finitely many). In
this way, V>°z[¢(z)] iff ~IF*°x[-¢(z)].

The absolute value of a real number r is denoted by |r| and is defined as
|r| = —r if r < 0 and r otherwise. The floor of a real number r, denoted
by |r], is the greatest integer n such that n < r. Analogously, the ceiling
of a real number r, denoted by [r], is the least integer n such that n > r.

| —1] =|1] = 1. |0.5] = 0 and [0.5] = 1. Analogously, |—0.5] = —1 and
[—0.5] =0. But [2] =[2] =2 and |[-2] = [-2] = —2. &

A permutation of n objects is an arrangement of n distinct objects in an
ordered sequence. For example, the six different permutations of objects
a,b, c are

abce, ach, bac, bea, cab, cba.



Example 1.3.2

1.3. Numbers and Combinatorics 9

The number of permutations of n objects is found most easily by imag-
ining a sequential process to choose a permutation. There are n choices
of which object to place in the first position; after filling the first po-
sition there remain n — 1 objects and therefore n — 1 choices of which
object to place in the second position, and so on. Therefore, the number
of permutations of n objects is n x (n — 1) X -+ x 2 x 1, denoted by n!
and referred to as n factorial. In particular, 0! = 1.

A wariation of k out of n objects is an arrangement consisting of the
first k& elements of a permutation of n objects. For example, the twelve
variations of two out of four objects a, b, ¢, d are

ab, ac, ad, ba, be, bd, ca, cb, cd, da, db, dc.

The number of variations of k out of n is n!/(n — k)!, as follows by the
previous argument. While there is no accepted standard notation, we
denote the number of variations by (n)g. In particular, (n)o = 1.

The combinations of n objects taken k at a time (n choose k) are the
possible choices of k different elements from a collection of n objects.
The six different combinations of two out of four objects a, b, ¢, d are

{a,b},{a,c},{a,d}, {b,c},{b,d}, {c,d}.
We can consider a combination as a variation in which the order does
not count. We have seen that there are n(n — 1)---(n — k + 1) ways
to choose the first k elements of a permutation. Every k-combination
appears precisely k! times in these arrangements, since each combination

occurs in all its permutations. Therefore, the number of combinations,
denoted by (Z), is

<n) _nn=1)(n—k+1)

k k(k—1)---(1)
In particular, (8) = 1. The quantity (Z) is also called a binomial co-
efficient. It has an extraordinary number of applications. Perhaps the
foremost relation associated with it is the binomial theorem, discovered

in 1676 by Isaac Newton:

@y => (Z) abyr,

k

with n a positive integer. Note that in the summation k& need not be
restricted to 0 < k < n, but can range over —oco < k < 400, since for
k < 0 or k > n the terms are all zero.

An important relation following from the binomial theorem is found by
substituting y = 1:

@+nr=Y" (Z)xk

k



10 1. Preliminaries

Exercises

Substituting also x = 1, we obtain

1.3.1. [12] Consider a random distribution of k distinguishable balls
in n cells, that is, each of the n* possible arrangements has probability
n~*. Show that the probability P; that a specified cell contains exactly
i balls (0 < i < k) is given by P; = (¥)(1/n)(1 — 1/n)F".

Comments. Source: W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1, Wiley, 1968.

1.3.2. [08] Show that (7) = ") and (7) = (,",).

1.3.3. [M34] Prove the following identity, which is very useful in the
sequel of this book: Up to a fixed additive constant we have

n n n 1
log<k> 7klogk+(nfk)logn_k+210gk

n
(n—k)

1.3.4. [15] (a) Prove that the number of ways n distinguishable balls
can be placed in k£ numbered cells such that the first cell contains n;
balls, the second cell no balls, up to the kth cell contains ny balls with

ni+---4+ng=nis

n n!
Niyee., Nk ny!--ng!

This number is called a multinomial coefficient. Note that the order
of the cells is essential in that the partitions (nq = 1,no = 2) and
(ny = 2,n9 = 1) are different. The order of the elements within a cell is
irrelevant.

(b) Show that

n
($1+"'+$k)"z<n n >x¥l.‘.mzk’
1y Tk

with the sum taken for all n; +--- +ng = n.

(¢) The number of ordered different partitions of n in r nonnegative
integral summands is denoted by A, ,. Compute A, , in the form of a
binomial coefficient.

Comments. (1,0) and (0,1) are different partitions, so A; 2 = 2. Source:
W. Feller, Ibid.



Exercises 11

1.3.5. [14] Define the occupancy numbers for n balls distributed over k
cells as a k-tuple of integers (nq, na, ..., ng) satisfying ny+no+- - -+ny =
n with n; > 0 (1 <4 < k). That is, the first cell contains n; balls, the
second cell no balls, and so on.

(a) Show that there are (m " nk) placements of n balls in k cells resulting
in the numbers (nq,...,ng).

(b) There are k™ possible placements of n balls in & cells altogether.
Compute the fraction that results in the given occupancy numbers.

(¢) Assume that all k™ possible placements of n balls in k cells are
equally probable. Conclude that the probability of obtaining the given
occupancy numbers is

n! pn
Comments. In physics this is known as the Mazwell-Boltzmann statistics

(here ‘statistics’ is used as a synonym for ‘distribution’). Source: W.
Feller, Ibid.

1.3.6. [15] We continue with the previous exercise. In physical situ-
ations the assumption of equiprobability of possible placements seems
unavoidable, for example, molecules in a volume of gas divided into (hy-
pothetical) cells of equal volume. Numerous attempts have been made
to prove that physical particles behave in accordance with the Maxwell—
Boltzmann distribution. However, it has been shown conclusively that
no known particles behave according to this distribution.

(a) In the Bose—Einstein distribution we count only distinguishable dis-
tributions of n balls over k cells without regard for the identities of the
balls. We are interested only in the number of solutions of n; +no+---+
ng = n. Show that this number is (k+271) = (ngle) Conclude that
the probability of obtaining each given occupancy number is equally
1/ (k'};le) (Tllustration: the distinguishable distributions of two balls
over two cells are [**, *|* and **|. According to Bose—Einstein statistics
there are only three possible outcomes for two coin flips: head—head,

head—tail, and tail-tail, and each outcome has equal probability :1,))

(b) In the Fermi—Dirac distribution, (1) two or more particles cannot
occupy the same cell and (2) all distinguishable arrangements satisfy-
ing (1) have the same probability. Note that (1) requires n < k. Prove
that in the Fermi-Dirac distribution there are in total (i) possible ar-
rangements. Conclude that the probability for each possible occupancy
number is equally 1/ (i)

Comments. According to modern physics, photons, nuclei, and atoms
containing an even number of elementary particles behave according to



12 1. Preliminaries

1.4
Binary Strings

model (a), and electrons, neutrons, and protons behave according to
model (b). This shows that nature does not necessarily satisfy our a
priori assumptions, however plausible they may be. Source: W. Feller,
Ibid.

We are concerned with strings over a nonempty set B of basic elements.
Unless otherwise noted, we use B = {0,1}. Instead of ‘string’ we also
use ‘word’ and ‘sequence’ synonymously. The way we use it, ‘strings’ and
‘words’ are usually finite, while ‘sequences’ are usually infinite. The set
of all finite strings over B is denoted by B*, defined as

B* = {¢,0,1,00,01,10, 11,000, . . .},

with € denoting the empty string, with no letters. Concatenation is a
binary operation on the elements of B* that associates xy with each
ordered pair of elements (z, y) in the Cartesian product B* x B*. Clearly,

1. B* is closed under the operation of concatenation; that is, if z and
y are elements of B*, then so is xy;

2. concatenation is an associative operation on B*; that is, (xy)z =
z(yz) = xyz; and

3. concatenation on B* has the unit element €; that is, ex = xe = .

We now consider a correspondence of finite binary strings and natural
numbers. The standard binary representation has the disadvantage that
either some strings do not represent a natural number, or each natural
number is represented by more than one string. For example, either 010
does not represent 2, or both 010 and 10 represent 2. We can map B*
one-to-one onto the natural numbers by associating each string with its
index in the length-increasing lexicographic ordering

(6,0),(0,1), (1,2), (00, 3), (01,4), (10,5), (11,6), .. .. (1.3)

In this way we represent x = ontl _ 1 4 Z?:o a;2° by an ...ai1ap. This is
equivalent to x = Z?:o b;2" with b; € {1,2} and b; = a; + 1 for 0 < i < n.

The binary representation for the natural numbers given in Equation 1.3
is different from the standard binary representation. It is convenient not
to distinguish between the first and second elements of the same pair,
and call them ‘string’ or ‘number’ arbitrarily. That is, we consider both
the string 01 and the natural number 4 as the same object. For example,
we may write 01 = 4. We denote these objects in general with lowercase
roman letters. A string consisting of n zeros is denoted by 0.



1.4. Binary Strings 13

If z is a string of n 0’s and 1’s, then x; denotes the ith bit (binary digit)
of x for all 4, 1 < i < n, and x;,; denotes the (j — i 4+ 1)-bit segment
TiTit1...2;. For £ = 1010 we have 27 = 23 = 1 and 23 = x4 = 0; for
T = T1%2...T, We have T1.; = x1T2...x;. The reverse, 7, of a string
T =T1To...Tp 1S TpTp_1...21.

The length of a finite binary string x is the number of bits it contains
and is denoted by I(z). If x = x125 ... x,, then [(z) = n. In particular,
l(e) = 0.

Thus, [(zy) = I(z) +1(y), and I(z) = I(x). Recall that we use the above
pairing of binary strings and natural numbers. Thus, [(4) = 2 and 01 = 4.
The number of elements (cardinality) in a finite set A is denoted by d(A).
Therefore, d({u : l(u) =n}) = 2" and d({u : [(u) < n}) =27+t — 1.

Let D be any function D : {0,1}* — AN. Considering the domain of
D as the set of code words, and the range of D as the set of source
words, D(y) = x is interpreted as ‘y is a code word for the source word
z, and D is the decoding function.” (In the introduction we called D a
specification method.) The set of all code words for source word z is
the set D~1(z) = {y : D(y) = x}. Hence, E = D! can be called the
encoding substitution (E is not necessarily a function). Let z,y € {0, 1}*.
We call x a prefiz of y if there is a z such that y = xz. A set A C {0,1}*
is prefiz-free if no element in A is the prefix of another element in A. A
function D : {0,1}* — N defines a prefiz-code if its domain is prefix-
free. (Coding theory is treated in Section 1.11.1.) A simple prefix-code
we use throughout is obtained by reserving one symbol, say 0, as a stop
sign and encoding € N as 170. We can prefix an object with its length
and iterate this idea to obtain ever shorter codes:

170 for i =0,

Sl = { Biai@)e fori> 0. Y

Thus, Ey(z) = 1!®)0z and has length [(E; (z)) = 2I(x)+1. This encoding
is sufficiently important to have a simpler notation:

= 1@y,
() =2i(x) + 1.

8l

o~

Sometimes we need the shorter prefix-code Fs(x),

Ey(z) = l(2)x,
I(E2(x)) =1U(z) + 21(I(x)) + 1.

We call T the self-delimiting version of the binary string x. Now we can
effectively recover both x and y unambiguously from the binary string
zy. If zy = 111011011, then = 110 and y = 11. If 2y = 1110110101,
then x =110 and y = 1.



14 1. Preliminaries

Example 1.4.1

Exercises

It is convenient to consider also the set of one-way infinite sequences
B°°. If w is an element of B°°, then w = wjws ... and wi., = WiWs...wy,.
The set of infinite sequences of elements from a finite, nonempty basic
set B corresponds with the set R of real numbers in the following way:
Let B ={0,1,...,k — 1} with k¥ > 2. If r is a real number 0 < r < 1
then there is a sequence wyws ... of elements w,, € B such that

and that sequence is unique except when r is of the form ¢/k™, in which
case there are exactly two such sequences, one of which has infinitely
many 0’s. Conversely, if wiws ... is an infinite sequence of integers with
0 < wyp < Kk, then the series

Wn

’ﬂkn

converges to a real number r with 0 < < 1. This sequence is called the
k-ary expansion of r. In the following we identify a real number r with
its k-ary expansion (if there are two k-ary expansions, then we identify
r with the expansion with infinitely many 0’s).

Define the set S C B> as the set of sequences that do not end with
infinitely many digits ‘k — 1.” Then, S is in one-to-one correspondence
with the set of real numbers in the interval [0, 1).

Let = be a finite string over B. The set of all one-way infinite sequences
starting with x is called a cylinder and is denoted by I';, and is defined by
Iy = {aw : w € B®} with « € B*. Geometrically speaking, the cylinder
I, can be identified with the half-open interval [0.x,0.2 + k~'*)) in the
real interval [0,1). Observe that the usual geometric length of interval
I', equals k~'*), Furthermore, I'y €Ty iff x is a prefix of y. The prefix
relation induces a partial order on the cylinders of B>°. <&

1.4.1. [03] If Zyz = 10010111, what are z,y, z in decimal numbers?
Comments. 1,2, 6.
1.4.2. [07] (a) Show that for z € N we have [(z) = [log(z + 1)].

(b) Give another code ¢(z) for the natural numbers = 1,2,... such
that I(c(x)) = |logz].

Comments. Hint for Item (b): use the correspondence

(e,1),(0,2),(1,3), (00,4), (01,5), (10,6), (11, 7), . . ..



1.5
Asymptotic
Notation

1.5.  Asymptotic Notation 15

1.4.3. [10] Let £ : N'— {0,1}* be a total one-to-one function whose
range is prefix-free. FE defines a prefix-code. Define the mapping (-) :
N xN — N by (z,y) = E(z)y.

(a) Show that (-) is total and one-to-one.

(b) Show that we can extend this scheme to k-tuples (ny,ng,...,ng) of
natural numbers to obtain a total one-to-one mapping from N x N x

-+ x N into N.

Comments. Define the mapping for (x,y, z) as (z, (y, z)), and iterate this
construction.

1.4.4. [10] Let E be as above. Define the mapping (-) : N' x N — N
by (z,y) = E(2)E(y).
(a) Show that (-) is a total one-to-one mapping and a prefix-code.

(b) Show that we can extend this scheme to k-tuples (ni,no,...,ng) of
natural numbers to obtain a total one-to-one mapping from N x N x
.- x N into NV that is a prefix-code.

Comments. Define the mapping for (x,y, z) as (z, (y, z)) and iterate this
construction. Another way is to map (z,vy,...,2) to E(z)E(y) ... E(z).

1.4.5. [10] (a) Show that E(z) = Z is a prefix-code.

(b) Consider a variant of the Z code such that = z122 ... x, is encoded
as x1lxol ... 1z, _112,0. Show that this is a prefix-code for the binary
nonempty strings with I(zZ) = 2{(x).

(c¢) Consider © = x1x2 ...z, encoded as x1T1T2X2 ... Tp—1Ty—1Tn T
Show that this is a prefix-code for the nonempty binary strings.

(d) Give a prefix-code Z for the set of all binary strings z including e,
such that (%) = 2I(z) + 2.

It is often convenient to express approximate equality or inequality of
one quantity with another. If f and g are functions of a real variable,
then it is customary to denote lim, . f(n)/g(n) =1 by f(n) ~ g(n),
and we write ‘f goes asymptotically to g.’

P. Bachman introduced a convenient notation for dealing with approxi-
mations in his book Analytische Zahlentheorie in 1892. This big-O nota-
tion allows us to write I(z) = logz+O(1) (no subscript on the logarithm
means base 2).

We use the notation O(f(n)) whenever we want to denote a quantity
that does not exceed f(n) by more than a fixed multiplicative factor.
This is useful in case we want to simplify the expression involving this



16

1. Preliminaries

Example 1.5.1

Example 1.5.2

Example 1.5.3

quantity by suppressing unnecessary detail, but also in case we do not
know this quantity explicitly. Bachman’s notation is the first of a family
of order of magnitude symbols: O, 0,2, and ©. If f and g are functions
on the real numbers, then

1. f(x) = O(g(x)) if there are constants ¢, zg > 0 such that |f(z)| <
clg(x)], for all z > xo;

)
2. f(z) = olg(w)) if limy e f(2)/g(x) = O;
3. f(z) = Qg(a) i f(x) # o(g(x)); and

4. f(2) = O(g(x)) if both f(z) = O(g(x)) and f(x) = Ag(a)).

It is straightforward to extend these definitions to functions of more vari-
ables. For example, f(z,y) = O(g(x,y)) if there are positive constants
¢, To, yo such that |f(x,y)| < clg(z,y)|, for all © > xg,y > yo. The defi-
nitions are standard, except Item 3, and thereby Item 4, which involves
Item 3. This definition of 2 was introduced first by G.H. Hardy and J.E.
Littlewood in 1914 and is the one commonly used in mathematics. It has
the advantage that () is the complement of o. This is not the case with
the definition proposed by D.E. Knuth in 1976, which is often referred
to in computer science. Namely, Knuth defines f(x) = Q(g(x)) if there
is a constant ¢ > 0 such that |f(z)] > c|g(x)| from some x onward.
We have defined f(z) = Q(g(x)) if there is a constant ¢ > 0 such that
|f(z)| > c|g(z)| infinitely often. This use of £ should not be confused
with Chaitin’s mystery number €2, which we encounter in Section 3.6.2.

The definition of the big-O notation contains some mysterious absolute
value signs. This becomes understandable if we realize that one wants
to use a term like O(f(z)) to bound the absolute value of an error term,
be it positive or negative, for example, as in

2? +xsinz = 2 + O(z).

This avoids the clumsy notation £O(f(x)) one would have been forced
to use otherwise. <&

If f(n) ~ g(n), then f(n) = BO(g(n)), but the converse implication does
not hold. For instance, we have 22 = ©(x), but 2z ~ z does not hold.
On the other hand, —x = O(z). &

We can use O-notation to speak generically about mth-degree polynomi-
als, for instance, 14+2+---+n = n(n+1)/2. Then 14+2+---+n = O(n?),
but also 142+ - +n =n?/2+ O(n). The latter approximation is ob-
viously a stronger statement than the first approximation. Similarly, if
p(n) is a polynomial of degree m, then p(n) = O(n™) and p(n) = O(n™).

<&



Exercises

Exercises 17

1.5.1. [07] Show that 2 = o(2?); sinz = O(1); 2= %/2 = o(1); x + 2> ~
22, and Y";_, kn = O(n?).

1.5.2. [10] Show that f(n) = O(f(n)); ¢ O(f(n)
is a constant; O(f(n) + O(f(n)) = ;
O(f(n))O(g(n)) = O(f(n)g

(n
1.5.3. [10] Show that f(n) = o(g(n

vice versa.

1.5.4. [M30] It is natural to wonder how large 100! is approximately,
without carrying out the multiplications implied by the definition. Prove
the approximation n! ~ v/27mn(n/e)".

Comments. This celebrated approximation of the factorial function was
found by James Stirling [Methodus Differentialis (1730), 137].

1.5.5. [15] Denote the Hardy—Littlewood version of Q we gave in the
main text by Qg and the Knuth version by Q.

(a) Show that for function f defined by loglog f(n) = |loglogn|, we
have f(n) = Qg (n) but for no € > 0 does f(n) = Qx(n'/?*€) hold.

(b) Show that nonetheless, while f(n) = O(n), for no € > 0 do we have
f(n) =0(n'~).

Comments. Source: P.M.B. Vitanyi and L.G.L.T. Meertens, SIGACT
News, 16:4(1985), 56-59.

1.5.6. [20] It is well known that n'/™ — 1 for n — oco.

(a) Show that n'/™ = e"™/" =1 4 (Inn/n) +O0((Inn/n)?).

(b) Use (a) to show that lim,, .., n(n'/" — 1) = Inn.

1.5.7. [15] (a) Show that f(n) # Q(g(n)) iff f(n) = o(g(n)).

(b) Show that f(n) = ©(g(n)) or f(n) = o(g(n)) iff f(n) = O(g(n)).
(¢) Show that f(n) # O(g(n)) iff f(n) = Q(g(n)) and f(n) # O(g(n)).

1.5.8. [HM45] Let w(n) denote the number of primes that do not ex-
ceed n. Show that

(a) a crude approximation is m(n) ~ n/lnn;

(b) a better approximation is

m(n) = Inn + (Inn)? + (Inn)3 * (Inn)* o ((lnn)5) .

Comments. The displayed formulas are called prime number theorems.
Source: R. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics,
Addison-Wesley, 1989.



18 1. Preliminaries

1.6

Basics of
Probability
Theory

Example 1.6.1

16.1
Kolmogorov
Axioms

It is useful to recall briefly the basic notions of probability theory. The
calculus of probabilities studies mathematical models of situations (ex-
periments, observations) in which the outcome is not deterministic but is
determined by uncertain circumstances. The set of all possible outcomes
is called the sample space, usually denoted by S, and an event E is a
subset of S. The sample space S can be countable, which means that
it is finite or countably infinite, or continuous, which means that it is
uncountably infinite.

The throwing of two dice, one white and one black, gives a sample space
S consisting of all pairs (i, j) where 4 is the number on the top face of
the white die and j is the number on the top face of the black die. If
A=1{(1,3),(2,2),(3,1)}, then A is the event that the sum of ¢ and j is
four. If B = {(1,1),(1,2),(2,1)}, then B is the event that the sum of ¢
and j is less than 4. <&

Intuitively, the probability p of an event A is the apparent limit of the
relative frequency of outcomes in A in the long run in a sequence of
independent repetitions of the experiment. For instance, the probability
associated with A in the example is 112.

Let S denote the sample space. Following A.N. Kolmogorov’s formaliza-
tion of 1933, it is customary to use the following axioms.

(Al) If A and B are events, then so is the intersection A B, the union
Al B, and the difference A — B.

(A2) The sample space S is an event. We call S the certain event. The
empty set, denoted by &, is an event. We call @ the impossible
event.

(A3) To each event F is assigned a nonnegative real number P(E) that
we call the probability of event E.

(A4) P(S)=1.
(A5) If A and B are disjoint, then P(A|JB) = P(A4) + P(B).
(A6) For a decreasing sequence A1 D Ay D --- D A, D -+ of events with

N, An = @ we have lim,_,o, P(4,) = 0.

For systems with finitely many events Axiom A6 clearly follows from
Axioms A1 through A5. For systems with infinitely many events, how-
ever, it is independent of the first five axioms. Therefore, Axiom A6 is
essential only for systems with infinitely many events.



Example 1.6.2

1.6.2
Conditional
Probability

Example 1.6.3

1.6. Basics of Probability Theory 19

A system F of sets f C S that is closed under the binary operations
union, intersection, difference and contains a 1-element (here S) and a
0O-element (here &) is called a (set) field. The set of events F together
with the associated set function P, also called a measure on F, is called
a probability field and is denoted by (F, P). It is easy to show that the
axiom system Al through A6 is consistent (free from contradictions).
This is ascertained in the usual way by constructing an example that
satisfies the axioms. Let S consist of a single element, and let the set of
events be S and the empty event &, and set P(S) = 1 and P(&) = 0. It is
easy to verify that the system defined in this way satisfies all the axioms
above. However, the set of axioms is incomplete: for different problems
in probability theory we have to construct different probability fields.

We call P a probability distribution over S. It follows from the axioms
that 0 < P(E) < 1 for every event E; P(@) = 0; if A C B, then
P(A) < P(B); if A is the complement S— A of A, then P(A) = 1— P(A);
and P(AUB) = P(A)+ P(B) — P(ANB). &

If A and B are two events, with P(A) > 0, then the conditional proba-
bility that B occurs given that A occurs is defined by

P(B|A) = P(ﬁ(Q)B).

It follows immediately that P(A[) B) = P(A)P(B|A), and by induction
we obtain the multiplication rule:

P(AﬂBﬂ---ﬂN) :P(A)P(B|A)---P(N|AﬂBﬂ--ﬂM).

Consider the setup of Example 1.6.1 again. Let A be the event that
at least one out of two dice shows an even number, and let B be the
event that the sum of the numbers shown is even. Then P(B|A) =
P(ANB)/P(A) = ;.

The function P(-|A) is a probability distribution on S and is called the
conditional probability distribution given A. Clearly, P(A|A) = 1.

Rewriting P(A () B) as P(B)P(A|B) and as P(A)P(B|A), substitution
yields the formula that incorporates the essence of Bayes’s rule,
P(A)P(B|A)

PAIB) =0

We require the law of complete probabilities. Let A|UBU---UN = S
for disjoint events A, B,..., N, and let X be an arbitrary event. Then

P(X) = P(A)P(X|A) + P(B)P(X|B) + - -- + P(N)P(X|N).



20 1. Preliminaries

Example 1.6.4

1.6.3
Continuous
Sample Spaces

If A,B,..., N are disjoint and X is arbitrary, it is easy to derive from
the previous two displayed formulas the important Bayes’s rule:

P(Y)P(X|Y)
PY|X) = )
P(A)P(X|A)+ P(B)P(X|B) +---+ P(N)P(X|N)
where Y € {A,B,...,N}. We often call A, B,..., N hypotheses and say
that Bayes’s rule gives the posterior or inferred probability P(Y|X) of
hypothesis Y after occurrence of event X. It is common to call P(Y)
the prior probability (or a priori probability) of hypothesis Y before the
occurrence of event X . In Sections 1.10 and 5.1.3 we analyze the meaning
of Bayes’s rule in detail, and in Chapter 5 we apply it extensively in
inductive reasoning. &

The notion of mutual independence of two or more events lies at the
heart of probability theory. From a mathematical viewpoint the given
axioms specify just a special application of the general theory of additive
sets. However, the special nature of this application is to a large part
contained in the way we formalize the intuitive notion of mutual indepen-
dence of events. In the following we assume that the events have positive
probabilities. Events A and B are mutually independent ift P(A|B) =
P(A) and P(BJ|A) = P(B), in other words, P(A(\B) = P(A)P(B).
And more generally for n > 2 events, events A, B,..., N are mutu-
ally independent iff for all subsets of pairwise distinct X,Y,...,Z in
A,B,...,N we have

P(XY()---[)2) = P(X).

In Example 1.6.1, we have P(A( B) # P(A)P(B), and hence the events
A and B are not independent.

The classical work on probability from Laplace to von Mises is essentially
concerned with the investigation of sequences of independent events. For
instance, in a sequence of throws of a fair coin the throws are treated
as mutually independent events. (We do not consider that after a run
of a hundred ‘heads’ the chance on throwing ‘tails’ has increased.) If
in newer developments such as so-called Markov processes one often
dispenses with complete independence, then still some weaker analogous
requirements have to be imposed to obtain meaningful results. <&

If a field is infinite, and additionally all countable unions |J A,, of dis-
joint events A,, belong to it, then we call it a Borel field or o-algebra
in honor of E. Borel (1871-1956). We denote a Borel field by the Greek
letter o. It follows easily that in a Borel field ¢ all countable unions
of not necessarily disjoint events also belong to o, and the same holds



Example 1.6.5

Example 1.6.6

1.6. Basics of Probability Theory 21

for countable intersections. The closure of F, under the field operations
and countable union together, gives the unique smallest Borel field that
contains F. Suppose (F, P) is an infinite probability field. It is a fun-
damental result of measure theory that an extension of both F and P
under countable union and addition, respectively, preserving satisfaction
of Axioms A1 through A6, is always possible and, moreover, unique. The
result is called the Borel extension (o, P*) of the probability field. This is
best illustrated by the construction of such an extension in a particular
case.

We consider infinite binary sequences. The Borel probability field we
aim at has as sample space S the real numbers in the half-open interval
[0,1). We start out by identifying a real w with its infinite binary ex-
pansion 0.wiws .. .. In case a real number has two representations, such
as é, which can be represented by 0.100... and 0.011..., we choose the
representation with infinitely many zeros. A cylinder T'; consisting of all
real numbers that start with 0.z, where x is a finite binary string, is an
event. The probability field (F, P) is formed as follows. The set field F
is the closure of all cylinder events under pairwise union, intersection,
and difference. It contains the impossible event (by I'o((T1 = &) and
the certain event I'.. The uniform distribution, or Lebesque measure,
usually denoted by A, associates with each cylinder I'y a probability
MT,) = 27'®). By Axioms A1 through A5 all unions and intersections
of pairs of cylinders are events, including the empty set, and have associ-
ated probabilities. We now consider the closure o of F under countably
infinite union and the field operations. Then ¢ is the smallest Borel
field containing F as a subfield. Let A be an arbitrary subset of S. De-
fine P*(A) as the greatest lower bound on ) P(A,) for all coverings
A C N, A of A by Ay, Ay, ..., finitely many or countably infinitely
elements from F. It can be shown that for elements A in the original
field F we have P*(A) = P(A). We can also say that the probability
distribution P(A) on the sets in F associates the measure P(A) with A.

&

Sample spaces can be discrete (natural numbers), countable (the rational
numbers), or continuous (the real numbers). We will be interested in
discrete versus continuous measures. The discrete measures we consider
will have as sample space the natural numbers N or, equivalently, the
set of finite binary sequences {0, 1}*. The continuous measures will have
as sample space the real numbers R or, equivalently, the set of one-way
infinite binary sequences {0, 1}°°. Consider the continuous sample space
S = {0, 1}°° with measure p. If € is the empty word, then pu(T'c) =1 by
Axiom A4, and for all z € {0,1}*, p(T'y) = p(Ty0) + p(Tz1) by Axiom
A5. For convenience, we will in Chapters 4 and 5 write u(z) instead



22 1. Preliminaries

Example 1.6.7

Exercises

of u(T';) and consider a measure p as a function from the finite binary
strings into the positive real numbers satisfying Axioms A4 and A5. <

A real-valued function on a sample space S is called a random variable.
We denote random variables by X, Y, Z. A random variable maps an
element from the sample space to an aspect of it we are interested in (or
want to measure). For instance, S consists of the set of infinite binary
sequences, and for each w = wjws... in S the random variable X is
defined as X (w) = wy. We can also talk about a random variable X that
is a finite vector X1 X5 ... X, or infinite vector X7 X5 ... with X;(w) = w;
for all 7. If w is a sequence of outcomes of fair coin tosses, the measure
on S is the Lebesgue measure A, and Mw : X;(w) = 0} = } for all
1. Justified by the definitions above, we call the random variables X;
independent.

Another example of a random variable is Y;(w) = k, where k is the
length of the longest uninterrupted subsequence of zeros in wy.;. Clearly,
always either Y;(w) = Yj11(w) or Y;(w) < Yi;1(w), where both options
occur. The random variables Y; are dependent.

If P is a measure on S, then we customarily denote P{w : X (w) < x} by
the shorthand P(X < z). The function F defined by F(z) = P(X < z)
is called the distribution function. For instance, the random variable X
defined as the outcome of a single throw of a fair die has distribution
function P(X <) =14/6,i=1,2,...,6. A random variable is discrete if
the distribution function F' is a step function. The domain of a discrete
random variable consists of finitely many or countably infinitely many
elements {z1,x2,...}. The function P(X = x;), i« = 1,2,..., is the
probability mass function. The probability mass function associated with
the outcome of a single throw of a fair die is P(X =) = ;. A random
variable is continuous if the distribution function F' has a continuous
derivative f (at most discontinuous in finitely many points). This f is
called the probability density function. For instance, if the distribution
function of a random variable satisfies F(x) = 1 — e~ ** for x > 0, and
F(z) = 0 for z < 0, then the density function is f(x) = Ae =% for x > 0,
and f(xz) =0 for z <0. &

1.6.1. [17] A random sample of size k is taken from a population of n
elements. We draw the k elements one after the other and replace each
drawn element in the population before drawing the next element. What
is the probability of the event that in the sample no element occurs twice,
that is, our sample could have been obtained also by sampling without
replacement?

Comments. (n)/n*. Source: W. Feller, An Introduction to Probability
Theory and Its Applications, Vol. 1, Wiley, 1968.



Exercises 23

1.6.2. [15] Consider the population of digits {0,1,...,9}. Use the for-
mula you have found above to check that the probability that five con-
secutive random digits are all different is p = (10)5/10° = 0.3024.

Comments. Source: W. Feller, Ibid.

1.6.3. [15) What is the probability that in a party of 23 people at least 2
people have a common birthday? Assume that birthdays are uniformly
distributed over a year of 365 days and that the people at the party
constitute a random sample. Use the formula derived above.

Comments. Note that contrary to intuition, it is better to bet that there
will be shared birthdays than the other way. For a party of 23, the
probability is close to 0.5. However, the analogous probability for a party
of only 30 people already exceeds 0.7. Source: W. Feller, Ibid.

1.6.4. [10] Show that the probability of obtaining at least one ace (a 6)
in four throws with one die is greater than the probability of obtaining
at least one double ace in twenty-four throws with two dice.

Comments. This is known as Chevalier de Méré’s paradox. It was posed
by this passionate gambler to Pierre de Fermat, who wrote a solution
in a letter to Blaise Pascal in 1654. It was solved earlier by G. Cardano
(1501-1576). Source: [Amer. Math. Monthly 67(1960), 409-419].

1.6.5. [08] Which probability is greater: to score at least one ace (a 6)
in six throws of a die, or to score at least two aces in twelve throws of a
die?

Comments. This question was submitted to Isaac Newton by the famous
diarist Samuel Pepys in 1693. Newton answered that an easy computa-
tion shows that the first event has the greater probability, but failed to
convince Pepys. Source: [The Amer. Statistician, 14(1960), 27-30].

1.6.6. [M12] The uniform distribution over the countable sample
space S = N can be defined as the probability density function

L(z) = 272~ o1 alternatively, 71_2@(;; L) o—l(x)
(a) Show that in both cases ) g L(z) = 1.

(b) Let S1,53,... be a sequence of sample spaces with S,, = {x : I(z) =
n}. Show that the probability density function L,(x) = L(z|l(z) = n)
assigns probability L, (x) = 1/2" to all  of length n, and zero proba-
bility to other x’s, forn =1,2,....

1.6.7. [15] The uniform distribution A over the continuous sample
space S = {0,1}°°, the set of one-way infinite binary sequences (the
half-open interval of real numbers [0, 1)), is described in Example 1.6.5.
Let the L,’s be as above. Show that A(I'z) = Ly (), for all z = {0, 1}*.



24 1. Preliminaries

1.7

Basics of
Computability
Theory

While the qualitative ideas immanent in Kolmogorov complexity had
been around for a long time, their ultimate applicability in quantitative
form became possible only after the rise of computability theory (equiva-
lently, recursive function theory) in the 1930s. In this section we develop
and review completely the basic notions of that theory insofar as they
are needed in the sequel.

In 1936 Alan M. Turing (1912-1954) exhibited an exceedingly simple
type of hypothetical machine and gave a brilliant demonstration that
everything that can be reasonably said to be computed by a human
computer using a fixed procedure can be computed by such a machine.
As Turing claimed, any process that can be naturally called an effec-
tive procedure is realized by a Turing machine. This is known as Tur-
ing’s thesis. Over the years, all serious attempts to give precise yet in-
tuitively satisfactory definitions of a notion of ‘effective procedure’ in
the widest possible sense have turned out to be equivalent—to define
essentially the same class of processes. (In his original paper, Turing
established the equivalence of his notion of ‘effective procedure’ with
Alonzo Church’s (1903-1995) notion of ‘effective calculability.”) Church’s
thesis states that in this sense, there is an objective notion of effective
computability independent of a particular formalization.

While the formal part of Turing’s paper is difficult to follow for the
contemporary reader, the informal arguments he sets forth are as lucid
and convincing now as they were then. To us it seems that it is the
best introduction to the subject, and we reproduce this superior piece
of expository writing below.

“All arguments [for Turing’s thesis| are bound to be, fundamentally, appeals
to intuition, and for that reason rather unsatisfactory mathematically. The
real question at issue is: ‘what are the possible processes which can be carried
out in computing (a number)?’ The arguments which I shall use are of three
kinds.

(a) A direct appeal to intuition.

(b) A proof of equivalence of two definitions (in case the new definition has a
greater intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all ‘computable [by Turing
machines],” several other propositions of the same character follow. In partic-
ular it follows that, if there is a general process for determining whether a
formula (of the Hilbert function calculus) is provable, then the determination
can be carried out by machine. [...]

Computing is normally done by writing certain symbols on paper. We may
suppose this paper to be divided into squares like a child’s arithmetic book. In
elementary arithmetic the 2-dimensional character of the paper is sometimes
used. But such use is always avoidable, and I think it will be agreed that the



1.7. Basics of Computability Theory 25

two-dimensional character of paper is no essential of computation. I assume
then that the computation is carried out on one-dimensional paper, on a tape
divided into squares. I also suppose that the number of symbols which may be
printed is finite. If we were to allow an infinity of symbols, then there would
be symbols differing to an arbitrarily small extent.

The effect of this restriction on the number of symbols is not very serious. It
is always possible to use sequences of symbols in the place of single symbols.
Thus an Arabic numeral such as 17 or 999999999999999 is normally treated
as a single symbol. Similarly in any European language words are treated as
single symbols (Chinese, however, attempts to have an enumerable infinity of
[atomic] symbols). The differences in our point of view between single and
compound symbols is that the compound symbols, if they are too lengthy,
cannot be observed at one glance. This is in accordance with experience. We
cannot tell at a glance whether 99999999999999999 and 999999999999999999
are the same. [...]

The behaviour of the [human] computer at any moment is determined by the
symbols he is observing, and his ‘state of mind’ at that moment. We may
suppose that there is a bound B to the number of symbols or squares which
the computer can observe at one moment. If he wishes to observe more, he
must use successive observations. We will also suppose that the number of
states of mind which need be taken into account is finite. The reasons for this
are of the same character as those which restrict the number of symbols. If
we admit an infinity of states of mind, some of them will be ‘arbitrarily close’
and will be confused. Again, the restriction is not one which seriously affects
computation, since the use of more complicated states of mind can be avoided
by writing more symbols on the tape. [...]

Let us imagine the operations performed by the computer to be split up in
‘simple operations’ which are so elementary that it is not easy to imagine them
further divided. Every such operation consists of some change of the physical
system consisting of the computer and his tape. We know the state of the
system if we know the sequence of symbols on the tape, which of these are
observed by the computer (possibly with a special order), and the state of
mind of the computer. We may suppose that in a simple operation not more
than one symbol is altered. Any other changes can be split up into simple
changes of this kind. The situation in regard to the squares whose symbols
may be altered this way is the same as in regard to the observed squares.
We may, therefore, without loss of generality, assume that the squares whose
symbols are changed are the ‘observed’ squares. [...]

'If we regard a symbol as literally printed on a square, we may suppose that
the square is 0 < x < 1, 0 < y < 1. The symbol is defined as the set of
points in this square, viz., the set occupied by printer’s ink. If these sets are
restricted to be measurable, we can define the ‘distance’ between two symbols
as the cost of transforming one symbol into the other if the cost of moving a
unit area of printer’s ink unit distance is unity, and there is an infinite supply
of ink at * = 2, y = 0. With this topology the symbols form a conditionally
compact space [Turing’s note].



26

1. Preliminaries

Besides these changes of symbols, the simple operations must include changes
of distribution of observed squares. The new observed squares must immedi-
ately be recognized by the computer. I think it is reasonable to suppose that
they can only be squares whose distance from the closest of the immediately
previously observed squares does not exceed a certain fixed amount. Let us say
that each of the new observed squares is within L squares of the immediately
previously observed square. .. ]

In connection to ‘immediate recognizability,” it may be thought that there
are other kinds of squares which are immediately recognizable. In particular,
squares marked by special symbols may be taken as immediately recognizable.
Now if these squares are marked only by single symbols there can be only a
finite number of them, and we should not upset our theory by adjoining these
marked squares to the observed squares. If, on the other hand, they are marked
as a sequence of symbols, we cannot regard the process of recognition as a
simple process. This is a fundamental point and should be illustrated. In most
mathematical papers the equations and theorems are numbered. Normally
the numbers go not beyond (say) 1000. It is, therefore, possible to recognize a
theorem at a glance by its number. But if the paper was very long, we might
reach Theorem 157767733443477; then, further on in the paper, we might
find ‘... hence (applying Theorem 157767733443477) we have ...." In order to
make sure which was the relevant theorem we should have to compare the two
numbers figure by figure, possibly ticking the figures off in pencil to make sure
of their not being counted twice. If in spite of this it is still thought that there
are other ‘immediately recognizable’ squares, it does not upset my contention
so long as these squares can be found by some process of which my type of
machine is capable. [...]

The simple operations must therefore include:
(a) Changes of the symbol on one of the observed squares.
(b) Changes of one of the squares observed to another square within L squares

of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of
mind. The most general single operation must therefore be taken to be one of
the following:

(A) A possible change (a) of symbol together with a possible change of state of

mind.

(B) A possible change (b) of observed squares, together with a possible change

of state of mind.

The operation actually performed is determined, as has been suggested [above]
by the state of mind of the computer and the observed symbols. In particular,
they determine the state of mind of the computer after the operation. [...]

We may now construct a machine to do the work of this computer. To each
state of mind of the computer corresponds an ‘m-configuration’ of the machine.
The machine scans B squares corresponding to the B squares observed by the
computer. In any move the machine can change a symbol on a scanned square
or can change any one of the scanned squares to another square distant not
more than L squares from one of the other scanned squares. [Without loss



1.7.1
Effective
Enumerations
and Universal
Machines

1.7. Basics of Computability Theory 27

of generality restrict L and B to unity.] The move which is done, and the
succeeding configuration, are determined by the scanned symbol and the m-
configuration. The machines just described do not differ very essentially from
computing machines as defined (previously) and corresponding to any machine
of this type a computing machine can be constructed to compute the same
sequence, that is to say, the sequence computed by the computer. [...]

We suppose [above] that the computation is carried out on a tape; but we avoid
introducing the ‘state of mind’ by considering a more physical and definitive
counterpart of it. It is always possible for the computer to break off from his
work, to go away and forget all about it, and later to come back and go on
with it. If he does this he must leave a note of instructions (written in some
standard form) explaining how the work is to be continued. This note is the
counterpart of ‘the state of mind.” We will suppose that the computer works
in such a desultory manner that he never does more than one step and write
the next note. Thus the state of progress of the computation at any stage
is completely determined by the note of instructions and the symbols on the
tape. That is, the state of the system may be described by a single expression
(sequence of symbols), consisting of the symbols on the tape followed by a
special marker (which we suppose not to appear elsewhere) and then by the
note of instructions. This expression may be called the ‘state formula.” We
know that the state formula at any given stage is determined by the state
formula before the last step was made, and we assume that the relation of
these two formulae is expressible in the functional calculus. In other words,
we assume that there is an axiom A which expresses the rules governing the
behaviour of the computer, in terms of the relation of the state formula at any
stage to the state formula at the preceding stage. If this is so, we can construct
a machine to write down the successive state formulae, and hence to compute
the required number.”

We formalize Turing’s description as follows: A Turing machine consists
of a finite program, called the finite control, capable of manipulating a
linear list of cells, called the tape, using one access pointer, called the
head (Figure 1.1). We refer to the two directions on the tape as right
and left. The finite control can be in any one of a finite set of states @,
and each tape cell can contain a 0, a 1, or a blank B. Time is discrete
and the time instants are ordered 0,1,2,..., with 0 the time at which
the machine starts its computation. At any time, the head is positioned
over a particular cell, which it is said to scan. At time 0 the head is
situated on a distinguished cell on the tape called the start cell, and the
finite control is in a distinguished state gy. At time 0 all cells contain
B’s, except for a contiguous finite sequence of cells, extending from the
start cell to the right, which contain 0’s and 1’s. This binary sequence
is called the input.

The device can perform the following basic operations:

1. it can write an element from A = {0, 1, B} in the cell it scans; and



28

1. Preliminaries

Definition 1.7.1

“.|B|B|l|0|0|0|l|l|0|l|B|B|B|.“

tape
head

finite control

® @ ©
@ @ @

FIGURE 1.1. Turing machine

2. it can shift the head one cell left or right.

When the device is active it executes these operations at the rate of
one operation per time unit (a step). At the conclusion of each step, the
finite control takes on a state from (). The device is constructed so that
it behaves according to a finite list of rules. These rules determine, from
the current state of the finite control and the symbol contained in the
cell under scan, the operation to be performed next and the state to
enter at the end of the next operation execution.

The rules have format (p,s,a,q): p is the current state of the finite
control; s is the symbol under scan; a is the next operation to be executed
of type (1) or (2) designated in the obvious sense by an element from
S ={0,1,B, L, R}; and q is the state of the finite control to be entered
at the end of this step.

Any two distinct quadruples cannot have their first two elements iden-
tical: the device is deterministic. Not every possible combination of the
first two elements has to be in the set; in this way we permit the device
to perform no operation. In this case we say that the device halts. Hence,
we can define a Turing machine by a mapping from a finite subset of
Q x Ainto S x Q. Given a Turing machine and an input, the Turing ma-
chine carries out a uniquely determined succession of operations, which
may or may not terminate in a finite number of steps.

We can associate a partial function with each Turing machine in the
following way: The input to the Turing machine is presented as an n-
tuple (z1,...,x,) of binary strings in the form of a single binary string
consisting of self-delimiting versions of the x;’s. The integer represented
by the maximal binary string (bordered by blanks) of which some bit
is scanned, or 0 if a blank is scanned, by the time the machine halts is
called the output of the computation.

Under this convention for inputs and outputs, each Turing machine de-
fines a partial function from n-tuples of integers onto the integers, n > 1.



Example 1.7.1

Example 1.7.2

Example 1.7.3

1.7. Basics of Computability Theory 29

We call such a function partial recursive. If the Turing machine halts for
all inputs, then the function computed is defined for all arguments and
we call it total recursive, or simply recursive.

We call a function with range {0, 1} a predicate, with the interpretation
that the predicate of an n-tuple of values is ‘true’ if the corresponding
function assumes value 1 for that n-tuple of values for its arguments
and is ‘false’ or ‘undefined’ otherwise. Hence, we can talk about partial
(total) recursive predicates.

Consider x as a binary string. It is easy to see that the functions I(z),
f(z) =z, g(Ty) = =, and h(ZTy) = y are partial recursive. Functions g
and h are not total since the value for input 1111 is not defined. The
function ¢'(zy) defined as 1 if x = y and as 0 if x # y is a recursive
predicate. Consider x as an integer. The following functions are basic
n-place total recursive functions: the successor function 'y(l)(ac) =+
1, the zero function ¢(™ (1,...,2n) = 0, and the projection function

7T'S:Z)(xlﬁ"'7"1;71)::L‘wz (1§m§n) &

The function (z,y) = Ty is a total recursive one-to-one mapping from
N x N into N. We can easily extend this scheme to obtain a total
recursive one-to-one mapping from k-tuples of integers into the integers,
for each fixed k. Define (ni,na,...,ng) = (n1, (na,...,ng)).

Another total recursive one-to-one mapping from k-tuples of integers
into the integers is (ny,na,...,nk) = Ay ... Hg_17k. O

Church’s thesis. The class of algorithmically computable numerical
functions (in the intuitive sense) coincides with the class of partial re-
cursive functions.

Originally intended as a proposal to henceforth supply intuitive terms
such as ‘computable’ and ‘effective procedure’ with a precise meaning
as ‘recursive’ and ‘recursive function,” Church’s thesis has come into use
as shorthand for a claim that from a given description of a procedure in
terms of an informal set of instructions we can derive a formal one in
terms of Turing machines.

It is possible to give an effective (computable) one-to-one pairing be-
tween natural numbers and Turing machines. This is called an effective
enumeration. One way to do this is to encode the table of rules of each
Turing machine in binary, in a canonical way.

The only thing we have to do for every Turing machine is to encode
the defining mapping 7" from @ x A into S x Q. Giving each element



30

1. Preliminaries

Example 1.7.4

of QU S a unique binary code requires s bits for each such element,
with s = [log(d(Q) + 5)]. Denote the encoding function by e. Then the
quadruple (p,0, B, q) is encoded as e(p)e(0)e(B)e(q). If the number of
rules is r, then r < 3d(Q). We agree to consider the state of the first
rule as the start state. The entire list of quadruples,

T = (p17t17517q1>7 (p27t27527q2)7 ceey (prvtr75T7QT)7

is encoded as

E(T) = sre(pr)e(ti)e(s1)e(qr) - - - e(pr)e(tr)e(sr)e(gr)-

Note that [(E(T)) < 4rs 4+ 2logrs + 4. (Moreover, E is self-delimiting,
which is convenient in situations in which we want to recognize the
substring E(T) as prefix of a larger string; see Section 1.4.)

We order the resulting binary strings lexicographically (according to in-
creasing length). We assign an index, or Godel number, n(T') to each
Turing machine T by defining n(T') =4 if E(T) is the ith element in the
lexicographic order of Turing machine codes. This yields a sequence of
Turing machines 77,75, ... that constitutes the effective enumeration.
One can construct a Turing machine to decide whether a given binary
string  encodes a Turing machine, by checking whether it can be de-
coded according to the scheme above, that the tuple elements belong to
Q x Ax SxQ, followed by a check whether any two different rules start
with the same two elements. This observation enables us to construct
‘universal’ Turing machines. &

A universal Turing machine U is a Turing machine that can imitate the
behavior of any other Turing machine T'. It is a fundamental result that
such machines exist and can be constructed effectively. Only a suitable
description of T’s finite program and input needs to be entered on U’s
tape initially. To execute the consecutive actions that T would perform
on its own tape, U uses T’s description to simulate T’s actions on a
representation of T’s tape contents. Such a machine U is also called
‘computation universal.” In fact, there are infinitely many such U’s.

We focus on a universal Turing machine U that uses the encoding above.
It is not difficult, but tedious, to define a Turing machine in quadruple
format that expects inputs of the format 1'0p and acts as follows: On
the tape left of the input, U starts to generate the successive strings in
{0, 1}* in lexicographic order according to increasing length and checks
for each such string whether it encodes a Turing machine. For each
Turing machine it finds, it replaces one 1 in 1? in the input by a B. The
binary string E(T') that causes the delimiter 0 to be read encodes T' with
n(T) = 4. Subsequently, U starts to execute the successive operations of
T using p as input and the description E(T) of T' it has found. We omit
the explicit construction of U. &



Definition 1.7.2

Lemma 1.7.1

1.7. Basics of Computability Theory 31

For the contemporary reader there should be nothing mysterious in the con-
cept of a general-purpose computer which can perform any computation when
supplied with an appropriate program. The surprising thing is that a general-
purpose computer can be very simple: it has been shown that four tape sym-
bols and seven states suffice easily in the above scheme [M. Minsky, Computa-
tion: Finite and Infinite Machines, Prentice-Hall, 1967]. This machine can be
changed to, in the sense of being simulated by, our format using tape symbols
{0,1, B} at the cost of an increase in the number of of states; see Section 1.12.

The effective enumeration of Turing machines 77,75, ... determines an
effective enumeration of partial recursive functions ¢1, ¢2, ... such that
¢; is the function computed by T;, for all 7. It is important to distin-
guish between a function 1) and a name for 1. A name for ¢ can be an
algorithm that computes ¢, in the form of a Turing machine T'. Tt can
also be a natural number ¢ such that i) equals ¢; in the above list. We
call 4 an index for 1. Thus, each partial recursive 1) occurs many times
in the given effective enumeration, that is, it has many indices.

The partial recursive function v(?) (i, z) computed by the universal Tur-
ing machine U is called the universal partial recursive function.

The generalization to n-place functions is straightforward. A partial re-
cursive function vtV (i, x1, ... x,) is universal for all n-place partial
recursive functions if for each partial recursive function ¢ (zy, ..., x,)
there exists an i such that the mapping v("+1) with the first argument
fixed to i is identical to the mapping ¢(™. Here i is an index of (™)
with respect to ("1, For each n, we fix a partial recursive (n + 1)-
place function that is universal for all n-place partial recursive functions.
The following lemma is usually called the enumeration theorem for n-
place partial recursive functions. Here z is the index of the universal
function.

For each n there exists an index z such that for all i and x1,...,x,, if
qbgn) (X1,...,2n) 18 defined, then qS(ZnH)(i, TlyenyTp) = (;55") (X1, 2n),
and ¢§"H)(i,x1, .oy Tp) is undefined otherwise. ( 2"“) s a universal

partial recursive function that enumerates the partial recursive functions
of n variables.)

Proof. The machine of Example 1.7.4 is universal for all n-place partially
recursive functions, for all n. m]

It is easy to see that universality is oblivious to n-arity, at least in the
chosen computational model of Turing machines. We say that a partial
recursive function ¢(™ on arguments 1, ..., z, is computed in time t
(t steps or t operations) by Turing machine T if T' computes »™ and



32

1. Preliminaries

Lemma 1.7.2

Example 1.7.5

Lemma 1.7.3

T halts within ¢ steps when it is started on the input corresponding to
these arguments.

For all partial recursive functions (™) there exists a recursive function
YD such that P (t 2y, .. 2n) = 1if o) (21, ..., 2,) can be com-
puted in not more than t steps, and w("+1)(t, Z1,...,%n) =0 otherwise.

Proof. Let T be a Turing machine that computes ¢. Modify T" to a Turing
machine T” that computes 1 from an input with one extra variable, the
clock, containing the natural number ¢. Machine T” works exactly like
T, except that it decrements the clock by one for every simulated step
of T'. If simulator T” enters a halting configuration of T" with a positive
clock value, then T outputs 1. If 77 decrements its clock to zero, then
it halts and outputs 0. O

A set A is recursively enumerable if it is empty or the range of some total
recursive function f. We say that f enumerates A. The intuition behind
this definition is that there is a Turing machine for listing the elements
of A in some arbitrary order with repetitions allowed. An equivalent
definition is that A is recursively enumerable if it is accepted by a Turing
machine. That is, for each element in A, the Turing machine halts in a
distinguished accepting state, and for each element not in A the machine
either halts in a nonaccepting state or computes forever.

A set A is recursive if it possesses a recursive characteristic function.
That is, A is recursive iff there exists a recursive function f such that
for all z, if z € A, then f(z) =1, and if # € A, then f(x) =0 (A is the
complement of A). An equivalent definition is that A is recursive if A is
accepted by a Turing machine that always halts. Obviously, all recursive
sets are recursively enumerable.

The following sets are recursive: (i) the set of odd integers; (ii) the set
of natural numbers; (iii) the empty set; (iv) the set of primes; (v) every
finite set; (vi) every set with a finite complement. The following sets are
recursively enumerable: (i) every recursive set; (ii) the set of indices 4
such that the range of ¢; is nonempty; (iii) the set {x : a run of at least
x consecutive 0’s occurs in 7}, where 7 = 3.1415. . .. <&

(i) A set A is recursive iff both A and its complement A are recursively
enumerable.

(ii) An infinite set A is recursive iff it is recursively enumerable in in-
creasing order. (Here we have postulated a total order on the elements
of A. For instance, if A C N with the usual order, then ¢ enumerates
A in increasing order if ¢(i1) < ¢(i + 1), for alli.)



Lemma 1.7.4
1.7.2
Undecidability of
the Halting
Problem

1.7. Basics of Computability Theory 33

Proof. Let A|J A = N and neither A nor A is the empty set. (Otherwise
the lemma trivially holds.)

(i) (ONLY 1F) If A is recursive, then obviously its complement A is re-
cursive as well. Moreover, both are by definition recursively enumerable.

(Ir) By assumption, A is the range of f, and A is the range of g,
for two recursive functions f,g. Therefore, we can generate the list
£(0),9(0), f(1),9(1), f(2),..., and examine each element in turn. To
decide whether a given z in A belongs to A we just compare it with
each element in the above list. If = f(i) for some 4, then x € A. If
x = g(i) for some i, then z € A. Element z must occur in this list, since

AUA=N.
(ii) (ONLY IF) Trivial.

(Ir) Let A be recursively enumerated in increasing order a1, ag, . . . . Then
this yields a procedure to decide for each x whether x belongs to A by
testing “a; = x7” for ¢ = 1,2,... until either a; = x or x < a;. O

Every infinite recursively enumerable set contains an infinite recursive
subset.

Proof. Let A be infinite and recursively enumerable. Let f be a recursive
function with range A. Define a new recursive function g with ¢g(0) =
f(0) and g(x+1) = f(y), where y is the least value such that f(y) > g(z).
Let B be the range of g. Since A is infinite, the definition of B implies
that B is infinite. Clearly g enumerates B in increasing order, so B is
recursive by Lemma 1.7.3, Ttem (ii). ad

The equivalent lemmas hold for recursive and recursively enumerable
sets of n-tuples.

Turing’s paper, and more so Kurt Gédel’s paper, where such a result first
appeared, are celebrated for showing that certain well-defined questions
in the mathematical domain cannot be settled by any effective procedure
for answering questions. One such question is, “which machine compu-
tations eventually terminate with a definite result, and which machine
computations go on forever without a definite conclusion?” This is some-
times called the halting problem. Since all machines can be simulated by
the universal Turing machine U, this question cannot be decided in the
case of the single machine U, or more generally for any individual uni-
versal machine. The following lemma, due to Turing in 1936, formalizes
this discussion. Let ¢1, ¢o,... be the standard enumeration of partial
recursive functions.



34

1. Preliminaries

Lemma 1.7.5

Definition 1.7.3

There is no recursive function g such that for all z,y, we have g(z,y) =1
if ¢ (y) is defined, and g(x,y) = 0 otherwise.

Proof. Suppose the contrary, and define a partial recursive function ¢ by
Y(z) = 1if g(x,x2) = 0, and t(x) is undefined otherwise. (The definition
of 1 gives by the assumption of total recursiveness of g an algorithm,
and by Church’s thesis or by explicit construction we can find a Turing
machine to compute 1.) Let 1) have an index y in the fixed enumeration
of partial recursive functions, ¢ = ¢,. Then, ¢, (y) is defined iff g(y,y) =
0, according to v’s definition. But this contradicts the assumption of
existence of g as defined in the statement of the lemma. O

The trick used in this proof is called diagonalization; see Exercise 1.7.3
on page 40.

Define Ko = {(z,y) : ¢=(y) < oo} as the halting set.

With this definition, Lemma 1.7.5 can be rephrased as, “The halting set
Ky is not recursive.” It is easy to see that K is recursively enumerable.
The halting set is so ubiquitous that it merits the standard notation Kj.
We shall also use the diagonal halting set K = {x : ¢,(x) < oo}. Just
like Ky, the diagonal halting set is recursively enumerable; and the proof
of Lemma 1.7.5 shows that K is not a recursive set.

Lemma 1.7.5 was preceded by the famous (first) incompleteness theorem
of Kurt Godel in 1931. Recall that a formal theory T consists of a set of
well-formed formulas, formulas for short. For convenience these formulas
are taken to be finite binary strings. Invariably, the formulas are specified
in such a way that an effective procedure exists that decides which strings
are formulas and which strings are not.

The formulas are the objects of interest of the theory and constitute
the meaningful statements. With each theory we associate a set of true
formulas and a set of provable formulas. The set of true formulas is ‘true’
according to some (often nonconstructive) criterion of truth. The set
of provable formulas is ‘provable’ according to some (usually effective)
syntactic notion of proof.

A theory T is simply any set of formulas. A theory is aziomatizable if it
can be effectively enumerated. For instance, its axioms (initial formulas)
can be effectively enumerated and there is an effective procedure that
enumerates all proofs for formulas in 7' from the axioms. A theory is
decidable if it is a recursive set. A theory T is consistent if not both
formula z and and its negation —x are in T'. A theory T is sound if each
formula z in T is true (with respect to the standard model of the natural
numbers).



Lemma 1.7.6

1.7.3

Semi-
Computable
Functions

Definition 1.7.4

1.7. Basics of Computability Theory 35

Hence, soundness implies consistency. A particularly important example
of an axiomatizable theory is Peano arithmetic, which axiomatizes the
standard elementary theory of the natural numbers.

There is a recursively enumerable set Kqg such that for every aziomati-
zable theory T that is sound and extends Peano arithmetic, there is a
number n such that the formula “n & Ky” is true but not provable in T'.

Proof. Let ¢1, ¢2,... be the standard enumeration of partial recursive
functions above, and let Ko = {(z,y) : ¢,(y) < oo}. That is, K is
the domain of a universal partial recursive function, Lemma 1.7.1. It is
easy to see that the set Ky is recursively enumerable. Moreover, all true
statements of the form “n € Ky” belong to Peano arithmetic.

Assume by way of contradiction that all true statements of the form
“n ¢ Ky” are provable in T. Then the complement of K is recursively
enumerable by enumerating the set of all provable statements in 7. By
Lemma 1.7.3, Item (i), if both Ky and its complement are recursively
enumerable, then K| is recursive. However, this contradicts the fact that
K is nonrecursive (Lemma 1.7.5). a

In his original proof, Goédel uses diagonalization to prove the incom-
pleteness of any sufficiently rich logical theory T" with a recursively enu-
merable axiom system, such as Peano arithmetic. By his technique he
exhibits for such a theory an explicit construction of an undecidable
statement y that says of itself “I am unprovable in T.” The formulation
in terms of recursive function theory, Lemma 1.7.6, is due to A. Church
and S.C. Kleene. In the proof, diagonalization is needed to show that
K is not recursive. And elaboration of this proof would yield a similar
explicit construction to the above one. Using Kolmogorov complexity
we will be able to derive a new proof of Lemma 1.7.6, with essentially
different examples of undecidable statements.

Recall that N, Q, and R, denote the nonnegative integers, the ratio-
nal numbers, and the real numbers, respectively. We consider partial
recursive functions g({{y, z), k)) = (p, q¢) and write g(y/z, k) = p/q, with
Y, 2z, P, ¢, k nonnegative integers. The extension to negative arguments
and values is straightforward. The interpretation is that g is a rational-
valued function of a rational argument and a nonnegative integer argu-
ment.

A partial function f : Q@ — R is upper semicomputable if it is defined
by a rational-valued partial recursive function ¢(z, k) with = a rational
number and k a nonnegative integer such that ¢(x, k + 1) < ¢(z, k)
for every k and limy_,o ¢(x, k) = f(x). This means that f can be com-
putably approximated from above. A function f is lower semicomputable



36

1. Preliminaries

Example 1.7.6

Example 1.7.7

Example 1.7.8

if —f is upper semicomputable. A function is called semicomputable if
it is either upper semicomputable or lower semicomputable or both. If
a function f is both upper semicomputable and lower semicomputable
on its domain, then we call f computable (or recursive if the domain is
integer or rational). The total function versions are defined similarly.

Thus, a total function f : @ — R is computable iff there is a total
recursive function g(z, k) such that |f(z) — g(z, k)| < 1/k.

In this way, we extend the notion of integer recursive functions to real-
valued computable functions with rational arguments, and to real-valued
semicomputable functions with rational arguments. The idea is that a
semicomputable function can be approximated from one side by a recur-
sive function, but we may never know how close we are to the real value.
A computable function can be approximated to any degree of precision
by a recursive function.

The following properties are easily proven: A function f : @ — R is
lower semicomputable iff the set {(x,r) : r < f(x), r € Q} is recursively
enumerable. Therefore, a lower semicomputable function is ‘recursively
enumerable from below,” and an upper semicomputable function is ‘re-
cursively enumerable from above.’

In the previous editions of this book, we used ‘enumerable’ for ‘lower semi-
computable,” ‘coenumerable’ for ‘upper semicomputable,” and ‘recursive’ for
‘computable.’

As stated, a function is computable iff it is both upper semicomputable
and lower semicomputable. A recursive function is computable. Not all
upper semicomputable and lower semicomputable functions are com-
putable. O

We give an example of a lower semicomputable function that is not
computable. Let K = {z : ¢,(z) < oo} be the diagonal halting set.
Define f(x) = 1if z € K, and f(z) = 0 otherwise. We first show that
f(x) is lower semicomputable. Define g(z, k) = 1 if the Turing machine
computing ¢, halts in at most k steps on input z, and g(x,k) = 0
otherwise. Obviously, g is a rational-valued recursive function. Moreover,
for all z and k we have g(z,k+1) > g(x, k), and limg_, g(x, k) = f(z).
Hence, f is lower semicomputable. However, if f(x) were computable,
then the set {x : f(x) = 1}, that is, the diagonal halting set K, would
be recursive. But Lemma 1.7.5 shows that it is not. <&

In Section 1.6 we have defined the notion of measure functions as u
functions that map subsets of the real interval [0, 1) to R. Considering
[0,1) as the isomorphic S = {0,1}°°, such functions are defined by the



1.7.4
Feasible
Computations

Definition 1.7.5

1.7. Basics of Computability Theory 37

values p(T'z), where I'y = {zw : w € {0,1}*°} with € {0,1}* are the
so-called cylinder sets. We can extend the notions of computability to
set functions. A measure u is computable (upper semicomputable, lower
semicomputable) iff the function f: N — R defined by f(z) = p(Ty) is
computable (upper semicomputable, lower semicomputable). )

This is enough on semicomputable functions to tide us over Chapters 2
and 3, and we go into more detail in Chapter 4.

We give a brief introduction to computational complexity theory in or-
der to provide some basic ideas and establish terminology required for
applications of Kolmogorov complexity in Chapters 6, 7, and 8.

Theoretically, any recursive function is computable by a personal com-
puter or by a Turing machine as shown in Figure 1.1. But a computation
that takes 2" steps on an input of length n would not be regarded as
practical or feasible. No computer would ever finish such a computa-
tion in the lifetime of the universe even with n merely 1000. Compu-
tational complexity theory tries to identify problems that are feasibly
computable.

If we have 10° processors each taking 10 steps/second, then we can execute
3.1 x 10%° < 20 steps/year.

In computational complexity theory, we are often concerned with lan-
guages. A language over a finite alphabet 3 is simply a subset of ¥*.
We say that a Turing machine accepts a language L if it outputs 1 when
the input is a member of L and outputs 0 otherwise. That is, the Turing
machine computes a predicate.

(Computational complexity) Let T be a Turing machine. For each
input of length n, if T' makes at most ¢(n) moves before it stops, then
we say that T runs in time ¢(n), or has time complezxity t(n). If T uses
at most s(n) tape cells in the above computation, then we say that T
uses s(n) space, or has space complezity s(n).

For convenience, we often give the Turing machine in Figure 1.1 a few
more work tapes and designate one tape as a read-only input tape. Thus,
each transition rule will be of the form (p, s, a, q), where 5 contains the
scanned symbols on all the tapes, and p,a,q are as in Section 1.7.1,

except that an operation now involves moving maybe more than one
head.

We sometimes also make a Turing machine nondeterministic by allowing
two distinct transition rules to have identical first two components. That
is, a nondeterministic Turing machine may have different alternative
moves at each step. Several other versions of Turing machines will be



38

1. Preliminaries

Definition 1.7.6

Definition 1.7.7

discussed in later chapters. Turing machines are deterministic unless it
is explicitly stated otherwise.

It is a fundamental and easy result that any k-tape Turing machine
running in t(n) time can be simulated by a Turing machine with just
one work tape running in t?(n) time. Any Turing machine using s(n)
space can be simulated by a Turing machine with just one work tape
using s(n) space. For each k, if a language is accepted by a k-tape Turing
machine running in time ¢(n) (space s(n)), then it can also be accepted
by another k-tape Turing machine running in time ct(n) (space cs(n)),
for any constant ¢ > 0. This leads to the following definitions:

(Complexity classes) DTIME[¢(n)] is the set of languages accepted
by multitape deterministic Turing machines in time O(¢(n));

NTIME[t(n)] is the set of languages accepted by multitape nondeter-
ministic Turing machines in time O(t(n));

DSPACE|[s(n)] is the set of languages accepted by multitape determin-
istic Turing machines in O(s(n)) space;

NSPACE[s(n)] is the set of languages accepted by multitape nondeter-
ministic Turing machines in O(s(n)) space;

P is the complexity class | J, ., DTIME[n<];
NP is the complexity class |J . NTIME[n];
PSPACE is the complexity class [ J, .- DSPACE[n].

We will define more complexity classes in Chapter 7. Languages in P,
that is, languages acceptable in polynomial time, are considered feasibly
computable. The nondeterministic version for PSPACE turns out to be
identical to PSPACE. The following relationships hold trivially,

P C NP C PSPACE.

It is one of the most fundamental open questions in computer science and
mathematics to prove whether either of the above inclusions is proper.
Research in computational complexity theory focuses on these questions.
In order to solve these problems, one can identify the hardest problems
in NP or PSPACE.

(Oracle machine) A Turing machine 7" with an oracle A, where A
is a language over T’s work tape alphabet, is denoted by T4. Such a
machine operates as a normal Turing machine with the exception that
after it has computed a finite string x it can enter a special oracle state
and ask whether z € A. The machine T4 gets the correct “yes/no”
answer in one step. An oracle machine can use this feature one or more
times during each computation.



Definition 1.7.8

Example 1.7.9

1.7. Basics of Computability Theory 39

In Exercise 1.7.16 on page 43 we define the recursion-theoretic notion
of reducing one language to another. Here, we scale this notion down to
feasible size in computational complexity, by limiting the computational
power used in the reduction to polynomial time.

A language A is called polynomial-time Turing-reducible to a language
B, denoted by A <E B, if given B as an oracle, there is a deterministic
Turing machine that accepts A in polynomial time. That is, we can
accept A in polynomial time given answers to membership in B for free.

(NP-completeness) A language A is called polynomial-time many-to-
one reducible to a language B, denoted by AgiB, if there is a function r
that is polynomial-time computable, and for every a, a € A iff r(a) € B.
In both cases, if B € P, then so is A.

A language A is NP-hard if all languages in NP are Turing polynomial-
time (equivalently, many-to-one polynomial-time) reducible to A. Con-
sequently, if any NP-hard language is in P, then P = NP. If A is NP-hard
and A € NP, then we say that A is NP-complete.

NP is the set of problems for which it is easy to show (give a certificate)
that the answer is “yes,” and P is the set of “yes/no” problems for which
it is easy to find the answer. The technical sense of ‘easy’ is ‘doable by a
deterministic Turing machine in polynomial time.” The “P versus NP”
question can be understood as whether problems for which it is easy to
certify the answer are the same problems for which it is easy to find the
answer. The relevance is this:

Normally, we do not ask questions unless we can recognize easily in a
certain sense when we have been handed the correct answer. We are
not normally interested in questions for which it would take a lifetime
of work to check whether you got the answer you wanted. NP is about
those questions that we are likely to want answers to.

This excellent explanation was given by one of the inventors of the notions
P and NP, J.E. Edmonds [Interview, FAUW Forum, University of Waterloo,
January 1993].

A Boolean formula is in conjunctive normal form if it is a conjunction
of disjunctions. For example,

f(z1, 20, 23) = (21 + To + x3) (T2 + x3) (21 + 23)

is in conjunctive normal form, and xizs + x2Z3 is not in conjunctive
normal form. A Boolean formula f(x1,...,x,) is satisfiable if there is a
Boolean-valued truth assignment ay, ..., a, such that f(a,...,a,) = 1.



40 1. Preliminaries

Definition 1.7.9

Definition 1.7.10

Exercises

(SAT) Let SAT be the set of satisfiable Boolean formulas in conjunctive
normal form. The SAT problem is to decide whether a given Boolean
formula is in SAT.

This problem was the first natural problem shown to be NP-complete.
Many practical issues seem to depend on fast solutions to this problem.
Given a Boolean formula, a nondeterministic Turing machine can guess
a correct truth assignment, and verify it. This takes only linear time.
However, if we have to deterministically search for a satisfying truth
assignment, there are 2" Boolean vectors to test.

Intuitively, and as far as is known now, a deterministic Turing machine
cannot do much better than simply searching through these Boolean
vectors one by one, using an exponential amount of time. <&

For each class, say P, if a language L is accepted in deterministic poly-
nomial time using an oracle A, then we write L € PA. If A is an NP-
complete set, we also write L € PNP,

(Polynomial hierarchy) The so-called polynomial hierarchy consists
of the following hierarchy of language classes: ¥§ = NP; A7 = P; X | =
NP™; AP | =P and II? = {L: L € 3}.

1.7.1. [10] We can rework the effective enumeration of Turing machines
above and the definition of universal Turing machines using only tape
alphabet A = {0,1} (as opposed to {0,1, B}) such that the d(A4)d(Q)
product increases at most by a fixed constant under the change of the
original Turing machine to its simulator. Namely, we simply replace each
program p in {0,1}* by p, and in simulated computation use only the
alternate (say odd) cells that contain the original program p. To skip
over the even administrative cells containing 0’s and to detect even cells
containing the delimiter 1 takes only a few extra states. In particu-
lar, it requires exactly the same number of extra states in each Tur-
ing machine modification. Prove the assertion concerning the d(A)d(Q)
product. What is the ‘new’ I(¢(T))? Since clearly ¢ suffices, we obtain
l(e) <2(c(T))+ 1, for all T

1.7.2. [08] Show that there are exactly countably infinitely many par-
tial recursive functions, and that there are exactly countably infinitely
many (total) recursive functions.

1.7.3. [15] Georg Cantor proved that the total functions are not count-
able by introducing his famous diagonalization argument. Suppose the
contrary, and count the functions in order fi, fa,..., fi,... . Define a



Exercises 41

new function g, which we shall prove to be not in this list, by g(i) =
fi(@) + 1, for all natural numbers i. By contradictory assumption, g oc-
curs in the list, say ¢ = f;. But by definition, ¢(i) # f;(i), which gives
the required contradiction. Use a similar argument to prove that there
are functions that are not partial recursive.

1.7.4. [11] It is important to distinguish between computable functions
and the algorithms that compute those functions. To each function there
correspond many different algorithms that compute it. Show that in the
effective enumeration of Turing machines, as treated in this section, each
partial recursive function is computed by countably infinitely many dif-
ferent Turing machines. If 77,75, ..., T;, ... is an effective enumeration
of Turing machines and T; computes partial recursive function ¢;, for
all 4, then each partial recursive function f occurs infinitely many times
in the list ¢1, 2, ..., ¢;,... . This result is not an accident of our for-
malism and effective enumeration, but holds in general for all effective
enumerations of algorithms that compute all partial recursive functions.

1.7.5. [25] Show that for every m,n > 1, there exists a recursive func-

tion ¢ = sﬁ{"“) of m + 1 variables such that for all x,y1,...,Ym,

¢(xm+n) (ylv s Ymy Rl Z’n) = ¢£/)n()x7yhm7ym)(zlv tety Zn)y

for all variables z1, ..., z,. (Hint: prove the case m = n = 1. The proof
is analogous for the other cases.)

Comments. This important result, due to Stephen C. Kleene, is usually
called the s-m-n theorem. Source: H. Rogers, Jr., Theory of Recursive
Functions and Effective Computability, McGraw-Hill, 1967; P. Odifreddi,
Classical Recursion Theory, North-Holland, 1989.

1.7.6. [35] If P is the class of all partial recursive functions (for conve-
nience restricted to one variable), then any map 7 from N (the natural
numbers) onto P is called a numbering. The standard indexing of the
Turing machines provides such a numbering, say my, and the indexing of
the recursive function definitions provides another, say ;. A number-
ing 7 is acceptable, or a Gddel numbering, if we can go back and forth
effectively between 7 and 7, that is:

(i) There is a recursive function f (not necessarily one-to-one) such that
fmo =m.

(ii) There is a recursive function g (not necessarily one-to-one) such that
gm = mp.

(a) Show that 7 is acceptable.

(b) Show that (i) is a necessary and sufficient condition that any 7 have

a universal partial recursive function (satisfies an appropriate version of
the enumeration theorem).



42

1. Preliminaries

(c) Show that (ii) is a necessary and sufficient condition that any 7 have
an appropriate version of the s-m-n theorem (Exercise 1.7.5).

(d) Show that (ii) implies that 7=1(¢) is infinite for every partial recur-
sive ¢ of one variable.

(e) Show that we can replace (i) and (ii) by the requirement that there
be a recursive isomorphism between 7 and .

Comments. These results, due to H. Rogers, Jr., in 1958, give an abstract
formulation of the basic work of Church, Kleene, Post, Turing, Markov,
and others, that their basic formalizations of the notion of partial recur-
sive functions are effectively isomorphic. It gives invariant significance to
the notion of acceptable numbering in that major properties such as the
enumeration theorem and the s-m-n theorem hold for every acceptable
numbering. Note that (i) may be viewed as requiring that the numbering
be ‘algorithmic’ in that each number yields an algorithm; and (ii) that
the numbering be ‘complete’ in that it includes all algorithms. Source:
H. Rogers, Jr., Ibid.

1.7.7. [20] Show that there is no recursive function f such that f(z) =
1if ¢4 (2) is defined, and f(x) = 0 otherwise.

Comments. This fact is known as the recursive unsolvability of the halt-
ing problem.

1.7.8. [20] Prove that the predicate f defined as f(x) = 1if ¢, is total,
and f(x) = 0 otherwise, is not total recursive.

1.7.9. [15] Prove that a set A is recursively enumerable iff A is the
domain of a partial recursive function.

Comments. This is often called the basic theorem of recursively enumer-
able sets.

1.7.10. [16] Prove that a set A is recursively enumerable iff A is the
range of some partial recursive function iff A is the range of a total
recursive function or @.

1.7.11. [34] (a) Show that it is possible to effectively enumerate the
partial recursive functions without repetition.

(b) Let A ={z: ¢, is a total function}. Prove that A is not recursively
enumerable.

Comments. Ttems (a) and (b) are not contradictory. Hint: in Item (a),
dovetail the computations of all partial recursive functions on all argu-
ments. Attributed to R.A. Friedberg, 1958. Source: H. Rogers, Jr., The-
ory of Recursive Functions and Effective Computability, McGraw-Hill,
1967; P. Odifreddi, Classical Recursion Theory, North-Holland, 1989,
pp. 230-232.



Exercises 43

1.7.12. [20] Let K = {z : ¢(x) < oo}. Prove that K is a recursively
enumerable set that is not recursive.

1.7.13. [15] (a) Show that the function 7(z,y) = (2 + 22y +y? + 3z +
y)/2 is a recursive one-to-one mapping from N2 onto N. Show that this
is not a prefix-code.

(b) Show that 7(*) defined by 7?) = 7 and 7% (1, 29, . .., 2) = 7(7F~ D
(x1,29,...,25-1),2k) iS a recursive one-to-one mapping from N onto
N. Show that this is not a prefix-code.

(c) Let E: N'— N be an effective prefix-code with E(x)
for source word z. Show that E(7(z,y)), and also E(r(
for k > 2, are effective prefix-codes.

the code word
)

) (zy,. .., 21)),

Comments. How good are these prefix-codes of k-tuples of integers in
terms of density of the range of the code in N'? Clearly, Item (c) is the
best possible (in terms of fixed E).

1.7.14. [20] A set A is recursively enumerable without repetitions if
A equals the range of f, for some f that is recursive and one-to-one.
Prove that A is infinite and recursively enumerable iff A is recursively
enumerable without repetitions.

1.7.15. [25] (a) Show that there exists an infinite set having no infinite
recursively enumerable subset. Such sets have been called immune by
J.C.E. Dekker.

(b) If a set with this property has a recursively enumerable complement,
then this complement was called simple by E.L. Post in 1944. Show that
there exists a simple set.

Comments. By definition a simple set is recursively enumerable. A simple
set is not recursive, since its complement is infinite but not recursively
enumerable (Lemma 1.7.3, Ttem (i)). Source: H. Rogers, Jr., Ibid.

1.7.16. [35] In order of increasing generality we define some notions of
reducibilities among sets:

A set A is one-to-one reducible to a set B (A <; B) if there exists a
one-to-one recursive function f such that for all x we have x € A iff
f(z) € B.

A set A is many-to-one reducible to a set B (A <,,, B) if there exists a
many-to-one recursive function f such that for all x we have x € A iff
f(z) € B.

A set A is Turing reducible to a set B (A <r B) if we can solve member-
ship in A by a Turing machine that gets the solution to membership in
B for free. (This is commonly accepted as formalizing the most general



44

1. Preliminaries

intuitive notion of reducibility. It is also considered the most significant
and useful such notion.)

Intuitively speaking, for r equal to 1, m, or T, reducibility A <, B
means that to solve membership in B is at least as ‘hard’ as to solve
membership in A, up to the reducibility notion r.

(a) Consider {x : ¢, (y) < oo for infinitely many y} and {z : ¢, is total}.
Show that each of these sets is reducible to the other in all three senses
discussed.

(b) Show that <, is reflexive and transitive for all discussed reducibilities
r. Hence, =, (both <, and >,) is an equivalence relation, and <, induces
a partial order of the equivalence classes of =,.. One equivalence class is
below another one if members of the first are reducible to members of the
second, but not vice versa. We say that a set A on a lower r-equivalence
class has a lower degree of unsolvability with respect to <,.

(c) Consider the diagonal halting set K = {z : ¢,(z) < oo}, and let A =
{z: ¢, (y) < oo for finitely many y}. Show that K is r-reducible (all r =
1,m,T) to A (easy). Show that contrary to intuition, A is not r-reducible
(any r = 1,m,T) to K (hard). (Hint: show that A is not recursively
enumerable.) Therefore, A is of a higher r-degree of unsolvability than K.

(d) Show that the halting set Ky and K are of the same r-degree of
unsolvability (all r = 1,m,T).

(e) Show that all recursive sets are of lower r-degree of unsolvability
than Ko (all r = 1,m,T).

(f) The following notion is due to E.L. Post. A set A such that each
recursively enumerable set is r-reducible to it is called r-hard. If A is
both recursively enumerable and r-hard, then A is called r-complete.
Show that the halting set K in the proof of Lemma 1.7.6 is an example
of an r-complete set (all r = 1, m, T"). Show that K in Item (c) is another
example.

Comments. Source: H. Rogers, Jr., Ibid.

1.7.17. [35] Use the definitions above. The following is known as Post’s
problem (1944). The recursive sets have lower r-degree of unsolvability
than Ky, which has the highest r-degree of unsolvability in the recur-
sively enumerable sets. Are there other r-degrees of unsolvability (all
r = 1,m,T)? For r = 1,m, the first examples of such sets were the
simple sets of the above exercise; see Item (c) below. (For r = T the
question is much harder, and the affirmative answer was provided (in-
dependently) by R.A. Friedberg and A.A. Muchnik only in 1956.)

(a) Show that for all A, A is m-complete iff A is 1-complete.



Exercises 45

(b) Show that {z : ¢, is total} and {z : ¢, is not total} are incomparable
under <,,,. (Hint: see Exercise 7-11 in H. Rogers, Jr., Ibid.)

(c) Show that a simple set is neither recursive nor m-complete.

(d) Show that =1 and =,,, do not coincide on the nonrecursive recursively
enumerable sets, and hence <; and <,, do not coincide on these sets
either.

(e) (J.C.E. Dekker) Show that the m-degree of a simple set includes an
infinite collection of distinct 1-degrees consisting entirely of simple sets.

Comments. From Item (c) it follows that there exist nonrecursive recur-
sively enumerable sets (simple sets) that are not m-complete (and so by
Item (a) not 1-complete). Source: H. Rogers, Jr., Ibid. The term ‘Post’s
problem’ is now used among recursion theorists only for the Turing re-
duction version.

1.7.18. [35] Consider the generalized exponential function f informally
having the following property: f(0,z,y) = vy + z, f(1,2,y) = y X z,
f(2,z,y) = y*, ... . A more formal definition of f is given by f(0,0,y) =
Y, f(O,.’l?—f— 17y> = f(0’$7y) +1, f(l,O,y) =0, f(z+2,0,y) =1, f(Z+
La+1y) = f(z f(z+1,2,9),9)

(a) Show that this function is recursive but not primitive recursive.

(b) Show that the function A(z) = f(z,z,x), called the Ackermann
generalized exponential function, is recursive but not primitive recursive.
(It rises faster than any primitive recursive function.)

Comments. The function f was given by Wilhelm Ackermann (1926)
as a first example of a recursive function that is not primitive recur-
sive [Math. Ann. 99(1928), 118-133]. See also D. Hilbert [Math. Ann.,
95(1926), 161-190], who credits the proof to Ackermann. There are many
variants of definitions of the Ackermann function. A common recursive
definition is A’(0,n) = n + 1; A’(i,0) = A’(i — 1,1) for ¢ > 0; and
A'(i,n)=A'(i —1,A'(i,n — 1)) for i,n > 0 Then A(z) = A'(x,z). This
definition is apparently due to R.M. Robinson [Bull. Amer. Math. Soc.
54(1948), 987-993], and an earlier variant is due to Rdzsa Péter [Math.
Ann. 111(1935), 42-60]. An inherently iterative algorithm to compute
A’ is given by J.W. Grossman and R.Z. Zeitman [Theoret. Comput.
Sci., 37(1988), 327-330]. Another definition for the Ackermann function
(source: P. Odifreddi) is h,, defined as follows: ho(x) = x4+ 1; hpp1(x) =
hg,x)(x);hw(x) = h,(x) where A (x) = sc;hgfﬂ)(x) = hn(hgf) (2)). One
of the advantages of this version is that it can be translated into the
transfinite. Note: hi(z) = 2x; hao(z) = 22%.

1.7.19. The function BB is defined in terms of Turing machines with a
purely binary tape alphabet (no blanks) in quintuple format (rather than



46

1. Preliminaries

quadruple format as above). For each n define the set A,, = {i : T; hasn
states and ¢;(0) < oo}. That is, T; with ¢ in A,, halts when it is started
with p = e. We define BB(n) as the maximal number of 1’s in the output
of any Turing machine in A,, when it is started on input e. It is easy to
see that BB(1) = 1, but more difficult to see that BB(2) = 4. The BB
function is known as the busy beaver function. It is due to T. Rado [Bell
System Tech. J. (1962), 877-884]. This was one of the first ‘well-defined’
incomputable or nonrecursive total functions. The definition is natural
and uses no overt diagonalization.

(a) [12] Notice that the BB function is well defined, since you can show
that d(A,) < (6n)%".

(b) [15] Show that the BB function is incomputable. (Hint: it grows
faster than any recursive function.)

(c) [35] Show that BB(3) = 6.
(d) [40] Show that BB(4) = 13.

(e) [30] Can you give a lower bound on BB such as the Ackermann
generalized exponential function?

(f) [045] Is BB(5) > 4,098?

Comments. See A K. Dewdney, Scientific American, 251 (August 1984),
19-23; Ibid, 252 (March 1985), 23; A.H. Brady, pp. 259-278 in: The
Universal Turing Machine: A Half-Century Survey, R. Herken, ed., Ox-
ford Univ. Press, 1988; H. Marxen and J. Buntrock, FATCS Bull.,
40(1990), 247-251. For the quadruple format see [A. Oberschelp, K.
Schmidt-Goettsch, G. Todt, Castor Quadruplorum, Archive for Math.
Logic, 27(1988), 35-44].

1.7.20. [39] Let f be any recursive function. Prove that there exists
an n such that ¢, = ¢g(n)-

Comments. This result, and its elaborations to more complicated ver-
sions, is usually called the second recursion theorem or the fixed-point
theorem for recursion theory. The n is called a fized-point value for f.
Standard applications include the following: There exists an e such that
the only element in the domain of ¢, is e itself, and more generally,
it allows us to write programs that know their own index. Source: H.
Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967.

1.7.21. [37] In Exercise 1.7.16 we studied the notions of reducibility
and degree. We now look at a coarser classification. An n-ary relation R
is in the arithmetic hierarchy if it is either recursive or, for some m, can
be expressed as

{1, o vxn)  (Qryn) - (QmYm)S(T1, -+ Ty Y1y - -+ Ym) }s (1.5)



1.8

The Roots of
Kolmogorov
Complexity

1.8. The Roots of Kolmogorov Complexity 47

where each @; denotes the existential quantifier ‘there exists’ (3) or
the universal quantifier ‘for all’ (V), and S is an (n + m)-ary recursive
relation. The number of alternations in the prefix sequence of quantifiers
is the number of pairs of adjacent but unlike quantifiers. For each n > 0,
Formula 1.5 is a X0-form if the first quantifier is 3 and the number of
alternations is n — 1. A ¥J-form has no quantifiers. For each n > 0,
Formula 1.5 is a II2-form if the first quantifier is V and the number of
alternations is n — 1. A II)-form has no quantifiers. A relation R is in
0 if it can be expressed by a ¥0-form. A relation R is in IIY if it can
be expressed by a I12-form. For each n > 0, define A? = 2 O1IY.

(a) Show that ©J = II§ is the class of recursive sets, and that %9 is the
class of recursively enumerable sets.

(b) Show that R is in X0 iff the complement of R is in TI2.
(¢) Show that ¥ JII) € 9., NIO_,.

(d) Show that for each n > 0, we have X2 —TI? # @, and hence, by (c),
that for each n > 0 we have II9 — X0 # &.

Comments. The result mentioned as Item (d) is called the hierarchy
theorem. In conjunction with Item (c) it shows that the classes X9, 39, . ..
form a strictly increasing sequence. Source: H. Rogers, Jr., Ibid.

1.7.22. [13] A real number r € [0,1] is called a recursive real number if
there exists a total recursive function ¢ such that r = 0.w with ¢(i) = w;,
for all . We call w a recursive sequence. A recursive sequence of recursive
reals is a sequence 71,79, ... of reals if there is a total recursive function
1 in two arguments such that ¢(4,j) = r;; and r; = 0.ry1752. ..
Show that not all real numbers are recursive; show that there are only
countably many recursive numbers; and show that there is a recursive
sequence of recursive reals that converges to a real, but not to a recursive
one.

The notion of Kolmogorov complexity has its roots in probability theory,
information theory, and philosophical notions of randomness, and came
to fruition using the recent development of the theory of algorithms.
The idea is intimately related to problems in both probability theory and
information theory. These problems as outlined below can be interpreted
as saying that the related disciplines are not tight enough; they leave
things unspecified that our intuition tells us should be dealt with.



48 1. Preliminaries

1.8.1

A Lacuna of
Classical
Probability
Theory

1.8.2

A Lacuna of
Information
Theory

An adversary claims to have a true fair coin. However, when he flips it a
hundred times, the coin comes up a hundred heads in a row. Upon seeing
this, we claim that the coin cannot be fair. The adversary, however, ap-
peals to probability theory, which says that every sequence of outcomes
of a hundred coin flips is equally likely having probability 1/2!% and
one sequence had to come up.

Probability theory gives us no basis to challenge an outcome after it has
happened. We could only exclude unfairness in advance by putting a
penalty side bet on an outcome of 100 heads. But what about 1010...7
What about an initial segment of the binary expansion of 7?7

Regular sequence Pr(00000000000000000000000000) = 1/226,
Regular sequence Pr(01000110110000010100111001) = 1/226,
Random sequence Pr(10010011011000111011010000) = 1/226 .

The first sequence is regular, but what is the distinction of the second
sequence and the third? The third sequence was generated by flipping a
quarter. The second sequence is very regular: 0,1,00,01,... . The third
sequence will pass (pseudo)randomness tests.

In fact, classical probability theory cannot express the notion of ran-
domness of an individual sequence. It can only express expectations of
properties of outcomes of random processes, that is, the expectations of
properties of the total set of sequences under some distribution.

Only relatively recently, this problem has found a satisfactory resolution
by combining notions of computability and statistics to express the com-
plexity of a finite object. This complexity is the length of the shortest
binary program from which the object can be effectively reconstructed.
It may be called the algorithmic information content of the object. This
quantity turns out to be an attribute of the object alone, and absolute (in
the technical sense of being recursively invariant). It is the Kolmogorov
complezity of the object.

Shannon’s classical information theory assigns a quantity of information
to an ensemble of possible messages. All messages in the ensemble being
equally probable, this quantity is the number of bits needed to count all
possibilities. This expresses the fact that each message in the ensemble
can be communicated using this number of bits. However, it does not
say anything about the number of bits needed to convey any individ-
ual message in the ensemble. To illustrate this, consider the ensemble
consisting of all binary strings of length 9999999999999999.

By Shannon’s measure, we require 9999999999999999 bits on average
to encode a string in such an ensemble. However, the string consisting



1.9
Randomness

1.9. Randomness 49

of 9999999999999999 1’s can be encoded in about 55 bits by expressing
9999999999999999 in binary and adding the repeated pattern 1. A re-
quirement for this to work is that we have agreed on an algorithm that
decodes the encoded string. We can compress the string still further
when we note that 9999999999999999 equals 32 x 1111111111111111,
and that 1111111111111111 consists of 2% 1’s.

Thus, we have discovered an interesting phenomenon: the description
of some strings can be compressed considerably, provided they exhibit
enough regularity. This observation, of course, is the basis of all systems
to express very large numbers and was exploited early on by Archimedes
in his treatise The Sand Reckoner, in which he proposes a system to name
very large numbers:

“There are some, King Golon, who think that the number of sand is infinite
in multitude ... or] that no number has been named which is great enough to
exceed its multitude. [...] But I will try to show you, by geometrical proofs,
which you will be able to follow, that, of the numbers named by me [...] some
exceed not only the mass of sand equal in magnitude to the earth filled up in
the way described, but also that of a mass equal in magnitude to the universe.”

However, if regularity is lacking, it becomes more cumbersome to express
large numbers. For instance, it seems easier to compress the number one
billion, than the number one billion seven hundred thirty-five million
two hundred sixty-eight thousand and three hundred ninety-four, even
though they are of the same order of magnitude.

This brings us to the main root of Kolmogorov complexity, the notion
of randomness. There is a certain inevitability in the development that
led A.N. Kolmogorov (1903-1987) to use the recently developed theory
of effective computability to resolve the problems attending the proper
definition of a random sequence. Indeed, the main idea involved had
already been formulated with unerring intuition by P.S. Laplace, but
could not be properly quantified at the time (see Chapter 4).

In the context of the above discussion, random sequences are sequences
that cannot be compressed. Now let us compare this with the common
notions of mathematical randomness. To measure randomness, criteria
have been developed that certify this quality. Yet, in recognition that
they do not measure ‘true’ randomness, we call these criteria ‘pseudo’
randomness tests. For instance, statistical surveys of initial sequences
of decimal digits of 7 have failed to disclose any significant deviations
from randomness. But clearly, this sequence is so regular that it can be
described by a simple program to compute it, and this program can be
expressed in a few bits.



50

1. Preliminaries

“Any one who considers arithmetical methods of producing random digits is,
of course, in a state of sin. For, as has been pointed out several times, there
is no such thing as a random number—there are only methods to produce
random numbers, and a strict arithmetical procedure is of course not such a
method. (It is true that a problem we suspect of being solvable by random
methods may be solvable by some rigorously defined sequence, but this is a
deeper mathematical question than we can go into now.)” [von Neumann]

This fact prompts more sophisticated definitions of randomness. No-
tably, Richard von Mises (1883-1953) proposed notions that approach
the very essence of true randomness. This is related to the construction of
a formal mathematical theory of probability, to form a basis for real ap-
plications, in the early part of this century. While von Mises’s objective
was to justify the applications to real phenomena, Kolmogorov’s classic
1933 treatment constructs a purely axiomatic theory of probability on
the basis of set-theoretic axioms.

“This theory was so successful, that the problem of finding the basis of real
applications of the results of the mathematical theory of probability became
rather secondary to many investigators. [... however| the basis for the applica-
bility of the results of the mathematical theory of probability to real ‘random
phenomena’ must depend in some form on the frequency concept of probabil-
ity, the unavoidable nature of which has been established by von Mises in a
spirited manner.” [Kolmogorov]

The point made is that the axioms of probability theory are designed so
that abstract probabilities can be computed, but nothing is said about
what probability really means, or how the concept can be applied mean-
ingfully to the actual world. Von Mises analyzed this issue in detail, and
suggested that a proper definition of probability depends on obtaining a
proper definition of a random sequence. This makes him a frequentist—a
supporter of the frequency theory.

The frequency theory to interpret probability says, roughly, that if we
perform an experiment many times, then the ratio of favorable outcomes
to the total number n of experiments will, with certainty, tend to a
limit, p say, as n — oo. This tells us something about the meaning of
probability, namely, that the measure of the positive outcomes is p. But
suppose we throw a coin 1000 times and wish to know what to expect.
Is 1000 enough for convergence to happen? The statement above does
not say. So we have to add something about the rate of convergence.
But we cannot assert a certainty about a particular number of n throws,
such as “the proportion of heads will be p + € for large enough n (with e
depending on n).” We can at best say “the proportion will lie between
p + € with at least such and such probability (depending on € and ng)
whenever n > ng.” But now we have defined probability in an obviously
circular fashion.



Definition 1.9.1

1.9. Randomness 51

In 1919 von Mises proposed to eliminate the problem by simply dividing
all infinite sequences into special random sequences (called collectives),
having relative frequency limits, which are the proper subject of the
calculus of probabilities and other sequences. He postulates the existence
of random sequences as certified by abundant empirical evidence, in the
manner of physical laws, and derives mathematical laws of probability
as a consequence. In his view a naturally occurring sequence can be
nonrandom or unlawful in the sense that it is not a proper collective.

Von Mises views the theory of probabilities insofar as they are numerically
representable as a physical theory of definitely observable phenomena, repet-
itive or mass events, for instance, as found in games of chance, population
statistics, Brownian motion. ‘Probability’ is a primitive notion of the theory
comparable to those of ‘energy’ or ‘mass’ in other physical theories.

Whereas energy or mass exists in fields or material objects, probabilities ex-
ist only in the similarly mathematical idealization of collectives (random se-
quences). All problems of the theory of probability consist in deriving, ac-
cording to certain rules, new collectives from given ones and calculating the
distributions of these new collectives. The exact formulation of the properties
of the collectives is secondary and must be based on empirical evidence. These
properties are the existence of a limiting relative frequency and randomness.
The property of randomness is a generalization of the abundant experience in
gambling houses, namely, the impossibility of a successful gambling system.
Including this principle in the foundation of probability, von Mises argues,
we proceed in the same way as the physicists did in the case of the energy
principle. Here too, the experience of hunters of fortune is complemented by
solid experience of insurance companies, and so forth.

A fundamentally different approach is to justify a posteriori the application
of a purely mathematically constructed theory of probability, such as the the-
ory resulting from the Kolmogorov axioms. Suppose we can show that the
appropriately defined random sequences form a set of measure one, and with-
out exception satisfy all laws of a given axiomatic theory of probability. Then
it appears practically justifiable to assume that as a result of an (infinite)
experiment only random sequences appear.

Von Mises’s notion of infinite random sequences of 0’s and 1’s (collective)
essentially appeals to the idea that no gambler, making a fixed number
of wagers of ‘heads,” at fixed odds [say p versus 1 — p] and in fixed
amounts, on the flips of a coin [with bias p versus 1 — p], can have profit
in the long run from betting according to a system instead of betting
at random. Says Church: “this definition [below] ... while clear as to
general intent, is too inexact in form to serve satisfactorily as the basis
of a mathematical theory.”

An infinite sequence a, as, ... of 0’s and 1’s is a random sequence in the
special meaning of collective if the following two conditions are satisfied:



52

1. Preliminaries

1. Let f, be the number of 1’s among the first n terms of the sequence.
Then
lim I

n—oo N

=p, for some p, 0 < p < 1.

2. A place-selection rule is a partial function ¢ from the finite binary
sequences to the values 0 and 1 with the purpose of selecting one
after another those indices n for which ¢(ajas...a,—1) = 1. We
require (1), with the same limit p, also for every infinite subsequence

Qny Ory - v -

obtained from the sequence by some admissible place-selection rule.
(We have not yet formally stated which place-selection rules are
admissible.)

The existence of a relative frequency limit is a strong assumption. Em-
pirical evidence from long runs of dice throws in gambling houses or with
death statistics in insurance mathematics suggests that the relative fre-
quencies are apparently convergent. But clearly, no empirical evidence
can be given for the existence of a definite limit for the relative fre-
quency. However long the test run, in practice it will always be finite,
and whatever the apparent behavior in the observed initial segment of
the run, it is always possible that the relative frequencies keep oscillating
forever if we continue.

The second condition ensures that no strategy using an admissible place-
selection rule can select a subsequence that allows different odds for
gambling than a subsequence that is selected by flipping a fair coin. For
example, let a casino use a coin with probability p = 411 of coming up
heads and a payoff for heads equal to three times the payoff for tails.
This ‘law of excluded gambling strategy’ says that a gambler betting in
fixed amounts cannot make more profit in the long run betting according
to a system than from betting at random.

“In everyday language we call random those phenomena where we cannot find
a regularity allowing us to predict precisely their results. Generally speaking,
there is no ground to believe that random phenomena should possess any defi-
nite probability. Therefore, we should distinguish between randomness proper
(as absence of any regularity) and stochastic randomness (which is the sub-
ject of probability theory). There emerges the problem of finding reasons for
the applicability of the mathematical theory of probability to the real world.”
[Kolmogorov]

Intuitively, we can distinguish between sequences that are irregular and
do not satisfy the regularity implicit in stochastic randomness, and se-
quences that are irregular but do satisfy the regularities associated with



Example 1.9.1

1.9. Randomness 53

stochastic randomness. Formally, we will distinguish the second type
from the first type by whether a certain complexity measure of the ini-
tial segments goes to a definite limit. The complexity measure referred
to is the length of the shortest description of the prefix (in the precise
sense of Kolmogorov complexity) divided by its length. It will turn out
that almost all infinite strings are irregular of the second type and satisfy
all regularities of stochastic randomness.

“In applying probability theory we do not confine ourselves to negating regu-
larity, but from the hypothesis of randomness of the observed phenomena we
draw definite positive conclusions.” [Kolmogorov]

Considering the sequence as fair coin tosses with p = %, the second
condition in Definition 1.9.1 says that there is no strategy ¢ (law of
excluded gambling strategy) that ensures that a player betting at fixed
odds and in fixed amounts on the tosses of the fair coin will make infinite
gain. That is, no advantage is gained in the long run by following some
system, such as betting ‘heads’ after each run of seven consecutive tails,
or (more plausibly) by placing the nth bet ‘heads’ after the appearance
of n+ 7 tails in succession. According to von Mises, the above conditions
are sufficiently familiar and an uncontroverted empirical generalization
to serve as the basis of an applicable calculus of probabilities.

It turns out that the naive mathematical approach to a concrete formu-
lation, admitting simply all partial functions, comes to grief as follows:
Let @ = ajaz... be any collective. Define ¢; as ¢1(ay...a;—1) = 1
if a; = 1, and undefined otherwise. But then p = 1. Defining ¢y by
do(ay ...a;—1) = b;, with b; the complement of a;, for all i, we obtain by
the second condition of Definition 1.9.1 that p = 0. Consequently, if we
allow functions like ¢ and ¢ as strategies, then von Mises’s definition
cannot be satisfied at all. O

In the 1930s, Abraham Wald proposed to restrict the a priori admissi-
ble ¢ to any arbitrary fixed countable set of functions. Then collectives
do exist. But which countable set? In 1940, Alonzo Church proposed to
choose a set of functions representing computable strategies. According
to Church’s thesis, Section 1.7, this is precisely the set of recursive func-
tions. With recursive ¢, not only is the definition completely rigorous,
and random infinite sequences do exist, but moreover they are abundant,
since the infinite random sequences with p = % form a set of measure
one. From the existence of random sequences with probability %, the ex-
istence of random sequences associated with other probabilities can be
derived. Let us call sequences satisfying Definition 1.9.1 with recursive ¢
Mises—Wald—Church random. That is, the involved Mises—Wald—Church
place-selection rules consist of the partial recursive functions.



54

1. Preliminaries

Appeal to the theorem of Wald above yields as a corollary that the
set of Mises—Wald—Church random sequences associated with any fixed
probability has the cardinality of the continuum. Moreover, each Mises—
Wald—Church random sequence qualifies as a normal number. (A num-
ber is normal if each digit of the base, and each block of digits of any
length, occurs with equal asymptotic frequency.) Note, however, that
not every normal number is Mises—Wald—Church random. This follows,
for instance, from Champernowne’s sequence (or number),

0.1234567891011121314151617181920. . .,

due to D.G. Champernowne, which is normal in the scale of 10 and whose
ith digit is easily calculated from ¢. The definition of a Mises—Wald—
Church random sequence implies that its consecutive digits cannot be
effectively computed. Thus, an existence proof for Mises—Wald—Church
random sequences is necessarily nonconstructive.

Unfortunately, the von Mises—Wald—Church definition is not yet good
enough, as was shown by J. Ville in 1939. There exist sequences that
satisfy the von Mises—Wald—Church definition of randomness, with lim-
iting relative frequency of ones of %, but nonetheless have the property
I > ! for all n.
n 2
The probability of such a sequence of outcomes in random flips of a fair
coin is zero. Intuition: if you bet 1 all the time against such a sequence
of outcomes, then your accumulated gain is always positive! Similarly,
other properties of randomness in probability theory such as the law of

the iterated logarithm do not follow from the von Mises—Wald—Church
definition.

For a better understanding of the problem revealed by Ville, and its
subsequent solution by P. Martin-Lof in 1966, we look at some aspects
of the methodology of probability theory. Consider the sample space
of all one-way infinite binary sequences generated by fair coin tosses.
We call a sequence ‘random’ if it is ‘typical.” It is not ‘typical,’ say
‘special,” if it has a particular distinguishing property. An example of
such a property is that an infinite sequence contains only finitely many
ones. There are infinitely many such sequences. But the probability that
such a sequence occurs as the outcome of fair coin tosses is zero. ‘Typical’
infinite sequences will have the converse property, namely, they contain
infinitely many ones.

In fact, one would like to say that ‘typical’ infinite sequences will have
all converse properties of the properties that can be enjoyed by ‘special’
infinite sequences. This is formalized as follows: If a particular property,
such as containing infinitely many occurrences of ones (or zeros), the



1.9. Randomness 55

law of large numbers, or the law of the iterated logarithm, has been
shown to have probability one, then one calls this a law of randomness.
A sequence is ‘typical,” or ‘random,’ if it satisfies all laws of randomness.

But now we are in trouble. Since all complements of singleton sets in
the sample space have probability one, it follows that the intersection of
all sets of probability one is empty. Thus, there are no random infinite
sequences!

Martin-Lof, using ideas related to Kolmogorov complexity, succeeded in
defining random infinite sequences in a manner that is free of such diffi-
culties. He observed that all laws that are proven in probability theory to
hold with probability one are effective (as defined in Section 1.7). That
is, we can effectively test whether a particular infinite sequence does not
satisfy a particular law of randomness by effectively testing whether the
law is violated on increasingly long initial segments.

The natural formalization is to identify the effective test with a par-
tial recursive function. This suggests that one ought to consider not the
intersection of all sets of measure one, but only the intersection of all
sets of measure one with recursively enumerable complements. (Such a
complement set is expressed as the union of a recursively enumerable
set of cylinders). It turns out that this intersection has again measure
one. Hence, almost all infinite sequences satisfy all effective laws of ran-
domness with probability one. This notion of infinite random sequences
is related to infinite sequences of which all finite initial segments have
high Kolmogorov complexity.

The notion of randomness satisfied by both the Mises—Wald—Church collec-
tives and the Martin-Lof random infinite sequences is roughly that effective
tests cannot detect regularity. This does not mean that a sequence may not
exhibit regularities that cannot be effectively tested. Collectives generated by
nature, as postulated by von Mises, may very well always satisfy stricter crite-
ria of randomness. Why should collectives generated by quantum-mechanical
phenomena care about mathematical notions of computability? Again, satis-
faction of all effectively testable prerequisites for randomness is some form of
regularity. Maybe nature is more lawless than adhering strictly to regularities
imposed by the statistics of randomness.

Until now the discussion has centered on infinite random sequences
where the randomness is defined in terms of limits of relative frequencies.
However,

“The frequency concept based on the notion of limiting frequency as the num-
ber of trials increases to infinity does not contribute anything to substantiate
the application of the results of probability theory to real practical problems
where we always have to deal with a finite number of trials.” [Kolmogorov]

The practical objection against both the relevance of considering infi-
nite sequences of trials and the existence of a relative frequency limit is



56 1. Preliminaries

Exercises

concisely put in J.M. Keynes’s famous phrase, “In the long run we shall
all be dead.” It seems more appealing to try to define randomness for
finite strings first, and only then define random infinite strings in terms
of randomness of initial segments.

The approach of von Mises to define randomness of infinite sequences
in terms of unpredictability of continuations of finite initial sequences
under certain laws (like recursive functions) did not lead to satisfying
results. Although certainly inspired by the random sequence debate, the
introduction of Kolmogorov complexity marks a definite shift of point of
departure, namely, to define randomness of sequences by the fact that no
program from which an initial segment of the sequence can be computed
is significantly shorter than the initial segment itself, rather than that
no program can predict the next elements of the sequence.

Finite sequences that cannot be effectively described by a significantly
shorter description than their literal representation are called random.
Our aim is to characterize random infinite sequences as sequences of
which all initial finite segments are random in this sense (Section 3.6).
A related approach characterizes random infinite sequences as sequences
all of whose initial finite segments pass all effective randomness tests
(Section 2.5).

Initially, before the idea of complexity, Kolmogorov proposed a close analogy
to von Mises’s notions in the finite domain. Consider a generalization of place-
selection rules insofar as the selection of a; can depend on a; with j > i [A.N.
Kolmogorov, Sankhya, Series A, 25(1963), 369-376]. Let ® be a finite set of
such generalized place-selection rules. Kolmogorov suggested that an arbitrary
finite binary sequence a of length n > m can be called (m,e)-random with
respect to @ if there exists some p such that the relative frequency of the 1’s
in the subsequences a;, ...a;, with 7 > m, selected by applying some ¢ in
® to a, all lie within € of p. (We discard ¢ that yield subsequences shorter
than m.) Stated differently, the relative frequency in this finite subsequence is
approximately (to within €) invariant under any of the methods of subsequence
selection that yield subsequences of length at least m. Kolmogorov has shown
that if the cardinality of & satisfies

d(<I>) < 162'm62(1—e)’
2
then for any p and any n > m there is some sequence a of length n that is
(m, €)-random with respect to ®.

1.9.1. [08] Consider the sequence 101001000100001000001 . .., that is,
increasing subsequences of 0’s separated by single 1’s. What is the lim-
iting relative frequency of 1’s and 0’s? Is this sequence a collective?

1.9.2. [15] Suppose we are given a coin with an unknown bias: the
probability of heads is p and of tails is (1 — p), p some unknown real



Exercises 57

number 0 < p < 1. Can we use this coin to simulate a perfectly fair
coin?

Comments. The question asks for an effective construction of a col-
lective of 0’s and 1’s with limiting frequency é from a collective of
0’s and 1’s with unknown limiting frequency p. Source: J. von Neu-
mann, Various techniques used in connection with random digits, in:
Collected Works, Vol. V, A.H. Traub, ed., Macmillan, 1963; W. Ho-
effding and G. Simons, Ann. Math. Statist., 41(1970), 341-352; T.S.
Ferguson, Ann. Math. Statist., 41(1970), 352-362; P. Elias, Ann. Math.
Statist., 43(1972), 865-870.

1.9.3. [15] Suppose the sequence ajas...a;... has all the properties
of a collective with p = %

(a) The limiting relative frequency of the subsequence 01 equals the
limiting frequency of subsequence 11. Compute these limiting relative
frequencies.

(b) Form a new sequence b1by . ..b; ... defined by b; = a; + a1 for all 4.
Then the b;’s are 0, 1, or 2. Show that the limiting relative frequencies

of 0, 1, and 2 are }1, é, and }1, respectively.

(¢) The new sequence constructed in Item (b) satisfies requirement (1) of
a collective: the limiting relative frequencies constituent elements of the
sample space {0, 1,2} exist. Prove that it does not satisfy requirement
(2) of a collective.

(d) Show that the limiting relative frequency of the subsequence 21 will
generally differ from the relative frequency of the subsequence 11.

Comments. Hint for Item (c): show that the subsequences 02 and 20 do
not occur. Use this to select effectively a subsequence of bibs...0; ...
with limiting relative frequency of 2’s equal to zero. This phenomenon
was first observed by M. von Smoluchowski [Sitzungsber. Wien. Akad.
Wiss., Math.-Naturw. Kl., Abt. Ila, 123(1914) 2381-2405; 124(1915)
339-368] in connection with Brownian motion, and called probability
‘after-effect.” Also: R. von Mises, Probability, Statistics, and Truth, Macmil-
lan, 1933.

1.9.4. [10] Given an infinite binary string that is a collective with lim-
iting frequency of 1’s equal to p = é, show how to construct a collective
over symbols 0, 1, and 2 (a ternary collective) with equal limiting fre-
quencies of :1,) for the number of occurrences of 0’s, 1’s, and 2’s.

Comments. Hint: use Exercise 1.9.2.

1.9.5. [M40] Let wyws ... be an infinite binary sequence, and let f,, =
w1 twa+ -+ wp.



58

1. Preliminaries

(a) A sequence w is said to satisfy the infinite recurrence law if f, = én
infinitely often. It can be shown that the set of infinite binary sequences
having the infinite recurrence property has measure one in the set of all
infinite binary sequences with respect to the usual binary measure. Show
that there are infinite binary sequences that are Mises—Wald—-Church

random satisfying f,, > én for all n.

(b) Show that there are infinite binary sequences that are Mises—Wald—
Church random and satisfy limsup, (31, w; — in)/Vnlnlnn >
1/4/2 (the violate the law of the iterated logarithm), Exercise 1.10.5.

Comments. Since Items (a) and (b) are satisfied with probability zero in
the set of all infinite binary strings, we can conclude that Mises—Wald—
Church random strings do not satisfy all laws of probability that hold
with probability one (the laws of randomness). Source: J. Ville, Etude
Critique de la Concept de Collectif, Gauthier-Villars, 1939.

1.9.6. [32] What happens if we restrict our set of admissible selection
functions to those computable by finite-state machines instead of Turing
machines? First we need some definitions. Let w = wjws ... be an infinite
binary string. For each m = 0,1,00,01,..., let f,, be the number of
occurrences of m in wy.,,. We say that w is k-distributed if lim,, o frn/n =
1/2M) for all m with I(m) < k. We say that w is oo-distributed, or
normal, if it is k-distributed for all integers k.

A finite-state place-selection Tule ¢ is a function computed by a finite-
state machine with value 0 or 1 for each finite binary sequence. Given an
infinite sequence w, ¢ determines a subsequence w;, w;y, ... by selecting
one after another the indices n for which ¢(wrws...wn—1) = 1. (For-
mally, in terms of the definition of a Turing machine in Section 1.7, we
can think of ¢ as being computed by a Turing machine T : Qx A — SxQ
with T'(-,d) = (R, ) foralld = 0,1 and T'(-, B) = (a, -) for some a = 0, 1.)
Let w;, w;, ... be the subsequence of w selected by ¢, and let ¢, be the
number of ones in the first n bits. Assuming that ¢ has infinitely many
values 1 on prefixes of w, define limsup,,_, ., ¢,/n as the prediction ratio
of ¢ for w. Finally, a finite-state prediction function ¢ is a predictor for

w if its prediction ratio is greater than ;

(a) Show that every w that is k-distributed but not (k + 1)-distributed
has a (k + 1)-state predictor.

(b) Show that there are no predictors for oo-distributed w.

(¢) Show that the subsequence selected from an co-distributed w by a
finite-state selection function is again co-distributed.

(d) Show that there are co-distributed sequences that can be predicted
by stronger models of computation such as Turing machines. Conclude
that there are co-distributed sequences that are not random in the sense



1.10

Prediction
and
Probability

1.10. Prediction and Probability 59

of von Mises—Wald—Church. (Hint: use Champernowne’s sequence pre-
sented in the main text.)

Comments. Since predictors are machines that, in the long run, have
some success in making correct predictions on w, we can say that w ap-
pears random to ¢ if ¢ is not a predictor of w. Then, oco-distributed se-
quences are precisely the sequences that appear random to all finite-state
selection functions. In terms of gambling, let a gambler pay $1.00 for each
prediction he makes and receive $2.00 for each correct prediction. If the
sequence supplied by the house is co-distributed, and the gambler makes
unboundedly many predictions, then no matter what finite-state selec-
tion function he uses, the limit superior of the ratio (paid $)/(received
$) goes to one. Source: V.N. Agafonov, Soviet Math. Dokl., 9(1968),
324-325 (English transl.); C.P. Schnorr and H. Stimm, Acta Informat-
ica, 1(1972), 345-359; and, apparently independently, M.G. O’Connor,
J. Comput. System Sci. 37(1988), 324-336. See also: T. Kamae, Israel
J. Math., 16(1973), 121-149; T. Kamae and B. Weiss, Israel J. Math.,
21(1975), 101-111.

1.9.7. [33] Investigate related problems as in Exercise 1.9.6 by replac-
ing finite-state machines (that is, regular languages) by slightly more
complex languages such as deterministic one-counter languages or linear
languages. Show that there are languages of both types such that selec-
tion according to them does not preserve normality (co-distributedness),
and that in fact, for both types of languages it is possible to select a con-
stant sequence from a normal one.

Comments Source: W. Merkle, J. Reimann, Theor. Comput. Systems,
39(2006), 685—697.

1.9.8. [035] Investigate the problems as in Exercises 1.9.6 and 1.9.7,
for push-down automata, time- or space-bounded classes, and primitive
recursive functions.

The question of quantitative probability based on complexity was first
raised and treated by R.J. Solomonoff, in an attempt to obtain a com-
pletely general theory of inductive reasoning. Let us look at some pre-
decessors in this line of thought.

The so-called weak law of large numbers, formulated by Jacob Bernoulli
(1654-1705) in his Ars Conjectandi, published posthumously in 1713,
states that if an experiment with probability of success p is repeated n
times, then the proportion of successful outcomes will approach p for
large n. Such a repetitive experiment is called a sequence of Bernoulli
trials generated by a (p,1 — p) Bernoulli process, and the generated
sequence of outcomes is called a Bernoulli sequence.



60

1. Preliminaries

Thomas Bayes (1702-1761), in “An essay towards solving a problem
in the doctrine of chances” [Philos. Trans., London, 53(1763), 376-398,
and 54(1764), 298-310], suggested the ‘inverse of Bernoulli’s problem.’
The resulting method, sometimes referred to as inverse probability, was
further analyzed by P.S. Laplace, who also attached Bayes’s name to it.
In Bayesian approaches it is assumed that there is some true, or a priori
(prior), distribution of probabilities over objects. Then an object with
unknown probability p is drawn. Provided with a (nonempirical) prior
probability, together with empirical data and the probabilistic model of
these data, Bayes’s rule supplies a way to calculate a posterior or inferred
probability distribution. We then can give a numerical estimate for p,
for example, by choosing the maximum posterior probability.

The formal statement of Bayes’s rule was given in Section 1.6. The pro-
cedure is most easily explained by example. Suppose we have an urn
containing a large number of dice with the faces numbered 1 through
6. Each die has a (possibly different) unknown probability p of casting
6, which may be different from the é that it is for a true die. A die is
drawn from the urn and cast n times in total, producing the result 6 in
m of those casts. Let P(X = p) be the probability of drawing a die with
attribute p from the urn. This P(X = p) is the prior distribution. In von
Mises’s interpretation, if we repeatedly draw a die from the urn, with
replacement, then the relative frequency with which a die with given
value of p appears in these drawings has the limiting value P(X = p).
The probability of obtaining m outcomes 6 in n throws of a die with
attribute p is

PO =) = ()0

the number of ways to select m items from n items, multiplied by the
probability of m successes and (n—m) failures. Hence, the probability of
drawing a die with attribute p and subsequently throwing m outcomes
6 in n throws with it is the product P(X = p) P(Y = m|n, p).

For the case under discussion, Bayes’s problem consists in determining
the probability of m outcomes 6 in n casts being due to a die with a
certain given value of p. The answer is given by the posterior, or inferred,
probability distribution

- _ P(X =p)P(Y =m|n,p)
P(X =pln,m) = >, P(X = p)P(Y = mln,p)’

the sum taken over all values of attribute p. If we repeat this experiment
many times, then the limiting value of the probability of drawing a die
with attribute value p, given that we throw m 6’s out of n, is P(X =

pln,m).



Lemma 1.10.1

1.10. Prediction and Probability 61

FIGURE 1.2. Inferred probability for increasing n

The interesting feature of this approach is that it quantifies the intuition
that if the number of trials n is small, then the inferred distribution
P(X = p|n,m) depends heavily on the prior distribution P(X = p).
However, if n is large, then irrespective of the prior P(X = p), the
inferred probability P(X = p|n,m) condenses more and more around
m/n = p. To analyze this, we consider P(X = p|n,m) as a continuous
distribution with fixed n. Clearly, P(X = p|n,m) = 0 for m < 0 and
m > n. Let € > 0 be some constant.

Consider the area under the tails of P(Y = m|n,p) for m < (p — e)n
and m > (p + €)n (the area such that |p — m/n| > €). Whatever € we
choose, for each § > 0 we can find an ng such that this area is smaller
than ¢ for all n > ng. This can be shown in several ways. We show this
by appealing to a result that will be used several times later on.

The probability of m successes out of n independent trials with proba-
bility p of success is given by the binomial distribution

P(Y =mn,p) = <:L>pm(1 -p)" " (1.6)

The deviation € (where 0 < €) from the average number of successes np
in n experiments is analyzed by estimating the combined tail probability

P(lm = npl > epn) = 3 <:l>pm(1—p)"‘m

|m—np|>epn

of the binomial distribution, Figure 1.2. We give a variant of the classical
estimate and omit the proof.

(Chernoff bounds) Assume the notation above. For 0 < e <1,

P(lm —pn| > epn) < 2e—€Pn/3, (1.7)



62

1. Preliminaries

Example 1.10.1

Each tail separately can be bounded by half of the right-hand side.

This shows that for every € > 0 (and € < 1),

(p+e)n
lim P(X =p|n,m)dm = 1. (1.8)
e (p—e)n
Let us give a numerical example. Let p take values 0.1, 0.2, ..., 0.9 with
equal probability P(X =0.1)=P(X =02)=---=P(X =0.9) = é.

Let n = 5 and m = 3. Then the inferred probabilities are P(X =
p|5,3) = 0.005 for p = 0.1, 0.031 for p = 0.2, up to 0.21 for p = 0.6, and
down again to 0.005 for p = 0.9, the combined probabilities summing up
to 1. If we pick a die and do no experiments, then the probability that it
is from any particular category is é ~ 0.11. If, however, we know already
that it has had three throws of 6 out of five throws, then the probability
that it belongs to category p = 0.1 becomes smaller than 0.11, namely,
0.005, and the probability that it belongs to category p = 0.6 increases
to 0.21. In fact, the inferred probability that 0.5 < p < 0.7 is 0.59, while
the inferred probability for the other six p values is only 0.41.

Consider the same prior distribution P(X = p) but set n = 500 and
m = 300. Then, the inferred probability for p = 0.6 becomes P(X =
0.6]500, 300) = 0.99995. This means that it is now almost certain that a
die that throws 60 percent 6’s has p = 0.6.

We have seen that the probability of inference depends on (a) the prior
probability P(X = p) and (b) the observed results from which the infer-
ence is drawn. We have varied (b), but what happens if we start from a
different P(X = p)? Let the new prior distribution P(Y = p) be P(Y =
0.i) =1i/45,i=1,...,9. Then the corresponding inferred probability for
n=>5and m=31is P(Y =0.1/5,3) = 0.001, P(Y = 0.2|5,3) = 0.011,
up to P(Y = 0.6|5,3) = 0.21, and finally P(Y = 0.9/5,3) = 0.07. For
this small sequence, these values are markedly different from the pre-
vious X values, although the highest values are still around p = 0.6.
But if we now increase the number of observations to n = 500 with the
same relative frequency of success m = 300, then the resulting Y values
correspond to the X values but for negligible differences. &

Equation 1.8 shows that as the number of trials increases indefinitely,
the limiting value of the observed relative frequency of success in the
trials approaches the true probability of success, with probability one.
This holds no matter what prior distribution the die was selected from.
In case the initial probabilities of the events are unknown, Bayes’s rule
is a correct tool to make inferences about the probability of events from
frequencies based on many observations. For small sequences of observa-
tions, however, we need to know the initial probability to make justified
inferences.



Exercises

Exercises 63

Solomonoff addresses precisely this issue. Suppose we are faced with a
problem we have to solve in which there has been much experience.
Then either we know outright how to solve it, or we know the frequency
of success for different possible methods. However, if the problem has
never occurred before, or only a small number of times, and the prior
distribution is unknown, as it usually is, the inference method above
is undefined or of poor accuracy. To solve this quandary Solomonoff
proposes a universal prior probability. The idea is that this universal
prior probability serves in a well-defined sense as well as the true prior
probability, provided this true prior probability is computable in the
sense of Section 1.7.

Solomonoff argues that all inference problems can be cast in the form of
extrapolation from an ordered sequence of binary symbols. A principle
to enable us to extrapolate from an initial segment of a sequence to its
continuation will either require some hypothesis about the source of the
sequence or a definition of what we mean by extrapolation. T'wo popular
and useful metaphysical principles for extrapolation are those of sim-
plicity (Occam’s razor, commonly attributed to the fourteenth-century
scholastic philosopher William of Ockham, but emphasized about twenty
years before Ockham by John Duns Scotus), and indifference. The prin-
ciple of simplicity asserts that the simplest explanation is the most reli-
able. The principle of indifference asserts that in the absence of grounds
enabling us to choose between explanations we should treat them as
equally reliable. We do not supply any details here, because we shall
extensively return to this matter in Chapter 4 and Chapter 5.

1.10.1. [25] Let an experiment in which the outcomes are 0 or 1 with
fixed probability p for outcome 1 and 1 — p for outcome 0 be repeated
n times. Such an experiment consists of a sequence of Bernoulli trials
generated by a (p, 1 — p) Bernoulli process, see page 59.

Show that for each € > 0 the probability that the number S, of outcomes
1 in the first n trials of a single sequence of trials satisfies n(p — €) <
Sn < n(p+ €) goes to 1 as n goes to infinity.

Comments. This is J. Bernoulli’s law of large numbers [Ars Conjectandi,
Basel, 1713, Part IV, Ch. 5, p. 236], the so-called weak law of large
numbers. This law shows that with great likelihood in a series of n trials
the proportion of successful outcomes will approximate p as n grows
larger. The following interpretation of the weak law is false: “if Alice
and Buck toss a perfect coin n times, then we can expect Alice to be
in the lead roughly half of the time, regardless of who wins.” It can be
shown that if Buck wins, then it is likely that he has been in the lead for
practically the whole game. Thus, contrary to common belief, the time



64

1. Preliminaries

average of S, (1 < n < m) over an individual game of length m has
nothing to do with the so-called ensemble average of the different S,,’s
associated with all possible games (the ensemble consisting of 2™ games)
at a given moment n, which is the subject of the weak law. Source: W.
Feller, An Introduction to Probability Theory and Its Applications, Vol.
1, Wiley, 1968.

1.10.2. [30] In an infinite sequence of outcomes generated by a (p, 1—p)
Bernoulli process, let Ay, Ao, ... be an infinite sequence of events each of
which depends only on a finite number of trials in the sequence. Denote
the probability of Ay occurring by Py. (Ax may be the event that k
consecutive 1’s occur between the 2Fth trial and the 2¥*!th trial. Then
Py < (2p)*)

(a) Prove that if Y Py converges, then with probability one only finitely
many Ay occur.

(b) Prove that if the events Ay are mutually independent, and if > P
diverges, then with probability one infinitely many Aj occur.

Comments. These two assertions are known as the Borel-Cantelli Lem-
mas. Source: W. Feller, Ibid.

1.10.3. [M30] Prove the limit in Equation 1.8 associated with the con-
densation of the posterior probability.

Comments. This may be called the inverse weak law of large numbers,
since it shows that we can infer with great certainty the original prob-
ability (drawn from an unknown distribution) by performing a single
sequence of a large number of trials. Note that this is a different state-
ment from the weak law of large numbers.

1.10.4. [M37] Consider one-way infinite binary sequences generated by
a (p,1 — p) Bernoulli process. Let S,, be as in Exercise 1.10.1.

(a) Show that for every € > 0, we have probability one that |[pn—S,| < en
for all but finitely many n.

(b) Define the reduced number of successes S;; = (S, —pn)/+/np(1 — p).
Prove the much stronger statement than Item (a) that with probability
one, |S’| < v2alnn (where a > 1) holds for all but finitely many n.

Comments. Item (a) is a form of the strong law of large numbers due
to F.P. Cantelli (1917) and G. Pélya (1921). Note that this statement
is stronger than the weak law of large numbers. The latter says that
Sp/n is likely to be near p, but does not say that S, /n is bound to stay
near p as n increases. The weak law allows that for infinitely many n,
there is a k with n < k < 2n such that Si/k < p — e. In contrast, the
strong law asserts that with probability one, p — S, /n becomes small



1.11
Information
Theory and
Coding

1.11. Information Theory and Coding 65

and remains small. Item (b) is due to A.N. Kolmogorov [Math. Ann.,
101(1929), 126-135]. Source: W. Feller, Ibid.

1.10.5. [M42] Consider a sequence generated by a (p,1 — p) Bernoulli
process. Show that limsup,, .. S:/v2Inlnn = 1 with probability one.

Comments. For reasons of symmetry, liminf, . S;‘L/\/2 Inlnn = —1.
This remarkable statement, known as the law of the iterated logarithm
is due to A.L. Khintchin [Fundamenta Mathematicae 6(1924), 9-20] and
was generalized by A.N. Kolmogorov [Math. Ann., 101(1929), 126-135].
For an explanation of its profundity, implications, and applications see
also W. Feller, Ibid.

1.10.6. [M33] Consider a Bernoulli processes with unknown probabil-
ity p of a successful outcome. Assume that the prior probability of the
bias p is uniformly distributed over the real interval (0,1). Prove that
after m successful outcomes in n independent trials, the expectation of
a successful outcome in the (n + 1)th trial is given by (m + 1)/(n + 2).

Comments. The above reduces to binary Bernoulli processes (p,1 — p)
with probability p of ‘success’ and probability 1—p of ‘failure,’” that is, in-
dependent flips of a coin with unknown bias p. This is P.S. Laplace’s cele-
brated law of succession. Hint: The prior probability density P(X = p) is
uniform with [ P(X =p) =b—a (0 <a <b<1). The term Pr(Y =
mln,p) = (;:l)pm(l —p)™~ ™ is the probability of the event of m successes
in n trials with probability p of success. The probability of obtaining m
successes in n trials at all is Pr(Y = mn) = fpl:O ("M)p™(1 — p)"~™dp.
The requested expectation is the p-expectation of the posterior in Bayes’s
rule, that is, fplzop P(Y|n,p)dp/P(Y = m|n). The integrals are beta
functions; decompose these into gamma functions and use the relation
of the latter to factorials. Source: P.S. Laplace, A Philosophical Essay
on Probabilities, Dover, 1952. (Originally published in 1819. Translated
from the 6th French edition.)

It seldom happens that a detailed mathematical theory springs forth in
essentially final form from a single publication. Such was the case with
information theory, which properly began only with the appearance of
C.E. Shannon’s paper “The mathematical theory of communication”
[Bell System Technical J., 27(1948), 379-423, 623-656]. In this theory
we ignore the meaning of a message; we are interested only in the problem
of communicating a message between a sender and a receiver under the
assumption that the universe of possible messages is known to both the
sender and the receiver.



66

1. Preliminaries

Example 1.11.1

This notion of information is a measure of one’s freedom of choice when
one selects a message. Given the choice of transmitting a message con-
sisting of the contents of this entire book, and the message “let’s get
a beer,” the information concerned is precisely one bit. Obviously this
does not capture the information content of the individual object itself.
Kolmogorov’s intention for introducing algorithmic complexity is as a
measure of the information content of individual objects.

We develop the basic ideas in a purely combinatorial manner. This is
easier and more fundamental, suffices for our purpose, and does not need
extra probabilistic assumptions. The set of possible messages from which
the selection takes place is often called an ensemble. Information, accord-
ing to Shannon, is an ensemble notion. For our purpose it is sufficient
to consider only countable ensembles.

The entropy of a random variable X with outcomes in an ensemble S
is the quantity H(X) = logd(S). This is a measure of the uncertainty
in choice before we have selected a particular value for X, and of the
information produced from the set if we assign a specific value to X.
By choosing a particular message a from S, we remove the entropy from
X by the assignment X = a and produce or transmit information I =
log d(.S) by our selection of a. Since the information is usually measured
in the number of bits I’ needed to be transmitted from sender to receiver,
I' = [logd(9)].

The number of different binary strings @ with (@) = 2n + 1 is 2™. This
gives an information content in each such message of I = n, and encoding
in a purely binary system requires I’ = n bits. <&

Note that while a random variable X usually ranges over a finite set of
alternatives, say a,b,...,c, the derived theory is so general that it also
holds if we let X range over a set of sequences composed from these
alternatives, which may even be infinite.

If we have k independent random variables X;, each of which can take n;
values, respectively, for i = 1, 2,..., k, then the number of combinations
possible is n = ning ... ng, and the entropy is given by

H(X1,Xa,...,Xk) =logni +logns + - - - 4+ logny = logn. (1.9)

Let us look at the efficiency with which an individual message consist-
ing of a sequence x1xo...x) of symbols, each x; being a selection of a
random variable X drawn from the same ensemble of s alternatives, can
be transmitted. We use the derivation to motivate the formal definition
of the entropy of a random variable. The Morse code used in telegraphy
suggests the general idea. In, say, English, the frequency of use of the
letter e is 0.12, while the frequency of the letter w is only 0.02. Hence,



Definition 1.11.1

1.11. Information Theory and Coding 67

a considerable saving on average encoded message length can result by
encoding e by a shorter binary string than w.

Assume that the random variable X can take on the alternative val-
ues {x1,x2,...,2s} and that x; occurs k; times in the message z =
T1xs...xE, with k1 + ks + - -+ ks = k. Under these constraints there is
altogether an ensemble of

k _ k!
k17k27-~-7k3 N kl!kQ!"‘!ksl

possible messages of length k, one of which is . In the combinatorial
approach we define the entropy of an ensemble as the efficiency with
which any message from this ensemble can be transmitted. To determine
the actual message zixs ...z, we must at least give its ordinal in the
ensemble. To reconstruct the message it suffices to give first the ordinal
k and the ordinal (kq,ko,...,ks) of the ensemble in (s + 1)logk bits,
and then give the ordinal of the message in the ensemble. Therefore, we
can transmit the message in h(x) bits, with

k! k!
< h(z) < (s+1)logk +log
kilko!-

08 ) 1otk S

kgl

The frequency of each symbol z; is defined as p; = k;/k. Recall the
approximation klogk + O(k) for log(k!) from Stirling’s formula, Exer-
cise 1.5.4 on page 17. For fixed frequencies p1, ps,...,ps and large k we
obtain

h(z) ~ kZpilog ! ,
Y2

the sum taken in the obvious way. In information-theoretic terminology
it is customary to say that the messages are produced by a stochastic
source that emits symbols x; with given probabilities p;. With abuse of
terminology and notions, henceforth we use ‘probability’ for ‘frequency.’
(Under certain conditions on the stochastic nature of the source this
transition can be rigorously justified.)

Define the entropy of a random variable X with the given probabilities
P(X = ;) =p; by

H(X) = pilog ;, (1.10)

and therefore

h(z) ~ kH(X). (1.11)



68

1. Preliminaries

Example 1.11.2

Example 1.11.3

Is there a coding method that actually achieves the economy in average
message length implied by Equation 1.117 Clearly, we have to encode
symbols with high probabilities as short binary strings and symbols with
low probabilities as long binary strings.

We explain the Shannon-Fano code. Suppose we want to map messages
over a fixed alphabet to binary strings. Let there be n symbols (also
called basic messages or source words). Order these symbols accord-
ing to decreasing probability, say N = {1,2,...,n} with probabilities
D1,P2, ... Pn. Let P, = Z;:llpu for r = 1,...,n. The binary code
E : N — {0,1}* is obtained by coding r as a binary number E(r), ob-
tained by truncating the binary expansion of P, at length [(E(r)) such
that

1 1

log = <I(E(r)) <1+log

DPr DPr
This code is the Shannon—Fano code. It has the property that highly
probable symbols are mapped to short code words and symbols with
low probability are mapped to longer code words. Moreover,

9-UEM) < p < 9= UE@)+,

Note that the code for the symbol 7 differs from all codes of symbols r+1
through n in one or more bit positions, since for all ¢ with r+1 <14 < n,

P, > P, 427 U(E),

Therefore the binary expansions of P, and P; differ in the first I(F(r))
positions. This means that F is one-to-one, and it has an inverse: the
decoding mapping F~!. Even better, since no value of F is a prefix of
any other value of F, the set of code words is a prefix-code. This means
we can recover the source message from the code message by scanning
it from left to right without look-ahead.

If H; is the average number of bits used per symbol of an original mes-
sage, then Hy = > p,l(E(r)). Combining this with the previous in-
equality, we obtain

z:prlogp1 < H <ZpT (l—s—log;) :1+Zprlogpl.

r

From this it follows that H; ~ H(X) for large n, with H(X) the entropy
per symbol of the source. &

How much information can a random variable X convey about a random
variable Y7 Taking again a purely combinatorial approach, this notion



1.11. Information Theory and Coding 69

is captured as follows: If X ranges over Sx and Y ranges over Sy, then
we look at the set U of possible events (X = z,Y = y) consisting
of joint occurrences of event X = x and event Y = y. If U does not
equal the Cartesian product Sx x Sy, then this means that there is
some dependency between X and Y. Considering the set U, = {(z,y) :
(z,y) € U} for x € Sy, it is natural to define the conditional entropy of
Y given X =z as H(Y|X = z) = logd(U,). This suggests immediately
that the information given by X = x about Y is

I(X=2:Y)=H(Y)-HY|X =x).

For example, if U = {(1,1),(1,2),(2,3)}, so that U C Sx x Sy with
Sx = {1,2} and Sy = {1,2,3,4}, then [(X =1:Y) =1 and I(X =2:
Y)=2.

In this formulation it is obvious that H(X|X = z) = 0, and that I(X =
x : X) = H(X). This approach amounts to the assumption of uniform
distribution of the probabilities concerned. &

We can develop the generalization of Example 1.11.3, taking into account
the frequencies or probabilities of the occurrences of the different values
X and Y can assume. Let the joint probability p(z,y) be defined as the
probability of the joint occurrence of event X = x and event Y = y. The
marginal probabilities p1(x) and pa(y) are defined by p1(z) = Zy p(z,y)
and pa2(y) = >, p(x,y) and are the probability of the occurrence of the
event X = z and the probability of the occurrence of the event Y = y,
respectively. This leads to the following self-evident formulas for joint
variables X, Y

H(X,Y) =S p(z,y) log p(; e
HX) =Y p)los
HY) = paly) log p;y),

where summation over x is taken over all outcomes of the random vari-
able X and summation over y is taken over all outcomes of the random
variable Y. In all of these equations the entropy quantity on the left-hand
side achieves the maximum for equal probabilities on the right-hand side.
One can show that

H(X,Y) < H(X)+ H(Y), (1.12)

with equality only in the case that X and Y are independent.



70

1. Preliminaries

The conditional probability p(y|z) of outcome Y = y given outcome
X = z for random variables X and Y (not necessarily independent) is
defined by

p(z,y)

plyle) = >, p(@,y)’

Section 1.6.2. This leads to the following analysis of the information in
X about Y by first considering the conditional entropy of Y given X as
the average of the entropy for Y for each value of X weighted by the
probability of getting that particular value:

H(Y|X) = Zpl H(Y|X = z)
1
= gpl(x)zp(ylx) log 12}
= Zp x,y) log L

plylz)”

The quantity on the left-hand side tells us how uncertain we are about
the outcome of Y when we know an outcome of X. With

Zpl log 1 )

1
= Zm: (Zy:p(%y)) 8 & (evy)
= Zp x,y) log Z 1(

,y)’
and substituting the formula for p(y|z), we obtain H(X) = H(X,Y) —
H(Y|X). Rewrite this expression as

H(X,Y) = H(X) + H(Y|X). (1.13)

This can be interpreted as “the uncertainty of the joint event (X,Y) is
the uncertainty of X plus the uncertainty of Y given X.” Combining
Equations 1.12, 1.13 gives H(Y) > H(Y|X), which can be taken to
imply that knowledge of X can never increase uncertainty of Y. In fact,
uncertainty in Y will be decreased unless X and Y are independent.
Finally, the information in the outcome X = z about Y is defined as

I(X=2:Y)=HY)-HY|X =a). (1.14)

Here the quantities H(Y) and H(Y|X = z) on the right-hand side of
the equation are always equal to or less than the corresponding quan-
tities under the uniform distribution we analyzed first. The values of



Example 1.11.4

Example 1.11.5

1.11. Information Theory and Coding 71

the quantities J(X = z : Y) under the assumption of uniform distribu-
tion of ¥ and Y|X = x versus any other distribution are not related
by inequality in a particular direction. The equalities H(X|X =) =0
and I(X =z : X) = H(X) hold under any distribution of the variables.
Since I(X =z :Y) is a function of outcomes of X, while I(Y =y : X) is
a function of outcomes of Y, we do not compare them directly. However,
forming the expectation defined as

EIX =z:Y)) =Y p@)I(X=2:Y),
E(IY =y: X)) =Y p)I(Y =y:X),

and combining Equations 1.13 and 1.14, we see that the resulting quan-
tities are equal. Denoting this quantity by I(X;Y") and calling it the
mutual information in X and Y, we see that this information is sym-
metric:

IX;Y)=E(I(X=2:Y)=E(lI(Y =y:X)). (1.15)

The quantity I(X;Y) symmetrically characterizes to what extent ran-
dom variables X and Y are correlated. An inherent problem with prob-
abilistic definitions (which is avoided by the combinatorial approach) is
that although E(I(X = z :Y)) is always positive. But for some prob-
ability distributions, I(X = x : Y) can turn out to be negative—which
definitely contradicts our naive notion of information content.

Suppose we want to exchange the information about the outcome X = x
and it is known already that the outcome Y = y is the case, that is, x
has property y. Then we require (using the Shannon—Fano code, Exam-
ple 1.11.2 on page 68 and Lemma 4.3.3 on page 274) about log 1/P(X =
z|Y = y) bits to communicate z. On average, over the joint distri-
bution P(X = z,Y = y) we use H(X|Y) bits, which is optimal by
Shannon’s noiseless coding theorem. In fact, exploiting the mutual in-
formation paradigm, the expected information I(Y;X) that outcome
Y = y gives about outcome X = z is the same as the expected infor-
mation that X = x gives about Y = g, and is never negative. Yet there
may certainly exist individual y such that I(Y =y : X) is negative. For
example, we may have X = {0,1}, Y = {0,1}, P(X = 1Y =0) = 1,
P(X =1Y =1) = ], P(Y = 1) = e. Then I(Y;X) = H(e,1 —¢),
whereas I(Y =1: X) = H(e,1 —¢) + ¢ — 1. For small ¢, this quantity is
smaller than 0. <

(Information inequality) Writing Equation 1.15 out, we obtain

I(X;Y) = Z Zp(as, y) log pll()ix)z’szy) . (1.16)



72

1. Preliminaries

Example 1.11.6

Another way to express this is as follows: a well-known criterion for
the difference between a given distribution ¢;(x) and another distribu-
tion g2(z) we want to compare it with, is the so-called Kullback—Leibler
divergence

a1 ()
)log 1! 1.17
D(aq1 ] ¢2) th g @) ( )
It has the important property that

D(q1 || ¢2) =0, (1.18)

with equality only iff ¢1(z) = ¢a2(z) for all x. This is called the in-
formation inequality. Thus, the mutual information is the Kullback—
Leibler divergence between the joint distribution p(z,y) and the product
p1(x)p2(y) of the two marginal distributions. If this quantity is 0, then
p(z,y) = p1(z)p2(y) for every pair z,y, which is the same as saying that
X and Y are independent random variables. &

(Data processing inequality) Is it possible to increase the mutual
information between two random variables by processing the outcomes in
some deterministic manner? The answer is negative: For every function
T we have

I(X;Y) = I(X; T(Y)), (1.19)

that is, mutual information between two random variables cannot be
increased by processing their outcomes in any deterministic way. The
same holds in an appropriate sense for randomized processing of the
outcomes of the random variables. This fact is called the data-processing
inequality. The reason why it holds is that Equation 1.15 on page 71
is expressed in terms of joint probabilities and marginal probabilities.
Processing X or Y will not increase the value of the expression in the
right-hand side of the latter equation. If the processing of the arguments
just renames them in a one-to-one manner, then the expression keeps
the same value. If the processing eliminates or merges arguments, then
it is easy to check from the formula that the expression value does not
increase. <&

The development of this theory immediately gave rise to at least two dif-
ferent questions. The first observation is that the concept of information
as used in the theory of communication is a probabilistic notion, which
is natural for information transmission over communication channels.
Nonetheless, as we have seen from the discussion, we tend to identify
probabilities of messages with frequencies of messages in a sufficiently
long sequence, which under some conditions on the stochastic source



1.11.1
Prefix-Codes

1.11. Information Theory and Coding 73

can be rigorously justified. For instance, Morse code transmissions of
English telegrams over a communication channel can be validly treated
by probabilistic methods even if we (as is usual) use empirical frequencies
for probabilities. The great probabilist Kolmogorov remarks, “If some-
thing goes wrong here, the problem lies in the vagueness of our ideas
of the relation between mathematical probability theory and real ran-
dom events in general.” (See also the discussion about the foundations
of probability in Section 1.9.)

The second observation is more important and is exemplified in Shan-
non’s statement, “Messages have meaning | ... however .. .] the semantic
aspects of communication are irrelevant to the engineering problem.” In
other words, can we answer a question such as, “what is the informa-
tion in this book” by viewing it as an element of a set of possible books
with a probability distribution on it? Or that the individual sections in
this book form a random sequence with stochastic relations that damp
out rapidly over a distance of several pages? And how to measure the
quantity of hereditary information in biological organisms, as encoded
in DNA? Again there is the possibility of seeing a particular form of
animal as one of a set of possible forms with a probability distribution
on it. This seems to be contradicted by the fact that the calculation of
all possible life forms in existence at any one time on earth would give
a ridiculously low figure like 2100,

We are interested in a measure of information content of an individual
finite object, and in the information conveyed about an individual finite
object by another individual finite object. Here, we want the information
content of an object & to be an attribute of x alone, and not to depend
on, for instance, the means chosen to describe this information content.
Making the natural restriction that the description method should be
effective, the information content of an object should be recursively in-
variant (Section 1.7) among the different description systems. Pursuing
this thought leads straightforwardly to Kolmogorov complexity.

The main issues we treat here, apart from the basic definitions of prefix-
codes, are Kraft’s inequality, the noiseless coding theorem, and optimal
and universal codes for infinite source-word alphabets.

We repeat some definitions of Section 1.4. Let D be any function D :
V* — N, where V is a finite code-word alphabet. It is common to use
V = {0,1}. The domain of D is the set of code words and the range
of D is the set of source words. If D(y) = x, then y is a code word for
source word z, and D is the decoding function. The set of all code words
for source word z is the set D™1(z) = {y : D(y) = z} and E = D!
is the encoding relation (or encoding function if D~! happens to be a
function).



74

1. Preliminaries

Example 1.11.7

Example 1.11.8

We may identify the source words (natural numbers) with their corre-
sponding finite binary strings according to the enumeration in Equa-
tion 1.3. We often identify a code with its code-word alphabet (the do-
main of D).

We consider the natural extension of E to a relation B/ C N* x V*
defined by

1. E'(e) = ¢ and
2. if z and y are in NV, then E'(zy) = E(z)E(y).

We ignore the difference between F and E’ and denote both by E.

It is immediately clear that in general we cannot uniquely recover x and y
from E(xy). Let E be the identity mapping. Then we have E(00)E(00) =
0000 = E(0)E(000). <&

If we want to encode a sequence x1%5 ... %, with z; € N (t=1,2,..)
then we call x122...x, the source sequence and y1ys ...y, with y;, =
E(x;) (i =1,2,...) the code sequence. A code is uniquely decodable if for
each source sequence of finite length, the code sequence corresponding to
that source sequence is different from the code sequence corresponding
to any other source sequence.

In coding theory, attention is often restricted to the case where the
source-word alphabet is finite, say the range of D equals {1,2,...,n}. If
there is a constant Iy such that I(y) = Iy for all code words y, then we
call D a fized-length code. It is easy to see that [y > logn. For instance,
in teletype transmissions the source has an alphabet of n = 32 letters,
consisting of the 26 letters in the Latin alphabet plus 6 special characters.
Hence, we need Iy = 5 binary digits per source letter. In electronic
computers we often use the fixed-length ASCII code with Iy = 8. <&

root

FIGURE 1.3. Binary tree for E(1) = 0, E(2) = 10, E(3) = 110,
E(4) =111



Definition 1.11.2

Example 1.11.9

1.11. Information Theory and Coding 75

When the set of source words is infinite, say N, we have to use variable-
length codes. If no code word is the prefix of another code word, then
each code sequence is uniquely decodable. This explains our interest in
so-called prefix-codes.

A code is a prefiz-code or instantaneous code if the set of code words is
prefix-free (no code word is a prefix of another code word; Section 1.4).

In order to decode a code sequence of a prefix-code, we simply start at
the beginning and decode one code word at a time. When we come to the
end of a code word, we know it is the end, since no code word is the prefix
of any other code word in a prefix-code. Every prefix-code is a uniquely
decodable code. For example, if E(1) = 0, E(2) = 10, E(3) = 110,
E(4) =111 as in Figure 1.3, then 1421 is encoded as 0111100, which can
be easily decoded from left to right in a unique way.

Not every uniquely decodable code satisfies the prefix condition. For ex-
ample, if E(1) = 0, E(2) = 01, E(3) = 011, E(4) = 0111, then every
code word is a prefix of every longer code word as in Figure 1.4. But
unique decoding is trivial, since the beginning of a new code word is
always indicated by a zero. Prefix-codes are distinguished from other
uniquely decodable codes by the property that the end of a code word
is always recognizable as such. This means that decoding can be accom-
plished without the delay of observing subsequent code words, which is
why prefix-codes are also called instantaneous codes.

A convenient graphical way to consider codes is by representing each
code word as a node of a directed binary tree. If a node has two outgo-
ing arcs, one of them is labeled with zero and the other with one. If a
node has one outgoing arc, it is labeled either by zero or by one. The
tree may be finite or infinite. There are also nodes without outgoing

0111

FIGURE 1.4. Binary tree for E(1) = 0, E(2) = 01, E(3) = 011,
E(4) =0111



76 1. Preliminaries

1.11.2
The Kraft
Inequality

Theorem 1.11.1

arcs. These are called external nodes, and the nodes with outgoing arcs
are called internal nodes. Each code word is represented by a node such
that the consecutive zeros and ones on the branch from the root to that
node form that code word. Clearly, for each code there is a tree with
a node representing each code word, and such that there is only one
node corresponding to each code word. We simplify each tree represen-
tation for a code such that it contains only nodes corresponding to code
words, together with the intermediate nodes on a branch between root
and code-word nodes. For F to be a prefix-code, it is a necessary and
sufficient condition that in the simplified tree representation the nodes
corresponding to code words be precisely the nodes without outgoing
arcs. <&

It requires little reflection to realize that prefix-codes waste potential
code words, since the internal nodes of the representation tree cannot be
used, and in fact, neither are the potential descendants of the external
nodes used. Hence, we can expect that the code-word length exceeds
the (binary) source-word length in prefix-codes. Quantification of this
intuition leads to a precise constraint on code-word lengths for codes
satisfying the prefix condition. This important relation is known as the
Kraft inequality and is due to L.G. Kraft.

Let ly,la, ... be a finite or infinite sequence of natural numbers. There is
a prefiz-code with this sequence as lengths of its binary code words iff

Z 27l < 1,
n

Proof. (ONLY IF) Recall the standard one-to-one correspondence be-
tween a finite binary string  and the interval ', = [0.z, 0.2 + 27/(®))
on the real line, Sections 1.4, 1.6, 2.5. Observe that the length of the
interval corresponding to z is 274*). A prefix-code corresponds to a set
of disjoint such intervals in [0, 1), which proves that the inequality holds
for prefix-codes.

(Ir) Suppose [y, 12, ... are given such that the inequality holds. We can
also assume that the sequence is nondecreasing. Choose disjoint adjacent
intervals I1, I, . .. of lengths 274,272 from the left end of the inter-
val [0,1). In this way, for each n > 1, the right end of I, is Y, 275,
Note that the right end of I, is the left end of I,,41. Since the sequence
of [;’s is nondecreasing, each interval I,, equals I';, for some binary string
x of length I(x) = l,,. Take the binary string x corresponding to I,, as
the nth code word. m|



Example 1.11.10

Example 1.11.11

1.11.3
Optimal Codes

Definition 1.11.3

1.11. Information Theory and Coding 7

Not every code of which the code-word lengths satisfy the inequality
is a prefix-code. For instance, the code words 0, 00, and 11 satisfy the
inequality, but 0 is a prefix of 00. O

There is good reason for our emphasis on prefix-codes. Namely, Theo-
rem 1.11.1 remains valid if we replace ‘prefix-code’ by ‘uniquely decod-
able code.” This follows directly from the observation (proof omitted)
that if a code has code-word lengths I, 1o, ... and it is uniquely decod-
able, then the Kraft inequality must be satisfied.

This important fact means that every uniquely decodable code can be
replaced by a prefix-code without changing the set of code-word lengths.
Hence, all propositions concerning code-word lengths apply to uniquely
decodable codes and to the subclass of prefix-codes. Accordingly, in look-
ing for uniquely decodable codes with minimal average code-word length
we can restrict ourselves to prefix-codes. O

A uniquely decodable code is complete if the addition of any new code
word to its code-word alphabet results in a nonuniquely decodable code.
It is easy to see that a code is complete iff equality holds in the associated
Kraft inequality. Does completeness imply optimality in any reasonable
sense? Given a source that produces source words from N according to
probability distribution P, it is possible to assign code words to source
words in such a way that any code word sequence is uniquely decodable,
and moreover the average code-word length is minimal.

Let D : {0,1}* — N be a prefix-code with one code word per source
word. Let P(z) be the probability of source word z, and let the length
of the code word for = be [,. We want to minimize the number of bits
we have to transmit. In order to do so, we must minimize the average
code-word length Lp p = Y, P(x)l,. We define the minimal average
code-word length as L = min{Lp p : D is a prefix-code}. A prefix-code
D such that Lp p = L is called an optimal prefiz-code with respect to
prior probability P of the source words.

The (minimal) average code length of an (optimal) code does not depend
on the details of the set of code words, but only on the set of code-word
lengths. It is just the expected code-word length with respect to the given
distribution. C.E. Shannon discovered that the minimal average code-
word length is about equal to the entropy of the source-word alphabet.
This is known as the noiseless coding theorem. The adjective ‘noiseless’
emphasizes that we ignore the possibility of errors.



78

1. Preliminaries

Theorem 1.11.2

Example 1.11.12

Let L and P be as above. If H(P) =" P(x)log1/P(z) is the entropy,
then

H(P)< L<H(P)+1.

Proof. First prove the upper bound L < H(P)+1. Let I, = [log1/P(z)]
for = 1,2,... . Therefore, 1 > > P(x) > Y. 27! By Kraft’s
inequality, Theorem 1.11.1, there exists a prefix-code with code-word
lengths l1,1s,... . Hence,

L<) P, <> P(x) <log P(lx) - 1) = H(P)+1,

which finishes the proof of the second inequality L < H(P) + 1.

We now prove the lower bound H(P) < L. Let L = ) P(x)l,. Since
>, P@)=1and ) (27! / 27!) =1, by concavity of the logarithm
function (see Equations 5.4 and 5.2.1 on page 353), we have

1y

> P(x) logP <ZP log 2 . (1.20)

Equation 1.20 implies

> P(x)log P(lx) <> P(a)l, + (Z P(:c)) log» 27k, (1.21)

Since ), P(z) =1, L =3 P(x)l,, and H(P) =) , P(x)logl/P(z),
Equation 1.21 can be rewritten as

H(P) < L+logy 27", (1.22)

Since D is a prefix-code, it follows from Kraft’s inequality, Theorem 1.11.1,
that > 2=l < 1. Thus, log > 27> < 0. Hence by Equation 1.22,
H(P)<L. m|

We can now settle in the negative the question whether complete code-
word alphabets are necessarily optimal for all prior distributions. Let F
be a prefix-code with source alphabet {0,...,k + 1} defined by E(z) =
12710 for x = 1,2,...,k and E(k + 1) = 1*. Then E is obviously com-
plete. It has an average code-word length Lg p = > P(x)r with re-
spect to the probability distribution P. If P(z) =2 % forz =1,2,...k
and P(k + 1) = 27 then Lgp = Y., P(z)log1/P(z), so that the
expected code-word length is exactly equal to the entropy and hence
to the minimal code-word length L by the noiseless coding theorem,
Theorem 1.11.2. But for the uniform distribution P(z) = 1/(k + 1) for
r=1,2,...,k+1 we find that Lg p > L, so that the code is not optimal
with respect to this distribution. &



Example 1.11.13

Definition 1.11.4

1.11.4
Universal Codes

Example 1.11.14

1.11. Information Theory and Coding 79

It is obviously important to find optimal prefix-codes. We have seen that
completeness has not much to do with it. For optimality of finite codes
we must choose code-word lengths corresponding to the probabilities of
the encoded source words. This idea is implemented in the Shannon—
Fano code, Example 1.11.2 on page 68 and Lemma 4.3.3 on page 274.

Another issue is the effectiveness of the decoding process. The decoder
needs to match the code-word patterns to the code-word sequence in
order to retrieve the source word sequence. For a finite code-word al-
phabet, the code can be stored in a finite table. For infinite code-word
alphabets we must recognize the code words.

A prefix-code is called self-delimiting if there is a Turing machine that
decides whether a given word is a code word, never reading beyond the
word itself, and moreover, computes the decoding function. (With re-
spect to the Turing machine, each code word has an implicit end marker.)

As an example, let us define the minimal description length for elements
in N with respect to the class of Turing machines 7. Fix a self-delimiting
code E : T — N. Denote the code word for Turing machine T' by
E(T). Then the minimum description length of z € N with respect to
E is defined as min{{(E(T")y) : T on input y halts with output z}. This
minimum description length of x is actually an alternative definition of
the Kolmogorov complexity C(x). &

For finite codes, the optimality is governed by how closely the set of
code-word lengths corresponds to the probability distribution on the set
of source words. In the proof of the noiseless coding theorem, Theo-
rem 1.11.2, we chose a code that corresponds to the probability distri-
bution of the source words. But the actual probability distribution may
be unknown, nonrecursive, or it may be unclear how to determine the
characteristics of the source. For example, consider the encoding of the
printed English language, which emanates from many different sources
with (it is to be assumed) different characteristics. Can we find a code
that is optimal for any probability distribution, rather than for a par-
ticular one?

How does one transmit any sufficiently long source-word sequence in an
optimal-length code-word sequence without knowing the characteristics
of the source, and in particular, without knowing in advance the relative
frequencies of source words for the entire sequence? The solution is as
follows:

Split the source-word sequence x = 125 ...z, of length n into m < n
blocks b1bs . ..b,,. Then we encode each b; by, for instance, first giving



80

1. Preliminaries

Definition 1.11.5

the numbers of occurrences of the source words in b; and second the
index of b; in the lexicographically ordered ensemble of source words
determined by these numbers. For instance, let b; have length n;, and
let there be ¢ source words whose numbers of occurrences of the different
source words in b; are, respectively, ki, ko, ..., kg, Zj k; = n;. Encode
b; by the frequency vector (ki, ko, ..., kq), together with the index h of
b; in the ensemble of all possible sequences of length n; in which the
source words occur with these frequencies,

Uz
h < .
- <k‘17]{72,...7k’q)

The encoding of b; in standard decodable format with all items except
the last one self-delimiting as, say, k1 ... kqh, takes at most

TG:
O(qlogn;) + log Falhs! k)
bits. Defining the frequency of each source word a; in block b; as p; =
k;/n;, we find that the length of this encoding of b; for large n; and
fixed p;’s approaches n;(3_; p;log1/p;). By the noiseless coding theo-
rem, Theorem 1.11.2, the minimal average code-word length for a source-

word sequence b; produced by a stochastic source that emits source word
a; with probability P()(a;) = p; is given by Y~ p;log1/p; = H(P®).

That is, we can separately encode each block b; asymptotically optimally,
without knowing anything about the overall relative frequencies. As a
result, the overall message x is encoded asymptotically in length

niH(PW) +noH(PP) + - 4 ny, HPM™).

It turns out that this implies that x is optimally encoded as well, since
calculation shows that

nH(P) > niH(PW) + noH(PP) + ... 4+ n, HP™),

with H(P) the entropy based on the overall source-word sequence = and
H(P®) the entropy of the individual blocks b;. <&

Suppose we use variable-length binary blocks b; as in Example 1.11.14 as
code words for a countably infinite set of source words such as A/. Then
a universal code is a code that optimizes the average code-word length,
independent of the distribution of the source words, in the following
sense:

Let C' = {w1,ws,...} € {0,1}* be an infinite alphabet of uniquely de-
codable code words, and let N be a set of source words with probability



Example 1.11.15

Example 1.11.16

1.11. Information Theory and Coding 81

distribution P that assigns positive probability to each source word. Let
code C assign code word w,, to source word & € /. Then C is universal
if there is a constant ¢, independent of P, such that

3, Pal(w) _
max{H(P),1} = 7

for all P with 0 < H(P) < oco. A universal code C' is asymptotically
optimal if there is an f such that

>, Pi(w,) _
max{H(P),1} —

fH(P)) <c,

For a nonempty finite binary string * = x125...2, we defined T =
1"0z122 ... x,. For example, 01011 is coded as 11111001011. Let C be
defined as the set of binary strings resulting from this construction:
C = {z : x € {0,1}*}. The proof that this is a universal set of code
words, but not an asymptotically optimal one, is omitted.

However, a relatively minor improvement yields an asymptotically op-
timal code-word alphabet. This time we encode x not by z, but by
E(z) = l(x)z, that is, by encoding first the length of = in prefix-free
form, followed by the literal representation of x. For example, 01011 is
now coded as 1101001011, encoding {(z) as 10 according to Equation 1.3.
Code F is prefix-free, since if we know the length of = as well as the start
of its literal representation, then we also know where it ends. The length
set of this code is given by [(E(x)) = l(z) + 2I(l(z)) 4+ 1 for x € N. The
proof that this code is asymptotically optimal universal is omitted. <

This shows that there are asymptotically optimal prefix-codes. We now
inquire how far we can push the idea involved.

It is straightforward to improve on Example 1.11.15 by iterating the
same idea, as in Equation 1.4 on page 13. That is, we precede = by
its length I(z), and in turn precede [(x) by its own length (I(z)), and
so on. That is, the prefix-code E;, for all finite strings z, is defined by
E;(z) = E;—1(I(x))x and F(z) = Z . For example, with ¢ = 3, the string
01011 is coded as 1011001011, using the correspondence of Formula 1.3.
This is a kind of ladder code, where the value of 7 is supposed to be fixed
and known to coder and decoder. The length of F;(x) is given by

20(x) + 1 if i =1,
1(Ei(z)) ={ I(z) + U(Ei_y (I(x))) ifi> 1.

For each fixed ¢ > 1 the prefix-code E; is self-delimiting, universal, and
asymptotically optimal. O



82 1. Preliminaries

1.11.5
Statistics

Can we improve this? Define I*(z) = I(I*~*(z)), the k-fold iteration of taking
the length, and I'(z) = I(x). Define a coding

E*(x) = I*(2)0l* *(2)0...0z1,

with k the number of steps necessary to get I*(z) = 1. For instance, the string
01011 is coded as 10100010111, using the correspondence of Equation 1.3.
Again, this code is self-delimiting, universal, and asymptotically optimal. The
code-word length is given by

k

B (2) =1+ (') +1).

i=1

This is within an O(k) additive term of {*(x), defined as
1" (z) = log z + log log z + log loglog = + - - -, (1.23)

where the sum involves only the positive terms. The number of terms is de-
noted by log™ z. It can be proved that Zx 271"(®) = ¢ is finite, with ¢ =
2.865064 ... . If we put I = I*(z) + log ¢, then the Kraft inequality is satisfied
with equality.

However, a lower bound on the code length is set by £*(z), defined as

sy J @)+ e@) i i) > 1,
= { U(z) if {(z) = 0,1. (1.24)
It can be shown that
I"(z) — £*(z) < log" x, (125)

Z 27 @) = o 2271*@) < 3.
x x

Hence, although ¢ is fairly close to [*, by the divergence of the ¢* series in
Equation 1.25 it follows by the Kraft inequality, Theorem 1.11.1, that there is
no prefix-code with length set {£*(z):x € N'}.

Statistics deals with gathering data, ordering and representing data, and
using the data to determine the process that causes the data. That this
viewpoint is a little too simplistic is immediately clear: suppose that
the true cause of a sequence of outcomes of coin flips is a fair coin,
where both sides come up with equal probability. It is possible that the
sequence consists of ‘heads’ only. Suppose that our statistical inference
method succeeds in identifying the true cause (fair coin flips) from these
data. Such a method is clearly at fault: from an all-heads sequence a
good inference should conclude that the cause is a coin with a heavy
bias toward ‘heads,’” irrespective of what the true cause is. That is, a
good inference method must assume that the data are typical for the
cause—we don’t aim at finding the true cause, but we aim at finding a



Definition 1.11.6

1.11. Information Theory and Coding 83

cause for which the data are as typical as possible. Such a cause is called
a model for the data. For some data it may not even make sense to ask for
a true cause. This suggests that truth is not our goal; but within given
constraints on the model class we try to find the model for which the
data are most typical in an appropriate sense, the model that best fits
the data. Considering the available model class as a magnifying glass,
finding the best-fitting model for the data corresponds to finding the
position of the magnifying glass that best brings the object into focus.

In introducing the notion of sufficiency in classical statistics, R.A. Fisher
(1890-1962) observed:

“The statistic chosen should summarize the whole of the relevant information
supplied by the sample. This may be called the Criterion of Sufficiency ...
In the case of the normal curve of distribution it is evident that the second
moment is a sufficient statistic for estimating the standard deviation.” [Fisher]

A ‘sufficient’ statistic of the data contains all information in the data
about the model class. Sufficiency is related to the concept of data re-
duction. Suppose that we have data consisting of n bits. If we can find a
sufficient statistic that takes values of O(logn) bits, then we can reduce
the original data to the sufficient statistic with no loss of information
about the model class.

This notion has a natural interpretation in terms of mutual informa-
tion, Equation 1.15 on page 71, so that we may just as well think of a
probabilistic sufficient statistic as a concept in information theory. Let
{Py : 0 € ©} be a family of distributions, with parameters 6 € O, of a
random variable X that takes values in a finite or countable set of data
X. Such a family is also called a model class. A statistic S is a function
S : X — S taking values in some set S. We also call S(x) a statistic of
data z € X. A statistic S is said to be ‘sufficient’ for the model class © if
all information about any 6 present in the observation x is also present
in the coarser-grained observation s. Formally, let pp(z) = Py(X = x),
and let pg(x|S(x) = s) denote the probability mass function of the con-
ditional distribution. Define

po(s)= > po(x),

z:S(x)=s

po(z]S(z) = 5) = { ge(ﬂf)/pe(s) i gg; ; %

A statistic S is sufficient if there exists a function g : X x § — R such
that

q(z,s) = po(z[S(z) = s), (1.26)

forevery 6 € ©, s € S, and ¢ € X.



84

1. Preliminaries

Example 1.11.17

Example 1.11.18

Lemma 1.11.1

Let X = {0,1}", let X = (X1,...,X,) be a sequence of n independently
and identically distributed random variables X;, each of which is a coin
flip with probability § of outcome 1 (success) and probability 1 — 8 of
outcome 0 (failure). The corresponding model class is {Py : 6 € (0,1) C
R}. Then, with outcome X =z (x = x1...2,),

po(x) =po(a1...20) = 95(1’)(1 _ 9)%5@)7

where S(z) = Y., x; is the number of 1’s in 2. This function S : X —
{0,...,n} is a sufficient statistic for the model class above. Namely,
choose an element Py from the model class, with parameter 6 € (0,1),
and an s € {0,...,n}. Then all 2’s with s ones and n — s zeros are
equally probable. The number of such x’s is (:) Therefore,

mlaisie) =5 = { /) Eo0 (127
for every 6 € (0,1). That is, the distribution pg(x|S(xz) = s) is inde-
pendent of the parameter 0. Equation 1.27 satisfies Equation 1.26, with
q(z, s) defined as the uniform probability of an x with exactly s ones.
Therefore, S(z) is a sufficient statistic relative to the model class in
question. <&

(Relation to mutual information) The definition of sufficient statis-
tic, Equation 1.26, can also be formulated in terms of mutual informa-
tion. Choose some prior distribution over ©, the parameter set for our
model class. We denote the probability mass function of this distribution
by pi1. In this way, we can define joint distributions

p(0,x) = p1(0)po (),
p(0,5(x)) = p1(0)po(S(x)),

and the mutual information items

o . p(0,x)
1(6; X) —;p(é), o8 S~ 0.2) . p(0,2)
. - e p(6,S(x))

This leads to an alternative formulation of the notion of sufficient statis-
tic of Definition 1.11.6 in terms of mutual information.

A statistic S is sufficient iff I1(©; X) = I(0; S(X)) under all prior dis-
tributions p1(6).



Example 1.11.19

1.11.6
Rate Distortion

Example 1.11.20

1.11. Information Theory and Coding 85

That is, a statistic is sufficient iff the mutual information between model
random variable and data random variable is invariant under coarse-
graining the data by taking the statistic. We defer the proof to Exer-
cise 1.11.15 on page 90. <&

(Minimal sufficient statistic) Continue Example 1.11.17 on page 84.
Consider a statistic 7' that counts the number of 1’s in x that are fol-
lowed by a 1. This statistic is not sufficient. But the combined statistic
V(z) = (S(x),T(x)), with S(x) counting the number of 1’s in = as in
Example 1.11.17, is sufficient, since it contains all information in x about
the model class concerned. Such a statistic is overly sufficient, as is the
data x itself, since it gives too much detail of x with respect to the model
class in question. Generally, we want to obtain a statistic that gives just
sufficient information, and anything less is insufficient. A statistic is a
minimal sufficient statistic with respect to an indexed model class {pg}
if it is a function of all other sufficient statistics: it contains no irrele-
vant information and maximally compresses the information in the data
about the model class. For the family of normal distributions, the sample
mean is a minimal sufficient statistic, but the sufficient statistic consist-
ing of the mean of the even samples in combination with the mean of
the odd samples is not minimal. Note that one cannot improve on suffi-
ciency: The data-processing inequality, Equation 1.19 on page 72, states
that

1(0;X) > 1(0; S(X)),

for every function S, and that for randomized functions S an appro-
priate related expression holds. That is, mutual information between
data random variable and model random variable cannot be increased
by processing the data sample in any way. &

Let = belong to a set X of source words. Suppose we want to communi-
cate source words using a code of at most r bits for each such word. (We
call r the rate.) If 2" is smaller than d(X’), then this is clearly impossible.
However, for every x we can try to use a representation y that in some
sense is close to x. Assume that the representations are chosen from a
set ), possibly different from X. Its elements are the destination words.
We are given a function from X x ) to the reals, called the distortion
measure. It measures the lack of fidelity, which we call distortion, of the
destination word y against the source word x.

For a given binary string x of length n and precision 6 € [0, ;] we may

look for a simple string y of length n such that the Hamming distance
between x and y does not exceed dn. Such questions are related to lossy



86 1. Preliminaries

Theorem 1.11.3

Exercises

compression, where we have a trade-off between the compressed length
and the distortion (a certain distance between the original object and
the lossily compressed object). <&

The classical rate-distortion theory was initiated by Shannon, and we
briefly recall his approach. A single-letter distortion measure is a func-
tion d that maps elements of X x ) to the reals. Define the distortion
between words x and y of the same length n over alphabets X and Y,
respectively, as

1 n
i=1

Let X be a random variable with values in X. Consider the random
variable X" with values in X™ that is the sequence Xi,...,X, of n
independent copies of X. We want to encode words of length n over X
by words over ) so that the number of all code words is small and the
expected distortion between outcomes of X™ and their codes is small.
The trade-off between the expected distortion and the number of code
words used is expressed by the rate-distortion function denoted by r™(4).
It maps every 6 € R to the minimal natural number r (we call r the
rate) having the following property: There is an encoding function E :
X" — Y™ with a range of cardinality at most 2" such that the expected
distortion between the outcomes of X and their corresponding codes is
at most 9.

In 1959 Shannon gave the following nonconstructive asymptotic charac-
terization of r"(d). Let Z be a random variable with values in ). Let
H(Z), H(Z|X) stand for the Shannon entropy and conditional Shannon
entropy, respectively. Let I(X; Z) = H(Z)— H(Z|X) denote the mutual
information in X and Z, and let Ed(X, Z) stand for the expected value
of d(X, Z). For areal ¢, let R(J) denote the minimal I(X; Z) subject to
Ed(X, Z) < 6. That such a minimum is attained for all § can be shown
by compactness arguments.

For every n and § we have r™(6) > nR(5). Conversely, for every d and
every positive €, we have r"(0 + €) < n(R(8) +¢€) for all large enough n.

1.11.1. [10] To use an extra symbol like 2 is costly when expressed in
bits. Show that the coding of strings consisting of k zeros and ones and
one 2 requires messages of about k + log k bits.

Comments. Hint: there are 2¥(k + 1) such strings.



Exercises 87

1.11.2. [13] Suppose we have a random variable X that can assume
values a, b, ¢, d with probabilities %, }L, é, and é, respectively, with no
dependency between the consecutive occurrences.

(a) Show that the entropy H(X) is  (bits per symbol).

(b) Show that the code E with E(a) = 0, E(b) = 10, E(c) = 110, and
E(d) = 111 achieves this limiting value.

1.11.3. [10] Let M be the set of possible source messages, and let
E : M — {0,1}* be a prefix-code.

(a) Let M be a set of messages using symbols in an alphabet A. Show
that if F is a prefix-code on A, then the homomorphism induced by E
is a prefix-code on M.

(b) Show that the Shannon—Fano code presented in the main text is a
prefix-code.

1.11.4. [26] Prove that the entropy function H has the following four
properties:

(a) For given n and >, p; = 1, the function H(p1,po, ..., pn) takes its
largest value for p;, = 1/n (i = 1,2,...,n). That is, the scheme with the
most uncertainty is the one with equally likely outcomes.

(b) H(X,Y) = H(X) 4+ H(Y|X). That is, the uncertainty in the prod-
uct of schemes x and y equals the uncertainty in scheme z plus the
uncertainty of y given that x occurs.

(¢c) H(p1,p2,---,pn) = H(p1,p2,--.,Pn,0). That is, adding the impos-
sible event or any number of impossible events to the scheme does not
change its entropy.

(d) H(p1,p2,--.,pn) = 0 iff one of the numbers pq,ps,...,p, is one
and all the others are zero. That is, if the result of the experiment
can be predicted beforehand with complete certainty, then there is no
uncertainty as to its outcome. In all other cases the entropy is positive.

Comments. Source: C.E. Shannon, Bell System Tech. J., 27(1948), 379
423, 623-656.

1.11.5. [32] Prove the following theorem. Let H(p1,pa,...,pn) be a
function defined for any integer n and for all values pi,p2,...,p, such
thatp; >0 (i =1,2,...,n), >, p; = 1. If for any n this function is con-
tinuous with respect to all its arguments, and if it has the properties in
Ttems (a), (b), and (c) of the previous exercise, then H(p1,pa,...,pn) =
AY i pilog1l/p;, where A is a positive constant.

Comments. This is called the entropy uniqueness theorem. It shows that
our choice of expression for the entropy for a finite probability scheme



88

1. Preliminaries

is the only one possible if we want to have certain general properties
that seem necessary in view of the intended meaning of the notion
of entropy as a measure of uncertainty or as amount of information.
Source: A.I. Khintchin, Mathematical Foundations of Information The-
ory, Dover, 1957.

1.11.6. [08] Define a code ¢ by E(1) = 00, E(2) = 01, E(3) = 10,
E(4) = 11, E(5) = 100.

(a) Show that the code sequence 00011011100 is uniquely decodable.

(b) Show that the code sequence 100100 can be decoded into two differ-
ent source sequences.

1.11.7. [09] (a) Define code E by E(x) = 01* for x = 1,2,... . Show
that E is uniquely decodable, but it is not a prefix-code.
(b) Define a code E by E(z) = 170 for x = 1,2,... . Show that this is

a prefix-code and (hence) uniquely decodable.

1.11.8. [19] Let K = {z : ¢.(z) < oo} be the diagonal halting set
(Section 1.7). Let k1, ko,... be the list of elements of K in increasing
order. Define code E by E(z) = 1%=0.

(a) Show that FE is a prefix-code and uniquely decodable.
(b) Show that E is not recursive.
(c) Show that the decoding function E~! is not recursive.

Comments. Hint: the set K is recursively enumerable but not recur-
sive. Codes with nonrecursive code-word alphabets are abundant, since
there are uncountably many codes (prefix-codes), while there can be
only countably many recursive code-word alphabets.

1.11.9. [22] Let a code have the set of code-word lengths Iy,1s,... .
Show that if the code is uniquely decodable, then the Kraft inequality,
Theorem 1.11.1, must be satisfied.

Comments. Thus, Theorem 1.11.1 holds for the wider class of uniquely
decodable codes. This is called the McMillan—Kraft Theorem. Source:
R.G. Gallager, Information Theory and Reliable Communication, Wiley,
1968. Attributed to B. McMillan.

1.11.10. [26] (a) Show that the set of code words {Z : € N'} is a uni-
versal code-word alphabet. Show that it is not asymptotically optimal.

(b) Show that the set of code words {i(z)z : x € N} is a universal
code-word alphabet. Show that it is also asymptotically optimal.

Comments. Source: P. Elias, IEEE Trans. Inform. Theory, IT-21(1975),
194-203.



Exercises 89

1.11.11. [37] The prefix-code E* of Example 1.11.16 is an asymptoti-
cally optimal universal code because F» is already one.

(a) Show that >, 271" = ¢ with ¢ = 2.865064... . Show that the
Kraft inequality, Theorem 1.11.1, is satisfied with equality for the length
set I, =1*(n) +loge,n=1,2,... .

(b) Let the code E* be defined by
Ef(z) = ki*(x)I* 1(z) ... x,

where the length function is iterated until the value [*(z) = 1. Show
that E* is prefix-free. Show that this representation of the integers is
even more compact than E*.

Comments. Source for Item (a): J. Rissanen, Ann. Statist., 11(1983),
416-431.

1.11.12. [29] The function log* n denotes the number of times we can
iterate taking the binary logarithm with a positive result, starting from
n. This function grows extremely slowly. It is related to the Ackermann
function of Exercise 1.7.18. In that notation it is a sort of inverse of

f(3,x,2).

(a) Let 1,15, ... be any infinite integer sequence that satisfies the Kraft
inequality, Theorem 1.11.1. Show that ,, > [*(n) — 2log" n for infinitely
many 1.

(b) Show that log™ n is unbounded and primitive recursive. In particular,
show that although log™ n grows very slowly, it does not grow more slowly
than any unbounded primitive recursive function.

Comments. Hint: use exercises in Section 1.7. Because log™ n grows very
slowly, we conclude that I*(n) is not far from the least asymptotic upper
bound on the code-word-length set for all probability sequences on the
positive integers. In this sense it plays a similar role for binary prefix-
codes as our one-to-one pairing of natural numbers and binary strings
in Equation 1.3 plays with respect to arbitrary binary codes. Source: J.
Rissanen, Ibid.

1.11.13. [M30] We consider convergence of the series ). 2~ f(kan)
for f(k,o;n) = logn + loglogn + -+ + alog® n, with log® the k-
fold iteration of the logarithmic function defined by log(l) n = logn and
log(k) n = log log(k_l) n for k > 1.

(a) Show that for each k > 2, the series above diverges if @ < 1 and that
the series converges if a > 1.

(b) Show that the series Y n~% diverges for & < 1 and converges for
a > 1. (This is the case k = 1.)



90 1. Preliminaries

1.12

State x
Symbol
Complexity

Comments. This gives an exact borderline between convergence and di-
vergence for the series in Kraft’s inequality, Theorem 1.11.1. Hint: use
Cauchy’s condensation test for convergence of series. Source: K. Knopp,
Infinite Sequences and Series, Dover, 1956. Attributed to N.H. Abel.

1.11.14. [22] We derive a lower bound on the minimal average code-
word length of prefix-codes. Consider the standard correspondence be-
tween binary strings and integers as in Equation 1.3. Define f(n) =
I(n) +1(l(n)) + - - - + 2. Show that >, 27/ = oco.

Comments. Hint: Let the number of terms in f(n), apart from the 2, be
h(n) =0 for n = 2 and 1 + h(h(n)) for n > 2 (this defines function h).
Define s; = 37, () 277" and $°°° . 27F(M) = 5 s, We show that

all s; are equal to 1, using induction on i. Clearly so = 27° = 1. Also

= 3 2 o 3 g

h(n)=i+1 h(l(n))=i

— Z Z 9—(m+f(m)) _ Z 2m2—(m+f(m)):5i_

h(m)=i l(n)=m h(m)=1
1.11.15. [32] Prove Lemma 1.11.1.

Comments. The notion of sufficient statistic is due to R.A. Fisher, Philos.
Trans. Royal Soc., London, Sec. A, 222(1922), 309-368. The mutual
information version is given in [T.M. Cover, J.A. Thomas, Elements
of Information Theory, Wiley, New York, 1991, pp. 36-38]. Hint: the
relationship in Lemma 1.11.1 between mutual information and sufficient
statistic is due to S. Kullback, Information Theory and Statistics, Wiley,
New York, 1959.

A fourth historical root of Kolmogorov complexity seems to be another
issue (other than information theory) raised by Shannon. In his paper
“A universal Turing machine with two internal states” [pp. 129-153 in:
Automata Studies, C.E. Shannon and J. McCarthy, eds., Princeton Univ.
Press, 1956] he showed that there is a simple way of changing each
Turing machine using m > 2 states to a Turing machine using only
two states and computing essentially the same function. This requires
expanding the number of tape symbols, since the state of the original
machine needs to be stored and updated on the tape of the corresponding
two-state machine. The main result of this exercise is the construction
of a two-state universal Turing machine. It turns out that a one-state
universal Turing machine does not exist. Trying to minimize the other
main resource, the number of tape symbols, is resolved even more simply:
two tape symbols suffice, namely, by the expedient of encoding the m
different tape symbols in binary strings of O(logm) length. The string



Exercises

Exercises 91

of all 0’s is reserved to encode the distinguished blank symbol B. It is
not very difficult, but tedious, now to adapt the finite control to make
the whole arrangement work. Again this is the minimum, since it is
impossible to construct a universal Turing machine with only one tape
symbol.

It turns out that in both cases (reducing the number of states to two, or
the number of tape symbols to two), the product of the number of states
and the number of tape symbols increases at most eightfold. This sug-
gests that this product is a relatively stable measure of the complexity
of description of algorithms in the syntax of our Turing machine formal-
ism. Following this idea, Shannon proposed the state—symbol product as
a measure of complexity of description of algorithms. In particular, we
can classify computable functions by the smallest state-symbol product
of Turing machines that compute it. Here we assume of course a fixed
formalism to express the Turing machines. It is a straightforward insight
that this product is closely related to the number of bits to syntactically
specify the Turing machine in the usual notation.

Gregory Chaitin, in papers appearing in 1966 and 1969, analyzed this question
in great detail. In his 1969 paper, observing that each Turing machine can be
coded as a program for a fixed-reference universal machine, he formulated as a
variant of Shannon’s approach the issue of the lengths of the shortest programs
of the reference Turing machine to calculate particular finite binary strings.

1.12.1. [12] It is usual to allow Turing machines with arbitrarily large
tape alphabets A (with the distinguished blank symbol B serving the
analogous role as before). Use the quadruple formalism for Turing ma-
chines as defined earlier. How many Turing machines with m states and
n tape symbols are there? (Count the blank tape symbol B as one of
the n tape symbols.)

1.12.2. [20] Define Turing machines in quadruple format with arbitrar-
ily large tape alphabets A, and state sets @, d(A), d(Q) < co. Show that
each such Turing machine with state set () and tape alphabet A can be
simulated by a Turing machine with tape alphabet A, d(A’) = 2, and
state set @’ such that d(A")d(Q’) < c¢d(A)d(Q), for some small constant
c. Determine ¢. Show that the analogous simulation with d(A’) = 1 is
impossible (d(Q’) = o).

Comments. See C.E. Shannon, pp. 129-153 in: Automata Studies, C.E.
Shannon and J. McCarthy, eds., Princeton University Press, 1956. This
is also the source for the next exercise.

1.12.3. [25] Show that each such Turing machine with state set @ and
tape alphabet A can be simulated by a Turing machine with state set Q’,
d(Q') = 2, and tape alphabet A’ such that d(A")d(Q’) < cd(A)d(Q), for



92 1. Preliminaries

1.13
History and
References

some small positive constant ¢. Determine c¢. Show that the analogous
simulation with d(Q’) =1 is impossible (implies d(A’) = o0).

1.12.4. [37] Give a universal Turing machine with d(A4)d(Q) < 35.

Comments. Such a construction was first found by M. Minsky [Ann.
Math., 74(1961), 437-455].

In notation concerning binary strings and so forth we follow A.K. Zvonkin
and L.A. Levin [Russ. Math. Surveys, 25:6(1970), 83—-124]. (According
to the Cyrillic alphabet of the original version of this important survey
of Kolmogorov complexity ‘Zvonkin’ precedes ‘Levin.” This author order
was maintained in the English translation.) The big-O notation is dis-
cussed in [D.E. Knuth, SIGACT News, 4:2(1976), 18-24; P.M.B. Vitdnyi
and L.G.L.T. Meertens, SIGACT News, 16:4(1985), 56-59; D.E. Knuth,
Fundamental Algorithms, Addison-Wesley, 1973].

The basics of combinatorics can be found in many textbooks, for instance
[D.E. Knuth, Fundamental Algorithms, Addison-Wesley, 1973; W. Feller,
An Introduction to Probability Theory and Its Applications, Wiley, 1968].
Turing machines were introduced by A.M. Turing in an important paper
[Proc. London Math. Soc., 42(1936), 230-265; Correction, Ibid.], where
also the quoted material can be found. Related notions were introduced
also in [E.L. Post, J. Symb. Logic, 1936]. The standard textbook ref-
erences for basic computability theory are [H. Rogers, Jr., Theory of
Recursive Functions and Effective Computability, McGraw-Hill, 1967; P.
Odifreddi, Classical Recursion Theory, North-Holland, 1989]. The notion
of semicomputable functions was, perhaps, first used in [A.K. Zvonkin
and L.A. Levin, Ibid.]. In the previous editions of the current book they
are called ‘(co-)enumerable functions.” Material on computable (recur-
sive) and semicomputable real numbers partly arises from this context.
For related work see [M.B. Pour-El and J.I. Richards, Computability in
Analysis and Physics, Springer-Verlag, 1989].

In Section 1.7.4, we introduced the basic terminology of computational
complexity theory that we will need in Chapter 7. For computational
complexity theory see [J. Hartmanis, Feasible computations and prov-
able complexity properties, STAM, 1978; J.L. Balcazar, J. Diaz, and J.
Gabarré, Structural Complexity, Springer-Verlag, 1988; and M.R. Garey
and D.S. Johnson, Computers and Intractability, Freeman, 1979).

A.N. Kolmogorov’s classic treatment of the set-theoretic axioms of the
calculus of probabilities is his slim book Grundbegriffe der Wahrschein-
lichkeitsrechnung, Springer-Verlag, 1933; English translation published
by Chelsea, New York, 1956. A standard textbook in probability theory



1.13. History and References 93

is [W. Feller, An Introduction to Probability Theory and Its Applications,
Wiley, 1968].

General statistical tests for (pseudo)randomness of sequences are ex-
tensively treated in [D.E. Knuth, Seminumerical Algorithms, Addison-
Wesley, 1981]. Statistical testing for randomness of the decimal repre-
sentations of 7, e, and v/2 specifically is found in [D.E. Knuth, Ibid.,
144-145; S.S. Skiena, Complex Systems, 1(1987), 361-366]. The quoted
remark of J. von Neumann (1903-1957) appears in [Various techniques
used in connection with random digits, Collected Works, Vol.V, Macmil-
lan, 1963]. R. von Mises’s foundation of probability theory based on fre-
quencies is set forth in [Mathemat. Zeitsch., 5(1919), 52-99; Correction,
Ibid., 6(1920); Probability, Statistics and Truth, Macmillan, 1939]. In the
1920 correction to this paper, von Mises writes, “In der Arbeit von Prof.
Helm aus Dresden in Bd 1 der Naturphilosophie 1902, 364— ‘Wahrschein-
lichkeitstheorie des Kollektivbegriffes’ dort wird auch die Umkehrung der
Wahrscheinlichkeitsdefinition, ndmlich ihre Zuriickfithrung auf Kollek-
tive statt auf Bereiches gleich moglicher Félle, in der Hauptsache bereits
vorgebildet.” (“In the paper of Prof. Helm from Dresden in volume 1
of Naturphilosophie, 1902, 364— ‘Wahrscheinlichkeitstheorie des Kollek-
tivbegriffes’ the key elements of the inverse definition of probability,
namely its foundation on collectives instead of its foundation on domains
of equally probable events, are also already exhibited.”) A critical com-
parison of different (foundational) theories of probabilities is [T.L. Fine,
Theories of Probability, Academic Press, 1973]. The formulation of the
apparent circularity in the frequency foundation of probability is from
[J.E. Littlewood, Littlewood’s Miscellany, Cambridge Univ. Press, 1986,
71-73]. The quotations of Kolmogorov, as well as the finitary version of
von Mises’s collectives, are from [Sankhya, Series A, 25(1963), 369-376].
The work in improving von Mises’s notion of admissible place selections
is due to A. Wald [Frgebnisse eines Mathematischen Kolloquiums, Vol.
8, 1937, 38-72], who proved existence of collectives under the restriction
of the number of admissible place-selection rules to countably infinite;
to A. Church [Bull. Amer. Math. Soc., 46(1940), 130-135], who further
restricted admissible place selections to computable functions; and to J.
Ville [Etude Critique de la Notion de Collectif, Gauthier-Villars, 1939],
who showed that the von Mises—Wald—Church definitions still fail to
satisfy randomness properties such as the law of the iterated logarithm.
Champernowne’s number was found by D.G. Champernowne [J. Lon-
don Math. Soc., 8(1933), 254-260]. The entire issue of randomness of
individual finite and infinite sequences is thoroughly reviewed by D.E.
Knuth [Ibid., 142-169; summary, history, and references: 164-166]. A
recent survey on the foundational issues of randomness was given by M.
van Lambalgen [J. Symb. Logic, 52(1987), 725-755; Random Sequences,
Ph.D. thesis, Universiteit van Amsterdam, 1987].



94

1. Preliminaries

Our treatment of Bayes’s rule follows R. von Mises [ Probability, Statistics
and Truth, Macmillan, 1939]. The idea of a universal a priori probability
is due to R.J. Solomonoff. The Chernoff bounds, Lemma 1.10.1, are due
to H. Chernoff [Ann. Math. Stat., 23(1952), 493-509]. The form we use is
from L.G. Valiant and D. Angluin [J. Comput. System Sci., 18:2(1979),
155-193], who in turn base it on [P. Erdés and J. Spencer, Probabilistic
Methods in Combinatorics, Academic Press, 1974, p. 18].

Information theory was introduced as an essentially complete new math-
ematical discipline in C.E. Shannon’s classic paper [Bell System Tech.
J., 27(1948), 379-423, 623-656]. Standard textbooks are [R.G. Gallager,
Information Theory and Reliable Communication, Wiley & Sons, 1968;
T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley
& Sons, New York, 1991]. Our discussion of information theory used
the original papers of Shannon. The Shannon—Fano code is due to C.E.
Shannon [Bell System Tech. J., 27(1948), 379-423, 623-656]. It is also
attributed to R.M. Fano. The discussion is nonstandard insofar as we fol-
lowed Kolmogorov’s idea that the combinatorial approach to information
theory should precede the probabilistic approach, in order to emphasize
the logical independence of the development of information theory from
probabilistic assumptions [Problems Inform. Transmission, 1(1965), 1-
7; Russian Math. Surveys, 38:4(1983), 29-40]. The latter papers mention
the following justification. In linguistic analysis it is natural to take such
a purely combinatorial approach to the notion of the entropy of a lan-
guage. This entropy is an estimate of the flexibility of a language, a
number that measures the diversity of possibilities for developing gram-
matically correct sentences from a given dictionary and grammar. Using
S.I. Ozhegov’s Russian dictionary, M. Ratner and N.D. Svetlova obtained
the estimate h = (log N)/n = 1.9+ 0.1 with N the number of Russian
texts of length n (number of letters including spaces). This turns out
to be much larger than the upper estimate for entropy of literary texts
that can be obtained by various methods of guessing continuations. Nat-
urally so, since literary texts must meet many requirements other than
grammatical correctness. For this discussion and further remarks about
change of entropy under translations, and the entropy cost of adhering
to a given meter and rhyme scheme, see A.N. Kolmogorov [Sankhya, Se-
ries A, 25(1963), 369-376]. For instance, Kolmogorov reports that classic
rhyming iambic tetrameter requires a freedom in handling verbal mate-
rial characterized by a residual entropy of ca. 0.4. “The broader problem
of measuring the information connected with creative human endeavor
is of the utmost significance.”

The general theory of coding and prefix-codes as in Section 1.11.1 is
treated in [R.G. Gallager, Information Theory and Reliable Communi-
cation, Wiley, 1968]. The ubiquitous Kraft inequality for prefix-codes,
Theorem 1.11.1, is due to L.G. Kraft [A Device for Quantizing, Group-



1.13. History and References 95

ing, and Coding Amplitude Modulated Pulses, M. Sc. thesis, Dept. Electr.
Eng., MIT, Cambridge, Mass., 1949]. C.E. Shannon’s noiseless cod-
ing theorem, Theorem 1.11.2, establishing the minimal average code-
word length is from [Bell System Tech. J., 27(1948), 379423, 623-656].
Universal codes for infinite sets and unknown probability distributions
were first proposed by Kolmogorov [Problems Inform. Transmission,
1:1(1965), 1-7]. For further developments such as universal coding we
used [P. Elias, IEEE Trans. Inform. Theory, IT-21(1975), 194-203; S.K.
Leung-Yan-Cheong and T.M. Cover IEEE Trans. Inform. Theory, 1T-
24(1978), 331-339; J. Rissanen, Ann. Stat., 11(1983), 416-431; Stochas-
tic Complexity in Statistical Inquiry, World Scientific, 1989].

The notion of sufficient statistic is due to R.A. Fisher, Philos. Trans.
Royal Soc., London, Sec. A, 222(1922), 309-368. The mutual informa-
tion version is given in [T.M. Cover, J.A. Thomas, Elements of Infor-
mation Theory, Wiley, New York, 1991, pp. 36-38]. The relationship in
Lemma 1.11.1 between mutual information and sufficient statistic is due
to S. Kullback, Information Theory and Statistics, Wiley, New York,
1959.

Rate-distortion theory was introduced by C.E. Shannon [Bell System
Tech. J., 27(1948), 379423, 623—656] and treated in detail in [IRE
National Convention Record, Part 4, 1959, 142-163]. A textbook is T.
Berger, Rate Distortion Theory: A Mathematical Basis for Data Com-
pression, Prentice-Hall, 1971.

The state-symbol complexity measure for Turing machines (and recur-
sive functions) was apparently first discussed by C.E. Shannon [Au-
tomata Studies, C.E. Shannon and J. McCarthy, eds., Princeton Univ.
Press, 1956, 129-153].

Kolmogorov complexity originated with the discovery of universal de-
scriptions, and a recursively invariant approach to the concepts of com-
plexity of description, randomness, and a priori probability. Historically,
it is firmly rooted in R. von Mises’s notion of random infinite sequences
as discussed above. The first work in this direction is possibly K. Goédel’s
On the length of proofs of 1936, in which he proves that adding axioms to
undecidable systems shortens the proofs of many theorems (thus using
length as a measure of the complexity of proofs). With the advent of elec-
tronic computers in the 1950s, a new emphasis on computer algorithms
and a maturing general recursive function theory, ideas tantamount to
Kolmogorov complexity, came to many people’s minds, because “when
the time is ripe for certain things, these things appear in different places
in the manner of violets coming to light in early spring” (Wolfgang Bolyai
to his son Johann in urging him to claim the invention of non-Euclidean
geometry without delay [Herbert Meschkowski, Noneuclidean Geometry,
Academic Press, New York, 1964, p. 33]). Thus, with Kolmogorov com-



96

1. Preliminaries

plexity one can associate three inventors, in chronological order: R.J.
Solomonoff, of Cambridge, Massachusetts, USA; A.N. Kolmogorov, of
Moscow, Russia; and G.J. Chaitin, of New York, USA.

Already in November 1960, R.J. Solomonoff published a Zator Com-
pany technical report [A preliminary report on a general theory of in-
ductive inference, Tech. Rept. ZTB-138, Zator Company, Cambridge,
Mass., November 1960] that presented the basic ideas of the theory of
algorithmic complexity as a means to overcome serious problems asso-
ciated with the application of Bayes’s rule in statistics. Ray Solomonoff
was born on July 25, 1926, in Cleveland, Ohio, in the United States. He
studied physics during about 1946-1950 at the University of Chicago (he
recalls the lectures of E. Fermi and R. Carnap) and obtained an M.Sc.
from that university. From about 1951-1956 he worked in the electronics
industry doing math and physics and designing analog computers, work-
ing half-time. His scientific autobiography is published as [J. Comput.
System Sci., 55(1997), 73-88|.

Solomonoft’s objective was to formulate a completely general theory
of inductive reasoning that would overcome shortcomings in Carnap’s
[Logical Foundations of Probability, Univ. Chicago Press, 1950]. Follow-
ing some more technical reports, in a long journal paper [Inform. Contr.,
7(1964), 1-22, 224-254], he introduced ‘Kolmogorov’ complexity as an
auxiliary concept to obtain a universal a priori probability and proved
the invariance theorem, Theorem 2.1.1. The mathematical setting of
these ideas is described in some detail in Section 1.10. Solomonoff’s
work has led to a novel approach in statistics [T.L. Fine, Ibid.], lead-
ing to applicable inference procedures such as the minimal description
length principle; see Chapter 5.

This makes Solomonoff the first inventor and raises the question whether
we ought to talk about ‘Solomonoff complexity.” However, the name ‘Kol-
mogorov complexity’ for shortest effective description length has become
well entrenched and commonly understood. Solomonoff was primarily in-
terested in universal a priori probability, while Kolmogorov later, inde-
pendently, discovered and investigated the associated complexity for its
own sake. We will associate Solomonoff’s name with the universal distri-
bution and Kolmogorov’s name with the descriptional complexity. It has
become customary to designate the entire area dealing with descriptional
complexity, algorithmic information, and algorithmic probability loosely
by the name ‘Kolmogorov complexity’ or ‘algorithmic information the-
ory.” (Associating Kolmogorov’s name with the area may be viewed as
an example in the sociology of science of the Matthew effect, first noted
in the Gospel according to Matthew, 25: 29-30, “For to every one who
has more will be given, and he will have in abundance; but from him who
has not, even what he has will be taken away.”) A comprehensive ac-



1.13. History and References 97

count of Solomonoft’s ideas and their genesis is presented in the history
and references section of Chapter 4 and in Chapter 5.

Solomonoff’s publications apparently received little attention until Kol-
mogorov started to refer to them from 1968 onward. These papers con-
tain in veiled form suggestions about randomness of finite strings, incom-
putability of Kolmogorov complexity, computability of approximations
to the Kolmogorov complexity, and resource-bounded Kolmogorov com-
plexity. M. Minsky referred to Solomonoft’s work [Proc. I.R.E., January
1961, 8-30; p. 43 in Proc. Symp. Appl. Math. XIV, Amer. Math. Soc.,
1962]. To our knowledge, these are the earliest documents outlining an
algorithmic theory of descriptions.

The great Russian mathematician Andrei N. Kolmogorov was born 25
April 1903 in Tambov, Russia, and died 20 October 1987 in Moscow.
Many biographical details can be found in the Soviet Union’s foremost
mathematics journal, Uspekhi Mat. Nauk, translated into English as Rus-
stan Math. Surveys [B.V. Gnedenko, 28:5(1973), 5-16, P.S. Aleksandrov,
38:4(1983), 5-7; N.N. Bogolyubov, B.V. Gnedenko, and S.L. Sobolev,
38:4(1983), 9-27; A.N. Kolmogorov, 41:6(1986), 225-246; and the entire
memorial issue 43:6(1988), especially 1-39 by V.M. Tikhomirov]. Three
volumes of Kolmogorov’s (mathematical) Selected Works have been pub-
lished by Nauka, Moscow (in Russian) in 1985 through 1987; they are
translated in English and published by Kluwer (volume 1) and Springer
(volumes 2 and 3). The writings on algorithmic complexity are collected
in volume 3 of the Selected Works. In the Western literature, see the
memorial issue [Annals of Probability, 17:3(1989)], especially the scien-
tific biography on pp. 866-944 by A.N. Shiryaev, and an evaluation of
Kolmogorov’s contributions to information theory and to algorithmic
complexity, on pp. 840-865 by T.M. Cover, P. Gacs, and R.M. Gray. See
also the obituary in [Bull. London Math. Soc., 22:1(1990), 31-100] and
[V.A. Uspensky, J. Symb. Logic, 57:2(1992), 385-412].

In 1933 A.N. Kolmogorov supplied probability theory with a powerful
mathematical foundation in his [Grundbegriffe der Wahrscheinlichkeits-
rechnung, Springer-Verlag, 1933]. Following a four-decade-long contro-
versy on von Mises’s conception of randomness, in which Kolmogorov
played little part, the content of which is set forth in some detail in
Section 1.9, Kolmogorov finally introduced complexity of description of
finite individual objects as a measure of individual information content
and randomness, and proved the invariance theorem, Theorem 2.1.1, in
his paper of spring 1965 [Problems Inform. Transmission, 1(1965), 1-7].
His objective was primarily, apart from resolving the question of random-
ness of objects, to revise information theory by an algorithmic approach
to the information content of individual objects, in contrast to the tradi-
tional way discussed in Section 1.11. According to A.N. Shiryaev, [Annals
of Probability, 17:3(1989), 921], Kolmogorov described the essence and



98

1. Preliminaries

background to the algorithmic approach in his report to the Probability
Section of the Moscow Mathematical Society on April 24, 1963:

“One often has to deal with very long sequences of symbols. Some of them,
for example, the sequences of symbols in a 5-digit logarithm table, permit a
simple logical definition and therefore might be obtained by the computations
(though clumsy at times) of a simple pattern. [...] Others seem not to admit
any sufficiently simple ‘legitimate’ way to construct them. It is supposed that
such is the case for a rather long segment in a table of random numbers. [...]
There arises the question of constructing a rigorous mathematical theory to
account for these differences in behavior.” [Kolmogorov]

Says Kolmogorov, “I came to similar conclusions [as Solomonoft], before
becoming aware of Solomonoft’s work, in 1963-1964” [IEEE Trans. In-
form. Theory, IT 14:5(1968), 662—664]. And again, “The basic discovery,
which I have accomplished independently from and simultaneously with
R. Solomonoff, lies in the fact that the theory of algorithms enables us to
eliminate this arbitrariness [of interpretive mechanisms for descriptions
leading to different lengths of shortest descriptions for the same object,
and hence to different ‘complexities’ with respect to different interpre-
tive mechanisms] by the determination of a ‘complexity’ which is almost
invariant (the replacement of one method by another leads only to the
supplement of the bounded term)” [A.N. Shiryaev, Ibid., 921]. In the case
of the other two inventors, the subject we are concerned with appears,
as it were, out of the blue. But Kolmogorov’s involvement strikes one as
the inevitable confluence of interests of this great scientist: his lifelong
fascination with the foundations of probability theory and randomness,
his immediate appreciation of information theory upon its formulation
by Shannon, and his vested interest in the theory of algorithms wit-
nessed by, for instance, A.N. Kolmogorov and V.A. Uspensky, Uspekhi
Mat. Nauk, 13:4(1958), 328 [in Russian; translated Amer. Math. Soc.
Transl. (2), 29(1963), 217-245]. The new ideas were vigorously investi-
gated by his associates. These included the Swedish mathematician P.
Martin-Lof, visiting Kolmogorov in Moscow during 1964-1965, who in-
vestigated the complexity oscillations of infinite sequences and proposed
a definition of infinite random sequences that is based on constructive
measure theory [Inform. Contr., 9(1966), 602-619; Z. Wahrsch. Verw.
Geb., 19(1971), 225-230]. There is a related development in set theory
and recursion theory, namely, the notion of ‘generic object’ in the context
of ‘forcing.’ For example, being a member of the arithmetic generic set
is analogous (but not precisely) to being a member of the intersection of
all arithmetic sets of measure 1. There is a notion, called ‘1-genericity,’
that in a restricted version calls for the intersection of all recursively
enumerable sets of measure 1. This is obviously related to the approach
of Martin-Lof. Forcing was introduced by P. Cohen in 1963 to show the



1.13. History and References 99

independence of the continuum hypothesis, and using sets of positive
measure as forcing conditions is due to R.M. Solovay soon afterward.

G.J. Chaitin had finished the Bronx High School of Science, and was
an eighteen-year-old undergraduate student at the City College of the
City University of New York, when he submitted two papers [J. ACM,
13(1966), 547-569; J. ACM, 16(1969), 145-159] for publication, in Oc-
tober and November 1965, respectively. In the 1966 paper he addresses
the ‘state x symbol’ complexity of algorithms following Shannon’s cod-
ing concepts, as described in Section 1.12, but does not introduce an
invariant notion of complexity. See also G.J. Chaitin’s abstracts [AMS
Notices, 13(1966), 133, 228-229] submitted October 19, 1965, and Jan-
uary 6, 1966, respectively. Continuing this work in the 1969 paper, in
the final part, Chaitin puts forward the notion of Kolmogorov complex-
ity, proves the invariance theorem, Theorem 2.1.1, and studies infinite
random sequences (in the sense of having maximally random finite ini-
tial segments) and their complexity oscillations. As Chaitin [Scientific
American, 232:5(1975), 47-52] formulates it, “this definition [of Kol-
mogorov complexity] was independently proposed about 1965 by A.N.
Kolmogorov and me. [...] Both Kolmogorov and I were then unaware of
related proposals made in 1960 by Ray Solomonoff.” A short autobiog-
raphy appears in [G.J. Chaitin, Information-Theoretic Incompleteness,
World Scientific, Singapore, 1992].



2

Algorithmic Complexity

The most natural approach to defining the quantity of information is
clearly to define it in relation to the individual object (be it Homer’s
Odyssey or a particular type of dodo) rather than in relation to a set
of objects from which the individual object may be selected. To do so,
one could define the quantity of information in an object in terms of
the number of bits required to losslesly describe it. A description of an
object is evidently useful in this sense only if we can reconstruct the full
object from this description.

We aim at something different from C.E. Shannon’s theory of commu-
nication, which deals with the specific technological problem of data
transmission, that is, with the information that needs to be transmitted
in order to select an object from a previously agreed-upon set of alter-
natives; Section 1.11. OQur task is to widen the limited set of alternatives
until it is universal. We aim at a notion of absolute information of indi-
vidual objects, that is, the information that by itself describes the object
completely.

Intuition tells us that some objects are complicated and some objects
are simple. For instance, a number like 2190 is certainly very simple (we
have just expressed it in a few bits); yet evidently there are numbers of
a thousand bits for which it is hard to see how we can find a descrip-
tion requiring many fewer than a thousand bits. Such hard-to-describe
numbers would be their own shortest descriptions.

We require both an agreed-upon universal description method and an
agreed-upon mechanism to produce the object from its alleged descrip-
tion. This would appear to make the information content of an object
depend on whether it is particularly favored by the description method

M. Li and P.M.B. Vitanyi, 4n Introduction to Kolmogorov Complexity and Its Applications, 101
DOI: 10.1007/978-0-387-49820-1 _2, © Springer Science + Business Media, LLC 2008



102

2. Algorithmic Complexity

we have selected. By ‘favor’ we mean to produce short descriptions in
terms of bits.

For instance, it is well known that certain programming languages fa-
vor symbolic computations, while other programming languages favor
arithmetic computations, even though all of them are universal. The
notion of information content of individual objects can be useful only
if the quantity of information is an attribute of the object alone and
is independent of the means of description. It is a priori by no means
obvious that this is possible. Relatively recent advances resulting in the
great ideas of computability theory from the 1930s onward have made it
possible to design a universal description method that appears to meet
our goals.

Denote the set of objects by S, and assume some standard enumeration
of objects & by natural numbers n(z). We are interested in the fact that
n(z) may not be the most economical way to specify z. To compare
methods of specification, we view such a method as a partial function
over the nonnegative integers defined by n = f(p). We do not yet as-
sume that f is recursive, but maintain full generality to show to what
extent such a theory can also be developed with noneffective notions,
and at which point effectiveness is required. With each natural number
p associate the length of the finite binary string identified with p as in
Equation 1.3. Denote this length by I(p).

For each object x in S, the complexity of object x with respect to the
specifying method f is defined as

Cy(x) = min{l(p) : f(p) = n(z)},

and Cf(z) = oo if there are no such p. In computer science terminology
we would say that p is a program and f a computer, so that Cf(x) is
the minimal length of a program for f (without additional input) to
compute output z.

Considering distinct methods fi, fa, ..., fr of specifying the objects of
S, it is easy to construct a new method f that assigns to each object =
in S a complexity Cy(z) that exceeds only by ¢ (less than about logr)
the minimum of Cy, (z), Cf,(x),...,Cy,.(z). The only thing we have to
do is to reserve the first logr bits of p to identify the method f; that
should be followed, using as a program the remaining bits of p.

We say that a method f minorizes a method g (additively) if there is a
constant ¢ such that for all z,

Cr(z) < Cy(x) +c.

Above we have shown how to construct a method f that minorizes each
of the methods fi1,..., f, with constant ¢ =~ logr. Two methods f and
g are called equivalent if each of them minorizes the other.



Definition 2.0.1

Example 2.0.1

2. Algorithmic Complexity 103

Consider the hierarchy of equivalence classes of methods with respect
to minorization. Kolmogorov has remarked that the idea of ‘description
length’ would be useless if the constructed hierarchy did not have cer-
tain niceness properties. In particular, we would like such a hierarchy
to have a unique minimal element: the equivalence class of description
methods that minorize all other description methods. Some sets of de-
scription methods do have a unique minimal element, while other sets
of description methods don’t.

Let C be a subclass of the partial functions over the nonnegative integers.
A function f is additively optimal (a special type of universality) for C
if it belongs to C and if for every function g € C there is a constant c¢ g4
such that Cy(z) < Cy(x) + cyq, for all z. (Here ¢y 4 depends on f and
g, but not on z.) Replacing « by (x,y), with (-) the standard recursive
bijective pairing function, yields the definition for a class of two-variable
functions.

Clearly, all additively optimal methods f,g of specifying objects in S
are equivalent in the following way:

Cp(@) = Cy(@)] < ¢4,

for all z, where ¢y, is a constant depending only on f and g. Thus,
from an asymptotic point of view, the complexity C(x) of an object x,
when we restrict ourselves to optimal methods of specification, does not
depend on accidental peculiarities of the chosen optimal method.

Consider the class of description methods consisting of all partial func-
tions over the nonnegative integers. Every additively optimal function
f for this class must be unbounded. Take an infinite sequence x1, z2, . ..
such that Cy(z;) > . Define the function g by g(i) = ;. Clearly,
Cy(z;) = logi + O(1) <« Cy(x;). Therefore, f cannot be additively
optimal. Thus, there is no additively optimal partial function, and the
hierarchy of complexities with respect to the partial functions does not
have any minimal element.

The development of the theory of Kolmogorov complexity is made pos-
sible by the remarkable fact that the class of partial recursive functions
(defined in Section 1.7) possesses a universal element that is additively
optimal. Under this relatively natural restriction on the class of descrip-
tion methods (that is, to partial recursive functions) we obtain a well-
behaved hierarchy of complexities. <&

We begin by worrying about notation. There are several variants of
Kolmogorov complexity, with notations that are not used consistently
among different authors or even by the same author at different times.



104 2. Algorithmic Complexity

2.1

The
Invariance
Theorem

Lemma 2.1.1

In the main text of this book we shall concentrate on two major variants
of Kolmogorov complexity. It seems educationally the right approach to
first study Kolmogorov complexity as originally defined by Solomonoff,
Kolmogorov, and Chaitin because it is intuitively clearer.

Some mathematical technicalities will naturally lead up to, and justify, the
less intuitive version of Kolmogorov complexity. The first type we call plain
Kolmogorov complexity, and the second type we call prefiz Kolmogorov com-
plexity. We use C' to denote the plain Kolmogorov complexity. We reserve K
for the prefix type. Fortunately, the majority of theorems we derive for plain
Kolmogorov complexity carry over unchanged and with the same proofs to
the prefix version. The difference is that the prefix version is tweaked to have
just the right quantitative properties for some desired uses and applications.

Identify an object x from a countably infinite sample space S with its
index n(z). Consider the class of description methods

{¢ : ¢ is a partial recursive function}.

Consider the particular problem of describing objects consisting of nat-
ural numbers in terms of programs consisting of finite strings of 0’s and
1’s. Just as in information theory, Section 1.11, where the entropy and
information of a message over an alphabet of any size are expressed in
the normalized format of bits, the restriction of the programs to a binary
alphabet does not imply any loss of generality. In both cases, changing
alphabet size leaves all statements invariant up to an appropriate loga-
rithmic multiplicative factor related to the alphabet sizes involved; see
Exercise 2.1.9.

The invariance theorem, Theorem 2.1.1 below, is the cornerstone for
the subsequent development of the theory. In fact, for many later ap-
plications it embodies the entire theoretical foundation. Recall Defini-
tion 2.0.1 of a function that is additively optimal (a special type of
universality) for a class of functions. We give the unconditional version
as a preliminary lemma.

There is an additively optimal universal partial recursive function.

Proof. Let ¢ be the function computed by a universal Turing machine
U. Machine U expects inputs of the format

(n,p)= 11...1 Onp.
~

I(n) times

The interpretation is that the total program (n,p) is a two-part code of
which the first part consists of a self-delimiting encoding of T}, and the



Definition 2.1.1

Theorem 2.1.1

2.1. The Invariance Theorem 105

second part is the literally rendered program p. In this way, U can first
parse the binary input into the T;,-part and the p-part, and subsequently
simulate the computation of T, started with program p as its input
(Section 1.7). That is, ¢o((n,p)) = ¢n(p). What happens if U gets the
program Op? By convention we can set U = Ty and therefore U(0p) =
U(p). Altogether, if T;, computes the partial recursive function ¢,,, then

Co () < Cp,,(x) + co,,
where ¢y, can be set to 2l(n) + 1. a

For many applications we require a generalization to a conditional ver-
sion, as follows. The difficulty of specifying an object can be facilitated
when another object is already specified. We define the complexity of
an object x, given an object y. Fix an effective enumeration of Turing
machines 77,75, ... as in Section 1.7. The Turing machines use a tape
alphabet {0, 1, B}, and the input to a Turing machine is a program con-
sisting of a contiguous string of 0’s and 1’s, delimited by blanks B on
both sides. In this way, a Turing machine can detect the end of its pro-
gram. The effective enumeration of Turing machines induces an effective
enumeration of partial recursive functions ¢1, ¢, ... such that T; com-
putes ¢; for all i. As above, (-) : N'x N'— N is a standard recursive
bijective pairing function mapping the pair (z,y) to the singleton (z, y).
We can iterate this as (z,y, z) = (z, (y, 2)).

Let z,y,p be natural numbers. Any partial recursive function ¢, to-
gether with p and y, such that ¢({y,p)) = x, is a description of x. The
complezity Cy of x conditional to y is defined by

Cy(xly) = min{l(p) : ¢((y,p)) = z},

and Cy(z|y) = oo if there are no such p. We call p a program to compute
z by ¢, given y.

There is an additively optimal universal partial recursive function ¢q for
the class of partial recursive functions to compute x given y. Therefore,
Coo (zly) < Cylxly) + g for all partial recursive functions ¢ and all x
and y, where cy is a constant depending on ¢ but not on x or y.

Proof. Let ¢y be the function computed by a universal Turing machine
U such that U started on input (y, (n,p)) simulates T, on input (y,p)
(Section 1.7). That is, if T}, computes the partial recursive function ¢,

then ¢0(<y7 <Tl,p>>) = ¢n(<y7p>) HGHCG, for all n,
Coo (zly) < T, (ly) + co,.,

where ¢y, = 2(n) + 1. a



106

2. Algorithmic Complexity

Definition 2.1.2

Example 2.1.1

The key point is not that the universal description method necessarily
gives the shortest description in each case, but that no other description
method can improve on it infinitely often by more than a fixed constant.
Note also that the optimal complexity Cy,(x|y) is defined for all z and
y. Namely, for each = and y we can find a Turing machine that computes
output z, given y, for some input p (such as the Turing machine that
outputs x for all inputs).

For every pair 1,1’ of additively optimal functions, there is a fixed
constant ¢y 4, depending only on ¢ and ¢’, such that for all z,y we
have

|Cy(zly) = Cyr(ly)] < cppr-

To see this, first substitute ¢g = ¥ and ¢ = ¢’ in Theorem 2.1.1, then
substitute ¢ = 1) and ¢g = ¢’ in Theorem 2.1.1, and combine the two
resulting inequalities. While the complexities according to ) and v’ are
not exactly equal, they are equal up to a fized constant for all z and y.

Fix an additively optimal universal ¢g and dispense with the subscript
by defining the conditional Kolmogorov complexity C(-|-) by

C(zly) = Cgo (ly)-

This particular ¢g is called the reference function for C'. We also fix a
particular Turing machine U that computes ¢g and call U the reference
machine. The unconditional Kolmogorov complexity C(-) is defined by

C(z) = C(xle).

Programmers are generally aware that programs for symbolic manip-
ulation tend to be shorter when they are expressed in the LISP pro-
gramming language than if they are expressed in FORTRAN, while for
numerical calculations the opposite is the case. Or is it? The invariance
theorem in fact shows that to express an algorithm succinctly in a pro-
gram, it does not matter which programming language we use (up to
a fixed additive constant that depends only on the two programming
languages).

To see this, as an example consider the lexicographic enumeration of
all syntactically correct LISP programs A1, Ag, ... and the lexicographic
enumeration of all syntactically correct FORTRAN programs w1, o, . .. .
With proper definitions we can view the programs in both enumerations
as computing partial recursive functions from their inputs to their out-
puts. Choosing reference machines in both enumerations, we can define
complexities Cprisp(x) and CrorTrAN (2) completely analogous to C(z).
All of these measures of the descriptional complexity of x coincide up



Example 2.1.2

2.1.1
Two-Part Codes

2.1. The Invariance Theorem 107

to a fixed additive constant. Let us show this directly for Crisp(x) and
CrorTRAN (2).

It is well known and also easy to see that each enumeration contains
a universal program; the LISP enumeration contains a LISP interpreter
program that interprets any LISP program. But there is also a LISP pro-
gram Ap that is a FORTRAN interpreter in the sense that it interprets
any FORTRAN program. Consequently, Crisp(z) < Crorrran(Z) +
I(Ap). Similarly, there is a FORTRAN program 7, that is a LISP in-
terpreter, which yields Crorrran (z) < Crisp(z)+ (7). Consequently,
|CLISP(17) — OFORTRAN(I” < l()\p) + l(ﬂ'L) for all x. &

In Theorem 2.1.1 we used a special type of universal partial recursive
function, called ‘additively optimal.” There are other universal partial
recursive functions that are not additively optimal and for which the
theorem does not hold. For example, let ¢ be the function computed by
a universal Turing machine Uy such that Uy started on input (y, (n, pp))
simulates T}, on input (y, p), and ¢ is not defined for inputs that are not
of the form (y, (n,pp)). (That is, if T, computes the partial recursive

function ¢, then ¢(<ya (n,pp>>) = ¢n(<y7p>)) Then, for all z,y,n, we
have Cy(zly) > 2C, (aly). o

It is a deep and useful fact that the shortest effective description of an
object z can be expressed in terms of a two-part code, the first part
describing an appropriate Turing machine and the second part describ-
ing the program that interpreted by the Turing machine reconstructs
. The essence of the invariance theorem is as follows: For the fixed
reference universal Turing machine U, the length of the shortest pro-
gram to compute z is min{l(p) : U(p) = =}. Looking back at the proof
of Lemma 2.1.1, we notice that U(0p) = U(p). From the definitions it
therefore follows that

C(2) = min{I(T) + I(p) : T(p) = 7} + O(1),

where [(T') is the length of a self-delimiting encoding for a Turing ma-
chine T'. This provides an alternative definition of Kolmogorov com-
plexity (similarly, for conditional Kolmogorov complexity). The above
expression for Kolmogorov complexity can be rewritten as

C(z) = min{l(T) + C(z|T) : T € {Tp, T1,...}} + O(1), (2.1)

which emphasizes the two-part-code nature of Kolmogorov complexity,
using the regular aspects of x to maximally compress. In the example

r =10101010101010101010101010



108 2. Algorithmic Complexity

2.1.2
Upper Bounds

Theorem 2.1.2

we can encode x by a small Turing machine that computes x from the
program 13. Intuitively, the Turing machine part of the code squeezes out
the regularities in x. What is left are irregularities, or random aspects,
of x relative to that Turing machine. The minimal-length two-part code
squeezes out regularity only insofar as the reduction in the length of
the description of random aspects is greater than the increase in the
regularity description.

The right model is a Turing machine T" among those that reach the
minimum description length

mjin{l(T) +C(x|T):Te{Ty,Th,...}}.

This T embodies the amount of useful information contained in . The
main remaining question is which such T to select among those that
satisfy the requirement. The problem is how to separate a shortest pro-
gram x* for x into parts z* = pq such that p represents an appropriate
T. This idea has spawned the ‘minimum description length’ principle in
statistics and inductive reasoning, Section 5.4; Kolmogorov’s structure
functions and algorithmic (minimal) sufficient statistic, Section 5.5; and
the notion of algorithmic entropy in Section 8.6.

Theorem 2.1.1 has a wider importance than just showing that the hier-
archy of Cy complexity measures contains an additively optimal one. It
is also our principal tool in finding upper bounds on C(x). Such upper
bounds depend on the choice of reference function, and hence are proved
only to within an additive constant.

Intuitively, the Kolmogorov complexity of a binary string cannot exceed
its own length, because the string is obviously a (literal) description of
itself.

There is a constant ¢ such that for all x and vy,

C(z) <l(z) 4 c and C(xly) < C(z) +c.

Proof. The first inequality is supremely obvious: define a Turing machine
T that copies the input to the output. Then for all z, we have Cr(z) =
I(x). By Theorem 2.1.1 the result follows.

To prove the second inequality, construct a Turing machine T that for
all y,z computes output x on input (z,y) iff the universal reference
machine U computes output = for input (z,€). Then Cr(z|y) = C(z).
By Theorem 2.1.1, there is a constant ¢ such that C(z|y) < Cr(z|y)+c =
C(z) +c. |

Note that the additive constants in these inequalities are fudge terms
related to the reference machine U. For example, we need to indicate



Example 2.1.3

Example 2.1.4

Example 2.1.5

2.1. The Invariance Theorem 109

to the reference machine that a given description is the object itself,
and this information adds a number of bits to the literal description.
In Section 3.2 we will calculate the constants explicitly as 8 and 2, re-
spectively. Let us look at some more examples in order to develop our
intuition about the notion of complexity of description.

For each finite binary string 2 we have C'(zz) < C(z)+ O(1). Construct
a Turing machine V' such that V(p) = U(p)U(p), for all programs p,
where U is the reference machine in the proof of Theorem 2.1.1. In
particular, if U(p) = =, then V(p) = xx. Let V = T,, in the standard
enumeration of Turing machines 77,75, ... . With m denoting the self-
delimiting description 11" 0m, of m, we have U(mp) = T,,(p) = xx and
I(mp) = l(p) + 2I(m) + 1. Hence, C(zz) < C(z) + 2I(m) + 1. From now
on we leave the more obvious details of this type of argument for the
reader to fill in. <&

Recall that zf* denotes the reverse of z. Clearly, the complexities of z
and ' can differ by at most a fixed constant ¢ independent of z. That
is, |C(z) — C(2f)| < ¢ holds for all z. We can generalize this example
as follows: For every total recursive function ¢ that is one-to-one there
is (another) constant ¢ such that |C(¢(x)) — C(z)| < ¢ for all x.

In fact, if ¢ is computed by Turing machine T;, and U(p) = z, then
there is a Turing machine V' such that V(np) = ¢(z). If V = T, then
U(mnp) = ¢(z), and therefore |C(¢p(z)) — C(x)| < 2l(m) + 2l(n) + 2.
Similar relations hold for the conditional complexity C(x|y). &

Can the complexity of a pair of strings exceed the sum of the complexities
of the individual strings? In other words, is C' subadditive? Let (-) :
NXN — N be the standard recursive bijection over the natural numbers
that encodes x and y as (z,y). Define C(z,y) = C({(z,y)). That is, up to
a fixed constant, C(x,y) is the length of the shortest program such that
U computes both x and y and a way to tell them apart. It is seductive
to conjecture C(z,y) < C(z) + C(y) + O(1), the obvious (but false)
argument running as follows: Suppose we have a shortest program p
to produce x, and a shortest program ¢ to produce y. Then with O(1)
extra bits to account for some Turing machine T' that schedules the two
programs, we have a program to produce x followed by y. However, any
such T will have to know where to divide its input to identify p and gq.
One way to do this is by using input I(p)pg or input I(q)gp. In this way,
we can show that for all x,y, we have

C(z,y) < C(x) + C(y) + 2log(min(C(z), C(y))). (2.2)

We cannot eliminate the logarithmic error term for the general case.
Namely, in Example 2.2.3 on page 118 we show that there is a constant



110

2. Algorithmic Complexity

Example 2.1.6

c such that for all n there are x and y of length at most n such that
C(z,y) =2 C(x) + C(y) +logn — c.

We can eliminate the logarithmic error term at the cost of entering the
length of one of the programs in the conditional,

Clz,y|C(x)) < C(x) + C(y) + O(1).

Equation 2.2 also holds if we replace the left-hand side by the complex-
ity C(xy) of the unmarked concatenation zy. In the example already
referred to above, it is shown that we cannot eliminate the logarithmic
error in this case either. <

If we know C(x) and x, then we can run all programs of length C(z) in
parallel on the reference machine U in dovetail fashion (in stage k of the
overall computation execute the ith computation step of program k —1).
By definition of C(-), there must be a program of length C(x) that halts
with output z. The first such program is the first shortest program for x
in enumeration order, and is denoted by x*.

Therefore, a program to compute C(z), given x, can be converted to a
program to compute z*, given x, at the cost of a constant number of
extra bits. If we have computed z*, then C(x) is simply its length, so
the converse is trivial. Furthermore, to describe C'(z) from scratch takes
at least as many bits as to describe C'(z) using x. Altogether we have,
up to additional constant terms,

Cla™|z) = C(Cla)|z) < C(C(x)) <logl().
o

The upper bound on C(z*|z) cannot be improved to O(1). If it could, then
one could show that C(z) is a recursive function. However, in Theorem 2.3.2
we shall show that C(z) is not partial recursive. It is a curious fact that for
some z, knowledge of x does not help much in computing z*. In fact, the
upper bound is nearly optimal. In Theorem 3.8.1 we shall show that for some
z of each length n the quantity C'(C(z)|z), and hence also C(z*|z), is almost
log n.

Clearly, the information that an element belongs to a particular set can
severely curtail the complexity of that element. The following simple
observation, due to Kolmogorov, turns out to be very useful. We show
that for every easily describable set the conditional complexity of every
one of its elements is at most equal to the logarithm of the cardinality of
that set. (We will observe later, in Theorem 2.2.1, that the conditional
complexities of the majority of elements in a finite set cannot be signifi-
cantly less than the logarithm of the cardinality of that set: we will say
that they are ‘incompressible’ and have a small ‘randomness deficiency.’)



Theorem 2.1.3

2.1.3
Invariance of
Kolmogorov
Complexity

2.1. The Invariance Theorem 111

Let A C N x N be recursively enumerable, and y € N'. Suppose Y =
{z: (x,y) € A} is finite. Then, for some constant ¢ depending only on
A, for all z in' Y, we have C(zly) < 1(d(Y)) + c.

Proof. Let A be enumerated without repetition as (z1,y1), (22, y2), - .. by
a Turing machine T. Let (zi,, i, ), -- -, (%4, ¥i,) be the subsequence in
which the elements of Y are enumerated, k = d(Y). Using the fixed
y, modify T to T, such that T,, on input 1 < p < d(Y), outputs
zi,, Ty(p) = x;,. Therefore, we have by the invariance theorem, Theo-
rem 2.1.1, that C(z|y) < Cr,(x) + ¢ < I(d(Y)) + ¢, with ¢ depending
only on A. |

Let us illustrate the use of this theorem. Let A be a subset of A. Define
As" = {x € A :l(x) < n}. Let A be recursively enumerable and
d(A=") < p(n), with p a polynomial. Then, for all x € A of length at
most n we have C(z|n) < I(p(n))+ O(1), by Theorem 2.1.3. For all = of
length at most n we have C'(z) < C(z|n) + 2I(n) + O(1). Therefore, for
x € AS™ we find that C(x) = O(logn).

The complexity C(x) is invariant only up to a constant depending on
the reference function ¢q. Thus, one may object, for every string x there
is an additively optimal recursive function g such that Cy,(x) = 0. So
how can one claim that C(x) is an objective notion?

A mathematically clean solution to this problem is as follows: Call two
complexities Cy and Cy equivalent, Cy = Cy, if there is a constant c
such that for all z,

[Cy(x) — Cp(x)] < c
Then the equivalence relation = induces equivalence classes
[Co] = {Cy : Oy = Cy}.

We order the equivalence classes by [Cy] < [Cy] if there is a constant
¢ > 0 such that Cy(z) < Cy(z) + ¢ for every x. The resulting order on
the equivalence classes is a partial order with a single minimal element,
namely [Cy,], such that for all Cy,

[Cg] < [Cyl.

We have somewhat glibly overlooked the fact that our definition of Kolmogorov
complexity is relative to the particular effective enumeration of Turing ma-
chines as used in the proof of the invariance theorem, Theorem 2.1.1. We have
claimed that the quantity of information in an object depends on itself alone.
That is, it should be independent of the particular enumeration of Turing
machines.



112 2. Algorithmic Complexity

2.1.4
Concrete
Kolmogorov
Complexity

Consider two different enumerations of all partial recursive functions, say
¢1, P2, ... and P1,12,... . Assume that the ¢ enumeration is the enumer-
ation corresponding to our effective enumeration of Turing machines as used
in the proof of the invariance theorem.

Let the standard enumeration ¢1, ¢2, ... and the other enumeration ¥1,v2, . ..
be related by v = ¢s) and ¢ = Ygu), @ = 1,2,... . If both f and g
are partial recursive, then the enumerations are called recursively isomorphic
and are both acceptable numberings (Section 1.7, Exercise 1.7.6 on page 41).
Let C(z) be the complexity with respect to the reference function in the ¢
enumeration, and let C’(z) be the complexity with respect to the reference
function in the 1 enumeration. It is an easy exercise to show that there is a
constant ¢ such that |C(z) — C'(z)| < c for all z. (Hint: use the indexes of f
and g in the enumerations.)

Therefore, not only do additively optimal functions in the same acceptable
numberings yield complexities that are equal up to a fixed constant, but addi-
tively optimal functions in two different acceptable numberings do so as well.
Hence, Kolmogorov complexity is recursively invariant between acceptable
numberings, even though we have chosen to define it using the specific enu-
meration of Turing machines of Section 1.7. Using an analogy due to Hartley
Rogers, Jr., the fixed choice of effective enumeration of Turing machines can be
compared with using a particular coordinate system to establish coordinate-
free results in geometry.

A contradiction is possible only if there is no recursive isomorphism between
the ¢ enumeration and the ¢ enumeration. We give an example of an enumer-
ation of all partial recursive functions for which an additively optimal function
yields a complexity C’(z) such that |C'(z) — C’(x)| is unbounded. Let C(x) be
defined with respect to the ¢ enumeration as in Theorem 2.1.1. Define the v
enumeration as follows: The even functions 12, are defined by v, (1) := y; for
some y; with C(y) > % and w2;(z) := ¢i(x) for all z > 1. The odd functions
1/)27;+1 are given by ’lﬁ22‘+1 = (;57,

Clearly, the ¢ enumeration contains all partial recursive functions. By way
of contradiction, assume that C’(-) is the Kolmogorov complexity in the -
enumeration defined as in Theorem 2.1.1. Then, C’(y;) < Cy,, (i) + ¢y, - By
construction, Cy,. (i) = 1 and cy,, < 2log2i + O(1). On the other hand,
C(y:) > i* by construction. Hence, |C’(y;) — C(y:)| rises unboundedly with 1.

It is possible to eliminate the indeterminacy of ‘equality up to a con-
stant’ everywhere by using a fixed domain of objects, a fixed effective
enumeration of Turing machines, and a fixed choice of additively opti-
mal function (rather the universal Turing machine that computes it).
Start from the enumeration of Turing machines in Section 1.7. Fix any
small universal machine, say U, with state—symbol product less than 30.
There exists at least one 7 x 4 universal Turing machine as mentioned
in the comment on page 31 following Example 1.7.4. In Section 3.2 we
exhibit a universal reference machine U to fix a concrete Kolmogorov
complexity with C(z]y) <l(z)+2 and C(z) < I(z) + 8.



Exercises

Exercises 113

For every z it is of course possible to choose a universal Turing machine
U’ such that Cy(2) = 0 (in this notation identifying U’ with the func-
tion it computes). For every such universal Turing machine U’, we have
for all x that

C(z) < Cyr(z) + CU").

Here C(U’) is at least the length of the shortest program p such that for
all programs ¢ we have U(pq) = U’(q). This means that if Cy/(x) = 0,
then C(U’) > C(x). That is, Cys(x) = 0 unavoidably means that the
description of U’ contains a description of z. Therefore, in order to assign
low complexity to a large and complicated object, a universal machine
has to be large and complicated as well.

2.1.1. [15] (a) Show that C'(0™|n) < ¢, where ¢ is a constant indepen-
dent of n.

(b) Show that C'(m1.n|n) < ¢, where m = 3.1415.. .. and ¢ is some constant
independent of n.

¢) Show that we can expect C(ai.,|n) < !n, where a; is the ith bit in
4

Shakespeare’s Romeo and Juliet.

(d) What is C(a1.n|n), where a; is the ith bit in the expansion of the
fine structure constant a = 2 /hc, in physics.

Comments. Hint: for Item (c) use known facts concerning the letter
frequencies (entropy) in written English. Source: T.M. Cover, The Im-
pact of Processing Technique on Communications, J. K. Skwirzynski, ed.,
Martinus Nijhof, 1985, pp. 23-33.

2.1.2. [10] Let  be a finite binary string with C'(z) = q. What is the
complexity C(x?), where ¢ denotes the concatenation of ¢ copies of x?

2.1.3. [14] Show that there are infinite binary sequences w such that
the length of the shortest program for reference Turing machine U to
compute the consecutive digits of w one after another can be significantly
shorter than the length of the shortest program to compute an initial
n-length segment wy., of w, for any large enough n.

Comments. Hint: choose w a recursive sequence with shortest program

of length O(1). Then C(wi.n) = C(n) + O(1), which goes to co with n.

2.1.4. [12] Prove that for every x, there is an additively optimal func-
tion ¢o (as in Theorem 2.1.1) such that Cyg, (z) = 0. Prove the analogous
statement for x under condition y.

2.1.5. [07] Below, z, y, and z are arbitrary elements of N. Prove the
following:



114

2. Algorithmic Complexity

(a) C(zly) < C(z) +O(1)

(b) Clzly) < C(x, z[y) + O(1).

(c) Clzly, z) < C(z[y) + O).

(d) Clz,z) = C(x) + O(1).

(e) C(z,ylz) = Cly, x|z) + O(1).

(f) Czly, z) = Clz|z,y) + O(1).

(8) Clw,ylz, z) = Clylz,z) + O(1).
(h) C(x|z, 2z) = C(z|z) + O(1) = O(1).

2.1.6. [14] Let ¢ be any partial recursive function in the effective
enumeration ¢1,¢s,... . Let x, y, z be arbitrary elements of /. Prove
the following:

(8) Clor()ly) < Claly) +2A(k) + O(1).

(b) Clylow(z)) = Clylx) — 21(k) + O(1).

Assume that ¢y is also one-to-one. Show that

(c) [C(z) = C(¢r(x))| < 21(k) + O(1).

(d) Clzly, z) < Clzln(y), ) +2U(k) + O(1).

2.1.7. [12] Let x, y, z, and ¢ be as before. Prove the following.
(a) C(z,y) < C(x) + 21(C(z)) + Cylz) + O(1).

(b) Clon(x,y)) < C(x) +21(C(x)) + Clylr) + 21(k) + O(1) < C(z) +
20(C(x)) + C(y) +2U(k) + O(1).

2.1.8. [12] Show that if ¢ is a fixed one-to-one and onto recursive
function ¢ : {0,1}* — {0,1}*, then for every z € {0,1}*,

C(z) = Clz|g(x)) = C(x) + O(1) = C(o(x)) + O(1).

2.1.9. e [19] We investigate the invariance of C' under change of pro-
gram representations from 2-ary to r-ary representations. Let A, =
{0,1,...,7r = 1}*, r > 2, and A = N* with NV the set of natural num-
bers. A function ¢ : A, x A — A is called an r-ary decoder. In order
not to hide too much information in the decoder, we want it to be a
simple function, a partial recursive one. Analogous to the definitions in
the main text, for any binary decoder ¢ and x,y in A,

Cy(zly) = min{l(p) : ¢(p,y) = z},
or oo if such p does not exist.

(a) Prove Theorem 2.1.1 under this definition of C.



Exercises 115

(b) Define for each pair of natural numbers r, s > 2 a standard encoding
E of strings « in base r to strings E(x) in base s such that I(E(x)) <
I(x)logr/logs+ 1.

(¢) Prove the invariance theorem, Theorem 2.1.1, for r-ary decoders ¢.
First, let us define Cy(x]y) = min{l(p)logr : ¢(p,y) = =} and Cy(z|y) =
oo if such p does not exist. Then prove that there exists an additively
optimal (universal) r-ary decoder ¢ such that for all s, for all s-ary
decoders ¢, there exists a constant ¢, such that for all z,y € A we have

Coo (z]y) < Cy(z]y) + 4.

(d) Show that for any z € A, of length n, we have C(x) < nlogr +
2logr + c for some fixed ¢, independent of = and r.

(e) Fix natural numbers r, s > 2 and choose an additively optimal r-ary
decoder and an additively optimal s-ary decoder. Call the associated
canonical C measures respectively C, and Cs. Show that there exists a
constant ¢ such that for all z,y in A we have

|CT(33|y) - Cs(x‘y)l <eg¢

where c¢ is independent of x and y. Conclude that Cy, the C' measure
treated in the main text, is universal in the sense that neither the re-
striction to binary objects to be described nor the restriction to binary
descriptions (programs) results in any loss of generality.

Comments. In general, if we denote by C,.(z) the analogous complexity
of z in terms of programs over alphabets of r letters (Ca(z) = C(x)
but for r > 2 without the logr normalizing multiplicative factor as in
Item (c)), then by the same analysis as of Item (c) we obtain Cy(x) ~
C(z)/logr. Source: P. Gacs, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987.

2.1.10. [12] (a) Show that C(z + C(x)) < C(z) + O(1).
(b) Show that if m < n, then m + C(m) < n+ C(n) 4+ O(1).

Comments. Hint for Item (a): if U(p) = = with I(p) = C(x), then p
also suffices to reconstruct x + I(p). Hint for Item (b): use Item (a).
Source: P. Gécs, Lecture Notes on Descriptional Complexity and Ran-

domness, Manuscript, Boston University, 1987; result is attributed to
C.P. Schnorr.

2.1.11. [13] Let ¢1, ¢, ... be the standard enumeration of the partial
recursive functions, and let a be a fixed natural number such that the
set A= {z: ¢r(y) = (a, ) for some y € N'} is finite. Show that for each
x in A we have C(z|a) < I(d(A)) + 2l(k) + O(1).



116 2. Algorithmic Complexity

2.2
Incompress-

ibility

Definition 2.2.1

2.1.12. [18] Define the function complezity of a function f : N' — N,
restricted to a finite domain D, as

C(fID) = min{l(p) : Vaep[U(p, x) = f()]}.

(a) Show that for all recursive functions f, there exists a constant c;
such that for all finite D C N, we have C(f|D) < cy.

(b) Show that for all partial recursive functions, for all D = {i:i < n},
we have C(f|D) < logn + c¢f, where ¢y depends on f but not on D.

Comments. Compare Theorem 2.7.2. Source: J.M. Barzdins, Soviet Math.
Dokl., 9(1968), 1251-1254.

It is easy to see that there are strings that can be described by programs
much shorter than themselves. For instance, the function defined by
f(1) = 2 and f(i) = 270~V for i > 1 grows very fast, f(k) is a stack
of k twos. Yet for each k it is clear that the string 2 = 17®) or the
integer y = 27(*) has at most complexity C (k) + ¢ for some constant ¢
independent of k.

Trivially, this simple argument can be generalized to prove the following
fact: for every recursive function ¢, no matter how fast it grows, there
is a constant ¢ such that for each value of n there is a string = such that
l(x) = ¢(n) but C(z) < n+ c. That is, for an appropriate sequence of
strings, the ratio of string length to description length can increase as
fast as any recursive function—some strings are very compressible.

What about incompressibility? By a simple counting argument one can
show that whereas some strings can be greatly compressed, the majority
of strings cannot be compressed at all.

For each n there are 2" binary strings of length n, but only Z?;ol 20 =
2" — 1 possible shorter descriptions. Therefore, there is at least one
binary string z of length n such that C(z) > n. We call such strings
incompressible. It also follows that for any length n and any binary
string y, there is a binary string x of length n such that C(x|y) > n.

For each constant ¢ we say that a string x is c-incompressible if C(z) >
l(xz) —c.

Strings that are incompressible (say, c-incompressible with small ¢) are
patternless, since a pattern could be used to reduce the description
length. Intuitively, we think of such patternless sequences as being ran-
dom, and we use ‘random sequence’ synonymously with ‘incompressible
sequence.” Later we give a formalization of the intuitive notion of a ran-
dom sequence as a sequence that passes all effective tests for randomness.



Theorem 2.2.1

Example 2.2.1

2.2.  Incompressibility 117

How many strings of length n are c-incompressible? By the same count-
ing argument we find that the number of strings of length n that are
c-incompressible is at least 2™ — 2"~ ¢ 4 1. Hence there is at least one 0-
incompressible string of length n, at least one-half of all strings of length
n are 1-incompressible, at least three-fourths of all strings of length n are
2-incompressible, . .., and at least the (1 —1/2¢)th part of all 2" strings
of length n are c-incompressible. This means that for each constant ¢ > 1
the majority of all strings of length n with n > ¢ are c-incompressible.
We generalize this to the following simple but extremely useful incom-
pressibility theorem.

Let ¢ be a positive integer. For each fixed y, every finite set A of cardi-
nality m has at least m(1—27°)+1 elements x with C(z|y) > logm —c.

Proof. The number of programs of length less than logm — ¢ is

logm—c—1

Z 22 — 2logmfc _1.

=0

Hence, there are at least m — m27° + 1 elements in A that have no
program of length less than logm — c. o

As an example, set A = {z : I(z) = n}. Then the cardinality of A is
m = 2". Since Theorem 2.1.2 asserts that C(z) < n + ¢ for some fixed ¢
and all x in A, Theorem 2.2.1 demonstrates that this trivial estimate is
quite sharp. The deeper reason is that since there are few short programs,
there can be only few objects of low complexity.

It is important to realize that Theorem 2.1.1 and Theorem 2.2.1, together
with the trivial upper bound of Theorem 2.1.2, give us already all we
need for most applications.

Are all substrings of incompressible strings also incompressible? A string
r = uvw of length n can be specified by a short program p for v and the
string ww itself. Additionally, we need information on how to tell these
items apart. For instance, ¢ = I(p)pl(u)uw is a program for z. There
exists a machine T that starting on the left end of ¢, first determines
I(p), then uses I(p) to delimit p, and computes v from p. Continuing on its
input, T determines [(u) and uses this to delimit v on the remainder of
its input. Subsequently, T" reassembles x from the three pieces v, u, and
w it has determined. It follows that C(z) < Cr(z)+O(1) < i(q) +O(1),
since I(q) < C(v) +20(C(v)) + 2l(n) + n — I(v) + 2. Therefore,

C(z) < C(w) +n—I(v)+4logn+ O(1).
Hence, for c-incompressible strings « with C'(z) > n — ¢ we obtain

C(v) > l(v) — O(log n).



118

2. Algorithmic Complexity

Example 2.2.2

Example 2.2.3

Thus, we have shown that v is incompressible up to an additive term
logarithmic in n.

Can we hope to prove C(v) > I(v) — O(1) for all x and v? If this were
true, then x could not contain long regular subsequences, for instance, a
subsequence of k zeros has complexity O(log k) and not k — O(1). How-
ever, the very restriction on = of not having long regular subsequences
imposes some regularity on x by making it a member of a relatively
small set. Namely, we can describe x by stating that it does not contain
certain subsequences, followed by x’s index in the set that is determined
by these constraints. But the set of which x is a member is so small
that C(x) drops below n — ¢, and z is compressible. Hence, the very in-
compressibility of x requires that it have compressible substrings. This
corresponds to a fact we know from probability theory: a random se-
quence must contain long runs of zeros. <&

If p is a shortest program for x, so that C(z) = I(p), then we would like to
assert that p is incompressible. This time, our intuition corresponds with
the truth. There is a constant ¢ > 0 such that for all strings = we have
C(p) > l(p) — c. For suppose the contrary, and for every constant ¢ there
is an x and a shortest program ¢ that generates p with I(q) < I(p) — c.
Define a universal machine V' that works just like the reference machine
U, except that V first simulates U on its input to obtain the output,
and then uses this output as input on which to simulate U once more.
Let V' = T;, the ith Turing machine in the standard enumeration. Then,
U with input 1°0q computes z, and therefore C(x) < I(p) — c+ i + 1.
But this contradicts I(p) = C(z) for ¢ > i+ 1. <&

We continue Example 2.1.5 on page 109 that C(x,y) is not subadditive
since the logarithmic term in Equation 2.2 cannot be eliminated. Namely,
there are (n + 1)2" pairs (x,y) of binary strings whose sum of lengths
is n. By Theorem 2.2.1 there is a pair (z,y) with I(z) + I(y) = n such
that C'(z,y) > n+logn — 1. But Theorem 2.1.2 on page 108 states that
C(z) 4+ C(y) < l(x)+1(y) + ¢ for some constant ¢ independent of  and
y. Hence, for all n there are x and y of length at most n such that

C(z,y) > C(x) + C(y) +1logn —c,

where c¢ is a constant independent of x and y. For the unmarked con-
catenation zy with I(xy) = n, if C(zy) > n, then zy contains a block of
0’s or 1’s of length at least logn —2loglogn —O(1) (follows from Exam-
ple 2.2.1 but is more precisely derived in Corollary 2.6.2 om page 172).
We can choose the concatenation zy so that x ends with this longest
run of 0’s or 1’s. This means that C'(z) < i(z) —logn+2loglogn. Then,
C(zy) > C(x) + C(y) + logn — 2loglogn — c. O



Example 2.2.4

Definition 2.2.2

Example 2.2.5

2.2, Incompressibility 119

There is a particular use we had in mind in defining conditional Kol-
mogorov complexity. Namely, we often want to speak about the com-
plexity of x given its length n. This is because a string x of length n
carries in a sense two quantities of information, one associated with the
irregularity of the pattern of 0’s and 1’s in z, and one associated with
the length n of x.

One effect of the information quantity associated with the length of
strings is that C(x) is nonmonotonic on prefizes. This can be due to the
information contained in the length of z. That is, for m < n we can still
have C(m) > C(n). But then C(y) > C(z) for z = 1™ and y = 1™,
notwithstanding that y is a proper prefix of . For example, if n = 2%,
then C(1™) < loglogn + O(1), while Theorem 2.2.1 shows that there
exist m with jn < m < n such that C(1™) > logn — O(1). Therefore,
the complexity of a part can turn out to be bigger than the complexity
of the whole. In an initial attempt to solve this problem we may try to
eliminate the effect of the length of the string on the complexity measure
by treating the length as given. <

The length-conditional Kolmogorov complexity of z is C'(z]l(z)).

Roughly speaking, this means that the length of the shortest program for
2 may save up to log(z) bits in comparison with the shortest program
in the unconditional case. Clearly, there is a constant ¢ such that for
all z,

Cz|l(z)) < C(z) +c.

While on the face of it the measure C(x|l(z)) gives a pure estimate of
the quantity of information in solely the pattern of 0’s and 1’s of x, this
is not always true. Namely, sometimes the information contained in I(x)
can be used to determine the pattern of zeros and ones of x. This effect
is noticeable especially in the low-complexity region.

For each integer n, the n-string is defined by n0" "™ (using the binary
string n). There is a constant ¢ such that for all n, if x is the n-string,
then C(z|n) < c¢. Namely, given n we can find the nth binary string ac-
cording to Equation 1.3 and pad the string with zeros up to overall length
n. We use n-strings to show that unfortunately, like the original C(z),
the complexity measure C(z|l(x)) is not monotonic over the prefizes.
Namely, if we choose n such that its pattern of 0’s and 1’s is very irreg-
ular, C(n) > I(n), then for z = n0" ") we still obtain C(z|l(z)) < c.
But clearly C(n|l(n)) > C(n) — C(I(n)) > logn — 2loglogn. <&



120 2. Algorithmic Complexity

Example 2.2.6

Claim 2.2.1

221
Randomness
Deficiency

Definition 2.2.3

Theorem 2.2.2

Consider the complexity of a string x, with x an element of a given set
A. Clearly, the information that an element belongs to a particular set
severely curtails the complexity of that element if that set is small or
sparse. The following is a simple application of the very useful Theo-
rem 2.1.3. Let A be a subset of N and AS" = {z € A : l(z) < n} We
call A meager if limd(AS")/2" = 0 for n — oo. For example, the set
of all finite strings that have twice as many 0’s as 1’s is meager. We
show that meagerness may imply that almost all strings in the meager
set have short descriptions.

If A is recursive and meager, then for each constant ¢ there are only
finitely many x in A that are c-incompressible (C(x) > l(x) — ¢).

Proof. Consider the lexicographic enumeration of all elements of A. Be-
cause A is recursive, there is a total recursive function ¢; that enumer-
ates A in increasing order. Hence, for the jth element x of A we have
C(z) < C(5)+2l(¢) + 1. If « has length n, then the meagerness of A im-
plies that for each constant ¢/, no matter how large, n — C(j) > ¢’ from
some n onward. Hence, C'(z) < n— ¢ + 21(i). The proof is completed by
setting ¢’ = ¢ + 2I(7). ad &

If we know that x belongs to a subset A of the natural numbers, then
we can consider its complexity C(z|A). For instance, C(z) = C(z|N),
because it is understood that x is a natural number. If = is an element
of a finite set A, then Theorem 2.1.3 asserts that C'(z|A) < (d(A)) + ¢
for some ¢ independent of 2 but possibly dependent on A. For instance,
the infinite meager sets of Example 2.2.6 contain finitely many incom-
pressible strings only.

The randomness deficiency of = relative to A is defined as d(z|A) =
[(d(A)) — C(z|A). It follows that d(x|A) > —c for some fixed constant ¢
independent of z.

If §(z|A) is large, then this means that there is a description of x with
the help of A that is considerably shorter than just giving x’s serial
number in A. There are comparatively few objects with large randomness
deficiency—this is the substance of Martin-Lof’s notion of a statistical
test in Section 2.4. Quantitatively this is expressed as follows:

Assume the discussion above. Then, d({x : §(x|A) > k}) < d(A)/2F1.

Proof. There are fewer than 2/! descriptions of length at most 1. O



Exercises

Exercises 121

By Theorem 2.1.3, the complexity of a string x in a given finite section
of a recursively enumerable set is bounded above by the logarithm of the
cardinality of that finite section. Let (-) : N2 — A be the standard re-
cursive bijective pairing function. Let R = {(x,y) : ¢(i) = (x,y),7 > 1}
with ¢ a partial recursive function, say ¢ = ¢, in the standard enumer-
ation of partial recursive functions. Then R is recursively enumerable.
Let the set A = {x : (z,y) € R} be finite. We can assume that A is
enumerated without repetition, and that j < d(A) is the position of x
in this enumeration. Clearly,

C(zly) <logd(A)+ logr + 2loglogr + O(1).

As above, define C(x|A) = C(z]y) with the obvious interpretation. The
randomness deficiency of z relative to y is

§(zly) =logd(A) — C(xly).

The randomness deficiency measures the difference between the maximal
complexity of a string in A and the complexity of z in A. Now, the defect
of randomness is positive up to a fixed constant independent of x and
A (but dependent on r). We may consider z to be random in the set
A iff §(zly) = O(1). If A is the set of binary strings of length n, or
equivalently, R is the set {(z,n) : l(z) = n} and A = {z : l(x) = n},
then we note that

§(zln) =n — C(x|n) + O(1).

That is, = is a random finite string in our informal sense iff §(z|n) =
O(1). It will turn out that this coincides with Martin-Lof’s notion of
randomness in Section 2.4.

2.2.1. [08] Prove the following continuity property of C(z). For all
natural numbers z,y we have |C(x + y) — C(x)| < 2l(y) + O(1).

2.2.2. [15] Let z satisfy C(x) > n — O(1), where n = [(x).
(a) Show that C(y),C(z) > in — O(1) for x = yz and I(y) = I(2).

(b) Show that C(y) > n/3 — O(1) and C(z) > 2n/3 — O(1) for x = yz
and [(z) = 2I(y).

(c) Let x = &1 ... Z1ogn, With I(z;) = n/logn for all 1 <4 <logn. Show
that C(z;) > n/logn — O(loglogn) for all 1 < i < logn.

2.2.3. [21] Let x satisty C(x) > n — O(1), where n = I(z). Show that
for all divisions = yz we have n —logn —2loglogn < C(y)+ C(z) and
for some divisions we have C(y) + C(z) < n — logn + loglogn.



122

2. Algorithmic Complexity

2.2.4. [23] Assume that the elements of {1,...,n} are uniformly dis-
tributed with probability 1/n. Compute the expected value of C(x) for
1<z <n.

Comments. Hint: Y, CSE) > Zi‘fln 2741 ¢ ) =1logn+ O(1).

T logn
2.2.5. [14]We call & an n-string if x has length n and = n00...0.

(a) Show that there is a constant ¢ such that for all n, every n-string
x has complexity C(z|n) < c. (Of course, ¢ depends on the reference
Turing machine U used to define C.)

(b) Show there is a constant ¢ such that for all n, C'(z|n) < ¢ for every
2 in the form of the n-length prefix of nn...n.

(c) Let ¢ be as in Item (a). Consider some n and some string x of length n
with C(z|n) > c. Prove that the extension of z to a string y = z00...0
of length z has complexity C(y|z) < ¢. Conclude that there is a constant
¢ such that each string z, no matter how high its C(x|l(z)) complexity,
can be extended to a string y with C(y|l(y)) < c.

Comments. The C(z) measure contains the information about the pat-
tern of 0’s and 1’s in x and information about the length n of x. For
random such n, the complexity C(n) = l(n) + O(1) is about logn. In
this case, about logn bits of the shortest program p for x will be used
to account for x’s length. For n’s that are easy to compute, this is much
less. This seems a minor problem at high complexities, but becomes an
issue at low complexities, as follows. If the quantities of information re-
lated to the pattern only is low, say less than logn, for two strings « and
y of length n, then distinctions between these quantities for x and y may
get blurred in the comparison between C(z) and C(y) if the quantity of
information related to length n dominates in both. The C(z|l(x)) com-
plexity was meant to measure the information content of z apart from
its length. However, as the present exercise shows, in that case [(z) may
contain already the complete description of x up to a constant number
of bits. Source: D.W. Loveland, Inform. Contr., 15(1969), 510-526.

2.2.6. [19] (a) Show that there is a constant d > 0 such that for every
n there are at least |2"/d]| strings x of length n with C(z|n) > n and
C(z) > n.

(b) Show that there are constants ¢,d’ > 0 such that for every large
enough n there are at least [2"/d’| strings x of length n — ¢ < (xz) <n
with C(z|n) > n and C(z) > n.

(c¢) Assume that we have fixed a reference universal turing machine such
that for every n, we have C(z),C(z|n) < n+1 for all strings « of length
n. Show that in this case Item (b) holds with I(x) = n.



Exercises 123

Comments. Hint for Item (a): There is a constant ¢ > 0 such that for
every n and every z of length I(z) < n — ¢ we have C(z|n) < n by
Theorem 2.1.2. Therefore, there are at most 2" — 2"~ ¢! programs of
length < n available as shortest programs for the strings of length n.
Hence there is at least one x of length n with C'(z|n) > n. Let there be
m > 1 such strings. Given m and n we can enumerate all 2" — m strings
x of length n and complexity C'(z|n) < n by dovetailing the running of
all programs of length < n. The lexicographic first string of length n
not in the list satisfies logm + O(1) > C(x|n) > n. The unconditional
result follows similarly by padding the description of z up to length n.
Hint for Item (b): For every n there are equally many strings of length
< n to be described and potential programs of length < n to describe
them. Since some programs do not halt (Lemma 1.7.5 on page 34) for
every large enough n, there exists a string x of length at most n that
has C(z|n),C(x) > n (and C(z|n),C(x) < I(x) + ¢). The remaining
argument is similar to that of Item (a). Source: H. Buhrman, T. Jiang,
M. Li, P.M.B. Vitanyi, Theoret. Comput. Sci., 235:1(2000), 59-70. Also
reported by M. Kummer and L. Fortnow. Compare with the similar
Exercise 3.3.1 for prefix Kolmogorov complexity on page 213. In the
source of that exercise, some form of the result of the current exercise is
attributed to G.J. Chaitin in the early 1970s.

2.2.7. [14] We can extend the notion of c-incompressibility as follows
(all strings are binary): Let g : ' — N be unbounded. Call a string =
of length n g-incompressible if C(x) > n—g(n). Let I(n) be the number
of strings = of length at most n that are g-incompressible. Show that
lim, oo I(n) /2741 = 1.

Comments. Thus, the g-incompressible finite strings have uniform prob-
ability going to 1 in the set of strings of length n for n — oco.

2.2.8. [19] Prove that for each binary string « of length n there is a y
equal to = except for one bit such that C(y|n) <n —logn + O(1).

Comments. Hint: the set of binary strings of length n constituting a
Hamming code has 2"/n elements and is recursive. Source: personal
communication, I. Csiszér, May 8, 1993.

2.2.9. [12] A Turing machine T computes an infinite sequence w if
there is a program p such that T'(p,n) = wy., for all n. Define C(w) =
min{l(p) : U(p,n) = wy., for all n}, or oo if such a p does not exist.
Obviously, for all w either C(w) < 0o or C(w) = 0.

(a) Show that C(w) < oo iff 0.w is a recursive real number as in Exer-
cise 1.7.22 on page 47. For the mathematical constants 7 and e, C(7) <
oo and C(e) < oc.



124

2. Algorithmic Complexity

(b) Show that the reals 0.w with C'(w) < oo form a countably infinite
set and that the reals 0.w with C(w) = oo have uniform measure one in
the total set of reals in the interval [0, 1).

2.2.10. [27] We consider how information about x can be dispersed.

Let x € N with I(z) = n and C(z) = n 4+ O(1). Show that there are
u,v,w € N such that

(i) l(u) = (v) = l(w) = in, C(u) = C(v)
they are pairwise independent: C(y|z) =
and y # z;

= C(w) = jn (+0(1)), and
sn+0() for y,z € {u,v,w}
(ii) « can be reconstructed from any two of them: C(z|y,z) = O(1),
where y, z € {u,v,w} and y # 2.

Can you give a general solution for finding m+ k& elements of A/ such that
each of them has length and complexity n/m, and x can be reconstructed
from any m distinct elements?

Comments. It is surprising that x can be reconstructed from any two
out of three elements, each of one-half the complexity of x. This shows
that the identity of the individual bits is not preserved in the division.
Hint: assume n = 2m and © = o1 ...Tom, U = UL ... Um, UV = V1 ... Um,
and w = w1y ... Wy, With u; = 9,1, v; = T9;, and w; = v; ® u;. (Recall
that a @b = 1iff a # b.) This solution apparently does not generalize. A
general solution to distribute x over m + k elements such that any group
of m elements determines = can be given as follows: Compute the least
integer y > z1/™. Let p; be the ith prime, with p; = 2. Distribute z over
Uiy ..y Uk, Where u; = 2 mod p?(l)7 with a(i) = [ylog,, 2]. Using the
Chinese remainder theorem we find that we can reconstruct = from any
subset of m elements u;. Source: A. Shamir, Comm. ACM, 22:11(1979),
612-613; M.O. Rabin, J. ACM, 36:2(1989), 335-348.

2.2.11. [26] Show that there are strings x,y,z such that C(z|y) +
C(z|z) > C(z) + C(zly, z) + O(1). For convenience prove this first for
strings of the same length n; but it also holds for some strings x, y, z with
I(x) =logn and I(y) = I(z) = n. Comments. This is a counterintuitive
result. Hint: prove there are pairwise random strings x,y, z such that
each string results from @-ing the other two.

2.2.12. [18] Let A be the set of binary strings of length n. An element
x in A is d-random if §(x|A) < 4, where §(z|A) = n — C(z|A) is the
randomness deficiency. Show that if x € B C A, then

log Zgg; — C(B|A) < 6(x|]A) + O(log n).

Comments. That is, no random elements of A can belong to any subset
B of A that is simultaneously pure (which means that C'(B|A) is small)



Exercises 125

and not large (which means that d(A)/d(B) is large). Source: A.N. Kol-
mogorov and V.A. Uspensky, Theory Probab. Appl., 32(1987), 389-412.

2.2.13. [27] Let € A, with d(A) < oo. Then in Section 2.2 the
randomness deficiency of x relative to A is defined as §(x|A) = I(d(A))—
C(z|A). (Here C(z|A) is defined as C(x|y) with x the characteristic
sequence of A and I(x) < oo.) If 6(z|A) is large, this means that there is
a description of x with the help of A that is considerably shorter than
just giving z’s serial number in A. Clearly, the randomness deficiency of
x with respect to sets A and B can be vastly different. But then it is
natural to ask whether there exist absolutely nonrandom objects, objects
having large randomness deficiency with respect to any appropriate set.

Prove the following: Let a and b be arbitrary constants; for every suf-
ficiently large n, there exists a binary string = of length n such that
d(z|A) > blogn for any set A containing x for which C'(A) < alogn.

Comments. Source: A.K. Shen, Soviet Math. Dokl., 28(1983), 295-299.
Compare with Kamae’s theorem, Exercise 2.7.5. Let us give some in-
terpretation of such results bearing on statistical inference. Given an
experimental result, the statistician wants to infer a statistical hypoth-
esis under which the result is typical. Mathematically, given x we want
to find a simple set A that contains x as a typical element. The above
shows that there are outcomes x such that no simple statistical model
of the kind described is possible. The question remains whether such
objects occur in the real world.

2.2.14. [31] Consider two complexity measures for infinite binary se-
quences w. Let Cy(w) be the minimal length of a program p such
that p(n) = wi., for all sufficiently large n. Let Ca(w) be defined as
limsup,, .. C(wi:n|n). Prove that Cuo(w) < 2Co(w) 4+ O(1), and that
this bound is tight (the constant 2 cannot be replaced by a smaller one).

Comments. Source: B. Durand, A.K. Shen, N.K. Vereshchagin. Theoret.
Comput. Sci., 171(2001), 47-58.

2.2.15. [37] Consider Ciim(z) = min{l(p) : p(n) = x for all but finitely
many n} and Climsup(2) = min{m : for all but finitely many n there
exists a p with {(p) < m and p(n) = z}. Let C’(x) denote the plain
Kolmogorov complexity relativized to 0 (that is, the program is allowed
to ask an oracle whether a given Turing machine terminates on given
input).

(a) Prove that Ciim(x) = C'(z) + O(1).
(b) Prove that Ciimsup(z) = C'(z) + O(1).

Comments. Source: N.K. Vereshchagin Theoret. Comput. Sci., 271(2002),
59-67. Item (b) is the more difficult one; Item (a) is attributed to An.A.
Muchnik, S.Y. Positselsky.



126 2. Algorithmic Complexity

2.3

C as an
Integer
Function

Theorem 2.3.1

We consider C' as an integer function C' : N' — A, and study its be-
havior, Figure 2.1. First we observe that Theorem 2.1.2 gives an upper
bound on C: there exists a constant ¢ such that for all z in A we have
C(z) <l(z) + ¢, and by Theorem 2.2.1 this estimate is almost exact for
the majority of x’s. This is a computable monotonic increasing upper
bound that grows to infinity. It is also the least such upper bound. It
turns out that the greatest monotonic nondecreasing lower bound also
grows to infinity but does so incomputably slowly.

(i) The function C(z) is unbounded.

(ii) Define a function m by m(x) = min{C(y) : y > x}. That is, m is
the greatest monotonic increasing function bounding C from below. The
function m(z) is unbounded.

(iii) For any partial recursive function ¢(x) that goes monotonically to
infinity from some xg onward, we have m(z) < ¢(x) except for finitely
many x. In other words, although m(zx) goes to infinity, it does so more
slowly than any unbounded partial recursive function.

Proof. (i) This follows immediately from (ii).

(ii) For each 7 there is a least x; such that for all x > z;, the smallest
program p printing = has length greater than or equal to . This follows
immediately from the fact that there are only a finite number of pro-
grams of each length i. Clearly, for all « we have x;.1 > x;. Now observe
that the function m has the property that m(x) =i for z; < z < x;41.

(iii) Assume the contrary: there is a monotonic nondecreasing unbounded
partial recursive function ¢(x) < m(x) for infinitely many . The do-
main A = {z: ¢(r) < oo} of ¢ is an infinite recursively enumerable set.
By Lemma 1.7.4, A contains an infinite recursive subset B. Define

W(z) = ¢(x) for z € B,
| #(y) with y=max{z:z € B,z <z}, otherwise.

This v is total recursive and goes monotonically to infinity, and ¥(z) <
m(x) for infinitely many x.
Now define M(a) = max{z : C(z) < a}. Then, M(a) + 1 = min{z :
m(z) > a}. It is easy to verify that

max{z : Y(z) < a+ 1} > min{z : m(z) > a} > M(a),

for infinitely many a’s, and the function F(a) = max{z : ¢(z) < a +
1} is obviously total recursive. Therefore, F(a) > M(a) for infinitely
many a’s. In other words, C'(F(a)) > a for infinitely many a’s. But by
Theorem 2.1.1,

C(F(a)) < Cr(F(a) + O(1) < I(a) + O(1).



Theorem 2.3.2

Theorem 2.3.3

2.3. (' as an Integer Function 127

logx _ ___--

FIGURE 2.1. The graph of the integer function C(z)

This implies that there exists a constant ¢ such that l(a) + ¢ > a for
infinitely many a, which is impossible. o

Notice that Items (ii) and (iii) of Theorem 2.3.1 do not hold for the
length-conditional complexity C(z|l(x)). Namely, although C(z|i(x)) is
unbounded, it drops infinitely often to constant level. In other words,
there is no unbounded monotonic function that is a lower bound on
C(z|l(x)) by Example 2.2.5. This phenomenon is further explored in the
exercises.

The second cornerstone of the theory (millstone around its neck is prob-
ably more apt) is the incomputability theorem.

The function C(zx) is not recursive. Moreover, no partial recursive func-
tion ¢(x) defined on an infinite set of points can coincide with C(x) over
the whole of its domain of definition.

Proof. This proof is related to that of Theorem 2.3.1, Ttem (iii). We prove
that there is no partial recursive ¢ as in the statement of the theorem.
Every infinite recursively enumerable set contains an infinite recursive
subset, Lemma 1.7.4. Select an infinite recursive subset A in the domain
of definition of ¢. The function ¢(m) = min{z : C(x) > m,x € A} is
(total) recursive (since C(x) = ¢(z) on A), and takes arbitrarily large
values, Theorem 2.3.1. Also, by definition of ¢, we have C(¢»(m)) > m.
On the other hand, C(¥(m)) < Cy(¥(m)) + ¢y by definition of C,
and obviously Cy(¥(m)) < I(m). Hence, m < logm up to a constant
independent of m, which is false from some m onward. O

That was the bad news; the good news is that we can approximate C(z).

There is a total recursive function ¢(t,xz), monotonic decreasing in t,

such that lim;_,o ¢(t, ) = C(x).



128

2. Algorithmic Complexity

Proof. We define ¢(t, z) as follows: For each z, we know that the shortest
program for x has length at most I(z) + ¢, Theorem 2.1.2. Run the
reference Turing machine U in the proof of Theorem 2.1.1 for ¢ steps on
each program p of length at most I(z) + c. If for any such input p the
computation halts with output z, then define the value of ¢(t, x) as the
length of the shortest such p, otherwise equal to {(z) + ¢. Clearly, ¢(¢, x)
is recursive, total, and monotonically nonincreasing with ¢ (for all z,
o(t',x) < P(t,x) if t' > t). The limit exists, since for each x there exists
a t such that U halts with output x after computing ¢ steps starting
with input p with I(p) = C(x). O

One cannot decide, given z and ¢, whether ¢(¢t,z) = C(x). Since ¢(t,x) is
nondecreasing and goes to the limit C(x) for t — oo, if there were a decision
procedure to test ¢(t,z) = C(z), given x and ¢, then we could compute C(z).
But Theorem 2.3.2 tells us that C is not recursive.

Let g1, g2, ... be a sequence of functions. We call f the limit of this sequence
if f(z) = lim¢—oo g¢e(x) for all z. The limit is recursively uniform if for every
rational € > 0 there exists a t(¢), where ¢ is a total recursive function, such
that | f(z) — gue)(z)| < €, for all z. Let the sequence of one-argument functions
1,12, ... be defined by ¥ (z) = ¢(t,z), for each t for all . Clearly, C is the
limit of the sequence of ¢’s. However, by Theorem 2.3.2; the limit is not
recursively uniform. In fact, by the halting problem in Section 1.7, for each
€ > 0 and t > 0 there exist infinitely many z such that |C(z) — ¢ (z)| > e
This means that for each € > 0, for each ¢ there are many z’s such that our
estimate ¢(t,x) overestimates C(x) by an error of at least e.

We describe some other characteristics of the function C.

Continuity: The function C is continuous in the sense that there is a
constant ¢ such that |C(x) — C(z £ h)| < 2l(h) + ¢ for all x and
h. (Hint: given a program that computes 2 we can change it into
another program that adds (or subtracts) h from the output.)

Logarithmic: The function C(z) mostly hugs log «. It is bounded above
by log x + ¢, Theorem 2.1.2, page 108. On the other hand, by Theo-
rem 2.2.1, page 117, for each constant k, the number of z of length
n (about log ) such that C(z) < logz — k is at most 2",

Fluctuation: The function C(z) fluctuates rapidly. Namely, for each
x there exist two integers x1,zo within distance /z of x (that is,
|x — x;] < /x for i = 1,2) such that C(z1) > I(x)/2 — ¢ and
C(z2) < l(z)/2 + c. (Hint: change the low-order half of the bits
of x to some incompressible string to obtain x;, and change these
bits to a very compressible string (such as all zeros) to obtain xs.)
Therefore, if = is incompressible with C(z) = I(x) — O(1), then
there is an z3 nearby where C(z2) equals about C(x)/2, and if z is
compressible with C'(z) = o(I(x)), then there is an 21 nearby where



Example 2.3.1

2.3. (' as an Integer Function 129

C(z1) equals about I(z)/2. These facts imply many fluctuations
within small intervals because, for instance, C(z), C(z + logx),
C(z++/7), C(cz), C(x?), and C(2%) all have about the same value.

Long high-complexity runs: For each c there is a d such that there
are no runs of d consecutive c-incompressible numbers. However,
conversely, for each d there is a ¢ such that there are runs of d
consecutive c-incompressible numbers. (Hint: for the nonexistence
part use numbers x of the form 27 for which C(i27) < 1(i) +1(j) +
¢ < 1(i27) — d; for the existence part use the continuity property
and the nearly logarithmic property above.)

It is not difficult to see that Theorems 2.3.1, Item (i), 2.3.2, and 2.3.3,
Theorem 2.1.2; and the above properties hold for the length-conditional
complexity measure C(z|l(x)). By the existence of n-strings, Exam-
ple 2.2.5, the greatest monotonic lower bound on C(z|l(x)) is a fixed
constant, and therefore Items (ii) and (iii) of Theorem 2.3.1 do not hold
for this complexity measure. Theorems 2.1.1, 2.2.1 are already proved
for C(z|i(x)) in their original versions. Namely, either they were proved
for the conditional complexity in general, or the proof goes through as
given for the length-conditional complexity. Thus, the general contour of
the graph of C(z|l(z)) looks very roughly similar to that of C'(z), except
that there are dips below a fixed constant infinitely often, Figure 2.2.

Let us make an estimate of how often the dips occur. Consider the n-
strings of Example 2.2.5. For each integer n there is an extension of
the corresponding binary string with n — [(n) many 0’s such that the
resulting string x has complexity C(x|l(z)) < ¢ for a fixed constant c. It
is easy to see that logz &~ n, and that for all n’ < n the corresponding
2’ is less than z. Hence, the number of ' < x such that C(z’'|l(2")) < ¢
is at least logx. <&

FIGURE 2.2. The graph of the integer function C(x|l(z))



130 2. Algorithmic Complexity

Exercises

2.3.1. [15] Let ¢(t,z) be a recursive function and lim; .. ¢(t,z) =
C(x), for all z. For each t define ¢, (z) = ¢(¢, z) for all x. Then C is the
limit of the sequence of functions 11,9, ... . Show that for each error
€ and all ¢ there are infinitely many z such that ¢ (z) — C(x) > €.

Comments. C(z) is the uniform limit of the approximation above if for
each € > 0, there exists a ¢ such that for all z, ¢ (z) — C(x) < €. Item
(a) implies that C(x) is not the uniform limit of the above sequence of
functions.

2.3.2. [23] Let ¢1, ¢, . . . be the effective enumeration of partial recur-
sive functions in Section 1.7. Define the uniform complexity of a finite
string = of length n with respect to ¢ (occurring in the above enu-
meration) as Cy(z;n) = min{l(p) : ¢(m,p) = x1.m, for all m < n} if
such a p exists, and oo otherwise. We can prove an invariance theorem
to the effect that there exists a universal partial recursive function ¢
such that for all ¢ there is a constant ¢ such that for all x,n we have
Coo(z;n) < Cy(z;n) + c¢. We choose a reference universal function ¢o
and define the uniform Kolmogorov complezity as C(z;n) = Cy, (z;n).

(a) Show that for all finite binary strings « we have C(z) > C(x;(x)) >
C(z|l(x)) up to additive constants independent of z.

(b) Prove Theorems 2.1.1 to 2.3.3, with C'(z) replaced by C(z;1(x)).

(c) Show that in contrast to the measure C'(z|l(x)), no constant ¢ exists
such that C(z;l(x)) < ¢ for all n-strings (Example 2.2.5).

(d) Show that in contrast to C(x|i(z)), the uniform complexity is mono-
tonic in the prefizes: if m < n, then C(z1.m;m) < C(z1.n;n), for all .

(e) Show that there exists an infinite binary sequence w and a constant
¢ such that for infinitely many n, C(wi.n;n) — C(win|n) > logn — c.

Comments. Item (b) shows that the uniform Kolmogorov complexity sat-
isfies the major properties of the plain Kolmogorov complexity. Items (c)
and (d) show that at least two of the objections to the length-conditional
measure C(z|l(x)) do not hold for the uniform complexity C(z;I(z)).
Hint for Ttem (c): this is implied by the proof of Theorem 2.3.1 and
Item (a). Item (e) shows as strong a divergence between the measures
concerned as one could possibly expect. Source: D.W. Loveland, Inform.
Contr., 15(1969), 510-526.

2.3.3. [27] Let BB’ be a variant of the busy beaver function defined in
Exercise 1.7.19, page 45, where BB’(n) is defined as the maximal num-
ber of steps in a halting computation of the reference universal Turing
machine when started on an n-bit input.

Show that C'(BB’(n)) = n+ O(logn). Use this to provide an alternative
proof for Theorem 2.3.1, Ttem (iii).



Exercises 131

Comments. Hint: Knowing n and the index j < 2" of the input that
achieves BB’(n), we can compute BB’(n). Hence, C(BB’(n) | n) <
n + O(1). On the other hand, Knowing n and BB’(n), we can run all
programs of n bits for at most BB’(n) steps; the programs that have
not halted after BB’(n) steps will never halt. This resolves the halt-
ing problem for all programs of n bits, and yields the halting sequence
X1 - .- Xxaor for the first 2™ programs. By an application of the later The-
orem 2.7.2, known as Barzdins’s lemma, Item (ii), we conclude that
C(BB'(n).n) > Clx ... xan) — O(1) > n — O(1).

2.3.4. e [35] Let w be an infinite binary string. We call w recursive
if there exists a recursive function ¢ such that ¢(i) = w; for all i > 0.
Prove the following:

(a) If w is recursive, then there is a constant ¢ such that for all n,

C(win;n) < ¢
C(wrm|n) < ¢,
C(win) —C(n) < c.

This is easy. The converses also hold but are less easy to show. They
follow from Items (b), (e), and (f).

(b) For each constant ¢, there are only finitely many w such that for all
n, C(wi.n;n) < ¢, and each such w is recursive.

(¢) For each constant ¢, there are only finitely many w such that for
infinitely many n, C(wi.,;n) < ¢, and each such w is recursive.

(d) There exists a constant ¢ such that the set of infinite w that satisfy
C(w1:n|n) < cfor infinitely many n, has the cardinality of the continuum.

(e) For each constant ¢, there are only finitely many w such that for all
n, C(wi.n|n) < ¢, and each such w is recursive.

(f) For each constant ¢, there are only finitely many w with C(w1.,) <
C(n) + ¢ for all n, and each such w is recursive.

g) For each constant ¢, there are only finitely many w with C(wi.,) <
(n) 4 ¢ for all n, and each such w is recursive.
h)

(h) There exist nonrecursive w for which there exists a constant ¢ such
that C(w1.,) < C(n) + ¢ for infinitely many n.

Comments. Clearly Item (c) implies Item (b). In Item (d) conclude
that not all such w are recursive. In particular, the analogue of Item
(c) for C(w1.n|n) does not hold. Namely, there exist nonrecursive w for
which there exists a constant ¢ such that for infinitely many n we have
C(wi:n|n) < c. Hint for Item (d): exhibit a one-to-one coding of sub-
sets of A into the set of infinite binary strings of which infinitely many



132

2. Algorithmic Complexity

prefixes are n-strings—in the sense of Example 2.2.5. Item (e) means
that in contrast to the differences between the measures C(-;1(-)) and
C(-]1(+)) exposed by the contrast between Items (c¢) and (d), Item (b)
holds also for C(:]I(+)). Items (f) and (g) show a complexity gap, be-
cause C(n) can be much lower than [(n). Hint for Item (h): use Item
(d). Source: for Items (b) through (e), and (h), D.W. Loveland, In-
form. Contr., 15(1969), 510-526. Loveland attributes Item (e) to A.R.
Meyer. The equivalence between bounded length-conditional complexity
and bounded uniform complexity for prefixes of infinite strings is stated
by A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83—
124. Source of Items (f) and (g) is G.J. Chaitin, Theoret. Comput. Sci.,
2(1976), 45-48. For the prefix complexity K introduced in Chapter 3,
there are nonrecursive w such that K(wi.,) < K(n)+ O(1) for all n by
a result of R.M. Solovay in Exercise 3.6.9 on page 231.

2.3.5. [HM35] We want to show in some precise sense that the real line
is computationally a fractal. (Actually, one is probably most interested in
Ttem (a), which can be proved easily and elementarily from the following
definition.) The required framework is as follows: Each infinite binary
sequence w = wiws . . . corresponds to a real number 0 < 0.w < 1. Define
the normalized complexity Cn(w) = limy,_,o0 C(w1:n)/n. If the limit does
not exist, we set Cn(w) to half the sum of the upper and lower limits.

(a) Show that for all real w in [0,1), for every ¢ > 0 and all real r,
0 < r <1, there exist real ¢ in [0, 1) such that |w—(| < e and Cn(¢) = r.
(For each real r, 0 < r < 1, the set of w’s with Cn(w) = r is dense on
the real line [0,1).)

(b) Show that for all real w, all rational r and s, we have Cn(rw + s) =
Cn(w) (both w and rw + s in [0, 1)). Similarly, show that Cn(f(w)) =
Cn(w) for all recursive functions f.

B. Mandelbrot defined a set to be a fractal if its Hausdorff dimension is
greater than its topological dimension [B. Mandelbrot, The Fractal Ge-
ometry of Nature, W.H. Freeman, 1983; for definitions of the dimensions
see W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ.
Press, 1974].

(¢) Show that for any real numbers 0 < a < b < 1, the Hausdorff

dimension of the set {(w,Cn(w))}N([0,1) x [a,b]) is 1 + b.

(d) Show that the set G = {(w,Cn(w)) : w € [0,1)} has Hausdorff
dimension 2 and topological dimension 1. (That is, G is a fractal.)

— —IA

Comments. Source: J.-Y. Cai and J. Hartmanis, J. Comput. System
Sci., 49:3(1994), 605-619. Other relationships among the Hausdorff di-
mension, Lutz’s constructive dimension, and Kolmogorov complexity
have been investigated by L. Staiger in [Inform. Comput., 102(1993),
159-194; Theor. Comput. Syst. 31(1998), 215-229], B.Ya. Ryabko in [J.



2.4
Random
Finite
Sequences

2.4. Random Finite Sequences 133

Complexity, 10(1994) 281-295]; J.H. Lutz in [Proc. 27th Int. Collog. Aut.
Lang. Prog., 2000, pp. 902-913; Inform. Comput., 187(2003), pp. 49-79;
SIAM J. Comput. 32(2003), 1236-1259], and E. Mayordomo in [Inform.
Process. Lett., 84:1(2002), 247-356].

2.3.6. [M34] To investigate repeating patterns in the graph of C'(z) we
define the notion of a ‘shape match.” Every function from the integers
to the integers is a shape. A shape f matches the graph of C' at j with
span cif for all z with j —c¢ < < j+c¢ we have C(z) = C(j) + f(x —j).

(a) Show that every matching shape has f(0) = 0. Thus, a matching
shape is a template of which we align the center f(0) with j to see to
what extent it matches C’s graph around the point of interest. We wish
to investigate shapes that can be made to match arbitrarily far in each
direction.

(b) A shape f is recurrent if for all ¢ there exists a j such that f matches
the graph of C' at j with span c¢. Show that there exists a recurrent shape.

(c) Show that there exists a constant ¢ such that there are no runs
Cn)=C(n+1)=---=C(n+c) for any n.

(d) Prove that no recurrent shape is a recursive function.

Comments. The notion of ‘shape match’ is different from that of ‘follow-
ing the shape’ in Definition 5.5.8 on page 407. Hints: for Item (b) use
Konig’s infinity lemma. Item (c) means that the graph of C' has no arbi-
trarily long flat spots. For Item (c), prove for sufficiently large ¢ that for
each integer ¢, for all n with C(n) = i, the run C'(n), C(n+1),...,C(n+c)
contains an element less than i. For Item (d) use a case analysis, and
use in one case the proof of Item (c) and in the other cases the recursion
theorem, Exercises 1.7.20, page 46. Source: H.P. Katseff and M. Sipser,
Theoret. Comput. Sci., 15(1981), 291-309.

One can consider those objects as nonrandom in which one can find
sufficiently many regularities. In other words, we would like to identify
incompressibility with randomness. This is proper if the sequences that
are incompressible can be shown to possess the various properties of
randomness (stochasticity) known from the theory of probability. That
this is possible is the substance of the celebrated theory developed by
the Swedish mathematician Per Martin-Lof.

There are many properties known that probability theory attributes to
random objects. To give an example, consider sequences of n tosses with
a fair coin. Each sequence of n zeros and ones is equiprobable as an
outcome: its probability is 27". If such a sequence is to be random in
the sense of a proposed new definition, then the number of ones in =



134

2. Algorithmic Complexity

Example 2.4.1

should be near to ém the number of occurrences of blocks 00 should be
close to }Ln, and so on.

It is not difficult to show that each such single property separately holds
for all incompressible binary strings. But we want to demonstrate that
incompressibility implies all conceivable effectively testable properties of
randomness (both the known ones and the as yet unknown ones). In this
way, the various theorems in probability theory about random sequences
carry over automatically to incompressible sequences.

In the case of finite strings we cannot hope to distinguish sharply between
random and nonrandom strings. For instance, considering the set of binary
strings of a fixed length, it would not be natural to fix an m and call a string
with m zeros random and a string with m + 1 zeros nonrandom.

Let us borrow some ideas from statistics. We are given a certain sample
space S with an associated distribution P. Given an element x of the
sample space, we want to test the hypothesis “x is a typical outcome.”
Practically speaking, the property of being typical is the property of
belonging to any reasonable majority. In choosing an object at random,
we have confidence that this object will fall precisely in the intersection
of all such majorities. The latter condition we identify with x being
random.

To ascertain whether a given element of the sample space belongs to a
particular reasonable majority, we introduce the notion of a test. Gener-
ally, a test is given by a prescription that for every level of significance e,
tells us for what elements = of S the hypothesis “z belongs to majority
M in S” should be rejected, where ¢ = 1 — P(M). Taking e = 27™,
m =1,2,..., we achieve this by saying that we have a description of the
set V C N x S of nested critical regions

Vin ={z: (m,z) € V},
VmQVm-‘rh m=12,...,

while the condition that V;,, be a critical region on the significance level
€ = 27™ amounts to requiring, for all n,

> {Pll(z) =n):z €V} <.

The complement of a critical region V;, is called the (1 — €) confidence
interval. If x € V,,, then the hypothesis “x belongs to majority M,”
and therefore the stronger hypothesis “z is random,” is rejected with
significance level e. We can say that z fails the test at the level of critical
region V,,.

A string zizs...x, with many initial zeros is not very random. We
can test this aspect as follows. The special test V has critical regions



Example 2.4.2

241
Randomness
Tests

Definition 2.4.1

2.4. Random Finite Sequences 135

0 1
| | Vo
0 12
| | Vi
0 1/4
F—— W
0o 1B
— V3
o
FIGURE 2.3. Test of Example 2.4.1
Vi,Va,... . Consider x = 0.z122...x, as a rational number, and each
critical region as a half-open interval V,, = [0,27™) in [0,1), m =
1,2,... . Then the subsequent critical regions test the hypothesis “z

is random” by considering the subsequent digits in the binary expansion
of x. We reject the hypothesis on the significance level € = 27™ provided
T =Ty ==z, =0, Figure 2.3. &

Another test for randomness of finite binary strings rejects when the
relative frequency of ones differs too much from % This particular test
can be implemented by rejecting the hypothesis of randomness of z =
T1To ... Ty at level e = 27™ provided |2f, — n| > g(n,m), where f, =
i, @i, and g(n, m) is the least number determined by the requirement
that the number of binary strings x of length n for which this inequality
holds be at most 2"~™. Thus, in this case the critical region V,, is
{z € {0,1}": 12f, — n| > g(n,m)}. &

In practice, statistical tests are effective prescriptions such that we can
compute, at each level of significance, for what strings the associated
hypothesis should be rejected. It would be hard to imagine what use it
would be in statistics to have tests that are not effective in the sense of
computability theory (Section 1.7).

Let P be a recursive probability distribution on sample space N. A total
function ¢ : N'— N is a P-test (Martin-Lof test for randomness) if

1. ¢ is lower semicomputable (the set V' = {(m,x) : §(z) > m} is
recursively enumerable); and

2. Y AP|l(z) =n,0(x) > m} <27, for all n.



136

2. Algorithmic Complexity

Example 2.4.3

Definition 2.4.2

The critical regions associated with the common statistical tests are
present in the form of the sequence V4 D V5 D -+, where V;,, = {z :
d(x) > m}, for m > 1. Nesting is ensured, since §(x) > m + 1 implies
d(z) > m. Each set V,, is recursively enumerable because of Item 1.

Consider the important case of the uniform distribution, defined by
L(z) = 272®)=1 The restriction of L to strings of length n is defined
by Lp(z) = 27" for I(z) = n and 0 otherwise. (By definition, L,(z) =
L(z|l(x) = n).) Then Item 2 can be rewritten as ) oy Ln(z) <277,
which is the same as

d{z:l(z) =n, z € V,,}) <2"7™.

In this case we often speak simply of a test, with the uniform distribution
L understood.

In Definition 2.4.1, the integer function § is total and the set of points V
of its graph is recursively enumerable. But the totality of ¢ implies that the
recursively enumerable set V' is actually recursive, and therefore we can require
0 to be a total recursive function without changing the notion of P-test.

In statistical tests, membership of (m,z) in V can usually be determined in
time polynomial in I(m) + I(z).

Note that

> P@)d(@) =Y Plz:d@)>m}<y 27" =2

Therefore, §'(x) = log 6(z) is almost a sum-P test, Definition 4.3.8 on page 278.

The previous test examples can be rephrased in terms of Martin-Lof
tests. Let us try a more subtle example. A real number such that all bits
in odd positions in its binary representation are 1’s is not random with
respect to the uniform distribution. To show this we need a test that
detects sequences of the form x = lxolzglagles ... . Define a test § by

O0(x) =max{i:x1 =a3 =+ =291 = 1},

and d(x) = 0 if z; = 0. For example: §(01111) = 0; §(10011) = 1;
4(11011) = 1; 6(10100) = 2; §(11111) = 3. To show that J is a test we
have to show that § satisfies the definition of a test. Clearly, J is lower
semicomputable (even recursive). If §(z) > m where l(z) =n > 2m — 1,
then there are 2™~ ! possibilities for the (2m — 1)-length prefix of z, and
2n=(2m=1) possibilities for the remainder of x. Therefore, d{z : §(z) >
m, l(x) =n} <2n7™, &

A universal Martin-Lof test for randomness with respect to a distribution
P, a universal P-test for short, is a test do(-| P) such that for each P-test
d, there is a constant ¢ such that for all x we have §o(z|P) > 6(z) — c.



Lemma 2.4.1

2.4. Random Finite Sequences 137

We say that do(-|P) (additively) majorizes ¢. Intuitively, do(-|P) constitutes a
test for randomness that incorporates all particular tests ¢ in a single test. No
test for randomness § other than do(-|P) can discover more than a constant
amount of greater deficiency of randomness in any string x. In terms of critical
regions, a universal test is a test such that if a binary sequence is random with
respect to that test, then it is random with respect to any conceivable test,
neglecting a change in significance level. Namely, with do(-|P) a universal P-
test, let U = {(m, ) : do(x|P) > m}, and for any test d, let V = {(m,z) :
0(x) > m}. Then, defining the associated critical zones as before, we obtain

Vm+cgUm7 m:1727...,

where ¢ is a constant (dependent only on U and V).

It is a major result that there exists a universal P-test. The proof goes
by first showing that the set of all tests is enumerable. This involves the
first example of a type of construction we shall use over and over again
in different contexts in Chapters 2, 3, and 4. The idea is as follows:

We can effectively enumerate all P-tests.

Proof. We start with the standard enumeration ¢1, ¢s, ... of partial re-
cursive functions from A into A" X A, and turn this into an enumeration
01,09, ... of all and only P-tests. The list ¢1, ¢, ... enumerates all and
only recursively enumerable sets of pairs of integers as {¢;(z) : © > 1} for
i =1,2,.... In particular, for any P-test §, the set {(m,z) : §(x) > m}
occurs in this list. The only thing we have to do is to eliminate those ¢;
whose range does not correspond to a P-test.

First, we effectively modify each ¢ (we drop the subscript for conve-
nience) to a function 1 such that range ¢ equals range 1, and 1) has the
special property that if ¢(n) is defined, then t(1),1(2),...,9¥(n—1) are
also defined. This can be done by dovetailing the computations of ¢ on
the different arguments: in the first phase, do one step of the computa-
tion of ¢(1); in the second phase, do the second step of the computation
of ¢(1) and the first step of the computation of ¢(2). In general, in the
nth phase we execute the njith step of the computation of ¢(nz), for all
n1,ny satisfying ni; + no = n. We now define ¢ as follows. If the first
computation that halts is that of ¢(i), then set ¥(1) := ¢(7). If the sec-
ond computation that halts is that of ¢(j), then set ¥(2) := ¢(j), and
SO on.

Secondly, use each 1) to construct a test § by approximation from below.
In the algorithm, at each stage of the computation the local variable
array 0(1 : 0o) contains the current approximation to the list of function
values 0(1),d(2),.... This is doable because the nonzero part of the
approximation is always finite.



138

2. Algorithmic Complexity

Theorem 2.4.1

Step 1. Initialize § by setting §(x) := 0 for all z; and set ¢ := 0. {If
the range of 1 is empty, then this assignment will not be changed
in the remainder of the procedure, that is, § stays identically zero
and it is trivially a test}

Step 2. Set i := ¢ + 1; compute (i) and let its value be (m, z).
Step 3. If 6(z) > m then go to Step 2 else set 0(z) := m.

Step 4. If > {P(y|li(y) = I(x)) : d(y) > k} > 27F for some k, k =
1,...,m {since P is a recursive function we can effectively test
whether the new value of 6(z) violates Definition 2.4.1 on page 135}
then set §(z) := 0 and terminate {the computation of § is finished }
else go to Step 2.

With P the uniform distribution, for ¢ = 1 the conditional in Step 4
simplifies to m > I(z). In case the range of ¢ is already a test, then
the algorithm never finishes but forever approximates ¢ from below. If
1) diverges for some argument then the computation goes on forever and
does not change § any more. The resulting ¢ is a lower semicomputable
test. If the range of ¥ is not a test, then at some point the conditional in
Step 4 is violated and the approximation of § terminates. The resulting §
is a test, even a recursive one. Executing this procedure on all functions

in the list ¢1, ¢9, ..., we obtain an effective enumeration 41, do, . .. of all
P-tests (and only P-tests). We are now in a position to define a universal
P-test. m|

Let 1,02, ... be an enumeration of the above P-tests. Then do(z|P) =
max{d,(z) —y :y > 1} is a universal P-test.

Proof. Note first that do(:|P) is a total function on A because of Item 2
in Definition 2.4.1, page 135.

(1) The enumeration 61, da, . . . in Lemma 2.4.1 yields an enumeration of
recursively enumerable sets:

{(m,z) : 61(x) > m}, {(m,z):2(x) >m},....
Therefore, V = {(m, x) : do(z|P) > m} is recursively enumerable.
(2) Let us verify that the critical regions are small enough: for each n,

S {Plafi@) = n) : So(alP) > m}

I(z)=n

MS

Y {Pli(e) =n) : 6,(2) = m+y}

y=1 l(z)=n

Szz m-y _ 9—m

y=1

3



2472
Explicit Universal
Randomness

Test

Theorem 2.4.2

2.4. Random Finite Sequences 139

(3) By its definition, do(-|P) majorizes each § additively. Hence, it is
universal. O

By definition of §g(+| P) as a universal P-test, any particular P-test ¢ can
discover at most a constant amount more regularity in a sequence = than
does 0o (+|P), in the sense that for each d, we have d,(z) < do(z|P) +y
for all x.

For any two universal P-tests do(:|P) and ¢’¢(:|P), there is a constant
¢ > 0 such that for all  we have |5 (z|P) — §'o(z|P)| < c.

We started out with the objective to establish in what sense incom-
pressible strings may be called random. In Section 2.2.1 we considered
the randomness deficiency d(z|A) of a string x relative to a finite set
A. With A the set of strings of length n and z € A we find that
d(z|A) = §(x|n) =n — C(z|n).

The function §o(z|L) = l(x) — C(z|l(z)) — 1 is a universal L-test with L
the uniform distribution.

Proof. (1) We first show that f(z) = dp(z|L) is a test with respect to
the uniform distribution. The set {(m,z) : f(x) > m} is recursively
enumerable by Theorem 2.3.3.

(2) We verify the condition on the critical regions. Since the number of
x’s with C(z|l(z)) < I(x) —m—1 cannot exceed the number of programs
of length at most I(x) —m — 1, we have d({z : f(x) > m}) < 2!@-m_1,

(3) We show that for each test 0, there is a constant ¢ such that f(x) >
d(z) —c. The main idea is to bound C(z|l(x)) by exhibiting a description
of z, given I(z). Fix x. Let the set A be defined as

A={z:0(z) 2(x),l(z) =1(x)}.

We have defined A such that z € A and d(A) < 2!@) =) Tet § = g,
in the standard enumeration d1, da, . .. of tests. Given y, I(x), and §(z),
we have an algorithm to enumerate all elements of A. Together with
the index j of x in enumeration order of A, this suffices to find z. We
pad the standard binary representation of j with nonsignificant zeros
to a string s = 00...0j of length I(z) — d(x). This is possible since
I(s) > 1(d(A)). The purpose of changing j to s is that now the number
d(z) can be deduced from I(s) and I(x). In particular, there is a Turing
machine that computes x from input gs, when [(z) is given for free.
Consequently, by Theorem 2.1.1, C(z|l(z)) < l(z) — §(z) + 2l(y) + 1.
Since y is a constant depending only on &, we can set ¢ = 2l(y) +2. O



140

2. Algorithmic Complexity

Definition 2.4.3

Example 2.4.4

Let us fix dg(z|L) = I(z) — C(x|l(x)) — 1 as the reference universal test
with respect to the uniform distribution L. A string x is called c-random
if 0p(z|L) < c.

Randomness of a string is related to its incompressibility. It is easy to
see that

Clall(x)) < Clx) < Clzli(x)) +2C(U(x) - C(]l(2))),

up to fixed additive constants. (We can reconstruct [(z) from the length
of a shortest program p for z and the quantity {(x) — I(p).) This makes
C(z) and C(z|l(x)) about equal for the special case of = being incom-
pressible. (However, for compressible z, such as = 0™, the difference
between C'(z) and C(z|n) can rise to logarithmic in n.) Together with
Theorem 2.4.2, this provides the relation between the outcome of the ref-
erence universal L-test and incompressibility. Fix a constant c. If string
2 is c-incompressible, then dp (x| L) < ¢/, where ¢’ is a constant depending
on ¢ but not on x. Similarly, if dp(z|L) < ¢, then z is ¢’-incompressible,
where ¢’ is a constant depending on ¢ but not on z. Roughly, z is random,
or incompressible, if [(x) — C(x|l(x)) is small with respect to I(z).

It is possible to directly demonstrate a property of random binary strings
r = T1Z3...T, related to Example 2.4.2: the number of ones, f, =
x1 4+ ap, must satisfy |2, —n| = O(y/n). Assume that x is a binary
string of length n that is random in the sense of Martin-Lof. Then, by
Theorem 2.4.2, x is also c-incompressible for some fixed constant c. Let
fn = k. The number of strings satisfying this equality is (Z) By simply
giving the index of x in the lexicographic order of such strings, together
with n, and the excess of ones, d = |2k — n|, we can give a description
of x. Therefore, using a short self-delimiting program for d, we have

C(z|n) < log (Z) +O(d) + 20(C(d)).

For z given n to be c-incompressible for a constant ¢, we need C(x|n) >
n — c. Then,

n — log (Z) —C(d) - 21(C(d)) < c,

which can be satisfied only if d = O(y/n) (estimate the binomial coef-
ficient by Stirling’s formula, Exercise 1.5.4 on page 17). Curiously, if d
given n is easily describable (for example d = 0 or d = y/n), then x given
n is not random, since it is not c-incompressible. &

Randomness in the sense of Martin-Lof means randomness insofar as it can
be effectively certified. In other words, it is a negative definition. We look at



Exercises

Exercises 141

objects through a special filter, which highlights some features but obscures
others. We can perceive some qualities of nonrandomness through the lim-
ited sight of effective tests. Everything else we then call by definition random.
This is a matter of a pragmatic, expedient, approach. It has no bearing on the
deeper question about what properties real randomness, physically or mathe-
matically, should have. It just tells us that an object is random as far as we
will ever be able to tell, in principle and not just as a matter of practicality.

2.4.1. [20] For a binary string x of length n, let f(z) be the number
of ones in z. Show that §(z) = log(2n~/2|f(z) — 1n|) is a P-test with
P the uniform measure.

Comments. Use Markov’s inequality to derive that for each positive A,
the probability of 2n=1/2|f(z) — In| > X is at most 1/A. Source: T.M.
Cover, P. Gécs, and R.M. Gray, Ann. Probab., 17(1989), 840-865.

2.4.2. [23] Let x122 ...z, be a random sequence with C(z|n) > n.

(a) Use a Martin-Lof test to show that x10220...0x, is not random
with respect to the uniform distribution.

(b) Use a Martin-Lof test to show that the ternary sequence y1ya . .. yn
with y1 = 2, + 21 and y; = ;1 + x; for 1 < i < n is not random with
respect to the uniform distribution.

Comments. Hint: in Item (b) in the y-string the blocks 02 and 20 do
not occur. Extend the definition of random sequences from binary to

ternary. Source: R. von Mises, Probability, Statistics and Truth, Dover,
1981.

2.4.3. [35] Let = be a finite binary sequence of length n with f; =
1422+ -+, for 1 <j < n.Show that there exists a constant ¢ > 0
such that for all m € A/, all € > 0, and all =z,

Claln £) > 10g (1 ) = tog(met) +
implies

max f] — fn < €.

m<j<n| J n

Comments. This result is called Fine’s theorem. This is an instance of
the general principle that high probability of a computable property
translates into the fact that high complexity implies that property. (For
infinite sequences this principle is put in a precise and rigorous form in
Theorem 2.5.5.) Fine’s theorem shows that for finite binary sequences
with high Kolmogorov complexity, given the length and the number of



142

2. Algorithmic Complexity

ones, the fluctuations of the relative frequencies in the initial segments
is small. Since we deal with finite sequences, this is called apparent con-
vergence. Since virtually all finite binary strings have high complexity
(Theorem 2.1.3), this explains why in a typical sequence produced by
random coin throws the relative frequencies appear to converge or sta-
bilize. Apparent convergence occurs because of, and not in spite of, the
high irregularity (randomness or complexity) of a data sequence. Con-
versely, the failure of convergence forces the complexity to be less than
maximal. Source: T.L. Fine, IEEE Trans. Inform. Theory, IT-16(1970),
251-257; also R. Heim, IEEE Trans. Inform. Theory, IT-25(1979), 557—
566.

2.4.4. [36] (a) Consider a finite sequence of zeros and ones generated
by independent tosses of a coin with probability p (0 < p < 1) for
1. Let z = 125 ... 2, be a sequence of outcomes of length n, and let
fn =21+ 22+ +x,. The probability of such an = is pf» (1 —p)"~F».
If p is a recursive number, then the methods in this section can be used
to obtain a proper definition of finite Bernoulli sequences, sequences
that are random for this distribution. There is, however, no reason to
suppose that in physical coins p is a recursive real. This prompts another
approach whereby we disregard the actual probability distribution, but
follow more closely the combinatorial spirit of Kolmogorov complexity.
Define a finite Bernoulli sequence as a binary sequence x of length n
whose only regularities are given by f,, and n. That is, x is a Bernoulli
sequence iff C(z|n, f,) = log (;;) up to a constant independent of x.
Define a Bernoulli test as a test with the condition that the number of
sequences with f, ones and n — f, zeros in V,,, be < 2_’”(:) for all m,
n, and f,. Show that there exists a universal Bernoulli test Jy. Finite
Bernoulli sequences are those sequences x such that do(z) is low. Show
that up to a constant independent of x,

fn

for all  (with n and f, as above).

do(o) =1og (1) = Claln. )

(b) We continue Item (a). In the current interpretation of probability,
not only should the relative frequency of an event in a large number of
experiments be close to the probability, but there is an obscure secondary
stipulation. If the probability of success is very small, we should be prac-
tically sure that the event should not occur in a single trial [A.N. Kol-
mogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933;
English translation: Chelsea, 1956]. If = is a Bernoulli sequence (result
of n independent coin tosses) with a very low relative success frequency
fn/n (the coin is heavily biased), then, almost necessarily, 1 = 0. That
is, the assumption that 1 occurs as the very first element implies sub-
stantial regularity of the overall sequence.



2.5
*Random
Infinite
Sequences

25.1
Complexity
Oscillations

Theorem 2.5.1

2.5. *Random Infinite Sequences 143

Show that there is a constant ¢ such that dp(z) < logn/f, — ¢ implies
xr1 = 0.

Comments. Hint for Item (b): construct the test that rejects at level
27" when 1 = 1 and f, < n27™. Show that this is a Bernoulli test.
Compare this test with dp in Item (a). For sequential Bernoulli tests
for infinite sequences see Exercise 2.5.17. Source: P. Martin-Lof, Inform.
Contr., 9(1966), 602-619.

Consider the question of how C behaves in terms of increasingly long ini-
tial segments of a fixed infinite binary sequence (or string) w. Is it mono-
tone in the sense that C(w1.;m) < Clwiy), or Clwim|m) < Clwin|n),
for all infinite binary sequences w and all m < n? We have already seen
that the answer is negative in both cases. A similar effect arises when
we try to use Kolmogorov complexity to solve the problem of finding a
proper definition of random infinite sequences (collectives) according to
the task already set by von Mises in 1919, Section 1.9.

It is seductive to call an infinite binary sequence w random if there is
a constant ¢ such that for all n, the n-length prefix wy., has C(w1.,) >
n — c. However, such sequences do not exist. We shall show that for
high-complexity sequences, with C(w1.,) > n —logn — 2loglogn for all
n, this results in so-called complexity oscillations, where for every € > 0,

n — C(wi:n)
logn
oscillates between 0 and 1+ € for large enough n. First, we show that the

C' complexity of prefixes of each infinite binary sequence drops infinitely
often unboundedly far below its own length.

Let f : Nt — N be a total recursive function satisfying 3 oo 27" =
oo (such as f(n) =logn). Then for all infinite binary sequences w, we
have C(w1.n|n) < n — f(n) infinitely often.

Proof. In order to get rid of an O(1) term in the final argument, we first
change f into something that gets arbitrarily larger yet still diverges in
the same way as f. Define

F(n) = {log (i 2f(i)>J .



144

2. Algorithmic Complexity

Corollary 2.5.1

Note that ZF(n):m 2-f(n) > 9m _ 1 Now let g, also total recursive, be
defined as g(n) = f(n) + F(n). It follows that

S 9—9(n) —
>

Now we come to the real argument. Consider the unit interval [0,1]
laid out in a circle so that 0 and 1 are identified. The partial sums
G,=>", 290 mark off successive intervals I,, = [Gr-1,Gr) mod 1
on this circle. We exploit the fact that a point on the circle will be
contained in many of these intervals.

For each x € {0,1}*, the associated cylinder is the set
Py ={w e {0,1}* : wyy@m) = v}

The geometric interpretation is T'y, = [0.2, 0.2 + 271®)). Let

An:{xe{O,l}":FmﬂIn;«éQ}.

It follows from the divergence of GG, that for any w there is an infinite
set N C N consisting of the infinitely many n such that prefixes wi.,
belong to A,,. Describing a prefix wy.,, € A, by its index in the set, we
have

Clwinln) < log|An| + O(1) < log G ;Sn_l

=n—g(n)+0(1) <n— f(n).

+0(1)

O

Let f(n) be as in Theorem 2.5.1. Then C(w1.,) < n — f(n) infinitely
often, provided C(n|n — f(n)) = O(1) (such as f(n) =logn).

Proof. This is a slightly stronger statement than Theorem 2.5.1. Let p
be a description of wy.,, given n, of length C(wy.s|n). Let f(),g() be
as in the proof of Theorem 2.5.1, and let ¢ be an O(1)-length program
that retrieves n from n — f(n). Then I(gp) < n — f(n), since I(p) <
n—g(n) and g(n)— f(n) rises unboundedly. We pad gp to length n— f(n),
obtaining 17~/ ~U@)=10p. This is a description for wy.,. Namely, we
first determine g to find ¢g. The length of the total description is n— f(n).
By assumption, ¢ computes n from this. Given n we can retrieve wy.p,
from p. O



2.5. *Random Infinite Sequences 145

In [P. Martin-Lof, Z. Wahrsch. Verw. Geb., 19(1971), 225-230], Corollary 2.5.1
is stated to hold without the additional condition of n being retrievable from
n — f(n) by an O(1)-bit program. The proof of this fact is attributed to [P.
Martin-Lof, On the oscillation of the complexity of infinite binary sequences
(Russian), unpublished, 1965].

There is a simple proof that yields a result only slightly weaker than this. We
first prove the result with the particular function logn substituted for f(n)
in the statement of the theorem. We then iterate the construction to prove a
version of the theorem with a particular function g(n) substituted for f(n).
Our result is almost tight, since for functions h(n) that are only slightly larger
than g(n) the sum > 2= is finite. Moreover, the proof is explicit in that
we exhibit g(n).

Let w be an infinite binary sequence, and wi.,,n, an m-length prefix of w. If wi.m
is the nth binary string in the lexicographic order 0,1,00,..., that is, n =
Wiim, m = l(n), then C(w1:n) < C(Wm+1:n) +¢, with ¢ a constant independent
of n and m. Namely, with O(1) additional bits of information, we can trivially
reconstruct the nth binary string wi.m from the length n —I(n) of wm+1:n. By
Theorem 2.1.2, we find that C(wm+1:n) < n — I(n) 4 ¢ for some constant ¢
independent of n, whence the claimed result with f(n) = logn follows.

It is easy to see that we get a stronger result by iteration of the above argu-
ment. There are infinitely many n such that the initial segment y = w1., can be
divided as y = y1y2 . . . Yk, where l(y1) = 2, y1 = U(y2), y2 = L(y3), .-, Yk—1 =
l(yx). Use the usual pairing between natural numbers and binary strings.
Clearly, given yi we can easily compute all of w1.,, by determining y;—1 as the
binary representation of I(yx), yx—2 as the binary representation of I(yx—1),
and so on until we obtain [(y1) = 2. (If wi:24 = 010011101100000110100001,
then y; = 01, which corresponds to natural number 4, so y» = 0011, which
corresponds to the natural number 18, and finally y3 = 101100000110100001.
Hence, given y3, we can easily determine all of wi:24.) Then, for infinitely
many n,

O(Wl;n) S R + Ca

for k determined by n = k + (k) + I(I(k)) + - - - + 2, all terms greater than or
equal to 2. If we put g(n) = n — &, then it can be shown that 279 = o
but that for only slightly larger functions h(n) > g(n) the sum converges (for
example h(n) = g(n) + the number of terms in g(n)). There is an interesting
connection with prefix codes, Section 1.11.1.

Our approach in this proof makes it easy to say something about the frequency
of these complexity oscillations. Define a wave function w by w(1) = 2 and
w(i) = 2@(=1) Then the above argument guarantees that there are at least k&
values ni,na,...,nk less than n = w(k) such that C(win;) < ny — g(ng) + ¢
for all i = 1,2,..., k. Obviously, this can be improved.

In Figure 2.4 we display the complexity oscillations of initial segments
of high-complexity sequences as they must look according to Theo-
rems 2.5.1, 2.5.4, 2.5.5. The upper bound on the oscillations, C(w;.,) =
n + O(1), is reached infinitely often for almost every high-complexity



146

2. Algorithmic Complexity

e
e

/',/’/ n-log(n)-2log(log(n))

v

FIGURE 2.4. Complexity oscillations of initial segments of high—complexity
infinite sequences

sequence. Furthermore, the oscillations of all high-complexity sequences
stay above n —logn — 2loglogn, but dip infinitely often below n —logn.

Having shown that the complexity of prefixes of each infinite sequence
drops infinitely often unboundedly below the maximum value, we now
want to show that Theorem 2.5.1 is optimal. But let’s first discuss what
this means. Clearly, Theorem 2.5.1 is nontrivial only for very irregular
sequences z. It holds trivially for regular sequences such as w = 0%,
where the complexity of the initial segments wi., is about logn. We
will prove that it is sharp for those w that are maximally random. To
make this precise, we must define rigorously what we mean by a random
infinite sequence. It is of major significance that in so doing we also
succeed in completing in a satisfactory way the program outlined by
von Mises.

Due to the complexity oscillations, the idea of identifying random infinite
sequences with those such that C(wy.,,) > n—ec, for all n, is trivially infea-
sible. That is the bad news. In contrast, a similar approach in Section 2.4
for finite binary sequences turned out to work just fine. Its justification
was found in Martin-L6f’s important insight that to justify any proposed
definition of randomness one has to show that the sequences that are
random in the stated sense satisfy the several properties of stochasticity
we know from the theory of probability. Instead of proving each such
property separately, one may be able to show, once and for all, that
the random sequences introduced possess, in an appropriate sense, all
possible properties of stochasticity.

The naive execution of the above ideas in classical mathematics is infeasible
as shown by the following example: Consider as sample space S the set of all
one-way infinite binary sequences. The cylinder I'y = {w : w = x ...} consists
of all infinite binary sequences starting with the finite binary sequence x. For



25.2
Sequential
Randomness
Tests

Definition 2.5.1

2.5. *Random Infinite Sequences 147

instance, I'« = S. The uniform distribution A on the sample space is defined
by A\I'z) = 27*)_ That is, the probability of an infinite binary sequence w
starting with a finite initial segment z is 274 In probability theory it is
general practice that if a certain property, such as the law of large numbers,
or the law of the iterated logarithm, has been shown to have probability one,
then one calls this a law of randomness. For example, in our sample space the
law of large numbers says that lim,—oo(w1 + -+ + wn)/n = ; If A is the set
of elements of S that satisfy the law of large numbers, then it can be shown
that A(4) = 1.

Generalizing this idea for S with measure p, one may identify any set B C S
such that u(B) = 1 with a law of randomness, namely, “to be an element of
B.” Elements of S that do not satisfy the law “to be an element of B” form a
set of measure zero, a null set. It is natural to call an element of the sample
space ‘random’ if it satisfies all laws of randomness. Now we are in trouble.
For each element w € S, the set B, = S — {w} forms a law of randomness.
But the intersection of all these sets B, of probability one is empty. Thus, no
sequence would be random if we require that all laws of randomness that exist
be satisfied by a random sequence.

It turns out that a constructive viewpoint enables us to carry out this program
mathematically without such pitfalls. In practice, all laws that are proved in
probability theory to hold with probability one are effective in the sense of
Section 1.7. A straightforward formalization of this viewpoint is to require a
law of probability to be partial recursive in the sense that we can effectively
test whether it is violated. This suggests that the set of random infinite se-
quences should not be defined as the intersection of all sets of measure one,
but as the intersection of all sets of measure one with a recursively enumer-
able complement. The latter intersection is again a set of measure one with
a recursively enumerable complement. Hence, there is a single effective law of
randomness that can be stated as the property “to satisfy all effective laws of
randomness,” and the infinite sequences have this property with probability
one.

As in Section 2.4, we define a test for randomness. However, this time
the test will not be defined on the entire sequence (which is impossible
for an effective test and an infinite sequence), but for each finite binary
string. The value of the test for an infinite sequence is then defined as
the maximum of the values of the test on all prefixes. Since this suggests
an effective process of sequential approximations, we call it a sequential
test. Below, we need to use notions of continuous sample spaces and
measures as treated in Section 1.6.

Let 1 be a recursive probability measure on the sample space {0,1}>°. A
total function ¢ : {0,1}°° — N |[J{oo} is a sequential p-test (sequential
Martin-Lof u-test for randomness) if



148

2. Algorithmic Complexity

Example 2.5.1

1. 6(w) = sup,er{v(win)}, where v : N — N is a (total) lower
semicomputable function (V = {(m,y) : v(y) > m} is a recursively
enumerable set); and

2. p{w: 6(w) = m} <27™ for each m > 0.

If p is the uniform measure A, then we often use simply the term se-
quential test.

We can require v to be a recursive function without changing the notion of
a sequential p-test. By definition, for each lower semicomputable function
there exists a recursive function ¢ with ¢(z, k) nondecreasing in k such that
limg— 00 ¢(z, k) = y(x). Define a recursive function 4" by 7' (w1:n) = d(wi:m, k)
with (m, k) = n. Then, sup, {7 (wi:n)} = sup,cp{v(win)}.

Consider {0,1}> with the uniform measure A\(z) = 27/®). An example
of a sequential A-test is to test whether there is some 1 in an even position
of w e {0,1}*°. Let

1 . n/2
v oam if Y077 wey =0,
V(@rn) { 0  otherwise.

The number of z’s of length n such that v(z) > m is at most 2"/2 for
any m > 1. Therefore, Mw : §(w) > m} <27 for m > 0. For m = 0,
Mw : §(w) > m} < 27™ holds trivially. A sequence w is random with
respect to this test if 6(w) < oo. Thus, a sequence ¢ with 0’s in all even
locations will have §(¢) = oo and it will fail the test, and hence ¢ is not
random with respect to this test. Notice that this is not a very strong
test of randomness. For example, a sequence n = 010°° will pass ¢ and
be considered random with respect to this test. This test filters out only
some nonrandom sequences with all 0’s at the even locations and cannot
detect other kinds of regularities. &

We continue the general theory of sequential testing. If §(w) = co, then
we say that w fails §, or that § rejects w. Otherwise, w passes §. By
definition, the set of w’s that are rejected by ¢ has p-measure zero, and
conversely, the set of w’s that pass § has p-measure one.

Suppose that for a test § we have §(w) = m. Then there is a prefix y of w,
with I(y) minimal, such that v(y) = m for the 7 used to define 4. Then
obviously, each infinite sequence ¢ that starts with y has §({) > m. The
set of such (isT'y = {¢: ¢ = yp, p € {0,1}°°}, the cylinder generated by
y. Geometrically speaking, I'; can be viewed as the set of all real numbers
0.y ... corresponding to the half-open interval I, = [0.y,0.y + 271(9)).
For the uniform measure, A\(T'y) is equal to 2-U¥) | the common length
of I,.



Definition 2.5.2

Definition 2.5.3

Theorem 2.5.2

2.5. *Random Infinite Sequences 149

In terms of common statistical tests, the critical regions are formed by
the nested sequence V3 D V3 D -+, where V,, is defined as V,,, = {w :
d(w) > m}, for m > 1. We can formulate the definition of V,,, as

Vo = (J{Ty = (m,y) € V}.

In geometric terms, V,, is the union of a set of subintervals of [0,1).
Since V is recursively enumerable, so is the set of intervals whose union
is V.. For each critical section we have (V) < 27 (in the measure
we count overlapping intervals only once).

Now we can reformulate the notion of passing a sequential test § with
associated set V:

d(w) < oo iff w¢ ﬁVm.

m=1

Let V be the set of all sequential p-tests. An infinite binary sequence
w, or the binary-represented real number 0.w, is called p-random if it
passes all sequential p-tests:

wQU ﬁvm.

Vev m=1

For each sequential p-test V, we have p((°_, Vin) = 0, by Defini-
tion 2.5.1. We call ()-_, Vi a constructive p-null set . Since there are
only countably infinitely many sequential u-tests V, it follows from stan-
dard measure theory that

u(U ﬁw)o,

vVev m=1

and we call the set U = Jy, ey yn—1 Vin the mazimal constructive p-null
set.

In analogy to Section 2.4, we construct a lower semicomputable function
do(w|p), the universal sequential u-test that incorporates (majorizes) all
sequential p-tests d1,d9,. .. and that corresponds to U.

A universal sequential p-test f is a sequential p-test such that for each
sequential p-test ¢; there is a constant ¢ > 0 such that for allw € {0,1}°°,
we have f(w) > 6;(w) —c.

There is a universal sequential p-test (denoted by do(-|u)).



150

2. Algorithmic Complexity

Proof. Start with the standard enumeration ¢1, ¢s, . . . of partial recursive
functions from A into N' x A. In this way, we enumerate all recursively
enumerable sets of pairs of integers in the form of the ranges of the
¢;’s. In particular, we have included any recursively enumerable set V'
associated with a sequential p-test. The only thing we have to do is to
eliminate those ¢;’s that do not correspond to a sequential p-test.

First, effectively modify each ¢ (we drop the subscript for convenience)
to a function ¢ such that range ¢ equals range v, and 1 has the special
property that if ¥(n) < oo, then also ¥(1),%(2),...,¥(n —1) < co.

Second, use each v to construct a function ¢ : {0,1}*° — A by approx-
imation from below. In the algorithm, at each stage of the computation
the arrays v and 0 contain the current approximation to the function
values of v and §. This is doable because the nonzero part of the ap-
proximation is always finite.

Step 1. Initialize v and 0 by setting d(w) := y(w1.m) := 0, for all w €
{0,1}*°,n € N, and set i := 0.

Step 2. Set i := ¢+ 1; compute (i) and let its value be (y,m).
Step 3. If v(y) > m then go to Step 2 else set y(y) := m.

Step 4. If (U, ()5, I2) > 27F for some k, k= 1,...,m {since p is a
recursive function we can effectively test whether the new assign-
ment violates Definition 2.5.1} then terminate {the computation
of ¢ is finished} else set §(w) := max{m, d(w)}, for allw € T, and
go to Step 2.

For the uniform measure A(I';) = 27/(*) the conditional in Step 4 sim-
plifies for i = 1 tom > I(y). In case the range of ¢ is already a sequential
u-test, then the algorithm never finishes but approximates § from below.
If the range of v is not a sequential u-test, then at some point the con-
ditional in Step 4 is violated and the computation of § terminates. The
resulting § is a sequential u-test, even a recursive one. If the conditional
in Step 4 is never violated, but the computation of ¥ diverges for some
argument, then § is trivially a lower semicomputable sequential u-test.

Executing this procedure on all functions in the list ¢, ¢o, . . ., we obtain
an effective enumeration d1,09,... of all sequential u-tests (and only
sequential p-tests). The function dg(-|u) defined by
do(wlp) = sup{di(w) — i}
€N

is a universal sequential p-test.



Definition 2.5.4

Theorem 2.5.3

2.5. *Random Infinite Sequences 151

First, do(w|p) is a lower semicomputable function, since the set {(m,w) :
do(w|) > m} is recursively enumerable. The proof that do(-|p) is a
sequential u-test, and majorizes all other sequential p-tests additively,
is completely analogous to the proof for the similarly defined universal
P-test in Section 2.4. O

Any other sequential u-test §; can discover at most a constant additional
amount randomness in a sequence w than does do(-|x). That is, 6;(w) <
do(w|p) + i, for all w.

The difference between any two universal sequential p-tests do(-|p) and
8 0(:|r) is bounded by a constant: |§g(w|p) — §'o(w|p)| < ¢, with ¢ in-
dependent of w. We are now ready to separate the random infinite
sequences from the nonrandom ones.

Let the sample space {0,1}°° be distributed according to u, and let
do(-|) be a universal sequential u-test. An infinite binary sequence w
is p-random in the sense of Martin-Lof if do(w|pn) < co. We call such a
sequence simply random, where both p and Martin-Lof are understood.
(This is particularly interesting for p is the uniform measure.)

Note that this definition does not depend on the choice of the particular
universal sequential p-test with respect to which the level is defined.
Hence, the line between random and nonrandom infinite sequences is
drawn sharply without dependence on a reference pu-test. Clearly, the
set of infinite sequences that are not random in the sense of Martin-Lof
forms precisely the maximal constructive p-null set of p-measure zero
we have constructed above. Therefore, we have the following result.

Let o be a recursive measure. The set of p-random infinite binary se-
quences has p-measure one.

We say that the universal sequential p-test do(-|p) rejects an infinite se-
quence with probability zero, and we conclude that a randomly selected
infinite sequence passes all effectively testable laws of randomness with
probability one.

The main question remaining is the following: Let A be the uniform measure.
Can we formulate a universal sequential A-test in terms of complexity? In
Theorem 2.4.2 the universal (nonsequential) test is expressed in that way.
The most obvious candidate for the universal sequential test would be f(w) =
sup,ca-{n — C(wi:n)}, but it is improper. To see this, it is simplest to notice
that f(w) would declare all infinite w to be nonrandom, since f(w) = oo, for
all w, by Theorem 2.5.1. The same would be the case for f(w) = sup,ca{n —
C(w1:n|n)}, by about the same proof. It is difficult to express a universal
sequential test precisely in terms of C-complexity. But in Chapter 3 we show
that it is easy to separate the random infinite sequences from the nonrandom
ones in terms of prefix complexity.



152 2. Algorithmic Complexity

253
Characterization
of Random
Sequences

Definition 2.5.5

Theorem 2.5.4

How accurately can we characterize the set of infinite random sequences
in complexity terms? It turns out that we can sandwich them between a
proper superset in Theorem 2.5.4, page 152, and a proper subset in The-
orem 2.5.5, page 153. First we bound the amplitude of the oscillations
of random sequences.

The infinite series 3" 277" is recursively convergent if there is a recur-
sive sequence n1,ns, ... such that

Yoo m=1,2,... .

N=Nm

Let f(n) be a recursive function such that > oo 277" < oo is recur-
sively convergent. If an infinite binary sequence w is random with respect
to the uniform measure, then C(w1.n|n) > n—f(n), from some n onward.

Proof. We define a sequential test that is passed only by the w’s satisfying
the conditions in the theorem. For each m, let the critical section V,,
consist of all infinite binary sequences w such that there exists an n > n,,
for which C(w1.n|n) < n— f(n). In other words, V,,, consists of the union
of all intervals [0.w1., 0.w1., +27") satisfying these conditions. We have
to show that this is a sequential test. We can recursively enumerate the
intervals that constitute V,,, and therefore V7, V5, ... is a sequence of
recursively enumerable sets. Obviously, the sequence is nested. For every
large enough n, at most 2"~F(™) strings y of length n satisfy C(y|n) <
n — f(n) (Theorem 2.2.1). Hence, with A the uniform measure, we have,
for all m,

AVi) < Y 2ndlgmn <o,

N=Nym

Therefore, the sequence of critical regions forms a sequential test, and
A2, Vin) = 0. That is, (,._; Vi, is a constructive A-null set associ-
ated with a sequential test. Consequently, it is contained in the maximal
constructive A-null set, which consists precisely of the sequences that are

not random according to Martin-Lof. O

We can say fairly precisely which functions f satisfy the condition in
Theorem 2.5.4. Examples are f(n) = 2logn and f(n) = log n+2loglogn.
In fact, the function g(n) used in the proof of Theorem 2.5.1 is about
the borderline. It is almost sufficient that f(n) — g(n) be unbounded
for a recursive function f(n) to satisfy the condition in Theorem 2.5.4.
A precise form of the borderline function is given in Exercise 3.6.7 on
page 231.



Theorem 2.5.5

Claim 2.5.1

2.5. *Random Infinite Sequences 153

With Theorem 2.5.4 we have shown that Theorem 2.5.1 is optimal in
the sense that it gives the deepest complexity dips to be expected from
sequences that are random with respect to the uniform measure (in the
sense of Martin-Lof). But also, we have found a property of infinite
sequences in terms of C' that is implied by randomness with respect
to the uniform measure. Is there also a property of infinite sequences
in terms of complexity C' that implies randomness with respect to the
uniform measure?

Let w be an infinite binary sequence.

(i) If there exists a constant ¢ such that C(w1.,) > n — ¢, for infinitely
many n, then w is random in the sense of Martin-Lof with respect to the
uniform measure.

(ii) The set of w for which there exists a constant ¢ and infinitely many
n such that C(w1.,) > n — ¢ has uniform measure one.

Proof. We first prove the following claim:

Let w € {0,1}°°. There exists a positive constant ¢ such that C(wy.,|n) >
n — ¢ for infinitely many n iff there exists a positive constant ¢ such that
C(w1.n) > n — ¢ for infinitely many n.

Proof. (ONLY 1F) This is the easy direction, since conditional information
does not increase complexity. Hence, for all w,n, we have C(wy.,|n) <
C(w1:n) up to a fixed additive constant.

(Ir) For some fixed constant ¢;, we have for all w,n that C(wy.,) <
C(wi:n|n) +21(n—C(wi:n|n))+c1. (The right-hand side of the inequality
is the length of a description of wy.5,.) Since in the ‘If’ direction we assume
that C(wy.n) > n — ¢ for some ¢ and infinitely many n, we obtain n —
C(win|n) < ctc142l(n—C(w1:n|n)) for this infinite sequence of n’s. But
that is possible only if there is a constant ¢o such that n—C(w1.|n) < co
for the same infinite sequence of n’s, which finishes the proof. O

(i) Below, a ‘test’ is a ‘A-test’ with A the uniform measure. We denote
sequential tests by ¢’s, and (nonsequential) tests of Section 2.4 by 4’s. Let
d0(:|]A) denote the universal sequential test with respect to the uniform
measure A, and let vo(-|L) denote the universal test with respect to the
uniform distribution L.

Since a sequential test is a fortiori a test, there is a constant ¢ such that
00(w1:n|A) < Yo(win|L) + ¢, for all w and n. By choosing the specific
universal test of Theorem 2.4.2, we have dp(w1.n|\) < n — C(w1.n|n) up
to a constant. Since dp is monotonic nondecreasing,

lim d0p(w1:n|A) < liminf(n — C(wi.n|n)) + O(1).



154

2. Algorithmic Complexity

For those w’s satisfying the assumption in the statement of the theorem,
by Claim 2.5.1 the right-hand side of the inequality is finite. By Theo-
rem 2.4.2, therefore, such w’s are random with respect to the uniform
measure.

(ii) For each ¢ and n, let V., denote the union of the set of intervals
associated with prefixes wy., of infinite binary sequences w such that
C(wi:nn) > n — c. Let A be the uniform measure. There are at most
2"~¢ strings of length less than n — ¢ and therefore at least 2™ — 2"~ ¢
strings z of length n satisfying C(z|n) > n — c. Hence, for each m and
¢ we have

A < U Vn> >A(Vom) > (27 —2m7¢)27m =1 —-27¢,
Since the right-hand term is independent of m, we also have
A(ﬂ U Vn> >1-27°
m=1 n=m

Since

DL

‘/c+1,n

oo
U Ven
1 n=m

for all positive integers ¢, we obtain

(0 A 8o (d 00
c=1 m=1 n=m

m=1 n=m
The formula (J 2, N>_, U,~,, Ve,n denotes precisely the set of infinite
sequences w for which there exists a positive integer constant ¢ such that
for infinitely many n, C'(w1.,|n) > n—cholds. A fortiori, the same holds
without the conditional up to an additive constant. O

N
Y
1o

m 1

> lim (1-279 =1.

~ c¢—oo

We conclude that the set of sequences satisfying the condition in Theo-
rem 2.5.4 contains the set of sequences that are random with respect to
the uniform measure (in Martin-Lof’s sense), and the latter contains the
set of sequences satisfying the condition in Theorem 2.5.5; see Figure 2.5.
There, the inner oval is the set of sequences satisfying Theorem 2.5.5;
the middle oval is the set of Martin-Lof random sequences; the outer
oval is the set of sequences satisfying Theorem 2.5.4. Containment is
always proper. The outer oval in its turn is properly contained in the set
defined by Exercise 2.5.5 on page 159. Although the differences between



Corollary 2.5.2

2.5. *Random Infinite Sequences 155

Theorem 2.5.4

ML-random

Theorem 2.5.5

FIGURE 2.5. Three notions of ‘chaotic’ infinite sequences

each pair of the three sets are nonempty, they are not large, since all
three sets have uniform measure one. For instance, the set of random
sequences not satisfying the condition of Theorem 2.5.5 has uniform
measure zero. In Example 3.6.19 on page 237 it is shown that the con-
dition involved precisely characterizes a stronger notion of randomness
than Martin-Lo6f randomness.

The combination of Theorems 2.5.4 and 2.5.5 enables us to give a relation
between the upward and downward oscillations of the complexity of pre-
fixes of the random sequences satisfying the property in Theorem 2.5.5
as follows:

If f is a recursive function such that 3" 277(®) converges recursively and
C(w1.m) > n — ¢ for some constant ¢ and for infinitely many n, then
C(wi:n) > n — f(n) from some n onward.

The universal sequential u-test characterizes the set of infinite random
sequences. There are other ways to do so. We give an explicit characteri-
zation of infinite random sequences with respect to the uniform measure
in Theorem 3.6.1 and its corollary, page 222. This characterization is an
exact expression in terms of the prefix complexity developed in Chap-
ter 3.

Apart from sequential tests as developed above there are other types
of tests for randomness of individual infinite sequences. The extended
theory of randomness tests can be given only after we have treated lower
semicomputable semimeasures in Sections 4.5.7 and 4.5.6. There we give
exact expressions for u-tests for randomness, for arbitrary recursive pu.

We recall von Mises’s classic approach to obtaining infinite random sequences
w as treated in Section 1.9, which formed a primary inspiration to the work
reported in this section. It is of great interest whether one can, in his type of
formulation, capture the intuitively and mathematically satisfying notion of
infinite random sequence in the sense of Martin-Lof. According to von Mises,
an infinite binary sequence w is random (a collective) if

1. w has the property of frequency stability with limit p; that is, if f, =
w1 + w2 + - - - + wp, then the limit of f,/n exists and equals p.



156

2. Algorithmic Complexity

Definition 2.5.6

Definition 2.5.7

2. Any subsequence of w chosen according to an admissible place-selection
rule has frequency stability with the same limit p as in condition 1.

One major problem was how to define ‘admissible,” and one choice was to
identify it with Church’s notion of selecting a subsequence (12 ... of wiwa ...
by a partial recursive function ¢ by (» = wm if ¢(wir) = 0 for precisely
n — 1 instances of » with » < m — 1 and ¢(wi:m—-1) = 0. We called these ¢
‘place-selection rules according to von Mises—Wald—Church,” and the resulting
sequences ¢ Mises—Wald—Church random.

Mises—Wald—Church stochastic sequences are Mises—Wald—Church random se-
quences with limiting frequency ;

In Section 1.9 we stated that there are Mises—Wald—Church stochastic se-
quences that do not satisfy effectively testable properties of randomness such
as the law of the iterated logarithm or the infinite recurrence property. (Such
properties are by definition satisfied by sequences that are Martin-Lof ran-
dom.) In fact, the distinction between the Mises—Wald—Church stochastic se-
quences and the Martin-Lof random ones is quite large, since there are Mises—
Wald-Church stochastic sequences w such that C(wi.n) = O(f(n)logn) for
every unbounded, nondecreasing, total recursive function f; see also Exer-
cise 2.5.13 on page 161. Such Mises—Wald—Church stochastic sequences are
very nonrandom sequences from the viewpoint of Martin-Léf randomness,
where one requires that C'(wi.,) be asymptotic to n. See R.P. Daley, Math.
Systems Theory, 9(1975), 83-94. Note, that although a Mises—Wald—Church
stochastic sequence may have very low Kolmogorov complexity, it in fact
has very high time-bounded Kolmogorov complexity. See Exercise 7.1.7 on
page 546.

If we consider also sequences with limiting frequencies different from é, then
it is obvious that there are sequences that are random according to Mises—
Wald—Church, but not according to Martin-Lo6f. Namely, any sequence w with
limiting relative frequency p has complexity C(wi:.n) < H(p)n + o(n), where
H(p) = plog1/p+(1—p)log1/(1—p) (H(p) is Shannon’s binary entropy). This
means that for each € > 0 there are Mises—Wald—Church random sequences w
with C(w1:n) < en for all but finitely many n.

On the other hand, clearly all Martin-Lo6f random sequences are also Mises—
Wald—Church stochastic (each admissible selection rule is an effective sequen-
tial test).

This suggests that we have to liberate our notion of admissible selection rule
somewhat in order to capture the proper notion of an infinite random sequence
using von Mises’s approach. A proposal in this direction was given by A.N.
Kolmogorov [Sankhya, Ser. A, 25(1963), 369-376] and D.W. Loveland [Z.
Math. Logik Grundl. Math. 12(1966), 279-294].

A Kolmogorov—Loveland admissible selection function to select an infinite sub-
sequence (1(z ... from w = wiws . .. is a partial recursive function ¢ : {0,1}* —
N % {0,1} from binary strings to (index, bit) pairs (not necessarily defined on
all of {0, 1}*). The subsequence selection is a two-phase process. First we select
an intermediate sequence z of elements of w. Initially, z = €. If z = z122. .. 2;m is
the intermediate sequence selected after m steps, and ¢(z) = (¢,a) (a € {0,1}),



2.5. *Random Infinite Sequences 157

then zw; is the intermediate sequence selected after m + 1 steps. However, ¢
is partial, so ¢(z) may not be defined. Moreover, we are not allowed to select
the same bit position more than once. If for some z either ¢(z) is undefined, or
¢(z) = (4,-) while ¢(2’) = (3, -) for some proper initial segment z’ of z, then the
process terminates with finite z; otherwise z is infinite. If z = w;,wi, .. ., se-
lected by the sequence of associated ¢-values ¢(€) = (i1, a1), ¢(ws, ) = (i2,a2),
..., then we obtain the target selected subsequence ( by erasing every wi,
in z with associated a; = 0. The resulting ¢ may be finite or infinite, but
it is only the infinite ¢ in which we are interested. If w is such that for ev-
ery Kolmogorov—Loveland admissible selection function the selected sequence
(1¢2 . ..—if infinite—has the same limiting frequency as the original w, and
we assume the limiting frequency ;, then w is called a Kolmogorov-Loveland
stochastic sequence.

The term ‘Kolmogorov-Loveland random sequence’ is currently used for infi-
nite binary sequences for which there is no computable nonmonotonic betting
strategy that succeeds on it. The strategy has success if it obtains unbounded
gain in the limit while betting successively on the nonmonotonically selected
bits of the sequence. This is in contrast to the above ‘stochastic’ definition,
which expresses the weaker requirement that there be no computable non-
monotonic selection rule that selects an infinite biased sequence from the
original sequence. For more details, see [W. Merkle, J.S. Miller, A. Nies, J.
Reimann, F. Stephan, Ann. Pure Appl. Logic, 138(2006), 183-210].

As compared to the Mises—Wald—Church approach, the liberation of the se-
lection rule mechanism is contained in the fact that the order of succession
of the terms in the subsequence chosen is not necessarily the same as that
of the original sequence. Thus, the Kolmogorov-Loveland selection rules are
called nonmonotonic. In comparison, it is not obvious whether a subsequence
C1(2 . .. selected from a Kolmogorov-Loveland stochastic sequence wiws ... by
a Kolmogorov—Loveland place-selection rule is itself a Kolmogorov—Loveland
stochastic sequence. Note that the analogous property necessarily holds for
Mises—-Wald—Church stochastic sequences. This matter was resolved in [W.
Merkle, J. Symbol. Logic, 68(2003), 1362-1376], where it was shown that
there is a Kolmogorov—Loveland stochastic sequence from which one can se-
lect effectively (and in fact monotonically) a subsequence that is no longer
Kolmogorov—Loveland stochastic.

Clearly, the set of Kolmogorov-Loveland stochastic sequences is contained
in the set of Mises—Wald—Church stochastic sequences. In turn, the set of
Kolmogorov-Loveland stochastic sequences contains the set of Martin-Lof ran-
dom sequences. If wiws ... is Kolmogorov—Loveland stochastic, then clearly
¢1¢2.... defined by (; = w,(;), with o being a recursive permutation, is also
Kolmogorov-Loveland stochastic. The Mises—Wald—Church notion of stochas-
ticity does not have this important property of randomness of staying invariant
under recursive permutation. Loveland gave the required counterexample in
the cited reference. Hence, the containment of the set of Kolmogorov-Loveland
stochastic sequences in the set of Mises—Wald—Church stochastic sequences is
proper. This follows also from the cited result that the Kolmogorov-Loveland
stochastic sequences are not closed under monotonic effective selection rules,
earlier observed by A.K. Shen; see the acknowledgments in [W. Merkle, Ibid.].



158 2. Algorithmic Complexity

Exercises

This leaves the question whether the containment of the set of Martin-Lof
random sequences in the set of Kolmogorov—Loveland stochastic sequences is
proper. Kolmogorov has stated in [Problems Inform. Transmission, 5(1969), 3—
4] without proof that there exists a Kolmogorov—Loveland stochastic sequence
w such that C(w1.,) = O(logn). But An.A. Muchnik (1958-2007)—not to be
confused with his father A.A. Muchnik—showed that this is false, since no w
with C(w1:n) < en 4+ O(1) for a constant ¢ < 1 can be Kolmogorov—Loveland
stochastic. Nonetheless, containment is proper, since A.K. Shen [Soviet Math.
Dokl., 38:2(1989), 316-319] has shown that there exists a Kolmogorov-Loveland
stochastic sequence that is not random in Martin-Lof’s sense. Therefore, the
problem of giving a satisfactory definition of infinite Martin-Lo6f random se-
quences in the form proposed by von Mises has not yet been solved. See also
[A.N. Kolmogorov and V.A. Uspensky, Theory Probab. Appl., 32(1987), 389
412; V.A. Uspensky, A.L. Semenov, and A.K. Shen, Russ. Math. Surveys,
45:1(1990), 121-189; An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Theoret.
Comput. Sci., 2:207(1998), 1362-1376].

2.5.1. [13] Consider {0,1}°° under the uniform measure. Let w =
wiws ... € {0,1}°° be random in the sense of Martin-Lof.

(a) Show that ¢ = w,wny1 ... is Martin-Lof random for each n.
(b) Show that ¢ = 2w is Martin-Lof random for each finite string x.

Comments. Source: C. Calude, I. Chitescu, Bolletino U.M.L, (7) 3-
B(1989), 229-240.

2.5.2. [21] Consider {0,1}°° under the uniform measure. Let w =
Wwiwa ... € {O, 1}00

(a) Show that if there is an infinite recursive set I such that either for
all ¢ € I we have w; = 0 or for all i € I we have w; = 1, then w is not
random in the sense of Martin-Lof.

(b) Show that if the set {¢ : w; = 0} contains an infinite recursively
enumerable subset, then w is not random in the sense of Martin-Lof.

Comments. Source: C. Calude and I. Chitescu, Ibid.

2.5.3. [21] Let w = wjws ... be any infinite binary sequence. Define
¢ =C(C... by (; = w; +wi+1, ¢ > 1. This gives a sequence over the
alphabet {0, 1,2}. Show that ¢ is not random in the sense of Martin-Lof
under the uniform measure (extend the definition from binary to ternary
sequences).

Comments. Hint: the blocks 02 and 20 do not occur in (. Source: R. von
Mises, Probability, Statistics and Truth, Dover, 1981.

2.5.4. [23] Let w be any infinite binary sequence. Show that for all
constants ¢ there are infinitely many m such that for all n with m <
n < 2m, C(wi,) <n—ec



Exercises 159

Comments. We are guaranteed to find long complexity oscillations (of
length m) in an infinite binary sequence w relatively near the beginning
(namely win.om ), even if w is Martin-Lof random. Source: H.P. Katseff
and M. Sipser, Theoret. Comput. Sci., 15(1981), 291-309.

2.5.5. [M19] Let f be such that 327/ < co. Show that the set of
infinite binary sequences w satisfying C(wi.n|n) > n — f(n) for all but
finitely many n has uniform measure 1.

Comments. Hint: The number of y with I(y) = n such that C(y) <
n — f(n) is less than 2"~/(") This implies that the probability that this
inequality is satisfied is less than 277(") and the result follows by the
Borel-Cantelli lemmas; see Exercise 1.10.2 on page 64. This set of w’s
properly contains the set defined by Theorem 2.5.4. Source: P. Martin-
Lof, Z. Wahrsch. Verw. Geb., 19(1971), 225-230.

2.5.6. [09] Consider infinite binary sequences w with respect to the
uniform measure. Show that with probability one there exists a constant
¢ such that C(w1.,|n) > n — ¢ for infinitely many n.

Comments. Hint: use Theorem 2.5.5, Item (ii), and Claim 2.5.1. Source:
P. Martin-Lof, Z. Wahrsch. Verw. Geb., 19(1971), 225-230. .

2.5.7. [19] Consider infinite binary sequences w with respect to the
uniform measure. Show that if f is a recursive function and 32~/
converges recursively and C(w1.,) > n — ¢ for some constant ¢ and
infinitely many n, then C(w1.,) > n — f(n) for all but finitely many n.

Comments. This formulation establishes a connection between upward
and downward oscillations of the complexity of prefixes of almost all
(random) infinite binary sequences. For f we can take f(n) = 2logn, or
f(n) =logn+2loglogn, and so on. Hint: combine Theorems 2.5.4, 2.5.5.
Source: P. Martin-Lof, Z. Wahrsch. Verw. Geb., 19(1971), 225-230.

2.5.8. [19] Show that there exists an infinite binary sequence w and
a constant ¢ > 0 such that liminf, . C(wi.n|n) < ¢, but for any un-
bounded function f we have limsup,,_,., C(wi.n|n) > n — f(n).

Comments. The oscillations can have amplitude 2(n). Hint: use the n-
strings defined above. Construct w = yyys2 . . . from finite strings y;. Let ¢
be a fixed independent constant. For odd i choose y; such that y; ...y; is
an n-string, which implies that C(y1.;|l(y1.:)) < ¢. For even i choose y; as
a long enough random string so that C'(y1.:[l(y1:n)) = L(y1:n) — F ({y1:0))-
Source: H.P. Katseff and M. Sipser, Theoret. Comput. Sci., 15(1981),
291-309.

2.5.9. [39] Consider the Lebesgue measure A on the set of intervals
contained in [0, 1) defined by A\(T',) = 27!¥). (Recall that for each finite



160

2. Algorithmic Complexity

binary string y the cylinder I', is the set of all infinite strings w start-
ing with y.) Let w be an infinite binary sequence such that for every
recursively enumerable sequence Aq, As, ... of sets of intervals with the
property that the series ), A(A;) < oo converges, w is contained in only
finitely many A;. Show that for the w’s defined this way, the Solovay
random sequences are precisely the infinite binary sequences that are
random in the sense of Martin-Lof with respect to the uniform measure.

Comments. In Martin-Lof’s definition of randomness (with respect to
the uniform measure) of infinite binary sequences, he required that
A(A;) < 27% That definition is equivalent to stipulating the existence
of some regulator of convergence f(i) — oo that is recursive and nonde-
creasing such that A(4;) < 27, Solovay’s definition has the advantage
that it does not require such a regulator. Source: R.M. Solovay, Lecture
Notes, 1975, unpublished; and G.J. Chaitin, Algorithmic Information
Theory, Cambridge University Press, 1987; A. K. Shen, Soviet Math.
Dokl., 38:2(1989), 316-319.

2.5.10. [35] (a) Show that for every positive constant ¢ there is a
positive constant ¢’ such that {w1., : C(wip;n) > n —c} C {wiy :
C(wim|n) >n—c'}.

(b) Use the observation in Item (a) to show that Theorem 2.5.4 holds
for the uniform complexity measure C(-;1(+)).

(c) Show that if f is a recursive function and 3. 27f(") = oo, then for all
infinite w we have C(w1.,;n) < n — f(n) for infinitely many n. Hence,
Theorem 2.5.1 holds for uniform complexity.

Comments. Hint for Item (a): define the notion of a (universal) uniform
test as a special case of Martin-Lof’s (universal) test. Compare this
result with the other exercises to conclude that whereas the uniform
complexity tends to be higher in the low-complexity region, the length-
conditional complexity tends to be higher in the high-complexity region.
Source: D.W. Loveland, Inform. Contr., 15(1969), 510-526.

2.5.11. e [31] Show that the following statements are equivalent for an
infinite binary sequence w: For some constant ¢ and infinitely many n,
possibly different in each statement,

Comments. Hint: use Claim 2.5.1 and Exercise 2.5.10. In view of The-
orem 2.5.5 these conditions equivalently imply that w is random in the
sense of Martin-Lof. Source: R.P. Daley, pp. 113-122 in: Computational
Complezity, ed. R. Rustin, Courant Comput. Sci. Symp. 7(1971).



Exercises 161

2.5.12. [30] (a) Show that the following statements are equivalent for
an infinite binary sequence w: There exists a ¢ such that for infinitely
many n, possibly different in each statement,

Clwinln) <,
Clwimin) <l(n )+C
(mn)é I(n) +

The sequences thus defined are called pararecursive sequences.

(b) Show that no pararecursive sequence is random in the sense of
Martin-Lof.

Comments. Comparison with the other exercises shows that the recur-
sive sequences are contained in the pararecursive sequences. It also shows
that the pararecursive sequences have the cardinality of the continuum,
so this containment is proper. R.P. Daley [J. Symb. Logic, 41(1976),
626-638] has shown that the lower semicomputable sequences sequences
(which properly include the characteristc sequences of recursively enu-
merable sets) are pararecursive, and this containment is proper by the
same argument as before. Hint for Item (b): use Theorem 2.5.4. Despite
Item (b), there are pararecursive sequences that are close to being ran-
dom. For any unbounded function f, there is a pararecursive sequence
w such that for infinitely many n we have C(wi.n|n) > n — f(n); see
Exercise 2.5.8 on page 159. Source: H.P. Katseff and M. Sipser, Theoret.
Comput. Sci., 15(1981), 291-309.

2.5.13. [43] Let A be the set of Mises—Wald—-Church stochastic se-
quences (with p = ;) The admissible place-selection rules are the partial
recursive functions.

(a) Show that there is an w € A such that for each unbounded, non-
decreasing, total recursive function f, we have C(wi.n;n) < f(n)logn
from some n onward.

(b) Show that for all w € A, there is a constant ¢ such that C(w1.,;n) >
logn — ¢ from some n onward.

Consider the larger class B D A that is defined just like A but with the
admissible place-selection rules restricted to the total recursive functions.

(c) Show that there is an w € B such that C(w1.n;n) < f(n) from some
n onward, for each f as in Item (a).

(d) Show that for each w € B, for each constant ¢, we have C'(wy.,;n) > ¢
from some n onward.

Comments. Compare this with the text following Definition 2.5.6 on
page 156. This shows that there are Mises—Wald—-Church stochastic se-
quences of quite low complexity, and that it makes a difference whether



162

2. Algorithmic Complexity

the admissible place-selection rules are partial recursive or total recur-
sive. Source: R.P. Daley, Math. Systems Theory, 9 (1975), 83-94. Ttem
(a) is proved using Item (c), which is attributed to D.W. Loveland, and
uses a construction (LMS algorithm) in D.W. Loveland, Z. Math. Logik,
12(1966), 279-294. Compare with Exercise 7.1.7, page 546, to see what
happens when we impose a total recursive time bound on the decoding
process.

2.5.14. [35] Show that there is no Mises—Wald—Church stochastic se-
quence w (with limiting frequency }) and with C(w1.,) = O(logn).

Comments. This exercise was open in the second edition of this book,
solved in [W. Merkle, J. Comput. Syst. Sci., 74:3(2008), 350-357]. Com-
pare Exercise 2.5.13.

2.5.15. [33] (a) Show that there exists an infinite binary sequence w
that is random with respect to the uniform measure, but for each con-
stant ¢ there are only finitely many n such that C(w1.|n) > n — ¢ (the
condition of Theorem 2.5.5 does not hold).

(b) Show that there exists an infinite binary sequence w satisfying (i)
C(wi.n) > n — f(n) from some n onward and 3 277" converges recur-
sively (the condition in Theorem 2.5.4 holds), and (ii) w is not random
with respect to the uniform measure.

Comments. Thus, each containment in the nested sequence of sets of in-
finite binary sequences that satisfy the condition in Theorem 2.5.4, ran-
domness according to Martin-Lof, and the condition in Theorem 2.5.5,
as in Figure 2.5, is proper. Source, C.P. Schnorr, Math. Systems Theory,
5(1971), 246-258.

2.5.16. [21] (a) Show that none of the variants of algorithmic complex-
ity, such as C(x), C(z|l(x)), and C(z;1(z)), is invariant with respect to
cyclic shifts of the strings.

(b) Show that all these variants coincide to within the logarithm of the
minimum of all these measures.

Comments. Hint: use the idea in the proof of Theorem 2.5.4. This in-
variance cannot be expected from any complexity measure in this book
at all. Source: C.P. Schnorr, pp. 193-211 in: R.E. Butts and J. Hintikka,
eds., Basic Problems in Methodology and Linguistics, D. Reidel, 1977.

2.5.17. [36] (a) Consider an infinite sequence of zeros and ones gen-
erated by independent tosses of a coin with probability p (0 < p < 1)
for 1. Define sequential Bernoulli tests (in analogy with Section 2.5 and
Exercise 2.4.4 on page 142). Show that there exists a universal sequential
Bernoulli test §p. An infinite binary sequence w is a Bernoulli sequence
if do(w) < oo. Show that the set of Bernoulli sequences has measure



Exercises 163

one with respect to the measure induced in the set of infinite binary
sequences interpreted as independent (p,1 — p) Bernoulli trials.

(b) In our definition of infinite Bernoulli sequences no restrictions were
laid on the limiting behavior of the relative frequency, such as, for in-
stance, required in Condition 1 of Definition 1.9.1 of an infinite random
sequence (collective) w, where we require that lim, . fn/n = p for
some p (0 < p < 1) (Section 1.9). The relative frequency f,/n of ones in
increasingly longer prefixes wy., of a collective w does not oscillate in-
definitely, but converges to a definite limit. Show that remarkably, this
is also the case for an infinite Bernoulli sequence w.

(c) By the law of large numbers, all real numbers p in [0, 1] occur as limit
frequencies lim, . f,/n for infinite random binary sequences w, and
not only the recursive ones. Show that in contrast, for infinite Bernoulli
sequences w, the limit relative frequency cannot vanish, lim, .« fn/n =
0, unless w, = 0 for all n.

Comments. Hint for Ttem (b): for an arbitrary rational e > 0 construct
a sequential Bernoulli test that rejects at level 27 if | f;/i — f;/7| > e,
for some 4,5 > h(m), for some suitable nondecreasing total recursive
function. Compare with the universal Bernoulli test of Exercise 2.4.4
on page 142. Hint for Item (c): this is the infinite analogue of the phe-
nomenon in Item (b) of Exercise 2.4.4 on page 142. From Item (c) we
conclude that an event with vanishing limit frequency is actually im-
possible. This is in stark contrast with von Mises’s explicit statement
of the opposite for his conception of random sequences (collectives) [R.
von Mises, Probability, Statistics and Truth, Dover, 1981 (Reprinted)].
Source: P. Martin-Lof, Inform. Contr., 9(1966), 602—619. Additionally
we mention the following result [L.A. Levin, Sov. Math. Dokl. , 14(1973),
1413-1416]. Suppose we are given a constructively closed family M of
measures (this notion is defined naturally on the space of measures). Let
a test f be called uniform for M if for all measures in M, for all positive
integers k, the measure of outcomes w where f(w) > k is at most 27%.
There exists a universal uniform test.

2.5.18. [37] Let i be a recursive measure on the sample space {0, 1}°°.
Recall from Section 2.5 Martin-Lof’s construction of a constructive p-
null set using a notion of sequential test V' with associated critical regions
Vi D Vo D --- of measures u(V;) < 27% for i > 1. A constructive p-null
set is a total recursive p-null set if additionally, f(i) = p(V;) is a total
recursive function. Call an infinite sequence p-random in the sense of
Schnorr if it is not contained in any total recursive p-null set.

(a) Show that there is no universal total recursive p-null set that contains
all others.



164

2. Algorithmic Complexity

(b) Show that the set of sequences that are py-random in the sense of
Martin-Lof is a subset of the set of sequences that are p-random in the
sense of Schnorr.

(¢) An w € {0,1}° is an atom with respect to p if p(w) > 0. A measure
w is called discrete if the set of atoms of u has u-measure one. (Obviously
all atoms of recursive p are recursive sequences.) Show that the Schnorr-
p-random sequences coincide with the Martin-Lof-p-random sequences
iff p is discrete.

Comments. Item (c) implies that for continuous p (such as the uniform
measure), Schnorr randomness is weaker than Martin-Lof randomness.
The notion of total recursive null sets is the recursive analogue of the in-
tuitionistic notion of sets of measure zero by L.E.J. Brouwer [A. Heyting,
Intuitionism, an Introduction, North-Holland, 1956]. Sometimes the fol-
lowing statement is called Schnorr’s thesis: “A sequence behaves within
all effective procedures like a p-random sequence iff it is p-random in
the sense of Schnorr.” Source: C.P. Schnorr, pp. 193-211 in: R.E. Butts
and J. Hintikka, eds., Basic Problems in Methodology and Linguistics,
D. Reidel, 1977.

2.5.19. [M42] We abstract away from levels of significance and concen-
trate on the arithmetic structure of statistical tests. Statistical tests are
just TIY null sets, for some n (Exercise 1.7.21, page 46). The correspond-
ing definition of randomness is defined as, “an infinite binary sequence is
[1Y-random with respect to a recursive measure p if it is not contained in
any 112 set V with p-measure zero.” Has the set of I1%-random sequences
p-measure one?

Comments. Source: H. Gaifman and M. Snir, J. Symb. Logic, 47(1982),
495-548.

2.5.20. [M43] We assume familiarity with the unexplained notions be-
low. We leave the arithmetic hierarchy of Exercise 2.5.19 and consider
hyperarithmetic sets. Define an infinite binary sequence to be hyperarith-
metically random if it belongs to the intersection of all hyperarithmetic
sets of measure one. (A hyperarithmetic set can be regarded as a con-
structive version of the restriction to Borel sets that is usually accepted
in probability theory—=Section 1.6. The specific Borel sets considered
there are always obtained by applying the Borelian operations to re-
cursive sequences of previously defined sets, which means precisely that
they are hyperarithmetical.)

(a) Show that the set of sequences that are hyperarithmetically random
is a X1 set of measure one (X1 in the analytic hierarchy).

(b) Show that a hyperarithmetic sequence is not hyperarithmetically
random.



2.6
Statistical
Properties of
Finite
Sequences

Definition 2.6.1

2.6. Statistical Properties of Finite Sequences 165

(c¢) Show that the set of hyperarithmetically random sequences is not
hyperarithmetical.

Comments. Already A. Wald proposed to sharpen von Mises’s notion of
randomness by defining a sequence to be random if it possesses all prop-
erties of probability one that are expressible within a certain formalized
logic such as that of Principia Mathematica. This exercise is a variation
on this idea. Just as here, Wald’s proposal can be expected to define
a set of random strings that is no longer expressible in the language
with which we started. (This does not happen for Martin-Lof random
sequences as defined in Section 2.5 because of the existence of a univer-
sal sequential test.) However, with the present proposal, the resulting
class of random strings, while escaping the hyperarithmetic hierarchy,
does not escape us completely but belongs to a class of sets that can
still be handled constructively. Source: P. Martin-Lo6f, pp. 73-78 in: In-
tuitionism and Proof Theory, A. Kino et al., eds., North-Holland, 1970.
For related work more in the direction of Wald’s ideas, see [P.A. Be-
nioff, J. Math. Phys., 17:5(1976), 618-628, 629-640; L. Longpré and V.
Kreinovich, “Randomness as incompressibility: a non-algorithmic ana-
logue,” Tech. Rept. UTEP-CS-96-19, Univ. Texas El Paso, 1996]

Each individual infinite sequence generated by a (;, ;) Bernoulli process
(flipping a fair coin) has (with probability 1) the property that the rela-
tive frequency of zeros in an initial n-length segment goes to % as n goes
to infinity. Such randomness-related statistical properties of individual
(high)-complexity finite binary sequences are often required in applica-
tions of incompressibility arguments. The situation for infinite random
sequences is better studied, and therefore we look there first.

E. Borel has called an infinite sequence of zeros and ones normal in the
scale of two if for each k, the frequency of occurrences of each block y of
length k in the initial segment of length n goes to limit 27 as n grows
unboundedly.

It is known that normality is not sufficient for randomness, since Cham-
pernowne’s sequence 123456789101112... is normal in the scale of ten.
On the other hand, it is universally agreed that a random infinite se-
quence must be normal. (If not, then some blocks occur more frequently
than others, which can be used to obtain better than fair odds for pre-
diction.)

We know from Section 2.5 that each infinite sequence that is random
with respect to the uniform measure satisfies all effectively testable prop-
erties of randomness: it is normal, it satisfies the so-called law of the
iterated logarithm, the number of 1’s minus the number of 0’s in an



166 2. Algorithmic Complexity

2.6.1
Statistics of 0's
and 1's

Notation 2.6.1

Definition 2.6.2

initial n-length segment is positive for infinitely many n and negative
for another infinitely many n, and so on. While the statistical properties
of infinite sequences are simple corollaries of the theory of Martin-Lof
randomness, for finite sequences the situation is less simple. Here, we
determine the frequencies of occurrence of substrings in strings of high
Kolmogorov complexity. In Section 6.4.1 the similar question is treated
for subgraphs of high-Kolmogorov-complexity graphs.

In the finite case, randomness is a matter of degree, because it would
be clearly unreasonable to say that a sequence x of length n is random
and to say that a sequence y obtained by flipping the first bit 1 in x is
nonrandom. What we can do is to express the degree of incompressibil-
ity of a finite sequence in the form of its Kolmogorov complexity, and
then analyze the statistical properties of the sequence—for example, the
number of 0’s and 1’s in it.

Since almost all finite sequences have about maximal Kolmogorov com-
plexity, each individual maximal-complexity sequence must possess ap-
proximately the expected (average) statistical properties of the overall
set. For example, we can a priori state that each high-complexity finite
binary sequence is normal in the sense that each binary block of length
k occurs about equally frequently for k relatively small. In particular,
this holds for k¥ = 1. However, in many applications we need to know
exactly what ‘about’ and the ‘relatively small’ in this statement mean.
In other words, we are interested in the extent to which Borel normality
holds in relation to the complexity of a finite sequence.

Let x have length n. By Example 2.4.4, if C(z|n) = n + O(1), then the

number of zeros it contains is

o T O(v/n).

The quantity K (z|y) in this section satisfies
Clxly) < K(zly) < Claly) +2log C(z]y) + 1.

We can think of it as roughly the length of a self-delimiting version of a
program p of length [(p) = C(z|y). In Chapter 3 it is defined as ‘prefix
complexity.’

The class of deficiency functions is the set of functions § : N' — N satis-
fying K (n,d(n)|n—43(n)) < ¢ for all n. (Hence, C'(n,d(n)ln—:4a(n)) < ¢1
for all n.)

In this way, we can retrieve n and §(n) from n—§(n) by a self-delimiting
program of at most ¢; bits. We choose ¢; so large that each monotone



Lemma 2.6.1

2.6. Statistical Properties of Finite Sequences 167

sublinear recursive function that we are interested in, such as logn, v/n,
loglogn, is such a deficiency function. The constant ¢; is a benchmark
that stays fixed throughout this section.

We denote the number of 1’s in a binary string z € {0,1}* by #ones(z).

There is a constant ¢ such that for all deficiency functions §, for each n
and z € {0,1}", if C(x) > n —d(n), then

#ones(z) — Z( < \/ 3(6(71) +)n/loge. (2.3)

Proof. A general estimate of the tail probability of the binomial dis-
tribution, with s, the number of successful outcomes in n experiments
with probability of success 0 < p < 1, is given by Chernoff’s bounds,
Lemma 1.10.1 on page 61:

Pr(|s, —pn| > m) < ¢~ /30m. (2.4)

Let s, be the number of 1’s in the outcome of n fair coin flips, which
means that p = 1. Define A = {x € {0,1}" : |#ones(z) — Jn| > m} and
apply Equation 2.4 to obtain

d(A) < 2mtte2m/sn,
We choose m such that for some constant ¢ to be determined later,

2m?2loge
3n

We can compress any z € A in the following way:

=4(n) +c.

1. Let s be a self-delimiting program to retrieve n and §(n) from n —
d(n), of length at most ¢;.

2. Given n and §(n), we can effectively enumerate A. Let i be the
index of z in such an effective enumeration of A. The length of the
(not necessarily self-delimiting) description of i satisfies

1(i) < logd(A) <n+1—(2m*loge)/3n
=n+1-4n)—c

The string si is padded to length n+ 1 —d(n) — ¢+ ¢1. From si we can
reconstruct x by first using I(s7) to compute n —§(n), then computing n
and §(n) from s and n—d(n), and subsequently enumerating A to obtain
the ith element. Let T be the Turing machine embodying the procedure
for reconstructing x. Then by Theorem 2.1.1,

C(x) <Cr(r)+cr <n+1-0(n)—c+ci+er.



168

2. Algorithmic Complexity

Lemma 2.6.2

Example 2.6.1

Choosing ¢ = ¢1 + er + 2, we obtain C(z) < n— §(n), which contradicts
the condition of the theorem. Hence, |#ones(z) — jn| < m. O

It may be surprising at first glance, but there are no maximally complex
sequences with about an equal number of zeros and ones. Equal numbers
of zeros and ones is a form of regularity, and therefore lack of complexity.
That is, for z € {0,1}", if [#fones(z) — n| = O(1), then the randomness
deficiency §(n) = n — C(x) is nonconstant (order logn).

There is a constant ¢ such that for all n and all x € {0,1}", if
#ones(z) — Z < 270m)=e /n,
then C(x) <n —d(n).

Proof. Let m = 279" ~¢,/n_ with ¢ a constant to be determined later.
Let A = {x € {0,1}" : |#ones(z) — in| < m}. There is a constant cs
such that there are only

2"m
Vn
elements in A (use Stirling’s approximation, Exercise 1.5.4 on page 17).
Thus, for each z € A, we can encode = by its index in an enumeration
of A. We can find A from n and §(n). We can find n and §(n) from
n —d(n) by a self-delimiting program of size at most ¢;. Altogether, this
description takes logd(A) +¢; = n —d(n) — ¢+ ¢1 + log ¢y bits. Let this
process of reconstructing x be executed by Turing machine 7". Choosing
c = c1 + logcy + cr we obtain by Theorem 2.1.1,

d(A) < 2m +1) <n72> < (2.5)

C(z) < Cr(z) +er <n—46d(n).
O

We consider some particular values of §(n). Set §1(n) = } log n—loglogn.
If |#ones(z) — in| = O(logn), then C(z) < n — d1(n) + O(1). Set
S2(n) = }logn. If

#ones(z) — Z =0(1),
then C(x) < n—d2(n)+O(1). That is, if the number of 1’s is too close to
the number of 0’s, then the complexity of the string drops significantly
below its maximum. &

An incompressible string of length n cannot have precisely or almost ;n
ones by Lemma 2.6.2. Then how many ones should an incompressible
string contain? The next lemma shows that for an incompressible x
having j + %n ones, K (j|n) must be at least about order logn.



Lemma 2.6.3

Example 2.6.2

2.6.2
Statistics of
Blocks

Definition 2.6.3

2.6. Statistical Properties of Finite Sequences 169

There is a constant ¢ such that for all m and all x € {0,1}", if

n

#ones(z) — 5 =7,

then C(z|n) < n — }logn + K (jn) + c.

Proof. Let A = {z € {0,1}" : |#ones(z) — in| = j}. There is a constant
c3 such that there are

27l

d(A) < (7;;2) <es (2.6)

elements in A (use Stirling’s approximation, Exercise 1.5.4 on page 17).
In order to enumerate elements in A, we need only to describe j and
n. Thus, for any x € A, we can encode x by its index i (in logd(A)
bits) in an enumeration of A. With n given, we can recover x from an
encoding of j in K (j|n) bits, followed by i. This description of x, given
n, takes logd(A) + K(jln) < n — }logn + logcs + K(j|n) bits. Let T
be the Turing machine embodying this procedure to recover z given n.
Choosing ¢ = log c¢3 + ¢, we have

1
C(z|n) < Cp(zn) +cr <n — 5 logn + K(jn) + c.

O

For j = O(1) we have C(z|n) < n — }logn + O(1), which is slightly
stronger than the statement about unconditional C(z) in Example 2.6.1.
For j = O(y/n) and j incompressible (K(jln) > }logn), we have
C(z|n) < n — O(1). Only for such j’s is it possible that a number x
is incompressible. &

The analysis up till now has been about the statistics of 0’s and 1’s.
But in a normal infinite binary sequence, according to Definition 2.6.2
on page 166, each block of length k occurs with limiting frequency 27%.
That is, blocks 00, 01, 10, and 11 should occur about equally often,
and so on. Finite sequences will generally not be exactly normal, but
normality will be a matter of degree. We investigate the block statistics
for finite binary sequences.

Let x = x1...x, be a binary string of length n, and y a much smaller
string of length I. Let p = 27! and #y(x) be the number of (possibly
overlapping) distinct occurrences of y in x. For convenience, we assume
that x wraps around, so that an occurrence of y starting at the end of
z and continuing at the start also counts.



170

2. Algorithmic Complexity

Theorem 2.6.1

Assume the notation of Definition 2.6.8 with | < logn. There is a con-
stant ¢ such that for all n and x € {0,1}", if C(x) > n —d(n), then

|[#y(x) — pn| < Vapn,

with o = [K (y|n) + logl + 6(n) + |31/ loge.

Proof. We prove by contradiction. Assume that n is divisible by {. (If it is
not, then we can put x on a Procrustean bed to make its length divisible
by [ at the cost of having the above frequency estimate #y(z) plus or
minus an error term of at most [/2.) There are [ ways of dividing (the
ring) = into N = n/l contiguous equal-sized blocks, each of length [. For
each such division ¢ € {0,1,...,l1—1}, let #y(z, ) be the number of (now
nonoverlapping) occurrences of block y. We apply the Chernoff bound,
Equation 2.4, again. With A = {x € {0,1}" : |#y(z,i) — pN| > m} this
gives d(A) < on+1le=m*/3PN We choose m such that for some constant
¢ to be determined later,

m?loge

3pN = K((y,9)|n) +d(n) + c.

To describe an element z in A, we now need only to enumerate A and
indicate the index of x in such an enumeration. The description contains
the following items:

1. A description used to enumerate A. Given n— d(n), we can retrieve
n and §(n) using a self-delimiting description of at most ¢; bits.
To enumerate A, we also need to know i and y. Therefore, given
n — d(n), the required number of bits to enumerate A is at most

K((y,i,6(n),n)[n = 6(n)) < K({y,i)[n) + c1.

2. A description of the index of x. The number of bits to code the
index j of z in A is

logd(A) < log (2"“(3*’”2/3”]\')

This total description takes at most n + 1 — §(n) — ¢ + ¢1 bits. Let T
be a Turing machine reconstructing = from these items. According to
Theorem 2.1.1, therefore

Clx) <Cr(z)4+cr<n+1-06(n)—c+ci+ecr.



2.6.3
Length of Runs

Theorem 2.6.2

2.6. Statistical Properties of Finite Sequences 171

With ¢ = ¢1 + er + 2 we have C(z) < n — §(n), which contradicts the
assumption of the theorem. Therefore, |#y(z,7) — pN| < m, which in
turn implies

K({(y,i)|n) +0(n) + ¢

3pN.
loge

[#y(z,i) —pN| < \/

For each division ¢ (0 < ¢ < I — 1) this inequality follows from the
d(n) incompressibility of z. Notwithstanding the fact that occurrences
of substrings in different divisions are dependent, the inequality holds for
each division separately and independently. The theorem now follows by
noting that |#y(x) —pn| = Y1¢ [#y(x, i) —pN|, K((y,i)ln) < K (yln)+
K(i|n) + O(1) and K(ijn) <logl+ O(1). |

Similar to the analysis of blocks of length 1, the complexity of a string
drops below its maximum in case some block y of length [ occurs in one of
the [ block divisions, say 4, with frequency exactly pN (p = 1/2!). Then
we can point out = by giving n,y, ¢, and its index in a set of cardinality

N\ ol _ \N—pN _ 2Nt
<pN)(2 Y O(\/p(l—p)N)

Therefore,

1 1
C(zl{n,y)) <n— N logn + 2(l+310gl) +0(1).

It is known from probability theory that in a randomly generated finite
sequence the expectation of the length of the longest run of zeros or ones
is pretty high. For each individual finite sequence with high Kolmogorov
complexity we are certain that it contains each block (say, a run of zeros)
up to a certain length.

Let x of length n satisfy C(x) > n— §(n). Then for sufficiently large n,
each block y of length

[ =logn — loglogn — log(d(n) +logn) — O(1)
occurs at least once in x.

Proof. We are sure that y occurs at least once in z if \/apn in Theo-
rem 2.6.1 is less than pn. This is the case if a < pn, that is,

K(y|n) +logl+d(n) + O(1)

3l < pn.
loge



172

2. Algorithmic Complexity

Corollary 2.6.1

Corollary 2.6.2

K (y|n) is majorized by Il 4+ 2logl + O(1) (since K(y|n) < K(y)+ O(1))
and p = 27! with [ set at

I =logn — log(36(n) logn + 3log? n)

(which equals [ in the statement of the theorem up to an additive con-
stant). Substitution yields

I+ 3logl+d(n)+0(1)

loge 31 < 3(6(n)logn + log® n),

and it is easy to see that this holds for sufficiently large n. m|

If 5(n) = O(logn), then each block of length logn — 2loglogn — O(1)

occurs at least once in x.

In Lemma 6.9.1 we show that if C(z|n,p) > n then no substring of length
greater than 2logn occurs (possibly overlapping) twice in . Here, n = I(z),
and p is some fixed program used to reconstruct x from a description of length
C(z|n,p) and n.

Analyzing the proof of Theorem 2.6.2, we can improve the corollary for
low values of K (y[n).

If §(n) = O(loglogn), then for each ¢ > 0 and every large enough n,
every string x of length n contains an all-zero run y (for which K (y|n) =
O(logl)) of length I =logn — (1 4+ €)loglogn + O(1).

Since there are 2"(1 — O(1/logn)) strings z of length n with C(z) > n —

loglogn + O(1), the expected length of the longest run of consecutive zeros if
we flip a fair coin n times is at least [ as in Corollary 2.6.2.

We show in what sense Theorem 2.6.2 is sharp. Let = wow, I(z) = n,
and C(z) > n — 6(n). We can describe = by giving

1. A description of v in K (v) bits;
2. The literal representation of uw;

3. A description of I(u) in logn + loglogn + 2logloglogn + O(1) bits.

Then, since we can find n by n =1(v) + {(uw),

C(x) <n—1(v)+ K(v) +logn (2.7)
+ (14 o(1))loglogn + O(1).



Exercises

Exercises 173

Substitute C(z) = n—4§(n) and K (v) = o(loglogn) (choose v to be very
regular) in Equation 2.7 to obtain

l(v) < d(n) +logn+ (1 + o(1)) log logn.

This means that for instance, for each ¢ > 0, no maximally complex
string « with C(z) = n + O(1) contains a run of zeros (or the initial
binary digits of 7) of length logn + (1 + €) loglogn for n large enough
and regular enough. By Corollary 2.6.2, on the other hand, such a string
x must contain a run of zeros of length logn — (1 + €) loglogn + O(1).

2.6.1. [24] The great majority of binary strings of length n have a
number of 0’s in between jn — \/n and in + \/n. Show that there are
2’s of length n with in 4+ Q(y/n) 0’s, with C(z) = n + O(1).

2.6.2. [29] Let limy, oo | Y1 ; w; = p for an infinite binary sequence
W = wiws ..., for some p between 0 and 1 (compare Section 1.9).

(a) Show that if C(w1.,) ~n, then p= 1.
(b) Show that if p = }, then C(w1.,) < 0.82n asymptotically.

(¢) Show that in general, if ¢ = plogl/p + (1 — p)log1/(1 — p), then
C(win) < en+o(n). If p is about }L, then C'(w1.n,) < 0.80n + o(n).

Comments. Source: P. Gacs, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987; attributed to
A.N. Kolmogorov. Hint: Ttem (a), use Lemma 2.6.2.

2.6.3. [M35] A finite binary string x of length n is called §-random if
C(z|n) > n—4. A Turing machine place-selection rule R is a Turing ma-
chine that selects and outputs a (not necessarily consecutive) substring
R(z) from its input «. If R is the kth Turing machine in the standard
enumeration, then C'(R) = C(k).

Show that for any € > 0, there exist numbers ng and g > 0 such that if
l(x) = n, [(R(x)) = r = no, 3y <icyr R(x)i = m, and (0+C(R|n))/r < p,
then o

m 1' <(5+C(Rn)+2.510gr)1/2

o2 (2loge — €)r

Comments. §-random sequences were introduced by A.N. Kolmogorov,
Lect. Notes Math., Vol. 1021, Springer-Verlag, 1983, 1-5. He noted that
“sequences satisfying this condition have for sufficiently small ¢ the par-
ticular property of frequency stability in passing to subsequences.” In
this exercise we supply some quantitative estimates of frequency stabil-
ity. Source: E.A. Asarin, STAM Theory Probab. Appl., 32(1987), 507—
508. This exercise is used by Asarin to show that §-random elements of



174

2.7

2. Algorithmic Complexity

Algorithmic
Properties of

C

Theorem 2.7.1

certain finite sets obey familiar probability-theoretic distribution laws.
In particular, for some particular finite sets each J-random element is
e-normal; see also E.A. Asarin, Soviet Math. Dokl., 36(1988), 109-112.

By algorithmic properties of C' we mean properties with a recursion-
theoretic flavor as in Section 1.7. We have already met a few of these.
By Theorem 2.3.1, the greatest monotonic lower bound on C(n) is
unbounded, but goes to infinity more slowly than any monotonic un-
bounded partial recursive function. By Theorem 2.3.2 the integer func-
tion C(n) is not recursive. Nonetheless, by Theorem 2.3.3 the integer
function C'(n) can be approximated arbitrarily closely from above; it is
upper semicomputable. Unfortunately, at each stage of such an approx-
imation process, for each size of error, there are infinitely many x such
that the approximation of C'(z) and its real value are at least this error
apart.

In fact, a much stronger statement holds: For each total recursive func-
tion f with lim,_. f(x) = oo the set of z for which we can prove
C(z) > f(z) is finite (Theorem 2.7.1 Ttem (iii) below). Thus, if we
choose f(z) < l(x), then we know that C(z) > f(z) for almost all x
of each length, Theorem 2.2.1, yet we can prove this only for finitely
many x.

(i) The set A = {(x,a) : C(x) < a} is recursively enumerable, but not
TeCursive.

(ii) Ewvery partial recursive function ¢(z) that is a lower bound on C(x)
is bounded.

(i) Let f(x) be a total recursive function with g(x) < f(x) < I(x) for
all z and some unbounded monotonic function g. Then the set B = {x :
C(z) < f(x)} is simple. That is, B is recursively enumerable and the
complement of B is infinite but does not contain an infinite recursively
enumerable subset.

Proof. (i) That A is recursively enumerable follows immediately from
Theorem 2.3.3. However, A is not recursive. Namely, if A is recur-
sive, then we can compute C(z) by asking the consecutive questions
“is C(z) < a?” for a:=0,1,..., contradicting Theorem 2.3.2.

(ii) Let ¢ be a partial recursive function and define D = {z : ¢(z) <
C(z)}. If D is finite, there is nothing to prove. Assume that D is infinite
and ¢ is unbounded, by way of contradiction. Recursively enumerate the
domain of definition of ¢ without repetition, and define a total recursive
function g by g(n) that equals the least x in this enumeration such that
¢(x) > n. For each n there is such an z, by the contradictory assumption.



Corollary 2.7.1

2.7.1
Undecidability by
Incompressibility

Example 2.7.1

2.7. Algorithmic Properties of C 175

If ¢ = ¢ in the standard effective enumeration ¢1, g2, ... of the partial

recursive functions, as in Section 1.7, then n < C(x) < I(n) + I(k), up
to a constant. For n large enough we have a contradiction.

(iii) That B is recursively enumerable follows from Item (i). The com-
plement of B is infinite by Theorem 2.2.1. We prove that B is simple.
Let D be an infinite recursively enumerable set contained in the com-
plement of B. The restriction fp(x) of f(z) to D is a partial recursive
lower bound for C(z). By Item (ii), therefore fp(x) is bounded. Since
f(x) rises unboundedly with = this is possible only if D is finite. o

The set RAND defined by {z : C(x) > I(z)} is immune—it is infinite
and has no infinite recursively enumerable subset. In fact, the proofs
support stronger results in that the set B above is effectively simple and
RAND is effectively immune (Exercise 2.7.6).

This approach allows us to give a result similar to Lemma 1.7.6 on
page 35, but with examples of undecidable statements that differ from
the ones given by Godel. Namely, for each formal system T, there is a
constant ¢y such that no formula of form “C'(z) > e¢p” is provable in T'.

If T is an axiomatizable sound theory whose axioms and rules of inference
require about k bits to describe, then T" cannot be used to prove the
randomness of any number much longer than k bits. If the system could
prove randomness for a number much longer than k bits, then the first
such proof (first in an unending enumeration of all proofs obtainable
by repeated application of axioms and rules of inference) could be used
to derive a contradiction: an approximately k-bit program to find and
print out the specific random number mentioned in this proof, a number
whose smallest program is by assumption considerably larger than k
bits. Therefore, even though most strings are random, we will never be
able to explicitly exhibit a string of reasonable size that demonstrably
possesses this property. Formally,

e Let T be an axiomatizable theory (T is a recursively enumerable
set consisting of axioms and provable formulas). Hence, there is a
k such that T is describable in k bits: C(T') < k.

e Let T be sound: all formulas in T are true (in the standard model
of the natural numbers).

e Let S.(x) be a formula in T with the meaning “z is the lexicograph-
ically least binary string of length ¢ with C(z) > ¢.” Here z is a
formal parameter and ¢ an explicit constant, so C(S.) < loge up
to a fixed constant independent of T" and c.



176

2. Algorithmic Complexity

Corollary 2.7.2

For each ¢, there exists an « such that S.(x) = true is a true statement
by a simple counting argument (Theorem 2.3.1). Moreover, S, expresses
that this x is unique. It is easy to see that combining the descriptions of
T, S., we obtain a description of this z. Namely, for each candidate string
y of length ¢, we can decide S.(y) = true (which is the case for y = z)
or =S (y) = true (which is the case for y # x) by simple enumeration of
all proofs in T'. (Here we use the soundness of T'.) We need to distinguish
the descriptions of T' and S.. We can do this by coding T’s description
in self-delimiting format; see Equation 1.4. This takes not more than
2k bits. Hence, for some fixed constant ¢’ independent of T' and ¢, we
obtain C'(z) < 2k +logc+ ¢/, which contradicts C(x) > ¢ for all ¢ > e,
where er = 3k + ¢’ for another constant ¢. (A minor improvement of
the argument shows that ¢y = k + 2logk + ¢’ suffices.) &

There is a recursively enumerable set B with an infinite complement
such that for every axiomatizable sound theory T there are only finitely
many n for which the formula “n ¢ B” is both true and provable in T.
(But with finitely many exceptions, all infinitely many such formulas are
true.)

Proof. Let B be the simple set in Theorem 2.7.1, Item (iii), and let B
be its complement. Clearly, the set D C B of elements n that can be
proved in T to belong to B is recursively enumerable. Since B is simple,
its complement B does not contain an infinite recursively enumerable
subset. Therefore, D is finite, which proves the theorem. o

We have formulated Corollary 2.7.2 so as to bring out some similarities
and differences with Lemma 1.7.6 as clearly as possible. As pointed out
in Section 1.7, the set Ky used in Lemma 1.7.6 is complete, whereas the
set B used in Corollary 2.7.2 is simple. According to generally accepted
viewpoints in recursion theory, the set Ky is different from the set B in
an essential way. Therefore, we can regard the proofs of the existence
of undecidable statements in sufficiently rich axiomatizable theories by
Lemma 1.7.6 and Corollary 2.7.2 as essentially different.

The set Ko is not only complete in the sense of Turing reducibility, it is also
complete in the sense of many-to-one reducibility. A set A is many-to-one
reducible to a set B if there exists a recursive function f such that for all
z, z € Aiff f(z) € B. A set A is complete in the sense of many-to-one
reducibility, m-complete for short, if A is recursively enumerable and all re-
cursively enumerable sets B are many-to-one reducible to A. As it turns out,
m-complete sets are nonrecursive. This raises the question, are all nonrecur-
sive recursively enumerable sets m-complete? The answer was given by E.
Post in 1944 by introducing simple sets as the first examples of nonrecursive
recursively enumerable sets that are not m-complete. (For the notions of re-
ducibility, completeness, and simple sets, see the exercises in Section 1.7, in
particular Exercises 1.7.16 and 1.7.15.)



2.7. Algorithmic Properties of C 177

The set B used in Corollary 2.7.2 is a simple set and hence not m-complete.
Therefore, although B is many-to-one reducible to Ko, the set Ky is not many-
to-one reducible to B. This shows that Ky is of a so-called higher degree of
unsolvability with respect to many-to-one reducibility than B, which is the
substance of the viewpoint that they differ in an essential way.

In less formal terms the approaches are different because the first one can
be viewed as a form of Russell’s parador and the other one as a form of the
Richard—-Berry paradoz. Both paradoxes are described in [B. Russell and A.N.
Whitehead, Principia Mathematica, Oxford, 1917]. While the first paradox
formed the original incentive for the authors to supply the sophisticated logical
foundation for set theory in the Principia, in a footnote they state that the
second paradox “was suggested to us by Mr. G.G. Berry of the Bodleian
Library.”

The paradox due to Bertrand Russell (1872-1970) arises when the collection
of all sets that are not members of themselves is considered as a set. If this
collection is a member of itself, then it contradicts the set definition, but if it
is not a member of itself, then by the set definition it is a member of itself
(which is a contradiction as well). There is a close connection between Russell’s
paradox and the result of Godel cited as Lemma 1.7.6 on page 35. We have
seen that this result was proved by reducing the halting problem in the form
of Ko to the decision problem in a sufficiently strong, sound, axiomatized
theory. Since Ky is m-complete, this shows that any problem shown to be
unsolvable in this way must have a degree of unsolvability at least as high as
the maximal degree of unsolvability with respect to many-to-one reducibility
as any recursively enumerable set.

The Richard—Berry paradox is the definition of a number as “the least number
that cannot be defined in fewer than twenty words.” Formalizing the notion of
‘definition’ as the shortest program from which a number can be computed by
the reference machine U, it turns out that the quoted statement (reformulated
appropriately) is not an effective description. This was essentially what we did
in the proof of Corollary 2.7.2, by reducing the set B to the decision problem
in a sufficiently strong, sound, axiomatizable theory. But B is of a lesser
degree of unsolvability with respect to many-to-one reducibility than is K.
Therefore, showing undecidability of sufficiently rich axiomatizable theories
using Kolmogorov complexity in this way is essentially different from Godel’s
original approach.

Godel’s first incompleteness theorem entails an explicit construction of a
statement s, associated with each sufficiently strong, sound, axiomatized
theory T, that is undecidable in T'. Formula s simply says of itself “I am
unprovable in 7".” In contrast, the construction in Corollary 2.7.2 says
that for any sound axiomatized system T there is a constant cp < oo
such that all true statements with the meaning “C'(z) > ¢p” are unprov-
able in T. By Theorem 2.3.1 there are infinitely many such statements.
Now suppose we have an effective procedure to find such constants for
given theories, that is, a total recursive function ¢ such that ¢(T) > er
for all T. Then, unfortunately, Theorem 2.7.1, Item (ii), tells us that
no effective procedure can determine for more than finitely many pairs



178 2. Algorithmic Complexity

27.2
Barzdins's
Lemma

Definition 2.7.1

Theorem 2.7.2

(z,T) whether C(z) > ¢(T). This shows that in general, although the
undecidable statements based on Kolmogorov complexity are plentiful
for each theory, we cannot explicitly construct them. Thus, the new
approach entails loss of constructivity.

Using Kolmogorov complexity one can quantify the distinction between
recursively enumerable sets and recursive sets. Let A be a set of natural
numbers.

The characteristic sequence of A C N is an infinite binary sequence
X = X1X2 - .. defined by

1 ifie A,
Xi =91 0 otherwise.

If A is recursively enumerable, and also its complement consisting of the
i’s such that x; = 0 is recursively enumerable, then f (i) = x; is recursive,
and the conditional complexity C(x1.n|n) is bounded by a fixed constant
for all n. (The converse also holds, Exercise 2.3.4 on page 131.) But
in the general case of recursively enumerable sets A, the complexity
C(x1:n|n) can grow unboundedly with n. However, this growth is at
best logarithmically slow, which shows that such characteristic sequences
are very nonrandom. For instance, they are not random in the sense of
Martin-Lof according to Theorem 2.5.4. The result below is known as
Barzdins’s lemma. (Actually, J.M. Barzdins proved the sharper version
of Exercise 2.7.2 on page 180.)

(i) Any characteristic sequence x of a recursively enumerable set A sat-
isfies C(x1.n|n) <logn+c for all n, where c is a constant dependent on
A (but not on n).

(ii) Moreover, there is a recursively enumerable set such that its charac-
teristic sequence x satisfies C(x1.n) > logn for all n.

Proof. (i) Since A is recursively enumerable, there is a partial recursive
function ¢ such that A = {x : ¢(z) < oo}. Dovetail the computations
of ¢(1),4(2),.... In this way, we enumerate A without repetitions in
the order in which the computations of the ¢(i)’s terminate. The prefix
X1:» can be reconstructed from the number m of 1’s it contains. For if
we know m, then it suffices to use ¢ to enumerate the elements of A
until we have found m distinct such elements less than or equal to n. If
the set of these elements is B = {ai,as,...,an}, then by assumption
these are all elements in A that do not exceed n. Hence, from B we can
reconstruct all 1’s in x1.,, and the remaining positions must be the 0’s.
In this way, we can reconstruct xi.n, given n, from a description of ¢
and m. Since m < n and C(¢) < oo, we have proved (i).



Example 2.7.2

2.7. Algorithmic Properties of C 179

(ii) Let ¢ be the additively optimal function ¢ of Theorem 2.1.1. Define
X = X1X2-.. by

1 ifgoliyi) =0,
Xe= 0 if ¢o(d, 1) # 0 or ¢o(d, 1) = oo.

Obviously, x is the characteristic sequence of a recursively enumerable
subset of the natural numbers. We prove that y satisfies the property
stated in the theorem. For suppose to the contrary that C'(x1.,) < logn
for some n. This means that there is a short program p, of length less
than logn, that computes x1.,. Since p < n this implies that ¢o(p,p) =
Xp, which contradicts the definition of x,,. a

The converse of Theorem 2.7.2, Item (i), does not hold in general. This follows
by the construction of a meager set that is not recursively enumerable. For
instance, let x be the characteristic sequence of a set A and C(x1.n|n) >
n — ¢ for infinitely many n and a fixed constant c¢. By Theorem 2.5.5 such
strings are abundant, and by Theorem 2.7.2, Item (i), we find that A is not
recursively enumerable. Construct a sequence ¢ by ( = xi1ai1x2az... with
;i = 07D where f(i) is some fast-growing total recursive function with an
inverse. Obviously, if  is the characteristic sequence of set B, then B is not
recursively enumerable. But also there is now another constant ¢ such that
C(Cin|n) < f7(n) + ¢ for all n. Choosing f such that loglog f(n) = n gives

C(C1:n|n) <loglogn + O(1).

Theorem 2.7.2, Item (i), cannot be improved to the unconditional “C'(x1:n) <
logn + ¢ for all n and some ¢,” since all x’s satisfying this are recursive (and
hence the corresponding sets A are recursive) by Exercise 2.3.4 on page 131.
Theorem 2.7.2, Item (ii), cannot be improved to the conditional “C(x1:n|n) >
logn for all n” by Exercise 2.7.3 on page 181.

Diophantine equations are algebraic equations of the form X = 0, where
X is built up from nonnegative integer variables and nonnegative integer
constants by a finite number of additions (A + B) and multiplications
(A% B). The best-known examples are 2" +y™ = 2", wheren = 1,2, ... .

Pierre de Fermat (1601-1665) stated that this equation has no solution in
positive integers z, y, and z for n an integer greater than 2. (For n = 2 there
exist solutions, for instance 3% +42 = 52.) However, he did not supply a proof
of this assertion, often called Fermat’s last theorem. After 350 years of with-
standing concerted attempts to come up with a proof or disproof, the problem
had become a celebrity among unsolved mathematical problems. However, A.
Wiles [Ann. of Math., 141:3(1995), 443-551] has finaly settled the problem by
proving Fermat’s last theorem. Let us for the moment disregard Wiles’s proof
and reason naively. Suppose we substitute all possible values for z,y, z with
r+y+2z<mn,forn=3,4,... .In this way, we recursively enumerate all
solutions of Fermat’s equation. Hence, such a process will eventually give a
counterexample to Fermat’s conjecture if one exists, but the process will never
yield conclusive evidence if the conjecture happens to be true.



180 2. Algorithmic Complexity

Example 2.7.3

Exercises

In his famous address to the International Congress of Mathematicians
in 1900, D. Hilbert proposed twenty-three mathematical problems as
a program to direct the mathematical efforts in the twentieth century.
The tenth problem asks for an algorithm that given an arbitrary Dio-
phantine equation, produces either an integer solution for this equation
or indicates that no such solution exists. After a great deal of prelimi-
nary work by other mathematicians, the Russian mathematician Yu.V.
Matijasevich finally showed that no such algorithm exists. Suppose we
weaken the problem as follows. First, effectively enumerate all Diophan-
tine equations, and consider the characteristic sequence A = A1A, ...,
defined by A; = 1 if the ith Diophantine equation is solvable, and 0 oth-
erwise. Then C(A1.,) < n+ O(1). But the theorem above shows that
C(A1:n|n) < logn + ¢, for some fixed constant c. The nonrandomness
of the characteristic sequence means that the solvability of Diophan-
tine equations is highly interdependent—it is impossible for a random
sequence of them to be solvable and the remainder unsolvable. &

In the proof of Theorem 2.7.2, Item (ii), we used a set recursively isomor-
phic to the halting set Ko = {(z,y) : ¢.(y) < oo}. In fact, almost every
recursively enumerable set that is complete under the usual reducibili-
ties would have done. We can use this to obtain natural examples for
incompressible finite strings. Let d be the number of elements in K\
that are less than 2". Then by running all the computations of all ¢, (y)
with z < 2"z = (z,y), in parallel until d of them have halted, we ef-
fectively find all computations among them that halt. That is, if x is
the characteristic sequence of Ky, then we can effectively compute x1.,,
(where m = 2™) from d. The program p for this computation has length
I(p) < U(d) +¢c < n+c, for some fixed constant ¢ independent of n.
By Theorem 2.7.2, Item (ii), the shortest program from which we can
compute Xi.., has length at least n. Hence, there is another constant c
such that p is c-incompressible. <&

2.7.1. [10] Show that there exists a constant ¢ such that C'(0™|n) < ¢
for all n, and C(0™) > logn — ¢ for infinitely many n.

2.7.2. e [26] Let A C N be a recursively enumerable set, and let x =
X1X2 - .. be its characteristic sequence. We use the uniform complexity
C(x1:n;n) of Exercise 2.3.2 on page 130.

(a) Show that C(x1.n;n) <logn+ O(1) for all A and n.
(b) Show that there exists an A such that C(x1.n;n) > logn for all n.

Comments. This implies Theorem 2.7.2. It is the original Barzdins’s
lemma. Source: J.M. Barzdins, Soviet Math. Dokl., 9(1968), 1251-1254.



Exercises 181

2.7.3. [27] Is there a symmetric form of Theorem 2.7.2 (Barzdins’s
lemma) using only conditional complexities? The answer is negative.
Show that there is no recursively enumerable set such that its charac-
teristic sequence x satisfies C'(x1.n|n) > logn 4+ O(1) for all n.

Comments. Hint: let x be the characteristic sequence of a recursively
enumerable set A. Consider C(x1.¢(n)|f(n)), with x1.f(n) containing ex-
actly 22" ones. Then, log f(n) > 2". But using the partial recursive
function enumerating A, we can compute X1.¢(»), given f(n), from just
the value of n. Hence, we have a program of logn + O(1) bits for x1.¢(n)-
Compare this to Barzdins’s lemma (Theorem 2.7.2) and Exercise 2.7.2.
Source: R.M. Solovay, sci.logic electronic newsgroup, 24 November 1989.

2.7.4. [34] Is there a symmetric form of Theorem 2.7.2 (Barzdins’s
lemma) using only unconditional complexities? The answer is negative.
Show that there is a recursively enumerable set A C N and a constant
¢ such that its characteristic sequence x satisfies C(x1.,) > 2logn — ¢
for infinitely many n.

Comments. First note the easy fact that the Kolmogorov complexity of
X1:n 18 at most 2logn + O(1) for all n (< logn bits to specify n and
< logn bits to specify k = Y., x;). Hint: partition N into exponen-
tially increasing half-open intervals I = (tx, 2t*] with ¢, = 0. Note that
log (2 — 1) = 2logtr41 — 2 — o(1) for k — oco. Use increasingly precise
approximations of C(x1.,) for n € I for increasing k to enumerate A.
Source: R.M. Solovay, sci.logic electronic newsgroup, 24 November 1989;
posed as open problem [039] in the first printing of this book; solved by
M. Kummer [STAM J. Comput., 25:6(1996), 1123-1143].

2.7.5. [25] Prove the following strange fact (Kamae’s theorem). For
every natural number m there is a string x such that for all but finitely
many strings y, C(z) — C(z|y) > m.

Comments. There exist strings  such that almost all strings y contain
a large amount of algorithmic information about z. Hint: & must be
such that almost all large numbers contain much information about x.
Let ¢ be a large enough fixed constant. Let A be a recursively enumer-
able set of integers, and let ajas ... be the characteristic sequence of
A. Set © = (k) = a1z ...an, where h = 2F. By Barzdins’s lemma,
Theorem 2.7.2, we can assume C(z(k)) > k. Enumerate A without rep-
etition as by, ba, ... . Let m(k) = max{i : b; < 2¥}. Then for any integer
y > m(k) we have C(x(k)|y) < log k+c. Namely, using y we can enumer-
ate by, ba, ..., b, and with logk extra information describing k we can
find z(k). Therefore, C(z) — C(x|y) > k — logk — ¢. Source: T. Kamae,
Osaka J. Math., 10(1973), 305-307. See also Exercise 2.2.13.

2.7.6. [25] Consider an enumeration Wy, Wa, ... of all recursively enu-
merable sets. A simple set A is effectively simple if there is a recursive



182

2. Algorithmic Complexity

function f such that W; C A implies that d(W;) < f(i) (where A is the
complement of A). The set A is called effectively immune.

(a) Show that the set B defined in Theorem 2.7.1 is effectively simple.
(b) Show that the set RAND defined by {z : C(x) > I(x)} is effectively

immune.

(c) Show that Item (a) implies that B is Turing complete for the recur-
sively enumerable sets.

Comments. Hint: the proof of Theorem 2.7.1, Item (iii), showing that B
is simple actually shows that B is also effectively simple, which demon-
strates Item (a). For Item (c), see for example P. Odifreddi, Classical
Recursion Theory, North-Holland, 1989.

2.7.7. [32] Let ¢1, ¢a, ... be the standard enumeration of partial recur-
sive functions. The diagonal halting setis {x : ¢4 (z) < oo} (also denoted
by K). The Kolmogorov setis {(x,y) : C(x) < y}. We assume familiarity
with notions in Exercise 1.7.16. To say that a set A is recursive in a set
B is the same as saying that A is Turing reducible to B.

(a) Show that the diagonal halting set is recursive in the Kolmogorov
set.

(b) Show that the Kolmogorov set is recursive in the diagonal halting
set.

(c¢) Show that the Kolmogorov set is Turing-complete for the recursively
enumerable sets.

Comments. This means that if we can solve the halting problem, then
we can compute C, and conversely. Hint for Item (a): given  we want
to know whether « € K, that is, whether T, (x) halts. Let I({(x, T)) = n.
Now use the Kolmogorov set to recursively find the least number ¢ such
that for all y with I(y) = 2n and C(y) < 2n the reference universal
machine U computes y from some program of length less than 2n in
at most t steps. Note that ¢ is found with some organized dovetail-
ing. Claim: Ty(x) halts iff T, (z) halts within ¢ steps (hence we can see
whether T, (x) halts). If not, then we can use T,(z) as a clock and run
the same dovetailing process as above, but now we produce a string of
complexity 2n via a description of length n. Source: Attributed to P.
Gécs by W. Gasarch, personal communication February 13, 1992.

2.7.8. [42] We can express the nonrecursivity of C(z) in terms of
C(C(x)|z), which measures what we may call the complezity of the com-
plezity function. Denote [(x) by n.

(a) Prove the upper bound C(C(x)|x)) <logn + O(1).



Exercises 183

(b) Prove the following lower bound: For each length n there are strings
x such that

C(C(x)|z) > logn — loglogn — O(1).

Comments. This means that z only marginally helps to compute C(z);
most information in C(z) is extra information related to the halting
problem. Hint for Item (b): same proof as in Section 3.8. Source: P.
Gécs, Soviet Math. Dokl., 15(1974), 1477-1480.

2.7.9. [44] Show that every infinite sequence is Turing-reducible (Ex-
ercise 1.7.16, page 43, with sets replaced by characteristic sequences of
sets) to an infinite sequence that is random with respect to the uniform
measure.

Comments. C.H. Bennett raised the question whether every infinite bi-
nary sequence can be obtained from an incompressible one by a Turing
machine. He proved this for a special case. Philosophically, the result im-
plied in the exercise allows us to view even very pathological sequences
as the result of two relatively well understood notions, to wit, the com-
pletely chaotic outcome of coin-tossing and a Turing machine transducer
algorithm. Source: P. Gécs, Inform. Contr., 70(1986), 186-192. See also
[W. Merkle, N. Mihailovic, J. Symb. Logic, 69(2004), 862—-878].

2.7.10. [30] This exercise assumes knowledge of the notion of Turing
degree, Exercise 1.7.16. Every Turing degree contains a set A such that
if x is the characteristic sequence of A, then C(x1.n|n) < logn for all n.

Comments. Hence, a high degree of unsolvability of a set does not imply
a high Kolmogorov complexity of the associated characteristic sequence.
Hint: call a set B semirecursive if there exists a recursive linear ordering
<p of N such that there exists a lower cut element y such that B = {z :
x <p y}. For any set A there is a semirecursive set B such that B =1 A
[C.G. Jockusch, Trans. AMS 131(1968), 420-436]. Every semirecursive
set B has a characteristic sequence x of (N, <pg) such that C(x1.n|n) <
logn + ¢, by the same proof as Theorem 2.7.2, Item (i). Since <p is
recursive, the same property holds for the usual characteristic sequence
of B. Source: W. Gasarch, Letter, August 1988. See also R.P. Daley, J.
Comput. System Sci., 9(1974), 151-163; Math. Systems Theory, 9(1975),
83-94; Inform. Contr., 44(1980), 236-244.

2.7.11. [42] Use Kolmogorov complexity to prove the existence of Tur-
ing degrees of unsolvability (Exercise 1.7.16) between the recursive sets
and Turing-complete sets (such as Kj).

Comments. Source: R.P. Daley, J. Symb. Logic, 46(1981), 460-474; In-
form. Contr., 52(1982), 52—-67.



184

2. Algorithmic Complexity

2.7.12. [39] We assume familiarity with the notion of truth-table re-
ducibility. Let x be the characteristic sequence of a recursively enumer-
able set A. Here C(x1.;n) is the uniform complexity of Exercise 2.3.2.

(a) Show that A is complete under weak truth-table reducibility iff for
some unbounded total recursive function f(n), we have C(x1.n;n) >

f(n).
(b) Show that A is complete under Turing reducibility iff C'(x1.n;n) >
f(n) for some unbounded total function f recursive in A.

Comments. For resource-bounded versions of Kolmogorov complexity
the situation is quite different. Source: M.I. Kanovich, Soviet Math.
Dokl., 10(1969), 700-701; 11(1970), 1224-1228.

2.7.13. [20] Define the state complexity S(x) of a finite binary string
x as the least n such that there is a Turing machine with n states that
started in the standard initial conditions of empty tape and distinguished
start state will eventually halt with x on its output tape. All machines
considered are of the original model as in Section 1.7. Define B = {(x,y) :

S(x) <y}
(a) Prove that B is recursively enumerable but not recursive.

(b) Prove that B is Turing complete (in the sense of Exercise 1.7.16).

Comments. Suppose our Turing machines use an m-letter alphabet. Let
Tn(x) denote the complexity of z in terms of the minimal number of
internal states of a Turing machine. Then

To(z) ~ C(x)/ (m —1)log C(x).

Source: problem by J. Andrews, electronic news, June 24, 1988; solutions
by V.R. Pratt, R.M. Solovay, electronic news, June 1988.

2.7.14. [22] Show that the set K used in Lemma 1.7.6 on page 35 is
not many-to-one reducible to the set B featured in Corollary 2.7.2 on
page 176, while B is many-to-one reducible to Kj.

Comments. Hint: Use Exercise 1.7.16. Ky is m-complete, while B is
simple and hence not m-complete. The set Ky is of a higher degree of
unsolvability with respect to many-to-one reducibility than B.

2.7.15. [32] Show that there exists an immune set I (a set without an
infinite recursively enumerable subset, for instance the complement of a
set B as in Theorem 2.7.1, Item (iii)), such that there is a probabilistic
machine that computes the characteristic function of some infinite subset
of I.

Comments. Hint: Use Theorems 2.5.4, 2.7.1, and the following frame-
work. A probabilistic machine is just like a deterministic machine except



Exercises 185

that at some steps there are several actions (instead of a single action)
that the machine can perform with given probabilities. For simplicity as-
sume that there are exactly two possible actions, each with probability
é. (That is, at each such choice the machine flips a coin.) That a prob-
abilistic machine computes a function ¢ with probability p means that
the machine with input « halts with output ¢(x) with probability p. We
usually assume p > % It can be shown that a machine with any value p
between zero and one can be simulated by a machine with value p close
to one. It turns out that ¢ is computable by a probabilistic machine iff ¢
is partial recursive [K. de Leeuw, et al., pp. 183-212 in: Automata Stud-
ies, C.E. Shannon and J. McCarthy, eds., Princeton Univ. Press, 1956].
This result is often interpreted as showing that probabilistic machines
cannot perform tasks that are impossible for deterministic machines.
But a task may not consist only in finding an unambiguous value, but
may consist in finding some value out of a set of possible values. In this
form there are obviously tasks that deterministic machines cannot do
that probabilistic machines can do, such as the construction of a nonre-
cursive sequence or to output the characteristic function of some infinite
subset of a fixed immune set. The probabilistic machine computes such
a characteristic sequence or set if it outputs the sequence or set with
positive probability. Source: A.K. Zvonkin and L.A. Levin, Russ. Math.
Surv., 25:6(1970), 83—124, attributed to J.M. Barzdins.

2.7.16. [37] A set H of natural numbers is called hyperimmaune if there
is no total recursive function f such that f(i) > h; for all i, where
h; is the ith element of H in increasing order. That is, H is immune
(Exercise 2.7.15, page 184) but the variety of immunity of H is due to the
fact that the function that enumerates H’s elements in increasing order
of size grows faster than any recursive function. Prove the following:

(a) Every hyperimmune set H contains an infinite subset whose charac-
teristic sequence is not computable by a probabilistic machine.

(b) However, there is a probabilistic machine that computes the charac-
teristic sequence of some hyperimmune set.

Comments. Source: A.K. Zvonkin and L.A. Levin, Russ. Math. Surv.,
25:6(1970), 83-124, attribute Item (a) to V.N. Agafonov and L.A. Levin,
and Item (b) to N.V. Petri. Hint: Item (a) follows from the fact that if a
fixed set is computable by a probabilistic machine then it is recursively
enumerable. Theorems 2.2 and 2.3 in P. Gécs, [Theoret. Comput. Sci.,
22(1983), 71-93], cover related issues.

2.7.17. [19] We define a variant of the busy beaver function BB(n)
in Exercise 1.7.19 on page 45. Let BC(n) be the largest natural num-
ber m such that C(m) < n. Let ¢1,¢2,... be the standard effective
enumeration of partial recursive functions.



186 2. Algorithmic Complexity

2.8
Algorithmic
Information
Theory

Definition 2.8.1

(a) Show that BC(n) > ¢(n), where ¢ = ¢y, for all n > C(k) — 4logn.
(b) Show that BC'(n) is not a recursive function.

(¢) Show that the nonrecursiveness of BC(n) can be used to prove the
unsolvability of the halting problem (Lemma 1.7.5 on page 34) and vice
versa.

(d) Let F be an axiomatizable sound formal theory that can be de-
scribed completely (axioms, inference rules, ...) in m bits. Show that
no provable true statement in F asserts “BC(n) = z” for BC(n) = «
with any n > m + O(1).

Comments. Hint for Item (a): C(¢(n)) < C(k,n)+O(1). Then, C(¢p(n)) <
n —logn. Hence, BC(n) > ¢(n). Hint for Item (b): It grows faster than
any recursive function. Hint for Item (c): If the halting problem were
solvable, we could compute BC(n) from the outputs of all halting pro-
grams of length at most n. Conversely, every halting program p halts
within BC'(n) steps, for n > I(p) + O(1). So recursiveness of BC' im-
plies the solvability of the halting problem. This exercise is an applica-
tion of Theorem 2.3.1, Item (iii). In fact, BC(n) is some sort of inverse
function of m(n), the greatest monotonic increasing function bounding
C(n) from below. Source: G.J. Chaitin, pp. 108-111 in: Open Problems
in Communication and Computation, T.M. Cover, B. Gopinath, eds.,
Springer-Verlag, 1988.

One interpretation of the complexity C(z) is as the quantity of infor-
mation needed for the recovery of an object x from scratch. Similarly,
the conditional complexity C(x|y) quantifies the information needed to
recover x given only y. Hence the complexity is ‘absolute information’ in
an object. Can we obtain similar laws for complexity-based ‘absolute in-
formation theory’ as we did for the probability-based information theory
of Section 1.117

If C(x|y) is much less than C(z), then we may interpret this as an
indication that y contains a lot of information about x.

The algorithmic information about y contained in z is defined as
Io(x:y) = Cly) = Clylz).

Choosing reference function ¢ in Theorem 2.1.1 with ¢g(z, €) = z yields
C(z|z) =0 and Io(z : ) = C(x).

By the additive optimality of ¢g, these equations hold up to an additive
constant independent of z, for any reference function ¢q. In this way we



2.8.1

Entropy,
Information, and
Complexity

Theorem 2.8.1

2.8. Algorithmic Information Theory 187

can view the complexity C'(z) as the algorithmic information about itself
contained in an object. For applications, this definition of the quantity
of information has the advantage that it refers to individual objects, and
not to objects treated as elements of a set of objects with a probability
distribution given on it, as in Section 1.11.

Does the new definition have the desirable properties that hold for the
analogous quantities in classic information theory? We know that equal-
ity and inequality can hold only up to additive constants, according to
the indeterminacy in the invariance theorem, Theorem 2.1.1. Intuitively,
it is reasonable to require that

Io(z:y) >0,

up to an additive fixed constant independent of x and y. Formally, this
follows easily from the definition of I¢(z : y), by noting that C(y) >
C(y|z) up to an independent additive constant.

The major point we have to address is the relation between the Kol-
mogorov complexity and Shannon’s entropy as defined in Section 1.11.
Briefly, classic information theory says that a random variable X dis-
tributed according to P(X = z) has entropy (complexity) H(X) =
S P(X = z)logl/P(X = z), where the interpretation is that H(X)
bits are on average sufficient to describe an outcome z. Algorithmic
complexity says that an object = has complexity, or algorithmic infor-
mation, C'(z) equal to the minimum length of a binary program for x. It
is a beautiful fact that these two notions turn out to be much the same.
The statement below may be called the theorem of equality between
stochastic entropy and expected algorithmic complexity. (The theorem
actually gives an inequality, but together with the simple argument in
Example 2.8.1 on page 188 this turns into an asymptotic equality.)

Let ¢ = y1y2 ... ym be a finite binary string with l(y1) = -+ = l(ym) =
n. Let the frequency of occurrence of the binary representation of k =
1,2,3,...,2" as a y-block be denoted by pr, = d({i : y; = k})/m. Then
up to an independent additive constant,

C(z) <m(H + e(m)),

with H =" prlog 1/pk, the sum taken for k from 1 to 2", and e(m)
2" (m)/m. Note that (m) — 0 as m — oo with n fived.

Proof. Denote 2™ by N. To reconstruct z it suffices to know the number
sy = prpm of occurrences of k as a y; in x, k = 1,2,..., N, together
with x’s serial number j in the ordered set of all strings satisfying these
constraints. That is, we can recover x from s1,..., sy, . Therefore, up



188

2. Algorithmic Complexity

Example 2.8.1

to an independent fixed constant, C(x) < 2I(s1) + -+ + 2l(sn) + 1(j).
By construction,

. m
JS( )
S1y,-..3,8N

a multinomial coefficient (Exercise 1.3.4 on page 10). Since also each
sr < m, we find that

C(x)g2n+lz(m>+z( " )

S1,-..-3SN

Writing the multinomial coefficient in factorials, and using Stirling’s ap-
proximation, Exercise 1.5.4 on page 17, to approximate j, the theorem
is proved. O

In Theorem 2.8.1 we have separated the frequency regularities from
the remaining regularities. The entropy component mH measures the
frequency regularities only, while the remaining component me(m) ac-
counts for all remaining factors.

For x representing the sequence of outcomes of independent trials, the
inequality in Theorem 2.8.1 can be replaced by asymptotic equality with
high probability.

We give a simple example to show the relation between the entropy H of
a stochastic source X, emitting n-length binary words with probability
P(X = z) of outcome z, and the complexity C. Let P(X = z) = 27"
be the uniform probability distribution on the outcomes of length n.
The entropy H in Theorem 2.8.1 is, according to Section 1.11, especially
designed to measure frequency regularities. We show that it is asymp-
totically equal to the expected complexity of a string. By Theorem 2.2.1
almost all  are c-incompressible, that is, there are 2"(1 — 27°"1) many
2’s that have C(x) > n—c. A simple computation shows that the entropy
H(X) = > )=n P(X = 2)1log1/P(X = z) is asymptotically equal to
the expected complexity E = Zz( P(X = z)C(x) of an n-length
word. Namely, we obtain

z)=n
n H(X) - n
n+0(1) - E (1—2-tl)(n—c)
Substitute ¢ = logn to obtain

lim H(X)

n— o0 E

=1.



2.8.2
Symmetry of
Information

Example 2.8.2

2.8. Algorithmic Information Theory 189

In Section 4.3.5 we prove the following generalization: Let p be a recursive
probability distribution on N, that is, there is a Turing machine computing
the function p. Let, moreover, K(z) be the prefix complexity as defined in
Chapter 3. Then log1/P(z) and K (z) are close to each other with high prob-
ability. Since |K(z) — C(x)| < 2log C(x) by Example 3.1.4 on page 203, also
log 1/P(z) and C(z) are close to each other with high probability.

In particular, the entropy H = Zl(m):n P(x)log1/P(z) of the distribution
P is asymptotically equal to the expected complexity Zl(m):n P(z)K(x) of
words of length n; see Section 8.1.1.

Because we saw a few lines above that K(z) and C(x) are equal up to a
logarithmic additive term, the expected plain complexity C(-) is also asymp-
totically equal to the entropy,

1
; P(2)C () ~ ; P(z)log Pla)

Thus, the intended interpretation of complexity C(z) as a measure of the infor-
mation content of an individual object x is supported by a tight quantitative
relationship to Shannon’s probabilistic notion.

Is algorithmic information symmetric? In Section 1.11 we noted that
in Shannon’s information theory, the mutual information in one random
variable about another one is symmetric. While the equation I (x : y) =
Ic(y : ) cannot be expected to hold exactly, a priori it can be expected
to hold up to a constant related to the choice of reference function ¢g in
Theorem 2.1.1. However, with the current definitions, information turns
out to be symmetric only up to a logarithmic additive term.

By Theorem 2.2.1, there is a binary string x of each length n such that
C(z|n) > n. Similarly, there are infinitely many n such that C(n) > i(n).
Choosing = such that its length n is random in this sense yields, up to
independent constants,

Ic(xz :n) = C(n) — C(n|z)
Ic(n:x)=C(z) — C(x|n)

<

This example shows that the difference (the asymmetry of algorithmic
information) |[I¢(x : y) — I (y : x)| can be of order the logarithm of the
complexities of x and y. However, it cannot be greater, as we proceed to
show now. This may be called the theorem of symmetry of algorithmic
information for C-complexity. As usual, C(z,y) = C((z,y)) is the length
of the least program of U that prints out x and y and a way to tell them
apart.



190

2. Algorithmic Complexity

Theorem 2.8.2

Corollary 2.8.1

For all z,y € N, C(z,y) = C(z) + C(y|z) + O(log C(z,y)).

Since C(x,y) = C(y,x) up to an additive constant term, the following
symmetry of information property follows immediately.

Up to an additive term O(log C(x,y)),
C(x) = C(zly) = Cly) — Clyle).
Therefore,

Ho(x:y) — Ic(y : @) = O(log C(z,y)).

Theorem 2.8.2 cannot be improved in general, since in Example 2.8.2 we
have seen that the difference |[Ic(z : y) — Ic(y : z)| is at least log C(x)
for some nontrivial x and y. The proof of Theorem 2.8.2 follows.

Proof. (<) We can describe (x,y) by giving a description of z, a de-
scription of y given z, and an indication of where to separate the two
descriptions. If p is a shortest program for z and ¢ is a shortest pro-
gram for y, with {(p) < I(q), then there is a Turing machine for which
I(p)pq is a program to compute (z,y). Invoking the invariance theorem,
Theorem 2.1.1, we obtain C(z,y) < C(x) + C(y|z) + 21(C(x)) + O(1).

(>) Recall that the implied constant in the O(log C'(z, y))-notation can
be both positive and negative. Thus, we need to prove that there is a
constant ¢ > 0 such that C(x,y) > C(x)+C(y|z) —clog C(z,y). Assume
to the contrary that for every constant ¢ > 0, there are  and y such
that

C(ylz) > C(x,y) — C(x) + cl(C(z,y)). (2.8)

Let A = {{u,z) : C(u,2z) < C(x,y)}. Given C(z,y), the set A can be
recursively enumerated. Let A, = {z: C(x, z) < C(x,y)}. Given C(z,y)
and x, we have a simple algorithm to recursively enumerate the set A,.
One can describe y, given z, using its serial number in enumeration order

of A, and C(z,y). Therefore,

Clylz) <U(d(Ag)) +21(C(z,y)) + O(1). (2.9)
By Equations 2.8, 2.9,

d(Ay) >2° e=C(z,y) — C(z) + (¢ = 2)(C(z,y)) —O(1). (2.10)

But now we can obtain a too short description for x as follows. Given
C(z,y) and e, we can recursively enumerate the strings u that are can-
didates for x by satisfying

Ay ={z:C(u,z) < C(x,y)}, (2.11)
2° < d(Ay).



Exercises

Exercises 191

Denote the set of such u by U. Clearly, z € U. Also,
{{u,2z) ruelU,ze A} CA (2.12)

The number of elements in A cannot exceed the available number of
programs that are short enough to satisfy its definition:

d(A) < 2¢@w+o), (2.13)
Combining Equations 2.11, 2.12, and 2.13, we obtain

d(A) d(4) _ 2C (@y)+0(1) .

dU) = min{d(A4,) :u € U} < 2¢  — 2¢

Hence, we can reconstruct = from C(x,y), e, and the serial number of x
in enumeration order of U. Therefore,

C(z) < 2(C(x,y)) +2l(e) + Cz,y) — e+ O(1).

Substituting e as given in Equation 2.10, this yields a contradiction,
C(z) < C(x), for large enough c. O

2.8.1. [17] The following equality and inequality seem to suggest that
the shortest descriptions of x contain some extra information besides the
description of z.

(a) Show that C(z,C(z)) = C(z) + O(1).
(b) Show that C(aly,i — C(aly,)) < Claly,) + O(1).

Comments. These (in)equalities are in some sense pathological and may
not hold for all reasonable descriptional complexities. However, these
phenomena also hold for the prefix complexity K introduced in Chap-
ter 3. Source: P. Géacs, Lecture Notes on Descriptional Complezity and
Randomness, Manuscript, Boston University, 1987.

2.8.2. [27] Let z be a string of length n.

(a) Show that the equality C(z,C(z)) = C(C(x)|z) + C(x) + O(1) can
be satisfied only to within an additive term of about logn.

(b) Prove that C(z,y) = C(z|y) + C(y) can hold only to within an
additive logarithmic term without using Exercise 2.8.1, Item (a), and
Exercise 2.7.8.

Comments. Hint for Item (a): use Exercise 2.8.1, Item (a), and Exer-
cise 2.7.8. Hint for Item (b): additivity is already violated on random
strings of random length. Source: P. Gacs, Ibid.; A.K. Zvonkin and L.A.
Levin, Russ. Math. Surv., 25:6(1970), 83-124.



192 2. Algorithmic Complexity

2.9
History and
References

2.8.3. [12] Show that given z,y, and C(z,y), one can compute C(z)
and C(y) up to an additive logarithmic term O(log C(z,y)).

Comments. Hint: use symmetry of information and upper semicom-
putability. Suggested by L. Fortnow.

2.8.4. [28] Let w = wyws ... be an infinite binary sequence. The en-
tropy function H (p) is defined by H(p) = plog1/p+(1—p)logl/(1—p).
Let limy oo } 0 twi=p

(a) Show that

1 n
Clwim|n) < nH i 1 .
(win|n) <n <n2w>+ogn+c

i=1

(b) Prove the following: If the w;’s are generated by coin flips with prob-
ability p for outcome 1 (a Bernoulli process with probability p), then for
all e > 0,

Pr {w: ‘C(”L"'”) - H(p)’ > e} —0,

n

as n goes to infinity.
2.8.5. [26] Show that 2C(a, b, c) < C(a,b)+C(b,c)+C(c,a)+0O(logn).

Comments. For an application relating the 3-dimensional volume of a
geometric object in Euclidean space to the 2-dimensional volumes of its
projections, see the discussion in Section 6.13 on page 530. Hint: use the
symmetry of information, Theorem 2.8.2. Source: D. Hammer and A.K.
Shen, Theor. Comput. Syst., 31:1(1998), 1-4.

The confluence of ideas leading to Kolmogorov complexity is analyzed
in Section 1.8 through Section 1.12. Who did what, where, and when,
is exhaustively discussed in Section 1.13. The relevant documents are
dated R.J. Solomonoff, 1960/1964, A.N. Kolmogorov, 1965, and G.J.
Chaitin, 1969. According to L.A. Levin, Kolmogorov in his talks used
to give credit also to A.M. Turing (for the universal Turing machine).
The notion of nonoptimal complexity (as a complexity based on shortest
descriptions but lacking the invariance theorem) can be attributed, in
part, also to A.A. Markov [Soviet Math. Dokl., 5(1964), 922-924] and
G.J. Chaitin [J. ACM, 13(1966), 547-569], but that is not a very crucial
step from Shannon’s coding concepts.

The connection between incompressibility and randomness was made
explicit by Kolmogorov and later by Chaitin. Theorem 2.2.1 is due to
Kolmogorov. The idea to develop an algorithmic theory of information



2.9. History and References 193

is due to Kolmogorov, as is the notion of deficiency of randomness. Uni-
versal a priori probability (also based on the invariance theorem) is due
to Solomonoff. This is treated in more detail in Chapter 4. (Solomonoff
did not consider descriptional complexity itself in detail.)

In his 1965 paper, Kolmogorov mentioned the incomputability of C(z)
in a somewhat vague form: “[...] the function Cy(x|y) cannot be effec-
tively calculated (generally recursive) even if it is known to be finite
for all x and y.” Also Solomonoff suggests this in his 1964 paper: “it is
clear that many of the individual terms of Eq. (1) are not ‘effectively
computable’ in the sense of Turing [... but can be used] as the heuristic
basis of various approximations.” Related questions were considered by
L. Lofgren [Automata Theory, E. Caianiello, ed., Academic Press, 1966,
251-268; Computer and Information Sciences II, J. Tou, ed., Academic
Press, 1967, 165-175]. Theorem 1 in the latter reference demonstrates
in general that for every universal function ¢g, Cg, () is not recursive
in z. (In the invariance theorem we considered only universal functions
using a special type of coding.)

Despite the depth of the main idea of Kolmogorov complexity, the tech-
nical expression of the basic quantities turned out to be inaccurate in
the sense that many important relationships hold only to within an error
term such as the logarithm of complexity. For instance, D.W. Loveland
introduced n-strings in [Inform. Contr., 15(1969), 510-526; Proc. ACM
1st Symp. Theory Comput., 1969, 61-65] and proved that the length-
conditional C(z1.,|n) measure is not monotonic in n, Example 2.2.5,
page 119. He proposed a uniform complexity to solve this problem,
and relationships between these complexities are the subject of Exer-
cises 2.3.2, 2.3.4, 2.5.10, 2.5.11, 2.5.12, and 2.5.13.

In the subsequent development of this chapter we have used time and
again the excellent 1970 survey by L.A. Levin and A.K. Zvonkin [Russ.
Math. Surv., 25:6(1970), 83—-124], which describes mainly the research
performed in the former USSR. We have drawn considerably on and
profited from the point of view expressed in P. Gécs’s [Komplexitit und
Zufalligkeit, Ph.D. thesis, J.W. Goethe Univ., Frankfurt am Main, 1978,
unpublished; Lecture Notes on Descriptional Complexity and Random-
ness, Manuscript, Boston University, 1987]. Another source for the Rus-
sian school is the survey by V.V. Vyugin, Selecta Mathematica, formerly
Sovietica, 13:4(1994), 357-389 (translated from the Russian Semiotika
and Informatika, 16(1981), 14-43).

In [A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83—
124], Theorems 2.2.1 through 2.3.2 are attributed to Kolmogorov. The
result on meager sets in Section 2.2 is from [M. Sipser, Lecture Notes
on Complezity Theory, MIT Lab Computer Science, 1985, unpublished].
We avoided calling such sets ‘sparse’ sets because we need to reserve



194

2. Algorithmic Complexity

the term for sets that contain a polynomial number of elements for each
length. The approximation theorem, Theorem 2.3.3, is stated in some
form in [R.J. Solomonoff, Inform. Contr., 7(1964), 1-22, 224-254], and
is attributed also to Kolmogorov by Levin and Zvonkin. Some other
properties of the integer function C' we mentioned were observed by
H.P. Katseff and M. Sipser [Theoret. Comput. Sci., 15(1981), 291-309].

The material on random strings (sequences) in Sections 2.4 and 2.5 is
primarily due to P. Martin-Lof [Inform. Contr., 9(1966), 602-619; Z.
Wahrsch. Verw. Geb., 19(1971), 225-230]. The notions of random fi-
nite strings and random infinite sequences, complexity oscillations, lower
semicomputable (sequential) Martin-Lof tests and the existence of uni-
versal (sequential) tests, the use of constructive measure theory, The-
orems 2.4.2, and 2.5.1 through 2.5.5, are taken from P. Martin-Lof’s
papers. Weaker oscillations are mentioned by G.J. Chaitin [J. ACM,
16(1969), 145-159]. We also used [A.K. Zvonkin and L.A. Levin, Russ.
Math. Surv., 25:6(1970), 83—-124; P. Gécs, Lecture Notes on Descriptional
Complezity and Randomness, Manuscript, Boston University, 1987].

As noted in the main text, the complexity oscillations of infinite se-
quences prevent a clear expression of randomness in terms of complex-
ity. This problem was investigated by L.A. Levin in [A.K. Zvonkin and
L.A. Levin, Russ. Math. Surv., 25:6(1970), 83-124] and independently
by C.P. Schnorr [Lect. Notes Math., Vol. 218, Springer-Verlag, 1971].
As a part of the wider issue of (pseudo) random number generators
and (pseudo) randomness tests, the entire issue of randomness of in-
dividual finite and infinite sequences is thoroughly reviewed by D.E.
Knuth, Seminumerical Algorithms, Addison-Wesley, 1981, pp. 142-169;
summary, history, and references: pp. 164-166. The whole matter of
randomness of individual finite and infinite sequences of zeros and ones
is placed in a wider context of probability theory and stochastics, and
is analyzed in [A.N. Kolmogorov and V.A. Uspensky, Theory Probab.
Appl., 32(1987), 389-412; V.A. Uspensky, A.L. Semenov and A.K. Shen,
Russ. Math. Surv., 45:1(1990), 121-189; V.A. Uspensky, A.L. Semenov,
An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Theoret. Comput. Sci.,
2:207(1998), 1362-1376]. Developments in the theory, at the crossroads
of notions of individual randomness, Kolmogorov complexity, and re-
cursion theory have blossomed in the last decades. Such work has been
partially incorporated in the main text, and in the exercises, of Chap-
ters 2 through 4. Detailed treatment is beyond the scope and physical
size of this book, and is the subject of more specialized treatment, as in
R.G. Downey, D.R. Hirschfeldt, Algorithmic Randomness and Complex-
ity, Springer-Verlag, New York, to appear; A.K. Shen, V.A. Uspensky,
N.K. Vereshchagin, Kolmogorov Complexity and Randomness, Elsevier,
Amsterdam, to appear; A. Nies, Computability and Randomness, Oxford
Univ. Press, to appear.



2.9. History and References 195

Section 2.6, which analyzes precisely the relative frequencies of 0’s and
1’s and k-length blocks in individual infinite and finite sequences in terms
of their Kolmogorov complexity, is from [M. Li and P.M.B. Vitanyi,
Math. Systems Theory, 27(1994), 365-376].

The recursion-theoretic properties we treat in Section 2.7 are related to
Godel’s famous incompleteness theorem. Theorem 2.7.1 is attributed to
J.M. Barzdins in [A.K. Zvonkin and L.A. Levin, Russ. Math. Surv.,
25:6(1970), 83-124]. The proof of Corollary 2.7.2 was given by G.J.
Chaitin [J. ACM, 21(1974), 403-423; Scientific American, 232:5(1975),
47-52]. This application and some philosophical consequences have been
advocated with considerable eloquence by G.J. Chaitin and C.H. Ben-
nett [C.H. Bennett and M. Gardner, Scientific American, 241:5(1979),
20-34].

We also used the insightful discussion in [P. Gacs, Lecture Notes on De-
scriptional Complexity and Randomness, Manuscript, Boston Univer-
sity, 1987]. These results are analyzed and critically discussed from a
mathematical logic point of view by M. van Lambalgen [J. Symb. Logic,
54(1989), 1389-1400]. Theorem 2.7.2, Barzdins’s lemma, occurs both
in [J.M. Barzdins, Soviet Math. Dokl., 9(1968), 1251-1254] and [D.W.
Loveland, Proc. ACM 1st Symp. Theory Comput., 1969, 61-65]. Exam-
ples in Section 2.7 are due to Kolmogorov, 1970, published much later
as [Russ. Math. Surv., 38:4(1983), 27-36] and a footnote in [L.A. Levin,
Problems Inform. Transmission, 10:3(1974), 206-210].

The treatment of the relation between plain Kolmogorov complexity
and Shannon’s entropy in Section 2.8 is based on the work of A.N. Kol-
mogorov [Problems Inform. Transmission, 1:1(1965), 1-7; IEEE Trans.
Inform. Theory, IT-14(1968), 662-665; Russ. Math. Surv., 38:4(1983),
27-36; Lect. Notes Math., Vol. 1021, Springer-Verlag, 1983, 1-5] and on
[A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83-124].
The latter reference attributes Theorem 2.8.1 to Kolmogorov. Theo-
rem 2.8.2 and its Corollary 2.8.1, establishing the precise error term in
the additivity of complexity and symmetry of information as logarithmic
in the complexity, are due to Levin and Kolmogorov [A.K. Zvonkin and
L.A. Levin, Russ. Math. Surv., 25:6(1970), 83-124; A.N. Kolmogorov,
Russ. Math. Surv., 38:4(1983), 27-36].



3

Algorithmic Prefix Complexity

While the development of an algorithmic theory of complexity according
to the original definitions (plain Kolmogorov complexity) in Chapter 2
was very fruitful, for certain goals the mathematical framework is not
yet satisfactory. This has resulted in a plethora of proposals of modi-
fied measures to get rid of one or the other problem. Let us list a few
conspicuous inconveniences.

e The plain complexity is not subadditive: the inequality C(z,y) <

C(z) + C(y) holds only to within a term logarithmic in C(z) or
C(y)—Example 2.1.5 on page 109 and Example 2.2.3 on page 118.
An attempt to solve this problem is to use conditional complexity,
in which case we indeed find that C(z,y|C(z)) < C(x) + C(y) up
to an additive constant.

Another problem is nonmonotonicity over prefizes: it would be
pleasing if the complexity of xy were never less than the complex-
ity of x. The complexity measure C(x) does not have this property.
In contrast to the subadditivity question, here use of conditional
complexity C(z|l(z)) instead of C(x) does not help. Not only is
this measure nonmonotonic, but it has also another counterintuitive
property: it drops infinitely often below a fixed constant as x runs
through the natural numbers. A first proposal to remedy this defect
was the uniform complexity variant C'(z;1(z)); see Exercise 2.3.2 on
page 130. Informally, this measure gives the length of the shortest
program p that computes z; for all inputs ¢, 7 =1,2,...,1(x).

In the development of the theory of random infinite sequences it
would be natural to identify infinite random sequences with infi-
nite sequences of which all finite initial segments are random. As it

M. Li and P.M.B. Vitanyi, 4n Introduction to Kolmogorov Complexity and Its Applications, 197
DOI: 10.1007/978-0-387-49820-1_3, © Springer Science + Business Media, LLC 2008



198

3. Algorithmic Prefix Complexity

turned out, no infinite sequence satisfies this criterion, due to com-
plexity oscillations. This holds for any of the C(x), C(z|l(x)), and
C(z;1(x)) measures. It is quite complicated to express Martin-Lof’s
notion of randomness in terms of the C-complexity of prefixes.

The original motivation of Solomonoff to introduce algorithmic com-
plexity was as a device through which to assign a universal prior
probability to each finite binary string (Section 1.6 and Section 1.10).
Choosing the reference Turing machine U as in the invariance theo-
rem, Theorem 2.1.1, this induces a function P over N (equivalently
{0,1}*) defined by P(z) = 3.27UP) the sum taken over all inputs
p for which U computes output x and halts.

This approach is different from the one in Example 1.1.3 on page 6,
where we used P'(z) = 2-4=") where z* is a shortest program for z.
Anticipating Chapter 4, if we allow only self-delimiting programs as de-
veloped in the current chapter, the two approaches turn out to be the
same according to the later Theorem 4.3.3. Namely, P(z) = O(P’(z))
if we allow only Turing machines with self-delimiting programs (no pro-
gram for which the machine halts is the prefix of another program for
which the machine halts).

Unfortunately, P is not a proper probability mass function, since
the series ) P(z) diverges. Worse, for each individual = we have
P(z) = oo. Namely, for each x € N there is a Turing machine T
that computes the constant x for all inputs. If I[(T") denotes the
length of the description of T', then

P(z) > 271D Z 271 = o,
pe{0,1}*

Our next try is to redefine P(z) by not considering all programs
that output z, but only the shortest program that outputs x. This
yields P(z) = 2-¢(®). However, we still have 3" P(z) diverging, so
again P is not proper. This holds also with respect to C(z|l(z)) and
C(z;1(z)), the simple reason being that since all of these measures
are close to logx for almost all z, the corresponding P(x) will be
close to 1/x for almost all z. Divergence of ) P(x) then follows
from divergence of the harmonic series )~ 1/z.

There is a close relation between the complexity of a finite string
and its Shannon entropy, Section 2.8 and the later Section 8.1.1.
Indeed, it would be troublesome if it were not so, since both notions
have been introduced as a measure of information content: in the
one case of individual objects, and in the other case of random vari-
ables. Therefore, we could hope that classical information-theoretic
identities as derived in Section 1.11 would have complexity ana-
logues that are satisfied up to an additive constant (reflecting the



3. Algorithmic Prefix Complexity 199

choice of reference machine). However, in Section 2.8 we have estab-
lished that the complexity analogues of some information-theoretic
identities are satisfied only to within an additive logarithmic term
and that this cannot be improved in general.

Looking at this list of deficiencies with the wisdom of hindsight, it is
not too difficult to transcend a decade of strenuous investigation and
alternative proposals by proceeding immediately to what now seems a
convenient version of algorithmic complexity. This is the complexity in-
duced by Turing machines with a set of programs in which no program
is a proper prefix of another program. This proposal gets rid of all prob-
lems above (except for nonmonotonicity). Let us consider this matter in
some detail.

The study of the algorithmic complexity of descriptions asks in effect
for a code in the sense of Section 1.11.1. In his original paper, Shannon
restricted attention to those codes for which no value is the prefix of
another value, the so-called prefix-codes. This restriction is highly moti-
vated by the implicit assumption that descriptions will be concatenated
and must be uniquely decodable.

Recall from Section 1.11.1 that uniquely decodable codes and prefix-
codes share the same sets of code-word lengths. Moreover, the minimal
average code-word length L of a prefix-code encoding source-word se-
quences emitted by a random variable with probability distribution P
satisfies

H(P)<L<H(P)+1,

where H(P) is the entropy of the random variable (Theorem 1.11.2 on
page 77). This is obtained (up to an additive constant term) by assigning
code-word lengths I; = [log1/p;] to the ith outcome of the random
variable, where p; is the probability of that outcome. In this way, H (P)
may be interpreted as the minimal expected length of a description of
an outcome, using a prefix-free code. Then, the expected additive fudge
term in complexity equations based on prefix-codes is O(1) rather than
logarithmic. However, for complexity equations about individual objects
in general the situation is more complicated.

The divergence of the series ) 2-C(#) was a major blow to Solomonoff’s
program. But if the set of programs of the reference machine is prefix-
free, then convergence of this series as required by the probability inter-
pretation is a property ensured by Kraft’s inequality, Theorem 1.11.1.

At present, prefix-code-based complexity is often considered as some
sort of a standard algorithmic complexity. Lest the reader be deluded
into the fallacy that this is the most perfect of all possible worlds, we
state that different applications turn out to require different versions of
complexity, and all of these are natural for their own purposes.



200 3. Algorithmic Prefix Complexity

3.1
The
Invariance

Theorem
Definition 3.1.1

Definition 3.1.2

In the theory of algorithmic complexity we have a more refined goal than
in classic information theory, but not essentially different objectives.
Here, too, it is natural to restrict the effective descriptions to uniquely
decodable codes, and since our interest is only in the length of code
words, to prefix-codes.

A partial recursive prefix function ¢ : {0,1}* — N is a partial recursive
function such that if ¢(p) < oo and ¢(g) < oo, then p is not a proper
prefix of q.

Let 11,75, ... be the standard enumeration of Turing machines, and let
@1, P2, ... be the corresponding enumeration of partial recursive func-
tions (Section 1.7). Obviously, all partial recursive prefix functions occur
in this list. We change every Turing machine T' computing ¢ to a ma-
chine 7" computing a partial recursive prefix function v, where ¢ = ¢
if ¢ was already a partial recursive prefix function. The machine T ex-
ecutes the algorithm below using machine 7. In contrast to 7', which is
presented with an input from {0, 1}* delimited by end markers, machine
T’ is presented with a potentially infinite binary input sequence b1bs . . .,
which it reads from left to right without backing up.

A halting input, or program, of T’ is an initial segment b1bs . .. by, such
that 7" halts after reading b,, and before reading b,,+1. There are no
other programs of T”. In this way, no program is a proper prefix of any
other program, that is, the set of programs is prefix-free. Moreover, T’
determines the end of each program without reading the next symbol.
Such programs are called self-delimiting; see Definition 1.11.4 on page 79.
Each such program p is the code word for the source word T"(p) con-
sisting of the word written on the output tape by the time 7" halts its
computation with program p.

The computation of T” on input bybobs ... is given by the following al-
gorithm that modifies the operation of the original T":

Step 1. Set p:=e.

Step 2. Dovetail all computations of T' computing ¢(pq), for all
g € {0,1}*. {Let ¢; be the jth string of {0,1}*; dovetailing here

means executing consecutive stages ¢ := 1,2,..., such that in the
ith stage we do one next step of the computation of ¢(pg;) for all
J with j <4}

If ¢(pq) < oo is the first halting computation then go to Step 3.

Step 3. If ¢ = € then output ¢(p) and halt {These p are already
self-delimiting} else read b := next input bit; set p := pb {If this
case happens for every initial segment of the input,then the machine
never halts}; go to Step 2.



Example 3.1.1

3.1. The Invariance Theorem 201

This construction produces an effective enumeration
/ /
1,15, ...

of Turing machines, called prefix machines, computing all, and only, par-
tial recursive prefix functions ¢, ¥s, ... . That is, the Turing machines
that did already compute a partial recursive prefix function have an
unchanged input—output behavior, although they compute much more
slowly than before. Each of the remaining Turing machines is changed
into a machine that computes some partial recursive prefix function, and
it is irrelevant which one. This brings us to the invariance theorem for
prefix complexity.

The previous construction results in a version of prefix machines we
may call partial recursive prefix function machines. An alternative way
of defining a prefix machine is as follows. It is a Turing machine with
a separate one-way input tape, a separate one-way output tape, and a
two-way work tape, all of them one-way infinite. In the start state the
input is written on the input tape, and the read-only head on that tape
scans the first symbol. Initially, both the work tape and the output tape
are empty and the read/write heads are at their leftmost squares. At
the start of each step, the state of the finite control and the symbols
under scan on the input tape and the work tape determine what the
Turing machine does in this step. It does the following: It either moves
the reading head on the input tape to the next input symbol or does not
move the reading head at all, followed by a computation step consisting
in either changing the scanned symbol on the work tape or moving the
work tape head one square left, right, or not at all, followed by a change
of state of the finite control and either writing a symbol to the next
empty square on the output tape or not writing on the output tape.

Let the infinite input tape contain only 0’s and 1’s (no blanks). Clearly,
with this definition every machine T scans one maximal prefix, say p,
of any infinite binary input. The output is the contents of the output
tape when the machine halts. This type of prefix machine is called a
self-delimiting machine. We leave it to the reader to show that the self-
delimiting machines can be effectively enumerated. Moreover, every par-
tial recursive prefix function is computed by a self-delimiting machine,
and every self-delimiting machine computes a partial recursive prefix
function. Without restrictions on the computation time, the difference
between the two definitions does not matter for us. In particular, the
invariance theorem, Theorem 3.1.1 below, is invariant under the two def-
initions. With time bounds it is not known whether the properties are
invariant under the two definitions; see the discussion in Example 7.1.1
on page 535. <&



202

3. Algorithmic Prefix Complexity

Theorem 3.1.1

Example 3.1.2

Example 3.1.3

Recall Definition 2.0.1, page 103, of a function that is additively optimal
(a special type of universality) for a class of functions.

There exists an additively optimal universal partial recursive prefix func-
tion g such that for every partial recursive prefix function 1 there is a
constant ¢y, such that Cy,(z|y) < Cy(z|y) + ¢y, for all z,y € N.

Proof. Using standard techniques, like those in Section 1.7, we can show
that there exists a universal prefix machine U such that U({y, (n,p))) =
T/ (y,p) for all y,p € N. The remainder of the proof is analogous to the
proof of Theorem 2.1.1, page 105. O

For each pair of additively optimal partial recursive prefixes 1) and ',

|Cy(zly) — Cyr (z|y)| < cyyrs

for all  and some constant cy /. We fix one additively optimal partial
recursive prefix function ¥ as the standard reference, and U in the proof
of Theorem 3.1.1 as the reference prefix machine, and define the prefix
complezity of x, conditional to y, by K(z|y) = Cy,(z|y) for all z. The
(unconditional) prefix complexity of z is defined as K (z) = K (zle).

Define K(z,y) = K({z,y)). Requiring the decoding algorithm to be
prefix-free has advantages, since now we can concatenate descriptions
without marking where one description ends and the other one begins.
Previously, end markers disappeared in concatenation of descriptions,
which was responsible for logarithmic fudge terms in our formulas. More
formally, in contrast to C' (Example 2.2.3 on page 118), the measure K
is subadditive, that is,

K(z,y) < K(x) + K(y) + O(1).

Namely, let U be the reference machine of Theorem 3.1.1. Let U(z*) = x
with {(z*) = K(x), and U(y*) = y with I(y*) = K(y). Since the set of
programs of U is a prefix-code, we can modify U to a machine V' that
first reads x* and computes x, then reads y* and computes y, and finally
computes and outputs (z,y). If V' = T,, in the enumeration of prefix Tur-
ing machines, then U({(n, (x*,y*))) = (z,y). A similar argument shows
that K(zy) < K(z) + K(y) + O(1). &

For all 2, we have K (x) < C(z)+ K (C(z))+O(1), since if p is a shortest
program for z (on an ordinary machine) with I(p) = C(x), and ¢ is a
shortest program for I(p) (on a prefix machine) with i(¢) = K(I(p)),
then ¢p is a program for x on some prefix machine. Similarly, one can
show that C(xy) < K(z) + C(y) + O(1). <&



Example 3.1.4

Lemma 3.1.1

3.1. The Invariance Theorem 203

The functions C' and K are asymptotically equal. For all x and y, we
have, up to additive constant terms,

Clzly) < K(zly) < C(xfy) + 2log C(zly).

Since the prefix partial recursive functions are a restriction on the notion
of partial recursive functions, it is obvious that C(z]y) < K(z|y). To
prove the second inequality, we recall that for each x and y the reference
machine of the C-complexity of Definition 2.1.2 on page 106 computes
output z from some input (y,p) with I(p) = C(z|y). We know that
I(p)p is a self-delimiting encoding for p. Therefore, K (z|y) < C(z|y) +
21(C(xly)) + O(1). &

It is straightforward to extend this idea by having a prefix machine V' compute
z from input p,0pr-—10...0pol. Here p;+1 is the shortest program for the length
of p;, and po is the shortest program to compute = given y. If V' = T;,, then
U(n,y,pr0pr—10...0pol) = z, and

K(zly) < C(zly) + C(C(zly)) +---+0(1) +r
< C(zly) + C(C(zly)) + O(log C(C(z|y))) + O(1),

where the - - - indicates all r positive terms, and the O(1) term comprises the
cost of encoding n. Using more efficient prefix-codes, we can improve the above
estimate. Let [* be as defined by Equation 1.23; we have

Clzly) < K(zly) < Claly) +1"(C(zly)) + O1). (3.1)

(
A more precise relation between C(z) and K (z) was shown by R.M. Solovay:

(
K(z) = C(z) + C(C(x)) + 0(C(C(C(2)))),
C(z) = K(z) - K(K(2)) - O(K(K(K(2))))-

The content of this observation is that in order to make the minimal C-style
program self-delimiting, we must prefix it with a self-delimiting encoding of
its own length. To within the cited error term, this simple procedure is always
optimal.

We have seen that C(x) is less than K (z), since in the definition of C'(z)
we did not take the information into account that is needed to make the
program prefix-free. We can express C' precisely in terms of K.

C(z) is the unique (to within an additive constant) function satisfying
C(z) =min{i: K(z}:) <i} 4+ O(1) = K(z|C(z)) + O(1).

This equation can be generalized in the natural way to C(z|y).



204 3. Algorithmic Prefix Complexity

Example 3.1.5

Exercises

Proof. (>) We prove C(x) > K(x|C(x)) + O(1). The shortest Turing
machine program x* for z has length C(x). There is a prefix machine
that given C'(z), computes x from z*. Clearly, this also implies C'(z) >
min{i : K(z|i) <i} + O(1).

(<) We prove C(z) < min{i : K(z|i) < i} + O(1). This is the same
as if K(z|i) < i, then C(x) < i+ O(1). Assume that x is computed
by reference prefix machine U, given i, from input p, I(p) < i. A Tur-
ing machine (not necessarily prefix machine) T, when presented input
0=UP)=11p, in case i — I(p) — 1 > 0, or input p otherwise, can extract
i from the input length and simulate U on p, using the extracted i as
the conditional value. By Theorem 2.1.1, page 105, C(z) < Cp(z) < i,
up to additive constants. This proves the required inequality. A similar
proof, with C(z) substituted for 4, proves C(z) < K(z|C(z)) + O(1). O

In Theorem 2.1.2 on page 108, we proved the upper bound C(z) <
n + O(1) for all z of length n. We have K(z) < n + 2logn + O(1) by
encoding z as I(xz)z. We give a concrete upper bound on the implied
constant of the O(1) term in Section 3.2. We can improve the estimate
by more efficient prefix-codes (Section 1.11.1) to

K(z) <log"n+n+1(n)+1((n))+--+ O(1), (3.2)
where the sum is taken over all positive terms.

The length-conditional plain complexity figured prominently in Chap-
ter 2. Let us look at the prefix complexity version. With I(z) = n,

K(z) < K(z[n) + K(n) + O(1)
< K(z|n)+log*n+1(n) +1(1(n)) +---+O(1),
and, straightforwardly, K (z|n) < C(z)+ O(1) < C(z|n) + K(n) + O(1).
The first inequality holds since the concatenation of a self-delimiting
program for I(z) and a self-delimiting program to compute x given I(x)

constitutes a self-delimiting program for x. The second inequality follows
from Equation 3.2, since K (n) <log"n +I(n)+1(i(n)) +---+ O(1). &

3.1.1. [12] Use the Kraft inequality, Theorem 1.11.1, to show that
K(z) > logz + loglog « for infinitely many x.

3.1.2. [14] We investigate transformations of complexity under the
arithmetic operation *. Show that

(a) K(zxy) < K(z) + K(y) + O(1);
(b) If  and y are primes, then K (z xy) = K(x,y) + O(1);



Exercises 205

(c) K(z xy) +log(x xy) > K(z,y) + O(1);

Comments. Ttem (c): consider the prime factorization of z := z * y.
Enumerate all decompositions of z into two factors and let x,y be the
jth decomposition. Use j and z * y.

3.1.3. [16] Let us backtrack to the original definition of a Turing ma-
chine in Section 1.7. Instead of a tape alphabet consisting of 0, 1, and
the blank symbol B, we want to consider Turing machines with a tape
alphabet consisting only of 0 and 1. We can modify the original effec-
tive enumeration 77,75, ... in Section 1.7 to an effective enumeration
T, T%,,... of Turing machines using a purely binary tape alphabet,
without blanks B. Furthermore, assume that the set of inputs for halt-
ing computations of each Turing machine form a uniquely decodable
code.

(a) Define K%(z) = min{l(p) +i+ 1 : T’;(p) = z,i > 1}. Show that
Kb(z) = K(x) + O(1).

(b) Show that restricting the Turing machines to a one-letter tape al-
phabet (with or without delimiting blanks) does not yield a proper com-
plexity measure.

Comments. By reformulating the notion of Turing machine with a purely
binary tape alphabet, without distinguished blank symbol B, we natu-
rally end up with the prefix complexity K(z). Hint for Item (a): use
the McMillan—Kraft theorem, Exercise 1.11.9 on page 88. Further re-
strictions of the tape alphabet do not yield proper complexity measures.
Hint for Item (b): show that there is no additively optimal partial re-
cursive function in this enumeration of partial recursive functions.

3.1.4. e [19] Do Exercise 2.1.9 on page 114 for K-complexity.

3.1.5. e [31] We can derive K (x) in another way. Define a complezity
function F(x) to be a function on the natural numbers with the prop-
erty that the series 3" 27F(®) < 1 and such that F(z) is upper semicom-
putable. That is, the set {(m,x) : F(x) < m} is recursively enumerable.
(If F(x) = oo, then 2 F(®) =0.)

(a) Show that the number of «’s for which F(z) < m is at most 2.
(b) Show that there is an additively optimal (minimal) complexity F'
such that for each complexity F’ there is a constant ¢ depending only
on F and F’ but not on x such that F(z) < F’'(x) + ¢. This is the
invariance theorem corresponding to Theorem 3.1.1.

(c¢) Show that F(x) = K(x)+0O(1), where F'(x) is the optimal complexity
in Item (b).

Comments. Hint for Item (b): define F'(r) = ming{1, Fi(z) + k}, where
Fy, is the complexity resulting from the kth partial recursive function



206 3. Algorithmic Prefix Complexity

3.2
*Sizes of the
Constants

after modifying it to satisfy the requirements above. This approach has
been proposed by L.A. Levin in a sequence of papers: [Russ. Math. Surv.,
25:6(1970), 83-124, Sov. Math. Dokl., 14(1973), 1413-1416, and Prob-
lems Inform. Transmission, 10(1974), 206—210 (where the equivalence
with the prefix machine approach is established)]. See also [P. Gécs,
Sov. Math. Dokl., 15(1974), 1477-1480]. G.J. Chaitin [J. Assoc. Comp.
Mach., 22(1975), 329-340] used the prefix machine approach to define
K (z) but gave a different interpretation to the conditional complexity,
resulting in the K¢ version in Example 3.9.2 and Exercise 3.9.3.

3.1.6. [39] Giving a definition of complexity of description, we use
recursive decoding functions from the set of finite binary strings to itself.
However, we can consider this set with different topologies. If we consider
distinct binary strings as incomparable, then this set corresponds to the
natural numbers N. If we consider the distinct binary words as compared
by the prefix relation, then we view them as nodes in a binary tree B*,
B = {0,1}, in the obvious way. Then there are four possible definitions
of recursive decoding mappings: from N to N, from N to B*, from B*
to NV, and from B* to B*. Exploit this idea to formalize the following:

(a) Using recursive decoding from N to N we obtain the plain complex-
ity C(x).

(b) Using recursive decoding from A to B* we obtain the uniform com-
plexity C'(z;n) as defined in Exercise 2.3.2, page 130.

(c) Using recursive decoding from B* to A we obtain the prefix com-
plexity K.

(d) Using recursive decoding from B* to B* we obtain the monotone
complexity as defined by Levin and Schnorr (Section 4.5.4).

Comments. Source: A.K. Shen, Sov. Math. Dokl., 29:3(1984), 569-574;
V.A. Uspensky, pp. 85-101 in: Kolmogorov Complexity and Computa-
tional Complezity, O. Watanabe, Springer-Verlag, 1992.

The additive constants in the Kolmogorov complexity and prefix com-
plexity of an object depend on the particular choice of universal machine
fixed as the reference machine. A minor modification of the universal
Turing machine U of Example 1.7.4 on page 30 yields small implied
constants—1 instead of O(1). If we modify U to the reference universal
machine U’ such that U’(0p) = p and U’(1p) = U(p), then

Clz) <l(z)+1, K(z) <l(z) + K(I(x)) + 1.

But it is quite tedious to exhibit the explicit encoding of such a machine.
On the other hand, if we aim for a ‘small’ universal Turing machine,



3.2. *Sizes of the Constants 207

then it becomes difficult to determine the concrete implied constants—
which also may become quite large. With this in mind, we want to find
a machine model in which a concrete universal machine is easily, and
shortly, implemented from weak elementary operations and the implied
constants above are small and can be easily determined.

R. Penrose in [The Emperor’s New Mind, Oxford University press, 1989] en-
coded a universal Turing machine in 5495 bits. G.J. Chaitin [Complezity,
1:4(1995/1996), 55-59] used LISP and powerful elementary operations to de-
fine a universal machine to concretely determine prefix complexity and some
associated constants. Lambda calculus is simpler and more elegant than LISP.
Pure lambda calculus with combinators S and K is elegant, but slow to eval-
uate. Since we are concerned with simplicity of definition rather than with ef-
ficiency of execution, we base a concrete definition of Kolmogorov complexity
on combinatory logic. What follows is a very brief exposition on combinatory
logic (see [H.P. Barendregt, The Lambda Calculus, its Syntax and Semantics,
North-Holland, Amsterdam, 1984]), which develops into a discussion of how
to represent binary strings in it.

The primitive combinators S and K are defined by the rewrite rules

Sxyz = x2(yz),
Kzy = x.

Other combinators are constructed from these two by application. We
assume that application of x on y, written (zy), associates to the left,
and omit parentheses accordingly. Thus, Sxyz should be interpreted as
(((Sz)y)z). Perhaps surprisingly, S and K suffice to define any function
definable in standard lambda calculus. As an example, we can check that
I = SKz, for every z, is the identity function:

SKzr = Kz(zz) = x.

The combinator co = SSK(S(SSK)) is another interesting example—
when applied to any combinator, it leads to an infinite rewriting chain
(abbreviating S(SSK) to L):

oox = SSKLx = SL(KL)x = Le(KLz) = S(SSK)xL
= SSKL(zL) = co(xL) = oo(xzLL) = co(xLLL)... .

In our machine model we want to consider each combinator to be a
machine, capable of processing input bits and producing output bits.
This entails representing an input binary string by a combinator, to
which the machine can be applied, and a way of interpreting the result,
if possible, as an output binary string.

A rewrite of Sxyz or Kxy will form the basic machine cycle. Our com-
binator machines employ a lazy reduction strategy, in which only the



208 3. Algorithmic Prefix Complexity

321

Encoding
Combinators as
Binary Strings

3.2.2

Encoding
Booleans, Pairs,
and Binary
Strings as
Combinators

frontal primitive combinator can be reduced. This is to avoid endless
rewrites that might be inconsequential for interpreting the result as a
string. Lazy reduction ends when a combinator of the form K, Kz, .S,
Sz, or Szxy is reached, where we lack the required number of arguments
for reducing the front S/K (as in S(KKK)K).

The nice thing about combinators is that they have a wonderfully simple
encoding as binary strings that is also self-delimiting: encode S as 00,
K as 01, and application as 1. Formally, we define the encoding (C) of
a combinator C' as

(5) =00,
(K) =01,
<Cocl> = 1<Co><01>
For instance, the combinator S(KSS), (S((KS)S)) in full, is encoded

as 10011010000. The length of this encoding is 3n — 1, where n is the
number of primitive combinators (S and K) it contains.

Define

K  (false),

0
1=SK (true).

Then, ‘if B then P else Q’ can be represented by BQP. The simplest
way to pair two combinators x and y is to have something that when
applied to 0 gives x, and when applied to 1 gives y. What we want then
is a combinator, call it P, that satisfies Pxyz = zxy, for example,

P = S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK)K))(KK).

Lists are then constructed by repeated pairing as usual: Plo(Pl; (Pl .. .))
represents the list [lo, {1, 12, ...]. A special element to signal the end of a
list, like the null character signaling the end of a string in the C program-
ming language, will be helpful. Since we consider only lists of bits, we
require an element that is easily distinguished from 0 and 1. The sim-
ple KS is such an element, since K.S00 = 1, while 000 = 100 = 0.
An empty list is then a list whose first element is K.S, and we de-
fine this to be § = K(KS). In this way, we can make arbitrary lists
of 0’s and 1’s. For instance, the string s = 0111001 maps to the list
PO(P1(P1(P1(PO(P0O(P1%)))))), conveniently—and a little confusingly,
since s itself doesn’t represent a combinator—denoted by (s$). One can
check that (s$)0 gives the first bit 0 of s, while (s$)1 gives the tail
P1(P1(P1(P0O(P0(P1$))))) = (111001%).



3.2.3
Output
Conventions

3.2.4
The Universal
Combinator

3.25
Decoding a
Combinator
Encoding

3.2. *Sizes of the Constants 209

If the machine halts, then how do we interpret the result as a binary
string? It is unreasonable to expect the result to be exactly identical
to (s$) for some string s, due to the lazy reduction. Instead, we should
focus on the individual bits sgs; ...s,—1 making up a string s. For a
combinator C, let C'11...10 with ¢ 1’s be denoted by C?, that is, the
ith element of the list C. We say that combinator C' produces output
s=50...5,_1 iff C*xow1 reduces to x,, (= s;zox1) for variables zo and
x1 and i < n, while C"zgx; reduces to Sz; (= $0x0x1). In this way a
single reduction distinguishes among the three possibilities.

Of course, not all combinators produce proper output in this sense. For
instance, Szoz1 = S0z0x1 = 021 (7ow1) = 71 and Stzoz; = S10x071 =
120(0z0)r1 = Omoz1 = Z0, but S2z027 = S1107071 = 10(10)2071 =
10zgz1 = xpx1. So the primitive combinator S can be interpreted as a list
starting with 2 bits, but the remainder cannot be interpreted as either
starting with a bit or behaving like the empty list. Such computations
must then be considered invalid. Having defined now how a combinator
can be seen as a machine taking binary strings as input and producing
binary strings as output, we return to our main objective.

A machine in our model is a combinator that is applied to the input
combinator—the list that the input string maps to—in order to produce
a proper output. For machines that are supposed to be able to detect
the end of their input, an input string s is mapped to the list (s$).

For prefix machines, which need to decide when to stop reading more
input based on what they have read so far, we can present them lists of
the form (soo) for increasingly longer s until they halt. Recall that co
leads to an infinite computation. Therefore, halting of the machine on
(soo) implies it has not read past string s.

We require combinators that given a list (i) produce the combinator
encoded on the initial part of that list and (ii) return the remaining part
of the list.

The following combinators do just that:

Qz = z0(x10SK)(Q(z1)(Q(R(x1)))) (initial combinator),

Rz = z0(2z11)(R(R(z1))) (skip combinator).
It may look like cheating to define these combinators recursively, but
the fixpoint operator Y = SSK(S(K(SS(S(SSK))))K) helps out. Y
has the nice property that Yo = z(Yz), allowing us to take @ =
YQ and R = YR/, where Q'zy = y0(y11)(z(x(yl))) and R'zy =
YO(y10SK)(z(y1)(2(R(y1))))-
Putting the pieces together, we form the universal combinator

U=SQR,



210 3. Algorithmic Prefix Complexity

3.2.6
Concrete
Complexities

Theorem 3.2.1

FIGURE 3.1. The 425-bit universal combinator U’ in pixels

which has the property that
U({C)z) = SQR({C)x) = Q((C)x)(R((C)x)) = Cx.

At long last, we can define Kolmogorov complexity and prefix complexity
concretely.

The Kolmogorov complexity C(x) of a string x is the length of a minimal
string p such that U(p$) outputs x. The prefix complexity K (z) of a
string « is the length of a minimal string p such that U(poo) outputs z.

To define Kolmogorov complexity conditional to a string y, we simply,
after applying U to the input, apply the result to (y$) in turn. (It is clear
how this approach can be extended to an arbitrary number of conditional
arguments.)

The Kolmogorov complexity C(z]y) of a string x conditional to a string
y is the length of a minimal string p such that U(p$)(y$) outputs z.
The prefix complexity K (z|y) of a string x conditional to a string y
is the length of a minimal string p such that U(poo)(y$) outputs z.
In this way, combinatory logic makes an excellent vehicle for defining
Kolmogorov complexity concretely, and we obtain the following:

C(z) <l(x)+8, C(e) =2,



3.3

Incompress-
ibility
Example 3.3.1

3.3.  Incompressibility 211

Clzly) <l(z) +

K(z) < 2l(z )+231 K(e) =11,
K (z]1(z)) < I(z) + 689,

K(z) < i(x) + 21(I(x)) + 1066

For instance, to prove the result about K (z), note that a string s can be
encoded in a self-delimiting way as 1sglsy...1s,—10 of length 2n + 1.
The combinator D defined by Dx = 20$(P(x10)(D(x11))), expressible
as 77 primitive combinators, decodes this. The universal combinator U
takes 518 bits. A mere 425 bits suffices to encode the currently most par-
simonious universal combinator U’, nearly 13 times smaller than the—
admittedly less optimized—universal Turing machine of Penrose referred
to above. Figure 3.1 represents U’ graphically by a 17 x 25 matrix of
pixels, where a white pixel denotes 1 and a black pixel denotes 0. The
matrix should be read in row-major order.

The quantitative relations between K and C show that there must be
many incompressible strings with respect to K. For the C-complexity,
for each n, the maximal complexity of strings of length n equals n, up
to a fixed constant. With K-complexity life is not so simple.

We first observe that since the range of K(+) is the code-word-length set
of a prefix-code, and it follows from the Kraft inequality, Theorem 1.11.1,
that 27 %(*) < 1. This implies the following:

If f(z) is a function such that the series 3" 27/ diverges, then K () >
f(z) infinitely often. Otherwise K (x) could not satisfy the Kraft in-
equality. For instance, choose f = fi for each fixed k, with fi(z) =
logx + loglogx + - - -+ loglog - - -log x, the last term consisting of the
k-fold iterated logarithm.

Let f be a function such that the sum Y°_ 277(*) is at most 1. By the
Kraft inequality, the set {f(z) : # € N} is the length set of the code-
word alphabet of a prefix-code. If, moreover, this prefix-code is decoded
by a prefix partial recursive function, then by Theorem 3.1.1, we have
K(z) < f(z) + O(1). An easy example is f(z) = log(z) + 2loglog(z). <

We cannot even give a recursive upper bound f(n) on the maximum
of K(z) for strings of length n that is always sharp to within a fixed
constant. Nonetheless, we can give a precise expression for the maximal
complexity of a string of length n. As we can expect, almost all x have
nearly maximal complexity. This is expressed in Theorem 3.3.1, which
we may regard as a prefix complexity analogue of Theorem 2.2.1 on
page 117. Ttem (ii) gives the distribution of description lengths.



212

3. Algorithmic Prefix Complexity

Theorem 3.3.1

Example 3.3.2

Definition 3.3.1

(i) For each n, max{K(z) : l(z) =n} =n+ K(n) + O(1).

(ii) For each fixed constant r, the number of x of length n with K(x) <
n+ K(n) —r does not exceed 2"~ "+O(1),

Proof. (i) (<) Let U be the reference prefix machine of Theorem 3.1.1.
Consider a prefix machine T that on input gz, where U(q) = l(x), com-
putes T'(qx) = . Let Ty, T, ... be the standard enumeration of prefix
machines. Since T is a prefix machine we have T' = T,,, for some m. Then,
U(mgx) = x. Hence, K (z) < l(z)+ K (I(x))+2l(m) with m independent
of z.

(>) Since there are 2™ strings « of length n, this follows from Item (ii).

(ii) Assume that a string x of length n satisfies
K(z) <n+K(n)—r

We now use a remarkable equality, whose proof is omitted at this point:
K(z)+ K(n|z, K(x)) = K(n) + K(z|n, K(n)) + O(1).

(The proof uses Theorem 3.9.1—rather its corollary, Theorem 3.9.2 on
page 249—which in turn depends on Theorem 4.3.4 on page 275. We
did not find a satisfactory way to avoid dependence on later material.)
Substitute K (n|z, K(x)) = O(1), since n = [(x), to obtain

K(z|n, K(n)) <n—r+ 0(1). (3.3)

By simple counting, there are fewer than 2"~"+t9(1) strings z of length
n satisfying Equation 3.3, which is the required result. O

By almost the same proof, the analogue of Theorem 3.3.1 holds for the
conditional complexity K (x|y). The notion of c-incompressible strings
can be formulated for K-complexity. But as the upper bound in Theo-
rem 3.3.1 suggests, this is more subtle than for C-complexity.

Define KT (z) = max{K(y) : l(y) = l(z)}. By Theorem 3.3.1, the
great majority of all 2’s of length n cannot be compressed. In fact, for
the majority of ’s the complexity K (x) significantly exceeds I(x). The
maximal randomness achievable by a string x of length n is K(x) =
n+ K(n) + O(1). Tt is already natural to call z incompressible if the
length of a shortest program for x exceeds z’s length. <&

Let x be a string of length n. If K(x) > n, then x is incompressible.



Example 3.3.3

Exercises

Exercises 213

Consider the strings that are shortest programs themselves. Are they
compressible with respect to K-complexity? Denote a shortest program
for x by a*. Clearly, K(z*) < l(z*) + O(1), since a modification of the
reference machine U changes it into an identity machine V using the
same prefix-free set of programs as does U. The inequality follows if we
simulate V' by U. Moreover, K (z*) > I(z*) 4+ O(1), since otherwise x* is
not a shortest program for x, by the usual argument. Consequently, the
prefix complexity of a shortest program does not rise above its length:

K(z*) = i(z*) + O(1).

By Theorem 3.3.1, therefore, the number of shortest programs occurring
in the set of all strings of length n does not exceed 2~ K(M+O01) That
is, the fraction of shortest programs among the strings of length n is at
most 2~ K(M+00) which goes to zero as n rises unboundedly. In fact, it
can be shown that the number of short programs is small, and that the
number of shortest programs for every string x is O(1) (Exercise 4.3.6,
page 287). <&

3.3.1. [27] Let K™ () be defined as in Example 3.3.2 on page 212. We
know that Kt (z) =n + K(n)+ O(1).

(a) Show that there are infinitely many n,m, x of length n and y of
length m with n < m such that K*(z) > n + logn + loglogn and
KT (y) < m +loglogm.

(b) Show that K*(z) = max{K(y) : y < =} + O(1), where < is with
respect to the integer interpretation of z,y. This implies that K*(z)
is monotonic nondecreasing with increasing x, up to an O(1) additive
term.

(c) Show that there is a constant d > 0 such that for all n, there are at
least 2" /d strings z of length n such that K(z) = KT (x).

Comment. Ttem (b) gives an alternative definition of K. Note that
the monotonicity of KT in Item (b) only appears to be at odds with the
seemingly fluctuating behavior in item (a). Compare Item (c) with a sim-
ilar result for plain Kolmogorov complexity, Exercise 2.2.6 on page 122.
Source: G.J. Chaitin, Appl. Math. Comput., 59(1993), 97-100.

3.3.2. [22] Show that neither K(x) nor K(z|l(z)) is invariant with
respect to cyclic shifts. For example, K (21.n) = K(Zm4+1:n%1:m) + O(1)
is not satisfied for all m, 1 < m <n.

Comments. Hint: choose z = 10...0, I(x) = 2F.

3.3.3. [32] Show that Kamae’s result, Exercise 2.7.5 on page 181, does
not hold for K (z|y).



214 3. Algorithmic Prefix Complexity

Comments. Source: P. Gacs, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987.

3.3.4. [17] Show that K(z) < K(z|n,K(n)) + K(n) + O(1), for n =
I(x).

Comments. Hint: K (z) < K(x,n)+0(1). It is easy to see that K (z,n) <
K(z|n, K(n)) + K(n) + O(1). Source: G.J. Chaitin, J. Assoc. Comp.
Mach., 22(1975), 329-340.

3.3.5. [15] Show that with n = [(x), we have C(zln) < K(z) <
Claln) + 1*(C(z[n)) + I*(n) + O(1).

Comments. Hint: this is an easy consequence of Equation 3.1. Source:
S.K. Leung-Yan-Cheong and T.M. Cover, IEEE Trans. Inform. Theory,
1T-24(1978), 331-339.

3.3.6. [15] Let ¢(x,y) be a recursive function.

(a) Show that K(¢(z,y)) < K(z) + K(y) + c¢, where cg4 is a constant
depending only on ¢.

(b) Show that (a) does not hold for C-complexity.

Comments. Hint: in Item (b) use the fact that the logarithmic error term
in Theorem 2.8.2, page 190, cannot be improved.

3.3.7. [11] Show that K(z) < C(x) + C(C(x)) + O(log C(C(x))).

3.3.8. [17] The following equality and inequality seem to suggest that
the shortest descriptions of x contain some extra information besides the
description of z.

(a) Show that K(z, K(z)) = K(z) + O(1).
(b) Show that K(z|y,i — K (z|y,4)) < K(z|y,1).

Comments. These (in)equalities are in some sense pathological. But they
hold also for C(+). Source: P. Gécs, Ibid.

3.3.9. [29] Let f(i, ) be the number of strings y such that K (y|z) < i.
Show that log f(i,x) =i — K(i|lz) = O(1).

3.3.10. e [41] (a) Show that d({z : l(z) =n,K(z) <n—K(n)—r}) <
aner(r|n*)+O(1).

(b) Show that there is a constant ¢ such that if string = of length n ends
in at least r + K (r|n*) 4 ¢ zeros then K(z) <n+ K(n) —r.
(c¢) Show that d({x : I(z) = n, K(z) < n—K(n)—r}) > |27~ "~ K{InT)=01) |,

Comments. As usual, n* denotes the shortest program for n, and if
there is more than one then the first one in standard enumeration. This



Exercises 215

improves the counting of the distribution of description lengths in The-
orem 3.3.1, Item (ii), to a tight bound, up to a multiplicative constant.
Hint: for Item (c) use Item (b). The right-hand side of Item (c) equals
0 for a negative exponent. Source: J.S. Miller, L. Yu [Oscillations in the
initial segment complexity of random reals, Manuscript, 2007 (with as
prequel Trans. Amer. Math. Soc., 360:6(2008), 3193-3210)].

3.3.11. e [46] How are K and C precisely related? Is K just a pumped-
up C-version? The following formulas relate C' and K:

(a) Show that K (z) = C(z) + C(C(x)) + O(C(C(C(x)))).
(b) Show that C'(z) = K(z) — K(K(z)) — O(K (K (K(x)))).
(¢) Show that C(C(x)) — K(K(z)) = O(K (K (K(x)))).

(d) Show that K(K (K (x))) ~ C(C(C(x))).

Comments. Clearly, we can replace C(C(x)) by K(C(z)) in the equality
of Item (a). Granted Items (c) and (d), it follows that Items (a) and (b)
are equivalent. These formulas express the number of extra bits needed
to convert a minimal-length program for the reference machine for C-
complexity into a minimal-length program for the reference machine of
K-complexity. Source is R.M. Solovay, Lecture Notes, 1975, unpublished,
and quoted in R.M. Solovay, Non-Classical Logics, Model Theory and
Computability, A.I. Aruda, N.C.A. da Costa and R. Chaqui, eds., North-
Holland, 1977, 283-307.

3.3.12. [32] Show that there is a constant ¢ such that for every d we
have that if K(z) > l(x) + K(I(z)) — (d — ¢) then C(z) > I(x) — 2d.

Comments. This shows that if we can compress the K-complexity of
some z less than d— ¢ below I(z)+ K (I(z)), then we can compress the C-
complexity less than 2d below I(z). Here l(z)+ K (I(z)) = K (x) — O(1)
in Example 3.3.2 on page 212, and [(z) = C*(2) — O(1) of Exercise 3.4.1
on page 217. Source: A. Nies, Computability and Randomness, Oxford
Univ. Press, to appear.

3.3.13. e [34] Show that C' and K do not agree, to within any given
additive constant, on which strings are more complex. Formally, show

that for every positive integer ¢, there are strings x,y such that both
C(z) —C(y) > cand K(y) — K(x) > c.

Comments. Source: attributed to An.A. Muchnik in [An.A. Muchnik,
S.Y. Positselsky, Theor. Comput. Sci., 271:1-2(2002), 15-35]. It follows
without too much difficulty from a theorem of R.M. Solovay, Ibid., that
maximal plain complexity does not imply maximal prefix complexity in
Exercise 3.5.1 on page 220.

3.3.14. [24] Let ¢ : {0,1}* — N be a prefix algorithm, that is, a
partial recursive function with a prefix-free domain. Then the ezxtension



216 3. Algorithmic Prefix Complexity

3.4

K as an
Integer
Function

complexity of x with respect to ¢ is defined by Ey(x) = min{l(p) : z is
a prefix of ¢(p)}, or Ey(z) = oo if there is no such p.

(a) Show that there is an additively optimal prefix algorithm ¢y such
that for any other prefix algorithm ¢ there is a constant ¢ such that
Ey4(xz) < Eg(x) + ¢ for all z. Select one such ¢y as reference and set
the extension complexity E(x) = Eg,(z). Similarly, we can define the
conditional extension complexity E(z|y).

(b) Show that for the relation between the extension complexity E and
the prefix complexity K (z), with n = I(z),

E(z) < K(z) < E(z) + K(n) + O(1) < E(x) + I*(n) + O(1).

Comments. Source: S.K. Leung-Yan-Cheong, T.M. Cover, IEEE Trans.
Inform. Theory, 1T-24(1978), 331-339.

Consider K as an integer function K : N' — N and determine its be-
havior. Most of the properties stated for C' and C(:|i(-)) hold for K
and K(-|I(+)). We look at the items in the same order, and indicate the
similarities and differences.

All of Theorem 2.3.1, page 126, holds with K substituted for C. In
particular, therefore, K (x) is unbounded, and it (its limit inferior) goes
to infinity more slowly than any unbounded partial recursive function.
Although the conditional complexity K (-|I()) is unbounded, there is no
unbounded monotonic lower bound on it. That is, K (-|I(-)) drops below
a fixed constant infinitely often, Figure 3.2. This is just like the case of
C(-I(-)) and has a similar proof.

In fact, even the least monotonic upper bounds on the length-conditional
complexities are similar. C(z|l(x)) reaches upper bound log(z) + O(1)
for infinitely many z just as C(x) does. But while K (z) exceeds logz +
loglog x infinitely often by Theorem 3.3.1, clearly K(z|l(x)) < I(z) +
O(1) for all by Exercise 3.4.2 on page 217.

Both Theorem 2.3.2, page 127, and Theorem 2.3.3, page 127, hold with
C replaced by K. That is, K is not partial recursive and can be com-
puted only for finitely many x. However, K is an upper semicomputable
function, that is, the set {(m,x) : K(x) < m} is recursively enumerable.
The same properties hold for the conditional complexity K (z|y).

There are small differences with respect to the four properties discussed
in Section 2.3. The function K is continuous in the sense that |K(z) —
K(z + h)] < K(h) + O(1). The function K(z) mostly hugs log* z +
I(x)+1((z)) +---4+ O(1) in the sense that this is a good upper bound.
The function K (x) has many fluctuations for the same reasons as C(z).



Exercises

Exercises 217

Iy
R A T

s K(x/I(x))

X

FIGURE 3.2. The graphs of K (x) and K (z|l(x))

For each ¢ there is a bound on the length of a run of consecutive c-
incompressible numbers. However, the length of runs of c-incompressible
numbers rises unboundedly with c.

3.4.1. [10] Let Ct(z) := max{C(y) : l(y) = l(z)}, and K+ (z) :=
max{K(y) : I(y) = l(z)} as in Example 3.3.2 on page 212.

(a) Show that CT(x) =logz + O(1).
(b) Show that K+ (z) = logz + K([logz]) + O(1).
3.4.2. [20] Analyze the integer function K (x|n) with n = I(z).

(a) Show that there is a constant ¢ such that there are infinitely many
x such that K(x|n) < c.

(b) Let h =n — C(z|n). Show that K (x|n) < C(z|n) + K(h|n) + O(1).
(c) Use Item (b) to show that K(z|n) < n+ O(1) for all z.

(d) Show that K (z|n) < C(x|n) +logn + O(1).

3.4.3. [12] Show that ) 2~ K@) does not converge.

3.4.4. [36] Use the notation of Exercise 3.4.1. Show that if K(z) =
K*(z), then C(z) = C*(x).

Comments. Source: R.M. Solovay, Lecture Notes, UCLA, 1975, unpub-
lished.

3.4.5. [39] (a) Show that {*(z) = logz + loglogx + --- (all positive
terms) satisfies . 270 (®) < oo,

(b) Show that for all z we have K (z) < *(z) + O(1) (K™ as in Exer-
cise 3.4.1).

(c) Show that for most  we have KT (x) = [*(z) + O(1).



218 3. Algorithmic Prefix Complexity

3.5
Random

Finite
Sequences

Lemma 3.5.1

Corollary 3.5.1

Example 3.5.1

Comments. Hint for Ttem (b): use Item (a). Source: attributed to T.M.
Cover [P. Géacs, Lecture Notes on Descriptional Complexity and Ran-
domness, Manuscript, Boston University, 1987].

Recall that c-incompressible strings with respect to C' coincide with ¢’-
random strings under the uniform distribution. Since a C-incompressible
string can be equated with its shortest program, Example 3.3.3 shows
that for appropriate constants ¢ and ¢/, the ¢’-incompressible strings with
respect to K-complexity are a superset of the c-incompressible strings
with respect to C-complexity. But the following lemma shows that the
converse does not hold: there are incompressible strings with respect to
K-complexity that are not O(1)-random with respect to the uniform
distribution.

For infinitely many n there are strings x of length n that have K(x) > n
and C(x) < n — logn.

Proof. Consider infinite sequences w. By Corollary 2.5.1, for each w there
are infinitely many n such that C(wy.,) < n—logn. On the other hand, in
Theorem 3.6.1 we will show that w is (Martin-Lof) random with respect
to the uniform measure iff K(wy.,) > n + O(1) for all n. Hence, the
n-length prefixes of any random w, for the sequence of values n denoting
points where complexity oscillations reach logn below n, is an example
demonstrating the lemma. m|

For each ¢, there are finite strings « that are incompressible according to
prefix complexity (K (z) > [(x)) and that are not c-random finite strings
with respect to the uniform distribution.

How much can K (z) exceed C(z) in effective terms? For most = we have
K(z) =C(x) + K(C(z)) + O(1).

Namely, on the one hand, for all z we have K(z) < C(z) + K(C(x)) +
O(1) by Example 3.1.3 on page 202. On the other hand, by Theo-
rem 3.3.1, for most « we have K(x) > C(x) + K(C(x)) + O(1). Hence,
we can conclude that the difference between K and C satisfies

K(z) — C(z) <log*(n) +I(n) +1(I(n)) +---+O(1),

for all = of length n, and that the inequality is nearly sharp for infinitely
many z, namely, for those z with C(z) = n+ O(1) and K(n) > l(n) +
I(l(n)). &



3.5. Random Finite Sequences 219

Denoting I(x) by n, Theorem 2.4.2 on page 139 identifies
do(z|L) =n—C(z|n) — 1

as a universal Martin-Lof test for the uniform distribution L. Corol-
lary 3.5.1 shows that we cannot simply express randomness of a finite
string under the uniform distribution in terms of its incompressibility in
the sense of prefix complexity.

Substituting the length-conditional version of Lemma 3.1.1,
C(z|n) = K(z|C(z),n) + O(1),

we obtain an expression that involves both K and C. This can be
avoided, in a somewhat contrived manner, by introducing an auxiliary
complexity based on K. Define

K(z;k) = min{i : K(x|k —1) <i}.

Similar to Lemma 3.1.1 we obtain K (z;k) = K(z|k — K(z;k)). Define
the conditional auxiliary complexity in a similar way and denote it by
K (x; k|y). Using the same arguments as above, we obtain

K(z; k|k) = C(z|k) + O(1).

Then we can express the randomness deficiency found by a universal
P-test in terms of the auxiliary complexity. For P a recursive function,
it can be proven that

n)

is a universal P-test. If P is the uniform distribution on strings of length
n, then log 1/P(x) = n for all = of length n, and

do(z|L) =n — K(x;n|n) =n — C(x|n) + O(1)

is the familiar universal test for the uniform distribution L. Thus, while
Martin-Lof’s universal test for randomness of finite strings under the
uniform distribution is easily expressed in terms of C-complexity, Sec-
tion 2.4, we have to go through quite some contortions to express it in
terms of (a variant of) K-complexity. These contortions are necessary,
since it is only the form using K-complexity that is generalizable to
universal P-tests for arbitrary computable distributions P.

do(z|P) = log P(lx) -K <33; log P(lx)

The extended theory of P-tests, and exact expressions for universal P-tests,
are treated in Section 4.3.5. These constructions show that the presence of C' in
Martin-Lof’s expression n—C(z|n) is a lucky freak of the uniform distribution.
See P. Gacs, Komplexitit and Zufdlligkeit, Ph.D. thesis, Mathematics Depart-
ment, J.W. Goethe Universitat, Frankfurt am Main, 1978. In contrast, while
in Section 2.5 we did not succeed at all in expressing Martin-Lo6f’s universal
sequential test for randomness of infinite sequences under the uniform distri-
bution in terms of C'(z), in Section 3.6 this will turn out to be straightforward
in terms of K(x).



220 3. Algorithmic Prefix Complexity

Exercises

3.6
*Random
Infinite
Sequences

Example 3.6.1

3.5.1. [43] Recall the universal Martin-Lof test for randomness of finite
strings x of length n under the uniform distribution: 6o (x|L) = n—C(z)+
O(1). This was based on Theorems 2.1.2, 2.2.1 on pages 108, 117. The
analogous facts of Theorem 3.3.1 for K(x) suggest a test Op(z|L) =
n+ K(n) — K(x) + O(1), with the same intuitive interpretation.

(a) Show that Og(x|L) > do(x|L) + O(logdp(x|L) + 1). Hence, if 6y is
small, then dp is small (and this is the sense in which strings that are
K-random are C-random).

(b) Construct an infinite sequence of finite strings z;,, with the following
properties: (i) l(zy,) — oo for m — oo; (ii) C(am,) = l(xm) + O(1); and
1im,, 00 00 (2| L)/ log? 1(2,,) = 1. In this sense, C-randomness does not
entail K-randomness.

(¢) Show that limsup,,_, . (K(n)—C(n)— K(K(n)))/K(K(K(n))) <1.
Use Item (b) to improve this to an equality. The same method provides
a counterexample to various improvements in the error terms of the
formulas relating C(z) and K (x) in Exercise 3.3.11.

(d) Use Item (c) to show that the seductive equality K(z) = C(x) +
K(C(x)) +O(1) is false in general (although it obviously holds for all x
that are random enough).

Comments. Hint for Item (c): use Use Exercise 3.3.11. Source is R.M.
Solovay, Lecture Notes, UCLA, 1975, unpublished.

Let w be an infinite binary sequence. We are interested in the behavior
of K(wi.,) as a function of n. The complexity K(wi.,) will turn out
to be nonmonotonic in n, just like C-complexity. We will find that an
infinite sequence w is random under the uniform measure iff a simple
condition on K (w1.,,) is satisfied. For the C-complexity we were unable
to find such a condition in Section 2.5.

We show that K (0™) as a function of n is not monotonic. Choose n with
K(n) > 1(n). Let m = 2¥ > n with k minimal. Then 0" is a prefix of
0™. Firstly, K(0™) > logn + O(1). Secondly, K(m) = K(k) + O(1) <
2loglogn + O(1). Therefore, K(0™) is exponential in K (0™). &

Theorems 2.5.1, 2.5.4 on pages 143, 152 show, for almost all infinite
binary sequences, that the oscillations of the C-complexity of initial seg-
ments of almost all sequences, as a function of their length, are confined
to a thin wedge below the identity function n + O(1). Both random
sequences and some nonrandom sequences oscillate in this wedge. For
K-complexity the wedge

n+0(1) < K(wi.n) <n+ K(n)+O(1)



3.6.1

Explicit Universal
Randomness
Tests

3.6. *Random Infinite Sequences 221

contains all and only infinite random sequences. (The upper bound holds
for all infinite sequences by Theorem 3.3.1; the lower bound for random
sequences is proved in Schnorr’s Theorem 3.6.1 on page 222.) The com-
plexity oscillations are in some form still there, but K exceeds C by so
much that the complexity of the prefix does not drop below the length
of the prefix itself (for random infinite w).

The idea that random infinite sequences are those sequences such that
the complexity of the initial n-length segments is at most a fixed addi-
tive constant below n, for all n, is one of the first-rate ideas in the area
of Kolmogorov complexity. In fact, this was one of the motivations for
Kolmogorov to invent Kolmogorov complexity in the first place; see the
discussion in Section 1.9 on page 56. We have seen in Section 2.5 that
this does not work for the plain Kolmogorov complexity C(-), due to the
complexity oscillations. The next result is important, and is a culmina-
tion of the theory. For prefix complexity K (-) it is indeed the case that
random sequences are those sequences for which the complexity of each
initial segment is at least its length.

A.N. Kolmogorov suggested the above relation between the complexity of ini-
tial segments and randomness of infinite sequences [A.N. Kolmogorov, IEEFE
Trans. Inform. Theory, IT-14:5(1968), 662-664]. This approach being incor-
rect using C(-) complexity, P. Martin-Lof [Inform. Contr., 9(1966), 602—-619]
developed the theory as put forth in Section 2.5. Nevertheless, Kolmogorov did
not abandon the general outlines of his original idea of connecting randomness
of infinite sequences with complexity; see pp. 405-406 of [V.A. Uspensky, J.
Symb. Logic, 57:2(1992), 385-412].

C.P. Schnorr [J. Comput. System Sci., 7(1973), 376-388] for the uniform distri-
bution, and L.A. Levin [Sov. Math. Dokl., 14(1973), 1413-1416] for arbitrary
computable distributions, introduced simultaneously and independently simi-
lar but unequal versions of complexity to characterize randomness. These ver-
sions are ‘process complexity’ and the ‘monotone’ variant of complexity Km(z)
(Definition 4.5.9 on page 305). They gave the first realizations of Kolmogorov’s
idea by showing Corollary 4.5.3 on page 318, that an infinite sequence w is
random iff |[Km(w1:n) —n| = O(1) (Levin) and a similar statement for process
complexity (Schnorr).

G.J. Chaitin [J. Assoc. Comp. Mach., 22(1975), 329-340] proposed calling an
infinite sequence w random if K(w1:n) > n — O(1) for all n. Happily, this pro-
posal characterizes once again precisely those infinite binary sequences that
are random in Martin-Lof’s sense (without proof attributed to C.P. Schnorr,
1974, in Chaitin’s paper). This important result, now known as Schnorr’s the-
orem, Theorem 3.6.1, was widely circulated, but the first published proof ap-
pears, perhaps, only as Corollary 3.2 in [V.V. Vyugin, Semiotika i Informatika,
16(1981), 14-43, in Russian]. See for historical notes [A.N. Kolmogorov and
V.A. Uspensky, SIAM J. Theory Probab. Appl., 32(1987), 387-412].

Another equivalent proposal in terms of constructive measure theory was given
by R.M. Solovay, Exercise 2.5.9, page 159. The fact that such different effec-
tive formalizations of infinite random sequences turn out to define the same



222

3. Algorithmic Prefix Complexity

Theorem 3.6.1

mathematical object constitutes evidence that our intuitive notion of infinite
sequences that are effectively random coincides with the precise notion of
Martin-Lof random infinite sequences.

An infinite binary sequence w is random with respect to the uniform
measure iff there is a constant ¢ such that for all n, K(wi.,) >n — c.

Proof. (ONLY IF) Assume that w is a random infinite sequence. Then,
for each sequential test 4, we have §(w) < oo, Section 2.5. We construct
a particular sequential test, say 4, such that if 6(w) < oo, then there is
a constant ¢ such that K(w1.,) > n — ¢, for all n.

Recall the usual preliminaries. If y is a finite string, then I'y denotes the
set of infinite sequences w that start with y. Let A\ denote the uniform
measure, so that with [(y) = n we have A(T'y) = 27". Geometrically
speaking, I', corresponds to the half-open interval [0.y,0.y +27").

Define 0 as follows. Consider a sequence Ag D A; D --- of sets of finite
strings such that

Ay= Uty : K@) <n—k—cn=1@)},

n>1

with ¢ a fixed constant that is large enough to make the remainder of
the proof go through. Define a total function v by vy(y) = supgepn{k :
y € Ag}. Since K is an upper semicomputable function (it can be ap-
proximated from above), v is a lower semicomputable function (it can be
approximated from below). Finally, for each infinite sequence w define
d(w) = sup,en{v(win)}

To prove that ¢ is a sequential test, it suffices to show that Mw : 6(w) >
k} < 27% for each k > 0.

There are fewer than a(k,n) = 2"~ K ~F strings y of length n of com-
plexity K(y) < n —k — ¢ (Theorem 3.3.1). This bounds the number of
strings of length n in Aj. Overestimating A{x : 6(w) > k}, using a(k,n),
rearranging terms, and employing Kraft’s inequality (Theorem 1.11.1)
to argue that 3. 275" < 1, we have

Mw:6(w) >k} < Y MDD}

yEA
< Z a(k,n)2™"
neN

_ 9k Z 9-K(n) < 9k,
neN



Corollary 3.6.1

3.6. *Random Infinite Sequences 223

It is now proved that ¢ is a sequential test. If w is random in the sense
of Martin-Lof, then §(w) < oo. That is, for each random w there is a
constant ¢ < oo such that K(wy.,) > n — ¢, for all n.

(Ir) Suppose that w is not random, that is, there is a sequential test
d such that d(w) = oo. We show that this implies that n — K(w1.,)
is positively unbounded. Let « be the defining lower semicomputable
function of § as in Definition 2.5.1. For all & > 1, define A; as the
maximal prefix-free subset of {y : y(y) > k} . Therefore, > 4 271w <
1 by Kraft’s inequality. Then

L={l(y)—k:ye Ay, k>1}

satisfies Kraft’s inequality

Z Z 2k=ly) < ZQ*’@ <1.

k>1 y€Asyg k>1

This means that L is the length set of a prefix-code. Use v to enumerate
(U{Azx : & > 1}. Use this enumeration to construct a prefix machine T
such that Kr(y) =1(y) — k for all y € Agg, k > 1.

We have assumed §(w) = co. Hence, for each k, there is an n such that
w1 € Agg, which means that Ky (w1.,) < n — k. By Theorem 3.1.1,
there is a constant ¢y such that K(wi.,) < Kr(wi.m) + ¢r. Therefore,

limsup(n — K (w1.n)) = 0.

n—oo

O

The function po(w|A) = sup, car{n — K(wi.n)} characterizes the random
infinite sequences by po(w|A) < oo iff w is random with respect to the
uniform measure \. (In terms of our previous notation, po(w|\) < oo iff
do(w|A) < oo, where dp(+|A) is the universal sequential A-test with A the
uniform measure.)

There are different types of tests that characterize precisely the same
class of random infinite sequences. The sequential tests are but one
type. The test pp is an example of an integral test (a universal one)
with respect to the uniform measure as defined in Section 4.5.6. The
introduction of different types of tests awaits the machinery developed
in Chapter 4. The theory of integral tests and martingale tests of infinite
sequences is developed in Sections 4.5.6 and 4.5.7, respectively. There
we also give exact expressions for tests that separate the random infi-
nite sequences from the nonrandom ones with respect to any recursive
measure.



224

3. Algorithmic Prefix Complexity

Example 3.6.2

n+1*(n)
K(wl:n)

gy m— growing gap
7

FIGURE 3.3. Complexity oscillations of a typical random sequence w

The proof of Theorem 3.6.1 shows that the separation of a random infi-
nite sequence from the nonrandom ones involves a complexity gap. That
is, for random w the amount by which K (w;.,) exceeds n goes to oo in
the limit; for nonrandom w the amount by which n exceeds K (w1.,,) may
fluctuate but is also unbounded. So the value of K(w;.,) as a function
of n is bounded away from the diagonal in either direction for all w:
nonconstant far below for the nonrandom sequences, and nonconstant
far above for the random sequences, Figure 3.3. See also [G.J. Chaitin,
Algorithmic Information Theory, Cambridge Univ. Press, 1987].

In the C-complexity version, random infinite sequences have oscillations
of the complexity of initial segments below the diagonal. With K com-
plexity similar oscillations must take place above the diagonal. Some
relevant properties are surveyed in the table of Figure 3.4.

For example, the maximal complexity of some wi., is K(w1.,) = n +
K(n) + O(1), Theorem 3.3.1. But similar to the case for C(w) (Theo-
rem 2.5.1 on page 143), no single w satisfies K (w1.,) > n+ K(n)+ O(1)
for all n. In fact, in analogy to the proof of Theorem 2.5.1, we find that
for all w, for infinitely many n,

K(wiin) < K(C(wim)) + C(wian) +O(1)
<n—g(n)+K(n-gn))+0(1)
<n-—g(n)+ K(n)+0(1),

w IS RANDOM iff w IS NOT RANDOM iff

po(w|A) < oo iff po(w|A) = oo iff
Jevn[K (w1.n) > n — ] iff Vean[K (wiq) < n— ] iff
lim, 0o K(w1:n) —n =00 limsup,_ . n— K(wi.,) =0

FIGURE 3.4. K-complexity criteria for randomness of infinite sequences



3.6.2
Halting
Probability

3.6. *Random Infinite Sequences 225

where g(n) is as defined in the proof of Theorem 2.5.1. Actually,

limsup K (n) — g(n) = oo,

n—oo

since the series 3 279" diverges and the series 3" 27X converges.
The infinity on the right-hand side means something very slowly in-
creasing, like log” n and [*(n). Generally, the complexity oscillations of
a random sequence w will look like the graph in Figure 3.3.

In analogy to Theorem 2.5.4 on page 152, we observe the following: By
Theorem 2.5.5 on page 153, the set of infinite binary sequences that
are random in the sense of Martin-Lof have (uniform) measure one. By
Schnorr’s theorem, Theorem 3.6.1, this is precisely the set of w’s with
K(w1:n) > n+ O(1). To get some insight into the amplitude of the
upward oscillations, we note that the set of w’s such that for infinitely
many n,

K(wipn) >n+ K(n)+ O(1)

has uniform measure one, Exercise 3.6.3 on page 229. M. van Lambal-
gen [J. Symb. Logic, 52(1987), 725-755] suggests that far from being a
nuisance, the complexity oscillations actually enable us to discern a fine
structure in the theory of random sequences (see also Exercise 3.6.11,
page 232). For all sequences relatively low in the recursive hierarchy,
such as A9 definable sequences (for a definition see Exercise 3.6.11 on
page 232), the upward oscillations are not maximal, since

lim n+ K(n) — K(wi.) = 00.

n—oo
There are Martin-Lof random sequences that are AJ definable, such as
Chaitin’s halting probability number €2 of Section 3.6.2. The complexity
oscillations of this restricted type of random sequences, of which € is
a typical example, are confined to a narrower wedge, as in Figure 3.5,
than the general random sequences of Figure 3.3. The monotone com-
plexity, Chapter 4, was developed to smooth out the oscillations and
to characterize randomness. But monotone complexity also obliterates
all quantitative differences between Martin-Lof random sequences, and

hence does not allow us to distinguish stronger randomness properties.
&

It is impossible to construct an infinite random sequence by algorithmic
means. But using the reference prefix machine U of Theorem 3.1.1, we
can define a particular random infinite binary sequence in a more or less
natural way.



226

3. Algorithmic Prefix Complexity

Definition 3.6.1

Lemma 3.6.1

n+*(n)/, — growing gap
7

K(Qj:p)

" — growing gap
7

FIGURE 3.5. Complexity oscillations of {2

The halting probability is the real number ) defined by

0= Z 2~ 1)

U(p)<oo

the sum taken over all inputs p for which the reference machine U halts.

Since U halts for some p, we have €2 > 0. Because U is a prefix machine,
the set of its programs forms a prefix-code, and by Kraft’s inequality we
obtain Q < 1. Actually, 2 < 1, since U does not always halt.

We call € the halting probability because it is the probability that U
halts if its program is provided by a sequence of fair coin flips. The
number  has interesting properties. In the first place, the binary rep-
resentation of the real number {2 encodes the halting problem very com-
pactly. Denote the initial n-length segment of 2 after the decimal point
by Qi.,. If Q is a terminating binary rational number, then we use the
representation with infinitely many zeros, so that 2 < Q4., +27". We
shall show that the binary expansion of €2 is an incompressible sequence.

Let p be a binary string of length at most n. Given ., it is decidable
whether the reference prefix machine U halts on input p.

Proof. Clearly,
Ql:n S Q< Ql:n + 27", (34)

Dovetail the computations of U on all inputs as follows: The first phase
consists in U executing one step of the computation on the first input.
In the second phase, U executes the second step of the computation on
the first input and the first step of the computation on the second input.



Lemma 3.6.2

Corollary 3.6.2

3.6. *Random Infinite Sequences 227

Phase i consists in U executing the jth step of the computation on the
kth input, for all j and k such that j 4+ k = i. We start with an approxi-
mation Q' := 0. Execute phases 1,2, ... . Whenever any computation of
U on some input p terminates, we improve our approximation of €2 by
executing

Q= 270,

This process eventually yields an approximation €’ of €, such that Q' >
Q1.n,. If p is not among the halted programs that contributed to €V,
then p will never halt. With a new p halting we add a contribution of
2-UP) > 2=" to the approximation of , contradicting Equation 3.4 by

Q>0 +271) >0, +277

There is a constant ¢ such that K(€;.,) > n — ¢ for all n.

That is, Q2 is a particular random real, and one that is naturally defined to
boot. That € is random implies that it is not computable, and therefore tran-
scendental. Namely, if it were computable, then K(Qi.n,|n) = O(1), which
contradicts Claim 3.6.2. By the way, irrationality of (2 implies that both in-
equalities in Equation 3.4 are strict.

Proof. From Lemma 3.6.1 it follows that given ;.,,, one can calculate all
programs p of length not greater than n for which the reference prefix
machine U halts. For every z that is not computed by any of these
halting programs, the shortest program x* has size greater than n, that
is, K(x) > n. Hence, we can construct a recursive function ¢ computing
such high-complexity x’s from initial segments of €2 such that for all n,

K<¢(an)) > n.

Given a description of ¢ in ¢ bits, for each n we can compute ¢(1.,)
from €4.,,, which means that

K(Qltn) +c Z n,

which was what we had to prove. O

By Schnorr’s theorem, Theorem 3.6.1, we find that  is random in
Martin-Lof’s sense with respect to the uniform measure.

It is possible to determine the first couple of bits of the halting probability. For
example, with the concrete Kolmogorov complexity fixed in Section 3.2, J.T.
Tromp has computed 0.00106502 < €2 < 0.217643. This is because many short



228 3. Algorithmic Prefix Complexity

Exercises

strings are either not syntactically correct programs for the concrete universal
machine, or they halt quickly, or looping is easily detected. But knowing, say,
the first 10,000 bits of €2 enables us to solve the halting of all programs of
fewer than 10,000 bits. This includes programs looking for counterexamples
to Fermat’s last theorem, the Goldbach conjecture, the Riemann hypothesis,
and most other conjectures in mathematics that can be refuted by single finite
counterexamples. Moreover, for all axiomatic mathematical theories that can
be expressed compactly enough to be conceivably interesting to human beings,
say in fewer than 10,000 bits, €210,000 can be used to decide for every statement
in the theory whether it is true, false, or independent. Finally, knowledge of
Q1. suffices to determine whether K(z) < n for each finite binary string z.
Thus, 2 is truly the number of Wisdom, and “can be known of, but not known,
through human reason” [C.H. Bennett and M. Gardner, Scientific American,
241:11(1979), 20-34]. But even if you possess Q1:10,000, you cannot use it except
by spending time of a thoroughly unrealistic nature. (The time t(n) it takes
to find all halting programs of length less than n from ., grows faster than
any recursive function.)

3.6.1. [21] Let A be an infinite recursively enumerable set of natural
numbers. Show that if we define 6 = > _, 2-KM) then K(0.,) >
n — O(1) for all n. (Therefore, # is a random infinite sequence in the
sense of Martin-Lof by Schnorr’s theorem, Theorem 3.6.1.)

Comments. It follows that 6 is not a recursive number. Because 6 is not
a recursive real number it is irrational and even transcendental. Source:
G.J. Chaitin, Algorithmic Information Theory, Cambridge University
Press, 1987.

3.6.2. [23] Let 1 < r,s < oo be integers. Show that a real number in
the unit interval [0, 1] expressed in r-ary expansion (equivalently, infinite
sequence over r letters) is Martin-Lof random with respect to the uniform
distribution in base r iff it is random expressed in s-ary expansion with
respect to the uniform distribution in base s.

Comments. Hint: by Exercise 3.1.4 we have for each pair of integers
r,s > 2 that |K,(z) — Ks(z)| < ¢ s for all x € N and some constant
¢r,s independent of z. Use the fact that an infinite binary sequence w
is random with respect to the uniform distribution iff K(w1.,) > n —c¢
for some constant ¢ and all n, Schnorr’s theorem, Theorem 3.6.1. (Note:
K = K».) The argument cannot be too trivial, since a total recursive 1-1
function f can map w = wiws ... to ( = w10w20... . Then f~1({) = w.
But ¢ is not random, even if w is. Source: C. Calude and H. Jiirgenson,
pp- 44-66 in: H. Maurer, J. Karhumaki, and G. Rozenberg, eds., Results
and Trends in Theoretical Computer Science, Springer-Verlag, Berlin,
1994. This result is a special case of the simple and much more general
approach of Exercise 4.5.15 on page 329, and is folklore.



Exercises 229

3.6.3. [29] We investigate the complexity oscillations of K (wy.,) for
infinite binary sequences w. If w is an infinite sequence that is random
in the sense of Martin-Lof, then these oscillations take place above the
identity line, K (w1.,) > n+ O(1), for all but finitely many n. The max-
imal possible complexity of wi., is K(wi.,) = n+ K(n) + O(1), Theo-
rem 3.3.1. But similar to the case for C(w), Theorem 2.5.1 on page 143,
no w satisfies the following: there is a constant ¢ such that for all n, we
have K(w1.,) > n+ K(n) —c.

(a) Show that for every w there are infinitely many n such that K (w1.,) <
n+ K(n) — g(n) + O(1), where g(n) is as defined in the proof of The-
orem 2.5.1. Can you generalize this to obtain the analogue of Theo-
rem 2.5.17

(b) Let the series ) 2-/(") < o0 converge recursively. Show that for
almost all infinite binary sequences w we have K (w1.,) > n+K(n)— f(n)
for all but finitely many n. This gives a lower bound on the dips of the
downward oscillations for almost all w.

(¢) In analogy with Theorem 2.5.4, page 152, we can note the following;:
By Theorem 2.5.5, page 153, the set of infinite binary sequences that
are random in the sense of Martin-Lof have uniform measure one. By
Schnorr’s theorem, Theorem 3.6.1, these are the w’s, with K(w1.,) > n
for all but finitely many n. Show that the set of w’s with K(wy.,) >
n+ K(n)+ O(1), for infinitely many n, has uniform measure one. This
gives some insight into the amplitude of the upward oscillations. Not all
Martin-Lof random sequences achieve this.

(d) Let f(n) be a recursive function such that the series > 27/
diverges. Show that the set of w’s with K(w1.,) > n + f(n) + O(1),
for infinitely many n, has uniform measure one and contains all infinite
binary sequences that are Martin-Lof random.

Comments. Hint for Ttem (a): K(wi.n) < C(wim) + K(C(wi:n)) +O(1),
and use Theorem 2.5.1, page 143. Note that limsup,, ,., K(n) —g(n) =
oo. This gives an upper bound on the dips of the downward oscillations:
the least monotonic upper bound on K (n)—g(n) rises very, very, slowly—
more slowly than the k-fold iterated logarithm for any fixed k. Hint for
Item (b): 3, 27f(M=4 < 1 for some nonnegative constant d. By the
Kraft inequality, Theorem 1.11.1, there is an effective prefix-code E such
that I(E(n)) = f(n) 4+ d for all n. By Theorem 3.1.1, K(n) < I[(E(n))
for every effective prefix-code E, up to a constant depending only on
E. Thus, K(n) < f(n) 4+ d for a different constant d depending only
on f. The result now follows from Section 3.6. Compare Item (d) with
the stronger Item (b) of Exercise 3.6.4. Source: van Lambalgen [Random
Sequences, Ph.D. thesis, University of Amsterdam, 1987; J. Symb. Logic,
52(1987), 725-755]. Items (c) and (d) are attributed to R.M. Solovay.



230

3. Algorithmic Prefix Complexity

3.6.4. [26/38] Let w be an infinite binary sequence.
(a) Show that w is Martin-Lof random iff 3 27K @in) < o,

(b) Let f be a (possibly nonrecursive) function such that Y, 27 =
00. Assume that w is random in Martin-Lof’s sense. Then, K (w1.,) >
n+ f(n) — O(1) for infinitely many n.

Comments. Item (a) gives a characterization of Martin-Lof randomness.
Ttem (b) is stronger than Item (d) of Exercise 3.6.3. Source: J.S. Miller,
L. Yu, Trans. Amer. Math. Soc., 360:6(2008), 3193:3210; The ‘only if’
side of Item (a) admits also of a simple proof by martingales due to A.
Nies. The ‘if’ side is immediate from Schnorr’s theorem, Theorem 3.6.1.

3.6.5. [36] Let f be a function. (a) Show that if the series Y 27/(")
converges, then there is a Martin-Lof random sequence w such that
K(wim) <n+ f(n)+ O(1), for all n.

(b) Show that 3" 277(") = o iff for every Martin-Lof random sequence
w there are infinitely many n such that K(wi.,) > n+ f(n).

Comments. This gives the extent of the upward oscillations of ran-
dom sequences, in particular the functions f such that the initial n-
segment complexity infinitely often exceeds n+ f(n). Source: J.S. Miller,
L. Yu, Oscillations in the initial segment complexity of random reals,
Manuscript, 2007.

3.6.6. [39] We improve on Exercise 3.6.3, Item (b). As usual, n* de-
notes the shortest program for n, and if there is more than one, then the
first one in standard enumeration. Let f be a function.

(a) Show that if 3" 2-/(=KU M) < oo then K (wi.,) > n+ K(n)—
f(n) for all but finitely many n, for almost every w € {0,1}*°.

(b) Show that if >, 2=/ (V=K MIn") = o0 then K (wy.,) < n+ K (n)—
f(n) for infinitely many n, for almost every w € {0,1}*°.

(c) Show that if f is computable and Y. 27f(") = oo, then K (wi.,) <
n+ K(n) — f(n) for infinitely many n, for every w € {0, 1}°°.

(d) Show that there is a function f such that 3 2=f(=K{FMIn") < o0
but 3, 277" = .

(e) Show that there is a function f with =, 27/(") = oo but K (wy.,) >
n+K(n)— f(n) for all but finitely many n, for almost every w € {0,1}°°.

(f) It >°, 2-/(") < oo then there exist infinitely many n such that
K(w1.n) <n+ f(n), for almost every w € {0, 1}°°.

Comments. This gives a necessary and sufficient condition on the down-
ward oscillations of a function f to ensure that for almost all w the com-
plexity K (wi.n) drops below n + K(n) — f(n) infinitely often. Source:
J.S. Miller, L. Yu, Ibid.



Exercises 231

3.6.7. [43] Let w be an infinite binary sequence. Show that the follow-
ing are equivalent to the sequence w being random in Martin-Lo6f’s sense
(with respect to the uniform distribution):

(a) C(wim) > n — K(n) £ O(1) for every n.

(b) vo(w1:n|L) = n—C(win|n)— K (n)+O(1) is finite with L the uniform
measure.

(c) For every n and every recursive function g such that >, 279(") < oo,
we have C(w1.n) > n — g(n) £ O(1), the constant depending on g.

(d) C(w1.n) > n— G(n) £0(1) for every n, and a single, appropriately
defined, computable function G.

Comments. In Ttem (b), the formula for vy expresses concisely and pre-
cisely how the complexity oscillations of C'(wi.n|n) of random infinite
sequences behave. This is Levin’s test—the characterization for random
sequences from which Theorem 2.5.4 on page 152 follows. Source for
Items (a) and (b): P. Gédcs, [Ph.D. thesis, Frankfurt am Main, 1978,
Theorem 5.4, Corollary 2; Z. Math. Logik Grundl. Math., 26(1980), 385—
394]. Source for Items (a), (c), and (d): J.S. Miller, L. Yu,, Trans. Amer.
Math. Soc., 360:6(2008), 3193-3210. Another proof of the difficult direc-
tion in the last reference is given in [L. Bienvenu, W. Merkle, A.K. Shen,
Fundamentae Informatica, 83(2008), 1-4].

3.6.8. o [39] Let w = wywa ... and ¢ = (1(z ... be two infinite binary
sequences. Let w & ¢ = n mean that 19; = w; and 19,41 = (;, for all 4.

(a) Show that w @ ¢ is random in the sense of Martin-Lof iff ¢ is random
in Martin-Lo6f’s sense and w is Martin-Lof random in ¢ (that is, given ¢
as an oracle).

(b) Show that w @ ¢ is random in Martin-Lof’s sense iff K(wi.,) +

Comments. Item (a) is the important van Lambalgen’s theorem. Source:
M. van Lambalgen, Ibid. Source Item (b): J.S. Miller, L. Yu, Ibid.

3.6.9. [35] Recall that an infinite sequence w is recursive iff C(wy.,,) <
C(n) + O(1), Example 2.3.4. If w is recursive, then for all n we have
K(wim|n) = O(1) and K(w1.) < K(n) + O(1).

(a) Show that if K (wy.n|n) < ¢, for some ¢ and all n, then w is recursive.

(b) Show that if K(wi.n) < K(n) + ¢, for some ¢ and all n, then w is
recursive in 0/, the Turing degree of the halting problem.

(c) Show that there are nonrecursive w’s satisfying K(w1.,) < K(n) +e¢,
for some ¢ and all n.



232

3. Algorithmic Prefix Complexity

(d) Show that for each constant ¢, there are at most O(2¢) many w such
that for all n, K(w1.,) < K(n) +c.

Comments. The constants ¢ in Items (a) through (c¢) may depend on
w. Item (b) is attributed to G.J. Chaitin, Item (c¢) to R.M. Solovay.
Source is R.M. Solovay, Lecture Notes, UCLA, 1975, unpublished, and
personal communication. For Item (d) and other discussion on this topic,
see [D. Zambella, On sequences with simple initial segments, ITLI Tech.
Rept. ML-90-05, Fac. Wiskunde en Informatica, University of Amster-
dam, 1990].

3.6.10. e [46] A set A C N is K-trivial if its characteristic sequence
X = X1Xz2 - - - satisfies K (x1.n) < K(n)+O(1). Certain properties of such
sequences were already established in Exercise 3.6.9, Items (b) and (c).
Below, we identify sets with their characteristic sequences.

(a) Show that all K-trivial sets are AJ-definable.

(b) Show that the class of K-trivial sets is closed under @&, where & is de-
fined for the corresponding characteristic sequences as in Exercise 3.6.8.

(c) Show that a set A is K-trivial iff it is low for the class of Martin-Léf
random sets, that is, every Martin-Lof random set is already Martin-
Lof random relative to Turing machines with A as an oracle. In par-
ticular, K-triviality is closed downward under Turing reducibility; see
Exercise 1.7.16 on page 43.

(d) Show that a set A is K-trivial iff A is low for K, that is, K(x) <
K4(z) + O(1) for every .

Comments. A great deal of recent recursion-theory research deals with
K-triviality, in particular with the nonrecursive K-trivial sequences.
They are nonrecursive, but only barely so, and in that sense not com-
pletely computably predictable. They are, so to speak, the sequences
exhibiting the weakest form of randomness and form the other side of
the random-sequence spectrum from the Martin-Lof random sequences.
Source for Items (a) and (b): R.G. Downey, D.R. Hirschfeldt, A. Nies, F.
Stephan, Proc. 7th and 8th Asian Logic Confs, Singapore Univ. Press,
2003, pp. 103-131. Source for Items (c) and (d): A. Nies, Adv. Math.,
197:1(2005), 274-305.

3.6.11. [27] Far from being a nuisance, the complexity oscillations ac-
tually enable us to discern a fine structure in the theory of random
sequences. A sequence w is AY definable if the set {n : w, = 1} is AY de-
finable, Exercise 1.7.21 on page 46. We consider infinite binary sequences
that are A9 definable (such as the halting probability €, Section 3.6.2).

(a) Show that if w is A definable, then lim, oo n — K(wi.,|n) = oo.
(This is, of course, interesting only for random w’s.)



Exercises 233

(b) Show that if w is A9 definable, then lim,, o n+K (n)— K (w1.,) = oc.

(c) Show that if there is a constant ¢ such that for infinitely many n we
have n + K(n) — K(w1.n) < ¢, then w is not A definable. That is, if
such an w is random, then it is not a simply definable random sequence.

Comments. Hint for Item (b): use Item (a). Items (a) and (b) delimit the
upswing of the complexity oscillations for A definable w. Hint for Ttem
(c): use Exercise 3.6.3. The AY definable random sequences are rather
atypical random sequences. (An example is the halting probability (2.)
The K-complexity allows us to distinguish between easily definable ran-
dom sequences and those that are not so easily definable. Source: M. van
Lambalgen [Random Sequences, Ph.D. thesis, University of Amsterdam,
1987; J. Symb. Logic, 54(1989), 1389-1400].

3.6.12. [31] Let w be an infinite binary sequence. Show that if there
exists a constant ¢ such that K (wi.,) > n — ¢ for all n, then for all k we
have K(w1.,) — n > k from some n onward.

Comments. Hint: This follows easily from Exercise 3.6.4 Item (a), and
can be seen as a strengthening of that result. Not only is the limit of
K (w1.n,) —n infinite when w is Martin-Lof random, but it goes to infinity
fast enough to make the series in Exercise 3.6.4, Item (a), diverge. In
Schnorr’s theorem, Theorem 3.6.1, we showed that an infinite binary se-
quence is random with respect to the uniform measure iff K (wy.,) > n—c
for some ¢ and all but finitely many n. There is not only a sharp divid-
ing line but a wide complexity gap that separates the random infinite
sequences from the nonrandom infinite sequences. With respect to the
uniform measure, we have in Exercise 2.5.9 defined the notion of a Solo-
vay test for randomness, and shown that a sequence w is Martin-Lof
random iff it is Solovay random. Call w weakly Chaitin random if there
is a constant ¢ such that for all n, we have K (w1.,) > n — ¢. The results
referred to and this exercise show that the sets of infinite sequences de-
fined by all of these definitions coincide precisely. That different points
of departure attempting to formalize an intuitive notion (like random-
ness) turn out to define the same objects is commonly viewed as evi-
dence that the formalization correctly represents our intuition. Source:
G.J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press,
1987; attributed to C.P. Schnorr.

3.6.13. [38] Let w be an infinite binary sequence that is random with
respect to the uniform measure. Let g be a recursive function such that
the series >, 2790 diverges, for example g(n) = logn. Let h be a
recursive function that is monotone and unbounded, such as h(n) =
loglogn. Show that for infinitely many n we have K(n) > g(n) and
K(w1:n) < n+ h(n).

Comments. Note that this does not imply that the greatest monotonic
nondecreasing lower bound on K(€;.,) — n is unbounded. Nonetheless,



234

3. Algorithmic Prefix Complexity

this is true. Source: R.M. Solovay, Lecture Notes, UCLA, 1975, unpub-
lished.

3.6.14. [29] Let w = wyws ... be an infinite binary sequence and let
¢(w) be the smallest ¢ for which K(w1.,) > n — ¢. Let w be Martin-Lof
random with respect to the uniform distribution. Let S(n) = >°1" | w;.

(a) Show that given € > 0, we can compute an n(c, €) such that

- ‘<6,

for every n > n(c,e).

(b) Show that for given A > 1, we can compute an n(c, A) such that
Sn < Z + )\\/; Inlnn,

for every n > n(c, \).

(¢) Show that for given A < 1, we can compute an n(c, A) such that
n n
S, > 9 +)\\/2 Inlnn,

for some n < n(c, A).

Comments. Source: Suggested by J.T. Tromp. This is the law of the
iterated logarithm (Exercise 1.10.5 on page 65).

3.6.15. [41] Consider an infinite binary sequence w as a real num-
ber r = 0.w. Recall that w is lower semicomputable if there is a to-
tal recursive function f : AN — Q such that f(i + 1) > f(i) and
lim;_oo f(7) = r. We call w an Q-like real number if (i) there is a lower
semicomputable function g such that g(n) = 0.w1., for every n; and (ii)
K(win) = K(1:) + O(1). A real number w is arithmetically random
(with the uniform measure understood) if every arithmetic property of
w (viewed as an infinite sequence of zeros and ones) holds for some set of
reals of uniform measure 1. In other words, w is arithmetically random
iff w does not belong to any arithmetic set of reals of uniform measure
zero. Since the arithmetic sets are Borel sets, and the union of countably
many Borel sets of uniform measure zero is again a Borel set of uniform
measure zero, the set of arithmetically random reals has uniform mea-
sure one. Let m(n) be the greatest monotonic lower bound on K(n),
that is, m(n) = min{K(x) : £ > n}. By the same argument as in the
proof of Theorem 2.3.2, page 127, for any recursive function ¢(n) that
goes to infinity monotonically with n, we have m(n) < ¢(n) from some
n onward.



Exercises 235

(a) Show that Q is Q-like.

(b) Show that Q-like reals are Martin-Lof random.

(c) Show that arithmetically random reals are Martin-L6f random.
(

d) Show that since Q-like reals are AY definable, they are not even
2-random in the sense of Exercise 3.6.19, so the set of (-like reals has
uniform measure zero.

(e) Show that if w is arithmetically random, then there is a constant c
(depending on w) such that for infinitely many n we have K(wi.,) >
n+ K(n)—c.

(f) Show that the ‘then’ property in Item (e) holds for w’s that are
2-random in the sense of Exercise 3.6.19.

(g) Show that if w is Q-like then K (w1.,) < n+K(n)—m(n)+0(logm(n)).

(h) Show that if w is arithmetically random, then K (wy.,) > n+m(n)+
O(log m(n)).

Comments. Hint for Item (g): compute €2,,(,,) effectively from n by do-
ing n steps in the computation of 2. R.M. Solovay credits this idea to
C.P. Schnorr. Source is R.M. Solovay, Lecture Notes, UCLA, 1975, un-
published. Source for Item (f): J.S. Miller, The K-degrees, low for K
degrees, and weakly low for K sets, Manuscript, 2007.

3.6.16. e [37] Consider the family ¢ of universal prefix machines U
satisfying the conditions of the proof of Theorem 3.1.1 on page 202. Ev-
ery such U has an associated halting probability Qi = ZU(p)<oo 2-lp),
Everything in Exercise 3.6.15 is invariant under the choice of reference
universal prefix machine among these U’s. Hence, the class of Q-like
reals consists precisely of those reals that satisfy the definition in that
exercise with € = Qg for some U € U.

(a) Show that if w is Q-like, then w = Qp for some U € U.

(b) Show that the set of Martin-Lof random binary sequences (equiva-
lently, Martin-Lof random reals) that are lower semicomputable equals
the set {Qp : U € U}.

Comments. This provides a first characterization of natural examples
of Martin-Lof random infinite sequences (or reals) that are lower semi-
computable. These are random, hence incomputable, but only barely
so. Source Item (a): C. Calude, P. Hertling, B. Khoussainov, Y. Wang:
Theor. Comput. Sci., 255:1-2(2001), 125-149. Item (b) characterizes
both randomness among the lower semicomputable reals and lower semi-
computability among the random reals. Trivially, every €y is lower semi-
computable, and it is Martin-Lo6f random by Corollary 3.6.2 on page 227.
This shows inclusion in one direction. The difficult part is the inclusion



236

3. Algorithmic Prefix Complexity

in the other direction, shown by A. Kucera, T.A. Slaman, SIAM J. Com-
put., 31:1(2001), 199-211. A survey is [C. Calude, Theor. Comput. Sci.,
271:1-2(2002), 3-14].

3.6.17. [41] Let Uy, Uy,..., Uy C {0,1} for all & > 0 denote a
sequential universal Martin-Lof test as in Section 2.5.2. Let A denote the
uniform measure on {0,1}*°. Note that Uy = {0,1}*° by definition and
A(Up) = 1. Lower semicomputable reals are defined in Exercise 3.6.15.
A sequence 11,19, . .. of reals is uniformly lower semicomputable if there

is a total recursive function f(k,i) such that for every k > 1, we have
f(kyi4+1) > f(k,q) for all ¢ and lim; . f(k,7) = rg.

(a) Show that for every sequential universal Martin-Lof test Uy, Uy, . . .,
the uniform measure A(Uy) is a Martin-Lof random real.

(b) Show that for every lower semicomputable Martin-Lof random real

r, there is a sequential universal Martin-Lof test Uy, Uy, ... such that
> ey AM(Uk) equals 7.
(c) Let r1,72,... be a uniformly lower semicomputable sequence of reals

such that r, < 1/2™ for every n > 1, and let A be the uniform measure
on {0,1}°°. Show that r; is a Martin-Lof random real for every k > 1
iff there is a universal sequential Martin-Lof randomness test Uy, U, . . .
with A\(Uy) = ri for every k > 1.

Comments. In this way, the measure-theoretic treatment of random-
ness in Martin-Lof’s sense provides a second characterization of natu-
ral examples of Martin-Lof random sequences (or reals) that are lower
semicomputable. In fact, it is a curious connection between infinite bi-
nary sequences that are members of the complement of the universal
constructive null set, Section 2.5.2, and the binary expansions of the
real numbers that are uniform measures of the constituent elements of
a universal sequential Martin-Lof test, which elements themselves have
infinite binary sequences as members. Source of Items (a) and (b): A.
Kucera, T.A. Slaman, Ibid. (according to R.G. Downey, Item (a) is due
to A. Kucera alone). Source for Item (c): (only if) A. Kucera, T.A. Sla-
man, Ibid.; (if) W. Merkle, N. Mihailovic, T.A. Slaman, Theor. Comput.
Syst., 39(2006), 707-721.

3.6.18. [37] In Exercises 3.6.16 and 3.6.17 we gave natural examples
of lower semicomputable Martin-L6f random infinite binary sequences
(or reals). They form as it were the fringe, the lowest, first, order of
Martin-Lof randomness. These objects are random with respect to the
primary notion of effective computability as represented by Turing ma-
chines. One can also consider more powerful notions of computability,
called relativized computability, such as Turing machines equipped with
oracles. Such an oracle is a subset A of the natural numbers, and a
Turing machine T equipped with oracle A, denoted by T4, can ask “is



Exercises 237

n € A?” Thus, if A is the set of programs (the binary code consid-
ered as a natural number) for which 7' (without oracle A) halts, then
TA can compute more than T'. Let T1,T5,... be the standard enumera-
tion of prefix machines, and let U be the reference prefix machine with
U((i,p)) = Ti(p) for all i, p. In recursion theory one defines the jump A’
of Aas A’ = {x: U%(z) < 0o}. Main jumps are those of the empty set:
@,2" a",... . Clearly, @' is recursively enumerable, by U = U?, @&
is recursively enumerable by U’ defined as U’ = U?’, @ is recursively
enumerable by U” = U?”, and so on. Define the halting probability
of U' by @ = Y1 (<o 2-UP) and similarly the halting probability
of U” by ' = ZU,,(p)<Oo 2-P) and so on. Just as  is random with
respect to the @ jump, every such halting probability is Martin-Lof ran-
dom with respect to its respective jumps, that is, of the higher orders
of randomness. We are interested in natural examples of infinite binary
sequences (equivalently, real numbers) that are of these higher orders of
randomness, but are defined without recourse to oracles.

(a) Show that the probability that a program for the reference universal
prefix machine U both outputs finitely many symbols and does not halt
(has an infinite computation) is Martin-Lof random in the first jump of
the halting problem.

(b) Define the probability § = > 274P) where the summation is taken
over the shortest p € {0,1}* such that the set Q@ = {q : U(pg) < oo}
is cofinite ({0,1}* — @ < o0). Show that § is as random as Q”: it is
Martin-Lo6f random in the second jump of the halting problem.

Comments. Source Item (a): V. Becher, S. Diacz, G. Chaitin, Proc. 3rd
Discr. Math. Theor. Comput. Sci. Conf., Springer, London, 2001, pp.
55-68. Source for Item (b): V. Becher, G. Chaitin, Fundamenta Infor-
maticae, 51(2002), 1-14.

3.6.19. [37] An infinite binary sequence w is n-random if it is Martin-
Lof random in @”~!. That is, 1-randomness is Martin-Lof randomness.
Show that w = wyws . .. is 2-random iff C(w1.,) > n— O(1) for infinitely
many n.

Comments. This interprets and explains Theorem 2.5.5 on page 153.
Some authors call w satisfying C'(w1.,) > n — O(1) for infinitely many n
Kolmogorov random. This definition was essentially proposed by D.W.
Loveland, Proc. ACM 1st Symp. Theory Comput., 1969, 61-65, using
uniform Kolmogorov complexity in the definition. That definition is ro-
bust enough that uniform, length-conditional, and plain Kolmogorov
complexity all give the same class. Source: For the ‘if’ side, [L. Yu, D.
Ding, R.G. Downey, Ann. Pure Appl. Logic, 129:1-3(2004), 163-180] an-
alyzed an argument of R.M. Solovay, Ibid. to show that all 3-random
reals are Kolmogorov random; for the ‘only if’ side, [J.S. Miller, J. Sym-
bol. Logic, 69(2004), 907-913]. Independently, the full ‘iff’ statement



238

3. Algorithmic Prefix Complexity

was proved in [A. Nies, F. Stephan, S.A. Terwijn, J. Symbol. Logic,
70:2(2005), 515-535].

3.6.20. e [42] Does a similar result to that in Exercise 3.6.19 hold for
prefix complexity? We know that the maximal complexity of K(z) is
K*(z) =1(z) + K(I(x)) + O(1), Example 3.3.2 on page 212. Moreover,
if K(z) = KT (x) is maximal then C(z) = C*(z) by Exercise 3.4.4 on
page 217. An infinite binary sequence w is called strongly Chaitin random
if K(w1.n) > n+ K(n) — O(1) for infinitely many n.

(a) Show that every strongly Chaitin random infinite binary sequence is
2-random.

(b) Show that every 2-random infinite binary sequence is strongly Chaitin
random.

Comments. Hint for Item (a): use Exercises 3.6.19 and 3.4.4. Source for
item (a): R.M. Solovay, Lecture Notes, UCLA, 1975, unpublished. Source
for Ttem (b): J.S. Miller, The K-degrees, low for K degrees, and weakly
low for K sets, Manuscript, 2007.

3.6.21. [29] Let w be an infinite binary sequence that is Martin-Lof
random with respect to the uniform measure (for example, the halting
probability € of Section 3.6.2).

(a) Show that w is von Mises—Wald—Church random (Section 1.9).

(b) Show that w is effectively unpredictable. That is, let f be a recursive
function that given an arbitrary finite binary string predicts “the next
bit is one,” “the next bit is zero,” or “no prediction.” Then if f predicts
infinitely many bits of w, it does no better than chance because in the
limit the relative frequency of both correct predictions and incorrect

predictions is ; .

(c) Use Item (b) to show that the zeros and ones have limiting relative
frequency %

(d) Show that w is normal in base two in the sense of Borel: each of the
2% possible blocks of k bits in w has limiting relative frequency 1/2*.

(e) Show that the law of the iterated logarithm, Exercise 1.10.5 on
page 65, applies to the relative frequency of correct and incorrect pre-
dictions of bits of w.

Comments. Hint for Item (c): predict the next bit of w by a total recur-
sive function that always has value one. Source: G.J. Chaitin, Algorith-
mic Information Theory, Cambridge Univ. Press, 1987.



3.7
Algorithmic
Properties of
K

3.7.1
Randomness in
Diophantine
Equations

Lemma 3.7.1

3.7.  Algorithmic Properties of K 239

According to Section 3.4, the function K is not recursive but it is up-
per semicomputable (it can be approximated from above). This is also
the case for the two-variable function K (z|y). Also, Theorem 2.7.1 on
page 174 and Corollary 2.7.2 on page 176 hold in precisely the same
way by the same proofs with K replacing C. Barzdins’s lemma, The-
orem 2.7.2 on page 178, holds by the same proof with the following
obvious modification: Every characteristic sequence x of a recursively
enumerable set A satisfies K (x1.n|n) < K1 (n) + ¢ for all n, where c is a
constant depending on A but not on n. There is a recursively enumerable
set such that its characteristic sequence satisfies K(x1.,) > logn — ¢ for
all n, where c is a constant that does not depend on n.

There is an algorithm to decide the solvability of the first n Diophantine
equations, given about logn bits of extra information (Example 2.7.2 on
page 179). Namely, given the number m < n of soluble equations in the
first n equations, we can recursively enumerate solutions to the first n
equations in the obvious way until we have found m solvable equations.
The remaining equations are unsolvable. This shows that the solubility
of the enumerated Diophantine equations is interdependent in some way.

Suppose we replace the question of mere solubility by the question of
whether there are finitely many or infinitely many different solutions.
That is, no matter how many solutions we find for a given equation, by
itself this can give no information on the question to be decided. It turns
out that the set of indices of the Diophantine equations with infinitely
many different solutions versus finitely many ones is not recursively enu-
merable.

There is an (exponential) Diophantine equation
An,z1,22,...,Zm) =0

that has only finitely many solutions x1,xo, ..., Ty if the nth bit of ) is
zero and that has infinitely many solutions x1, %o, ..., Ty if the nth bit
of Q is one.

The role of ezponential Diophantine equations should be clarified. Yu.V. Mati-
jasevich [Soviet Math. Dokl., 11(1970), 354-357] proved that every recursively
enumerable set has a polynomial Diophantine representation. Moreover, he
proved in 1974 that every recursively enumerable set has a singlefold expo-
nential Diophantine representation. This was published only later (with yet
different proofs) in [J.P. Jones, Yu.V. Matijasevich, J. Symbol. Logic, 49(1984),
818-829; Yu.V. Matijasevich, Hilbert’s 10th Problem, MIT Press, 1993]. It is
not known whether singlefold representation (which is important in our ap-
plication) is always possible without exponentiation. See also G.J. Chaitin,
Algorithmic Information Theory, Cambridge University Press, 1987.



240 3. Algorithmic Prefix Complexity

Exercises

Proof. By dovetailing the running of all programs of the reference prefix
machine U in the obvious way, we obtain a recursive sequence of rational
numbers wy; < wy < --- such that = lim,,_ o w,. The set

R = {(n,k) : the nth bit of wy, is a one}

is a recursively enumerable (even recursive) set. The main step is to
use a theorem due to Yu.V. Matijasevich, first published in [J.P. Jones,
Yu.V. Matijasevich, J. Symbol. Logic 49(1984), 818-829], to the effect
that “every recursively enumerable set R has a singlefold exponential
Diophantine representation A(-,-).” That is, A(p,y) = 0 is an expo-
nential Diophantine equation, and the singlefoldedness consists in the
property that p € R iff there is a y such that A(p,y) = 0 is satisfied,
and moreover, there is only a single such y. (Here both p and y can be
multituples of integers; in our case, p represents (n, z1), and y represents
(x2,...,Zm). For technical reasons we counsider as proper solutions only
solutions z involving no negative integers.) It follows that there is an
exponential Diophantine equation A(n,k,xa,...,x,) = 0 that has ex-
actly one solution zs, ..., z,, if the nth bit of the binary expansion of
wg is a one, and it has no solution xs, ..., x,;, otherwise. Consequently,
the number of different m-tuples x1,zs,...,x,, that are solutions to
A(n,x1,Z9,...,%m) = 0 is infinite if the nth bit of the binary expansion
of  is a one, and this number is finite otherwise. a

This can be interpreted as follows: Consider the sequence of Diophantine equa-
tions D1, Da, ... such that Dy (x1,x2,...,2m) = A(n,21,...,Zm). Let us say
that a formal theory “settles k cases” if it enables one to prove that the num-
ber of solutions of D,, is finite or is infinite for k specific values (not necessarily
consecutive) of n. It is not difficult to show that no formal theory in which
one can prove only true theorems and that is completely describable in n bits
can settle more than n + K(n) + O(1) cases. (Hint: use arguments about how
many (scattered) bits of 2 can be determined (together with their positions)
in a formal theory of given complexity.)

“This is a region in which mathematical truth has no discernible structure or
pattern and appears to be completely random. These questions are completely
beyond the power of human reasoning. Mathematics cannot deal with them.
Quantum physics has shown that there is randomness in nature. I believe
that we have demonstrated [...] that randomness is already present in pure
Mathematics. This does not mean that the universe and Mathematics are
completely lawless, it means that laws of a different kind apply: statistical
laws. [...] Perhaps number theory should be pursued more openly in the spirit
of an experimental science! To prove more one must assume more.” [Chaitin]

3.7.1. [42] (a) Show that Kt (Exercise 3.4.1) is nonrecursive in the
sense that there is no total recursive function f such that K*(x) =
f(z)+0O(1) for all .



3.8
*Complexity
of Complexity

3.8. *Complexity of Complexity 241

(b) Show that there is a recursive upper bound f(z) of the function
K (x) with the property that f(z) = K(z) holds for infinitely many x.

(¢) Show that we cannot effectively find infinitely many z’s for which
some recursive upper bound on K (z) (as in Item (b)) is sharp. (The
same statement for C(x) follows from Theorem 2.3.2, page 127.)

(d) Let f(x) be a recursive upper bound on K () as in Item (b). Show
that in addition to Item (c), there is no recursive function g(z) mapping
each = to a finite set X C {y : y > x} such that each X contains some
y for which f(y) < C(y). (Notice that the function logz, or one almost
equal to it, has this property for C(x).)

Comments. The monotonic upper bound estimate of logz + K ([logz])
on K(x) is less satisfying than the sharp monotonic estimate logz on
C(z), because it is not a recursive function. The recursive upper bounds
on K(x) we have obtained previously, such as logz + 2loglogz and
log* z + I*(z), are not precise up to a fixed additive constant for in-
creasing x. The present Item (b) shows that nonetheless, we can find
a recursive upper bound on K (z) that is sharp infinitely often. How-
ever, we cannot find infinitely many x’s for which this is the case, since
Item (c) shows that every infinite set of «’s for which the recursive up-
per bound coincides with K(z) is not recursively enumerable. This also
holds for C'(z). However, Item (d) shows a difference between K (z) and
C(z) in effectiveness of a recursive upper bound that is sharp infinitely
often. Source: R.M. Solovay, Lecture Notes, 1975, unpublished; P. Gécs,
Ph.D. thesis, Mathematics Department, Frankfurt am Main, 1978.

3.7.2. [35] Show that there is a recursive upper bound f on K and a
constant ¢ with the property that there are infinitely many x such that
for all k& > 0, the quantity of numbers y < z with K(y) < f(y) — k is
less than cx27F.

Comments. Source: P. Gacs, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987.

The complexity function K (or C for that matter) is nonrecursive (Theo-
rem 2.3.2, page 127). If the number of bits one needs to know to compute
f(x) from z is not constant for all z, then f is nonrecursive. For instance,
let f be defined by f(z) = Q1.,, with Q the halting probability in Sec-
tion 3.6.2. Then K(f(x)|x) > I(f(x)) + O(1). That is, knowledge of x
does not help to describe f(x) at all.

If f is recursive, then K(f(x)lz) = O(1). But if f is 0, 1-valued, then
K(f(z)|x) = O(1) too (since the programs for the constant functions of
value 0 and 1 provide a bound). Thus, the complexity K(f(x)|z) is a



242

3. Algorithmic Prefix Complexity

Definition 3.8.1

Theorem 3.8.1

property of f that tells something about the degree of nonrecursiveness
of f, but the converse is not necessarily the case.

The complezity K(f) of function f is defined as the function K (f(x)|z).

We analyze K(K(x)|z), the complexity of the complexity function K.
There is a simple upper bound for all x. If I(z) = n, then K(x) <
n+ 2logn + O(1) and therefore

K(K(z)lz) < K(K(x)|n) +O(1) <logn+ O(1).

The first inequality follows from the fact that [(x) = n. The second
inequality follows from the fact that if we know n, then to describe
K (x) it suffices to describe |n — K (x)| and indicate whether K(x) > n
or K(z) < n. Since |n — K(x)| < n, and we know n, we can describe just
the difference d = n — |n — K (z)| self-delimitingly for log d+ 2 loglogd +
0O(1) < logn, otherwise the plain value |n— K (z)| self-delimitingly also in
at most log n bits, indicating which is which in a constant number of bits.
A similar, easier, argument yields the same upper bound for C(C(z)|x).
Therefore, we have that for every n and all strings x of length n we have
K(K(x)|z),C(C(z)|r) <logn+O(1). It turns out that K (K (z)|x) and
C(C(x)|z) can be very close to the upper bound.

For every n, there are strings x of length n such that K(K(x)|x) >

logn —loglogn + O(1). The same lower bound holds for C(C(x)|z).

Proof. The proof is a little tricky. Let U be the reference machine of
Theorem 3.1.1. Fix a large enough n. In the sequel all z’s considered
have length n. Define the maximum value of K (K (x)|z) by

5= l{g)azxn min{l(p) : U(p,x) = K(x)}.

To prove the theorem we only need to show that

s > logn — loglogn + O(1). (3.5)
Since K (x) < n+ 2logn + O(1) for all x of length n,

K(K(z)|z) < s <logn-+O(1).

Let U be the reference prefix machine. A binary string p is called a
suitable program for x if for some ¢ we have

e l(p) <s;

e U computes [(q) from p, given x; and



3.8. *Complexity of Complexity 243
e U computes z from q.

In particular, there is a suitable program p for z, of length I(p) =
K(K(z)|x) < s (for instance, with corresponding ¢ of length I(q) =
K(x)). We denote by M; the set of strings = for which there are at least
1 different suitable p. Now consider the sequence

@ =M1 CM; C---CMy={0,1}", M; #2.
There are 271 — 1 strings of length at most s. Therefore,
j <28t
To prove the theorem, it suffices to show, for all i < j,
1(d(M;)) < U(d(Mi+1)) + 5logn. (3.6)

Namely, this implies that j > n/(5logn), which together with j < 25+1,
proves Equation 3.5.

We prove Equation 3.6. There exists an z € M; — M; 1, which is found
by the following procedure with input i, s, n, d(M;+1),1(d(M;)), for all 4
with 0 < i < j:

Step 1. Recursively enumerate all of M;11. {We know when we are
done by the time we have found d(M;41) elements}

Step 2. Recursively enumerate enough of M; — M, 1 to make the sequel
meaningful. For each z in M; — M, 1 we obtain, find by enumeration
all i suitable programs for z. A suitable program p with Ul(p, z)
minimal satisfies U(p, z) = K (z). We may assume that

logd(Ml — Mi+1) Z logd(Ml) — 1, (37)

since otherwise Equation 3.6 holds trivially. From Equation 3.7 it
follows, by Theorem 3.3.1, that there exists a zpa.x among the z’s
for which

K(zmax) Z l(d(Mz)) —1. (38)
So we keep on enumerating z’s until we find the first such zpyax.

Step 3. Set = := zpax.

This algorithm provides a description of x containing the following items,
each item in self-delimiting code:

e A description of this discussion in O(1) bits;



244 3. Algorithmic Prefix Complexity

3.9
*Symmetry of
Algorithmic
Information

o a description of d(M;11) in at most I*(n) + I(d(M;4+1)) bits (since
K(I(d(Mit1))) < I*(n));

e a description of {(d(M;)) in I*(n) bits;

e descriptions of 4, n, and s, in {*(n), I*(n), and I*(log n + 2loglogn)
bits, respectively.

The size of the description of 2 gives an upper bound on K (z),
K(x) <41*(n) + O(*(logn)) + I(d(M;1+1)) + O(1). (3.9)

Equations 3.8 and 3.9 imply Equation 3.6, and hence the theorem. Pre-
cisely the same proof shows that C(C(z)|z) > logn — loglogn + O(1).
O

Since C(C(x)) < logn + O(1) for all z of length n, Theorem 3.8.1 indicates
that for some z, knowledge of = only marginally helps to compute C(z); most
information in C(x) is extra information. It turns out that these z’s have lower
complexity than random z’s. Consider an z of length n with C(z) > n — k.
Then C(C(z)|z) < C(k) 4+ O(1). If Theorem 3.8.1 holds for , then it follows
that C(k) > logn — loglogn + O(1). Also, C(k) < logk + O(1). Then, k =
Q(n/logn). Therefore, if Theorem 3.8.1 holds for z, then

Clx) <n—9Q <logn) ,

which implies that also K(z) < n — Q(n/logn). The same argument shows
the following: Fix a constant ¢’. If Theorem 3.8.1 holds for x, then for each k,
0 < k < n, such that C(k|z) < ¢ (for example k = .n or k = y/n), we have
C(z) & [k — 0,k + 6], with § = O(n/logn).

Recall the symmetry of algorithmic information question raised in Sec-
tions 1.11 and 2.8. Up to what precision does the equality

K(z,y) = K(ylr) + K(z)

hold? It turns out that the precision is low, just as for C' complexity,
albeit for more fundamental reasons. It is at once obvious that

K(x,K(z)) = K(x) + O(1). (3.10)

Namely, we can reconstruct both z and K (x) from the shortest program
for . (Similarly C(z, C(z)) = C(z)+O(1).) Now consider the difference
of K(x,y) from K(y|z)+ K (x) for y = K(x). Combining Theorem 3.8.1
and Equation 3.10, for each n, there is a string x of length n,

K(z,K(z)) < K(z) + K(K(z)|z) —logn +loglogn + O(1). (3.11)



3.9. *Symmetry of Algorithmic Information 245

For Equation 3.11 it does not really matter whether we use K(x) or
C(z). However, C(z) is nonadditive for reasons much simpler than for
K (x): additivity is violated already on random strings as shown in Sec-
tion 2.8. But for K (x), the possibly high-complexity K (K (x)|z) is the
only reason. Equation 3.10 is an obvious property that can be used for
most variants of complexity to prove the corresponding version of Equa-
tion 3.11, which amounts to asymmetry of information.

This shows that analogues of the information-theoretic identities can
hold only up to an additive term logarithmic in the complexity. In the
case of C(x) this is primarily caused by the randomness (incompress-
ibility) of the strings concerned, Section 2.4. The overwhelming ma-
jority of strings is random enough for this effect to occur. One reason
for focusing on the K(x) measure was to eliminate this randomness-
based effect. But it turns out that to obtain sharp analogues of the
information-theoretic identities, a conditional term K (:|z) needs to be
replaced by K(-|z, K(z)). We necessarily require the extra information
in K(z), about the halting problem, that is not contained in z. This
is the sole reason that the information-theoretic identities do not hold
for K (x) precisely. However, there are only relatively few x’s with large
K (K(x)|x). This follows immediately from Example 3.8.

Another argument is as follows: Let x be the characteristic function (equiv-
alently, sequence) of a recursively enumerable set such that K(xi.m|n) > n,
where m = 2". Such sets exist by Barzdins’s lemma, Theorem 2.7.2. Let
I(x : z) = K(z) — K(z|x), that is, the information in x about z. For in-
stance, we can choose x as the characteristic function of the halting set
Ko ={(z,y) : ¢=(y) < co}. We can also take any other complete set. Then

K(K(z)|lz) <I(x:x)+3logI(x:z)+ O(1). (3.12)

This means that the extra information contained in K(z), apart from z, is
less than the information that any complete set contains about x. The a priori
probability of z with high K (K (x)|z) is low. Namely, it can be shown (but we
omit the proof) that for any computable or lower semicomputable probability
distribution (measure) on the z’s, k bits of information concerning x occur in
« with probability 27%. Thus, we can derive, from the displayed inequality,

P{z: K(K(zx)|z) > i} <i*27°, (3.13)

for all computable and lower semicomputable probability distributions P.
Equation 3.12 tells us that the extra information in K(z), apart from «z,
is less than the information that any complete set contains about z. Equa-
tion 3.13 tells us that the a priori probability of all  with high K (K (x)|z) is
low. Source: attributed to L.A. Levin [P. Gacs, Soviet Math. Dokl., 15(1974),
1477-1480, and Ph.D. thesis, J.W. Goethe Univ., Frankfurt, 1978].



246 3. Algorithmic Prefix Complexity

39.1
Algorithmic
Information and
Entropy

Let us recall some relations between Shannon entropy and algorithmic
information, or complexity. Let P be a recursive probability distribu-
tion. In Example 2.8.1 on page 188 we have shown that for recursive
probability distributions P(-) the expected value C(-) is asymptotic to
H(P) (in case both values grow unboundedly we have shown that the
quotient of the compared quantities goes to 1). This implies the similar
relation between expected K (-) value and H(P); see Section 8.1.1.

A more direct proof uses the universal distribution in Chapter 4. Since the
set of K(x)’s is the length set of a prefix code, the first inequality of the
noiseless coding theorem, Theorem 1.11.2, shows that H(P) < > P(x)K(x).
Moreover, an effective version of the Shannon—Fano code in Example 1.11.2
on page 1.11.2 guarantees that K(z) < log1/P(z) + O(1) (a formal proof is
given later in Lemma 4.3.3 on page 274). Together this shows that the entropy

1
H(P) = P(z) ]
(P)= " P@)log
of the distribution P is asymptotically equal to the expected complexity

> P@)K()

with respect to probability P(-). However, we can make more precise calcula-
tions. The equality between expected prefix complexity and entropy is treated
in detail in Section 8.1.1. It holds extremely precisely—up to an additive con-
stant.

Instead of requiring P(+) to be recursive, it suffices to require that P be a lower
semicomputable function. Together with Z P(x) = 1, the latter requirement
implies that P(-) is recursive (Example 4.3.2 on page 266).

The fact that the P-expectations of log1/P(z) and K(z) are close does not
necessarily mean that those quantities are close together for all arguments.
However, in Example 4.3.10 on page 282 we also show that for recursive P(-)
the values log 1/P(z) and K (z) are close to each other with high probability.

This establishes a tight quantitative relation between Shannon’s statisti-
cal conception of entropy of a probability distribution and our intended
interpretation of K (x) as the information content of an individual object.

Let X and Y be two discrete random variables with a joint distribution.
In Section 1.11 we defined the following notions: the conditional entropy
H(Y|X) of Y with respect to X, the joint entropy H(X,Y) of X and
Y, and the information I(X :Y) in X about Y. The relations between
these quantities are governed by Equations 1.13, 1.14, 1.15. The crucial
one is Equation 1.13 on page 70: the additivity rule H(X,Y) = H(X)+
H(Y|X). In general we would like to derive the same relations for the
complexity analogues. In Section 2.8 it turned out that the complexity
analogue of Equation 1.13 holds in terms of C, within a logarithmic
additive term (Theorem 2.8.2). The proof that Theorem 2.8.2 is sharp



3.9.2
Exact Symmetry
of Information

Theorem 3.9.1

3.9. *Symmetry of Algorithmic Information 247

used strings whose lengths were random. For K we also find that the
exact analogue of Equation 1.13 on page 70 does not hold (Example 3.9
on page 244), not because it is violated on random a’s with random
lengths as is C, but for more subtle reasons.

By Equation 3.11, for each length n there are x of length n and y such
that

|K (2, y) — K(v) — K(y|z)| = Q(log K(z)),

showing that additivity can be satisfied only to within a logarithmic
term. Since the complexity of the complexity function as expressed by
Theorem 3.8.1 holds for all proper variants of complexity, additivity cor-
responding to Equation 1.13 cannot hold exactly for any proper variant
of complexity.

While the complexity of the complexity function prevents an exact ana-
logue to Equation 1.13, it turns out that nonetheless we can find an exact
additivity property for K, by replacing the conditional = by (z, K(x))
(equivalently, by the shortest program for z).

Let x and y be finite binary strings. Then up to a fixed additive constant,
K(z,y) = K(z) + K(ylz, K(z)).

Proof. (<) Let p be a shortest program from which the reference pre-
fix machine computes z, and let ¢ be a shortest program for which it
computes y given x and K (z). But then we can find another prefix ma-
chine that with input pg uses p to compute x and K(z) (= I(p)) and
subsequently uses x and K (x) to compute y from gq.

(>) Consider = and K(x) as fixed constants. We need the following
results, which are proven only later, in Chapter 4 (the conditional version
Theorem 4.3.4 of Theorem 4.3.3 on page 275):

1. Recall Definition 1.7.4, page 35, of lower semicomputable functions
f: N — R. Let X consist of lower semicomputable functions f (y)
with Zy fz(y) < oo. There exists a g € X such that for all f, € X

fo(y) = O(g(y)).
2. We can set this g(y) = 9—K(ylz,K(z))

Clearly, with = fixed the function h,(y) = 2X@ K@) is lower semi-
computable. Moreover, with z fixed the set {K(z,y) : y € N} is the
length set of a prefix-free set of programs from which the reference pre-
fix machine U computes (z,y). By the Kraft inequality, Theorem 1.11.1,
we have

D oKl <1
Yy



248

3. Algorithmic Prefix Complexity

Corollary 3.9.1

Definition 3.9.1

Therefore,

th(y) < 2K(@) < o0,
y
Hence, h, € X, which implies by Items 1 and 2 that h,(y) = O(g(y)).
We obtain
K(z,y) = K(z) + K(ylz, K(x)) + O(1).

by substituting the expressions for g and h,, taking the logarithm of
both sides, and rearranging. m|

This implies immediately the subadditive property
K(z,y) < K(z) + K(y|lz) + O(1) < K(x) + K(y) + O(1),

which does not hold for C' by Example 2.2.3 on page 118. This is a
straightforward consequence of the fact that a prefix machine does not
require extra information to see where one program ends and the other
one begins—information that needs to be provided to the plain decoding
algorithms in Chapter 2.

We cannot replace (z, K(z)) by K(z) in Theorem 3.9.1. But we can
replace x by (z, K(z)), as follows. Note that

K(z,y) = K(z,K(z),y) + O(1). (3.14)
Substitution in Theorem 3.9.1 shows the following:
K-complexity is additive in the form

K({z, K(2)),y) = K((z, K(z))) + K(y|(z, K(2))) + O(1).
The K-complexity of information in x about y is

I(z 1 y) = K(y) — K(ylz). (3.15)
Define the conditional version as

I(w: yl2) = K(yl2) - K(yla, 2). (3.16)
Information is symmetric if the information in x about y equals (up to

additive constants) the information in y about x. Rewriting K (z,y) in
two different ways, it follows from Theorem 3.9.1 that

K(y) — K(ylz, K(z)) = K(z) — K(z|y, K(y)) + O(1).



Theorem 3.9.2

Example 3.9.1

Lemma 3.9.1

Corollary 3.9.2

3.9. *Symmetry of Algorithmic Information 249

Symmetry of information for K-complezity holds in the following form:

I((z, K(2)) :y) = I((y, K(y)) : #) + O(1).

We derive a (to our knowledge) new ‘directed triangle inequality’ that
is needed later.

For all z,y, 2,

K(zly™) < K(z,2]y") + O(1) < K(z]y") + K(z]z") + O(1).

Proof. Using symmetry of information, Theorem 3.9.1, an evident in-
equality introducing an auxiliary object z, and twice symmetry of infor-
mation again, we obtain

K(z,zly") = K(z,y,2) — K(y) + O(1)
< K(z) + K(x]2") + K(y|z") — K(y) + O(1)
< K(y,2) - K(y) + K(z[z") + O(1)
= K(z[z") + K(z[y") + O(1).

O

This lemma has bizarre consequences. These consequences are not sim-
ple unexpected artifacts of our definitions, but to the contrary, they
show the power and the genuine contribution to our understanding rep-
resented by the deep and important mathematical relation represented
by Theorem 3.9.1.

Define ¥ = K(y) and substitute ¥ = z and K(k) = x to obtain the
following counterintuitive corollary: To determine the complexity of the
complexity of an object y it suffices to give both y and the complexity of
y. This is counterintuitive, since in general we cannot compute the com-
plexity of an object from the object itself; if we could, this would also
solve the so-called halting problem, Section 1.7.2. This incomputabil-
ity can be quantified in terms of K (K (y)|y); which can rise to almost
K(K(y)) for some y. But in the seemingly similar, but subtly different,
setting below it is possible.

As above, let k denote K (y). Then,

K(K(k)ly, k) = K(K(k)|ly") + O(1)
< K(K()|k*) + K (Kly, k) + O(1) = O(1).

We can iterate this idea. For example, the next step is that given y and
K (y) we can determine K (K (K(y))) in O(1) bits, which implies that

K(K(K(K)))ly, k) = O(1).



250

3. Algorithmic Prefix Complexity

Lemma 3.9.2

A direct construction works according to the following idea (where we
ignore some important details): From k* one can compute (k, K(k)),
since k* is by definition the shortest program for k£ and also by defini-
tion I(k*) = K (k). Conversely, from k, K (k) one can compute k*, by
running all programs of length at most K (k) in dovetailed fashion until
the first program of length K (k) halts with output k; this is £*. The
shortest program that computes the pair (y, k) has length = k 4+ O(1):
We have K (y, k) = k+ O(1) (since the shortest program y* for y carries
both the information about y and about & = I(y*)). Then, by The-
orem 3.9.1 on page 247, we have K(k) + K(ylk, K(k)) = k + O(1).
In view of the information equivalence of (k, K(k)) and k*, therefore
K(k)+ K (ylk*) = k+O(1). Let r be a program of length I(r) = K (y|k*)
that computes y from k*. Then, since [(k*) = K(k), there is a short-
est program y* = ¢k*r for y, where ¢ is a fixed O(1)-bit self-delimiting
program that unpacks and uses k* and r to compute y. We are now in
a position to show that K (K (k)|y, k) = O(1). There is a fixed O(1)-bit
program that includes knowledge of ¢ and that enumerates two lists in
parallel, each in dovetailed fashion: Using k it enumerates a list of all
programs that compute k, including k*. Given y and k it enumerates
another list of all programs of length k& = I(y*) + O(1) that compute y.
One of these programs is y* = gk*r, which starts with gk*. Since ¢ is
known, this self-delimiting program k*, and hence its length K (k), can
be found by matching every element in the k list with the prefixes of
every element in the y list in enumeration order. <&

We cannot replace (z, K(x)) by K(z) and (y, K(y)) by K(y) in Theo-
rem 3.9.2. The complexity version of individual information is asymmet-
ric, in contrast to the expectation in the statistical entropy version of
Equation 1.15, which is symmetric.

The error in symmetry of information using K -complexity is given by

logi(z) — loglogi(x) + O(1)
<|(z:y) =1y : o)
<log K(x) + log K(y) + 2loglog K (x) + 2loglog K (y) + O(1).

Proof. (<) Use the conditional mutual information as in Equation 3.16
on page 248. Since K (y|z) < K(y|z, z) + K(z|z) + O(1),

I(z:y|lz) < K(z|z) + O(1). (3.17)

We obtain, by first rewriting using Equations 3.14 and 3.16, and then
using Equation 3.17, by the usual estimates of the relevant quantities,

K(z) + K(ylz) — K(z,y) = I(K(z) : ylz) + O(1)



3.9. *Symmetry of Algorithmic Information 251

< K(K(z)|z) + 0(1) (3.18)
< log K (x) + 2loglog K (x) + O(1).

Using Equation 3.18 in its turn we obtain
I :y) =1y : ) = I(K(y) : xly) — I(K(z) : ylz) + O(1)

< log K (z) + log K (y) + 2loglog K (z)
+ 2loglog K (y) + O(1).

(>) Compute the error in additivity for the special case y = (x, K(z)).
Rewrite using Definition 3.15, and apply Equation 3.10 (setting z* =

(z, K(x))):
IHz:2")—I(z" :2) = K(z¥) — K(z"|z) — K(x) + K (z|z")
= K(z,2*) — K(z) — K(z*|z) + O(1)
= — K(K(z)|x) + O(1).
Finally, for each n there is an x of length n such that
—K(K(z)|z) < —logn + loglogn + O(1),
by Theorem 3.8.1. O
We can use this to show that in fact I(x : y) is not even asymptotically

symmetric. Let I(z) = n. From K(K(z)) < logn + 2loglogn 4+ O(1) and
Theorem 3.8.1 it follows that up to an additive constant,

I(z: K(z)) = K(K(x)) — K(K(z)|z) < 3loglogn. (3.19)

By Theorem 3.8.1, using K(K(z)|(z, K(z))) = O(1), there exist x of each
length n, such that

I({z,K(2)): K(z)) = K(K(x)) + O(1) > logn — loglogn + O(1).
By writing out the definitions, we have

I(K(z):z)=I1(K(z): (z,K(z))) + O(1).
Consequently,

logn — 4loglogn + O(1)
< ((z, K(2)) : K(z)) — I(K(2) : (z, K(2)))]
+I(z: K(z)) — I(K(z): z)|.
This shows that the symmetry of information is violated strongly (in expo-
nentially greater measure since I(z : K(z)) = O(loglogn)) on at least one

of the pairs z, K(z) and z*, K(x). Source: attributed to L.A. Levin [P. Gécs,
Soviet Math. Dokl. 15(1974), 1477-1480].



252

3. Algorithmic Prefix Complexity

Example 3.9.2

Definition 3.9.2

Example 3.9.3

If a problem does not have a satisfactory solution as it is posed originally,
it is a common mathematical ploy to change the definitions to accom-
modate the problem. Given (x, K(x)), we can enumerate all shortest
programs for x. The first one we find is denoted by z*. From z* we
can compute (x, K(z)). Hence, z* and (z, K(x)) contain the same in-
formation although they are not identical strings. Below, we can replace
x* by (z, K(z)). Define Ke(x|y) = K(x|y*). When there is more than
one object in the conditional then define Kc(zly, z) := Ke(z|(y, 2)) :=
K (z|{y,2)*), and so on. The unconditional versions don’t change: define
Ke(x) = K(x) and Ke(z,y) := K(z,y). We can formulate the additivity
property as

Ke(z,y) = Ke(z) + Ke(ylz) + O(L).

Define the mutual information of two objects z and y by I(z;y) =
Ke(y) — Ke(ylz) (which we may view as the K¢ analogue of I(z : y)).

Using Theorem 3.9.1, we find that the mutual information is a symmetric
quantity as desired. Ignoring O(1) terms,

I(z;y) = K(z) + K(y) — K(z,y) = I(y;2). (3.20)

In general, the world looks prettier using Kc, and lots of basic identi-
ties can be derived (Exercise 3.9.3, page 253). One drawback about the
conditional complexity Kc(z|y) is that it is not upper semicomputable
as a function of x and y. Namely, suppose the contrary and a function
Kc(zly) = K(x,y) — K(y) is upper semicomputable. Then for fixed y,
the function 2= K¢(¥) of variable z is lower semicomputable, and satis-
fies >, 2~ Kelzly) < 1. Hence, by the Kraft inequality, for each fixed y
the set {Kc(x|y) : © € {0,1}*} is the length set of a prefix-code. But
for fixed y, the set {K(z|y) : « € {0,1}*} is also the length set of a
prefix-code, and by the conditional variant of the invariance theorem,
the shortest one among the upper semicomputable length sets. That is,
for each y, there exists a constant cg(.|,) such that for all z,

K(z|y) < Ke(z|y) + cxe(|y)-

Substituting x = K (y), we obtain Kc¢(K (y)|y) = O(1), while K (K (y)|y)
can be quite large by Theorem 3.9.1. &

Using the Kc¢ version of mutual information, the conditional mutual
information is
I(z;ylz) = K(x]2) — K(z[y, K(y|2), 2) (3.21)
= K(z[z) + K(ylz) — K(z,y[z) + O(1).



Exercises

Exercises 253

The elaborate conditionals are a consequence of the fact that x* provides
more information than z. Therefore, we have to be very careful when ex-
tending Theorem 3.9.1 on page 247. For example, the conditional version
of it is

K(z,y|2) = K(x|z) + K (y|z, K(z|2),2) + O(1). (3.22)
Note that a naive version

K(z,ylz) = K(z[z) + K(y[a™, 2) + O(1)

is incorrect: taking z = x, y = K(x), the left-hand side equals K (z*|z),
which can be as large as logn —loglogn 4+ O(1), and the right-hand side
equals K (z|z) + K(K (z)|z*,z) = O(1).

But up to logarithmic precision we do not need to be that careful. In fact,
in Section 8.1.1 it is shown that all linear (in)equalities that are valid
for Kolmogorov complexity are also valid for Shannon entropy and vice
versa—provided we require the Kolmogorov complexity (in)equalities to
hold up to additive logarithmic precision only. &

3.9.1. [22] Show that {K(x) : z = 1,2,...} is the length set of an
additively optimal universal code in the sense of Section 1.11.1.

3.9.2. [12] Let z* be the first enumerated shortest program for x.
Show that z* and {(x, K(x)) contain the same information: K(z*) =

K({z, K(x))) + O(1).

3.9.3. [20] Define Chaitin’s conditional complexity as in Example 3.9.2
by Ke(x|y) = K (x|y*) with y* = (y, K(y)), or y* is the first enumerated
shortest program for y. When there is more than one object in the
conditional then define Kc(zly, z) := Kc(z|{y, 2)) := K(z|{y, 2)*), and
so on. Define Ke(x) = K(x) and Ke(x,y) = K({z,y)) = K(z,y). Prove
the following identities (up to an additive constant):

(a) Ke(z,y) = Ke(y, ).

(b) Ke(

(¢) Kc(Ke(x)|z) = 0. (Contrast this with Theorem 3.8.1.)
(d) Ke(x) < Ke(z,y).

(e) Ke(xly) < Ke(x).

(f) Ke(x,y) = Ke(z)+ Ke(y|x). (Contrast this with the case for K (x,y),
Theorem 3.9.1.)

(g) We have defined I(z;y) = Kc(z) — Ke(x|y). Show that I(z;y) > 0,
I(xz;2) = Ke(zx), and I(e;z) = I(x;¢) = 0.

x|z) = 0.

K
Kc



254

3. Algorithmic Prefix Complexity

(h) I(z;y) = Ke(z)+ Ke(y) — Ke(z,y) +O(1) = I(y; )+ O(1). (In fact,
I(x;y) is the symmetric quantity of mutual information of objects  and
y; see Definition 3.9.2.)

(i) Ke(z, Ke(z)) = Ke(x). (Hint: use (f) and (c). Contrast this derivation
with the identical but differently formulated Equation 3.10.)

() Ke(x,y) = Ke(z,y, Ke(x), Ke(ylz)).

(k) Ke(Ke(z), Ke(ylz)|z,y) = 0.

() Ke(Ke(x), Ke(y), Ke(ylz), Ke(zly), Ke(z,y)|z,y) = 0.
(m) Ke(I(z;y)|z,y) = 0.

(n) Ke(z) < Ke(zly) + Ke(ylz) + Ke(2).

(o) Ke(x,y,2) = Ke(zly, 2) + Ke(y|z) + Ke(z).

(p

) Show that Kc(z]y) is not upper semicomputable. (Hint: use Theo-
rem 3.8.1.) This contrasts with K (z|y), which is upper semicomputable.

Comments. See also Example 3.9.2 in Section 3.9.1. Essentially, we have
now at our disposal the entire calculus of information theory. In fact,
the Ke calculus is somewhat richer, since it contains rules like Items (c)
and (i) that have no counterpart in classical information theory. Note
that the difference between K and Kc is the conditional form K (z|y)
versus Ke(x|y). Kc¢ complexity was introduced by G.J. Chaitin in J.
Assoc. Comp. Mach. 22(1975), 329-340, and a recent exposé appears in
Algorithmic Information Theory, Cambridge Univ. Press, 1987.

3.9.4. [12] Let n = l(z) and K(z) = n + K(n) + O(1). Show that
K(z,n) = K(z) + K(n|zr) = K(n) + K(z|n) = K(z,n*) up to additive
constants.

Comments. This relates to the symmetry of information issue for K.
The proof we gave that Theorem 2.8.2 on page 190 is sharp for C does
not hold for K. Hence, to obtain that the analogue of Theorem 2.8.2
for K is sharp one has to use another argument. This argument uses
the complexity of the complexity function, Theorem 3.8.1, which in fact
holds for all variants of Kolmogorov complexity. Source: P. Géacs, Lec-
ture Notes on Descriptional Complexity and Randomness, Manuscript,
Boston University, 1987.

3.9.5. [27] (a) Show that the mutual information I(x;y) = K(z) +
K(y) — K(x,y) according to Equation 3.20 on page 252 is symmetric:

I(z;y) = I(y; ).

(b) Show that the mutual information in Item (a) coincides with the
mutual information I(z : y) = K (y)— K (y|z) according to Equation 3.15
on page 248 up to an O(log K (x) + log K (y)) additive term.



3.10
History and
References

3.10. History and References 255

Prefix complexity was first introduced in [L.A. Levin, Problems In-
form. Transmission, 10:3(1974), 206-210; P. Gécs, Soviet Math. Dokl.,
15(1974), 1477-1480; G.J. Chaitin, J. Assoc. Comp. Mach., 22(1975),
329-340]. It resolves the technical problems of Solomonoff’s original pro-
posal for a universal a priori probability [R.J. Solomonoff, A preliminary
report on a general theory of inductive inference, Tech. Rept. ZTB-138,
Zator Company, Cambridge, Mass., November 1960; Inform. Contr.,
7(1964), 1-22, 224-254]. L.A. Levin [A.K. Zvonkin and L.A. Levin, Russ.
Math. Surv., 25:6(1970), 83-124] identified universal a priori probabil-
ity with the maximal lower semicomputable semimeasure M over the
sample space {0,1}°°, and it turns out that the negative logarithm of
the m version of M coincides with complexity K (Theorem 4.3.3 on
page 273 in Chapter 4). In some cases K is a more convenient complex-
ity measure than C', or conversely, but for many applications one can use
both equally well because they coincide to within a logarithmic additive
term. Lemma 3.1.1 is due to L.A. Levin, Soviet Math. Dokl., 17:2(1976),
522-526.

The material in Section 3.2 on the concrete implementation of a uni-
versal partial recursive function in combinatory logic to obtain explicit
constants bounding how far K(z) can exceed I(z) + 2[(l(x)), how far
K(z|l(z)) can exceed l(x), how far C(x) can exceed (), and so on,
is due to J.T. Tromp [Binary lambda calculus and combinatory logic,
Manuscript, CWI, Amsterdam, 2004]. Earlier, G.J. Chaitin [Complez-
ity, 1:4(1995/1996), 55-59] used a LISP implementation of a reference
universal prefix-machine to define concrete prefix complexity. He explic-
itly calculated constants involved in upper bounds on prefix complexity
and with the halting probability (Section 3.6.2).

Estimates for the quantitative relation between C' and K in Section 3.1
are from [L.A. Levin, Problems Inform. Transmission, 10:3(1974), 206—
210; S.K. Leung-Yan-Cheong and T.M. Cover, IEEE Trans. Inform.
Theory, IT-24(1978), 331-339; R.M. Solovay, Lecture Notes, UCLA, 1975,
unpublished]. The numerical estimates on K-complexity and compress-
ibility, like the upper bound on K and the distribution of description
lengths in Theorem 3.3.1, are from [G.J. Chaitin, J. Assoc. Comp. Mach.,
22(1975), 329-340]. In the original submission of that paper Chaitin pro-
posed to call an infinite binary sequence = random iff K (x;.,) > n—0(1).
This was shown to be equivalent to Martin-Lo6f’s notion of randomness,
Theorem 3.6.1, by C.P. Schnorr, acting as a referee of that paper. That
theorem is now known as Schnorr’s theorem.

The halting probability €2, Section 3.6.2, was popularized by Chaitin [J.
Assoc. Comp. Mach., 22(1975), 329-340] and C.H. Bennett [C.H. Ben-
nett and M. Gardner, Scientific American, 241:11(1979), 20-34]. The
relation between the halting probability and the solvability of whether



256

3. Algorithmic Prefix Complexity

Diophantine equations have finitely many solutions or infinitely many so-
lutions, Section 3.7.1, is due to Chaitin [Adv. Appl. Math., 8(1987), 119—
146; Algorithmic Information Theory, Cambridge Univ. Press, 1987].
The latter book also surveys prefix complexity and randomness of in-
finite sequences. It incorrectly attributes the presented results only to
G.J. Chaitin, P. Martin-Lof, C.P. Schnorr, and R.M. Solovay; see also
the book review by P. Gécs [J. Symb. Logic, 54(1989), 624-627]. Re-
lated surveys are [A.N. Kolmogorov and V.A. Uspensky, Theory Probab.
Appl., 32(1987), 389-412; V.A. Uspensky, A.L. Semenov and A.K. Shen,
Russ. Math. Surv., 45:1(1990), 121-189; V.A. Uspensky, J. Symb. Logic,
57:2(1992), 385-412; An.A. Muchnik, A.L. Semenov, V.A. Uspensky,
Theoret. Comput. Sci., 2:207(1998), 1362-1376; J.S. Miller, A. Nies, Bull.
Symb. Logic, 12:3(2006), 390-410.

The results of Yu.V. Matijasevich that every recursively enumerable set
has a polynomial Diophantine representation, and that every recursively
enumerable set has a singlefold exponential Diophantine representation,
appeared in [Soviet Math. Dokl., 11(1970), 354-357]. Matijasevich (in an
email of April 10, 2003, to the authors) stated that this was proven by
him in 1974 but published only later (with yet different proofs) in [J.P.
Jones, Yu.V. Matijasevich, J. Symbol. Logic, 49(1984), 818-829; Yu.V.
Matijasevich, Hilbert’s 10th Problem, MIT Press, 1993].

Every universal prefix machine has an associated halting probability. A.
Kucera and T.A. Slaman [SIAM J. Comput., 31:1(2002], 199-211] have
shown that the set of binary sequences corresponding to these halting
probabilities equals precisely the set of Martin-Lof random binary se-
quences that are lower semicomputable. Moreover, they have also shown
that the sum of the measures involved in a universal Martin-Lof test
again coincide with the set of Martin-Lof random binary sequences that
are lower semicomputable. Moreover, every uniformly computable se-
quence of lower semicomputable Martin-Lof random reals corresponds
to the sequence of measures of the subsequent sets of some sequential
Martin-Lof test, and vice versa, Exercise 3.6.17 on page 236. Develop-
ments in the theory at the crossroads of notions of individual random-
ness, Kolmogorov complexity, and recursion theory have blossomed in
the last decades. Such work has been partially incorporated in the main
text, and in the exercises, of Chapters 2 through 4. Detailed treatment
is beyond the scope and physical size of this book, and is the subject
of more specialized books: R.G. Downey, D.R. Hirschfeldt, Algorith-
mic Randomness and Complexity, Springer-Verlag, New York, to appear;
A K. Shen, V.A. Uspensky, N.K. Vereshchagin, Kolmogorov Complexity
and Randomness, Elsevier, Amsterdam, to appear; A. Nies, Computabil-
ity and Randomness, Oxford Univ. Press, to appear.

Theorem 3.8.1 on the complexity of the complexity function is due to
P. Gacs [Soviet Math. Dokl., 15(1974), 1477-1480] and was later found



3.10. History and References 257

independently by R.M. Solovay [Lecture Notes, UCLA, 1975, unpub-
lished]. This crucial result establishes the lower bound on the error term
up to which information can be symmetric, for all possible variants of
Kolmogorov complexity: Theorem 3.9.1, attributed to L.A. Levin in [P.
Gaécs, Soviet Math. Dokl., 15(1974), 1477-1480]. The equality of the ex-
pected algorithmic information (both the Kolmogorov complexity and
prefix complexity variants) with Shannon’s entropy is treated in detail
in Section 8.1.1.



4

Algorithmic Probability

P.S. Laplace (1749-1827) pointed out the following reason why intu-
itively, a regular outcome of a random event is unlikely:

“We arrange in our thought all possible events in various classes; and we regard
as extraordinary those classes which include a very small number. In the game
of heads and tails, if heads comes up a hundred times in a row then this appears
to us extraordinary, because the almost infinite number of combinations that
can arise in a hundred throws are divided in regular sequences, or those in
which we observe a rule that is easy to grasp, and in irregular sequences, that
are incomparably more numerous.” [Laplace]

If we define a regular object as an object with significantly less than
maximal complexity, then the number of all regular events is small. This
implies that the event that any one of them occurs has small probability
(in the uniform distribution). Yet, the classical calculus of probabilities
tells us that 100 heads is just as probable as any other sequence of heads
and tails, even though our intuition tells us that it is less random than
some others. Listen to the redoubtable Dr. Samuel Johnson:

“Dr. Beattie observed, as something remarkable which had happened to him,
that he chanced to see both the No. 1 and the No. 1000, of the hackney-
coaches, the first and the last; ‘Why, Sir,” said Johnson, ‘there is an equal
chance for one’s seeing those two numbers as any other two.” He was clearly
right; yet the seeing of two extremes, each of which is in some degree more
conspicuous than the rest, could not but strike one in a stronger manner than
the sight of any other two numbers.” [Boswell’s Life of Johnson]

Laplace distinguishes between the object itself and a cause of the object:

“The regular combinations occur more rarely only because they are less nu-
merous. If we seek a cause wherever we perceive symmetry, it is not that we

M. Li and P.M.B. Vitanyi, 4n Introduction to Kolmogorov Complexity and Its Applications, 259
DOI: 10.1007/978-0-387-49820-1_4, © Springer Science + Business Media, LLC 2008



260 4. Algorithmic Probability

4.1
Semicomput-
able Functions
Revisited

Definition 4.1.1

regard the symmetrical event as less possible than the others, but, since this
event ought to be the effect of a regular cause or that of chance, the first of
these suppositions is more probable than the second. On a table we see let-
ters arranged in thisorder C on s t ant i n o p 1 e, and we judge that
this arrangement is not the result of chance, not because it is less possible
than others, for if this word were not employed in any language we would not
suspect it came from any particular cause, but this word being in use among
us, it is incomparably more probable that some person has thus arranged the
aforesaid letters than that this arrangement is due to chance.” [Laplace]

Let us try to turn Laplace’s argument into a formal one. Suppose we
observe a binary string x of length n and want to know whether we
must attribute the occurrence of = to pure chance or to a cause. ‘Chance’
means that the literal x is produced by fair coin tosses. ‘Cause’ means
that the reference prefix machine U computes = when its program is
provided by fair coin tosses. The chance of generating x literally is about
27", But the chance of generating x in the form of a short program from
which U computes « is at least 275 In other words, if  is regular,
then K (z) < n, and it is about 2" ~5(®) times more likely that x arose
as the result of computation from some simple cause (such as a short
program) than literally by a random process.

This gives an objective and absolute definition of ‘simplicity’ as ‘low
Kolmogorov complexity.” Consequently, one obtains an objective and
absolute version of the classic maxim of William of Ockham (12907—
13497), known as Occam’s razor: “If there are alternative explanations
for a phenomenon, then, all other things being equal, we should select
the simplest one.” One identifies ‘simplicity of an object’ with ‘an object
having a short effective description.’ In other words, a priori we consider
objects with short descriptions more likely than objects with only long
descriptions. That is, objects with low complexity have high probability,
while objects with high complexity have low probability. Pursuing this
idea leads to the remarkable probability distribution 2~ %) below.

We continue the treatment of semicomputable functions where we left it
in Section 1.7.3. Nontrivial examples of functions that are upper semi-
computable but not computable are C(z), C(z|y), K(x), and K(x|y)
(Theorems 2.3.2, 2.3.3 on pages 127, 127, respectively). Examples of
functions that are lower semicomputable but not computable are —C(z),
—K(x), 275®)  and the universal Martin-Lof test do(z|L) = I(x) —
C(z|l(x)) — 1 with respect to the uniform distribution L.

A lower semicomputable function f is universal if there is an enumera-
tion fi, fo,... of lower semicomputable functions, possibly with repeti-
tions, such that f(i,z) = fi(z), for all i,x € N, where f(i,z) = f({i, x)).



Lemma 4.1.1

Example 4.1.1

Lemma 4.1.2

4.1. Semicomputable Functions Revisited 261
There is a universal lower semicomputable function.

Proof. Let ¢1, ¢2,... be the effective enumeration of partial recursive
functions in Section 1.7. Consider each partial recursive ¢ as a function
¢ : N x N — Q by interpreting ¢((z,k)) = (p,q) as ¢(z, k) = p/q.
Define for each i the function f; by

fi(z) = sup{¢i(z, k)}, (4.1)

keN

or oo if such a maximum does not exist. Each such function f; is lower
semicomputable, since we can dovetail the computations of ¢;(x, k) for
all £ > 1. That is, the dovetailed computation proceeds by stages 1,2, ... .
At each stage j, the overall computation executes step j — k of the par-
ticular subcomputation of ¢;(z, k), for each k such that j — &k > 0. On
the other hand, if f is a lower semicomputable function, then there ex-
ists a partial recursive function ¢ as in Equation 4.1 by Definition 1.7.4.
In this way, we obtain an enumeration fi, f,... of all and only partial
functions that are lower semicomputable.

Define ¢ (i, (x, k)) = ¢i(x, k). Then ¢y is a partial recursive function and
there is an index j such that ¢;((,z), k) = ¢o(i(z, k)). The f;-function
corresponding to ¢; is also clearly lower semicomputable. Therefore, f;
is in the above enumeration. Then, f;((i,z)) = fi(x), for all i and z. O

An analogous argument shows how to construct a function that is uni-
versal upper semicomputable. In contrast, there is no universal total com-
putable function.

If f(x,y) > C(z|y), for all x and y, then we call f(z,y) a majorant
of C(z]y). The minimum of any finite number of majorants is again a
majorant. This is the way we combine different heuristics for recognizing
patterns in strings. All upper semicomputable majorants of C'(z|y) share
an interesting and useful property:

Let f(x,y) be upper semicomputable. For all x,y we have C(z|y) <
F(e.y) + OQ) iff d({x : f(z,y) <m}) = O@™), for all y and m.

Proof. (ONLY IF) Suppose to the contrary that for each constant ¢, there
exist y and m such that the number of 2’s with f(z,y) < m exceeds
¢2™. Then, by counting, there is an = such that C(z|y) > m + logec.
Therefore, C(zly) > f(x,y) + logc + O(1). Letting ¢ — oo contradicts
Claly) < f(z,y) + O1).

(Ir) Without loss of generality we can choose the minimal m satisfying

the ‘if” assumption, for each z and y. That is, given = and y, set m :=
f(z,y). Let g be a partial recursive function such that g(k, z,y) > g(k+



262 4. Algorithmic Probability

Definition 4.1.2

4.2
Measure
Theory

1,2,y) and limg o0 g(k,2,y) = f(2,y). Then we can describe z, given y
and m, by the recursive function g approximating f from above, together
with the index of x in enumeration order, namely, by enumerating all
2’s that satisfy f(x,y) < m.

Hence, C(z|y,m) < m + O(1). Choose h such that C(z|y,m) =m — h.
Using first the fact that we can reconstruct m from C(x|y, m) and h and
then substituting according to the definition of h gives

C(zly) < C(zly,m) +2logh + O(1)
<m—h+2logh+ O(1).

Since we have chosen f(x,y) = m, this proves the ‘if’ part. O &

A real number x = 0.x125 ... is lower semicomputable if the set of ra-
tionals below z is recursively enumerable. A number z is upper semi-
computable if —x is lower semicomputable. A number x is computable,
equivalently, recursive, if it is both lower semicomputable and upper
semicomputable.

It is easy to show that x is lower semicomputable (respectively recursive)
iff there is a lower semicomputable (respectively computable) function f
such that f (i) = z; for all i. The halting probability Q@ = Y7, - 27®
(Section 3.6.2 on page 225) is a lower semicomputable real. Let us explic-
itly construct the approximation. Define ¢(n) = > 274?) the sum taken
over all programs p of the reference prefix machine U of Theorem 3.1.1
on page 202 with [(p) < n that halt within n steps. Obviously, ¢ is a
computable function, and ¢(1), #(2), . . . is a monotonic nondecreasing se-
quence of rational numbers with limit 2. Similarly, > 2~ K@) <« Q, and
moreover, the entire class of (2-like reals introduced in Exercise 3.6.15
on page 234 consists of lower semicomputable reals.

In this section, and in fact in the remainder of this entire chapter, we
assume some knowledge of measure theory in the classical sense, say the
basics in Section 1.6. In algorithmic probability theory it is customary
to use a nonstandard approach to measures. For better or worse we will
follow this usage. Let us first look at standard measure theory.

Classically, the framework is as follows: Let B be a finite or countably
infinite set of basic elements. For example, B = {0,1}, B = {0,1}*, or
B = N (the natural numbers). Consider the continuous sample space
S = B, that is, all one-way infinite sequences over B.



Notation 4.2.1

Definition 4.2.1

4.2. Measure Theory 263

We want to extend the idea of probability from finite sample spaces
such as the outcomes {head, tail} for fair coin tosses to continuous sam-
ple spaces such as S. Probability cannot be properly defined for the
individual elements of S. (The probability of selecting a particular real
number r from the interval [0, 1] is necessarily 0 for all but countably
many elements.) Therefore, one defines the probability for subsets of S.
Since there are too many subsets to describe, one first defines proba-
bility for countably many sets that are easily described. These sets are
called ‘cylinder’ sets. Subsequently, by the operation of union, inter-
section, complement, and countable union, the probability definition is
extended to many more subsets of S according to the Kolmogorov ax-
ioms in Section 1.6. (These ‘Borel sets’ are by no means all subsets of

S.)
A cylinder is a set I';, C S defined by

I, ={zw:we B*}

with z € B*. Let G = {T'; : © € B*} be the set of all cylinders in S.

A function p : G — R defines a probability measure if

/L(Fe) = 17
p(Te) = p(Tap).
beB

(For general measures we can take p(T'c) € R or even c0.) In this defini-
tion we have defined the measures p(T") only for all cylinders T' C S. It
induces measures for all subsets of S obtainable from the cylinders by
intersection, union, complement, and countable union. It is a theorem
of measure theory that p uniquely induces a measure on the Borel sets.
However, in the sequel we are primarily interested in the measures of
the cylinders. For convenience of notation we replace the set function on
cylinder sets by the isomorphic function on the defining initial segments.

A measure  is defined by the function p : G — R. Now consider the
function p’ : B* — R defined by ¢/ (x) = u(T',,). Trivially, from p’ we can
reconstruct p. From now on we call the p/ functions ‘measures’ and drop
the primes. Formally, we use the definition of measure below. One should
keep in mind that our notation is shorthand for the original measure.

A function p : B* — R is a probability measure if

p(e) =1,
pla) = plab),

beB



264 4. Algorithmic Probability

Example 4.2.1

Definition 4.2.2

Exercises

for all x € B*. A semimeasure is a defective measure. A function p :
B* — R is a semimeasure if for all x € B*,

ple) <1,
p(z) > p(xb).

beB

We can transform any semimeasure p into a measure p by adding a distin-
guished element u not in B, called the undefined element. We simply concen-
trate the surplus probability in Definition 4.2.1 on u by setting

ple) =1,
plzw) = p(z) = > p(abd),

beB

while for all z € B* — {e} we define p(z) := pu(x).

For each z € {0,1}* define the measure \(z) = 27!®). This is the
Lebesgue measure, or uniform measure, on the half-open unit interval
[0,1). Tt has a geometric interpretation. Consider the real numbers in
[0,1] as being represented by their binary representation after the bi-
nary point. A real like é has two representations, namely, 0.100. .. and

0.011... . We denote it by 0.1 and choose the representation with in-
finitely many zeros. The uniform measure A(x) of the cylinder T'; is the
length 27/(®) of the half-open interval [0.z, 0.z 4+ 274®)). O

This discussion leads to the central notion of this chapter: lower semi-
computable and computable semimeasures.

A semimeasure p is lower semicomputable (respectively computable) if
the function p is lower semicomputable (respectively computable).

4.2.1. [18] Let u be a semimeasure over B*. Show that if p is com-
putable, then we can find an algorithm to compute p(x) and ) -, - pu(xb),
for all x € B*, to any degree of accuracy.

Comments. These properties are implicitly used throughout Section 4.5
on continuous semimeasures. Source: V.G. Vovk, Soviet Math. Dokl.,
35(1987), 656—660.

4.2.2. [14] (a) Let U be the reference prefix machine of Theorem 3.1.1
on page 202. Define P(z) = >y, —, 27!P). Show that > P(z) < 1,
so P(x) qualifies as a probability mass function over the integers. (We
use the term ‘probability mass function’ loosely here for nonnegative
real-valued functions summing to at most 1.)



4.3
Discrete
Sample Space

Definition 4.3.1

Example 4.3.1

4.3. Discrete Sample Space 265

(b) Define P(x) = 275 Show that >, P(z) < 1, the sum taken over
all z, so P(z) qualifies as a probability mass function over the integers.

)
(c) Define P(z|y) = 27KI¥). Show that 3", P(z]y) < 1, for each fixed
y, so P(x|y) qualifies as a conditional probability mass function over the
integers.

(d) Define P(z) = 2~ K@@ Show that 3" P(z) = oo, so P(z) does
not qualify as a probability mass function.

Comments. Hint for Item (a): use the Kraft inequality, Theorem 1.11.1.
Hint for Item (d): use K (z|l(z) < l(z) + O(1).

We first develop the theory in the discrete domain. This is in a sense
a first approximation to the theory in the continuous domain. One in-
terpretation is to set B = N and consider the sample space S = N.
(In terms of classical measure theory our sample space is S = {T', :
x € N*/I(z) = 1}.) Since all elements of S are one-letter strings, the
second item in Definition 4.2.1 on page 263 is not applicable. Since the
elements of N are considered one-letter strings, none of them is a prefix
of any other. All elements of N have prefix e. Definition 4.2.1 requires
such a measure p to satisfy u(e) = > o\ u(z) = 1. Except for the
interpretation, there is no difference between a discrete measure and a
probability distribution over a sample space N. We use the same font
(capital italics) to denote them.

A discrete semimeasure is a function P from N into R that satisfies
Y zen P(x) < 1.1t is a probability measure if equality holds.

(RELATION DISCRETE AND CONTINUOUS MEASURE)

The discrete Lebesgue measure L on the set of basic elements B = A is
a function L : N' — R defined by L(z) = 272/®)~1 We verify that L is
a probability measure:

SL)y=> (2t Y 2@ =N et =

zeN neN I(x)=n neN

Here we use I(z) not as the number of occurrences of basic symbols in
x (there is only 1 occurrence of an element in B) but rather as just a
function.

The continuous Lebesgue measure A on the set of basic elements B =
{0,1} is a function A : {0,1}* — R defined by A(z) = 27“*) (from
Example 4.2.1). In the discrete measure L(z), the argument z is an
element of N with the interpretation that no two different arguments



266 4. Algorithmic Probability

Example 4.3.2

431

Universal Lower
Semicomputable
Semimeasure

Definition 4.3.2

are prefixes of each other. In the continuous measure A(x), the argument
x is an element of {0,1}* with the usual interpretation that arguments
can be prefixes of other ones. An incorrect interpretation is seductive
by confusing B = N, which is both the basic set and the domain in the
discrete case, with the basic set B = {0, 1} and/or the domain B* in the
continuous case.

We give a numerical example. According to our standard correspondence
Equation 1.3, we have 1,5,6 € N correspond to 0,10,11 € {0,1}*. But
L(1) > L(5) + L(6), since L(1) = § and L(5) = L(6) = ,,. The in-
terpretation in terms of cylinder sets for L is that I'y,I's,'¢ are pair-
wise disjoint. As a comparison, for the continuous measure A we have
A(1) = A(10) + A(11), and the interpretation in cylinder sets is that
I'n =T1oUTl.

For A we have (Jy,)_, I'c = S for each n. Thus, },
each n and

Z Az) = 0.

z€{0,1}*

Az) =1 for

z)=n

In contrast, for the discrete measure L we have J, (z)=n I', S, and we
have 37—, L(z) = 2771 for each n, and hence }_, _\ L(z)=1. <

If a lower semicomputable semimeasure P is a probability measure, then
it must be computable. By Definition 1.7.4, there exists a recursive func-
tion g(x, k), nondecreasing in k, with P(z) = limy .o g(z, k). We can
compute an approximation P* of the function P from below for which
>, P¥(z) > 1 — €. This means that |P(z) — P*(2)| <e¢, forallz. <

In Section 4.1 we defined the notion of a universal two-argument func-
tion as being in an appropriate sense able to simulate each element in the
class of one-argument lower semicomputable functions. This was similar
to the universality notion in Turing machines. We now look at a slightly
different notion of ‘universality’ meaning that some one-argument func-
tion is the ‘largest’ in a class of one-argument functions.

Let M be a class of discrete semimeasures. A semimeasure Py is universal
(or maximal) for M if Py € M, and for all P € M, there exists a
constant cp such that for all x € N, we have cp Py(x) > P(x), where cp
possibly depends on P but not on =x.

We say that Py (multiplicatively) dominates each P € M. It is easy to prove
that the class of all semimeasures has no universal semimeasure. This is also
the case for the class of computable semimeasures (Lemma 4.3.1 below).



Theorem 4.3.1

4.3. Discrete Sample Space 267

There is a universal lower semicomputable discrete semimeasure. We
denote it by m.

Proof. We prove the theorem in two steps. In Stage 1 we show that the
lower semicomputable discrete semimeasures can be effectively enumer-
ated as

PP, ... .

In Stage 2 we show that P, as defined below is universal:

Po(z) =Y al(j)Pi(),

Jj21

with > a(j) < 1, and «(j) > 0 and lower semicomputable for every
j. Stage 1 consists of two parts. In the first part, we enumerate all
lower semicomputable functions; and in the second part we effectively
change the lower semicomputable functions to lower semicomputable
discrete semimeasures, leaving the functions that were already discrete
semimeasures unchanged.

STAGE 1 Let 11,19,... be an effective enumeration of all real-valued
partial recursive functions. Consider a function  from this enumeration
(where we drop the subscript for notational convenience). Without loss
of generality, assume that each i is approximated by a rational-valued
two-argument partial recursive function ¢'(z,k) = p/q (this is the in-
terpretation of the literal ¢'({x, k)) = (p, q)). Without loss of generality,
each such ¢'(z, k) is modified to a rational-valued two-argument partial
recursive function ¢(z, k) so as to satisfy the properties below. For all
x €N, forall k>0,

o if ¢(z,k) < oo, then also ¢(x,1),d(x,2),...,¢(x,k — 1) < co (this
can be achieved by the trick of dovetailing the computation of
¢'(x,1), ¢'(x,2), ... and assigning computed values in enumeration
order to ¢(z,1), ¢(x,2),...);

o o(x,k+1)> ¢(x, k) (dovetail the computation of ¢'(z, 1), ¢'(z, 2),

. and assign the enumerated values to ¢(z,1),¢(x,2),... satis-

fying this requirement and ignoring the other computed values);
and

o limy o0 ¢z, k) = ¥(x) (as does ¢'(+)).

The resulting -list contains all lower semicomputable real-valued func-
tions, and is actually represented by the approximators in the ¢-list.



268

4. Algorithmic Probability

Each lower semicomputable function ¢ (rather, the approximating func-
tion ¢) will be used to construct a discrete semimeasure P. In the algo-
rithm below, the local variable array P contains the current approxima-
tion to the values of P at each stage of the computation. This is doable
because the nonzero part of the approximation is always finite.

Step 1. Initialize by setting P(z) := 0 for all x € N/; and set k := 0.

Step 2. Set k := k+1, and compute ¢(1, k), ..., d(k, k). {If any ¢(i, k),
1 < i <k, is undefined, then P will not change any more and it is
trivially a discrete semimeasure}

Step 3. If ¢(1,k) + - -+ ¢(k, k) < 1 then set P(i) := ¢(i, k) for all
i=1,2,...,k else terminate.
{Step 3 is a test of whether the new assignment of P-values satisfies
the discrete semimeasure requirements }

Step 4. Go to Step 2.

If ¢ is already a discrete semimeasure, then P = ). If for some x and k
with 2 < k the value ¢(z, k) is undefined, then the last assigned values
of P do not change any more even though the computation goes on
forever. Because the condition in Step 3 is satisfied by the values of P, it
is a discrete semimeasure. If the condition in Step 3 gets violated, then
the computation terminates and the P-approximation to P is a discrete
semimeasure—even a computable one.

Executing this procedure on all functions in the list ¢1, ¢2,... yields
an effective enumeration Py, Ps, ... of all lower semicomputable discrete
semimeasures (and only lower semicomputable discrete semimeasures).

STAGE 2 Define the function P, as

Py() =) alj)P;(),

Jjz1

with a(j) chosen such that }-; a(j) < 1, and a(j) > 0 and lower semi-
computable for all j. Then Py is a discrete semimeasure since

D PRo(@) =) a()) Pix) <) a(j) <L

>0 i>1 @>0 §>1

The function P, is also lower semicomputable, since P;(z) is lower semi-
computable in j and z. (Use the universal partial recursive function
¢o and the construction above.) Finally, Py dominates each P; since
Py(xz) > a(j)Pj(x). Therefore, Py is a universal lower semicomputable
discrete semimeasure. Obviously, there are countably infinitely many
universal lower semicomputable semimeasures. We now fix a reference



Example 4.3.3

Definition 4.3.3

Definition 4.3.4

4.3. Discrete Sample Space 269

m(x)

51

FIGURE 4.1. Graph of m(x) with lower bound 1/(x - logz - loglogz - - -)

universal lower semicomputable discrete semimeasure and denote it by
m, depicted in Figure 4.1. O

In the definition of m(z) as ; a(j)Pj(x) we can choose a(j) =2~ J or

a(j) = 6/(rj)?. In choosing o we must take care that the resulting m
is lower semicomputable. In particular, we can define

ZZK 1)P()

j>1

the form of which will turn out to be convenient later. Namely, this
assignment yields the domination relation m(x) > 2=K()=0WM p;(g).
The domination constant 2=5() is for simple j much larger than the
domination constant 277. With K (P) = min{K(j) : P = P;} + O(1) we
write

m(z) > Z_K(P)P(sc), (4.2)

for all lower semicomputable discrete semimeasures P = P;. &

Let f(x,y) be a lower semicomputable function such that for each fixed
y we have ) f(z,y) < 1. Such functions f define lower semicomputable
conditional probability mass functions P(xly) = f(z,y).

For example, y describes the relation « € A, where A is a finite set. In
the by now familiar manner, we can effectively enumerate this family
of lower semicomputable probability mass functions as Pi, Ps, ..., for
example by setting P;(z|y) = Q;((z,y)) with @, the jth element in the
list of lower semicomputable unconditional probability mass functions.

We can now define the conditional version of m(z) as

m(zly) = 27 KOO0 py(afy).
j>1



270

4. Algorithmic Probability

Theorem 4.3.2

Lemma 4.3.1

Lemma 4.3.2

If P(x|y) is a lower semicomputable conditional probability mass func-
tion, then 25X m(zx|y) > P(z|y), for all x,y.

Proof. Similar to the argument in Example 4.3.3. m|

The class of computable semimeasures has no universal element.

Proof. Suppose a computable semimeasure P, is universal for the class of
computable semimeasures. By its computability, Py(z) is approximable
to any degree of accuracy; by its universality, Py(x) is strictly positive for
every z (it multiplicatively dominates 2-*~1); and since it is a semimea-
sure, then necessarily, Py(z) — 0 for x — oo. Consequently, we can
compute an infinite sequence x1,xs,... such that x; is the least value
satisfying Po(w;) < 27%/i (i = 1,2...). Therefore, the function Q, de-
fined by Q(z;) := 2 % fori := 1,2, ..., and zero otherwise, is computable.
Moreover, >~ Q(z) =1, so Q is a (semi)measure. However, for every ¢
there is an x := z; such that Q(z) = 27% > iPy(x), which contradicts
the universality of Py. m|

This lemma is one of the reasons for introducing the notion of lower semicom-
putable semimeasures, rather than sticking to computable ones. Compare this
to the introduction of lower semicomputable Martin-Lof tests in Sections 2.4,
2.5: among the recursive Martin-Lof tests there is no universal one.

The function m is incomputable and ), m(z) < 1.

Proof. If m were computable, then it would be universal for the class
of computable semimeasures, by Theorem 4.3.1. But there is no such
universal element by Lemma 4.3.1.

Example 4.3.2 tells us that if a lower semicomputable semimeasure is
also a probability distribution, then it is computable. Since m is lower
semicomputable but not computable, this implies > m(z) < 1. a

Let us look at the dependency between computability and measurehood of
lower semicomputable semimeasures. One reason for introducing semimea-
sures, instead of just restricting consideration to probability mass functions
summing to one, is due to the fact that on some input the reference prefix ma-
chine U runs forever. Normalizing m by dividing each value of it by Zz m(z)
yields a proper probability mass function, say P, such that Zz P(z) = 1.
We know from Example 4.3.2 that if a lower semicomputable semimeasure is
also a probability mass function, then it is computable. So either P is com-
putable or it is not lower semicomputable. Measure P is not computable by
the same argument that works for m in Lemma 4.3.2. Hence, P is not even
lower semicomputable.



Example 4.3.4

43.2
A Priori
Probability

4.3. Discrete Sample Space 271

Consider the behavior of m(x) as x runs over the natural numbers. Let
v(z) = 6/(mx)? and let w be defined by

w(z) = 1/z for z =2F and k € N'F,
~ 10 otherwise.

It can be shown that ) w(z) = >, v(z) = 1. Since both functions are
lower semicomputable, they are both dominated by m(z). (Even though
the series ) 1/z associated with the upper bound 1/2 on w(x) diverges,
m(z) also dominates w(z)). From the Kraft inequality, Theorem 1.11.1,
we know that the series >, 1/(zlog” ) converges. The function m(x)
dominates 1/(zlog? ), but jumps at many places higher than what is
shown in Figure 4.1, witnessed by the domination of m(xz) over w(x). ¢

Let Py, P, ... be the effective enumeration of all lower semicomputable
semimeasures constructed in Theorem 4.3.1. There is another way to
effectively enumerate the lower semicomputable semimeasures. Think of
the input to a prefix machine T as being provided by an indefinitely
long sequence of fair coin flips. The probability of generating an initial
input segment p is 271P). If T(p) < oo, that is, T’s computation on
p terminates, then presented with any infinitely long sequence starting
with p, the machine T, being a prefix machine, will read exactly p and
no further.

Let T3, T, ... be the standard enumeration of prefix machines of Theo-
rem 3.1.1 on page 202. For each prefix machine 7', define
Qr(z)= Y 27'@. (4.3)
T(p)==

In other words, Qr(x) is the probability that T computes output z if
its input is provided by successive tosses of a fair coin. This means that
Qr satisfies

> Qr(z) < 1.
zeN
Equality holds exactly for those T' for which each one-way infinite input

contains a finite initial segment constituting a halting program.

We can approximate Qr as follows. (The algorithm uses the local vari-
able Q(x) to store the current approximation to Qr(x).)

Step 1. Initialize Q(z) := 0 for all .

Step 2. Dovetail the running of all programs on 7" so that in stage k,
step k — j of program j is executed. Every time the computation

of some program p halts with output z, increment Q(z) := Q(x) +
9—Up),



272 4. Algorithmic Probability

Definition 4.3.5

433
Algorithmic
Probability

The algorithm approximates the displayed sum in Equation 4.3 for each
x by the contents of Q(z). This shows that Q7 is lower semicomputable.
Starting from a standard enumeration of prefix machines T7,T5,.. .,
this construction gives an enumeration of only lower semicomputable
semimeasures

@Q1,Q2,... .

The P-enumeration of Theorem 4.3.1 contains all elements enumerated
by this @-enumeration. We only need to prove that the Q-enumeration
contains all lower semicomputable measures (Lemma 4.3.4).

The universal a priori probability on the positive integers is defined as

Qu(z)= > 277,

U(p)=z

where U is the reference prefix machine of Theorem 3.1.1.

The use of prefix machines in the present discussion rather than plain Tur-
ing machines is necessary. By Kraft’s inequality, Theorem 1.11.1, the series
Zp 27UP) converges (to < 1) if the summation is taken over all halting pro-
grams p of any fixed prefix machine. In contrast, if the summation is taken
over all halting programs p of a universal plain Turing machine, then the series
Zp 27!P) diverges.

In Section 3.6.2 we studied the real number ) = ZI Qu(z) and called it
the ‘halting probability.” No matter how we choose reference U, the halting
probability is less than 1. Namely, U does not halt for some finite input ¢
(the halting problem in Section 1.7). That is, > Qu(z) < 1 — 271D If we
normalize Qu(z) by P(z) = Qu(x)/f, then the resulting function P is not
lower semicomputable. Namely, if it were lower semicomputable, it would also
be computable by Example 4.3.2. By Theorem 4.3.3, the function P would
also be universal, and by Lemma 4.3.1, this is impossible.

It is common to conceive of an object as being simpler if it can be briefly
described. But the shortness of description of an object depends on the
description methods we allow, the ‘admissible description syntax,” so to
speak. We want to effectively reconstruct an object from its descrip-
tion. The shortest self-delimiting effective description of an object x is
quantified by K(x).

This leads to a recursively invariant notion of algorithmic probability,
which can be interpreted as a form of Occam’s razor: the statement that
one object is simpler than another is equivalent to saying that the former
object has higher probability than the latter.



Definition 4.3.6

434
The Coding
Theorem

Theorem 4.3.3

4.3. Discrete Sample Space 273

The algorithmic probability R(x) of z is defined as
R(z) = 27 K@),

Let us see what this means. Consider a simple object. If = consists of a
string of n zeros, then K (z) < logn+2loglogn+c, where ¢ is a constant
independent of n. Hence,

1
R(z) > 5 -
2¢nlog”n
Generate a binary sequence y by n tosses of a fair coin. With overwhelm-
ing probability, K (y) > n. For such complex objects y,

R(y) <27".

Now we are ready to state the remarkable and powerful fact that the uni-
versal lower semicomputable discrete semimeasure m(z), the universal a
priori probability Qu(z), and the algorithmic probability R(x) = 2~ %)
all coincide up to an independent fixed multiplicative constant. In math-
ematics the fact that quite different formalizations of concepts turn out
to be equivalent is often interpreted as saying that the captured notion
has an inherent relevance that transcends the realm of pure mathemat-
ical abstraction. We call the generic distribution involved the universal
distribution. The following is called the coding theorem.

There is a constant ¢ such that for every x,

log = log = K(z),

1
Qu(x)

with equality up to an additive constant c.

m(z)

Proof. Since 27%(*) represents the contribution to Qu(z) by a shortest
program for x, we have 2~ K@) < Qu(z), for all z.

Clearly, Qu(z) is lower semicomputable. Namely, enumerate all pro-
grams for z, by running reference machine U on all programs at once in
dovetail fashion: in the first phase, execute step 1 of program 1; in the
second phase, execute step 2 of program 1 and step 1 of program 2; in
the ith phase (i > 2), execute step j of program k for all positive j and
k such that j + k = i. By the universality of m(z) in the class of lower
semicomputable discrete semimeasures, Qu(z) = O(m(x)).

It remains to show that m(z) = O(2~5(®)). This is equivalent to proving
that K(x) < logl/m(z) + O(1), as follows. Exhibit a prefix-code E
encoding each source word x as a code word E(z) = p, satisfying

l) <log ) +O(1),



274

4. Algorithmic Probability

Lemma 4.3.3

together with a decoding prefix machine T such that T(p) = x. Then,
Kp(x) <I(p).

Then, by the invariance theorem, Theorem 3.1.1 on page 202,
K(z) < Kp(z) + O(1).

On the way to constructing E as required, we recall a construction for
the Shannon—Fano code:

If P is a semimeasure on the integers, > P(x) <1, then there is a bi-
nary prefix-code E such that the code words E(1), E(2), ... can be length-
increasing lexicographically ordered and l(E(z)) < log1/P(x) + 2. This
is the Shannon—Fano code.

Proof. Let [0,1) be the half-open real unit interval, corresponding to the
sample space S = {0,1}°°. Each element w of S corresponds to a real
number 0.w. Let 2 € {0,1}*. The half-open interval [0.z, 0.z 4+ 2~4*))
corresponding to the cylinder (set) of reals ', = {Ow :w =2z... € S}
is called a binary interval. We cut off disjoint, consecutive, adjacent
(not necessarily binary) intervals I, of length P(x) from the left end of
[0,1), z = 1,2,... . Let i, be the length of the longest binary interval
contained in I.. Set F(z) equal to the binary word corresponding to the
leftmost such interval. Then I[(E(x)) = log1/i,. It is easy to see that I,
is covered by at most four binary intervals of length i,, from which the
claim follows. O

In contrast to the proof of Theorem 1.11.1, the Kraft inequality, we
cannot assume here that the sequence log1/P(1),log1/P(2),... is non-
decreasing. This causes a loss of almost two bits in the upper bound.

We use this construction to find a prefix machine 7" such that Kr(z) <
log1/m(z) + ¢. That m(x) is not computable but only lower semicom-
putable results in ¢ = 3.

Since m(x) is lower semicomputable, there is a partial recursive function
¢(x,t) with ¢(z,t) < m(x) and ¢(z,t+ 1) > ¢(z,t), for all t. Moreover,
lim; 00 ¢(z,t) = m(x). Let ¢(x, t) be the greatest partial recursive lower
bound of special form on ¢(x,t) defined by

Pz, t) = {27F:27F < g(x,t) < 2-27% and ¢(z,j) < 27% for all j < t},

and 1 (x,t) := 0 otherwise. Let 1) enumerate its range without repetition.
Then,

D (e t) =D Ya,t) <Y 2m(z) <2



Corollary 4.3.1

Definition 4.3.7

Theorem 4.3.4

4.3. Discrete Sample Space 275

The series ), ¥(x,t) can converge to precisely 2m(z) only in case there
is a positive integer k such that m(z) = 27%,

In a manner similar to the proof of Lemma 4.3.3 on page 274, we chop off
consecutive, adjacent, disjoint half-open intervals I; ; of length v (z, t)/2,
in enumeration order of a dovetailed computation of all ¥ (z,t), starting
from the left-hand side of [0,1). We have already shown that this is
possible. It is easy to see that we can construct a prefix machine T as
follows: If T',, is the leftmost largest binary interval of I, ¢, then T'(p) = x.
Otherwise, T'(p) = oo (T does not halt).

By construction of v, for each z there is a ¢ such that i(x,t) > m(z)/2.
Each interval I, ; has length ¢ (z,t)/2. Each I-interval contains a binary
interval I',, of length at least one-half of that of I (because the length
of I is of the form 2% it contains a binary interval of length 27%71) .
Therefore, there is a p with T(p) =  such that 2=%?) > m(z)/8. This
implies K7 (z) < log1/m(x) + 3, which was what we had to prove. O

If P is a lower semicomputable discrete semimeasure, then there is a
constant cp = K(P) + O(1) such that K(z) <logl/P(z)+ cp.

The conditional universal distribution is Qu(z|y) = > v () y)=s 2-Up),

By Theorem 4.3.2, we have 25X(P)m(z|y) > P(z|y), for all z,y. Hence
m(zly) is a universal conditional lower semicomputable semimeasure
in the sense of being the largest (within a constant factor) nonnega-
tive lower semicomputable conditional discrrete semimeasure. Then as a
corollary of Theorem 4.3.3 (rather, of its proof), we have the conditional
coding theorem:

There is a constant ¢ such that for all x,vy,

1
maly) 8 Quialy) ~ K@)

with equality up to an additive constant c.

Proof. Since Qu(z]y) is a lower semicomputable discrete semimeasure,
say the jth one in the enumeration P (z|y), P2(z|y),..., we can set
Qu(z|y) = Pj(z]y). By Definition 4.3.4, we have m(x|y) > 2750 P;(z|y),
and hence log1/m(z|y) <log1l/Qu(z|y) + O(1). Moreover, for fixed v,
the Shannon—Fano code associated with Qu(z]y) has code-word length
log1/Qu(x|y), and this length is upper semicomputable. Since K (z|y)
is the length of the shortest upper semicomputable code for = given y,
it follows that log1/Qu(zly) + O(1) < K(zx|y). So it remains to prove



276

4. Algorithmic Probability

Corollary 4.3.2

Lemma 4.3.4

K(z|y) < m(z|y) + O(1), which, for every fixed y, follows the proof of
Theorem 4.3.3 g

Together, Theorem 4.3.4 and Theorem 4.3.2 yield the following:

If P is a lower semicomputable discrete semimeasure, then K(zly) <
log1/P(z|y) + K(P) + O(1).

Theorem 4.3.3 shows that the universal lower semicomputable discrete
semimeasure m in the P-enumeration, defined in terms of a function
computed by a prefix machine, and the universal a priori probability
distribution Qy in the Q-enumeration, defined as the distribution to
which the universal prefix machine transforms the uniform distribution,
are equal up to a multiplicative constant. This is a particular case of the
more general fact that both sequences enumerate the same functions and
there are recursive isomorphisms between the two.

There are recursive functions f,g such that Q; = ©(Py(;)) and P; =
O(Qq(j))-

Proof. Firstly, we construct f. Let @ = Q; be the discrete semimeasure
induced by prefix machine T = T} if its programs are generated by fair
coin flips. We compute Q(z) from below by a recursive function ¢(x,t)
such that ¢(z,t + 1) > ¢(x,t) and lim; o d(x,t) = Q(x). The function
¢ is defined as follows:

Step 1. For all z, set ¢(x,0) := 0. Dovetail the computation of T on
all of its programs p. Let variable ¢ count the steps of the resulting
computation. Set ¢ := 0.

Step 2. Set t:=t+ 1.

Step 3. For all p, x with I(p),{(z) <t do:
if the computation T'(p) terminates in the tth step with T'(p) = x
then set ¢(z,t+1) := ¢(x,t) +271P) else set p(z,t+1) := ¢(x, ).

Step 4. Go to Step 2.

We can make the described procedure rigorous in the form of a prefix
machine 7. Let this 77 be T,, in the standard enumeration of pre-
fix machines. The construction in Theorem 4.3.1 that transforms every
prefix machine into a prefix machine computing a semimeasure leaves
P, invariant. Therefore, machine T, computes P,, from below in the
standard way in the P-enumeration. Hence, ) = P,,. It suffices to set
f(7) = m. Clearly, f is recursive: we have just outlined the algorithm to
compute it.



Example 4.3.5

4.3. Discrete Sample Space 277

Secondly, we construct g. Let P = P; be the jth element in the effective
enumeration constructed in Theorem 4.3.1. We follow the construction
in the proof of the Theorem 4.3.3, with P substituted for m. Just as
in that proof, since P is lower semicomputable, we can find a prefix
machine Tp such that for each z, the following two items hold:

1. We can construct a function ), ¢ p(z,t) < 2P(x) with correspond-
ing prefix machine Tp such that > -r (\_, 2-UP) < P().

2. Moreover, P(x)/8 < 27K7r(*) Therefore, K, (x) < log1/P(x)4+3.

Let Q = > rp, )=z 2-UP) be the discrete semimeasure induced by the
prefix machine T’p if its programs are generated by fair coin flips. Then,
with Q@ = @, in the @-enumeration, and K7, (x) = min,{l{(p) : Tr(p) =
x}, we have

Q*KTP(I) < Z 2*1(17) — Qm(x)

Tp(p)=c

By Items 1 and 2 this implies that Q,(z) = O(P(x)). Obviously, the
function g defined by g(j) = m is recursive. ]

A priori, an outcome x may have high probability because it has many
long descriptions. The coding theorem, Theorem 4.3.3, tells us that in
that case it must have a short description too. In other words, the a
priori probability of x is dominated by the shortest program for x.

Just as we have derived the discrete semimeasure Qi from U, we can de-
rive the discrete semimeasure Q1 from the prefix machine T" constructed
in the proof of Theorem 4.3.3. Since @7 is lower semicomputable, we
have Qr(z) = O(m(x)). By definition, 2-57(®) = O(Qr(x)). In the
proof of Theorem 4.3.3 it was shown that Kr(z) <logl/m(z) + 3. Us-
ing Theorem 4.3.3 once more, we have K (x) < Kp(2)+0(1). Altogether,
this gives
1 1
log Qrla) ~ log = Krp(x)

up to additive constants. Again, therefore, if z has many long programs
with respect to T, then it also has a short program with respect to T'. In
general, we can ask the question, how many descriptions of what length
does a finite object have? This leads us to the statistics of description
length. For instance, it turns out that there is a universal constant limit-
ing the number of shortest descriptions of any finite object, Exercise 4.3.6
on page 287. <&



278 4. Algorithmic Probability

435
Randomness by
Sum Tests

Definition 4.3.8

Lemma 4.3.5

We compare the coding theorem, Theorem 4.3.3, with Shannon’s noiseless
coding theorem, Theorem 1.11.2 on page 77. The latter states that given any
discrete semimeasure P on the positive integers, we can construct a binary
prefix-code E in such a way that on average, [(F(z)) < log1/P(z) + 1. Recall
from Section 1.11.4 the notion of ‘universal code’ as a code that gives near-
optimal encodings for any discrete semimeasure on the source alphabet. The
coding theorem shows that there is a single fized upper semicomputable uni-
versal code E’ for every lower semicomputable discrete semimeasure. The code
E’'(z) is the shortest program to compute x by the reference prefix machine.
The code-word lengths satisfy I(E’(z)) = K(z) up to a fixed additive constant
independent of x. We have shown that for every lower semicomputable discrete
semimeasure P, P(z) < cpm(z), where cp is a constant depending on the
distribution P but not on . By Theorem 4.3.3, the code-word lengths satisfy
I(E'(z)) < log1/P(z) + cp. This is far better than the performance of any
universal code we have met in Section 1.11.1.

In Theorem 2.4.1, page 138, we have exhibited a universal P-test for
randomness of a string x of length n with respect to an arbitrary com-
putable distribution P over the sample set S = B™ with B = {0, 1}.

The universal P-test measures how justified the assumption is that x
is the outcome of an experiment with distribution P. We now use m
to investigate alternative characterizations of random elements of the
sample set S = B* (equivalently, S = N).

Let P be a computable discrete semimeasure on N. A sum P-test is a
lower semicomputable function d satisfying

> P(2)2°™) <1. (4.4)

A wuniversal sum P-test is a test that additively dominates each sum
P-test.

The sum tests of Definition 4.3.8 are slightly stronger than the tests ac-
cording to Martin-Lo6f’s original definition, Definition 2.4.1 on page 135.

Each sum P-test is a P-test. If (x) is a P-test, then there is a constant
¢ such that §'(z) = §(x) — 2log(d(z) + 1) — ¢ is a sum P-test.

Proof. Define P,(z) = P(z|l(z) = n) for [(z) = n and 0 otherwise. It

follows immediately from the new definition that for all nonnegative n
and k,

> {Pu(z) : 6(z) > k} <27k (4.5)



Theorem 4.3.5

4.3. Discrete Sample Space 279

Namely, if Equation 4.5 is false, then we contradict Equation 4.4 by

S P@)2’ > Y P2 > 1

zeN I(z)=n,6(z)>k

Conversely, if §(x) satisfies Equation 4.5 for all n, then for some constant
¢, the function ¢’(z) = §(z) — 2log(d(z) + 1) — ¢ satisfies Equation 4.4.
Namely,

I(z)=n k l(x)=n

< > 1/@(k +1)%), (4.6)
k

where the summation over k is from 0 to oo. Choose a constant ¢ such
that the last sum converges to at most 1. Note that ¢ = 1 will do, since

Soreol/(k+1)? =m%/6 < 2. Since P,(z) = P(z)/ > i)=n P(),

S P Y Pu@)2@ =" Pa)2”@.

n I(z)=n I(z)=n

On the left-hand side of this equality, the expression corresponding to
the left-hand side of Equation 4.6 is bounded from above by 1. Therefore,
the right-hand side of the equality is at most 1, as desired. O

This shows that the sum test is not much stronger than the original test.
One advantage of Equation 4.4 is that it is just one inequality instead
of infinitely many, one for each n. We give an exact expression for a
universal sum P-test in terms of complexity.

Let P be a computable probability distribution. The function ro(x|P) =
log(m(z)/P(x)) is a universal sum P-test.

Proof. Since m is lower semicomputable and P is computable, xo(x|P)
is lower semicomputable. We first show that xo(x|P) is a sum P-test:

ZP(:U)Q”O(””‘P) = Zm(w) <1

It remains only to show that xo(z|P) additively dominates all sum P-
tests. For each sum P-test §, the function P(x)2°(*) is a semimeasure
that is lower semicomputable. By Theorem 4.3.1, there is a positive con-
stant ¢ such that ¢-m(z) > P(z)2°®). Hence, there is another constant
¢ such that ¢ + ko(z|P) > d(z), for all z. O



280

4. Algorithmic Probability

Example 4.3.6

Example 4.3.7

Definition 4.3.9

An important case is as follows. Define P4(z) = P(x)/ > ., P(x) for
x € Aand 0 otherwise, and m(z) = m(z)/ > ., m(z) forz € Aand 0
otherwise. If we consider a distribution P restricted to a domain A C N,
then the universal sum P-test becomes log(m 4 (z)/Pa(z)). For example,
if L, is the uniform distribution on A = {0,1}", then the universal sum
L,-test for x € A becomes

ko (x| Ln) = log rzj((;”)) =n — K(z|n) — O(1).
Namely, L,(z) = 1/2" and logma(z) = —K(x|n) + O(1) by Theo-
rem 4.3.4, since we can describe A by giving n. Alternatively, use the
definition of m 4 (x) above, Exercise 4.3.7 on page 288, and the symmetry
of information theorem, Theorem 3.9.1. <&

The noiseless coding theorem, Theorem 1.11.2 on page 77, says that
the Shannon—Fano code, which codes a source word « straightforwardly
as a word of about log1/P(x) bits (Example 1.11.2 on page 68 and
Lemma 4.3.3 on page 274), nearly achieves the optimal expected code-
word length. This code is based solely on the probabilistic characteristics
of the source, and it does not use any characteristics of the object z itself
to associate a code word with a source word x. The code that codes each
source word x as a code word of length K (z) also achieves the optimal
expected code-word length. This code is independent of the probabilistic
characteristics of the source, and uses solely the characteristics of the
individual objects x to obtain shorter code words. Any difference in
code-word length between these two encodings for a particular object
x is due to exploitation of the probability of x versus the individual
regularities in x. Taking a probability that accounts for the regularities
in z, the two code-word lengths coincide. This is the case for the universal
probability m(z) of x, which has as its associated Shannon—Fano code-
word length the prefix complexity K(x) = log1l/m(z)+ O(1) of z. For
other probabilities P of x, the P-expected Shannon—Fano code-word
length differs from the P-expected prefix complexity K (z) by at most
the complexity K(P) of P; see Section 8.1.1. This is tied up with the
notion of randomness deficiency, which we met earlier, in a new setting.

Following Section 2.2.1, define the randomness deficiency of a finite ob-
ject x with respect to P as

6(z|P) = {log — K(z) =log r;

o)

Then, 6(z|P) = ko(z|P) + O(1) by Theorems 4.3.3, 4.3.5. That is, the
randomness deficiency is the outcome of the universal sum P-test of



Example 4.3.8

Example 4.3.9

4.3. Discrete Sample Space 281

Theorem 4.3.5. Thus, for simple distributions, the expected prefix com-
plexity is about equal to the expected Shannon—Fano code-word length,
that is, the expectation of the randomness deficiency is close to zero. <&

Let us compare the randomness deficiency as measured by xo(z|P) with
that measured by the universal test dg(z|L), for the uniform distribution
L, in Section 2.4. That test consisted actually of tests for a whole family
L., of distributions, where L,, is the uniform distribution such that each
L,(x) =27 for l(x) = n, and zero otherwise. Rewrite do(z|L) as

do(z|Ly) =n — C(x|n) — 1,

for I(x) = n, and oo otherwise. This equals the reference universal test
with respect to the uniform distribution we met in Definition 2.4.3 on
page 140, and is close to the expression for xo(z|L,) obtained in Ex-
ample 4.3.6 on page 280. From the relations between C' and K we have
established in Chapter 3, it follows that

|60(2|Ln) — Ko(x|Ly)| < 2log C(x) + O(1).

The formulation of the universal sum test in Theorem 4.3.5 can be interpreted
as follows: An element z is random with respect to a distribution P, that
is, ko(z|P) = O(1), if P(z) is large enough, not in absolute value but rel-
ative to m(x). If we did not have this relativization, then we would not be
able to distinguish between random and nonrandom outcomes for the uniform
distribution L, (x) above.

Let us look at an example. Let 2 = 00...0 of length n. Then ko(z|Ln) =
n — K(z|n) + O(1) = n+ O(1). If we flip a coin n times to generate y, then
with overwhelming probability, K (y|n) > n — O(1) and ko(y|L.) = O(1).

<

According to modern physics, electrons, neutrons, and protons satisfy
the Fermi-Dirac distribution (Exercise 1.3.6, page 11). We distribute n
particles among k cells, for n < k, such that each cell is occupied by
at most one particle; and all distinguished arrangements satisfying this
have the same probability.

We can treat each arrangement as a binary string: an empty cell is a
zero and a cell with a particle is a one. Since there are (ﬁ) possible
arrangements, the probability for each arrangement x to happen, under
the Fermi-Dirac distribution, is FD, x(z) = 1/(). Denote the set of
possible arrangements by A(n, k). According to Theorem 4.3.5,

my k) ()
FDmk(.'E)

= — K(z|n,k) + log (2) +0(1)

ko(x|FDp, ) = log



282

4. Algorithmic Probability

Example 4.3.10

is a universal sum test with respect to the Fermi—Dirac distribution.
It is easy to see that a blnary string = of length k& with n ones has
complexity K (z|n,k) < log( )+ O(1), and K (z|n, k) > log (i) - 0(1)
for most such x. Hence, a string « with maximal K (z|n, k) will pass this
universal sum test. Each individual such string possesses all effectively
testable properties of typical strings under the Fermi—Dirac distribution.

It is known that photons, nuclei, and some other elementary particles
behave according to the Bose-Einstein distribution. Here, we distribute
n particles in k cells, where each cell may contain many particles. Let the
set of possible arrangements be B(n, k). All possible arrangements are
equally likely. By Exercise 1.3.6, the probability of each arrangement x
under the Bose-Einstein distribution is BE,, x(x) = 1/d(B(n, k)), where

4Bl 1)) = <k+;zl) _ (kzn11>_

Similar to Example 4.3.9, use Theorem 4.3.5 to obtain a universal sum
test with respect to the Bose—FEinstein distribution:

o k) ()
55 BEnk(:c))
— K(z|n, k) +logd(B(n,k)) + O(1).

ko(z|BE ) =

<&

Markov’s inequality says the following: Let P be a probability mass
function; let f be a nonnegative function with P-expected value E =

> . P(@)f(x) < oo. Then, > {P(z): f(x)/E >k} < 1/k.

Let P be any probability distribution (not necessarily computable). The
P-expected value of m(z)/P(x) is (ignoring the a’s for which P(x) = 0)

m ()
P <
2P0 piyy <
Then, by Markov’s inequality,
1
E {P(x )< EkP(x)}>1- R (4.7)

Since m dominates all lower semicomputable semimeasures multiplica-
tively, we have for all z,

P(z) < cpm(z), with cp = 250, (4.8)

Equations 4.7 and 4.8 have the following consequences:



Example 4.3.11

4.3. Discrete Sample Space 283

1. If z is a random sample from a simple computable distribution P,
where ‘simple’ means that K (P) is small, then m is a good estimate
for P. For instance, if = is randomly drawn from distribution P, then
the probability that

cp'm(z) < P(z) < cpm(x)
is at least 1 — 1/cp.

2. If we know or believe that x is random with respect to P, and we
know P(z), then we can use P(z) as an estimate of m(z).

In both cases the degree of approximation depends on the index of P and
the randomness of & with respect to P, as measured by the randomness
deficiency ko (z|P) = log(m(z)/P(z)). For example, the uniform discrete
distribution on B* can be defined by L(z) = 272®)~1 Then for each
n we have L,(z) = L(z|l(z) = n). To describe L takes O(1) bits, and
therefore

ko(z|L) = I(z) — K(z) + O(1).

The randomness deficiency ko(x|L) is O(1) iff K(z) > l(z) — O(1), that
is, iff x is random. O

The incomputable distribution m(x) = 2=% (#) has the remarkable prop-
erty that the test ko(z|m) is O(1) for all x: The test shows all outcomes
z to be random with respect to it.

As an aside, — ) P(x)ko(z|P) = D(P || m) is the Kullback-Leibler di-
vergence between distributions P and m, Equation 1.17 on page 72. This
is a measure of how close m is to P. Rewriting, we see that D(P || m) =
S, P@)K (2)+3, P(2)log P(@)+0(1) = X, P(0)K (x)—H(P)+O(1).
This quantity is the difference between the expected prefix complexity
and the entropy, the latter being the minimum possible P-expected pre-
fix code-word length, Theorem 1.11.2 on page 77. In Section 8.1.1 this
difference is shown to be bounded by K (P), the complexity of describing
distribution P, and in Section 1.10 a continuous version is used to show
that the universal distribution is a good predictor for distributions of
small complexity.

We can interpret Equations 4.7, 4.8 as saying that if the real distri-
bution is P, then P(z) and m(z) are close to each other with large
P-probability. Therefore, if x comes from some unknown computable
distribution P, then we can use m(z) as an estimate for P(x). In other
words, m(x) can be viewed as the universal a priori probability of .

The universal sum P-test ko(x|P) can be interpreted in the framework of
hypothesis testing as the likelihood ratio between hypothesis P and the



284 4. Algorithmic Probability

4.3.6
Randomness by
Universal
Gambling

Example 4.3.12

fixed alternative hypothesis m. In ordinary statistical hypothesis testing,
some properties of an unknown distribution P are taken for granted, and
the role of the universal test can probably be reduced to some tests that
are used in statistical practice. &

We toss a fair coin a hundred times and it shows heads every time. The
argument that a hundred heads in a row is just as probable as any other
outcome convinces us only that the axioms of probability theory do not
solve all mysteries as they are supposed to. We feel that a sequence
consisting of a hundred heads is not due to pure chance, while some
other sequences with the same probability are.

In some innominate country with a ruling party and free elections, the
share of votes for the ruling party is z;.y;% in thirty successive elec-
tions, with x; > 50 and y; is the i¢th digit in the decimal expansion of
m=3.1415...,i=0,1,...,29. However, if we complain about this, the
election organizers tell us that some sequence has to come up, and the
actual outcome is as likely as any other. We cannot criticize a regular-
ity we discover after the fact, but only those regularities that we have
excluded in advance. <&

In probability theory one starts with the assumption that we have a sample
space S of outcomes, with a probability distribution P. This P is either dis-
covered empirically or simply hypothesized, for instance by analogy to similar
processes or considerations of symmetry. It is customary to call properties that
hold with P-probability one ‘laws of probability.’

2 %) such as the repeated tossing of a fair coin.
Each outcome «x is an infinite sequence of zeros and ones. It is customary to
predict that a random x will have each property that holds with probability
one. But x cannot be predicted to have all such properties. To see this, consider
the property of belonging to the complement of a given singleton set. Each
such property has probability one, but jointly they have probability zero. That
is, a random outcome x cannot be expected to withstand all statistical tests
chosen afterward together. But we can expect x to satisfy a few standard laws,
such as the law of large numbers, and presume them always chosen. However,
the classical theory of probability gives us no criteria for selection of such
standard laws.

Consider a Bernoulli process (2

Kolmogorov’s solution is to select those randomness properties with probabil-
ity close to one that are ‘simply expressible.” The objects that do not satisfy
such a property have a corresponding regularity and form a simply described
set of small measure and correspondingly small cardinality. Then each such
object is simply described by the set it is an element of and its position in
that set. This allows substitution of the multiple requirement of “satisfying
all regularities involved” by a single requirement of “not being a simple ob-
ject.” In the betting approach we place a single bet that gives a huge payoff
in case the outcome is not complex, and which thereby safeguards us against
all simple ways of cheating.



Definition 4.3.10

Definition 4.3.11

Lemma 4.3.6

Betting Against
a Crooked Player

4.3. Discrete Sample Space 285

A nonnegative function t : A" — R is a P-payoff function if

> Pa)t(x) < 1.

TN

The definition says that the logarithm of a lower semicomputable P-
payoff function is a sum P-test as in Definition 4.3.8. Among the lower
semicomputable payoff functions there is a universal payoff function that
incorporates all particular payoff functions: a universal betting strategy.

A lower semicomputable P-payoff function ¢y : N' — R is (P-)universal
if it multiplicatively dominates each lower semicomputable P-payoff
function ¢ (that is, t(z) = O(to(x))).

Let P be a computable probability distribution. The function to(xz|P) =
m(z)/P(x) is a universal lower semicomputable P-payoff function.

Proof. Each lower semicomputable P-payoff function ¢ can be expressed
as t(z) = 2°(*) with § a sum P-test, Definitions 4.3.8, 4.3.10. Since
to(z|P) = 2%0(IP) with kg the universal sum P-test of Theorem 4.3.5,
and ko dominates each § additively, it follows that ¢ty dominates each ¢
multiplicatively. O

Suppose you meet a street gambler tossing a coin and offering odds to all
passers-by on whether the next toss will be heads 1 or tails 0. He offers
to pay you two dollars if the next toss is heads; you pay him one dollar if
the next toss is tails. Should you take the bet? If the gambler is tossing a
fair coin, it is a great bet. Probably you will win money in the long run.
After all, you can expect that half of the tosses will come up heads and
half tails. Losing only one dollar on each heads toss and getting two for
each tails makes you rich fast. After some observation you notice that
the sample sequence of outcomes looks like 01010101010... . Perhaps
the gambler manipulates the outcomes. Expecting foul play, you make
the following offer as a bet for 1,000 coin tosses.

You pay $1 first and propose that your opponent pays you 2'000—K()
dollars, with = the binary sequence of outcomes of the 1,000 coin flips.
This is better than fair, since the gambler is expected to pay only

Z 9—100091000—K () <$1,
1(x)=1000

by Kraft’s inequality. So he should be happy to accept the proposal.
But if the gambler cheats, then, for example, you receive 21000~10g1000
dollars for a sequence like 01010101010.. !



286

4. Algorithmic Probability

Example 4.3.13

In the 1 versus 2 dollars scheme, you can also propose to add this as
an extra bonus pay. In this way, you are guaranteed to win big: either
polynomially increase your money (when the gambler does not cheat) or
exponentially increase your money (when the gambler cheats).

Suppose a gambler proposes the following wager to the election orga-
nizers in Example 4.3.12. He will bet one dollar in each election. The
organizers claim that each outcome x associated with n elections has
probability L, (z), where L,(x) = 10~™ is the uniform distribution on
decimal strings of length n and zero otherwise. We formulate a payoff
function that is a winning strategy against all simply describable malver-
sations. To back up their claim, the organizers ought to agree to pay ¢(x)
dollars on outcome x on any payoff function ¢ we propose. Namely, the
expected amount of payoff is at most the gambler’s total original wager
of n dollars. Accordingly, we propose as payoff function ¢ = ¢o(:|Ly,), the
universal payoff function with respect to L,, defined by

to(l‘|Ln) -9~ log Ly (z)—K(z|n) _ 2nlog 107K(m|n)'

If = consists of the first n digits of the decimal expansion of m, the
election organizers have to pay the gambler the staggering amount of

on log 10— K (71:n|n) > ¢10™

dollars for some fixed constant ¢ independent of n, even though the bet
did not refer to 7. Even if the organizers are smart and switch to some
pseudorandom sequence algorithmically generated by their computer,
they will have to pay such an amount. In other words, since we propose
the payoff function beforehand, it is unlikely that we define precisely the
one that detects a particular fraud. However, fraud implies regularity,
and the number of regularities is so small that we can afford to make a
combined wager on all of them in advance. <&

The fact that to(z|P) is a payoff function implies by Markov’s inequality,
Equation 4.7 on page 282, that for every k£ > 0 we have,

> {P(m) : K(z) > log sz) - k} >1-— ;k. (4.9)

x

By Equation 4.2 and Theorem 4.3.3, for all z,

K(x) < log Pl + K(P)+0(1). (4.10)

()

Setting k := K(P), we find that with large probability, the complexity
K(x) of a random outcome z is close to its upper bound log1/P(x) +



Exercises

Exercises 287

O(K(P)). If an outcome z violates any ‘law of probability,” then the
complexity K (x) falls far below the upper bound. Indeed, a proof of
some law of probability like the law of large numbers or the law of the
iterated logarithm always gives rise to some simple computable payoff
function t(z) taking large values on the outcomes violating the law.

We can phrase the relations as follows: Since the payoff function to(:|P)
dominates all P-payoff functions that are lower semicomputable, (| P)
is a universal test of randomness—it measures the deficiency of random-
ness in the outcome z with respect to distribution P, or the extent of
justified suspicion against hypothesis P given the outcome x.

4.3.1. [12] Show that >~ 27Kl <1,
Comments. Hint: use the Kraft inequality, Theorem 1.11.1.

4.3.2. [15] Show that the class of computable measures does not con-
tain a universal element.

4.3.3. [21] Show that the greatest monotonic nonincreasing lower bound
on the universal distribution m (universal lower semicomputable discrete
semimeasure) converges to zero more slowly than the greatest nonin-
creasing monotonic lower bound on any positive recursive function that
goes to zero in the limit.

4.3.4. [28] Show that the universal distribution m has infinite entropy:
H(m) = >  m(z)logl/m(xz) = oo, where the summation is over all
z €{0,1}*

Comments. Hint: by the coding theorem, Theorem 4.3.3 on page 273, it
suffices to show that > 2 K@K (z) =3 i) =n 2~ K@ K (2) = 0.
This follows because there are at least 2"~ ! strings z of length n with
n—1<K(z) <n+2logn+ O(1).

4.3.5. [08] Show that if K (z) <loga then Y 7 , 27K®) < 2= K@),

4.3.6. [32] We study the statistics of description length. By the coding
theorem, Theorem 4.3.3, we have K (z) = log1/Qu(z) up to an additive
constant. Informally, if an object has many long descriptions, then it
also has a short one.

(a) Let f(z,n) be the number of binary strings p of length n with U (p) =
x, where U is the reference prefix machine of Theorem 3.1.1, page 202.
Show that for all n > K (x), we have log f(z,n) =n — K(x,n) + O(1).

(b) Use Item (a) to show that log f(z, K(z)) = K(z) — K(z, K(z)) +
O(1) = O(1). The number of shortest programs of any object is bounded
by a universal constant.



288

4. Algorithmic Probability

Comments. Hint: in Ttem (b), use K(x) < K(z,n) 4+ O(1); substitute
n = K(x) in the expression in Item (a) to obtain log f(x, K(x)) =
K(x) — K(z, K(z)) + O(1) < O(1). Source: P. Gécs, Lecture Notes on
Descriptional Complexity and Randomness, Manuscript, Boston Univer-
sity, 1987.

4.3.7. [19] Show that }_;,,_, m(z) = m(n), up to a fixed multiplica-
tive constant.

Comments. Source: P. Gacs, Ibid.

4.3.8. [18] Give an example of a recursive sequence of rational numbers
a, > 0such that the sum Zn ay, is finite, but for each other recursive (or
lower semicomputable) sequence b, > 0, if by, /a,, — oo then )" b, = oo.

Comments. Hint: Let 7, be a recursive increasing sequence of rational
numbers with lim,, 7, = Y _ m(z) and let a,, = rp41 — ry. Source: P.
Gécs, Ibid.

4.3.9. [13] Prove the following: There exists a constant ¢ such that for
every k and [, if a string x has at least 2 programs of length k, then
Cl|l) <k—-Il+ec

Comments. Therefore, C(x) < k—I+2logl+c. So if the x has complexity
k and there are 2! shortest programs for = (programs of length k) then
k<k—1+2logl+ c, so that | —2logl < ¢ and [ is bounded. Source:
A K. Shen, Kolmogorov mailing list, June 24, 2002.

4.3.10. [29] We can also express statistics of description length with re-
spect to C. For every lower semicomputable function f with {f(k) : k >
1} satisfying the Kraft inequality, there exist fewer than 2k+f(k)+0(1)
programs of length C(z) + k for x.

Comments. Hint: consider a machine that assigns a code of length m
to x iff z has at least 257/(%) programs of length m + k. Then the
number of strings that are assigned a code of length m is at most
S @mtk 2kt Ry = 5™ om=f(F)  which by Kraft’s inequality is at
most 2. Hence, this is a valid upper semicomputable code. Since x
has no program of length less than C(x), the string = has fewer than
2k+f(k)+0(M) programs of length C(x) + k. Source: J.T. Tromp, personal
communication, March 13, 1991.

4.3.11. [39] How many objects are there of a given complexity n? Let
g(n) be the number of objects © with K (x) = n, and let D,, be the set of
binary strings p of length n such that U(p) is defined. Define the moving
average h(n,c) =1/(2c+1) Y7 _g(n+14)+ O(1).

(a) First show that >, m(z,y) = m(z) + O(1).

(b) Show that there is a natural number ¢ such that logd(D,,) = n —
K(n)+ O(1) and also log h(n,c) = n — K(n).



Exercises 289

Comments. Hint for Ttem (b): use Exercise 4.3.6 and Item (a). Since we
are interested in equality only up to an additive constant, we can omit
the normalizing factor 1/(2¢+ 1) from the definition of . But we do not
know whether we can replace h by g. Namely, one can choose a refer-
ence prefix machine U’ such that ¢’(n) = 0 for all odd n. For instance,
U’ (00p) = U(p) of I(p) is even, U'(1p) = U(p) for I(p) is odd, and U’(p)
is undefined otherwise. Then U’ is defined only for inputs of even length,
and for all z we have Ky (z) < K(z)+ 2. Source: R.M. Solovay, Lecture
Notes, 1975, unpublished; and P. Gacs, Lecture Notes on Descriptional
Complezity and Randomness, Manuscript, Boston University, 1987.

4.3.12. [32] Suppose we want to obtain information about a certain
object x. It is not a good policy to guess blindly. The mutual informa-
tion of two objects  and y was given in Example 3.9.2 on page 252 as
I(z;y) = K(y) — K(y|v, K(x)). Show that >_ m(y)2/ @) = O(1).

Comments. In words, the expected value of 2/(*%) is small, even with
respect to the universal distribution m(z). Hint: by the coding theorem,
Theorem 4.3.3, we have 2/(#) = 2=KWl=.K(®) /m(z) + O(1). Source:
P. Gécs, Lecture Notes on Descriptional Complexity and Randomness,
Manuscript, Boston University, 1987.

4.3.13. [34] Let X = x1,x9,... be a recursive sequence of natural
numbers (in A or the corresponding binary strings). The lower frequency
of some element x in the sequence is defined as

1
gx(z) =liminf d({i:i <n and z; = z}).

n—oo N
(a) Show that there is a universal recursive sequence U = uq, us, . .. such
that for every recursive sequence X = x1, xs, ... there is a constant ¢ > 0

such that cqy(z) > gx(z), for all z in N.

(b) Show that if U and V' are universal recursive sequences, then gy (x) =
O(qv (z)). Fix a reference universal recursive sequence U, and define the
a priori frequency of z as q(z) = qu(z).

(¢) Show that q(z) # ©(m(z)). (m(z) is the a priori probability of x.)

(d) A set is enumerable relative to 0 if it is the range of a function com-
putable by an algorithm with an oracle for some recursively enumerable
set. An algorithm with an oracle for set A is an algorithm that (apart
from the usual things) at each step can ask a question of the form, “is a
in A?” and get the true answer “yes/no” for free. The recursively enu-
merable sets correspond to the 0’-enumerable sets, where the oracle is
restricted to recursive sets. Define the notion of 0'-enumerable semimea-
sures, and show that there is a universal 0’-enumerable semimeasure p
such that for each 0’-enumerable semimeasure v there is a constant ¢ > 0
such that p(z) > cv(x). We call p the a priori probability relative to 0'.



290 4. Algorithmic Probability

4.4
Universal
Average-Case
Complexity

(e) Show that p(x) = ©(q(z)). Compare this with Item (c).

Comments. Source: An.A. Muchnik, SIAM Theory Probab. Appl., 32
(1987), 513-514; A.N. Kolmogorov, V.A. Uspensky, STAM Theory Prob-
ab. Appl., 32(1987), 389-412.

4.3.14. [43] (a) Show that the minimal length of a program enumer-
ating a set A (prints all elements of A in lexicographic length-increasing
order and no other elements; we do not require halting in case A is finite)
is bounded above by 3 times the negative logarithm of the probability
that a random program enumerates A. That is, the probability that if
the input to the reference universal prefix machine is determined by flips
of a fair coin, then the output is an enumeration of A.

(b) Show that the constant 3 in Item (a) can be reduced to 2 for finite
sets A.

Comments. Source: for Item (a) R.M. Solovay, Non-Classical Logics,
Model Theory and Computability, A.I. Aruda, N.C.A. da Costa and
R. Chaqui, eds., North-Holland, 1977, 283-307; and for Item (b) N.K.
Vereshchagin, Inform. Process. Lett., 103:1(2007), 34-37.

The universal distribution m is one of the foremost notions in the the-
ory of Kolmogorov complexity. It multiplicatively dominates all lower
semicomputable distributions (and therefore also all computable ones).
Therefore, a priori it maximizes ignorance by assigning maximal proba-
bility to all objects. It has many remarkable properties and applications.
Here we observe that the average-case computational complexity of any
algorithm whatsoever under the universal distribution turns out to be of
the same order of magnitude as the worst-case complexity. This holds
both for time complexity and for space complexity.

For many algorithms the average-case running time under some distribu-
tions on the inputs is less than the worst-case running time. For instance,
using (nonrandomized) Quicksort on a list of n items to be sorted gives
under the uniform distribution on the inputs an average running time of
O(nlogn), while the worst-case running time is Q(n?). The worst-case
running time of Quicksort is typically reached if the list is already sorted
or almost sorted, that is, exactly in cases in which we actually should
not have to do much work at all. Since in practice the lists to be sorted
occurring in computer computations are often sorted or almost sorted,
programmers often prefer other sorting algorithms that might run faster
with almost sorted lists. Without loss of generality we identify inputs
of length n with the natural numbers corresponding to binary strings of
length n.



Definition 4.4.1

Example 4.4.1

Theorem 4.4.1

4.4.  Universal Average-Case Complexity 291

Consider a discrete sample space N with probability density function
P. Let t(x) be the running time of algorithm A on problem instance z.
Define the worst-case time complezxity of A as T'(n) = max{t(z) : l(z) =
n}. Define the P-average time complexity of A as

2 i(@)=n P(@)t(x)
Piwy=n Pl)

(Quicksort) We compare the average time complexity for Quicksort
under the uniform distribution L(z) and under the universal distribution
m(z). Define L(z) = 2721 such that the conditional probability
satisfies L(z|l(x) = n) = 27™. We encode the list of elements to be
sorted as nonnegative integers in some standard way.

T(n|P) =

For Quicksort, T'(n|L) = ©(nlogn). We may expect the same complexity
under m, that is, T'(n|m) = Q(nlogn). But Theorem 4.4.1 will tell us
much more, namely, T'(n|m) = Q(n?). Let us give some insight into why
this is the case.

With the low average time complexity under the uniform distribution,
there can be only o((logn)2"/n) strings z of length n with t(z) = Q(n?).
Therefore, given n, each such string can be described by its sequence
number in this small set, and hence for each such z we obtain K (z|n) <
n — logn 4 3loglogn. (Since n is known, we can find each n — k by
coding k self-delimiting in 2log k bits. The inequality follows by setting
k > logn — loglogn.)

Therefore, no really random z’s, with K(x|n) > n, can achieve the
worst-case running time (n?). Only strings = that are nonrandom, with
K (z|n) < n, among which are the sorted or almost sorted lists, and lists
exhibiting other regularities, can have Q(n?) running time. Such lists x
have relatively low Kolmogorov complexity K (z), since they are regular
(can be compactly described), and therefore m(z) = 2~ K@+01) ig very
high. Therefore, the contribution of these strings to the average running
time is weighted very heavily. &

(m-Average Complexity) Let A be an algorithm with inputs in N'. Let
the inputs to A be distributed according to the universal distribution m.
Then the average-case time complezity is of the same order of magnitude
as the corresponding worst-case time complezity.

Proof. We define a probability distribution P(x) on the inputs that as-
signs high probability to the inputs for which the worst-case complexity
is reached, and zero probability for other cases.

Let A be the algorithm involved. Let T'(n) be the worst-case time com-
plexity of A. Clearly, T'(n) is recursive (for instance by running A on all
x’s of length n). Define the probability distribution P(z) as follows:



292

4. Algorithmic Probability

Corollary 4.4.1

Lemma 4.4.1

Step 1. For each n =0,1,..., set ap 1=} ;,y_, m(x).

Step 2. If I(z) = n and =z is lexicographically least with ¢(x) = T'(n)
then P(z) := ay,, else P(z) := 0.

It is easy to see that a, is lower semicomputable, since m(x) is lower
semicomputable. Therefore, P(x) is lower semicomputable. Below we
use cpm(z) > P(x), where logep = K(P) + O(1) is a constant de-
pending on P but not on z, Theorem 4.3.1 on page 267 and Exam-
ple 4.3.3 on page 269. We have defined P(x) such that > _\-P(z) =
Y wen Mm(z), and P(z) is a lower semicomputable probability distribu-
tion. The average-case time complexity T'(n|m) with respect to the m
distribution on the inputs is now obtained by

njm) = m(z)t(z)
T( | ) il Zl(m):n m(m)
1 P(x)
cp I(z)=n Zl(ﬂi):n m(x)
1 P(x) 1

" ep Z(I)Z_n Zl(a}):n p(x)T(n) = T(n).

Y

T(n)

The inequality T'(n) > T(n|m) holds vacuously. O

The analogue of the theorem holds for other complexity measures (such
as space complexity) by about the same proof.

If the algorithm to approximate P(x) from below is the kth algorithm
in the standard effective enumeration of all algorithms, then logcp =
K(P) + O(1) < klog®k. To approximate the optimal value we must
code the algorithm to compute P as compactly as possible. The ease
with which we can describe (algorithmically) the strings that produce
a worst-case running time determines the closeness of the average time
complexity to the worst-case time complexity. Let S C {0,1}". Denote
by T'(n|P,S) the P-average computation time as in Definition 4.4.1 but
with the average taken over S instead of {0,1}" as with T'(n|P).

Let Q be a computable probability distribution. There is a set S of inputs
with Q(S) > 1 —27% such that T(n|Q, S) > T(n|m, S)/2K(@)+k+0(1),

Proof. If the probability distribution @ is lower semicomputable (which
by Example 4.3.2 on page 266 means that it is computable), then by
Markov’s inequality, Equation 4.7 on page 282, and 2K(Q)+O(1)m(m) >
Q(x), substitution in Definition 4.4.1 restricted to S proves the lemma.

O



Example 4.4.2

Example 4.4.3

4.4.  Universal Average-Case Complexity 293

(Quicksort continued) The average time complexity of Quicksort with
the inputs distributed according to the uniform distribution is of order
nlogn. By Lemma 4.4.1 and Theorem 4.4.1 we find (for simplicity ig-
noring O(1) factors) that the same holds in the computational reality
for a set of inputs of combined L-probability at least 1 — 2* as long as
nlogn > n?/2KW+EP) Tk,

Here, L is the uniform distribution substituted for @ in Lemma 4.4.1
(generated by a program of length at least K (L)) and P is the particular
distribution used in the proof of Theorem 4.4.1. For k large and n so
large that K(L) + K(P) + k < logn — loglog n, the square average-case
running time must take over. Clearly, increasing K (L) (more complex
algorithmic random number generator) increases the size of n at which
the square running time starts to take over.

Frequently, algorithmically generated random numbers are used in or-
der to reduce the average-case computation time to below the worst-case
computation time. The above example gives evidence that for every in-
put length, only sufficiently complex algorithmic random number gen-
erators can achieve reduced average-case computation time. &

In learning applications in Section 5.3.3 we want to draw elements from
the m distribution. Since m is not computable, we can’t have a program
for it. Suppose some powerful source deems it fit to give us a table
with sufficiently many m values. We use this table to randomly draw
according to m as follows:

Our prospective algorithm has access to an m table in the form of a
division of the real open interval [0,1) into nonintersecting half-open
subintervals I, such that | J I, = [0,1). For each x, the length of interval
I, is m(z)/ 3>, m(y). For each finite binary string r, the cylinder T';
is the set of all infinite binary strings starting with r. That is, I', is a
half-open interval [0.7,0.r + 27"} in [0,1). To draw a random example
from m, the algorithm uses a sequence 173 ... of outcomes of fair coin
flips until the cylinder I',., r = ri7ry... 7, is contained in some interval
I,. It is easy to see that this procedure of selecting x, using a table for
m and fair coin flips, is equivalent to drawing an x randomly according
to distribution m.

We are often interested in drawing an element of a subset D of N.
For instance, we want to draw an n-length binary vector (D = {0,1}")
when learning Boolean functions. To draw from m(-|D), we simply draw
examples from m(-) and discard the ones not in D. If we need to draw
m examples according to m(-|D), then it suffices to draw Q(2K(P)m)



294 4. Algorithmic Probability

Exercises

4.5
Continuous
Sample Space

451
Universal
Enumerable
Semimeasure

Definition 4.5.1

Theorem 4.5.1

examples under m(-). Namely, for each z € D,

Zye,/\/' m(y)

m(@D) = m@) & ()

= 0(2KP)m(z)).

4.4.1. [12] Show that the m-average time complexity of Quicksort is
Q(n?).

Comments. Source: M. Li and P.M.B. Vitanyi, Inform. Process. Lett.,
42(1992), 145-149.

4.4.2. [12] Show that for each NP-complete problem, if the problem
instances are distributed according to m, then the average running time
of any algorithm that solves it is superpolynomial unless P = NP.

Comments. Source: M. Li and P.M.B. Vitanyi, Ibid.

Is there a universal lower semicomputable semimeasure in the contin-
uous setting? In the discrete version we had only to satisfy that the
probabilities summed to less than or equal one. Here we have to deal
with the additional subadditive property. Let B be the finite set of basic
elements. In the following we sometimes take B = {0, 1} for convenience,
but this is not essential.

The development of the theory for continuous semimeasures is quite sim-
ilar to that for discrete semimeasures, except that the analogue of the
coding theorem, Theorem 4.3.3, does not hold. Let M be a class of con-
tinuous semimeasures as in Definition 4.2.1. The definition of universal
continuous semimeasure is analogous to Definition 4.3.2 for the discrete
case.

A semimeasure pg is universal (or maximal) for M if puy € M, and for
all p € M, there exists a constant ¢ > 0 such that for all x € B*, we

have po(x) > cu(x).

There is a universal lower semicomputable continuous semimeasure. We
denote it by M.



4.5. Continuous Sample Space 295

Proof. We prove the theorem in two stages. In Stage 1 we show that the
lower semicomputable semimeasures can be effectively enumerated as

M1, 2y

In Stage 2 we show that

o) = Y ali)us(a), with 3" a(j) <1,

Jj=1

is a universal semimeasure. Stage 1 is broken up into two parts. In the
first part we enumerate all lower semicomputable functions; and in the
second part we effectively change the lower semicomputable functions
to lower semicomputable semimeasures, leaving the functions that were
already semimeasures unchanged.

STAGE 1 Let 11,9, ... be the effective enumeration of all lower semi-
computable (real-valued) functions. Fix any ¢ (we drop the subscript for
notational convenience). Without loss of generality we can assume (as
we have done before in similar cases) that we are actually dealing with
rational-valued two-argument partial recursive functions ¢(z, k) = p/q
(rather ¢({z, k)) = (p,q)) such that for all € B*, for all k > 0,

o if ¢(x, k) is defined, then for all y < x (< in the sense of the natural
lexicographic length-increasing order on B*), ¢(y, 1), ..., d(y, k—1)
are all defined;

o ¢z, k+1)> ¢z, k);
o limy oo d(z, k) = 9(x);

o Y(x) > ¢(x, k) for every k. (This is achieved by replacing ¢(z, k) by
d(x, k) == ¢z, k)/(1 + 1/k). This replacement affects neither the
monotonicity of ¢ nor the represented semimeasure—if any.)

Next we use each ¢ associated with 1 to compute a semimeasure u by
approximation from below. In the algorithm, at each stage of the com-
putation the local variable i contains the current approximation to the
function p. This is doable because the nonzero part of the approximation
is always finite.

We describe a sequence of lower semicomputable semimeasures ¥y ()
computed from ¢(z, k) such that if ¢(z, k) represents a lower semicom-
putable semimeasure (), then limy_ o ¥i(x) = ¥(z).

Step 1. Initialize by setting p(x) := ¢x(x) := 0, for all  in B* and
k e N; and set k := 0.



296 4. Algorithmic Probability

Step 2. Set k := k + 1. Compute ¢(x, k) and set () := ¢(x, k) for
all x € B¥. {If the computation does not terminate, then p will not
change any more and is trivially a semimeasure}

Step 3. Fori:=k—1,k—2,...,0do
for each x of length 7 do
search for the least K > k such that ¢(z, K) > >, g ¥x(2b);

set 1 (2) i= (a, K
if ¥ (e) <1 then p := 9y else terminate.

{Step 3 tests whether the new values in Step 2 satisfy the semimea-
sure requirements; note that if ¢ is a lower semicomputable semimea-
sure, then the K’s always exist, since for each x we have ) 7, - 5 ¢ (xb)

< ZbeB Y(ab) < Y(z) and limg o0 d(z, k) = (x)}
Step 4. Go to Step 2.

Since ¢ represents 1(x), by monotonicity of ¢ we have ¥y (x) > ¢(x, k)
for all = of length at most k, which implies limg_,o0 ¥ (z) = (). If
is already a semimeasure, then p := 1 and the algorithm never finishes
but continues to approximate p from below. If for some k and z € B*
the value of ¢(x, k) is undefined, then the values of  do not change any
more even though the computation of p goes on forever. If the condition
in Step 3 is violated, then the algorithm terminates, and the constructed
1 is a semimeasure—even a computable one. Clearly, in all cases, u is a
lower semicomputable semimeasure.

The current construction was suggested by J. Tyszkiewicz [personal commu-
nication of April 1996] and assumes a finite set B of basic elements. It can
be made to handle B = N if in the construction of %y one considers and
gives possibly nonzero measures to only sequences of length at most k and
consisting of natural numbers < k.

Executing the above procedure on all functions in the list ¢1, ¢o, ...
yields an effective enumeration pq, po,... of all lower semicomputable
semimeasures.

STAGE 2 Let o : N' — R be any lower semicomputable function satisfy-
ing a(j) > 0 for all j and 3, a(j) < 1. Define the function o from B*
into [0,1) as

po(z) = alj)u;(x).
J
We show that po is a universal lower semicomputable semimeasure. The
first condition in Definition 4.2.1 of being a semimeasure is satisfied,



Lemma 4.5.1

4.5. Continuous Sample Space 297

since

po(€) = 3 aliui(€) < 3 o) < 1.

The second condition in Definition 4.2.1 of being a semimeasure is sat-
isfied, since, for all x in B*,

po@) = Y as(e) = 3" al) 3 ps(ab) = Y- uo(ad).

7 beB beB

The function po is lower semicomputable, since the p;(z)’s are lower
semicomputable in j and x. (Use the universal partial recursive function
¢o and the construction above.)

Finally, po multiplicatively dominates each p;, since po(z) > a(j)p; ().
Therefore, pg is a universal lower semicomputable semimeasure. There is
more than one such universal lower semicomputable semimeasure. We fix
a reference universal lower semicomputable semimeasure py and denote
it by M. m|

The universal lower semicomputable semimeasure M(z) captures the
notion of a universal a priori probability needed for application to in-
ductive reasoning (Chapter 5).

Above we can set a(j) = 277. But we can also choose a(j) = 2750),
For pu = p; we can define K(p) = K(j). Therefore,

M(2) > 2750 (a), (4.11)
for all z € B*.

At the risk of beating a dead horse (Example 4.3.1), we belabor the distinction
between ‘continuous semimeasure’ and ‘discrete semimeasure,’” and the relation
between M and m.

The discrete sample space theory is simply a restriction of the more sophis-
ticated continuous approach we take in this section. Theorem 4.5.1 is a lifted
version of Theorem 4.3.1. Namely, if we set B = N and restrict the arguments
of the measure functions to sequences of natural numbers of length one, and
incorporate the resulting simplifications in the proof of Theorem 4.5.1, then
we obtain the proof of Theorem 4.3.1, and instead of M : B* — R, we obtain
its discrete version m : B — R.

If a continuous lower semicomputable semimeasure is a measure, it is
computable.

Proof. Let 1 be a lower semicomputable semimeasure with  , -z p(xb) =
wu(x) for all x € B* and u(e) = 1. Then, we can approximate all p(z) to



298 4. Algorithmic Probability

Lemma 4.5.2

Lemma 4.5.3

452
A Priori
Probability

Definition 4.5.2

Definition 4.5.3

any degree of precision starting with pu(a), u(b),... (B = {a,b,...,z2})
and determining u(x) for all x of length n, for consecutive n =1,2,... .
O

The set of computable continuous semimeasures has no universal ele-
ment.

Proof. Set B = N If there is a universal computable continuous semimea-
sure, then its restriction to domain B would by definition be a universal
computable discrete semimeasure, contradicting Lemma 4.3.1. The case
2 < d(B) < oo is left to the reader. O

The function M is not computable and M is not a probability measure.

Proof. If M were computable, then it would be universal for the class of
computable continuous semimeasures, by Theorem 4.5.1. This contra-
dicts Lemma 4.5.2.

For M : B* — R we prove ), sM(b) < 1 by the same proof of
Lemma 4.3.2 (with M instead of m). |

As in the discrete case, we can interpret the lower semicomputable
semimeasures in a different way. To do so we require an appropriate
new Turing machine variant.

Monotone machines are Turing machines with a one-way read-only input
tape, some work tapes, and a one-way write-only output tape. The input
tape contains a one-way infinite sequence of 0’s and 1’s, and initially the
input head scans the leftmost bit. The output tape is written one symbol
in B at a time, and the output is defined as the finite binary sequence on
the output tape if the machine halts, and the possibly infinite sequence
appearing on the output tape in a never-ending process if the machine
does not halt. For a (possibly infinite) sequence z we write M (p) = « if
M outputs z after reading p and no more. (Machine M either halts or
computes forever without reading additional input.)

We define a sample space Sp consisting of all finite and infinite sequences
over B:

SB:B*UBOO.

Monotone machines compute partial functions ¢ : {0,1}* — Sg such
that for all p,q € {0,1}* we have that 1 (p) is a prefix of ¥)(pq). The
function ¢ induces a mapping ¢’ : {0,1}*° — Sp as follows: Let w =
wiws ... € {0,1}>.



Definition 4.5.4

4.5. Continuous Sample Space 299

Case 1 ¢/(w) is the infinite sequence ¢ = (1{2... (with the (;’s
strings), provided for each n, there is an m such that ¢(wi.,) =
(1.m, and m goes to infinity with n.

Case 2 If for some n, ¥(wy.,) is defined, and for all m > n we have

Y(w1:m) equals ¥(w1.y,), then ¥ (w) = Y(wi.y). If for all n, ¥(wi.,)
is the empty word €, then ¢/ (w) = e.

Case 3 If there is an n such that ¢ (ws.,,) is undefined, then ¢’(w)
is undefined.

We call such functions 1)’ monotone functions. For convenience we drop
the prime on the extension ¢’ from now on.

A monotone machine M maps subsets of {0,1}°° to subsets of Sg. If ¢
is the function computed by M, and A C {0,1}°°, then define

PY(A) ={r e Sp: ¢Y(w) =z,w e A}

A cylinder set T';, of Sp is defined as
Ty = {2w:w e S},

with x € B*. Each semimeasure p is transformed by a monotone machine
M, computing a monotone function v, to py (also a semimeasure) as
follows: For each x € B*, let X C {0,1}* be the set of y’s such that
¢(y) € I'y. Then M maps |J, ¢y I'y € {0,1}> to I'y C Sp. It is possible
that for some y, z € X we have I', (\T", # @. This is the case precisely if
y is a proper prefix of z or conversely. That is, either I'y is contained in
I', or vice versa. To obtain the total u-measure of UyeX I, C{0,1},
we sum the p-measures of all the constituent cylinders that are not
contained in other constituent cylinders. This is done by restricting X to
a subset Y obtained from X by eliminating all strings that have a proper
prefix in X and summing over the cylinders associated with elements in
Y. The probability ., (z) that M computes a sequence starting with x
on p-random input from {0, 1}°° is given by

pp(r) = ny)- (4.12)

yey

Clearly, one can effectively enumerate all monotone machines My, Mo, . ..
and therefore the associated monotone functions 1,9, ... they com-
pute. We show that the corresponding enumeration fiy,, fy,, - .., with
the py’s defined as in Equation 4.12, is an enumeration of all and only
lower semicomputable measures.



300

4. Algorithmic Probability

Definition 4.5.5

Lemma 4.5.4

Lemma 4.5.5

A monotone function ¢ is p-regular if the set of sequences w € {0,1}°
for which ¢'(w) is defined by Case 1 of Definition 4.5.3 has p-measure
one. In other words, except for a set of negligible probability, ¥ (w) is
defined by Case 1.

(i) For each computable measure p and each p-regular monotone function
1, we have that j1y 15 a computable measure as well.

(ii) For each computable measure p there exists a \-reqular 1, with A
the uniform measure, such that Ay = p; moreover, there is a p-regular
@ such that py = X and ¢ is the inverse of 1 in the domain of definition
of ¢, and ¢p(w) € B> except for possibly the computable w's and w’s
lying in countably many intervals of p-measure 0.

Proof. (i) For each x € B* and n we must be able to approximate i, (z)
within accuracy 27". Choose m such that

D {uy) : ly) = m,1(W(y) > U(z)} > 1 - 27D, (4.13)

Such an m exists, since 1 is p-regular, and it is easy to find such an m
effectively.

Let Z C Y (with Y as in Equation 4.12) consist of the y € Y that
additionally satisfy the condition in Equation 4.13. Since by assumption
@ is a computable measure, the u(y)’s can be computed to within an
accuracy of 2-(m*7+1D et ji(y) be such an approximation, and let
a(z,n) = >, cy (y). There are at most 2™ many y'’s satisfying the
condition in Equation 4.13, and therefore

g () — a(a,n)| < 27(+D 4 gm  g=(mintl) _ 9—n
(ii) Omitted. 0

For the less-nice cases, namely, the lower semicomputable semimeasures,
the following property is easy to prove:

If v is a lower semicomputable semimeasure and v a monotone function,
then py is again a lower semicomputable semimeasure.

Proof. By enumerating the semimeasure p (from below) for all its argu-
ments x, and dovetailing the computations of ¢ for all these arguments
as well, we approximate jiy, from below using Equation 4.12. Therefore,
iy is lower semicomputable. It is straightforward to verify that p,, is
also a semimeasure. O

The theorem below shows that p is a lower semicomputable semimeasure
iff it can be obtained as the semimeasure on the output sequences of



Theorem 4.5.2

4.5. Continuous Sample Space 301

some monotone machine whose input is supplied by independent tosses
of a fair coin. In other words, each lower semicomputable semimeasure
1 B* — R can be obtained from some monotone function ¥ and the
uniform measure A, in the sense of Equation 4.12:

p(x) = Ap(z) = > 2710,

yey

for the prefix-free set of programs y such that ¢ (y) starts with .

A semimeasure u is lower semicomputable if and only if there is a mono-
tone function 1 such that p = Ay, where X is the uniform measure.

Proof. (IF) By Lemma 4.5.5.

(ONLY IF) We construct a monotone function ¢ such that pn = Ay, where
Mz) = 274%) is the uniform measure (which is computable). For this
construction, we have to decompose the interval [0, 1) into nonintersect-
ing sets of measure p(z). We will represent x € B* by a set of intervals
®(x) of [0,1) with the property that when z is a prefix of y then

Ur.o Yy r.

z€P(x) z€P(y)

wlx) = A U T,

z€P(x)

This can be achieved incrementally. Analogous to the construction in
the proof of the coding theorem, Theorem 4.3.3, since pu is lower semi-
computable, there is a rational-valued recursive function ¢(z, k), nonde-
creasing in k for fixed x, such that limg o ¢(z, k) = p(x). By defini-
tion, pu(x) > >, g u(xb). Without loss of generality, we can assume that
d(x, k) > >, g d(xb, k), for all t. (Whenever this inequality is not satis-
fied, we can decrease the ¢(xb, k)’s proportionally to the extent that the
inequality becomes valid, without compromising the limiting behavior
of ¢ for fixed x and ¢ going to infinity.) To obtain u(x) we approximate
it by successive representations ®1(z), ®o(z),... such that ®i(z) is a
prefix-free set with

A U r.| = Z 2il(y):¢(xak)7

z2€Dy () yEPy ()

satisfying the following: If x is a prefix of y, then

U r.2 U r.

z2€Py(x) 2€P (y)



302 4. Algorithmic Probability

Definition 4.5.6

Theorem 4.5.3

Corollary 4.5.1

453
*Solomonoff
Normalization

If  and y are incomparable, then

Urzﬂ Urz:@-

2e® (z) 2€D4 (y)

If k < &, then

U r.2 Y r.

2€D,, () z€®@y(y)

The construction of the ®y’s is straightforward. Hence, Ay (2) = p(z). O

Let U be the reference monotone machine. Denote the function com-
puted by U by . The universal a priori probability that a binary se-
quence starts with z is Ay (), with Ay in the sense of Equation 4.12 (u
replaced by the uniform measure \).

It turns out that the universal a priori probability and the universal
lower semicomputable semimeasure are equal, just as in the discrete case
(Theorem 4.3.3). If we provide U’s input by tosses of a fair coin, then
the probability that U’s output starts with x is given by M(z). This M
is a central concept in this area.

log1/A\y(x) =log1/M(z) + O(1).

Proof. This follows from the fact that for each monotone machine M
in the effective enumeration M;, My, ..., we have that U(1"*)0p) =
M (p). Namely, this shows that Ay (z) > 2-AD+D X\, (z). The A\y's
contain all lower semicomputable semimeasures by Theorem 4.5.2. Since
Ay multiplicatively dominates each Az, it qualifies as the universal lower
semicomputable semimeasure M. O

If the monotone machine 7' defines the lower semicomputable semimea-
sure p, then M(z) > 27K () with K () the shortest self-delimiting
description of T

We have chosen to develop the theory essentially along lines reminiscent
of Martin-Lo6f’s theory of tests for randomness: we view it as mathemat-
ically elegant that the universal element, dominating all elements in a
given class, belongs to that class. While our basic goal was to obtain
a universal measure in the class of computable measures, satisfying the
above criteria turned out to be possible only by weakening both the
notion of measure and the notion of effective computability. Another



Definition 4.5.7

4.5. Continuous Sample Space 303

path was taken by R.J. Solomonoff. He viewed the notion of measure
as sacrosanct. He normalized each semimeasure ; to a measure using a
particular transformation.

The Solomonoff normalization of a semimeasure p on the sample space
B is defined by

tnorm (€) = 1,
N(wl:nb)

,unorm(wl:nb) = ,unorm(wl:n) Z ,U(Wl a)a
a€B n

for all n € N and b € B.

Write the (unnormalized) semimeasure p as

n

wwrn) = H p(wilwii-1),

=1

where we set wi.p = €. Define a new symbol u, a special undefined
element, with the property that u(ulwi.,) = 1 — >, czplalwin). To
obtain finorm from p, we multiply the ith factor of p written as the
product above by

1 _ p(wii—1)
1 —p(ulwiio1) Y ,epi(wri—ia)
Then,
(win) T 1
Mnorm\Wiin) = 4.14
orm(@rin) =50 T ) (4.14)

- wrn) T p(wri—1)
’u(e) i=1 ZaeB :u’(wl:i—la).

It is straightforward to verify that if u is a semimeasure, then pnorm is
a measure. We call My, the Solomonoff measure. It is at once clear
that Myorm dominates all lower semicomputable semimeasures as well.
This comes at the price that Mo i not lower semicomputable itself
by Lemmas 4.5.1, 4.5.2. Nonetheless, for many applications (as in Chap-
ter 5) it may be important to have a universal measure available with
most of the right properties, and the fact that it is not lower semicom-
putable may not really bother us. Another possible objection is that
there are more ways to normalize a semimeasure to a measure. So why
choose this one? The choice for Myopm is not unique. Solomonoff justi-
fies this choice by his particular interest in the interpretation of M as a



304

4. Algorithmic Probability

priori probability: the measure M(z) is the probability that the mono-
tone reference machine outputs a sequence starting with z if its input is
supplied by fair coin flips.

Suppose the output of the machine is known thus far, say . One wants
to know the relative probability that 1 rather than 0 will be the next
symbol when we know that there is a next symbol. This relative probabil-
ity is P = M(z1)/M(20). Many, if not most, applications of probability
involve ratios of this sort. For example, this is the case in computing
conditional probabilities, relative probabilities of various scientific hy-
potheses, and mathematical decision theory. If one wants to divide up
M (zu) (the unnormalized probability that the machine does not print
another symbol after emitting x), then only the normalization above
leaves the ratio P invariant. The ratio P is sacred since it happens to
be given by the reference universal monotone machine. The justifica-
tion for Myorm lies in the fact that it is the unique measure such that
Myorm (1) /Mporm (20) = M(21)/M(z0).

This normalization eliminates all probability concentrated on the finite se-
quences and divides all u(z)’s by the corresponding remaining sums. In this
way, we obtain an object related to the greatest measure contained in the
semimeasure. Another possibility would be to use the unnormalized condi-
tional probability Punnorm = M(21)/M(z) instead of Paorm = M(z1)/(M(z0)
+M(z1)), the normalized conditional probability. Using Punnorm is equivalent
to considering zu to be a real possibility. In most (if not all) applications we
have the auxiliary information that either 0 or x1 did occur, so the prob-
ability of zu is zero. In cases of this sort, Pyorm is correct and Punnorm i8S
incorrect as values for the conditional probability of 1, given that x has oc-
curred. Solomonoff argues (somewhat weakly) that since such probability ra-
tios need to be used in applications, we somehow have to find ways to deal
with them, and we cannot just refuse to accept normalized probability be-
cause it is not lower semicomputable. This tentative section is based on R.J.
Solomonoff [IEEE Trans. Inform. Theory, 1T-24(1978), 422-432]; discussions
with L.A. Levin, P. G4cs, and Solomonoff; and in good part on Solomonoft’s
arguments [Letter, October 4, 1991]. Every manner of normalizing M replaces
M(z) — (M(z0) + M(z1)) by 0, and Exercise 4.5.6 on page 325 shows that
1/M(z) may be vastly different from 1/(M(z0)+M(z1)). Therefore, the nor-
malization greatly distorts the relation between M(z) and M(z0)+M(z1) for
some x. But Exercise 4.5.7 on page 325 tells us that if we use M to predict con-
secutive symbols of sequences actually distributed according to a computable
measure p, then this rarely happens. Namely, for every n the u-expected lack
of measurehood of M satisfies

Z () Z M) = l\ﬁ/([g(g;f; ~ Mizal) < K(p)In2.

l(z)=n =1

See also the discussion in ‘History and References,” Section 4.7.



454
*Monotone
Complexity and
a Coding
Theorem

Definition 4.5.8

Definition 4.5.9

Theorem 4.5.4

4.5. Continuous Sample Space 305

There are two possibilities for associating complexities with machines.
The first possibility is to take the length of the shortest program, while
the second possibility is to take the negative logarithm of the universal
probability. In the discrete case, using prefix machines, these turned out
to be the same by the coding theorem, Theorem 4.3.3. In the continuous
case, using monotone machines, it turns out that they are different.

The complexity KM is defined as

KM (z) = log M(z)’

In contrast with C' and K complexities, in the above definition the great-
est prefix-free subset of all programs that produce output starting with
x on the reference monotone machine U is weighed.

Let U be the reference monotone machine. The complexity Km, called
monotone complexity, is defined as

Km(xz) = min{l(p) : U(p) = zw,w € Sg}.

We omit the invariance theorems for KM complexity and Km complex-
ity, stated and proven completely analogously to Theorems 2.1.1, 3.1.1
on pages 105, 202. By definition, KM (z) < Km(x). In fact, all complex-
ities coincide up to a logarithmic additive term, Section 4.5.5.

It follows directly from Definition 4.5.8 and Equation 4.11 that for each
lower semicomputable semimeasure p we have

KM (z) < log + K(u).

1
()
The following theorem can be viewed as a coding theorem, continuous
version, for computable measures. It states that for computable measures
1, each sample has a minimal description bounded by the logarithm of
its probability plus a constant.

Let - {0,1}* — R be a computable measure. Then

Km(z) <log + cus

1
()
where ¢, is a constant depending on p but not on x.

Proof. Recall the terminology in the proof of Lemma 4.3.3 on page 274.
We give an inductive procedure for assigning code words to samples
starting with = (rather, the cylinder T', consisting of finite and infinite



306

4. Algorithmic Probability

sequences starting with ). Start by setting the interval I := [0,1) (of
length pu(e) =1).

Inductively, divide the interval I, into two half-open intervals I (the
left one) and I (the right one), of lengths p(x0) and p(x1), respectively.
In each interval I, determine the length of the largest binary interval.
Since p is a real-valued computable function, we cannot achieve that the
lengths of the intervals I, and I are exactly pu(2z0) and u(x1), but we
can achieve a good rational approximation (good enough that even the
product of the error factors is bounded).

Let the binary string representing the leftmost such interval be r. Select
as code for a sample starting with = the code word r. Note that samples
starting with  and 0 may be represented by the same code word. This
is fine. According to this procedure, each sample of strings starting with
x gets assigned a code word r with I(r) < log1/u(z) + 2 (analogous to
the proof of Lemma 4.3.3).

By construction the code is monotone: if r is a code word for a sample
starting with x, then so is each code word starting with r. Since also
1 is computable, there is a monotone machine M as follows: If r is a
code word for a sample starting with x, then M recovers x as prefix
of an output string =’ (possibly longer than x) by following the above
procedure. For each prefix ¢ of r it computes the longest y such that g is
a code for a sample starting with y. Since the code is monotone, M can
operate monotonically as well, by outputting subsequent digits of =’ for
each additional digit read from the one-way input r.

If n(M) is the index of M in the standard enumeration of monotone
machines, then input n(M)r is a program for the reference monotone
machine U to output a string starting with z. Hence, the length Km(z) of
the shortest program for U for outputting a string with prefix = satisfies
Km(z) < logl/p(x) + ¢, with ¢, = 2n(M) + 2. Refinement of the
argument lets us set ¢, = K (M) + 2. a

Theorem 4.5.4 is the continuous analogue for the coding theorem, Theo-
rem 4.3.3, concerning discrete lower semicomputable semimeasures. We know
that KM (z) < Km(z) + O(1). It has been shown that equality does not hold:
the difference between KM (z) (= log1/M(z)) and Km(z) is very small, but
still rises unboundedly. This contrasts with the equality between log 1/m(z)
and K(z) in Theorem 4.3.3. Intuitively, this phenomenon is justified by ex-
posing the relation between M and m.

The coding theorem states that K(z) = log1/m(z)+ O(1). L.A. Levin [Soviet
Math. Dokl., 14(1973), 1413-1416] conjectured that the analogue would hold
for the unrestricted continuous version. But it has been shown that

sup |[KM(z) — Km(z)| = oo
reEB*



Claim 4.5.1

4.5. Continuous Sample Space 307

[P. Gdcs, Theoret. Comput. Sci., 22(1983), 71-93]. In particular (for each par-
ticular choice of basis B such as B = N, the natural numbers, or B = {0, 1}),

KM(z) < Km(z) < KM(z) + K(I(z)) + O(1). (4.15)

The left-hand inequality follows from the definitions. The right-hand inequality
can be understood as follows: First look at B = N. The coding theorem can be
proved for every recursively enumerable prefix-free subset of A, and not only
for V. (It is enough to prove it for AN; the extension to prefix-free sets follows
by encoding.) That is, if F' is a recursively enumerable prefix-free subset of N
(such as N or another cut through the prefix tree representation of N™*), then
Kmp(z) =logl/mp(x). (Here, the subscript F' means that both Km and m
are defined with respect to an effective enumeration of monotone machines
with programs in F'.)

Now, Km(z) < Kmp(z) + K(n(F)) + O(1), where we need a self-delimiting
description of K(n(F)) additional bits to describe n(F'), the index of the
partial recursive function describing F'. Since one can show that mp(z) >
M(z), we have proved the right-hand inequality of Equation 4.15. Similar
reasoning can improve the estimate to

KM(z) < Km(z) < KM(z) + K(KM(z)) + O(1).

These results show that differences between Km(z) and KM (z) with B =N
cannot exceed those accounted for by the tree structure of N*. As stated
before, the problem is equivalent for the binary basis B = {0,1}. Moreover,
the estimate is the best possible one, since the following can be shown:

Let B = N. For every upper semicomputable function g : A" — N for which
Km(z) — KM(z) < g(I(x)),
we have Km(n) < g(n) + O(1).

Proof. We refer to the proof in [P. Gécs, Theoret. Comput. Sci., 22(1983),
71-93). 0

Note that for upper semicomputable functions g(n), the statement Km(n) <
g(n) + O(1) is equivalent to ) 279" < 50, Namely, on the one hand it
follows from KM (z) < Km(z) + O(1) that

ZQ‘KM(") < ZM(n) < M(e) < 1.

Therefore, Km(n) < g(n) + O(1) implies that ) 2790 < o0, Conversely, if
>om 279" < 5o then on the domain A we have that 279 is multiplicatively
dominated by M(n). Since on the domain N we have KM (n) = Km(n)+0O(1),
it follows that Km(n) < KM (n)+ O(1) < g(n) + O(1) for n € N.

This shows that the differences between Km(x) and KM (z) must in some sense
be very small. The next question to ask is whether the quantities involved
are usually different, or whether this is a rare occurrence, in other words,
whether for almost all infinite sequences w, the difference between Km and
KM is bounded by a constant. The following facts have been proven [P. Gécs,
Theoret. Comput. Sci., 22(1983), 71-93].



308 4. Algorithmic Probability

Lemma 4.5.6

455
*Relation
Between
Complexities

(i) For random strings € B* we have Km(z) — KM (z) = O(1).
(ii) There exists a function f(n) that goes to infinity as n — oo such that
Km(z) — KM (z) > f(l(x)), for infinitely many z.

(a) If z is a finite string of natural numbers (B = N), then we can choose
f(n) =logn.

(b) If © is a finite binary string (B = {0,1}), then we can choose f(n) as
the inverse of some version of Ackermann’s function (Exzercise 1.7.18 on
page 45).

(¢) For almost all infinite w, where ‘almost all’ is specified according to the
universal lower semicomputable semimeasure, the difference Km(wi.n) —
KM (w1:n) has an upper bound that is smaller than any unbounded recursive
function.

(d) For almost all infinite w, where ‘almost all’ is specified according to any
computable measure, Km(wi.n) — KM (w1.n) is bounded by a constant.

Let B = {0, 1}. There are five complexity variants discussed in this book:
the plain complexity C(-), the complexity KM (-) = log1/M(:) associ-
ated with the universal measure M, the monotone complexity Km(-),
Loveland’s uniform complexity C(+; ) of Exercise 2.3.2 on page 130, and
the prefix complexity K (-). What is the quantitative difference between
them? Partially, such as between C(-), I(-), and K (-), these relations fol-
low from Chapters 2, 3. It is easy to see that Km(z) < I(z)+ O(1), and
by definition, KM (z) < Km(z). Moreover, C(z;1(z)) < C(z) + O(1) by
Exercise 2.3.2.

We include the table of relations, Figure 4.2, and omit the proofs. A table
entry expresses bounds on the complexity naming the column minus
the complexity naming the row. Since we cannot give the difference
precisely, we split it into an upper bound that always holds and a bound
that is exceeded infinitely often. Thus, every entry consists of an upper

C(z) KM(x) Km(z K(x)
l(x)=n <0(1) <0(1) <001 % (n,e)
2% (n,0)
C(z) k(nye)  *(n,e) % (n,e€)
k(n,0)  £*(n,0) 2% (n,0)
KM(z) logn+0O(1) % (n,e) % (n,e)
logn — O(1) A~Y(n) 2% (n,0)
Km(z) logn+ O(1) <0 % (n,€)
logn — O(1) <0 2% (n,0)

C(z;n) K (n,e) k(n,e)  F(n,e) logn + (F(n,e)
2k (n,0) k(n,0)  £*(n,0) logn + ¢¥(n,0)

FIGURE 4.2. Relations between five complexities with {(z) = n



4.5.6
*Randomness by
Integral Tests

4.5. Continuous Sample Space 309

entry and a lower entry. The upper entry gives an upper bound on the
difference for all x. That is, the difference is always at most this bound.
Thus, C(z) — I(x) < O(1) (possibly nonconstantly negative) for every
z. The lower entry gives a bound on the difference that is reached or
exceeded for infinitely many x. That is, the difference reaches or exceeds
this bound infinitely often. Thus, C(x) — KM (z) > logl(z) — O(1) for
infinitely many z. We denote I(z) +1(I(z))+- - -+ (1+€)l*(x) by £F(z, ),
where [!(z) = I(x) and [¥(x) = [(I*~1(z)) for k > 1. The bound ¢*(z, €)
holds for every fixed k and € > 0, and the bound ¢*(z,0) holds for every
fixed k.

The difference K'm(x)—K M (z) is especially interesting. As noted above,
this difference can be arbitrarily large, and hence log 1/M(x) # Km/(z)+
O(1) (no coding theorem in this case). In particular, Km(x)— KM (x) >
A~1(I(x)) for infinitely many . The function A~ is a version of the very
slow-growing inverse of the Ackermann function in Exercise 1.7.18 on
page 45. (Interestingly, while A grows faster than any primitive recursive
function, its inverse A~! is primitive recursive.) The only known upper
bound Km(x)—K M (z) < £*(1(z), €) holds for every = and k, and follows
from Equation 4.15 on page 307. The difference between these bounds
is large, and open for improvement. For background material, see the
‘History and References,” Section 4.7.

The randomness of infinite sequences with respect to the uniform mea-
sure has been treated in Sections 2.5 and 3.6. In the latter section, Corol-
lary 3.6.1, page 223, gives the following exact expression characterizing
the infinite sequences that are random with respect to the uniform mea-
sure \:

po(wl) = sup 0 — K(wr). (4.16)

That is, po(w|A) < oo iff w is random with respect to A. We general-
ize this result to exact expressions testing the randomness of infinite
sequences for arbitrary computable measures p.

A universal sequential p-test do(-|n) of Section 2.5 additively majorizes all
other sequential p-tests. It distinguishes the random infinite sequences from
the nonrandom ones. However, we did not find an exact expression of the uni-
versal sequential p-test in terms of complexity. But we can develop other types
of tests that do have exact expressions in terms of Kolmogorov complexity for
a universal test separating the random infinite sequences from the nonrandom
ones.

Sequential u-tests were essentially functions of a continuous variable
in S = B*. Constructivity of such functions of infinite sequences was
ensured by having a sequential test approximate its value by taking the
supremum of all tests of finite initial segments of the infinite sequence.



310

4. Algorithmic Probability

Definition 4.5.10

Definition 4.5.11

Lemma 4.5.7

We start by considering the notion of lower semicomputable unit inte-
grable functions of a continuous variable. It is easy to show that the
logarithms of such functions are slightly stronger versions of sequential
tests. This parallels the development of the sum tests of Definition 4.3.8,
page 278. Subsequently, we give the exact expression of a universal lower
semicomputable unit integrable function with respect to a computable
measure u. The logarithm of this quantity is the exact expression for a
universal test. This approach requires the application of a few elemen-
tary properties of integration.

Let B={0,1,...,k— 1} be a finite nonempty alphabet with & > 2. The
continuous variable ranges over the set of one-way infinite sequences
S = B. The set S has the power of the continuum, since it can be
mapped onto the set R of real numbers, Example 1.4.1. The set X
below is a subset of S.

A nonnegative function f : S — R is unit integrable (over a set X with
respect to measure p) if

/ Flw)pldw) < 1.
X

Consider recursive functions of the form g(z, k) = (r, s). The interpre-
tation is that g has an argument z € B* and a rational value r/s. The
cylinder set I',, is the set of infinite sequences over B starting with x. This
leads to a refinement of Definition 1.7.4 on page 35 of semicomputability:

A nonnegative function f : S — R is lower semicomputable if there
exists a recursive function g(z, k) satisfying g(z,k + 1) > g(x, k) and
g(zy, k) > g(z, k) such that

flwy=sup {g(x,k)}.

wely, keN

(Furthermore, f is upper semicomputable iff — f is lower semicomputable,
and f is computable iff it is both lower semicomputable and upper
semicomputable.) We determine the relation between a lower semicom-
putable unit integrable function and a sequential test.

If f is a lower semicomputable unit integrable function over S with re-
spect to a computable measure p, then log f(-) is a sequential p-test.
Moreover, if § is a sequential p-test, then the function f defined by
log f(w) = d(w) — 2logd(w) — ¢ is a lower semicomputable unit inte-
grable function.



Definition 4.5.12

4.5. Continuous Sample Space 311

Proof. Let f be a lower semicomputable unit integrable function. With-
out loss of generality we can assume that the values f(w) are of the form
2™, Define

v(z) = inf |log f(w)].

wel',

Since f is lower semicomputable, so is 7, even though its definition
uses inf, by the way we defined lower semicomputable functions. Also,
v(w1.n) is monotonic in n. It follows that log f(w) = sup,ca-{v(win)}-
Moreover, for each n,

Z {M(x)Z'Y(m) l(x) =n,v(z) > k} <27k

Otherwise,

/S f@pldw) > 3 p@2@ > 3 pa)2t

I(x)=n I(z)=n

Y]
—

Hence, f is a sequential u-test according to Definition 2.5.1, page 147.

Conversely, assume that § is a sequential p-test. By Definition 2.5.1
the function ¢ is lower semicomputable. Therefore, f defined as in the
lemma is lower semicomputable. By Definition 2.5.1 we also have p{w :
§(w) >m} < 27™ for each m. Define f(w) = ¢2°“) /§(w)? for a constant
c = (m?/3)7! and f(z) = inf,er,{f(w)}. Since 2%/x? is monotonic,
these functions are also lower semicomputable. Define

E,={w:m<dw)<m+1}, and ¢, = sup {f(w)}.

wEE,
Then (with m > 1),
Sf(whddw)ﬁ > ilEm)
om+t 1
S LS SR

O

Let f be a unit integrable function over S with respect to u. A function
d is an integral p-test iff §(w) = log f(w). It is a universal integral p-test
if it additively dominates all integral u-tests.

Lemma 4.5.7 states that sequential u-tests and integral u-tests corre-
spond up to a logarithmic additive term. It remains to show that there
exists a universal integral u-test. We proceed by demonstrating the ex-
istence of a universal unit integrable function.



312

4. Algorithmic Probability

Definition 4.5.13

Theorem 4.5.5

Claim 4.5.2

A function fy is universal for a class of unit integrable functions over a
domain X if fy belongs to the class and for each f in the class there is
a constant ¢ such that for all w € X we have cfyp(w) > f(w).

The class of lower semicomputable unit integrable functions (over X with
respect to a computable measure 1) has a universal element, the function

fo defined by

g o) = sup flog |~ il }.

wel',

Proof. We need to show that fj is lower semicomputable, unit integrable,
and that it multiplicatively dominates all lower semicomputable unit
integrable functions. Since K(-) is upper semicomputable and pu(-) is
computable, it follows that fy is lower semicomputable.

The function fj is unit integrable.

Proof. First, write

folw) = sup {Q—K(w\u)ﬁ-logl/u(w)}.
wel',

We have defined fy only on elements of B*. If we want to define fy on
finite sequences x € B*, then the natural way is

fole) & inf {fo(w)}.

wel',
This makes fo(w1.,) monotonic nondecreasing in n. Let

g(x) = o—K(z|p)+log1/u(z)

Using Theorems 4.3.1 and 4.3.3, pages 267 and 273,
[ totintae) = [ supfgonn)ulde)
X X n
<X [ st
=> > gl@)ux)

n l(z)=n

= > glau(n) = Y2 K <1,



Claim 4.5.3

4.5. Continuous Sample Space 313

The function fy multiplicatively dominates all lower semicomputable
unit integrable functions.

Proof. Let g be a lower semicomputable unit integrable function. With-
out loss of generality, assume that g has values of the form 2™ only.
Lower semicomputability of g is equivalent to saying that there exists a
recursively enumerable set T of pairs (x,m) such that

g(w) =sup{2™ :w e T, and (z,m) € T}.

For a set T of pairs (x,m), define the subset of elements stabbed by w
as

T(w) def {(x,m) eT:weTl,}.
The proof goes by replacing T' by a set T” such that T'(w) contains at
most one element (x, m) for each m. For this purpose, proceed as follows:
Use T to define the recursively enumerable set T}, by

T ={z: (z,m) e T}

Each element = € T, is associated with a cylinder I', C S. Similarly,
T, is associated with the union of all these cylinders: R = UwETm ..
However, the constituent cylinders may overlap: some infinite sequences
w have two different prefixes in T),. By replacing T,, by a set T, in
which no element is a prefix of another element, and such that w has a
prefix in Ty, iff it has a prefix in T} , we achieve that R equals the union

of the nonoverlapping cylinders of elements in 77, .

From the enumeration of 7}, we obtain an enumeration of such a prefix-
free set T, by the following processing step. Starting with an empty set
T/, we put each enumerated element x from T, into T, as long as x is
not a prefix of an element already in T, and there is no element in 7T},
that is a prefix of z. If T}, contains a prefix of x, then we simply discard
x. If x is the prefix of one or more elements in 7T , then we replace z
by the smallest prefix-free set A of elements of the form xy such that
each infinite sequence starting with x has a prefix in T/, | J A. Then the
latter set is prefix-free and we set T/ := T |J A. Since T, is finite at
each stage, each such set A is finite and can be effectively determined.
We give a formal description of this processing step:

Initialize: T, = @.
For each enumerated z € T;,, do
ifT',\I'y=@ forally € T), then T, =T, |J{z}

else if I'; C T, for some y € T}, then discard x



314 4. Algorithmic Probability

elseT) =T, |JA

{where we choose A := {xy1,...,xyr} the smallest set such that:

1. T,y =@ for all 2,2’ € T), |J A; and

2. UzGTT’n Ja L. = UzeT;n U{=} r.}
By construction, T}, is recursively enumerable and prefix-free. Because it
is prefix-free, the subset 7 (w) stabbed by w is a singleton set or &. We
are now ready to define the promised 7" as 7" = {J,,{(z,m) : x € T}, }.

The subset T"(w) stabbed by w contains at most one element (z, m) for
each m.

By the construction above,
g9(w) = sup{2™ : T, (w) # @}.

Define further

9(@) < sup 2"} and g'(x) < DT 2",
z€Tr, {m:zeT),}
where g(x) = ¢'(x) = 0 if there is no m with x € T,. In this way,

9(w) = sup {g(x)}, and g(z) < g'(@). (4.17)

Since each m occurs at most once in an element in 7" (w), we have

29(w)> > 2m= Y dYoom= > ).

T! (w)#2 {z:wely} {m:xeT!} {z:wely}
Therefore,
S d@u) = Y [ g @)
- [ Y s@u)
X {z:wel,}

Since ¢’ (z)p(z)/2 is lower semicomputable and by the above sums to at
most 1, it follows from Theorems 4.3.1 and 4.3.3 on pages 267 and 273,
respectively, that there is a constant ¢ such that

9—K(z|p)

TO= e



Corollary 4.5.2

Example 4.5.1

Example 4.5.2

Example 4.5.3

4.5. Continuous Sample Space 315
Since g(x) < ¢'(z), using Equation 4.17,

g(w) < sup {CQ—K(GEIM)Hog 1/u(w)}.
weT,

O O

Let u be a computable measure. The function

puten) = sup {rog !~ Ktal}

wel,

is a universal integral u-test.

With respect to the special case of the uniform distribution A, Corol-
lary 4.5.2 sets po(w|A) = sup,,cp-{n — K(wi.,)} up to a constant addi-
tional term. This is the expression we found already in Corollary 3.6.1,
page 223. O

To quantify the domination constants between fy and the lower semi-
computable unit integrable functions, we can proceed by an argument we
have met several times before (for example, Theorem 4.5.1, page 294).
First one shows that the lower semicomputable unit integrable functions
can be effectively enumerated as

Ji, fayn

Second, one shows that

fow) = a(n) fa(w), with Y a(n) <1,

n>1

is unit integrable. We can choose a(n) = 275 Since the individual
fn’s are lower semicomputable, f§ is also lower semicomputable. Since
the individual f,,’s are unit integrable, f§ is also unit integrable. Since
fh(w) > 27K £ (W), for all n and w, the function f; is a universal
lower semicomputable unit integrable function. By the above theorem,
fo is also a universal lower semicomputable unit integrable function.
Therefore, there is a constant ¢ such that

cfow) = fow) = 27K f, (w).

<&

Consider a discrete sample space S and the class of lower semicom-
putable unit integrable functions over S with a computable measure p.



316 4. Algorithmic Probability

457
*Randomness by
Martingale Tests

Definition 4.5.14

For convenience we set S C N. Then ) _o f(x)u(z) < 1. For each
such function f we have that f(x)u(z) is lower semicomputable and
sums up to at most 1. By Theorem 4.3.1 on page 267, there is a con-
stant ¢ such that f(z)u(z) < ¢ m(z|p) for all . We have K (z|u) =
log1/m(x|u) + O(1), by Theorem 4.3.3, page 273, and therefore

f(z) < o~ K (@) +og1/n(w)

Since m is lower semicomputable unit integrable, we find that the uni-
versal lower semicomputable unit integrable function over S with respect
to p is

fo(.’lﬁ) = 2_K(93|M)+10g l/u(a:).

The discrete sample space approach is connected to the continuous sam-
ple space treatment as follows: If we induce from fy a function f{ over
B> by defining f{(w) = sup, { fo(w1:n)}, then we obtain the function of
Theorem 4.5.5 again. &

This section parallels the discussion in Sections 4.3.5 and 4.3.6. We are
presented with an infinite sequence of outcomes by an adversary who
claims that the distribution of outcomes is the computable measure u
on S = B>, where B is a finite nonempty set of basic symbols. We
would like to verify this claim under the assumption (guaranteed by the
adversary) that the game is fair in the following sense: Let there be given
an agreed-upon function f satisfying

S J@ule) <1,

l(z)=n

for all n. In every game, you pay the standard amount of $1 to the
adversary and he pays you $f(x) if the outcome of the game is .

Below we define a type of test that embodies such a betting strategy. Let
x € B* and b € B. You receive f(z) = 27(*) units on an outcome z. The
first inequality of Definition 4.5.14 represents your stake in each play.
The second inequality of Definition 4.5.14 says that if you continue play-
ing another step after history x, then on average (using the conditional
probability u(xb)/p(z)), your payoff will not increase.

Let p : B* — R be a computable measure on the sample space B°°. Let
v : B* — R be a nonnegative, lower semicomputable function with the
property

u(e)gv(e) <1,

()27 > Z,u(xb)?”*(xb).
beB



Lemma 4.5.8

Definition 4.5.15

Theorem 4.5.6

4.5. Continuous Sample Space 317

Then v is a martingale u-test. A martingale u-test is universal for a class
of martingale u-tests if it additively dominates all martingale u-tests.

This is a ‘test’ version of the martingale we will meet in Section 4.5.8 on
page 319. We have formulated it here as a ‘test’ for ease of comparison
with the original Martin-Lof test of Definition 2.4.1, page 135.

FEach martingale u-test is a p-test. If 6(x) is a p-test, then there exists
a constant ¢ such that §(x) — 2logd(x) — ¢ is a martingale p-test.

Proof. It follows immediately from the new definition that for all n,

S ) :A(2) >k} < 2% (4.18)

I(z)=n

Conversely, if v(z) satisfies Equation 4.18, then for some constant ¢ the
function y(z) — 2logy(x) — ¢ satisfies Definition 4.5.14. a

Thus, the universal (Martin-Lof) p-test of Definition 2.4.2 on page 136,
the universal sum p-test of Definition 4.3.8 on page 278, and the universal
martingale p-test all yield the same values up to a logarithmic additive
term.

A sequential martingale u-test § for w € B> is obtained from a martin-
gale p-test v by defining

é(w) = :g/g{v(wlzn)}-

A sequential martingale u-test og(-|p) is universal if it additively domi-
nates all sequential martingale u-tests §: there is a constant ¢ such that
for all w € B> we have ¢ op(w|p) > d(w).

Let y: B* — R be a computable measure on B>°.

(i) The function o : B* — R defined by vo(x|p) = log(M(x)/p(z)) is a
universal martingale p-test.

(ii) The function og : B> — R defined by

12 Wl:n)

oo(w|p) = sup {log M((“’l:”) }

18 a universal sequential martingale p-test.



318

4. Algorithmic Probability

Corollary 4.5.3

Proof. Let Vj, be the set of infinite sequences w such that there is an index
n with k <log1/p(wi.n) — Km(wi.p). Using log 1/ M(w1.n) < Km(wi.m),
this implies that

M(wi.p,
Vo(wl:n‘l’o = IOg ( . ) > k7
l‘(wlzn)

for all w in V4. The left-hand side of the inequality satisfies Defini-
tion 4.5.14. By Equation 4.18, therefore, 1(V}) < 27%. Since M is lower
semicomputable and p is computable, 7 is lower semicomputable. Hence
it is a martingale u-test, and oy is a sequential martingale u-test. By Def-
inition 4.5.14 the function pu(z)27(®) is a lower semicomputable semimea-
sure. Thus, for each martingale p-test 7y, there is a positive constant cy
such that

M(z) > cyp(x)27@),

Therefore, 7y and oy additively dominate all martingale u-tests and
sequential martingale u-tests, respectively. O

As before, we call vo(z|u) the randomness deficiency of x. Theorem 4.5.6
yields yet another characterization of an infinite random sequence, equiv-
alent to Martin-Lof’s characterization of randomness in Section 2.5.
Namely, for each such p, an infinite binary sequence w is p-random iftf

oo(wlp) < .

By the proof of Theorem 4.5.6 this is equivalent to

sup {log — Km(wl:n)} < 00.

n ﬂ(wlzn)
An infinite sequence w is random iff sup,, {log1/p(wi.n) — Km(win)} <
00. (The expression on the left side is yet another y-randomness test.)

Altogether, we have found the following characterizations in this section.
An infinite sequence w is p-random iff

KM (w1:n) = Km(wim) + O(1) = log +0(1).

N(Wl:n)

(The O(1) term is independent of n but may depend on w.) The u-
random infinite sequences by definition have y-measure one in the set of
all infinite sequences. Such sequences, and only such sequences, satisfy
all effective laws of probability theory (that is, withstand any sequen-
tial p-test in Martin-Lof’s sense). There is also a conditional version of
Theorem 4.5.6:



Corollary 4.5.4

Example 4.5.4

458
*Randomness by
Martingales

Definition 4.5.16

4.5. Continuous Sample Space 319

Let f(w,() be a function with [ 27/ \(dw) < 1, where A is the uni-
form measure. Such functions f define conditional measures as follows:

Define f(z,() = super, {f(w,¢) }. Then,

u(alQ) = [ 27 F0ONd)
L
If f is upper semicomputable (the corresponding pu(w|¢) is lower semi-
computable), then there is a constant ¢ such that ¢- M(w|¢) > 2=,
for all ¢ and all x with w € T',.

Let p = A, the uniform measure. The above discussion says that an
infinite binary sequence w is random with respect to the uniform measure
(that is, in the original sense of Martin-Lof) iff

KM (w1:n) = Km(wi.) + O(1) =n+ O(1).
<

In gambling, the ‘martingale’ is a well-known system of play. With this
system one bets in a casino that the outcome of a roulette run will be
red each time, and after each loss the new bet is double the old one.
No matter how long the run of losses, once red comes up, the gambler
wins. The current gain minus past loss in this run equals the amount of
the first bet. But even though red is bound to come up sometime, the
gambler may go broke and lose all before this happens. In his 1853 book
The Newcomes, W.M. Thackeray admonishes, “You have not played as
yet? Do not do so; above all avoid the martingale if you do.”

According to von Mises’s Definition 1.9.1 on page 51, a random sequence
in the sense of a collective defies a player betting at fixed odds, and in
fixed amounts, on the tosses of a fair coin, to make unbounded gain in
the long run. Von Mises does not require that the player can have no
debt. Obviously, if the player cannot go broke, and he bets according to
a martingale, his gain will eventually exceed each bound.

We can test for randomness by betting. Suppose a casino claims that the
distribution of outcomes w in sample space S = B> is the measure pu.
Then given any function f(w), with [ f(w)u(dw) < 1, the casino should
accept 1 unit for an obligation to pay f(w) on outcome w. (We have
called such functions ‘unit integrable’ in Definition 4.5.10 on page 310.)
A martingale is a payoff function that leads to such a global payoff.

Let p : B* — [0,1) be a measure on S = B>. Let ¢ be a nonnegative
function from B* into R such that with x € B,

n(e)t(e) <1,
H(@)t(o) > Y abje(ob).

beB



320

4. Algorithmic Probability

Definition 4.5.17

Theorem 4.5.7

Example 4.5.5

Corollary 4.5.5

Let w be an element of S. We call ¢(w1.,) a p-supermartingale. We call
t(w1:n) a p-martingale if the equations hold with equality.

A lower semicomputable p-supermartingale tg is universal for the class
of lower semicomputable u-supermartingales if it multiplicatively domi-
nates all lower semicomputable p-supermartingales . (That is, there is
a constant ¢ such that ¢ - to(z) > /() for all z € B*.)

There is a universal lower semicomputable p-supermartingale. We de-
note it by to(-|p).

Proof. Define to(z|u) = M(x)/u(x). Then to(z|u) = 270 with v (-|p)
as in Theorem 4.5.6. From Definition 4.5.15 and Definition 4.5.16, it fol-
lows that y(z) is a martingale p-test iff t(x) = 27(®) is a lower semi-
computable p-supermartingale. Hence, the theorem follows from Theo-
rem 4.5.6. O

We give an alternative proof of Theorem 4.5.7. Comparison with Defini-
tion 4.2.1 shows that ¢(x) is a lower semicomputable p-supermartingale
iff ¢(x)p(x) is a lower semicomputable semimeasure. By Theorem 4.5.1
on page 294, the semimeasure M is a universal lower semicomputable
semimeasure. Hence, for each lower semicomputable p-supermartingale
t there is a constant ¢ such that ¢-M(z) > ¢t(z)u(x), for all . Therefore,

M(z)
p()
dominates all lower semicomputable p-supermartingales within a mul-

tiplicative constant. Thus to(z|u) is a universal lower semicomputable
p-supermartingale. &

to(z|p) =

Intuition tells us to call an outcome w nonrandom if it allows us to win
against the adversary by choosing an appropriate payoff function, that
is, if there is a lower semicomputable supermartingale ¢ such that ¢(w1.y,)
grows unboundedly. From the definitions it follows immediately that the
characterization of random infinite sequences, as the complement of the
nonrandom ones, is exactly the same as the one using sequential u-tests.
Since ~o(z|r) dominates all p-tests, within additive constants, it fol-
lows that to(z|x) = M(z)/u(x) dominates all lower semicomputable p-
supermartingales within a multiplicative constant. Since 7 is a universal
martingale u-test, we have the following corollary to Theorem 4.5.7:

An infinite sequence w is p-random iff
to(wlp) = sup {to(win|p)} < 0o.
neN

We recall that the set of such w has py-measure one.



459
*Relations
Between Tests

4.5. Continuous Sample Space 321

There is a simple relation between supermartingales and unit integrable
functions. The supermartingale condition of Definition 4.5.16 implies
that for a p-supermartingale ¢, for all prefix-free sets I C B* we have

S ula)t(a) < 1.

zel

This implies that ¢ is a unit integrable function in the sense of Defini-
tion 4.5.10.

Unit integrability of a function f does not imply that it is a supermartin-
gale. A supermartingale t is not necessarily monotonic nondecreasing but
instead satisfies the restrictive supermartingale condition. We can inter-
pret the difference as saying that the unit integrable functions represent
betting strategies in a fair game where the expectation of profit in the
overall infinite game is at most 1. The supermartingale condition says
that the expectation of profit for a fair game of some finite length cannot
be increased by playing longer. The condition on prefix-free sets states
that the expectation with an arbitrary set of stopping times is still at
most 1.

Assume that a function f is unit integrable. The integral can be ex-
pressed as a sum as follows: Taking the supremum over all prefix-free
sets I CY we have

Then we can increase f to a pu-supermartingale ¢ by defining

t(x) = sup Mlx) > fay)pay) ¢,

yel

where I ranges over all prefix-free subsets of B*. The proof that ¢ is a u-
supermartingale is by simply writing out both sides of the supermartin-
gale condition of Definition 4.5.16 in terms of suprema and verifying the
required relations. The fact that we increase f to obtain ¢ accounts for
the fact that the universal lower semicomputable unit integrable func-

tion fy is slightly smaller than the universal p-supermartingale ¢o(-|u).
For fixed w,

sup {Q—K(Elu)-irlog 1/u(w)} < sup {M(x)}
1(

wel, wel, 17)

To show that a supermartingale can be used to define a function over
B> we use the so-called supermartingale convergence theorem:



322

4. Algorithmic Probability

Claim 4.5.4

Lemma 4.5.9

Consider a sequence of random variables wy,ws,... . If t(w1.,) is a p-
supermartingale and the u-expectation E|t(wy.,)]| is finite, then it follows
that limy, e t(w1.) exists with p-probability one.

Proof. See J.L. Doob, Stochastic Processes , Wiley, 1953, pp. 324-325. O

This implies that each p-supermartingale t(wy.,) converges p-almost ev-
erywhere to a function #(w). But this function may not be lower semi-
computable. We obtain lower semicomputability if the function #(w1.,)
is monotonic in n.

The relation between the universal lower semicomputable supermartin-
gale and the universal lower semicomputable unit integrable function is
as follows. The function

pO(w‘:u’) = Slrllp {K(wlnLu) + log ,U/(wlln) }

is a universal integral p-test, and

logM(wl:n)}

oo(wlp) = sup { (@)

is a universal martingale u-test. Hence they are either both finite (for
p-random w) or both infinite (otherwise).

For each infinite sequence w, we have up to fired additive constants

oo(w|p) — 2logoo(wlp) < po(wlp) < oo(w|p).

Proof. The right inequality follows from the fact that we have to increase
the universal unit integrable function to make it a universal supermartin-
gale.

The left inequality is proved as follows: Let v™(w) = m if w has a prefix
x with log(M(z)/p(z)) > m and 0 otherwise. The function o(w) =
sup,, {7 (w) — 2logm} satisfies o(w) < po(w|p) + O(1), since

27" (w) 27" (W)

QU(M)mn%X{ m2 }Z m2

m

is (72 /6) integrable (instead of unit integrable) over X with respect to p,
as is easy to verify. Clearly, og(w|p) — 2log og(w|p) < o(w), from which
the inequality follows. O

We can similarly analyze the relation between the universal sequential
u-test 9o (+|) and the other tests.



Exercises 323

Lemma 4.5.10 For each infinite sequence w, we have up to fized additive constants

Exercises

do(w|p) — 2log do(w|p) < oo(w|p) < do(w|p).

Proof. This follows from the definitions in Theorem 4.5.6 on page 317,
and Lemma 4.5.8 on page 317. a

4.5.1. [09] Show that with basis B = {0,1}, we have M(e) < 1 and
M(z) > M(20) + M(x1), for all z in B* (strict inequality). Generalize
this to arbitrary B.

4.5.2. [31] Let the probability that an initial segment = of a binary
sequence is followed by a € {0,1}* be M(alx) = M(za)/M(z).

(a) Show that there is a constant ¢ > 0 such that the probability (with
respect to M) of the next bit being 0 after 0™ is at least c.

(b) Show that there exists a constant ¢ such that the probability (with
respect to M) of the next bit being 1 after 0" is at least 1/(cnlog® n).

(¢) Show that for every constant ¢ and sufficiently large N, there are
at most N/c initial segments 0™ (1 < n < N) such that the probability
(with respect to M) of the next bit being 1 is larger than (clog®n)/n.

(d) Conclude that the probability (with respect to M) of the next bit
following 0" being 1 is f(n)/n with f(n) = Q(1/log® n) ) O(log® n).

Comments. This exercise is a simple form of Occam’s razor: the condi-
tional M probability assigns high probability to the simple explanations
and low probability to the complex explanations. The assertion Item (d)
is an M prior probability variant of P.S. Laplace’s well-known exercise
to compute the expectation of a successful trial following n successful
trials in a Bernoulli process (p,1 — p) with unknown p. Using Bayes’s
rule with uniform prior probability, this expectation is (n + 1)/(n + 2)
and is a special case of Laplace’s law of succession (Exercise 1.10.6 on
page 65). Application of this law sets the probability of a 1 following
n initial 0’s at 1/(n + 2). This is fairly close to the approximation we
found in Item (d) using conditional M probability. In A Philosophical
Essay on Probabilities, Laplace uses this rule to compute the probability
that the sun will not rise tomorrow, given that it has been rising ev-
ery morning since the creation of the world 10,000 years ago. Using the
above, it follows that the probability that the sun will not rise tomorrow
is approximately 1/3,650,000. This is correct, in case our information
about the sun were exhausted by the fact stated. Hint for Items (a)
through (c): use |K(z) —log1/M(z)| < 2log K (x) + O(1). For all n we
have K(0™1) < logn + 2loglogn + O(1), and for the majority of n we



324

4. Algorithmic Probability

have K(0™1) > logn. Source: L.A. Levin and A.K. Zvonkin, Russ. Math.
Surveys, 25:4(1970), 83-124; see also T.M. Cover and J.A. Thomas, Fl-
ements of Information Theory, Wiley & Sons, New York, 1991.

4.5.3. [27] Even the most common measures can be not lower semi-
computable if the parameters are not lower semicomputable. Consider
a (p,1 — p) Bernoulli process and the measure it induces on the sample
space {0,1}°°.

(a) Show that if p is a computable real number such as ; or ; or /2
or /4 = }l -3.1415.. . ., then the measure is computable.

(b) Show that if p is lower semicomputable then the measure can fail to
be lower semicomputable

(c¢) Show that if p is a real that is not lower semicomputable, then the
measure is not lower semicomputable either.

(d) Show that if p is a random real whose successive digits in its binary
expansion are obtained by tosses of a fair coin, then with probability
one the measure is not lower semicomputable.

Comments Hint for Item (b): if p is lower semicomputable but not com-
putable, then 1 — p is not lower semicomputable and it is the probability
that the first element in the sequence is 0 [P. Gdcs, personal communi-
cation].

4.5.4. o [25] The Solomonoff normalization of a semimeasure p, with
B = {0,1}, i8S tnorm(x) = a(x)u(z), with a(z) as defined in Defini-
tion 4.5.7 in Section 4.5.3. We call M orm, the normalized version of the
universal lower semicomputable semimeasure M, the Solomonoff mea-
sure. This leads to an important parallel development of the theory,
which may be mathematically less elegant, but is possibly preferable in
some applications.

(a) Show that for each semimeasure p, the function finerm is a measure.
Conclude that in particular, Mo, is a measure.

(b) Show that the normalization factor a(x) is at least 1 for all z in B*.

(¢) Show that M, dominates all lower semicomputable semimeasures
p. (That is, for each such p, there is a positive constant ¢ such that
for all x € B*, we have Myom(2) > cu(z).) Conclude that Myorm
dominates M.

(d) Show that Solomonoff normalization is not the only normalization.

(e) Let o be a lower semicomputable measure. Does Myorm dominate
all pnorm’s?

Comments. Hint for Ttem (e): not all pnerm’s are lower semicomputable,
so we cannot use Item (c). This elaborates the discussion in Section 4.5.3.



Exercises 325

Source: Items (a) through (d) R.J. Solomonoff [IEEE Trans. Inform.
Theory, 1T-24(1978), 422-432]; see also ‘History and References,” Sec-
tion 4.7.

4.5.5. [32] By Exercise 4.5.4, Moy dominates M.
(a) Show that M does not multiplicatively dominate M opm.

(b) Show that for each normalizer a defining the measure M'(z) =
a(z)M(z) we have M(w1.,) = o(M'(w1.), for some infinite w.

(¢) (Open) Item (b) with ‘all’ substituted for ‘some.’

Comments. Item (b) implies that M does not dominate any of its nor-
malized versions M'. This is a special case of Exercise 4.5.6.

4.5.6. e [37] What is the difference between semimeasure M and any
(not necessarily lower semicomputable) measure u?

(a) Show that 1/M(z) differs from 1/u(z), for infinitely many x, as the
busy beaver function BB(n) differs from n (Exercise 1.7.19 on page 45)
for every measure /.

(b) Show the same about M(x) versus M(z0) + M(x1).

Comments. This shows that the normalization M, must distort the
measure M. Exercise 4.5.7 shows thay this is rare. Hint: take the max-
imal running time T'(k) of those among the first k programs that halt.
Note that T'(k) is the longest running time of a halting program among
the first k& programs and is related to BB(k). The following procedure
effectively generates the desired z from k (even though T is only lower
semicomputable) such that M(x0) + M(z1) < 1/T(k). Start with the
empty prefix y = € of z. Find its extension 3y’ = y0 or y’ = y1 (whichever
you find first) such that M(y’) > 1/(2T'(k)). Extend y to differ from y’.
Repeat as long as you can (up to 27'(k) times). The resulting string
x (of length < 2T'(k)) will have both extensions of M-semimeasure
< 1/(2T'(k)). Since «x is described by k and an O(1) program, for large
enough random k we have 1/k? < M(z). See also ‘History and Refer-
ences,’ Section 4.7. Source: one of us (PV) asked L.A. Levin; Levin asked
R.M. Solovay, and returned Solovay’s solution on September 12, 1989,
by e-mail.

4.5.7. e [27] Let 1 be a computable measure over B°. We use M to
estimate the probabilities u(aly) for @ € B and y € B*. Show that for
eVerY N, Dy (p)—n H(T) Yo M(ulz1-1) < K(p)In2, where we define
r1.0 = € and M(ulz1-1) =1 = cgM(a|z15-1).

Comments. Let p be an unknown computable measure, and suppose
we are given a string ¢ = xy...x,. We can use M(a|z1.;—1) to pre-
dict p(alz1.i-1) (@ € B and 1 < i < n). But M being a semimeasure,
we can have ) . M(a|r) < 1. Exercise 4.5.6, with B = {0, 1}, shows



326 4. Algorithmic Probability

that M(z)/(M(z0) + M(z1)) can be very large, so the universal prob-
ability that after printing = the reference monotonic machine will never
print again, M(zu) = M(z) — M(20) — M(z1) with « the next sym-
bol being ‘undefined,’ is close to 1. The current exercise shows that this
occurs only rarely, and for long sequences produced according to com-
putable measure p these occurrences do not have much p-probability.
Indeed, 3, _,, #(x) 322 M(ulz1-1) < 37,7, 1/i for growing n. Hint:
in Section 4.5.3 we defined the normalized version Myorm () with z =
1 ...z, by Equation 4.14 on page 303. Consider the negative Kullback—
Leibler divergence —D(u || Muorm) < 0 for strings of length n. Sub-
stituting Mo of Equation 4.14, we obtain —D(u || M) + 37,
pw(z) > In(1/(1-M(u|z1:i-1))) < 0. Using Corollary 4.5.1 on page 302,
we can show that D(u || M) < K(p)In2. Adding the last two inequali-
ties, we obtain },,)_,, pu(z) S In(1/(1 — M(u|z1:i-1))) < K(p)In2.
Since —In(1—2z) = zf(22/2)+(z3/3)+~ -+, weobtain Y7, ), u(z) 350,
Z;; (M(u]z1:i-1))? < K(u)In2. Since all terms are positive, we obtain
D iwy=n #(2) 225 M(ulz1;-1) < K () In2. Source: R.J. Solomonoff,
Inform. Process. Lett, 106:6(2008), 238—240.

4.5.8. [17] Let vq,va,... be an effective enumeration of all discrete
lower semicomputable semimeasures. For each i define v; () = >_ {vi(zy) :
y €{0,1}7}.

(a) Show that 1,72,... is an effective enumeration of a subset of the
set of lower semicomputable semimeasures. We call these the extension
semimeasures.

(b) Define Mc(z) = 3° {m(zy) : y € {0,1}*}. We call Mc the extension
semimeasure. Show that Mc is universal in the y-enumeration, that is,
for all k, there is a positive constant ¢ such that for all x we have
Mc(z) > exvye(z).

(c) Show that limp, o0 Dy, —,, Mc(z) = 0.

(d) Show that the 7y-enumeration doesn’t contain all lower semicom-
putable semimeasures.

(e) Show that there is no positive constant ¢ such that for all x we have
Me(xz) > e¢M(x). Conclude that M dominates Me, but Mc does not
dominate M.

(f) Investigate Mc and the normed measure Mcorm. (With (>) > de-
noting (strict) domination we have obtained Myorm > M > Me.)

Comments. Hint: for Item (d) in particular, M is not in there. Consider
the limit in Item (¢) with M substituted for Mec. The relation between
this class of (continuous) measures and the discrete measures has the fol-
lowing extra property: while y(e) < 1, we have vy(z) = vy(z0) + v(x1) +



Exercises 327

v(x) instead of just y(x) > v(20) + vy(x1). Moreover, in the « semimea-
sures all probability is concentrated on the finite sequences and none on
the infinite sequences. Source of definition of Mec: T.M. Cover, Univer-
sal gambling schemes and the complexity measures of Kolmogorov and
Chaitin, Tech. Rept. 12, Statistics Dept., Stanford University, Stanford,
CA, 1974. Source of Item (c): R.J. Solomonoff, IEEE Trans. Inform.
Theory, IT-24(1978), 422-432.

4.5.9. [15] We compare M(z) and Mec(z). Show that for some infinite
w (such as a recursive real) we have lim,, o M(w1.,)/Mec(wr.p) = o0.

Comments. Hint: since 0.w is a recursive real, lim,, . M(w1.,) > 0.

4.5.10. [31] (a) Let v be a probability measure and G(n) = Ef(w1.n)
with f(w1.n) = logv(wim) +1ogl/Mce(wi.n)). (Ef(wi.,) denotes the v-
expectation 3, _, v(z) f().) Show that lim, .. G(n) = cc.

(b) Let v be a computable probability measure, and let F be a recursive
function such that lim, . F(n) = co. Show that there is a constant ¢
such that for all binary x of length n we have logv(z) +log1/Mec(z) <
c+ F(n).

Comments. Hint: use Exercises 4.5.8, 4.5.9 to solve Item (a). We can
interpret log1/Mc(z) as the length of the Shannon—Fano code using
distribution Me, and log 1/v(z) as the length of the Shannon—Fano code
using the actually reigning v. Clearly, although log(v/Mc) approaches
infinity with n, it does so more slowly than any recursive function. In
contrast, log(v/M), or log(v/Mporm), is bounded by a constant. Source:
R.J. Solomonoft, IEEE Trans. Inform. Theory, IT-24(1978), 422-432.

4.5.11. [22] Let p(x) be a lower semicomputable probability measure.
Suppose we define the cooccurrence of events and conditional events
anew as follows: The probability of cooccurrence p(z,y) is p(z,y) =
w(x) if y is a prefix of x; it is u(x,y) = p(y) if = is a prefix of y,
and equals zero otherwise. The conditional probability is defined as
w(ylx) = p(z, y)/u(x). Complexities are defined as follows: the uncondi-
tional Ku(z) = log1/u(x); cooccurrence Kpu(x,y) = log1/u(x,y); and
conditional Ku(x|y) =log1/u(z|y).

Show that these complexities satisfy exactly the information-theoretic
equality of symmetry of information: K u(z,y) = Ku(x)+ Ku(y|x) (Sec-
tions 1.11, 2.8, 3.9.1).

Comments. Similar (probability) definitions were used by D.G. Willis [J.
ACM, 17(1970), 241-259]. Source: R.J. Solomonoff, IEEFE Trans. Inform.
Theory, 1T-24(1978), 422-432. Solomonoff used My, instead of an
arbitrary measure p.



328

4. Algorithmic Probability

4.5.12. [48] The analogue of Theorem 4.3.3 does not hold for contin-
uous semimeasures. Therefore, the inequality in Theorem 4.5.4 cannot
be improved to equality.

(a) Show that for every upper semicomputable function g : N' — N for
which Km(x) — KM (x) < g(I(x)), we have Km(n) < g(n) + O(1).

(b) Show that for almost all infinite w, Km(w1.,) — KM (w1.,) has an
upper bound that is smaller than any unbounded recursive function.

Comments. See discussion in Section 4.5.4. Source: P. Géacs, Theoret.
Comput. Sci., 22(1983), 71-93.

4.5.13. [15] Show that an infinite sequence w is random with respect
to a computable measure pu iff the probability ratio p(wi.,)/M(w1.y) is
bounded below.

Comments. Hint: see Theorem 4.5.6. This ratio can be viewed as the
likelihood ratio of hypothesis p(z) and the fixed alternative hypothesis
M(z). Source: L.A. Levin, Soviet Math. Dokl., 14(1973), 1413-1416.

4.5.14. [42] Consider a finite or countably infinite basis B, and define
a probability function p : B — [0, 1] such that », s p(b) < 1. If equality
holds, we call the probability function proper. The squared Hellinger
distance p(q,p) between two probability functions ¢ and p is defined

2
as ZbeB (\/q(b) — \/p(b)> . The x? distance, denoted by pa2(q,p), is

defined as ), (q(b) —p(b))* /q(b). (Use 0/0 = 0 and oo/co = 0.) If 1
is a semimeasure over B*, and w € B, then the probability function
p(-lwin) : B — [0,1] is defined by pu(blwin) = plwimbd)/mw(wim). If @ is
a measure and p(wy.,) # 0, then u(-|wi.,) is proper. The randomness
deficiency of wy., with respect to p is o (w1.n| 1) =log(M(w1.n)/(wi.n))-
An infinite sequence w is p-random iff o (wi.n|p) = O(1).

(a) Suppose p is a computable measure, o is a computable semimeasure
over B*, and w € B*. Show that

1

S
|

(]

plo(wii), p(-lwii)) — vo(wim|p) — O(1) < yo(wimlo)

<.

H'Mz -

o(|wia), p(-|lwi)) + 270(Win|p) + O(1).

(b) Suppose that p and o are computable semimeasures over B*, and
w € B is both p-random and o-random. Show that

S (e ) e

i—1 U(w2+1|wlzz)



Exercises 329

(c) Suppose p is a computable measure, ¢ is a computable semimeasure
over B*, w € B*® is og-random, and p(ws.,) > 0 for all n. Show that w is
prandom iff Y70 p(o(-|wiii), pl-|wis)) < oo.

(d) Show that if w is both p-random and o-random, then p(0lwi.,) —
0(0|wi:pn) — 0, as n — oo.

Comments. Hint for Item (c): use Items (a) and (b). Conclude from
Item (a) that if w is random relative to a computable measure y, and
the computable measure o is chosen so that vo(w1.n|0) = o(n), then the
mean squared Hellinger distance n~! Z?:_ll plo(-|wiss), p(-lwr:i)) goes to
0. Item (c) gives a randomness criterion for objects with respect to a
computable measure, in terms of Hellinger distance with a computable
semimeasure with respect to which the object is known to be random.
Source: V.G. Vovk, Soviet Math. Dokl., 35(1987), 656-660. See also the

estimate of prediction errors as in Theorem 5.2.1.

4.5.15. [28] Let B be a finite nonempty set of basic symbols. Let
do(w|p) be a universal sequential p-test for sequences in B> distributed
according to a computable measure p. Let ¢ be a monotone function as
in Definition 4.5.3, page 298, that is u-regular as in Definition 4.5.5.

(a) Show that do(w|p) > So(9(w)l1g) + K ().

(b) Show that if py is a computable measure, then there exists a jq-
regular monotone function ¢ such that pye = p and do(p(w)|pg) >

So(w|p) + K(¥).

Comments. This generalizes Exercise 3.6.2, page 228. In particular it
shows that a real number has a random binary representation iff it has
a random representation in every base r > 2. Note that a sequence is
not random in itself, but random with respect to a particular measure.
Thus, if we recursively transform a sequence, then its randomness prop-
erties and the complexities of its initial segments are preserved up to
an additive constant with respect to the transformed measure. Source:
L.A. Levin, [Problems Inform. Transmission, 10:3(1974), 206-210; In-
form. Contr., 61(1984), 15-37].

4.5.16. [43] Sequences with maximal Kolmogorov complexity of the
initial segments are random in Martin-Lof’s sense of passing all effective
statistical tests for randomness. Hence, they must satisfy laws like the
law of the iterated logarithm.

(a) Show that if w is an infinite sequence such that Km(wi.,) = n —
o(lnlnn), then with f, =w; + -+ 4+ w, we have

|fn *n/2| _ 1
Vnlnlnn \/2.

lim sup,,_, o



330 4. Algorithmic Probability

4.6

Universal
Average-Case
Complexity,
Continued

Definition 4.6.1

(b) Show that if Km(wi.,) = n — o(n), then lim, .o f/n = . Con-
versely, for every € > 0 there is an w with Km(w1.,) > (1 —€)n for which
the above doesn’t hold.

(c) We say that an infinite binary sequence w satisfies the infinite recur-
rence law if f,, = én infinitely often. Let € > 0. Prove the following:

(i) If Km(wi:n) > n — (5 — €)logn, for all n, then w is recurrent.

(ii) There is a nonrecurrent w (f,/n > 5 for all but finitely many n)

such that we have Km(w1.,) > n — (2 4 €) logn, for all n.

Comments. Ttem (a) is the law of the iterated logarithm. By Theo-
rem 2.5.5, Item (a) holds for almost all infinite binary sequences w. In
other words, the law of the iterated logarithm holds for all infinite w in a
set that (obviously strictly) contains the Martin-Lof random sequences.
Compare this with Equation 2.3 on page 167. There it was shown that
for C(z) > n —d(n), n = l(z), we have |f, — in| < \/né(n)In2. Item
(b) is a form of the strong law of large numbers (Section 1.10). By The-
orem 2.5.5 this gives an alternative proof that this law holds for almost
all infinite binary sequences. Hint for the second part of Item (b): insert
ones in an incompressible sequence at 1/e-length intervals. Source: V.G.
Vovk, SIAM Theory Probab. Appl., 32(1987), 413-425.

The discrete universal distribution has the remarkable property that
the average computational complexity is of the same order of magnitude
as the worst-case complexity, Section 4.4. What about the continuous
version? This relates to algorithms for online computations that in prin-
ciple never end. Such processes are abundant: sequence of key strokes
from a computer keyboard; database insertions, deletions, and searches;
network browser requests; and so on.

Formally, assume that the input sequence is infinite over the set B of
basic symbols, say B := {0,1}. Let the probability distribution of the
inputs be a lower semicomputable semimeasure p according to Def-
inition 4.2.1 on page 263. Let A be an algorithm processing inputs
W=wiwsy... € {O, 1}°°. The computation time of processing input wy.,
up to the input of symbol wy, 11 i8 t(w1n).

Consider a continuous sample space {0,1}°° with semimeasure p. Let
t(w1.n) be the running time of algorithm A on initial segment instance
w1:n. Define the worst-case time complexity of A as T'(n) = max{t(wi.,) :
w1 € {0,1}"}. Define the p-average time complexity of A as

Zwl;n M(wlzn>t(w1:n)

T'(n|u) = S p(wi)



Theorem 4.6.1

4.7
History and
References

4.7. History and References 331

(M-average complexity) Let A be an online algorithm with inputs
in {0,1}°°. Let the inputs to A be distributed according to the universal
semimeasure M. Then, the average-case time complexity is of the same
order of magnitude as the corresponding worst-case time complexity.

Proof. Substitute p for P and M for m in the proof of Theorem 4.4.1
on page 291. O

Napoleon’s contemporary and friend Pierre-Simon Laplace, later Mar-
quis de Laplace, may be regarded as the founder of the modern phase
in the theory of probability. His anticipation of Kolmogorov complex-
ity reasoning that we quoted at the beginning of this chapter occurs
in the “sixth principle: the reason why we attribute regular events to
a particular cause” of his Fssai philosophique sur les probabilités. Simi-
lar sentiments were already formulated by the eccentric mathematician
Girolamo Cardano (1501-1576). He seems to be the first to have made
the abstraction from empiricism to theoretical concept for probability, in
[G. Cardano, Liber de Ludo Alae, published posthumously in Hieronymi
Cardani Mediolanensis philosophi ac medici celeberrimi opera omnia,
cura Car. Sponii, Basle, 1663]. “To throw in a fair game at Hazards
only three spots, when something great is at stake, or some business is
the hazard, is a natural occurrence and deserves to be so deemed; and
even when they come up the same way for a second time, if the throw
be repeated. If the third and fourth plays are the same, surely there is
occasion for suspicion on the part of a prudent man,” [G. Cardano, De
Vita Propria Liber, Milano, 1574].

The remarks of Dr. Samuel Johnson (1709-1784) are taken from the
monumental J. Boswell, Life of Johnson, 1791, possibly the most famous
biography written in the English language. For the basics of probability
theory (as in Section 1.4) we have primarily used [A.N. Kolmogorov,
Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, 1933;
English translation published by Chelsea, 1956].

The notion of semicomputable functions originates, perhaps, from L.A.
Levin and A.K. Zvonkin [Russ. Math. Surveys, 25(1970), 83-124], but
is so natural that it might have been used earlier (unknown to either of
the authors of this book, or Levin). In the earlier editions of the current
book we used ‘enumerable function’ for ‘lower semicomputable function,’
‘coenumerable function’ for ‘upper semicomputable function,” and ‘com-
putable function’ for ‘recursive function.” The notion of ‘semimeasure’
is most similar to ‘lower measure’ for nonmeasurable sets. They are also
called ‘defective measure’ in W. Feller, An Introduction to Probability
Theory and Its Applications, Vol. II, Wiley, 1970. In the current setting,



332

4. Algorithmic Probability

semimeasures were apparently used first by Levin and Zvonkin [Russ.
Math. Surveys, 25(1970), 83-124], not by this name but in terms of an
equivalent (but awkward) measure on a non-Hausdorff space denoted
there by 2*. The name ‘semimeasure,” together with the explicit defini-
tion as we used it, may originate from [L.A. Levin and V.V. Vyugin, pp.
359-364 in: Lect. Notes Comput. Sci. Vol. 53, Springer-Verlag, 1977].
The combination ‘lower semicomputable probability distribution’ (mea-
sure) as a framework for Solomonoff’s approach below is due to Levin
and Zvonkin [Russ. Math. Surveys, 25(1970), 83-124], but a related ap-
proach using computable probability distributions (measures) was given
by D.G. Willis [J. ACM, 17(1970), 241-259]. R.J. Solomonoff used the
notion of computable measures and informally noticed lower semicom-
putable semimeasures previously in [Inform. Contr., 7(1964), 1-22].

Kolmogorov’s introduction of complexity was motivated by information
theory and problems of randomness. Solomonoff introduced algorithmic
complexity independently and for a different reason: inductive reasoning.
Universal a priori probability, in the sense of a single prior probability
that can be substituted for each actual prior probability in Bayes’s rule,
was invented by Solomonoff, with Kolmogorov complexity as a side prod-
uct, several years before anybody else did. R.J. Solomonoff obtained a
Ph.B. (bachelor of philosophy) and M.Sc. in physics at the University
of Chicago. He was already interested in problems of inductive infer-
ence and exchanged viewpoints with the resident philosopher of science
Rudolf Carnap, who taught an influential course in probability theory
[Logical Foundations of Probability, Univ. Chicago Press, 1950].

In 1956, Solomonoff attended the Dartmouth Summer Study Group on
Artificial Intelligence, at Dartmouth College in Hanover, New Hamp-
shire, organized by M. Minsky, J. McCarthy, and C.E. Shannon, and
in fact stayed on to spend the whole summer there. (This meeting gave
AT its name.) There Solomonoff wrote a memo on inductive inference.
McCarthy had the idea that given every mathematical problem, it could
be brought into the form of “given a machine and a desired output, find
an input from which the machine computes that output.” Solomonoff
suggested that there was a class of problems that was not of that form:
“given an initial segment of a sequence, predict its continuation.” Mc-
Carthy then thought that if one saw a machine producing the initial
segment, and then continuing past that point, would one not think that
the continuation was a reasonable extrapolation? With that the idea got
stuck, and the participants left it at that.

Later, Solomonoff presented the paper “An Inductive Inference Ma-
chine” at the IEEE Symposium on Information Theory, 1956, describing
a program to unsupervisedly learn arithmetic formulas from examples.
At the same meeting, there was a talk by N. Chomsky, based on his



4.7. History and References 333

paper “Three models for the description of language” [IRE Trans. In-
form. Theory, IT-2(1956), 113-126]. The latter talk started Solomonoff
thinking anew about formal machines in induction. In about 1958 he left
his half-time position in industry and joined Zator Company full time,
a small research outfit located in some rooms at 140; Mount Auburn
Street, Cambridge, Massachusetts, which had been founded by Calvin
Mooers sometime around 1954 for the purpose of developing information
retrieval technology. Floating mainly on military funding, Zator Co. was
a research front organization, employing Mooers, Solomonoff, Mooers’s
wife, and a secretary, as well as at various times visitors such as Marvin
Minsky. It changed its name to the more martial sounding Rockford Re-
search (Rockford, Illinois, was a place where Mooers had lived) sometime
around 1962. In 1968 Solomonoff left and founded his own (one-man)
company, Oxbridge Research, in Cambridge in 1970, and has been there
ever since, apart from spending nine months as research associate at
MIT’s Artificial Intelligence Laboratory, 1990-1991 at the University of
Saarland, Saarbriicken, Germany, and a more recent sabbatical at ID-
SIA, Lugano, Switzerland.

In 1960 Solomonoff published a report “A preliminary report on a general
theory of inductive inference” [Tech. Rept. ZTB-138, Zator Company,
Cambridge, Mass.] in which he gave an outline of the notion of universal
a priori probability and how to use it in inductive reasoning (rather,
prediction) according to Bayes’s rule (Chapter 5). This was sent out
to all contractors of the Air Force who were even vaguely interested in
this subject. In his paper of 1964 [A formal theory of inductive inference,
Part 1, Inform. Contr., 7(1964), 1-22], Solomonoff developed these ideas
further and defined the notion of enumeration of monotone machines
and a notion of universal a priori probability based on the universal
monotone machine.

In this way, it came about that the original incentive to develop a the-
ory of algorithmic information content of individual objects was Ray
Solomonoft’s invention of a wuniversal a priori probability that can be
used instead of the actual a priori probability in applying Bayes’s rule.
His original suggestion in 1960 was to set the universal a priori proba-
bility P(x) of a finite binary string = as > 27/), the sum taken over all
programs p with U(p) = x, where U is the reference Turing machine of
Theorem 2.1.1 on page 105. However, using plain Turing machines this is
improper, since not only does ) P(z) diverge, but P(x) itself diverges
for each x. To counteract this defect, Solomonoff in 1964 introduced
a machine model tantamount to prefix machines/monotone machines.

This left the problem of the corresponding P(z) not being a probability
measure. For this Solomonoff in 1964 suggested, and in 1978 exhibited,
a normalization. However, the resulting probability measure is not even
lower semicomputable. According to Solomonoff this is a small price



334

4. Algorithmic Probability

to pay. In fact, in some applications we may like the probability mea-
sure property and not care about semicomputability (Section 4.5.3 and
Chapter 5). The universal distribution has remarkable properties and
applications. Such applications are ‘simple pac-learning’ in Section 5.3;
the MDL principle in statistical inference and learning, Section 5.4; and
the notion and development of ‘logical depth,” Section 7.7.

The remarkable property of m(-), that the average computational com-
plexity of every algorithm is always of the order of magnitude of the
worst-case complexity, Sections 4.4 and 4.6, is from [M. Li and P.M.B.
Vitanyi, Inform. Process. Lett., 42(1992), 145-149]. For computable ver-
sions of m(-) this phenomenon is treated in Section 7.6. These con-
siderations involve the maximal gain of average-case complexity over
worst-case complexity for (algorithm, distribution) pairs and associated
families such as polynomial-time algorithms and polynomial-time com-
putable distributions, [P.B. Miltersen, SIAM J. Comput., 22:1(1993),
147-156; K. Kobayashi, IEICE Trans. Inform. Systems, E76-D:6(1993),
634-640; K. Kobayashi, Transformations that preserve malignness of
universal distributions, Theoret. Comput. Sci., 181(1997), 289-306; A.
Jakoby, R. Reischuk, and C. Schindelhauer, Proc. 12th Symp. Theo-
ret. Aspects Comput. Sci., 1995, pp. 628-639]. A.K. Jagota and K.W.
Regan [“Performance of MAX-CLIQUE approximation heuristics under
description-length weighed distributions,” UB-CS-TR 92-24, SUNY at
Buffalo, 1992] have extended Theorem 4.4.1 to approximation ratios for
approximation algorithms. In this paper, they have also used a distri-
bution ¢(x) to approximate m(z) and performed extensive experiments
for the MAX-CLIQUE problem. In their experiments, it was found that
three out of nine algorithms perform much worse under ¢(z) than un-
der the uniform distribution, confirming the theory; six other algorithms
showed not much difference.

Leonid A. Levin in 1970 gave a mathematical expression of a priori prob-
ability as a universal (that is, maximal) lower semicomputable semimea-
sure, Theorem 4.3.1, and showed that log 1/m(x) coincides with C(x)
to within an additive term of 2log C(x). In 1974 he explicitly intro-
duced the notion of prefix machines and prefix complexity, and proved
the remarkable Theorem 4.3.3, which can be designated as the coding
theorem. To be able to formulate this theorem properly, we first recall
the discrete form of the universal a priori probability, using the prefix
complexity K (x). In their 1970 paper [A.K. Zvonkin and L.A. Levin,
Russ. Math. Surveys, 25(1970), 83-124], L.A. Levin analyzes the case
of continuous semimeasures related to monotone machines and presents
the construction of the universal lower semicomputable semimeasure, its
equality with the universal a priori probability, and the universal ran-
domness p-test for arbitrary measures p. See also [L.A. Levin, Soviet
Math. Dokl., 14(1973), 1477-1480]. The interpretation of this in terms



4.7. History and References 335

of discrete semimeasures and the restriction of monotone machines to
prefix machines are also due to L.A. Levin [L.A. Levin, Problems In-
form. Transmission, 10:3(1974), 206-210; P. Gécs, Soviet Math. Dokl.,
15(1974), 1477-1480]. Prefix complexity was also introduced, indepen-
dently, by G.J. Chaitin [J. ACM, 22(1975), 329-340], including Theo-
rem 4.3.3. The whole theory is brought to majestic (and hard to un-
derstand) heights in [L.A. Levin, Inform. Contr., 61(1984), 15-37]. The
theory of universal continuous semimeasure M(+) is used for induction
and prediction in Section 5.2 and in the development of the notion of
‘algorithmic entropy’ in Section 8.6.

Solomonoft insists on the use of traditional probabilistic measures (such
that pu(z0) + p(xzl) = p(z)). This led to some difficulties with his 1964
paper. M cannot be uniquely increased to a measure, and it is hard to
choose a natural one among possible extensions (so optimality is lost).
In the relevant (commissioned) Exercise 4.5.6, R.M. Solovay has shown
that every such extension would both change M by more than a constant
factor and destroy its algorithmic properties. However, in Exercise 4.5.7
on page 325, Solomonoff has shown that if we predict a measure p using
Morm, then the changes with respect to M induced by M,,o;m happen
only with p expectation going fast to 0 with growing length of the pre-
dicted sequence. Moreover, Solomonoff considers the increase by 1/0(1)
to be a merit, and loss of lower semicomputability a small price to pay
for it and for avoiding the heresy of redefining the notion of probability.
Tt is not clear from his 1964 paper which extension he wanted (though it
is clear that he meant to consider only ordinary probability measures),
but in his 1978 paper he rigorously specifies an extension motivated as
discussed in Section 4.5.3.

C.P. Schnorr [Lect. Notes Math., Vol. 218, Springer-Verlag, 1971] in-
troduced the use of martingales, due to P. Levy and used advanta-
geously by J. Ville in 1939 [Etude Critique de la Notion de Collectif,
Gauthier-Villars, 1939] in the study of Martin-Lof tests. Independently,
C.P. Schnorr [J. Comput. System Sci., 7(1973), 376-388] for the uniform
distribution, and L.A. Levin [Sov. Math. Dokl., 14(1973), 1413-1416]
for arbitrary computable distributions, introduced the monotone vari-
ant of complexity Km(x) in about 1973. The monotone complexity Km
smoothes out the oscillations in order to characterize randomness. Mono-
tone complexity obliterates all quantitative differences among Martin-
Lof random sequences, and hence does not allow us to make distinctions
in randomness properties, in contrast to K complexity [M. van Lambal-
gen, Random Sequences, Ph.D. thesis, University of Amsterdam, 1987;
J. Symb. Logic, 54(1989), 1389-1400]. L.A. Levin [Soviet Math. Dokl.,
14(1973), 1413-1416] introduced monotone complexity, and C.P. Schnorr
[J. Comput. System Sci., 7(1973), 376-388] introduced another complex-
ity, which he called ‘process complexity.” The difference between those



336

4. Algorithmic Probability

two complexities is not bounded by any constant [V.V. Vyugin, Semi-
otika i Informatika, 16(1981), 14-43 (p. 35); English translation: Selecta
Mathematica formerly Sovietica, 13:4(1994), 357-389]. C.P. Schnorr in
[Basic Problems in Methodology and Linguistics, R.E. Butts and J. Hin-
tikka, eds., Reidel, 1977, pp. 193-210] introduced a variant of monotone
complexity coinciding up to an additive constant with Levin’s variant.
For further historical notes see [A.N. Kolmogorov and V.A. Uspensky,
SIAM J. Theory Probab. Appl., 32(1987), 387-412].

C.P. Schnorr’s later definition is as follows: A partial recursive function
¢:{0,1}* x N'— {0,1}* is called a monotone interpreter if

(i) for all (p,n) in the domain of ¢ we have that I(¢(p,n)) = n, and

(ii) for all (p,n), (pg, n + k) in the domain of ¢ we have that ¢(p,n) is a
prefix of ¢(pg,n + k).

We can think of monotone interpreters as being computed by monotone
machines according to Schnorr, which are Turing machines with two
one-way read-only input tapes containing p and n, respectively; some
work tapes; and a one-way write-only output tape. The output tape is
written in binary, and the machine halts after it outputs n bits.

Define Kmy(x) = min{l(p) : ¢(p,l(x)) = z}, and Kmy(x) = oo if such p
does not exist. There is an additively optimal monotone interpreter ¢g
such that for any other monotone interpreter ¢ there is a constant ¢ such
that Kmg, () < Kmg(x)+c for all z. Select one such ¢ as reference and
set the monotone complexity according to Schnorr as Km(x) = Kmg, (z).
Similarly, we can define the conditional monotone complexity Km(z|y).

L.A. Levin used another definition. Instead of a function, the definition
uses a recursively enumerable relation A(p,x) with the property that if
p is a prefix of ¢ and A(p, ), A(g,y) hold, then z,y must be compatible
(one is a prefix of the other). The meaning is that our machine on input
p outputs a (possibly infinite) string with prefix 2. The minimum length
of such an input p is the monotone complexity Km 4(z) with respect to
A according to Levin. Among all such recursively enumerable relations
there is a universal one, say U, such that for each A above there is a
constant ¢ such that for all z, we have Kmy(x) < Kma(z) + c. We
fix such a U and define the monotone complezity according to Levin as
Km(z) = Kmy(z). Let us call this a type 1 monotone machine.

The following definition of monotone machines is not equivalent but also
appropriate. We require that if p is a prefix of ¢ and A(p, x) and A(q,y)
hold then z is a prefix of y. Let us call this a type 2 monotone machine.

There is yet another definition, the apparently most obvious one. The
machine T" has a one-way input tape and a one-way output tape. It keeps
reading input symbols and emitting output symbols. For a (possibly



4.7. History and References 337

infinite) string « we write T'(p) = z if T outputs z after reading p and
no more. Let us call this a type 3 monotone machine. This type is used
in the main text.

The monotone complexities arising from these three different kinds of
machine are not necessarily the same. But all interesting upper bounds
work for type 3 (the largest), and P. Gacs’s theorem distinguishing Km
from KM works for type 1 (the smallest). See [C.P. Schnorr, J. Com-
put. Syst. Sci., 7(1973), 376-388; A.K. Zvonkin and L.A. Levin, Russ.
Math. Surveys, 25:6(1970), 83—-124, attributed to L.A. Levin; L.A. Levin,
Sov. Math. Dokl., 14(1973), 1413-1416; P. Gacs, Theoret. Comput. Sci.,
22(1983), 71-93] and on generalization of monotone complexity [A.K.
Shen, Sov. Math. Dokl., 29:3(1984), 569-573].

The relation between different complexities in the table of Figure 4.2
is asserted (many relations without proofs) in V.A. Uspensky’s survey
[Kolmogorov Complexity and Computational Complezity, O. Watanabe,
ed., Springer-Verlag, 1992, pp. 85-101]. Many of the missing proofs or
references are provided in [V.A. Uspensky and A.K. Shen, Math. Sys-
tems Theory, 29(1996), 271-292]. The most difficult relation, the lower
bound on Km(z) — KM (x), which infinitely often exceeds a variant of
the nonprimitive-recursive slow-growing inverse of the Ackermann func-
tion (Exercise 1.7.18, page 45), is due to P. Gacs [Theoret. Comput. Sci.,
22(1983), 71-93].

In the dictionary the word ‘martingale’ is defined as (a) a betting sys-
tem; (b) part of a horse’s harness; (c) part of a sailing rig. The de-
lightful remark of Thackeray was quoted second hand from [J. Laurie
Snell, Mathematical Intelligencer, 4:3(1982)]. The mathematical study
of martingales was started by P. Levy and continued by J. Ville [Etude
Critique de la Concept du Collectif, Gauthier-Villars, 1939] in connec-
tion with von Mises’s notion of a random sequence. Ville showed that
von Mises—Wald—Church random sequences defined in Section 1.9 do not
satisfy all randomness properties; see the exercises in Section 1.9. But
he also developed martingale theory as a tool in probability theory. A
successful application of martingales was by J.L. Doob in the theory of
stochastic processes in probability theory. In connection with random
sequences in the sense of Martin-Lof, the martingale approach was first
advocated and developed by C.P. Schnorr [Lect. Notes Math., Vol. 218,
Springer-Verlag, 1971]. Schnorr gives an overview of his work in [pp.
193-210 in: Basic Problems in Methodology and Linguistics, R.E. Butts,
J. Hintikka, eds., D. Reidel, 1977]. See also [R. Heim, IEEE Trans. In-
form. Theory, IT-25(1979), 558-566] for relations between computable
payoff functions, martingales, algorithmic information content, effective
random tests, and coding theorems. The material used here is gleaned
from [P. Gécs, Lecture Notes on Descriptional Complezity and Random-
ness, Manuscript, Boston University, 1987; T.M. Cover, P. Gécs and



338

4. Algorithmic Probability

R.M. Gray, Ann. Probab., 17:3(1989), 840-865]. A survey of the basics
of algorithmic probability and its relation to universal betting and to
prefix complexity is given in [T.M. Cover and J.A. Thomas, Elements of
Information Theory, Wiley, 1991]. The election example is perhaps due
to L.A. Levin. In general, the material on exact expressions of universal
randomness p-tests is partially due to unpublished work of L.A. Levin,
and is based on [P. Gécs, Z. Math. Logik Grundl. Math., 28(1980), 385—
394; Theoret. Comput. Sci., 22(1983), 71-93] and personal suggestions of
P. Gécs. For the great developments in the last decades on the crossroads
of randomness, Kolmogorov complexity, and recursion theory, we refer
to the specialized treatments mentioned in the history and references
sections of Chapters 2 and 3.



D

Inductive Reasoning

5.1
Introduction

The Ozford English Dictionary defines induction as “the process of
inferring a general law or principle from the observations of particular
instances.”

inductive inference. On the other hand, we regard inductive reasoning
as a more general concept than inductive inference, as a process of re-
assigning a probability (or credibility) to a law or proposition from the
observation of particular instances.

In other words, inductive inference draws conclusions that accept or
reject a proposition, possibly without total justification, while induc-
tive reasoning only changes the degree of our belief in a proposition.
In deductive reasoning one derives the absolute truth or falsehood of a
proposition, such as when a mathematical proposition is proved from
axioms. In deduction one often discards information: from the conclu-
sion one cannot necessarily deduce the assumptions. In induction one
generally increases information but does not discard information: the
observed data follow from the induced law. In this view, deduction may
be considered a special form of induction.

1.1 Inductive reasoning dates back at least to the Greek philosopher of sci-
Epicurus's ence Epicurus (34272707 B.C.), who proposed the following approach:
Principle

Principle of Multiple Explanations. If more than

one theory is consistent with the observations, keep

all theories.
M. Li and P.M.B. Vitanyi, 4n Introduction to Kolmogorov Complexity and Its Applications, 339

DOI: 10.1007/978-0-387-49820-1_5, © Springer Science + Business Media, LLC 2008



340

5.

Inductive Reasoning

In his Letter to Pythocles, Epicurus motivates this as follows. There are
cases, especially of events in the heavens such as the risings and settings
of heavenly bodies and eclipses, where it is sufficient for our happiness
that several explanations be discovered. In these cases, the events “have
multiple causes of coming into being and a multiple predication of what
exists, in agreement with the perceptions.”

When several explanations are in agreement with the (heavenly) phe-
nomena, we must keep all of them for two reasons. Firstly, the degree of
precision achieved by multiple explanations is sufficient for human hap-
piness. Secondly, it would be unscientific to prefer one explanation to
another when both are equally in agreement with the phenomena. This,
he claims, would be to “abandon physical inquiry and resort to myth.”
His follower Lucretius (95-55 B.C.) considered multiple explanations as
a stage in scientific progress. According to him, to select one explana-
tion from several equally good ones is not appropriate for the person
who would “proceed step by step:”

“There are also some things for which it is not enough to state a single cause,
but several, of which one, however, is the case. Just as if you were to see the
lifeless corpse of a man lying far away, it would be fitting to state all the causes
of death in order that the single cause of this death may be stated. For you
would not be able to establish conclusively that he died by the sword or of
cold or of illness or perhaps by poison, but we know that there is something
of this kind that happened to him.” [Lucretius]

In the calculus of probabilities it has been customary to postulate the
‘principle of indifference’ or the ‘principle of insufficient reason.” The
principle of indifference considers events to be equally probable if we
have not the slightest knowledge of the conditions under which each of
them is going to occur. When there is an absolute lack of knowledge
concerning the conditions under which a die falls, we have no reason to
assume that a certain face has a higher probability of coming up than
another. Hence, we assume that each outcome of a throw of the die has
probability é

[Bertrand’s paradox| The principle of indifference is not without difficulties.
Consider the following elegant paradox. We are given a glass containing a
mixture of water and wine. All that is known is that 1 < water/wine < 2.
The principle of indifference then tells us that we should assume that the
probability that the ratio lies between 1 and g is 0.5 and the probability that
the ratio lies between g and 2 is also 0.5. Let us take a different approach.
We know ; < wine/water < 1. Hence by the same principle the probabilities
that this new ratio lies in the intervals of ; to i and i to 1 should each be
0.5. Thus, according to the second calculation, there is 0.5 probability such
that the water/wine ratio lies between 1 to é and 0.5 probability such that the
water/wine ratio lies between ‘; to 2. But the two hypotheses are incompatible.



5.1.2
Occam’s Razor

Example 5.1.1

5.1. Introduction 341

COOOCOOOCOOOCOCOCOO

FIGURE 5.1. Trivial consistent automaton

The second and more sophisticated principle is the celebrated Occam’s
razor principle commonly attributed to William of Ockham (12907-
13497). This was formulated about fifteen hundred years after Epicurus.
In sharp contrast to the principle of multiple explanations, it states:

Occam’s Razor Principle. Entities should not be
multiplied beyond necessity.

According to Bertrand Russell, the actual phrase used by William of
Ockham was, “It is vain to do with more what can be done with fewer.”
This is generally interpreted as, ‘among the theories that are consistent
with the observed phenomena, one should select the simplest theory.’
Isaac Newton (1642-1727) states the principle as rule 1 for natural phi-
losophy in the Principia:

“We are to admit no more causes of natural things than such as are both true
and sufficient to explain the appearances. To this purpose the philosophers
say that Nature does nothing in vain, and more is in vain when less will serve;
for Nature is pleased with simplicity, and affects not the pomp of superfluous
causes.” [Newton]

In Newton’s time, ‘the Philosopher’ meant Aristotle (ca. 384-322 B.C.),
who states in his Posterior Analytics, anticipating Ockham, as presum-
ably known by the latter:

“We may assume the superiority ceteris paribus [other things remaining equal]
of the demonstration which derives from fewer postulates or hypotheses—in
short, from fewer premises.” [Aristotle]

A deterministic finite automaton (DFA) A has a finite number of states,
including a starting state and some accepting states. At each step, A
reads the next input symbol and changes its state according to the cur-
rent state and the input symbol. Let us measure simplicity by the number
of states in the automaton. The sample data are

0

O— 0

0

FIGURE 5.2. Smallest consistent automaton



342

5. Inductive Reasoning

Example 5.1.2

Accepted inputs: 0, 000, 00000, 000000000;
Rejected inputs: €, 00, 0000, 000000.

There are infinitely many finite automata that are consistent with these
data. Figure 5.1 shows the trivial automaton, which simply encodes the
data. Figure 5.2 shows the simplest automaton. The marker S indicates
the starting state, and the bold circles are the accepting states.

Since the automaton in Figure 5.1 simply literally encodes the data, we
do not expect that the machine anticipates future data. On the other
hand, the automaton in Figure 5.2 makes the plausible inference that
the language accepted consists of strings of an odd number of 0’s. It
selects the simplest described division of the positive and negative data.
It therefore also anticipates data it has not yet seen and that do not log-
ically follow from the observed data. The latter appeals to our intuition
as a reasonable inference. O

A too simplistic application of Occam’s razor may also lead to nonsense, as
the following story illustrates. Once upon a time, there was a little girl named
Emma. Emma had never eaten a banana, nor had she ever been on a train.
One day she had to journey from New York to Pittsburgh by train. To relieve
Emma’s anxiety, her mother gave her a large bag of bananas. At Emma’s first
bite of her banana, the train plunged into a tunnel. At the second bite, the
train broke into daylight again. At the third bite, Lo! into a tunnel; the fourth
bite, La! into daylight again. And so on all the way to Pittsburgh. Emma,
being a bright little girl, told her grandpa at the station, “Every odd bite of
a banana makes you blind; every even bite puts things right again.” Freely
adapted from [N.R. Hanson, Perception and Discovery, 1969, Freeman and
Cooper, p. 359].

In the learning automaton example, it turns out that one can prove the
following: If sufficient data are drawn randomly from any fixed distribu-
tion, then with high probability the smallest consistent automaton (or a
reasonably small automaton) will with high probability correctly predict
acceptance or rejection of most data that are drawn afterward from this
distribution.

In spite of common intuitive acceptance of Occam’s razor, the notion
of simplicity remains a highly controversial and elusive idea. Things are
subtler than they seem. For example, consider the following seemingly
innocent rule:

Select a hypothesis that is as well in agreement with
the observed value as possible; if there is any choice
left, choose the simplest possible hypothesis.



5.1.3
Bayes's Rule

5.1. Introduction 343

Let there be an unknown number of white balls and black balls in a
sealed urn. We randomly draw one ball at a time, note its color and
replace it, and shake the urn thoroughly. After n draws we must decide
what fraction of the balls in the urn is white. The possible hypotheses
state that some rational fraction r of balls in the urn is white, where
0 < r < 1. By the above rule, if in n draws m white balls are selected,
then we should formulate the hypothesis » = m/n. Let there be é white
and 2 black balls. Then the probability of getting the true hypothesis
r = z is zero if n is not divisible by 3, and it tends to 0, even under
the assumption that n is divisible by 3. Even for a sequence of draws
for which the process does converge, convergence may be too slow for
practical use. O

We still have not defined ‘simplicity.” How does one define it? Is 411 simpler
than 110? Is é simpler than g? Note that saying that there are é white
balls in the urn is the same as that there are g black balls. If one wants to

infer polynomials, is £'°°4+1 more complicated than 1327 +52%+7z+117?

Can a thing be simple under one definition of simplicity and not simple
under another? The contemporary philosopher Karl R. Popper (1902—
1994) has said that Occam’s razor is without sense, since there is no
objective criterion for simplicity. Popper states that every such proposed
criterion will necessarily be biased and subjective.

It is widely believed that the better a theory compresses the data con-
cerning some phenomenon under investigation, the better we learn, gen-
eralize, and the better the theory predicts unknown data. This is the
basis of the Occam’s razor paradigm about simplicity. Making these
ideas rigorous involves the length of the shortest effective description
of the theory, its Kolmogorov complexity, which is the size in bits of
the shortest binary program to compute a description of the theory
on a universal computer. This complexity, although defined in terms of
a particular machine model, is independent up to an additive constant
and acquires an asymptotically universal and absolute character through
Church’s thesis, from the ability of universal machines to simulate one
another and execute any effective process. This train of thought will lead
us to a rigorous mathematical relation between data compression and
learning.

In contrast to Epicurus and Ockham, Thomas Bayes took a probabilistic
view of nature. Assume that we have observational data D.

Bayes’s Rule. The probability of hypothesis H be-
ing true is proportional to the learner’s initial belief
in H (the prior probability) multiplied by the condi-
tional probability of D given H.



344

5.

Inductive Reasoning

The two fundamental components in the general inductive reasoning theory we
are developing are Bayes’s formula and the universal prior probability. They
both bear the same characteristics: superficially trivial but philosophically
deep. We have studied the mathematical theory of the universal distribution
in Chapter 4. In Section 5.2 we will develop the underlying mathematics and
validation of Solomonoft’s predictive theory. But first we develop Bayesian
theory starting from the motivation in Section 1.10 and the formal definition
in Section 1.6.

Consider a situation in which one has a set of observations of some
phenomenon and also a (possibly countably infinite) set of hypotheses
that are candidates to explain the phenomenon. For example, we are
given a coin and we flip it 100 times. We want to identify the probability
that the coin has outcome ‘heads’ in a single coin flip. That is, we want
to find the bias of the coin. The set of possible hypotheses is uncountably
infinite if we allow each real bias in [0, 1], and countably infinite if we
allow each rational bias in [0, 1].

For each hypothesis H we would like to assess the probability that H is
the true hypothesis, given the observation of D. This quantity, Pr(H|D),
can be described and manipulated formally in the following way:

Let S be a discrete sample space, and let D denote a sample of out-
comes, say experimental data concerning a phenomenon under investi-
gation. Let Hy, Hs, ... be an enumeration of countably many hypotheses
concerning this phenomenon, say each H; is a probability distribution
over S. The list H = {Hy, Ha,...} is called the hypothesis space. The
hypotheses H; are exhaustive (at least one of them is true) and mutually
exclusive (at most one of them is true).

For example, say the hypotheses enumerate the possible rational (or
computable) biases of the coin. As another possibility there may be only
two possible hypotheses: hypothesis H;, which says that the coin has
bias 0.2, and hypothesis Hs, which puts the bias at 0.8.

Let the prior distribution of the probabilities P(H) of the various pos-
sible hypotheses in H, and the data sample D, be given or prescribed.
Because the list of hypotheses is exhaustive and mutually exclusive we
have )", P(H;) = 1. In the context of Bayesian reasoning we will distin-
guish between the notation P for probabilities that are prescribed (can
be chosen freely), and Pr for a probabilities that are determined by (and
often can be computed from) the prescribed items. Thus, we assume that
for all H € H we can compute the probability Pr(D|H) that sample D
arises if H is the case. Then we can also compute (or approximate in
case the number of hypotheses with nonzero probability is infinite) the
probability Pr(D) that sample D arises at all

Pr(D) = Z Pr(D|H;)P(H;).



Example 5.1.3

5.1. Introduction 345

From the definition of conditional probability it is easy to derive Bayes’s
rule (Example 1.6.3, page 19),

Pr(D|H;)P(H;)

pr(a|p) = L

(5.1)

and substitution yields

_ Pr(D|H;)P(H;)
Pr(H;|D) = >, Pr(D|H;)P(H;)’

Despite the fact that Bayes’s rule essentially rewrites the definition of
conditional probability, and nothing more, it is its interpretation and ap-
plication that are profound and controversial. The different H’s represent
the possible alternative hypotheses concerning the phenomenon we wish
to discover. The term D represents the empirically or otherwise known
data concerning this phenomenon. The term Pr(D), the probability of
data D, is considered as a normalizing factor so that ), Pr(H;|D) = 1.

The term P(H;) is called the a priori, initial, or prior probability of
hypothesis H;. It represents the probability of H; being true before we
have obtained any data. The prior probability is often considered as the
learner’s initial degree of belief in the hypothesis concerned.

The term Pr(H;|D) is called the final, inferred, or posterior probability,
which represents the adapted probability of H; after seeing the data D.
In essence, Bayes’s rule is a mapping from prior probability P(H;) to
posterior probability Pr(H;|D) determined by data D.

Continuing to obtain more and more data, and repeatedly applying
Bayes’s rule using the previously obtained inferred probability as the
current prior, eventually the inferred probability will concentrate more
and more on the true hypothesis. It is important to understand that one
can find the true hypothesis also, using many examples, by the law of
large numbers. In general, the problem is not so much that in the limit
the inferred probability would not concentrate on the true hypothesis,
but that the inferred probability gives as much information as possible
about the possible hypotheses from only a limited number of data. Given
the prior probability of the hypotheses, it is easy to obtain the inferred
probability, and therefore to make informed decisions.

In many learning situations, if the data are consistent with the hypoth-
esis H;, in the strict sense of being forced by it, then Pr(D|H;) = 1.
Example: outcome of a throw with a die is ‘even’ while the hypoth-
esis says ‘six.” If the data are inconsistent with the hypothesis, then
Pr(D|H;) = 0. We assume that there is no noise that distorts the data.

We reconsider the example given in Section 1.9. An urn contains many
dice with different biases of outcome 6 in a random throw. The set of



346

5.

Inductive Reasoning

biases is A. Assume that the difference between each pair of biases is
greater than 26 with 0 > 0 and the biases are properly between 0 and 1.
Randomly drawing a die from the urn, our task is to determine its bias.
This is done by experimenting. We throw the die n times, independently.
If 6 shows up m times, then our learning algorithm chooses the least bias
in A that is nearest to m/n.

Let H, be the event of drawing a die with bias p for outcome 6 from
an urn. A success is a throw with outcome 6. For ¢ € A, let Dy be an
example of experimental data such that m successes (6’s) were observed
out of n throws and |(m/n) — ¢q| < §. Then,

Pr(Dq|HP)P(Hp)

Pr(Hp|Dq) = Pr(Dq) ’

where Pr(Dg) = >, 4 Pr(Dg|H;) P(H;). With H), being true, the proba-
bility of m successes out of n throws is given by the binomial distribution,
Equation 1.6 on page 61, as

(Z)pm(l -p)" "

The deviation € (where 0 < € < 1) from the average number of successes
pn in a series of n experiments is analyzed by estimating the combined
tail probability

Pim —pnl > epn)= 3 (;)pm(l—p)"m

|m—pn|>epn

of the binomial distribution. The estimates are given by Chernoff’s
bound of Lemma 1.10.1 on page 61,

P(m — pn| > epn) < 2e€Pn/3,

Let p be the true attribute of the die we have drawn, and define A(p) =
A —{p}. For every q € A(p), the value of m/n to force us to infer a bias
of ¢ instead of p must deviate from p by more than §. Thus, to select
some hypothesis D, instead of the true hypothesis D,, we must have
|m/n — p| > 6. By Chernoff’s bound, with ¢ = §/p, we obtain

P (‘m —p‘ > 5) < 9=0*n/3p,
n

Therefore, } -, 4, Pr(Dq|Hp) < 27%n) (We have assumed that |p —
q| > 26 for every ¢ € A(p). and 0 < p,q < 1.) Hence, the probabil-
ity Pr(D,|H,) > 1 — 1/2%(_ Altogether this means that the poste-
rior probability Pr(H,|D,) goes to 1 exponentially fast with n (because
Pr(H,|D,) goes to 0 as fast, for g € A(p)).



5.1.4
Hume on
Induction

5.15
Hypothesis
Identification
and Prediction
by Compression

5.1. Introduction 347

From the Bayesian formula one can see that if the number of trials is
small, then the posterior probability Pr(H,|D,) may strongly depend on
the prior probability P(H,). When n grows large, the posterior proba-
bility condenses more and more around m/n. <

In real-world problems, the prior probabilities may be unknown, incom-
putable, or conceivably may not exist. (What is the prior probability of
use of words in written English? There are many different sources of dif-
ferent social backgrounds living in different ages.) This problem would
be solved if we could find a single probability distribution to use as the
prior distribution in each different case, with approximately the same
result as if we had used the real distribution. Surprisingly, this turns
out to be possible up to some mild restrictions on the class of prior
distributions being taken into account.

The philosopher D. Hume (1711-1776) argued that true induction is im-
possible because we can reach conclusions only by using known data and
methods. Therefore, the conclusion is logically already contained in the
start configuration. Consequently, the only form of induction possible is
deduction. Philosophers have tried to find a way out of this determin-
istic conundrum by appealing to probabilistic reasoning such as using
Bayes’s rule. One problem with this is where the prior probability one
uses has to come from. Unsatisfactory solutions have been proposed by
philosophers such as R. Carnap (1891-1970) and K.R. Popper.

However, R.J. Solomonoff’s inductive method of Section 5.2, of which
we have already seen a glimpse in Section 1.10, may give a rigorous and
satisfactory solution to this old problem in philosophy.

Essentially, combining the ideas of Epicurus, Ockham, Bayes, and mod-
ern computability theory, Solomonoff has successfully invented a perfect
theory of induction. It incorporates Epicurus’s multiple explanations
idea, since no hypothesis that is still consistent with the data will be
eliminated. It incorporates Ockham’s simplest explanation idea, since
the hypotheses with low Kolmogorov complexity are more probable. The
inductive reasoning is performed by means of the mathematically sound
rule of Bayes.

Our aim is to demonstrate that data compression is the answer to many
questions about how to proceed in inductive reasoning. Given a body
of data concerning some phenomenon under investigation, we want to
select the most plausible hypothesis from among all appropriate hy-
potheses or predict future data. It is widely believed that the better a
theory compresses the data concerning some phenomenon under inves-
tigation, the better we have learned and eneralized, and the better the
theory predicts unknown data, following the Occam’s razor paradigm



348 5. Inductive Reasoning

5.2
Solomonoff’s
Theory of
Prediction

about simplicity. This belief is vindicated in practice but apparently
has not been rigorously proved before. Making these ideas rigorous in-
volves the length of the shortest effective description of some object:
its Kolmogorov complexity. We treat the relation between data com-
pression and learning and show that compression is almost always the
best strategy, both in hypothesis identification using the minimum de-
scription length (MDL) principle and in prediction methods in the style
of R.J. Solomonoff. The flavor of the argument is that among all hy-
potheses consistent with the data, the one with least Kolmogorov com-
plexity is the most likely one. Prediction in Solomonoff’s manner uses
a complexity-weighted combination of all hypotheses in the form of the
universal prior M(:) (Section 5.2). Applications of the universal prior
to recursion theory are given in Section 5.2.5, and to computer science
in Section 5.3. Hypothesis identification by minimum description length
(Section 5.4) balances the complexity of the model—and its tendency
for overfitting—against the preciseness of fitting the data—the error of
the hypothesis. Nonprobabilistic statistics in Section 5.5 gives a detailed
view of all stochastic properties of data, and, among others, a rigorous
foundation and justification of MDL.

Let us consider theory formation in science as the process of obtaining
a compact description of past observations together with prediction