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Preface to the

First Edition

“We are to admit no more causes of natural things” (as we are told
by Newton) than “such as are both true and sufficient to explain their
appearances.” This central theme is basic to the pursuit of science, and
goes back to the principle known as Occam’s razor: “if presented with
a choice between indifferent alternatives, then one ought to select the
simplest one.” Unconsciously or explicitly, informal applications of this
principle in science and mathematics abound.

The conglomerate of different research threads drawing on an objec-
tive and absolute form of this approach appears to be part of a single
emerging discipline, which will become a major applied science like in-
formation theory or probability theory. We aim at providing a unified
and comprehensive introduction to the central ideas and applications of
this discipline.

Intuitively, the amount of information in a finite string is the size (num-
ber of binary digits, or bits) of the shortest program that without ad-
ditional data, computes the string and terminates. A similar definition
can be given for infinite strings, but in this case the program produces
element after element forever. Thus, a long sequence of 1’s such as

11111 . . .1
︸ ︷︷ ︸

10,000 times

contains little information because a program of size about log 10,000
bits outputs it:

for i := 1 to 10,000

print 1

Likewise, the transcendental number π = 3.1415 . . . , an infinite sequence
of seemingly random decimal digits, contains but a few bits of informa-
tion. (There is a short program that produces the consecutive digits of π
forever.) Such a definition would appear to make the amount of informa-
tion in a string (or other object) depend on the particular programming
language used.

Fortunately, it can be shown that all reasonable choices of programming
languages lead to quantification of the amount of absolute information in
individual objects that is invariant up to an additive constant. We call
this quantity the ‘Kolmogorov complexity’ of the object. If an object
contains regularities, then it has a shorter description than itself. We
call such an object ‘compressible.’

The application of Kolmogorov complexity takes a variety of forms, for
example, using the fact that some strings are extremely compressible;
using the compressibility of strings as a selection criterion; using the fact
that many strings are not compressible at all; and using the fact that
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some strings may be compressed in principle, but that it takes a lot of
effort to do so.

The theory dealing with the quantity of information in individual objects
goes by names such as ‘algorithmic information theory,’ ‘Kolmogorov
complexity,’ ‘K-complexity,’ ‘Kolmogorov–Chaitin randomness,’ ‘algo-
rithmic complexity,’ ‘stochastic complexity,’ ‘descriptional complexity,’
‘minimum description length,’ ‘program-size complexity,’ and others.
Each such name may represent a variation of the basic underlying idea
or a different point of departure. The mathematical formulation in each
case tends to reflect the particular traditions of the field that gave birth
to it, be it probability theory, information theory, theory of computing,
statistics, or artificial intelligence.

This raises the question about the proper name for the area. Although
there is a good case to be made for each of the alternatives listed above,
and a name like ‘Solomonoff–Kolmogorov–Chaitin complexity’ would
give proper credit to the inventors, we regard ‘Kolmogorov complex-
ity’ as well entrenched and commonly understood, and we shall use it
hereafter.

The mathematical theory of Kolmogorov complexity contains deep and
sophisticated mathematics. Yet one needs to know only a small amount
of this mathematics to apply the notions fruitfully in widely divergent
areas, from sorting algorithms to combinatorial theory, and from induc-
tive reasoning and machine learning to dissipationless computing.

Formal knowledge of basic principles does not necessarily imply the
wherewithal to apply it, perhaps especially so in the case of Kolmogorov
complexity. It is our purpose to develop the theory in detail and outline
a wide range of illustrative applications. In fact, while the pure theory of
the subject will have its appeal to the select few, the surprisingly large
field of its applications will, we hope, delight the multitude.

The mathematical theory of Kolmogorov complexity is treated in Chap-
ters 2, 3, and 4; the applications are treated in Chapters 5 through 8.
Chapter 1 can be skipped by the reader who wants to proceed immedi-
ately to the technicalities. Section 1.1 is meant as a leisurely, informal
introduction and peek at the contents of the book. The remainder of
Chapter 1 is a compilation of material on diverse notations and disci-
plines drawn upon.

We define mathematical notions and establish uniform notation to be
used throughout. In some cases we choose nonstandard notation since
the standard one is homonymous. For instance, the notions ‘absolute
value,’ ‘cardinality of a set,’ and ‘length of a string’ are commonly de-
noted in the same way as | · |. We choose distinguishing notations | · |,
d(·), and l(·), respectively.
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Briefly, we review the basic elements of computability theory and prob-
ability theory that are required. Finally, in order to place the subject
in the appropriate historical and conceptual context we trace the main
roots of Kolmogorov complexity.

This way the stage is set for Chapters 2 and 3, where we introduce the
notion of optimal effective descriptions of objects. The length of such a
description (or the number of bits of information in it) is its Kolmogorov
complexity. We treat all aspects of the elementary mathematical theory
of Kolmogorov complexity. This body of knowledge may be called algo-
rithmic complexity theory. The theory of Martin-Löf tests for random-
ness of finite objects and infinite sequences is inextricably intertwined
with the theory of Kolmogorov complexity and is completely treated.
We also investigate the statistical properties of finite strings with high
Kolmogorov complexity. Both of these topics are eminently useful in
the applications part of the book. We also investigate the recursion-
theoretic properties of Kolmogorov complexity (relations with Gödel’s
incompleteness result), and the Kolmogorov complexity version of infor-
mation theory, which we may call ‘algorithmic information theory’ or
‘absolute information theory.’

The treatment of algorithmic probability theory in Chapter 4 presup-
poses Sections 1.6, 1.11.2, and Chapter 3 (at least Sections 3.1 through
3.4). Just as Chapters 2 and 3 deal with the optimal effective description
length of objects, we now turn to optimal (greatest) effective probabil-
ity of objects. We treat the elementary mathematical theory in detail.
Subsequently, we develop the theory of effective randomness tests under
arbitrary recursive distributions for both finite and infinite sequences.
This leads to several classes of randomness tests, each of which has a
universal randomness test. This is the basis for the treatment of a math-
ematical theory of inductive reasoning in Chapter 5 and the theory of
algorithmic entropy in Chapter 8.

Chapter 5 develops a general theory of inductive reasoning and ap-
plies the developed notions to particular problems of inductive infer-
ence, prediction, mistake bounds, computational learning theory, and
minimum description length induction in statistics. This development
can be viewed both as a resolution of certain problems in philosophy
about the concept and feasibility of induction (and the ambiguous no-
tion of ‘Occam’s razor’), as well as a mathematical theory underlying
computational machine learning and statistical reasoning.

Chapter 6 introduces the incompressibility method. Its utility is demon-
strated in a plethora of examples of proving mathematical and com-
putational results. Examples include combinatorial properties, the time
complexity of computations, the average-case analysis of algorithms such
as Heapsort, language recognition, string matching, pumping lemmas in
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formal language theory, lower bounds in parallel computation, and Tur-
ing machine complexity. Chapter 6 assumes only the most basic notions
and facts of Sections 2.1, 2.2, 3.1, 3.3.

Some parts of the treatment of resource-bounded Kolmogorov com-
plexity and its many applications in computational complexity theory
in Chapter 7 presuppose familiarity with a first-year graduate theory
course in computer science or basic understanding of the material in
Section 1.7.4. Sections 7.5 and 7.7 on universal optimal search and log-
ical depth only require material covered in this book. The section on
logical depth is technical and can be viewed as a mathematical basis
with which to study the emergence of life-like phenomena—thus form-
ing a bridge to Chapter 8, which deals with applications of Kolmogorov
complexity to relations between physics and computation.

Chapter 8 presupposes parts of Chapters 2, 3, 4, the basics of information
theory as given in Section 1.11, and some familiarity with college physics.
It treats physical theories like dissipationless reversible computing, in-
formation distance and picture similarity, thermodynamics of computa-
tion, statistical thermodynamics, entropy, and chaos from a Kolmogorov
complexity point of view. At the end of the book there is a comprehen-
sive listing of the literature on theory and applications of Kolmogorov
complexity and a detailed index.

Acknowledgments We thank Greg Chaitin, Péter Gács, Leonid Levin, and Ray Solomonoff
for taking the time to tell us about the early history of our subject and
for introducing us to many of its applications. Juris Hartmanis and Joel
Seiferas initiated us into Kolmogorov complexity in various ways.

Many people gave substantial suggestions for examples and exercises,
or pointed out errors in a draft version. Apart from the people already
mentioned, these are, in alphabetical order, Eric Allender, Charles Ben-
nett, Piotr Berman, Robert Black, Ron Book, Dany Breslauer, Harry
Buhrman, Peter van Emde Boas, William Gasarch, Joe Halpern, Jan
Heering, G. Hotz, Tao Jiang, Max Kanovich, Danny Krizanc, Evange-
los Kranakis, Michiel van Lambalgen, Luc Longpré, Donald Loveland,
Albert Meyer, Lambert Meertens, Ian Munro, Pekka Orponen, Ramamo-
han Paturi, Jorma Rissanen, Jeff Shallit, A.Kh. Shen’, J. Laurie Snell,
Th. Tsantilas, John Tromp, Vladimir Uspensky, N.K. Vereshchagin, Os-
amu Watanabe, and Yaacov Yesha. Apart from them, we thank the many
students and colleagues who contributed to this book.

We especially thank Péter Gács for the extraordinary kindness of read-
ing and commenting in detail on the entire manuscript, including the
exercises. His expert advice and deep insight saved us from many pit-
falls and misunderstandings. Piergiorgio Odifreddi carefully checked and
commented on the first three chapters. Parts of the book have been
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tested in one-semester courses and seminars at the University of Ams-
terdam in 1988 and 1989, the University of Waterloo in 1989, Dartmouth
College in 1990, the Universitat Polytècnica de Catalunya in Barcelona
in 1991/1992, the University of California at Santa Barbara, Johns Hop-
kins University, and Boston University in 1992/1993.

This document has been prepared using the LATEX system. We thank
Donald Knuth for TEX, Leslie Lamport for LATEX, and Jan van der Steen
at CWI for online help. Some figures were prepared by John Tromp using
the xpic program.

The London Mathematical Society kindly gave permission to reproduce
a long extract by A.M. Turing. The Indian Statistical Institute, through
the editor of Sankhyā, kindly gave permission to quote A.N. Kolmogorov.

We gratefully acknowledge the financial support by NSF Grant DCR-
8606366, ONR Grant N00014-85-k-0445, ARO Grant DAAL03-86-K-
0171, the Natural Sciences and Engineering Research Council of Canada
through operating grants OGP-0036747, OGP-046506, and International
Scientific Exchange Awards ISE0046203, ISE0125663, and NWO Grant
NF 62-376. The book was conceived in late Spring 1986 in the Valley of
the Moon in Sonoma County, California. The actual writing lasted on
and off from autumn 1987 until summer 1993.

One of us [PV] gives very special thanks to his lovely wife Pauline
for insisting from the outset on the significance of this enterprise. The
Aiken Computation Laboratory of Harvard University, Cambridge, Mas-
sachusetts, USA; the Computer Science Department of York University,
Ontario, Canada; the Computer Science Department of the University
of Waterloo, Ontario, Canada; and CWI, Amsterdam, the Netherlands
provided the working environments in which this book could be written.

Preface to the

Second

Edition

When this book was conceived ten years ago, few scientists realized
the width of scope and the power for applicability of the central ideas.
Partially because of the enthusiastic reception of the first edition, open
problems have been solved and new applications have been developed.
We have added new material on the relation between data compression
and minimum description length induction, computational learning, and
universal prediction; circuit theory; distributed algorithmics; instance
complexity; CD compression; computational complexity; Kolmogorov
random graphs; shortest encoding of routing tables in communication
networks; resource-bounded computable universal distributions; average
case properties; the equality of statistical entropy and expected Kol-
mogorov complexity; and so on. Apart from being used by researchers
and as a reference work, the book is now commonly used for graduate
courses and seminars. In recognition of this fact, the second edition has
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been produced in textbook style. We have preserved as much as possible
the ordering of the material as it was in the first edition. The many ex-
ercises bunched together at the ends of some chapters have been moved
to the appropriate sections. The comprehensive bibliography on Kol-
mogorov complexity at the end of the book has been updated, as have
the ‘History and References’ sections of the chapters. Many readers were
kind enough to express their appreciation for the first edition and to send
notification of typos, errors, and comments. Their number is too large
to thank them individually, so we thank them all collectively.

Preface to the

Third Edition

The general area of reasoning based on shortest description length con-
tinues to coalesce. Simultaneously, the emphasis in handling of informa-
tion in computers and communication networks continues to move from
being random-variable based to being individual-outcome based. Prac-
tically speaking, this has resulted in a number of spectacular real-life
applications of Kolmogorov complexity, where the latter is replaced by
compression programs. The general area has branched out into subareas,
each with its own specialized books or treatments. This work, through
its subsequent editions, has been both a catalyst and an outcome of
these trends. The third edition endeavors to capture the essence of the
state of the art at the end of the first decade of the new millennium. It
is a corrected and greatly expanded version of the earlier editions. Many
people contributed, and we thank them all collectively.

How to Use

This Book

The technical content of this book consists of four layers. The main
text is the first layer. The second layer consists of examples in the main
text. These elaborate the theory developed from the main theorems. The
third layer consists of nonindented, smaller-font paragraphs interspersed
with the main text. The purpose of such paragraphs is to have an ex-
planatory aside, to raise some technical issues that are important but
would distract attention from the main narrative, or to point to alter-
native or related technical issues. Much of the technical content of the
literature on Kolmogorov complexity and related issues appears in the
fourth layer, the exercises. When the idea behind a nontrivial exercise is
not our own, we have tried to give credit to the person who originated
the idea. Corresponding references to the literature are usually given in
comments to an exercise or in the historical section of that chapter.

Starred sections are not really required for the understanding of the se-
quel and can be omitted at first reading. The application sections are not
starred. The exercises are grouped together at the end of main sections.
Each group relates to the material in between it and the previous group.
Each chapter is concluded by an extensive historical section with full
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references. For convenience, all references in the text to the Kolmogorov
complexity literature and other relevant literature are given in full where
they occur. The book concludes with a References section intended as a
separate exhaustive listing of the literature restricted to the theory and
the direct applications of Kolmogorov complexity. There are reference
items that do not occur in the text and text references that do not occur
in the References. We added a very detailed Index combining the index
to notation, the name index, and the concept index. The page number
where a notion is defined first is printed in boldface. The initial part of
the Index is an index to notation. Names such as ‘J. von Neumann’ are
indexed European style ‘Neumann, J. von.’

The exercises are sometimes trivial, sometimes genuine exercises, but
more often compilations of entire research papers or even well-known
open problems. There are good arguments to include both: the easy
and real exercises to let the student exercise his comprehension of the
material in the main text; the contents of research papers to have a com-
prehensive coverage of the field in a small number of pages; and research
problems to show where the field is (or could be) heading. To save the
reader the problem of having to determine which is which: “I found this
simple exercise in number theory that looked like Pythagoras’s Theorem.
Seems difficult.” “Oh, that is Fermat’s Last Theorem; it took three hun-
dred and fifty years to solve it . . . ,” we have adopted the system of rating
numbers used by D.E. Knuth [The Art of Computer Programming, Vol-
ume 1: Fundamental Algorithms, Addison-Wesley, 1973. Second Edition,
pp. xvii–xix]. The interpretation is as follows:

00 A very easy exercise that can be answered immediately, from the
top of your head, if the material in the text is understood.

10 A simple problem to exercise understanding of the text. Use fifteen
minutes to think, and possibly pencil and paper.

20 An average problem to test basic understanding of the text and
may take one or two hours to answer completely.

30 A moderately difficult or complex problem taking perhaps several
hours to a day to solve satisfactorily.

40 A quite difficult or lengthy problem, suitable for a term project,
often a significant result in the research literature. We would expect
a very bright student or researcher to be able to solve the problem
in a reasonable amount of time, but the solution is not trivial.

50 A research problem that, to the authors’ knowledge, is open at the
time of writing. If the reader has found a solution, he is urged to
write it up for publication; furthermore, the authors of this book
would appreciate hearing about the solution as soon as possible.
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This scale is logarithmic: a problem of rating 17 is a bit simpler than
average. Problems with rating 50, subsequently solved, will appear in
a next edition of this book with rating about 45. Rates are sometimes
based on the use of solutions to earlier problems. The rating of an ex-
ercise is based on that of its most difficult item, but not on the number
of items. Assigning accurate rating numbers is impossible—one man’s
meat is another man’s poison—and our rating will differ from ratings by
others.

An orthogonal rating M implies that the problem involves more math-
ematical concepts and motivation than is necessary for someone who
is primarily interested in Kolmogorov complexity and applications. Ex-
ercises marked HM require the use of calculus or other higher mathe-
matics not developed in this book. Some exercises are marked with a •;
and these are especially instructive or useful. Exercises marked O are
problems that are, to our knowledge, unsolved at the time of writing.
The rating of such exercises is based on our estimate of the difficulty of
solving them. Obviously, such an estimate may be totally wrong.

Solutions to exercises, or references to the literature where such solutions
can be found, appear in the Comments paragraph at the end of each
exercise. Nobody is expected to be able to solve all exercises.

The material presented in this book draws on work that until now was
available only in the form of advanced research publications, possibly not
translated into English, or was unpublished. A large portion of the ma-
terial is new. The book is appropriate for either a one- or a two-semester
introductory course in departments of mathematics, computer science,
physics, probability theory and statistics, artificial intelligence, cognitive
science, and philosophy. Outlines of possible one-semester courses that
can be taught using this book are presented below.

Fortunately, the field of descriptional complexity is fairly young and the
basics can still be comprehensively covered. We have tried to the best of
our abilities to read, digest, and verify the literature on the topics covered
in this book. We have taken pains to establish correctly the history of the
main ideas involved. We apologize to those who have been unintention-
ally slighted in the historical sections. Many people have generously and
selflessly contributed to verify and correct drafts of the various editions
of this book. We thank them below and apologize to those we forgot. In
a work of this scope and size there are bound to remain factual errors
and incorrect attributions. We greatly appreciate notification of errors
or any other comments the reader may have, preferably by email, in
order that future editions may be corrected.
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Outlines of

One-Semester

Courses

We have mapped out a number of one-semester courses on a variety of
topics. These topics range from basic courses in theory and applications
to special-interest courses in learning theory, randomness, or information
theory using the Kolmogorov complexity approach.

Prerequisites: Sections 1.1, 1.2, 1.7 (except Section 1.7.4).

I. Course on
Basic
Algorithmic
Complexity and
Applications

Type of Complexity Theory Applications

plain complexity 2.1, 2.2, 2.3 4.4, Chapter 6

prefix complexity 1.11.2, 3.1 5.1, 5.1.3, 5.2, 5.4
3.3, 3.4 8.2, 8.3, 8.4

resource-bounded complexity 7.1, 7.5, 7.7 7.2, 7.3, 7.6, 7.7

II. Course on
Algorithmic
Complexity

Type of Complexity Basics Randomness Algorithmic
Properties

state × symbol 1.12

plain complexity 2.1, 2.2, 2.3 2.4 2.7

prefix complexity 1.11.2, 3.1 3.5 3.7, 3.8
3.3, 3.4

monotone complexity 4.5 (intro) 4.5.4

III. Course on
Algorithmic
Randomness

Randomness Tests Complexity Finite Infinite
According to Used Strings Sequences

von Mises 1.9

Martin-Löf 2.1, 2.2 2.4 2.5

prefix complexity 1.11.2, 3.1, 3.3, 3.4 3.5 3.6, 4.5.6

general discrete 1.6 (intro), 4.3.1 4.3

general continuous 1.6 (intro), 4.5
4.5 (intro), 4.5.1

IV. Course on
Algorithmic
Information
Theory and
Applications

Type of Complexity Basics Entropy Symmetry of
Used Information

classical 1.11 1.11 1.11
information theory

plain complexity 2.1, 2.2 2.8 2.8

prefix complexity 3.1, 3.3, 3.4 8.1 3.8, 3.9.1

resource-bounded 7.1 Exercises 7.1.12
7.1.13

applications 8.3 8.1.1, 8.5, Theorem 7.2.6
8.4 8.6 Exercise 6.10.15
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V. Course on
Algorithmic
Probability
Theory,
Learning,
Inference, and
Prediction

Theory Basics Universal Applications
Distribution to Inference

classical 1.6, 1.11.2 1.6
probability

algorithmic 2.1, 2.2, 2.3 8
complexity 3.1, 3.3, 3.4

algorithmic discrete 4.2, 4.1 4.3.1, 4.3.2
probability 4.3 (intro) 4.3.3, 4.3.4, 4.3.6

algorithmic contin. 4.5 (intro) 4.5.1, 4.5.2 5.2
probability 4.5.4, 4.5.8

Solomonoff’s 5.1, 5.1.3, 5.2 5.2.5, 5.3.3, 5.4 5.1.3
inductive inference 5.3, 8 5.4.5

MDL and nonproba- 5.4 5.4, 5.5
bilistic statistics

VI. Course on
the
Incompressibility
Method

Chapter 2 (Sections 2.1, 2.2, 2.4, 1.11.5, 2.8), Chapter 3 (mainly Sec-
tions 3.1, 3.3), Section 4.4, and Chapters 6 and 7. The course covers the
basics of the theory with many applications in proving upper and lower
bounds on the running time and space use of algorithms.

VII. Course on
Randomness,
Information, and
Physics

Course III and Chapter 8. In physics the applications of Kolmogorov
complexity include theoretical illuminations of foundational issues. For
example, the approximate equality of statistical entropy and expected
Kolmogorov complexity, the nature of entropy, a fundamental resolution
of the Maxwell’s Demon paradox. However, also more concrete applica-
tions such as information distance, normalized information distance and
its applications to phylogeny, clustering, classification, and relative se-
mantics of words and phrases, as well as thermodynamics of computation
are covered.
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1

Preliminaries

1.1

A Brief

Introduction

Suppose we want to describe a given object by a finite binary string. We
do not care whether the object has many descriptions; however, each
description should describe but one object. From among all descriptions
of an object we can take the length of the shortest description as a
measure of the object’s complexity. It is natural to call an object ‘simple’
if it has at least one short description, and to call it ‘complex’ if all of
its descriptions are long.

But now we are in danger of falling into the trap so eloquently described
in the Richard–Berry paradox, where we define a natural number as
“the least natural number that cannot be described in fewer than twenty
words.” If this number does exist, we have just described it in thirteen
words, contradicting its definitional statement. If such a number does not
exist, then all natural numbers can be described in fewer than twenty
words. We need to look very carefully at the notion of ‘description.’

Assume that each description describes at most one object. That is,
there be a specification method D that associates at most one object
x with a description y. This means that D is a function from the set
of descriptions, say Y , into the set of objects, say X . It seems also
reasonable to require that for each object x in X , there be a description
y in Y such that D(y) = x. (Each object has a description.) To make
descriptions useful we like them to be finite. This means that there are
only countably many descriptions. Since there is a description for each
object, there are also only countably many describable objects. How do
we measure the complexity of descriptions?

M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 1
DOI: 10.1007/978-0-387-49820-1_1,  © Springer Science + Business Media, LLC 2008 



2 1. Preliminaries

Taking our cue from the theory of computation, we express descriptions
as finite sequences of 0’s and 1’s. In communication technology, if the
specification method D is known to both a sender and a receiver, then
a message x can be transmitted from sender to receiver by transmitting
the sequence of 0’s and 1’s of a description y with D(y) = x. The cost of
this transmission is measured by the number of occurrences of 0’s and
1’s in y, that is, by the length of y. The least cost of transmission of x
is given by the length of a shortest y such that D(y) = x. We choose
this least cost of transmission as the descriptional complexity of x under
specification method D.

Obviously, this descriptional complexity of x depends crucially on D.
The general principle involved is that the syntactic framework of the
description language determines the succinctness of description.

In order to objectively compare descriptional complexities of objects, to
be able to say “x is more complex than z,” the descriptional complexity
of x should depend on x alone. This complexity can be viewed as related
to a universal description method that is a priori assumed by all senders
and receivers. This complexity is optimal if no other description method
assigns a lower complexity to any object.

We are not really interested in optimality with respect to all description
methods. For specifications to be useful at all, it is necessary that the
mapping from y to D(y) be executable in an effective manner. That
is, it can at least in principle be performed by humans or machines.
This notion has been formalized as that of partial recursive functions.
According to generally accepted mathematical viewpoints it coincides
with the intuitive notion of effective computation.

The set of partial recursive functions contains an optimal function that
minimizes description length of every other such function. We denote
this function by D0. Namely, for any other recursive function D, for all
objects x, there is a description y of x under D0 that is shorter than any
description z of x under D. (That is, shorter up to an additive constant
that is independent of x.) Complexity with respect to D0 minorizes the
complexities with respect to all partial recursive functions.

We identify the length of the description of x with respect to a fixed spec-
ification function D0 with the ‘algorithmic (descriptional) complexity’
of x. The optimality of D0 in the sense above means that the complexity
of an object x is invariant (up to an additive constant independent of
x) under transition from one optimal specification function to another.
Its complexity is an objective attribute of the described object alone: it
is an intrinsic property of that object, and it does not depend on the
description formalism. This complexity can be viewed as absolute infor-
mation content: the amount of information that needs to be transmitted
between all senders and receivers when they communicate the message
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in absence of any other a priori knowledge that restricts the domain of
the message.

Broadly speaking, this means that all description syntaxes that are pow-
erful enough to express the partial recursive functions are approximately
equally succinct. All algorithms can be expressed in each such program-
ming language equally succinctly, up to a fixed additive constant term.
The remarkable usefulness and inherent rightness of the theory of Kol-
mogorov complexity stems from this independence of the description
method.

Thus, we have outlined the program for a general theory of algorithmic
complexity. The four major innovations are as follows:

1. In restricting ourselves to formally effective descriptions, our defi-
nition covers every form of description that is intuitively acceptable
as being effective according to general viewpoints in mathematics
and logic.

2. The restriction to effective descriptions entails that there is a uni-
versal description method that minorizes the description length or
complexity with respect to any other effective description method.
This would not be the case if we considered, say, all noneffective
description methods. Significantly, this implies Item 3.

3. The description length or complexity of an object is an intrinsic
attribute of the object independent of the particular description
method or formalizations thereof.

4. The disturbing Richard–Berry paradox above does not disappear,
but resurfaces in the form of an alternative approach to proving
Kurt Gödel’s (1906–1978) famous result that not every true math-
ematical statement is provable in mathematics.

Example 1.1.1 (Gödel’s incompleteness result) Gödel proved that in every consis-
tent powerful enough theory, there are true but unprovable statements.
He constructed such a statement. Here we use the incompressibility ar-
gument to show in a very simple manner that there are, in fact, infinitely
many such undecidable statements.

A formal system (consisting of definitions, axioms, rules of inference) is
consistent if no statement that can be expressed in the system can be
proved to be both true and false in the system. A formal system is sound
if only true statements can be proved to be true in the system. (Hence,
a sound formal system is consistent.)

Let x be a finite binary string. We write “x is random” if the shortest
binary description of x with respect to the optimal specification method
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D0 has length at least that of the literal description of x. A simple
counting argument shows that there are random x’s of each length.

Fix any sound formal system F in which we can express statements like
“x is random.” Suppose F can be described in f bits—assume, for exam-
ple, that this is the number of bits used in the exhaustive description of
F in the first chapter of the textbook Foundations of F . We claim that
for all but finitely many random strings x, the sentence “x is random”
is not provable in F . Assume the contrary. Then given F , we can start
to search exhaustively for a proof that some string of length n ≫ f is
random, and print it when we find such a string. This is an x satisfying
the “x is random” sentence. This procedure to print x of length n uses
only logn+f bits of data, where log denotes the binary logarithm, which
is much less than n. But x is random by the proof, which is a true fact
since F is sound, and hence its shortest effective description has binary
length at least n. Hence, F is not consistent, which is a contradiction.

3

This shows that although most strings are random, it is impossible to
effectively prove them random. In a way, this explains why the incom-
pressibility method in Chapter 6 is so successful. We can argue about
a ‘typical’ individual element, which is difficult or impossible by other
methods.

Example 1.1.2 (Lower bounds) The secret of the successful use of descriptional com-
plexity arguments as a proof technique is due to a simple fact: the over-
whelming majority of strings have almost no computable regularities.
We have called such a string ‘random.’ There is no shorter description
of such a string than the literal description: it is incompressible. Incom-
pressibility is a noneffective property in the sense of Example 1.1.1.

Traditional proofs often involve all instances of a problem in order to
conclude that some property holds for at least one instance. The proof
would be simpler if only that one instance could have been used in
the first place. Unfortunately, that instance is hard or impossible to
find, and the proof has to involve all the instances. In contrast, in a
proof by the incompressibility method, we first choose a random (that
is, incompressible) individual object that is known to exist (even though
we cannot construct it). Then we show that if the assumed property did
not hold, then this object could be compressed, and hence it would not
be random. Let us give a simple example.

A prime number is a natural number that is not divisible by natu-
ral numbers other than itself and 1. By the celebrated result of J.S.
Hadamard (1865–1963) and C.J.G.N. de la Vallée Poussin (1866–1962)
it is known that the number π(n) of primes less than or equal to n sat-
isfies π(n) ∼ n/ lnn, where ln denotes the natural logarithm. For more
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detailed results about π(n) see Exercise 1.5.8 on page 17. We first prove
a weak result due to G.J. Chaitin: For infinitely many n, the number of
primes π(n) satisfies

π(n) ≥ logn

log logn
− o(1). (1.1)

The proof method is as follows. For each n, we construct a descrip-
tion from which n can be effectively retrieved. This description will in-
volve the primes less than n. For some n this description must be long,
which shall give the desired result. Formally, assume that p1, p2, . . . , pm
is the list of all the primes less than n. Then, the integer number
n = pe11 p

e2
2 · · · pem

m can be reconstructed from the vector of the expo-
nents. Each exponent is at most logn and can be represented by log logn
bits. The description of n can be given in m log log n bits provided we
know the value log logn enabling us to parse the constituent blocks of
exponents. Thus, we prefix the description with a prefix-free code for
log logn in (1 + o(1)) log log logn bits. (Prefix codes and their lengths
are described in Section 1.11.1.) It can be shown that for every integer
l > 0 there is a natural number n of binary length l ≈ logn that cannot
be described in fewer than l bits (n is random), whence Equation 1.1
follows.

Can we do better? This is slightly more complicated. Let l(x) denote
the length of the binary representation of x. We shall show that for all
n, the number of primes π(n) satisfies

π(n) ≥ 1

ǫ(n)

n

lnn
, (1.2)

where ǫ(n) = O((log logn)1+ǫ) for an arbitrary small ǫ > 0. We argue
as follows: Every integer n can be described by the string E(m)n/pm,
where the binary string E(m) is a prefix-free encoding of m, which is
concatenated with the binary string representation of the integer n/pm,
and pm is the largest prime dividing n. For random n, the length of
this description, l(E(m)) + logn− log pm, must exceed logn. Therefore,
log pm < l(E(m)). It is known (and easy) that we can set l(E(m)) ≤
logm+ log logm+ log ǫ(m), Section 1.11.1. Hence, pm < nm with nm =
ǫ(m)m logm. Since there are infinitely many primes (Equation 1.1), we
have proven that for the special sequence of values of n1, n2, . . . the
number of primes π(nm) ≥ nm/(ǫ(nm) lognm), for every m ≥ 1. Let
us denote cm = nm+1/nm. For every n with nm ≤ n ≤ nm+1 we
have nm ≤ n ≤ cmnm, with cm → 1 for m → ∞. Therefore, Equa-
tion 1.2 holds for all n if we absorb both cm and log e in ǫ(n). (Note
that logn = (log e) lnn.) The idea of connecting primality and prefix
code-word length is due to P. Berman, and the present proof is partially
due to J.T. Tromp.
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Chapter 6 introduces the incompressibility method. Its utility is demon-
strated in a variety of examples of proving mathematical and computa-
tional results. These include questions concerning the average-case anal-
ysis of algorithms (such as Shellsort, Heapsort and routing), sequence
analysis, formal languages, combinatorics, graphs, time and space com-
plexity of machine models, language recognition, communication com-
plexity, circuit complexity, and string matching. Other topics such as the
use of resource-bounded Kolmogorov complexity in the analysis of com-
putational complexity classes, the universal optimal search algorithm,
and logical depth are treated in Chapter 7. 3

Example 1.1.3 (Prediction) We are given an initial segment of an infinite sequence
of zeros and ones. Our task is to predict the next element in the se-
quence: zero or one? The set of possible sequences we are dealing with
constitutes the sample space, in this case, the set of one-way infinite
binary sequences. We assume some orobability distribution µ over the
sample space, where µ(x) is the probability of the initial segment of a
sequence being x. Then the probability of the next bit being 0, after
an initial segment x, is clearly µ(0|x) = µ(x0)/µ(x). This problem con-
stitutes, perhaps, the central task of inductive reasoning and artificial
intelligence. However, the problem of induction is that in general we do
not know the distribution µ, preventing us from assessing the actual
probability. Hence, we have to use an estimate.

Now assume that µ is computable. (This is not very restrictive, since any
distribution used in statistics is computable, provided the parameters
are computable.) We can use Kolmogorov complexity to give a very
good estimate of µ. This involves the so-called universal distribution
M. Roughly speaking, M(x) is close to 2−l, where l is the length in
bits of the shortest effective description of x. The distribution M has
the property that it assigns at least as high a probability to x as any
computable µ (up to a multiplicative constant factor depending on µ but
not on x). What is particularly important to prediction is the following:

Let Sn denote the µ-expectation of a particular form of the error we
make in estimating the probability of the nth symbol by M. Then it can
be shown that the sum

∑

n Sn is bounded by a constant. In other words,
if Sn is smooth then it converges to zero faster than 1/n. Consequently,
any actual (computable) distribution can be estimated and predicted
with great accuracy using only the single universal distribution.

Among other things, Chapter 5 develops a general theory of inductive
reasoning and applies the notions introduced to particular problems of
inductive inference, prediction, mistake bounds, computational learning
theory, and minimum description length induction methods in statis-
tics. In particular, it is demonstrated that data compression improves
generalization and prediction performance. 3
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The purpose of the remainder of this chapter is to define several concepts
we require, if not by way of introduction, then at least to establish
notation.

1.2

Prerequisites

and Notation

We usually deal with nonnegative integers, sets of nonnegative integers,
and mappings from nonnegative integers to nonnegative integers. A, B,
C, . . . denote sets. N , Z, Q, R denote the sets of nonnegative integers
(natural numbers including zero), integers, rational numbers, and real
numbers, respectively. For each such set A, by A+ we denote the subset
of A consisting of positive numbers.

We use the following set-theoretic notation: x ∈ A means that x is a
member of A. In {x : x ∈ A}, the symbol : denotes set formation. A

⋃
B

is the union of A and B, A
⋂
B is the intersection of A and B, and Ā

is the complement of A when the universe A
⋃
Ā is understood. A ⊆ B

means A is a subset of B; A = B means A and B are identical as sets
(have the same members).

The cardinality (or diameter) of a finite set A is the number of elements
it contains and is denoted by d(A). If A = {a1, . . . , an}, then d(A) = n.
The empty set {}, with no elements in it, is denoted by ∅. In particular,
d(∅) = 0.

Given x and y, the ordered pair (x, y) consists of x and y in that order.
A ×B is the Cartesian product of A and B, the set {(x, y) : x ∈ A and
y ∈ B}. The n-fold Cartesian product of A with itself is denoted by An.
If R ⊆ A2, then R is called a binary relation. The same definitions can be
given for n-tuples, n > 2, and the corresponding relations are n-ary. We
say that an n-ary relation R is single-valued if for every (x1, . . . , xn−1)
there is at most one y such that (x1, . . . , xn−1, y) ∈ R. Consider the do-
main {(x1, . . . , xn−1) : there is a y such that (x1, . . . , xn−1, y) ∈ R} of a
single-valued relation R. Clearly, a single-valued relation R ⊆ An−1 ×B
can be considered as a mapping from its domain into B. Therefore, we
also call a single-valued n-ary relation a partial function of n − 1 vari-
ables (‘partial’ because the domain of R may not comprise all of An−1).
We denote functions by φ, ψ, . . . or f, g, h, . . . . Functions defined on the
n-fold Cartesian product An are denoted with possibly a superscript
denoting the number of variables, like φ(n) = φ(n)(x1, . . . , xn).

We use the notation 〈·〉 for some standard one-to-one encoding of Nn

into N . We will use 〈·〉 especially as a pairing function over N to associate
a unique natural number 〈x, y〉 with each pair (x, y) of natural numbers.
An example is 〈x, y〉 defined by y + (x+ y + 1)(x+ y)/2. This mapping
can be used recursively: 〈x, y, z〉 = 〈x, 〈y, z〉〉.
If φ is a partial function from A to B, then for each x ∈ A either
φ(x) ∈ B or φ(x) is undefined. If x is a member of the domain of φ,
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then φ(x) is called a value of φ, and we write φ(x) < ∞ and φ is called
convergent or defined at x; otherwise we write φ(x) = ∞ and we call φ
divergent or undefined at x. The set of values of φ is called the range of
φ. If φ converges at every member of A, it is a total function, otherwise
a strictly partial function. If each member of a set B is also a value of
φ, then φ is said to map onto B, otherwise to map into B. If for each
pair x and y, x 6= y, for which φ converges φ(x) 6= φ(y) holds, then φ is
a one-to-one mapping, otherwise a many-to-one mapping. The function
f : A → {0, 1} defined by f(x) = 1 if φ(x) converges, and f(x) = 0
otherwise, is called the characteristic function of the domain of φ.

If φ and ψ are two partial functions, then ψφ (equivalently, ψ(φ(x)))
denotes their composition, the function defined by {(x, y) : there is a
z such that φ(x) = z and ψ(z) = y}. The inverse φ−1 of a one-to-one
partial function φ is defined by φ−1(y) = x iff φ(x) = y.

A set A is called countable if it is either empty or there is a total one-to-
one mapping from A to the natural numbers N . We say A is countably
infinite if it is both countable and infinite. By 2A we denote the set of
all subsets of A. The set 2N has the cardinality of the continuum and is
therefore uncountably infinite.

For binary relations, we use the terms reflexive, transitive, symmetric,
equivalence, partial order, and linear (or total) order in the usual mean-
ing. Partial orders can be strict (<) or nonstrict (≤).

If we use the logarithm notation logx without subscript, then we shall
always mean base 2. By lnx we mean the natural logarithm loge x, where
e = 2.71 . . . .

We use the quantifiers ∃ (there exists), ∀ (for all), ∃∞ (there exist
infinitely many), and the awkward ∀∞ (for all but finitely many). In
this way, ∀∞x[φ(x)] iff ¬∃∞x[¬φ(x)].

1.3

Numbers and

Combinatorics

The absolute value of a real number r is denoted by |r| and is defined as
|r| = −r if r < 0 and r otherwise. The floor of a real number r, denoted
by ⌊r⌋, is the greatest integer n such that n ≤ r. Analogously, the ceiling
of a real number r, denoted by ⌈r⌉, is the least integer n such that n ≥ r.

Example 1.3.1 | − 1| = |1| = 1. ⌊0.5⌋ = 0 and ⌈0.5⌉ = 1. Analogously, ⌊−0.5⌋ = −1 and
⌈−0.5⌉ = 0. But ⌊2⌋ = ⌈2⌉ = 2 and ⌊−2⌋ = ⌈−2⌉ = −2. 3

A permutation of n objects is an arrangement of n distinct objects in an
ordered sequence. For example, the six different permutations of objects
a, b, c are

abc, acb, bac, bca, cab, cba.
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The number of permutations of n objects is found most easily by imag-
ining a sequential process to choose a permutation. There are n choices
of which object to place in the first position; after filling the first po-
sition there remain n − 1 objects and therefore n − 1 choices of which
object to place in the second position, and so on. Therefore, the number
of permutations of n objects is n× (n− 1) × · · · × 2 × 1, denoted by n!
and referred to as n factorial. In particular, 0! = 1.

A variation of k out of n objects is an arrangement consisting of the
first k elements of a permutation of n objects. For example, the twelve
variations of two out of four objects a, b, c, d are

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc.

The number of variations of k out of n is n!/(n− k)!, as follows by the
previous argument. While there is no accepted standard notation, we
denote the number of variations by (n)k. In particular, (n)0 = 1.

The combinations of n objects taken k at a time (n choose k) are the
possible choices of k different elements from a collection of n objects.
The six different combinations of two out of four objects a, b, c, d are

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}.
We can consider a combination as a variation in which the order does
not count. We have seen that there are n(n − 1) · · · (n − k + 1) ways
to choose the first k elements of a permutation. Every k-combination
appears precisely k! times in these arrangements, since each combination
occurs in all its permutations. Therefore, the number of combinations,
denoted by

(
n
k

)
, is

(
n

k

)

=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · (1)
.

In particular,
(
n
0

)
= 1. The quantity

(
n
k

)
is also called a binomial co-

efficient. It has an extraordinary number of applications. Perhaps the
foremost relation associated with it is the binomial theorem, discovered
in 1676 by Isaac Newton:

(x+ y)n =
∑

k

(
n

k

)

xkyn−k,

with n a positive integer. Note that in the summation k need not be
restricted to 0 ≤ k ≤ n, but can range over −∞ < k < +∞, since for
k < 0 or k > n the terms are all zero.

Example 1.3.2 An important relation following from the binomial theorem is found by
substituting y = 1:

(x+ 1)n =
∑

k

(
n

k

)

xk.
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Substituting also x = 1, we obtain

2n =
∑

k

(
n

k

)

.

3

Exercises 1.3.1. [12] Consider a random distribution of k distinguishable balls
in n cells, that is, each of the nk possible arrangements has probability
n−k. Show that the probability Pi that a specified cell contains exactly
i balls (0 ≤ i ≤ k) is given by Pi =

(
k
i

)
(1/n)i(1 − 1/n)k−i.

Comments. Source: W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1, Wiley, 1968.

1.3.2. [08] Show that
(
n
k

)
= (n)k

k! and
(
n
k

)
=
(
n

n−k
)
.

1.3.3. [M34] Prove the following identity, which is very useful in the
sequel of this book: Up to a fixed additive constant we have

log

(
n

k

)

= k log
n

k
+ (n− k) log

n

n− k
+

1

2
log

n

k(n− k)
.

1.3.4. [15] (a) Prove that the number of ways n distinguishable balls
can be placed in k numbered cells such that the first cell contains n1

balls, the second cell n2 balls, up to the kth cell contains nk balls with
n1 + · · · + nk = n is
(

n

n1, . . . , nk

)

=
n!

n1! · · ·nk!
.

This number is called a multinomial coefficient. Note that the order
of the cells is essential in that the partitions (n1 = 1, n2 = 2) and
(n1 = 2, n2 = 1) are different. The order of the elements within a cell is
irrelevant.

(b) Show that

(x1 + · · · + xk)
n =

∑
(

n

n1, . . . , nk

)

xn1
1 · · ·xnk

k ,

with the sum taken for all n1 + · · · + nk = n.

(c) The number of ordered different partitions of n in r nonnegative
integral summands is denoted by An,r. Compute An,r in the form of a
binomial coefficient.

Comments. (1, 0) and (0, 1) are different partitions, so A1,2 = 2. Source:
W. Feller, Ibid.
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1.3.5. [14] Define the occupancy numbers for n balls distributed over k
cells as a k-tuple of integers (n1, n2, . . . , nk) satisfying n1+n2+· · ·+nk =
n with ni ≥ 0 (1 ≤ i ≤ k). That is, the first cell contains n1 balls, the
second cell n2 balls, and so on.

(a) Show that there are
(

n
n1,...,nk

)
placements of n balls in k cells resulting

in the numbers (n1, . . . , nk).

(b) There are kn possible placements of n balls in k cells altogether.
Compute the fraction that results in the given occupancy numbers.

(c) Assume that all kn possible placements of n balls in k cells are
equally probable. Conclude that the probability of obtaining the given
occupancy numbers is

n!

n1! · · ·nk!
k−n.

Comments. In physics this is known as the Maxwell–Boltzmann statistics
(here ‘statistics’ is used as a synonym for ‘distribution’). Source: W.
Feller, Ibid.

1.3.6. [15] We continue with the previous exercise. In physical situ-
ations the assumption of equiprobability of possible placements seems
unavoidable, for example, molecules in a volume of gas divided into (hy-
pothetical) cells of equal volume. Numerous attempts have been made
to prove that physical particles behave in accordance with the Maxwell–
Boltzmann distribution. However, it has been shown conclusively that
no known particles behave according to this distribution.

(a) In the Bose–Einstein distribution we count only distinguishable dis-
tributions of n balls over k cells without regard for the identities of the
balls. We are interested only in the number of solutions of n1+n2+ · · ·+
nk = n. Show that this number is

(
k+n−1
n

)
=
(
k+n−1
k−1

)
. Conclude that

the probability of obtaining each given occupancy number is equally
1/
(
k+n−1
k−1

)
. (Illustration: the distinguishable distributions of two balls

over two cells are |**, *|*, and **|. According to Bose–Einstein statistics
there are only three possible outcomes for two coin flips: head–head,
head–tail, and tail–tail, and each outcome has equal probability 1

3 .)

(b) In the Fermi–Dirac distribution, (1) two or more particles cannot
occupy the same cell and (2) all distinguishable arrangements satisfy-
ing (1) have the same probability. Note that (1) requires n ≤ k. Prove
that in the Fermi–Dirac distribution there are in total

(
k
n

)
possible ar-

rangements. Conclude that the probability for each possible occupancy
number is equally 1/

(
k
n

)
.

Comments. According to modern physics, photons, nuclei, and atoms
containing an even number of elementary particles behave according to
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model (a), and electrons, neutrons, and protons behave according to
model (b). This shows that nature does not necessarily satisfy our a
priori assumptions, however plausible they may be. Source: W. Feller,
Ibid.

1.4

Binary Strings

We are concerned with strings over a nonempty set B of basic elements.
Unless otherwise noted, we use B = {0, 1}. Instead of ‘string’ we also
use ‘word’ and ‘sequence’ synonymously. The way we use it, ‘strings’ and
‘words’ are usually finite, while ‘sequences’ are usually infinite. The set
of all finite strings over B is denoted by B∗, defined as

B∗ = {ǫ, 0, 1, 00, 01, 10, 11, 000, . . .},

with ǫ denoting the empty string, with no letters. Concatenation is a
binary operation on the elements of B∗ that associates xy with each
ordered pair of elements (x, y) in the Cartesian product B∗×B∗. Clearly,

1. B∗ is closed under the operation of concatenation; that is, if x and
y are elements of B∗, then so is xy;

2. concatenation is an associative operation on B∗; that is, (xy)z =
x(yz) = xyz; and

3. concatenation on B∗ has the unit element ǫ; that is, ǫx = xǫ = x.

We now consider a correspondence of finite binary strings and natural
numbers. The standard binary representation has the disadvantage that
either some strings do not represent a natural number, or each natural
number is represented by more than one string. For example, either 010
does not represent 2, or both 010 and 10 represent 2. We can map B∗

one-to-one onto the natural numbers by associating each string with its
index in the length-increasing lexicographic ordering

(ǫ, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . . (1.3)

In this way we represent x = 2n+1 − 1 +
∑n

i=0
ai2

i by an . . . a1a0. This is

equivalent to x =
∑n

i=0
bi2

i with bi ∈ {1, 2} and bi = ai + 1 for 0 ≤ i ≤ n.

The binary representation for the natural numbers given in Equation 1.3
is different from the standard binary representation. It is convenient not
to distinguish between the first and second elements of the same pair,
and call them ‘string’ or ‘number’ arbitrarily. That is, we consider both
the string 01 and the natural number 4 as the same object. For example,
we may write 01 = 4. We denote these objects in general with lowercase
roman letters. A string consisting of n zeros is denoted by 0n.
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If x is a string of n 0’s and 1’s, then xi denotes the ith bit (binary digit)
of x for all i, 1 ≤ i ≤ n, and xi:j denotes the (j − i + 1)-bit segment
xixi+1 . . . xj . For x = 1010 we have x1 = x3 = 1 and x2 = x4 = 0; for
x = x1x2 . . . xn we have x1:i = x1x2 . . . xi. The reverse, xR, of a string
x = x1x2 . . . xn is xnxn−1 . . . x1.

The length of a finite binary string x is the number of bits it contains
and is denoted by l(x). If x = x1x2 . . . xn, then l(x) = n. In particular,
l(ǫ) = 0.

Thus, l(xy) = l(x)+ l(y), and l(xR) = l(x). Recall that we use the above
pairing of binary strings and natural numbers. Thus, l(4) = 2 and 01 = 4.
The number of elements (cardinality) in a finite set A is denoted by d(A).
Therefore, d({u : l(u) = n}) = 2n and d({u : l(u) ≤ n}) = 2n+1 − 1.

Let D be any function D : {0, 1}∗ → N . Considering the domain of
D as the set of code words, and the range of D as the set of source
words, D(y) = x is interpreted as ‘y is a code word for the source word
x, and D is the decoding function.’ (In the introduction we called D a
specification method.) The set of all code words for source word x is
the set D−1(x) = {y : D(y) = x}. Hence, E = D−1 can be called the
encoding substitution (E is not necessarily a function). Let x, y ∈ {0, 1}∗.
We call x a prefix of y if there is a z such that y = xz. A set A ⊆ {0, 1}∗
is prefix-free if no element in A is the prefix of another element in A. A
function D : {0, 1}∗ → N defines a prefix-code if its domain is prefix-
free. (Coding theory is treated in Section 1.11.1.) A simple prefix-code
we use throughout is obtained by reserving one symbol, say 0, as a stop
sign and encoding x ∈ N as 1x0. We can prefix an object with its length
and iterate this idea to obtain ever shorter codes:

Ei(x) =

{
1x0 for i = 0,
Ei−1(l(x))x for i > 0.

(1.4)

Thus, E1(x) = 1l(x)0x and has length l(E1(x)) = 2l(x)+1. This encoding
is sufficiently important to have a simpler notation:

x̄ = 1l(x)0x,

l(x̄) = 2l(x) + 1.

Sometimes we need the shorter prefix-code E2(x),

E2(x) = l(x)x,

l(E2(x)) = l(x) + 2l(l(x)) + 1.

We call x̄ the self-delimiting version of the binary string x. Now we can
effectively recover both x and y unambiguously from the binary string
x̄y. If x̄y = 111011011, then x = 110 and y = 11. If x̄ȳ = 1110110101,
then x = 110 and y = 1.
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Example 1.4.1 It is convenient to consider also the set of one-way infinite sequences
B∞. If ω is an element of B∞, then ω = ω1ω2 . . . and ω1:n = ω1ω2 . . . ωn.
The set of infinite sequences of elements from a finite, nonempty basic
set B corresponds with the set R of real numbers in the following way:
Let B = {0, 1, . . . , k − 1} with k ≥ 2. If r is a real number 0 < r < 1
then there is a sequence ω1ω2 . . . of elements ωn ∈ B such that

r =
∑

n

ωn
kn
,

and that sequence is unique except when r is of the form q/kn, in which
case there are exactly two such sequences, one of which has infinitely
many 0’s. Conversely, if ω1ω2 . . . is an infinite sequence of integers with
0 ≤ ωn < k, then the series

∑

n

ωn
kn

converges to a real number r with 0 ≤ r ≤ 1. This sequence is called the
k-ary expansion of r. In the following we identify a real number r with
its k-ary expansion (if there are two k-ary expansions, then we identify
r with the expansion with infinitely many 0’s).

Define the set S ⊆ B∞ as the set of sequences that do not end with
infinitely many digits ‘k − 1.’ Then, S is in one-to-one correspondence
with the set of real numbers in the interval [0, 1).

Let x be a finite string over B. The set of all one-way infinite sequences
starting with x is called a cylinder and is denoted by Γx and is defined by
Γx = {xω : ω ∈ B∞} with x ∈ B∗. Geometrically speaking, the cylinder
Γx can be identified with the half-open interval [0.x, 0.x+ k−l(x)) in the
real interval [0, 1). Observe that the usual geometric length of interval
Γx equals k−l(x). Furthermore, Γy ⊆ Γx iff x is a prefix of y. The prefix
relation induces a partial order on the cylinders of B∞. 3

Exercises 1.4.1. [03] If x̄ȳz = 10010111, what are x, y, z in decimal numbers?

Comments. 1, 2, 6.

1.4.2. [07] (a) Show that for x ∈ N we have l(x) = ⌊log(x+ 1)⌋.
(b) Give another code c(x) for the natural numbers x = 1, 2, . . . such
that l(c(x)) = ⌊log x⌋.
Comments. Hint for Item (b): use the correspondence

(ǫ, 1), (0, 2), (1, 3), (00, 4), (01, 5), (10, 6), (11, 7), . . . .
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1.4.3. [10] Let E : N → {0, 1}∗ be a total one-to-one function whose
range is prefix-free. E defines a prefix-code. Define the mapping 〈·〉 :
N ×N → N by 〈x, y〉 = E(x)y.

(a) Show that 〈·〉 is total and one-to-one.

(b) Show that we can extend this scheme to k-tuples (n1, n2, . . . , nk) of
natural numbers to obtain a total one-to-one mapping from N × N ×
· · · × N into N .

Comments. Define the mapping for (x, y, z) as 〈x, 〈y, z〉〉, and iterate this
construction.

1.4.4. [10] Let E be as above. Define the mapping 〈·〉 : N × N → N
by 〈x, y〉 = E(x)E(y).

(a) Show that 〈·〉 is a total one-to-one mapping and a prefix-code.

(b) Show that we can extend this scheme to k-tuples (n1, n2, . . . , nk) of
natural numbers to obtain a total one-to-one mapping from N × N ×
· · · × N into N that is a prefix-code.

Comments. Define the mapping for (x, y, z) as 〈x, 〈y, z〉〉 and iterate this
construction. Another way is to map (x, y, . . . , z) to E(x)E(y) . . . E(z).

1.4.5. [10] (a) Show that E(x) = x̄ is a prefix-code.

(b) Consider a variant of the x̄ code such that x = x1x2 . . . xn is encoded
as x11x21 . . . 1xn−11xn0. Show that this is a prefix-code for the binary
nonempty strings with l(x̄) = 2l(x).

(c) Consider x = x1x2 . . . xn encoded as x1x1x2x2 . . . xn−1xn−1xn¬xn.
Show that this is a prefix-code for the nonempty binary strings.

(d) Give a prefix-code x̃ for the set of all binary strings x including ǫ,
such that l(x̃) = 2l(x) + 2.

1.5

Asymptotic

Notation

It is often convenient to express approximate equality or inequality of
one quantity with another. If f and g are functions of a real variable,
then it is customary to denote limn→∞ f(n)/g(n) = 1 by f(n) ∼ g(n),
and we write ‘f goes asymptotically to g.’

P. Bachman introduced a convenient notation for dealing with approxi-
mations in his book Analytische Zahlentheorie in 1892. This big-O nota-
tion allows us to write l(x) = log x+O(1) (no subscript on the logarithm
means base 2).

We use the notation O(f(n)) whenever we want to denote a quantity
that does not exceed f(n) by more than a fixed multiplicative factor.
This is useful in case we want to simplify the expression involving this
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quantity by suppressing unnecessary detail, but also in case we do not
know this quantity explicitly. Bachman’s notation is the first of a family
of order of magnitude symbols: O, o,Ω, and Θ. If f and g are functions
on the real numbers, then

1. f(x) = O(g(x)) if there are constants c, x0 > 0 such that |f(x)| ≤
c|g(x)|, for all x ≥ x0;

2. f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0;

3. f(x) = Ω(g(x)) if f(x) 6= o(g(x)); and

4. f(x) = Θ(g(x)) if both f(x) = O(g(x)) and f(x) = Ω(g(x)).

It is straightforward to extend these definitions to functions of more vari-
ables. For example, f(x, y) = O(g(x, y)) if there are positive constants
c, x0, y0 such that |f(x, y)| ≤ c|g(x, y)|, for all x ≥ x0, y ≥ y0. The defi-
nitions are standard, except Item 3, and thereby Item 4, which involves
Item 3. This definition of Ω was introduced first by G.H. Hardy and J.E.
Littlewood in 1914 and is the one commonly used in mathematics. It has
the advantage that Ω is the complement of o. This is not the case with
the definition proposed by D.E. Knuth in 1976, which is often referred
to in computer science. Namely, Knuth defines f(x) = Ω(g(x)) if there
is a constant c > 0 such that |f(x)| ≥ c|g(x)| from some x onward.
We have defined f(x) = Ω(g(x)) if there is a constant c > 0 such that
|f(x)| ≥ c|g(x)| infinitely often. This use of Ω should not be confused
with Chaitin’s mystery number Ω, which we encounter in Section 3.6.2.

Example 1.5.1 The definition of the big-O notation contains some mysterious absolute
value signs. This becomes understandable if we realize that one wants
to use a term like O(f(x)) to bound the absolute value of an error term,
be it positive or negative, for example, as in

x2 + x sinx = x2 +O(x).

This avoids the clumsy notation ±O(f(x)) one would have been forced
to use otherwise. 3

Example 1.5.2 If f(n) ∼ g(n), then f(n) = Θ(g(n)), but the converse implication does
not hold. For instance, we have 2x = Θ(x), but 2x ∼ x does not hold.
On the other hand, −x = Θ(x). 3

Example 1.5.3 We can use O-notation to speak generically aboutmth-degree polynomi-
als, for instance, 1+2+· · ·+n = n(n+1)/2. Then 1+2+· · ·+n = O(n2),
but also 1 + 2 + · · ·+ n = n2/2 +O(n). The latter approximation is ob-
viously a stronger statement than the first approximation. Similarly, if
p(n) is a polynomial of degreem, then p(n) = O(nm) and p(n) = Θ(nm).

3
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Exercises 1.5.1. [07] Show that x = o(x2); sinx = O(1); x−1/2 = o(1); x+ x2 ∼
x2, and

∑n
k=1 kn = O(n3).

1.5.2. [10] Show that f(n) = O(f(n)); c · O(f(n)) = O(f(n)) if c
is a constant; O(f(n) + O(f(n)) = O(f(n)); O(O(f(n))) = O(f(n));
O(f(n))O(g(n)) = O(f(n)g(n)); O(f(n)g(n)) = f(n)O(g(n)).

1.5.3. [10] Show that f(n) = o(g(n)) implies f(n) = Ω(g(n)), but not
vice versa.

1.5.4. [M30] It is natural to wonder how large 100! is approximately,
without carrying out the multiplications implied by the definition. Prove
the approximation n! ∼

√
2πn(n/e)n.

Comments. This celebrated approximation of the factorial function was
found by James Stirling [Methodus Differentialis (1730), 137].

1.5.5. [15] Denote the Hardy–Littlewood version of Ω we gave in the
main text by ΩH and the Knuth version by ΩK .

(a) Show that for function f defined by log log f(n) = ⌊log log n⌋, we
have f(n) = ΩH(n) but for no ǫ > 0 does f(n) = ΩK(n1/2+ǫ) hold.

(b) Show that nonetheless, while f(n) = O(n), for no ǫ > 0 do we have
f(n) = O(n1−ǫ).

Comments. Source: P.M.B. Vitányi and L.G.L.T. Meertens, SIGACT
News, 16:4(1985), 56–59.

1.5.6. [20] It is well known that n1/n → 1 for n→ ∞.

(a) Show that n1/n = elnn/n =1 + (lnn/n) +O((lnn/n)2).

(b) Use (a) to show that limn→∞ n(n1/n − 1) = lnn.

1.5.7. [15] (a) Show that f(n) 6= Ω(g(n)) iff f(n) = o(g(n)).

(b) Show that f(n) = Θ(g(n)) or f(n) = o(g(n)) iff f(n) = O(g(n)).

(c) Show that f(n) 6= O(g(n)) iff f(n) = Ω(g(n)) and f(n) 6= Θ(g(n)).

1.5.8. [HM45] Let π(n) denote the number of primes that do not ex-
ceed n. Show that

(a) a crude approximation is π(n) ∼ n/ lnn;

(b) a better approximation is

π(n) =
n

lnn
+

n

(lnn)2
+

2!n

(lnn)3
+

3!n

(lnn)4
+O

(
n

(lnn)5

)

.

Comments. The displayed formulas are called prime number theorems.
Source: R. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics,
Addison-Wesley, 1989.
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1.6

Basics of

Probability

Theory

It is useful to recall briefly the basic notions of probability theory. The
calculus of probabilities studies mathematical models of situations (ex-
periments, observations) in which the outcome is not deterministic but is
determined by uncertain circumstances. The set of all possible outcomes
is called the sample space, usually denoted by S, and an event E is a
subset of S. The sample space S can be countable, which means that
it is finite or countably infinite, or continuous, which means that it is
uncountably infinite.

Example 1.6.1 The throwing of two dice, one white and one black, gives a sample space
S consisting of all pairs (i, j) where i is the number on the top face of
the white die and j is the number on the top face of the black die. If
A = {(1, 3), (2, 2), (3, 1)}, then A is the event that the sum of i and j is
four. If B = {(1, 1), (1, 2), (2, 1)}, then B is the event that the sum of i
and j is less than 4. 3

Intuitively, the probability p of an event A is the apparent limit of the
relative frequency of outcomes in A in the long run in a sequence of
independent repetitions of the experiment. For instance, the probability
associated with A in the example is 1

12 .

1.6.1
Kolmogorov
Axioms

Let S denote the sample space. Following A.N. Kolmogorov’s formaliza-
tion of 1933, it is customary to use the following axioms.

(A1) If A and B are events, then so is the intersection A
⋂
B, the union

A
⋃
B, and the difference A−B.

(A2) The sample space S is an event. We call S the certain event. The
empty set, denoted by ∅, is an event. We call ∅ the impossible
event.

(A3) To each event E is assigned a nonnegative real number P (E) that
we call the probability of event E.

(A4) P (S) = 1.

(A5) If A and B are disjoint, then P (A
⋃
B) = P (A) + P (B).

(A6) For a decreasing sequence A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · of events with
⋂

nAn = ∅ we have limn→∞ P (An) = 0.

For systems with finitely many events Axiom A6 clearly follows from
Axioms A1 through A5. For systems with infinitely many events, how-
ever, it is independent of the first five axioms. Therefore, Axiom A6 is
essential only for systems with infinitely many events.
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A system F of sets f ⊆ S that is closed under the binary operations
union, intersection, difference and contains a 1-element (here S) and a
0-element (here ∅) is called a (set) field. The set of events F together
with the associated set function P , also called a measure on F , is called
a probability field and is denoted by (F , P ). It is easy to show that the
axiom system A1 through A6 is consistent (free from contradictions).
This is ascertained in the usual way by constructing an example that
satisfies the axioms. Let S consist of a single element, and let the set of
events be S and the empty event ∅, and set P (S) = 1 and P (∅) = 0. It is
easy to verify that the system defined in this way satisfies all the axioms
above. However, the set of axioms is incomplete: for different problems
in probability theory we have to construct different probability fields.

Example 1.6.2 We call P a probability distribution over S. It follows from the axioms
that 0 ≤ P (E) ≤ 1 for every event E; P (∅) = 0; if A ⊆ B, then
P (A) ≤ P (B); if Ā is the complement S−A of A, then P (Ā) = 1−P (A);
and P (A

⋃
B) = P (A) + P (B) − P (A

⋂
B). 3

1.6.2
Conditional
Probability

If A and B are two events, with P (A) > 0, then the conditional proba-
bility that B occurs given that A occurs is defined by

P (B|A) =
P (A

⋂
B)

P (A)
.

It follows immediately that P (A
⋂
B) = P (A)P (B|A), and by induction

we obtain the multiplication rule:

P
(

A
⋂

B
⋂

· · ·
⋂

N
)

= P (A)P (B|A) · · ·P
(

N |A
⋂

B
⋂

· · ·
⋂

M
)

.

Consider the setup of Example 1.6.1 again. Let A be the event that
at least one out of two dice shows an even number, and let B be the
event that the sum of the numbers shown is even. Then P (B|A) =
P (A

⋂
B)/P (A) = 1

3 .

The function P (·|A) is a probability distribution on S and is called the
conditional probability distribution given A. Clearly, P (A|A) = 1.

Example 1.6.3 Rewriting P (A
⋂
B) as P (B)P (A|B) and as P (A)P (B|A), substitution

yields the formula that incorporates the essence of Bayes’s rule,

P (A|B) =
P (A)P (B|A)

P (B)
.

We require the law of complete probabilities. Let A
⋃
B
⋃ · · ·⋃N = S

for disjoint events A,B, . . . , N , and let X be an arbitrary event. Then

P (X) = P (A)P (X |A) + P (B)P (X |B) + · · · + P (N)P (X |N).
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If A,B, . . . , N are disjoint and X is arbitrary, it is easy to derive from
the previous two displayed formulas the important Bayes’s rule:

P (Y |X) =
P (Y )P (X |Y )

P (A)P (X |A) + P (B)P (X |B) + · · · + P (N)P (X |N)
,

where Y ∈ {A,B, . . . , N}. We often call A,B, . . . , N hypotheses and say
that Bayes’s rule gives the posterior or inferred probability P (Y |X) of
hypothesis Y after occurrence of event X . It is common to call P (Y )
the prior probability (or a priori probability) of hypothesis Y before the
occurrence of eventX . In Sections 1.10 and 5.1.3 we analyze the meaning
of Bayes’s rule in detail, and in Chapter 5 we apply it extensively in
inductive reasoning. 3

Example 1.6.4 The notion of mutual independence of two or more events lies at the
heart of probability theory. From a mathematical viewpoint the given
axioms specify just a special application of the general theory of additive
sets. However, the special nature of this application is to a large part
contained in the way we formalize the intuitive notion of mutual indepen-
dence of events. In the following we assume that the events have positive
probabilities. Events A and B are mutually independent iff P (A|B) =
P (A) and P (B|A) = P (B), in other words, P (A

⋂
B) = P (A)P (B).

And more generally for n > 2 events, events A,B, . . . , N are mutu-
ally independent iff for all subsets of pairwise distinct X,Y, . . . , Z in
A,B, . . . , N we have

P (X |Y
⋂

· · ·
⋂

Z) = P (X).

In Example 1.6.1, we have P (A
⋂
B) 6= P (A)P (B), and hence the events

A and B are not independent.

The classical work on probability from Laplace to von Mises is essentially
concerned with the investigation of sequences of independent events. For
instance, in a sequence of throws of a fair coin the throws are treated
as mutually independent events. (We do not consider that after a run
of a hundred ‘heads’ the chance on throwing ‘tails’ has increased.) If
in newer developments such as so-called Markov processes one often
dispenses with complete independence, then still some weaker analogous
requirements have to be imposed to obtain meaningful results. 3

1.6.3
Continuous
Sample Spaces

If a field is infinite, and additionally all countable unions
⋃
An of dis-

joint events An belong to it, then we call it a Borel field or σ-algebra
in honor of E. Borel (1871–1956). We denote a Borel field by the Greek
letter σ. It follows easily that in a Borel field σ all countable unions
of not necessarily disjoint events also belong to σ, and the same holds
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for countable intersections. The closure of F , under the field operations
and countable union together, gives the unique smallest Borel field that
contains F . Suppose (F , P ) is an infinite probability field. It is a fun-
damental result of measure theory that an extension of both F and P
under countable union and addition, respectively, preserving satisfaction
of Axioms A1 through A6, is always possible and, moreover, unique. The
result is called the Borel extension (σ, P ∗) of the probability field. This is
best illustrated by the construction of such an extension in a particular
case.

Example 1.6.5 We consider infinite binary sequences. The Borel probability field we
aim at has as sample space S the real numbers in the half-open interval
[0, 1). We start out by identifying a real ω with its infinite binary ex-
pansion 0.ω1ω2 . . . . In case a real number has two representations, such
as 1

2 , which can be represented by 0.100 . . . and 0.011 . . . , we choose the
representation with infinitely many zeros. A cylinder Γx consisting of all
real numbers that start with 0.x, where x is a finite binary string, is an
event. The probability field (F , P ) is formed as follows. The set field F
is the closure of all cylinder events under pairwise union, intersection,
and difference. It contains the impossible event (by Γ0

⋂
Γ1 = ∅) and

the certain event Γǫ. The uniform distribution, or Lebesgue measure,
usually denoted by λ, associates with each cylinder Γy a probability
λ(Γy) = 2−l(y). By Axioms A1 through A5 all unions and intersections
of pairs of cylinders are events, including the empty set, and have associ-
ated probabilities. We now consider the closure σ of F under countably
infinite union and the field operations. Then σ is the smallest Borel
field containing F as a subfield. Let A be an arbitrary subset of S. De-
fine P ∗(A) as the greatest lower bound on

∑

n P (An) for all coverings
A ⊆ ⋂

nAn of A by A1, A2, . . ., finitely many or countably infinitely
elements from F . It can be shown that for elements A in the original
field F we have P ∗(A) = P (A). We can also say that the probability
distribution P (A) on the sets in F associates the measure P (A) with A.

3

Example 1.6.6 Sample spaces can be discrete (natural numbers), countable (the rational
numbers), or continuous (the real numbers). We will be interested in
discrete versus continuous measures. The discrete measures we consider
will have as sample space the natural numbers N or, equivalently, the
set of finite binary sequences {0, 1}∗. The continuous measures will have
as sample space the real numbers R or, equivalently, the set of one-way
infinite binary sequences {0, 1}∞. Consider the continuous sample space
S = {0, 1}∞ with measure µ. If ǫ is the empty word, then µ(Γǫ) = 1 by
Axiom A4, and for all x ∈ {0, 1}∗, µ(Γx) = µ(Γx0) + µ(Γx1) by Axiom
A5. For convenience, we will in Chapters 4 and 5 write µ(x) instead
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of µ(Γx) and consider a measure µ as a function from the finite binary
strings into the positive real numbers satisfying Axioms A4 and A5. 3

Example 1.6.7 A real-valued function on a sample space S is called a random variable.
We denote random variables by X , Y , Z. A random variable maps an
element from the sample space to an aspect of it we are interested in (or
want to measure). For instance, S consists of the set of infinite binary
sequences, and for each ω = ω1ω2 . . . in S the random variable X is
defined as X(ω) = ω2. We can also talk about a random variable X that
is a finite vectorX1X2 . . . Xn or infinite vectorX1X2 . . . withXi(ω) = ωi
for all i. If ω is a sequence of outcomes of fair coin tosses, the measure
on S is the Lebesgue measure λ, and λ{ω : Xi(ω) = 0} = 1

2 for all
i. Justified by the definitions above, we call the random variables Xi

independent.

Another example of a random variable is Yi(ω) = k, where k is the
length of the longest uninterrupted subsequence of zeros in ω1:i. Clearly,
always either Yi(ω) = Yi+1(ω) or Yi(ω) < Yi+1(ω), where both options
occur. The random variables Yi are dependent.

If P is a measure on S, then we customarily denote P{ω : X(ω) ≤ x} by
the shorthand P (X ≤ x). The function F defined by F (x) = P (X ≤ x)
is called the distribution function. For instance, the random variable X
defined as the outcome of a single throw of a fair die has distribution
function P (X ≤ i) = i/6, i = 1, 2, . . . , 6. A random variable is discrete if
the distribution function F is a step function. The domain of a discrete
random variable consists of finitely many or countably infinitely many
elements {x1, x2, . . .}. The function P (X = xi), i = 1, 2, . . . , is the
probability mass function. The probability mass function associated with
the outcome of a single throw of a fair die is P (X = i) = 1

6 . A random
variable is continuous if the distribution function F has a continuous
derivative f (at most discontinuous in finitely many points). This f is
called the probability density function. For instance, if the distribution
function of a random variable satisfies F (x) = 1 − e−λx for x > 0, and
F (x) = 0 for x ≤ 0, then the density function is f(x) = λe−λx for x > 0,
and f(x) = 0 for x ≤ 0. 3

Exercises 1.6.1. [17] A random sample of size k is taken from a population of n
elements. We draw the k elements one after the other and replace each
drawn element in the population before drawing the next element. What
is the probability of the event that in the sample no element occurs twice,
that is, our sample could have been obtained also by sampling without
replacement?

Comments. (n)k/n
k. Source: W. Feller, An Introduction to Probability

Theory and Its Applications, Vol. 1, Wiley, 1968.
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1.6.2. [15] Consider the population of digits {0, 1, . . . , 9}. Use the for-
mula you have found above to check that the probability that five con-
secutive random digits are all different is p = (10)5/105 = 0.3024.

Comments. Source: W. Feller, Ibid.

1.6.3. [15] What is the probability that in a party of 23 people at least 2
people have a common birthday? Assume that birthdays are uniformly
distributed over a year of 365 days and that the people at the party
constitute a random sample. Use the formula derived above.

Comments. Note that contrary to intuition, it is better to bet that there
will be shared birthdays than the other way. For a party of 23, the
probability is close to 0.5. However, the analogous probability for a party
of only 30 people already exceeds 0.7. Source: W. Feller, Ibid.

1.6.4. [10] Show that the probability of obtaining at least one ace (a 6)
in four throws with one die is greater than the probability of obtaining
at least one double ace in twenty-four throws with two dice.

Comments. This is known as Chevalier de Méré’s paradox. It was posed
by this passionate gambler to Pierre de Fermat, who wrote a solution
in a letter to Blaise Pascal in 1654. It was solved earlier by G. Cardano
(1501–1576). Source: [Amer. Math. Monthly 67(1960), 409–419].

1.6.5. [08] Which probability is greater: to score at least one ace (a 6)
in six throws of a die, or to score at least two aces in twelve throws of a
die?

Comments. This question was submitted to Isaac Newton by the famous
diarist Samuel Pepys in 1693. Newton answered that an easy computa-
tion shows that the first event has the greater probability, but failed to
convince Pepys. Source: [The Amer. Statistician, 14(1960), 27–30].

1.6.6. [M12] The uniform distribution over the countable sample
space S = N can be defined as the probability density function

L(x) = 2−2l(x)−1 or alternatively,
6

π2(l(x) + 1)2
2−l(x).

(a) Show that in both cases
∑

x∈S L(x) = 1.

(b) Let S1, S2, . . . be a sequence of sample spaces with Sn = {x : l(x) =
n}. Show that the probability density function Ln(x) = L(x|l(x) = n)
assigns probability Ln(x) = 1/2n to all x of length n, and zero proba-
bility to other x’s, for n = 1, 2, . . . .

1.6.7. [15] The uniform distribution λ over the continuous sample
space S = {0, 1}∞, the set of one-way infinite binary sequences (the
half-open interval of real numbers [0, 1)), is described in Example 1.6.5.
Let the Ln’s be as above. Show that λ(Γx) = Ll(x)(x), for all x = {0, 1}∗.
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1.7

Basics of

Computability

Theory

While the qualitative ideas immanent in Kolmogorov complexity had
been around for a long time, their ultimate applicability in quantitative
form became possible only after the rise of computability theory (equiva-
lently, recursive function theory) in the 1930s. In this section we develop
and review completely the basic notions of that theory insofar as they
are needed in the sequel.

In 1936 Alan M. Turing (1912–1954) exhibited an exceedingly simple
type of hypothetical machine and gave a brilliant demonstration that
everything that can be reasonably said to be computed by a human
computer using a fixed procedure can be computed by such a machine.
As Turing claimed, any process that can be naturally called an effec-
tive procedure is realized by a Turing machine. This is known as Tur-
ing’s thesis. Over the years, all serious attempts to give precise yet in-
tuitively satisfactory definitions of a notion of ‘effective procedure’ in
the widest possible sense have turned out to be equivalent—to define
essentially the same class of processes. (In his original paper, Turing
established the equivalence of his notion of ‘effective procedure’ with
Alonzo Church’s (1903–1995) notion of ‘effective calculability.’) Church’s
thesis states that in this sense, there is an objective notion of effective
computability independent of a particular formalization.

While the formal part of Turing’s paper is difficult to follow for the
contemporary reader, the informal arguments he sets forth are as lucid
and convincing now as they were then. To us it seems that it is the
best introduction to the subject, and we reproduce this superior piece
of expository writing below.

“All arguments [for Turing’s thesis] are bound to be, fundamentally, appeals
to intuition, and for that reason rather unsatisfactory mathematically. The
real question at issue is: ‘what are the possible processes which can be carried
out in computing (a number)?’ The arguments which I shall use are of three
kinds.

(a) A direct appeal to intuition.

(b) A proof of equivalence of two definitions (in case the new definition has a
greater intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all ‘computable [by Turing
machines],’ several other propositions of the same character follow. In partic-
ular it follows that, if there is a general process for determining whether a
formula (of the Hilbert function calculus) is provable, then the determination
can be carried out by machine. [. . .]

Computing is normally done by writing certain symbols on paper. We may
suppose this paper to be divided into squares like a child’s arithmetic book. In
elementary arithmetic the 2-dimensional character of the paper is sometimes
used. But such use is always avoidable, and I think it will be agreed that the
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two-dimensional character of paper is no essential of computation. I assume
then that the computation is carried out on one-dimensional paper, on a tape
divided into squares. I also suppose that the number of symbols which may be
printed is finite. If we were to allow an infinity of symbols, then there would
be symbols differing to an arbitrarily small extent.1

The effect of this restriction on the number of symbols is not very serious. It
is always possible to use sequences of symbols in the place of single symbols.
Thus an Arabic numeral such as 17 or 999999999999999 is normally treated
as a single symbol. Similarly in any European language words are treated as
single symbols (Chinese, however, attempts to have an enumerable infinity of
[atomic] symbols). The differences in our point of view between single and
compound symbols is that the compound symbols, if they are too lengthy,
cannot be observed at one glance. This is in accordance with experience. We
cannot tell at a glance whether 99999999999999999 and 999999999999999999
are the same. [. . .]

The behaviour of the [human] computer at any moment is determined by the
symbols he is observing, and his ‘state of mind’ at that moment. We may
suppose that there is a bound B to the number of symbols or squares which
the computer can observe at one moment. If he wishes to observe more, he
must use successive observations. We will also suppose that the number of
states of mind which need be taken into account is finite. The reasons for this
are of the same character as those which restrict the number of symbols. If
we admit an infinity of states of mind, some of them will be ‘arbitrarily close’
and will be confused. Again, the restriction is not one which seriously affects
computation, since the use of more complicated states of mind can be avoided
by writing more symbols on the tape. [. . .]

Let us imagine the operations performed by the computer to be split up in
‘simple operations’ which are so elementary that it is not easy to imagine them
further divided. Every such operation consists of some change of the physical
system consisting of the computer and his tape. We know the state of the
system if we know the sequence of symbols on the tape, which of these are
observed by the computer (possibly with a special order), and the state of
mind of the computer. We may suppose that in a simple operation not more
than one symbol is altered. Any other changes can be split up into simple
changes of this kind. The situation in regard to the squares whose symbols
may be altered this way is the same as in regard to the observed squares.
We may, therefore, without loss of generality, assume that the squares whose
symbols are changed are the ‘observed’ squares. [. . .]

1If we regard a symbol as literally printed on a square, we may suppose that
the square is 0 < x < 1, 0 < y < 1. The symbol is defined as the set of
points in this square, viz., the set occupied by printer’s ink. If these sets are
restricted to be measurable, we can define the ‘distance’ between two symbols
as the cost of transforming one symbol into the other if the cost of moving a
unit area of printer’s ink unit distance is unity, and there is an infinite supply
of ink at x = 2, y = 0. With this topology the symbols form a conditionally
compact space [Turing’s note].
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Besides these changes of symbols, the simple operations must include changes
of distribution of observed squares. The new observed squares must immedi-
ately be recognized by the computer. I think it is reasonable to suppose that
they can only be squares whose distance from the closest of the immediately
previously observed squares does not exceed a certain fixed amount. Let us say
that each of the new observed squares is within L squares of the immediately
previously observed square. [. . .]

In connection to ‘immediate recognizability,’ it may be thought that there
are other kinds of squares which are immediately recognizable. In particular,
squares marked by special symbols may be taken as immediately recognizable.
Now if these squares are marked only by single symbols there can be only a
finite number of them, and we should not upset our theory by adjoining these
marked squares to the observed squares. If, on the other hand, they are marked
as a sequence of symbols, we cannot regard the process of recognition as a
simple process. This is a fundamental point and should be illustrated. In most
mathematical papers the equations and theorems are numbered. Normally
the numbers go not beyond (say) 1000. It is, therefore, possible to recognize a
theorem at a glance by its number. But if the paper was very long, we might
reach Theorem 157767733443477; then, further on in the paper, we might
find ‘. . . hence (applying Theorem 157767733443477) we have . . . .’ In order to
make sure which was the relevant theorem we should have to compare the two
numbers figure by figure, possibly ticking the figures off in pencil to make sure
of their not being counted twice. If in spite of this it is still thought that there
are other ‘immediately recognizable’ squares, it does not upset my contention
so long as these squares can be found by some process of which my type of
machine is capable. [. . .]

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares
of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of
mind. The most general single operation must therefore be taken to be one of
the following:

(A) A possible change (a) of symbol together with a possible change of state of
mind.

(B) A possible change (b) of observed squares, together with a possible change
of state of mind.

The operation actually performed is determined, as has been suggested [above]
by the state of mind of the computer and the observed symbols. In particular,
they determine the state of mind of the computer after the operation. [. . .]

We may now construct a machine to do the work of this computer. To each
state of mind of the computer corresponds an ‘m-configuration’ of the machine.
The machine scans B squares corresponding to the B squares observed by the
computer. In any move the machine can change a symbol on a scanned square
or can change any one of the scanned squares to another square distant not
more than L squares from one of the other scanned squares. [Without loss
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of generality restrict L and B to unity.] The move which is done, and the
succeeding configuration, are determined by the scanned symbol and the m-
configuration. The machines just described do not differ very essentially from
computing machines as defined (previously) and corresponding to any machine
of this type a computing machine can be constructed to compute the same
sequence, that is to say, the sequence computed by the computer. [. . .]

We suppose [above] that the computation is carried out on a tape; but we avoid
introducing the ‘state of mind’ by considering a more physical and definitive
counterpart of it. It is always possible for the computer to break off from his
work, to go away and forget all about it, and later to come back and go on
with it. If he does this he must leave a note of instructions (written in some
standard form) explaining how the work is to be continued. This note is the
counterpart of ‘the state of mind.’ We will suppose that the computer works
in such a desultory manner that he never does more than one step and write
the next note. Thus the state of progress of the computation at any stage
is completely determined by the note of instructions and the symbols on the
tape. That is, the state of the system may be described by a single expression
(sequence of symbols), consisting of the symbols on the tape followed by a
special marker (which we suppose not to appear elsewhere) and then by the
note of instructions. This expression may be called the ‘state formula.’ We
know that the state formula at any given stage is determined by the state
formula before the last step was made, and we assume that the relation of
these two formulae is expressible in the functional calculus. In other words,
we assume that there is an axiom A which expresses the rules governing the
behaviour of the computer, in terms of the relation of the state formula at any
stage to the state formula at the preceding stage. If this is so, we can construct
a machine to write down the successive state formulae, and hence to compute
the required number.”

1.7.1
Effective
Enumerations
and Universal
Machines

We formalize Turing’s description as follows: A Turing machine consists
of a finite program, called the finite control, capable of manipulating a
linear list of cells, called the tape, using one access pointer, called the
head (Figure 1.1). We refer to the two directions on the tape as right
and left. The finite control can be in any one of a finite set of states Q,
and each tape cell can contain a 0, a 1, or a blank B. Time is discrete
and the time instants are ordered 0, 1, 2, . . . , with 0 the time at which
the machine starts its computation. At any time, the head is positioned
over a particular cell, which it is said to scan. At time 0 the head is
situated on a distinguished cell on the tape called the start cell, and the
finite control is in a distinguished state q0. At time 0 all cells contain
B’s, except for a contiguous finite sequence of cells, extending from the
start cell to the right, which contain 0’s and 1’s. This binary sequence
is called the input.

The device can perform the following basic operations:

1. it can write an element from A = {0, 1, B} in the cell it scans; and
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FIGURE 1.1. Turing machine

2. it can shift the head one cell left or right.

When the device is active it executes these operations at the rate of
one operation per time unit (a step). At the conclusion of each step, the
finite control takes on a state from Q. The device is constructed so that
it behaves according to a finite list of rules. These rules determine, from
the current state of the finite control and the symbol contained in the
cell under scan, the operation to be performed next and the state to
enter at the end of the next operation execution.

The rules have format (p, s, a, q): p is the current state of the finite
control; s is the symbol under scan; a is the next operation to be executed
of type (1) or (2) designated in the obvious sense by an element from
S = {0, 1, B, L,R}; and q is the state of the finite control to be entered
at the end of this step.

Any two distinct quadruples cannot have their first two elements iden-
tical: the device is deterministic. Not every possible combination of the
first two elements has to be in the set; in this way we permit the device
to perform no operation. In this case we say that the device halts. Hence,
we can define a Turing machine by a mapping from a finite subset of
Q×A into S×Q. Given a Turing machine and an input, the Turing ma-
chine carries out a uniquely determined succession of operations, which
may or may not terminate in a finite number of steps.

We can associate a partial function with each Turing machine in the
following way: The input to the Turing machine is presented as an n-
tuple (x1, . . . , xn) of binary strings in the form of a single binary string
consisting of self-delimiting versions of the xi’s. The integer represented
by the maximal binary string (bordered by blanks) of which some bit
is scanned, or 0 if a blank is scanned, by the time the machine halts is
called the output of the computation.

Definition 1.7.1 Under this convention for inputs and outputs, each Turing machine de-
fines a partial function from n-tuples of integers onto the integers, n ≥ 1.
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We call such a function partial recursive. If the Turing machine halts for
all inputs, then the function computed is defined for all arguments and
we call it total recursive, or simply recursive.

We call a function with range {0, 1} a predicate, with the interpretation
that the predicate of an n-tuple of values is ‘true’ if the corresponding
function assumes value 1 for that n-tuple of values for its arguments
and is ‘false’ or ‘undefined’ otherwise. Hence, we can talk about partial
(total) recursive predicates.

Example 1.7.1 Consider x as a binary string. It is easy to see that the functions l(x),
f(x) = x̄, g(x̄y) = x, and h(x̄y) = y are partial recursive. Functions g
and h are not total since the value for input 1111 is not defined. The
function g′(x̄y) defined as 1 if x = y and as 0 if x 6= y is a recursive
predicate. Consider x as an integer. The following functions are basic
n-place total recursive functions: the successor function γ(1)(x) = x +
1, the zero function ζ(n)(x1, . . . , xn) = 0, and the projection function

π
(n)
m (x1, . . . , xn) = xm (1 ≤ m ≤ n). 3

Example 1.7.2 The function 〈x, y〉 = x̄y is a total recursive one-to-one mapping from
N × N into N . We can easily extend this scheme to obtain a total
recursive one-to-one mapping from k-tuples of integers into the integers,
for each fixed k. Define 〈n1, n2, . . . , nk〉 = 〈n1, 〈n2, . . . , nk〉〉.
Another total recursive one-to-one mapping from k-tuples of integers
into the integers is 〈n1, n2, . . . , nk〉 = n̄1 . . . n̄k−1n̄k. 3

Church’s thesis. The class of algorithmically computable numerical
functions (in the intuitive sense) coincides with the class of partial re-
cursive functions.

Originally intended as a proposal to henceforth supply intuitive terms
such as ‘computable’ and ‘effective procedure’ with a precise meaning
as ‘recursive’ and ‘recursive function,’ Church’s thesis has come into use
as shorthand for a claim that from a given description of a procedure in
terms of an informal set of instructions we can derive a formal one in
terms of Turing machines.

It is possible to give an effective (computable) one-to-one pairing be-
tween natural numbers and Turing machines. This is called an effective
enumeration. One way to do this is to encode the table of rules of each
Turing machine in binary, in a canonical way.

Example 1.7.3 The only thing we have to do for every Turing machine is to encode
the defining mapping T from Q × A into S × Q. Giving each element
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of Q
⋃
S a unique binary code requires s bits for each such element,

with s = ⌈log(d(Q) + 5)⌉. Denote the encoding function by e. Then the
quadruple (p, 0, B, q) is encoded as e(p)e(0)e(B)e(q). If the number of
rules is r, then r ≤ 3d(Q). We agree to consider the state of the first
rule as the start state. The entire list of quadruples,

T = (p1, t1, s1, q1), (p2, t2, s2, q2), . . . , (pr, tr, sr, qr),

is encoded as

E(T ) = s̄r̄e(p1)e(t1)e(s1)e(q1) . . . e(pr)e(tr)e(sr)e(qr).

Note that l(E(T )) ≤ 4rs+ 2 log rs + 4. (Moreover, E is self-delimiting,
which is convenient in situations in which we want to recognize the
substring E(T ) as prefix of a larger string; see Section 1.4.)

We order the resulting binary strings lexicographically (according to in-
creasing length). We assign an index, or Gödel number, n(T ) to each
Turing machine T by defining n(T ) = i if E(T ) is the ith element in the
lexicographic order of Turing machine codes. This yields a sequence of
Turing machines T1, T2, . . . that constitutes the effective enumeration.
One can construct a Turing machine to decide whether a given binary
string x encodes a Turing machine, by checking whether it can be de-
coded according to the scheme above, that the tuple elements belong to
Q×A×S×Q, followed by a check whether any two different rules start
with the same two elements. This observation enables us to construct
‘universal’ Turing machines. 3

A universal Turing machine U is a Turing machine that can imitate the
behavior of any other Turing machine T . It is a fundamental result that
such machines exist and can be constructed effectively. Only a suitable
description of T ’s finite program and input needs to be entered on U ’s
tape initially. To execute the consecutive actions that T would perform
on its own tape, U uses T ’s description to simulate T ’s actions on a
representation of T ’s tape contents. Such a machine U is also called
‘computation universal.’ In fact, there are infinitely many such U ’s.

Example 1.7.4 We focus on a universal Turing machine U that uses the encoding above.
It is not difficult, but tedious, to define a Turing machine in quadruple
format that expects inputs of the format 1i0p and acts as follows: On
the tape left of the input, U starts to generate the successive strings in
{0, 1}∗ in lexicographic order according to increasing length and checks
for each such string whether it encodes a Turing machine. For each
Turing machine it finds, it replaces one 1 in 1i in the input by a B. The
binary string E(T ) that causes the delimiter 0 to be read encodes T with
n(T ) = i. Subsequently, U starts to execute the successive operations of
T using p as input and the description E(T ) of T it has found. We omit
the explicit construction of U . 3
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For the contemporary reader there should be nothing mysterious in the con-
cept of a general-purpose computer which can perform any computation when
supplied with an appropriate program. The surprising thing is that a general-
purpose computer can be very simple: it has been shown that four tape sym-
bols and seven states suffice easily in the above scheme [M. Minsky, Computa-
tion: Finite and Infinite Machines, Prentice-Hall, 1967]. This machine can be
changed to, in the sense of being simulated by, our format using tape symbols
{0, 1, B} at the cost of an increase in the number of of states; see Section 1.12.

The effective enumeration of Turing machines T1, T2, . . . determines an
effective enumeration of partial recursive functions φ1, φ2, . . . such that
φi is the function computed by Ti, for all i. It is important to distin-
guish between a function ψ and a name for ψ. A name for ψ can be an
algorithm that computes ψ, in the form of a Turing machine T . It can
also be a natural number i such that ψ equals φi in the above list. We
call i an index for ψ. Thus, each partial recursive ψ occurs many times
in the given effective enumeration, that is, it has many indices.

Definition 1.7.2 The partial recursive function ν(2)(i, x) computed by the universal Tur-
ing machine U is called the universal partial recursive function.

The generalization to n-place functions is straightforward. A partial re-
cursive function ν(n+1)(i, x1, . . . , xn) is universal for all n-place partial
recursive functions if for each partial recursive function φ(n)(x1, . . . , xn)
there exists an i such that the mapping ν(n+1) with the first argument
fixed to i is identical to the mapping φ(n). Here i is an index of φ(n)

with respect to ν(n+1). For each n, we fix a partial recursive (n + 1)-
place function that is universal for all n-place partial recursive functions.
The following lemma is usually called the enumeration theorem for n-
place partial recursive functions. Here z is the index of the universal
function.

Lemma 1.7.1 For each n there exists an index z such that for all i and x1, . . . , xn, if

φ
(n)
i (x1, . . . , xn) is defined, then φ

(n+1)
z (i, x1, . . . , xn) = φ

(n)
i (x1, . . . , xn),

and φ
(n+1)
z (i, x1, . . . , xn) is undefined otherwise. (φ

(n+1)
z is a universal

partial recursive function that enumerates the partial recursive functions
of n variables.)

Proof. The machine of Example 1.7.4 is universal for all n-place partially
recursive functions, for all n. 2

It is easy to see that universality is oblivious to n-arity, at least in the
chosen computational model of Turing machines. We say that a partial
recursive function φ(n) on arguments x1, . . . , xn is computed in time t
(t steps or t operations) by Turing machine T if T computes φ(n) and
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T halts within t steps when it is started on the input corresponding to
these arguments.

Lemma 1.7.2 For all partial recursive functions φ(n) there exists a recursive function
ψ(n+1) such that ψ(n+1)(t, x1, . . . , xn) = 1 if φ(n)(x1, . . . , xn) can be com-
puted in not more than t steps, and ψ(n+1)(t, x1, . . . , xn) = 0 otherwise.

Proof. Let T be a Turing machine that computes φ. Modify T to a Turing
machine T ′ that computes ψ from an input with one extra variable, the
clock, containing the natural number t. Machine T ′ works exactly like
T , except that it decrements the clock by one for every simulated step
of T . If simulator T ′ enters a halting configuration of T with a positive
clock value, then T ′ outputs 1. If T ′ decrements its clock to zero, then
it halts and outputs 0. 2

A set A is recursively enumerable if it is empty or the range of some total
recursive function f . We say that f enumerates A. The intuition behind
this definition is that there is a Turing machine for listing the elements
of A in some arbitrary order with repetitions allowed. An equivalent
definition is that A is recursively enumerable if it is accepted by a Turing
machine. That is, for each element in A, the Turing machine halts in a
distinguished accepting state, and for each element not in A the machine
either halts in a nonaccepting state or computes forever.

A set A is recursive if it possesses a recursive characteristic function.
That is, A is recursive iff there exists a recursive function f such that
for all x, if x ∈ A, then f(x) = 1, and if x ∈ Ā, then f(x) = 0 (Ā is the
complement of A). An equivalent definition is that A is recursive if A is
accepted by a Turing machine that always halts. Obviously, all recursive
sets are recursively enumerable.

Example 1.7.5 The following sets are recursive: (i) the set of odd integers; (ii) the set
of natural numbers; (iii) the empty set; (iv) the set of primes; (v) every
finite set; (vi) every set with a finite complement. The following sets are
recursively enumerable: (i) every recursive set; (ii) the set of indices i
such that the range of φi is nonempty; (iii) the set {x : a run of at least
x consecutive 0’s occurs in π}, where π = 3.1415 . . . . 3

Lemma 1.7.3 (i) A set A is recursive iff both A and its complement Ā are recursively
enumerable.

(ii) An infinite set A is recursive iff it is recursively enumerable in in-
creasing order. (Here we have postulated a total order on the elements
of A. For instance, if A ⊆ N with the usual order, then φ enumerates
A in increasing order if φ(i) < φ(i+ 1), for all i.)
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Proof. Let A
⋃
Ā = N and neither A nor Ā is the empty set. (Otherwise

the lemma trivially holds.)

(i) (Only if) If A is recursive, then obviously its complement Ā is re-
cursive as well. Moreover, both are by definition recursively enumerable.

(If) By assumption, A is the range of f , and Ā is the range of g,
for two recursive functions f, g. Therefore, we can generate the list
f(0), g(0), f(1), g(1), f(2), . . . , and examine each element in turn. To
decide whether a given x in N belongs to A we just compare it with
each element in the above list. If x = f(i) for some i, then x ∈ A. If
x = g(i) for some i, then x ∈ Ā. Element x must occur in this list, since
A
⋃
Ā = N .

(ii) (Only if) Trivial.

(If) Let A be recursively enumerated in increasing order a1, a2, . . . .Then
this yields a procedure to decide for each x whether x belongs to A by
testing “ai = x?” for i = 1, 2, . . . until either ai = x or x < ai. 2

Lemma 1.7.4 Every infinite recursively enumerable set contains an infinite recursive
subset.

Proof. Let A be infinite and recursively enumerable. Let f be a recursive
function with range A. Define a new recursive function g with g(0) =
f(0) and g(x+1) = f(y), where y is the least value such that f(y) > g(x).
Let B be the range of g. Since A is infinite, the definition of B implies
that B is infinite. Clearly g enumerates B in increasing order, so B is
recursive by Lemma 1.7.3, Item (ii). 2

The equivalent lemmas hold for recursive and recursively enumerable
sets of n-tuples.

1.7.2
Undecidability of
the Halting
Problem

Turing’s paper, and more so Kurt Gödel’s paper, where such a result first
appeared, are celebrated for showing that certain well-defined questions
in the mathematical domain cannot be settled by any effective procedure
for answering questions. One such question is, “which machine compu-
tations eventually terminate with a definite result, and which machine
computations go on forever without a definite conclusion?” This is some-
times called the halting problem. Since all machines can be simulated by
the universal Turing machine U , this question cannot be decided in the
case of the single machine U , or more generally for any individual uni-
versal machine. The following lemma, due to Turing in 1936, formalizes
this discussion. Let φ1, φ2, . . . be the standard enumeration of partial
recursive functions.
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Lemma 1.7.5 There is no recursive function g such that for all x, y, we have g(x, y) = 1
if φx(y) is defined, and g(x, y) = 0 otherwise.

Proof. Suppose the contrary, and define a partial recursive function ψ by
ψ(x) = 1 if g(x, x) = 0, and ψ(x) is undefined otherwise. (The definition
of ψ gives by the assumption of total recursiveness of g an algorithm,
and by Church’s thesis or by explicit construction we can find a Turing
machine to compute ψ.) Let ψ have an index y in the fixed enumeration
of partial recursive functions, ψ = φy . Then, φy(y) is defined iff g(y, y) =
0, according to ψ’s definition. But this contradicts the assumption of
existence of g as defined in the statement of the lemma. 2

The trick used in this proof is called diagonalization; see Exercise 1.7.3
on page 40.

Definition 1.7.3 Define K0 = {〈x, y〉 : φx(y) <∞} as the halting set.

With this definition, Lemma 1.7.5 can be rephrased as, “The halting set
K0 is not recursive.” It is easy to see that K0 is recursively enumerable.
The halting set is so ubiquitous that it merits the standard notation K0.
We shall also use the diagonal halting set K = {x : φx(x) < ∞}. Just
like K0, the diagonal halting set is recursively enumerable; and the proof
of Lemma 1.7.5 shows that K is not a recursive set.

Lemma 1.7.5 was preceded by the famous (first) incompleteness theorem
of Kurt Gödel in 1931. Recall that a formal theory T consists of a set of
well-formed formulas, formulas for short. For convenience these formulas
are taken to be finite binary strings. Invariably, the formulas are specified
in such a way that an effective procedure exists that decides which strings
are formulas and which strings are not.

The formulas are the objects of interest of the theory and constitute
the meaningful statements. With each theory we associate a set of true
formulas and a set of provable formulas. The set of true formulas is ‘true’
according to some (often nonconstructive) criterion of truth. The set
of provable formulas is ‘provable’ according to some (usually effective)
syntactic notion of proof.

A theory T is simply any set of formulas. A theory is axiomatizable if it
can be effectively enumerated. For instance, its axioms (initial formulas)
can be effectively enumerated and there is an effective procedure that
enumerates all proofs for formulas in T from the axioms. A theory is
decidable if it is a recursive set. A theory T is consistent if not both
formula x and and its negation ¬x are in T . A theory T is sound if each
formula x in T is true (with respect to the standard model of the natural
numbers).
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Hence, soundness implies consistency. A particularly important example
of an axiomatizable theory is Peano arithmetic, which axiomatizes the
standard elementary theory of the natural numbers.

Lemma 1.7.6 There is a recursively enumerable set K0 such that for every axiomati-
zable theory T that is sound and extends Peano arithmetic, there is a
number n such that the formula “n 6∈ K0” is true but not provable in T .

Proof. Let φ1, φ2, . . . be the standard enumeration of partial recursive
functions above, and let K0 = {〈x, y〉 : φx(y) < ∞}. That is, K0 is
the domain of a universal partial recursive function, Lemma 1.7.1. It is
easy to see that the set K0 is recursively enumerable. Moreover, all true
statements of the form “n ∈ K0” belong to Peano arithmetic.

Assume by way of contradiction that all true statements of the form
“n 6∈ K0” are provable in T . Then the complement of K0 is recursively
enumerable by enumerating the set of all provable statements in T . By
Lemma 1.7.3, Item (i), if both K0 and its complement are recursively
enumerable, then K0 is recursive. However, this contradicts the fact that
K0 is nonrecursive (Lemma 1.7.5). 2

In his original proof, Gödel uses diagonalization to prove the incom-
pleteness of any sufficiently rich logical theory T with a recursively enu-
merable axiom system, such as Peano arithmetic. By his technique he
exhibits for such a theory an explicit construction of an undecidable
statement y that says of itself “I am unprovable in T .” The formulation
in terms of recursive function theory, Lemma 1.7.6, is due to A. Church
and S.C. Kleene. In the proof, diagonalization is needed to show that
K0 is not recursive. And elaboration of this proof would yield a similar
explicit construction to the above one. Using Kolmogorov complexity
we will be able to derive a new proof of Lemma 1.7.6, with essentially
different examples of undecidable statements.

1.7.3
Semi-
Computable
Functions

Recall that N , Q, and R, denote the nonnegative integers, the ratio-
nal numbers, and the real numbers, respectively. We consider partial
recursive functions g(〈〈y, z〉, k〉) = 〈p, q〉 and write g(y/z, k) = p/q, with
y, z, p, q, k nonnegative integers. The extension to negative arguments
and values is straightforward. The interpretation is that g is a rational-
valued function of a rational argument and a nonnegative integer argu-
ment.

Definition 1.7.4 A partial function f : Q → R is upper semicomputable if it is defined
by a rational-valued partial recursive function φ(x, k) with x a rational
number and k a nonnegative integer such that φ(x, k + 1) ≤ φ(x, k)
for every k and limk→∞ φ(x, k) = f(x). This means that f can be com-
putably approximated from above. A function f is lower semicomputable



36 1. Preliminaries

if −f is upper semicomputable. A function is called semicomputable if
it is either upper semicomputable or lower semicomputable or both. If
a function f is both upper semicomputable and lower semicomputable
on its domain, then we call f computable (or recursive if the domain is
integer or rational). The total function versions are defined similarly.

Thus, a total function f : Q → R is computable iff there is a total
recursive function g(x, k) such that |f(x) − g(x, k)| < 1/k.

In this way, we extend the notion of integer recursive functions to real-
valued computable functions with rational arguments, and to real-valued
semicomputable functions with rational arguments. The idea is that a
semicomputable function can be approximated from one side by a recur-
sive function, but we may never know how close we are to the real value.
A computable function can be approximated to any degree of precision
by a recursive function.

Example 1.7.6 The following properties are easily proven: A function f : Q → R is
lower semicomputable iff the set {(x, r) : r ≤ f(x), r ∈ Q} is recursively
enumerable. Therefore, a lower semicomputable function is ‘recursively
enumerable from below,’ and an upper semicomputable function is ‘re-
cursively enumerable from above.’

In the previous editions of this book, we used ‘enumerable’ for ‘lower semi-
computable,’ ‘coenumerable’ for ‘upper semicomputable,’ and ‘recursive’ for
‘computable.’

As stated, a function is computable iff it is both upper semicomputable
and lower semicomputable. A recursive function is computable. Not all
upper semicomputable and lower semicomputable functions are com-
putable. 3

Example 1.7.7 We give an example of a lower semicomputable function that is not
computable. Let K = {x : φx(x) < ∞} be the diagonal halting set.
Define f(x) = 1 if x ∈ K, and f(x) = 0 otherwise. We first show that
f(x) is lower semicomputable. Define g(x, k) = 1 if the Turing machine
computing φx halts in at most k steps on input x, and g(x, k) = 0
otherwise. Obviously, g is a rational-valued recursive function. Moreover,
for all x and k we have g(x, k+1) ≥ g(x, k), and limk→∞ g(x, k) = f(x).
Hence, f is lower semicomputable. However, if f(x) were computable,
then the set {x : f(x) = 1}, that is, the diagonal halting set K, would
be recursive. But Lemma 1.7.5 shows that it is not. 3

Example 1.7.8 In Section 1.6 we have defined the notion of measure functions as µ
functions that map subsets of the real interval [0, 1) to R. Considering
[0, 1) as the isomorphic S = {0, 1}∞, such functions are defined by the
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values µ(Γx), where Γx = {xω : ω ∈ {0, 1}∞} with x ∈ {0, 1}∗ are the
so-called cylinder sets. We can extend the notions of computability to
set functions. A measure µ is computable (upper semicomputable, lower
semicomputable) iff the function f : N → R defined by f(x) = µ(Γx) is
computable (upper semicomputable, lower semicomputable). 3

This is enough on semicomputable functions to tide us over Chapters 2
and 3, and we go into more detail in Chapter 4.

1.7.4
Feasible
Computations

We give a brief introduction to computational complexity theory in or-
der to provide some basic ideas and establish terminology required for
applications of Kolmogorov complexity in Chapters 6, 7, and 8.

Theoretically, any recursive function is computable by a personal com-
puter or by a Turing machine as shown in Figure 1.1. But a computation
that takes 2n steps on an input of length n would not be regarded as
practical or feasible. No computer would ever finish such a computa-
tion in the lifetime of the universe even with n merely 1000. Compu-
tational complexity theory tries to identify problems that are feasibly
computable.

If we have 109 processors each taking 109 steps/second, then we can execute
3.1 × 1025 < 2100 steps/year.

In computational complexity theory, we are often concerned with lan-
guages. A language over a finite alphabet Σ is simply a subset of Σ∗.
We say that a Turing machine accepts a language L if it outputs 1 when
the input is a member of L and outputs 0 otherwise. That is, the Turing
machine computes a predicate.

Definition 1.7.5 (Computational complexity) Let T be a Turing machine. For each
input of length n, if T makes at most t(n) moves before it stops, then
we say that T runs in time t(n), or has time complexity t(n). If T uses
at most s(n) tape cells in the above computation, then we say that T
uses s(n) space, or has space complexity s(n).

For convenience, we often give the Turing machine in Figure 1.1 a few
more work tapes and designate one tape as a read-only input tape. Thus,
each transition rule will be of the form (p, s̄, a, q), where s̄ contains the
scanned symbols on all the tapes, and p, a, q are as in Section 1.7.1,
except that an operation now involves moving maybe more than one
head.

We sometimes also make a Turing machine nondeterministic by allowing
two distinct transition rules to have identical first two components. That
is, a nondeterministic Turing machine may have different alternative
moves at each step. Several other versions of Turing machines will be
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discussed in later chapters. Turing machines are deterministic unless it
is explicitly stated otherwise.

It is a fundamental and easy result that any k-tape Turing machine
running in t(n) time can be simulated by a Turing machine with just
one work tape running in t2(n) time. Any Turing machine using s(n)
space can be simulated by a Turing machine with just one work tape
using s(n) space. For each k, if a language is accepted by a k-tape Turing
machine running in time t(n) (space s(n)), then it can also be accepted
by another k-tape Turing machine running in time ct(n) (space cs(n)),
for any constant c > 0. This leads to the following definitions:

Definition 1.7.6 (Complexity classes) DTIME[t(n)] is the set of languages accepted
by multitape deterministic Turing machines in time O(t(n));

NTIME[t(n)] is the set of languages accepted by multitape nondeter-
ministic Turing machines in time O(t(n));

DSPACE[s(n)] is the set of languages accepted by multitape determin-
istic Turing machines in O(s(n)) space;

NSPACE[s(n)] is the set of languages accepted by multitape nondeter-
ministic Turing machines in O(s(n)) space;

P is the complexity class
⋃

c∈N DTIME[nc];

NP is the complexity class
⋃

c∈N NTIME[nc];

PSPACE is the complexity class
⋃

c∈N DSPACE[nc].

We will define more complexity classes in Chapter 7. Languages in P,
that is, languages acceptable in polynomial time, are considered feasibly
computable. The nondeterministic version for PSPACE turns out to be
identical to PSPACE. The following relationships hold trivially,

P ⊆ NP ⊆ PSPACE.

It is one of the most fundamental open questions in computer science and
mathematics to prove whether either of the above inclusions is proper.
Research in computational complexity theory focuses on these questions.
In order to solve these problems, one can identify the hardest problems
in NP or PSPACE.

Definition 1.7.7 (Oracle machine) A Turing machine T with an oracle A, where A
is a language over T ’s work tape alphabet, is denoted by TA. Such a
machine operates as a normal Turing machine with the exception that
after it has computed a finite string x it can enter a special oracle state
and ask whether x ∈ A. The machine TA gets the correct “yes/no”
answer in one step. An oracle machine can use this feature one or more
times during each computation.
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In Exercise 1.7.16 on page 43 we define the recursion-theoretic notion
of reducing one language to another. Here, we scale this notion down to
feasible size in computational complexity, by limiting the computational
power used in the reduction to polynomial time.

A language A is called polynomial-time Turing-reducible to a language
B, denoted by A ≤PT B, if given B as an oracle, there is a deterministic
Turing machine that accepts A in polynomial time. That is, we can
accept A in polynomial time given answers to membership in B for free.

Definition 1.7.8 (NP-completeness) A language A is called polynomial-time many-to-
one reducible to a language B, denoted by A≤PmB, if there is a function r
that is polynomial-time computable, and for every a, a ∈ A iff r(a) ∈ B.
In both cases, if B ∈ P, then so is A.

A language A is NP-hard if all languages in NP are Turing polynomial-
time (equivalently, many-to-one polynomial-time) reducible to A. Con-
sequently, if any NP-hard language is in P, then P = NP. If A is NP-hard
and A ∈ NP, then we say that A is NP-complete.

NP is the set of problems for which it is easy to show (give a certificate)
that the answer is “yes,” and P is the set of “yes/no” problems for which
it is easy to find the answer. The technical sense of ‘easy’ is ‘doable by a
deterministic Turing machine in polynomial time.’ The “P versus NP”
question can be understood as whether problems for which it is easy to
certify the answer are the same problems for which it is easy to find the
answer. The relevance is this:

Normally, we do not ask questions unless we can recognize easily in a
certain sense when we have been handed the correct answer. We are
not normally interested in questions for which it would take a lifetime
of work to check whether you got the answer you wanted. NP is about
those questions that we are likely to want answers to.

This excellent explanation was given by one of the inventors of the notions
P and NP, J.E. Edmonds [Interview, FAUW Forum, University of Waterloo,
January 1993].

Example 1.7.9 A Boolean formula is in conjunctive normal form if it is a conjunction
of disjunctions. For example,

f(x1, x2, x3) = (x1 + x̄2 + x3)(x̄2 + x3)(x1 + x3)

is in conjunctive normal form, and x1x2 + x2x̄3 is not in conjunctive
normal form. A Boolean formula f(x1, . . . , xn) is satisfiable if there is a
Boolean-valued truth assignment a1, . . . , an such that f(a1, . . . , an) = 1.
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Definition 1.7.9 (SAT) Let SAT be the set of satisfiable Boolean formulas in conjunctive
normal form. The SAT problem is to decide whether a given Boolean
formula is in SAT.

This problem was the first natural problem shown to be NP-complete.
Many practical issues seem to depend on fast solutions to this problem.
Given a Boolean formula, a nondeterministic Turing machine can guess
a correct truth assignment, and verify it. This takes only linear time.
However, if we have to deterministically search for a satisfying truth
assignment, there are 2n Boolean vectors to test.

Intuitively, and as far as is known now, a deterministic Turing machine
cannot do much better than simply searching through these Boolean
vectors one by one, using an exponential amount of time. 3

For each class, say P, if a language L is accepted in deterministic poly-
nomial time using an oracle A, then we write L ∈ PA. If A is an NP-
complete set, we also write L ∈ PNP.

Definition 1.7.10 (Polynomial hierarchy) The so-called polynomial hierarchy consists
of the following hierarchy of language classes: Σp1 = NP; ∆p

1 = P; Σpi+1 =

NPΣp
i ; ∆p

i+1 = PΣp
i ; and Πp

i = {L̄ : L ∈ Σpi }.

Exercises 1.7.1. [10] We can rework the effective enumeration of Turing machines
above and the definition of universal Turing machines using only tape
alphabet A = {0, 1} (as opposed to {0, 1, B}) such that the d(A)d(Q)
product increases at most by a fixed constant under the change of the
original Turing machine to its simulator. Namely, we simply replace each
program p in {0, 1}∗ by p̄, and in simulated computation use only the
alternate (say odd) cells that contain the original program p. To skip
over the even administrative cells containing 0’s and to detect even cells
containing the delimiter 1 takes only a few extra states. In particu-
lar, it requires exactly the same number of extra states in each Tur-
ing machine modification. Prove the assertion concerning the d(A)d(Q)
product. What is the ‘new’ l(c(T ))? Since clearly c̄ suffices, we obtain
l(c̄) ≤ 2l(c(T )) + 1, for all T .

1.7.2. [08] Show that there are exactly countably infinitely many par-
tial recursive functions, and that there are exactly countably infinitely
many (total) recursive functions.

1.7.3. [15] Georg Cantor proved that the total functions are not count-
able by introducing his famous diagonalization argument. Suppose the
contrary, and count the functions in order f1, f2, . . . , fi, . . . . Define a
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new function g, which we shall prove to be not in this list, by g(i) =
fi(i) + 1, for all natural numbers i. By contradictory assumption, g oc-
curs in the list, say g = fi. But by definition, g(i) 6= fi(i), which gives
the required contradiction. Use a similar argument to prove that there
are functions that are not partial recursive.

1.7.4. [11] It is important to distinguish between computable functions
and the algorithms that compute those functions. To each function there
correspond many different algorithms that compute it. Show that in the
effective enumeration of Turing machines, as treated in this section, each
partial recursive function is computed by countably infinitely many dif-
ferent Turing machines. If T1, T2, . . . , Ti, . . . is an effective enumeration
of Turing machines and Ti computes partial recursive function φi, for
all i, then each partial recursive function f occurs infinitely many times
in the list φ1, φ2, . . . , φi, . . . . This result is not an accident of our for-
malism and effective enumeration, but holds in general for all effective
enumerations of algorithms that compute all partial recursive functions.

1.7.5. [25] Show that for every m,n ≥ 1, there exists a recursive func-

tion ψ = s
(m+1)
n of m+ 1 variables such that for all x, y1, . . . , ym,

φ(m+n)
x (y1, . . . , ym, z1, . . . , zn) = φ

(n)
ψ(x,y1,...,ym)(z1, . . . , zn),

for all variables z1, . . . , zn. (Hint: prove the case m = n = 1. The proof
is analogous for the other cases.)

Comments. This important result, due to Stephen C. Kleene, is usually
called the s-m-n theorem. Source: H. Rogers, Jr., Theory of Recursive
Functions and Effective Computability, McGraw-Hill, 1967; P. Odifreddi,
Classical Recursion Theory, North-Holland, 1989.

1.7.6. [35] If P is the class of all partial recursive functions (for conve-
nience restricted to one variable), then any map π from N (the natural
numbers) onto P is called a numbering. The standard indexing of the
Turing machines provides such a numbering, say π0, and the indexing of
the recursive function definitions provides another, say π1. A number-
ing π is acceptable, or a Gödel numbering, if we can go back and forth
effectively between π and π0, that is:

(i) There is a recursive function f (not necessarily one-to-one) such that
fπ0 = π.

(ii) There is a recursive function g (not necessarily one-to-one) such that
gπ = π0.

(a) Show that π1 is acceptable.

(b) Show that (i) is a necessary and sufficient condition that any π have
a universal partial recursive function (satisfies an appropriate version of
the enumeration theorem).
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(c) Show that (ii) is a necessary and sufficient condition that any π have
an appropriate version of the s-m-n theorem (Exercise 1.7.5).

(d) Show that (ii) implies that π−1(φ) is infinite for every partial recur-
sive φ of one variable.

(e) Show that we can replace (i) and (ii) by the requirement that there
be a recursive isomorphism between π and π0.

Comments. These results, due to H. Rogers, Jr., in 1958, give an abstract
formulation of the basic work of Church, Kleene, Post, Turing, Markov,
and others, that their basic formalizations of the notion of partial recur-
sive functions are effectively isomorphic. It gives invariant significance to
the notion of acceptable numbering in that major properties such as the
enumeration theorem and the s-m-n theorem hold for every acceptable
numbering. Note that (i) may be viewed as requiring that the numbering
be ‘algorithmic’ in that each number yields an algorithm; and (ii) that
the numbering be ‘complete’ in that it includes all algorithms. Source:
H. Rogers, Jr., Ibid.

1.7.7. [20] Show that there is no recursive function f such that f(x) =
1 if φx(x) is defined, and f(x) = 0 otherwise.

Comments. This fact is known as the recursive unsolvability of the halt-
ing problem.

1.7.8. [20] Prove that the predicate f defined as f(x) = 1 if φx is total,
and f(x) = 0 otherwise, is not total recursive.

1.7.9. [15] Prove that a set A is recursively enumerable iff A is the
domain of a partial recursive function.

Comments. This is often called the basic theorem of recursively enumer-
able sets.

1.7.10. [16] Prove that a set A is recursively enumerable iff A is the
range of some partial recursive function iff A is the range of a total
recursive function or ∅.

1.7.11. [34] (a) Show that it is possible to effectively enumerate the
partial recursive functions without repetition.

(b) Let A = {x : φx is a total function}. Prove that A is not recursively
enumerable.

Comments. Items (a) and (b) are not contradictory. Hint: in Item (a),
dovetail the computations of all partial recursive functions on all argu-
ments. Attributed to R.A. Friedberg, 1958. Source: H. Rogers, Jr., The-
ory of Recursive Functions and Effective Computability, McGraw-Hill,
1967; P. Odifreddi, Classical Recursion Theory, North-Holland, 1989,
pp. 230–232.
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1.7.12. [20] Let K = {x : φx(x) < ∞}. Prove that K is a recursively
enumerable set that is not recursive.

1.7.13. [15] (a) Show that the function τ(x, y) = (x2 +2xy+y2 +3x+
y)/2 is a recursive one-to-one mapping from N 2 onto N . Show that this
is not a prefix-code.

(b) Show that τ (k) defined by τ (2) = τ and τ (k)(x1, x2, . . . , xk) = τ(τ (k−1)

(x1, x2, . . . , xk−1), xk) is a recursive one-to-one mapping from N k onto
N . Show that this is not a prefix-code.

(c) Let E : N → N be an effective prefix-code with E(x) the code word
for source word x. Show that E(τ(x, y)), and also E(τ (k)(x1, . . . , xk)),
for k > 2, are effective prefix-codes.

Comments. How good are these prefix-codes of k-tuples of integers in
terms of density of the range of the code in N ? Clearly, Item (c) is the
best possible (in terms of fixed E).

1.7.14. [20] A set A is recursively enumerable without repetitions if
A equals the range of f , for some f that is recursive and one-to-one.
Prove that A is infinite and recursively enumerable iff A is recursively
enumerable without repetitions.

1.7.15. [25] (a) Show that there exists an infinite set having no infinite
recursively enumerable subset. Such sets have been called immune by
J.C.E. Dekker.

(b) If a set with this property has a recursively enumerable complement,
then this complement was called simple by E.L. Post in 1944. Show that
there exists a simple set.

Comments. By definition a simple set is recursively enumerable. A simple
set is not recursive, since its complement is infinite but not recursively
enumerable (Lemma 1.7.3, Item (i)). Source: H. Rogers, Jr., Ibid.

1.7.16. [35] In order of increasing generality we define some notions of
reducibilities among sets:

A set A is one-to-one reducible to a set B (A ≤1 B) if there exists a
one-to-one recursive function f such that for all x we have x ∈ A iff
f(x) ∈ B.

A set A is many-to-one reducible to a set B (A ≤m B) if there exists a
many-to-one recursive function f such that for all x we have x ∈ A iff
f(x) ∈ B.

A set A is Turing reducible to a set B (A ≤T B) if we can solve member-
ship in A by a Turing machine that gets the solution to membership in
B for free. (This is commonly accepted as formalizing the most general
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intuitive notion of reducibility. It is also considered the most significant
and useful such notion.)

Intuitively speaking, for r equal to 1, m, or T , reducibility A ≤r B
means that to solve membership in B is at least as ‘hard’ as to solve
membership in A, up to the reducibility notion r.

(a) Consider {x : φx(y) <∞ for infinitely many y} and {x : φx is total}.
Show that each of these sets is reducible to the other in all three senses
discussed.

(b) Show that ≤r is reflexive and transitive for all discussed reducibilities
r. Hence, ≡r (both ≤r and ≥r) is an equivalence relation, and ≤r induces
a partial order of the equivalence classes of ≡r. One equivalence class is
below another one if members of the first are reducible to members of the
second, but not vice versa. We say that a set A on a lower r-equivalence
class has a lower degree of unsolvability with respect to ≤r.
(c) Consider the diagonal halting set K = {x : φx(x) <∞}, and let A =
{x : φx(y) <∞ for finitely many y}. Show that K is r-reducible (all r =
1,m, T ) to A (easy). Show that contrary to intuition, A is not r-reducible
(any r = 1,m, T ) to K (hard). (Hint: show that A is not recursively
enumerable.) Therefore,A is of a higher r-degree of unsolvability thanK.

(d) Show that the halting set K0 and K are of the same r-degree of
unsolvability (all r = 1,m, T ).

(e) Show that all recursive sets are of lower r-degree of unsolvability
than K0 (all r = 1,m, T ).

(f) The following notion is due to E.L. Post. A set A such that each
recursively enumerable set is r-reducible to it is called r-hard. If A is
both recursively enumerable and r-hard, then A is called r-complete.
Show that the halting set K0 in the proof of Lemma 1.7.6 is an example
of an r-complete set (all r = 1,m, T ). Show that K in Item (c) is another
example.

Comments. Source: H. Rogers, Jr., Ibid.

1.7.17. [35] Use the definitions above. The following is known as Post’s
problem (1944). The recursive sets have lower r-degree of unsolvability
than K0, which has the highest r-degree of unsolvability in the recur-
sively enumerable sets. Are there other r-degrees of unsolvability (all
r = 1,m, T )? For r = 1,m, the first examples of such sets were the
simple sets of the above exercise; see Item (c) below. (For r = T the
question is much harder, and the affirmative answer was provided (in-
dependently) by R.A. Friedberg and A.A. Muchnik only in 1956.)

(a) Show that for all A, A is m-complete iff A is 1-complete.
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(b) Show that {x : φx is total} and {x : φx is not total} are incomparable
under ≤m. (Hint: see Exercise 7-11 in H. Rogers, Jr., Ibid.)

(c) Show that a simple set is neither recursive nor m-complete.

(d) Show that ≡1 and ≡m do not coincide on the nonrecursive recursively
enumerable sets, and hence ≤1 and ≤m do not coincide on these sets
either.

(e) (J.C.E. Dekker) Show that the m-degree of a simple set includes an
infinite collection of distinct 1-degrees consisting entirely of simple sets.

Comments. From Item (c) it follows that there exist nonrecursive recur-
sively enumerable sets (simple sets) that are not m-complete (and so by
Item (a) not 1-complete). Source: H. Rogers, Jr., Ibid. The term ‘Post’s
problem’ is now used among recursion theorists only for the Turing re-
duction version.

1.7.18. [35] Consider the generalized exponential function f informally
having the following property: f(0, x, y) = y + x, f(1, x, y) = y × x,
f(2, x, y) = yx, . . . . A more formal definition of f is given by f(0, 0, y) =
y, f(0, x+ 1, y) = f(0, x, y) + 1, f(1, 0, y) = 0, f(z + 2, 0, y) = 1, f(z +
1, x+ 1, y) = f(z, f(z + 1, x, y), y).

(a) Show that this function is recursive but not primitive recursive.

(b) Show that the function A(x) = f(x, x, x), called the Ackermann
generalized exponential function, is recursive but not primitive recursive.
(It rises faster than any primitive recursive function.)

Comments. The function f was given by Wilhelm Ackermann (1926)
as a first example of a recursive function that is not primitive recur-
sive [Math. Ann. 99(1928), 118–133]. See also D. Hilbert [Math. Ann.,
95(1926), 161–190], who credits the proof to Ackermann. There are many
variants of definitions of the Ackermann function. A common recursive
definition is A′(0, n) = n + 1; A′(i, 0) = A′(i − 1, 1) for i ≥ 0; and
A′(i, n) = A′(i− 1, A′(i, n− 1)) for i, n > 0 Then A(x) = A′(x, x). This
definition is apparently due to R.M. Robinson [Bull. Amer. Math. Soc.
54(1948), 987–993], and an earlier variant is due to Rózsa Péter [Math.
Ann. 111(1935), 42–60]. An inherently iterative algorithm to compute
A′ is given by J.W. Grossman and R.Z. Zeitman [Theoret. Comput.
Sci., 37(1988), 327–330]. Another definition for the Ackermann function
(source: P. Odifreddi) is hω defined as follows: h0(x) = x+1;hn+1(x) =

h
(x)
n (x);hω(x) = hx(x) where h

(0)
n (x) = x;h

(z+1)
n (x) = hn(h

(z)
n (x)). One

of the advantages of this version is that it can be translated into the
transfinite. Note: h1(x) = 2x;h2(x) = x2x.

1.7.19. The function BB is defined in terms of Turing machines with a
purely binary tape alphabet (no blanks) in quintuple format (rather than
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quadruple format as above). For each n define the set An = {i : Ti has n
states and φi(0) <∞}. That is, Ti with i in An halts when it is started
with p = ǫ. We define BB(n) as the maximal number of 1’s in the output
of any Turing machine in An when it is started on input ǫ. It is easy to
see that BB(1) = 1, but more difficult to see that BB(2) = 4. The BB
function is known as the busy beaver function. It is due to T. Rado [Bell
System Tech. J. (1962), 877–884]. This was one of the first ‘well-defined’
incomputable or nonrecursive total functions. The definition is natural
and uses no overt diagonalization.

(a) [12] Notice that the BB function is well defined, since you can show
that d(An) ≤ (6n)2n.

(b) [15] Show that the BB function is incomputable. (Hint: it grows
faster than any recursive function.)

(c) [35] Show that BB(3) = 6.

(d) [40] Show that BB(4) = 13.

(e) [30] Can you give a lower bound on BB such as the Ackermann
generalized exponential function?

(f) [O45] Is BB(5) > 4,098?

Comments. See A.K. Dewdney, Scientific American, 251 (August 1984),
19–23; Ibid, 252 (March 1985), 23; A.H. Brady, pp. 259–278 in: The
Universal Turing Machine: A Half-Century Survey, R. Herken, ed., Ox-
ford Univ. Press, 1988; H. Marxen and J. Buntrock, EATCS Bull.,
40(1990), 247–251. For the quadruple format see [A. Oberschelp, K.
Schmidt-Goettsch, G. Todt, Castor Quadruplorum, Archive for Math.
Logic, 27(1988), 35–44].

1.7.20. [39] Let f be any recursive function. Prove that there exists
an n such that φn = φf(n).

Comments. This result, and its elaborations to more complicated ver-
sions, is usually called the second recursion theorem or the fixed-point
theorem for recursion theory. The n is called a fixed-point value for f .
Standard applications include the following: There exists an e such that
the only element in the domain of φe is e itself, and more generally,
it allows us to write programs that know their own index. Source: H.
Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967.

1.7.21. [37] In Exercise 1.7.16 we studied the notions of reducibility
and degree. We now look at a coarser classification. An n-ary relation R
is in the arithmetic hierarchy if it is either recursive or, for some m, can
be expressed as

{〈x1, . . . , xn〉 : (Q1y1) . . . (Qmym)S(x1, . . . , xn, y1, . . . , ym)}, (1.5)
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where each Qi denotes the existential quantifier ‘there exists’ (∃) or
the universal quantifier ‘for all’ (∀), and S is an (n + m)-ary recursive
relation. The number of alternations in the prefix sequence of quantifiers
is the number of pairs of adjacent but unlike quantifiers. For each n > 0,
Formula 1.5 is a Σ0

n-form if the first quantifier is ∃ and the number of
alternations is n − 1. A Σ0

0-form has no quantifiers. For each n > 0,
Formula 1.5 is a Π0

n-form if the first quantifier is ∀ and the number of
alternations is n − 1. A Π0

0-form has no quantifiers. A relation R is in
Σ0
n if it can be expressed by a Σ0

n-form. A relation R is in Π0
n if it can

be expressed by a Π0
n-form. For each n ≥ 0, define ∆0

n = Σ0
n

⋂
Π0
n.

(a) Show that Σ0
0 = Π0

0 is the class of recursive sets, and that Σ0
1 is the

class of recursively enumerable sets.

(b) Show that R is in Σ0
n iff the complement of R is in Π0

n.

(c) Show that Σ0
n

⋃
Π0
n ⊆ Σ0

n+1

⋂
Π0
n+1.

(d) Show that for each n > 0, we have Σ0
n −Π0

n 6= ∅, and hence, by (c),
that for each n > 0 we have Π0

n − Σ0
n 6= ∅.

Comments. The result mentioned as Item (d) is called the hierarchy
theorem. In conjunction with Item (c) it shows that the classes Σ0

0,Σ
0
1, . . .

form a strictly increasing sequence. Source: H. Rogers, Jr., Ibid.

1.7.22. [13] A real number r ∈ [0, 1] is called a recursive real number if
there exists a total recursive function φ such that r = 0.ω with φ(i) = ωi,
for all i. We call ω a recursive sequence. A recursive sequence of recursive
reals is a sequence r1, r2, . . . of reals if there is a total recursive function
ψ in two arguments such that ψ(i, j) = ri,j and ri = 0.ri,1ri,2 . . . .
Show that not all real numbers are recursive; show that there are only
countably many recursive numbers; and show that there is a recursive
sequence of recursive reals that converges to a real, but not to a recursive
one.

1.8

The Roots of

Kolmogorov

Complexity

The notion of Kolmogorov complexity has its roots in probability theory,
information theory, and philosophical notions of randomness, and came
to fruition using the recent development of the theory of algorithms.
The idea is intimately related to problems in both probability theory and
information theory. These problems as outlined below can be interpreted
as saying that the related disciplines are not tight enough; they leave
things unspecified that our intuition tells us should be dealt with.
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1.8.1
A Lacuna of
Classical
Probability
Theory

An adversary claims to have a true fair coin. However, when he flips it a
hundred times, the coin comes up a hundred heads in a row. Upon seeing
this, we claim that the coin cannot be fair. The adversary, however, ap-
peals to probability theory, which says that every sequence of outcomes
of a hundred coin flips is equally likely having probability 1/2100, and
one sequence had to come up.

Probability theory gives us no basis to challenge an outcome after it has
happened. We could only exclude unfairness in advance by putting a
penalty side bet on an outcome of 100 heads. But what about 1010 . . .?
What about an initial segment of the binary expansion of π?

Regular sequence Pr(00000000000000000000000000) = 1/226,

Regular sequence Pr(01000110110000010100111001) = 1/226,

Random sequence Pr(10010011011000111011010000) = 1/226 .

The first sequence is regular, but what is the distinction of the second
sequence and the third? The third sequence was generated by flipping a
quarter. The second sequence is very regular: 0, 1, 00, 01, . . . . The third
sequence will pass (pseudo)randomness tests.

In fact, classical probability theory cannot express the notion of ran-
domness of an individual sequence. It can only express expectations of
properties of outcomes of random processes, that is, the expectations of
properties of the total set of sequences under some distribution.

Only relatively recently, this problem has found a satisfactory resolution
by combining notions of computability and statistics to express the com-
plexity of a finite object. This complexity is the length of the shortest
binary program from which the object can be effectively reconstructed.
It may be called the algorithmic information content of the object. This
quantity turns out to be an attribute of the object alone, and absolute (in
the technical sense of being recursively invariant). It is the Kolmogorov
complexity of the object.

1.8.2
A Lacuna of
Information
Theory

Shannon’s classical information theory assigns a quantity of information
to an ensemble of possible messages. All messages in the ensemble being
equally probable, this quantity is the number of bits needed to count all
possibilities. This expresses the fact that each message in the ensemble
can be communicated using this number of bits. However, it does not
say anything about the number of bits needed to convey any individ-
ual message in the ensemble. To illustrate this, consider the ensemble
consisting of all binary strings of length 9999999999999999.

By Shannon’s measure, we require 9999999999999999 bits on average
to encode a string in such an ensemble. However, the string consisting
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of 9999999999999999 1’s can be encoded in about 55 bits by expressing
9999999999999999 in binary and adding the repeated pattern 1. A re-
quirement for this to work is that we have agreed on an algorithm that
decodes the encoded string. We can compress the string still further
when we note that 9999999999999999 equals 32 × 1111111111111111,
and that 1111111111111111 consists of 24 1’s.

Thus, we have discovered an interesting phenomenon: the description
of some strings can be compressed considerably, provided they exhibit
enough regularity. This observation, of course, is the basis of all systems
to express very large numbers and was exploited early on by Archimedes
in his treatise The Sand Reckoner, in which he proposes a system to name
very large numbers:

“There are some, King Golon, who think that the number of sand is infinite
in multitude [. . . or] that no number has been named which is great enough to
exceed its multitude. [. . .] But I will try to show you, by geometrical proofs,
which you will be able to follow, that, of the numbers named by me [. . .] some
exceed not only the mass of sand equal in magnitude to the earth filled up in
the way described, but also that of a mass equal in magnitude to the universe.”

However, if regularity is lacking, it becomes more cumbersome to express
large numbers. For instance, it seems easier to compress the number one
billion, than the number one billion seven hundred thirty-five million
two hundred sixty-eight thousand and three hundred ninety-four, even
though they are of the same order of magnitude.

1.9

Randomness

This brings us to the main root of Kolmogorov complexity, the notion
of randomness. There is a certain inevitability in the development that
led A.N. Kolmogorov (1903–1987) to use the recently developed theory
of effective computability to resolve the problems attending the proper
definition of a random sequence. Indeed, the main idea involved had
already been formulated with unerring intuition by P.S. Laplace, but
could not be properly quantified at the time (see Chapter 4).

In the context of the above discussion, random sequences are sequences
that cannot be compressed. Now let us compare this with the common
notions of mathematical randomness. To measure randomness, criteria
have been developed that certify this quality. Yet, in recognition that
they do not measure ‘true’ randomness, we call these criteria ‘pseudo’
randomness tests. For instance, statistical surveys of initial sequences
of decimal digits of π have failed to disclose any significant deviations
from randomness. But clearly, this sequence is so regular that it can be
described by a simple program to compute it, and this program can be
expressed in a few bits.
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“Any one who considers arithmetical methods of producing random digits is,
of course, in a state of sin. For, as has been pointed out several times, there
is no such thing as a random number—there are only methods to produce
random numbers, and a strict arithmetical procedure is of course not such a
method. (It is true that a problem we suspect of being solvable by random
methods may be solvable by some rigorously defined sequence, but this is a
deeper mathematical question than we can go into now.)” [von Neumann]

This fact prompts more sophisticated definitions of randomness. No-
tably, Richard von Mises (1883–1953) proposed notions that approach
the very essence of true randomness. This is related to the construction of
a formal mathematical theory of probability, to form a basis for real ap-
plications, in the early part of this century. While von Mises’s objective
was to justify the applications to real phenomena, Kolmogorov’s classic
1933 treatment constructs a purely axiomatic theory of probability on
the basis of set-theoretic axioms.

“This theory was so successful, that the problem of finding the basis of real
applications of the results of the mathematical theory of probability became
rather secondary to many investigators. [. . . however] the basis for the applica-
bility of the results of the mathematical theory of probability to real ‘random
phenomena’ must depend in some form on the frequency concept of probabil-
ity, the unavoidable nature of which has been established by von Mises in a
spirited manner.” [Kolmogorov]

The point made is that the axioms of probability theory are designed so
that abstract probabilities can be computed, but nothing is said about
what probability really means, or how the concept can be applied mean-
ingfully to the actual world. Von Mises analyzed this issue in detail, and
suggested that a proper definition of probability depends on obtaining a
proper definition of a random sequence. This makes him a frequentist—a
supporter of the frequency theory.

The frequency theory to interpret probability says, roughly, that if we
perform an experiment many times, then the ratio of favorable outcomes
to the total number n of experiments will, with certainty, tend to a
limit, p say, as n → ∞. This tells us something about the meaning of
probability, namely, that the measure of the positive outcomes is p. But
suppose we throw a coin 1000 times and wish to know what to expect.
Is 1000 enough for convergence to happen? The statement above does
not say. So we have to add something about the rate of convergence.
But we cannot assert a certainty about a particular number of n throws,
such as “the proportion of heads will be p± ǫ for large enough n (with ǫ
depending on n).” We can at best say “the proportion will lie between
p ± ǫ with at least such and such probability (depending on ǫ and n0)
whenever n > n0.” But now we have defined probability in an obviously
circular fashion.
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In 1919 von Mises proposed to eliminate the problem by simply dividing
all infinite sequences into special random sequences (called collectives),
having relative frequency limits, which are the proper subject of the
calculus of probabilities and other sequences. He postulates the existence
of random sequences as certified by abundant empirical evidence, in the
manner of physical laws, and derives mathematical laws of probability
as a consequence. In his view a naturally occurring sequence can be
nonrandom or unlawful in the sense that it is not a proper collective.

Von Mises views the theory of probabilities insofar as they are numerically
representable as a physical theory of definitely observable phenomena, repet-
itive or mass events, for instance, as found in games of chance, population
statistics, Brownian motion. ‘Probability’ is a primitive notion of the theory
comparable to those of ‘energy’ or ‘mass’ in other physical theories.

Whereas energy or mass exists in fields or material objects, probabilities ex-
ist only in the similarly mathematical idealization of collectives (random se-
quences). All problems of the theory of probability consist in deriving, ac-
cording to certain rules, new collectives from given ones and calculating the
distributions of these new collectives. The exact formulation of the properties
of the collectives is secondary and must be based on empirical evidence. These
properties are the existence of a limiting relative frequency and randomness.

The property of randomness is a generalization of the abundant experience in
gambling houses, namely, the impossibility of a successful gambling system.
Including this principle in the foundation of probability, von Mises argues,
we proceed in the same way as the physicists did in the case of the energy
principle. Here too, the experience of hunters of fortune is complemented by
solid experience of insurance companies, and so forth.

A fundamentally different approach is to justify a posteriori the application
of a purely mathematically constructed theory of probability, such as the the-
ory resulting from the Kolmogorov axioms. Suppose we can show that the
appropriately defined random sequences form a set of measure one, and with-
out exception satisfy all laws of a given axiomatic theory of probability. Then
it appears practically justifiable to assume that as a result of an (infinite)
experiment only random sequences appear.

Von Mises’s notion of infinite random sequences of 0’s and 1’s (collective)
essentially appeals to the idea that no gambler, making a fixed number
of wagers of ‘heads,’ at fixed odds [say p versus 1 − p] and in fixed
amounts, on the flips of a coin [with bias p versus 1− p], can have profit
in the long run from betting according to a system instead of betting
at random. Says Church: “this definition [below] . . . while clear as to
general intent, is too inexact in form to serve satisfactorily as the basis
of a mathematical theory.”

Definition 1.9.1 An infinite sequence a1, a2, . . . of 0’s and 1’s is a random sequence in the
special meaning of collective if the following two conditions are satisfied:
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1. Let fn be the number of 1’s among the first n terms of the sequence.
Then

lim
n→∞

fn
n

= p, for some p, 0 < p < 1.

2. A place-selection rule is a partial function φ from the finite binary
sequences to the values 0 and 1 with the purpose of selecting one
after another those indices n for which φ(a1a2 . . . an−1) = 1. We
require (1), with the same limit p, also for every infinite subsequence

an1an2 . . .

obtained from the sequence by some admissible place-selection rule.
(We have not yet formally stated which place-selection rules are
admissible.)

The existence of a relative frequency limit is a strong assumption. Em-
pirical evidence from long runs of dice throws in gambling houses or with
death statistics in insurance mathematics suggests that the relative fre-
quencies are apparently convergent. But clearly, no empirical evidence
can be given for the existence of a definite limit for the relative fre-
quency. However long the test run, in practice it will always be finite,
and whatever the apparent behavior in the observed initial segment of
the run, it is always possible that the relative frequencies keep oscillating
forever if we continue.

The second condition ensures that no strategy using an admissible place-
selection rule can select a subsequence that allows different odds for
gambling than a subsequence that is selected by flipping a fair coin. For
example, let a casino use a coin with probability p = 1

4 of coming up
heads and a payoff for heads equal to three times the payoff for tails.
This ‘law of excluded gambling strategy’ says that a gambler betting in
fixed amounts cannot make more profit in the long run betting according
to a system than from betting at random.

“In everyday language we call random those phenomena where we cannot find
a regularity allowing us to predict precisely their results. Generally speaking,
there is no ground to believe that random phenomena should possess any defi-
nite probability. Therefore, we should distinguish between randomness proper
(as absence of any regularity) and stochastic randomness (which is the sub-
ject of probability theory). There emerges the problem of finding reasons for
the applicability of the mathematical theory of probability to the real world.”
[Kolmogorov]

Intuitively, we can distinguish between sequences that are irregular and
do not satisfy the regularity implicit in stochastic randomness, and se-
quences that are irregular but do satisfy the regularities associated with
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stochastic randomness. Formally, we will distinguish the second type
from the first type by whether a certain complexity measure of the ini-
tial segments goes to a definite limit. The complexity measure referred
to is the length of the shortest description of the prefix (in the precise
sense of Kolmogorov complexity) divided by its length. It will turn out
that almost all infinite strings are irregular of the second type and satisfy
all regularities of stochastic randomness.

“In applying probability theory we do not confine ourselves to negating regu-
larity, but from the hypothesis of randomness of the observed phenomena we
draw definite positive conclusions.” [Kolmogorov]

Considering the sequence as fair coin tosses with p = 1
2 , the second

condition in Definition 1.9.1 says that there is no strategy φ (law of
excluded gambling strategy) that ensures that a player betting at fixed
odds and in fixed amounts on the tosses of the fair coin will make infinite
gain. That is, no advantage is gained in the long run by following some
system, such as betting ‘heads’ after each run of seven consecutive tails,
or (more plausibly) by placing the nth bet ‘heads’ after the appearance
of n+7 tails in succession. According to von Mises, the above conditions
are sufficiently familiar and an uncontroverted empirical generalization
to serve as the basis of an applicable calculus of probabilities.

Example 1.9.1 It turns out that the naive mathematical approach to a concrete formu-
lation, admitting simply all partial functions, comes to grief as follows:
Let a = a1a2 . . . be any collective. Define φ1 as φ1(a1 . . . ai−1) = 1
if ai = 1, and undefined otherwise. But then p = 1. Defining φ0 by
φ0(a1 . . . ai−1) = bi, with bi the complement of ai, for all i, we obtain by
the second condition of Definition 1.9.1 that p = 0. Consequently, if we
allow functions like φ1 and φ0 as strategies, then von Mises’s definition
cannot be satisfied at all. 3

In the 1930s, Abraham Wald proposed to restrict the a priori admissi-
ble φ to any arbitrary fixed countable set of functions. Then collectives
do exist. But which countable set? In 1940, Alonzo Church proposed to
choose a set of functions representing computable strategies. According
to Church’s thesis, Section 1.7, this is precisely the set of recursive func-
tions. With recursive φ, not only is the definition completely rigorous,
and random infinite sequences do exist, but moreover they are abundant,
since the infinite random sequences with p = 1

2 form a set of measure
one. From the existence of random sequences with probability 1

2 , the ex-
istence of random sequences associated with other probabilities can be
derived. Let us call sequences satisfying Definition 1.9.1 with recursive φ
Mises–Wald–Church random. That is, the involved Mises–Wald–Church
place-selection rules consist of the partial recursive functions.
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Appeal to the theorem of Wald above yields as a corollary that the
set of Mises–Wald–Church random sequences associated with any fixed
probability has the cardinality of the continuum. Moreover, each Mises–
Wald–Church random sequence qualifies as a normal number. (A num-
ber is normal if each digit of the base, and each block of digits of any
length, occurs with equal asymptotic frequency.) Note, however, that
not every normal number is Mises–Wald–Church random. This follows,
for instance, from Champernowne’s sequence (or number),

0.1234567891011121314151617181920 . . . ,

due to D.G. Champernowne, which is normal in the scale of 10 and whose
ith digit is easily calculated from i. The definition of a Mises–Wald–
Church random sequence implies that its consecutive digits cannot be
effectively computed. Thus, an existence proof for Mises–Wald–Church
random sequences is necessarily nonconstructive.

Unfortunately, the von Mises–Wald–Church definition is not yet good
enough, as was shown by J. Ville in 1939. There exist sequences that
satisfy the von Mises–Wald–Church definition of randomness, with lim-
iting relative frequency of ones of 1

2 , but nonetheless have the property

fn
n

≥ 1

2
for all n.

The probability of such a sequence of outcomes in random flips of a fair
coin is zero. Intuition: if you bet 1 all the time against such a sequence
of outcomes, then your accumulated gain is always positive! Similarly,
other properties of randomness in probability theory such as the law of
the iterated logarithm do not follow from the von Mises–Wald–Church
definition.

For a better understanding of the problem revealed by Ville, and its
subsequent solution by P. Martin-Löf in 1966, we look at some aspects
of the methodology of probability theory. Consider the sample space
of all one-way infinite binary sequences generated by fair coin tosses.
We call a sequence ‘random’ if it is ‘typical.’ It is not ‘typical,’ say
‘special,’ if it has a particular distinguishing property. An example of
such a property is that an infinite sequence contains only finitely many
ones. There are infinitely many such sequences. But the probability that
such a sequence occurs as the outcome of fair coin tosses is zero. ‘Typical’
infinite sequences will have the converse property, namely, they contain
infinitely many ones.

In fact, one would like to say that ‘typical’ infinite sequences will have
all converse properties of the properties that can be enjoyed by ‘special’
infinite sequences. This is formalized as follows: If a particular property,
such as containing infinitely many occurrences of ones (or zeros), the
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law of large numbers, or the law of the iterated logarithm, has been
shown to have probability one, then one calls this a law of randomness.
A sequence is ‘typical,’ or ‘random,’ if it satisfies all laws of randomness.

But now we are in trouble. Since all complements of singleton sets in
the sample space have probability one, it follows that the intersection of
all sets of probability one is empty. Thus, there are no random infinite
sequences!

Martin-Löf, using ideas related to Kolmogorov complexity, succeeded in
defining random infinite sequences in a manner that is free of such diffi-
culties. He observed that all laws that are proven in probability theory to
hold with probability one are effective (as defined in Section 1.7). That
is, we can effectively test whether a particular infinite sequence does not
satisfy a particular law of randomness by effectively testing whether the
law is violated on increasingly long initial segments.

The natural formalization is to identify the effective test with a par-
tial recursive function. This suggests that one ought to consider not the
intersection of all sets of measure one, but only the intersection of all
sets of measure one with recursively enumerable complements. (Such a
complement set is expressed as the union of a recursively enumerable
set of cylinders). It turns out that this intersection has again measure
one. Hence, almost all infinite sequences satisfy all effective laws of ran-
domness with probability one. This notion of infinite random sequences
is related to infinite sequences of which all finite initial segments have
high Kolmogorov complexity.

The notion of randomness satisfied by both the Mises–Wald–Church collec-
tives and the Martin-Löf random infinite sequences is roughly that effective
tests cannot detect regularity. This does not mean that a sequence may not
exhibit regularities that cannot be effectively tested. Collectives generated by
nature, as postulated by von Mises, may very well always satisfy stricter crite-
ria of randomness. Why should collectives generated by quantum-mechanical
phenomena care about mathematical notions of computability? Again, satis-
faction of all effectively testable prerequisites for randomness is some form of
regularity. Maybe nature is more lawless than adhering strictly to regularities
imposed by the statistics of randomness.

Until now the discussion has centered on infinite random sequences
where the randomness is defined in terms of limits of relative frequencies.
However,

“The frequency concept based on the notion of limiting frequency as the num-
ber of trials increases to infinity does not contribute anything to substantiate
the application of the results of probability theory to real practical problems
where we always have to deal with a finite number of trials.” [Kolmogorov]

The practical objection against both the relevance of considering infi-
nite sequences of trials and the existence of a relative frequency limit is
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concisely put in J.M. Keynes’s famous phrase, “In the long run we shall
all be dead.” It seems more appealing to try to define randomness for
finite strings first, and only then define random infinite strings in terms
of randomness of initial segments.

The approach of von Mises to define randomness of infinite sequences
in terms of unpredictability of continuations of finite initial sequences
under certain laws (like recursive functions) did not lead to satisfying
results. Although certainly inspired by the random sequence debate, the
introduction of Kolmogorov complexity marks a definite shift of point of
departure, namely, to define randomness of sequences by the fact that no
program from which an initial segment of the sequence can be computed
is significantly shorter than the initial segment itself, rather than that
no program can predict the next elements of the sequence.

Finite sequences that cannot be effectively described by a significantly
shorter description than their literal representation are called random.
Our aim is to characterize random infinite sequences as sequences of
which all initial finite segments are random in this sense (Section 3.6).
A related approach characterizes random infinite sequences as sequences
all of whose initial finite segments pass all effective randomness tests
(Section 2.5).

Initially, before the idea of complexity, Kolmogorov proposed a close analogy
to von Mises’s notions in the finite domain. Consider a generalization of place-
selection rules insofar as the selection of ai can depend on aj with j > i [A.N.
Kolmogorov, Sankhyā, Series A, 25(1963), 369–376]. Let Φ be a finite set of
such generalized place-selection rules. Kolmogorov suggested that an arbitrary
finite binary sequence a of length n ≥ m can be called (m, ǫ)-random with
respect to Φ if there exists some p such that the relative frequency of the 1’s
in the subsequences ai1 . . . air with r ≥ m, selected by applying some φ in
Φ to a, all lie within ǫ of p. (We discard φ that yield subsequences shorter
than m.) Stated differently, the relative frequency in this finite subsequence is
approximately (to within ǫ) invariant under any of the methods of subsequence
selection that yield subsequences of length at least m. Kolmogorov has shown
that if the cardinality of Φ satisfies

d(Φ) ≤ 1

2
e2mǫ

2(1−ǫ),

then for any p and any n ≥ m there is some sequence a of length n that is
(m, ǫ)-random with respect to Φ.

Exercises 1.9.1. [08] Consider the sequence 101001000100001000001 . . . , that is,
increasing subsequences of 0’s separated by single 1’s. What is the lim-
iting relative frequency of 1’s and 0’s? Is this sequence a collective?

1.9.2. [15] Suppose we are given a coin with an unknown bias: the
probability of heads is p and of tails is (1 − p), p some unknown real
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number 0 < p < 1. Can we use this coin to simulate a perfectly fair
coin?

Comments. The question asks for an effective construction of a col-
lective of 0’s and 1’s with limiting frequency 1

2 from a collective of
0’s and 1’s with unknown limiting frequency p. Source: J. von Neu-
mann, Various techniques used in connection with random digits, in:
Collected Works, Vol. V, A.H. Traub, ed., Macmillan, 1963; W. Ho-
effding and G. Simons, Ann. Math. Statist., 41(1970), 341–352; T.S.
Ferguson, Ann. Math. Statist., 41(1970), 352–362; P. Elias, Ann. Math.
Statist., 43(1972), 865–870.

1.9.3. [15] Suppose the sequence a1a2 . . . ai . . . has all the properties
of a collective with p = 1

2 .

(a) The limiting relative frequency of the subsequence 01 equals the
limiting frequency of subsequence 11. Compute these limiting relative
frequencies.

(b) Form a new sequence b1b2 . . . bi . . . defined by bi = ai+ai+1 for all i.
Then the bi’s are 0, 1, or 2. Show that the limiting relative frequencies
of 0, 1, and 2 are 1

4 , 1
2 , and 1

4 , respectively.

(c) The new sequence constructed in Item (b) satisfies requirement (1) of
a collective: the limiting relative frequencies constituent elements of the
sample space {0, 1, 2} exist. Prove that it does not satisfy requirement
(2) of a collective.

(d) Show that the limiting relative frequency of the subsequence 21 will
generally differ from the relative frequency of the subsequence 11.

Comments. Hint for Item (c): show that the subsequences 02 and 20 do
not occur. Use this to select effectively a subsequence of b1b2 . . . bi . . .
with limiting relative frequency of 2’s equal to zero. This phenomenon
was first observed by M. von Smoluchowski [Sitzungsber. Wien. Akad.
Wiss., Math.-Naturw. Kl., Abt. IIa, 123(1914) 2381–2405; 124(1915)
339–368] in connection with Brownian motion, and called probability
‘after-effect.’ Also: R. von Mises, Probability, Statistics, and Truth, Macmil-
lan, 1933.

1.9.4. [10] Given an infinite binary string that is a collective with lim-
iting frequency of 1’s equal to p = 1

2 , show how to construct a collective
over symbols 0, 1, and 2 (a ternary collective) with equal limiting fre-
quencies of 1

3 for the number of occurrences of 0’s, 1’s, and 2’s.

Comments. Hint: use Exercise 1.9.2.

1.9.5. [M40] Let ω1ω2 . . . be an infinite binary sequence, and let fn =
ω1 + ω2 + · · · + ωn.
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(a) A sequence ω is said to satisfy the infinite recurrence law if fn = 1
2n

infinitely often. It can be shown that the set of infinite binary sequences
having the infinite recurrence property has measure one in the set of all
infinite binary sequences with respect to the usual binary measure. Show
that there are infinite binary sequences that are Mises–Wald–Church
random satisfying fn ≥ 1

2n for all n.

(b) Show that there are infinite binary sequences that are Mises–Wald–
Church random and satisfy lim supn→∞(

∑n
i=1 ωi − 1

2n)/
√
n ln lnn >

1/
√

2 (the violate the law of the iterated logarithm), Exercise 1.10.5.

Comments. Since Items (a) and (b) are satisfied with probability zero in
the set of all infinite binary strings, we can conclude that Mises–Wald–
Church random strings do not satisfy all laws of probability that hold
with probability one (the laws of randomness). Source: J. Ville, Étude
Critique de la Concept de Collectif, Gauthier-Villars, 1939.

1.9.6. [32] What happens if we restrict our set of admissible selection
functions to those computable by finite-state machines instead of Turing
machines? First we need some definitions. Let ω = ω1ω2 . . . be an infinite
binary string. For each m = 0, 1, 00, 01, . . . , let fn be the number of
occurrences ofm in ω1:n. We say that ω is k-distributed if limn→∞ fn/n =
1/2l(m) for all m with l(m) ≤ k. We say that ω is ∞-distributed, or
normal, if it is k-distributed for all integers k.

A finite-state place-selection rule φ is a function computed by a finite-
state machine with value 0 or 1 for each finite binary sequence. Given an
infinite sequence ω, φ determines a subsequence ωi1ωi2 . . . by selecting
one after another the indices n for which φ(ω1ω2 . . . ωn−1) = 1. (For-
mally, in terms of the definition of a Turing machine in Section 1.7, we
can think of φ as being computed by a Turing machine T : Q×A→ S×Q
with T (·, d) = (R, ·) for all d = 0, 1 and T (·, B) = (a, ·) for some a = 0, 1.)
Let ωi1ωi2 . . . be the subsequence of ω selected by φ, and let cn be the
number of ones in the first n bits. Assuming that φ has infinitely many
values 1 on prefixes of ω, define lim supn→∞ cn/n as the prediction ratio
of φ for ω. Finally, a finite-state prediction function φ is a predictor for
ω if its prediction ratio is greater than 1

2 .

(a) Show that every ω that is k-distributed but not (k + 1)-distributed
has a (k + 1)-state predictor.

(b) Show that there are no predictors for ∞-distributed ω.

(c) Show that the subsequence selected from an ∞-distributed ω by a
finite-state selection function is again ∞-distributed.

(d) Show that there are ∞-distributed sequences that can be predicted
by stronger models of computation such as Turing machines. Conclude
that there are ∞-distributed sequences that are not random in the sense
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of von Mises–Wald–Church. (Hint: use Champernowne’s sequence pre-
sented in the main text.)

Comments. Since predictors are machines that, in the long run, have
some success in making correct predictions on ω, we can say that ω ap-
pears random to φ if φ is not a predictor of ω. Then, ∞-distributed se-
quences are precisely the sequences that appear random to all finite-state
selection functions. In terms of gambling, let a gambler pay $1.00 for each
prediction he makes and receive $2.00 for each correct prediction. If the
sequence supplied by the house is ∞-distributed, and the gambler makes
unboundedly many predictions, then no matter what finite-state selec-
tion function he uses, the limit superior of the ratio (paid $)/(received
$) goes to one. Source: V.N. Agafonov, Soviet Math. Dokl., 9(1968),
324–325 (English transl.); C.P. Schnorr and H. Stimm, Acta Informat-
ica, 1(1972), 345–359; and, apparently independently, M.G. O’Connor,
J. Comput. System Sci. 37(1988), 324–336. See also: T. Kamae, Israel
J. Math., 16(1973), 121–149; T. Kamae and B. Weiss, Israel J. Math.,
21(1975), 101–111.

1.9.7. [33] Investigate related problems as in Exercise 1.9.6 by replac-
ing finite-state machines (that is, regular languages) by slightly more
complex languages such as deterministic one-counter languages or linear
languages. Show that there are languages of both types such that selec-
tion according to them does not preserve normality (∞-distributedness),
and that in fact, for both types of languages it is possible to select a con-
stant sequence from a normal one.

Comments Source: W. Merkle, J. Reimann, Theor. Comput. Systems,
39(2006), 685–697.

1.9.8. [O35] Investigate the problems as in Exercises 1.9.6 and 1.9.7,
for push-down automata, time- or space-bounded classes, and primitive
recursive functions.

1.10

Prediction

and

Probability

The question of quantitative probability based on complexity was first
raised and treated by R.J. Solomonoff, in an attempt to obtain a com-
pletely general theory of inductive reasoning. Let us look at some pre-
decessors in this line of thought.

The so-called weak law of large numbers, formulated by Jacob Bernoulli
(1654–1705) in his Ars Conjectandi, published posthumously in 1713,
states that if an experiment with probability of success p is repeated n
times, then the proportion of successful outcomes will approach p for
large n. Such a repetitive experiment is called a sequence of Bernoulli
trials generated by a (p, 1 − p) Bernoulli process, and the generated
sequence of outcomes is called a Bernoulli sequence.
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Thomas Bayes (1702–1761), in “An essay towards solving a problem
in the doctrine of chances” [Philos. Trans., London, 53(1763), 376–398,
and 54(1764), 298–310], suggested the ‘inverse of Bernoulli’s problem.’
The resulting method, sometimes referred to as inverse probability, was
further analyzed by P.S. Laplace, who also attached Bayes’s name to it.
In Bayesian approaches it is assumed that there is some true, or a priori
(prior), distribution of probabilities over objects. Then an object with
unknown probability p is drawn. Provided with a (nonempirical) prior
probability, together with empirical data and the probabilistic model of
these data, Bayes’s rule supplies a way to calculate a posterior or inferred
probability distribution. We then can give a numerical estimate for p,
for example, by choosing the maximum posterior probability.

The formal statement of Bayes’s rule was given in Section 1.6. The pro-
cedure is most easily explained by example. Suppose we have an urn
containing a large number of dice with the faces numbered 1 through
6. Each die has a (possibly different) unknown probability p of casting
6, which may be different from the 1

6 that it is for a true die. A die is
drawn from the urn and cast n times in total, producing the result 6 in
m of those casts. Let P (X = p) be the probability of drawing a die with
attribute p from the urn. This P (X = p) is the prior distribution. In von
Mises’s interpretation, if we repeatedly draw a die from the urn, with
replacement, then the relative frequency with which a die with given
value of p appears in these drawings has the limiting value P (X = p).
The probability of obtaining m outcomes 6 in n throws of a die with
attribute p is

P (Y = m|n, p) =

(
n

m

)

pm(1 − p)n−m,

the number of ways to select m items from n items, multiplied by the
probability of m successes and (n−m) failures. Hence, the probability of
drawing a die with attribute p and subsequently throwing m outcomes
6 in n throws with it is the product P (X = p) P (Y = m|n, p).
For the case under discussion, Bayes’s problem consists in determining
the probability of m outcomes 6 in n casts being due to a die with a
certain given value of p. The answer is given by the posterior, or inferred,
probability distribution

P (X = p|n,m) =
P (X = p)P (Y = m|n, p)

∑

p P (X = p)P (Y = m|n, p) ,

the sum taken over all values of attribute p. If we repeat this experiment
many times, then the limiting value of the probability of drawing a die
with attribute value p, given that we throw m 6’s out of n, is P (X =
p|n,m).
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FIGURE 1.2. Inferred probability for increasing n

The interesting feature of this approach is that it quantifies the intuition
that if the number of trials n is small, then the inferred distribution
P (X = p|n,m) depends heavily on the prior distribution P (X = p).
However, if n is large, then irrespective of the prior P (X = p), the
inferred probability P (X = p|n,m) condenses more and more around
m/n = p. To analyze this, we consider P (X = p|n,m) as a continuous
distribution with fixed n. Clearly, P (X = p|n,m) = 0 for m < 0 and
m > n. Let ǫ > 0 be some constant.

Consider the area under the tails of P (Y = m|n, p) for m ≤ (p − ǫ)n
and m ≥ (p + ǫ)n (the area such that |p −m/n| ≥ ǫ). Whatever ǫ we
choose, for each δ > 0 we can find an n0 such that this area is smaller
than δ for all n ≥ n0. This can be shown in several ways. We show this
by appealing to a result that will be used several times later on.

The probability of m successes out of n independent trials with proba-
bility p of success is given by the binomial distribution

P (Y = m|n, p) =

(
n

m

)

pm(1 − p)n−m. (1.6)

The deviation ǫ (where 0 ≤ ǫ) from the average number of successes np
in n experiments is analyzed by estimating the combined tail probability

P (|m− np| > ǫpn) =
∑

|m−np|>ǫpn

(
n

m

)

pm(1 − p)n−m

of the binomial distribution, Figure 1.2. We give a variant of the classical
estimate and omit the proof.

Lemma 1.10.1 (Chernoff bounds) Assume the notation above. For 0 ≤ ǫ ≤ 1,

P (|m− pn| > ǫpn) ≤ 2e−ǫ
2pn/3. (1.7)

n=100

ε

n=10

m/n
p0 1
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Each tail separately can be bounded by half of the right-hand side.

This shows that for every ǫ > 0 (and ǫ ≤ 1),

lim
n→∞

∫ (p+ǫ)n

(p−ǫ)n
P (X = p|n,m) d m = 1. (1.8)

Example 1.10.1 Let us give a numerical example. Let p take values 0.1, 0.2, . . . , 0.9 with
equal probability P (X = 0.1) = P (X = 0.2) = · · · = P (X = 0.9) = 1

9 .
Let n = 5 and m = 3. Then the inferred probabilities are P (X =
p|5, 3) = 0.005 for p = 0.1, 0.031 for p = 0.2, up to 0.21 for p = 0.6, and
down again to 0.005 for p = 0.9, the combined probabilities summing up
to 1. If we pick a die and do no experiments, then the probability that it
is from any particular category is 1

9 ≈ 0.11. If, however, we know already
that it has had three throws of 6 out of five throws, then the probability
that it belongs to category p = 0.1 becomes smaller than 0.11, namely,
0.005, and the probability that it belongs to category p = 0.6 increases
to 0.21. In fact, the inferred probability that 0.5 ≤ p ≤ 0.7 is 0.59, while
the inferred probability for the other six p values is only 0.41.

Consider the same prior distribution P (X = p) but set n = 500 and
m = 300. Then, the inferred probability for p = 0.6 becomes P (X =
0.6|500, 300) = 0.99995. This means that it is now almost certain that a
die that throws 60 percent 6’s has p = 0.6.

We have seen that the probability of inference depends on (a) the prior
probability P (X = p) and (b) the observed results from which the infer-
ence is drawn. We have varied (b), but what happens if we start from a
different P (X = p)? Let the new prior distribution P (Y = p) be P (Y =
0.i) = i/45, i = 1, . . . , 9. Then the corresponding inferred probability for
n = 5 and m = 3 is P (Y = 0.1|5, 3) = 0.001, P (Y = 0.2|5, 3) = 0.011,
up to P (Y = 0.6|5, 3) = 0.21, and finally P (Y = 0.9|5, 3) = 0.07. For
this small sequence, these values are markedly different from the pre-
vious X values, although the highest values are still around p = 0.6.
But if we now increase the number of observations to n = 500 with the
same relative frequency of success m = 300, then the resulting Y values
correspond to the X values but for negligible differences. 3

Equation 1.8 shows that as the number of trials increases indefinitely,
the limiting value of the observed relative frequency of success in the
trials approaches the true probability of success, with probability one.
This holds no matter what prior distribution the die was selected from.
In case the initial probabilities of the events are unknown, Bayes’s rule
is a correct tool to make inferences about the probability of events from
frequencies based on many observations. For small sequences of observa-
tions, however, we need to know the initial probability to make justified
inferences.
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Solomonoff addresses precisely this issue. Suppose we are faced with a
problem we have to solve in which there has been much experience.
Then either we know outright how to solve it, or we know the frequency
of success for different possible methods. However, if the problem has
never occurred before, or only a small number of times, and the prior
distribution is unknown, as it usually is, the inference method above
is undefined or of poor accuracy. To solve this quandary Solomonoff
proposes a universal prior probability. The idea is that this universal
prior probability serves in a well-defined sense as well as the true prior
probability, provided this true prior probability is computable in the
sense of Section 1.7.

Solomonoff argues that all inference problems can be cast in the form of
extrapolation from an ordered sequence of binary symbols. A principle
to enable us to extrapolate from an initial segment of a sequence to its
continuation will either require some hypothesis about the source of the
sequence or a definition of what we mean by extrapolation. Two popular
and useful metaphysical principles for extrapolation are those of sim-
plicity (Occam’s razor, commonly attributed to the fourteenth-century
scholastic philosopher William of Ockham, but emphasized about twenty
years before Ockham by John Duns Scotus), and indifference. The prin-
ciple of simplicity asserts that the simplest explanation is the most reli-
able. The principle of indifference asserts that in the absence of grounds
enabling us to choose between explanations we should treat them as
equally reliable. We do not supply any details here, because we shall
extensively return to this matter in Chapter 4 and Chapter 5.

Exercises 1.10.1. [25] Let an experiment in which the outcomes are 0 or 1 with
fixed probability p for outcome 1 and 1 − p for outcome 0 be repeated
n times. Such an experiment consists of a sequence of Bernoulli trials
generated by a (p, 1 − p) Bernoulli process, see page 59.

Show that for each ǫ > 0 the probability that the number Sn of outcomes
1 in the first n trials of a single sequence of trials satisfies n(p − ǫ) <
Sn < n(p+ ǫ) goes to 1 as n goes to infinity.

Comments. This is J. Bernoulli’s law of large numbers [Ars Conjectandi,
Basel, 1713, Part IV, Ch. 5, p. 236], the so-called weak law of large
numbers. This law shows that with great likelihood in a series of n trials
the proportion of successful outcomes will approximate p as n grows
larger. The following interpretation of the weak law is false: “if Alice
and Buck toss a perfect coin n times, then we can expect Alice to be
in the lead roughly half of the time, regardless of who wins.” It can be
shown that if Buck wins, then it is likely that he has been in the lead for
practically the whole game. Thus, contrary to common belief, the time
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average of Sn (1 ≤ n ≤ m) over an individual game of length m has
nothing to do with the so-called ensemble average of the different Sn’s
associated with all possible games (the ensemble consisting of 2n games)
at a given moment n, which is the subject of the weak law. Source: W.
Feller, An Introduction to Probability Theory and Its Applications, Vol.
1, Wiley, 1968.

1.10.2. [30] In an infinite sequence of outcomes generated by a (p, 1−p)
Bernoulli process, let A1, A2, . . . be an infinite sequence of events each of
which depends only on a finite number of trials in the sequence. Denote
the probability of Ak occurring by Pk. (Ak may be the event that k
consecutive 1’s occur between the 2kth trial and the 2k+1th trial. Then
Pk ≤ (2p)k.)

(a) Prove that if
∑
Pk converges, then with probability one only finitely

many Ak occur.

(b) Prove that if the events Ak are mutually independent, and if
∑
Pk

diverges, then with probability one infinitely many Ak occur.

Comments. These two assertions are known as the Borel–Cantelli Lem-
mas. Source: W. Feller, Ibid.

1.10.3. [M30] Prove the limit in Equation 1.8 associated with the con-
densation of the posterior probability.

Comments. This may be called the inverse weak law of large numbers,
since it shows that we can infer with great certainty the original prob-
ability (drawn from an unknown distribution) by performing a single
sequence of a large number of trials. Note that this is a different state-
ment from the weak law of large numbers.

1.10.4. [M37] Consider one-way infinite binary sequences generated by
a (p, 1 − p) Bernoulli process. Let Sn be as in Exercise 1.10.1.

(a) Show that for every ǫ > 0, we have probability one that |pn−Sn| < ǫn
for all but finitely many n.

(b) Define the reduced number of successes S∗
n = (Sn−pn)/

√

np(1 − p).
Prove the much stronger statement than Item (a) that with probability
one, |S∗

n| <
√

2a lnn (where a > 1) holds for all but finitely many n.

Comments. Item (a) is a form of the strong law of large numbers due
to F.P. Cantelli (1917) and G. Pólya (1921). Note that this statement
is stronger than the weak law of large numbers. The latter says that
Sn/n is likely to be near p, but does not say that Sn/n is bound to stay
near p as n increases. The weak law allows that for infinitely many n,
there is a k with n < k < 2n such that Sk/k < p − ǫ. In contrast, the
strong law asserts that with probability one, p − Sn/n becomes small
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and remains small. Item (b) is due to A.N. Kolmogorov [Math. Ann.,
101(1929), 126–135]. Source: W. Feller, Ibid.

1.10.5. [M42] Consider a sequence generated by a (p, 1 − p) Bernoulli
process. Show that lim supn→∞ S∗

n/
√

2 ln lnn = 1 with probability one.

Comments. For reasons of symmetry, lim infn→∞ S∗
n/

√
2 ln lnn = −1.

This remarkable statement, known as the law of the iterated logarithm
is due to A.I. Khintchin [Fundamenta Mathematicae 6(1924), 9–20] and
was generalized by A.N. Kolmogorov [Math. Ann., 101(1929), 126–135].
For an explanation of its profundity, implications, and applications see
also W. Feller, Ibid.

1.10.6. [M33] Consider a Bernoulli processes with unknown probabil-
ity p of a successful outcome. Assume that the prior probability of the
bias p is uniformly distributed over the real interval (0, 1). Prove that
after m successful outcomes in n independent trials, the expectation of
a successful outcome in the (n+ 1)th trial is given by (m+ 1)/(n+ 2).

Comments. The above reduces to binary Bernoulli processes (p, 1 − p)
with probability p of ‘success’ and probability 1−p of ‘failure,’ that is, in-
dependent flips of a coin with unknown bias p. This is P.S. Laplace’s cele-
brated law of succession. Hint: The prior probability density P (X = p) is

uniform with
∫ b

p=a
P (X = p) = b− a (0 ≤ a ≤ b ≤ 1). The term Pr(Y =

m|n, p) =
(
n
m

)
pm(1−p)n−m is the probability of the event ofm successes

in n trials with probability p of success. The probability of obtaining m

successes in n trials at all is Pr(Y = m|n) =
∫ 1

p=0

(
n
m

)
pm(1 − p)n−mdp.

The requested expectation is the p-expectation of the posterior in Bayes’s

rule, that is,
∫ 1

p=0 p P (Y |n, p)dp/P (Y = m|n). The integrals are beta
functions; decompose these into gamma functions and use the relation
of the latter to factorials. Source: P.S. Laplace, A Philosophical Essay
on Probabilities, Dover, 1952. (Originally published in 1819. Translated
from the 6th French edition.)

1.11

Information

Theory and

Coding

It seldom happens that a detailed mathematical theory springs forth in
essentially final form from a single publication. Such was the case with
information theory, which properly began only with the appearance of
C.E. Shannon’s paper “The mathematical theory of communication”
[Bell System Technical J., 27(1948), 379–423, 623–656]. In this theory
we ignore the meaning of a message; we are interested only in the problem
of communicating a message between a sender and a receiver under the
assumption that the universe of possible messages is known to both the
sender and the receiver.
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This notion of information is a measure of one’s freedom of choice when
one selects a message. Given the choice of transmitting a message con-
sisting of the contents of this entire book, and the message “let’s get
a beer,” the information concerned is precisely one bit. Obviously this
does not capture the information content of the individual object itself.
Kolmogorov’s intention for introducing algorithmic complexity is as a
measure of the information content of individual objects.

We develop the basic ideas in a purely combinatorial manner. This is
easier and more fundamental, suffices for our purpose, and does not need
extra probabilistic assumptions. The set of possible messages from which
the selection takes place is often called an ensemble. Information, accord-
ing to Shannon, is an ensemble notion. For our purpose it is sufficient
to consider only countable ensembles.

The entropy of a random variable X with outcomes in an ensemble S
is the quantity H(X) = log d(S). This is a measure of the uncertainty
in choice before we have selected a particular value for X , and of the
information produced from the set if we assign a specific value to X .
By choosing a particular message a from S, we remove the entropy from
X by the assignment X = a and produce or transmit information I =
log d(S) by our selection of a. Since the information is usually measured
in the number of bits I ′ needed to be transmitted from sender to receiver,
I ′ = ⌈log d(S)⌉.

Example 1.11.1 The number of different binary strings ū with l(ū) = 2n+ 1 is 2n. This
gives an information content in each such message of I = n, and encoding
in a purely binary system requires I ′ = n bits. 3

Note that while a random variable X usually ranges over a finite set of
alternatives, say a, b, . . . , c, the derived theory is so general that it also
holds if we let X range over a set of sequences composed from these
alternatives, which may even be infinite.

If we have k independent random variables Xi, each of which can take ni
values, respectively, for i = 1, 2, . . . , k, then the number of combinations
possible is n = n1n2 . . . nk, and the entropy is given by

H(X1, X2, . . . , Xk) = logn1 + logn2 + · · · + lognk = logn. (1.9)

Let us look at the efficiency with which an individual message consist-
ing of a sequence x1x2 . . . xk of symbols, each xi being a selection of a
random variable X drawn from the same ensemble of s alternatives, can
be transmitted. We use the derivation to motivate the formal definition
of the entropy of a random variable. The Morse code used in telegraphy
suggests the general idea. In, say, English, the frequency of use of the
letter e is 0.12, while the frequency of the letter w is only 0.02. Hence,
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a considerable saving on average encoded message length can result by
encoding e by a shorter binary string than w.

Assume that the random variable X can take on the alternative val-
ues {x1, x2, . . . , xs} and that xi occurs ki times in the message x =
x1x2 . . . xk, with k1 + k2 + · · ·+ ks = k. Under these constraints there is
altogether an ensemble of

(
k

k1, k2, . . . , ks

)

=
k!

k1!k2! · · ·!ks!

possible messages of length k, one of which is x. In the combinatorial
approach we define the entropy of an ensemble as the efficiency with
which any message from this ensemble can be transmitted. To determine
the actual message x1x2 . . . xk, we must at least give its ordinal in the
ensemble. To reconstruct the message it suffices to give first the ordinal
k and the ordinal (k1, k2, . . . , ks) of the ensemble in (s + 1) log k bits,
and then give the ordinal of the message in the ensemble. Therefore, we
can transmit the message in h(x) bits, with

log
k!

k1!k2! · · ·!ks!
≤ h(x) ≤ (s+ 1) log k + log

k!

k1!k2! · · ·!ks!
.

The frequency of each symbol xi is defined as pi = ki/k. Recall the
approximation k log k + O(k) for log(k!) from Stirling’s formula, Exer-
cise 1.5.4 on page 17. For fixed frequencies p1, p2, . . . , ps and large k we
obtain

h(x) ∼ k
∑

pi log
1

pi
,

the sum taken in the obvious way. In information-theoretic terminology
it is customary to say that the messages are produced by a stochastic
source that emits symbols xi with given probabilities pi. With abuse of
terminology and notions, henceforth we use ‘probability’ for ‘frequency.’
(Under certain conditions on the stochastic nature of the source this
transition can be rigorously justified.)

Definition 1.11.1 Define the entropy of a random variable X with the given probabilities
P (X = xi) = pi by

H(X) =
∑

pi log
1

pi
, (1.10)

and therefore

h(x) ∼ kH(X). (1.11)
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Is there a coding method that actually achieves the economy in average
message length implied by Equation 1.11? Clearly, we have to encode
symbols with high probabilities as short binary strings and symbols with
low probabilities as long binary strings.

Example 1.11.2 We explain the Shannon–Fano code. Suppose we want to map messages
over a fixed alphabet to binary strings. Let there be n symbols (also
called basic messages or source words). Order these symbols accord-
ing to decreasing probability, say N = {1, 2, . . . , n} with probabilities

p1, p2, . . . , pn. Let Pr =
∑r−1

i=1 pi, for r = 1, . . . , n. The binary code
E : N → {0, 1}∗ is obtained by coding r as a binary number E(r), ob-
tained by truncating the binary expansion of Pr at length l(E(r)) such
that

log
1

pr
≤ l(E(r)) < 1 + log

1

pr
.

This code is the Shannon–Fano code. It has the property that highly
probable symbols are mapped to short code words and symbols with
low probability are mapped to longer code words. Moreover,

2−l(E(r)) ≤ pr < 2−l(E(r))+1.

Note that the code for the symbol r differs from all codes of symbols r+1
through n in one or more bit positions, since for all i with r+1 ≤ i ≤ n,

Pi ≥ Pr + 2−l(E(r)).

Therefore the binary expansions of Pr and Pi differ in the first l(E(r))
positions. This means that E is one-to-one, and it has an inverse: the
decoding mapping E−1. Even better, since no value of E is a prefix of
any other value of E, the set of code words is a prefix-code. This means
we can recover the source message from the code message by scanning
it from left to right without look-ahead.

If H1 is the average number of bits used per symbol of an original mes-
sage, then H1 =

∑

r prl(E(r)). Combining this with the previous in-
equality, we obtain

∑

r

pr log
1

pr
≤ H1 <

∑

r

pr

(

1 + log
1

pr

)

= 1 +
∑

r

pr log
1

pr
.

From this it follows that H1 ∼ H(X) for large n, with H(X) the entropy
per symbol of the source. 3

Example 1.11.3 How much information can a random variableX convey about a random
variable Y ? Taking again a purely combinatorial approach, this notion
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is captured as follows: If X ranges over SX and Y ranges over SY , then
we look at the set U of possible events (X = x, Y = y) consisting
of joint occurrences of event X = x and event Y = y. If U does not
equal the Cartesian product SX × SY , then this means that there is
some dependency between X and Y . Considering the set Ux = {(x, y) :
(x, y) ∈ U} for x ∈ SX , it is natural to define the conditional entropy of
Y given X = x as H(Y |X = x) = log d(Ux). This suggests immediately
that the information given by X = x about Y is

I(X = x : Y ) = H(Y ) −H(Y |X = x).

For example, if U = {(1, 1), (1, 2), (2, 3)}, so that U ⊆ SX × SY with
SX = {1, 2} and SY = {1, 2, 3, 4}, then I(X = 1 : Y ) = 1 and I(X = 2 :
Y ) = 2.

In this formulation it is obvious that H(X |X = x) = 0, and that I(X =
x : X) = H(X). This approach amounts to the assumption of uniform
distribution of the probabilities concerned. 3

We can develop the generalization of Example 1.11.3, taking into account
the frequencies or probabilities of the occurrences of the different values
X and Y can assume. Let the joint probability p(x, y) be defined as the
probability of the joint occurrence of event X = x and event Y = y. The
marginal probabilities p1(x) and p2(y) are defined by p1(x) =

∑

y p(x, y)
and p2(y) =

∑

x p(x, y) and are the probability of the occurrence of the
event X = x and the probability of the occurrence of the event Y = y,
respectively. This leads to the following self-evident formulas for joint
variables X,Y :

H(X,Y ) =
∑

x,y

p(x, y) log
1

p(x, y)
,

H(X) =
∑

x

p1(x) log
1

p1(x)
,

H(Y ) =
∑

y

p2(y) log
1

p2(y)
,

where summation over x is taken over all outcomes of the random vari-
able X and summation over y is taken over all outcomes of the random
variable Y . In all of these equations the entropy quantity on the left-hand
side achieves the maximum for equal probabilities on the right-hand side.
One can show that

H(X,Y ) ≤ H(X) +H(Y ), (1.12)

with equality only in the case that X and Y are independent.
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The conditional probability p(y|x) of outcome Y = y given outcome
X = x for random variables X and Y (not necessarily independent) is
defined by

p(y|x) =
p(x, y)

∑

y p(x, y)
,

Section 1.6.2. This leads to the following analysis of the information in
X about Y by first considering the conditional entropy of Y given X as
the average of the entropy for Y for each value of X weighted by the
probability of getting that particular value:

H(Y |X) =
∑

x

p1(x)H(Y |X = x)

=
∑

x

p1(x)
∑

y

p(y|x) log
1

p(y|x)

=
∑

x,y

p(x, y) log
1

p(y|x) .

The quantity on the left-hand side tells us how uncertain we are about
the outcome of Y when we know an outcome of X . With

H(X) =
∑

x

p1(x) log
1

p1(x)

=
∑

x

(
∑

y

p(x, y)

)

log
1

∑

y p(x, y)

=
∑

x,y

p(x, y) log
1

∑

y p(x, y)
,

and substituting the formula for p(y|x), we obtain H(X) = H(X,Y ) −
H(Y |X). Rewrite this expression as

H(X,Y ) = H(X) +H(Y |X). (1.13)

This can be interpreted as “the uncertainty of the joint event (X,Y ) is
the uncertainty of X plus the uncertainty of Y given X .” Combining
Equations 1.12, 1.13 gives H(Y ) ≥ H(Y |X), which can be taken to
imply that knowledge of X can never increase uncertainty of Y . In fact,
uncertainty in Y will be decreased unless X and Y are independent.
Finally, the information in the outcome X = x about Y is defined as

I(X = x : Y ) = H(Y ) −H(Y |X = x). (1.14)

Here the quantities H(Y ) and H(Y |X = x) on the right-hand side of
the equation are always equal to or less than the corresponding quan-
tities under the uniform distribution we analyzed first. The values of
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the quantities I(X = x : Y ) under the assumption of uniform distribu-
tion of Y and Y |X = x versus any other distribution are not related
by inequality in a particular direction. The equalities H(X |X = x) = 0
and I(X = x : X) = H(X) hold under any distribution of the variables.
Since I(X = x : Y ) is a function of outcomes of X , while I(Y = y : X) is
a function of outcomes of Y , we do not compare them directly. However,
forming the expectation defined as

E(I(X = x : Y )) =
∑

x

p1(x)I(X = x : Y ),

E(I(Y = y : X)) =
∑

y

p2(y)I(Y = y : X),

and combining Equations 1.13 and 1.14, we see that the resulting quan-
tities are equal. Denoting this quantity by I(X ;Y ) and calling it the
mutual information in X and Y , we see that this information is sym-
metric:

I(X ;Y ) = E(I(X = x : Y )) = E(I(Y = y : X)). (1.15)

The quantity I(X ;Y ) symmetrically characterizes to what extent ran-
dom variables X and Y are correlated. An inherent problem with prob-
abilistic definitions (which is avoided by the combinatorial approach) is
that although E(I(X = x : Y )) is always positive. But for some prob-
ability distributions, I(X = x : Y ) can turn out to be negative—which
definitely contradicts our naive notion of information content.

Example 1.11.4 Suppose we want to exchange the information about the outcome X = x
and it is known already that the outcome Y = y is the case, that is, x
has property y. Then we require (using the Shannon–Fano code, Exam-
ple 1.11.2 on page 68 and Lemma 4.3.3 on page 274) about log 1/P (X =
x|Y = y) bits to communicate x. On average, over the joint distri-
bution P (X = x, Y = y) we use H(X |Y ) bits, which is optimal by
Shannon’s noiseless coding theorem. In fact, exploiting the mutual in-
formation paradigm, the expected information I(Y ;X) that outcome
Y = y gives about outcome X = x is the same as the expected infor-
mation that X = x gives about Y = y, and is never negative. Yet there
may certainly exist individual y such that I(Y = y : X) is negative. For
example, we may have X = {0, 1}, Y = {0, 1}, P (X = 1|Y = 0) = 1,
P (X = 1|Y = 1) = 1

2 , P (Y = 1) = ǫ. Then I(Y ;X) = H(ǫ, 1 − ǫ),
whereas I(Y = 1 : X) = H(ǫ, 1− ǫ) + ǫ− 1. For small ǫ, this quantity is
smaller than 0. 3

Example 1.11.5 (Information inequality) Writing Equation 1.15 out, we obtain

I(X ;Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p1(x)p2(y)
. (1.16)
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Another way to express this is as follows: a well-known criterion for
the difference between a given distribution q1(x) and another distribu-
tion q2(x) we want to compare it with, is the so-called Kullback–Leibler
divergence

D(q1 ‖ q2) =
∑

x

q1(x) log
q1(x)

q2(x)
. (1.17)

It has the important property that

D(q1 ‖ q2) ≥ 0, (1.18)

with equality only iff q1(x) = q2(x) for all x. This is called the in-
formation inequality. Thus, the mutual information is the Kullback–
Leibler divergence between the joint distribution p(x, y) and the product
p1(x)p2(y) of the two marginal distributions. If this quantity is 0, then
p(x, y) = p1(x)p2(y) for every pair x, y, which is the same as saying that
X and Y are independent random variables. 3

Example 1.11.6 (Data processing inequality) Is it possible to increase the mutual
information between two random variables by processing the outcomes in
some deterministic manner? The answer is negative: For every function
T we have

I(X ;Y ) ≥ I(X ;T (Y )), (1.19)

that is, mutual information between two random variables cannot be
increased by processing their outcomes in any deterministic way. The
same holds in an appropriate sense for randomized processing of the
outcomes of the random variables. This fact is called the data-processing
inequality. The reason why it holds is that Equation 1.15 on page 71
is expressed in terms of joint probabilities and marginal probabilities.
Processing X or Y will not increase the value of the expression in the
right-hand side of the latter equation. If the processing of the arguments
just renames them in a one-to-one manner, then the expression keeps
the same value. If the processing eliminates or merges arguments, then
it is easy to check from the formula that the expression value does not
increase. 3

The development of this theory immediately gave rise to at least two dif-
ferent questions. The first observation is that the concept of information
as used in the theory of communication is a probabilistic notion, which
is natural for information transmission over communication channels.
Nonetheless, as we have seen from the discussion, we tend to identify
probabilities of messages with frequencies of messages in a sufficiently
long sequence, which under some conditions on the stochastic source
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can be rigorously justified. For instance, Morse code transmissions of
English telegrams over a communication channel can be validly treated
by probabilistic methods even if we (as is usual) use empirical frequencies
for probabilities. The great probabilist Kolmogorov remarks, “If some-
thing goes wrong here, the problem lies in the vagueness of our ideas
of the relation between mathematical probability theory and real ran-
dom events in general.” (See also the discussion about the foundations
of probability in Section 1.9.)

The second observation is more important and is exemplified in Shan-
non’s statement, “Messages have meaning [ . . . however . . . ] the semantic
aspects of communication are irrelevant to the engineering problem.” In
other words, can we answer a question such as, “what is the informa-
tion in this book” by viewing it as an element of a set of possible books
with a probability distribution on it? Or that the individual sections in
this book form a random sequence with stochastic relations that damp
out rapidly over a distance of several pages? And how to measure the
quantity of hereditary information in biological organisms, as encoded
in DNA? Again there is the possibility of seeing a particular form of
animal as one of a set of possible forms with a probability distribution
on it. This seems to be contradicted by the fact that the calculation of
all possible life forms in existence at any one time on earth would give
a ridiculously low figure like 2100.

We are interested in a measure of information content of an individual
finite object, and in the information conveyed about an individual finite
object by another individual finite object. Here, we want the information
content of an object x to be an attribute of x alone, and not to depend
on, for instance, the means chosen to describe this information content.
Making the natural restriction that the description method should be
effective, the information content of an object should be recursively in-
variant (Section 1.7) among the different description systems. Pursuing
this thought leads straightforwardly to Kolmogorov complexity.

1.11.1
Prefix-Codes

The main issues we treat here, apart from the basic definitions of prefix-
codes, are Kraft’s inequality, the noiseless coding theorem, and optimal
and universal codes for infinite source-word alphabets.

We repeat some definitions of Section 1.4. Let D be any function D :
V ∗ → N , where V is a finite code-word alphabet. It is common to use
V = {0, 1}. The domain of D is the set of code words and the range
of D is the set of source words. If D(y) = x, then y is a code word for
source word x, and D is the decoding function. The set of all code words
for source word x is the set D−1(x) = {y : D(y) = x} and E = D−1

is the encoding relation (or encoding function if D−1 happens to be a
function).



74 1. Preliminaries

We may identify the source words (natural numbers) with their corre-
sponding finite binary strings according to the enumeration in Equa-
tion 1.3. We often identify a code with its code-word alphabet (the do-
main of D).

We consider the natural extension of E to a relation E′ ⊆ N ∗ × V ∗

defined by

1. E′(ǫ) = ǫ; and

2. if x and y are in N , then E′(xy) = E(x)E(y).

We ignore the difference between E and E′ and denote both by E.

Example 1.11.7 It is immediately clear that in general we cannot uniquely recover x and y
from E(xy). Let E be the identity mapping. Then we haveE(00)E(00) =
0000 = E(0)E(000). 3

If we want to encode a sequence x1x2 . . . xn with xi ∈ N (i = 1, 2, . . .),
then we call x1x2 . . . xn the source sequence and y1y2 . . . yn with yi =
E(xi) (i = 1, 2, . . .) the code sequence. A code is uniquely decodable if for
each source sequence of finite length, the code sequence corresponding to
that source sequence is different from the code sequence corresponding
to any other source sequence.

Example 1.11.8 In coding theory, attention is often restricted to the case where the
source-word alphabet is finite, say the range of D equals {1, 2, . . . , n}. If
there is a constant l0 such that l(y) = l0 for all code words y, then we
call D a fixed-length code. It is easy to see that l0 ≥ logn. For instance,
in teletype transmissions the source has an alphabet of n = 32 letters,
consisting of the 26 letters in the Latin alphabet plus 6 special characters.
Hence, we need l0 = 5 binary digits per source letter. In electronic
computers we often use the fixed-length ASCII code with l0 = 8. 3

FIGURE 1.3. Binary tree for E(1) = 0, E(2) = 10, E(3) = 110,

E(4) = 111
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When the set of source words is infinite, say N , we have to use variable-
length codes. If no code word is the prefix of another code word, then
each code sequence is uniquely decodable. This explains our interest in
so-called prefix-codes.

Definition 1.11.2 A code is a prefix-code or instantaneous code if the set of code words is
prefix-free (no code word is a prefix of another code word; Section 1.4).

In order to decode a code sequence of a prefix-code, we simply start at
the beginning and decode one code word at a time. When we come to the
end of a code word, we know it is the end, since no code word is the prefix
of any other code word in a prefix-code. Every prefix-code is a uniquely
decodable code. For example, if E(1) = 0, E(2) = 10, E(3) = 110,
E(4) = 111 as in Figure 1.3, then 1421 is encoded as 0111100, which can
be easily decoded from left to right in a unique way.

Not every uniquely decodable code satisfies the prefix condition. For ex-
ample, if E(1) = 0, E(2) = 01, E(3) = 011, E(4) = 0111, then every
code word is a prefix of every longer code word as in Figure 1.4. But
unique decoding is trivial, since the beginning of a new code word is
always indicated by a zero. Prefix-codes are distinguished from other
uniquely decodable codes by the property that the end of a code word
is always recognizable as such. This means that decoding can be accom-
plished without the delay of observing subsequent code words, which is
why prefix-codes are also called instantaneous codes.

Example 1.11.9 A convenient graphical way to consider codes is by representing each
code word as a node of a directed binary tree. If a node has two outgo-
ing arcs, one of them is labeled with zero and the other with one. If a
node has one outgoing arc, it is labeled either by zero or by one. The
tree may be finite or infinite. There are also nodes without outgoing

FIGURE 1.4. Binary tree for E(1) = 0, E(2) = 01, E(3) = 011,

E(4) = 0111

01

011

0111

1

1

10

0
root



76 1. Preliminaries

arcs. These are called external nodes, and the nodes with outgoing arcs
are called internal nodes. Each code word is represented by a node such
that the consecutive zeros and ones on the branch from the root to that
node form that code word. Clearly, for each code there is a tree with
a node representing each code word, and such that there is only one
node corresponding to each code word. We simplify each tree represen-
tation for a code such that it contains only nodes corresponding to code
words, together with the intermediate nodes on a branch between root
and code-word nodes. For E to be a prefix-code, it is a necessary and
sufficient condition that in the simplified tree representation the nodes
corresponding to code words be precisely the nodes without outgoing
arcs. 3

1.11.2
The Kraft
Inequality

It requires little reflection to realize that prefix-codes waste potential
code words, since the internal nodes of the representation tree cannot be
used, and in fact, neither are the potential descendants of the external
nodes used. Hence, we can expect that the code-word length exceeds
the (binary) source-word length in prefix-codes. Quantification of this
intuition leads to a precise constraint on code-word lengths for codes
satisfying the prefix condition. This important relation is known as the
Kraft inequality and is due to L.G. Kraft.

Theorem 1.11.1 Let l1, l2, . . . be a finite or infinite sequence of natural numbers. There is
a prefix-code with this sequence as lengths of its binary code words iff

∑

n

2−ln ≤ 1.

Proof. (Only if) Recall the standard one-to-one correspondence be-
tween a finite binary string x and the interval Γx = [0.x, 0.x + 2−l(x))
on the real line, Sections 1.4, 1.6, 2.5. Observe that the length of the
interval corresponding to x is 2−l(x). A prefix-code corresponds to a set
of disjoint such intervals in [0, 1), which proves that the inequality holds
for prefix-codes.

(If) Suppose l1, l2, . . . are given such that the inequality holds. We can
also assume that the sequence is nondecreasing. Choose disjoint adjacent
intervals I1, I2, . . . of lengths 2−l1 , 2−l2 , . . . from the left end of the inter-
val [0, 1). In this way, for each n ≥ 1, the right end of In is

∑n
i=1 2−li .

Note that the right end of In is the left end of In+1. Since the sequence
of li’s is nondecreasing, each interval In equals Γx for some binary string
x of length l(x) = ln. Take the binary string x corresponding to In as
the nth code word. 2
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Example 1.11.10 Not every code of which the code-word lengths satisfy the inequality
is a prefix-code. For instance, the code words 0, 00, and 11 satisfy the
inequality, but 0 is a prefix of 00. 3

Example 1.11.11 There is good reason for our emphasis on prefix-codes. Namely, Theo-
rem 1.11.1 remains valid if we replace ‘prefix-code’ by ‘uniquely decod-
able code.’ This follows directly from the observation (proof omitted)
that if a code has code-word lengths l1, l2, . . . and it is uniquely decod-
able, then the Kraft inequality must be satisfied.

This important fact means that every uniquely decodable code can be
replaced by a prefix-code without changing the set of code-word lengths.
Hence, all propositions concerning code-word lengths apply to uniquely
decodable codes and to the subclass of prefix-codes. Accordingly, in look-
ing for uniquely decodable codes with minimal average code-word length
we can restrict ourselves to prefix-codes. 3

1.11.3
Optimal Codes

A uniquely decodable code is complete if the addition of any new code
word to its code-word alphabet results in a nonuniquely decodable code.
It is easy to see that a code is complete iff equality holds in the associated
Kraft inequality. Does completeness imply optimality in any reasonable
sense? Given a source that produces source words from N according to
probability distribution P , it is possible to assign code words to source
words in such a way that any code word sequence is uniquely decodable,
and moreover the average code-word length is minimal.

Definition 1.11.3 Let D : {0, 1}∗ → N be a prefix-code with one code word per source
word. Let P (x) be the probability of source word x, and let the length
of the code word for x be lx. We want to minimize the number of bits
we have to transmit. In order to do so, we must minimize the average
code-word length LD,P =

∑

x P (x)lx. We define the minimal average
code-word length as L = min{LD,P : D is a prefix-code}. A prefix-code
D such that LD,P = L is called an optimal prefix-code with respect to
prior probability P of the source words.

The (minimal) average code length of an (optimal) code does not depend
on the details of the set of code words, but only on the set of code-word
lengths. It is just the expected code-word length with respect to the given
distribution. C.E. Shannon discovered that the minimal average code-
word length is about equal to the entropy of the source-word alphabet.
This is known as the noiseless coding theorem. The adjective ‘noiseless’
emphasizes that we ignore the possibility of errors.
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Theorem 1.11.2 Let L and P be as above. If H(P ) =
∑

x P (x) log 1/P (x) is the entropy,
then

H(P ) ≤ L ≤ H(P ) + 1.

Proof. First prove the upper bound L ≤ H(P )+1. Let lx = ⌈log 1/P (x)⌉
for x = 1, 2, . . . . Therefore, 1 ≥ ∑

x P (x) ≥ ∑

x 2−lx . By Kraft’s
inequality, Theorem 1.11.1, there exists a prefix-code with code-word
lengths l1, l2, . . . . Hence,

L ≤
∑

x

P (x)lx ≤
∑

x

P (x)

(

log
1

P (x)
+ 1

)

= H(P ) + 1,

which finishes the proof of the second inequality L ≤ H(P ) + 1.

We now prove the lower bound H(P ) ≤ L. Let L =
∑

x P (x)lx. Since
∑

x P (x) = 1 and
∑

x(2
−lx/

∑

x 2−lx) = 1, by concavity of the logarithm
function (see Equations 5.4 and 5.2.1 on page 353), we have

∑

x

P (x) log
1

P (x)
≤
∑

x

P (x) log

∑

x 2−lx

2−lx
. (1.20)

Equation 1.20 implies

∑

x

P (x) log
1

P (x)
≤
∑

x

P (x)lx +

(
∑

x

P (x)

)

log
∑

x

2−lx . (1.21)

Since
∑

x P (x) = 1, L =
∑

x P (x)lx, and H(P ) =
∑

x P (x) log 1/P (x),
Equation 1.21 can be rewritten as

H(P ) ≤ L+ log
∑

x

2−lx . (1.22)

SinceD is a prefix-code, it follows from Kraft’s inequality, Theorem 1.11.1,
that

∑

x 2−lx ≤ 1. Thus, log
∑

x 2−lx ≤ 0. Hence by Equation 1.22,
H(P ) ≤ L. 2

Example 1.11.12 We can now settle in the negative the question whether complete code-
word alphabets are necessarily optimal for all prior distributions. Let E
be a prefix-code with source alphabet {0, . . . , k + 1} defined by E(x) =
1x−10 for x = 1, 2, . . . , k and E(k + 1) = 1k. Then E is obviously com-
plete. It has an average code-word length LE,P =

∑

x P (x)x with re-
spect to the probability distribution P . If P (x) = 2−x for x = 1, 2, . . . , k
and P (k + 1) = 2−k, then LE,P =

∑

x P (x) log 1/P (x), so that the
expected code-word length is exactly equal to the entropy and hence
to the minimal code-word length L by the noiseless coding theorem,
Theorem 1.11.2. But for the uniform distribution P (x) = 1/(k + 1) for
x = 1, 2, . . . , k+1 we find that LE,P ≫ L, so that the code is not optimal
with respect to this distribution. 3
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It is obviously important to find optimal prefix-codes. We have seen that
completeness has not much to do with it. For optimality of finite codes
we must choose code-word lengths corresponding to the probabilities of
the encoded source words. This idea is implemented in the Shannon–
Fano code, Example 1.11.2 on page 68 and Lemma 4.3.3 on page 274.

Example 1.11.13 Another issue is the effectiveness of the decoding process. The decoder
needs to match the code-word patterns to the code-word sequence in
order to retrieve the source word sequence. For a finite code-word al-
phabet, the code can be stored in a finite table. For infinite code-word
alphabets we must recognize the code words.

Definition 1.11.4 A prefix-code is called self-delimiting if there is a Turing machine that
decides whether a given word is a code word, never reading beyond the
word itself, and moreover, computes the decoding function. (With re-
spect to the Turing machine, each code word has an implicit end marker.)

As an example, let us define the minimal description length for elements
in N with respect to the class of Turing machines T . Fix a self-delimiting
code E : T → N . Denote the code word for Turing machine T by
E(T ). Then the minimum description length of x ∈ N with respect to
E is defined as min{l(E(T )y) : T on input y halts with output x}. This
minimum description length of x is actually an alternative definition of
the Kolmogorov complexity C(x). 3

1.11.4
Universal Codes

For finite codes, the optimality is governed by how closely the set of
code-word lengths corresponds to the probability distribution on the set
of source words. In the proof of the noiseless coding theorem, Theo-
rem 1.11.2, we chose a code that corresponds to the probability distri-
bution of the source words. But the actual probability distribution may
be unknown, nonrecursive, or it may be unclear how to determine the
characteristics of the source. For example, consider the encoding of the
printed English language, which emanates from many different sources
with (it is to be assumed) different characteristics. Can we find a code
that is optimal for any probability distribution, rather than for a par-
ticular one?

Example 1.11.14 How does one transmit any sufficiently long source-word sequence in an
optimal-length code-word sequence without knowing the characteristics
of the source, and in particular, without knowing in advance the relative
frequencies of source words for the entire sequence? The solution is as
follows:

Split the source-word sequence x = x1x2 . . . xn of length n into m ≤ n
blocks b1b2 . . . bm. Then we encode each bi by, for instance, first giving
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the numbers of occurrences of the source words in bi and second the
index of bi in the lexicographically ordered ensemble of source words
determined by these numbers. For instance, let bi have length ni, and
let there be q source words whose numbers of occurrences of the different
source words in bi are, respectively, k1, k2, . . . , kq,

∑

j kj = ni. Encode
bi by the frequency vector (k1, k2, . . . , kq), together with the index h of
bi in the ensemble of all possible sequences of length ni in which the
source words occur with these frequencies,

h ≤
(

ni
k1, k2, . . . , kq

)

.

The encoding of bi in standard decodable format with all items except
the last one self-delimiting as, say, k1 . . . kqh, takes at most

O(q logni) + log
ni!

k1!k2! · · ·kq!

bits. Defining the frequency of each source word aj in block bi as pj =
kj/ni, we find that the length of this encoding of bi for large ni and
fixed pj ’s approaches ni(

∑

j pj log 1/pj). By the noiseless coding theo-
rem, Theorem 1.11.2, the minimal average code-word length for a source-
word sequence bi produced by a stochastic source that emits source word
aj with probability P (i)(aj) = pj is given by

∑

j pj log 1/pj = H(P (i)).

That is, we can separately encode each block bi asymptotically optimally,
without knowing anything about the overall relative frequencies. As a
result, the overall message x is encoded asymptotically in length

n1H(P (1)) + n2H(P (2)) + · · · + nmH(P (m)).

It turns out that this implies that x is optimally encoded as well, since
calculation shows that

nH(P ) ≥ n1H(P (1)) + n2H(P (2)) + · · · + nmH(P (m)),

with H(P ) the entropy based on the overall source-word sequence x and
H(P (i)) the entropy of the individual blocks bi. 3

Suppose we use variable-length binary blocks bi as in Example 1.11.14 as
code words for a countably infinite set of source words such as N . Then
a universal code is a code that optimizes the average code-word length,
independent of the distribution of the source words, in the following
sense:

Definition 1.11.5 Let C = {w1, w2, . . .} ⊆ {0, 1}∗ be an infinite alphabet of uniquely de-
codable code words, and let N be a set of source words with probability
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distribution P that assigns positive probability to each source word. Let
code C assign code word wx to source word x ∈ N . Then C is universal
if there is a constant c, independent of P , such that
∑

x P (x)l(wx)

max{H(P ), 1} ≤ c,

for all P with 0 < H(P ) < ∞. A universal code C is asymptotically
optimal if there is an f such that
∑

x P (x)l(wx)

max{H(P ), 1} ≤ f(H(P )) ≤ c,

with limH(P )→∞ f(H(P )) = 1.

Example 1.11.15 For a nonempty finite binary string x = x1x2 . . . xn we defined x̄ =
1n0x1x2 . . . xn. For example, 01011 is coded as 11111001011. Let C be
defined as the set of binary strings resulting from this construction:
C = {x̄ : x ∈ {0, 1}∗}. The proof that this is a universal set of code
words, but not an asymptotically optimal one, is omitted.

However, a relatively minor improvement yields an asymptotically op-
timal code-word alphabet. This time we encode x not by x̄, but by
E(x) = l(x)x, that is, by encoding first the length of x in prefix-free
form, followed by the literal representation of x. For example, 01011 is
now coded as 1101001011, encoding l(x) as 10 according to Equation 1.3.
Code E is prefix-free, since if we know the length of x as well as the start
of its literal representation, then we also know where it ends. The length
set of this code is given by l(E(x)) = l(x) + 2l(l(x)) + 1 for x ∈ N . The
proof that this code is asymptotically optimal universal is omitted. 3

This shows that there are asymptotically optimal prefix-codes. We now
inquire how far we can push the idea involved.

Example 1.11.16 It is straightforward to improve on Example 1.11.15 by iterating the
same idea, as in Equation 1.4 on page 13. That is, we precede x by
its length l(x), and in turn precede l(x) by its own length l(l(x)), and
so on. That is, the prefix-code Ei, for all finite strings x, is defined by
Ei(x) = Ei−1(l(x))x and E1(x) = x̄ . For example, with i = 3, the string
01011 is coded as 1011001011, using the correspondence of Formula 1.3.
This is a kind of ladder code, where the value of i is supposed to be fixed
and known to coder and decoder. The length of Ei(x) is given by

l(Ei(x)) =

{
2l(x) + 1 if i = 1,
l(x) + l(Ei−1(l(x))) if i > 1.

For each fixed i > 1 the prefix-code Ei is self-delimiting, universal, and
asymptotically optimal. 3
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Can we improve this? Define lk(x) = l(lk−1(x)), the k-fold iteration of taking
the length, and l1(x) = l(x). Define a coding

E∗(x) = lk(x)0lk−1(x)0 . . . 0x1,

with k the number of steps necessary to get lk(x) = 1. For instance, the string
01011 is coded as 10100010111, using the correspondence of Equation 1.3.
Again, this code is self-delimiting, universal, and asymptotically optimal. The
code-word length is given by

l(E∗(x)) = 1 +

k∑

i=1

(li(x) + 1).

This is within an O(k) additive term of l∗(x), defined as

l∗(x) = log x+ log log x+ log log log x+ · · · , (1.23)

where the sum involves only the positive terms. The number of terms is de-
noted by log∗ x. It can be proved that

∑

x
2−l∗(x) = c is finite, with c =

2.865064 . . . . If we put lx = l∗(x)+ log c, then the Kraft inequality is satisfied
with equality.

However, a lower bound on the code length is set by ℓ∗(x), defined as

ℓ∗(x) =

{
l(x) + ℓ∗(l(x)) if l(x) > 1,
l(x) if l(x) = 0, 1.

(1.24)

It can be shown that

l∗(x) − ℓ∗(x) ≤ log∗ x, (1.25)
∑

x

2−ℓ∗(x) = ∞;
∑

x

2−l∗(x) < 3.

Hence, although ℓ∗ is fairly close to l∗, by the divergence of the ℓ∗ series in
Equation 1.25 it follows by the Kraft inequality, Theorem 1.11.1, that there is
no prefix-code with length set {ℓ∗(x) : x ∈ N}.

1.11.5
Statistics

Statistics deals with gathering data, ordering and representing data, and
using the data to determine the process that causes the data. That this
viewpoint is a little too simplistic is immediately clear: suppose that
the true cause of a sequence of outcomes of coin flips is a fair coin,
where both sides come up with equal probability. It is possible that the
sequence consists of ‘heads’ only. Suppose that our statistical inference
method succeeds in identifying the true cause (fair coin flips) from these
data. Such a method is clearly at fault: from an all-heads sequence a
good inference should conclude that the cause is a coin with a heavy
bias toward ‘heads,’ irrespective of what the true cause is. That is, a
good inference method must assume that the data are typical for the
cause—we don’t aim at finding the true cause, but we aim at finding a
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cause for which the data are as typical as possible. Such a cause is called
a model for the data. For some data it may not even make sense to ask for
a true cause. This suggests that truth is not our goal; but within given
constraints on the model class we try to find the model for which the
data are most typical in an appropriate sense, the model that best fits
the data. Considering the available model class as a magnifying glass,
finding the best-fitting model for the data corresponds to finding the
position of the magnifying glass that best brings the object into focus.

In introducing the notion of sufficiency in classical statistics, R.A. Fisher
(1890–1962) observed:

“The statistic chosen should summarize the whole of the relevant information
supplied by the sample. This may be called the Criterion of Sufficiency . . .
In the case of the normal curve of distribution it is evident that the second
moment is a sufficient statistic for estimating the standard deviation.” [Fisher]

A ‘sufficient’ statistic of the data contains all information in the data
about the model class. Sufficiency is related to the concept of data re-
duction. Suppose that we have data consisting of n bits. If we can find a
sufficient statistic that takes values of O(log n) bits, then we can reduce
the original data to the sufficient statistic with no loss of information
about the model class.

This notion has a natural interpretation in terms of mutual informa-
tion, Equation 1.15 on page 71, so that we may just as well think of a
probabilistic sufficient statistic as a concept in information theory. Let
{Pθ : θ ∈ Θ} be a family of distributions, with parameters θ ∈ Θ, of a
random variable X that takes values in a finite or countable set of data
X . Such a family is also called a model class. A statistic S is a function
S : X → S taking values in some set S. We also call S(x) a statistic of
data x ∈ X . A statistic S is said to be ‘sufficient’ for the model class Θ if
all information about any θ present in the observation x is also present
in the coarser-grained observation s. Formally, let pθ(x) = Pθ(X = x),
and let pθ(x|S(x) = s) denote the probability mass function of the con-
ditional distribution. Define

pθ(s) =
∑

x:S(x)=s

pθ(x),

pθ(x|S(x) = s) =

{
pθ(x)/pθ(s) if S(x) = s,
0 if S(x) 6= s.

Definition 1.11.6 A statistic S is sufficient if there exists a function q : X × S → R such
that

q(x, s) = pθ(x|S(x) = s), (1.26)

for every θ ∈ Θ, s ∈ S, and x ∈ X .
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Example 1.11.17 Let X = {0, 1}n, let X = (X1, . . . , Xn) be a sequence of n independently
and identically distributed random variables Xi, each of which is a coin
flip with probability θ of outcome 1 (success) and probability 1 − θ of
outcome 0 (failure). The corresponding model class is {Pθ : θ ∈ (0, 1) ⊆
R}. Then, with outcome X = x (x = x1 . . . xn),

pθ(x) = pθ(x1 . . . xn) = θS(x)(1 − θ)n−S(x),

where S(x) =
∑n
i=1 xi is the number of 1’s in x. This function S : X →

{0, . . . , n} is a sufficient statistic for the model class above. Namely,
choose an element Pθ from the model class, with parameter θ ∈ (0, 1),
and an s ∈ {0, . . . , n}. Then all x’s with s ones and n − s zeros are
equally probable. The number of such x’s is

(
n
s

)
. Therefore,

pθ(x|S(x) = s) =

{
1/
(
n
s

)
if S(x) = s,

0 otherwise,
(1.27)

for every θ ∈ (0, 1). That is, the distribution pθ(x|S(x) = s) is inde-
pendent of the parameter θ. Equation 1.27 satisfies Equation 1.26, with
q(x, s) defined as the uniform probability of an x with exactly s ones.
Therefore, S(x) is a sufficient statistic relative to the model class in
question. 3

Example 1.11.18 (Relation to mutual information) The definition of sufficient statis-
tic, Equation 1.26, can also be formulated in terms of mutual informa-
tion. Choose some prior distribution over Θ, the parameter set for our
model class. We denote the probability mass function of this distribution
by p1. In this way, we can define joint distributions

p(θ, x) = p1(θ)pθ(x),

p(θ, S(x)) = p1(θ)pθ(S(x)),

and the mutual information items

I(Θ;X) =
∑

θ,x

p(θ, x) log
p(θ, x)

∑

θ p(θ, x)
∑

x p(θ, x)
,

I(Θ;S(X)) =
∑

θ,S(x)

p(θ, S(x)) log
p(θ, S(x))

∑

θ p(θ, S(x))
∑

S(x) p(θ, S(x))
.

This leads to an alternative formulation of the notion of sufficient statis-
tic of Definition 1.11.6 in terms of mutual information.

Lemma 1.11.1 A statistic S is sufficient iff I(Θ;X) = I(Θ;S(X)) under all prior dis-
tributions p1(θ).
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That is, a statistic is sufficient iff the mutual information between model
random variable and data random variable is invariant under coarse-
graining the data by taking the statistic. We defer the proof to Exer-
cise 1.11.15 on page 90. 3

Example 1.11.19 (Minimal sufficient statistic) Continue Example 1.11.17 on page 84.
Consider a statistic T that counts the number of 1’s in x that are fol-
lowed by a 1. This statistic is not sufficient. But the combined statistic
V (x) = (S(x), T (x)), with S(x) counting the number of 1’s in x as in
Example 1.11.17, is sufficient, since it contains all information in x about
the model class concerned. Such a statistic is overly sufficient, as is the
data x itself, since it gives too much detail of x with respect to the model
class in question. Generally, we want to obtain a statistic that gives just
sufficient information, and anything less is insufficient. A statistic is a
minimal sufficient statistic with respect to an indexed model class {pθ}
if it is a function of all other sufficient statistics: it contains no irrele-
vant information and maximally compresses the information in the data
about the model class. For the family of normal distributions, the sample
mean is a minimal sufficient statistic, but the sufficient statistic consist-
ing of the mean of the even samples in combination with the mean of
the odd samples is not minimal. Note that one cannot improve on suffi-
ciency: The data-processing inequality, Equation 1.19 on page 72, states
that

I(Θ;X) ≥ I(Θ;S(X)),

for every function S, and that for randomized functions S an appro-
priate related expression holds. That is, mutual information between
data random variable and model random variable cannot be increased
by processing the data sample in any way. 3

1.11.6
Rate Distortion

Let x belong to a set X of source words. Suppose we want to communi-
cate source words using a code of at most r bits for each such word. (We
call r the rate.) If 2r is smaller than d(X ), then this is clearly impossible.
However, for every x we can try to use a representation y that in some
sense is close to x. Assume that the representations are chosen from a
set Y, possibly different from X . Its elements are the destination words.
We are given a function from X × Y to the reals, called the distortion
measure. It measures the lack of fidelity, which we call distortion, of the
destination word y against the source word x.

Example 1.11.20 For a given binary string x of length n and precision δ ∈ [0, 1
2 ] we may

look for a simple string y of length n such that the Hamming distance
between x and y does not exceed δn. Such questions are related to lossy
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compression, where we have a trade-off between the compressed length
and the distortion (a certain distance between the original object and
the lossily compressed object). 3

The classical rate-distortion theory was initiated by Shannon, and we
briefly recall his approach. A single-letter distortion measure is a func-
tion d that maps elements of X × Y to the reals. Define the distortion
between words x and y of the same length n over alphabets X and Y,
respectively, as

dn(x, y) =
1

n

n∑

i=1

d(xi, yi).

Let X be a random variable with values in X . Consider the random
variable Xn with values in Xn that is the sequence X1, . . . , Xn of n
independent copies of X . We want to encode words of length n over X
by words over Y so that the number of all code words is small and the
expected distortion between outcomes of Xn and their codes is small.
The trade-off between the expected distortion and the number of code
words used is expressed by the rate-distortion function denoted by rn(δ).
It maps every δ ∈ R to the minimal natural number r (we call r the
rate) having the following property: There is an encoding function E :
Xn → Yn with a range of cardinality at most 2r such that the expected
distortion between the outcomes of Xn and their corresponding codes is
at most δ.

In 1959 Shannon gave the following nonconstructive asymptotic charac-
terization of rn(δ). Let Z be a random variable with values in Y. Let
H(Z), H(Z|X) stand for the Shannon entropy and conditional Shannon
entropy, respectively. Let I(X ;Z) = H(Z)−H(Z|X) denote the mutual
information in X and Z, and let Ed(X,Z) stand for the expected value
of d(X,Z). For a real δ, let R(δ) denote the minimal I(X ;Z) subject to
Ed(X,Z) ≤ δ. That such a minimum is attained for all δ can be shown
by compactness arguments.

Theorem 1.11.3 For every n and δ we have rn(δ) ≥ nR(δ). Conversely, for every δ and
every positive ǫ, we have rn(δ+ ǫ) ≤ n(R(δ) + ǫ) for all large enough n.

Exercises 1.11.1. [10] To use an extra symbol like 2 is costly when expressed in
bits. Show that the coding of strings consisting of k zeros and ones and
one 2 requires messages of about k + log k bits.

Comments. Hint: there are 2k(k + 1) such strings.
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1.11.2. [13] Suppose we have a random variable X that can assume
values a, b, c, d with probabilities 1

2 , 1
4 , 1

8 , and 1
8 , respectively, with no

dependency between the consecutive occurrences.

(a) Show that the entropy H(X) is 7
4 (bits per symbol).

(b) Show that the code E with E(a) = 0, E(b) = 10, E(c) = 110, and
E(d) = 111 achieves this limiting value.

1.11.3. [10] Let M be the set of possible source messages, and let
E : M → {0, 1}∗ be a prefix-code.

(a) Let M be a set of messages using symbols in an alphabet A. Show
that if E is a prefix-code on A, then the homomorphism induced by E
is a prefix-code on M .

(b) Show that the Shannon–Fano code presented in the main text is a
prefix-code.

1.11.4. [26] Prove that the entropy function H has the following four
properties:

(a) For given n and
∑n

i=1 pi = 1, the function H(p1, p2, . . . , pn) takes its
largest value for pi = 1/n (i = 1, 2, . . . , n). That is, the scheme with the
most uncertainty is the one with equally likely outcomes.

(b) H(X,Y ) = H(X) +H(Y |X). That is, the uncertainty in the prod-
uct of schemes x and y equals the uncertainty in scheme x plus the
uncertainty of y given that x occurs.

(c) H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn, 0). That is, adding the impos-
sible event or any number of impossible events to the scheme does not
change its entropy.

(d) H(p1, p2, . . . , pn) = 0 iff one of the numbers p1, p2, . . . , pn is one
and all the others are zero. That is, if the result of the experiment
can be predicted beforehand with complete certainty, then there is no
uncertainty as to its outcome. In all other cases the entropy is positive.

Comments. Source: C.E. Shannon, Bell System Tech. J., 27(1948), 379–
423, 623–656.

1.11.5. [32] Prove the following theorem. Let H(p1, p2, . . . , pn) be a
function defined for any integer n and for all values p1, p2, . . . , pn such
that pi ≥ 0 (i = 1, 2, . . . , n),

∑n
i=1 pi = 1. If for any n this function is con-

tinuous with respect to all its arguments, and if it has the properties in
Items (a), (b), and (c) of the previous exercise, then H(p1, p2, . . . , pn) =
λ
∑n

i=1 pi log 1/pi, where λ is a positive constant.

Comments. This is called the entropy uniqueness theorem. It shows that
our choice of expression for the entropy for a finite probability scheme
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is the only one possible if we want to have certain general properties
that seem necessary in view of the intended meaning of the notion
of entropy as a measure of uncertainty or as amount of information.
Source: A.I. Khintchin, Mathematical Foundations of Information The-
ory, Dover, 1957.

1.11.6. [08] Define a code c by E(1) = 00, E(2) = 01, E(3) = 10,
E(4) = 11, E(5) = 100.

(a) Show that the code sequence 00011011100 is uniquely decodable.

(b) Show that the code sequence 100100 can be decoded into two differ-
ent source sequences.

1.11.7. [09] (a) Define code E by E(x) = 01x for x = 1, 2, . . . . Show
that E is uniquely decodable, but it is not a prefix-code.

(b) Define a code E by E(x) = 1x0 for x = 1, 2, . . . . Show that this is
a prefix-code and (hence) uniquely decodable.

1.11.8. [19] Let K = {x : φx(x) < ∞} be the diagonal halting set
(Section 1.7). Let k1, k2, . . . be the list of elements of K in increasing
order. Define code E by E(x) = 1kx0.

(a) Show that E is a prefix-code and uniquely decodable.

(b) Show that E is not recursive.

(c) Show that the decoding function E−1 is not recursive.

Comments. Hint: the set K is recursively enumerable but not recur-
sive. Codes with nonrecursive code-word alphabets are abundant, since
there are uncountably many codes (prefix-codes), while there can be
only countably many recursive code-word alphabets.

1.11.9. [22] Let a code have the set of code-word lengths l1, l2, . . . .
Show that if the code is uniquely decodable, then the Kraft inequality,
Theorem 1.11.1, must be satisfied.

Comments. Thus, Theorem 1.11.1 holds for the wider class of uniquely
decodable codes. This is called the McMillan–Kraft Theorem. Source:
R.G. Gallager, Information Theory and Reliable Communication, Wiley,
1968. Attributed to B. McMillan.

1.11.10. [26] (a) Show that the set of code words {x̄ : x ∈ N} is a uni-
versal code-word alphabet. Show that it is not asymptotically optimal.

(b) Show that the set of code words {l(x)x : x ∈ N} is a universal
code-word alphabet. Show that it is also asymptotically optimal.

Comments. Source: P. Elias, IEEE Trans. Inform. Theory, IT-21(1975),
194–203.



Exercises 89

1.11.11. [37] The prefix-code E∗ of Example 1.11.16 is an asymptoti-
cally optimal universal code because E2 is already one.

(a) Show that
∑

n 2−l
∗(n) = c with c = 2.865064 . . . . Show that the

Kraft inequality, Theorem 1.11.1, is satisfied with equality for the length
set ln = l∗(n) + log c, n = 1, 2, . . . .

(b) Let the code E+ be defined by

E+(x) = k̄lk(x)lk−1(x) . . . x,

where the length function is iterated until the value lk(x) = 1. Show
that E+ is prefix-free. Show that this representation of the integers is
even more compact than E∗.

Comments. Source for Item (a): J. Rissanen, Ann. Statist., 11(1983),
416–431.

1.11.12. [29] The function log∗ n denotes the number of times we can
iterate taking the binary logarithm with a positive result, starting from
n. This function grows extremely slowly. It is related to the Ackermann
function of Exercise 1.7.18. In that notation it is a sort of inverse of
f(3, x, 2).

(a) Let l1, l2, . . . be any infinite integer sequence that satisfies the Kraft
inequality, Theorem 1.11.1. Show that ln > l∗(n)− 2 log∗ n for infinitely
many n.

(b) Show that log∗ n is unbounded and primitive recursive. In particular,
show that although log∗ n grows very slowly, it does not grow more slowly
than any unbounded primitive recursive function.

Comments. Hint: use exercises in Section 1.7. Because log∗ n grows very
slowly, we conclude that l∗(n) is not far from the least asymptotic upper
bound on the code-word-length set for all probability sequences on the
positive integers. In this sense it plays a similar role for binary prefix-
codes as our one-to-one pairing of natural numbers and binary strings
in Equation 1.3 plays with respect to arbitrary binary codes. Source: J.
Rissanen, Ibid.

1.11.13. [M30] We consider convergence of the series
∑

n 2−f(k,α;n)

for f(k, α;n) = logn + log logn + · · · + α log(k) n, with log(k) the k-

fold iteration of the logarithmic function defined by log(1) n = logn and
log(k) n = log log(k−1) n for k > 1.

(a) Show that for each k ≥ 2, the series above diverges if α ≤ 1 and that
the series converges if α > 1.

(b) Show that the series
∑

n n
−α diverges for α ≤ 1 and converges for

α > 1. (This is the case k = 1.)
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Comments. This gives an exact borderline between convergence and di-
vergence for the series in Kraft’s inequality, Theorem 1.11.1. Hint: use
Cauchy’s condensation test for convergence of series. Source: K. Knopp,
Infinite Sequences and Series, Dover, 1956. Attributed to N.H. Abel.

1.11.14. [22] We derive a lower bound on the minimal average code-
word length of prefix-codes. Consider the standard correspondence be-
tween binary strings and integers as in Equation 1.3. Define f(n) =
l(n) + l(l(n)) + · · · + 2. Show that

∑

n 2−f(n) = ∞.

Comments. Hint: Let the number of terms in f(n), apart from the 2, be
h(n) = 0 for n = 2 and 1 + h(h(n)) for n > 2 (this defines function h).
Define si =

∑

h(n)=i 2
−f(n) and

∑∞
n=3 2−f(n) =

∑∞
i=0 si. We show that

all si are equal to 1, using induction on i. Clearly s0 = 2−0 = 1. Also

si+1 =
∑

h(n)=i+1

2−f(n) =
∑

h(l(n))=i

2−f(n)

=
∑

h(m)=i

∑

l(n)=m

2−(m+f(m)) =
∑

h(m)=i

2m2−(m+f(m)) = si.

1.11.15. [32] Prove Lemma 1.11.1.

Comments. The notion of sufficient statistic is due to R.A. Fisher, Philos.
Trans. Royal Soc., London, Sec. A, 222(1922), 309–368. The mutual
information version is given in [T.M. Cover, J.A. Thomas, Elements
of Information Theory, Wiley, New York, 1991, pp. 36–38]. Hint: the
relationship in Lemma 1.11.1 between mutual information and sufficient
statistic is due to S. Kullback, Information Theory and Statistics, Wiley,
New York, 1959.

1.12

State ×
Symbol

Complexity

A fourth historical root of Kolmogorov complexity seems to be another
issue (other than information theory) raised by Shannon. In his paper
“A universal Turing machine with two internal states” [pp. 129–153 in:
Automata Studies, C.E. Shannon and J. McCarthy, eds., Princeton Univ.
Press, 1956] he showed that there is a simple way of changing each
Turing machine using m > 2 states to a Turing machine using only
two states and computing essentially the same function. This requires
expanding the number of tape symbols, since the state of the original
machine needs to be stored and updated on the tape of the corresponding
two-state machine. The main result of this exercise is the construction
of a two-state universal Turing machine. It turns out that a one-state
universal Turing machine does not exist. Trying to minimize the other
main resource, the number of tape symbols, is resolved even more simply:
two tape symbols suffice, namely, by the expedient of encoding the m
different tape symbols in binary strings of O(logm) length. The string
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of all 0’s is reserved to encode the distinguished blank symbol B. It is
not very difficult, but tedious, now to adapt the finite control to make
the whole arrangement work. Again this is the minimum, since it is
impossible to construct a universal Turing machine with only one tape
symbol.

It turns out that in both cases (reducing the number of states to two, or
the number of tape symbols to two), the product of the number of states
and the number of tape symbols increases at most eightfold. This sug-
gests that this product is a relatively stable measure of the complexity
of description of algorithms in the syntax of our Turing machine formal-
ism. Following this idea, Shannon proposed the state–symbol product as
a measure of complexity of description of algorithms. In particular, we
can classify computable functions by the smallest state–symbol product
of Turing machines that compute it. Here we assume of course a fixed
formalism to express the Turing machines. It is a straightforward insight
that this product is closely related to the number of bits to syntactically
specify the Turing machine in the usual notation.

Gregory Chaitin, in papers appearing in 1966 and 1969, analyzed this question
in great detail. In his 1969 paper, observing that each Turing machine can be
coded as a program for a fixed-reference universal machine, he formulated as a
variant of Shannon’s approach the issue of the lengths of the shortest programs
of the reference Turing machine to calculate particular finite binary strings.

Exercises 1.12.1. [12] It is usual to allow Turing machines with arbitrarily large
tape alphabets A (with the distinguished blank symbol B serving the
analogous role as before). Use the quadruple formalism for Turing ma-
chines as defined earlier. How many Turing machines with m states and
n tape symbols are there? (Count the blank tape symbol B as one of
the n tape symbols.)

1.12.2. [20] Define Turing machines in quadruple format with arbitrar-
ily large tape alphabets A, and state sets Q, d(A), d(Q) <∞. Show that
each such Turing machine with state set Q and tape alphabet A can be
simulated by a Turing machine with tape alphabet A′, d(A′) = 2, and
state set Q′ such that d(A′)d(Q′) ≤ cd(A)d(Q), for some small constant
c. Determine c. Show that the analogous simulation with d(A′) = 1 is
impossible (d(Q′) = ∞).

Comments. See C.E. Shannon, pp. 129–153 in: Automata Studies, C.E.
Shannon and J. McCarthy, eds., Princeton University Press, 1956. This
is also the source for the next exercise.

1.12.3. [25] Show that each such Turing machine with state set Q and
tape alphabet A can be simulated by a Turing machine with state set Q′,
d(Q′) = 2, and tape alphabet A′ such that d(A′)d(Q′) ≤ cd(A)d(Q), for
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some small positive constant c. Determine c. Show that the analogous
simulation with d(Q′) = 1 is impossible (implies d(A′) = ∞).

1.12.4. [37] Give a universal Turing machine with d(A)d(Q) ≤ 35.

Comments. Such a construction was first found by M. Minsky [Ann.
Math., 74(1961), 437–455].

1.13

History and

References

In notation concerning binary strings and so forth we follow A.K. Zvonkin
and L.A. Levin [Russ. Math. Surveys, 25:6(1970), 83–124]. (According
to the Cyrillic alphabet of the original version of this important survey
of Kolmogorov complexity ‘Zvonkin’ precedes ‘Levin.’ This author order
was maintained in the English translation.) The big-O notation is dis-
cussed in [D.E. Knuth, SIGACT News, 4:2(1976), 18–24; P.M.B. Vitányi
and L.G.L.T. Meertens, SIGACT News, 16:4(1985), 56–59; D.E. Knuth,
Fundamental Algorithms, Addison-Wesley, 1973].

The basics of combinatorics can be found in many textbooks, for instance
[D.E. Knuth, Fundamental Algorithms, Addison-Wesley, 1973; W. Feller,
An Introduction to Probability Theory and Its Applications, Wiley, 1968].
Turing machines were introduced by A.M. Turing in an important paper
[Proc. London Math. Soc., 42(1936), 230–265; Correction, Ibid.], where
also the quoted material can be found. Related notions were introduced
also in [E.L. Post, J. Symb. Logic, 1936]. The standard textbook ref-
erences for basic computability theory are [H. Rogers, Jr., Theory of
Recursive Functions and Effective Computability, McGraw-Hill, 1967; P.
Odifreddi, Classical Recursion Theory, North-Holland, 1989]. The notion
of semicomputable functions was, perhaps, first used in [A.K. Zvonkin
and L.A. Levin, Ibid.]. In the previous editions of the current book they
are called ‘(co-)enumerable functions.’ Material on computable (recur-
sive) and semicomputable real numbers partly arises from this context.
For related work see [M.B. Pour-El and J.I. Richards, Computability in
Analysis and Physics, Springer-Verlag, 1989].

In Section 1.7.4, we introduced the basic terminology of computational
complexity theory that we will need in Chapter 7. For computational
complexity theory see [J. Hartmanis, Feasible computations and prov-
able complexity properties, SIAM, 1978; J.L. Balcázar, J. Diaz, and J.
Gabarró, Structural Complexity, Springer-Verlag, 1988; and M.R. Garey
and D.S. Johnson, Computers and Intractability, Freeman, 1979].

A.N. Kolmogorov’s classic treatment of the set-theoretic axioms of the
calculus of probabilities is his slim book Grundbegriffe der Wahrschein-
lichkeitsrechnung, Springer-Verlag, 1933; English translation published
by Chelsea, New York, 1956. A standard textbook in probability theory



1.13. History and References 93

is [W. Feller, An Introduction to Probability Theory and Its Applications,
Wiley, 1968].

General statistical tests for (pseudo)randomness of sequences are ex-
tensively treated in [D.E. Knuth, Seminumerical Algorithms, Addison-
Wesley, 1981]. Statistical testing for randomness of the decimal repre-
sentations of π, e, and

√
2 specifically is found in [D.E. Knuth, Ibid.,

144–145; S.S. Skiena, Complex Systems, 1(1987), 361–366]. The quoted
remark of J. von Neumann (1903–1957) appears in [Various techniques
used in connection with random digits, Collected Works, Vol.V, Macmil-
lan, 1963]. R. von Mises’s foundation of probability theory based on fre-
quencies is set forth in [Mathemat. Zeitsch., 5(1919), 52–99; Correction,
Ibid., 6(1920); Probability, Statistics and Truth, Macmillan, 1939]. In the
1920 correction to this paper, von Mises writes, “In der Arbeit von Prof.
Helm aus Dresden in Bd 1 der Naturphilosophie 1902, 364– ‘Wahrschein-
lichkeitstheorie des Kollektivbegriffes’ dort wird auch die Umkehrung der
Wahrscheinlichkeitsdefinition, nämlich ihre Zurückführung auf Kollek-
tive statt auf Bereiches gleich möglicher Fälle, in der Hauptsache bereits
vorgebildet.” (“In the paper of Prof. Helm from Dresden in volume 1
of Naturphilosophie, 1902, 364– ‘Wahrscheinlichkeitstheorie des Kollek-
tivbegriffes’ the key elements of the inverse definition of probability,
namely its foundation on collectives instead of its foundation on domains
of equally probable events, are also already exhibited.”) A critical com-
parison of different (foundational) theories of probabilities is [T.L. Fine,
Theories of Probability, Academic Press, 1973]. The formulation of the
apparent circularity in the frequency foundation of probability is from
[J.E. Littlewood, Littlewood’s Miscellany, Cambridge Univ. Press, 1986,
71–73]. The quotations of Kolmogorov, as well as the finitary version of
von Mises’s collectives, are from [Sankhyā, Series A, 25(1963), 369–376].
The work in improving von Mises’s notion of admissible place selections
is due to A. Wald [Ergebnisse eines Mathematischen Kolloquiums, Vol.
8, 1937, 38–72], who proved existence of collectives under the restriction
of the number of admissible place-selection rules to countably infinite;
to A. Church [Bull. Amer. Math. Soc., 46(1940), 130–135], who further
restricted admissible place selections to computable functions; and to J.
Ville [Etude Critique de la Notion de Collectif, Gauthier-Villars, 1939],
who showed that the von Mises–Wald–Church definitions still fail to
satisfy randomness properties such as the law of the iterated logarithm.
Champernowne’s number was found by D.G. Champernowne [J. Lon-
don Math. Soc., 8(1933), 254–260]. The entire issue of randomness of
individual finite and infinite sequences is thoroughly reviewed by D.E.
Knuth [Ibid., 142–169; summary, history, and references: 164–166]. A
recent survey on the foundational issues of randomness was given by M.
van Lambalgen [J. Symb. Logic, 52(1987), 725–755; Random Sequences,
Ph.D. thesis, Universiteit van Amsterdam, 1987].
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Our treatment of Bayes’s rule follows R. von Mises [Probability, Statistics
and Truth, Macmillan, 1939]. The idea of a universal a priori probability
is due to R.J. Solomonoff. The Chernoff bounds, Lemma 1.10.1, are due
to H. Chernoff [Ann. Math. Stat., 23(1952), 493–509]. The form we use is
from L.G. Valiant and D. Angluin [J. Comput. System Sci., 18:2(1979),
155–193], who in turn base it on [P. Erdős and J. Spencer, Probabilistic
Methods in Combinatorics, Academic Press, 1974, p. 18].

Information theory was introduced as an essentially complete new math-
ematical discipline in C.E. Shannon’s classic paper [Bell System Tech.
J., 27(1948), 379–423, 623–656]. Standard textbooks are [R.G. Gallager,
Information Theory and Reliable Communication, Wiley & Sons, 1968;
T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley
& Sons, New York, 1991]. Our discussion of information theory used
the original papers of Shannon. The Shannon–Fano code is due to C.E.
Shannon [Bell System Tech. J., 27(1948), 379–423, 623–656]. It is also
attributed to R.M. Fano. The discussion is nonstandard insofar as we fol-
lowed Kolmogorov’s idea that the combinatorial approach to information
theory should precede the probabilistic approach, in order to emphasize
the logical independence of the development of information theory from
probabilistic assumptions [Problems Inform. Transmission, 1(1965), 1–
7; Russian Math. Surveys, 38:4(1983), 29–40]. The latter papers mention
the following justification. In linguistic analysis it is natural to take such
a purely combinatorial approach to the notion of the entropy of a lan-
guage. This entropy is an estimate of the flexibility of a language, a
number that measures the diversity of possibilities for developing gram-
matically correct sentences from a given dictionary and grammar. Using
S.I. Ozhegov’s Russian dictionary, M. Ratner and N.D. Svetlova obtained
the estimate h = (logN)/n = 1.9 ± 0.1 with N the number of Russian
texts of length n (number of letters including spaces). This turns out
to be much larger than the upper estimate for entropy of literary texts
that can be obtained by various methods of guessing continuations. Nat-
urally so, since literary texts must meet many requirements other than
grammatical correctness. For this discussion and further remarks about
change of entropy under translations, and the entropy cost of adhering
to a given meter and rhyme scheme, see A.N. Kolmogorov [Sankhyā, Se-
ries A, 25(1963), 369–376]. For instance, Kolmogorov reports that classic
rhyming iambic tetrameter requires a freedom in handling verbal mate-
rial characterized by a residual entropy of ca. 0.4. “The broader problem
of measuring the information connected with creative human endeavor
is of the utmost significance.”

The general theory of coding and prefix-codes as in Section 1.11.1 is
treated in [R.G. Gallager, Information Theory and Reliable Communi-
cation, Wiley, 1968]. The ubiquitous Kraft inequality for prefix-codes,
Theorem 1.11.1, is due to L.G. Kraft [A Device for Quantizing, Group-
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ing, and Coding Amplitude Modulated Pulses, M. Sc. thesis, Dept. Electr.
Eng., MIT, Cambridge, Mass., 1949]. C.E. Shannon’s noiseless cod-
ing theorem, Theorem 1.11.2, establishing the minimal average code-
word length is from [Bell System Tech. J., 27(1948), 379–423, 623–656].
Universal codes for infinite sets and unknown probability distributions
were first proposed by Kolmogorov [Problems Inform. Transmission,
1:1(1965), 1–7]. For further developments such as universal coding we
used [P. Elias, IEEE Trans. Inform. Theory, IT-21(1975), 194–203; S.K.
Leung-Yan-Cheong and T.M. Cover IEEE Trans. Inform. Theory, IT-
24(1978), 331–339; J. Rissanen, Ann. Stat., 11(1983), 416–431; Stochas-
tic Complexity in Statistical Inquiry, World Scientific, 1989].

The notion of sufficient statistic is due to R.A. Fisher, Philos. Trans.
Royal Soc., London, Sec. A, 222(1922), 309–368. The mutual informa-
tion version is given in [T.M. Cover, J.A. Thomas, Elements of Infor-
mation Theory, Wiley, New York, 1991, pp. 36–38]. The relationship in
Lemma 1.11.1 between mutual information and sufficient statistic is due
to S. Kullback, Information Theory and Statistics, Wiley, New York,
1959.

Rate-distortion theory was introduced by C.E. Shannon [Bell System
Tech. J., 27(1948), 379–423, 623–656] and treated in detail in [IRE
National Convention Record, Part 4, 1959, 142–163]. A textbook is T.
Berger, Rate Distortion Theory: A Mathematical Basis for Data Com-
pression, Prentice-Hall, 1971.

The state–symbol complexity measure for Turing machines (and recur-
sive functions) was apparently first discussed by C.E. Shannon [Au-
tomata Studies, C.E. Shannon and J. McCarthy, eds., Princeton Univ.
Press, 1956, 129–153].

Kolmogorov complexity originated with the discovery of universal de-
scriptions, and a recursively invariant approach to the concepts of com-
plexity of description, randomness, and a priori probability. Historically,
it is firmly rooted in R. von Mises’s notion of random infinite sequences
as discussed above. The first work in this direction is possibly K. Gödel’s
On the length of proofs of 1936, in which he proves that adding axioms to
undecidable systems shortens the proofs of many theorems (thus using
length as a measure of the complexity of proofs). With the advent of elec-
tronic computers in the 1950s, a new emphasis on computer algorithms
and a maturing general recursive function theory, ideas tantamount to
Kolmogorov complexity, came to many people’s minds, because “when
the time is ripe for certain things, these things appear in different places
in the manner of violets coming to light in early spring” (Wolfgang Bolyai
to his son Johann in urging him to claim the invention of non-Euclidean
geometry without delay [Herbert Meschkowski, Noneuclidean Geometry,
Academic Press, New York, 1964, p. 33]). Thus, with Kolmogorov com-
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plexity one can associate three inventors, in chronological order: R.J.
Solomonoff, of Cambridge, Massachusetts, USA; A.N. Kolmogorov, of
Moscow, Russia; and G.J. Chaitin, of New York, USA.

Already in November 1960, R.J. Solomonoff published a Zator Com-
pany technical report [A preliminary report on a general theory of in-
ductive inference, Tech. Rept. ZTB-138, Zator Company, Cambridge,
Mass., November 1960] that presented the basic ideas of the theory of
algorithmic complexity as a means to overcome serious problems asso-
ciated with the application of Bayes’s rule in statistics. Ray Solomonoff
was born on July 25, 1926, in Cleveland, Ohio, in the United States. He
studied physics during about 1946–1950 at the University of Chicago (he
recalls the lectures of E. Fermi and R. Carnap) and obtained an M.Sc.
from that university. From about 1951–1956 he worked in the electronics
industry doing math and physics and designing analog computers, work-
ing half-time. His scientific autobiography is published as [J. Comput.
System Sci., 55(1997), 73–88].

Solomonoff’s objective was to formulate a completely general theory
of inductive reasoning that would overcome shortcomings in Carnap’s
[Logical Foundations of Probability, Univ. Chicago Press, 1950]. Follow-
ing some more technical reports, in a long journal paper [Inform. Contr.,
7(1964), 1–22, 224–254], he introduced ‘Kolmogorov’ complexity as an
auxiliary concept to obtain a universal a priori probability and proved
the invariance theorem, Theorem 2.1.1. The mathematical setting of
these ideas is described in some detail in Section 1.10. Solomonoff’s
work has led to a novel approach in statistics [T.L. Fine, Ibid.], lead-
ing to applicable inference procedures such as the minimal description
length principle; see Chapter 5.

This makes Solomonoff the first inventor and raises the question whether
we ought to talk about ‘Solomonoff complexity.’ However, the name ‘Kol-
mogorov complexity’ for shortest effective description length has become
well entrenched and commonly understood. Solomonoff was primarily in-
terested in universal a priori probability, while Kolmogorov later, inde-
pendently, discovered and investigated the associated complexity for its
own sake. We will associate Solomonoff’s name with the universal distri-
bution and Kolmogorov’s name with the descriptional complexity. It has
become customary to designate the entire area dealing with descriptional
complexity, algorithmic information, and algorithmic probability loosely
by the name ‘Kolmogorov complexity’ or ‘algorithmic information the-
ory.’ (Associating Kolmogorov’s name with the area may be viewed as
an example in the sociology of science of the Matthew effect, first noted
in the Gospel according to Matthew, 25: 29–30, “For to every one who
has more will be given, and he will have in abundance; but from him who
has not, even what he has will be taken away.”) A comprehensive ac-
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count of Solomonoff’s ideas and their genesis is presented in the history
and references section of Chapter 4 and in Chapter 5.

Solomonoff’s publications apparently received little attention until Kol-
mogorov started to refer to them from 1968 onward. These papers con-
tain in veiled form suggestions about randomness of finite strings, incom-
putability of Kolmogorov complexity, computability of approximations
to the Kolmogorov complexity, and resource-bounded Kolmogorov com-
plexity. M. Minsky referred to Solomonoff’s work [Proc. I.R.E., January
1961, 8–30; p. 43 in Proc. Symp. Appl. Math. XIV, Amer. Math. Soc.,
1962]. To our knowledge, these are the earliest documents outlining an
algorithmic theory of descriptions.

The great Russian mathematician Andrei N. Kolmogorov was born 25
April 1903 in Tambov, Russia, and died 20 October 1987 in Moscow.
Many biographical details can be found in the Soviet Union’s foremost
mathematics journal, Uspekhi Mat. Nauk, translated into English as Rus-
sian Math. Surveys [B.V. Gnedenko, 28:5(1973), 5–16, P.S. Aleksandrov,
38:4(1983), 5–7; N.N. Bogolyubov, B.V. Gnedenko, and S.L. Sobolev,
38:4(1983), 9–27; A.N. Kolmogorov, 41:6(1986), 225–246; and the entire
memorial issue 43:6(1988), especially 1–39 by V.M. Tikhomirov]. Three
volumes of Kolmogorov’s (mathematical) Selected Works have been pub-
lished by Nauka, Moscow (in Russian) in 1985 through 1987; they are
translated in English and published by Kluwer (volume 1) and Springer
(volumes 2 and 3). The writings on algorithmic complexity are collected
in volume 3 of the Selected Works. In the Western literature, see the
memorial issue [Annals of Probability, 17:3(1989)], especially the scien-
tific biography on pp. 866–944 by A.N. Shiryaev, and an evaluation of
Kolmogorov’s contributions to information theory and to algorithmic
complexity, on pp. 840–865 by T.M. Cover, P. Gács, and R.M. Gray. See
also the obituary in [Bull. London Math. Soc., 22:1(1990), 31–100] and
[V.A. Uspensky, J. Symb. Logic, 57:2(1992), 385–412].

In 1933 A.N. Kolmogorov supplied probability theory with a powerful
mathematical foundation in his [Grundbegriffe der Wahrscheinlichkeits-
rechnung, Springer-Verlag, 1933]. Following a four-decade-long contro-
versy on von Mises’s conception of randomness, in which Kolmogorov
played little part, the content of which is set forth in some detail in
Section 1.9, Kolmogorov finally introduced complexity of description of
finite individual objects as a measure of individual information content
and randomness, and proved the invariance theorem, Theorem 2.1.1, in
his paper of spring 1965 [Problems Inform. Transmission, 1(1965), 1–7].
His objective was primarily, apart from resolving the question of random-
ness of objects, to revise information theory by an algorithmic approach
to the information content of individual objects, in contrast to the tradi-
tional way discussed in Section 1.11. According to A.N. Shiryaev, [Annals
of Probability, 17:3(1989), 921], Kolmogorov described the essence and
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background to the algorithmic approach in his report to the Probability
Section of the Moscow Mathematical Society on April 24, 1963:

“One often has to deal with very long sequences of symbols. Some of them,
for example, the sequences of symbols in a 5-digit logarithm table, permit a
simple logical definition and therefore might be obtained by the computations
(though clumsy at times) of a simple pattern. [. . .] Others seem not to admit
any sufficiently simple ‘legitimate’ way to construct them. It is supposed that
such is the case for a rather long segment in a table of random numbers. [. . .]
There arises the question of constructing a rigorous mathematical theory to
account for these differences in behavior.” [Kolmogorov]

Says Kolmogorov, “I came to similar conclusions [as Solomonoff], before
becoming aware of Solomonoff’s work, in 1963–1964” [IEEE Trans. In-
form. Theory, IT 14:5(1968), 662–664]. And again, “The basic discovery,
which I have accomplished independently from and simultaneously with
R. Solomonoff, lies in the fact that the theory of algorithms enables us to
eliminate this arbitrariness [of interpretive mechanisms for descriptions
leading to different lengths of shortest descriptions for the same object,
and hence to different ‘complexities’ with respect to different interpre-
tive mechanisms] by the determination of a ‘complexity’ which is almost
invariant (the replacement of one method by another leads only to the
supplement of the bounded term)” [A.N. Shiryaev, Ibid., 921]. In the case
of the other two inventors, the subject we are concerned with appears,
as it were, out of the blue. But Kolmogorov’s involvement strikes one as
the inevitable confluence of interests of this great scientist: his lifelong
fascination with the foundations of probability theory and randomness,
his immediate appreciation of information theory upon its formulation
by Shannon, and his vested interest in the theory of algorithms wit-
nessed by, for instance, A.N. Kolmogorov and V.A. Uspensky, Uspekhi
Mat. Nauk, 13:4(1958), 3–28 [in Russian; translated Amer. Math. Soc.
Transl. (2), 29(1963), 217–245]. The new ideas were vigorously investi-
gated by his associates. These included the Swedish mathematician P.
Martin-Löf, visiting Kolmogorov in Moscow during 1964–1965, who in-
vestigated the complexity oscillations of infinite sequences and proposed
a definition of infinite random sequences that is based on constructive
measure theory [Inform. Contr., 9(1966), 602–619; Z. Wahrsch. Verw.
Geb., 19(1971), 225–230]. There is a related development in set theory
and recursion theory, namely, the notion of ‘generic object’ in the context
of ‘forcing.’ For example, being a member of the arithmetic generic set
is analogous (but not precisely) to being a member of the intersection of
all arithmetic sets of measure 1. There is a notion, called ‘1-genericity,’
that in a restricted version calls for the intersection of all recursively
enumerable sets of measure 1. This is obviously related to the approach
of Martin-Löf. Forcing was introduced by P. Cohen in 1963 to show the
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independence of the continuum hypothesis, and using sets of positive
measure as forcing conditions is due to R.M. Solovay soon afterward.

G.J. Chaitin had finished the Bronx High School of Science, and was
an eighteen-year-old undergraduate student at the City College of the
City University of New York, when he submitted two papers [J. ACM,
13(1966), 547–569; J. ACM, 16(1969), 145–159] for publication, in Oc-
tober and November 1965, respectively. In the 1966 paper he addresses
the ‘state × symbol’ complexity of algorithms following Shannon’s cod-
ing concepts, as described in Section 1.12, but does not introduce an
invariant notion of complexity. See also G.J. Chaitin’s abstracts [AMS
Notices, 13(1966), 133, 228–229] submitted October 19, 1965, and Jan-
uary 6, 1966, respectively. Continuing this work in the 1969 paper, in
the final part, Chaitin puts forward the notion of Kolmogorov complex-
ity, proves the invariance theorem, Theorem 2.1.1, and studies infinite
random sequences (in the sense of having maximally random finite ini-
tial segments) and their complexity oscillations. As Chaitin [Scientific
American, 232:5(1975), 47–52] formulates it, “this definition [of Kol-
mogorov complexity] was independently proposed about 1965 by A.N.
Kolmogorov and me. [. . .] Both Kolmogorov and I were then unaware of
related proposals made in 1960 by Ray Solomonoff.” A short autobiog-
raphy appears in [G.J. Chaitin, Information-Theoretic Incompleteness,
World Scientific, Singapore, 1992].



2

Algorithmic Complexity

The most natural approach to defining the quantity of information is
clearly to define it in relation to the individual object (be it Homer’s
Odyssey or a particular type of dodo) rather than in relation to a set
of objects from which the individual object may be selected. To do so,
one could define the quantity of information in an object in terms of
the number of bits required to losslesly describe it. A description of an
object is evidently useful in this sense only if we can reconstruct the full
object from this description.

We aim at something different from C.E. Shannon’s theory of commu-
nication, which deals with the specific technological problem of data
transmission, that is, with the information that needs to be transmitted
in order to select an object from a previously agreed-upon set of alter-
natives; Section 1.11. Our task is to widen the limited set of alternatives
until it is universal. We aim at a notion of absolute information of indi-
vidual objects, that is, the information that by itself describes the object
completely.

Intuition tells us that some objects are complicated and some objects
are simple. For instance, a number like 21000 is certainly very simple (we
have just expressed it in a few bits); yet evidently there are numbers of
a thousand bits for which it is hard to see how we can find a descrip-
tion requiring many fewer than a thousand bits. Such hard-to-describe
numbers would be their own shortest descriptions.

We require both an agreed-upon universal description method and an
agreed-upon mechanism to produce the object from its alleged descrip-
tion. This would appear to make the information content of an object
depend on whether it is particularly favored by the description method
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we have selected. By ‘favor’ we mean to produce short descriptions in
terms of bits.

For instance, it is well known that certain programming languages fa-
vor symbolic computations, while other programming languages favor
arithmetic computations, even though all of them are universal. The
notion of information content of individual objects can be useful only
if the quantity of information is an attribute of the object alone and
is independent of the means of description. It is a priori by no means
obvious that this is possible. Relatively recent advances resulting in the
great ideas of computability theory from the 1930s onward have made it
possible to design a universal description method that appears to meet
our goals.

Denote the set of objects by S, and assume some standard enumeration
of objects x by natural numbers n(x). We are interested in the fact that
n(x) may not be the most economical way to specify x. To compare
methods of specification, we view such a method as a partial function
over the nonnegative integers defined by n = f(p). We do not yet as-
sume that f is recursive, but maintain full generality to show to what
extent such a theory can also be developed with noneffective notions,
and at which point effectiveness is required. With each natural number
p associate the length of the finite binary string identified with p as in
Equation 1.3. Denote this length by l(p).

For each object x in S, the complexity of object x with respect to the
specifying method f is defined as

Cf (x) = min{l(p) : f(p) = n(x)},
and Cf (x) = ∞ if there are no such p. In computer science terminology
we would say that p is a program and f a computer, so that Cf (x) is
the minimal length of a program for f (without additional input) to
compute output x.

Considering distinct methods f1, f2, . . . , fr of specifying the objects of
S, it is easy to construct a new method f that assigns to each object x
in S a complexity Cf (x) that exceeds only by c (less than about log r)
the minimum of Cf1(x), Cf2 (x), . . . , Cfr (x). The only thing we have to
do is to reserve the first log r bits of p to identify the method fi that
should be followed, using as a program the remaining bits of p.

We say that a method f minorizes a method g (additively) if there is a
constant c such that for all x,

Cf (x) ≤ Cg(x) + c.

Above we have shown how to construct a method f that minorizes each
of the methods f1, . . . , fr with constant c ≈ log r. Two methods f and
g are called equivalent if each of them minorizes the other.
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Consider the hierarchy of equivalence classes of methods with respect
to minorization. Kolmogorov has remarked that the idea of ‘description
length’ would be useless if the constructed hierarchy did not have cer-
tain niceness properties. In particular, we would like such a hierarchy
to have a unique minimal element: the equivalence class of description
methods that minorize all other description methods. Some sets of de-
scription methods do have a unique minimal element, while other sets
of description methods don’t.

Definition 2.0.1 Let C be a subclass of the partial functions over the nonnegative integers.
A function f is additively optimal (a special type of universality) for C
if it belongs to C and if for every function g ∈ C there is a constant cf,g
such that Cf (x) ≤ Cg(x) + cf,g, for all x. (Here cf,g depends on f and
g, but not on x.) Replacing x by 〈x, y〉, with 〈·〉 the standard recursive
bijective pairing function, yields the definition for a class of two-variable
functions.

Clearly, all additively optimal methods f, g of specifying objects in S
are equivalent in the following way:

|Cf (x) − Cg(x)| ≤ cf,g,

for all x, where cf,g is a constant depending only on f and g. Thus,
from an asymptotic point of view, the complexity C(x) of an object x,
when we restrict ourselves to optimal methods of specification, does not
depend on accidental peculiarities of the chosen optimal method.

Example 2.0.1 Consider the class of description methods consisting of all partial func-
tions over the nonnegative integers. Every additively optimal function
f for this class must be unbounded. Take an infinite sequence x1, x2, . . .
such that Cf (xi) ≥ i. Define the function g by g(i) = xi. Clearly,
Cg(xi) = log i + O(1) ≪ Cf (xi). Therefore, f cannot be additively
optimal. Thus, there is no additively optimal partial function, and the
hierarchy of complexities with respect to the partial functions does not
have any minimal element.

The development of the theory of Kolmogorov complexity is made pos-
sible by the remarkable fact that the class of partial recursive functions
(defined in Section 1.7) possesses a universal element that is additively
optimal. Under this relatively natural restriction on the class of descrip-
tion methods (that is, to partial recursive functions) we obtain a well-
behaved hierarchy of complexities. 3

We begin by worrying about notation. There are several variants of
Kolmogorov complexity, with notations that are not used consistently
among different authors or even by the same author at different times.
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In the main text of this book we shall concentrate on two major variants
of Kolmogorov complexity. It seems educationally the right approach to
first study Kolmogorov complexity as originally defined by Solomonoff,
Kolmogorov, and Chaitin because it is intuitively clearer.

Some mathematical technicalities will naturally lead up to, and justify, the
less intuitive version of Kolmogorov complexity. The first type we call plain
Kolmogorov complexity, and the second type we call prefix Kolmogorov com-
plexity. We use C to denote the plain Kolmogorov complexity. We reserve K
for the prefix type. Fortunately, the majority of theorems we derive for plain
Kolmogorov complexity carry over unchanged and with the same proofs to
the prefix version. The difference is that the prefix version is tweaked to have
just the right quantitative properties for some desired uses and applications.

2.1

The

Invariance

Theorem

Identify an object x from a countably infinite sample space S with its
index n(x). Consider the class of description methods

{φ : φ is a partial recursive function}.

Consider the particular problem of describing objects consisting of nat-
ural numbers in terms of programs consisting of finite strings of 0’s and
1’s. Just as in information theory, Section 1.11, where the entropy and
information of a message over an alphabet of any size are expressed in
the normalized format of bits, the restriction of the programs to a binary
alphabet does not imply any loss of generality. In both cases, changing
alphabet size leaves all statements invariant up to an appropriate loga-
rithmic multiplicative factor related to the alphabet sizes involved; see
Exercise 2.1.9.

The invariance theorem, Theorem 2.1.1 below, is the cornerstone for
the subsequent development of the theory. In fact, for many later ap-
plications it embodies the entire theoretical foundation. Recall Defini-
tion 2.0.1 of a function that is additively optimal (a special type of
universality) for a class of functions. We give the unconditional version
as a preliminary lemma.

Lemma 2.1.1 There is an additively optimal universal partial recursive function.

Proof. Let φ0 be the function computed by a universal Turing machine
U . Machine U expects inputs of the format

〈n, p〉 = 11 . . .1
︸ ︷︷ ︸

l(n) times

0 np .

The interpretation is that the total program 〈n, p〉 is a two-part code of
which the first part consists of a self-delimiting encoding of Tn and the
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second part is the literally rendered program p. In this way, U can first
parse the binary input into the Tn-part and the p-part, and subsequently
simulate the computation of Tn started with program p as its input
(Section 1.7). That is, φ0(〈n, p〉) = φn(p). What happens if U gets the
program 0p? By convention we can set U = T0 and therefore U(0p) =
U(p). Altogether, if Tn computes the partial recursive function φn, then

Cφ0(x) ≤ Cφn(x) + cφn ,

where cφn can be set to 2l(n) + 1. 2

For many applications we require a generalization to a conditional ver-
sion, as follows. The difficulty of specifying an object can be facilitated
when another object is already specified. We define the complexity of
an object x, given an object y. Fix an effective enumeration of Turing
machines T1, T2, . . . as in Section 1.7. The Turing machines use a tape
alphabet {0, 1, B}, and the input to a Turing machine is a program con-
sisting of a contiguous string of 0’s and 1’s, delimited by blanks B on
both sides. In this way, a Turing machine can detect the end of its pro-
gram. The effective enumeration of Turing machines induces an effective
enumeration of partial recursive functions φ1, φ2, . . . such that Ti com-
putes φi for all i. As above, 〈·〉 : N × N → N is a standard recursive
bijective pairing function mapping the pair (x, y) to the singleton 〈x, y〉.
We can iterate this as (x, y, z) = 〈x, 〈y, z〉〉.

Definition 2.1.1 Let x, y, p be natural numbers. Any partial recursive function φ, to-
gether with p and y, such that φ(〈y, p〉) = x, is a description of x. The
complexity Cφ of x conditional to y is defined by

Cφ(x|y) = min{l(p) : φ(〈y, p〉) = x},

and Cφ(x|y) = ∞ if there are no such p. We call p a program to compute
x by φ, given y.

Theorem 2.1.1 There is an additively optimal universal partial recursive function φ0 for
the class of partial recursive functions to compute x given y. Therefore,
Cφ0(x|y) ≤ Cφ(x|y) + cφ for all partial recursive functions φ and all x
and y, where cφ is a constant depending on φ but not on x or y.

Proof. Let φ0 be the function computed by a universal Turing machine
U such that U started on input 〈y, 〈n, p〉〉 simulates Tn on input 〈y, p〉
(Section 1.7). That is, if Tn computes the partial recursive function φn,
then φ0(〈y, 〈n, p〉〉) = φn(〈y, p〉). Hence, for all n,

Cφ0(x|y) ≤ Cφn(x|y) + cφn ,

where cφn = 2l(n) + 1. 2



106 2. Algorithmic Complexity

The key point is not that the universal description method necessarily
gives the shortest description in each case, but that no other description
method can improve on it infinitely often by more than a fixed constant.
Note also that the optimal complexity Cφ0(x|y) is defined for all x and
y. Namely, for each x and y we can find a Turing machine that computes
output x, given y, for some input p (such as the Turing machine that
outputs x for all inputs).

For every pair ψ, ψ′ of additively optimal functions, there is a fixed
constant cψ,ψ′ , depending only on ψ and ψ′, such that for all x, y we
have

|Cψ(x|y) − Cψ′(x|y)| ≤ cψ,ψ′ .

To see this, first substitute φ0 = ψ and φ = ψ′ in Theorem 2.1.1, then
substitute φ = ψ and φ0 = ψ′ in Theorem 2.1.1, and combine the two
resulting inequalities. While the complexities according to ψ and ψ′ are
not exactly equal, they are equal up to a fixed constant for all x and y.

Definition 2.1.2 Fix an additively optimal universal φ0 and dispense with the subscript
by defining the conditional Kolmogorov complexity C(·|·) by

C(x|y) = Cφ0(x|y).

This particular φ0 is called the reference function for C. We also fix a
particular Turing machine U that computes φ0 and call U the reference
machine. The unconditional Kolmogorov complexity C(·) is defined by

C(x) = C(x|ǫ).

Example 2.1.1 Programmers are generally aware that programs for symbolic manip-
ulation tend to be shorter when they are expressed in the LISP pro-
gramming language than if they are expressed in FORTRAN, while for
numerical calculations the opposite is the case. Or is it? The invariance
theorem in fact shows that to express an algorithm succinctly in a pro-
gram, it does not matter which programming language we use (up to
a fixed additive constant that depends only on the two programming
languages).

To see this, as an example consider the lexicographic enumeration of
all syntactically correct LISP programs λ1, λ2, . . . and the lexicographic
enumeration of all syntactically correct FORTRAN programs π1, π2, . . . .
With proper definitions we can view the programs in both enumerations
as computing partial recursive functions from their inputs to their out-
puts. Choosing reference machines in both enumerations, we can define
complexities CLISP(x) and CFORTRAN(x) completely analogous to C(x).
All of these measures of the descriptional complexity of x coincide up
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to a fixed additive constant. Let us show this directly for CLISP(x) and
CFORTRAN(x).

It is well known and also easy to see that each enumeration contains
a universal program; the LISP enumeration contains a LISP interpreter
program that interprets any LISP program. But there is also a LISP pro-
gram λP that is a FORTRAN interpreter in the sense that it interprets
any FORTRAN program. Consequently, CLISP(x) ≤ CFORTRAN(x) +
l(λP ). Similarly, there is a FORTRAN program πL that is a LISP in-
terpreter, which yields CFORTRAN(x) ≤ CLISP(x)+ l(πL). Consequently,
|CLISP(x) − CFORTRAN(x)| ≤ l(λP ) + l(πL) for all x. 3

Example 2.1.2 In Theorem 2.1.1 we used a special type of universal partial recursive
function, called ‘additively optimal.’ There are other universal partial
recursive functions that are not additively optimal and for which the
theorem does not hold. For example, let φ be the function computed by
a universal Turing machine Uφ such that Uφ started on input 〈y, 〈n, pp〉〉
simulates Tn on input 〈y, p〉, and φ is not defined for inputs that are not
of the form 〈y, 〈n, pp〉〉. (That is, if Tn computes the partial recursive
function φn, then φ(〈y, 〈n, pp〉〉) = φn(〈y, p〉).) Then, for all x, y, n, we
have Cφ(x|y) ≥ 2Cφn(x|y). 3

2.1.1
Two-Part Codes

It is a deep and useful fact that the shortest effective description of an
object x can be expressed in terms of a two-part code, the first part
describing an appropriate Turing machine and the second part describ-
ing the program that interpreted by the Turing machine reconstructs
x. The essence of the invariance theorem is as follows: For the fixed
reference universal Turing machine U , the length of the shortest pro-
gram to compute x is min{l(p) : U(p) = x}. Looking back at the proof
of Lemma 2.1.1, we notice that U(0p) = U(p). From the definitions it
therefore follows that

C(x) = min{l(T ) + l(p) : T (p) = x} +O(1),

where l(T ) is the length of a self-delimiting encoding for a Turing ma-
chine T . This provides an alternative definition of Kolmogorov com-
plexity (similarly, for conditional Kolmogorov complexity). The above
expression for Kolmogorov complexity can be rewritten as

C(x) = min{l(T ) + C(x|T ) : T ∈ {T0, T1, . . .}} +O(1), (2.1)

which emphasizes the two-part-code nature of Kolmogorov complexity,
using the regular aspects of x to maximally compress. In the example

x = 10101010101010101010101010
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we can encode x by a small Turing machine that computes x from the
program 13. Intuitively, the Turing machine part of the code squeezes out
the regularities in x. What is left are irregularities, or random aspects,
of x relative to that Turing machine. The minimal-length two-part code
squeezes out regularity only insofar as the reduction in the length of
the description of random aspects is greater than the increase in the
regularity description.

The right model is a Turing machine T among those that reach the
minimum description length

min
T

{l(T ) + C(x|T ) : T ∈ {T0, T1, . . .}}.

This T embodies the amount of useful information contained in x. The
main remaining question is which such T to select among those that
satisfy the requirement. The problem is how to separate a shortest pro-
gram x∗ for x into parts x∗ = pq such that p represents an appropriate
T . This idea has spawned the ‘minimum description length’ principle in
statistics and inductive reasoning, Section 5.4; Kolmogorov’s structure
functions and algorithmic (minimal) sufficient statistic, Section 5.5; and
the notion of algorithmic entropy in Section 8.6.

2.1.2
Upper Bounds

Theorem 2.1.1 has a wider importance than just showing that the hier-
archy of Cφ complexity measures contains an additively optimal one. It
is also our principal tool in finding upper bounds on C(x). Such upper
bounds depend on the choice of reference function, and hence are proved
only to within an additive constant.

Intuitively, the Kolmogorov complexity of a binary string cannot exceed
its own length, because the string is obviously a (literal) description of
itself.

Theorem 2.1.2 There is a constant c such that for all x and y,

C(x) ≤ l(x) + c and C(x|y) ≤ C(x) + c.

Proof. The first inequality is supremely obvious: define a Turing machine
T that copies the input to the output. Then for all x, we have CT (x) =
l(x). By Theorem 2.1.1 the result follows.

To prove the second inequality, construct a Turing machine T that for
all y, z computes output x on input 〈z, y〉 iff the universal reference
machine U computes output x for input 〈z, ǫ〉. Then CT (x|y) = C(x).
By Theorem 2.1.1, there is a constant c such that C(x|y) ≤ CT (x|y)+c =
C(x) + c. 2

Note that the additive constants in these inequalities are fudge terms
related to the reference machine U . For example, we need to indicate
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to the reference machine that a given description is the object itself,
and this information adds a number of bits to the literal description.
In Section 3.2 we will calculate the constants explicitly as 8 and 2, re-
spectively. Let us look at some more examples in order to develop our
intuition about the notion of complexity of description.

Example 2.1.3 For each finite binary string x we have C(xx) ≤ C(x)+O(1). Construct
a Turing machine V such that V (p) = U(p)U(p), for all programs p,
where U is the reference machine in the proof of Theorem 2.1.1. In
particular, if U(p) = x, then V (p) = xx. Let V = Tm in the standard
enumeration of Turing machines T1, T2, . . . . With m denoting the self-
delimiting description 1l(m)0m of m, we have U(mp) = Tm(p) = xx and
l(mp) = l(p) + 2l(m) + 1. Hence, C(xx) ≤ C(x) + 2l(m) + 1. From now
on we leave the more obvious details of this type of argument for the
reader to fill in. 3

Example 2.1.4 Recall that xR denotes the reverse of x. Clearly, the complexities of x
and xR can differ by at most a fixed constant c independent of x. That
is, |C(x) − C(xR)| < c holds for all x. We can generalize this example
as follows: For every total recursive function φ that is one-to-one there
is (another) constant c such that |C(φ(x)) − C(x)| < c for all x.

In fact, if φ is computed by Turing machine Tn and U(p) = x, then
there is a Turing machine V such that V (n̄p) = φ(x). If V = Tm, then
U(mn̄p) = φ(x), and therefore |C(φ(x)) − C(x)| < 2l(m) + 2l(n) + 2.
Similar relations hold for the conditional complexity C(x|y). 3

Example 2.1.5 Can the complexity of a pair of strings exceed the sum of the complexities
of the individual strings? In other words, is C subadditive? Let 〈·〉 :
N×N → N be the standard recursive bijection over the natural numbers
that encodes x and y as 〈x, y〉. Define C(x, y) = C(〈x, y〉). That is, up to
a fixed constant, C(x, y) is the length of the shortest program such that
U computes both x and y and a way to tell them apart. It is seductive
to conjecture C(x, y) ≤ C(x) + C(y) + O(1), the obvious (but false)
argument running as follows: Suppose we have a shortest program p
to produce x, and a shortest program q to produce y. Then with O(1)
extra bits to account for some Turing machine T that schedules the two
programs, we have a program to produce x followed by y. However, any
such T will have to know where to divide its input to identify p and q.
One way to do this is by using input l(p)pq or input l(q)qp. In this way,
we can show that for all x, y, we have

C(x, y) ≤ C(x) + C(y) + 2 log(min(C(x), C(y))). (2.2)

We cannot eliminate the logarithmic error term for the general case.
Namely, in Example 2.2.3 on page 118 we show that there is a constant
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c such that for all n there are x and y of length at most n such that

C(x, y) ≥ C(x) + C(y) + logn− c.

We can eliminate the logarithmic error term at the cost of entering the
length of one of the programs in the conditional,

C(x, y|C(x)) ≤ C(x) + C(y) +O(1).

Equation 2.2 also holds if we replace the left-hand side by the complex-
ity C(xy) of the unmarked concatenation xy. In the example already
referred to above, it is shown that we cannot eliminate the logarithmic
error in this case either. 3

Example 2.1.6 If we know C(x) and x, then we can run all programs of length C(x) in
parallel on the reference machine U in dovetail fashion (in stage k of the
overall computation execute the ith computation step of program k− i).
By definition of C(·), there must be a program of length C(x) that halts
with output x. The first such program is the first shortest program for x
in enumeration order, and is denoted by x∗.

Therefore, a program to compute C(x), given x, can be converted to a
program to compute x∗, given x, at the cost of a constant number of
extra bits. If we have computed x∗, then C(x) is simply its length, so
the converse is trivial. Furthermore, to describe C(x) from scratch takes
at least as many bits as to describe C(x) using x. Altogether we have,
up to additional constant terms,

C(x∗|x) = C(C(x)|x) ≤ C(C(x)) ≤ log l(x).

3

The upper bound on C(x∗|x) cannot be improved to O(1). If it could, then
one could show that C(x) is a recursive function. However, in Theorem 2.3.2
we shall show that C(x) is not partial recursive. It is a curious fact that for
some x, knowledge of x does not help much in computing x∗. In fact, the
upper bound is nearly optimal. In Theorem 3.8.1 we shall show that for some
x of each length n the quantity C(C(x)|x), and hence also C(x∗|x), is almost
log n.

Clearly, the information that an element belongs to a particular set can
severely curtail the complexity of that element. The following simple
observation, due to Kolmogorov, turns out to be very useful. We show
that for every easily describable set the conditional complexity of every
one of its elements is at most equal to the logarithm of the cardinality of
that set. (We will observe later, in Theorem 2.2.1, that the conditional
complexities of the majority of elements in a finite set cannot be signifi-
cantly less than the logarithm of the cardinality of that set: we will say
that they are ‘incompressible’ and have a small ‘randomness deficiency.’)
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Theorem 2.1.3 Let A ⊆ N × N be recursively enumerable, and y ∈ N . Suppose Y =
{x : (x, y) ∈ A} is finite. Then, for some constant c depending only on
A, for all x in Y , we have C(x|y) ≤ l(d(Y )) + c.

Proof. Let A be enumerated without repetition as (x1, y1), (x2, y2), . . . by
a Turing machine T . Let (xi1 , yi1), . . . , (xik , yik) be the subsequence in
which the elements of Y are enumerated, k = d(Y ). Using the fixed
y, modify T to Ty such that Ty, on input 1 ≤ p ≤ d(Y ), outputs
xip , Ty(p) = xip . Therefore, we have by the invariance theorem, Theo-
rem 2.1.1, that C(x|y) ≤ CTy (x) + c ≤ l(d(Y )) + c, with c depending
only on A. 2

Let us illustrate the use of this theorem. Let A be a subset of N . Define
A≤n = {x ∈ A : l(x) ≤ n}. Let A be recursively enumerable and
d(A≤n) ≤ p(n), with p a polynomial. Then, for all x ∈ A of length at
most n we have C(x|n) ≤ l(p(n))+O(1), by Theorem 2.1.3. For all x of
length at most n we have C(x) ≤ C(x|n) + 2l(n) +O(1). Therefore, for
x ∈ A≤n we find that C(x) = O(log n).

2.1.3
Invariance of
Kolmogorov
Complexity

The complexity C(x) is invariant only up to a constant depending on
the reference function φ0. Thus, one may object, for every string x there
is an additively optimal recursive function ψ0 such that Cψ0(x) = 0. So
how can one claim that C(x) is an objective notion?

A mathematically clean solution to this problem is as follows: Call two
complexities Cφ and Cψ equivalent, Cφ ≡ Cψ , if there is a constant c
such that for all x,

|Cφ(x) − Cψ(x)| ≤ c.

Then the equivalence relation ≡ induces equivalence classes

[Cφ] = {Cψ : Cψ ≡ Cφ}.

We order the equivalence classes by [Cφ] ≤ [Cψ] if there is a constant
c ≥ 0 such that Cφ(x) ≤ Cψ(x) + c for every x. The resulting order on
the equivalence classes is a partial order with a single minimal element,
namely [Cφ0 ], such that for all Cψ,

[Cφ0 ] ≤ [Cψ].

We have somewhat glibly overlooked the fact that our definition of Kolmogorov
complexity is relative to the particular effective enumeration of Turing ma-
chines as used in the proof of the invariance theorem, Theorem 2.1.1. We have
claimed that the quantity of information in an object depends on itself alone.
That is, it should be independent of the particular enumeration of Turing
machines.
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Consider two different enumerations of all partial recursive functions, say
φ1, φ2, . . . and ψ1, ψ2, . . . . Assume that the φ enumeration is the enumer-
ation corresponding to our effective enumeration of Turing machines as used
in the proof of the invariance theorem.

Let the standard enumeration φ1, φ2, . . . and the other enumeration ψ1, ψ2, . . .
be related by ψi = φf(i) and φi = ψg(i), i = 1, 2, . . . . If both f and g
are partial recursive, then the enumerations are called recursively isomorphic
and are both acceptable numberings (Section 1.7, Exercise 1.7.6 on page 41).
Let C(x) be the complexity with respect to the reference function in the φ
enumeration, and let C′(x) be the complexity with respect to the reference
function in the ψ enumeration. It is an easy exercise to show that there is a
constant c such that |C(x) − C′(x)| < c for all x. (Hint: use the indexes of f
and g in the enumerations.)

Therefore, not only do additively optimal functions in the same acceptable
numberings yield complexities that are equal up to a fixed constant, but addi-
tively optimal functions in two different acceptable numberings do so as well.
Hence, Kolmogorov complexity is recursively invariant between acceptable
numberings, even though we have chosen to define it using the specific enu-
meration of Turing machines of Section 1.7. Using an analogy due to Hartley
Rogers, Jr., the fixed choice of effective enumeration of Turing machines can be
compared with using a particular coordinate system to establish coordinate-
free results in geometry.

A contradiction is possible only if there is no recursive isomorphism between
the φ enumeration and the ψ enumeration. We give an example of an enumer-
ation of all partial recursive functions for which an additively optimal function
yields a complexity C′(x) such that |C(x)−C′(x)| is unbounded. Let C(x) be
defined with respect to the φ enumeration as in Theorem 2.1.1. Define the ψ
enumeration as follows: The even functions ψ2i are defined by ψ2i(1) := yi for
some yi with C(y) ≥ i2 and ψ2i(x) := φi(x) for all x > 1. The odd functions
ψ2i+1 are given by ψ2i+1 := φi.

Clearly, the ψ enumeration contains all partial recursive functions. By way
of contradiction, assume that C′(·) is the Kolmogorov complexity in the ψ-
enumeration defined as in Theorem 2.1.1. Then, C′(yi) ≤ C′

ψ2i
(yi) + cψ2i . By

construction, C′
ψ2i

(yi) = 1 and cψ2i ≤ 2 log 2i + O(1). On the other hand,
C(yi) > i2 by construction. Hence, |C′(yi) −C(yi)| rises unboundedly with i.

2.1.4
Concrete
Kolmogorov
Complexity

It is possible to eliminate the indeterminacy of ‘equality up to a con-
stant’ everywhere by using a fixed domain of objects, a fixed effective
enumeration of Turing machines, and a fixed choice of additively opti-
mal function (rather the universal Turing machine that computes it).
Start from the enumeration of Turing machines in Section 1.7. Fix any
small universal machine, say U , with state–symbol product less than 30.
There exists at least one 7 × 4 universal Turing machine as mentioned
in the comment on page 31 following Example 1.7.4. In Section 3.2 we
exhibit a universal reference machine U to fix a concrete Kolmogorov
complexity with C(x|y) ≤ l(x) + 2 and C(x) ≤ l(x) + 8.
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For every x it is of course possible to choose a universal Turing machine
U ′ such that CU ′ (x) = 0 (in this notation identifying U ′ with the func-
tion it computes). For every such universal Turing machine U ′, we have
for all x that

C(x) ≤ CU ′(x) + C(U ′).

Here C(U ′) is at least the length of the shortest program p such that for
all programs q we have U(pq) = U ′(q). This means that if CU ′(x) = 0,
then C(U ′) ≥ C(x). That is, CU ′(x) = 0 unavoidably means that the
description of U ′ contains a description of x. Therefore, in order to assign
low complexity to a large and complicated object, a universal machine
has to be large and complicated as well.

Exercises 2.1.1. [15] (a) Show that C(0n|n) ≤ c, where c is a constant indepen-
dent of n.

(b) Show that C(π1:n|n) ≤ c, where π = 3.1415 . . . and c is some constant
independent of n.

(c) Show that we can expect C(a1:n|n) ≤ 1
4n, where ai is the ith bit in

Shakespeare’s Romeo and Juliet.

(d) What is C(a1:n|n), where ai is the ith bit in the expansion of the
fine structure constant a = e2/~c, in physics.

Comments. Hint: for Item (c) use known facts concerning the letter
frequencies (entropy) in written English. Source: T.M. Cover, The Im-
pact of Processing Technique on Communications, J.K. Skwirzynski, ed.,
Martinus Nijhof, 1985, pp. 23–33.

2.1.2. [10] Let x be a finite binary string with C(x) = q. What is the
complexity C(xq), where xq denotes the concatenation of q copies of x?

2.1.3. [14] Show that there are infinite binary sequences ω such that
the length of the shortest program for reference Turing machine U to
compute the consecutive digits of ω one after another can be significantly
shorter than the length of the shortest program to compute an initial
n-length segment ω1:n of ω, for any large enough n.

Comments. Hint: choose ω a recursive sequence with shortest program
of length O(1). Then C(ω1:n) = C(n) +O(1), which goes to ∞ with n.

2.1.4. [12] Prove that for every x, there is an additively optimal func-
tion φ0 (as in Theorem 2.1.1) such that Cφ0(x) = 0. Prove the analogous
statement for x under condition y.

2.1.5. [07] Below, x, y, and z are arbitrary elements of N . Prove the
following:
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(a) C(x|y) ≤ C(x) +O(1).

(b) C(x|y) ≤ C(x, z|y) +O(1).

(c) C(x|y, z) ≤ C(x|y) +O(1).

(d) C(x, x) = C(x) +O(1).

(e) C(x, y|z) = C(y, x|z) + O(1).

(f) C(x|y, z) = C(x|z, y) +O(1).

(g) C(x, y|x, z) = C(y|x, z) +O(1).

(h) C(x|x, z) = C(x|x) +O(1) = O(1).

2.1.6. [14] Let φk be any partial recursive function in the effective
enumeration φ1, φ2, . . . . Let x, y, z be arbitrary elements of N . Prove
the following:

(a) C(φk(x)|y) ≤ C(x|y) + 2l(k) +O(1).

(b) C(y|φk(x)) ≥ C(y|x) − 2l(k) +O(1).

Assume that φk is also one-to-one. Show that

(c) |C(x) − C(φk(x))| ≤ 2l(k) + O(1).

(d) C(x|y, z) ≤ C(x|φk(y), z) + 2l(k) +O(1).

2.1.7. [12] Let x, y, z, and φk be as before. Prove the following.

(a) C(x, y) ≤ C(x) + 2l(C(x)) + C(y|x) +O(1).

(b) C(φk(x, y)) ≤ C(x) + 2l(C(x)) + C(y|x) + 2l(k) + O(1) ≤ C(x) +
2l(C(x)) + C(y) + 2l(k) +O(1).

2.1.8. [12] Show that if φ is a fixed one-to-one and onto recursive
function φ : {0, 1}∗ → {0, 1}∗, then for every x ∈ {0, 1}∗,

C(x) − C(x|φ(x)) = C(x) + O(1) = C(φ(x)) +O(1).

2.1.9. • [19] We investigate the invariance of C under change of pro-
gram representations from 2-ary to r-ary representations. Let Ar =
{0, 1, . . . , r − 1}∗, r ≥ 2, and A = N ∗ with N the set of natural num-
bers. A function φ : Ar × A → A is called an r-ary decoder. In order
not to hide too much information in the decoder, we want it to be a
simple function, a partial recursive one. Analogous to the definitions in
the main text, for any binary decoder φ and x, y in A,

Cφ(x|y) = min{l(p) : φ(p, y) = x},

or ∞ if such p does not exist.

(a) Prove Theorem 2.1.1 under this definition of C.
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(b) Define for each pair of natural numbers r, s ≥ 2 a standard encoding
E of strings x in base r to strings E(x) in base s such that l(E(x)) ≤
l(x) log r/ log s+ 1.

(c) Prove the invariance theorem, Theorem 2.1.1, for r-ary decoders φ.
First, let us define Cφ(x|y) = min{l(p) log r : φ(p, y) = x} and Cφ(x|y) =
∞ if such p does not exist. Then prove that there exists an additively
optimal (universal) r-ary decoder φ0 such that for all s, for all s-ary
decoders φ, there exists a constant cφ such that for all x, y ∈ A we have

Cφ0(x|y) ≤ Cφ(x|y) + cφ.

(d) Show that for any x ∈ Ar of length n, we have C(x) ≤ n log r +
2 log r + c for some fixed c, independent of x and r.

(e) Fix natural numbers r, s ≥ 2 and choose an additively optimal r-ary
decoder and an additively optimal s-ary decoder. Call the associated
canonical C measures respectively Cr and Cs. Show that there exists a
constant c such that for all x, y in A we have

|Cr(x|y) − Cs(x|y)| ≤ c,

where c is independent of x and y. Conclude that C2, the C measure
treated in the main text, is universal in the sense that neither the re-
striction to binary objects to be described nor the restriction to binary
descriptions (programs) results in any loss of generality.

Comments. In general, if we denote by Cr(x) the analogous complexity
of x in terms of programs over alphabets of r letters (C2(x) = C(x)
but for r > 2 without the log r normalizing multiplicative factor as in
Item (c)), then by the same analysis as of Item (c) we obtain Cr(x) ∼
C(x)/ log r. Source: P. Gács, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987.

2.1.10. [12] (a) Show that C(x + C(x)) ≤ C(x) +O(1).

(b) Show that if m ≤ n, then m+ C(m) ≤ n+ C(n) +O(1).

Comments. Hint for Item (a): if U(p) = x with l(p) = C(x), then p
also suffices to reconstruct x + l(p). Hint for Item (b): use Item (a).
Source: P. Gács, Lecture Notes on Descriptional Complexity and Ran-
domness, Manuscript, Boston University, 1987; result is attributed to
C.P. Schnorr.

2.1.11. [13] Let φ1, φ2, . . . be the standard enumeration of the partial
recursive functions, and let a be a fixed natural number such that the
set A = {x : φk(y) = 〈a, x〉 for some y ∈ N} is finite. Show that for each
x in A we have C(x|a) ≤ l(d(A)) + 2l(k) +O(1).
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2.1.12. [18] Define the function complexity of a function f : N → N ,
restricted to a finite domain D, as

C(f |D) = min{l(p) : ∀x∈D[U(p, x) = f(x)]}.

(a) Show that for all recursive functions f , there exists a constant cf
such that for all finite D ⊆ N , we have C(f |D) ≤ cf .

(b) Show that for all partial recursive functions, for all D = {i : i ≤ n},
we have C(f |D) ≤ logn+ cf , where cf depends on f but not on D.

Comments. Compare Theorem 2.7.2. Source: J.M. Barzdins, Soviet Math.
Dokl., 9(1968), 1251–1254.

2.2

Incompress-

ibility

It is easy to see that there are strings that can be described by programs
much shorter than themselves. For instance, the function defined by
f(1) = 2 and f(i) = 2f(i−1) for i > 1 grows very fast, f(k) is a stack
of k twos. Yet for each k it is clear that the string x = 1f(k), or the
integer y = 2f(k), has at most complexity C(k) + c for some constant c
independent of k.

Trivially, this simple argument can be generalized to prove the following
fact: for every recursive function φ, no matter how fast it grows, there
is a constant c such that for each value of n there is a string x such that
l(x) = φ(n) but C(x) ≤ n + c. That is, for an appropriate sequence of
strings, the ratio of string length to description length can increase as
fast as any recursive function—some strings are very compressible.

What about incompressibility? By a simple counting argument one can
show that whereas some strings can be greatly compressed, the majority
of strings cannot be compressed at all.

For each n there are 2n binary strings of length n, but only
∑n−1

i=0 2i =
2n − 1 possible shorter descriptions. Therefore, there is at least one
binary string x of length n such that C(x) ≥ n. We call such strings
incompressible. It also follows that for any length n and any binary
string y, there is a binary string x of length n such that C(x|y) ≥ n.

Definition 2.2.1 For each constant c we say that a string x is c-incompressible if C(x) ≥
l(x) − c.

Strings that are incompressible (say, c-incompressible with small c) are
patternless, since a pattern could be used to reduce the description
length. Intuitively, we think of such patternless sequences as being ran-
dom, and we use ‘random sequence’ synonymously with ‘incompressible
sequence.’ Later we give a formalization of the intuitive notion of a ran-
dom sequence as a sequence that passes all effective tests for randomness.
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How many strings of length n are c-incompressible? By the same count-
ing argument we find that the number of strings of length n that are
c-incompressible is at least 2n − 2n−c + 1. Hence there is at least one 0-
incompressible string of length n, at least one-half of all strings of length
n are 1-incompressible, at least three-fourths of all strings of length n are
2-incompressible, . . . , and at least the (1− 1/2c)th part of all 2n strings
of length n are c-incompressible. This means that for each constant c > 1
the majority of all strings of length n with n > c are c-incompressible.
We generalize this to the following simple but extremely useful incom-
pressibility theorem.

Theorem 2.2.1 Let c be a positive integer. For each fixed y, every finite set A of cardi-
nality m has at least m(1−2−c)+1 elements x with C(x|y) ≥ logm− c.

Proof. The number of programs of length less than logm− c is

logm−c−1
∑

i=0

2i = 2logm−c − 1.

Hence, there are at least m − m2−c + 1 elements in A that have no
program of length less than logm− c. 2

As an example, set A = {x : l(x) = n}. Then the cardinality of A is
m = 2n. Since Theorem 2.1.2 asserts that C(x) ≤ n+ c for some fixed c
and all x in A, Theorem 2.2.1 demonstrates that this trivial estimate is
quite sharp. The deeper reason is that since there are few short programs,
there can be only few objects of low complexity.

It is important to realize that Theorem 2.1.1 and Theorem 2.2.1, together
with the trivial upper bound of Theorem 2.1.2, give us already all we
need for most applications.

Example 2.2.1 Are all substrings of incompressible strings also incompressible? A string
x = uvw of length n can be specified by a short program p for v and the
string uw itself. Additionally, we need information on how to tell these
items apart. For instance, q = l(p)pl(u)uw is a program for x. There
exists a machine T that starting on the left end of q, first determines
l(p), then uses l(p) to delimit p, and computes v from p. Continuing on its
input, T determines l(u) and uses this to delimit u on the remainder of
its input. Subsequently, T reassembles x from the three pieces v, u, and
w it has determined. It follows that C(x) ≤ CT (x)+O(1) ≤ l(q)+O(1),
since l(q) ≤ C(v) + 2l(C(v)) + 2l(n) + n− l(v) + 2. Therefore,

C(x) ≤ C(v) + n− l(v) + 4 logn+O(1).

Hence, for c-incompressible strings x with C(x) ≥ n− c we obtain

C(v) ≥ l(v) −O(log n).
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Thus, we have shown that v is incompressible up to an additive term
logarithmic in n.

Can we hope to prove C(v) ≥ l(v) − O(1) for all x and v? If this were
true, then x could not contain long regular subsequences, for instance, a
subsequence of k zeros has complexity O(log k) and not k−O(1). How-
ever, the very restriction on x of not having long regular subsequences
imposes some regularity on x by making it a member of a relatively
small set. Namely, we can describe x by stating that it does not contain
certain subsequences, followed by x’s index in the set that is determined
by these constraints. But the set of which x is a member is so small
that C(x) drops below n− c, and x is compressible. Hence, the very in-
compressibility of x requires that it have compressible substrings. This
corresponds to a fact we know from probability theory: a random se-
quence must contain long runs of zeros. 3

Example 2.2.2 If p is a shortest program for x, so that C(x) = l(p), then we would like to
assert that p is incompressible. This time, our intuition corresponds with
the truth. There is a constant c > 0 such that for all strings x we have
C(p) ≥ l(p)−c. For suppose the contrary, and for every constant c there
is an x and a shortest program q that generates p with l(q) < l(p) − c.
Define a universal machine V that works just like the reference machine
U , except that V first simulates U on its input to obtain the output,
and then uses this output as input on which to simulate U once more.
Let V = Ti, the ith Turing machine in the standard enumeration. Then,
U with input 1i0q computes x, and therefore C(x) < l(p) − c + i + 1.
But this contradicts l(p) = C(x) for c ≥ i+ 1. 3

Example 2.2.3 We continue Example 2.1.5 on page 109 that C(x, y) is not subadditive
since the logarithmic term in Equation 2.2 cannot be eliminated. Namely,
there are (n + 1)2n pairs (x, y) of binary strings whose sum of lengths
is n. By Theorem 2.2.1 there is a pair (x, y) with l(x) + l(y) = n such
that C(x, y) ≥ n+ log n− 1. But Theorem 2.1.2 on page 108 states that
C(x) +C(y) ≤ l(x) + l(y) + c for some constant c independent of x and
y. Hence, for all n there are x and y of length at most n such that

C(x, y) > C(x) + C(y) + logn− c,

where c is a constant independent of x and y. For the unmarked con-
catenation xy with l(xy) = n, if C(xy) ≥ n, then xy contains a block of
0’s or 1’s of length at least logn−2 log logn−O(1) (follows from Exam-
ple 2.2.1 but is more precisely derived in Corollary 2.6.2 om page 172).
We can choose the concatenation xy so that x ends with this longest
run of 0’s or 1’s. This means that C(x) ≤ l(x)− logn+2 log logn. Then,
C(xy) ≥ C(x) + C(y) + logn− 2 log logn− c. 3
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There is a particular use we had in mind in defining conditional Kol-
mogorov complexity. Namely, we often want to speak about the com-
plexity of x given its length n. This is because a string x of length n
carries in a sense two quantities of information, one associated with the
irregularity of the pattern of 0’s and 1’s in x, and one associated with
the length n of x.

Example 2.2.4 One effect of the information quantity associated with the length of
strings is that C(x) is nonmonotonic on prefixes. This can be due to the
information contained in the length of x. That is, for m < n we can still
have C(m) > C(n). But then C(y) > C(x) for x = 1n and y = 1m,
notwithstanding that y is a proper prefix of x. For example, if n = 2k,
then C(1n) ≤ log logn + O(1), while Theorem 2.2.1 shows that there
exist m with 1

2n ≤ m < n such that C(1m) ≥ logn − O(1). Therefore,
the complexity of a part can turn out to be bigger than the complexity
of the whole. In an initial attempt to solve this problem we may try to
eliminate the effect of the length of the string on the complexity measure
by treating the length as given. 3

Definition 2.2.2 The length-conditional Kolmogorov complexity of x is C(x|l(x)).

Roughly speaking, this means that the length of the shortest program for
x may save up to log l(x) bits in comparison with the shortest program
in the unconditional case. Clearly, there is a constant c such that for
all x,

C(x|l(x)) ≤ C(x) + c.

While on the face of it the measure C(x|l(x)) gives a pure estimate of
the quantity of information in solely the pattern of 0’s and 1’s of x, this
is not always true. Namely, sometimes the information contained in l(x)
can be used to determine the pattern of zeros and ones of x. This effect
is noticeable especially in the low-complexity region.

Example 2.2.5 For each integer n, the n-string is defined by n0n−l(n) (using the binary
string n). There is a constant c such that for all n, if x is the n-string,
then C(x|n) ≤ c. Namely, given n we can find the nth binary string ac-
cording to Equation 1.3 and pad the string with zeros up to overall length
n. We use n-strings to show that unfortunately, like the original C(x),
the complexity measure C(x|l(x)) is not monotonic over the prefixes.
Namely, if we choose n such that its pattern of 0’s and 1’s is very irreg-
ular, C(n) ≥ l(n), then for x = n0n−l(n), we still obtain C(x|l(x)) ≤ c.
But clearly C(n|l(n)) ≥ C(n) − C(l(n)) ≥ logn− 2 log logn. 3



120 2. Algorithmic Complexity

Example 2.2.6 Consider the complexity of a string x, with x an element of a given set
A. Clearly, the information that an element belongs to a particular set
severely curtails the complexity of that element if that set is small or
sparse. The following is a simple application of the very useful Theo-
rem 2.1.3. Let A be a subset of N and A≤n = {x ∈ A : l(x) ≤ n} We
call A meager if lim d(A≤n)/2n = 0 for n → ∞. For example, the set
of all finite strings that have twice as many 0’s as 1’s is meager. We
show that meagerness may imply that almost all strings in the meager
set have short descriptions.

Claim 2.2.1 If A is recursive and meager, then for each constant c there are only
finitely many x in A that are c-incompressible (C(x) ≥ l(x) − c).

Proof. Consider the lexicographic enumeration of all elements of A. Be-
cause A is recursive, there is a total recursive function φi that enumer-
ates A in increasing order. Hence, for the jth element x of A we have
C(x) ≤ C(j)+2l(i)+1. If x has length n, then the meagerness of A im-
plies that for each constant c′, no matter how large, n−C(j) > c′ from
some n onward. Hence, C(x) < n− c′ +2l(i). The proof is completed by
setting c′ = c+ 2l(i). 2 3

2.2.1
Randomness
Deficiency

If we know that x belongs to a subset A of the natural numbers, then
we can consider its complexity C(x|A). For instance, C(x) = C(x|N ),
because it is understood that x is a natural number. If x is an element
of a finite set A, then Theorem 2.1.3 asserts that C(x|A) ≤ l(d(A)) + c
for some c independent of x but possibly dependent on A. For instance,
the infinite meager sets of Example 2.2.6 contain finitely many incom-
pressible strings only.

Definition 2.2.3 The randomness deficiency of x relative to A is defined as δ(x|A) =
l(d(A)) −C(x|A). It follows that δ(x|A) ≥ −c for some fixed constant c
independent of x.

If δ(x|A) is large, then this means that there is a description of x with
the help of A that is considerably shorter than just giving x’s serial
number inA. There are comparatively few objects with large randomness
deficiency—this is the substance of Martin-Löf’s notion of a statistical
test in Section 2.4. Quantitatively this is expressed as follows:

Theorem 2.2.2 Assume the discussion above. Then, d({x : δ(x|A) ≥ k}) ≤ d(A)/2k−1.

Proof. There are fewer than 2l+1 descriptions of length at most l. 2
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By Theorem 2.1.3, the complexity of a string x in a given finite section
of a recursively enumerable set is bounded above by the logarithm of the
cardinality of that finite section. Let 〈·〉 : N 2 → N be the standard re-
cursive bijective pairing function. Let R = {(x, y) : φ(i) = 〈x, y〉, i ≥ 1}
with φ a partial recursive function, say φ = φr in the standard enumer-
ation of partial recursive functions. Then R is recursively enumerable.
Let the set A = {x : (x, y) ∈ R} be finite. We can assume that A is
enumerated without repetition, and that j ≤ d(A) is the position of x
in this enumeration. Clearly,

C(x|y) ≤ log d(A) + log r + 2 log log r +O(1).

As above, define C(x|A) = C(x|y) with the obvious interpretation. The
randomness deficiency of x relative to y is

δ(x|y) = log d(A) − C(x|y).

The randomness deficiency measures the difference between the maximal
complexity of a string in A and the complexity of x in A. Now, the defect
of randomness is positive up to a fixed constant independent of x and
A (but dependent on r). We may consider x to be random in the set
A iff δ(x|y) = O(1). If A is the set of binary strings of length n, or
equivalently, R is the set {(x, n) : l(x) = n} and A = {x : l(x) = n},
then we note that

δ(x|n) = n− C(x|n) +O(1).

That is, x is a random finite string in our informal sense iff δ(x|n) =
O(1). It will turn out that this coincides with Martin-Löf’s notion of
randomness in Section 2.4.

Exercises 2.2.1. [08] Prove the following continuity property of C(x). For all
natural numbers x, y we have |C(x+ y) − C(x)| ≤ 2l(y) +O(1).

2.2.2. [15] Let x satisfy C(x) ≥ n−O(1), where n = l(x).

(a) Show that C(y), C(z) ≥ 1
2n−O(1) for x = yz and l(y) = l(z).

(b) Show that C(y) ≥ n/3 − O(1) and C(z) ≥ 2n/3 − O(1) for x = yz
and l(z) = 2l(y).

(c) Let x = x1 . . . xlog n with l(xi) = n/ logn for all 1 ≤ i ≤ logn. Show
that C(xi) ≥ n/ logn−O(log logn) for all 1 ≤ i ≤ logn.

2.2.3. [21] Let x satisfy C(x) ≥ n− O(1), where n = l(x). Show that
for all divisions x = yz we have n− logn−2 log logn ≤ C(y)+C(z) and
for some divisions we have C(y) + C(z) ≤ n− logn+ log logn.
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2.2.4. [23] Assume that the elements of {1, . . . , n} are uniformly dis-
tributed with probability 1/n. Compute the expected value of C(x) for
1 ≤ x ≤ n.

Comments. Hint:
∑n

x=1
C(x)
n ≥∑logn

i=1 2−i(1 − i
log n ) = logn+O(1).

2.2.5. [14]We call x an n-string if x has length n and x = n00 . . .0.

(a) Show that there is a constant c such that for all n, every n-string
x has complexity C(x|n) ≤ c. (Of course, c depends on the reference
Turing machine U used to define C.)

(b) Show there is a constant c such that for all n, C(x|n) ≤ c for every
x in the form of the n-length prefix of nn . . . n.

(c) Let c be as in Item (a). Consider some n and some string x of length n
with C(x|n) ≫ c. Prove that the extension of x to a string y = x00 . . . 0
of length x has complexity C(y|x) ≤ c. Conclude that there is a constant
c such that each string x, no matter how high its C(x|l(x)) complexity,
can be extended to a string y with C(y|l(y)) ≤ c.

Comments. The C(x) measure contains the information about the pat-
tern of 0’s and 1’s in x and information about the length n of x. For
random such n, the complexity C(n) = l(n) + O(1) is about logn. In
this case, about logn bits of the shortest program p for x will be used
to account for x’s length. For n’s that are easy to compute, this is much
less. This seems a minor problem at high complexities, but becomes an
issue at low complexities, as follows. If the quantities of information re-
lated to the pattern only is low, say less than logn, for two strings x and
y of length n, then distinctions between these quantities for x and y may
get blurred in the comparison between C(x) and C(y) if the quantity of
information related to length n dominates in both. The C(x|l(x)) com-
plexity was meant to measure the information content of x apart from
its length. However, as the present exercise shows, in that case l(x) may
contain already the complete description of x up to a constant number
of bits. Source: D.W. Loveland, Inform. Contr., 15(1969), 510–526.

2.2.6. [19] (a) Show that there is a constant d > 0 such that for every
n there are at least ⌊2n/d⌋ strings x of length n with C(x|n) ≥ n and
C(x) ≥ n.

(b) Show that there are constants c, d′ > 0 such that for every large
enough n there are at least ⌊2n/d′⌋ strings x of length n− c ≤ l(x) ≤ n
with C(x|n) > n and C(x) > n.

(c) Assume that we have fixed a reference universal turing machine such
that for every n, we have C(x), C(x|n) ≤ n+1 for all strings x of length
n. Show that in this case Item (b) holds with l(x) = n.
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Comments. Hint for Item (a): There is a constant c > 0 such that for
every n and every x of length l(x) ≤ n − c we have C(x|n) ≤ n by
Theorem 2.1.2. Therefore, there are at most 2n − 2n−c+1 programs of
length < n available as shortest programs for the strings of length n.
Hence there is at least one x of length n with C(x|n) ≥ n. Let there be
m ≥ 1 such strings. Given m and n we can enumerate all 2n−m strings
x of length n and complexity C(x|n) < n by dovetailing the running of
all programs of length < n. The lexicographic first string of length n
not in the list satisfies logm + O(1) ≥ C(x|n) ≥ n. The unconditional
result follows similarly by padding the description of x up to length n.
Hint for Item (b): For every n there are equally many strings of length
≤ n to be described and potential programs of length ≤ n to describe
them. Since some programs do not halt (Lemma 1.7.5 on page 34) for
every large enough n, there exists a string x of length at most n that
has C(x|n), C(x) > n (and C(x|n), C(x) ≤ l(x) + c). The remaining
argument is similar to that of Item (a). Source: H. Buhrman, T. Jiang,
M. Li, P.M.B. Vitányi, Theoret. Comput. Sci., 235:1(2000), 59–70. Also
reported by M. Kummer and L. Fortnow. Compare with the similar
Exercise 3.3.1 for prefix Kolmogorov complexity on page 213. In the
source of that exercise, some form of the result of the current exercise is
attributed to G.J. Chaitin in the early 1970s.

2.2.7. [14] We can extend the notion of c-incompressibility as follows
(all strings are binary): Let g : N → N be unbounded. Call a string x
of length n g-incompressible if C(x) ≥ n− g(n). Let I(n) be the number
of strings x of length at most n that are g-incompressible. Show that
limn→∞ I(n)/2n+1 = 1.

Comments. Thus, the g-incompressible finite strings have uniform prob-
ability going to 1 in the set of strings of length n for n→ ∞.

2.2.8. [19] Prove that for each binary string x of length n there is a y
equal to x except for one bit such that C(y|n) ≤ n− logn+O(1).

Comments. Hint: the set of binary strings of length n constituting a
Hamming code has 2n/n elements and is recursive. Source: personal
communication, I. Csiszár, May 8, 1993.

2.2.9. [12] A Turing machine T computes an infinite sequence ω if
there is a program p such that T (p, n) = ω1:n for all n. Define C(ω) =
min{l(p) : U(p, n) = ω1:n for all n}, or ∞ if such a p does not exist.
Obviously, for all ω either C(ω) <∞ or C(ω) = ∞.

(a) Show that C(ω) < ∞ iff 0.ω is a recursive real number as in Exer-
cise 1.7.22 on page 47. For the mathematical constants π and e, C(π) <
∞ and C(e) <∞.
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(b) Show that the reals 0.ω with C(ω) < ∞ form a countably infinite
set and that the reals 0.ω with C(ω) = ∞ have uniform measure one in
the total set of reals in the interval [0, 1).

2.2.10. [27] We consider how information about x can be dispersed.
Let x ∈ N with l(x) = n and C(x) = n + O(1). Show that there are
u, v, w ∈ N such that

(i) l(u) = l(v) = l(w) = 1
2n, C(u) = C(v) = C(w) = 1

2n (+O(1)), and
they are pairwise independent: C(y|z) = 1

2n + O(1) for y, z ∈ {u, v, w}
and y 6= z;

(ii) x can be reconstructed from any two of them: C(x|y, z) = O(1),
where y, z ∈ {u, v, w} and y 6= z.

Can you give a general solution for finding m+k elements of N such that
each of them has length and complexity n/m, and x can be reconstructed
from any m distinct elements?

Comments. It is surprising that x can be reconstructed from any two
out of three elements, each of one-half the complexity of x. This shows
that the identity of the individual bits is not preserved in the division.
Hint: assume n = 2m and x = x1 . . . x2m, u = u1 . . . um, v = v1 . . . vm,
and w = w1 . . . wm with ui = x2i−1, vi = x2i, and wi = vi ⊕ ui. (Recall
that a⊕ b = 1 iff a 6= b.) This solution apparently does not generalize. A
general solution to distribute x over m+k elements such that any group
of m elements determines x can be given as follows: Compute the least
integer y ≥ x1/m. Let pi be the ith prime, with p1 = 2. Distribute x over

u1, . . . , um+k, where ui ≡ x mod p
α(i)
i , with α(i) = ⌈y logpi

2⌉. Using the
Chinese remainder theorem we find that we can reconstruct x from any
subset of m elements ui. Source: A. Shamir, Comm. ACM, 22:11(1979),
612–613; M.O. Rabin, J. ACM, 36:2(1989), 335–348.

2.2.11. [26] Show that there are strings x, y, z such that C(x|y) +
C(x|z) > C(x) + C(x|y, z) + O(1). For convenience prove this first for
strings of the same length n; but it also holds for some strings x, y, z with
l(x) = logn and l(y) = l(z) = n. Comments. This is a counterintuitive
result. Hint: prove there are pairwise random strings x, y, z such that
each string results from ⊕-ing the other two.

2.2.12. [18] Let A be the set of binary strings of length n. An element
x in A is δ-random if δ(x|A) ≤ δ, where δ(x|A) = n − C(x|A) is the
randomness deficiency. Show that if x ∈ B ⊆ A, then

log
d(A)

d(B)
− C(B|A) ≤ δ(x|A) +O(log n).

Comments. That is, no random elements of A can belong to any subset
B of A that is simultaneously pure (which means that C(B|A) is small)



Exercises 125

and not large (which means that d(A)/d(B) is large). Source: A.N. Kol-
mogorov and V.A. Uspensky, Theory Probab. Appl., 32(1987), 389–412.

2.2.13. [27] Let x ∈ A, with d(A) < ∞. Then in Section 2.2 the
randomness deficiency of x relative to A is defined as δ(x|A) = l(d(A))−
C(x|A). (Here C(x|A) is defined as C(x|χ) with χ the characteristic
sequence of A and l(χ) <∞.) If δ(x|A) is large, this means that there is
a description of x with the help of A that is considerably shorter than
just giving x’s serial number in A. Clearly, the randomness deficiency of
x with respect to sets A and B can be vastly different. But then it is
natural to ask whether there exist absolutely nonrandom objects, objects
having large randomness deficiency with respect to any appropriate set.

Prove the following: Let a and b be arbitrary constants; for every suf-
ficiently large n, there exists a binary string x of length n such that
δ(x|A) ≥ b logn for any set A containing x for which C(A) ≤ a logn.

Comments. Source: A.K. Shen, Soviet Math. Dokl., 28(1983), 295–299.
Compare with Kamae’s theorem, Exercise 2.7.5. Let us give some in-
terpretation of such results bearing on statistical inference. Given an
experimental result, the statistician wants to infer a statistical hypoth-
esis under which the result is typical. Mathematically, given x we want
to find a simple set A that contains x as a typical element. The above
shows that there are outcomes x such that no simple statistical model
of the kind described is possible. The question remains whether such
objects occur in the real world.

2.2.14. [31] Consider two complexity measures for infinite binary se-
quences ω. Let C∞(ω) be the minimal length of a program p such
that p(n) = ω1:n for all sufficiently large n. Let Ĉ∞(ω) be defined as
lim supn→∞ C(ω1:n|n). Prove that C∞(ω) ≤ 2Ĉ∞(ω) + O(1), and that
this bound is tight (the constant 2 cannot be replaced by a smaller one).

Comments. Source: B. Durand, A.K. Shen, N.K. Vereshchagin. Theoret.
Comput. Sci., 171(2001), 47–58.

2.2.15. [37] Consider Clim(x) = min{l(p) : p(n) = x for all but finitely
many n} and Clim sup(x) = min{m : for all but finitely many n there
exists a p with l(p) ≤ m and p(n) = x}. Let C′(x) denote the plain
Kolmogorov complexity relativized to 0′ (that is, the program is allowed
to ask an oracle whether a given Turing machine terminates on given
input).

(a) Prove that Clim(x) = C′(x) +O(1).

(b) Prove that Clim sup(x) = C′(x) +O(1).

Comments. Source: N.K. Vereshchagin Theoret. Comput. Sci., 271(2002),
59–67. Item (b) is the more difficult one; Item (a) is attributed to An.A.
Muchnik, S.Y. Positselsky.
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2.3

C as an

Integer

Function

We consider C as an integer function C : N → N , and study its be-
havior, Figure 2.1. First we observe that Theorem 2.1.2 gives an upper
bound on C: there exists a constant c such that for all x in N we have
C(x) ≤ l(x) + c, and by Theorem 2.2.1 this estimate is almost exact for
the majority of x’s. This is a computable monotonic increasing upper
bound that grows to infinity. It is also the least such upper bound. It
turns out that the greatest monotonic nondecreasing lower bound also
grows to infinity but does so incomputably slowly.

Theorem 2.3.1 (i) The function C(x) is unbounded.

(ii) Define a function m by m(x) = min{C(y) : y ≥ x}. That is, m is
the greatest monotonic increasing function bounding C from below. The
function m(x) is unbounded.

(iii) For any partial recursive function φ(x) that goes monotonically to
infinity from some x0 onward, we have m(x) < φ(x) except for finitely
many x. In other words, although m(x) goes to infinity, it does so more
slowly than any unbounded partial recursive function.

Proof. (i) This follows immediately from (ii).

(ii) For each i there is a least xi such that for all x > xi, the smallest
program p printing x has length greater than or equal to i. This follows
immediately from the fact that there are only a finite number of pro-
grams of each length i. Clearly, for all i we have xi+1 ≥ xi. Now observe
that the function m has the property that m(x) = i for xi < x ≤ xi+1.

(iii) Assume the contrary: there is a monotonic nondecreasing unbounded
partial recursive function φ(x) ≤ m(x) for infinitely many x. The do-
main A = {x : φ(x) <∞} of φ is an infinite recursively enumerable set.
By Lemma 1.7.4, A contains an infinite recursive subset B. Define

ψ(x) =

{
φ(x) for x ∈ B,
φ(y) with y = max{z : z ∈ B, z < x}, otherwise.

This ψ is total recursive and goes monotonically to infinity, and ψ(x) ≤
m(x) for infinitely many x.

Now define M(a) = max{x : C(x) ≤ a}. Then, M(a) + 1 = min{x :
m(x) > a}. It is easy to verify that

max{x : ψ(x) ≤ a+ 1} ≥ min{x : m(x) > a} > M(a),

for infinitely many a’s, and the function F (a) = max{x : ψ(x) ≤ a +
1} is obviously total recursive. Therefore, F (a) > M(a) for infinitely
many a’s. In other words, C(F (a)) > a for infinitely many a’s. But by
Theorem 2.1.1,

C(F (a)) ≤ CF (F (a)) +O(1) ≤ l(a) +O(1).
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FIGURE 2.1. The graph of the integer function C(x)

This implies that there exists a constant c such that l(a) + c ≥ a for
infinitely many a, which is impossible. 2

Notice that Items (ii) and (iii) of Theorem 2.3.1 do not hold for the
length-conditional complexity C(x|l(x)). Namely, although C(x|l(x)) is
unbounded, it drops infinitely often to constant level. In other words,
there is no unbounded monotonic function that is a lower bound on
C(x|l(x)) by Example 2.2.5. This phenomenon is further explored in the
exercises.

The second cornerstone of the theory (millstone around its neck is prob-
ably more apt) is the incomputability theorem.

Theorem 2.3.2 The function C(x) is not recursive. Moreover, no partial recursive func-
tion φ(x) defined on an infinite set of points can coincide with C(x) over
the whole of its domain of definition.

Proof. This proof is related to that of Theorem 2.3.1, Item (iii). We prove
that there is no partial recursive φ as in the statement of the theorem.
Every infinite recursively enumerable set contains an infinite recursive
subset, Lemma 1.7.4. Select an infinite recursive subset A in the domain
of definition of φ. The function ψ(m) = min{x : C(x) ≥ m,x ∈ A} is
(total) recursive (since C(x) = φ(x) on A), and takes arbitrarily large
values, Theorem 2.3.1. Also, by definition of ψ, we have C(ψ(m)) ≥ m.
On the other hand, C(ψ(m)) ≤ Cψ(ψ(m)) + cψ by definition of C,
and obviously Cψ(ψ(m)) ≤ l(m). Hence, m ≤ logm up to a constant
independent of m, which is false from some m onward. 2

That was the bad news; the good news is that we can approximate C(x).

Theorem 2.3.3 There is a total recursive function φ(t, x), monotonic decreasing in t,
such that limt→∞ φ(t, x) = C(x).

log x

C(x)

m(x)

x
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Proof. We define φ(t, x) as follows: For each x, we know that the shortest
program for x has length at most l(x) + c, Theorem 2.1.2. Run the
reference Turing machine U in the proof of Theorem 2.1.1 for t steps on
each program p of length at most l(x) + c. If for any such input p the
computation halts with output x, then define the value of φ(t, x) as the
length of the shortest such p, otherwise equal to l(x)+ c. Clearly, φ(t, x)
is recursive, total, and monotonically nonincreasing with t (for all x,
φ(t′, x) ≤ φ(t, x) if t′ > t). The limit exists, since for each x there exists
a t such that U halts with output x after computing t steps starting
with input p with l(p) = C(x). 2

One cannot decide, given x and t, whether φ(t, x) = C(x). Since φ(t, x) is
nondecreasing and goes to the limit C(x) for t → ∞, if there were a decision
procedure to test φ(t, x) = C(x), given x and t, then we could compute C(x).
But Theorem 2.3.2 tells us that C is not recursive.

Let g1, g2, . . . be a sequence of functions. We call f the limit of this sequence
if f(x) = limt→∞ gt(x) for all x. The limit is recursively uniform if for every
rational ǫ > 0 there exists a t(ǫ), where t is a total recursive function, such
that |f(x)−gt(ǫ)(x)| ≤ ǫ, for all x. Let the sequence of one-argument functions
ψ1, ψ2, . . . be defined by ψt(x) = φ(t, x), for each t for all x. Clearly, C is the
limit of the sequence of ψ’s. However, by Theorem 2.3.2, the limit is not
recursively uniform. In fact, by the halting problem in Section 1.7, for each
ǫ > 0 and t > 0 there exist infinitely many x such that |C(x) − ψt(x)| > ǫ.
This means that for each ǫ > 0, for each t there are many x’s such that our
estimate φ(t, x) overestimates C(x) by an error of at least ǫ.

We describe some other characteristics of the function C.

Continuity: The function C is continuous in the sense that there is a
constant c such that |C(x) − C(x ± h)| ≤ 2l(h) + c for all x and
h. (Hint: given a program that computes x we can change it into
another program that adds (or subtracts) h from the output.)

Logarithmic: The function C(x) mostly hugs log x. It is bounded above
by log x+ c, Theorem 2.1.2, page 108. On the other hand, by Theo-
rem 2.2.1, page 117, for each constant k, the number of x of length
n (about log x) such that C(x) < log x− k is at most 2n−k.

Fluctuation: The function C(x) fluctuates rapidly. Namely, for each
x there exist two integers x1, x2 within distance

√
x of x (that is,

|x − xi| ≤ √
x for i = 1, 2) such that C(x1) ≥ l(x)/2 − c and

C(x2) ≤ l(x)/2 + c. (Hint: change the low-order half of the bits
of x to some incompressible string to obtain x1, and change these
bits to a very compressible string (such as all zeros) to obtain x2.)
Therefore, if x is incompressible with C(x) = l(x) − O(1), then
there is an x2 nearby where C(x2) equals about C(x)/2, and if x is
compressible with C(x) = o(l(x)), then there is an x1 nearby where
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C(x1) equals about l(x)/2. These facts imply many fluctuations
within small intervals because, for instance, C(x), C(x + log x),
C(x+

√
x), C(cx), C(x2), and C(2x) all have about the same value.

Long high-complexity runs: For each c there is a d such that there
are no runs of d consecutive c-incompressible numbers. However,
conversely, for each d there is a c such that there are runs of d
consecutive c-incompressible numbers. (Hint: for the nonexistence
part use numbers x of the form i2j for which C(i2j) ≤ l(i) + l(j) +
c < l(i2j) − d; for the existence part use the continuity property
and the nearly logarithmic property above.)

Example 2.3.1 It is not difficult to see that Theorems 2.3.1, Item (i), 2.3.2, and 2.3.3,
Theorem 2.1.2, and the above properties hold for the length-conditional
complexity measure C(x|l(x)). By the existence of n-strings, Exam-
ple 2.2.5, the greatest monotonic lower bound on C(x|l(x)) is a fixed
constant, and therefore Items (ii) and (iii) of Theorem 2.3.1 do not hold
for this complexity measure. Theorems 2.1.1, 2.2.1 are already proved
for C(x|l(x)) in their original versions. Namely, either they were proved
for the conditional complexity in general, or the proof goes through as
given for the length-conditional complexity. Thus, the general contour of
the graph of C(x|l(x)) looks very roughly similar to that of C(x), except
that there are dips below a fixed constant infinitely often, Figure 2.2.

Let us make an estimate of how often the dips occur. Consider the n-
strings of Example 2.2.5. For each integer n there is an extension of
the corresponding binary string with n − l(n) many 0’s such that the
resulting string x has complexity C(x|l(x)) ≤ c for a fixed constant c. It
is easy to see that log x ≈ n, and that for all n′ < n the corresponding
x′ is less than x. Hence, the number of x′ < x such that C(x′|l(x′)) ≤ c
is at least log x. 3

FIGURE 2.2. The graph of the integer function C(x|l(x))

C(x|l(x))

log x

m(x)

x
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Exercises 2.3.1. [15] Let φ(t, x) be a recursive function and limt→∞ φ(t, x) =
C(x), for all x. For each t define ψt(x) = φ(t, x) for all x. Then C is the
limit of the sequence of functions ψ1, ψ2, . . . . Show that for each error
ǫ and all t there are infinitely many x such that ψt(x) − C(x) > ǫ.

Comments. C(x) is the uniform limit of the approximation above if for
each ǫ > 0, there exists a t such that for all x, ψt(x) − C(x) ≤ ǫ. Item
(a) implies that C(x) is not the uniform limit of the above sequence of
functions.

2.3.2. [23] Let φ1, φ2, . . . be the effective enumeration of partial recur-
sive functions in Section 1.7. Define the uniform complexity of a finite
string x of length n with respect to φ (occurring in the above enu-
meration) as Cφ(x;n) = min{l(p) : φ(m, p) = x1:m for all m ≤ n} if
such a p exists, and ∞ otherwise. We can prove an invariance theorem
to the effect that there exists a universal partial recursive function φ0

such that for all φ there is a constant c such that for all x, n we have
Cφ0(x;n) ≤ Cφ(x;n) + c. We choose a reference universal function φ0

and define the uniform Kolmogorov complexity as C(x;n) = Cφ0(x;n).

(a) Show that for all finite binary strings x we have C(x) ≥ C(x; l(x)) ≥
C(x|l(x)) up to additive constants independent of x.

(b) Prove Theorems 2.1.1 to 2.3.3, with C(x) replaced by C(x; l(x)).

(c) Show that in contrast to the measure C(x|l(x)), no constant c exists
such that C(x; l(x)) ≤ c for all n-strings (Example 2.2.5).

(d) Show that in contrast to C(x|l(x)), the uniform complexity is mono-
tonic in the prefixes: if m ≤ n, then C(x1:m;m) ≤ C(x1:n;n), for all x.

(e) Show that there exists an infinite binary sequence ω and a constant
c such that for infinitely many n, C(ω1:n;n) − C(ω1:n|n) > logn− c.

Comments. Item (b) shows that the uniform Kolmogorov complexity sat-
isfies the major properties of the plain Kolmogorov complexity. Items (c)
and (d) show that at least two of the objections to the length-conditional
measure C(x|l(x)) do not hold for the uniform complexity C(x; l(x)).
Hint for Item (c): this is implied by the proof of Theorem 2.3.1 and
Item (a). Item (e) shows as strong a divergence between the measures
concerned as one could possibly expect. Source: D.W. Loveland, Inform.
Contr., 15(1969), 510–526.

2.3.3. [27] Let BB ′ be a variant of the busy beaver function defined in
Exercise 1.7.19, page 45, where BB ′(n) is defined as the maximal num-
ber of steps in a halting computation of the reference universal Turing
machine when started on an n-bit input.

Show that C(BB ′(n)) = n+O(log n). Use this to provide an alternative
proof for Theorem 2.3.1, Item (iii).



Exercises 131

Comments. Hint: Knowing n and the index j ≤ 2n of the input that
achieves BB ′(n), we can compute BB ′(n). Hence, C(BB ′(n) | n) ≤
n + O(1). On the other hand, Knowing n and BB ′(n), we can run all
programs of n bits for at most BB ′(n) steps; the programs that have
not halted after BB ′(n) steps will never halt. This resolves the halt-
ing problem for all programs of n bits, and yields the halting sequence
χ1 . . . χ2n for the first 2n programs. By an application of the later The-
orem 2.7.2, known as Barzdins’s lemma, Item (ii), we conclude that
C(BB ′(n), n) ≥ C(χ1 . . . χ2n) −O(1) ≥ n−O(1).

2.3.4. • [35] Let ω be an infinite binary string. We call ω recursive
if there exists a recursive function φ such that φ(i) = ωi for all i > 0.
Prove the following:

(a) If ω is recursive, then there is a constant c such that for all n,

C(ω1:n;n) < c,

C(ω1:n|n) < c,

C(ω1:n) − C(n) < c.

This is easy. The converses also hold but are less easy to show. They
follow from Items (b), (e), and (f).

(b) For each constant c, there are only finitely many ω such that for all
n, C(ω1:n;n) ≤ c, and each such ω is recursive.

(c) For each constant c, there are only finitely many ω such that for
infinitely many n, C(ω1:n;n) ≤ c, and each such ω is recursive.

(d) There exists a constant c such that the set of infinite ω that satisfy
C(ω1:n|n) ≤ c for infinitely many n, has the cardinality of the continuum.

(e) For each constant c, there are only finitely many ω such that for all
n, C(ω1:n|n) ≤ c, and each such ω is recursive.

(f) For each constant c, there are only finitely many ω with C(ω1:n) ≤
C(n) + c for all n, and each such ω is recursive.

(g) For each constant c, there are only finitely many ω with C(ω1:n) ≤
l(n) + c for all n, and each such ω is recursive.

(h) There exist nonrecursive ω for which there exists a constant c such
that C(ω1:n) ≤ C(n) + c for infinitely many n.

Comments. Clearly Item (c) implies Item (b). In Item (d) conclude
that not all such ω are recursive. In particular, the analogue of Item
(c) for C(ω1:n|n) does not hold. Namely, there exist nonrecursive ω for
which there exists a constant c such that for infinitely many n we have
C(ω1:n|n) ≤ c. Hint for Item (d): exhibit a one-to-one coding of sub-
sets of N into the set of infinite binary strings of which infinitely many
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prefixes are n-strings—in the sense of Example 2.2.5. Item (e) means
that in contrast to the differences between the measures C(·; l(·)) and
C(·|l(·)) exposed by the contrast between Items (c) and (d), Item (b)
holds also for C(·|l(·)). Items (f) and (g) show a complexity gap, be-
cause C(n) can be much lower than l(n). Hint for Item (h): use Item
(d). Source: for Items (b) through (e), and (h), D.W. Loveland, In-
form. Contr., 15(1969), 510–526. Loveland attributes Item (e) to A.R.
Meyer. The equivalence between bounded length-conditional complexity
and bounded uniform complexity for prefixes of infinite strings is stated
by A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–
124. Source of Items (f) and (g) is G.J. Chaitin, Theoret. Comput. Sci.,
2(1976), 45–48. For the prefix complexity K introduced in Chapter 3,
there are nonrecursive ω such that K(ω1:n) ≤ K(n) + O(1) for all n by
a result of R.M. Solovay in Exercise 3.6.9 on page 231.

2.3.5. [HM35] We want to show in some precise sense that the real line
is computationally a fractal. (Actually, one is probably most interested in
Item (a), which can be proved easily and elementarily from the following
definition.) The required framework is as follows: Each infinite binary
sequence ω = ω1ω2 . . . corresponds to a real number 0 ≤ 0.ω < 1. Define
the normalized complexity Cn(ω) = limn→∞ C(ω1:n)/n. If the limit does
not exist, we set Cn(ω) to half the sum of the upper and lower limits.

(a) Show that for all real ω in [0, 1), for every ǫ > 0 and all real r,
0 ≤ r ≤ 1, there exist real ζ in [0, 1) such that |ω−ζ| < ǫ and Cn(ζ) = r.
(For each real r, 0 ≤ r ≤ 1, the set of ω’s with Cn(ω) = r is dense on
the real line [0, 1).)

(b) Show that for all real ω, all rational r and s, we have Cn(rω + s) =
Cn(ω) (both ω and rω + s in [0, 1)). Similarly, show that Cn(f(ω)) =
Cn(ω) for all recursive functions f .

B. Mandelbrot defined a set to be a fractal if its Hausdorff dimension is
greater than its topological dimension [B. Mandelbrot, The Fractal Ge-
ometry of Nature, W.H. Freeman, 1983; for definitions of the dimensions
see W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ.
Press, 1974].

(c) Show that for any real numbers 0 ≤ a < b ≤ 1, the Hausdorff
dimension of the set {(ω,Cn(ω))}⋂([0, 1) × [a, b]) is 1 + b.

(d) Show that the set G = {(ω,Cn(ω)) : ω ∈ [0, 1)} has Hausdorff
dimension 2 and topological dimension 1. (That is, G is a fractal.)

Comments. Source: J.-Y. Cai and J. Hartmanis, J. Comput. System
Sci., 49:3(1994), 605–619. Other relationships among the Hausdorff di-
mension, Lutz’s constructive dimension, and Kolmogorov complexity
have been investigated by L. Staiger in [Inform. Comput., 102(1993),
159-194; Theor. Comput. Syst. 31(1998), 215-229], B.Ya. Ryabko in [J.
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Complexity, 10(1994) 281–295]; J.H. Lutz in [Proc. 27th Int. Colloq. Aut.
Lang. Prog., 2000, pp. 902–913; Inform. Comput., 187(2003), pp. 49-79;
SIAM J. Comput. 32(2003), 1236-1259], and E. Mayordomo in [Inform.
Process. Lett., 84:1(2002), 247–356].

2.3.6. [M34] To investigate repeating patterns in the graph of C(x) we
define the notion of a ‘shape match.’ Every function from the integers
to the integers is a shape. A shape f matches the graph of C at j with
span c if for all x with j− c ≤ x ≤ j+ c we have C(x) = C(j)+f(x− j).
(a) Show that every matching shape has f(0) = 0. Thus, a matching
shape is a template of which we align the center f(0) with j to see to
what extent it matches C’s graph around the point of interest. We wish
to investigate shapes that can be made to match arbitrarily far in each
direction.

(b) A shape f is recurrent if for all c there exists a j such that f matches
the graph of C at j with span c. Show that there exists a recurrent shape.

(c) Show that there exists a constant c such that there are no runs
C(n) = C(n+ 1) = · · · = C(n+ c) for any n.

(d) Prove that no recurrent shape is a recursive function.

Comments. The notion of ‘shape match’ is different from that of ‘follow-
ing the shape’ in Definition 5.5.8 on page 407. Hints: for Item (b) use
König’s infinity lemma. Item (c) means that the graph of C has no arbi-
trarily long flat spots. For Item (c), prove for sufficiently large c that for
each integer i, for all n with C(n) = i, the runC(n), C(n+1), . . . , C(n+c)
contains an element less than i. For Item (d) use a case analysis, and
use in one case the proof of Item (c) and in the other cases the recursion
theorem, Exercises 1.7.20, page 46. Source: H.P. Katseff and M. Sipser,
Theoret. Comput. Sci., 15(1981), 291–309.

2.4

Random

Finite

Sequences

One can consider those objects as nonrandom in which one can find
sufficiently many regularities. In other words, we would like to identify
incompressibility with randomness. This is proper if the sequences that
are incompressible can be shown to possess the various properties of
randomness (stochasticity) known from the theory of probability. That
this is possible is the substance of the celebrated theory developed by
the Swedish mathematician Per Martin-Löf.

There are many properties known that probability theory attributes to
random objects. To give an example, consider sequences of n tosses with
a fair coin. Each sequence of n zeros and ones is equiprobable as an
outcome: its probability is 2−n. If such a sequence is to be random in
the sense of a proposed new definition, then the number of ones in x
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should be near to 1
2n, the number of occurrences of blocks 00 should be

close to 1
4n, and so on.

It is not difficult to show that each such single property separately holds
for all incompressible binary strings. But we want to demonstrate that
incompressibility implies all conceivable effectively testable properties of
randomness (both the known ones and the as yet unknown ones). In this
way, the various theorems in probability theory about random sequences
carry over automatically to incompressible sequences.

In the case of finite strings we cannot hope to distinguish sharply between
random and nonrandom strings. For instance, considering the set of binary
strings of a fixed length, it would not be natural to fix an m and call a string
with m zeros random and a string with m+ 1 zeros nonrandom.

Let us borrow some ideas from statistics. We are given a certain sample
space S with an associated distribution P . Given an element x of the
sample space, we want to test the hypothesis “x is a typical outcome.”
Practically speaking, the property of being typical is the property of
belonging to any reasonable majority. In choosing an object at random,
we have confidence that this object will fall precisely in the intersection
of all such majorities. The latter condition we identify with x being
random.

To ascertain whether a given element of the sample space belongs to a
particular reasonable majority, we introduce the notion of a test. Gener-
ally, a test is given by a prescription that for every level of significance ǫ,
tells us for what elements x of S the hypothesis “x belongs to majority
M in S” should be rejected, where ǫ = 1 − P (M). Taking ǫ = 2−m,
m = 1, 2, . . ., we achieve this by saying that we have a description of the
set V ⊆ N × S of nested critical regions

Vm = {x : (m,x) ∈ V },
Vm ⊇ Vm+1, m = 1, 2, . . . ,

while the condition that Vm be a critical region on the significance level
ǫ = 2−m amounts to requiring, for all n,
∑

x

{P (x|l(x) = n) : x ∈ Vm} ≤ ǫ.

The complement of a critical region Vm is called the (1 − ǫ) confidence
interval. If x ∈ Vm, then the hypothesis “x belongs to majority M ,”
and therefore the stronger hypothesis “x is random,” is rejected with
significance level ǫ. We can say that x fails the test at the level of critical
region Vm.

Example 2.4.1 A string x1x2 . . . xn with many initial zeros is not very random. We
can test this aspect as follows. The special test V has critical regions
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FIGURE 2.3. Test of Example 2.4.1

V1, V2, . . . . Consider x = 0.x1x2 . . . xn as a rational number, and each
critical region as a half-open interval Vm = [0, 2−m) in [0, 1), m =
1, 2, . . . . Then the subsequent critical regions test the hypothesis “x
is random” by considering the subsequent digits in the binary expansion
of x. We reject the hypothesis on the significance level ǫ = 2−m provided
x1 = x2 = · · · = xm = 0, Figure 2.3. 3

Example 2.4.2 Another test for randomness of finite binary strings rejects when the
relative frequency of ones differs too much from 1

2 . This particular test
can be implemented by rejecting the hypothesis of randomness of x =
x1x2 . . . xn at level ǫ = 2−m provided |2fn − n| > g(n,m), where fn =
∑n

i=1 xi, and g(n,m) is the least number determined by the requirement
that the number of binary strings x of length n for which this inequality
holds be at most 2n−m. Thus, in this case the critical region Vm is
{x ∈ {0, 1}n : |2fn − n| > g(n,m)}. 3

2.4.1
Randomness
Tests

In practice, statistical tests are effective prescriptions such that we can
compute, at each level of significance, for what strings the associated
hypothesis should be rejected. It would be hard to imagine what use it
would be in statistics to have tests that are not effective in the sense of
computability theory (Section 1.7).

Definition 2.4.1 Let P be a recursive probability distribution on sample space N . A total
function δ : N → N is a P -test (Martin-Löf test for randomness) if

1. δ is lower semicomputable (the set V = {(m,x) : δ(x) ≥ m} is
recursively enumerable); and

2.
∑

x{P (x|l(x) = n, δ(x) ≥ m} ≤ 2−m, for all n.
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The critical regions associated with the common statistical tests are
present in the form of the sequence V1 ⊇ V2 ⊇ · · · , where Vm = {x :
δ(x) ≥ m}, for m ≥ 1. Nesting is ensured, since δ(x) ≥ m + 1 implies
δ(x) ≥ m. Each set Vm is recursively enumerable because of Item 1.

Consider the important case of the uniform distribution, defined by
L(x) = 2−2l(x)−1. The restriction of L to strings of length n is defined
by Ln(x) = 2−n for l(x) = n and 0 otherwise. (By definition, Ln(x) =
L(x|l(x) = n).) Then Item 2 can be rewritten as

∑

x∈Vm
Ln(x) ≤ 2−m,

which is the same as

d({x : l(x) = n, x ∈ Vm}) ≤ 2n−m.

In this case we often speak simply of a test, with the uniform distribution
L understood.

In Definition 2.4.1, the integer function δ is total and the set of points V
of its graph is recursively enumerable. But the totality of δ implies that the
recursively enumerable set V is actually recursive, and therefore we can require
δ to be a total recursive function without changing the notion of P -test.

In statistical tests, membership of (m,x) in V can usually be determined in
time polynomial in l(m) + l(x).

Note that
∑

x

P (x)δ(x) =
∑

m

P{x : δ(x) ≥ m} ≤
∑

m

2−m = 2.

Therefore, δ′(x) = log δ(x) is almost a sum-P test, Definition 4.3.8 on page 278.

Example 2.4.3 The previous test examples can be rephrased in terms of Martin-Löf
tests. Let us try a more subtle example. A real number such that all bits
in odd positions in its binary representation are 1’s is not random with
respect to the uniform distribution. To show this we need a test that
detects sequences of the form x = 1x21x41x61x8 . . . . Define a test δ by

δ(x) = max{i : x1 = x3 = · · · = x2i−1 = 1},
and δ(x) = 0 if x1 = 0. For example: δ(01111) = 0; δ(10011) = 1;
δ(11011) = 1; δ(10100) = 2; δ(11111) = 3. To show that δ is a test we
have to show that δ satisfies the definition of a test. Clearly, δ is lower
semicomputable (even recursive). If δ(x) ≥ m where l(x) = n ≥ 2m− 1,
then there are 2m−1 possibilities for the (2m−1)-length prefix of x, and
2n−(2m−1) possibilities for the remainder of x. Therefore, d{x : δ(x) ≥
m, l(x) = n} ≤ 2n−m. 3

Definition 2.4.2 A universal Martin-Löf test for randomness with respect to a distribution
P , a universal P-test for short, is a test δ0(·|P ) such that for each P -test
δ, there is a constant c such that for all x we have δ0(x|P ) ≥ δ(x) − c.
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We say that δ0(·|P ) (additively) majorizes δ. Intuitively, δ0(·|P ) constitutes a
test for randomness that incorporates all particular tests δ in a single test. No
test for randomness δ other than δ0(·|P ) can discover more than a constant
amount of greater deficiency of randomness in any string x. In terms of critical
regions, a universal test is a test such that if a binary sequence is random with
respect to that test, then it is random with respect to any conceivable test,
neglecting a change in significance level. Namely, with δ0(·|P ) a universal P -
test, let U = {(m,x) : δ0(x|P ) ≥ m}, and for any test δ, let V = {(m,x) :
δ(x) ≥ m}. Then, defining the associated critical zones as before, we obtain

Vm+c ⊆ Um, m = 1, 2, . . . ,

where c is a constant (dependent only on U and V ).

It is a major result that there exists a universal P -test. The proof goes
by first showing that the set of all tests is enumerable. This involves the
first example of a type of construction we shall use over and over again
in different contexts in Chapters 2, 3, and 4. The idea is as follows:

Lemma 2.4.1 We can effectively enumerate all P -tests.

Proof. We start with the standard enumeration φ1, φ2, . . . of partial re-
cursive functions from N into N ×N , and turn this into an enumeration
δ1, δ2, . . . of all and only P -tests. The list φ1, φ2, . . . enumerates all and
only recursively enumerable sets of pairs of integers as {φi(x) : x ≥ 1} for
i = 1, 2, . . . . In particular, for any P -test δ, the set {(m,x) : δ(x) ≥ m}
occurs in this list. The only thing we have to do is to eliminate those φi
whose range does not correspond to a P -test.

First, we effectively modify each φ (we drop the subscript for conve-
nience) to a function ψ such that range φ equals range ψ, and ψ has the
special property that if ψ(n) is defined, then ψ(1), ψ(2), . . . , ψ(n−1) are
also defined. This can be done by dovetailing the computations of φ on
the different arguments: in the first phase, do one step of the computa-
tion of φ(1); in the second phase, do the second step of the computation
of φ(1) and the first step of the computation of φ(2). In general, in the
nth phase we execute the n1th step of the computation of φ(n2), for all
n1, n2 satisfying n1 + n2 = n. We now define ψ as follows. If the first
computation that halts is that of φ(i), then set ψ(1) := φ(i). If the sec-
ond computation that halts is that of φ(j), then set ψ(2) := φ(j), and
so on.

Secondly, use each ψ to construct a test δ by approximation from below.
In the algorithm, at each stage of the computation the local variable
array δ(1 : ∞) contains the current approximation to the list of function
values δ(1), δ(2), . . . . This is doable because the nonzero part of the
approximation is always finite.
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Step 1. Initialize δ by setting δ(x) := 0 for all x; and set i := 0. {If
the range of ψ is empty, then this assignment will not be changed
in the remainder of the procedure, that is, δ stays identically zero
and it is trivially a test}

Step 2. Set i := i+ 1; compute ψ(i) and let its value be (m,x).

Step 3. If δ(x) ≥ m then go to Step 2 else set δ(x) := m.

Step 4. If
∑{P (y|l(y) = l(x)) : δ(y) ≥ k} > 2−k for some k, k =

1, . . . ,m {since P is a recursive function we can effectively test
whether the new value of δ(x) violates Definition 2.4.1 on page 135}
then set δ(x) := 0 and terminate {the computation of δ is finished}
else go to Step 2.

With P the uniform distribution, for i = 1 the conditional in Step 4
simplifies to m > l(x). In case the range of ψ is already a test, then
the algorithm never finishes but forever approximates δ from below. If
ψ diverges for some argument then the computation goes on forever and
does not change δ any more. The resulting δ is a lower semicomputable
test. If the range of ψ is not a test, then at some point the conditional in
Step 4 is violated and the approximation of δ terminates. The resulting δ
is a test, even a recursive one. Executing this procedure on all functions
in the list φ1, φ2, . . ., we obtain an effective enumeration δ1, δ2, . . . of all
P -tests (and only P -tests). We are now in a position to define a universal
P -test. 2

Theorem 2.4.1 Let δ1, δ2, . . . be an enumeration of the above P -tests. Then δ0(x|P ) =
max{δy(x) − y : y ≥ 1} is a universal P -test.

Proof. Note first that δ0(·|P ) is a total function on N because of Item 2
in Definition 2.4.1, page 135.

(1) The enumeration δ1, δ2, . . . in Lemma 2.4.1 yields an enumeration of
recursively enumerable sets:

{(m,x) : δ1(x) ≥ m}, {(m,x) : δ2(x) ≥ m}, . . . .
Therefore, V = {(m,x) : δ0(x|P ) ≥ m} is recursively enumerable.

(2) Let us verify that the critical regions are small enough: for each n,
∑

l(x)=n

{P (x|l(x) = n) : δ0(x|P ) ≥ m}

≤
∞∑

y=1

∑

l(x)=n

{P (x|l(x) = n) : δy(x) ≥ m+ y}

≤
∞∑

y=1

2−m−y = 2−m.
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(3) By its definition, δ0(·|P ) majorizes each δ additively. Hence, it is
universal. 2

By definition of δ0(·|P ) as a universal P -test, any particular P -test δ can
discover at most a constant amount more regularity in a sequence x than
does δ0(·|P ), in the sense that for each δy we have δy(x) ≤ δ0(x|P ) + y
for all x.

For any two universal P -tests δ0(·|P ) and δ′0(·|P ), there is a constant
c ≥ 0 such that for all x we have |δ0(x|P ) − δ′0(x|P )| ≤ c.

2.4.2
Explicit Universal
Randomness
Test

We started out with the objective to establish in what sense incom-
pressible strings may be called random. In Section 2.2.1 we considered
the randomness deficiency δ(x|A) of a string x relative to a finite set
A. With A the set of strings of length n and x ∈ A we find that
δ(x|A) = δ(x|n) = n− C(x|n).

Theorem 2.4.2 The function δ0(x|L) = l(x)−C(x|l(x))− 1 is a universal L-test with L
the uniform distribution.

Proof. (1) We first show that f(x) = δ0(x|L) is a test with respect to
the uniform distribution. The set {(m,x) : f(x) ≥ m} is recursively
enumerable by Theorem 2.3.3.

(2) We verify the condition on the critical regions. Since the number of
x’s with C(x|l(x)) ≤ l(x)−m−1 cannot exceed the number of programs
of length at most l(x)−m−1, we have d({x : f(x) ≥ m}) ≤ 2l(x)−m−1.

(3) We show that for each test δ, there is a constant c such that f(x) ≥
δ(x)−c. The main idea is to bound C(x|l(x)) by exhibiting a description
of x, given l(x). Fix x. Let the set A be defined as

A = {z : δ(z) ≥ δ(x), l(z) = l(x)}.

We have defined A such that x ∈ A and d(A) ≤ 2l(x)−δ(x). Let δ = δy
in the standard enumeration δ1, δ2, . . . of tests. Given y, l(x), and δ(x),
we have an algorithm to enumerate all elements of A. Together with
the index j of x in enumeration order of A, this suffices to find x. We
pad the standard binary representation of j with nonsignificant zeros
to a string s = 00 . . . 0j of length l(x) − δ(x). This is possible since
l(s) ≥ l(d(A)). The purpose of changing j to s is that now the number
δ(x) can be deduced from l(s) and l(x). In particular, there is a Turing
machine that computes x from input ȳs, when l(x) is given for free.
Consequently, by Theorem 2.1.1, C(x|l(x)) ≤ l(x) − δ(x) + 2l(y) + 1.
Since y is a constant depending only on δ, we can set c = 2l(y) + 2. 2
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Definition 2.4.3 Let us fix δ0(x|L) = l(x) − C(x|l(x)) − 1 as the reference universal test
with respect to the uniform distribution L. A string x is called c-random
if δ0(x|L) ≤ c.

Randomness of a string is related to its incompressibility. It is easy to
see that

C(x|l(x)) ≤ C(x) ≤ C(x|l(x)) + 2C(l(x) − C(x|l(x))),

up to fixed additive constants. (We can reconstruct l(x) from the length
of a shortest program p for x and the quantity l(x) − l(p).) This makes
C(x) and C(x|l(x)) about equal for the special case of x being incom-
pressible. (However, for compressible x, such as x = 0n, the difference
between C(x) and C(x|n) can rise to logarithmic in n.) Together with
Theorem 2.4.2, this provides the relation between the outcome of the ref-
erence universal L-test and incompressibility. Fix a constant c. If string
x is c-incompressible, then δ0(x|L) ≤ c′, where c′ is a constant depending
on c but not on x. Similarly, if δ0(x|L) ≤ c, then x is c′-incompressible,
where c′ is a constant depending on c but not on x. Roughly, x is random,
or incompressible, if l(x) − C(x|l(x)) is small with respect to l(x).

Example 2.4.4 It is possible to directly demonstrate a property of random binary strings
x = x1x2 . . . xn related to Example 2.4.2: the number of ones, fn =
x1 + · · ·+xn, must satisfy |2fn−n| = O(

√
n). Assume that x is a binary

string of length n that is random in the sense of Martin-Löf. Then, by
Theorem 2.4.2, x is also c-incompressible for some fixed constant c. Let
fn = k. The number of strings satisfying this equality is

(
n
k

)
. By simply

giving the index of x in the lexicographic order of such strings, together
with n, and the excess of ones, d = |2k − n|, we can give a description
of x. Therefore, using a short self-delimiting program for d, we have

C(x|n) ≤ log

(
n

k

)

+ C(d) + 2l(C(d)).

For x given n to be c-incompressible for a constant c, we need C(x|n) ≥
n− c. Then,

n− log

(
n

k

)

− C(d) − 2l(C(d)) ≤ c,

which can be satisfied only if d = O(
√
n) (estimate the binomial coef-

ficient by Stirling’s formula, Exercise 1.5.4 on page 17). Curiously, if d
given n is easily describable (for example d = 0 or d =

√
n), then x given

n is not random, since it is not c-incompressible. 3

Randomness in the sense of Martin-Löf means randomness insofar as it can
be effectively certified. In other words, it is a negative definition. We look at
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objects through a special filter, which highlights some features but obscures
others. We can perceive some qualities of nonrandomness through the lim-
ited sight of effective tests. Everything else we then call by definition random.
This is a matter of a pragmatic, expedient, approach. It has no bearing on the
deeper question about what properties real randomness, physically or mathe-
matically, should have. It just tells us that an object is random as far as we
will ever be able to tell, in principle and not just as a matter of practicality.

Exercises 2.4.1. [20] For a binary string x of length n, let f(x) be the number
of ones in x. Show that δ(x) = log(2n−1/2|f(x) − 1

2n|) is a P -test with
P the uniform measure.

Comments. Use Markov’s inequality to derive that for each positive λ,
the probability of 2n−1/2|f(x) − 1

2n| > λ is at most 1/λ. Source: T.M.
Cover, P. Gács, and R.M. Gray, Ann. Probab., 17(1989), 840–865.

2.4.2. [23] Let x1x2 . . . xn be a random sequence with C(x|n) ≥ n.

(a) Use a Martin-Löf test to show that x10x20 . . . 0xn is not random
with respect to the uniform distribution.

(b) Use a Martin-Löf test to show that the ternary sequence y1y2 . . . yn
with y1 = xn + x1 and yi = xi−1 + xi for 1 < i ≤ n is not random with
respect to the uniform distribution.

Comments. Hint: in Item (b) in the y-string the blocks 02 and 20 do
not occur. Extend the definition of random sequences from binary to
ternary. Source: R. von Mises, Probability, Statistics and Truth, Dover,
1981.

2.4.3. [35] Let x be a finite binary sequence of length n with fj =
x1 +x2 + · · ·+xj for 1 ≤ j ≤ n. Show that there exists a constant c > 0
such that for all m ∈ N , all ǫ > 0, and all x,

C(x|n, fn) > log

(
n

fn

)

− log(mǫ4) + c

implies

max
m≤j≤n

∣
∣
∣
∣

fj
j

− fn
n

∣
∣
∣
∣
< ǫ.

Comments. This result is called Fine’s theorem. This is an instance of
the general principle that high probability of a computable property
translates into the fact that high complexity implies that property. (For
infinite sequences this principle is put in a precise and rigorous form in
Theorem 2.5.5.) Fine’s theorem shows that for finite binary sequences
with high Kolmogorov complexity, given the length and the number of
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ones, the fluctuations of the relative frequencies in the initial segments
is small. Since we deal with finite sequences, this is called apparent con-
vergence. Since virtually all finite binary strings have high complexity
(Theorem 2.1.3), this explains why in a typical sequence produced by
random coin throws the relative frequencies appear to converge or sta-
bilize. Apparent convergence occurs because of, and not in spite of, the
high irregularity (randomness or complexity) of a data sequence. Con-
versely, the failure of convergence forces the complexity to be less than
maximal. Source: T.L. Fine, IEEE Trans. Inform. Theory, IT-16(1970),
251–257; also R. Heim, IEEE Trans. Inform. Theory, IT-25(1979), 557–
566.

2.4.4. [36] (a) Consider a finite sequence of zeros and ones generated
by independent tosses of a coin with probability p (0 < p < 1) for
1. Let x = x1x2 . . . xn be a sequence of outcomes of length n, and let
fn = x1 + x2 + · · ·+ xn. The probability of such an x is pfn(1− p)n−fn .
If p is a recursive number, then the methods in this section can be used
to obtain a proper definition of finite Bernoulli sequences, sequences
that are random for this distribution. There is, however, no reason to
suppose that in physical coins p is a recursive real. This prompts another
approach whereby we disregard the actual probability distribution, but
follow more closely the combinatorial spirit of Kolmogorov complexity.
Define a finite Bernoulli sequence as a binary sequence x of length n
whose only regularities are given by fn and n. That is, x is a Bernoulli
sequence iff C(x|n, fn) = log

(
n
fn

)
up to a constant independent of x.

Define a Bernoulli test as a test with the condition that the number of
sequences with fn ones and n− fn zeros in Vm be ≤ 2−m

(
n
fn

)
for all m,

n, and fn. Show that there exists a universal Bernoulli test δ0. Finite
Bernoulli sequences are those sequences x such that δ0(x) is low. Show
that up to a constant independent of x,

δ0(x) = log

(
n

fn

)

− C(x|n, fn),

for all x (with n and fn as above).

(b) We continue Item (a). In the current interpretation of probability,
not only should the relative frequency of an event in a large number of
experiments be close to the probability, but there is an obscure secondary
stipulation. If the probability of success is very small, we should be prac-
tically sure that the event should not occur in a single trial [A.N. Kol-
mogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933;
English translation: Chelsea, 1956]. If x is a Bernoulli sequence (result
of n independent coin tosses) with a very low relative success frequency
fn/n (the coin is heavily biased), then, almost necessarily, x1 = 0. That
is, the assumption that 1 occurs as the very first element implies sub-
stantial regularity of the overall sequence.
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Show that there is a constant c such that δ0(x) ≤ logn/fn − c implies
x1 = 0.

Comments. Hint for Item (b): construct the test that rejects at level
2−m when x1 = 1 and fn ≤ n2−m. Show that this is a Bernoulli test.
Compare this test with δ0 in Item (a). For sequential Bernoulli tests
for infinite sequences see Exercise 2.5.17. Source: P. Martin-Löf, Inform.
Contr., 9(1966), 602–619.

2.5

*Random

Infinite

Sequences

Consider the question of how C behaves in terms of increasingly long ini-
tial segments of a fixed infinite binary sequence (or string) ω. Is it mono-
tone in the sense that C(ω1:m) ≤ C(ω1:n), or C(ω1:m|m) ≤ C(ω1:n|n),
for all infinite binary sequences ω and all m ≤ n? We have already seen
that the answer is negative in both cases. A similar effect arises when
we try to use Kolmogorov complexity to solve the problem of finding a
proper definition of random infinite sequences (collectives) according to
the task already set by von Mises in 1919, Section 1.9.

2.5.1
Complexity
Oscillations

It is seductive to call an infinite binary sequence ω random if there is
a constant c such that for all n, the n-length prefix ω1:n has C(ω1:n) ≥
n − c. However, such sequences do not exist. We shall show that for
high-complexity sequences, with C(ω1:n) ≥ n− logn− 2 log logn for all
n, this results in so-called complexity oscillations, where for every ǫ > 0,

n− C(ω1:n)

logn

oscillates between 0 and 1+ǫ for large enough n. First, we show that the
C complexity of prefixes of each infinite binary sequence drops infinitely
often unboundedly far below its own length.

Theorem 2.5.1 Let f : N+ → N be a total recursive function satisfying
∑∞

n=1 2−f(n) =
∞ (such as f(n) = logn). Then for all infinite binary sequences ω, we
have C(ω1:n|n) ≤ n− f(n) infinitely often.

Proof. In order to get rid of an O(1) term in the final argument, we first
change f into something that gets arbitrarily larger yet still diverges in
the same way as f . Define

F (n) =

⌊

log

(
n∑

i=1

2−f(i)

)⌋

.
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Note that
∑

F (n)=m 2−f(n) ≥ 2m − 1. Now let g, also total recursive, be

defined as g(n) = f(n) + F (n). It follows that

∞∑

n=1

2−g(n) =

∞∑

m=1

∑

F (n)=m

2−f(n)−m

≥
∞∑

m=1

2−m(2m − 1) = ∞.

Now we come to the real argument. Consider the unit interval [0, 1]
laid out in a circle so that 0 and 1 are identified. The partial sums
Gn =

∑n
i=1 2−g(i) mark off successive intervals In ≡ [Gn−1, Gn) mod 1

on this circle. We exploit the fact that a point on the circle will be
contained in many of these intervals.

For each x ∈ {0, 1}∗, the associated cylinder is the set

Γx = {ω ∈ {0, 1}∞ : ω1:l(x) = x}.

The geometric interpretation is Γx = [0.x, 0.x+ 2−l(x)). Let

An =
{

x ∈ {0, 1}n : Γx
⋂

In 6= ∅

}

.

It follows from the divergence of Gn that for any ω there is an infinite
set N ⊆ N consisting of the infinitely many n such that prefixes ω1:n

belong to An. Describing a prefix ω1:n ∈ An by its index in the set, we
have

C(ω1:n|n) ≤ log |An| +O(1) ≤ log
Gn −Gn−1

2−n
+O(1)

= n− g(n) +O(1) ≤ n− f(n).

2

Corollary 2.5.1 Let f(n) be as in Theorem 2.5.1. Then C(ω1:n) ≤ n − f(n) infinitely
often, provided C(n|n− f(n)) = O(1) (such as f(n) = logn).

Proof. This is a slightly stronger statement than Theorem 2.5.1. Let p
be a description of ω1:n, given n, of length C(ω1:n|n). Let f(), g() be
as in the proof of Theorem 2.5.1, and let q be an O(1)-length program
that retrieves n from n − f(n). Then l(q̄p) ≤ n − f(n), since l(p) ≤
n−g(n) and g(n)−f(n) rises unboundedly. We pad q̄p to length n−f(n),
obtaining q̄1n−f(n)−l(q̄p)−10p. This is a description for ω1:n. Namely, we
first determine q̄ to find q. The length of the total description is n−f(n).
By assumption, q computes n from this. Given n we can retrieve ω1:n

from p. 2
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In [P. Martin-Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230], Corollary 2.5.1
is stated to hold without the additional condition of n being retrievable from
n − f(n) by an O(1)-bit program. The proof of this fact is attributed to [P.
Martin-Löf, On the oscillation of the complexity of infinite binary sequences
(Russian), unpublished, 1965].

There is a simple proof that yields a result only slightly weaker than this. We
first prove the result with the particular function log n substituted for f(n)
in the statement of the theorem. We then iterate the construction to prove a
version of the theorem with a particular function g(n) substituted for f(n).
Our result is almost tight, since for functions h(n) that are only slightly larger
than g(n) the sum

∑
2−h(n) is finite. Moreover, the proof is explicit in that

we exhibit g(n).

Let ω be an infinite binary sequence, and ω1:m an m-length prefix of ω. If ω1:m

is the nth binary string in the lexicographic order 0, 1, 00, . . . , that is, n =
ω1:m, m = l(n), then C(ω1:n) ≤ C(ωm+1:n)+ c, with c a constant independent
of n and m. Namely, with O(1) additional bits of information, we can trivially
reconstruct the nth binary string ω1:m from the length n− l(n) of ωm+1:n. By
Theorem 2.1.2, we find that C(ωm+1:n) ≤ n − l(n) + c for some constant c
independent of n, whence the claimed result with f(n) = log n follows.

It is easy to see that we get a stronger result by iteration of the above argu-
ment. There are infinitely many n such that the initial segment y = ω1:n can be
divided as y = y1y2 . . . yk, where l(y1) = 2, y1 = l(y2), y2 = l(y3), . . . , yk−1 =
l(yk). Use the usual pairing between natural numbers and binary strings.
Clearly, given yk we can easily compute all of ω1:n, by determining yk−1 as the
binary representation of l(yk), yk−2 as the binary representation of l(yk−1),
and so on until we obtain l(y1) = 2. (If ω1:24 = 010011101100000110100001,
then y1 = 01, which corresponds to natural number 4, so y2 = 0011, which
corresponds to the natural number 18, and finally y3 = 101100000110100001.
Hence, given y3, we can easily determine all of ω1:24.) Then, for infinitely
many n,

C(ω1:n) ≤ κ+ c,

for κ determined by n = κ+ l(κ) + l(l(κ)) + · · ·+ 2, all terms greater than or
equal to 2. If we put g(n) = n− κ, then it can be shown that

∑
2−g(n) = ∞

but that for only slightly larger functions h(n) > g(n) the sum converges (for
example h(n) = g(n)+ the number of terms in g(n)). There is an interesting
connection with prefix codes, Section 1.11.1.

Our approach in this proof makes it easy to say something about the frequency
of these complexity oscillations. Define a wave function w by w(1) = 2 and
w(i) = 2w(i−1). Then the above argument guarantees that there are at least k
values n1, n2, . . . , nk less than n = w(k) such that C(ω1:ni) ≤ ni − g(ni) + c
for all i = 1, 2, . . . , k. Obviously, this can be improved.

In Figure 2.4 we display the complexity oscillations of initial segments
of high-complexity sequences as they must look according to Theo-
rems 2.5.1, 2.5.4, 2.5.5. The upper bound on the oscillations, C(ω1:n) =
n + O(1), is reached infinitely often for almost every high-complexity
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FIGURE 2.4. Complexity oscillations of initial segments of high–complexity

infinite sequences

sequence. Furthermore, the oscillations of all high-complexity sequences
stay above n− logn−2 log logn, but dip infinitely often below n− logn.

Having shown that the complexity of prefixes of each infinite sequence
drops infinitely often unboundedly below the maximum value, we now
want to show that Theorem 2.5.1 is optimal. But let’s first discuss what
this means. Clearly, Theorem 2.5.1 is nontrivial only for very irregular
sequences x. It holds trivially for regular sequences such as ω = 0∞,
where the complexity of the initial segments ω1:n is about logn. We
will prove that it is sharp for those ω that are maximally random. To
make this precise, we must define rigorously what we mean by a random
infinite sequence. It is of major significance that in so doing we also
succeed in completing in a satisfactory way the program outlined by
von Mises.

Due to the complexity oscillations, the idea of identifying random infinite
sequences with those such that C(ω1:n) ≥ n−c, for all n, is trivially infea-
sible. That is the bad news. In contrast, a similar approach in Section 2.4
for finite binary sequences turned out to work just fine. Its justification
was found in Martin-Löf’s important insight that to justify any proposed
definition of randomness one has to show that the sequences that are
random in the stated sense satisfy the several properties of stochasticity
we know from the theory of probability. Instead of proving each such
property separately, one may be able to show, once and for all, that
the random sequences introduced possess, in an appropriate sense, all
possible properties of stochasticity.

The naive execution of the above ideas in classical mathematics is infeasible
as shown by the following example: Consider as sample space S the set of all
one-way infinite binary sequences. The cylinder Γx = {ω : ω = x . . .} consists
of all infinite binary sequences starting with the finite binary sequence x. For

n-log(n)

n-log(n)-2log(log(n))

n

n
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instance, Γǫ = S. The uniform distribution λ on the sample space is defined
by λ(Γx) = 2−l(x). That is, the probability of an infinite binary sequence ω
starting with a finite initial segment x is 2−l(x). In probability theory it is
general practice that if a certain property, such as the law of large numbers,
or the law of the iterated logarithm, has been shown to have probability one,
then one calls this a law of randomness. For example, in our sample space the
law of large numbers says that limn→∞(ω1 + · · · + ωn)/n = 1

2
. If A is the set

of elements of S that satisfy the law of large numbers, then it can be shown
that λ(A) = 1.

Generalizing this idea for S with measure µ, one may identify any set B ⊆ S
such that µ(B) = 1 with a law of randomness, namely, “to be an element of
B.” Elements of S that do not satisfy the law “to be an element of B” form a
set of measure zero, a null set. It is natural to call an element of the sample
space ‘random’ if it satisfies all laws of randomness. Now we are in trouble.
For each element ω ∈ S, the set Bω = S − {ω} forms a law of randomness.
But the intersection of all these sets Bω of probability one is empty. Thus, no
sequence would be random if we require that all laws of randomness that exist
be satisfied by a random sequence.

It turns out that a constructive viewpoint enables us to carry out this program
mathematically without such pitfalls. In practice, all laws that are proved in
probability theory to hold with probability one are effective in the sense of
Section 1.7. A straightforward formalization of this viewpoint is to require a
law of probability to be partial recursive in the sense that we can effectively
test whether it is violated. This suggests that the set of random infinite se-
quences should not be defined as the intersection of all sets of measure one,
but as the intersection of all sets of measure one with a recursively enumer-
able complement. The latter intersection is again a set of measure one with
a recursively enumerable complement. Hence, there is a single effective law of
randomness that can be stated as the property “to satisfy all effective laws of
randomness,” and the infinite sequences have this property with probability
one.

2.5.2
Sequential
Randomness
Tests

As in Section 2.4, we define a test for randomness. However, this time
the test will not be defined on the entire sequence (which is impossible
for an effective test and an infinite sequence), but for each finite binary
string. The value of the test for an infinite sequence is then defined as
the maximum of the values of the test on all prefixes. Since this suggests
an effective process of sequential approximations, we call it a sequential
test. Below, we need to use notions of continuous sample spaces and
measures as treated in Section 1.6.

Definition 2.5.1 Let µ be a recursive probability measure on the sample space {0, 1}∞. A
total function δ : {0, 1}∞ → N ⋃{∞} is a sequential µ-test (sequential
Martin-Löf µ-test for randomness) if
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1. δ(ω) = supn∈N {γ(ω1:n)}, where γ : N → N is a (total) lower
semicomputable function (V = {(m, y) : γ(y) ≥ m} is a recursively
enumerable set); and

2. µ{ω : δ(ω) ≥ m} ≤ 2−m, for each m ≥ 0.

If µ is the uniform measure λ, then we often use simply the term se-
quential test.

We can require γ to be a recursive function without changing the notion of
a sequential µ-test. By definition, for each lower semicomputable function γ
there exists a recursive function φ with φ(x, k) nondecreasing in k such that
limk→∞ φ(x, k) = γ(x). Define a recursive function γ′ by γ′(ω1:n) = φ(ω1:m, k)
with 〈m,k〉 = n. Then, supn∈N{γ′(ω1:n)} = supn∈N {γ(ω1:n)}.

Example 2.5.1 Consider {0, 1}∞ with the uniform measure λ(x) = 2−l(x). An example
of a sequential λ-test is to test whether there is some 1 in an even position
of ω ∈ {0, 1}∞. Let

γ(ω1:n) =

{
1
2n if

∑n/2
i=1 ω2i = 0,

0 otherwise.

The number of x’s of length n such that γ(x) ≥ m is at most 2n/2 for
any m ≥ 1. Therefore, λ{ω : δ(ω) ≥ m} ≤ 2−m for m > 0. For m = 0,
λ{ω : δ(ω) ≥ m} ≤ 2−m holds trivially. A sequence ω is random with
respect to this test if δ(ω) <∞. Thus, a sequence ζ with 0’s in all even
locations will have δ(ζ) = ∞ and it will fail the test, and hence ζ is not
random with respect to this test. Notice that this is not a very strong
test of randomness. For example, a sequence η = 010∞ will pass δ and
be considered random with respect to this test. This test filters out only
some nonrandom sequences with all 0’s at the even locations and cannot
detect other kinds of regularities. 3

We continue the general theory of sequential testing. If δ(ω) = ∞, then
we say that ω fails δ, or that δ rejects ω. Otherwise, ω passes δ. By
definition, the set of ω’s that are rejected by δ has µ-measure zero, and
conversely, the set of ω’s that pass δ has µ-measure one.

Suppose that for a test δ we have δ(ω) = m. Then there is a prefix y of ω,
with l(y) minimal, such that γ(y) = m for the γ used to define δ. Then
obviously, each infinite sequence ζ that starts with y has δ(ζ) ≥ m. The
set of such ζ is Γy = {ζ : ζ = yρ, ρ ∈ {0, 1}∞}, the cylinder generated by
y. Geometrically speaking, Γy can be viewed as the set of all real numbers
0.y . . . corresponding to the half-open interval Iy = [0.y, 0.y + 2−l(y)).
For the uniform measure, λ(Γy) is equal to 2−l(y), the common length
of Iy .
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In terms of common statistical tests, the critical regions are formed by
the nested sequence V1 ⊇ V2 ⊇ · · · , where Vm is defined as Vm = {ω :
δ(ω) ≥ m}, for m ≥ 1. We can formulate the definition of Vm as

Vm =
⋃

{Γy : (m, y) ∈ V }.

In geometric terms, Vm is the union of a set of subintervals of [0, 1).
Since V is recursively enumerable, so is the set of intervals whose union
is Vm. For each critical section we have µ(Vm) ≤ 2−m (in the measure
we count overlapping intervals only once).

Now we can reformulate the notion of passing a sequential test δ with
associated set V :

δ(ω) <∞ iff ω 6∈
∞⋂

m=1

Vm.

Definition 2.5.2 Let V be the set of all sequential µ-tests. An infinite binary sequence
ω, or the binary-represented real number 0.ω, is called µ-random if it
passes all sequential µ-tests:

ω 6∈
⋃

V ∈V

∞⋂

m=1

Vm.

For each sequential µ-test V , we have µ(
⋂∞
m=1 Vm) = 0, by Defini-

tion 2.5.1. We call
⋂∞
m=1 Vm a constructive µ-null set . Since there are

only countably infinitely many sequential µ-tests V , it follows from stan-
dard measure theory that

µ

(
⋃

V ∈V

∞⋂

m=1

Vm

)

= 0,

and we call the set U =
⋃

V ∈V

⋂∞
m=1 Vm the maximal constructive µ-null

set.

In analogy to Section 2.4, we construct a lower semicomputable function
δ0(ω|µ), the universal sequential µ-test that incorporates (majorizes) all
sequential µ-tests δ1, δ2, . . . and that corresponds to U .

Definition 2.5.3 A universal sequential µ-test f is a sequential µ-test such that for each
sequential µ-test δi there is a constant c ≥ 0 such that for all ω ∈ {0, 1}∞,
we have f(ω) ≥ δi(ω) − c.

Theorem 2.5.2 There is a universal sequential µ-test (denoted by δ0(·|µ)).
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Proof. Start with the standard enumeration φ1, φ2, . . . of partial recursive
functions from N into N ×N . In this way, we enumerate all recursively
enumerable sets of pairs of integers in the form of the ranges of the
φi’s. In particular, we have included any recursively enumerable set V
associated with a sequential µ-test. The only thing we have to do is to
eliminate those φi’s that do not correspond to a sequential µ-test.

First, effectively modify each φ (we drop the subscript for convenience)
to a function ψ such that range φ equals range ψ, and ψ has the special
property that if ψ(n) <∞, then also ψ(1), ψ(2), . . . , ψ(n− 1) <∞.

Second, use each ψ to construct a function δ : {0, 1}∞ → N by approx-
imation from below. In the algorithm, at each stage of the computation
the arrays γ and δ contain the current approximation to the function
values of γ and δ. This is doable because the nonzero part of the ap-
proximation is always finite.

Step 1. Initialize γ and δ by setting δ(ω) := γ(ω1:n) := 0, for all ω ∈
{0, 1}∞, n ∈ N , and set i := 0.

Step 2. Set i := i+ 1; compute ψ(i) and let its value be (y,m).

Step 3. If γ(y) ≥ m then go to Step 2 else set γ(y) := m.

Step 4. If µ(
⋃

γ(z)≥k Γz) > 2−k for some k, k = 1, . . . ,m {since µ is a
recursive function we can effectively test whether the new assign-
ment violates Definition 2.5.1} then terminate {the computation
of δ is finished} else set δ(ω) := max{m, δ(ω)}, for all ω ∈ Γy, and
go to Step 2.

For the uniform measure λ(Γx) = 2−l(x), the conditional in Step 4 sim-
plifies for i = 1 to m > l(y). In case the range of ψ is already a sequential
µ-test, then the algorithm never finishes but approximates δ from below.
If the range of ψ is not a sequential µ-test, then at some point the con-
ditional in Step 4 is violated and the computation of δ terminates. The
resulting δ is a sequential µ-test, even a recursive one. If the conditional
in Step 4 is never violated, but the computation of ψ diverges for some
argument, then δ is trivially a lower semicomputable sequential µ-test.

Executing this procedure on all functions in the list φ1, φ2, . . ., we obtain
an effective enumeration δ1, δ2, . . . of all sequential µ-tests (and only
sequential µ-tests). The function δ0(·|µ) defined by

δ0(ω|µ) = sup
i∈N

{δi(ω) − i}

is a universal sequential µ-test.
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First, δ0(ω|µ) is a lower semicomputable function, since the set {(m,ω) :
δ0(ω|µ) ≥ m} is recursively enumerable. The proof that δ0(·|µ) is a
sequential µ-test, and majorizes all other sequential µ-tests additively,
is completely analogous to the proof for the similarly defined universal
P -test in Section 2.4. 2

Any other sequential µ-test δi can discover at most a constant additional
amount randomness in a sequence ω than does δ0(·|µ). That is, δi(ω) ≤
δ0(ω|µ) + i, for all ω.

The difference between any two universal sequential µ-tests δ0(·|µ) and
δ′0(·|µ) is bounded by a constant: |δ0(ω|µ) − δ′0(ω|µ)| ≤ c, with c in-
dependent of ω. We are now ready to separate the random infinite
sequences from the nonrandom ones.

Definition 2.5.4 Let the sample space {0, 1}∞ be distributed according to µ, and let
δ0(·|µ) be a universal sequential µ-test. An infinite binary sequence ω
is µ-random in the sense of Martin-Löf if δ0(ω|µ) < ∞. We call such a
sequence simply random, where both µ and Martin-Löf are understood.
(This is particularly interesting for µ is the uniform measure.)

Note that this definition does not depend on the choice of the particular
universal sequential µ-test with respect to which the level is defined.
Hence, the line between random and nonrandom infinite sequences is
drawn sharply without dependence on a reference µ-test. Clearly, the
set of infinite sequences that are not random in the sense of Martin-Löf
forms precisely the maximal constructive µ-null set of µ-measure zero
we have constructed above. Therefore, we have the following result.

Theorem 2.5.3 Let µ be a recursive measure. The set of µ-random infinite binary se-
quences has µ-measure one.

We say that the universal sequential µ-test δ0(·|µ) rejects an infinite se-
quence with probability zero, and we conclude that a randomly selected
infinite sequence passes all effectively testable laws of randomness with
probability one.

The main question remaining is the following: Let λ be the uniform measure.
Can we formulate a universal sequential λ-test in terms of complexity? In
Theorem 2.4.2 the universal (nonsequential) test is expressed in that way.
The most obvious candidate for the universal sequential test would be f(ω) =
supn∈N {n− C(ω1:n)}, but it is improper. To see this, it is simplest to notice
that f(ω) would declare all infinite ω to be nonrandom, since f(ω) = ∞, for
all ω, by Theorem 2.5.1. The same would be the case for f(ω) = supn∈N {n−
C(ω1:n|n)}, by about the same proof. It is difficult to express a universal
sequential test precisely in terms of C-complexity. But in Chapter 3 we show
that it is easy to separate the random infinite sequences from the nonrandom
ones in terms of prefix complexity.
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2.5.3
Characterization
of Random
Sequences

How accurately can we characterize the set of infinite random sequences
in complexity terms? It turns out that we can sandwich them between a
proper superset in Theorem 2.5.4, page 152, and a proper subset in The-
orem 2.5.5, page 153. First we bound the amplitude of the oscillations
of random sequences.

Definition 2.5.5 The infinite series
∑

2−f(n) is recursively convergent if there is a recur-
sive sequence n1, n2, . . . such that

∞∑

n=nm

2−f(n) ≤ 2−m, m = 1, 2, . . . .

Theorem 2.5.4 Let f(n) be a recursive function such that
∑∞

n=1 2−f(n) < ∞ is recur-
sively convergent. If an infinite binary sequence ω is random with respect
to the uniform measure, then C(ω1:n|n) ≥ n−f(n), from some n onward.

Proof. We define a sequential test that is passed only by the ω’s satisfying
the conditions in the theorem. For each m, let the critical section Vm
consist of all infinite binary sequences ω such that there exists an n ≥ nm
for which C(ω1:n|n) < n−f(n). In other words, Vm consists of the union
of all intervals [0.ω1:n, 0.ω1:n+2−n) satisfying these conditions. We have
to show that this is a sequential test. We can recursively enumerate the
intervals that constitute Vm, and therefore V1, V2, . . . is a sequence of
recursively enumerable sets. Obviously, the sequence is nested. For every
large enough n, at most 2n−f(n) strings y of length n satisfy C(y|n) <
n− f(n) (Theorem 2.2.1). Hence, with λ the uniform measure, we have,
for all m,

λ(Vm) ≤
∞∑

n=nm

2n−f(n)2−n ≤ 2−m.

Therefore, the sequence of critical regions forms a sequential test, and
λ(
⋂∞
m=1 Vm) = 0. That is,

⋂∞
m=1 Vm is a constructive λ-null set associ-

ated with a sequential test. Consequently, it is contained in the maximal
constructive λ-null set, which consists precisely of the sequences that are
not random according to Martin-Löf. 2

We can say fairly precisely which functions f satisfy the condition in
Theorem 2.5.4. Examples are f(n) = 2 logn and f(n) = log n+2 log logn.
In fact, the function g(n) used in the proof of Theorem 2.5.1 is about
the borderline. It is almost sufficient that f(n) − g(n) be unbounded
for a recursive function f(n) to satisfy the condition in Theorem 2.5.4.
A precise form of the borderline function is given in Exercise 3.6.7 on
page 231.
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With Theorem 2.5.4 we have shown that Theorem 2.5.1 is optimal in
the sense that it gives the deepest complexity dips to be expected from
sequences that are random with respect to the uniform measure (in the
sense of Martin-Löf). But also, we have found a property of infinite
sequences in terms of C that is implied by randomness with respect
to the uniform measure. Is there also a property of infinite sequences
in terms of complexity C that implies randomness with respect to the
uniform measure?

Theorem 2.5.5 Let ω be an infinite binary sequence.

(i) If there exists a constant c such that C(ω1:n) ≥ n − c, for infinitely
many n, then ω is random in the sense of Martin-Löf with respect to the
uniform measure.

(ii) The set of ω for which there exists a constant c and infinitely many
n such that C(ω1:n) ≥ n− c has uniform measure one.

Proof. We first prove the following claim:

Claim 2.5.1 Let ω ∈ {0, 1}∞. There exists a positive constant c such that C(ω1:n|n) ≥
n− c for infinitely many n iff there exists a positive constant c such that
C(ω1:n) ≥ n− c for infinitely many n.

Proof. (Only if) This is the easy direction, since conditional information
does not increase complexity. Hence, for all ω, n, we have C(ω1:n|n) ≤
C(ω1:n) up to a fixed additive constant.

(If) For some fixed constant c1, we have for all ω, n that C(ω1:n) ≤
C(ω1:n|n)+2l(n−C(ω1:n|n))+c1. (The right-hand side of the inequality
is the length of a description of ω1:n.) Since in the ‘If’ direction we assume
that C(ω1:n) ≥ n − c for some c and infinitely many n, we obtain n −
C(ω1:n|n) ≤ c+c1+2l(n−C(ω1:n|n)) for this infinite sequence of n’s. But
that is possible only if there is a constant c2 such that n−C(ω1:n|n) ≤ c2
for the same infinite sequence of n’s, which finishes the proof. 2

(i) Below, a ‘test’ is a ‘λ-test’ with λ the uniform measure. We denote
sequential tests by δ’s, and (nonsequential) tests of Section 2.4 by γ’s. Let
δ0(·|λ) denote the universal sequential test with respect to the uniform
measure λ, and let γ0(·|L) denote the universal test with respect to the
uniform distribution L.

Since a sequential test is a fortiori a test, there is a constant c such that
δ0(ω1:n|λ) ≤ γ0(ω1:n|L) + c, for all ω and n. By choosing the specific
universal test of Theorem 2.4.2, we have δ0(ω1:n|λ) ≤ n− C(ω1:n|n) up
to a constant. Since δ0 is monotonic nondecreasing,

lim
n→∞

δ0(ω1:n|λ) ≤ lim inf
n→∞

(n− C(ω1:n|n)) +O(1).
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For those ω’s satisfying the assumption in the statement of the theorem,
by Claim 2.5.1 the right-hand side of the inequality is finite. By Theo-
rem 2.4.2, therefore, such ω’s are random with respect to the uniform
measure.

(ii) For each c and n, let Vc,n denote the union of the set of intervals
associated with prefixes ω1:n of infinite binary sequences ω such that
C(ω1:n|n) ≥ n − c. Let λ be the uniform measure. There are at most
2n−c strings of length less than n − c and therefore at least 2n − 2n−c

strings x of length n satisfying C(x|n) ≥ n − c. Hence, for each m and
c we have

λ

( ∞⋃

n=m

Vc,n

)

≥ λ (Vc,m) ≥ (2m − 2m−c)2−m = 1 − 2−c.

Since the right-hand term is independent of m, we also have

λ

( ∞⋂

m=1

∞⋃

n=m

Vc,n

)

≥ 1 − 2−c.

Since

∞⋂

m=1

∞⋃

n=m

Vc,n ⊆
∞⋂

m=1

∞⋃

n=m

Vc+1,n

for all positive integers c, we obtain

λ

( ∞⋃

c=1

∞⋂

m=1

∞⋃

n=m

Vc,n

)

= lim
c→∞

λ

( ∞⋂

m=1

∞⋃

n=m

Vc,n

)

≥ lim
c→∞

(1 − 2−c) = 1.

The formula
⋃∞
c=1

⋂∞
m=1

⋃∞
n=m Vc,n denotes precisely the set of infinite

sequences ω for which there exists a positive integer constant c such that
for infinitely many n, C(ω1:n|n) ≥ n−c holds. A fortiori, the same holds
without the conditional up to an additive constant. 2

We conclude that the set of sequences satisfying the condition in Theo-
rem 2.5.4 contains the set of sequences that are random with respect to
the uniform measure (in Martin-Löf’s sense), and the latter contains the
set of sequences satisfying the condition in Theorem 2.5.5; see Figure 2.5.
There, the inner oval is the set of sequences satisfying Theorem 2.5.5;
the middle oval is the set of Martin-Löf random sequences; the outer
oval is the set of sequences satisfying Theorem 2.5.4. Containment is
always proper. The outer oval in its turn is properly contained in the set
defined by Exercise 2.5.5 on page 159. Although the differences between
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ML-random

Theorem  2.5.5

Theorem  2.5.4

FIGURE 2.5. Three notions of ‘chaotic’ infinite sequences

each pair of the three sets are nonempty, they are not large, since all
three sets have uniform measure one. For instance, the set of random
sequences not satisfying the condition of Theorem 2.5.5 has uniform
measure zero. In Example 3.6.19 on page 237 it is shown that the con-
dition involved precisely characterizes a stronger notion of randomness
than Martin-Löf randomness.

The combination of Theorems 2.5.4 and 2.5.5 enables us to give a relation
between the upward and downward oscillations of the complexity of pre-
fixes of the random sequences satisfying the property in Theorem 2.5.5
as follows:

Corollary 2.5.2 If f is a recursive function such that
∑

2−f(n) converges recursively and
C(ω1:n) ≥ n − c for some constant c and for infinitely many n, then
C(ω1:n) ≥ n− f(n) from some n onward.

The universal sequential µ-test characterizes the set of infinite random
sequences. There are other ways to do so. We give an explicit characteri-
zation of infinite random sequences with respect to the uniform measure
in Theorem 3.6.1 and its corollary, page 222. This characterization is an
exact expression in terms of the prefix complexity developed in Chap-
ter 3.

Apart from sequential tests as developed above there are other types
of tests for randomness of individual infinite sequences. The extended
theory of randomness tests can be given only after we have treated lower
semicomputable semimeasures in Sections 4.5.7 and 4.5.6. There we give
exact expressions for µ-tests for randomness, for arbitrary recursive µ.

We recall von Mises’s classic approach to obtaining infinite random sequences
ω as treated in Section 1.9, which formed a primary inspiration to the work
reported in this section. It is of great interest whether one can, in his type of
formulation, capture the intuitively and mathematically satisfying notion of
infinite random sequence in the sense of Martin-Löf. According to von Mises,
an infinite binary sequence ω is random (a collective) if

1. ω has the property of frequency stability with limit p; that is, if fn =
ω1 + ω2 + · · · + ωn, then the limit of fn/n exists and equals p.
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2. Any subsequence of ω chosen according to an admissible place-selection
rule has frequency stability with the same limit p as in condition 1.

One major problem was how to define ‘admissible,’ and one choice was to
identify it with Church’s notion of selecting a subsequence ζ1ζ2 . . . of ω1ω2 . . .
by a partial recursive function φ by ζn = ωm if φ(ω1:r) = 0 for precisely
n − 1 instances of r with r < m − 1 and φ(ω1:m−1) = 0. We called these φ
‘place-selection rules according to von Mises–Wald–Church,’ and the resulting
sequences ζ Mises–Wald–Church random.

Definition 2.5.6 Mises–Wald–Church stochastic sequences are Mises–Wald–Church random se-
quences with limiting frequency 1

2
.

In Section 1.9 we stated that there are Mises–Wald–Church stochastic se-
quences that do not satisfy effectively testable properties of randomness such
as the law of the iterated logarithm or the infinite recurrence property. (Such
properties are by definition satisfied by sequences that are Martin-Löf ran-
dom.) In fact, the distinction between the Mises–Wald–Church stochastic se-
quences and the Martin-Löf random ones is quite large, since there are Mises–
Wald–Church stochastic sequences ω such that C(ω1:n) = O(f(n) log n) for
every unbounded, nondecreasing, total recursive function f ; see also Exer-
cise 2.5.13 on page 161. Such Mises–Wald–Church stochastic sequences are
very nonrandom sequences from the viewpoint of Martin-Löf randomness,
where one requires that C(ω1:n) be asymptotic to n. See R.P. Daley, Math.
Systems Theory, 9(1975), 83–94. Note, that although a Mises–Wald–Church
stochastic sequence may have very low Kolmogorov complexity, it in fact
has very high time-bounded Kolmogorov complexity. See Exercise 7.1.7 on
page 546.

If we consider also sequences with limiting frequencies different from 1
2
, then

it is obvious that there are sequences that are random according to Mises–
Wald–Church, but not according to Martin-Löf. Namely, any sequence ω with
limiting relative frequency p has complexity C(ω1:n) ≤ H(p)n+ o(n), where
H(p) = p log 1/p+(1−p) log 1/(1−p) (H(p) is Shannon’s binary entropy). This
means that for each ǫ > 0 there are Mises–Wald–Church random sequences ω
with C(ω1:n) < ǫn for all but finitely many n.

On the other hand, clearly all Martin-Löf random sequences are also Mises–
Wald–Church stochastic (each admissible selection rule is an effective sequen-
tial test).

This suggests that we have to liberate our notion of admissible selection rule
somewhat in order to capture the proper notion of an infinite random sequence
using von Mises’s approach. A proposal in this direction was given by A.N.
Kolmogorov [Sankhyā, Ser. A, 25(1963), 369–376] and D.W. Loveland [Z.
Math. Logik Grundl. Math. 12(1966), 279–294].

Definition 2.5.7 A Kolmogorov–Loveland admissible selection function to select an infinite sub-
sequence ζ1ζ2 . . . from ω = ω1ω2 . . . is a partial recursive function φ : {0, 1}∗ →
N ×{0, 1} from binary strings to (index, bit) pairs (not necessarily defined on
all of {0, 1}∗). The subsequence selection is a two-phase process. First we select
an intermediate sequence z of elements of ω. Initially, z = ǫ. If z = z1z2 . . . zm is
the intermediate sequence selected afterm steps, and φ(z) = (i, a) (a ∈ {0, 1}),
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then zωi is the intermediate sequence selected after m + 1 steps. However, φ
is partial, so φ(z) may not be defined. Moreover, we are not allowed to select
the same bit position more than once. If for some z either φ(z) is undefined, or
φ(z) = (i, ·) while φ(z′) = (i, ·) for some proper initial segment z′ of z, then the
process terminates with finite z; otherwise z is infinite. If z = ωi1ωi2 . . ., se-
lected by the sequence of associated φ-values φ(ǫ) = (i1, a1), φ(ωi1) = (i2, a2),
. . ., then we obtain the target selected subsequence ζ by erasing every ωij
in z with associated aj = 0. The resulting ζ may be finite or infinite, but
it is only the infinite ζ in which we are interested. If ω is such that for ev-
ery Kolmogorov–Loveland admissible selection function the selected sequence
ζ1ζ2 . . .—if infinite—has the same limiting frequency as the original ω, and
we assume the limiting frequency 1

2
, then ω is called a Kolmogorov–Loveland

stochastic sequence.

The term ‘Kolmogorov–Loveland random sequence’ is currently used for infi-
nite binary sequences for which there is no computable nonmonotonic betting
strategy that succeeds on it. The strategy has success if it obtains unbounded
gain in the limit while betting successively on the nonmonotonically selected
bits of the sequence. This is in contrast to the above ‘stochastic’ definition,
which expresses the weaker requirement that there be no computable non-
monotonic selection rule that selects an infinite biased sequence from the
original sequence. For more details, see [W. Merkle, J.S. Miller, A. Nies, J.
Reimann, F. Stephan, Ann. Pure Appl. Logic, 138(2006), 183–210].

As compared to the Mises–Wald–Church approach, the liberation of the se-
lection rule mechanism is contained in the fact that the order of succession
of the terms in the subsequence chosen is not necessarily the same as that
of the original sequence. Thus, the Kolmogorov–Loveland selection rules are
called nonmonotonic. In comparison, it is not obvious whether a subsequence
ζ1ζ2 . . . selected from a Kolmogorov–Loveland stochastic sequence ω1ω2 . . . by
a Kolmogorov–Loveland place-selection rule is itself a Kolmogorov–Loveland
stochastic sequence. Note that the analogous property necessarily holds for
Mises–Wald–Church stochastic sequences. This matter was resolved in [W.
Merkle, J. Symbol. Logic, 68(2003), 1362–1376], where it was shown that
there is a Kolmogorov–Loveland stochastic sequence from which one can se-
lect effectively (and in fact monotonically) a subsequence that is no longer
Kolmogorov–Loveland stochastic.

Clearly, the set of Kolmogorov–Loveland stochastic sequences is contained
in the set of Mises–Wald–Church stochastic sequences. In turn, the set of
Kolmogorov–Loveland stochastic sequences contains the set of Martin-Löf ran-
dom sequences. If ω1ω2 . . . is Kolmogorov–Loveland stochastic, then clearly
ζ1ζ2 . . . . defined by ζi = ωσ(i), with σ being a recursive permutation, is also
Kolmogorov–Loveland stochastic. The Mises–Wald–Church notion of stochas-
ticity does not have this important property of randomness of staying invariant
under recursive permutation. Loveland gave the required counterexample in
the cited reference. Hence, the containment of the set of Kolmogorov–Loveland
stochastic sequences in the set of Mises–Wald–Church stochastic sequences is
proper. This follows also from the cited result that the Kolmogorov–Loveland
stochastic sequences are not closed under monotonic effective selection rules,
earlier observed by A.K. Shen; see the acknowledgments in [W. Merkle, Ibid.].
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This leaves the question whether the containment of the set of Martin-Löf
random sequences in the set of Kolmogorov–Loveland stochastic sequences is
proper. Kolmogorov has stated in [Problems Inform. Transmission, 5(1969), 3–
4] without proof that there exists a Kolmogorov–Loveland stochastic sequence
ω such that C(ω1:n) = O(log n). But An.A. Muchnik (1958–2007)—not to be
confused with his father A.A. Muchnik—showed that this is false, since no ω
with C(ω1:n) ≤ cn +O(1) for a constant c < 1 can be Kolmogorov–Loveland
stochastic. Nonetheless, containment is proper, since A.K. Shen [Soviet Math.
Dokl., 38:2(1989), 316–319] has shown that there exists a Kolmogorov–Loveland
stochastic sequence that is not random in Martin-Löf’s sense. Therefore, the
problem of giving a satisfactory definition of infinite Martin-Löf random se-
quences in the form proposed by von Mises has not yet been solved. See also
[A.N. Kolmogorov and V.A. Uspensky, Theory Probab. Appl., 32(1987), 389–
412; V.A. Uspensky, A.L. Semenov, and A.K. Shen, Russ. Math. Surveys,
45:1(1990), 121–189; An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Theoret.
Comput. Sci., 2:207(1998), 1362–1376].

Exercises 2.5.1. [13] Consider {0, 1}∞ under the uniform measure. Let ω =
ω1ω2 . . . ∈ {0, 1}∞ be random in the sense of Martin-Löf.

(a) Show that ζ = ωnωn+1 . . . is Martin-Löf random for each n.

(b) Show that ζ = xω is Martin-Löf random for each finite string x.

Comments. Source: C. Calude, I. Chitescu, Bolletino U.M.I., (7) 3-
B(1989), 229–240.

2.5.2. [21] Consider {0, 1}∞ under the uniform measure. Let ω =
ω1ω2 . . . ∈ {0, 1}∞.

(a) Show that if there is an infinite recursive set I such that either for
all i ∈ I we have ωi = 0 or for all i ∈ I we have ωi = 1, then ω is not
random in the sense of Martin-Löf.

(b) Show that if the set {i : ωi = 0} contains an infinite recursively
enumerable subset, then ω is not random in the sense of Martin-Löf.

Comments. Source: C. Calude and I. Chitescu, Ibid.

2.5.3. [21] Let ω = ω1ω2 . . . be any infinite binary sequence. Define
ζ = ζ1ζ2 . . . by ζi = ωi + ωi+1, i ≥ 1. This gives a sequence over the
alphabet {0, 1, 2}. Show that ζ is not random in the sense of Martin-Löf
under the uniform measure (extend the definition from binary to ternary
sequences).

Comments. Hint: the blocks 02 and 20 do not occur in ζ. Source: R. von
Mises, Probability, Statistics and Truth, Dover, 1981.

2.5.4. [23] Let ω be any infinite binary sequence. Show that for all
constants c there are infinitely many m such that for all n with m ≤
n ≤ 2m, C(ω1:n) ≤ n− c.
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Comments. We are guaranteed to find long complexity oscillations (of
length m) in an infinite binary sequence ω relatively near the beginning
(namely ωm:2m), even if ω is Martin-Löf random. Source: H.P. Katseff
and M. Sipser, Theoret. Comput. Sci., 15(1981), 291–309.

2.5.5. [M19] Let f be such that
∑

2−f(n) < ∞. Show that the set of
infinite binary sequences ω satisfying C(ω1:n|n) ≥ n − f(n) for all but
finitely many n has uniform measure 1.

Comments. Hint: The number of y with l(y) = n such that C(y) <
n− f(n) is less than 2n−f(n). This implies that the probability that this
inequality is satisfied is less than 2−f(n), and the result follows by the
Borel–Cantelli lemmas; see Exercise 1.10.2 on page 64. This set of ω’s
properly contains the set defined by Theorem 2.5.4. Source: P. Martin-
Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230.

2.5.6. [09] Consider infinite binary sequences ω with respect to the
uniform measure. Show that with probability one there exists a constant
c such that C(ω1:n|n) ≥ n− c for infinitely many n.

Comments. Hint: use Theorem 2.5.5, Item (ii), and Claim 2.5.1. Source:
P. Martin-Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230. .

2.5.7. [19] Consider infinite binary sequences ω with respect to the
uniform measure. Show that if f is a recursive function and

∑
2−f(n)

converges recursively and C(ω1:n) ≥ n − c for some constant c and
infinitely many n, then C(ω1:n) ≥ n− f(n) for all but finitely many n.

Comments. This formulation establishes a connection between upward
and downward oscillations of the complexity of prefixes of almost all
(random) infinite binary sequences. For f we can take f(n) = 2 logn, or
f(n) = logn+2 log logn, and so on. Hint: combine Theorems 2.5.4, 2.5.5.
Source: P. Martin-Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230.

2.5.8. [19] Show that there exists an infinite binary sequence ω and
a constant c > 0 such that lim infn→∞ C(ω1:n|n) ≤ c, but for any un-
bounded function f we have lim supn→∞ C(ω1:n|n) ≥ n− f(n).

Comments. The oscillations can have amplitude Ω(n). Hint: use the n-
strings defined above. Construct ω = y1y2 . . . from finite strings yi. Let c
be a fixed independent constant. For odd i choose yi such that y1 . . . yi is
an n-string, which implies that C(y1:i|l(y1:i)) < c. For even i choose yi as
a long enough random string so that C(y1:i|l(y1:n)) ≥ l(y1:n)−f(l(y1:n)).
Source: H.P. Katseff and M. Sipser, Theoret. Comput. Sci., 15(1981),
291–309.

2.5.9. [39] Consider the Lebesgue measure λ on the set of intervals
contained in [0, 1) defined by λ(Γy) = 2−l(y). (Recall that for each finite
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binary string y the cylinder Γy is the set of all infinite strings ω start-
ing with y.) Let ω be an infinite binary sequence such that for every
recursively enumerable sequence A1, A2, . . . of sets of intervals with the
property that the series

∑

i λ(Ai) <∞ converges, ω is contained in only
finitely many Ai. Show that for the ω’s defined this way, the Solovay
random sequences are precisely the infinite binary sequences that are
random in the sense of Martin-Löf with respect to the uniform measure.

Comments. In Martin-Löf’s definition of randomness (with respect to
the uniform measure) of infinite binary sequences, he required that
λ(Ai) ≤ 2−i. That definition is equivalent to stipulating the existence
of some regulator of convergence f(i) → ∞ that is recursive and nonde-
creasing such that λ(Ai) ≤ 2−f(i). Solovay’s definition has the advantage
that it does not require such a regulator. Source: R.M. Solovay, Lecture
Notes, 1975, unpublished; and G.J. Chaitin, Algorithmic Information
Theory, Cambridge University Press, 1987; A. K. Shen, Soviet Math.
Dokl., 38:2(1989), 316–319.

2.5.10. [35] (a) Show that for every positive constant c there is a
positive constant c′ such that {ω1:n : C(ω1:n;n) ≥ n − c} ⊆ {ω1:n :
C(ω1:n|n) ≥ n− c′}.
(b) Use the observation in Item (a) to show that Theorem 2.5.4 holds
for the uniform complexity measure C(·; l(·)).
(c) Show that if f is a recursive function and

∑
2−f(n) = ∞, then for all

infinite ω we have C(ω1:n;n) ≤ n − f(n) for infinitely many n. Hence,
Theorem 2.5.1 holds for uniform complexity.

Comments. Hint for Item (a): define the notion of a (universal) uniform
test as a special case of Martin-Löf’s (universal) test. Compare this
result with the other exercises to conclude that whereas the uniform
complexity tends to be higher in the low-complexity region, the length-
conditional complexity tends to be higher in the high-complexity region.
Source: D.W. Loveland, Inform. Contr., 15(1969), 510–526.

2.5.11. • [31] Show that the following statements are equivalent for an
infinite binary sequence ω: For some constant c and infinitely many n,
possibly different in each statement,

C(ω1:n|n) ≥ n− c,

C(ω1:n;n) ≥ n− c,

C(ω1:n) ≥ n− c.

Comments. Hint: use Claim 2.5.1 and Exercise 2.5.10. In view of The-
orem 2.5.5 these conditions equivalently imply that ω is random in the
sense of Martin-Löf. Source: R.P. Daley, pp. 113–122 in: Computational
Complexity, ed. R. Rustin, Courant Comput. Sci. Symp. 7(1971).
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2.5.12. [30] (a) Show that the following statements are equivalent for
an infinite binary sequence ω: There exists a c such that for infinitely
many n, possibly different in each statement,

C(ω1:n|n) ≤ c,

C(ω1:n;n) ≤ l(n) + c,

C(ω1:n) ≤ l(n) + c.

The sequences thus defined are called pararecursive sequences.

(b) Show that no pararecursive sequence is random in the sense of
Martin-Löf.

Comments. Comparison with the other exercises shows that the recur-
sive sequences are contained in the pararecursive sequences. It also shows
that the pararecursive sequences have the cardinality of the continuum,
so this containment is proper. R.P. Daley [J. Symb. Logic, 41(1976),
626–638] has shown that the lower semicomputable sequences sequences
(which properly include the characteristc sequences of recursively enu-
merable sets) are pararecursive, and this containment is proper by the
same argument as before. Hint for Item (b): use Theorem 2.5.4. Despite
Item (b), there are pararecursive sequences that are close to being ran-
dom. For any unbounded function f , there is a pararecursive sequence
ω such that for infinitely many n we have C(ω1:n|n) ≥ n − f(n); see
Exercise 2.5.8 on page 159. Source: H.P. Katseff and M. Sipser, Theoret.
Comput. Sci., 15(1981), 291–309.

2.5.13. [43] Let A be the set of Mises–Wald–Church stochastic se-
quences (with p = 1

2 ). The admissible place-selection rules are the partial
recursive functions.

(a) Show that there is an ω ∈ A such that for each unbounded, non-
decreasing, total recursive function f , we have C(ω1:n;n) ≤ f(n) logn
from some n onward.

(b) Show that for all ω ∈ A, there is a constant c such that C(ω1:n;n) ≥
logn− c from some n onward.

Consider the larger class B ⊃ A that is defined just like A but with the
admissible place-selection rules restricted to the total recursive functions.

(c) Show that there is an ω ∈ B such that C(ω1:n;n) ≤ f(n) from some
n onward, for each f as in Item (a).

(d) Show that for each ω ∈ B, for each constant c, we have C(ω1:n;n) ≥ c
from some n onward.

Comments. Compare this with the text following Definition 2.5.6 on
page 156. This shows that there are Mises–Wald–Church stochastic se-
quences of quite low complexity, and that it makes a difference whether



162 2. Algorithmic Complexity

the admissible place-selection rules are partial recursive or total recur-
sive. Source: R.P. Daley, Math. Systems Theory, 9 (1975), 83–94. Item
(a) is proved using Item (c), which is attributed to D.W. Loveland, and
uses a construction (LMS algorithm) in D.W. Loveland, Z. Math. Logik,
12(1966), 279–294. Compare with Exercise 7.1.7, page 546, to see what
happens when we impose a total recursive time bound on the decoding
process.

2.5.14. [35] Show that there is no Mises–Wald–Church stochastic se-
quence ω (with limiting frequency 1

2 ) and with C(ω1:n) = O(log n).

Comments. This exercise was open in the second edition of this book,
solved in [W. Merkle, J. Comput. Syst. Sci., 74:3(2008), 350–357]. Com-
pare Exercise 2.5.13.

2.5.15. [33] (a) Show that there exists an infinite binary sequence ω
that is random with respect to the uniform measure, but for each con-
stant c there are only finitely many n such that C(ω1:n|n) > n− c (the
condition of Theorem 2.5.5 does not hold).

(b) Show that there exists an infinite binary sequence ω satisfying (i)
C(ω1:n) > n− f(n) from some n onward and

∑
2−f(n) converges recur-

sively (the condition in Theorem 2.5.4 holds), and (ii) ω is not random
with respect to the uniform measure.

Comments. Thus, each containment in the nested sequence of sets of in-
finite binary sequences that satisfy the condition in Theorem 2.5.4, ran-
domness according to Martin-Löf, and the condition in Theorem 2.5.5,
as in Figure 2.5, is proper. Source, C.P. Schnorr, Math. Systems Theory,
5(1971), 246–258.

2.5.16. [21] (a) Show that none of the variants of algorithmic complex-
ity, such as C(x), C(x|l(x)), and C(x; l(x)), is invariant with respect to
cyclic shifts of the strings.

(b) Show that all these variants coincide to within the logarithm of the
minimum of all these measures.

Comments. Hint: use the idea in the proof of Theorem 2.5.4. This in-
variance cannot be expected from any complexity measure in this book
at all. Source: C.P. Schnorr, pp. 193–211 in: R.E. Butts and J. Hintikka,
eds., Basic Problems in Methodology and Linguistics, D. Reidel, 1977.

2.5.17. [36] (a) Consider an infinite sequence of zeros and ones gen-
erated by independent tosses of a coin with probability p (0 < p < 1)
for 1. Define sequential Bernoulli tests (in analogy with Section 2.5 and
Exercise 2.4.4 on page 142). Show that there exists a universal sequential
Bernoulli test δ0. An infinite binary sequence ω is a Bernoulli sequence
if δ0(ω) < ∞. Show that the set of Bernoulli sequences has measure
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one with respect to the measure induced in the set of infinite binary
sequences interpreted as independent (p, 1 − p) Bernoulli trials.

(b) In our definition of infinite Bernoulli sequences no restrictions were
laid on the limiting behavior of the relative frequency, such as, for in-
stance, required in Condition 1 of Definition 1.9.1 of an infinite random
sequence (collective) ω, where we require that limn→∞ fn/n = p for
some p (0 < p < 1) (Section 1.9). The relative frequency fn/n of ones in
increasingly longer prefixes ω1:n of a collective ω does not oscillate in-
definitely, but converges to a definite limit. Show that remarkably, this
is also the case for an infinite Bernoulli sequence ω.

(c) By the law of large numbers, all real numbers p in [0, 1] occur as limit
frequencies limn→∞ fn/n for infinite random binary sequences ω, and
not only the recursive ones. Show that in contrast, for infinite Bernoulli
sequences ω, the limit relative frequency cannot vanish, limn→∞ fn/n =
0, unless ωn = 0 for all n.

Comments. Hint for Item (b): for an arbitrary rational ǫ > 0 construct
a sequential Bernoulli test that rejects at level 2−m if |fi/i− fj/j| > ǫ,
for some i, j ≥ h(m), for some suitable nondecreasing total recursive
function. Compare with the universal Bernoulli test of Exercise 2.4.4
on page 142. Hint for Item (c): this is the infinite analogue of the phe-
nomenon in Item (b) of Exercise 2.4.4 on page 142. From Item (c) we
conclude that an event with vanishing limit frequency is actually im-
possible. This is in stark contrast with von Mises’s explicit statement
of the opposite for his conception of random sequences (collectives) [R.
von Mises, Probability, Statistics and Truth, Dover, 1981 (Reprinted)].
Source: P. Martin-Löf, Inform. Contr., 9(1966), 602–619. Additionally
we mention the following result [L.A. Levin, Sov. Math. Dokl. , 14(1973),
1413–1416]. Suppose we are given a constructively closed family M of
measures (this notion is defined naturally on the space of measures). Let
a test f be called uniform for M if for all measures in M, for all positive
integers k, the measure of outcomes ω where f(ω) > k is at most 2−k.
There exists a universal uniform test.

2.5.18. [37] Let µ be a recursive measure on the sample space {0, 1}∞.
Recall from Section 2.5 Martin-Löf’s construction of a constructive µ-
null set using a notion of sequential test V with associated critical regions
V1 ⊇ V2 ⊇ · · · of measures µ(Vi) ≤ 2−i, for i ≥ 1. A constructive µ-null
set is a total recursive µ-null set if additionally, f(i) = µ(Vi) is a total
recursive function. Call an infinite sequence µ-random in the sense of
Schnorr if it is not contained in any total recursive µ-null set.

(a) Show that there is no universal total recursive µ-null set that contains
all others.
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(b) Show that the set of sequences that are µ-random in the sense of
Martin-Löf is a subset of the set of sequences that are µ-random in the
sense of Schnorr.

(c) An ω ∈ {0, 1}∞ is an atom with respect to µ if µ(ω) > 0. A measure
µ is called discrete if the set of atoms of µ has µ-measure one. (Obviously
all atoms of recursive µ are recursive sequences.) Show that the Schnorr-
µ-random sequences coincide with the Martin-Löf-µ-random sequences
iff µ is discrete.

Comments. Item (c) implies that for continuous µ (such as the uniform
measure), Schnorr randomness is weaker than Martin-Löf randomness.
The notion of total recursive null sets is the recursive analogue of the in-
tuitionistic notion of sets of measure zero by L.E.J. Brouwer [A. Heyting,
Intuitionism, an Introduction, North-Holland, 1956]. Sometimes the fol-
lowing statement is called Schnorr’s thesis: “A sequence behaves within
all effective procedures like a µ-random sequence iff it is µ-random in
the sense of Schnorr.” Source: C.P. Schnorr, pp. 193–211 in: R.E. Butts
and J. Hintikka, eds., Basic Problems in Methodology and Linguistics,
D. Reidel, 1977.

2.5.19. [M42] We abstract away from levels of significance and concen-
trate on the arithmetic structure of statistical tests. Statistical tests are
just Π0

n null sets, for some n (Exercise 1.7.21, page 46). The correspond-
ing definition of randomness is defined as, “an infinite binary sequence is
Π0
n-random with respect to a recursive measure µ if it is not contained in

any Π0
n set V with µ-measure zero.” Has the set of Π0

n-random sequences
µ-measure one?

Comments. Source: H. Gaifman and M. Snir, J. Symb. Logic, 47(1982),
495–548.

2.5.20. [M43] We assume familiarity with the unexplained notions be-
low. We leave the arithmetic hierarchy of Exercise 2.5.19 and consider
hyperarithmetic sets. Define an infinite binary sequence to be hyperarith-
metically random if it belongs to the intersection of all hyperarithmetic
sets of measure one. (A hyperarithmetic set can be regarded as a con-
structive version of the restriction to Borel sets that is usually accepted
in probability theory—Section 1.6. The specific Borel sets considered
there are always obtained by applying the Borelian operations to re-
cursive sequences of previously defined sets, which means precisely that
they are hyperarithmetical.)

(a) Show that the set of sequences that are hyperarithmetically random
is a Σ1

1 set of measure one (Σ1
1 in the analytic hierarchy).

(b) Show that a hyperarithmetic sequence is not hyperarithmetically
random.
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(c) Show that the set of hyperarithmetically random sequences is not
hyperarithmetical.

Comments. Already A. Wald proposed to sharpen von Mises’s notion of
randomness by defining a sequence to be random if it possesses all prop-
erties of probability one that are expressible within a certain formalized
logic such as that of Principia Mathematica. This exercise is a variation
on this idea. Just as here, Wald’s proposal can be expected to define
a set of random strings that is no longer expressible in the language
with which we started. (This does not happen for Martin-Löf random
sequences as defined in Section 2.5 because of the existence of a univer-
sal sequential test.) However, with the present proposal, the resulting
class of random strings, while escaping the hyperarithmetic hierarchy,
does not escape us completely but belongs to a class of sets that can
still be handled constructively. Source: P. Martin-Löf, pp. 73–78 in: In-
tuitionism and Proof Theory, A. Kino et al., eds., North-Holland, 1970.
For related work more in the direction of Wald’s ideas, see [P.A. Be-
nioff, J. Math. Phys., 17:5(1976), 618–628, 629–640; L. Longpré and V.
Kreinovich, “Randomness as incompressibility: a non-algorithmic ana-
logue,” Tech. Rept. UTEP-CS-96-19, Univ. Texas El Paso, 1996]

2.6

Statistical

Properties of

Finite

Sequences

Each individual infinite sequence generated by a (1
2 ,

1
2 ) Bernoulli process

(flipping a fair coin) has (with probability 1) the property that the rela-
tive frequency of zeros in an initial n-length segment goes to 1

2 as n goes
to infinity. Such randomness-related statistical properties of individual
(high)-complexity finite binary sequences are often required in applica-
tions of incompressibility arguments. The situation for infinite random
sequences is better studied, and therefore we look there first.

Definition 2.6.1 E. Borel has called an infinite sequence of zeros and ones normal in the
scale of two if for each k, the frequency of occurrences of each block y of
length k in the initial segment of length n goes to limit 2−k as n grows
unboundedly.

It is known that normality is not sufficient for randomness, since Cham-
pernowne’s sequence 123456789101112 . . . is normal in the scale of ten.
On the other hand, it is universally agreed that a random infinite se-
quence must be normal. (If not, then some blocks occur more frequently
than others, which can be used to obtain better than fair odds for pre-
diction.)

We know from Section 2.5 that each infinite sequence that is random
with respect to the uniform measure satisfies all effectively testable prop-
erties of randomness: it is normal, it satisfies the so-called law of the
iterated logarithm, the number of 1’s minus the number of 0’s in an
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initial n-length segment is positive for infinitely many n and negative
for another infinitely many n, and so on. While the statistical properties
of infinite sequences are simple corollaries of the theory of Martin-Löf
randomness, for finite sequences the situation is less simple. Here, we
determine the frequencies of occurrence of substrings in strings of high
Kolmogorov complexity. In Section 6.4.1 the similar question is treated
for subgraphs of high-Kolmogorov-complexity graphs.

2.6.1
Statistics of 0’s
and 1’s

In the finite case, randomness is a matter of degree, because it would
be clearly unreasonable to say that a sequence x of length n is random
and to say that a sequence y obtained by flipping the first bit 1 in x is
nonrandom. What we can do is to express the degree of incompressibil-
ity of a finite sequence in the form of its Kolmogorov complexity, and
then analyze the statistical properties of the sequence—for example, the
number of 0’s and 1’s in it.

Since almost all finite sequences have about maximal Kolmogorov com-
plexity, each individual maximal-complexity sequence must possess ap-
proximately the expected (average) statistical properties of the overall
set. For example, we can a priori state that each high-complexity finite
binary sequence is normal in the sense that each binary block of length
k occurs about equally frequently for k relatively small. In particular,
this holds for k = 1. However, in many applications we need to know
exactly what ‘about’ and the ‘relatively small’ in this statement mean.
In other words, we are interested in the extent to which Borel normality
holds in relation to the complexity of a finite sequence.

Let x have length n. By Example 2.4.4, if C(x|n) = n+O(1), then the
number of zeros it contains is

n

2
+O(

√
n).

Notation 2.6.1 The quantity K(x|y) in this section satisfies

C(x|y) ≤ K(x|y) ≤ C(x|y) + 2 logC(x|y) + 1.

We can think of it as roughly the length of a self-delimiting version of a
program p of length l(p) = C(x|y). In Chapter 3 it is defined as ‘prefix
complexity.’

Definition 2.6.2 The class of deficiency functions is the set of functions δ : N → N satis-
fying K(n, δ(n)|n−δ(n)) ≤ c1 for all n. (Hence, C(n, δ(n)|n−δ(n)) ≤ c1
for all n.)

In this way, we can retrieve n and δ(n) from n−δ(n) by a self-delimiting
program of at most c1 bits. We choose c1 so large that each monotone
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sublinear recursive function that we are interested in, such as logn,
√
n,

log logn, is such a deficiency function. The constant c1 is a benchmark
that stays fixed throughout this section.

We denote the number of 1’s in a binary string x ∈ {0, 1}∗ by #ones(x).

Lemma 2.6.1 There is a constant c such that for all deficiency functions δ, for each n
and x ∈ {0, 1}n, if C(x) ≥ n− δ(n), then

∣
∣
∣#ones(x) − n

2

∣
∣
∣ ≤

√

3

2
(δ(n) + c)n/ log e. (2.3)

Proof. A general estimate of the tail probability of the binomial dis-
tribution, with sn the number of successful outcomes in n experiments
with probability of success 0 < p < 1, is given by Chernoff’s bounds,
Lemma 1.10.1 on page 61:

Pr(|sn − pn| > m) ≤ 2e−m
2/3pn. (2.4)

Let sn be the number of 1’s in the outcome of n fair coin flips, which
means that p = 1

2 . Define A = {x ∈ {0, 1}n : |#ones(x)− 1
2n| > m} and

apply Equation 2.4 to obtain

d(A) ≤ 2n+1e−2m2/3n.

We choose m such that for some constant c to be determined later,

2m2 log e

3n
= δ(n) + c.

We can compress any x ∈ A in the following way:

1. Let s be a self-delimiting program to retrieve n and δ(n) from n−
δ(n), of length at most c1.

2. Given n and δ(n), we can effectively enumerate A. Let i be the
index of x in such an effective enumeration of A. The length of the
(not necessarily self-delimiting) description of i satisfies

l(i) ≤ log d(A) ≤ n+ 1 − (2m2 log e)/3n

= n+ 1 − δ(n) − c.

The string si is padded to length n+ 1 − δ(n) − c+ c1. From si we can
reconstruct x by first using l(si) to compute n− δ(n), then computing n
and δ(n) from s and n−δ(n), and subsequently enumerating A to obtain
the ith element. Let T be the Turing machine embodying the procedure
for reconstructing x. Then by Theorem 2.1.1,

C(x) ≤ CT (x) + cT ≤ n+ 1 − δ(n) − c+ c1 + cT .
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Choosing c = c1 + cT +2, we obtain C(x) < n− δ(n), which contradicts
the condition of the theorem. Hence, |#ones(x) − 1

2n| ≤ m. 2

It may be surprising at first glance, but there are no maximally complex
sequences with about an equal number of zeros and ones. Equal numbers
of zeros and ones is a form of regularity, and therefore lack of complexity.
That is, for x ∈ {0, 1}n, if |#ones(x)− 1

2n| = O(1), then the randomness
deficiency δ(n) = n− C(x) is nonconstant (order logn).

Lemma 2.6.2 There is a constant c such that for all n and all x ∈ {0, 1}n, if
∣
∣
∣#ones(x) − n

2

∣
∣
∣ ≤ 2−δ(n)−c√n,

then C(x) ≤ n− δ(n).

Proof. Let m = 2−δ(n)−c√n, with c a constant to be determined later.
Let A = {x ∈ {0, 1}n : |#ones(x) − 1

2n| ≤ m}. There is a constant c2
such that there are only

d(A) ≤ (2m+ 1)

(
n

n/2

)

≤ c2
2nm√
n

(2.5)

elements in A (use Stirling’s approximation, Exercise 1.5.4 on page 17).
Thus, for each x ∈ A, we can encode x by its index in an enumeration
of A. We can find A from n and δ(n). We can find n and δ(n) from
n− δ(n) by a self-delimiting program of size at most c1. Altogether, this
description takes log d(A) + c1 = n− δ(n)− c+ c1 + log c2 bits. Let this
process of reconstructing x be executed by Turing machine T . Choosing
c = c1 + log c2 + cT we obtain by Theorem 2.1.1,

C(x) ≤ CT (x) + cT ≤ n− δ(n).

2

Example 2.6.1 We consider some particular values of δ(n). Set δ1(n) = 1
2 logn−log logn.

If |#ones(x) − 1
2n| = O(log n), then C(x) ≤ n − δ1(n) + O(1). Set

δ2(n) = 1
2 logn. If

∣
∣
∣#ones(x) − n

2

∣
∣
∣ = O(1),

then C(x) ≤ n−δ2(n)+O(1). That is, if the number of 1’s is too close to
the number of 0’s, then the complexity of the string drops significantly
below its maximum. 3

An incompressible string of length n cannot have precisely or almost 1
2n

ones by Lemma 2.6.2. Then how many ones should an incompressible
string contain? The next lemma shows that for an incompressible x
having j + 1

2n ones, K(j|n) must be at least about order logn.
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Lemma 2.6.3 There is a constant c such that for all n and all x ∈ {0, 1}n, if

∣
∣
∣#ones(x) − n

2

∣
∣
∣ = j,

then C(x|n) ≤ n− 1
2 logn+K(j|n) + c.

Proof. Let A = {x ∈ {0, 1}n : |#ones(x)− 1
2n| = j}. There is a constant

c3 such that there are

d(A) ≤
(
n

n/2

)

≤ c3
2n√
n

(2.6)

elements in A (use Stirling’s approximation, Exercise 1.5.4 on page 17).
In order to enumerate elements in A, we need only to describe j and
n. Thus, for any x ∈ A, we can encode x by its index i (in log d(A)
bits) in an enumeration of A. With n given, we can recover x from an
encoding of j in K(j|n) bits, followed by i. This description of x, given
n, takes log d(A) + K(j|n) ≤ n − 1

2 logn + log c3 + K(j|n) bits. Let T
be the Turing machine embodying this procedure to recover x given n.
Choosing c = log c3 + cT , we have

C(x|n) ≤ CT (x|n) + cT ≤ n− 1

2
logn+K(j|n) + c.

2

Example 2.6.2 For j = O(1) we have C(x|n) ≤ n − 1
2 log n + O(1), which is slightly

stronger than the statement about unconditional C(x) in Example 2.6.1.
For j = O(

√
n) and j incompressible (K(j|n) ≥ 1

2 logn), we have
C(x|n) ≤ n − O(1). Only for such j’s is it possible that a number x
is incompressible. 3

2.6.2
Statistics of
Blocks

The analysis up till now has been about the statistics of 0’s and 1’s.
But in a normal infinite binary sequence, according to Definition 2.6.2
on page 166, each block of length k occurs with limiting frequency 2−k.
That is, blocks 00, 01, 10, and 11 should occur about equally often,
and so on. Finite sequences will generally not be exactly normal, but
normality will be a matter of degree. We investigate the block statistics
for finite binary sequences.

Definition 2.6.3 Let x = x1 . . . xn be a binary string of length n, and y a much smaller
string of length l. Let p = 2−l and #y(x) be the number of (possibly
overlapping) distinct occurrences of y in x. For convenience, we assume
that x wraps around, so that an occurrence of y starting at the end of
x and continuing at the start also counts.
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Theorem 2.6.1 Assume the notation of Definition 2.6.3 with l ≤ logn. There is a con-
stant c such that for all n and x ∈ {0, 1}n, if C(x) ≥ n− δ(n), then

|#y(x) − pn| ≤ √
αpn,

with α = [K(y|n) + log l + δ(n) + c]3l/ log e.

Proof. We prove by contradiction. Assume that n is divisible by l. (If it is
not, then we can put x on a Procrustean bed to make its length divisible
by l at the cost of having the above frequency estimate #y(x) plus or
minus an error term of at most l/2.) There are l ways of dividing (the
ring) x into N = n/l contiguous equal-sized blocks, each of length l. For
each such division i ∈ {0, 1, . . . , l−1}, let #y(x, i) be the number of (now
nonoverlapping) occurrences of block y. We apply the Chernoff bound,
Equation 2.4, again. With A = {x ∈ {0, 1}n : |#y(x, i)− pN | > m} this

gives d(A) ≤ 2n+1e−m
2/3pN . We choose m such that for some constant

c to be determined later,

m2 log e

3pN
= K(〈y, i〉|n) + δ(n) + c.

To describe an element x in A, we now need only to enumerate A and
indicate the index of x in such an enumeration. The description contains
the following items:

1. A description used to enumerate A. Given n− δ(n), we can retrieve
n and δ(n) using a self-delimiting description of at most c1 bits.
To enumerate A, we also need to know i and y. Therefore, given
n− δ(n), the required number of bits to enumerate A is at most

K(〈y, i, δ(n), n〉|n− δ(n)) ≤ K(〈y, i〉|n) + c1.

2. A description of the index of x. The number of bits to code the
index j of x in A is

log d(A) ≤ log
(

2n+1e−m
2/3pN

)

= n+ 1 − m2 log e

3pN

= n+ 1 −K(〈y, i〉|n) − δ(n) − c.

This total description takes at most n + 1 − δ(n) − c + c1 bits. Let T
be a Turing machine reconstructing x from these items. According to
Theorem 2.1.1, therefore

C(x) ≤ CT (x) + cT ≤ n+ 1 − δ(n) − c+ c1 + cT .
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With c = c1 + cT + 2 we have C(x) < n − δ(n), which contradicts the
assumption of the theorem. Therefore, |#y(x, i) − pN | ≤ m, which in
turn implies

|#y(x, i) − pN | ≤
√

K(〈y, i〉|n) + δ(n) + c

log e
3pN.

For each division i (0 ≤ i ≤ l − 1) this inequality follows from the
δ(n) incompressibility of x. Notwithstanding the fact that occurrences
of substrings in different divisions are dependent, the inequality holds for
each division separately and independently. The theorem now follows by
noting that |#y(x)−pn| =

∑l−1
i=0 |#y(x, i)−pN |, K(〈y, i〉|n) ≤ K(y|n)+

K(i|n) +O(1) and K(i|n) ≤ log l +O(1). 2

Similar to the analysis of blocks of length 1, the complexity of a string
drops below its maximum in case some block y of length l occurs in one of
the l block divisions, say i, with frequency exactly pN (p = 1/2l). Then
we can point out x by giving n, y, i, and its index in a set of cardinality

(
N

pN

)

(2l − 1)N−pN = O

(

2Nl
√

p(1 − p)N

)

.

Therefore,

C(x|〈n, y〉) ≤ n− 1

2
logn+

1

2
(l + 3 log l) +O(1).

2.6.3
Length of Runs

It is known from probability theory that in a randomly generated finite
sequence the expectation of the length of the longest run of zeros or ones
is pretty high. For each individual finite sequence with high Kolmogorov
complexity we are certain that it contains each block (say, a run of zeros)
up to a certain length.

Theorem 2.6.2 Let x of length n satisfy C(x) ≥ n− δ(n). Then for sufficiently large n,
each block y of length

l = logn− log log n− log(δ(n) + logn) −O(1)

occurs at least once in x.

Proof. We are sure that y occurs at least once in x if
√
αpn in Theo-

rem 2.6.1 is less than pn. This is the case if α < pn, that is,

K(y|n) + log l + δ(n) +O(1)

log e
3l < pn.
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K(y|n) is majorized by l+ 2 log l +O(1) (since K(y|n) ≤ K(y) +O(1))
and p = 2−l with l set at

l = logn− log(3δ(n) logn+ 3 log2 n)

(which equals l in the statement of the theorem up to an additive con-
stant). Substitution yields

l + 3 log l + δ(n) +O(1)

log e
3l < 3(δ(n) logn+ log2 n),

and it is easy to see that this holds for sufficiently large n. 2

Corollary 2.6.1 If δ(n) = O(log n), then each block of length logn − 2 log logn − O(1)
occurs at least once in x.

In Lemma 6.9.1 we show that if C(x|n, p) ≥ n then no substring of length
greater than 2 log n occurs (possibly overlapping) twice in x. Here, n = l(x),
and p is some fixed program used to reconstruct x from a description of length
C(x|n, p) and n.

Analyzing the proof of Theorem 2.6.2, we can improve the corollary for
low values of K(y|n).

Corollary 2.6.2 If δ(n) = O(log logn), then for each ǫ > 0 and every large enough n,
every string x of length n contains an all-zero run y (for which K(y|n) =
O(log l)) of length l = logn− (1 + ǫ) log logn+O(1).

Since there are 2n(1 − O(1/ log n)) strings x of length n with C(x) ≥ n −
log log n+ O(1), the expected length of the longest run of consecutive zeros if
we flip a fair coin n times is at least l as in Corollary 2.6.2.

We show in what sense Theorem 2.6.2 is sharp. Let x = uvw, l(x) = n,
and C(x) ≥ n− δ(n). We can describe x by giving

1. A description of v in K(v) bits;

2. The literal representation of uw;

3. A description of l(u) in logn+ log logn+2 log log logn+O(1) bits.

Then, since we can find n by n = l(v) + l(uw),

C(x) ≤ n− l(v) +K(v) + logn (2.7)

+ (1 + o(1)) log logn+O(1).
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Substitute C(x) = n−δ(n) and K(v) = o(log logn) (choose v to be very
regular) in Equation 2.7 to obtain

l(v) ≤ δ(n) + logn+ (1 + o(1)) log logn.

This means that for instance, for each ǫ > 0, no maximally complex
string x with C(x) = n + O(1) contains a run of zeros (or the initial
binary digits of π) of length logn + (1 + ǫ) log logn for n large enough
and regular enough. By Corollary 2.6.2, on the other hand, such a string
x must contain a run of zeros of length logn− (1 + ǫ) log logn+O(1).

Exercises 2.6.1. [24] The great majority of binary strings of length n have a
number of 0’s in between 1

2n − √
n and 1

2n +
√
n. Show that there are

x’s of length n with 1
2n+ Ω(

√
n) 0’s, with C(x) = n+O(1).

2.6.2. [29] Let limn→∞ 1
n

∑n
i=1 ωi = p for an infinite binary sequence

ω = ω1ω2 . . ., for some p between 0 and 1 (compare Section 1.9).

(a) Show that if C(ω1:n) ∼ n, then p = 1
2 .

(b) Show that if p = 1
4 , then C(ω1:n) ≤ 0.82n asymptotically.

(c) Show that in general, if c = p log 1/p + (1 − p) log 1/(1 − p), then
C(ω1:n) ≤ cn+ o(n). If p is about 1

4 , then C(ω1:n) ≤ 0.80n+ o(n).

Comments. Source: P. Gács, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987; attributed to
A.N. Kolmogorov. Hint: Item (a), use Lemma 2.6.2.

2.6.3. [M35] A finite binary string x of length n is called δ-random if
C(x|n) ≥ n−δ. A Turing machine place-selection rule R is a Turing ma-
chine that selects and outputs a (not necessarily consecutive) substring
R(x) from its input x. If R is the kth Turing machine in the standard
enumeration, then C(R) = C(k).

Show that for any ǫ > 0, there exist numbers n0 and µ > 0 such that if
l(x) = n, l(R(x)) = r ≥ n0,

∑

1≤i≤r R(x)i = m, and (δ+C(R|n))/r < µ,
then
∣
∣
∣
∣

m

r
− 1

2

∣
∣
∣
∣
<

(
δ + C(R|n) + 2.5 log r

(2 log e− ǫ)r

)1/2

.

Comments. δ-random sequences were introduced by A.N. Kolmogorov,
Lect. Notes Math., Vol. 1021, Springer-Verlag, 1983, 1–5. He noted that
“sequences satisfying this condition have for sufficiently small δ the par-
ticular property of frequency stability in passing to subsequences.” In
this exercise we supply some quantitative estimates of frequency stabil-
ity. Source: E.A. Asarin, SIAM Theory Probab. Appl., 32(1987), 507–
508. This exercise is used by Asarin to show that δ-random elements of
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certain finite sets obey familiar probability-theoretic distribution laws.
In particular, for some particular finite sets each δ-random element is
ǫ-normal; see also E.A. Asarin, Soviet Math. Dokl., 36(1988), 109–112.

2.7

Algorithmic

Properties of

C

By algorithmic properties of C we mean properties with a recursion-
theoretic flavor as in Section 1.7. We have already met a few of these.
By Theorem 2.3.1, the greatest monotonic lower bound on C(n) is
unbounded, but goes to infinity more slowly than any monotonic un-
bounded partial recursive function. By Theorem 2.3.2 the integer func-
tion C(n) is not recursive. Nonetheless, by Theorem 2.3.3 the integer
function C(n) can be approximated arbitrarily closely from above; it is
upper semicomputable. Unfortunately, at each stage of such an approx-
imation process, for each size of error, there are infinitely many x such
that the approximation of C(x) and its real value are at least this error
apart.

In fact, a much stronger statement holds: For each total recursive func-
tion f with limx→∞ f(x) = ∞ the set of x for which we can prove
C(x) > f(x) is finite (Theorem 2.7.1 Item (iii) below). Thus, if we
choose f(x) ≪ l(x), then we know that C(x) ≫ f(x) for almost all x
of each length, Theorem 2.2.1, yet we can prove this only for finitely
many x.

Theorem 2.7.1 (i) The set A = {(x, a) : C(x) ≤ a} is recursively enumerable, but not
recursive.

(ii) Every partial recursive function φ(x) that is a lower bound on C(x)
is bounded.

(iii) Let f(x) be a total recursive function with g(x) ≤ f(x) ≤ l(x) for
all x and some unbounded monotonic function g. Then the set B = {x :
C(x) ≤ f(x)} is simple. That is, B is recursively enumerable and the
complement of B is infinite but does not contain an infinite recursively
enumerable subset.

Proof. (i) That A is recursively enumerable follows immediately from
Theorem 2.3.3. However, A is not recursive. Namely, if A is recur-
sive, then we can compute C(x) by asking the consecutive questions
“is C(x) ≤ a?” for a := 0, 1, . . . , contradicting Theorem 2.3.2.

(ii) Let φ be a partial recursive function and define D = {x : φ(x) ≤
C(x)}. If D is finite, there is nothing to prove. Assume that D is infinite
and φ is unbounded, by way of contradiction. Recursively enumerate the
domain of definition of φ without repetition, and define a total recursive
function g by g(n) that equals the least x in this enumeration such that
φ(x) ≥ n. For each n there is such an x, by the contradictory assumption.
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If φ = φk in the standard effective enumeration φ1, φ2, . . . of the partial
recursive functions, as in Section 1.7, then n ≤ C(x) ≤ l(n) + l(k̄), up
to a constant. For n large enough we have a contradiction.

(iii) That B is recursively enumerable follows from Item (i). The com-
plement of B is infinite by Theorem 2.2.1. We prove that B is simple.
Let D be an infinite recursively enumerable set contained in the com-
plement of B. The restriction fD(x) of f(x) to D is a partial recursive
lower bound for C(x). By Item (ii), therefore fD(x) is bounded. Since
f(x) rises unboundedly with x this is possible only if D is finite. 2

Corollary 2.7.1 The set RAND defined by {x : C(x) ≥ l(x)} is immune—it is infinite
and has no infinite recursively enumerable subset. In fact, the proofs
support stronger results in that the set B above is effectively simple and
RAND is effectively immune (Exercise 2.7.6).

2.7.1
Undecidability by
Incompressibility

This approach allows us to give a result similar to Lemma 1.7.6 on
page 35, but with examples of undecidable statements that differ from
the ones given by Gödel. Namely, for each formal system T , there is a
constant cT such that no formula of form “C(x) ≥ cT ” is provable in T .

Example 2.7.1 If T is an axiomatizable sound theory whose axioms and rules of inference
require about k bits to describe, then T cannot be used to prove the
randomness of any number much longer than k bits. If the system could
prove randomness for a number much longer than k bits, then the first
such proof (first in an unending enumeration of all proofs obtainable
by repeated application of axioms and rules of inference) could be used
to derive a contradiction: an approximately k-bit program to find and
print out the specific random number mentioned in this proof, a number
whose smallest program is by assumption considerably larger than k
bits. Therefore, even though most strings are random, we will never be
able to explicitly exhibit a string of reasonable size that demonstrably
possesses this property. Formally,

• Let T be an axiomatizable theory (T is a recursively enumerable
set consisting of axioms and provable formulas). Hence, there is a
k such that T is describable in k bits: C(T ) ≤ k.

• Let T be sound: all formulas in T are true (in the standard model
of the natural numbers).

• Let Sc(x) be a formula in T with the meaning “x is the lexicograph-
ically least binary string of length c with C(x) ≥ c.” Here x is a
formal parameter and c an explicit constant, so C(Sc) ≤ log c up
to a fixed constant independent of T and c.
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For each c, there exists an x such that Sc(x) = true is a true statement
by a simple counting argument (Theorem 2.3.1). Moreover, Sc expresses
that this x is unique. It is easy to see that combining the descriptions of
T , Sc, we obtain a description of this x. Namely, for each candidate string
y of length c, we can decide Sc(y) = true (which is the case for y = x)
or ¬Sc(y) = true (which is the case for y 6= x) by simple enumeration of
all proofs in T . (Here we use the soundness of T .) We need to distinguish
the descriptions of T and Sc. We can do this by coding T ’s description
in self-delimiting format; see Equation 1.4. This takes not more than
2k bits. Hence, for some fixed constant c′ independent of T and c, we
obtain C(x) ≤ 2k+ log c+ c′, which contradicts C(x) > c for all c > cT ,
where cT = 3k + c′ for another constant c′. (A minor improvement of
the argument shows that cT = k + 2 log k + c′ suffices.) 3

Corollary 2.7.2 There is a recursively enumerable set B with an infinite complement
such that for every axiomatizable sound theory T there are only finitely
many n for which the formula “n 6∈ B” is both true and provable in T .
(But with finitely many exceptions, all infinitely many such formulas are
true.)

Proof. Let B be the simple set in Theorem 2.7.1, Item (iii), and let B̄
be its complement. Clearly, the set D ⊆ B̄ of elements n that can be
proved in T to belong to B̄ is recursively enumerable. Since B is simple,
its complement B̄ does not contain an infinite recursively enumerable
subset. Therefore, D is finite, which proves the theorem. 2

We have formulated Corollary 2.7.2 so as to bring out some similarities
and differences with Lemma 1.7.6 as clearly as possible. As pointed out
in Section 1.7, the set K0 used in Lemma 1.7.6 is complete, whereas the
set B used in Corollary 2.7.2 is simple. According to generally accepted
viewpoints in recursion theory, the set K0 is different from the set B in
an essential way. Therefore, we can regard the proofs of the existence
of undecidable statements in sufficiently rich axiomatizable theories by
Lemma 1.7.6 and Corollary 2.7.2 as essentially different.

The set K0 is not only complete in the sense of Turing reducibility, it is also
complete in the sense of many-to-one reducibility. A set A is many-to-one
reducible to a set B if there exists a recursive function f such that for all
x, x ∈ A iff f(x) ∈ B. A set A is complete in the sense of many-to-one
reducibility, m-complete for short, if A is recursively enumerable and all re-
cursively enumerable sets B are many-to-one reducible to A. As it turns out,
m-complete sets are nonrecursive. This raises the question, are all nonrecur-
sive recursively enumerable sets m-complete? The answer was given by E.
Post in 1944 by introducing simple sets as the first examples of nonrecursive
recursively enumerable sets that are not m-complete. (For the notions of re-
ducibility, completeness, and simple sets, see the exercises in Section 1.7, in
particular Exercises 1.7.16 and 1.7.15.)
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The set B used in Corollary 2.7.2 is a simple set and hence not m-complete.
Therefore, although B is many-to-one reducible to K0, the set K0 is not many-
to-one reducible to B. This shows that K0 is of a so-called higher degree of
unsolvability with respect to many-to-one reducibility than B, which is the
substance of the viewpoint that they differ in an essential way.

In less formal terms the approaches are different because the first one can
be viewed as a form of Russell’s paradox and the other one as a form of the
Richard–Berry paradox. Both paradoxes are described in [B. Russell and A.N.
Whitehead, Principia Mathematica, Oxford, 1917]. While the first paradox
formed the original incentive for the authors to supply the sophisticated logical
foundation for set theory in the Principia, in a footnote they state that the
second paradox “was suggested to us by Mr. G.G. Berry of the Bodleian
Library.”

The paradox due to Bertrand Russell (1872–1970) arises when the collection
of all sets that are not members of themselves is considered as a set. If this
collection is a member of itself, then it contradicts the set definition, but if it
is not a member of itself, then by the set definition it is a member of itself
(which is a contradiction as well). There is a close connection between Russell’s
paradox and the result of Gödel cited as Lemma 1.7.6 on page 35. We have
seen that this result was proved by reducing the halting problem in the form
of K0 to the decision problem in a sufficiently strong, sound, axiomatized
theory. Since K0 is m-complete, this shows that any problem shown to be
unsolvable in this way must have a degree of unsolvability at least as high as
the maximal degree of unsolvability with respect to many-to-one reducibility
as any recursively enumerable set.

The Richard–Berry paradox is the definition of a number as “the least number
that cannot be defined in fewer than twenty words.” Formalizing the notion of
‘definition’ as the shortest program from which a number can be computed by
the reference machine U , it turns out that the quoted statement (reformulated
appropriately) is not an effective description. This was essentially what we did
in the proof of Corollary 2.7.2, by reducing the set B to the decision problem
in a sufficiently strong, sound, axiomatizable theory. But B is of a lesser
degree of unsolvability with respect to many-to-one reducibility than is K0.
Therefore, showing undecidability of sufficiently rich axiomatizable theories
using Kolmogorov complexity in this way is essentially different from Gödel’s
original approach.

Gödel’s first incompleteness theorem entails an explicit construction of a
statement s, associated with each sufficiently strong, sound, axiomatized
theory T , that is undecidable in T . Formula s simply says of itself “I am
unprovable in T .” In contrast, the construction in Corollary 2.7.2 says
that for any sound axiomatized system T there is a constant cT < ∞
such that all true statements with the meaning “C(x) ≥ cT ” are unprov-
able in T . By Theorem 2.3.1 there are infinitely many such statements.
Now suppose we have an effective procedure to find such constants for
given theories, that is, a total recursive function φ such that φ(T ) ≥ cT
for all T . Then, unfortunately, Theorem 2.7.1, Item (ii), tells us that
no effective procedure can determine for more than finitely many pairs
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(x, T ) whether C(x) ≥ φ(T ). This shows that in general, although the
undecidable statements based on Kolmogorov complexity are plentiful
for each theory, we cannot explicitly construct them. Thus, the new
approach entails loss of constructivity.

2.7.2
Barzdins’s
Lemma

Using Kolmogorov complexity one can quantify the distinction between
recursively enumerable sets and recursive sets. Let A be a set of natural
numbers.

Definition 2.7.1 The characteristic sequence of A ⊆ N is an infinite binary sequence
χ = χ1χ2 . . . defined by

χi =

{
1 if i ∈ A,
0 otherwise.

If A is recursively enumerable, and also its complement consisting of the
i’s such that χi = 0 is recursively enumerable, then f(i) = χi is recursive,
and the conditional complexity C(χ1:n|n) is bounded by a fixed constant
for all n. (The converse also holds, Exercise 2.3.4 on page 131.) But
in the general case of recursively enumerable sets A, the complexity
C(χ1:n|n) can grow unboundedly with n. However, this growth is at
best logarithmically slow, which shows that such characteristic sequences
are very nonrandom. For instance, they are not random in the sense of
Martin-Löf according to Theorem 2.5.4. The result below is known as
Barzdins’s lemma. (Actually, J.M. Barzdins proved the sharper version
of Exercise 2.7.2 on page 180.)

Theorem 2.7.2 (i) Any characteristic sequence χ of a recursively enumerable set A sat-
isfies C(χ1:n|n) ≤ logn+ c for all n, where c is a constant dependent on
A (but not on n).

(ii) Moreover, there is a recursively enumerable set such that its charac-
teristic sequence χ satisfies C(χ1:n) ≥ logn for all n.

Proof. (i) Since A is recursively enumerable, there is a partial recursive
function φ such that A = {x : φ(x) < ∞}. Dovetail the computations
of φ(1), φ(2), . . . . In this way, we enumerate A without repetitions in
the order in which the computations of the φ(i)’s terminate. The prefix
χ1:n can be reconstructed from the number m of 1’s it contains. For if
we know m, then it suffices to use φ to enumerate the elements of A
until we have found m distinct such elements less than or equal to n. If
the set of these elements is B = {a1, a2, . . . , am}, then by assumption
these are all elements in A that do not exceed n. Hence, from B we can
reconstruct all 1’s in χ1:n, and the remaining positions must be the 0’s.
In this way, we can reconstruct χ1:n, given n, from a description of φ
and m. Since m ≤ n and C(φ) <∞, we have proved (i).
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(ii) Let φ0 be the additively optimal function φ0 of Theorem 2.1.1. Define
χ = χ1χ2 . . . by

χi =

{
1 if φ0(i, i) = 0,
0 if φ0(i, i) 6= 0 or φ0(i, i) = ∞.

Obviously, χ is the characteristic sequence of a recursively enumerable
subset of the natural numbers. We prove that χ satisfies the property
stated in the theorem. For suppose to the contrary that C(χ1:n) < logn
for some n. This means that there is a short program p, of length less
than logn, that computes χ1:n. Since p < n this implies that φ0(p, p) =
χp, which contradicts the definition of χp. 2

The converse of Theorem 2.7.2, Item (i), does not hold in general. This follows
by the construction of a meager set that is not recursively enumerable. For
instance, let χ be the characteristic sequence of a set A and C(χ1:n|n) ≥
n − c for infinitely many n and a fixed constant c. By Theorem 2.5.5 such
strings are abundant, and by Theorem 2.7.2, Item (i), we find that A is not
recursively enumerable. Construct a sequence ζ by ζ = χ1α1χ2α2 . . . with
αi = 0f(i), where f(i) is some fast-growing total recursive function with an
inverse. Obviously, if ζ is the characteristic sequence of set B, then B is not
recursively enumerable. But also there is now another constant c such that
C(ζ1:n|n) ≤ f−1(n) + c for all n. Choosing f such that log log f(n) = n gives

C(ζ1:n|n) ≤ log log n+O(1).

Theorem 2.7.2, Item (i), cannot be improved to the unconditional “C(χ1:n) ≤
log n+ c for all n and some c,” since all χ’s satisfying this are recursive (and
hence the corresponding sets A are recursive) by Exercise 2.3.4 on page 131.

Theorem 2.7.2, Item (ii), cannot be improved to the conditional “C(χ1:n|n) ≥
log n for all n” by Exercise 2.7.3 on page 181.

Example 2.7.2 Diophantine equations are algebraic equations of the form X = 0, where
X is built up from nonnegative integer variables and nonnegative integer
constants by a finite number of additions (A + B) and multiplications
(A×B). The best-known examples are xn+yn = zn, where n = 1, 2, . . . .

Pierre de Fermat (1601–1665) stated that this equation has no solution in
positive integers x, y, and z for n an integer greater than 2. (For n = 2 there
exist solutions, for instance 32 + 42 = 52.) However, he did not supply a proof
of this assertion, often called Fermat’s last theorem. After 350 years of with-
standing concerted attempts to come up with a proof or disproof, the problem
had become a celebrity among unsolved mathematical problems. However, A.
Wiles [Ann. of Math., 141:3(1995), 443–551] has finaly settled the problem by
proving Fermat’s last theorem. Let us for the moment disregard Wiles’s proof
and reason naively. Suppose we substitute all possible values for x, y, z with
x + y + z ≤ n, for n = 3, 4, . . . . In this way, we recursively enumerate all
solutions of Fermat’s equation. Hence, such a process will eventually give a
counterexample to Fermat’s conjecture if one exists, but the process will never
yield conclusive evidence if the conjecture happens to be true.
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In his famous address to the International Congress of Mathematicians
in 1900, D. Hilbert proposed twenty-three mathematical problems as
a program to direct the mathematical efforts in the twentieth century.
The tenth problem asks for an algorithm that given an arbitrary Dio-
phantine equation, produces either an integer solution for this equation
or indicates that no such solution exists. After a great deal of prelimi-
nary work by other mathematicians, the Russian mathematician Yu.V.
Matijasevich finally showed that no such algorithm exists. Suppose we
weaken the problem as follows. First, effectively enumerate all Diophan-
tine equations, and consider the characteristic sequence ∆ = ∆1∆2 . . . ,
defined by ∆i = 1 if the ith Diophantine equation is solvable, and 0 oth-
erwise. Then C(∆1:n) ≤ n + O(1). But the theorem above shows that
C(∆1:n|n) ≤ logn + c, for some fixed constant c. The nonrandomness
of the characteristic sequence means that the solvability of Diophan-
tine equations is highly interdependent—it is impossible for a random
sequence of them to be solvable and the remainder unsolvable. 3

Example 2.7.3 In the proof of Theorem 2.7.2, Item (ii), we used a set recursively isomor-
phic to the halting set K0 = {〈x, y〉 : φx(y) <∞}. In fact, almost every
recursively enumerable set that is complete under the usual reducibili-
ties would have done. We can use this to obtain natural examples for
incompressible finite strings. Let d be the number of elements in K0

that are less than 2n. Then by running all the computations of all φx(y)
with z < 2n, z = 〈x, y〉, in parallel until d of them have halted, we ef-
fectively find all computations among them that halt. That is, if χ is
the characteristic sequence of K0, then we can effectively compute χ1:m

(where m = 2n) from d. The program p for this computation has length
l(p) ≤ l(d) + c ≤ n + c, for some fixed constant c independent of n.
By Theorem 2.7.2, Item (ii), the shortest program from which we can
compute χ1:m has length at least n. Hence, there is another constant c
such that p is c-incompressible. 3

Exercises 2.7.1. [10] Show that there exists a constant c such that C(0n|n) ≤ c
for all n, and C(0n) ≥ logn− c for infinitely many n.

2.7.2. • [26] Let A ⊆ N be a recursively enumerable set, and let χ =
χ1χ2 . . . be its characteristic sequence. We use the uniform complexity
C(χ1:n;n) of Exercise 2.3.2 on page 130.

(a) Show that C(χ1:n;n) ≤ logn+O(1) for all A and n.

(b) Show that there exists an A such that C(χ1:n;n) ≥ log n for all n.

Comments. This implies Theorem 2.7.2. It is the original Barzdins’s
lemma. Source: J.M. Barzdins, Soviet Math. Dokl., 9(1968), 1251–1254.
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2.7.3. [27] Is there a symmetric form of Theorem 2.7.2 (Barzdins’s
lemma) using only conditional complexities? The answer is negative.
Show that there is no recursively enumerable set such that its charac-
teristic sequence χ satisfies C(χ1:n|n) ≥ logn+O(1) for all n.

Comments. Hint: let χ be the characteristic sequence of a recursively
enumerable set A. Consider C(χ1:f(n)|f(n)), with χ1:f(n) containing ex-

actly 22n

ones. Then, log f(n) ≥ 2n. But using the partial recursive
function enumerating A, we can compute χ1:f(n), given f(n), from just
the value of n. Hence, we have a program of logn+O(1) bits for χ1:f(n).
Compare this to Barzdins’s lemma (Theorem 2.7.2) and Exercise 2.7.2.
Source: R.M. Solovay, sci.logic electronic newsgroup, 24 November 1989.

2.7.4. [34] Is there a symmetric form of Theorem 2.7.2 (Barzdins’s
lemma) using only unconditional complexities? The answer is negative.
Show that there is a recursively enumerable set A ⊆ N and a constant
c such that its characteristic sequence χ satisfies C(χ1:n) ≥ 2 logn − c
for infinitely many n.

Comments. First note the easy fact that the Kolmogorov complexity of
χ1:n is at most 2 logn + O(1) for all n (≤ logn bits to specify n and
≤ log n bits to specify k =

∑n
i=1 χi). Hint: partition N into exponen-

tially increasing half-open intervals Ik = (tk, 2
tk ] with t0 = 0. Note that

log(2tk − tk) = 2 log tk+1 − 2− o(1) for k → ∞. Use increasingly precise
approximations of C(χ1:n) for n ∈ Ik for increasing k to enumerate A.
Source: R.M. Solovay, sci.logic electronic newsgroup, 24 November 1989;
posed as open problem [O39] in the first printing of this book; solved by
M. Kummer [SIAM J. Comput., 25:6(1996), 1123–1143].

2.7.5. [25] Prove the following strange fact (Kamae’s theorem). For
every natural number m there is a string x such that for all but finitely
many strings y, C(x) − C(x|y) > m.

Comments. There exist strings x such that almost all strings y contain
a large amount of algorithmic information about x. Hint: x must be
such that almost all large numbers contain much information about x.
Let c be a large enough fixed constant. Let A be a recursively enumer-
able set of integers, and let α1α2 . . . be the characteristic sequence of
A. Set x = x(k) = α1α2 . . . αh, where h = 2k. By Barzdins’s lemma,
Theorem 2.7.2, we can assume C(x(k)) ≥ k. Enumerate A without rep-
etition as b1, b2, . . . . Let m(k) = max{i : bi ≤ 2k}. Then for any integer
y ≥ m(k) we have C(x(k)|y) ≤ log k+c. Namely, using y we can enumer-
ate b1, b2, . . . , bt, and with log k extra information describing k we can
find x(k). Therefore, C(x) − C(x|y) ≥ k − log k − c. Source: T. Kamae,
Osaka J. Math., 10(1973), 305–307. See also Exercise 2.2.13.

2.7.6. [25] Consider an enumeration W1,W2, . . . of all recursively enu-
merable sets. A simple set A is effectively simple if there is a recursive
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function f such that Wi ⊆ Ā implies that d(Wi) ≤ f(i) (where Ā is the
complement of A). The set Ā is called effectively immune.

(a) Show that the set B defined in Theorem 2.7.1 is effectively simple.

(b) Show that the set RAND defined by {x : C(x) ≥ l(x)} is effectively
immune.

(c) Show that Item (a) implies that B is Turing complete for the recur-
sively enumerable sets.

Comments. Hint: the proof of Theorem 2.7.1, Item (iii), showing that B
is simple actually shows that B is also effectively simple, which demon-
strates Item (a). For Item (c), see for example P. Odifreddi, Classical
Recursion Theory, North-Holland, 1989.

2.7.7. [32] Let φ1, φ2, . . . be the standard enumeration of partial recur-
sive functions. The diagonal halting set is {x : φx(x) <∞} (also denoted
by K). The Kolmogorov set is {(x, y) : C(x) ≤ y}. We assume familiarity
with notions in Exercise 1.7.16. To say that a set A is recursive in a set
B is the same as saying that A is Turing reducible to B.

(a) Show that the diagonal halting set is recursive in the Kolmogorov
set.

(b) Show that the Kolmogorov set is recursive in the diagonal halting
set.

(c) Show that the Kolmogorov set is Turing-complete for the recursively
enumerable sets.

Comments. This means that if we can solve the halting problem, then
we can compute C, and conversely. Hint for Item (a): given x we want
to know whether x ∈ K, that is, whether Tx(x) halts. Let l(〈x, Tx〉) = n.
Now use the Kolmogorov set to recursively find the least number t such
that for all y with l(y) = 2n and C(y) < 2n the reference universal
machine U computes y from some program of length less than 2n in
at most t steps. Note that t is found with some organized dovetail-
ing. Claim: Tx(x) halts iff Tx(x) halts within t steps (hence we can see
whether Tx(x) halts). If not, then we can use Tx(x) as a clock and run
the same dovetailing process as above, but now we produce a string of
complexity 2n via a description of length n. Source: Attributed to P.
Gács by W. Gasarch, personal communication February 13, 1992.

2.7.8. [42] We can express the nonrecursivity of C(x) in terms of
C(C(x)|x), which measures what we may call the complexity of the com-
plexity function. Denote l(x) by n.

(a) Prove the upper bound C(C(x)|x)) ≤ logn+O(1).
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(b) Prove the following lower bound: For each length n there are strings
x such that

C(C(x)|x) ≥ logn− log logn−O(1).

Comments. This means that x only marginally helps to compute C(x);
most information in C(x) is extra information related to the halting
problem. Hint for Item (b): same proof as in Section 3.8. Source: P.
Gács, Soviet Math. Dokl., 15(1974), 1477–1480.

2.7.9. [44] Show that every infinite sequence is Turing-reducible (Ex-
ercise 1.7.16, page 43, with sets replaced by characteristic sequences of
sets) to an infinite sequence that is random with respect to the uniform
measure.

Comments. C.H. Bennett raised the question whether every infinite bi-
nary sequence can be obtained from an incompressible one by a Turing
machine. He proved this for a special case. Philosophically, the result im-
plied in the exercise allows us to view even very pathological sequences
as the result of two relatively well understood notions, to wit, the com-
pletely chaotic outcome of coin-tossing and a Turing machine transducer
algorithm. Source: P. Gács, Inform. Contr., 70(1986), 186–192. See also
[W. Merkle, N. Mihailovic, J. Symb. Logic, 69(2004), 862–878].

2.7.10. [30] This exercise assumes knowledge of the notion of Turing
degree, Exercise 1.7.16. Every Turing degree contains a set A such that
if χ is the characteristic sequence of A, then C(χ1:n|n) ≤ logn for all n.

Comments. Hence, a high degree of unsolvability of a set does not imply
a high Kolmogorov complexity of the associated characteristic sequence.
Hint: call a set B semirecursive if there exists a recursive linear ordering
<B of N such that there exists a lower cut element y such that B = {x :
x ≤B y}. For any set A there is a semirecursive set B such that B ≡T A
[C.G. Jockusch, Trans. AMS 131(1968), 420–436]. Every semirecursive
set B has a characteristic sequence χ of (N , <B) such that C(χ1:n|n) ≤
logn + c, by the same proof as Theorem 2.7.2, Item (i). Since <B is
recursive, the same property holds for the usual characteristic sequence
of B. Source: W. Gasarch, Letter, August 1988. See also R.P. Daley, J.
Comput. System Sci., 9(1974), 151–163; Math. Systems Theory, 9(1975),
83–94; Inform. Contr., 44(1980), 236–244.

2.7.11. [42] Use Kolmogorov complexity to prove the existence of Tur-
ing degrees of unsolvability (Exercise 1.7.16) between the recursive sets
and Turing-complete sets (such as K0).

Comments. Source: R.P. Daley, J. Symb. Logic, 46(1981), 460–474; In-
form. Contr., 52(1982), 52–67.
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2.7.12. [39] We assume familiarity with the notion of truth-table re-
ducibility. Let χ be the characteristic sequence of a recursively enumer-
able set A. Here C(χ1:n;n) is the uniform complexity of Exercise 2.3.2.

(a) Show that A is complete under weak truth-table reducibility iff for
some unbounded total recursive function f(n), we have C(χ1:n;n) ≥
f(n).

(b) Show that A is complete under Turing reducibility iff C(χ1:n;n) ≥
f(n) for some unbounded total function f recursive in A.

Comments. For resource-bounded versions of Kolmogorov complexity
the situation is quite different. Source: M.I. Kanovich, Soviet Math.
Dokl., 10(1969), 700–701; 11(1970), 1224–1228.

2.7.13. [20] Define the state complexity S(x) of a finite binary string
x as the least n such that there is a Turing machine with n states that
started in the standard initial conditions of empty tape and distinguished
start state will eventually halt with x on its output tape. All machines
considered are of the original model as in Section 1.7. DefineB = {〈x, y〉 :
S(x) ≤ y}.
(a) Prove that B is recursively enumerable but not recursive.

(b) Prove that B is Turing complete (in the sense of Exercise 1.7.16).

Comments. Suppose our Turing machines use an m-letter alphabet. Let
Tm(x) denote the complexity of x in terms of the minimal number of
internal states of a Turing machine. Then

Tm(x) ∼ C(x)/ (m− 1) logC(x).

Source: problem by J. Andrews, electronic news, June 24, 1988; solutions
by V.R. Pratt, R.M. Solovay, electronic news, June 1988.

2.7.14. [22] Show that the set K0 used in Lemma 1.7.6 on page 35 is
not many-to-one reducible to the set B featured in Corollary 2.7.2 on
page 176, while B is many-to-one reducible to K0.

Comments. Hint: Use Exercise 1.7.16. K0 is m-complete, while B is
simple and hence not m-complete. The set K0 is of a higher degree of
unsolvability with respect to many-to-one reducibility than B.

2.7.15. [32] Show that there exists an immune set I (a set without an
infinite recursively enumerable subset, for instance the complement of a
set B as in Theorem 2.7.1, Item (iii)), such that there is a probabilistic
machine that computes the characteristic function of some infinite subset
of I.

Comments. Hint: Use Theorems 2.5.4, 2.7.1, and the following frame-
work. A probabilistic machine is just like a deterministic machine except
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that at some steps there are several actions (instead of a single action)
that the machine can perform with given probabilities. For simplicity as-
sume that there are exactly two possible actions, each with probability
1
2 . (That is, at each such choice the machine flips a coin.) That a prob-
abilistic machine computes a function φ with probability p means that
the machine with input x halts with output φ(x) with probability p. We
usually assume p > 1

2 . It can be shown that a machine with any value p
between zero and one can be simulated by a machine with value p close
to one. It turns out that φ is computable by a probabilistic machine iff φ
is partial recursive [K. de Leeuw, et al., pp. 183–212 in: Automata Stud-
ies, C.E. Shannon and J. McCarthy, eds., Princeton Univ. Press, 1956].
This result is often interpreted as showing that probabilistic machines
cannot perform tasks that are impossible for deterministic machines.
But a task may not consist only in finding an unambiguous value, but
may consist in finding some value out of a set of possible values. In this
form there are obviously tasks that deterministic machines cannot do
that probabilistic machines can do, such as the construction of a nonre-
cursive sequence or to output the characteristic function of some infinite
subset of a fixed immune set. The probabilistic machine computes such
a characteristic sequence or set if it outputs the sequence or set with
positive probability. Source: A.K. Zvonkin and L.A. Levin, Russ. Math.
Surv., 25:6(1970), 83–124, attributed to J.M. Barzdins.

2.7.16. [37] A set H of natural numbers is called hyperimmune if there
is no total recursive function f such that f(i) > hi for all i, where
hi is the ith element of H in increasing order. That is, H is immune
(Exercise 2.7.15, page 184) but the variety of immunity ofH is due to the
fact that the function that enumerates H ’s elements in increasing order
of size grows faster than any recursive function. Prove the following:

(a) Every hyperimmune set H contains an infinite subset whose charac-
teristic sequence is not computable by a probabilistic machine.

(b) However, there is a probabilistic machine that computes the charac-
teristic sequence of some hyperimmune set.

Comments. Source: A.K. Zvonkin and L.A. Levin, Russ. Math. Surv.,
25:6(1970), 83–124, attribute Item (a) to V.N. Agafonov and L.A. Levin,
and Item (b) to N.V. Petri. Hint: Item (a) follows from the fact that if a
fixed set is computable by a probabilistic machine then it is recursively
enumerable. Theorems 2.2 and 2.3 in P. Gács, [Theoret. Comput. Sci.,
22(1983), 71–93], cover related issues.

2.7.17. [19] We define a variant of the busy beaver function BB(n)
in Exercise 1.7.19 on page 45. Let BC(n) be the largest natural num-
ber m such that C(m) ≤ n. Let φ1, φ2, . . . be the standard effective
enumeration of partial recursive functions.
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(a) Show that BC(n) > φ(n), where φ = φk, for all n ≥ C(k) − 4 logn.

(b) Show that BC(n) is not a recursive function.

(c) Show that the nonrecursiveness of BC(n) can be used to prove the
unsolvability of the halting problem (Lemma 1.7.5 on page 34) and vice
versa.

(d) Let F be an axiomatizable sound formal theory that can be de-
scribed completely (axioms, inference rules, . . . ) in m bits. Show that
no provable true statement in F asserts “BC(n) = x” for BC(n) = x
with any n > m+O(1).

Comments. Hint for Item (a): C(φ(n)) ≤ C(k, n)+O(1). Then, C(φ(n)) ≤
n− logn. Hence, BC(n) > φ(n). Hint for Item (b): It grows faster than
any recursive function. Hint for Item (c): If the halting problem were
solvable, we could compute BC(n) from the outputs of all halting pro-
grams of length at most n. Conversely, every halting program p halts
within BC(n) steps, for n ≥ l(p) + O(1). So recursiveness of BC im-
plies the solvability of the halting problem. This exercise is an applica-
tion of Theorem 2.3.1, Item (iii). In fact, BC(n) is some sort of inverse
function of m(n), the greatest monotonic increasing function bounding
C(n) from below. Source: G.J. Chaitin, pp. 108–111 in: Open Problems
in Communication and Computation, T.M. Cover, B. Gopinath, eds.,
Springer-Verlag, 1988.

2.8

Algorithmic

Information

Theory

One interpretation of the complexity C(x) is as the quantity of infor-
mation needed for the recovery of an object x from scratch. Similarly,
the conditional complexity C(x|y) quantifies the information needed to
recover x given only y. Hence the complexity is ‘absolute information’ in
an object. Can we obtain similar laws for complexity-based ‘absolute in-
formation theory’ as we did for the probability-based information theory
of Section 1.11?

If C(x|y) is much less than C(x), then we may interpret this as an
indication that y contains a lot of information about x.

Definition 2.8.1 The algorithmic information about y contained in x is defined as

IC(x : y) = C(y) − C(y|x).

Choosing reference function φ0 in Theorem 2.1.1 with φ0(x, ǫ) = x yields

C(x|x) = 0 and IC(x : x) = C(x).

By the additive optimality of φ0, these equations hold up to an additive
constant independent of x, for any reference function φ0. In this way we
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can view the complexity C(x) as the algorithmic information about itself
contained in an object. For applications, this definition of the quantity
of information has the advantage that it refers to individual objects, and
not to objects treated as elements of a set of objects with a probability
distribution given on it, as in Section 1.11.

Does the new definition have the desirable properties that hold for the
analogous quantities in classic information theory? We know that equal-
ity and inequality can hold only up to additive constants, according to
the indeterminacy in the invariance theorem, Theorem 2.1.1. Intuitively,
it is reasonable to require that

IC(x : y) ≥ 0,

up to an additive fixed constant independent of x and y. Formally, this
follows easily from the definition of IC(x : y), by noting that C(y) ≥
C(y|x) up to an independent additive constant.

2.8.1
Entropy,
Information, and
Complexity

The major point we have to address is the relation between the Kol-
mogorov complexity and Shannon’s entropy as defined in Section 1.11.
Briefly, classic information theory says that a random variable X dis-
tributed according to P (X = x) has entropy (complexity) H(X) =
∑
P (X = x) log 1/P (X = x), where the interpretation is that H(X)

bits are on average sufficient to describe an outcome x. Algorithmic
complexity says that an object x has complexity, or algorithmic infor-
mation, C(x) equal to the minimum length of a binary program for x. It
is a beautiful fact that these two notions turn out to be much the same.
The statement below may be called the theorem of equality between
stochastic entropy and expected algorithmic complexity. (The theorem
actually gives an inequality, but together with the simple argument in
Example 2.8.1 on page 188 this turns into an asymptotic equality.)

Theorem 2.8.1 Let x = y1y2 . . . ym be a finite binary string with l(y1) = · · · = l(ym) =
n. Let the frequency of occurrence of the binary representation of k =
1, 2, 3, . . . , 2n as a y-block be denoted by pk = d({i : yi = k})/m. Then
up to an independent additive constant,

C(x) ≤ m(H + ǫ(m)),

with H =
∑
pk log 1/pk, the sum taken for k from 1 to 2n, and ǫ(m) =

2n+1l(m)/m. Note that ǫ(m) → 0 as m→ ∞ with n fixed.

Proof. Denote 2n by N . To reconstruct x it suffices to know the number
sk = pkm of occurrences of k as a yi in x, k = 1, 2, . . . , N , together
with x’s serial number j in the ordered set of all strings satisfying these
constraints. That is, we can recover x from s1, . . . , sN , j. Therefore, up
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to an independent fixed constant, C(x) ≤ 2l(s1) + · · · + 2l(sN) + l(j).
By construction,

j ≤
(

m

s1, . . . , sN

)

,

a multinomial coefficient (Exercise 1.3.4 on page 10). Since also each
sk ≤ m, we find that

C(x) ≤ 2n+1l(m) + l

(
m

s1, . . . , sN

)

.

Writing the multinomial coefficient in factorials, and using Stirling’s ap-
proximation, Exercise 1.5.4 on page 17, to approximate j, the theorem
is proved. 2

In Theorem 2.8.1 we have separated the frequency regularities from
the remaining regularities. The entropy component mH measures the
frequency regularities only, while the remaining component mǫ(m) ac-
counts for all remaining factors.

Example 2.8.1 For x representing the sequence of outcomes of independent trials, the
inequality in Theorem 2.8.1 can be replaced by asymptotic equality with
high probability.

We give a simple example to show the relation between the entropy H of
a stochastic source X , emitting n-length binary words with probability
P (X = x) of outcome x, and the complexity C. Let P (X = x) = 2−n

be the uniform probability distribution on the outcomes of length n.
The entropy H in Theorem 2.8.1 is, according to Section 1.11, especially
designed to measure frequency regularities. We show that it is asymp-
totically equal to the expected complexity of a string. By Theorem 2.2.1
almost all x are c-incompressible, that is, there are 2n(1− 2−c+1) many
x’s that have C(x) ≥ n−c. A simple computation shows that the entropy
H(X) =

∑

l(x)=n P (X = x) log 1/P (X = x) is asymptotically equal to

the expected complexity E =
∑

l(x)=n P (X = x)C(x) of an n-length
word. Namely, we obtain

n

n+O(1)
≤ H(X)

E
<

n

(1 − 2−c+1)(n− c)
.

Substitute c = logn to obtain

lim
n→∞

H(X)

E
= 1.

3
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In Section 4.3.5 we prove the following generalization: Let p be a recursive
probability distribution on N , that is, there is a Turing machine computing
the function p. Let, moreover, K(x) be the prefix complexity as defined in
Chapter 3. Then log 1/P (x) and K(x) are close to each other with high prob-
ability. Since |K(x) − C(x)| ≤ 2 logC(x) by Example 3.1.4 on page 203, also
log 1/P (x) and C(x) are close to each other with high probability.

In particular, the entropy H =
∑

l(x)=n
P (x) log 1/P (x) of the distribution

P is asymptotically equal to the expected complexity
∑

l(x)=n
P (x)K(x) of

words of length n; see Section 8.1.1.

Because we saw a few lines above that K(x) and C(x) are equal up to a
logarithmic additive term, the expected plain complexity C(·) is also asymp-
totically equal to the entropy,

∑

x

P (x)C(x) ∼
∑

x

P (x) log
1

P (x)
.

Thus, the intended interpretation of complexity C(x) as a measure of the infor-
mation content of an individual object x is supported by a tight quantitative
relationship to Shannon’s probabilistic notion.

2.8.2
Symmetry of
Information

Is algorithmic information symmetric? In Section 1.11 we noted that
in Shannon’s information theory, the mutual information in one random
variable about another one is symmetric. While the equation IC(x : y) =
IC(y : x) cannot be expected to hold exactly, a priori it can be expected
to hold up to a constant related to the choice of reference function φ0 in
Theorem 2.1.1. However, with the current definitions, information turns
out to be symmetric only up to a logarithmic additive term.

Example 2.8.2 By Theorem 2.2.1, there is a binary string x of each length n such that
C(x|n) ≥ n. Similarly, there are infinitely many n such that C(n) ≥ l(n).
Choosing x such that its length n is random in this sense yields, up to
independent constants,

IC(x : n) = C(n) − C(n|x) ≥ l(n),

IC(n : x) = C(x) − C(x|n) ≤ n− n = 0.

3

This example shows that the difference (the asymmetry of algorithmic
information) |IC(x : y)− IC(y : x)| can be of order the logarithm of the
complexities of x and y. However, it cannot be greater, as we proceed to
show now. This may be called the theorem of symmetry of algorithmic
information for C-complexity. As usual, C(x, y) = C(〈x, y〉) is the length
of the least program of U that prints out x and y and a way to tell them
apart.
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Theorem 2.8.2 For all x, y ∈ N , C(x, y) = C(x) + C(y|x) +O(logC(x, y)).

Since C(x, y) = C(y, x) up to an additive constant term, the following
symmetry of information property follows immediately.

Corollary 2.8.1 Up to an additive term O(logC(x, y)),

C(x) − C(x|y) = C(y) − C(y|x).
Therefore,

|IC(x : y) − IC(y : x)| = O(logC(x, y)).

Theorem 2.8.2 cannot be improved in general, since in Example 2.8.2 we
have seen that the difference |IC(x : y) − IC(y : x)| is at least logC(x)
for some nontrivial x and y. The proof of Theorem 2.8.2 follows.

Proof. (≤) We can describe 〈x, y〉 by giving a description of x, a de-
scription of y given x, and an indication of where to separate the two
descriptions. If p is a shortest program for x and q is a shortest pro-
gram for y, with l(p) ≤ l(q), then there is a Turing machine for which
l(p)pq is a program to compute 〈x, y〉. Invoking the invariance theorem,
Theorem 2.1.1, we obtain C(x, y) ≤ C(x) + C(y|x) + 2l(C(x)) +O(1).

(≥) Recall that the implied constant in the O(logC(x, y))-notation can
be both positive and negative. Thus, we need to prove that there is a
constant c ≥ 0 such that C(x, y) ≥ C(x)+C(y|x)−c logC(x, y). Assume
to the contrary that for every constant c ≥ 0, there are x and y such
that

C(y|x) > C(x, y) − C(x) + cl(C(x, y)). (2.8)

Let A = {〈u, z〉 : C(u, z) ≤ C(x, y)}. Given C(x, y), the set A can be
recursively enumerated. Let Ax = {z : C(x, z) ≤ C(x, y)}. Given C(x, y)
and x, we have a simple algorithm to recursively enumerate the set Ax.
One can describe y, given x, using its serial number in enumeration order
of Ax and C(x, y). Therefore,

C(y|x) ≤ l(d(Ax)) + 2l(C(x, y)) +O(1). (2.9)

By Equations 2.8, 2.9,

d(Ax) > 2e, e = C(x, y) − C(x) + (c− 2)l(C(x, y)) −O(1). (2.10)

But now we can obtain a too short description for x as follows. Given
C(x, y) and e, we can recursively enumerate the strings u that are can-
didates for x by satisfying

Au = {z : C(u, z) ≤ C(x, y)}, (2.11)

2e < d(Au).
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Denote the set of such u by U . Clearly, x ∈ U . Also,

{〈u, z〉 : u ∈ U, z ∈ Au} ⊆ A. (2.12)

The number of elements in A cannot exceed the available number of
programs that are short enough to satisfy its definition:

d(A) ≤ 2C(x,y)+O(1). (2.13)

Combining Equations 2.11, 2.12, and 2.13, we obtain

d(U) ≤ d(A)

min{d(Au) : u ∈ U} <
d(A)

2e
≤ 2C(x,y)+O(1)

2e
.

Hence, we can reconstruct x from C(x, y), e, and the serial number of x
in enumeration order of U . Therefore,

C(x) < 2l(C(x, y)) + 2l(e) + C(x, y) − e+O(1).

Substituting e as given in Equation 2.10, this yields a contradiction,
C(x) < C(x), for large enough c. 2

Exercises 2.8.1. [17] The following equality and inequality seem to suggest that
the shortest descriptions of x contain some extra information besides the
description of x.

(a) Show that C(x,C(x)) = C(x) +O(1).

(b) Show that C(x|y, i− C(x|y, i)) ≤ C(x|y, i) +O(1).

Comments. These (in)equalities are in some sense pathological and may
not hold for all reasonable descriptional complexities. However, these
phenomena also hold for the prefix complexity K introduced in Chap-
ter 3. Source: P. Gács, Lecture Notes on Descriptional Complexity and
Randomness, Manuscript, Boston University, 1987.

2.8.2. [27] Let x be a string of length n.

(a) Show that the equality C(x,C(x)) = C(C(x)|x) + C(x) +O(1) can
be satisfied only to within an additive term of about logn.

(b) Prove that C(x, y) = C(x|y) + C(y) can hold only to within an
additive logarithmic term without using Exercise 2.8.1, Item (a), and
Exercise 2.7.8.

Comments. Hint for Item (a): use Exercise 2.8.1, Item (a), and Exer-
cise 2.7.8. Hint for Item (b): additivity is already violated on random
strings of random length. Source: P. Gács, Ibid.; A.K. Zvonkin and L.A.
Levin, Russ. Math. Surv., 25:6(1970), 83–124.
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2.8.3. [12] Show that given x, y, and C(x, y), one can compute C(x)
and C(y) up to an additive logarithmic term O(logC(x, y)).

Comments. Hint: use symmetry of information and upper semicom-
putability. Suggested by L. Fortnow.

2.8.4. [28] Let ω = ω1ω2 . . . be an infinite binary sequence. The en-
tropy function H(p) is defined by H(p) = p log 1/p+(1−p) log1/(1−p).
Let limn→∞ 1

n

∑n
i=1

1
nωi = p.

(a) Show that

C(ω1:n|n) ≤ nH

(

1

n

n∑

i=1

ωi

)

+ logn+ c.

(b) Prove the following: If the ωi’s are generated by coin flips with prob-
ability p for outcome 1 (a Bernoulli process with probability p), then for
all ǫ > 0,

Pr

{

ω :

∣
∣
∣
∣

C(ω1:n|n)

n
−H(p)

∣
∣
∣
∣
> ǫ

}

→ 0,

as n goes to infinity.

2.8.5. [26] Show that 2C(a, b, c) ≤ C(a, b)+C(b, c)+C(c, a)+O(logn).

Comments. For an application relating the 3-dimensional volume of a
geometric object in Euclidean space to the 2-dimensional volumes of its
projections, see the discussion in Section 6.13 on page 530. Hint: use the
symmetry of information, Theorem 2.8.2. Source: D. Hammer and A.K.
Shen, Theor. Comput. Syst., 31:1(1998), 1–4.

2.9

History and

References

The confluence of ideas leading to Kolmogorov complexity is analyzed
in Section 1.8 through Section 1.12. Who did what, where, and when,
is exhaustively discussed in Section 1.13. The relevant documents are
dated R.J. Solomonoff, 1960/1964, A.N. Kolmogorov, 1965, and G.J.
Chaitin, 1969. According to L.A. Levin, Kolmogorov in his talks used
to give credit also to A.M. Turing (for the universal Turing machine).
The notion of nonoptimal complexity (as a complexity based on shortest
descriptions but lacking the invariance theorem) can be attributed, in
part, also to A.A. Markov [Soviet Math. Dokl., 5(1964), 922–924] and
G.J. Chaitin [J. ACM, 13(1966), 547–569], but that is not a very crucial
step from Shannon’s coding concepts.

The connection between incompressibility and randomness was made
explicit by Kolmogorov and later by Chaitin. Theorem 2.2.1 is due to
Kolmogorov. The idea to develop an algorithmic theory of information
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is due to Kolmogorov, as is the notion of deficiency of randomness. Uni-
versal a priori probability (also based on the invariance theorem) is due
to Solomonoff. This is treated in more detail in Chapter 4. (Solomonoff
did not consider descriptional complexity itself in detail.)

In his 1965 paper, Kolmogorov mentioned the incomputability of C(x)
in a somewhat vague form: “[. . .] the function Cφ(x|y) cannot be effec-
tively calculated (generally recursive) even if it is known to be finite
for all x and y.” Also Solomonoff suggests this in his 1964 paper: “it is
clear that many of the individual terms of Eq. (1) are not ‘effectively
computable’ in the sense of Turing [. . . but can be used] as the heuristic
basis of various approximations.” Related questions were considered by
L. Löfgren [Automata Theory, E. Caianiello, ed., Academic Press, 1966,
251–268; Computer and Information Sciences II, J. Tou, ed., Academic
Press, 1967, 165–175]. Theorem 1 in the latter reference demonstrates
in general that for every universal function φ0, Cφ0(x) is not recursive
in x. (In the invariance theorem we considered only universal functions
using a special type of coding.)

Despite the depth of the main idea of Kolmogorov complexity, the tech-
nical expression of the basic quantities turned out to be inaccurate in
the sense that many important relationships hold only to within an error
term such as the logarithm of complexity. For instance, D.W. Loveland
introduced n-strings in [Inform. Contr., 15(1969), 510–526; Proc. ACM
1st Symp. Theory Comput., 1969, 61–65] and proved that the length-
conditional C(x1:n|n) measure is not monotonic in n, Example 2.2.5,
page 119. He proposed a uniform complexity to solve this problem,
and relationships between these complexities are the subject of Exer-
cises 2.3.2, 2.3.4, 2.5.10, 2.5.11, 2.5.12, and 2.5.13.

In the subsequent development of this chapter we have used time and
again the excellent 1970 survey by L.A. Levin and A.K. Zvonkin [Russ.
Math. Surv., 25:6(1970), 83–124], which describes mainly the research
performed in the former USSR. We have drawn considerably on and
profited from the point of view expressed in P. Gács’s [Komplexität und
Zufälligkeit, Ph.D. thesis, J.W. Goethe Univ., Frankfurt am Main, 1978,
unpublished; Lecture Notes on Descriptional Complexity and Random-
ness, Manuscript, Boston University, 1987]. Another source for the Rus-
sian school is the survey by V.V. Vyugin, Selecta Mathematica, formerly
Sovietica, 13:4(1994), 357–389 (translated from the Russian Semiotika
and Informatika, 16(1981), 14–43).

In [A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–
124], Theorems 2.2.1 through 2.3.2 are attributed to Kolmogorov. The
result on meager sets in Section 2.2 is from [M. Sipser, Lecture Notes
on Complexity Theory, MIT Lab Computer Science, 1985, unpublished].
We avoided calling such sets ‘sparse’ sets because we need to reserve
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the term for sets that contain a polynomial number of elements for each
length. The approximation theorem, Theorem 2.3.3, is stated in some
form in [R.J. Solomonoff, Inform. Contr., 7(1964), 1–22, 224–254], and
is attributed also to Kolmogorov by Levin and Zvonkin. Some other
properties of the integer function C we mentioned were observed by
H.P. Katseff and M. Sipser [Theoret. Comput. Sci., 15(1981), 291–309].

The material on random strings (sequences) in Sections 2.4 and 2.5 is
primarily due to P. Martin-Löf [Inform. Contr., 9(1966), 602–619; Z.
Wahrsch. Verw. Geb., 19(1971), 225–230]. The notions of random fi-
nite strings and random infinite sequences, complexity oscillations, lower
semicomputable (sequential) Martin-Löf tests and the existence of uni-
versal (sequential) tests, the use of constructive measure theory, The-
orems 2.4.2, and 2.5.1 through 2.5.5, are taken from P. Martin-Löf’s
papers. Weaker oscillations are mentioned by G.J. Chaitin [J. ACM,
16(1969), 145–159]. We also used [A.K. Zvonkin and L.A. Levin, Russ.
Math. Surv., 25:6(1970), 83–124; P. Gács, Lecture Notes on Descriptional
Complexity and Randomness, Manuscript, Boston University, 1987].

As noted in the main text, the complexity oscillations of infinite se-
quences prevent a clear expression of randomness in terms of complex-
ity. This problem was investigated by L.A. Levin in [A.K. Zvonkin and
L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–124] and independently
by C.P. Schnorr [Lect. Notes Math., Vol. 218, Springer-Verlag, 1971].
As a part of the wider issue of (pseudo) random number generators
and (pseudo) randomness tests, the entire issue of randomness of in-
dividual finite and infinite sequences is thoroughly reviewed by D.E.
Knuth, Seminumerical Algorithms, Addison-Wesley, 1981, pp. 142–169;
summary, history, and references: pp. 164–166. The whole matter of
randomness of individual finite and infinite sequences of zeros and ones
is placed in a wider context of probability theory and stochastics, and
is analyzed in [A.N. Kolmogorov and V.A. Uspensky, Theory Probab.
Appl., 32(1987), 389–412; V.A. Uspensky, A.L. Semenov and A.K. Shen,
Russ. Math. Surv., 45:1(1990), 121–189; V.A. Uspensky, A.L. Semenov,
An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Theoret. Comput. Sci.,
2:207(1998), 1362–1376]. Developments in the theory, at the crossroads
of notions of individual randomness, Kolmogorov complexity, and re-
cursion theory have blossomed in the last decades. Such work has been
partially incorporated in the main text, and in the exercises, of Chap-
ters 2 through 4. Detailed treatment is beyond the scope and physical
size of this book, and is the subject of more specialized treatment, as in
R.G. Downey, D.R. Hirschfeldt, Algorithmic Randomness and Complex-
ity, Springer-Verlag, New York, to appear; A.K. Shen, V.A. Uspensky,
N.K. Vereshchagin, Kolmogorov Complexity and Randomness, Elsevier,
Amsterdam, to appear; A. Nies, Computability and Randomness, Oxford
Univ. Press, to appear.
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Section 2.6, which analyzes precisely the relative frequencies of 0’s and
1’s and k-length blocks in individual infinite and finite sequences in terms
of their Kolmogorov complexity, is from [M. Li and P.M.B. Vitányi,
Math. Systems Theory, 27(1994), 365–376].

The recursion-theoretic properties we treat in Section 2.7 are related to
Gödel’s famous incompleteness theorem. Theorem 2.7.1 is attributed to
J.M. Barzdins in [A.K. Zvonkin and L.A. Levin, Russ. Math. Surv.,
25:6(1970), 83–124]. The proof of Corollary 2.7.2 was given by G.J.
Chaitin [J. ACM, 21(1974), 403–423; Scientific American, 232:5(1975),
47–52]. This application and some philosophical consequences have been
advocated with considerable eloquence by G.J. Chaitin and C.H. Ben-
nett [C.H. Bennett and M. Gardner, Scientific American, 241:5(1979),
20–34].

We also used the insightful discussion in [P. Gács, Lecture Notes on De-
scriptional Complexity and Randomness, Manuscript, Boston Univer-
sity, 1987]. These results are analyzed and critically discussed from a
mathematical logic point of view by M. van Lambalgen [J. Symb. Logic,
54(1989), 1389–1400]. Theorem 2.7.2, Barzdins’s lemma, occurs both
in [J.M. Barzdins, Soviet Math. Dokl., 9(1968), 1251–1254] and [D.W.
Loveland, Proc. ACM 1st Symp. Theory Comput., 1969, 61–65]. Exam-
ples in Section 2.7 are due to Kolmogorov, 1970, published much later
as [Russ. Math. Surv., 38:4(1983), 27–36] and a footnote in [L.A. Levin,
Problems Inform. Transmission, 10:3(1974), 206–210].

The treatment of the relation between plain Kolmogorov complexity
and Shannon’s entropy in Section 2.8 is based on the work of A.N. Kol-
mogorov [Problems Inform. Transmission, 1:1(1965), 1–7; IEEE Trans.
Inform. Theory, IT-14(1968), 662–665; Russ. Math. Surv., 38:4(1983),
27–36; Lect. Notes Math., Vol. 1021, Springer-Verlag, 1983, 1–5] and on
[A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–124].
The latter reference attributes Theorem 2.8.1 to Kolmogorov. Theo-
rem 2.8.2 and its Corollary 2.8.1, establishing the precise error term in
the additivity of complexity and symmetry of information as logarithmic
in the complexity, are due to Levin and Kolmogorov [A.K. Zvonkin and
L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–124; A.N. Kolmogorov,
Russ. Math. Surv., 38:4(1983), 27–36].
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Algorithmic Prefix Complexity

While the development of an algorithmic theory of complexity according
to the original definitions (plain Kolmogorov complexity) in Chapter 2
was very fruitful, for certain goals the mathematical framework is not
yet satisfactory. This has resulted in a plethora of proposals of modi-
fied measures to get rid of one or the other problem. Let us list a few
conspicuous inconveniences.

• The plain complexity is not subadditive: the inequality C(x, y) ≤
C(x) + C(y) holds only to within a term logarithmic in C(x) or
C(y)—Example 2.1.5 on page 109 and Example 2.2.3 on page 118.
An attempt to solve this problem is to use conditional complexity,
in which case we indeed find that C(x, y|C(x)) ≤ C(x) + C(y) up
to an additive constant.

• Another problem is nonmonotonicity over prefixes: it would be
pleasing if the complexity of xy were never less than the complex-
ity of x. The complexity measure C(x) does not have this property.
In contrast to the subadditivity question, here use of conditional
complexity C(x|l(x)) instead of C(x) does not help. Not only is
this measure nonmonotonic, but it has also another counterintuitive
property: it drops infinitely often below a fixed constant as x runs
through the natural numbers. A first proposal to remedy this defect
was the uniform complexity variant C(x; l(x)); see Exercise 2.3.2 on
page 130. Informally, this measure gives the length of the shortest
program p that computes xi for all inputs i, i = 1, 2, . . . , l(x).

• In the development of the theory of random infinite sequences it
would be natural to identify infinite random sequences with infi-
nite sequences of which all finite initial segments are random. As it

M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 197
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turned out, no infinite sequence satisfies this criterion, due to com-
plexity oscillations. This holds for any of the C(x), C(x|l(x)), and
C(x; l(x)) measures. It is quite complicated to express Martin-Löf’s
notion of randomness in terms of the C-complexity of prefixes.

• The original motivation of Solomonoff to introduce algorithmic com-
plexity was as a device through which to assign a universal prior
probability to each finite binary string (Section 1.6 and Section 1.10).
Choosing the reference Turing machine U as in the invariance theo-
rem, Theorem 2.1.1, this induces a function P over N (equivalently
{0, 1}∗) defined by P (x) =

∑
2−l(p), the sum taken over all inputs

p for which U computes output x and halts.

This approach is different from the one in Example 1.1.3 on page 6,
where we used P ′(x) = 2−l(x∗), where x∗ is a shortest program for x.
Anticipating Chapter 4, if we allow only self-delimiting programs as de-
veloped in the current chapter, the two approaches turn out to be the
same according to the later Theorem 4.3.3. Namely, P (x) = Θ(P ′(x))
if we allow only Turing machines with self-delimiting programs (no pro-
gram for which the machine halts is the prefix of another program for
which the machine halts).

Unfortunately, P is not a proper probability mass function, since
the series

∑

x P (x) diverges. Worse, for each individual x we have
P (x) = ∞. Namely, for each x ∈ N there is a Turing machine T
that computes the constant x for all inputs. If l(T ) denotes the
length of the description of T , then

P (x) ≥ 2−l(T )
∑

p∈{0,1}∗

2−l(p) = ∞.

Our next try is to redefine P (x) by not considering all programs
that output x, but only the shortest program that outputs x. This
yields P (x) = 2−C(x). However, we still have

∑

x P (x) diverging, so
again P is not proper. This holds also with respect to C(x|l(x)) and
C(x; l(x)), the simple reason being that since all of these measures
are close to log x for almost all x, the corresponding P (x) will be
close to 1/x for almost all x. Divergence of

∑

x P (x) then follows
from divergence of the harmonic series

∑

x 1/x.

• There is a close relation between the complexity of a finite string
and its Shannon entropy, Section 2.8 and the later Section 8.1.1.
Indeed, it would be troublesome if it were not so, since both notions
have been introduced as a measure of information content: in the
one case of individual objects, and in the other case of random vari-
ables. Therefore, we could hope that classical information-theoretic
identities as derived in Section 1.11 would have complexity ana-
logues that are satisfied up to an additive constant (reflecting the
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choice of reference machine). However, in Section 2.8 we have estab-
lished that the complexity analogues of some information-theoretic
identities are satisfied only to within an additive logarithmic term
and that this cannot be improved in general.

Looking at this list of deficiencies with the wisdom of hindsight, it is
not too difficult to transcend a decade of strenuous investigation and
alternative proposals by proceeding immediately to what now seems a
convenient version of algorithmic complexity. This is the complexity in-
duced by Turing machines with a set of programs in which no program
is a proper prefix of another program. This proposal gets rid of all prob-
lems above (except for nonmonotonicity). Let us consider this matter in
some detail.

The study of the algorithmic complexity of descriptions asks in effect
for a code in the sense of Section 1.11.1. In his original paper, Shannon
restricted attention to those codes for which no value is the prefix of
another value, the so-called prefix-codes. This restriction is highly moti-
vated by the implicit assumption that descriptions will be concatenated
and must be uniquely decodable.

Recall from Section 1.11.1 that uniquely decodable codes and prefix-
codes share the same sets of code-word lengths. Moreover, the minimal
average code-word length L of a prefix-code encoding source-word se-
quences emitted by a random variable with probability distribution P
satisfies

H(P ) ≤ L ≤ H(P ) + 1,

where H(P ) is the entropy of the random variable (Theorem 1.11.2 on
page 77). This is obtained (up to an additive constant term) by assigning
code-word lengths li = ⌈log 1/pi⌉ to the ith outcome of the random
variable, where pi is the probability of that outcome. In this way, H(P )
may be interpreted as the minimal expected length of a description of
an outcome, using a prefix-free code. Then, the expected additive fudge
term in complexity equations based on prefix-codes is O(1) rather than
logarithmic. However, for complexity equations about individual objects
in general the situation is more complicated.

The divergence of the series
∑

2−C(x) was a major blow to Solomonoff’s
program. But if the set of programs of the reference machine is prefix-
free, then convergence of this series as required by the probability inter-
pretation is a property ensured by Kraft’s inequality, Theorem 1.11.1.

At present, prefix-code-based complexity is often considered as some
sort of a standard algorithmic complexity. Lest the reader be deluded
into the fallacy that this is the most perfect of all possible worlds, we
state that different applications turn out to require different versions of
complexity, and all of these are natural for their own purposes.
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3.1

The

Invariance

Theorem

In the theory of algorithmic complexity we have a more refined goal than
in classic information theory, but not essentially different objectives.
Here, too, it is natural to restrict the effective descriptions to uniquely
decodable codes, and since our interest is only in the length of code
words, to prefix-codes.

Definition 3.1.1 A partial recursive prefix function φ : {0, 1}∗ → N is a partial recursive
function such that if φ(p) < ∞ and φ(q) < ∞, then p is not a proper
prefix of q.

Let T1, T2, . . . be the standard enumeration of Turing machines, and let
φ1, φ2, . . . be the corresponding enumeration of partial recursive func-
tions (Section 1.7). Obviously, all partial recursive prefix functions occur
in this list. We change every Turing machine T computing φ to a ma-
chine T ′ computing a partial recursive prefix function ψ, where ψ = φ
if φ was already a partial recursive prefix function. The machine T ′ ex-
ecutes the algorithm below using machine T . In contrast to T , which is
presented with an input from {0, 1}∗ delimited by end markers, machine
T ′ is presented with a potentially infinite binary input sequence b1b2 . . . ,
which it reads from left to right without backing up.

A halting input, or program, of T ′ is an initial segment b1b2 . . . bm such
that T ′ halts after reading bm and before reading bm+1. There are no
other programs of T ′. In this way, no program is a proper prefix of any
other program, that is, the set of programs is prefix-free. Moreover, T ′

determines the end of each program without reading the next symbol.
Such programs are called self-delimiting; see Definition 1.11.4 on page 79.
Each such program p is the code word for the source word T ′(p) con-
sisting of the word written on the output tape by the time T ′ halts its
computation with program p.

Definition 3.1.2 The computation of T ′ on input b1b2b3 . . . is given by the following al-
gorithm that modifies the operation of the original T :

Step 1. Set p := ǫ.

Step 2. Dovetail all computations of T computing φ(pq), for all
q ∈ {0, 1}∗. {Let qj be the jth string of {0, 1}∗; dovetailing here
means executing consecutive stages i := 1, 2, . . . , such that in the
ith stage we do one next step of the computation of φ(pqj) for all
j with j ≤ i}
If φ(pq) <∞ is the first halting computation then go to Step 3.

Step 3. If q = ǫ then output φ(p) and halt {These p are already
self-delimiting} else read b := next input bit; set p := pb {If this
case happens for every initial segment of the input,then the machine
never halts}; go to Step 2.
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This construction produces an effective enumeration

T ′
1, T

′
2, . . .

of Turing machines, called prefix machines, computing all, and only, par-
tial recursive prefix functions ψ1, ψ2, . . . . That is, the Turing machines
that did already compute a partial recursive prefix function have an
unchanged input–output behavior, although they compute much more
slowly than before. Each of the remaining Turing machines is changed
into a machine that computes some partial recursive prefix function, and
it is irrelevant which one. This brings us to the invariance theorem for
prefix complexity.

Example 3.1.1 The previous construction results in a version of prefix machines we
may call partial recursive prefix function machines. An alternative way
of defining a prefix machine is as follows. It is a Turing machine with
a separate one-way input tape, a separate one-way output tape, and a
two-way work tape, all of them one-way infinite. In the start state the
input is written on the input tape, and the read-only head on that tape
scans the first symbol. Initially, both the work tape and the output tape
are empty and the read/write heads are at their leftmost squares. At
the start of each step, the state of the finite control and the symbols
under scan on the input tape and the work tape determine what the
Turing machine does in this step. It does the following: It either moves
the reading head on the input tape to the next input symbol or does not
move the reading head at all, followed by a computation step consisting
in either changing the scanned symbol on the work tape or moving the
work tape head one square left, right, or not at all, followed by a change
of state of the finite control and either writing a symbol to the next
empty square on the output tape or not writing on the output tape.

Let the infinite input tape contain only 0’s and 1’s (no blanks). Clearly,
with this definition every machine T scans one maximal prefix, say p,
of any infinite binary input. The output is the contents of the output
tape when the machine halts. This type of prefix machine is called a
self-delimiting machine. We leave it to the reader to show that the self-
delimiting machines can be effectively enumerated. Moreover, every par-
tial recursive prefix function is computed by a self-delimiting machine,
and every self-delimiting machine computes a partial recursive prefix
function. Without restrictions on the computation time, the difference
between the two definitions does not matter for us. In particular, the
invariance theorem, Theorem 3.1.1 below, is invariant under the two def-
initions. With time bounds it is not known whether the properties are
invariant under the two definitions; see the discussion in Example 7.1.1
on page 535. 3
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Recall Definition 2.0.1, page 103, of a function that is additively optimal
(a special type of universality) for a class of functions.

Theorem 3.1.1 There exists an additively optimal universal partial recursive prefix func-
tion ψ0 such that for every partial recursive prefix function ψ there is a
constant cψ such that Cψ0(x|y) ≤ Cψ(x|y) + cψ, for all x, y ∈ N .

Proof. Using standard techniques, like those in Section 1.7, we can show
that there exists a universal prefix machine U such that U(〈y, 〈n, p〉〉) =
T ′
n(y, p) for all y, p ∈ N . The remainder of the proof is analogous to the

proof of Theorem 2.1.1, page 105. 2

For each pair of additively optimal partial recursive prefixes ψ and ψ′,

|Cψ(x|y) − Cψ′(x|y)| ≤ cψ,ψ′ ,

for all x and some constant cψ,ψ′ . We fix one additively optimal partial
recursive prefix function ψ0 as the standard reference, and U in the proof
of Theorem 3.1.1 as the reference prefix machine, and define the prefix
complexity of x, conditional to y, by K(x|y) = Cψ0(x|y) for all x. The
(unconditional) prefix complexity of x is defined as K(x) = K(x|ǫ).

Example 3.1.2 Define K(x, y) = K(〈x, y〉). Requiring the decoding algorithm to be
prefix-free has advantages, since now we can concatenate descriptions
without marking where one description ends and the other one begins.
Previously, end markers disappeared in concatenation of descriptions,
which was responsible for logarithmic fudge terms in our formulas. More
formally, in contrast to C (Example 2.2.3 on page 118), the measure K
is subadditive, that is,

K(x, y) ≤ K(x) +K(y) +O(1).

Namely, let U be the reference machine of Theorem 3.1.1. Let U(x∗) = x
with l(x∗) = K(x), and U(y∗) = y with l(y∗) = K(y). Since the set of
programs of U is a prefix-code, we can modify U to a machine V that
first reads x∗ and computes x, then reads y∗ and computes y, and finally
computes and outputs 〈x, y〉. If V = Tn in the enumeration of prefix Tur-
ing machines, then U(〈n, 〈x∗, y∗〉〉) = 〈x, y〉. A similar argument shows
that K(xy) ≤ K(x) +K(y) +O(1). 3

Example 3.1.3 For all x, we have K(x) ≤ C(x)+K(C(x))+O(1), since if p is a shortest
program for x (on an ordinary machine) with l(p) = C(x), and q is a
shortest program for l(p) (on a prefix machine) with l(q) = K(l(p)),
then qp is a program for x on some prefix machine. Similarly, one can
show that C(xy) ≤ K(x) + C(y) +O(1). 3
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Example 3.1.4 The functions C and K are asymptotically equal. For all x and y, we
have, up to additive constant terms,

C(x|y) ≤ K(x|y) ≤ C(x|y) + 2 logC(x|y).

Since the prefix partial recursive functions are a restriction on the notion
of partial recursive functions, it is obvious that C(x|y) ≤ K(x|y). To
prove the second inequality, we recall that for each x and y the reference
machine of the C-complexity of Definition 2.1.2 on page 106 computes
output x from some input 〈y, p〉 with l(p) = C(x|y). We know that
l(p)p is a self-delimiting encoding for p. Therefore, K(x|y) ≤ C(x|y) +
2l(C(x|y)) +O(1). 3

It is straightforward to extend this idea by having a prefix machine V compute
x from input pr0pr−10 . . . 0p01. Here pi+1 is the shortest program for the length
of pi, and p0 is the shortest program to compute x given y. If V = Tn, then
U(n, y, pr0pr−10 . . . 0p01) = x, and

K(x|y) ≤ C(x|y) + C(C(x|y)) + · · · +O(1) + r

≤ C(x|y) + C(C(x|y)) +O(logC(C(x|y))) +O(1),

where the · · · indicates all r positive terms, and the O(1) term comprises the
cost of encoding n. Using more efficient prefix-codes, we can improve the above
estimate. Let l∗ be as defined by Equation 1.23; we have

C(x|y) ≤ K(x|y) ≤ C(x|y) + l∗(C(x|y)) +O(1). (3.1)

A more precise relation between C(x) and K(x) was shown by R.M. Solovay:

K(x) = C(x) + C(C(x)) +O(C(C(C(x)))),

C(x) = K(x) −K(K(x)) −O(K(K(K(x)))).

The content of this observation is that in order to make the minimal C-style
program self-delimiting, we must prefix it with a self-delimiting encoding of
its own length. To within the cited error term, this simple procedure is always
optimal.

We have seen that C(x) is less than K(x), since in the definition of C(x)
we did not take the information into account that is needed to make the
program prefix-free. We can express C precisely in terms of K.

Lemma 3.1.1 C(x) is the unique (to within an additive constant) function satisfying

C(x) = min{i : K(x|i) ≤ i} +O(1) = K(x|C(x)) +O(1).

This equation can be generalized in the natural way to C(x|y).
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Proof. (≥) We prove C(x) ≥ K(x|C(x)) + O(1). The shortest Turing
machine program x∗ for x has length C(x). There is a prefix machine
that given C(x), computes x from x∗. Clearly, this also implies C(x) ≥
min{i : K(x|i) ≤ i} +O(1).

(≤) We prove C(x) ≤ min{i : K(x|i) ≤ i} + O(1). This is the same
as if K(x|i) ≤ i, then C(x) ≤ i + O(1). Assume that x is computed
by reference prefix machine U , given i, from input p, l(p) ≤ i. A Tur-
ing machine (not necessarily prefix machine) T , when presented input
0i−l(p)−11p, in case i − l(p) − 1 > 0, or input p otherwise, can extract
i from the input length and simulate U on p, using the extracted i as
the conditional value. By Theorem 2.1.1, page 105, C(x) ≤ CT (x) ≤ i,
up to additive constants. This proves the required inequality. A similar
proof, with C(x) substituted for i, proves C(x) ≤ K(x|C(x)) +O(1). 2

In Theorem 2.1.2 on page 108, we proved the upper bound C(x) ≤
n + O(1) for all x of length n. We have K(x) ≤ n + 2 logn + O(1) by
encoding x as l(x)x. We give a concrete upper bound on the implied
constant of the O(1) term in Section 3.2. We can improve the estimate
by more efficient prefix-codes (Section 1.11.1) to

K(x) ≤ log∗ n+ n+ l(n) + l(l(n)) + · · · +O(1), (3.2)

where the sum is taken over all positive terms.

Example 3.1.5 The length-conditional plain complexity figured prominently in Chap-
ter 2. Let us look at the prefix complexity version. With l(x) = n,

K(x) ≤ K(x|n) +K(n) +O(1)

≤ K(x|n) + log∗ n+ l(n) + l(l(n)) + · · · +O(1),

and, straightforwardly, K(x|n) ≤ C(x)+O(1) ≤ C(x|n)+K(n)+O(1).
The first inequality holds since the concatenation of a self-delimiting
program for l(x) and a self-delimiting program to compute x given l(x)
constitutes a self-delimiting program for x. The second inequality follows
from Equation 3.2, since K(n) ≤ log∗ n+ l(n) + l(l(n)) + · · · +O(1). 3

Exercises 3.1.1. [12] Use the Kraft inequality, Theorem 1.11.1, to show that
K(x) ≥ log x+ log log x for infinitely many x.

3.1.2. [14] We investigate transformations of complexity under the
arithmetic operation ∗. Show that

(a) K(x ∗ y) ≤ K(x) +K(y) +O(1);

(b) If x and y are primes, then K(x ∗ y) = K(x, y) +O(1);
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(c) K(x ∗ y) + log(x ∗ y) ≥ K(x, y) +O(1);

Comments. Item (c): consider the prime factorization of z := x ∗ y.
Enumerate all decompositions of z into two factors and let x, y be the
jth decomposition. Use j and x ∗ y.
3.1.3. [16] Let us backtrack to the original definition of a Turing ma-
chine in Section 1.7. Instead of a tape alphabet consisting of 0, 1, and
the blank symbol B, we want to consider Turing machines with a tape
alphabet consisting only of 0 and 1. We can modify the original effec-
tive enumeration T1, T2, . . . in Section 1.7 to an effective enumeration
T b1, T

b
2, . . . of Turing machines using a purely binary tape alphabet,

without blanks B. Furthermore, assume that the set of inputs for halt-
ing computations of each Turing machine form a uniquely decodable
code.

(a) Define Kb(x) = min{l(p) + i + 1 : T ′
i(p) = x, i ≥ 1}. Show that

Kb(x) = K(x) +O(1).

(b) Show that restricting the Turing machines to a one-letter tape al-
phabet (with or without delimiting blanks) does not yield a proper com-
plexity measure.

Comments. By reformulating the notion of Turing machine with a purely
binary tape alphabet, without distinguished blank symbol B, we natu-
rally end up with the prefix complexity K(x). Hint for Item (a): use
the McMillan–Kraft theorem, Exercise 1.11.9 on page 88. Further re-
strictions of the tape alphabet do not yield proper complexity measures.
Hint for Item (b): show that there is no additively optimal partial re-
cursive function in this enumeration of partial recursive functions.

3.1.4. • [19] Do Exercise 2.1.9 on page 114 for K-complexity.

3.1.5. • [31] We can derive K(x) in another way. Define a complexity
function F (x) to be a function on the natural numbers with the prop-
erty that the series

∑
2−F (x) ≤ 1 and such that F (x) is upper semicom-

putable. That is, the set {(m,x) : F (x) ≤ m} is recursively enumerable.
(If F (x) = ∞, then 2−F (x) = 0.)

(a) Show that the number of x’s for which F (x) ≤ m is at most 2m.

(b) Show that there is an additively optimal (minimal) complexity F
such that for each complexity F ′ there is a constant c depending only
on F and F ′ but not on x such that F (x) ≤ F ′(x) + c. This is the
invariance theorem corresponding to Theorem 3.1.1.

(c) Show that F (x) = K(x)+O(1), where F (x) is the optimal complexity
in Item (b).

Comments. Hint for Item (b): define F (x) = mink{1, Fk(x) + k}, where
Fk is the complexity resulting from the kth partial recursive function
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after modifying it to satisfy the requirements above. This approach has
been proposed by L.A. Levin in a sequence of papers: [Russ. Math. Surv.,
25:6(1970), 83–124, Sov. Math. Dokl., 14(1973), 1413–1416, and Prob-
lems Inform. Transmission, 10(1974), 206–210 (where the equivalence
with the prefix machine approach is established)]. See also [P. Gács,
Sov. Math. Dokl., 15(1974), 1477–1480]. G.J. Chaitin [J. Assoc. Comp.
Mach., 22(1975), 329–340] used the prefix machine approach to define
K(x) but gave a different interpretation to the conditional complexity,
resulting in the Kc version in Example 3.9.2 and Exercise 3.9.3.

3.1.6. [39] Giving a definition of complexity of description, we use
recursive decoding functions from the set of finite binary strings to itself.
However, we can consider this set with different topologies. If we consider
distinct binary strings as incomparable, then this set corresponds to the
natural numbers N . If we consider the distinct binary words as compared
by the prefix relation, then we view them as nodes in a binary tree B∗,
B = {0, 1}, in the obvious way. Then there are four possible definitions
of recursive decoding mappings: from N to N , from N to B∗, from B∗

to N , and from B∗ to B∗. Exploit this idea to formalize the following:

(a) Using recursive decoding from N to N we obtain the plain complex-
ity C(x).

(b) Using recursive decoding from N to B∗ we obtain the uniform com-
plexity C(x;n) as defined in Exercise 2.3.2, page 130.

(c) Using recursive decoding from B∗ to N we obtain the prefix com-
plexity K.

(d) Using recursive decoding from B∗ to B∗ we obtain the monotone
complexity as defined by Levin and Schnorr (Section 4.5.4).

Comments. Source: A.K. Shen, Sov. Math. Dokl., 29:3(1984), 569–574;
V.A. Uspensky, pp. 85–101 in: Kolmogorov Complexity and Computa-
tional Complexity, O. Watanabe, Springer-Verlag, 1992.

3.2

*Sizes of the

Constants

The additive constants in the Kolmogorov complexity and prefix com-
plexity of an object depend on the particular choice of universal machine
fixed as the reference machine. A minor modification of the universal
Turing machine U of Example 1.7.4 on page 30 yields small implied
constants—1 instead of O(1). If we modify U to the reference universal
machine U ′ such that U ′(0p) = p and U ′(1p) = U(p), then

C(x) ≤ l(x) + 1, K(x) ≤ l(x) +K(l(x)) + 1.

But it is quite tedious to exhibit the explicit encoding of such a machine.
On the other hand, if we aim for a ‘small’ universal Turing machine,
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then it becomes difficult to determine the concrete implied constants—
which also may become quite large. With this in mind, we want to find
a machine model in which a concrete universal machine is easily, and
shortly, implemented from weak elementary operations and the implied
constants above are small and can be easily determined.

R. Penrose in [The Emperor’s New Mind, Oxford University press, 1989] en-
coded a universal Turing machine in 5495 bits. G.J. Chaitin [Complexity,
1:4(1995/1996), 55–59] used LISP and powerful elementary operations to de-
fine a universal machine to concretely determine prefix complexity and some
associated constants. Lambda calculus is simpler and more elegant than LISP.
Pure lambda calculus with combinators S and K is elegant, but slow to eval-
uate. Since we are concerned with simplicity of definition rather than with ef-
ficiency of execution, we base a concrete definition of Kolmogorov complexity
on combinatory logic. What follows is a very brief exposition on combinatory
logic (see [H.P. Barendregt, The Lambda Calculus, its Syntax and Semantics,
North-Holland, Amsterdam, 1984]), which develops into a discussion of how
to represent binary strings in it.

The primitive combinators S and K are defined by the rewrite rules

Sxyz = xz(yz),

Kxy = x.

Other combinators are constructed from these two by application. We
assume that application of x on y, written (xy), associates to the left,
and omit parentheses accordingly. Thus, Sxyz should be interpreted as
(((Sx)y)z). Perhaps surprisingly, S and K suffice to define any function
definable in standard lambda calculus. As an example, we can check that
I = SKz, for every z, is the identity function:

SKzx = Kx(zx) = x.

The combinator ∞ ≡ SSK(S(SSK)) is another interesting example—
when applied to any combinator, it leads to an infinite rewriting chain
(abbreviating S(SSK) to L):

∞x ≡ SSKLx = SL(KL)x = Lx(KLx) = S(SSK)xL

= SSKL(xL) ≡ ∞(xL) = ∞(xLL) = ∞(xLLL) . . . .

In our machine model we want to consider each combinator to be a
machine, capable of processing input bits and producing output bits.
This entails representing an input binary string by a combinator, to
which the machine can be applied, and a way of interpreting the result,
if possible, as an output binary string.

A rewrite of Sxyz or Kxy will form the basic machine cycle. Our com-
binator machines employ a lazy reduction strategy, in which only the
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frontal primitive combinator can be reduced. This is to avoid endless
rewrites that might be inconsequential for interpreting the result as a
string. Lazy reduction ends when a combinator of the form K, Kx, S,
Sx, or Sxy is reached, where we lack the required number of arguments
for reducing the front S/K (as in S(KKK)K).

3.2.1
Encoding
Combinators as
Binary Strings

The nice thing about combinators is that they have a wonderfully simple
encoding as binary strings that is also self-delimiting: encode S as 00,
K as 01, and application as 1. Formally, we define the encoding 〈C〉 of
a combinator C as

〈S〉 ≡ 00,

〈K〉 ≡ 01,

〈C0C1〉 ≡ 1〈C0〉〈C1〉.

For instance, the combinator S(KSS), (S((KS)S)) in full, is encoded
as 10011010000. The length of this encoding is 3n − 1, where n is the
number of primitive combinators (S and K) it contains.

3.2.2
Encoding
Booleans, Pairs,
and Binary
Strings as
Combinators

Define

0 ≡ K (false),

1 ≡ SK (true).

Then, ‘if B then P else Q’ can be represented by BQP . The simplest
way to pair two combinators x and y is to have something that when
applied to 0 gives x, and when applied to 1 gives y. What we want then
is a combinator, call it P , that satisfies Pxyz = zxy, for example,

P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK).

Lists are then constructed by repeated pairing as usual: Pl0(Pl1(Pl2 . . .))
represents the list [l0, l1, l2, . . .]. A special element to signal the end of a
list, like the null character signaling the end of a string in the C program-
ming language, will be helpful. Since we consider only lists of bits, we
require an element that is easily distinguished from 0 and 1. The sim-
ple KS is such an element, since KS00 = 1, while 000 = 100 = 0.
An empty list is then a list whose first element is KS, and we de-
fine this to be $ ≡ K(KS). In this way, we can make arbitrary lists
of 0’s and 1’s. For instance, the string s = 0111001 maps to the list
P0(P1(P1(P1(P0(P0(P1$)))))), conveniently—and a little confusingly,
since s itself doesn’t represent a combinator—denoted by (s$). One can
check that (s$)0 gives the first bit 0 of s, while (s$)1 gives the tail
P1(P1(P1(P0(P0(P1$))))) ≡ (111001$).
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3.2.3
Output
Conventions

If the machine halts, then how do we interpret the result as a binary
string? It is unreasonable to expect the result to be exactly identical
to (s$) for some string s, due to the lazy reduction. Instead, we should
focus on the individual bits s0s1 . . . sn−1 making up a string s. For a
combinator C, let C11 . . . 10 with i 1’s be denoted by Ci, that is, the
ith element of the list C. We say that combinator C produces output
s = s0 . . . sn−1 iff Cix0x1 reduces to xsi (= six0x1) for variables x0 and
x1 and i < n, while Cnx0x1 reduces to Sx1 (= $0x0x1). In this way a
single reduction distinguishes among the three possibilities.

Of course, not all combinators produce proper output in this sense. For
instance, S0x0x1 ≡ S0x0x1 = 0x1(x0x1) = x1 and S1x0x1 ≡ S10x0x1 =
1x0(0x0)x1 = 0x0x1 = x0, but S2x0x1 ≡ S110x0x1 = 10(10)x0x1 =
10x0x1 = x0x1. So the primitive combinator S can be interpreted as a list
starting with 2 bits, but the remainder cannot be interpreted as either
starting with a bit or behaving like the empty list. Such computations
must then be considered invalid. Having defined now how a combinator
can be seen as a machine taking binary strings as input and producing
binary strings as output, we return to our main objective.

3.2.4
The Universal
Combinator

A machine in our model is a combinator that is applied to the input
combinator—the list that the input string maps to—in order to produce
a proper output. For machines that are supposed to be able to detect
the end of their input, an input string s is mapped to the list (s$).

For prefix machines, which need to decide when to stop reading more
input based on what they have read so far, we can present them lists of
the form (s∞) for increasingly longer s until they halt. Recall that ∞
leads to an infinite computation. Therefore, halting of the machine on
(s∞) implies it has not read past string s.

3.2.5
Decoding a
Combinator
Encoding

We require combinators that given a list (i) produce the combinator
encoded on the initial part of that list and (ii) return the remaining part
of the list.

The following combinators do just that:

Qx = x0(x10SK)(Q(x1)(Q(R(x1)))) (initial combinator),

Rx = x0(x11)(R(R(x1))) (skip combinator).

It may look like cheating to define these combinators recursively, but
the fixpoint operator Y ≡ SSK(S(K(SS(S(SSK))))K) helps out. Y
has the nice property that Y x = x(Y x), allowing us to take Q ≡
Y Q′ and R ≡ Y R′, where Q′xy = y0(y11)(x(x(y1))) and R′xy =
y0(y10SK)(x(y1)(x(R(y1)))).

Putting the pieces together, we form the universal combinator

U ≡ SQR,
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FIGURE 3.1. The 425-bit universal combinator U ′ in pixels

which has the property that

U(〈C〉x) ≡ SQR(〈C〉x) = Q(〈C〉x)(R(〈C〉x)) = Cx.

3.2.6
Concrete
Complexities

At long last, we can define Kolmogorov complexity and prefix complexity
concretely.

The Kolmogorov complexity C(x) of a string x is the length of a minimal
string p such that U(p$) outputs x. The prefix complexity K(x) of a
string x is the length of a minimal string p such that U(p∞) outputs x.

To define Kolmogorov complexity conditional to a string y, we simply,
after applying U to the input, apply the result to (y$) in turn. (It is clear
how this approach can be extended to an arbitrary number of conditional
arguments.)

The Kolmogorov complexity C(x|y) of a string x conditional to a string
y is the length of a minimal string p such that U(p$)(y$) outputs x.
The prefix complexity K(x|y) of a string x conditional to a string y
is the length of a minimal string p such that U(p∞)(y$) outputs x.
In this way, combinatory logic makes an excellent vehicle for defining
Kolmogorov complexity concretely, and we obtain the following:

Theorem 3.2.1

C(x) ≤ l(x) + 8, C(ǫ) = 2,
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C(x|y) ≤ l(x) + 2,

K(x) ≤ 2l(x) + 231, K(ǫ) = 11,

K(x|l(x)) ≤ l(x) + 689,

K(x) ≤ l(x) + 2l(l(x)) + 1066.

For instance, to prove the result about K(x), note that a string s can be
encoded in a self-delimiting way as 1s01s1 . . . 1sn−10 of length 2n + 1.
The combinator D defined by Dx = x0$(P (x10)(D(x11))), expressible
as 77 primitive combinators, decodes this. The universal combinator U
takes 518 bits. A mere 425 bits suffices to encode the currently most par-
simonious universal combinator U ′, nearly 13 times smaller than the—
admittedly less optimized—universal Turing machine of Penrose referred
to above. Figure 3.1 represents U ′ graphically by a 17 × 25 matrix of
pixels, where a white pixel denotes 1 and a black pixel denotes 0. The
matrix should be read in row-major order.

3.3

Incompress-

ibility

The quantitative relations between K and C show that there must be
many incompressible strings with respect to K. For the C-complexity,
for each n, the maximal complexity of strings of length n equals n, up
to a fixed constant. With K-complexity life is not so simple.

Example 3.3.1 We first observe that since the range of K(·) is the code-word-length set
of a prefix-code, and it follows from the Kraft inequality, Theorem 1.11.1,
that

∑
2−K(x) ≤ 1. This implies the following:

If f(x) is a function such that the series
∑

x 2−f(x) diverges, thenK(x) >
f(x) infinitely often. Otherwise K(x) could not satisfy the Kraft in-
equality. For instance, choose f = fk for each fixed k, with fk(x) =
log x + log log x + · · ·+ log log · · · log x, the last term consisting of the
k-fold iterated logarithm.

Let f be a function such that the sum
∑

x 2−f(x) is at most 1. By the
Kraft inequality, the set {f(x) : x ∈ N} is the length set of the code-
word alphabet of a prefix-code. If, moreover, this prefix-code is decoded
by a prefix partial recursive function, then by Theorem 3.1.1, we have
K(x) ≤ f(x) +O(1). An easy example is f(x) = log(x) + 2 log log(x). 3

We cannot even give a recursive upper bound f(n) on the maximum
of K(x) for strings of length n that is always sharp to within a fixed
constant. Nonetheless, we can give a precise expression for the maximal
complexity of a string of length n. As we can expect, almost all x have
nearly maximal complexity. This is expressed in Theorem 3.3.1, which
we may regard as a prefix complexity analogue of Theorem 2.2.1 on
page 117. Item (ii) gives the distribution of description lengths.
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Theorem 3.3.1 (i) For each n, max{K(x) : l(x) = n} = n+K(n) +O(1).

(ii) For each fixed constant r, the number of x of length n with K(x) ≤
n+K(n) − r does not exceed 2n−r+O(1).

Proof. (i) (≤) Let U be the reference prefix machine of Theorem 3.1.1.
Consider a prefix machine T that on input qx, where U(q) = l(x), com-
putes T (qx) = x. Let T1, T2, . . . be the standard enumeration of prefix
machines. Since T is a prefix machine we have T = Tm for somem. Then,
U(m̄qx) = x. Hence, K(x) ≤ l(x)+K(l(x))+2l(m) with m independent
of x.

(≥) Since there are 2n strings x of length n, this follows from Item (ii).

(ii) Assume that a string x of length n satisfies

K(x) ≤ n+K(n) − r.

We now use a remarkable equality, whose proof is omitted at this point:

K(x) +K(n|x,K(x)) = K(n) +K(x|n,K(n)) +O(1).

(The proof uses Theorem 3.9.1—rather its corollary, Theorem 3.9.2 on
page 249—which in turn depends on Theorem 4.3.4 on page 275. We
did not find a satisfactory way to avoid dependence on later material.)
Substitute K(n|x,K(x)) = O(1), since n = l(x), to obtain

K(x|n,K(n)) ≤ n− r +O(1). (3.3)

By simple counting, there are fewer than 2n−r+O(1) strings x of length
n satisfying Equation 3.3, which is the required result. 2

By almost the same proof, the analogue of Theorem 3.3.1 holds for the
conditional complexity K(x|y). The notion of c-incompressible strings
can be formulated for K-complexity. But as the upper bound in Theo-
rem 3.3.1 suggests, this is more subtle than for C-complexity.

Example 3.3.2 Define K+(x) = max{K(y) : l(y) = l(x)}. By Theorem 3.3.1, the
great majority of all x’s of length n cannot be compressed. In fact, for
the majority of x’s the complexity K(x) significantly exceeds l(x). The
maximal randomness achievable by a string x of length n is K(x) =
n + K(n) + O(1). It is already natural to call x incompressible if the
length of a shortest program for x exceeds x’s length. 3

Definition 3.3.1 Let x be a string of length n. If K(x) ≥ n, then x is incompressible.
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Example 3.3.3 Consider the strings that are shortest programs themselves. Are they
compressible with respect to K-complexity? Denote a shortest program
for x by x∗. Clearly, K(x∗) ≤ l(x∗) + O(1), since a modification of the
reference machine U changes it into an identity machine V using the
same prefix-free set of programs as does U . The inequality follows if we
simulate V by U . Moreover, K(x∗) ≥ l(x∗)+O(1), since otherwise x∗ is
not a shortest program for x, by the usual argument. Consequently, the
prefix complexity of a shortest program does not rise above its length:

K(x∗) = l(x∗) +O(1).

By Theorem 3.3.1, therefore, the number of shortest programs occurring
in the set of all strings of length n does not exceed 2n−K(n)+O(1). That
is, the fraction of shortest programs among the strings of length n is at
most 2−K(n)+O(1), which goes to zero as n rises unboundedly. In fact, it
can be shown that the number of short programs is small, and that the
number of shortest programs for every string x is O(1) (Exercise 4.3.6,
page 287). 3

Exercises 3.3.1. [27] Let K+(x) be defined as in Example 3.3.2 on page 212. We
know that K+(x) = n+K(n) +O(1).

(a) Show that there are infinitely many n,m, x of length n and y of
length m with n < m such that K+(x) > n + logn + log logn and
K+(y) < m+ log logm.

(b) Show that K+(x) = max{K(y) : y ≤ x} + O(1), where ≤ is with
respect to the integer interpretation of x, y. This implies that K+(x)
is monotonic nondecreasing with increasing x, up to an O(1) additive
term.

(c) Show that there is a constant d > 0 such that for all n, there are at
least 2n/d strings x of length n such that K(x) = K+(x).

Comment. Item (b) gives an alternative definition of K+. Note that
the monotonicity of K+ in Item (b) only appears to be at odds with the
seemingly fluctuating behavior in item (a). Compare Item (c) with a sim-
ilar result for plain Kolmogorov complexity, Exercise 2.2.6 on page 122.
Source: G.J. Chaitin, Appl. Math. Comput., 59(1993), 97–100.

3.3.2. [22] Show that neither K(x) nor K(x|l(x)) is invariant with
respect to cyclic shifts. For example, K(x1:n) = K(xm+1:nx1:m) + O(1)
is not satisfied for all m, 1 ≤ m ≤ n.

Comments. Hint: choose x = 10 . . . 0, l(x) = 2k.

3.3.3. [32] Show that Kamae’s result, Exercise 2.7.5 on page 181, does
not hold for K(x|y).
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Comments. Source: P. Gács, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987.

3.3.4. [17] Show that K(x) ≤ K(x|n,K(n)) + K(n) + O(1), for n =
l(x).

Comments. Hint: K(x) ≤ K(x, n)+O(1). It is easy to see thatK(x, n) ≤
K(x|n,K(n)) + K(n) + O(1). Source: G.J. Chaitin, J. Assoc. Comp.
Mach., 22(1975), 329–340.

3.3.5. [15] Show that with n = l(x), we have C(x|n) ≤ K(x) ≤
C(x|n) + l∗(C(x|n)) + l∗(n) +O(1).

Comments. Hint: this is an easy consequence of Equation 3.1. Source:
S.K. Leung-Yan-Cheong and T.M. Cover, IEEE Trans. Inform. Theory,
IT-24(1978), 331–339.

3.3.6. [15] Let φ(x, y) be a recursive function.

(a) Show that K(φ(x, y)) ≤ K(x) +K(y) + cφ, where cφ is a constant
depending only on φ.

(b) Show that (a) does not hold for C-complexity.

Comments. Hint: in Item (b) use the fact that the logarithmic error term
in Theorem 2.8.2, page 190, cannot be improved.

3.3.7. [11] Show that K(x) ≤ C(x) + C(C(x)) +O(logC(C(x))).

3.3.8. [17] The following equality and inequality seem to suggest that
the shortest descriptions of x contain some extra information besides the
description of x.

(a) Show that K(x,K(x)) = K(x) +O(1).

(b) Show that K(x|y, i−K(x|y, i)) ≤ K(x|y, i).
Comments. These (in)equalities are in some sense pathological. But they
hold also for C(·). Source: P. Gács, Ibid.

3.3.9. [29] Let f(i, x) be the number of strings y such that K(y|x) ≤ i.
Show that log f(i, x) = i−K(i|x) ±O(1).

3.3.10. • [41] (a) Show that d({x : l(x) = n,K(x) < n−K(n)− r}) ≤
2n−r−K(r|n∗)+O(1).

(b) Show that there is a constant c such that if string x of length n ends
in at least r +K(r|n∗) + c zeros then K(x) < n+K(n) − r.

(c) Show that d({x : l(x) = n,K(x) < n−K(n)−r}) ≥ ⌊2n−r−K(r|n∗)−O(1)⌋.
Comments. As usual, n∗ denotes the shortest program for n, and if
there is more than one then the first one in standard enumeration. This
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improves the counting of the distribution of description lengths in The-
orem 3.3.1, Item (ii), to a tight bound, up to a multiplicative constant.
Hint: for Item (c) use Item (b). The right-hand side of Item (c) equals
0 for a negative exponent. Source: J.S. Miller, L. Yu [Oscillations in the
initial segment complexity of random reals, Manuscript, 2007 (with as
prequel Trans. Amer. Math. Soc., 360:6(2008), 3193–3210)].

3.3.11. • [46] How areK and C precisely related? Is K just a pumped-
up C-version? The following formulas relate C and K:

(a) Show that K(x) = C(x) + C(C(x)) +O(C(C(C(x)))).

(b) Show that C(x) = K(x) −K(K(x)) −O(K(K(K(x)))).

(c) Show that C(C(x)) −K(K(x)) = O(K(K(K(x)))).

(d) Show that K(K(K(x))) ∼ C(C(C(x))).

Comments. Clearly, we can replace C(C(x)) by K(C(x)) in the equality
of Item (a). Granted Items (c) and (d), it follows that Items (a) and (b)
are equivalent. These formulas express the number of extra bits needed
to convert a minimal-length program for the reference machine for C-
complexity into a minimal-length program for the reference machine of
K-complexity. Source is R.M. Solovay, Lecture Notes, 1975, unpublished,
and quoted in R.M. Solovay, Non-Classical Logics, Model Theory and
Computability, A.I. Aruda, N.C.A. da Costa and R. Chaqui, eds., North-
Holland, 1977, 283–307.

3.3.12. [32] Show that there is a constant c such that for every d we
have that if K(x) > l(x) +K(l(x)) − (d− c) then C(x) > l(x) − 2d.

Comments. This shows that if we can compress the K-complexity of
some x less than d−c below l(x)+K(l(x)), then we can compress the C-
complexity less than 2d below l(x). Here l(x)+K(l(x)) = K+(x)−O(1)
in Example 3.3.2 on page 212, and l(x) = C+(x)−O(1) of Exercise 3.4.1
on page 217. Source: A. Nies, Computability and Randomness, Oxford
Univ. Press, to appear.

3.3.13. • [34] Show that C and K do not agree, to within any given
additive constant, on which strings are more complex. Formally, show
that for every positive integer c, there are strings x, y such that both
C(x) − C(y) ≥ c and K(y) −K(x) ≥ c.

Comments. Source: attributed to An.A. Muchnik in [An.A. Muchnik,
S.Y. Positselsky, Theor. Comput. Sci., 271:1-2(2002), 15–35]. It follows
without too much difficulty from a theorem of R.M. Solovay, Ibid., that
maximal plain complexity does not imply maximal prefix complexity in
Exercise 3.5.1 on page 220.

3.3.14. [24] Let φ : {0, 1}∗ → N be a prefix algorithm, that is, a
partial recursive function with a prefix-free domain. Then the extension



216 3. Algorithmic Prefix Complexity

complexity of x with respect to φ is defined by Eφ(x) = min{l(p) : x is
a prefix of φ(p)}, or Eφ(x) = ∞ if there is no such p.

(a) Show that there is an additively optimal prefix algorithm φ0 such
that for any other prefix algorithm φ there is a constant c such that
Eφ0(x) ≤ Eφ(x) + c for all x. Select one such φ0 as reference and set
the extension complexity E(x) = Eφ0(x). Similarly, we can define the
conditional extension complexity E(x|y).
(b) Show that for the relation between the extension complexity E and
the prefix complexity K(x), with n = l(x),

E(x) ≤ K(x) ≤ E(x) +K(n) +O(1) ≤ E(x) + l∗(n) +O(1).

Comments. Source: S.K. Leung-Yan-Cheong, T.M. Cover, IEEE Trans.
Inform. Theory, IT-24(1978), 331–339.

3.4

K as an

Integer

Function

Consider K as an integer function K : N → N and determine its be-
havior. Most of the properties stated for C and C(·|l(·)) hold for K
and K(·|l(·)). We look at the items in the same order, and indicate the
similarities and differences.

All of Theorem 2.3.1, page 126, holds with K substituted for C. In
particular, therefore, K(x) is unbounded, and it (its limit inferior) goes
to infinity more slowly than any unbounded partial recursive function.
Although the conditional complexity K(·|l(·)) is unbounded, there is no
unbounded monotonic lower bound on it. That is, K(·|l(·)) drops below
a fixed constant infinitely often, Figure 3.2. This is just like the case of
C(·|l(·)) and has a similar proof.

In fact, even the least monotonic upper bounds on the length-conditional
complexities are similar. C(x|l(x)) reaches upper bound log(x) + O(1)
for infinitely many x just as C(x) does. But while K(x) exceeds log x+
log log x infinitely often by Theorem 3.3.1, clearly K(x|l(x)) ≤ l(x) +
O(1) for all x by Exercise 3.4.2 on page 217.

Both Theorem 2.3.2, page 127, and Theorem 2.3.3, page 127, hold with
C replaced by K. That is, K is not partial recursive and can be com-
puted only for finitely many x. However, K is an upper semicomputable
function, that is, the set {(m,x) : K(x) ≤ m} is recursively enumerable.
The same properties hold for the conditional complexity K(x|y).
There are small differences with respect to the four properties discussed
in Section 2.3. The function K is continuous in the sense that |K(x) −
K(x ± h)| ≤ K(h) + O(1). The function K(x) mostly hugs log∗ x +
l(x) + l(l(x)) + · · ·+O(1) in the sense that this is a good upper bound.
The function K(x) has many fluctuations for the same reasons as C(x).
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FIGURE 3.2. The graphs of K(x) and K(x|l(x))

For each c there is a bound on the length of a run of consecutive c-
incompressible numbers. However, the length of runs of c-incompressible
numbers rises unboundedly with c.

Exercises 3.4.1. [10] Let C+(x) := max{C(y) : l(y) = l(x)}, and K+(x) :=
max{K(y) : l(y) = l(x)} as in Example 3.3.2 on page 212.

(a) Show that C+(x) = log x+O(1).

(b) Show that K+(x) = log x+K(⌈log x⌉) +O(1).

3.4.2. [20] Analyze the integer function K(x|n) with n = l(x).

(a) Show that there is a constant c such that there are infinitely many
x such that K(x|n) ≤ c.

(b) Let h = n− C(x|n). Show that K(x|n) ≤ C(x|n) +K(h|n) +O(1).

(c) Use Item (b) to show that K(x|n) ≤ n+O(1) for all x.

(d) Show that K(x|n) ≤ C(x|n) + logn+O(1).

3.4.3. [12] Show that
∑

x 2−K(x|l(x)) does not converge.

3.4.4. [36] Use the notation of Exercise 3.4.1. Show that if K(x) =
K+(x), then C(x) = C+(x).

Comments. Source: R.M. Solovay, Lecture Notes, UCLA, 1975, unpub-
lished.

3.4.5. [39] (a) Show that l∗(x) = log x + log log x + · · · (all positive
terms) satisfies

∑

x 2−l
∗(x) <∞.

(b) Show that for all x we have K+(x) ≤ l∗(x) +O(1) (K+ as in Exer-
cise 3.4.1).

(c) Show that for most x we have K+(x) = l∗(x) +O(1).

K(x)

K(x|l(x))

l(x)

x

l (x)*
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Comments. Hint for Item (b): use Item (a). Source: attributed to T.M.
Cover [P. Gács, Lecture Notes on Descriptional Complexity and Ran-
domness, Manuscript, Boston University, 1987].

3.5

Random

Finite

Sequences

Recall that c-incompressible strings with respect to C coincide with c′-
random strings under the uniform distribution. Since a C-incompressible
string can be equated with its shortest program, Example 3.3.3 shows
that for appropriate constants c and c′, the c′-incompressible strings with
respect to K-complexity are a superset of the c-incompressible strings
with respect to C-complexity. But the following lemma shows that the
converse does not hold: there are incompressible strings with respect to
K-complexity that are not O(1)-random with respect to the uniform
distribution.

Lemma 3.5.1 For infinitely many n there are strings x of length n that have K(x) ≥ n
and C(x) ≤ n− logn.

Proof. Consider infinite sequences ω. By Corollary 2.5.1, for each ω there
are infinitely many n such that C(ω1:n) < n−logn. On the other hand, in
Theorem 3.6.1 we will show that ω is (Martin-Löf) random with respect
to the uniform measure iff K(ω1:n) ≥ n + O(1) for all n. Hence, the
n-length prefixes of any random ω, for the sequence of values n denoting
points where complexity oscillations reach logn below n, is an example
demonstrating the lemma. 2

Corollary 3.5.1 For each c, there are finite strings x that are incompressible according to
prefix complexity (K(x) ≥ l(x)) and that are not c-random finite strings
with respect to the uniform distribution.

Example 3.5.1 How much can K(x) exceed C(x) in effective terms? For most x we have

K(x) = C(x) +K(C(x)) +O(1).

Namely, on the one hand, for all x we have K(x) ≤ C(x) +K(C(x)) +
O(1) by Example 3.1.3 on page 202. On the other hand, by Theo-
rem 3.3.1, for most x we have K(x) ≥ C(x) +K(C(x)) + O(1). Hence,
we can conclude that the difference between K and C satisfies

K(x) − C(x) ≤ log∗(n) + l(n) + l(l(n)) + · · · + O(1),

for all x of length n, and that the inequality is nearly sharp for infinitely
many x, namely, for those x with C(x) = n+ O(1) and K(n) ≥ l(n) +
l(l(n)). 3



3.5. Random Finite Sequences 219

Denoting l(x) by n, Theorem 2.4.2 on page 139 identifies

δ0(x|L) = n− C(x|n) − 1

as a universal Martin-Löf test for the uniform distribution L. Corol-
lary 3.5.1 shows that we cannot simply express randomness of a finite
string under the uniform distribution in terms of its incompressibility in
the sense of prefix complexity.

Substituting the length-conditional version of Lemma 3.1.1,

C(x|n) = K(x|C(x), n) +O(1),

we obtain an expression that involves both K and C. This can be
avoided, in a somewhat contrived manner, by introducing an auxiliary
complexity based on K. Define

K(x; k) = min{i : K(x|k − i) ≤ i}.
Similar to Lemma 3.1.1 we obtain K(x; k) = K(x|k −K(x; k)). Define
the conditional auxiliary complexity in a similar way and denote it by
K(x; k|y). Using the same arguments as above, we obtain

K(x; k|k) = C(x|k) +O(1).

Then we can express the randomness deficiency found by a universal
P -test in terms of the auxiliary complexity. For P a recursive function,
it can be proven that

δ0(x|P ) = log
1

P (x)
−K

(

x; log
1

P (x)

∣
∣
∣
∣
n

)

is a universal P -test. If P is the uniform distribution on strings of length
n, then log 1/P (x) = n for all x of length n, and

δ0(x|L) = n−K(x;n|n) = n− C(x|n) +O(1)

is the familiar universal test for the uniform distribution L. Thus, while
Martin-Löf’s universal test for randomness of finite strings under the
uniform distribution is easily expressed in terms of C-complexity, Sec-
tion 2.4, we have to go through quite some contortions to express it in
terms of (a variant of) K-complexity. These contortions are necessary,
since it is only the form using K-complexity that is generalizable to
universal P -tests for arbitrary computable distributions P .

The extended theory of P -tests, and exact expressions for universal P -tests,
are treated in Section 4.3.5. These constructions show that the presence of C in
Martin-Löf’s expression n−C(x|n) is a lucky freak of the uniform distribution.
See P. Gács, Komplexität and Zufälligkeit, Ph.D. thesis, Mathematics Depart-
ment, J.W. Goethe Universität, Frankfurt am Main, 1978. In contrast, while
in Section 2.5 we did not succeed at all in expressing Martin-Löf’s universal
sequential test for randomness of infinite sequences under the uniform distri-
bution in terms of C(x), in Section 3.6 this will turn out to be straightforward
in terms of K(x).
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Exercises 3.5.1. [43] Recall the universal Martin-Löf test for randomness of finite
strings x of length n under the uniform distribution: δ0(x|L) = n−C(x)+
O(1). This was based on Theorems 2.1.2, 2.2.1 on pages 108, 117. The
analogous facts of Theorem 3.3.1 for K(x) suggest a test θ0(x|L) =
n+K(n) −K(x) +O(1), with the same intuitive interpretation.

(a) Show that θ0(x|L) ≥ δ0(x|L) + O(log δ0(x|L) + 1). Hence, if θ0 is
small, then δ0 is small (and this is the sense in which strings that are
K-random are C-random).

(b) Construct an infinite sequence of finite strings xm with the following
properties: (i) l(xm) → ∞ for m→ ∞; (ii) C(xm) = l(xm) +O(1); and
limm→∞ θ0(xm|L)/ log2 l(xm) = 1. In this sense, C-randomness does not
entail K-randomness.

(c) Show that lim supn→∞(K(n)−C(n)−K(K(n)))/K(K(K(n))) ≤ 1.
Use Item (b) to improve this to an equality. The same method provides
a counterexample to various improvements in the error terms of the
formulas relating C(x) and K(x) in Exercise 3.3.11.

(d) Use Item (c) to show that the seductive equality K(x) = C(x) +
K(C(x)) +O(1) is false in general (although it obviously holds for all x
that are random enough).

Comments. Hint for Item (c): use Use Exercise 3.3.11. Source is R.M.
Solovay, Lecture Notes, UCLA, 1975, unpublished.

3.6

*Random

Infinite

Sequences

Let ω be an infinite binary sequence. We are interested in the behavior
of K(ω1:n) as a function of n. The complexity K(ω1:n) will turn out
to be nonmonotonic in n, just like C-complexity. We will find that an
infinite sequence ω is random under the uniform measure iff a simple
condition on K(ω1:n) is satisfied. For the C-complexity we were unable
to find such a condition in Section 2.5.

Example 3.6.1 We show that K(0n) as a function of n is not monotonic. Choose n with
K(n) ≥ l(n). Let m = 2k ≥ n with k minimal. Then 0n is a prefix of
0m. Firstly, K(0n) ≥ logn + O(1). Secondly, K(m) = K(k) + O(1) ≤
2 log logn+O(1). Therefore, K(0n) is exponential in K(0m). 3

Theorems 2.5.1, 2.5.4 on pages 143, 152 show, for almost all infinite
binary sequences, that the oscillations of the C-complexity of initial seg-
ments of almost all sequences, as a function of their length, are confined
to a thin wedge below the identity function n + O(1). Both random
sequences and some nonrandom sequences oscillate in this wedge. For
K-complexity the wedge

n+O(1) < K(ω1:n) ≤ n+K(n) +O(1)
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contains all and only infinite random sequences. (The upper bound holds
for all infinite sequences by Theorem 3.3.1; the lower bound for random
sequences is proved in Schnorr’s Theorem 3.6.1 on page 222.) The com-
plexity oscillations are in some form still there, but K exceeds C by so
much that the complexity of the prefix does not drop below the length
of the prefix itself (for random infinite ω).

3.6.1
Explicit Universal
Randomness
Tests

The idea that random infinite sequences are those sequences such that
the complexity of the initial n-length segments is at most a fixed addi-
tive constant below n, for all n, is one of the first-rate ideas in the area
of Kolmogorov complexity. In fact, this was one of the motivations for
Kolmogorov to invent Kolmogorov complexity in the first place; see the
discussion in Section 1.9 on page 56. We have seen in Section 2.5 that
this does not work for the plain Kolmogorov complexity C(·), due to the
complexity oscillations. The next result is important, and is a culmina-
tion of the theory. For prefix complexity K(·) it is indeed the case that
random sequences are those sequences for which the complexity of each
initial segment is at least its length.

A.N. Kolmogorov suggested the above relation between the complexity of ini-
tial segments and randomness of infinite sequences [A.N. Kolmogorov, IEEE
Trans. Inform. Theory, IT-14:5(1968), 662–664]. This approach being incor-
rect using C(·) complexity, P. Martin-Löf [Inform. Contr., 9(1966), 602–619]
developed the theory as put forth in Section 2.5. Nevertheless, Kolmogorov did
not abandon the general outlines of his original idea of connecting randomness
of infinite sequences with complexity; see pp. 405–406 of [V.A. Uspensky, J.
Symb. Logic, 57:2(1992), 385–412].

C.P. Schnorr [J. Comput. System Sci., 7(1973), 376–388] for the uniform distri-
bution, and L.A. Levin [Sov. Math. Dokl., 14(1973), 1413–1416] for arbitrary
computable distributions, introduced simultaneously and independently simi-
lar but unequal versions of complexity to characterize randomness. These ver-
sions are ‘process complexity’ and the ‘monotone’ variant of complexity Km(x)
(Definition 4.5.9 on page 305). They gave the first realizations of Kolmogorov’s
idea by showing Corollary 4.5.3 on page 318, that an infinite sequence ω is
random iff |Km(ω1:n)−n| = O(1) (Levin) and a similar statement for process
complexity (Schnorr).

G.J. Chaitin [J. Assoc. Comp. Mach., 22(1975), 329–340] proposed calling an
infinite sequence ω random if K(ω1:n) ≥ n−O(1) for all n. Happily, this pro-
posal characterizes once again precisely those infinite binary sequences that
are random in Martin-Löf’s sense (without proof attributed to C.P. Schnorr,
1974, in Chaitin’s paper). This important result, now known as Schnorr’s the-
orem, Theorem 3.6.1, was widely circulated, but the first published proof ap-
pears, perhaps, only as Corollary 3.2 in [V.V. Vyugin, Semiotika i Informatika,
16(1981), 14–43, in Russian]. See for historical notes [A.N. Kolmogorov and
V.A. Uspensky, SIAM J. Theory Probab. Appl., 32(1987), 387–412].

Another equivalent proposal in terms of constructive measure theory was given
by R.M. Solovay, Exercise 2.5.9, page 159. The fact that such different effec-
tive formalizations of infinite random sequences turn out to define the same
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mathematical object constitutes evidence that our intuitive notion of infinite
sequences that are effectively random coincides with the precise notion of
Martin-Löf random infinite sequences.

Theorem 3.6.1 An infinite binary sequence ω is random with respect to the uniform
measure iff there is a constant c such that for all n, K(ω1:n) ≥ n− c.

Proof. (Only if) Assume that ω is a random infinite sequence. Then,
for each sequential test δ, we have δ(ω) <∞, Section 2.5. We construct
a particular sequential test, say δ, such that if δ(ω) < ∞, then there is
a constant c such that K(ω1:n) ≥ n− c, for all n.

Recall the usual preliminaries. If y is a finite string, then Γy denotes the
set of infinite sequences ω that start with y. Let λ denote the uniform
measure, so that with l(y) = n we have λ(Γy) = 2−n. Geometrically
speaking, Γy corresponds to the half-open interval [0.y, 0.y + 2−n).

Define δ as follows. Consider a sequence A0 ⊃ A1 ⊃ · · · of sets of finite
strings such that

Ak =
⋃

n≥1

{y : K(y) ≤ n− k − c′, n = l(y)},

with c′ a fixed constant that is large enough to make the remainder of
the proof go through. Define a total function γ by γ(y) = supk∈N {k :
y ∈ Ak}. Since K is an upper semicomputable function (it can be ap-
proximated from above), γ is a lower semicomputable function (it can be
approximated from below). Finally, for each infinite sequence ω define
δ(ω) = supn∈N {γ(ω1:n)}.
To prove that δ is a sequential test, it suffices to show that λ{ω : δ(ω) ≥
k} ≤ 2−k, for each k ≥ 0.

There are fewer than a(k, n) = 2n−K(n)−k strings y of length n of com-
plexity K(y) ≤ n− k − c′ (Theorem 3.3.1). This bounds the number of
strings of length n in Ak. Overestimating λ{x : δ(ω) ≥ k}, using a(k, n),
rearranging terms, and employing Kraft’s inequality (Theorem 1.11.1)
to argue that

∑
2−K(n) ≤ 1, we have

λ{ω : δ(ω) ≥ k} ≤
∑

y∈Ak

λ{Γy}

≤
∑

n∈N
a(k, n)2−n

= 2−k
∑

n∈N
2−K(n) ≤ 2−k.
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It is now proved that δ is a sequential test. If ω is random in the sense
of Martin-Löf, then δ(ω) < ∞. That is, for each random ω there is a
constant c <∞ such that K(ω1:n) ≥ n− c, for all n.

(If) Suppose that ω is not random, that is, there is a sequential test
δ such that δ(ω) = ∞. We show that this implies that n − K(ω1:n)
is positively unbounded. Let γ be the defining lower semicomputable
function of δ as in Definition 2.5.1. For all k ≥ 1, define Ak as the
maximal prefix-free subset of {y : γ(y) ≥ k} . Therefore,

∑

y∈Ak
2−l(y) ≤

1 by Kraft’s inequality. Then

L = {l(y) − k : y ∈ A2k, k > 1}

satisfies Kraft’s inequality

∑

k>1

∑

y∈A2k

2k−l(y) ≤
∑

k>1

2−k ≤ 1.

This means that L is the length set of a prefix-code. Use γ to enumerate
⋃{A2k : k > 1}. Use this enumeration to construct a prefix machine T
such that KT (y) = l(y) − k for all y ∈ A2k, k > 1.
We have assumed δ(ω) = ∞. Hence, for each k, there is an n such that
ω1:n ∈ A2k, which means that KT (ω1:n) ≤ n − k. By Theorem 3.1.1,
there is a constant cT such that K(ω1:n) ≤ KT (ω1:n) + cT . Therefore,

lim sup
n→∞

(n−K(ω1:n)) = ∞.

2

Corollary 3.6.1 The function ρ0(ω|λ) = supn∈N {n−K(ω1:n)} characterizes the random
infinite sequences by ρ0(ω|λ) < ∞ iff ω is random with respect to the
uniform measure λ. (In terms of our previous notation, ρ0(ω|λ) <∞ iff
δ0(ω|λ) <∞, where δ0(·|λ) is the universal sequential λ-test with λ the
uniform measure.)

There are different types of tests that characterize precisely the same
class of random infinite sequences. The sequential tests are but one
type. The test ρ0 is an example of an integral test (a universal one)
with respect to the uniform measure as defined in Section 4.5.6. The
introduction of different types of tests awaits the machinery developed
in Chapter 4. The theory of integral tests and martingale tests of infinite
sequences is developed in Sections 4.5.6 and 4.5.7, respectively. There
we also give exact expressions for tests that separate the random infi-
nite sequences from the nonrandom ones with respect to any recursive
measure.
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FIGURE 3.3. Complexity oscillations of a typical random sequence ω

Example 3.6.2 The proof of Theorem 3.6.1 shows that the separation of a random infi-
nite sequence from the nonrandom ones involves a complexity gap. That
is, for random ω the amount by which K(ω1:n) exceeds n goes to ∞ in
the limit; for nonrandom ω the amount by which n exceeds K(ω1:n) may
fluctuate but is also unbounded. So the value of K(ω1:n) as a function
of n is bounded away from the diagonal in either direction for all ω:
nonconstant far below for the nonrandom sequences, and nonconstant
far above for the random sequences, Figure 3.3. See also [G.J. Chaitin,
Algorithmic Information Theory, Cambridge Univ. Press, 1987].

In the C-complexity version, random infinite sequences have oscillations
of the complexity of initial segments below the diagonal. With K com-
plexity similar oscillations must take place above the diagonal. Some
relevant properties are surveyed in the table of Figure 3.4.

For example, the maximal complexity of some ω1:n is K(ω1:n) = n +
K(n) + O(1), Theorem 3.3.1. But similar to the case for C(ω) (Theo-
rem 2.5.1 on page 143), no single ω satisfies K(ω1:n) ≥ n+K(n)+O(1)
for all n. In fact, in analogy to the proof of Theorem 2.5.1, we find that
for all ω, for infinitely many n,

K(ω1:n) ≤ K(C(ω1:n)) + C(ω1:n) +O(1)

≤ n− g(n) +K(n− g(n)) +O(1)

≤ n− g(n) +K(n) +O(1),

ω is random iff ω is not random iff

ρ0(ω|λ) <∞ iff ρ0(ω|λ) = ∞ iff
∃c∀n[K(ω1:n) ≥ n− c] iff ∀c∃n[K(ω1:n) < n− c] iff
limn→∞K(ω1:n) − n = ∞ lim supn→∞ n−K(ω1:n) = ∞

FIGURE 3.4. K-complexity criteria for randomness of infinite sequences
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where g(n) is as defined in the proof of Theorem 2.5.1. Actually,

lim sup
n→∞

K(n) − g(n) = ∞,

since the series
∑

n 2−g(n) diverges and the series
∑

n 2−K(n) converges.
The infinity on the right-hand side means something very slowly in-
creasing, like log∗ n and l∗(n). Generally, the complexity oscillations of
a random sequence ω will look like the graph in Figure 3.3.

In analogy to Theorem 2.5.4 on page 152, we observe the following: By
Theorem 2.5.5 on page 153, the set of infinite binary sequences that
are random in the sense of Martin-Löf have (uniform) measure one. By
Schnorr’s theorem, Theorem 3.6.1, this is precisely the set of ω’s with
K(ω1:n) ≥ n + O(1). To get some insight into the amplitude of the
upward oscillations, we note that the set of ω’s such that for infinitely
many n,

K(ω1:n) ≥ n+K(n) +O(1)

has uniform measure one, Exercise 3.6.3 on page 229. M. van Lambal-
gen [J. Symb. Logic, 52(1987), 725–755] suggests that far from being a
nuisance, the complexity oscillations actually enable us to discern a fine
structure in the theory of random sequences (see also Exercise 3.6.11,
page 232). For all sequences relatively low in the recursive hierarchy,
such as ∆0

2 definable sequences (for a definition see Exercise 3.6.11 on
page 232), the upward oscillations are not maximal, since

lim
n→∞

n+K(n) −K(ω1:n) = ∞.

There are Martin-Löf random sequences that are ∆0
2 definable, such as

Chaitin’s halting probability number Ω of Section 3.6.2. The complexity
oscillations of this restricted type of random sequences, of which Ω is
a typical example, are confined to a narrower wedge, as in Figure 3.5,
than the general random sequences of Figure 3.3. The monotone com-
plexity, Chapter 4, was developed to smooth out the oscillations and
to characterize randomness. But monotone complexity also obliterates
all quantitative differences between Martin-Löf random sequences, and
hence does not allow us to distinguish stronger randomness properties.

3

3.6.2
Halting
Probability

It is impossible to construct an infinite random sequence by algorithmic
means. But using the reference prefix machine U of Theorem 3.1.1, we
can define a particular random infinite binary sequence in a more or less
natural way.
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FIGURE 3.5. Complexity oscillations of Ω

Definition 3.6.1 The halting probability is the real number Ω defined by

Ω =
∑

U(p)<∞
2−l(p),

the sum taken over all inputs p for which the reference machine U halts.

Since U halts for some p, we have Ω > 0. Because U is a prefix machine,
the set of its programs forms a prefix-code, and by Kraft’s inequality we
obtain Ω ≤ 1. Actually, Ω < 1, since U does not always halt.

We call Ω the halting probability because it is the probability that U
halts if its program is provided by a sequence of fair coin flips. The
number Ω has interesting properties. In the first place, the binary rep-
resentation of the real number Ω encodes the halting problem very com-
pactly. Denote the initial n-length segment of Ω after the decimal point
by Ω1:n. If Ω is a terminating binary rational number, then we use the
representation with infinitely many zeros, so that Ω < Ω1:n + 2−n. We
shall show that the binary expansion of Ω is an incompressible sequence.

Lemma 3.6.1 Let p be a binary string of length at most n. Given Ω1:n, it is decidable
whether the reference prefix machine U halts on input p.

Proof. Clearly,

Ω1:n ≤ Ω < Ω1:n + 2−n. (3.4)

Dovetail the computations of U on all inputs as follows: The first phase
consists in U executing one step of the computation on the first input.
In the second phase, U executes the second step of the computation on
the first input and the first step of the computation on the second input.

n

} growing gap

} growing gap

*l+n )n(

n

K(Ω1:n)
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Phase i consists in U executing the jth step of the computation on the
kth input, for all j and k such that j+ k = i. We start with an approxi-
mation Ω′ := 0. Execute phases 1, 2, . . . . Whenever any computation of
U on some input p terminates, we improve our approximation of Ω by
executing

Ω′ := Ω′ + 2−l(p).

This process eventually yields an approximation Ω′ of Ω, such that Ω′ ≥
Ω1:n. If p is not among the halted programs that contributed to Ω′,
then p will never halt. With a new p halting we add a contribution of
2−l(p) ≥ 2−n to the approximation of Ω, contradicting Equation 3.4 by

Ω ≥ Ω′ + 2−l(p) ≥ Ω1:n + 2−n.

2

Lemma 3.6.2 There is a constant c such that K(Ω1:n) ≥ n− c for all n.

That is, Ω is a particular random real, and one that is naturally defined to
boot. That Ω is random implies that it is not computable, and therefore tran-
scendental. Namely, if it were computable, then K(Ω1:n|n) = O(1), which
contradicts Claim 3.6.2. By the way, irrationality of Ω implies that both in-
equalities in Equation 3.4 are strict.

Proof. From Lemma 3.6.1 it follows that given Ω1:n, one can calculate all
programs p of length not greater than n for which the reference prefix
machine U halts. For every x that is not computed by any of these
halting programs, the shortest program x∗ has size greater than n, that
is, K(x) > n. Hence, we can construct a recursive function φ computing
such high-complexity x’s from initial segments of Ω such that for all n,

K(φ(Ω1:n)) > n.

Given a description of φ in c bits, for each n we can compute φ(Ω1:n)
from Ω1:n, which means that

K(Ω1:n) + c ≥ n,

which was what we had to prove. 2

Corollary 3.6.2 By Schnorr’s theorem, Theorem 3.6.1, we find that Ω is random in
Martin-Löf’s sense with respect to the uniform measure.

It is possible to determine the first couple of bits of the halting probability. For
example, with the concrete Kolmogorov complexity fixed in Section 3.2, J.T.
Tromp has computed 0.00106502 < Ω < 0.217643. This is because many short
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strings are either not syntactically correct programs for the concrete universal
machine, or they halt quickly, or looping is easily detected. But knowing, say,
the first 10,000 bits of Ω enables us to solve the halting of all programs of
fewer than 10,000 bits. This includes programs looking for counterexamples
to Fermat’s last theorem, the Goldbach conjecture, the Riemann hypothesis,
and most other conjectures in mathematics that can be refuted by single finite
counterexamples. Moreover, for all axiomatic mathematical theories that can
be expressed compactly enough to be conceivably interesting to human beings,
say in fewer than 10,000 bits, Ω10,000 can be used to decide for every statement
in the theory whether it is true, false, or independent. Finally, knowledge of
Ω1:n suffices to determine whether K(x) ≤ n for each finite binary string x.
Thus, Ω is truly the number of Wisdom, and “can be known of, but not known,
through human reason” [C.H. Bennett and M. Gardner, Scientific American,
241:11(1979), 20–34]. But even if you possess Ω1:10,000 , you cannot use it except
by spending time of a thoroughly unrealistic nature. (The time t(n) it takes
to find all halting programs of length less than n from Ω1:n grows faster than
any recursive function.)

Exercises 3.6.1. [21] Let A be an infinite recursively enumerable set of natural
numbers. Show that if we define θ =

∑

n∈A 2−K(n), then K(θ1:n) ≥
n − O(1) for all n. (Therefore, θ is a random infinite sequence in the
sense of Martin-Löf by Schnorr’s theorem, Theorem 3.6.1.)

Comments. It follows that θ is not a recursive number. Because θ is not
a recursive real number it is irrational and even transcendental. Source:
G.J. Chaitin, Algorithmic Information Theory, Cambridge University
Press, 1987.

3.6.2. [23] Let 1 < r, s < ∞ be integers. Show that a real number in
the unit interval [0, 1] expressed in r-ary expansion (equivalently, infinite
sequence over r letters) is Martin-Löf random with respect to the uniform
distribution in base r iff it is random expressed in s-ary expansion with
respect to the uniform distribution in base s.

Comments. Hint: by Exercise 3.1.4 we have for each pair of integers
r, s ≥ 2 that |Kr(x) − Ks(x)| ≤ cr,s for all x ∈ N and some constant
cr,s independent of x. Use the fact that an infinite binary sequence ω
is random with respect to the uniform distribution iff K(ω1:n) ≥ n − c
for some constant c and all n, Schnorr’s theorem, Theorem 3.6.1. (Note:
K ≡ K2.) The argument cannot be too trivial, since a total recursive 1–1
function f can map ω = ω1ω2 . . . to ζ = ω10ω20 . . . . Then f−1(ζ) = ω.
But ζ is not random, even if ω is. Source: C. Calude and H. Jürgenson,
pp. 44–66 in: H. Maurer, J. Karhumaki, and G. Rozenberg, eds., Results
and Trends in Theoretical Computer Science, Springer-Verlag, Berlin,
1994. This result is a special case of the simple and much more general
approach of Exercise 4.5.15 on page 329, and is folklore.
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3.6.3. [29] We investigate the complexity oscillations of K(ω1:n) for
infinite binary sequences ω. If ω is an infinite sequence that is random
in the sense of Martin-Löf, then these oscillations take place above the
identity line, K(ω1:n) ≥ n+O(1), for all but finitely many n. The max-
imal possible complexity of ω1:n is K(ω1:n) = n + K(n) + O(1), Theo-
rem 3.3.1. But similar to the case for C(ω), Theorem 2.5.1 on page 143,
no ω satisfies the following: there is a constant c such that for all n, we
have K(ω1:n) ≥ n+K(n) − c.

(a) Show that for every ω there are infinitely many n such thatK(ω1:n) ≤
n + K(n) − g(n) + O(1), where g(n) is as defined in the proof of The-
orem 2.5.1. Can you generalize this to obtain the analogue of Theo-
rem 2.5.1?

(b) Let the series
∑

n 2−f(n) < ∞ converge recursively. Show that for
almost all infinite binary sequences ω we haveK(ω1:n) ≥ n+K(n)−f(n)
for all but finitely many n. This gives a lower bound on the dips of the
downward oscillations for almost all ω.

(c) In analogy with Theorem 2.5.4, page 152, we can note the following:
By Theorem 2.5.5, page 153, the set of infinite binary sequences that
are random in the sense of Martin-Löf have uniform measure one. By
Schnorr’s theorem, Theorem 3.6.1, these are the ω’s, with K(ω1:n) ≥ n
for all but finitely many n. Show that the set of ω’s with K(ω1:n) ≥
n+K(n) +O(1), for infinitely many n, has uniform measure one. This
gives some insight into the amplitude of the upward oscillations. Not all
Martin-Löf random sequences achieve this.

(d) Let f(n) be a recursive function such that the series
∑

n 2−f(n)

diverges. Show that the set of ω’s with K(ω1:n) ≥ n + f(n) + O(1),
for infinitely many n, has uniform measure one and contains all infinite
binary sequences that are Martin-Löf random.

Comments. Hint for Item (a): K(ω1:n) ≤ C(ω1:n) +K(C(ω1:n)) +O(1),
and use Theorem 2.5.1, page 143. Note that lim supn→∞K(n)− g(n) =
∞. This gives an upper bound on the dips of the downward oscillations:
the least monotonic upper bound onK(n)−g(n) rises very, very, slowly—
more slowly than the k-fold iterated logarithm for any fixed k. Hint for
Item (b):

∑

n 2−f(n)−d ≤ 1 for some nonnegative constant d. By the
Kraft inequality, Theorem 1.11.1, there is an effective prefix-code E such
that l(E(n)) = f(n) + d for all n. By Theorem 3.1.1, K(n) ≤ l(E(n))
for every effective prefix-code E, up to a constant depending only on
E. Thus, K(n) ≤ f(n) + d for a different constant d depending only
on f . The result now follows from Section 3.6. Compare Item (d) with
the stronger Item (b) of Exercise 3.6.4. Source: van Lambalgen [Random
Sequences, Ph.D. thesis, University of Amsterdam, 1987; J. Symb. Logic,
52(1987), 725–755]. Items (c) and (d) are attributed to R.M. Solovay.
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3.6.4. [26/38] Let ω be an infinite binary sequence.

(a) Show that ω is Martin-Löf random iff
∑

n 2n−K(ω1:n) <∞.

(b) Let f be a (possibly nonrecursive) function such that
∑

n 2−f(n) =
∞. Assume that ω is random in Martin-Löf’s sense. Then, K(ω1:n) >
n+ f(n) −O(1) for infinitely many n.

Comments. Item (a) gives a characterization of Martin-Löf randomness.
Item (b) is stronger than Item (d) of Exercise 3.6.3. Source: J.S. Miller,
L. Yu, Trans. Amer. Math. Soc., 360:6(2008), 3193:3210; The ‘only if’
side of Item (a) admits also of a simple proof by martingales due to A.
Nies. The ‘if’ side is immediate from Schnorr’s theorem, Theorem 3.6.1.

3.6.5. [36] Let f be a function. (a) Show that if the series
∑

n 2−f(n)

converges, then there is a Martin-Löf random sequence ω such that
K(ω1:n) ≤ n+ f(n) +O(1), for all n.

(b) Show that
∑

n 2−f(n) = ∞ iff for every Martin-Löf random sequence
ω there are infinitely many n such that K(ω1:n) > n+ f(n).

Comments. This gives the extent of the upward oscillations of ran-
dom sequences, in particular the functions f such that the initial n-
segment complexity infinitely often exceeds n+f(n). Source: J.S. Miller,
L. Yu, Oscillations in the initial segment complexity of random reals,
Manuscript, 2007.

3.6.6. [39] We improve on Exercise 3.6.3, Item (b). As usual, n∗ de-
notes the shortest program for n, and if there is more than one, then the
first one in standard enumeration. Let f be a function.

(a) Show that if
∑

n 2−f(n)−K(f(n)|n∗) <∞, then K(ω1:n) ≥ n+K(n)−
f(n) for all but finitely many n, for almost every ω ∈ {0, 1}∞.

(b) Show that if
∑

n 2−f(n)−K(f(n)|n∗) = ∞, then K(ω1:n) < n+K(n)−
f(n) for infinitely many n, for almost every ω ∈ {0, 1}∞.

(c) Show that if f is computable and
∑

n 2−f(n) = ∞, then K(ω1:n) <
n+K(n) − f(n) for infinitely many n, for every ω ∈ {0, 1}∞.

(d) Show that there is a function f such that
∑

n 2−f(n)−K(f(n)|n∗) <∞
but

∑

n 2−f(n) = ∞.

(e) Show that there is a function f with
∑

n 2−f(n) = ∞ but K(ω1:n) ≥
n+K(n)−f(n) for all but finitely many n, for almost every ω ∈ {0, 1}∞.

(f) If
∑

n 2−f(n) < ∞ then there exist infinitely many n such that
K(ω1:n) < n+ f(n), for almost every ω ∈ {0, 1}∞.

Comments. This gives a necessary and sufficient condition on the down-
ward oscillations of a function f to ensure that for almost all ω the com-
plexity K(ω1:n) drops below n + K(n) − f(n) infinitely often. Source:
J.S. Miller, L. Yu, Ibid.
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3.6.7. [43] Let ω be an infinite binary sequence. Show that the follow-
ing are equivalent to the sequence ω being random in Martin-Löf’s sense
(with respect to the uniform distribution):

(a) C(ω1:n) ≥ n−K(n) ±O(1) for every n.

(b) γ0(ω1:n|L) = n−C(ω1:n|n)−K(n)+O(1) is finite with L the uniform
measure.

(c) For every n and every recursive function g such that
∑

n 2−g(n) <∞,
we have C(ω1:n) ≥ n− g(n) ±O(1), the constant depending on g.

(d) C(ω1:n) ≥ n−G(n) ±O(1) for every n, and a single, appropriately
defined, computable function G.

Comments. In Item (b), the formula for γ0 expresses concisely and pre-
cisely how the complexity oscillations of C(ω1:n|n) of random infinite
sequences behave. This is Levin’s test—the characterization for random
sequences from which Theorem 2.5.4 on page 152 follows. Source for
Items (a) and (b): P. Gács, [Ph.D. thesis, Frankfurt am Main, 1978,
Theorem 5.4, Corollary 2; Z. Math. Logik Grundl. Math., 26(1980), 385–
394]. Source for Items (a), (c), and (d): J.S. Miller, L. Yu,, Trans. Amer.
Math. Soc., 360:6(2008), 3193–3210. Another proof of the difficult direc-
tion in the last reference is given in [L. Bienvenu, W. Merkle, A.K. Shen,
Fundamentae Informatica, 83(2008), 1–4].

3.6.8. • [39] Let ω = ω1ω2 . . . and ζ = ζ1ζ2 . . . be two infinite binary
sequences. Let ω ⊕ ζ = η mean that η2i = ωi and η2i+1 = ζi, for all i.

(a) Show that ω⊕ ζ is random in the sense of Martin-Löf iff ζ is random
in Martin-Löf’s sense and ω is Martin-Löf random in ζ (that is, given ζ
as an oracle).

(b) Show that ω ⊕ ζ is random in Martin-Löf’s sense iff K(ω1:n) +
C(ζ1:n) ≥ 2n−O(1).

Comments. Item (a) is the important van Lambalgen’s theorem. Source:
M. van Lambalgen, Ibid. Source Item (b): J.S. Miller, L. Yu, Ibid.

3.6.9. • [35] Recall that an infinite sequence ω is recursive iff C(ω1:n) ≤
C(n) + O(1), Example 2.3.4. If ω is recursive, then for all n we have
K(ω1:n|n) = O(1) and K(ω1:n) ≤ K(n) +O(1).

(a) Show that if K(ω1:n|n) ≤ c, for some c and all n, then ω is recursive.

(b) Show that if K(ω1:n) ≤ K(n) + c, for some c and all n, then ω is
recursive in 0′, the Turing degree of the halting problem.

(c) Show that there are nonrecursive ω’s satisfying K(ω1:n) ≤ K(n)+ c,
for some c and all n.
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(d) Show that for each constant c, there are at most O(2c) many ω such
that for all n, K(ω1:n) ≤ K(n) + c.

Comments. The constants c in Items (a) through (c) may depend on
ω. Item (b) is attributed to G.J. Chaitin, Item (c) to R.M. Solovay.
Source is R.M. Solovay, Lecture Notes, UCLA, 1975, unpublished, and
personal communication. For Item (d) and other discussion on this topic,
see [D. Zambella, On sequences with simple initial segments, ITLI Tech.
Rept. ML-90-05, Fac. Wiskunde en Informatica, University of Amster-
dam, 1990].

3.6.10. • [46] A set A ⊆ N is K-trivial if its characteristic sequence
χ = χ1χ2 . . . satisfies K(χ1:n) ≤ K(n)+O(1). Certain properties of such
sequences were already established in Exercise 3.6.9, Items (b) and (c).
Below, we identify sets with their characteristic sequences.

(a) Show that all K-trivial sets are ∆0
2-definable.

(b) Show that the class ofK-trivial sets is closed under ⊕, where ⊕ is de-
fined for the corresponding characteristic sequences as in Exercise 3.6.8.

(c) Show that a set A is K-trivial iff it is low for the class of Martin-Löf
random sets, that is, every Martin-Löf random set is already Martin-
Löf random relative to Turing machines with A as an oracle. In par-
ticular, K-triviality is closed downward under Turing reducibility; see
Exercise 1.7.16 on page 43.

(d) Show that a set A is K-trivial iff A is low for K, that is, K(x) ≤
KA(x) +O(1) for every x.

Comments. A great deal of recent recursion-theory research deals with
K-triviality, in particular with the nonrecursive K-trivial sequences.
They are nonrecursive, but only barely so, and in that sense not com-
pletely computably predictable. They are, so to speak, the sequences
exhibiting the weakest form of randomness and form the other side of
the random-sequence spectrum from the Martin-Löf random sequences.
Source for Items (a) and (b): R.G. Downey, D.R. Hirschfeldt, A. Nies, F.
Stephan, Proc. 7th and 8th Asian Logic Confs, Singapore Univ. Press,
2003, pp. 103–131. Source for Items (c) and (d): A. Nies, Adv. Math.,
197:1(2005), 274–305.

3.6.11. [27] Far from being a nuisance, the complexity oscillations ac-
tually enable us to discern a fine structure in the theory of random
sequences. A sequence ω is ∆0

2 definable if the set {n : ωn = 1} is ∆0
2 de-

finable, Exercise 1.7.21 on page 46. We consider infinite binary sequences
that are ∆0

2 definable (such as the halting probability Ω, Section 3.6.2).

(a) Show that if ω is ∆0
2 definable, then limn→∞ n − K(ω1:n|n) = ∞.

(This is, of course, interesting only for random ω’s.)
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(b) Show that if ω is ∆0
2 definable, then limn→∞ n+K(n)−K(ω1:n) = ∞.

(c) Show that if there is a constant c such that for infinitely many n we
have n + K(n) − K(ω1:n) ≤ c, then ω is not ∆0

2 definable. That is, if
such an ω is random, then it is not a simply definable random sequence.

Comments. Hint for Item (b): use Item (a). Items (a) and (b) delimit the
upswing of the complexity oscillations for ∆0

2 definable ω. Hint for Item
(c): use Exercise 3.6.3. The ∆0

2 definable random sequences are rather
atypical random sequences. (An example is the halting probability Ω.)
The K-complexity allows us to distinguish between easily definable ran-
dom sequences and those that are not so easily definable. Source: M. van
Lambalgen [Random Sequences, Ph.D. thesis, University of Amsterdam,
1987; J. Symb. Logic, 54(1989), 1389–1400].

3.6.12. [31] Let ω be an infinite binary sequence. Show that if there
exists a constant c such that K(ω1:n) ≥ n− c for all n, then for all k we
have K(ω1:n) − n ≥ k from some n onward.

Comments. Hint: This follows easily from Exercise 3.6.4 Item (a), and
can be seen as a strengthening of that result. Not only is the limit of
K(ω1:n)−n infinite when ω is Martin-Löf random, but it goes to infinity
fast enough to make the series in Exercise 3.6.4, Item (a), diverge. In
Schnorr’s theorem, Theorem 3.6.1, we showed that an infinite binary se-
quence is random with respect to the uniform measure iffK(ω1:n) ≥ n−c
for some c and all but finitely many n. There is not only a sharp divid-
ing line but a wide complexity gap that separates the random infinite
sequences from the nonrandom infinite sequences. With respect to the
uniform measure, we have in Exercise 2.5.9 defined the notion of a Solo-
vay test for randomness, and shown that a sequence ω is Martin-Löf
random iff it is Solovay random. Call ω weakly Chaitin random if there
is a constant c such that for all n, we have K(ω1:n) ≥ n− c. The results
referred to and this exercise show that the sets of infinite sequences de-
fined by all of these definitions coincide precisely. That different points
of departure attempting to formalize an intuitive notion (like random-
ness) turn out to define the same objects is commonly viewed as evi-
dence that the formalization correctly represents our intuition. Source:
G.J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press,
1987; attributed to C.P. Schnorr.

3.6.13. [38] Let ω be an infinite binary sequence that is random with
respect to the uniform measure. Let g be a recursive function such that
the series

∑

n 2−g(n) diverges, for example g(n) = logn. Let h be a
recursive function that is monotone and unbounded, such as h(n) =
log logn. Show that for infinitely many n we have K(n) ≥ g(n) and
K(ω1:n) ≤ n+ h(n).

Comments. Note that this does not imply that the greatest monotonic
nondecreasing lower bound on K(Ω1:n) − n is unbounded. Nonetheless,
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this is true. Source: R.M. Solovay, Lecture Notes, UCLA, 1975, unpub-
lished.

3.6.14. [29] Let ω = ω1ω2 . . . be an infinite binary sequence and let
c(ω) be the smallest c for which K(ω1:n) ≥ n− c. Let ω be Martin-Löf
random with respect to the uniform distribution. Let S(n) =

∑n
i=1 ωi.

(a) Show that given ǫ > 0, we can compute an n(c, ǫ) such that

∣
∣
∣
∣

Sn
n

− 1

2

∣
∣
∣
∣
< ǫ,

for every n > n(c, ǫ).

(b) Show that for given λ > 1, we can compute an n(c, λ) such that

Sn ≤ n

2
+ λ

√
n

2
ln lnn,

for every n > n(c, λ).

(c) Show that for given λ < 1, we can compute an n(c, λ) such that

Sn >
n

2
+ λ

√
n

2
ln lnn,

for some n ≤ n(c, λ).

Comments. Source: Suggested by J.T. Tromp. This is the law of the
iterated logarithm (Exercise 1.10.5 on page 65).

3.6.15. [41] Consider an infinite binary sequence ω as a real num-
ber r = 0.ω. Recall that ω is lower semicomputable if there is a to-
tal recursive function f : N → Q such that f(i + 1) ≥ f(i) and
limi→∞ f(i) = r. We call ω an Ω-like real number if (i) there is a lower
semicomputable function g such that g(n) = 0.ω1:n for every n; and (ii)
K(ω1:n) = K(Ω1:n) + O(1). A real number ω is arithmetically random
(with the uniform measure understood) if every arithmetic property of
ω (viewed as an infinite sequence of zeros and ones) holds for some set of
reals of uniform measure 1. In other words, ω is arithmetically random
iff ω does not belong to any arithmetic set of reals of uniform measure
zero. Since the arithmetic sets are Borel sets, and the union of countably
many Borel sets of uniform measure zero is again a Borel set of uniform
measure zero, the set of arithmetically random reals has uniform mea-
sure one. Let m(n) be the greatest monotonic lower bound on K(n),
that is, m(n) = min{K(x) : x ≥ n}. By the same argument as in the
proof of Theorem 2.3.2, page 127, for any recursive function φ(n) that
goes to infinity monotonically with n, we have m(n) < φ(n) from some
n onward.
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(a) Show that Ω is Ω-like.

(b) Show that Ω-like reals are Martin-Löf random.

(c) Show that arithmetically random reals are Martin-Löf random.

(d) Show that since Ω-like reals are ∆0
2 definable, they are not even

2-random in the sense of Exercise 3.6.19, so the set of Ω-like reals has
uniform measure zero.

(e) Show that if ω is arithmetically random, then there is a constant c
(depending on ω) such that for infinitely many n we have K(ω1:n) ≥
n+K(n) − c.

(f) Show that the ‘then’ property in Item (e) holds for ω’s that are
2-random in the sense of Exercise 3.6.19.

(g) Show that if ω is Ω-like thenK(ω1:n) ≤ n+K(n)−m(n)+O(logm(n)).

(h) Show that if ω is arithmetically random, then K(ω1:n) ≥ n+m(n)+
O(logm(n)).

Comments. Hint for Item (g): compute Ωm(n) effectively from n by do-
ing n steps in the computation of Ω. R.M. Solovay credits this idea to
C.P. Schnorr. Source is R.M. Solovay, Lecture Notes, UCLA, 1975, un-
published. Source for Item (f): J.S. Miller, The K-degrees, low for K
degrees, and weakly low for K sets, Manuscript, 2007.

3.6.16. • [37] Consider the family U of universal prefix machines U
satisfying the conditions of the proof of Theorem 3.1.1 on page 202. Ev-
ery such U has an associated halting probability ΩU =

∑

U(p)<∞ 2−l(p).
Everything in Exercise 3.6.15 is invariant under the choice of reference
universal prefix machine among these U ’s. Hence, the class of Ω-like
reals consists precisely of those reals that satisfy the definition in that
exercise with Ω = ΩU for some U ∈ U .

(a) Show that if ω is Ω-like, then ω = ΩU for some U ∈ U .

(b) Show that the set of Martin-Löf random binary sequences (equiva-
lently, Martin-Löf random reals) that are lower semicomputable equals
the set {ΩU : U ∈ U}.
Comments. This provides a first characterization of natural examples
of Martin-Löf random infinite sequences (or reals) that are lower semi-
computable. These are random, hence incomputable, but only barely
so. Source Item (a): C. Calude, P. Hertling, B. Khoussainov, Y. Wang:
Theor. Comput. Sci., 255:1-2(2001), 125–149. Item (b) characterizes
both randomness among the lower semicomputable reals and lower semi-
computability among the random reals. Trivially, every ΩU is lower semi-
computable, and it is Martin-Löf random by Corollary 3.6.2 on page 227.
This shows inclusion in one direction. The difficult part is the inclusion
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in the other direction, shown by A. Kučera, T.A. Slaman, SIAM J. Com-
put., 31:1(2001), 199–211. A survey is [C. Calude, Theor. Comput. Sci.,
271:1-2(2002), 3–14].

3.6.17. [41] Let U0, U1, . . ., Uk ⊆ {0, 1}∞ for all k ≥ 0 denote a
sequential universal Martin-Löf test as in Section 2.5.2. Let λ denote the
uniform measure on {0, 1}∞. Note that U0 = {0, 1}∞ by definition and
λ(U0) = 1. Lower semicomputable reals are defined in Exercise 3.6.15.
A sequence r1, r2, . . . of reals is uniformly lower semicomputable if there
is a total recursive function f(k, i) such that for every k ≥ 1, we have
f(k, i+ 1) ≥ f(k, i) for all i and limi→∞ f(k, i) = rk.

(a) Show that for every sequential universal Martin-Löf test U0, U1, . . . ,
the uniform measure λ(Uk) is a Martin-Löf random real.

(b) Show that for every lower semicomputable Martin-Löf random real
r, there is a sequential universal Martin-Löf test U0, U1, . . . such that
∑∞
k=1 λ(Uk) equals r.

(c) Let r1, r2, . . . be a uniformly lower semicomputable sequence of reals
such that rn ≤ 1/2n for every n ≥ 1, and let λ be the uniform measure
on {0, 1}∞. Show that rk is a Martin-Löf random real for every k ≥ 1
iff there is a universal sequential Martin-Löf randomness test U0, U1, . . .
with λ(Uk) = rk for every k ≥ 1.

Comments. In this way, the measure-theoretic treatment of random-
ness in Martin-Löf’s sense provides a second characterization of natu-
ral examples of Martin-Löf random sequences (or reals) that are lower
semicomputable. In fact, it is a curious connection between infinite bi-
nary sequences that are members of the complement of the universal
constructive null set, Section 2.5.2, and the binary expansions of the
real numbers that are uniform measures of the constituent elements of
a universal sequential Martin-Löf test, which elements themselves have
infinite binary sequences as members. Source of Items (a) and (b): A.
Kučera, T.A. Slaman, Ibid. (according to R.G. Downey, Item (a) is due
to A. Kučera alone). Source for Item (c): (only if) A. Kučera, T.A. Sla-
man, Ibid.; (if) W. Merkle, N. Mihailovic, T.A. Slaman, Theor. Comput.
Syst., 39(2006), 707–721.

3.6.18. [37] In Exercises 3.6.16 and 3.6.17 we gave natural examples
of lower semicomputable Martin-Löf random infinite binary sequences
(or reals). They form as it were the fringe, the lowest, first, order of
Martin-Löf randomness. These objects are random with respect to the
primary notion of effective computability as represented by Turing ma-
chines. One can also consider more powerful notions of computability,
called relativized computability, such as Turing machines equipped with
oracles. Such an oracle is a subset A of the natural numbers, and a
Turing machine T equipped with oracle A, denoted by TA, can ask “is
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n ∈ A?” Thus, if A is the set of programs (the binary code consid-
ered as a natural number) for which T (without oracle A) halts, then
TA can compute more than T . Let T1, T2, . . . be the standard enumera-
tion of prefix machines, and let U be the reference prefix machine with
U(〈i, p〉) = Ti(p) for all i, p. In recursion theory one defines the jump A′

of A as A′ = {x : UA(x) <∞}. Main jumps are those of the empty set:
∅,∅′,∅′′, . . . . Clearly, ∅

′ is recursively enumerable, by U = U∅, ∅
′′

is recursively enumerable by U ′ defined as U ′ = U∅
′

, ∅
′′′ is recursively

enumerable by U ′′ = U∅
′′

, and so on. Define the halting probability
of U ′ by Ω′ =

∑

U ′(p)<∞ 2−l(p), and similarly the halting probability

of U ′′ by Ω′′ =
∑

U ′′(p)<∞ 2−l(p), and so on. Just as Ω is random with
respect to the ∅ jump, every such halting probability is Martin-Löf ran-
dom with respect to its respective jumps, that is, of the higher orders
of randomness. We are interested in natural examples of infinite binary
sequences (equivalently, real numbers) that are of these higher orders of
randomness, but are defined without recourse to oracles.

(a) Show that the probability that a program for the reference universal
prefix machine U both outputs finitely many symbols and does not halt
(has an infinite computation) is Martin-Löf random in the first jump of
the halting problem.

(b) Define the probability β =
∑

2−l(p), where the summation is taken
over the shortest p ∈ {0, 1}∗ such that the set Q = {q : U(pq) < ∞}
is cofinite ({0, 1}∗ − Q < ∞). Show that β is as random as Ω′′: it is
Martin-Löf random in the second jump of the halting problem.

Comments. Source Item (a): V. Becher, S. Diacz, G. Chaitin, Proc. 3rd
Discr. Math. Theor. Comput. Sci. Conf., Springer, London, 2001, pp.
55–68. Source for Item (b): V. Becher, G. Chaitin, Fundamenta Infor-
maticae, 51(2002), 1–14.

3.6.19. [37] An infinite binary sequence ω is n-random if it is Martin-
Löf random in ∅

n−1. That is, 1-randomness is Martin-Löf randomness.
Show that ω = ω1ω2 . . . is 2-random iff C(ω1:n) ≥ n−O(1) for infinitely
many n.

Comments. This interprets and explains Theorem 2.5.5 on page 153.
Some authors call ω satisfying C(ω1:n) ≥ n−O(1) for infinitely many n
Kolmogorov random. This definition was essentially proposed by D.W.
Loveland, Proc. ACM 1st Symp. Theory Comput., 1969, 61–65, using
uniform Kolmogorov complexity in the definition. That definition is ro-
bust enough that uniform, length-conditional, and plain Kolmogorov
complexity all give the same class. Source: For the ‘if’ side, [L. Yu, D.
Ding, R.G. Downey, Ann. Pure Appl. Logic, 129:1-3(2004), 163–180] an-
alyzed an argument of R.M. Solovay, Ibid. to show that all 3-random
reals are Kolmogorov random; for the ‘only if’ side, [J.S. Miller, J. Sym-
bol. Logic, 69(2004), 907–913]. Independently, the full ‘iff’ statement
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was proved in [A. Nies, F. Stephan, S.A. Terwijn, J. Symbol. Logic,
70:2(2005), 515–535].

3.6.20. • [42] Does a similar result to that in Exercise 3.6.19 hold for
prefix complexity? We know that the maximal complexity of K(x) is
K+(x) = l(x) +K(l(x)) +O(1), Example 3.3.2 on page 212. Moreover,
if K(x) = K+(x) is maximal then C(x) = C+(x) by Exercise 3.4.4 on
page 217. An infinite binary sequence ω is called strongly Chaitin random
if K(ω1:n) ≥ n+K(n) −O(1) for infinitely many n.

(a) Show that every strongly Chaitin random infinite binary sequence is
2-random.

(b) Show that every 2-random infinite binary sequence is strongly Chaitin
random.

Comments. Hint for Item (a): use Exercises 3.6.19 and 3.4.4. Source for
item (a): R.M. Solovay, Lecture Notes, UCLA, 1975, unpublished. Source
for Item (b): J.S. Miller, The K-degrees, low for K degrees, and weakly
low for K sets, Manuscript, 2007.

3.6.21. [29] Let ω be an infinite binary sequence that is Martin-Löf
random with respect to the uniform measure (for example, the halting
probability Ω of Section 3.6.2).

(a) Show that ω is von Mises–Wald–Church random (Section 1.9).

(b) Show that ω is effectively unpredictable. That is, let f be a recursive
function that given an arbitrary finite binary string predicts “the next
bit is one,” “the next bit is zero,” or “no prediction.” Then if f predicts
infinitely many bits of ω, it does no better than chance because in the
limit the relative frequency of both correct predictions and incorrect
predictions is 1

2 .

(c) Use Item (b) to show that the zeros and ones have limiting relative
frequency 1

2 .

(d) Show that ω is normal in base two in the sense of Borel: each of the
2k possible blocks of k bits in ω has limiting relative frequency 1/2k.

(e) Show that the law of the iterated logarithm, Exercise 1.10.5 on
page 65, applies to the relative frequency of correct and incorrect pre-
dictions of bits of ω.

Comments. Hint for Item (c): predict the next bit of ω by a total recur-
sive function that always has value one. Source: G.J. Chaitin, Algorith-
mic Information Theory, Cambridge Univ. Press, 1987.
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3.7

Algorithmic

Properties of

K

According to Section 3.4, the function K is not recursive but it is up-
per semicomputable (it can be approximated from above). This is also
the case for the two-variable function K(x|y). Also, Theorem 2.7.1 on
page 174 and Corollary 2.7.2 on page 176 hold in precisely the same
way by the same proofs with K replacing C. Barzdins’s lemma, The-
orem 2.7.2 on page 178, holds by the same proof with the following
obvious modification: Every characteristic sequence χ of a recursively
enumerable set A satisfies K(χ1:n|n) ≤ K+(n) + c for all n, where c is a
constant depending on A but not on n. There is a recursively enumerable
set such that its characteristic sequence satisfies K(χ1:n) ≥ logn− c for
all n, where c is a constant that does not depend on n.

3.7.1
Randomness in
Diophantine
Equations

There is an algorithm to decide the solvability of the first n Diophantine
equations, given about logn bits of extra information (Example 2.7.2 on
page 179). Namely, given the number m ≤ n of soluble equations in the
first n equations, we can recursively enumerate solutions to the first n
equations in the obvious way until we have found m solvable equations.
The remaining equations are unsolvable. This shows that the solubility
of the enumerated Diophantine equations is interdependent in some way.

Suppose we replace the question of mere solubility by the question of
whether there are finitely many or infinitely many different solutions.
That is, no matter how many solutions we find for a given equation, by
itself this can give no information on the question to be decided. It turns
out that the set of indices of the Diophantine equations with infinitely
many different solutions versus finitely many ones is not recursively enu-
merable.

Lemma 3.7.1 There is an (exponential) Diophantine equation

A(n, x1, x2, . . . , xm) = 0

that has only finitely many solutions x1, x2, . . . , xm if the nth bit of Ω is
zero and that has infinitely many solutions x1, x2, . . . , xm if the nth bit
of Ω is one.

The role of exponential Diophantine equations should be clarified. Yu.V. Mati-
jasevich [Soviet Math. Dokl., 11(1970), 354–357] proved that every recursively
enumerable set has a polynomial Diophantine representation. Moreover, he
proved in 1974 that every recursively enumerable set has a singlefold expo-
nential Diophantine representation. This was published only later (with yet
different proofs) in [J.P. Jones, Yu.V. Matijasevich, J. Symbol. Logic, 49(1984),
818–829; Yu.V. Matijasevich, Hilbert’s 10th Problem, MIT Press, 1993]. It is
not known whether singlefold representation (which is important in our ap-
plication) is always possible without exponentiation. See also G.J. Chaitin,
Algorithmic Information Theory, Cambridge University Press, 1987.
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Proof. By dovetailing the running of all programs of the reference prefix
machine U in the obvious way, we obtain a recursive sequence of rational
numbers ω1 ≤ ω2 ≤ · · · such that Ω = limn→∞ ωn. The set

R = {(n, k) : the nth bit of ωk is a one}

is a recursively enumerable (even recursive) set. The main step is to
use a theorem due to Yu.V. Matijasevich, first published in [J.P. Jones,
Yu.V. Matijasevich, J. Symbol. Logic 49(1984), 818–829], to the effect
that “every recursively enumerable set R has a singlefold exponential
Diophantine representation A(·, ·).” That is, A(p, y) = 0 is an expo-
nential Diophantine equation, and the singlefoldedness consists in the
property that p ∈ R iff there is a y such that A(p, y) = 0 is satisfied,
and moreover, there is only a single such y. (Here both p and y can be
multituples of integers; in our case, p represents 〈n, x1〉, and y represents
〈x2, . . . , xm〉. For technical reasons we consider as proper solutions only
solutions x involving no negative integers.) It follows that there is an
exponential Diophantine equation A(n, k, x2, . . . , xm) = 0 that has ex-
actly one solution x2, . . . , xm if the nth bit of the binary expansion of
ωk is a one, and it has no solution x2, . . . , xm otherwise. Consequently,
the number of different m-tuples x1, x2, . . . , xm that are solutions to
A(n, x1, x2, . . . , xm) = 0 is infinite if the nth bit of the binary expansion
of Ω is a one, and this number is finite otherwise. 2

This can be interpreted as follows: Consider the sequence of Diophantine equa-
tions D1, D2, . . . such that Dn(x1, x2, . . . , xm) = A(n, x1, . . . , xm). Let us say
that a formal theory “settles k cases” if it enables one to prove that the num-
ber of solutions of Dn is finite or is infinite for k specific values (not necessarily
consecutive) of n. It is not difficult to show that no formal theory in which
one can prove only true theorems and that is completely describable in n bits
can settle more than n+K(n) +O(1) cases. (Hint: use arguments about how
many (scattered) bits of Ω can be determined (together with their positions)
in a formal theory of given complexity.)

“This is a region in which mathematical truth has no discernible structure or
pattern and appears to be completely random. These questions are completely
beyond the power of human reasoning. Mathematics cannot deal with them.
Quantum physics has shown that there is randomness in nature. I believe
that we have demonstrated [. . .] that randomness is already present in pure
Mathematics. This does not mean that the universe and Mathematics are
completely lawless, it means that laws of a different kind apply: statistical
laws. [. . .] Perhaps number theory should be pursued more openly in the spirit
of an experimental science! To prove more one must assume more.” [Chaitin]

Exercises 3.7.1. [42] (a) Show that K+ (Exercise 3.4.1) is nonrecursive in the
sense that there is no total recursive function f such that K+(x) =
f(x) +O(1) for all x.
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(b) Show that there is a recursive upper bound f(x) of the function
K(x) with the property that f(x) = K(x) holds for infinitely many x.

(c) Show that we cannot effectively find infinitely many x’s for which
some recursive upper bound on K(x) (as in Item (b)) is sharp. (The
same statement for C(x) follows from Theorem 2.3.2, page 127.)

(d) Let f(x) be a recursive upper bound on K(x) as in Item (b). Show
that in addition to Item (c), there is no recursive function g(x) mapping
each x to a finite set X ⊆ {y : y > x} such that each X contains some
y for which f(y) ≤ C(y). (Notice that the function logx, or one almost
equal to it, has this property for C(x).)

Comments. The monotonic upper bound estimate of logx+K(⌈log x⌉)
on K(x) is less satisfying than the sharp monotonic estimate logx on
C(x), because it is not a recursive function. The recursive upper bounds
on K(x) we have obtained previously, such as logx + 2 log log x and
log∗ x + l∗(x), are not precise up to a fixed additive constant for in-
creasing x. The present Item (b) shows that nonetheless, we can find
a recursive upper bound on K(x) that is sharp infinitely often. How-
ever, we cannot find infinitely many x’s for which this is the case, since
Item (c) shows that every infinite set of x’s for which the recursive up-
per bound coincides with K(x) is not recursively enumerable. This also
holds for C(x). However, Item (d) shows a difference between K(x) and
C(x) in effectiveness of a recursive upper bound that is sharp infinitely
often. Source: R.M. Solovay, Lecture Notes, 1975, unpublished; P. Gács,
Ph.D. thesis, Mathematics Department, Frankfurt am Main, 1978.

3.7.2. [35] Show that there is a recursive upper bound f on K and a
constant c with the property that there are infinitely many x such that
for all k > 0, the quantity of numbers y ≤ x with K(y) < f(y) − k is
less than cx2−k.

Comments. Source: P. Gács, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987.

3.8

*Complexity

of Complexity

The complexity function K (or C for that matter) is nonrecursive (Theo-
rem 2.3.2, page 127). If the number of bits one needs to know to compute
f(x) from x is not constant for all x, then f is nonrecursive. For instance,
let f be defined by f(x) = Ω1:x, with Ω the halting probability in Sec-
tion 3.6.2. Then K(f(x)|x) ≥ l(f(x)) + O(1). That is, knowledge of x
does not help to describe f(x) at all.

If f is recursive, then K(f(x)|x) = O(1). But if f is 0, 1-valued, then
K(f(x)|x) = O(1) too (since the programs for the constant functions of
value 0 and 1 provide a bound). Thus, the complexity K(f(x)|x) is a
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property of f that tells something about the degree of nonrecursiveness
of f , but the converse is not necessarily the case.

Definition 3.8.1 The complexity K(f) of function f is defined as the function K(f(x)|x).

We analyze K(K(x)|x), the complexity of the complexity function K.
There is a simple upper bound for all x. If l(x) = n, then K(x) ≤
n+ 2 logn+O(1) and therefore

K(K(x)|x) ≤ K(K(x)|n) +O(1) ≤ logn+O(1).

The first inequality follows from the fact that l(x) = n. The second
inequality follows from the fact that if we know n, then to describe
K(x) it suffices to describe |n −K(x)| and indicate whether K(x) ≥ n
or K(x) < n. Since |n−K(x)| < n, and we know n, we can describe just
the difference d = n−|n−K(x)| self-delimitingly for log d+2 log log d+
O(1) ≤ logn, otherwise the plain value |n−K(x)| self-delimitingly also in
at most logn bits, indicating which is which in a constant number of bits.
A similar, easier, argument yields the same upper bound for C(C(x)|x).
Therefore, we have that for every n and all strings x of length n we have
K(K(x)|x), C(C(x)|x) ≤ logn+O(1). It turns out that K(K(x)|x) and
C(C(x)|x) can be very close to the upper bound.

Theorem 3.8.1 For every n, there are strings x of length n such that K(K(x)|x) ≥
logn− log logn+O(1). The same lower bound holds for C(C(x)|x).

Proof. The proof is a little tricky. Let U be the reference machine of
Theorem 3.1.1. Fix a large enough n. In the sequel all x’s considered
have length n. Define the maximum value of K(K(x)|x) by

s = max
l(x)=n

min{l(p) : U(p, x) = K(x)}.

To prove the theorem we only need to show that

s ≥ logn− log log n+O(1). (3.5)

Since K(x) ≤ n+ 2 logn+O(1) for all x of length n,

K(K(x)|x) ≤ s ≤ logn+O(1).

Let U be the reference prefix machine. A binary string p is called a
suitable program for x if for some q we have

• l(p) ≤ s;

• U computes l(q) from p, given x; and
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• U computes x from q.

In particular, there is a suitable program p for x, of length l(p) =
K(K(x)|x) ≤ s (for instance, with corresponding q of length l(q) =
K(x)). We denote by Mi the set of strings x for which there are at least
i different suitable p. Now consider the sequence

∅ = Mj+1 ⊆Mj ⊆ · · · ⊆M0 = {0, 1}n, Mj 6= ∅.

There are 2s+1 − 1 strings of length at most s. Therefore,

j ≤ 2s+1.

To prove the theorem, it suffices to show, for all i ≤ j,

l(d(Mi)) ≤ l(d(Mi+1)) + 5 logn. (3.6)

Namely, this implies that j ≥ n/(5 logn), which together with j ≤ 2s+1,
proves Equation 3.5.

We prove Equation 3.6. There exists an x ∈Mi −Mi+1, which is found
by the following procedure with input i, s, n, d(Mi+1), l(d(Mi)), for all i
with 0 ≤ i ≤ j:

Step 1. Recursively enumerate all of Mi+1. {We know when we are
done by the time we have found d(Mi+1) elements}

Step 2. Recursively enumerate enough ofMi−Mi+1 to make the sequel
meaningful. For each z in Mi−Mi+1 we obtain, find by enumeration
all i suitable programs for z. A suitable program p with U(p, z)
minimal satisfies U(p, z) = K(z). We may assume that

log d(Mi −Mi+1) ≥ log d(Mi) − 1, (3.7)

since otherwise Equation 3.6 holds trivially. From Equation 3.7 it
follows, by Theorem 3.3.1, that there exists a zmax among the z’s
for which

K(zmax) ≥ l(d(Mi)) − 1. (3.8)

So we keep on enumerating z’s until we find the first such zmax.

Step 3. Set x := zmax.

This algorithm provides a description of x containing the following items,
each item in self-delimiting code:

• A description of this discussion in O(1) bits;
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• a description of d(Mi+1) in at most l∗(n) + l(d(Mi+1)) bits (since
K(l(d(Mi+1))) ≤ l∗(n));

• a description of l(d(Mi)) in l∗(n) bits;

• descriptions of i, n, and s, in l∗(n), l∗(n), and l∗(log n+ 2 log logn)
bits, respectively.

The size of the description of x gives an upper bound on K(x),

K(x) ≤ 4l∗(n) +O(l∗(logn)) + l(d(Mi+1)) +O(1). (3.9)

Equations 3.8 and 3.9 imply Equation 3.6, and hence the theorem. Pre-
cisely the same proof shows that C(C(x)|x) ≥ logn − log log n + O(1).

2

Since C(C(x)) ≤ log n + O(1) for all x of length n, Theorem 3.8.1 indicates
that for some x, knowledge of x only marginally helps to compute C(x); most
information in C(x) is extra information. It turns out that these x’s have lower
complexity than random x’s. Consider an x of length n with C(x) ≥ n − k.
Then C(C(x)|x) ≤ C(k) +O(1). If Theorem 3.8.1 holds for x, then it follows
that C(k) ≥ log n − log log n + O(1). Also, C(k) ≤ log k + O(1). Then, k =
Ω(n/ log n). Therefore, if Theorem 3.8.1 holds for x, then

C(x) ≤ n− Ω

(
n

log n

)

,

which implies that also K(x) ≤ n − Ω(n/ log n). The same argument shows
the following: Fix a constant c′. If Theorem 3.8.1 holds for x, then for each k,
0 ≤ k ≤ n, such that C(k|x) ≤ c′ (for example k = 1

2
n or k =

√
n), we have

C(x) 6∈ [k − δ, k + δ], with δ = O(n/ log n).

3.9

*Symmetry of

Algorithmic

Information

Recall the symmetry of algorithmic information question raised in Sec-
tions 1.11 and 2.8. Up to what precision does the equality

K(x, y) = K(y|x) +K(x)

hold? It turns out that the precision is low, just as for C complexity,
albeit for more fundamental reasons. It is at once obvious that

K(x,K(x)) = K(x) +O(1). (3.10)

Namely, we can reconstruct both x and K(x) from the shortest program
for x. (Similarly C(x,C(x)) = C(x)+O(1).) Now consider the difference
of K(x, y) from K(y|x)+K(x) for y = K(x). Combining Theorem 3.8.1
and Equation 3.10, for each n, there is a string x of length n,

K(x,K(x)) ≤ K(x) +K(K(x)|x) − logn+ log logn+O(1). (3.11)
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For Equation 3.11 it does not really matter whether we use K(x) or
C(x). However, C(x) is nonadditive for reasons much simpler than for
K(x): additivity is violated already on random strings as shown in Sec-
tion 2.8. But for K(x), the possibly high-complexity K(K(x)|x) is the
only reason. Equation 3.10 is an obvious property that can be used for
most variants of complexity to prove the corresponding version of Equa-
tion 3.11, which amounts to asymmetry of information.

This shows that analogues of the information-theoretic identities can
hold only up to an additive term logarithmic in the complexity. In the
case of C(x) this is primarily caused by the randomness (incompress-
ibility) of the strings concerned, Section 2.4. The overwhelming ma-
jority of strings is random enough for this effect to occur. One reason
for focusing on the K(x) measure was to eliminate this randomness-
based effect. But it turns out that to obtain sharp analogues of the
information-theoretic identities, a conditional term K(·|x) needs to be
replaced by K(·|x,K(x)). We necessarily require the extra information
in K(x), about the halting problem, that is not contained in x. This
is the sole reason that the information-theoretic identities do not hold
for K(x) precisely. However, there are only relatively few x’s with large
K(K(x)|x). This follows immediately from Example 3.8.

Another argument is as follows: Let χ be the characteristic function (equiv-
alently, sequence) of a recursively enumerable set such that K(χ1:m|n) ≥ n,
where m = 2n. Such sets exist by Barzdins’s lemma, Theorem 2.7.2. Let
I(χ : x) = K(x) − K(x|χ), that is, the information in χ about x. For in-
stance, we can choose χ as the characteristic function of the halting set
K0 = {〈x, y〉 : φx(y) <∞}. We can also take any other complete set. Then

K(K(x)|x) ≤ I(χ : x) + 3 log I(χ : x) +O(1). (3.12)

This means that the extra information contained in K(x), apart from x, is
less than the information that any complete set contains about x. The a priori
probability of x with high K(K(x)|x) is low. Namely, it can be shown (but we
omit the proof) that for any computable or lower semicomputable probability
distribution (measure) on the x’s, k bits of information concerning χ occur in
x with probability 2−k. Thus, we can derive, from the displayed inequality,

P{x : K(K(x)|x) ≥ i} ≤ i32−i, (3.13)

for all computable and lower semicomputable probability distributions P .
Equation 3.12 tells us that the extra information in K(x), apart from x,
is less than the information that any complete set contains about x. Equa-
tion 3.13 tells us that the a priori probability of all x with high K(K(x)|x) is
low. Source: attributed to L.A. Levin [P. Gács, Soviet Math. Dokl., 15(1974),
1477–1480, and Ph.D. thesis, J.W. Goethe Univ., Frankfurt, 1978].
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3.9.1
Algorithmic
Information and
Entropy

Let us recall some relations between Shannon entropy and algorithmic
information, or complexity. Let P be a recursive probability distribu-
tion. In Example 2.8.1 on page 188 we have shown that for recursive
probability distributions P (·) the expected value C(·) is asymptotic to
H(P ) (in case both values grow unboundedly we have shown that the
quotient of the compared quantities goes to 1). This implies the similar
relation between expected K(·) value and H(P ); see Section 8.1.1.

A more direct proof uses the universal distribution in Chapter 4. Since the
set of K(x)’s is the length set of a prefix code, the first inequality of the
noiseless coding theorem, Theorem 1.11.2, shows that H(P ) ≤

∑

x
P (x)K(x).

Moreover, an effective version of the Shannon–Fano code in Example 1.11.2
on page 1.11.2 guarantees that K(x) ≤ log 1/P (x) + O(1) (a formal proof is
given later in Lemma 4.3.3 on page 274). Together this shows that the entropy

H(P ) =
∑

x

P (x) log
1

P (x)

of the distribution P is asymptotically equal to the expected complexity

∑

x

P (x)K(x)

with respect to probability P (·). However, we can make more precise calcula-
tions. The equality between expected prefix complexity and entropy is treated
in detail in Section 8.1.1. It holds extremely precisely—up to an additive con-
stant.

Instead of requiring P (·) to be recursive, it suffices to require that P be a lower
semicomputable function. Together with

∑
P (x) = 1, the latter requirement

implies that P (·) is recursive (Example 4.3.2 on page 266).

The fact that the P -expectations of log 1/P (x) and K(x) are close does not
necessarily mean that those quantities are close together for all arguments.
However, in Example 4.3.10 on page 282 we also show that for recursive P (·)
the values log 1/P (x) and K(x) are close to each other with high probability.

This establishes a tight quantitative relation between Shannon’s statisti-
cal conception of entropy of a probability distribution and our intended
interpretation ofK(x) as the information content of an individual object.

Let X and Y be two discrete random variables with a joint distribution.
In Section 1.11 we defined the following notions: the conditional entropy
H(Y |X) of Y with respect to X , the joint entropy H(X,Y ) of X and
Y , and the information I(X : Y ) in X about Y . The relations between
these quantities are governed by Equations 1.13, 1.14, 1.15. The crucial
one is Equation 1.13 on page 70: the additivity rule H(X,Y ) = H(X)+
H(Y |X). In general we would like to derive the same relations for the
complexity analogues. In Section 2.8 it turned out that the complexity
analogue of Equation 1.13 holds in terms of C, within a logarithmic
additive term (Theorem 2.8.2). The proof that Theorem 2.8.2 is sharp
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used strings whose lengths were random. For K we also find that the
exact analogue of Equation 1.13 on page 70 does not hold (Example 3.9
on page 244), not because it is violated on random x’s with random
lengths as is C, but for more subtle reasons.

3.9.2
Exact Symmetry
of Information

By Equation 3.11, for each length n there are x of length n and y such
that

|K(x, y) −K(x) −K(y|x)| = Ω(logK(x)),

showing that additivity can be satisfied only to within a logarithmic
term. Since the complexity of the complexity function as expressed by
Theorem 3.8.1 holds for all proper variants of complexity, additivity cor-
responding to Equation 1.13 cannot hold exactly for any proper variant
of complexity.

While the complexity of the complexity function prevents an exact ana-
logue to Equation 1.13, it turns out that nonetheless we can find an exact
additivity property for K, by replacing the conditional x by 〈x,K(x)〉
(equivalently, by the shortest program for x).

Theorem 3.9.1 Let x and y be finite binary strings. Then up to a fixed additive constant,
K(x, y) = K(x) +K(y|x,K(x)).

Proof. (≤) Let p be a shortest program from which the reference pre-
fix machine computes x, and let q be a shortest program for which it
computes y given x and K(x). But then we can find another prefix ma-
chine that with input pq uses p to compute x and K(x) (= l(p)) and
subsequently uses x and K(x) to compute y from q.

(≥) Consider x and K(x) as fixed constants. We need the following
results, which are proven only later, in Chapter 4 (the conditional version
Theorem 4.3.4 of Theorem 4.3.3 on page 275):

1. Recall Definition 1.7.4, page 35, of lower semicomputable functions
f : N → R. Let X consist of lower semicomputable functions fx(y)
with

∑

y fx(y) <∞. There exists a g ∈ X such that for all fx ∈ X ,
fx(y) = O(g(y)).

2. We can set this g(y) = 2−K(y|x,K(x)).

Clearly, with x fixed the function hx(y) = 2K(x)−K(x,y) is lower semi-
computable. Moreover, with x fixed the set {K(x, y) : y ∈ N} is the
length set of a prefix-free set of programs from which the reference pre-
fix machine U computes 〈x, y〉. By the Kraft inequality, Theorem 1.11.1,
we have
∑

y

2−K(x,y) ≤ 1.
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Therefore,

∑

y

hx(y) ≤ 2K(x) <∞.

Hence, hx ∈ X , which implies by Items 1 and 2 that hx(y) = O(g(y)).
We obtain

K(x, y) ≥ K(x) +K(y|x,K(x)) +O(1).

by substituting the expressions for g and hx, taking the logarithm of
both sides, and rearranging. 2

This implies immediately the subadditive property

K(x, y) ≤ K(x) +K(y|x) +O(1) ≤ K(x) +K(y) +O(1),

which does not hold for C by Example 2.2.3 on page 118. This is a
straightforward consequence of the fact that a prefix machine does not
require extra information to see where one program ends and the other
one begins—information that needs to be provided to the plain decoding
algorithms in Chapter 2.

We cannot replace 〈x,K(x)〉 by K(x) in Theorem 3.9.1. But we can
replace x by 〈x,K(x)〉, as follows. Note that

K(x, y) = K(x,K(x), y) +O(1). (3.14)

Substitution in Theorem 3.9.1 shows the following:

Corollary 3.9.1 K-complexity is additive in the form

K(〈x,K(x)〉, y) = K(〈x,K(x)〉) +K(y|〈x,K(x)〉) +O(1).

Definition 3.9.1 The K-complexity of information in x about y is

I(x : y) = K(y) −K(y|x). (3.15)

Define the conditional version as

I(x : y|z) = K(y|z) −K(y|x, z). (3.16)

Information is symmetric if the information in x about y equals (up to
additive constants) the information in y about x. Rewriting K(x, y) in
two different ways, it follows from Theorem 3.9.1 that

K(y) −K(y|x,K(x)) = K(x) −K(x|y,K(y)) +O(1).
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Theorem 3.9.2 Symmetry of information for K-complexity holds in the following form:
I(〈x,K(x)〉 : y) = I(〈y,K(y)〉 : x) +O(1).

Example 3.9.1 We derive a (to our knowledge) new ‘directed triangle inequality’ that
is needed later.

Lemma 3.9.1 For all x, y, z,

K(x|y∗) ≤ K(x, z|y∗) +O(1) ≤ K(z|y∗) +K(x|z∗) +O(1).

Proof. Using symmetry of information, Theorem 3.9.1, an evident in-
equality introducing an auxiliary object z, and twice symmetry of infor-
mation again, we obtain

K(x, z|y∗) = K(x, y, z) −K(y) +O(1)

≤ K(z) +K(x|z∗) +K(y|z∗) −K(y) +O(1)

≤ K(y, z)−K(y) +K(x|z∗) +O(1)

= K(x|z∗) +K(z|y∗) +O(1).

2

This lemma has bizarre consequences. These consequences are not sim-
ple unexpected artifacts of our definitions, but to the contrary, they
show the power and the genuine contribution to our understanding rep-
resented by the deep and important mathematical relation represented
by Theorem 3.9.1.

Define k = K(y) and substitute k = z and K(k) = x to obtain the
following counterintuitive corollary: To determine the complexity of the
complexity of an object y it suffices to give both y and the complexity of
y. This is counterintuitive, since in general we cannot compute the com-
plexity of an object from the object itself; if we could, this would also
solve the so-called halting problem, Section 1.7.2. This incomputabil-
ity can be quantified in terms of K(K(y)|y); which can rise to almost
K(K(y)) for some y. But in the seemingly similar, but subtly different,
setting below it is possible.

Corollary 3.9.2 As above, let k denote K(y). Then,

K(K(k)|y, k) = K(K(k)|y∗) +O(1)

≤ K(K(k)|k∗) +K(k|y, k) +O(1) = O(1).

We can iterate this idea. For example, the next step is that given y and
K(y) we can determine K(K(K(y))) in O(1) bits, which implies that
K(K(K(k)))|y, k) = O(1).
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A direct construction works according to the following idea (where we
ignore some important details): From k∗ one can compute 〈k,K(k)〉,
since k∗ is by definition the shortest program for k and also by defini-
tion l(k∗) = K(k). Conversely, from k,K(k) one can compute k∗, by
running all programs of length at most K(k) in dovetailed fashion until
the first program of length K(k) halts with output k; this is k∗. The
shortest program that computes the pair 〈y, k〉 has length = k + O(1):
We have K(y, k) = k+O(1) (since the shortest program y∗ for y carries
both the information about y and about k = l(y∗)). Then, by The-
orem 3.9.1 on page 247, we have K(k) + K(y|k,K(k)) = k + O(1).
In view of the information equivalence of 〈k,K(k)〉 and k∗, therefore
K(k)+K(y|k∗) = k+O(1). Let r be a program of length l(r) = K(y|k∗)
that computes y from k∗. Then, since l(k∗) = K(k), there is a short-
est program y∗ = qk∗r for y, where q is a fixed O(1)-bit self-delimiting
program that unpacks and uses k∗ and r to compute y. We are now in
a position to show that K(K(k)|y, k) = O(1). There is a fixed O(1)-bit
program that includes knowledge of q and that enumerates two lists in
parallel, each in dovetailed fashion: Using k it enumerates a list of all
programs that compute k, including k∗. Given y and k it enumerates
another list of all programs of length k = l(y∗) +O(1) that compute y.
One of these programs is y∗ = qk∗r, which starts with qk∗. Since q is
known, this self-delimiting program k∗, and hence its length K(k), can
be found by matching every element in the k list with the prefixes of
every element in the y list in enumeration order. 3

We cannot replace 〈x,K(x)〉 by K(x) and 〈y,K(y)〉 by K(y) in Theo-
rem 3.9.2. The complexity version of individual information is asymmet-
ric, in contrast to the expectation in the statistical entropy version of
Equation 1.15, which is symmetric.

Lemma 3.9.2 The error in symmetry of information using K-complexity is given by

log l(x) − log log l(x) +O(1)

≤ |I(x : y) − I(y : x)|
≤ logK(x) + logK(y) + 2 log logK(x) + 2 log logK(y) +O(1).

Proof. (≤) Use the conditional mutual information as in Equation 3.16
on page 248. Since K(y|z) ≤ K(y|x, z) +K(x|z) +O(1),

I(x : y|z) ≤ K(x|z) +O(1). (3.17)

We obtain, by first rewriting using Equations 3.14 and 3.16, and then
using Equation 3.17, by the usual estimates of the relevant quantities,

K(x) +K(y|x) −K(x, y) = I(K(x) : y|x) +O(1)
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≤ K(K(x)|x) +O(1) (3.18)

≤ logK(x) + 2 log logK(x) +O(1).

Using Equation 3.18 in its turn we obtain

I(x : y) − I(y : x) = I(K(y) : x|y) − I(K(x) : y|x) +O(1)

≤ logK(x) + logK(y) + 2 log logK(x)

+ 2 log logK(y) +O(1).

(≥) Compute the error in additivity for the special case y = 〈x,K(x)〉.
Rewrite using Definition 3.15, and apply Equation 3.10 (setting x∗ =
〈x,K(x)〉):

I(x : x∗) − I(x∗ : x) = K(x∗) −K(x∗|x) −K(x) +K(x|x∗)
= K(x, x∗) −K(x) −K(x∗|x) +O(1)

= −K(K(x)|x) +O(1).

Finally, for each n there is an x of length n such that

−K(K(x)|x) ≤ − logn+ log logn+O(1),

by Theorem 3.8.1. 2

We can use this to show that in fact I(x : y) is not even asymptotically
symmetric. Let l(x) = n. From K(K(x)) ≤ log n + 2 log log n + O(1) and
Theorem 3.8.1 it follows that up to an additive constant,

I(x : K(x)) = K(K(x)) −K(K(x)|x) ≤ 3 log log n. (3.19)

By Theorem 3.8.1, using K(K(x)|〈x,K(x)〉) = O(1), there exist x of each
length n, such that

I(〈x,K(x)〉 : K(x)) = K(K(x)) +O(1) ≥ log n− log log n+O(1).

By writing out the definitions, we have

I(K(x) : x) = I(K(x) : 〈x,K(x)〉) +O(1).

Consequently,

log n− 4 log log n+O(1)

≤ |I(〈x,K(x)〉 : K(x)) − I(K(x) : 〈x,K(x)〉)|
+ |I(x : K(x)) − I(K(x) : x)| .

This shows that the symmetry of information is violated strongly (in expo-
nentially greater measure since I(x : K(x)) = O(log log n)) on at least one
of the pairs x,K(x) and x∗,K(x). Source: attributed to L.A. Levin [P. Gács,
Soviet Math. Dokl. 15(1974), 1477–1480].
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Example 3.9.2 If a problem does not have a satisfactory solution as it is posed originally,
it is a common mathematical ploy to change the definitions to accom-
modate the problem. Given 〈x,K(x)〉, we can enumerate all shortest
programs for x. The first one we find is denoted by x∗. From x∗ we
can compute 〈x,K(x)〉. Hence, x∗ and 〈x,K(x)〉 contain the same in-
formation although they are not identical strings. Below, we can replace
x∗ by 〈x,K(x)〉. Define Kc(x|y) = K(x|y∗). When there is more than
one object in the conditional then define Kc(x|y, z) := Kc(x|〈y, z〉) :=
K(x|〈y, z〉∗), and so on. The unconditional versions don’t change: define
Kc(x) := K(x) and Kc(x, y) := K(x, y). We can formulate the additivity
property as

Kc(x, y) = Kc(x) + Kc(y|x) +O(1).

Definition 3.9.2 Define the mutual information of two objects x and y by I (x; y) =
Kc(y) − Kc(y|x) (which we may view as the Kc analogue of I(x : y)).

Using Theorem 3.9.1, we find that the mutual information is a symmetric
quantity as desired. Ignoring O(1) terms,

I(x; y) = K(x) +K(y) −K(x, y) = I(y;x). (3.20)

In general, the world looks prettier using Kc, and lots of basic identi-
ties can be derived (Exercise 3.9.3, page 253). One drawback about the
conditional complexity Kc(x|y) is that it is not upper semicomputable
as a function of x and y. Namely, suppose the contrary and a function
Kc(x|y) = K(x, y) − K(y) is upper semicomputable. Then for fixed y,
the function 2−Kc(x|y) of variable x is lower semicomputable, and satis-
fies

∑

x 2−Kc(x|y) ≤ 1. Hence, by the Kraft inequality, for each fixed y
the set {Kc(x|y) : x ∈ {0, 1}∗} is the length set of a prefix-code. But
for fixed y, the set {K(x|y) : x ∈ {0, 1}∗} is also the length set of a
prefix-code, and by the conditional variant of the invariance theorem,
the shortest one among the upper semicomputable length sets. That is,
for each y, there exists a constant cKc(·|y) such that for all x,

K(x|y) ≤ Kc(x|y) + cKc(·|y).

Substituting x = K(y), we obtain Kc(K(y)|y) = O(1), while K(K(y)|y)
can be quite large by Theorem 3.9.1. 3

Example 3.9.3 Using the Kc version of mutual information, the conditional mutual
information is

I(x; y|z) = K(x|z) −K(x|y,K(y|z), z) (3.21)

= K(x|z) +K(y|z) −K(x, y|z) +O(1).



Exercises 253

The elaborate conditionals are a consequence of the fact that x∗ provides
more information than x. Therefore, we have to be very careful when ex-
tending Theorem 3.9.1 on page 247. For example, the conditional version
of it is

K(x, y|z) = K(x|z) +K(y|x,K(x|z), z) +O(1). (3.22)

Note that a naive version

K(x, y|z) = K(x|z) +K(y|x∗, z) +O(1)

is incorrect: taking z = x, y = K(x), the left-hand side equals K(x∗|x),
which can be as large as logn− log logn+O(1), and the right-hand side
equals K(x|x) +K(K(x)|x∗, x) = O(1).

But up to logarithmic precision we do not need to be that careful. In fact,
in Section 8.1.1 it is shown that all linear (in)equalities that are valid
for Kolmogorov complexity are also valid for Shannon entropy and vice
versa—provided we require the Kolmogorov complexity (in)equalities to
hold up to additive logarithmic precision only. 3

Exercises 3.9.1. [22] Show that {K(x) : x = 1, 2, . . .} is the length set of an
additively optimal universal code in the sense of Section 1.11.1.

3.9.2. [12] Let x∗ be the first enumerated shortest program for x.
Show that x∗ and 〈x,K(x)〉 contain the same information: K(x∗) =
K(〈x,K(x)〉) +O(1).

3.9.3. [20] Define Chaitin’s conditional complexity as in Example 3.9.2
by Kc(x|y) = K(x|y∗) with y∗ = 〈y,K(y)〉, or y∗ is the first enumerated
shortest program for y. When there is more than one object in the
conditional then define Kc(x|y, z) := Kc(x|〈y, z〉) := K(x|〈y, z〉∗), and
so on. Define Kc(x) = K(x) and Kc(x, y) = K(〈x, y〉) = K(x, y). Prove
the following identities (up to an additive constant):

(a) Kc(x, y) = Kc(y, x).

(b) Kc(x|x) = 0.

(c) Kc(Kc(x)|x) = 0. (Contrast this with Theorem 3.8.1.)

(d) Kc(x) ≤ Kc(x, y).

(e) Kc(x|y) ≤ Kc(x).

(f) Kc(x, y) = Kc(x)+Kc(y|x). (Contrast this with the case for K(x, y),
Theorem 3.9.1.)

(g) We have defined I (x; y) = Kc(x) − Kc(x|y). Show that I (x; y) ≥ 0,
I (x;x) = Kc(x), and I (ǫ;x) = I (x; ǫ) = 0.
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(h) I (x; y) = Kc(x)+Kc(y)−Kc(x, y)+O(1) = I (y;x)+O(1). (In fact,
I (x; y) is the symmetric quantity of mutual information of objects x and
y; see Definition 3.9.2.)

(i) Kc(x,Kc(x)) = Kc(x). (Hint: use (f) and (c). Contrast this derivation
with the identical but differently formulated Equation 3.10.)

(j) Kc(x, y) = Kc(x, y,Kc(x),Kc(y|x)).
(k) Kc(Kc(x),Kc(y|x)|x, y) = 0.

(l) Kc(Kc(x),Kc(y),Kc(y|x),Kc(x|y),Kc(x, y)|x, y) = 0.

(m) Kc(I (x; y)|x, y) = 0.

(n) Kc(x) ≤ Kc(x|y) + Kc(y|z) + Kc(z).

(o) Kc(x, y, z) = Kc(x|y, z) + Kc(y|z) + Kc(z).

(p) Show that Kc(x|y) is not upper semicomputable. (Hint: use Theo-
rem 3.8.1.) This contrasts with K(x|y), which is upper semicomputable.

Comments. See also Example 3.9.2 in Section 3.9.1. Essentially, we have
now at our disposal the entire calculus of information theory. In fact,
the Kc calculus is somewhat richer, since it contains rules like Items (c)
and (i) that have no counterpart in classical information theory. Note
that the difference between K and Kc is the conditional form K(x|y)
versus Kc(x|y). Kc complexity was introduced by G.J. Chaitin in J.
Assoc. Comp. Mach. 22(1975), 329–340, and a recent exposé appears in
Algorithmic Information Theory, Cambridge Univ. Press, 1987.

3.9.4. [12] Let n = l(x) and K(x) = n + K(n) + O(1). Show that
K(x, n) = K(x) +K(n|x) = K(n) +K(x|n) = K(x, n∗) up to additive
constants.

Comments. This relates to the symmetry of information issue for K.
The proof we gave that Theorem 2.8.2 on page 190 is sharp for C does
not hold for K. Hence, to obtain that the analogue of Theorem 2.8.2
for K is sharp one has to use another argument. This argument uses
the complexity of the complexity function, Theorem 3.8.1, which in fact
holds for all variants of Kolmogorov complexity. Source: P. Gács, Lec-
ture Notes on Descriptional Complexity and Randomness, Manuscript,
Boston University, 1987.

3.9.5. [27] (a) Show that the mutual information I(x; y) = K(x) +
K(y) − K(x, y) according to Equation 3.20 on page 252 is symmetric:
I(x; y) = I(y;x).

(b) Show that the mutual information in Item (a) coincides with the
mutual information I(x : y) = K(y)−K(y|x) according to Equation 3.15
on page 248 up to an O(logK(x) + logK(y)) additive term.
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3.10

History and

References

Prefix complexity was first introduced in [L.A. Levin, Problems In-
form. Transmission, 10:3(1974), 206–210; P. Gács, Soviet Math. Dokl.,
15(1974), 1477–1480; G.J. Chaitin, J. Assoc. Comp. Mach., 22(1975),
329–340]. It resolves the technical problems of Solomonoff’s original pro-
posal for a universal a priori probability [R.J. Solomonoff, A preliminary
report on a general theory of inductive inference, Tech. Rept. ZTB-138,
Zator Company, Cambridge, Mass., November 1960; Inform. Contr.,
7(1964), 1–22, 224–254]. L.A. Levin [A.K. Zvonkin and L.A. Levin, Russ.
Math. Surv., 25:6(1970), 83–124] identified universal a priori probabil-
ity with the maximal lower semicomputable semimeasure M over the
sample space {0, 1}∞, and it turns out that the negative logarithm of
the m version of M coincides with complexity K (Theorem 4.3.3 on
page 273 in Chapter 4). In some cases K is a more convenient complex-
ity measure than C, or conversely, but for many applications one can use
both equally well because they coincide to within a logarithmic additive
term. Lemma 3.1.1 is due to L.A. Levin, Soviet Math. Dokl., 17:2(1976),
522–526.

The material in Section 3.2 on the concrete implementation of a uni-
versal partial recursive function in combinatory logic to obtain explicit
constants bounding how far K(x) can exceed l(x) + 2l(l(x)), how far
K(x|l(x)) can exceed l(x), how far C(x) can exceed l(x), and so on,
is due to J.T. Tromp [Binary lambda calculus and combinatory logic,
Manuscript, CWI, Amsterdam, 2004]. Earlier, G.J. Chaitin [Complex-
ity, 1:4(1995/1996), 55–59] used a LISP implementation of a reference
universal prefix-machine to define concrete prefix complexity. He explic-
itly calculated constants involved in upper bounds on prefix complexity
and with the halting probability (Section 3.6.2).

Estimates for the quantitative relation between C and K in Section 3.1
are from [L.A. Levin, Problems Inform. Transmission, 10:3(1974), 206–
210; S.K. Leung-Yan-Cheong and T.M. Cover, IEEE Trans. Inform.
Theory, IT-24(1978), 331–339; R.M. Solovay, Lecture Notes, UCLA, 1975,
unpublished]. The numerical estimates on K-complexity and compress-
ibility, like the upper bound on K and the distribution of description
lengths in Theorem 3.3.1, are from [G.J. Chaitin, J. Assoc. Comp. Mach.,
22(1975), 329–340]. In the original submission of that paper Chaitin pro-
posed to call an infinite binary sequence x random iffK(x1:n) ≥ n−O(1).
This was shown to be equivalent to Martin-Löf’s notion of randomness,
Theorem 3.6.1, by C.P. Schnorr, acting as a referee of that paper. That
theorem is now known as Schnorr’s theorem.

The halting probability Ω, Section 3.6.2, was popularized by Chaitin [J.
Assoc. Comp. Mach., 22(1975), 329–340] and C.H. Bennett [C.H. Ben-
nett and M. Gardner, Scientific American, 241:11(1979), 20–34]. The
relation between the halting probability and the solvability of whether
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Diophantine equations have finitely many solutions or infinitely many so-
lutions, Section 3.7.1, is due to Chaitin [Adv. Appl. Math., 8(1987), 119–
146; Algorithmic Information Theory, Cambridge Univ. Press, 1987].
The latter book also surveys prefix complexity and randomness of in-
finite sequences. It incorrectly attributes the presented results only to
G.J. Chaitin, P. Martin-Löf, C.P. Schnorr, and R.M. Solovay; see also
the book review by P. Gács [J. Symb. Logic, 54(1989), 624–627]. Re-
lated surveys are [A.N. Kolmogorov and V.A. Uspensky, Theory Probab.
Appl., 32(1987), 389–412; V.A. Uspensky, A.L. Semenov and A.K. Shen,
Russ. Math. Surv., 45:1(1990), 121–189; V.A. Uspensky, J. Symb. Logic,
57:2(1992), 385–412; An.A. Muchnik, A.L. Semenov, V.A. Uspensky,
Theoret. Comput. Sci., 2:207(1998), 1362–1376; J.S. Miller, A. Nies, Bull.
Symb. Logic, 12:3(2006), 390–410.

The results of Yu.V. Matijasevich that every recursively enumerable set
has a polynomial Diophantine representation, and that every recursively
enumerable set has a singlefold exponential Diophantine representation,
appeared in [Soviet Math. Dokl., 11(1970), 354–357]. Matijasevich (in an
email of April 10, 2003, to the authors) stated that this was proven by
him in 1974 but published only later (with yet different proofs) in [J.P.
Jones, Yu.V. Matijasevich, J. Symbol. Logic, 49(1984), 818–829; Yu.V.
Matijasevich, Hilbert’s 10th Problem, MIT Press, 1993].

Every universal prefix machine has an associated halting probability. A.
Kučera and T.A. Slaman [SIAM J. Comput., 31:1(2002], 199-211] have
shown that the set of binary sequences corresponding to these halting
probabilities equals precisely the set of Martin-Löf random binary se-
quences that are lower semicomputable. Moreover, they have also shown
that the sum of the measures involved in a universal Martin-Löf test
again coincide with the set of Martin-Löf random binary sequences that
are lower semicomputable. Moreover, every uniformly computable se-
quence of lower semicomputable Martin-Löf random reals corresponds
to the sequence of measures of the subsequent sets of some sequential
Martin-Löf test, and vice versa, Exercise 3.6.17 on page 236. Develop-
ments in the theory at the crossroads of notions of individual random-
ness, Kolmogorov complexity, and recursion theory have blossomed in
the last decades. Such work has been partially incorporated in the main
text, and in the exercises, of Chapters 2 through 4. Detailed treatment
is beyond the scope and physical size of this book, and is the subject
of more specialized books: R.G. Downey, D.R. Hirschfeldt, Algorith-
mic Randomness and Complexity, Springer-Verlag, New York, to appear;
A.K. Shen, V.A. Uspensky, N.K. Vereshchagin, Kolmogorov Complexity
and Randomness, Elsevier, Amsterdam, to appear; A. Nies, Computabil-
ity and Randomness, Oxford Univ. Press, to appear.

Theorem 3.8.1 on the complexity of the complexity function is due to
P. Gács [Soviet Math. Dokl., 15(1974), 1477–1480] and was later found
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independently by R.M. Solovay [Lecture Notes, UCLA, 1975, unpub-
lished]. This crucial result establishes the lower bound on the error term
up to which information can be symmetric, for all possible variants of
Kolmogorov complexity: Theorem 3.9.1, attributed to L.A. Levin in [P.
Gács, Soviet Math. Dokl., 15(1974), 1477–1480]. The equality of the ex-
pected algorithmic information (both the Kolmogorov complexity and
prefix complexity variants) with Shannon’s entropy is treated in detail
in Section 8.1.1.
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Algorithmic Probability

P.S. Laplace (1749–1827) pointed out the following reason why intu-
itively, a regular outcome of a random event is unlikely:

“We arrange in our thought all possible events in various classes; and we regard
as extraordinary those classes which include a very small number. In the game
of heads and tails, if heads comes up a hundred times in a row then this appears
to us extraordinary, because the almost infinite number of combinations that
can arise in a hundred throws are divided in regular sequences, or those in
which we observe a rule that is easy to grasp, and in irregular sequences, that
are incomparably more numerous.” [Laplace]

If we define a regular object as an object with significantly less than
maximal complexity, then the number of all regular events is small. This
implies that the event that any one of them occurs has small probability
(in the uniform distribution). Yet, the classical calculus of probabilities
tells us that 100 heads is just as probable as any other sequence of heads
and tails, even though our intuition tells us that it is less random than
some others. Listen to the redoubtable Dr. Samuel Johnson:

“Dr. Beattie observed, as something remarkable which had happened to him,
that he chanced to see both the No. 1 and the No. 1000, of the hackney-
coaches, the first and the last; ‘Why, Sir,’ said Johnson, ‘there is an equal
chance for one’s seeing those two numbers as any other two.’ He was clearly
right; yet the seeing of two extremes, each of which is in some degree more
conspicuous than the rest, could not but strike one in a stronger manner than
the sight of any other two numbers.” [Boswell’s Life of Johnson]

Laplace distinguishes between the object itself and a cause of the object:

“The regular combinations occur more rarely only because they are less nu-
merous. If we seek a cause wherever we perceive symmetry, it is not that we

M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 259
DOI: 10.1007/978-0-387-49820-1_4,  © Springer Science + Business Media, LLC 2008 



260 4. Algorithmic Probability

regard the symmetrical event as less possible than the others, but, since this
event ought to be the effect of a regular cause or that of chance, the first of
these suppositions is more probable than the second. On a table we see let-
ters arranged in this order C o n s t a n t i n o p l e, and we judge that
this arrangement is not the result of chance, not because it is less possible
than others, for if this word were not employed in any language we would not
suspect it came from any particular cause, but this word being in use among
us, it is incomparably more probable that some person has thus arranged the
aforesaid letters than that this arrangement is due to chance.” [Laplace]

Let us try to turn Laplace’s argument into a formal one. Suppose we
observe a binary string x of length n and want to know whether we
must attribute the occurrence of x to pure chance or to a cause. ‘Chance’
means that the literal x is produced by fair coin tosses. ‘Cause’ means
that the reference prefix machine U computes x when its program is
provided by fair coin tosses. The chance of generating x literally is about
2−n. But the chance of generating x in the form of a short program from
which U computes x is at least 2−K(x). In other words, if x is regular,
then K(x) ≪ n, and it is about 2n−K(x) times more likely that x arose
as the result of computation from some simple cause (such as a short
program) than literally by a random process.

This gives an objective and absolute definition of ‘simplicity’ as ‘low
Kolmogorov complexity.’ Consequently, one obtains an objective and
absolute version of the classic maxim of William of Ockham (1290?–
1349?), known as Occam’s razor: “If there are alternative explanations
for a phenomenon, then, all other things being equal, we should select
the simplest one.” One identifies ‘simplicity of an object’ with ‘an object
having a short effective description.’ In other words, a priori we consider
objects with short descriptions more likely than objects with only long
descriptions. That is, objects with low complexity have high probability,
while objects with high complexity have low probability. Pursuing this
idea leads to the remarkable probability distribution 2−K(x) below.

4.1

Semicomput-

able Functions

Revisited

We continue the treatment of semicomputable functions where we left it
in Section 1.7.3. Nontrivial examples of functions that are upper semi-
computable but not computable are C(x), C(x|y), K(x), and K(x|y)
(Theorems 2.3.2, 2.3.3 on pages 127, 127, respectively). Examples of
functions that are lower semicomputable but not computable are −C(x),
−K(x), 2−K(x), and the universal Martin-Löf test δ0(x|L) = l(x) −
C(x|l(x)) − 1 with respect to the uniform distribution L.

Definition 4.1.1 A lower semicomputable function f is universal if there is an enumera-
tion f1, f2, . . . of lower semicomputable functions, possibly with repeti-
tions, such that f(i, x) = fi(x), for all i, x ∈ N , where f(i, x) = f(〈i, x〉).
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Lemma 4.1.1 There is a universal lower semicomputable function.

Proof. Let φ1, φ2, . . . be the effective enumeration of partial recursive
functions in Section 1.7. Consider each partial recursive φ as a function
φ : N × N → Q by interpreting φ(〈x, k〉) = 〈p, q〉 as φ(x, k) = p/q.
Define for each i the function fi by

fi(x) = sup
k∈N

{φi(x, k)}, (4.1)

or ∞ if such a maximum does not exist. Each such function fi is lower
semicomputable, since we can dovetail the computations of φi(x, k) for
all k ≥ 1. That is, the dovetailed computation proceeds by stages 1, 2, . . . .
At each stage j, the overall computation executes step j − k of the par-
ticular subcomputation of φi(x, k), for each k such that j − k > 0. On
the other hand, if f is a lower semicomputable function, then there ex-
ists a partial recursive function φ as in Equation 4.1 by Definition 1.7.4.
In this way, we obtain an enumeration f1, f2, . . . of all and only partial
functions that are lower semicomputable.

Define φ0(i, 〈x, k〉) = φi(x, k). Then φ0 is a partial recursive function and
there is an index j such that φj(〈i, x〉, k) = φ0(i〈x, k〉). The fj-function
corresponding to φj is also clearly lower semicomputable. Therefore, fj
is in the above enumeration. Then, fj(〈i, x〉) = fi(x), for all i and x. 2

An analogous argument shows how to construct a function that is uni-
versal upper semicomputable. In contrast, there is no universal total com-
putable function.

Example 4.1.1 If f(x, y) ≥ C(x|y), for all x and y, then we call f(x, y) a majorant
of C(x|y). The minimum of any finite number of majorants is again a
majorant. This is the way we combine different heuristics for recognizing
patterns in strings. All upper semicomputable majorants of C(x|y) share
an interesting and useful property:

Lemma 4.1.2 Let f(x, y) be upper semicomputable. For all x, y we have C(x|y) ≤
f(x, y) +O(1) iff d({x : f(x, y) ≤ m}) = O(2m), for all y and m.

Proof. (Only if) Suppose to the contrary that for each constant c, there
exist y and m such that the number of x’s with f(x, y) ≤ m exceeds
c2m. Then, by counting, there is an x such that C(x|y) ≥ m + log c.
Therefore, C(x|y) ≥ f(x, y) + log c + O(1). Letting c → ∞ contradicts
C(x|y) ≤ f(x, y) +O(1).

(If) Without loss of generality we can choose the minimal m satisfying
the ‘if’ assumption, for each x and y. That is, given x and y, set m :=
f(x, y). Let g be a partial recursive function such that g(k, x, y) ≥ g(k+



262 4. Algorithmic Probability

1, x, y) and limk→∞ g(k, x, y) = f(x, y). Then we can describe x, given y
andm, by the recursive function g approximating f from above, together
with the index of x in enumeration order, namely, by enumerating all
x’s that satisfy f(x, y) ≤ m.

Hence, C(x|y,m) ≤ m+ O(1). Choose h such that C(x|y,m) = m− h.
Using first the fact that we can reconstruct m from C(x|y,m) and h and
then substituting according to the definition of h gives

C(x|y) ≤ C(x|y,m) + 2 log h+O(1)

≤ m− h+ 2 logh+O(1).

Since we have chosen f(x, y) = m, this proves the ‘if’ part. 2 3

Definition 4.1.2 A real number x = 0.x1x2 . . . is lower semicomputable if the set of ra-
tionals below x is recursively enumerable. A number x is upper semi-
computable if −x is lower semicomputable. A number x is computable,
equivalently, recursive, if it is both lower semicomputable and upper
semicomputable.

It is easy to show that x is lower semicomputable (respectively recursive)
iff there is a lower semicomputable (respectively computable) function f
such that f(i) = xi for all i. The halting probability Ω =

∑

U(p)<∞ 2−l(p)

(Section 3.6.2 on page 225) is a lower semicomputable real. Let us explic-
itly construct the approximation. Define φ(n) =

∑
2−l(p), the sum taken

over all programs p of the reference prefix machine U of Theorem 3.1.1
on page 202 with l(p) ≤ n that halt within n steps. Obviously, φ is a
computable function, and φ(1), φ(2), . . . is a monotonic nondecreasing se-
quence of rational numbers with limit Ω. Similarly,

∑

x 2−K(x) < Ω, and
moreover, the entire class of Ω-like reals introduced in Exercise 3.6.15
on page 234 consists of lower semicomputable reals.

4.2

Measure

Theory

In this section, and in fact in the remainder of this entire chapter, we
assume some knowledge of measure theory in the classical sense, say the
basics in Section 1.6. In algorithmic probability theory it is customary
to use a nonstandard approach to measures. For better or worse we will
follow this usage. Let us first look at standard measure theory.

Classically, the framework is as follows: Let B be a finite or countably
infinite set of basic elements. For example, B = {0, 1}, B = {0, 1}∗, or
B = N (the natural numbers). Consider the continuous sample space
S = B∞, that is, all one-way infinite sequences over B.
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We want to extend the idea of probability from finite sample spaces
such as the outcomes {head, tail} for fair coin tosses to continuous sam-
ple spaces such as S. Probability cannot be properly defined for the
individual elements of S. (The probability of selecting a particular real
number r from the interval [0, 1] is necessarily 0 for all but countably
many elements.) Therefore, one defines the probability for subsets of S.
Since there are too many subsets to describe, one first defines proba-
bility for countably many sets that are easily described. These sets are
called ‘cylinder’ sets. Subsequently, by the operation of union, inter-
section, complement, and countable union, the probability definition is
extended to many more subsets of S according to the Kolmogorov ax-
ioms in Section 1.6. (These ‘Borel sets’ are by no means all subsets of
S.)

A cylinder is a set Γx ⊆ S defined by

Γx = {xω : ω ∈ B∞}

with x ∈ B∗. Let G = {Γx : x ∈ B∗} be the set of all cylinders in S.

A function µ : G → R defines a probability measure if

µ(Γǫ) = 1,

µ(Γx) =
∑

b∈B
µ(Γxb).

(For general measures we can take µ(Γǫ) ∈ R or even ∞.) In this defini-
tion we have defined the measures µ(Γ) only for all cylinders Γ ⊆ S. It
induces measures for all subsets of S obtainable from the cylinders by
intersection, union, complement, and countable union. It is a theorem
of measure theory that µ uniquely induces a measure on the Borel sets.
However, in the sequel we are primarily interested in the measures of
the cylinders. For convenience of notation we replace the set function on
cylinder sets by the isomorphic function on the defining initial segments.

Notation 4.2.1 A measure µ is defined by the function µ : G → R. Now consider the
function µ′ : B∗ → R defined by µ′(x) = µ(Γx). Trivially, from µ′ we can
reconstruct µ. From now on we call the µ′ functions ‘measures’ and drop
the primes. Formally, we use the definition of measure below. One should
keep in mind that our notation is shorthand for the original measure.

Definition 4.2.1 A function µ : B∗ → R is a probability measure if

µ(ǫ) = 1,

µ(x) =
∑

b∈B
µ(xb),
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for all x ∈ B∗. A semimeasure is a defective measure. A function µ :
B∗ → R is a semimeasure if for all x ∈ B∗,

µ(ǫ) ≤ 1,

µ(x) ≥
∑

b∈B
µ(xb).

We can transform any semimeasure µ into a measure ρ by adding a distin-
guished element u not in B, called the undefined element. We simply concen-
trate the surplus probability in Definition 4.2.1 on u by setting

ρ(ǫ) = 1,

ρ(xu) = ρ(x) −
∑

b∈B

µ(xb),

while for all x ∈ B∗ − {ǫ} we define ρ(x) := µ(x).

Example 4.2.1 For each x ∈ {0, 1}∗ define the measure λ(x) = 2−l(x). This is the
Lebesgue measure, or uniform measure, on the half-open unit interval
[0, 1). It has a geometric interpretation. Consider the real numbers in
[0, 1] as being represented by their binary representation after the bi-
nary point. A real like 1

2 has two representations, namely, 0.100 . . . and
0.011 . . . . We denote it by 0.1 and choose the representation with in-
finitely many zeros. The uniform measure λ(x) of the cylinder Γx is the
length 2−l(x) of the half-open interval [0.x, 0.x+ 2−l(x)). 3

This discussion leads to the central notion of this chapter: lower semi-
computable and computable semimeasures.

Definition 4.2.2 A semimeasure µ is lower semicomputable (respectively computable) if
the function µ is lower semicomputable (respectively computable).

Exercises 4.2.1. [18] Let µ be a semimeasure over B∗. Show that if µ is com-
putable, then we can find an algorithm to compute µ(x) and

∑

b∈B µ(xb),
for all x ∈ B∗, to any degree of accuracy.

Comments. These properties are implicitly used throughout Section 4.5
on continuous semimeasures. Source: V.G. Vovk, Soviet Math. Dokl.,
35(1987), 656–660.

4.2.2. [14] (a) Let U be the reference prefix machine of Theorem 3.1.1
on page 202. Define P (x) =

∑

U(p)=x 2−l(p). Show that
∑

x P (x) ≤ 1,

so P (x) qualifies as a probability mass function over the integers. (We
use the term ‘probability mass function’ loosely here for nonnegative
real-valued functions summing to at most 1.)
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(b) Define P (x) = 2−K(x). Show that
∑

x P (x) ≤ 1, the sum taken over
all x, so P (x) qualifies as a probability mass function over the integers.

(c) Define P (x|y) = 2−K(x|y). Show that
∑

x P (x|y) ≤ 1, for each fixed
y, so P (x|y) qualifies as a conditional probability mass function over the
integers.

(d) Define P (x) = 2−K(x|l(x)). Show that
∑

x P (x) = ∞, so P (x) does
not qualify as a probability mass function.

Comments. Hint for Item (a): use the Kraft inequality, Theorem 1.11.1.
Hint for Item (d): use K(x|l(x) ≤ l(x) +O(1).

4.3

Discrete

Sample Space

We first develop the theory in the discrete domain. This is in a sense
a first approximation to the theory in the continuous domain. One in-
terpretation is to set B = N and consider the sample space S = N .
(In terms of classical measure theory our sample space is S = {Γx :
x ∈ N ∗, l(x) = 1}.) Since all elements of S are one-letter strings, the
second item in Definition 4.2.1 on page 263 is not applicable. Since the
elements of N are considered one-letter strings, none of them is a prefix
of any other. All elements of N have prefix ǫ. Definition 4.2.1 requires
such a measure µ to satisfy µ(ǫ) =

∑

x∈N µ(x) = 1. Except for the
interpretation, there is no difference between a discrete measure and a
probability distribution over a sample space N . We use the same font
(capital italics) to denote them.

Definition 4.3.1 A discrete semimeasure is a function P from N into R that satisfies
∑

x∈N P (x) ≤ 1. It is a probability measure if equality holds.

Example 4.3.1 (Relation Discrete and Continuous Measure)
The discrete Lebesgue measure L on the set of basic elements B = N is
a function L : N → R defined by L(x) = 2−2l(x)−1. We verify that L is
a probability measure:

∑

x∈N
L(x) =

∑

n∈N



2−n−1
∑

l(x)=n

2−l(x)



 =
∑

n∈N
2−n−1 = 1.

Here we use l(x) not as the number of occurrences of basic symbols in
x (there is only 1 occurrence of an element in B) but rather as just a
function.

The continuous Lebesgue measure λ on the set of basic elements B =
{0, 1} is a function λ : {0, 1}∗ → R defined by λ(x) = 2−l(x) (from
Example 4.2.1). In the discrete measure L(x), the argument x is an
element of N with the interpretation that no two different arguments
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are prefixes of each other. In the continuous measure λ(x), the argument
x is an element of {0, 1}∗ with the usual interpretation that arguments
can be prefixes of other ones. An incorrect interpretation is seductive
by confusing B = N , which is both the basic set and the domain in the
discrete case, with the basic set B = {0, 1} and/or the domain B∗ in the
continuous case.

We give a numerical example. According to our standard correspondence
Equation 1.3, we have 1, 5, 6 ∈ N correspond to 0, 10, 11 ∈ {0, 1}∗. But
L(1) > L(5) + L(6), since L(1) = 1

8 and L(5) = L(6) = 1
32 . The in-

terpretation in terms of cylinder sets for L is that Γ1,Γ5,Γ6 are pair-
wise disjoint. As a comparison, for the continuous measure λ we have
λ(1) = λ(10) + λ(11), and the interpretation in cylinder sets is that
Γ1 = Γ10

⋃
Γ11.

For λ we have
⋃

l(x)=n Γx = S for each n. Thus,
∑

l(x)=n λ(x) = 1 for
each n and

∑

x∈{0,1}∗

λ(x) = ∞.

In contrast, for the discrete measure L we have
⋃

l(x)=n Γx ⊂ S, and we

have
∑

l(x)=n L(x) = 2−n−1 for each n, and hence
∑

x∈N L(x) = 1. 3

Example 4.3.2 If a lower semicomputable semimeasure P is a probability measure, then
it must be computable. By Definition 1.7.4, there exists a recursive func-
tion g(x, k), nondecreasing in k, with P (x) = limk→∞ g(x, k). We can
compute an approximation P k of the function P from below for which
∑

x P
k(x) > 1 − ǫ. This means that |P (x) − P k(x)| < ǫ, for all x. 3

4.3.1
Universal Lower
Semicomputable
Semimeasure

In Section 4.1 we defined the notion of a universal two-argument func-
tion as being in an appropriate sense able to simulate each element in the
class of one-argument lower semicomputable functions. This was similar
to the universality notion in Turing machines. We now look at a slightly
different notion of ‘universality’ meaning that some one-argument func-
tion is the ‘largest’ in a class of one-argument functions.

Definition 4.3.2 Let M be a class of discrete semimeasures. A semimeasure P0 is universal
(or maximal) for M if P0 ∈ M, and for all P ∈ M, there exists a
constant cP such that for all x ∈ N , we have cPP0(x) ≥ P (x), where cP
possibly depends on P but not on x.

We say that P0 (multiplicatively) dominates each P ∈ M. It is easy to prove
that the class of all semimeasures has no universal semimeasure. This is also
the case for the class of computable semimeasures (Lemma 4.3.1 below).
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Theorem 4.3.1 There is a universal lower semicomputable discrete semimeasure. We
denote it by m.

Proof. We prove the theorem in two steps. In Stage 1 we show that the
lower semicomputable discrete semimeasures can be effectively enumer-
ated as

P1, P2, . . . .

In Stage 2 we show that P0 as defined below is universal:

P0(x) =
∑

j≥1

α(j)Pj(x),

with
∑
α(j) ≤ 1, and α(j) > 0 and lower semicomputable for every

j. Stage 1 consists of two parts. In the first part, we enumerate all
lower semicomputable functions; and in the second part we effectively
change the lower semicomputable functions to lower semicomputable
discrete semimeasures, leaving the functions that were already discrete
semimeasures unchanged.

Stage 1 Let ψ1, ψ2, . . . be an effective enumeration of all real-valued
partial recursive functions. Consider a function ψ from this enumeration
(where we drop the subscript for notational convenience). Without loss
of generality, assume that each ψ is approximated by a rational-valued
two-argument partial recursive function φ′(x, k) = p/q (this is the in-
terpretation of the literal φ′(〈x, k〉) = 〈p, q〉). Without loss of generality,
each such φ′(x, k) is modified to a rational-valued two-argument partial
recursive function φ(x, k) so as to satisfy the properties below. For all
x ∈ N , for all k > 0,

• if φ(x, k) < ∞, then also φ(x, 1), φ(x, 2), . . . , φ(x, k − 1) < ∞ (this
can be achieved by the trick of dovetailing the computation of
φ′(x, 1), φ′(x, 2), . . . and assigning computed values in enumeration
order to φ(x, 1), φ(x, 2), . . .);

• φ(x, k+ 1) ≥ φ(x, k) (dovetail the computation of φ′(x, 1), φ′(x, 2),
. . . and assign the enumerated values to φ(x, 1), φ(x, 2), . . . satis-
fying this requirement and ignoring the other computed values);
and

• limk→∞ φ(x, k) = ψ(x) (as does φ′(·)).

The resulting ψ-list contains all lower semicomputable real-valued func-
tions, and is actually represented by the approximators in the φ-list.
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Each lower semicomputable function ψ (rather, the approximating func-
tion φ) will be used to construct a discrete semimeasure P . In the algo-
rithm below, the local variable array P contains the current approxima-
tion to the values of P at each stage of the computation. This is doable
because the nonzero part of the approximation is always finite.

Step 1. Initialize by setting P (x) := 0 for all x ∈ N ; and set k := 0.

Step 2. Set k := k+1, and compute φ(1, k), . . . , φ(k, k). {If any φ(i, k),
1 ≤ i ≤ k, is undefined, then P will not change any more and it is
trivially a discrete semimeasure}

Step 3. If φ(1, k) + · · · + φ(k, k) ≤ 1 then set P (i) := φ(i, k) for all
i = 1, 2, . . . , k else terminate.
{Step 3 is a test of whether the new assignment of P -values satisfies
the discrete semimeasure requirements}

Step 4. Go to Step 2.

If ψ is already a discrete semimeasure, then P = ψ. If for some x and k
with x ≤ k the value φ(x, k) is undefined, then the last assigned values
of P do not change any more even though the computation goes on
forever. Because the condition in Step 3 is satisfied by the values of P , it
is a discrete semimeasure. If the condition in Step 3 gets violated, then
the computation terminates and the P -approximation to P is a discrete
semimeasure—even a computable one.

Executing this procedure on all functions in the list φ1, φ2, . . . yields
an effective enumeration P1, P2, . . . of all lower semicomputable discrete
semimeasures (and only lower semicomputable discrete semimeasures).

Stage 2 Define the function P0 as

P0(x) =
∑

j≥1

α(j)Pj(x),

with α(j) chosen such that
∑

j α(j) ≤ 1, and α(j) > 0 and lower semi-
computable for all j. Then P0 is a discrete semimeasure since

∑

x≥0

P0(x) =
∑

j≥1

α(j)
∑

x≥0

Pj(x) ≤
∑

j≥1

α(j) ≤ 1.

The function P0 is also lower semicomputable, since Pj(x) is lower semi-
computable in j and x. (Use the universal partial recursive function
φ0 and the construction above.) Finally, P0 dominates each Pj since
P0(x) ≥ α(j)Pj(x). Therefore, P0 is a universal lower semicomputable
discrete semimeasure. Obviously, there are countably infinitely many
universal lower semicomputable semimeasures. We now fix a reference
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FIGURE 4.1. Graph of m(x) with lower bound 1/(x · log x · log log x · · ·)

universal lower semicomputable discrete semimeasure and denote it by
m, depicted in Figure 4.1. 2

Example 4.3.3 In the definition of m(x) as
∑

j α(j)Pj(x) we can choose α(j) = 2−j or

α(j) = 6/(πj)2. In choosing α we must take care that the resulting m
is lower semicomputable. In particular, we can define

m(x) =
∑

j≥1

2−K(j)−O(1)Pj(x),

the form of which will turn out to be convenient later. Namely, this
assignment yields the domination relation m(x) ≥ 2−K(j)−O(1)Pj(x).
The domination constant 2−K(j) is for simple j much larger than the
domination constant 2−j . With K(P ) = min{K(j) : P = Pj}+O(1) we
write

m(x) ≥ 2−K(P )P (x), (4.2)

for all lower semicomputable discrete semimeasures P = Pj . 3

Definition 4.3.3 Let f(x, y) be a lower semicomputable function such that for each fixed
y we have

∑

x f(x, y) ≤ 1. Such functions f define lower semicomputable
conditional probability mass functions P (x|y) = f(x, y).

For example, y describes the relation x ∈ A, where A is a finite set. In
the by now familiar manner, we can effectively enumerate this family
of lower semicomputable probability mass functions as P1, P2, . . ., for
example by setting Pj(x|y) = Qj(〈x, y〉) with Qj the jth element in the
list of lower semicomputable unconditional probability mass functions.

Definition 4.3.4 We can now define the conditional version of m(x) as

m(x|y) =
∑

j≥1

2−K(j)−O(1)Pj(x|y).

m(x)

2
*-l (x)

x
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Theorem 4.3.2 If P (x|y) is a lower semicomputable conditional probability mass func-
tion, then 2K(P )m(x|y) ≥ P (x|y), for all x, y.

Proof. Similar to the argument in Example 4.3.3. 2

Lemma 4.3.1 The class of computable semimeasures has no universal element.

Proof. Suppose a computable semimeasure P0 is universal for the class of
computable semimeasures. By its computability, P0(x) is approximable
to any degree of accuracy; by its universality, P0(x) is strictly positive for
every x (it multiplicatively dominates 2−x−1); and since it is a semimea-
sure, then necessarily, P0(x) → 0 for x → ∞. Consequently, we can
compute an infinite sequence x1, x2, . . . such that xi is the least value
satisfying P0(xi) < 2−i/i (i = 1, 2 . . .). Therefore, the function Q, de-
fined by Q(xi) := 2−i for i := 1, 2, . . ., and zero otherwise, is computable.
Moreover,

∑

xQ(x) = 1, so Q is a (semi)measure. However, for every i
there is an x := xi such that Q(x) = 2−i > iP0(x), which contradicts
the universality of P0. 2

This lemma is one of the reasons for introducing the notion of lower semicom-
putable semimeasures, rather than sticking to computable ones. Compare this
to the introduction of lower semicomputable Martin-Löf tests in Sections 2.4,
2.5: among the recursive Martin-Löf tests there is no universal one.

Lemma 4.3.2 The function m is incomputable and
∑

xm(x) < 1.

Proof. If m were computable, then it would be universal for the class
of computable semimeasures, by Theorem 4.3.1. But there is no such
universal element by Lemma 4.3.1.

Example 4.3.2 tells us that if a lower semicomputable semimeasure is
also a probability distribution, then it is computable. Since m is lower
semicomputable but not computable, this implies

∑

xm(x) < 1. 2

Let us look at the dependency between computability and measurehood of
lower semicomputable semimeasures. One reason for introducing semimea-
sures, instead of just restricting consideration to probability mass functions
summing to one, is due to the fact that on some input the reference prefix ma-
chine U runs forever. Normalizing m by dividing each value of it by

∑

x
m(x)

yields a proper probability mass function, say P, such that
∑

x
P(x) = 1.

We know from Example 4.3.2 that if a lower semicomputable semimeasure is
also a probability mass function, then it is computable. So either P is com-
putable or it is not lower semicomputable. Measure P is not computable by
the same argument that works for m in Lemma 4.3.2. Hence, P is not even
lower semicomputable.
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Example 4.3.4 Consider the behavior of m(x) as x runs over the natural numbers. Let
v(x) = 6/(πx)2 and let w be defined by

w(x) =

{
1/x for x = 2k and k ∈ N+,
0 otherwise.

It can be shown that
∑

xw(x) =
∑

x v(x) = 1. Since both functions are
lower semicomputable, they are both dominated by m(x). (Even though
the series

∑

x 1/x associated with the upper bound 1/x on w(x) diverges,
m(x) also dominates w(x)). From the Kraft inequality, Theorem 1.11.1,
we know that the series

∑

x 1/(x log2 x) converges. The function m(x)
dominates 1/(x log2 x), but jumps at many places higher than what is
shown in Figure 4.1, witnessed by the domination of m(x) over w(x). 3

4.3.2
A Priori
Probability

Let P1, P2, . . . be the effective enumeration of all lower semicomputable
semimeasures constructed in Theorem 4.3.1. There is another way to
effectively enumerate the lower semicomputable semimeasures. Think of
the input to a prefix machine T as being provided by an indefinitely
long sequence of fair coin flips. The probability of generating an initial
input segment p is 2−l(p). If T (p) < ∞, that is, T ’s computation on
p terminates, then presented with any infinitely long sequence starting
with p, the machine T , being a prefix machine, will read exactly p and
no further.

Let T1, T2, . . . be the standard enumeration of prefix machines of Theo-
rem 3.1.1 on page 202. For each prefix machine T , define

QT (x) =
∑

T (p)=x

2−l(p). (4.3)

In other words, QT (x) is the probability that T computes output x if
its input is provided by successive tosses of a fair coin. This means that
QT satisfies
∑

x∈N
QT (x) ≤ 1.

Equality holds exactly for those T for which each one-way infinite input
contains a finite initial segment constituting a halting program.

We can approximate QT as follows. (The algorithm uses the local vari-
able Q(x) to store the current approximation to QT (x).)

Step 1. Initialize Q(x) := 0 for all x.

Step 2. Dovetail the running of all programs on T so that in stage k,
step k − j of program j is executed. Every time the computation
of some program p halts with output x, increment Q(x) := Q(x) +
2−l(p).
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The algorithm approximates the displayed sum in Equation 4.3 for each
x by the contents of Q(x). This shows that QT is lower semicomputable.
Starting from a standard enumeration of prefix machines T1, T2, . . .,
this construction gives an enumeration of only lower semicomputable
semimeasures

Q1, Q2, . . . .

The P -enumeration of Theorem 4.3.1 contains all elements enumerated
by this Q-enumeration. We only need to prove that the Q-enumeration
contains all lower semicomputable measures (Lemma 4.3.4).

Definition 4.3.5 The universal a priori probability on the positive integers is defined as

QU (x) =
∑

U(p)=x

2−l(p),

where U is the reference prefix machine of Theorem 3.1.1.

The use of prefix machines in the present discussion rather than plain Tur-
ing machines is necessary. By Kraft’s inequality, Theorem 1.11.1, the series
∑

p
2−l(p) converges (to ≤ 1) if the summation is taken over all halting pro-

grams p of any fixed prefix machine. In contrast, if the summation is taken
over all halting programs p of a universal plain Turing machine, then the series
∑

p
2−l(p) diverges.

In Section 3.6.2 we studied the real number Ω =
∑

x
QU (x) and called it

the ‘halting probability.’ No matter how we choose reference U , the halting
probability is less than 1. Namely, U does not halt for some finite input q
(the halting problem in Section 1.7). That is,

∑

x
QU (x) ≤ 1 − 2−l(q). If we

normalize QU (x) by P(x) = QU(x)/Ω, then the resulting function P is not
lower semicomputable. Namely, if it were lower semicomputable, it would also
be computable by Example 4.3.2. By Theorem 4.3.3, the function P would
also be universal, and by Lemma 4.3.1, this is impossible.

4.3.3
Algorithmic
Probability

It is common to conceive of an object as being simpler if it can be briefly
described. But the shortness of description of an object depends on the
description methods we allow, the ‘admissible description syntax,’ so to
speak. We want to effectively reconstruct an object from its descrip-
tion. The shortest self-delimiting effective description of an object x is
quantified by K(x).

This leads to a recursively invariant notion of algorithmic probability,
which can be interpreted as a form of Occam’s razor: the statement that
one object is simpler than another is equivalent to saying that the former
object has higher probability than the latter.
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Definition 4.3.6 The algorithmic probability R(x) of x is defined as

R(x) = 2−K(x).

Let us see what this means. Consider a simple object. If x consists of a
string of n zeros, then K(x) ≤ logn+2 log logn+c, where c is a constant
independent of n. Hence,

R(x) ≥ 1

2cn log2 n
.

Generate a binary sequence y by n tosses of a fair coin. With overwhelm-
ing probability, K(y) ≥ n. For such complex objects y,

R(y) ≤ 2−n.

4.3.4
The Coding
Theorem

Now we are ready to state the remarkable and powerful fact that the uni-
versal lower semicomputable discrete semimeasure m(x), the universal a
priori probabilityQU (x), and the algorithmic probability R(x) = 2−K(x)

all coincide up to an independent fixed multiplicative constant. In math-
ematics the fact that quite different formalizations of concepts turn out
to be equivalent is often interpreted as saying that the captured notion
has an inherent relevance that transcends the realm of pure mathemat-
ical abstraction. We call the generic distribution involved the universal
distribution. The following is called the coding theorem.

Theorem 4.3.3 There is a constant c such that for every x,

log
1

m(x)
= log

1

QU (x)
= K(x),

with equality up to an additive constant c.

Proof. Since 2−K(x) represents the contribution to QU (x) by a shortest
program for x, we have 2−K(x) ≤ QU (x), for all x.

Clearly, QU (x) is lower semicomputable. Namely, enumerate all pro-
grams for x, by running reference machine U on all programs at once in
dovetail fashion: in the first phase, execute step 1 of program 1; in the
second phase, execute step 2 of program 1 and step 1 of program 2; in
the ith phase (i > 2), execute step j of program k for all positive j and
k such that j + k = i. By the universality of m(x) in the class of lower
semicomputable discrete semimeasures, QU (x) = O(m(x)).

It remains to show that m(x) = O(2−K(x)). This is equivalent to proving
that K(x) ≤ log 1/m(x) + O(1), as follows. Exhibit a prefix-code E
encoding each source word x as a code word E(x) = p, satisfying

l(p) ≤ log
1

m(x)
+O(1),
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together with a decoding prefix machine T such that T (p) = x. Then,

KT (x) ≤ l(p).

Then, by the invariance theorem, Theorem 3.1.1 on page 202,

K(x) ≤ KT (x) +O(1).

On the way to constructing E as required, we recall a construction for
the Shannon–Fano code:

Lemma 4.3.3 If P is a semimeasure on the integers,
∑

x P (x) ≤ 1, then there is a bi-
nary prefix-code E such that the code words E(1), E(2), . . . can be length-
increasing lexicographically ordered and l(E(x)) ≤ log 1/P (x) + 2. This
is the Shannon–Fano code.

Proof. Let [0, 1) be the half-open real unit interval, corresponding to the
sample space S = {0, 1}∞. Each element ω of S corresponds to a real
number 0.ω. Let x ∈ {0, 1}∗. The half-open interval [0.x, 0.x + 2−l(x))
corresponding to the cylinder (set) of reals Γx = {0.ω : ω = x . . . ∈ S}
is called a binary interval. We cut off disjoint, consecutive, adjacent
(not necessarily binary) intervals Ix of length P (x) from the left end of
[0, 1), x = 1, 2, . . . . Let ix be the length of the longest binary interval
contained in Ix. Set E(x) equal to the binary word corresponding to the
leftmost such interval. Then l(E(x)) = log 1/ix. It is easy to see that Ix
is covered by at most four binary intervals of length ix, from which the
claim follows. 2

In contrast to the proof of Theorem 1.11.1, the Kraft inequality, we
cannot assume here that the sequence log 1/P (1), log 1/P (2), . . . is non-
decreasing. This causes a loss of almost two bits in the upper bound.

We use this construction to find a prefix machine T such that KT (x) ≤
log 1/m(x) + c. That m(x) is not computable but only lower semicom-
putable results in c = 3.

Since m(x) is lower semicomputable, there is a partial recursive function
φ(x, t) with φ(x, t) ≤ m(x) and φ(x, t+ 1) ≥ φ(x, t), for all t. Moreover,
limt→∞ φ(x, t) = m(x). Let ψ(x, t) be the greatest partial recursive lower
bound of special form on φ(x, t) defined by

ψ(x, t) := {2−k : 2−k ≤ φ(x, t) < 2 · 2−k and φ(x, j) < 2−k for all j < t},

and ψ(x, t) := 0 otherwise. Let ψ enumerate its range without repetition.
Then,

∑

x,t

ψ(x, t) =
∑

x

∑

t

ψ(x, t) ≤
∑

x

2m(x) ≤ 2.
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The series
∑

t ψ(x, t) can converge to precisely 2m(x) only in case there
is a positive integer k such that m(x) = 2−k.

In a manner similar to the proof of Lemma 4.3.3 on page 274, we chop off
consecutive, adjacent, disjoint half-open intervals Ix,t of length ψ(x, t)/2,
in enumeration order of a dovetailed computation of all ψ(x, t), starting
from the left-hand side of [0, 1). We have already shown that this is
possible. It is easy to see that we can construct a prefix machine T as
follows: If Γp is the leftmost largest binary interval of Ix,t, then T (p) = x.
Otherwise, T (p) = ∞ (T does not halt).

By construction of ψ, for each x there is a t such that ψ(x, t) > m(x)/2.
Each interval Ix,t has length ψ(x, t)/2. Each I-interval contains a binary
interval Γp of length at least one-half of that of I (because the length
of I is of the form 2−k, it contains a binary interval of length 2−k−1) .
Therefore, there is a p with T (p) = x such that 2−l(p) ≥ m(x)/8. This
implies KT (x) ≤ log 1/m(x) + 3, which was what we had to prove. 2

Corollary 4.3.1 If P is a lower semicomputable discrete semimeasure, then there is a
constant cP = K(P ) +O(1) such that K(x) ≤ log 1/P (x) + cP .

Definition 4.3.7 The conditional universal distribution is QU (x|y) =
∑

U(p,y)=x 2−l(p).

By Theorem 4.3.2, we have 2K(P )m(x|y) ≥ P (x|y), for all x, y. Hence
m(x|y) is a universal conditional lower semicomputable semimeasure
in the sense of being the largest (within a constant factor) nonnega-
tive lower semicomputable conditional discrrete semimeasure. Then as a
corollary of Theorem 4.3.3 (rather, of its proof), we have the conditional
coding theorem:

Theorem 4.3.4 There is a constant c such that for all x, y,

log
1

m(x|y) = log
1

QU (x|y) = K(x|y),

with equality up to an additive constant c.

Proof. Since QU (x|y) is a lower semicomputable discrete semimeasure,
say the jth one in the enumeration P1(x|y), P2(x|y), . . . , we can set
QU (x|y) = Pj(x|y). By Definition 4.3.4, we have m(x|y) ≥ 2−K(j)Pj(x|y),
and hence log 1/m(x|y) ≤ log 1/QU(x|y) + O(1). Moreover, for fixed y,
the Shannon–Fano code associated with QU (x|y) has code-word length
log 1/QU (x|y), and this length is upper semicomputable. Since K(x|y)
is the length of the shortest upper semicomputable code for x given y,
it follows that log 1/QU(x|y) + O(1) ≤ K(x|y). So it remains to prove
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K(x|y) ≤ m(x|y) + O(1), which, for every fixed y, follows the proof of
Theorem 4.3.3 2

Together, Theorem 4.3.4 and Theorem 4.3.2 yield the following:

Corollary 4.3.2 If P is a lower semicomputable discrete semimeasure, then K(x|y) ≤
log 1/P (x|y) +K(P ) +O(1).

Theorem 4.3.3 shows that the universal lower semicomputable discrete
semimeasure m in the P -enumeration, defined in terms of a function
computed by a prefix machine, and the universal a priori probability
distribution QU in the Q-enumeration, defined as the distribution to
which the universal prefix machine transforms the uniform distribution,
are equal up to a multiplicative constant. This is a particular case of the
more general fact that both sequences enumerate the same functions and
there are recursive isomorphisms between the two.

Lemma 4.3.4 There are recursive functions f, g such that Qj = Θ(Pf(j)) and Pj =
Θ(Qg(j)).

Proof. Firstly, we construct f . Let Q = Qj be the discrete semimeasure
induced by prefix machine T = Tj if its programs are generated by fair
coin flips. We compute Q(x) from below by a recursive function φ(x, t)
such that φ(x, t+ 1) ≥ φ(x, t) and limt→∞ φ(x, t) = Q(x). The function
φ is defined as follows:

Step 1. For all x, set φ(x, 0) := 0. Dovetail the computation of T on
all of its programs p. Let variable t count the steps of the resulting
computation. Set t := 0.

Step 2. Set t := t+ 1.

Step 3. For all p, x with l(p), l(x) ≤ t do:
if the computation T (p) terminates in the tth step with T (p) = x
then set φ(x, t+1) := φ(x, t)+2−l(p) else set φ(x, t+1) := φ(x, t).

Step 4. Go to Step 2.

We can make the described procedure rigorous in the form of a prefix
machine T ′. Let this T ′ be Tm in the standard enumeration of pre-
fix machines. The construction in Theorem 4.3.1 that transforms every
prefix machine into a prefix machine computing a semimeasure leaves
Pm invariant. Therefore, machine Tm computes Pm from below in the
standard way in the P -enumeration. Hence, Q = Pm. It suffices to set
f(j) = m. Clearly, f is recursive: we have just outlined the algorithm to
compute it.



4.3. Discrete Sample Space 277

Secondly, we construct g. Let P = Pj be the jth element in the effective
enumeration constructed in Theorem 4.3.1. We follow the construction
in the proof of the Theorem 4.3.3, with P substituted for m. Just as
in that proof, since P is lower semicomputable, we can find a prefix
machine TP such that for each x, the following two items hold:

1. We can construct a function
∑

t ψP (x, t) ≤ 2P (x) with correspond-
ing prefix machine TP such that

∑

TP (p)=x 2−l(p) ≤ P (x).

2. Moreover, P (x)/8 ≤ 2−KTP
(x). Therefore,KTP (x) ≤ log 1/P (x)+3.

Let Q =
∑

TP (p)=x 2−l(p) be the discrete semimeasure induced by the
prefix machine TP if its programs are generated by fair coin flips. Then,
with Q = Qm in the Q-enumeration, and KTP (x) = minp{l(p) : TP (p) =
x}, we have

2−KTP
(x) ≤

∑

TP (p)=x

2−l(p) = Qm(x).

By Items 1 and 2 this implies that Qm(x) = Θ(P (x)). Obviously, the
function g defined by g(j) = m is recursive. 2

Example 4.3.5 A priori, an outcome x may have high probability because it has many
long descriptions. The coding theorem, Theorem 4.3.3, tells us that in
that case it must have a short description too. In other words, the a
priori probability of x is dominated by the shortest program for x.

Just as we have derived the discrete semimeasure QU from U , we can de-
rive the discrete semimeasure QT from the prefix machine T constructed
in the proof of Theorem 4.3.3. Since QT is lower semicomputable, we
have QT (x) = O(m(x)). By definition, 2−KT (x) = O(QT (x)). In the
proof of Theorem 4.3.3 it was shown that KT (x) ≤ log 1/m(x) + 3. Us-
ing Theorem 4.3.3 once more, we haveK(x) ≤ KT (x)+O(1). Altogether,
this gives

log
1

QT (x)
= log

1

m(x)
= KT (x)

up to additive constants. Again, therefore, if x has many long programs
with respect to T , then it also has a short program with respect to T . In
general, we can ask the question, how many descriptions of what length
does a finite object have? This leads us to the statistics of description
length. For instance, it turns out that there is a universal constant limit-
ing the number of shortest descriptions of any finite object, Exercise 4.3.6
on page 287. 3
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We compare the coding theorem, Theorem 4.3.3, with Shannon’s noiseless
coding theorem, Theorem 1.11.2 on page 77. The latter states that given any
discrete semimeasure P on the positive integers, we can construct a binary
prefix-code E in such a way that on average, l(E(x)) ≤ log 1/P (x) + 1. Recall
from Section 1.11.4 the notion of ‘universal code’ as a code that gives near-
optimal encodings for any discrete semimeasure on the source alphabet. The
coding theorem shows that there is a single fixed upper semicomputable uni-
versal code E′ for every lower semicomputable discrete semimeasure. The code
E′(x) is the shortest program to compute x by the reference prefix machine.

The code-word lengths satisfy l(E′(x)) = K(x) up to a fixed additive constant
independent of x. We have shown that for every lower semicomputable discrete
semimeasure P , P (x) ≤ cPm(x), where cP is a constant depending on the
distribution P but not on x. By Theorem 4.3.3, the code-word lengths satisfy
l(E′(x)) ≤ log 1/P (x) + cP . This is far better than the performance of any
universal code we have met in Section 1.11.1.

4.3.5
Randomness by
Sum Tests

In Theorem 2.4.1, page 138, we have exhibited a universal P -test for
randomness of a string x of length n with respect to an arbitrary com-
putable distribution P over the sample set S = Bn with B = {0, 1}.
The universal P -test measures how justified the assumption is that x
is the outcome of an experiment with distribution P . We now use m
to investigate alternative characterizations of random elements of the
sample set S = B∗ (equivalently, S = N ).

Definition 4.3.8 Let P be a computable discrete semimeasure on N . A sum P -test is a
lower semicomputable function δ satisfying

∑

x

P (x)2δ(x) ≤ 1. (4.4)

A universal sum P -test is a test that additively dominates each sum
P -test.

The sum tests of Definition 4.3.8 are slightly stronger than the tests ac-
cording to Martin-Löf’s original definition, Definition 2.4.1 on page 135.

Lemma 4.3.5 Each sum P -test is a P -test. If δ(x) is a P -test, then there is a constant
c such that δ′(x) = δ(x) − 2 log(δ(x) + 1) − c is a sum P -test.

Proof. Define Pn(x) = P (x|l(x) = n) for l(x) = n and 0 otherwise. It
follows immediately from the new definition that for all nonnegative n
and k,

∑

{Pn(x) : δ(x) ≥ k} ≤ 2−k. (4.5)
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Namely, if Equation 4.5 is false, then we contradict Equation 4.4 by

∑

x∈N
P (x)2δ(x) ≥

∑

l(x)=n,δ(x)≥k
Pn(x)2k > 1.

Conversely, if δ(x) satisfies Equation 4.5 for all n, then for some constant
c, the function δ′(x) = δ(x) − 2 log(δ(x) + 1) − c satisfies Equation 4.4.
Namely,

∑

l(x)=n

Pn(x)2
δ′(x) =

∑

k

∑

l(x)=n

{Pn(x) : δ(x) = k} 2δ
′(x)

≤
∑

k

1/(2c(k + 1)2), (4.6)

where the summation over k is from 0 to ∞. Choose a constant c such
that the last sum converges to at most 1. Note that c = 1 will do, since
∑∞

k=0 1/(k + 1)2 = π2/6 < 2. Since Pn(x) = P (x)/
∑

l(x)=n P (x),

∑

n




∑

l(x)=n

P (x)




∑

l(x)=n

Pn(x)2δ
′(x) =

∑

x

P (x)2δ
′(x).

On the left-hand side of this equality, the expression corresponding to
the left-hand side of Equation 4.6 is bounded from above by 1. Therefore,
the right-hand side of the equality is at most 1, as desired. 2

This shows that the sum test is not much stronger than the original test.
One advantage of Equation 4.4 is that it is just one inequality instead
of infinitely many, one for each n. We give an exact expression for a
universal sum P -test in terms of complexity.

Theorem 4.3.5 Let P be a computable probability distribution. The function κ0(x|P ) =
log(m(x)/P (x)) is a universal sum P -test.

Proof. Since m is lower semicomputable and P is computable, κ0(x|P )
is lower semicomputable. We first show that κ0(x|P ) is a sum P -test:

∑

x

P (x)2κ0(x|P ) =
∑

x

m(x) ≤ 1.

It remains only to show that κ0(x|P ) additively dominates all sum P -
tests. For each sum P -test δ, the function P (x)2δ(x) is a semimeasure
that is lower semicomputable. By Theorem 4.3.1, there is a positive con-
stant c such that c ·m(x) ≥ P (x)2δ(x). Hence, there is another constant
c such that c+ κ0(x|P ) ≥ δ(x), for all x. 2
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Example 4.3.6 An important case is as follows. Define PA(x) = P (x)/
∑

x∈A P (x) for
x ∈ A and 0 otherwise, and mA(x) = m(x)/

∑

x∈Am(x) for x ∈ A and 0
otherwise. If we consider a distribution P restricted to a domain A ⊂ N ,
then the universal sum P -test becomes log(mA(x)/PA(x)). For example,
if Ln is the uniform distribution on A = {0, 1}n, then the universal sum
Ln-test for x ∈ A becomes

κ0(x|Ln) = log
mA(x)

Ln(x)
= n−K(x|n) −O(1).

Namely, Ln(x) = 1/2n and logmA(x) = −K(x|n) + O(1) by Theo-
rem 4.3.4, since we can describe A by giving n. Alternatively, use the
definition of mA(x) above, Exercise 4.3.7 on page 288, and the symmetry
of information theorem, Theorem 3.9.1. 3

Example 4.3.7 The noiseless coding theorem, Theorem 1.11.2 on page 77, says that
the Shannon–Fano code, which codes a source word x straightforwardly
as a word of about log 1/P (x) bits (Example 1.11.2 on page 68 and
Lemma 4.3.3 on page 274), nearly achieves the optimal expected code-
word length. This code is based solely on the probabilistic characteristics
of the source, and it does not use any characteristics of the object x itself
to associate a code word with a source word x. The code that codes each
source word x as a code word of length K(x) also achieves the optimal
expected code-word length. This code is independent of the probabilistic
characteristics of the source, and uses solely the characteristics of the
individual objects x to obtain shorter code words. Any difference in
code-word length between these two encodings for a particular object
x is due to exploitation of the probability of x versus the individual
regularities in x. Taking a probability that accounts for the regularities
in x, the two code-word lengths coincide. This is the case for the universal
probability m(x) of x, which has as its associated Shannon–Fano code-
word length the prefix complexity K(x) = log 1/m(x) + O(1) of x. For
other probabilities P of x, the P -expected Shannon–Fano code-word
length differs from the P -expected prefix complexity K(x) by at most
the complexity K(P ) of P ; see Section 8.1.1. This is tied up with the
notion of randomness deficiency, which we met earlier, in a new setting.

Definition 4.3.9 Following Section 2.2.1, define the randomness deficiency of a finite ob-
ject x with respect to P as

δ(x|P ) =

⌊

log
1

P (x)

⌋

−K(x) = log
m(x)

P (x)
+O(1).

Then, δ(x|P ) = κ0(x|P ) + O(1) by Theorems 4.3.3, 4.3.5. That is, the
randomness deficiency is the outcome of the universal sum P -test of
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Theorem 4.3.5. Thus, for simple distributions, the expected prefix com-
plexity is about equal to the expected Shannon–Fano code-word length,
that is, the expectation of the randomness deficiency is close to zero. 3

Example 4.3.8 Let us compare the randomness deficiency as measured by κ0(x|P ) with
that measured by the universal test δ0(x|L), for the uniform distribution
L, in Section 2.4. That test consisted actually of tests for a whole family
Ln of distributions, where Ln is the uniform distribution such that each
Ln(x) = 2−n for l(x) = n, and zero otherwise. Rewrite δ0(x|L) as

δ0(x|Ln) = n− C(x|n) − 1,

for l(x) = n, and ∞ otherwise. This equals the reference universal test
with respect to the uniform distribution we met in Definition 2.4.3 on
page 140, and is close to the expression for κ0(x|Ln) obtained in Ex-
ample 4.3.6 on page 280. From the relations between C and K we have
established in Chapter 3, it follows that

|δ0(x|Ln) − κ0(x|Ln)| ≤ 2 logC(x) +O(1).

The formulation of the universal sum test in Theorem 4.3.5 can be interpreted
as follows: An element x is random with respect to a distribution P , that
is, κ0(x|P ) = O(1), if P (x) is large enough, not in absolute value but rel-
ative to m(x). If we did not have this relativization, then we would not be
able to distinguish between random and nonrandom outcomes for the uniform
distribution Ln(x) above.

Let us look at an example. Let x = 00 . . . 0 of length n. Then κ0(x|Ln) =
n −K(x|n) + O(1) = n + O(1). If we flip a coin n times to generate y, then
with overwhelming probability, K(y|n) ≥ n−O(1) and κ0(y|Ln) = O(1).

3

Example 4.3.9 According to modern physics, electrons, neutrons, and protons satisfy
the Fermi–Dirac distribution (Exercise 1.3.6, page 11). We distribute n
particles among k cells, for n ≤ k, such that each cell is occupied by
at most one particle; and all distinguished arrangements satisfying this
have the same probability.

We can treat each arrangement as a binary string: an empty cell is a
zero and a cell with a particle is a one. Since there are

(
k
n

)
possible

arrangements, the probability for each arrangement x to happen, under
the Fermi–Dirac distribution, is FDn,k(x) = 1/

(
k
n

)
. Denote the set of

possible arrangements by A(n, k). According to Theorem 4.3.5,

κ0(x|FDn,k) = log
mA(n,k)(x)

FDn,k(x)

= −K(x|n, k) + log

(
k

n

)

+O(1)
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is a universal sum test with respect to the Fermi–Dirac distribution.
It is easy to see that a binary string x of length k with n ones has
complexity K(x|n, k) ≤ log

(
k
n

)
+ O(1), and K(x|n, k) ≥ log

(
k
n

)
− O(1)

for most such x. Hence, a string x with maximal K(x|n, k) will pass this
universal sum test. Each individual such string possesses all effectively
testable properties of typical strings under the Fermi–Dirac distribution.

It is known that photons, nuclei, and some other elementary particles
behave according to the Bose–Einstein distribution. Here, we distribute
n particles in k cells, where each cell may contain many particles. Let the
set of possible arrangements be B(n, k). All possible arrangements are
equally likely. By Exercise 1.3.6, the probability of each arrangement x
under the Bose–Einstein distribution is BEn,k(x) = 1/d(B(n, k)), where

d(B(n, k)) =

(
k + n− 1

n

)

=

(
k + n− 1

k − 1

)

.

Similar to Example 4.3.9, use Theorem 4.3.5 to obtain a universal sum
test with respect to the Bose–Einstein distribution:

κ0(x|BEn,k) = log
mB(n,k)(x)

BEn,k(x))

= −K(x|n, k) + log d(B(n, k)) +O(1).

3

Example 4.3.10 Markov’s inequality says the following: Let P be a probability mass
function; let f be a nonnegative function with P -expected value E =
∑

x P (x)f(x) <∞. Then,
∑{P (x) : f(x)/E > k} < 1/k.

Let P be any probability distribution (not necessarily computable). The
P -expected value of m(x)/P (x) is (ignoring the x’s for which P (x) = 0)

∑

x

P (x)
m(x)

P (x)
≤ 1.

Then, by Markov’s inequality,

∑

x

{P (x) : m(x) ≤ kP (x)} ≥ 1 − 1

k
. (4.7)

Since m dominates all lower semicomputable semimeasures multiplica-
tively, we have for all x,

P (x) ≤ cPm(x), with cP = 2K(P ). (4.8)

Equations 4.7 and 4.8 have the following consequences:
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1. If x is a random sample from a simple computable distribution P ,
where ‘simple’ means that K(P ) is small, then m is a good estimate
for P . For instance, if x is randomly drawn from distribution P , then
the probability that

c−1
P m(x) ≤ P (x) ≤ cPm(x)

is at least 1 − 1/cP .

2. If we know or believe that x is random with respect to P , and we
know P (x), then we can use P (x) as an estimate of m(x).

In both cases the degree of approximation depends on the index of P and
the randomness of x with respect to P , as measured by the randomness
deficiency κ0(x|P ) = log(m(x)/P (x)). For example, the uniform discrete
distribution on B∗ can be defined by L(x) = 2−2l(x)−1. Then for each
n we have Ln(x) = L(x|l(x) = n). To describe L takes O(1) bits, and
therefore

κ0(x|L) = l(x) −K(x) +O(1).

The randomness deficiency κ0(x|L) is O(1) iff K(x) ≥ l(x)−O(1), that
is, iff x is random. 3

Example 4.3.11 The incomputable distribution m(x) = 2−K(x) has the remarkable prop-
erty that the test κ0(x|m) is O(1) for all x: The test shows all outcomes
x to be random with respect to it.

As an aside, −∑x P (x)κ0(x|P ) = D(P ‖ m) is the Kullback–Leibler di-
vergence between distributions P and m, Equation 1.17 on page 72. This
is a measure of how close m is to P . Rewriting, we see that D(P ‖ m) =
∑

x P (x)K(x)+
∑

x P (x) logP (x)+O(1) =
∑

x P (x)K(x)−H(P )+O(1).
This quantity is the difference between the expected prefix complexity
and the entropy, the latter being the minimum possible P -expected pre-
fix code-word length, Theorem 1.11.2 on page 77. In Section 8.1.1 this
difference is shown to be bounded by K(P ), the complexity of describing
distribution P , and in Section 1.10 a continuous version is used to show
that the universal distribution is a good predictor for distributions of
small complexity.

We can interpret Equations 4.7, 4.8 as saying that if the real distri-
bution is P , then P (x) and m(x) are close to each other with large
P -probability. Therefore, if x comes from some unknown computable
distribution P , then we can use m(x) as an estimate for P (x). In other
words, m(x) can be viewed as the universal a priori probability of x.

The universal sum P -test κ0(x|P ) can be interpreted in the framework of
hypothesis testing as the likelihood ratio between hypothesis P and the
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fixed alternative hypothesis m. In ordinary statistical hypothesis testing,
some properties of an unknown distribution P are taken for granted, and
the role of the universal test can probably be reduced to some tests that
are used in statistical practice. 3

4.3.6
Randomness by
Universal
Gambling

We toss a fair coin a hundred times and it shows heads every time. The
argument that a hundred heads in a row is just as probable as any other
outcome convinces us only that the axioms of probability theory do not
solve all mysteries as they are supposed to. We feel that a sequence
consisting of a hundred heads is not due to pure chance, while some
other sequences with the same probability are.

Example 4.3.12 In some innominate country with a ruling party and free elections, the
share of votes for the ruling party is xi.yi% in thirty successive elec-
tions, with xi ≥ 50 and yi is the ith digit in the decimal expansion of
π = 3.1415 . . ., i = 0, 1, . . . , 29. However, if we complain about this, the
election organizers tell us that some sequence has to come up, and the
actual outcome is as likely as any other. We cannot criticize a regular-
ity we discover after the fact, but only those regularities that we have
excluded in advance. 3

In probability theory one starts with the assumption that we have a sample
space S of outcomes, with a probability distribution P . This P is either dis-
covered empirically or simply hypothesized, for instance by analogy to similar
processes or considerations of symmetry. It is customary to call properties that
hold with P -probability one ‘laws of probability.’

Consider a Bernoulli process ( 1
2
, 1

2
) such as the repeated tossing of a fair coin.

Each outcome x is an infinite sequence of zeros and ones. It is customary to
predict that a random x will have each property that holds with probability
one. But x cannot be predicted to have all such properties. To see this, consider
the property of belonging to the complement of a given singleton set. Each
such property has probability one, but jointly they have probability zero. That
is, a random outcome x cannot be expected to withstand all statistical tests
chosen afterward together. But we can expect x to satisfy a few standard laws,
such as the law of large numbers, and presume them always chosen. However,
the classical theory of probability gives us no criteria for selection of such
standard laws.

Kolmogorov’s solution is to select those randomness properties with probabil-
ity close to one that are ‘simply expressible.’ The objects that do not satisfy
such a property have a corresponding regularity and form a simply described
set of small measure and correspondingly small cardinality. Then each such
object is simply described by the set it is an element of and its position in
that set. This allows substitution of the multiple requirement of “satisfying
all regularities involved” by a single requirement of “not being a simple ob-
ject.” In the betting approach we place a single bet that gives a huge payoff
in case the outcome is not complex, and which thereby safeguards us against
all simple ways of cheating.
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Definition 4.3.10 A nonnegative function t : N → R is a P-payoff function if

∑

x∈N
P (x)t(x) ≤ 1.

The definition says that the logarithm of a lower semicomputable P -
payoff function is a sum P -test as in Definition 4.3.8. Among the lower
semicomputable payoff functions there is a universal payoff function that
incorporates all particular payoff functions: a universal betting strategy.

Definition 4.3.11 A lower semicomputable P -payoff function t0 : N → R is (P -)universal
if it multiplicatively dominates each lower semicomputable P -payoff
function t (that is, t(x) = O(t0(x))).

Lemma 4.3.6 Let P be a computable probability distribution. The function t0(x|P ) =
m(x)/P (x) is a universal lower semicomputable P -payoff function.

Proof. Each lower semicomputable P -payoff function t can be expressed
as t(x) = 2δ(x) with δ a sum P -test, Definitions 4.3.8, 4.3.10. Since
t0(x|P ) = 2κ0(x|P ) with κ0 the universal sum P -test of Theorem 4.3.5,
and κ0 dominates each δ additively, it follows that t0 dominates each t
multiplicatively. 2

Betting Against
a Crooked Player

Suppose you meet a street gambler tossing a coin and offering odds to all
passers-by on whether the next toss will be heads 1 or tails 0. He offers
to pay you two dollars if the next toss is heads; you pay him one dollar if
the next toss is tails. Should you take the bet? If the gambler is tossing a
fair coin, it is a great bet. Probably you will win money in the long run.
After all, you can expect that half of the tosses will come up heads and
half tails. Losing only one dollar on each heads toss and getting two for
each tails makes you rich fast. After some observation you notice that
the sample sequence of outcomes looks like 01010101010 . . . . Perhaps
the gambler manipulates the outcomes. Expecting foul play, you make
the following offer as a bet for 1,000 coin tosses.

You pay $1 first and propose that your opponent pays you 21000−K(x)

dollars, with x the binary sequence of outcomes of the 1,000 coin flips.
This is better than fair, since the gambler is expected to pay only

∑

l(x)=1000

2−100021000−K(x) < $1,

by Kraft’s inequality. So he should be happy to accept the proposal.
But if the gambler cheats, then, for example, you receive 21000−log 1000

dollars for a sequence like 01010101010 . . .!
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In the 1 versus 2 dollars scheme, you can also propose to add this as
an extra bonus pay. In this way, you are guaranteed to win big: either
polynomially increase your money (when the gambler does not cheat) or
exponentially increase your money (when the gambler cheats).

Example 4.3.13 Suppose a gambler proposes the following wager to the election orga-
nizers in Example 4.3.12. He will bet one dollar in each election. The
organizers claim that each outcome x associated with n elections has
probability Ln(x), where Ln(x) = 10−n is the uniform distribution on
decimal strings of length n and zero otherwise. We formulate a payoff
function that is a winning strategy against all simply describable malver-
sations. To back up their claim, the organizers ought to agree to pay t(x)
dollars on outcome x on any payoff function t we propose. Namely, the
expected amount of payoff is at most the gambler’s total original wager
of n dollars. Accordingly, we propose as payoff function t = t0(·|Ln), the
universal payoff function with respect to Ln defined by

t0(x|Ln) = 2− logLn(x)−K(x|n) = 2n log 10−K(x|n).

If x consists of the first n digits of the decimal expansion of π, the
election organizers have to pay the gambler the staggering amount of

2n log 10−K(π1:n|n) ≥ c10n

dollars for some fixed constant c independent of n, even though the bet
did not refer to π. Even if the organizers are smart and switch to some
pseudorandom sequence algorithmically generated by their computer,
they will have to pay such an amount. In other words, since we propose
the payoff function beforehand, it is unlikely that we define precisely the
one that detects a particular fraud. However, fraud implies regularity,
and the number of regularities is so small that we can afford to make a
combined wager on all of them in advance. 3

The fact that t0(x|P ) is a payoff function implies by Markov’s inequality,
Equation 4.7 on page 282, that for every k > 0 we have,

∑

x

{

P (x) : K(x) ≥ log
1

P (x)
− k

}

≥ 1 − 1

2k
. (4.9)

By Equation 4.2 and Theorem 4.3.3, for all x,

K(x) ≤ log
1

P (x)
+K(P ) +O(1). (4.10)

Setting k := K(P ), we find that with large probability, the complexity
K(x) of a random outcome x is close to its upper bound log 1/P (x) +
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O(K(P )). If an outcome x violates any ‘law of probability,’ then the
complexity K(x) falls far below the upper bound. Indeed, a proof of
some law of probability like the law of large numbers or the law of the
iterated logarithm always gives rise to some simple computable payoff
function t(x) taking large values on the outcomes violating the law.

We can phrase the relations as follows: Since the payoff function t0(·|P )
dominates all P -payoff functions that are lower semicomputable, κ0(·|P )
is a universal test of randomness—it measures the deficiency of random-
ness in the outcome x with respect to distribution P , or the extent of
justified suspicion against hypothesis P given the outcome x.

Exercises 4.3.1. [12] Show that
∑

x 2−K(x|y) ≤ 1.

Comments. Hint: use the Kraft inequality, Theorem 1.11.1.

4.3.2. [15] Show that the class of computable measures does not con-
tain a universal element.

4.3.3. [21] Show that the greatest monotonic nonincreasing lower bound
on the universal distribution m (universal lower semicomputable discrete
semimeasure) converges to zero more slowly than the greatest nonin-
creasing monotonic lower bound on any positive recursive function that
goes to zero in the limit.

4.3.4. [28] Show that the universal distribution m has infinite entropy:
H(m) =

∑

xm(x) log 1/m(x) = ∞, where the summation is over all
x ∈ {0, 1}∗.
Comments. Hint: by the coding theorem, Theorem 4.3.3 on page 273, it
suffices to show that

∑

x 2−K(x)K(x) =
∑

n

∑

l(x)=n 2−K(x)K(x) = ∞.

This follows because there are at least 2n−1 strings x of length n with
n− 1 ≤ K(x) ≤ n+ 2 logn+O(1).

4.3.5. [08] Show that if K(x) ≤ log x then
∑x

i=1 2−K(i) ≤ x2−K(x).

4.3.6. [32] We study the statistics of description length. By the coding
theorem, Theorem 4.3.3, we have K(x) = log 1/QU(x) up to an additive
constant. Informally, if an object has many long descriptions, then it
also has a short one.

(a) Let f(x, n) be the number of binary strings p of length n with U(p) =
x, where U is the reference prefix machine of Theorem 3.1.1, page 202.
Show that for all n ≥ K(x), we have log f(x, n) = n−K(x, n) +O(1).

(b) Use Item (a) to show that log f(x,K(x)) = K(x) − K(x,K(x)) +
O(1) = O(1). The number of shortest programs of any object is bounded
by a universal constant.
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Comments. Hint: in Item (b), use K(x) ≤ K(x, n) + O(1); substitute
n = K(x) in the expression in Item (a) to obtain log f(x,K(x)) =
K(x) − K(x,K(x)) + O(1) ≤ O(1). Source: P. Gács, Lecture Notes on
Descriptional Complexity and Randomness, Manuscript, Boston Univer-
sity, 1987.

4.3.7. [19] Show that
∑

l(x)=nm(x) = m(n), up to a fixed multiplica-
tive constant.

Comments. Source: P. Gács, Ibid.

4.3.8. [18] Give an example of a recursive sequence of rational numbers
an > 0 such that the sum

∑

n an is finite, but for each other recursive (or
lower semicomputable) sequence bn > 0, if bn/an → ∞ then

∑

n bn = ∞.

Comments. Hint: Let rn be a recursive increasing sequence of rational
numbers with limn rn =

∑

xm(x) and let an = rn+1 − rn. Source: P.
Gács, Ibid.

4.3.9. [13] Prove the following: There exists a constant c such that for
every k and l, if a string x has at least 2l programs of length k, then
C(x|l) ≤ k − l+ c.

Comments. Therefore, C(x) ≤ k−l+2 log l+c. So if the x has complexity
k and there are 2l shortest programs for x (programs of length k) then
k ≤ k − l + 2 log l + c, so that l − 2 log l < c and l is bounded. Source:
A.K. Shen, Kolmogorov mailing list, June 24, 2002.

4.3.10. [29] We can also express statistics of description length with re-
spect to C. For every lower semicomputable function f with {f(k) : k ≥
1} satisfying the Kraft inequality, there exist fewer than 2k+f(k)+O(1)

programs of length C(x) + k for x.

Comments. Hint: consider a machine that assigns a code of length m
to x iff x has at least 2k+f(k) programs of length m + k. Then the
number of strings that are assigned a code of length m is at most
∑

k(2
m+k/2k+f(k)) =

∑

k 2m−f(k), which by Kraft’s inequality is at
most 2m. Hence, this is a valid upper semicomputable code. Since x
has no program of length less than C(x), the string x has fewer than
2k+f(k)+O(1) programs of length C(x)+k. Source: J.T. Tromp, personal
communication, March 13, 1991.

4.3.11. [39] How many objects are there of a given complexity n? Let
g(n) be the number of objects x with K(x) = n, and let Dn be the set of
binary strings p of length n such that U(p) is defined. Define the moving
average h(n, c) = 1/(2c+ 1)

∑c
i=−c g(n+ i) +O(1).

(a) First show that
∑

y m(x, y) = m(x) +O(1).

(b) Show that there is a natural number c such that log d(Dn) = n −
K(n) +O(1) and also log h(n, c) = n−K(n).
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Comments. Hint for Item (b): use Exercise 4.3.6 and Item (a). Since we
are interested in equality only up to an additive constant, we can omit
the normalizing factor 1/(2c+1) from the definition of h. But we do not
know whether we can replace h by g. Namely, one can choose a refer-
ence prefix machine U ′ such that g′(n) = 0 for all odd n. For instance,
U ′(00p) = U(p) of l(p) is even, U ′(1p) = U(p) for l(p) is odd, and U ′(p)
is undefined otherwise. Then U ′ is defined only for inputs of even length,
and for all x we have KU ′(x) ≤ K(x)+ 2. Source: R.M. Solovay, Lecture
Notes, 1975, unpublished; and P. Gács, Lecture Notes on Descriptional
Complexity and Randomness, Manuscript, Boston University, 1987.

4.3.12. [32] Suppose we want to obtain information about a certain
object x. It is not a good policy to guess blindly. The mutual informa-
tion of two objects x and y was given in Example 3.9.2 on page 252 as
I (x; y) = K(y) −K(y|x,K(x)). Show that

∑

y m(y)2I (x;y) = O(1).

Comments. In words, the expected value of 2I (x;y) is small, even with
respect to the universal distribution m(x). Hint: by the coding theorem,
Theorem 4.3.3, we have 2I (x;y) = 2−K(y|x,K(x))/m(x) + O(1). Source:
P. Gács, Lecture Notes on Descriptional Complexity and Randomness,
Manuscript, Boston University, 1987.

4.3.13. [34] Let X = x1, x2, . . . be a recursive sequence of natural
numbers (in N or the corresponding binary strings). The lower frequency
of some element x in the sequence is defined as

qX(x) = lim inf
n→∞

1

n
d({i : i < n and xi = x}).

(a) Show that there is a universal recursive sequence U = u1, u2, . . . such
that for every recursive sequenceX = x1, x2, . . . there is a constant c > 0
such that cqU (x) ≥ qX(x), for all x in N .

(b) Show that if U and V are universal recursive sequences, then qU (x) =
Θ(qV (x)). Fix a reference universal recursive sequence U , and define the
a priori frequency of x as q(x) = qU (x).

(c) Show that q(x) 6= Θ(m(x)). (m(x) is the a priori probability of x.)

(d) A set is enumerable relative to 0′ if it is the range of a function com-
putable by an algorithm with an oracle for some recursively enumerable
set. An algorithm with an oracle for set A is an algorithm that (apart
from the usual things) at each step can ask a question of the form, “is a
in A?” and get the true answer “yes/no” for free. The recursively enu-
merable sets correspond to the 0′-enumerable sets, where the oracle is
restricted to recursive sets. Define the notion of 0′-enumerable semimea-
sures, and show that there is a universal 0′-enumerable semimeasure p
such that for each 0′-enumerable semimeasure ν there is a constant c > 0
such that p(x) ≥ cν(x). We call p the a priori probability relative to 0′.
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(e) Show that p(x) = Θ(q(x)). Compare this with Item (c).

Comments. Source: An.A. Muchnik, SIAM Theory Probab. Appl., 32
(1987), 513–514; A.N. Kolmogorov, V.A. Uspensky, SIAM Theory Prob-
ab. Appl., 32(1987), 389–412.

4.3.14. [43] (a) Show that the minimal length of a program enumer-
ating a set A (prints all elements of A in lexicographic length-increasing
order and no other elements; we do not require halting in case A is finite)
is bounded above by 3 times the negative logarithm of the probability
that a random program enumerates A. That is, the probability that if
the input to the reference universal prefix machine is determined by flips
of a fair coin, then the output is an enumeration of A.

(b) Show that the constant 3 in Item (a) can be reduced to 2 for finite
sets A.

Comments. Source: for Item (a) R.M. Solovay, Non-Classical Logics,
Model Theory and Computability, A.I. Aruda, N.C.A. da Costa and
R. Chaqui, eds., North-Holland, 1977, 283–307; and for Item (b) N.K.
Vereshchagin, Inform. Process. Lett., 103:1(2007), 34–37.

4.4

Universal

Average-Case

Complexity

The universal distribution m is one of the foremost notions in the the-
ory of Kolmogorov complexity. It multiplicatively dominates all lower
semicomputable distributions (and therefore also all computable ones).
Therefore, a priori it maximizes ignorance by assigning maximal proba-
bility to all objects. It has many remarkable properties and applications.
Here we observe that the average-case computational complexity of any
algorithm whatsoever under the universal distribution turns out to be of
the same order of magnitude as the worst-case complexity. This holds
both for time complexity and for space complexity.

For many algorithms the average-case running time under some distribu-
tions on the inputs is less than the worst-case running time. For instance,
using (nonrandomized) Quicksort on a list of n items to be sorted gives
under the uniform distribution on the inputs an average running time of
O(n logn), while the worst-case running time is Ω(n2). The worst-case
running time of Quicksort is typically reached if the list is already sorted
or almost sorted, that is, exactly in cases in which we actually should
not have to do much work at all. Since in practice the lists to be sorted
occurring in computer computations are often sorted or almost sorted,
programmers often prefer other sorting algorithms that might run faster
with almost sorted lists. Without loss of generality we identify inputs
of length n with the natural numbers corresponding to binary strings of
length n.
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Definition 4.4.1 Consider a discrete sample space N with probability density function
P . Let t(x) be the running time of algorithm A on problem instance x.
Define the worst-case time complexity of A as T (n) = max{t(x) : l(x) =
n}. Define the P -average time complexity of A as

T (n|P ) =

∑

l(x)=n P (x)t(x)
∑

l(x)=n P (x)
.

Example 4.4.1 (Quicksort) We compare the average time complexity for Quicksort
under the uniform distribution L(x) and under the universal distribution
m(x). Define L(x) = 2−2l(x)−1 such that the conditional probability
satisfies L(x|l(x) = n) = 2−n. We encode the list of elements to be
sorted as nonnegative integers in some standard way.

For Quicksort, T (n|L) = Θ(n logn). We may expect the same complexity
under m, that is, T (n|m) = Ω(n logn). But Theorem 4.4.1 will tell us
much more, namely, T (n|m) = Ω(n2). Let us give some insight into why
this is the case.

With the low average time complexity under the uniform distribution,
there can be only o((log n)2n/n) strings x of length n with t(x) = Ω(n2).
Therefore, given n, each such string can be described by its sequence
number in this small set, and hence for each such x we obtain K(x|n) ≤
n − logn + 3 log logn. (Since n is known, we can find each n − k by
coding k self-delimiting in 2 log k bits. The inequality follows by setting
k ≥ logn− log logn.)

Therefore, no really random x’s, with K(x|n) ≥ n, can achieve the
worst-case running time Ω(n2). Only strings x that are nonrandom, with
K(x|n) < n, among which are the sorted or almost sorted lists, and lists
exhibiting other regularities, can have Ω(n2) running time. Such lists x
have relatively low Kolmogorov complexity K(x), since they are regular
(can be compactly described), and therefore m(x) = 2−K(x)+O(1) is very
high. Therefore, the contribution of these strings to the average running
time is weighted very heavily. 3

Theorem 4.4.1 (m-Average Complexity) Let A be an algorithm with inputs in N . Let
the inputs to A be distributed according to the universal distribution m.
Then the average-case time complexity is of the same order of magnitude
as the corresponding worst-case time complexity.

Proof. We define a probability distribution P (x) on the inputs that as-
signs high probability to the inputs for which the worst-case complexity
is reached, and zero probability for other cases.

Let A be the algorithm involved. Let T (n) be the worst-case time com-
plexity of A. Clearly, T (n) is recursive (for instance by running A on all
x’s of length n). Define the probability distribution P (x) as follows:
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Step 1. For each n = 0, 1, . . ., set an :=
∑

l(x)=nm(x).

Step 2. If l(x) = n and x is lexicographically least with t(x) = T (n)
then P (x) := an else P (x) := 0.

It is easy to see that an is lower semicomputable, since m(x) is lower
semicomputable. Therefore, P (x) is lower semicomputable. Below we
use cPm(x) ≥ P (x), where log cP = K(P ) + O(1) is a constant de-
pending on P but not on x, Theorem 4.3.1 on page 267 and Exam-
ple 4.3.3 on page 269. We have defined P (x) such that

∑

x∈N P (x) =
∑

x∈N m(x), and P (x) is a lower semicomputable probability distribu-
tion. The average-case time complexity T (n|m) with respect to the m
distribution on the inputs is now obtained by

T (n|m) =
∑

l(x)=n

m(x)t(x)
∑

l(x)=nm(x)

≥ 1

cP

∑

l(x)=n

P (x)
∑

l(x)=nm(x)
T (n)

=
1

cP

∑

l(x)=n

P (x)
∑

l(x)=n P (x)
T (n) =

1

cP
T (n).

The inequality T (n) ≥ T (n|m) holds vacuously. 2

Corollary 4.4.1 The analogue of the theorem holds for other complexity measures (such
as space complexity) by about the same proof.

If the algorithm to approximate P (x) from below is the kth algorithm
in the standard effective enumeration of all algorithms, then log cP =
K(P ) + O(1) < k log2 k. To approximate the optimal value we must
code the algorithm to compute P as compactly as possible. The ease
with which we can describe (algorithmically) the strings that produce
a worst-case running time determines the closeness of the average time
complexity to the worst-case time complexity. Let S ⊆ {0, 1}n. Denote
by T (n|P, S) the P -average computation time as in Definition 4.4.1 but
with the average taken over S instead of {0, 1}n as with T (n|P ).

Lemma 4.4.1 Let Q be a computable probability distribution. There is a set S of inputs
with Q(S) ≥ 1 − 2−k such that T (n|Q,S) ≥ T (n|m, S)/2K(Q)+k+O(1).

Proof. If the probability distribution Q is lower semicomputable (which
by Example 4.3.2 on page 266 means that it is computable), then by
Markov’s inequality, Equation 4.7 on page 282, and 2K(Q)+O(1)m(x) ≥
Q(x), substitution in Definition 4.4.1 restricted to S proves the lemma.

2
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Example 4.4.2 (Quicksort continued) The average time complexity of Quicksort with
the inputs distributed according to the uniform distribution is of order
n logn. By Lemma 4.4.1 and Theorem 4.4.1 we find (for simplicity ig-
noring O(1) factors) that the same holds in the computational reality
for a set of inputs of combined L-probability at least 1 − 2k as long as

n logn ≥ n2/2K(L)+K(P )+k.

Here, L is the uniform distribution substituted for Q in Lemma 4.4.1
(generated by a program of length at least K(L)) and P is the particular
distribution used in the proof of Theorem 4.4.1. For k large and n so
large that K(L) +K(P ) + k < logn− log logn, the square average-case
running time must take over. Clearly, increasing K(L) (more complex
algorithmic random number generator) increases the size of n at which
the square running time starts to take over.

Frequently, algorithmically generated random numbers are used in or-
der to reduce the average-case computation time to below the worst-case
computation time. The above example gives evidence that for every in-
put length, only sufficiently complex algorithmic random number gen-
erators can achieve reduced average-case computation time. 3

Example 4.4.3 In learning applications in Section 5.3.3 we want to draw elements from
the m distribution. Since m is not computable, we can’t have a program
for it. Suppose some powerful source deems it fit to give us a table
with sufficiently many m values. We use this table to randomly draw
according to m as follows:

Our prospective algorithm has access to an m table in the form of a
division of the real open interval [0, 1) into nonintersecting half-open
subintervals Ix such that

⋃
Ix = [0, 1). For each x, the length of interval

Ix is m(x)/
∑

y m(y). For each finite binary string r, the cylinder Γr
is the set of all infinite binary strings starting with r. That is, Γr is a
half-open interval [0.r, 0.r+ 2−l(r)) in [0, 1). To draw a random example
from m, the algorithm uses a sequence r1r2 . . . of outcomes of fair coin
flips until the cylinder Γr, r = r1r2 . . . rk, is contained in some interval
Ix. It is easy to see that this procedure of selecting x, using a table for
m and fair coin flips, is equivalent to drawing an x randomly according
to distribution m.

We are often interested in drawing an element of a subset D of N .
For instance, we want to draw an n-length binary vector (D = {0, 1}n)
when learning Boolean functions. To draw from m(·|D), we simply draw
examples from m(·) and discard the ones not in D. If we need to draw
m examples according to m(·|D), then it suffices to draw Ω(2K(D)m)
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examples under m(·). Namely, for each x ∈ D,

m(x|D) = m(x)

∑

y∈N m(y)
∑

y∈Dm(y)
= Θ(2K(D)m(x)).

3

Exercises 4.4.1. [12] Show that the m-average time complexity of Quicksort is
Ω(n2).

Comments. Source: M. Li and P.M.B. Vitányi, Inform. Process. Lett.,
42(1992), 145–149.

4.4.2. [12] Show that for each NP-complete problem, if the problem
instances are distributed according to m, then the average running time
of any algorithm that solves it is superpolynomial unless P = NP.

Comments. Source: M. Li and P.M.B. Vitányi, Ibid.

4.5

Continuous

Sample Space

Is there a universal lower semicomputable semimeasure in the contin-
uous setting? In the discrete version we had only to satisfy that the
probabilities summed to less than or equal one. Here we have to deal
with the additional subadditive property. Let B be the finite set of basic
elements. In the following we sometimes take B = {0, 1} for convenience,
but this is not essential.

4.5.1
Universal
Enumerable
Semimeasure

The development of the theory for continuous semimeasures is quite sim-
ilar to that for discrete semimeasures, except that the analogue of the
coding theorem, Theorem 4.3.3, does not hold. Let M be a class of con-
tinuous semimeasures as in Definition 4.2.1. The definition of universal
continuous semimeasure is analogous to Definition 4.3.2 for the discrete
case.

Definition 4.5.1 A semimeasure µ0 is universal (or maximal) for M if µ0 ∈ M, and for
all µ ∈ M, there exists a constant c > 0 such that for all x ∈ B∗, we
have µ0(x) ≥ cµ(x).

Theorem 4.5.1 There is a universal lower semicomputable continuous semimeasure. We
denote it by M.
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Proof. We prove the theorem in two stages. In Stage 1 we show that the
lower semicomputable semimeasures can be effectively enumerated as

µ1, µ2, . . . .

In Stage 2 we show that

µ0(x) =
∑

j≥1

α(j)µj(x), with
∑

α(j) ≤ 1,

is a universal semimeasure. Stage 1 is broken up into two parts. In the
first part we enumerate all lower semicomputable functions; and in the
second part we effectively change the lower semicomputable functions
to lower semicomputable semimeasures, leaving the functions that were
already semimeasures unchanged.

Stage 1 Let ψ1, ψ2, . . . be the effective enumeration of all lower semi-
computable (real-valued) functions. Fix any ψ (we drop the subscript for
notational convenience). Without loss of generality we can assume (as
we have done before in similar cases) that we are actually dealing with
rational-valued two-argument partial recursive functions φ(x, k) = p/q
(rather φ(〈x, k〉) = 〈p, q〉) such that for all x ∈ B∗, for all k > 0,

• if φ(x, k) is defined, then for all y ≤ x (≤ in the sense of the natural
lexicographic length-increasing order on B∗), φ(y, 1), . . . , φ(y, k−1)
are all defined;

• φ(x, k + 1) ≥ φ(x, k);

• limk→∞ φ(x, k) = ψ(x);

• ψ(x) > φ(x, k) for every k. (This is achieved by replacing φ(x, k) by
φ(x, k) := φ(x, k)/(1 + 1/k). This replacement affects neither the
monotonicity of φ nor the represented semimeasure—if any.)

Next we use each φ associated with ψ to compute a semimeasure µ by
approximation from below. In the algorithm, at each stage of the com-
putation the local variable µ contains the current approximation to the
function µ. This is doable because the nonzero part of the approximation
is always finite.

We describe a sequence of lower semicomputable semimeasures ψk(x)
computed from φ(x, k) such that if φ(x, k) represents a lower semicom-
putable semimeasure ψ(x), then limk→∞ ψk(x) = ψ(x).

Step 1. Initialize by setting µ(x) := ψk(x) := 0, for all x in B∗ and
k ∈ N ; and set k := 0.
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Step 2. Set k := k + 1. Compute φ(x, k) and set ψk(x) := φ(x, k) for
all x ∈ Bk. {If the computation does not terminate, then µ will not
change any more and is trivially a semimeasure}

Step 3. For i := k − 1, k − 2, . . . , 0 do

for each x of length i do

search for the leastK > k such that φ(x,K) >
∑

b∈B ψk(xb);

set ψk(x) := φ(x,K);

if ψk(ǫ) ≤ 1 then µ := ψk else terminate.

{Step 3 tests whether the new values in Step 2 satisfy the semimea-
sure requirements; note that if ψ is a lower semicomputable semimea-
sure, then theK’s always exist, since for each x we have

∑

b∈B ψk(xb)
<
∑

b∈B ψ(xb) ≤ ψ(x) and limk→∞ φ(x, k) = ψ(x)}

Step 4. Go to Step 2.

Since φ represents ψ(x), by monotonicity of φ we have ψk(x) ≥ φ(x, k)
for all x of length at most k, which implies limk→∞ ψk(x) = ψ(x). If ψ
is already a semimeasure, then µ := ψ and the algorithm never finishes
but continues to approximate µ from below. If for some k and x ∈ Bk
the value of φ(x, k) is undefined, then the values of µ do not change any
more even though the computation of µ goes on forever. If the condition
in Step 3 is violated, then the algorithm terminates, and the constructed
µ is a semimeasure—even a computable one. Clearly, in all cases, µ is a
lower semicomputable semimeasure.

The current construction was suggested by J. Tyszkiewicz [personal commu-
nication of April 1996] and assumes a finite set B of basic elements. It can
be made to handle B = N if in the construction of ψk one considers and
gives possibly nonzero measures to only sequences of length at most k and
consisting of natural numbers ≤ k.

Executing the above procedure on all functions in the list φ1, φ2, . . .
yields an effective enumeration µ1, µ2, . . . of all lower semicomputable
semimeasures.

Stage 2 Let α : N → R be any lower semicomputable function satisfy-
ing α(j) > 0 for all j and

∑

j α(j) ≤ 1. Define the function µ0 from B∗

into [0, 1) as

µ0(x) =
∑

j

α(j)µj(x).

We show that µ0 is a universal lower semicomputable semimeasure. The
first condition in Definition 4.2.1 of being a semimeasure is satisfied,
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since

µ0(ǫ) =
∑

j

α(j)µj(ǫ) ≤
∑

j

α(j) ≤ 1.

The second condition in Definition 4.2.1 of being a semimeasure is sat-
isfied, since, for all x in B∗,

µ0(x) =
∑

j

α(j)µj(x) ≥
∑

j

α(j)
∑

b∈B
µj(xb) =

∑

b∈B
µ0(xb).

The function µ0 is lower semicomputable, since the µj(x)’s are lower
semicomputable in j and x. (Use the universal partial recursive function
φ0 and the construction above.)

Finally, µ0 multiplicatively dominates each µj , since µ0(x) ≥ α(j)µj(x).
Therefore, µ0 is a universal lower semicomputable semimeasure. There is
more than one such universal lower semicomputable semimeasure. We fix
a reference universal lower semicomputable semimeasure µ0 and denote
it by M. 2

The universal lower semicomputable semimeasure M(x) captures the
notion of a universal a priori probability needed for application to in-
ductive reasoning (Chapter 5).

Above we can set α(j) = 2−j. But we can also choose α(j) = 2−K(j).
For µ = µj we can define K(µ) = K(j). Therefore,

M(x) ≥ 2−K(µ)µ(x), (4.11)

for all x ∈ B∗.

At the risk of beating a dead horse (Example 4.3.1), we belabor the distinction
between ‘continuous semimeasure’ and ‘discrete semimeasure,’ and the relation
between M and m.

The discrete sample space theory is simply a restriction of the more sophis-
ticated continuous approach we take in this section. Theorem 4.5.1 is a lifted
version of Theorem 4.3.1. Namely, if we set B = N and restrict the arguments
of the measure functions to sequences of natural numbers of length one, and
incorporate the resulting simplifications in the proof of Theorem 4.5.1, then
we obtain the proof of Theorem 4.3.1, and instead of M : B∗ → R, we obtain
its discrete version m : B → R.

Lemma 4.5.1 If a continuous lower semicomputable semimeasure is a measure, it is
computable.

Proof. Let µ be a lower semicomputable semimeasure with
∑

b∈B µ(xb) =
µ(x) for all x ∈ B∗ and µ(ǫ) = 1. Then, we can approximate all µ(x) to
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any degree of precision starting with µ(a), µ(b), . . . (B = {a, b, . . . , z})
and determining µ(x) for all x of length n, for consecutive n = 1, 2, . . . .

2

Lemma 4.5.2 The set of computable continuous semimeasures has no universal ele-
ment.

Proof. Set B = N . If there is a universal computable continuous semimea-
sure, then its restriction to domain B would by definition be a universal
computable discrete semimeasure, contradicting Lemma 4.3.1. The case
2 ≤ d(B) <∞ is left to the reader. 2

Lemma 4.5.3 The function M is not computable and M is not a probability measure.

Proof. If M were computable, then it would be universal for the class of
computable continuous semimeasures, by Theorem 4.5.1. This contra-
dicts Lemma 4.5.2.

For M : B∗ → R we prove
∑

b∈B M(b) < 1 by the same proof of
Lemma 4.3.2 (with M instead of m). 2

4.5.2
A Priori
Probability

As in the discrete case, we can interpret the lower semicomputable
semimeasures in a different way. To do so we require an appropriate
new Turing machine variant.

Definition 4.5.2 Monotone machines are Turing machines with a one-way read-only input
tape, some work tapes, and a one-way write-only output tape. The input
tape contains a one-way infinite sequence of 0’s and 1’s, and initially the
input head scans the leftmost bit. The output tape is written one symbol
in B at a time, and the output is defined as the finite binary sequence on
the output tape if the machine halts, and the possibly infinite sequence
appearing on the output tape in a never-ending process if the machine
does not halt. For a (possibly infinite) sequence x we write M(p) = x if
M outputs x after reading p and no more. (Machine M either halts or
computes forever without reading additional input.)

We define a sample space SB consisting of all finite and infinite sequences
over B:

SB = B∗⋃B∞.

Definition 4.5.3 Monotone machines compute partial functions ψ : {0, 1}∗ → SB such
that for all p, q ∈ {0, 1}∗ we have that ψ(p) is a prefix of ψ(pq). The
function ψ induces a mapping ψ′ : {0, 1}∞ → SB as follows: Let ω =
ω1ω2 . . . ∈ {0, 1}∞.
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Case 1 ψ′(ω) is the infinite sequence ζ = ζ1ζ2 . . . (with the ζi’s
strings), provided for each n, there is an m such that ψ(ω1:n) =
ζ1:m, and m goes to infinity with n.

Case 2 If for some n, ψ(ω1:n) is defined, and for all m > n we have
ψ(ω1:m) equals ψ(ω1:n), then ψ′(ω) = ψ(ω1:n). If for all n, ψ(ω1:n)
is the empty word ǫ, then ψ′(ω) = ǫ.

Case 3 If there is an n such that ψ(ω1:n) is undefined, then ψ′(ω)
is undefined.

We call such functions ψ′ monotone functions. For convenience we drop
the prime on the extension ψ′ from now on.

Definition 4.5.4 A monotone machine M maps subsets of {0, 1}∞ to subsets of SB. If ψ
is the function computed by M , and A ⊆ {0, 1}∞, then define

ψ(A) = {x ∈ SB : ψ(ω) = x, ω ∈ A}.

A cylinder set Γx of SB is defined as

Γx = {xω : ω ∈ SB},

with x ∈ B∗. Each semimeasure µ is transformed by a monotone machine
M , computing a monotone function ψ, to µψ (also a semimeasure) as
follows: For each x ∈ B∗, let X ⊆ {0, 1}∗ be the set of y’s such that
ψ(y) ∈ Γx. Then M maps

⋃

y∈X Γy ⊆ {0, 1}∞ to Γx ⊆ SB. It is possible
that for some y, z ∈ X we have Γy

⋂
Γz 6= ∅. This is the case precisely if

y is a proper prefix of z or conversely. That is, either Γy is contained in
Γz or vice versa. To obtain the total µ-measure of

⋃

y∈X Γy ⊆ {0, 1}∞,
we sum the µ-measures of all the constituent cylinders that are not
contained in other constituent cylinders. This is done by restricting X to
a subset Y obtained from X by eliminating all strings that have a proper
prefix in X and summing over the cylinders associated with elements in
Y . The probability µψ(x) that M computes a sequence starting with x
on µ-random input from {0, 1}∞ is given by

µψ(x) =
∑

y∈Y
µ(y). (4.12)

Clearly, one can effectively enumerate all monotone machinesM1,M2, . . .
and therefore the associated monotone functions ψ1, ψ2, . . . they com-
pute. We show that the corresponding enumeration µψ1 , µψ2 , . . ., with
the µψ’s defined as in Equation 4.12, is an enumeration of all and only
lower semicomputable measures.
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Definition 4.5.5 A monotone function ψ is µ-regular if the set of sequences ω ∈ {0, 1}∞
for which ψ′(ω) is defined by Case 1 of Definition 4.5.3 has µ-measure
one. In other words, except for a set of negligible probability, ψ(ω) is
defined by Case 1.

Lemma 4.5.4 (i) For each computable measure µ and each µ-regular monotone function
ψ, we have that µψ is a computable measure as well.

(ii) For each computable measure µ there exists a λ-regular ψ, with λ
the uniform measure, such that λψ = µ; moreover, there is a µ-regular
φ such that µφ = λ and φ is the inverse of ψ in the domain of definition
of φψ, and φ(ω) ∈ B∞ except for possibly the computable ω′s and ω’s
lying in countably many intervals of µ-measure 0.

Proof. (i) For each x ∈ B∗ and n we must be able to approximate µψ(x)
within accuracy 2−n. Choose m such that

∑

{µ(y) : l(y) = m, l(ψ(y)) > l(x)} > 1 − 2−(n+1). (4.13)

Such an m exists, since ψ is µ-regular, and it is easy to find such an m
effectively.

Let Z ⊆ Y (with Y as in Equation 4.12) consist of the y ∈ Y that
additionally satisfy the condition in Equation 4.13. Since by assumption
µ is a computable measure, the µ(y)’s can be computed to within an
accuracy of 2−(m+n+1). Let µ̂(y) be such an approximation, and let
α(x, n) =

∑

y∈Z µ̂(y). There are at most 2m many y’s satisfying the
condition in Equation 4.13, and therefore

|µψ(x) − α(x, n)| < 2−(n+1) + 2m · 2−(m+n+1) = 2−n.

(ii) Omitted. 2

For the less-nice cases, namely, the lower semicomputable semimeasures,
the following property is easy to prove:

Lemma 4.5.5 If µ is a lower semicomputable semimeasure and ψ a monotone function,
then µψ is again a lower semicomputable semimeasure.

Proof. By enumerating the semimeasure µ (from below) for all its argu-
ments x, and dovetailing the computations of ψ for all these arguments
as well, we approximate µψ from below using Equation 4.12. Therefore,
µψ is lower semicomputable. It is straightforward to verify that µψ is
also a semimeasure. 2

The theorem below shows that µ is a lower semicomputable semimeasure
iff it can be obtained as the semimeasure on the output sequences of
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some monotone machine whose input is supplied by independent tosses
of a fair coin. In other words, each lower semicomputable semimeasure
µ : B∗ → R can be obtained from some monotone function ψ and the
uniform measure λ, in the sense of Equation 4.12:

µ(x) = λψ(x) =
∑

y∈Y
2−l(y),

for the prefix-free set of programs y such that ψ(y) starts with x.

Theorem 4.5.2 A semimeasure µ is lower semicomputable if and only if there is a mono-
tone function ψ such that µ = λψ, where λ is the uniform measure.

Proof. (If) By Lemma 4.5.5.

(Only if) We construct a monotone function ψ such that µ = λψ , where
λ(x) = 2−l(x) is the uniform measure (which is computable). For this
construction, we have to decompose the interval [0, 1) into nonintersect-
ing sets of measure µ(x). We will represent x ∈ B∗ by a set of intervals
Φ(x) of [0, 1) with the property that when x is a prefix of y then

⋃

z∈Φ(x)

Γz ⊇
⋃

z∈Φ(y)

Γz,

µ(x) = λ




⋃

z∈Φ(x)

Γz



 .

This can be achieved incrementally. Analogous to the construction in
the proof of the coding theorem, Theorem 4.3.3, since µ is lower semi-
computable, there is a rational-valued recursive function φ(x, k), nonde-
creasing in k for fixed x, such that limk→∞ φ(x, k) = µ(x). By defini-
tion, µ(x) ≥∑b∈B µ(xb). Without loss of generality, we can assume that
φ(x, k) ≥∑b∈B φ(xb, k), for all t. (Whenever this inequality is not satis-
fied, we can decrease the φ(xb, k)’s proportionally to the extent that the
inequality becomes valid, without compromising the limiting behavior
of φ for fixed x and t going to infinity.) To obtain µ(x) we approximate
it by successive representations Φ1(x),Φ2(x), . . . such that Φk(x) is a
prefix-free set with

λ




⋃

z∈Φk(x)

Γz



 =
∑

y∈Φk(x)

2−l(y) = φ(x, k),

satisfying the following: If x is a prefix of y, then

⋃

z∈Φk(x)

Γz ⊇
⋃

z∈Φk(y)

Γz.
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If x and y are incomparable, then




⋃

z∈Φk(x)

Γz




⋂




⋃

z∈Φk(y)

Γz



 = ∅.

If k < k′, then

⋃

z∈Φk′ (x)

Γz ⊇
⋃

z∈Φk(y)

Γz.

The construction of the Φk’s is straightforward. Hence, λψ(x) = µ(x). 2

Definition 4.5.6 Let U be the reference monotone machine. Denote the function com-
puted by U by ψ. The universal a priori probability that a binary se-
quence starts with x is λψ(x), with λψ in the sense of Equation 4.12 (µ
replaced by the uniform measure λ).

It turns out that the universal a priori probability and the universal
lower semicomputable semimeasure are equal, just as in the discrete case
(Theorem 4.3.3). If we provide U ’s input by tosses of a fair coin, then
the probability that U ’s output starts with x is given by M(x). This M
is a central concept in this area.

Theorem 4.5.3 log 1/λU (x) = log 1/M(x) +O(1).

Proof. This follows from the fact that for each monotone machine M
in the effective enumeration M1,M2, . . ., we have that U(1n(M)0p) =
M(p). Namely, this shows that λU (x) ≥ 2−(n(M)+1)λM (x). The λM ’s
contain all lower semicomputable semimeasures by Theorem 4.5.2. Since
λU multiplicatively dominates each λM , it qualifies as the universal lower
semicomputable semimeasure M. 2

Corollary 4.5.1 If the monotone machine T defines the lower semicomputable semimea-
sure µ, then M(x) ≥ 2−K(µ)µ(x) with K(µ) the shortest self-delimiting
description of T .

4.5.3
*Solomonoff
Normalization

We have chosen to develop the theory essentially along lines reminiscent
of Martin-Löf’s theory of tests for randomness: we view it as mathemat-
ically elegant that the universal element, dominating all elements in a
given class, belongs to that class. While our basic goal was to obtain
a universal measure in the class of computable measures, satisfying the
above criteria turned out to be possible only by weakening both the
notion of measure and the notion of effective computability. Another
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path was taken by R.J. Solomonoff. He viewed the notion of measure
as sacrosanct. He normalized each semimeasure µ to a measure using a
particular transformation.

Definition 4.5.7 The Solomonoff normalization of a semimeasure µ on the sample space
B∞ is defined by

µnorm(ǫ) = 1,

µnorm(ω1:nb) = µnorm(ω1:n)
µ(ω1:nb)

∑

a∈B µ(ω1:na)
,

for all n ∈ N and b ∈ B.

Write the (unnormalized) semimeasure µ as

µ(ω1:n) =
n∏

i=1

µ(ωi|ω1:i−1),

where we set ω1:0 = ǫ. Define a new symbol u, a special undefined
element, with the property that µ(u|ω1:n) = 1 −∑a∈B µ(a|ω1:n). To
obtain µnorm from µ, we multiply the ith factor of µ written as the
product above by

1

1 − µ(u|ω1:i−1)
=

µ(ω1:i−1)
∑

a∈B µ(ω1:i−1a)
.

Then,

µnorm(ω1:n) =
µ(ω1:n)

µ(ǫ)

n∏

i=1

1

1 − µ(u|ω1:i−1)
(4.14)

=
µ(ω1:n)

µ(ǫ)

n∏

i=1

µ(ω1:i−1)
∑

a∈B µ(ω1:i−1a)
.

It is straightforward to verify that if µ is a semimeasure, then µnorm is
a measure. We call Mnorm the Solomonoff measure. It is at once clear
that Mnorm dominates all lower semicomputable semimeasures as well.
This comes at the price that Mnorm is not lower semicomputable itself
by Lemmas 4.5.1, 4.5.2. Nonetheless, for many applications (as in Chap-
ter 5) it may be important to have a universal measure available with
most of the right properties, and the fact that it is not lower semicom-
putable may not really bother us. Another possible objection is that
there are more ways to normalize a semimeasure to a measure. So why
choose this one? The choice for Mnorm is not unique. Solomonoff justi-
fies this choice by his particular interest in the interpretation of M as a
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priori probability: the measure M(x) is the probability that the mono-
tone reference machine outputs a sequence starting with x if its input is
supplied by fair coin flips.

Suppose the output of the machine is known thus far, say x. One wants
to know the relative probability that 1 rather than 0 will be the next
symbol when we know that there is a next symbol. This relative probabil-
ity is P = M(x1)/M(x0). Many, if not most, applications of probability
involve ratios of this sort. For example, this is the case in computing
conditional probabilities, relative probabilities of various scientific hy-
potheses, and mathematical decision theory. If one wants to divide up
M(xu) (the unnormalized probability that the machine does not print
another symbol after emitting x), then only the normalization above
leaves the ratio P invariant. The ratio P is sacred since it happens to
be given by the reference universal monotone machine. The justifica-
tion for Mnorm lies in the fact that it is the unique measure such that
Mnorm(x1)/Mnorm(x0) = M(x1)/M(x0).

This normalization eliminates all probability concentrated on the finite se-
quences and divides all µ(x)’s by the corresponding remaining sums. In this
way, we obtain an object related to the greatest measure contained in the
semimeasure. Another possibility would be to use the unnormalized condi-
tional probability Punnorm = M(x1)/M(x) instead of Pnorm = M(x1)/(M(x0)
+M(x1)), the normalized conditional probability. Using Punnorm is equivalent
to considering xu to be a real possibility. In most (if not all) applications we
have the auxiliary information that either x0 or x1 did occur, so the prob-
ability of xu is zero. In cases of this sort, Pnorm is correct and Punnorm is
incorrect as values for the conditional probability of 1, given that x has oc-
curred. Solomonoff argues (somewhat weakly) that since such probability ra-
tios need to be used in applications, we somehow have to find ways to deal
with them, and we cannot just refuse to accept normalized probability be-
cause it is not lower semicomputable. This tentative section is based on R.J.
Solomonoff [IEEE Trans. Inform. Theory, IT-24(1978), 422–432]; discussions
with L.A. Levin, P. Gács, and Solomonoff; and in good part on Solomonoff’s
arguments [Letter, October 4, 1991]. Every manner of normalizing M replaces
M(x) − (M(x0) + M(x1)) by 0, and Exercise 4.5.6 on page 325 shows that
1/M(x) may be vastly different from 1/(M(x0)+M(x1)). Therefore, the nor-
malization greatly distorts the relation between M(x) and M(x0)+M(x1) for
some x. But Exercise 4.5.7 on page 325 tells us that if we use M to predict con-
secutive symbols of sequences actually distributed according to a computable
measure µ, then this rarely happens. Namely, for every n the µ-expected lack
of measurehood of M satisfies

∑

l(x)=n

µ(x)

n∑

i=1

M(xi−1) − M(xi−10) − M(xi−11)

M(xi−1)
≤ K(µ) ln 2.

See also the discussion in ‘History and References,’ Section 4.7.
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4.5.4
*Monotone
Complexity and
a Coding
Theorem

There are two possibilities for associating complexities with machines.
The first possibility is to take the length of the shortest program, while
the second possibility is to take the negative logarithm of the universal
probability. In the discrete case, using prefix machines, these turned out
to be the same by the coding theorem, Theorem 4.3.3. In the continuous
case, using monotone machines, it turns out that they are different.

Definition 4.5.8 The complexity KM is defined as

KM (x) = log
1

M(x)
.

In contrast with C and K complexities, in the above definition the great-
est prefix-free subset of all programs that produce output starting with
x on the reference monotone machine U is weighed.

Definition 4.5.9 Let U be the reference monotone machine. The complexity Km, called
monotone complexity, is defined as

Km(x) = min{l(p) : U(p) = xω, ω ∈ SB}.

We omit the invariance theorems for KM complexity and Km complex-
ity, stated and proven completely analogously to Theorems 2.1.1, 3.1.1
on pages 105, 202. By definition, KM (x) ≤ Km(x). In fact, all complex-
ities coincide up to a logarithmic additive term, Section 4.5.5.

It follows directly from Definition 4.5.8 and Equation 4.11 that for each
lower semicomputable semimeasure µ we have

KM (x) ≤ log
1

µ(x)
+K(µ).

The following theorem can be viewed as a coding theorem, continuous
version, for computable measures. It states that for computable measures
µ, each sample has a minimal description bounded by the logarithm of
its probability plus a constant.

Theorem 4.5.4 Let µ : {0, 1}∗ → R be a computable measure. Then

Km(x) ≤ log
1

µ(x)
+ cµ,

where cµ is a constant depending on µ but not on x.

Proof. Recall the terminology in the proof of Lemma 4.3.3 on page 274.
We give an inductive procedure for assigning code words to samples
starting with x (rather, the cylinder Γx consisting of finite and infinite
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sequences starting with x). Start by setting the interval Iǫ := [0, 1) (of
length µ(ǫ) = 1).

Inductively, divide the interval Ix into two half-open intervals Ix0 (the
left one) and Ix1 (the right one), of lengths µ(x0) and µ(x1), respectively.
In each interval Ix determine the length of the largest binary interval.
Since µ is a real-valued computable function, we cannot achieve that the
lengths of the intervals Ix0 and Ix1 are exactly µ(x0) and µ(x1), but we
can achieve a good rational approximation (good enough that even the
product of the error factors is bounded).

Let the binary string representing the leftmost such interval be r. Select
as code for a sample starting with x the code word r. Note that samples
starting with x and x0 may be represented by the same code word. This
is fine. According to this procedure, each sample of strings starting with
x gets assigned a code word r with l(r) ≤ log 1/µ(x) + 2 (analogous to
the proof of Lemma 4.3.3).

By construction the code is monotone: if r is a code word for a sample
starting with x, then so is each code word starting with r. Since also
µ is computable, there is a monotone machine M as follows: If r is a
code word for a sample starting with x, then M recovers x as prefix
of an output string x′ (possibly longer than x) by following the above
procedure. For each prefix q of r it computes the longest y such that q is
a code for a sample starting with y. Since the code is monotone, M can
operate monotonically as well, by outputting subsequent digits of x′ for
each additional digit read from the one-way input r.

If n(M) is the index of M in the standard enumeration of monotone

machines, then input n(M)r is a program for the reference monotone
machine U to output a string starting with x. Hence, the length Km(x) of
the shortest program for U for outputting a string with prefix x satisfies
Km(x) ≤ log 1/µ(x) + cµ with cµ = 2n(M) + 2. Refinement of the
argument lets us set cµ = K(M) + 2. 2

Theorem 4.5.4 is the continuous analogue for the coding theorem, Theo-
rem 4.3.3, concerning discrete lower semicomputable semimeasures. We know
that KM (x) ≤ Km(x) +O(1). It has been shown that equality does not hold:
the difference between KM (x) (= log 1/M(x)) and Km(x) is very small, but
still rises unboundedly. This contrasts with the equality between log 1/m(x)
and K(x) in Theorem 4.3.3. Intuitively, this phenomenon is justified by ex-
posing the relation between M and m.

The coding theorem states that K(x) = log 1/m(x)+O(1). L.A. Levin [Soviet
Math. Dokl., 14(1973), 1413–1416] conjectured that the analogue would hold
for the unrestricted continuous version. But it has been shown that

sup
x∈B∗

|KM (x) − Km(x)| = ∞
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[P. Gács, Theoret. Comput. Sci., 22(1983), 71–93]. In particular (for each par-
ticular choice of basis B such as B = N , the natural numbers, or B = {0, 1}),

KM (x) ≤ Km(x) ≤ KM (x) +K(l(x)) +O(1). (4.15)

The left-hand inequality follows from the definitions. The right-hand inequality
can be understood as follows: First look at B = N . The coding theorem can be
proved for every recursively enumerable prefix-free subset of N ∗, and not only
for N . (It is enough to prove it for N ; the extension to prefix-free sets follows
by encoding.) That is, if F is a recursively enumerable prefix-free subset of N ∗

(such as Nn or another cut through the prefix tree representation of N ∗), then
KmF (x) = log 1/mF (x). (Here, the subscript F means that both Km and m

are defined with respect to an effective enumeration of monotone machines
with programs in F .)

Now, Km(x) ≤ KmF (x) + K(n(F )) + O(1), where we need a self-delimiting
description of K(n(F )) additional bits to describe n(F ), the index of the
partial recursive function describing F . Since one can show that mF (x) ≥
M(x), we have proved the right-hand inequality of Equation 4.15. Similar
reasoning can improve the estimate to

KM (x) ≤ Km(x) ≤ KM (x) +K(KM (x)) +O(1).

These results show that differences between Km(x) and KM (x) with B = N
cannot exceed those accounted for by the tree structure of N ∗. As stated

before, the problem is equivalent for the binary basis B = {0, 1}. Moreover,

the estimate is the best possible one, since the following can be shown:

Claim 4.5.1 Let B = N . For every upper semicomputable function g : N → N for which

Km(x) − KM (x) ≤ g(l(x)),

we have Km(n) ≤ g(n) +O(1).

Proof. We refer to the proof in [P. Gács, Theoret. Comput. Sci., 22(1983),
71–93]. 2

Note that for upper semicomputable functions g(n), the statement Km(n) ≤
g(n) + O(1) is equivalent to

∑

n
2−g(n) < ∞. Namely, on the one hand it

follows from KM (x) ≤ Km(x) +O(1) that
∑

n

2−Km(n) ≤
∑

n

M(n) ≤ M(ǫ) ≤ 1.

Therefore, Km(n) ≤ g(n) +O(1) implies that
∑

n
2−g(n) < ∞. Conversely, if

∑

n
2−g(n) < ∞ then on the domain N we have that 2−g(n) is multiplicatively

dominated by M(n). Since on the domain N we have KM (n) = Km(n)+O(1),
it follows that Km(n) ≤ KM (n) +O(1) ≤ g(n) +O(1) for n ∈ N .

This shows that the differences between Km(x) and KM (x) must in some sense
be very small. The next question to ask is whether the quantities involved
are usually different, or whether this is a rare occurrence, in other words,
whether for almost all infinite sequences ω, the difference between Km and
KM is bounded by a constant. The following facts have been proven [P. Gács,
Theoret. Comput. Sci., 22(1983), 71–93].
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Lemma 4.5.6 (i) For random strings x ∈ B∗ we have Km(x) − KM (x) = O(1).

(ii) There exists a function f(n) that goes to infinity as n → ∞ such that
Km(x) − KM (x) ≥ f(l(x)), for infinitely many x.

(a) If x is a finite string of natural numbers (B = N ), then we can choose
f(n) = log n.

(b) If x is a finite binary string (B = {0, 1}), then we can choose f(n) as
the inverse of some version of Ackermann’s function (Exercise 1.7.18 on
page 45).

(c) For almost all infinite ω, where ‘almost all’ is specified according to the
universal lower semicomputable semimeasure, the difference Km(ω1:n) −
KM (ω1:n) has an upper bound that is smaller than any unbounded recursive
function.

(d) For almost all infinite ω, where ‘almost all’ is specified according to any
computable measure, Km(ω1:n) − KM (ω1:n) is bounded by a constant.

4.5.5
*Relation
Between
Complexities

Let B = {0, 1}. There are five complexity variants discussed in this book:
the plain complexity C(·), the complexity KM (·) = log 1/M(·) associ-
ated with the universal measure M, the monotone complexity Km(·),
Loveland’s uniform complexity C(·; ·) of Exercise 2.3.2 on page 130, and
the prefix complexity K(·). What is the quantitative difference between
them? Partially, such as between C(·), l(·), and K(·), these relations fol-
low from Chapters 2, 3. It is easy to see that Km(x) ≤ l(x) +O(1), and
by definition, KM (x) ≤ Km(x). Moreover, C(x; l(x)) ≤ C(x) +O(1) by
Exercise 2.3.2.

We include the table of relations, Figure 4.2, and omit the proofs. A table
entry expresses bounds on the complexity naming the column minus
the complexity naming the row. Since we cannot give the difference
precisely, we split it into an upper bound that always holds and a bound
that is exceeded infinitely often. Thus, every entry consists of an upper

C(x) KM (x) Km(x) K(x)

l(x) = n ≤ O(1) ≤ O(1) ≤ O(1) ℓk(n, ǫ)
ℓk(n, 0)

C(x) ℓk(n, ǫ) ℓk(n, ǫ) ℓk(n, ǫ)
ℓk(n, 0) ℓk(n, 0) ℓk(n, 0)

KM (x) logn+O(1) ℓk(n, ǫ) ℓk(n, ǫ)
logn−O(1) A−1(n) ℓk(n, 0)

Km(x) logn+O(1) < 0 ℓk(n, ǫ)
logn−O(1) < 0 ℓk(n, 0)

C(x;n) ℓk(n, ǫ) ℓk(n, ǫ) ℓk(n, ǫ) logn+ ℓk(n, ǫ)
ℓk(n, 0) ℓk(n, 0) ℓk(n, 0) logn+ ℓk(n, 0)

FIGURE 4.2. Relations between five complexities with l(x) = n
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entry and a lower entry. The upper entry gives an upper bound on the
difference for all x. That is, the difference is always at most this bound.
Thus, C(x) − l(x) ≤ O(1) (possibly nonconstantly negative) for every
x. The lower entry gives a bound on the difference that is reached or
exceeded for infinitely many x. That is, the difference reaches or exceeds
this bound infinitely often. Thus, C(x) −KM(x) ≥ log l(x) − O(1) for
infinitely many x. We denote l(x)+ l(l(x))+ · · ·+(1+ǫ)lk(x) by ℓk(x, ǫ),
where l1(x) = l(x) and lk(x) = l(lk−1(x)) for k > 1. The bound ℓk(x, ǫ)
holds for every fixed k and ǫ > 0, and the bound ℓk(x, 0) holds for every
fixed k.

The differenceKm(x)−KM(x) is especially interesting. As noted above,
this difference can be arbitrarily large, and hence log 1/M(x) 6= Km(x)+
O(1) (no coding theorem in this case). In particular,Km(x)−KM(x) >
A−1(l(x)) for infinitely many x. The function A−1 is a version of the very
slow-growing inverse of the Ackermann function in Exercise 1.7.18 on
page 45. (Interestingly, while A grows faster than any primitive recursive
function, its inverse A−1 is primitive recursive.) The only known upper
bound Km(x)−KM(x) ≤ ℓk(l(x), ǫ) holds for every x and k, and follows
from Equation 4.15 on page 307. The difference between these bounds
is large, and open for improvement. For background material, see the
‘History and References,’ Section 4.7.

4.5.6
*Randomness by
Integral Tests

The randomness of infinite sequences with respect to the uniform mea-
sure has been treated in Sections 2.5 and 3.6. In the latter section, Corol-
lary 3.6.1, page 223, gives the following exact expression characterizing
the infinite sequences that are random with respect to the uniform mea-
sure λ:

ρ0(ω|λ) = sup
n∈N

{n−K(ω1:n)}. (4.16)

That is, ρ0(ω|λ) < ∞ iff ω is random with respect to λ. We general-
ize this result to exact expressions testing the randomness of infinite
sequences for arbitrary computable measures µ.

A universal sequential µ-test δ0(·|µ) of Section 2.5 additively majorizes all
other sequential µ-tests. It distinguishes the random infinite sequences from
the nonrandom ones. However, we did not find an exact expression of the uni-
versal sequential µ-test in terms of complexity. But we can develop other types
of tests that do have exact expressions in terms of Kolmogorov complexity for
a universal test separating the random infinite sequences from the nonrandom
ones.

Sequential µ-tests were essentially functions of a continuous variable
in S = B∞. Constructivity of such functions of infinite sequences was
ensured by having a sequential test approximate its value by taking the
supremum of all tests of finite initial segments of the infinite sequence.
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We start by considering the notion of lower semicomputable unit inte-
grable functions of a continuous variable. It is easy to show that the
logarithms of such functions are slightly stronger versions of sequential
tests. This parallels the development of the sum tests of Definition 4.3.8,
page 278. Subsequently, we give the exact expression of a universal lower
semicomputable unit integrable function with respect to a computable
measure µ. The logarithm of this quantity is the exact expression for a
universal test. This approach requires the application of a few elemen-
tary properties of integration.

Let B = {0, 1, . . . , k− 1} be a finite nonempty alphabet with k ≥ 2. The
continuous variable ranges over the set of one-way infinite sequences
S = B∞. The set S has the power of the continuum, since it can be
mapped onto the set R of real numbers, Example 1.4.1. The set X
below is a subset of S.

Definition 4.5.10 A nonnegative function f : S → R is unit integrable (over a set X with
respect to measure µ) if

∫

X

f(ω)µ(dω) ≤ 1.

Consider recursive functions of the form g(x, k) = 〈r, s〉. The interpre-
tation is that g has an argument x ∈ B∗ and a rational value r/s. The
cylinder set Γx is the set of infinite sequences over B starting with x. This
leads to a refinement of Definition 1.7.4 on page 35 of semicomputability:

Definition 4.5.11 A nonnegative function f : S → R is lower semicomputable if there
exists a recursive function g(x, k) satisfying g(x, k + 1) ≥ g(x, k) and
g(xy, k) ≥ g(x, k) such that

f(ω) = sup
ω∈Γx, k∈N

{g(x, k)}.

(Furthermore, f is upper semicomputable iff −f is lower semicomputable,
and f is computable iff it is both lower semicomputable and upper
semicomputable.) We determine the relation between a lower semicom-
putable unit integrable function and a sequential test.

Lemma 4.5.7 If f is a lower semicomputable unit integrable function over S with re-
spect to a computable measure µ, then log f(·) is a sequential µ-test.
Moreover, if δ is a sequential µ-test, then the function f defined by
log f(ω) = δ(ω) − 2 log δ(ω) − c is a lower semicomputable unit inte-
grable function.
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Proof. Let f be a lower semicomputable unit integrable function. With-
out loss of generality we can assume that the values f(ω) are of the form
2m. Define

γ(x) = inf
ω∈Γx

⌊log f(ω)⌋ .

Since f is lower semicomputable, so is γ, even though its definition
uses inf, by the way we defined lower semicomputable functions. Also,
γ(ω1:n) is monotonic in n. It follows that log f(ω) = supn∈N {γ(ω1:n)}.
Moreover, for each n,

∑{

µ(x)2γ(x) : l(x) = n, γ(x) > k
}

≤ 2−k.

Otherwise,
∫

S

f(ω)µ(dω) >
∑

l(x)=n

µ(x)2γ(x) ≥
∑

l(x)=n

µ(x)2k ≥ 1.

Hence, f is a sequential µ-test according to Definition 2.5.1, page 147.

Conversely, assume that δ is a sequential µ-test. By Definition 2.5.1
the function δ is lower semicomputable. Therefore, f defined as in the
lemma is lower semicomputable. By Definition 2.5.1 we also have µ{ω :
δ(ω) ≥ m} ≤ 2−m, for eachm. Define f(ω) = c2δ(ω)/δ(ω)2 for a constant
c = (π2/3)−1 and f(x) = infω∈Γx{f(ω)}. Since 2x/x2 is monotonic,
these functions are also lower semicomputable. Define

Em = {ω : m ≤ δ(ω) < m+ 1} , and cm = sup
ω∈Em

{f(ω)}.

Then (with m ≥ 1),
∫

S

f(ω)µ(dω) ≤
∑

m

µ(Em)

≤ c
∑

m

2m+1

m2
2−m ≤ 2c

∑

m

1

m2
≤ 1.

2

Definition 4.5.12 Let f be a unit integrable function over S with respect to µ. A function
δ is an integral µ-test iff δ(ω) = log f(ω). It is a universal integral µ-test
if it additively dominates all integral µ-tests.

Lemma 4.5.7 states that sequential µ-tests and integral µ-tests corre-
spond up to a logarithmic additive term. It remains to show that there
exists a universal integral µ-test. We proceed by demonstrating the ex-
istence of a universal unit integrable function.
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Definition 4.5.13 A function f0 is universal for a class of unit integrable functions over a
domain X if f0 belongs to the class and for each f in the class there is
a constant c such that for all ω ∈ X we have cf0(ω) ≥ f(ω).

Theorem 4.5.5 The class of lower semicomputable unit integrable functions (over X with
respect to a computable measure µ) has a universal element, the function
f0 defined by

log f0(ω) = sup
ω∈Γx

{

log
1

µ(x)
−K(x|µ)

}

.

Proof. We need to show that f0 is lower semicomputable, unit integrable,
and that it multiplicatively dominates all lower semicomputable unit
integrable functions. Since K(·) is upper semicomputable and µ(·) is
computable, it follows that f0 is lower semicomputable.

Claim 4.5.2 The function f0 is unit integrable.

Proof. First, write

f0(ω) = sup
ω∈Γx

{

2−K(x|µ)+log 1/µ(x)
}

.

We have defined f0 only on elements of B∞. If we want to define f0 on
finite sequences x ∈ B∗, then the natural way is

f0(x)
def
= inf

ω∈Γx

{f0(ω)} .

This makes f0(ω1:n) monotonic nondecreasing in n. Let

g(x) = 2−K(x|µ)+log 1/µ(x).

Using Theorems 4.3.1 and 4.3.3, pages 267 and 273,

∫

X

f0(ω)µ(dω) =

∫

X

sup
n
{g(ω1:n)}µ(dω)

≤
∑

n

∫

X

g(ω1:n)µ(dω)

=
∑

n

∑

l(x)=n

g(x)µ(x)

=
∑

x

g(x)µ(x) =
∑

x

2−K(x|µ) ≤ 1.

2
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Claim 4.5.3 The function f0 multiplicatively dominates all lower semicomputable
unit integrable functions.

Proof. Let g be a lower semicomputable unit integrable function. With-
out loss of generality, assume that g has values of the form 2m only.
Lower semicomputability of g is equivalent to saying that there exists a
recursively enumerable set T of pairs (x,m) such that

g(ω) = sup{2m : ω ∈ Γx and (x,m) ∈ T }.

For a set T of pairs (x,m), define the subset of elements stabbed by ω
as

T (ω)
def
= {(x,m) ∈ T : ω ∈ Γx}.

The proof goes by replacing T by a set T ′ such that T ′(ω) contains at
most one element (x,m) for eachm. For this purpose, proceed as follows:
Use T to define the recursively enumerable set Tm by

Tm = {x : (x,m) ∈ T }.

Each element x ∈ Tm is associated with a cylinder Γx ⊆ S. Similarly,
Tm is associated with the union of all these cylinders: R =

⋃

x∈Tm
Γx.

However, the constituent cylinders may overlap: some infinite sequences
ω have two different prefixes in Tm. By replacing Tm by a set T ′

m in
which no element is a prefix of another element, and such that ω has a
prefix in Tm iff it has a prefix in T ′

m, we achieve that R equals the union
of the nonoverlapping cylinders of elements in T ′

m.

From the enumeration of Tm we obtain an enumeration of such a prefix-
free set T ′

m by the following processing step. Starting with an empty set
T ′
m, we put each enumerated element x from Tm into T ′

m as long as x is
not a prefix of an element already in T ′

m and there is no element in T ′
m

that is a prefix of x. If T ′
m contains a prefix of x, then we simply discard

x. If x is the prefix of one or more elements in T ′
m, then we replace x

by the smallest prefix-free set A of elements of the form xy such that
each infinite sequence starting with x has a prefix in T ′

m

⋃
A. Then the

latter set is prefix-free and we set T ′
m := T ′

m

⋃
A. Since T ′

m is finite at
each stage, each such set A is finite and can be effectively determined.
We give a formal description of this processing step:

Initialize: T ′
m := ∅.

For each enumerated x ∈ Tm do

if Γx
⋂

Γy = ∅ for all y ∈ T ′
m then T ′

m := T ′
m

⋃{x}

else if Γx ⊆ Γy for some y ∈ T ′
m then discard x
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else T ′
m := T ′

m

⋃
A

{where we choose A := {xy1, . . . , xyk} the smallest set such that:

1. Γz
⋂

Γz′ = ∅ for all z, z′ ∈ T ′
m

⋃
A; and

2.
⋃

z∈T ′

m

⋃
A Γz =

⋃

z∈T ′

m

⋃
{x} Γz }.

By construction, T ′
m is recursively enumerable and prefix-free. Because it

is prefix-free, the subset T ′
m(ω) stabbed by ω is a singleton set or ∅. We

are now ready to define the promised T ′ as T ′ =
⋃

m{(x,m) : x ∈ T ′
m}.

The subset T ′(ω) stabbed by ω contains at most one element (x,m) for
each m.

By the construction above,

g(ω) = sup{2m : T ′
m(ω) 6= ∅}.

Define further

g(x)
def
= sup

x∈T ′

m

{2m}, and g′(x)
def
=

∑

{m:x∈T ′

m}
2m,

where g(x) = g′(x) = 0 if there is no m with x ∈ T ′
m. In this way,

g(ω) = sup
ω∈Γx

{g(x)}, and g(x) ≤ g′(x). (4.17)

Since each m occurs at most once in an element in T ′(ω), we have

2g(ω) ≥
∑

T ′

m(ω) 6=∅

2m =
∑

{x:ω∈Γx}

∑

{m:x∈T ′

m}
2m =

∑

{x:ω∈Γx}
g′(x).

Therefore,

∑

x

g′(x)µ(x) =
∑

x

∫

Γx

g′(x)µ(dω)

=

∫

X

∑

{x:ω∈Γx}
g′(x)µ(dω)

≤ 2

∫

X

g(ω)µ(dω) ≤ 2.

Since g′(x)µ(x)/2 is lower semicomputable and by the above sums to at
most 1, it follows from Theorems 4.3.1 and 4.3.3 on pages 267 and 273,
respectively, that there is a constant c such that

g′(x) ≤ c
2−K(x|µ)

µ(x)
.
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Since g(x) ≤ g′(x), using Equation 4.17,

g(ω) ≤ sup
ω∈Γx

{

c2−K(x|µ)+log 1/µ(x)
}

.

2 2

Corollary 4.5.2 Let µ be a computable measure. The function

ρ0(ω|µ) = sup
ω∈Γx

{

log
1

µ(x)
−K(x|µ)

}

is a universal integral µ-test.

Example 4.5.1 With respect to the special case of the uniform distribution λ, Corol-
lary 4.5.2 sets ρ0(ω|λ) = supn∈N {n −K(ω1:n)} up to a constant addi-
tional term. This is the expression we found already in Corollary 3.6.1,
page 223. 3

Example 4.5.2 To quantify the domination constants between f0 and the lower semi-
computable unit integrable functions, we can proceed by an argument we
have met several times before (for example, Theorem 4.5.1, page 294).
First one shows that the lower semicomputable unit integrable functions
can be effectively enumerated as

f1, f2, . . . .

Second, one shows that

f ′
0(ω) =

∑

n≥1

α(n)fn(ω), with
∑

α(n) ≤ 1,

is unit integrable. We can choose α(n) = 2−K(n). Since the individual
fn’s are lower semicomputable, f ′

0 is also lower semicomputable. Since
the individual fn’s are unit integrable, f ′

0 is also unit integrable. Since
f ′
0(ω) ≥ 2−K(n)fn(ω), for all n and ω, the function f ′

0 is a universal
lower semicomputable unit integrable function. By the above theorem,
f0 is also a universal lower semicomputable unit integrable function.
Therefore, there is a constant c such that

cf0(ω) ≥ f ′
0(ω) ≥ 2−K(n)fn(ω).

3

Example 4.5.3 Consider a discrete sample space S and the class of lower semicom-
putable unit integrable functions over S with a computable measure µ.
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For convenience we set S ⊆ N . Then
∑

x∈S f(x)µ(x) ≤ 1. For each
such function f we have that f(x)µ(x) is lower semicomputable and
sums up to at most 1. By Theorem 4.3.1 on page 267, there is a con-
stant c such that f(x)µ(x) ≤ c · m(x|µ) for all x. We have K(x|µ) =
log 1/m(x|µ) +O(1), by Theorem 4.3.3, page 273, and therefore

f(x) ≤ c2−K(x|µ)+log 1/µ(x).

Since m is lower semicomputable unit integrable, we find that the uni-
versal lower semicomputable unit integrable function over S with respect
to µ is

f0(x) = 2−K(x|µ)+log 1/µ(x).

The discrete sample space approach is connected to the continuous sam-
ple space treatment as follows: If we induce from f0 a function f ′

0 over
B∞ by defining f ′

0(ω) = supn{f0(ω1:n)}, then we obtain the function of
Theorem 4.5.5 again. 3

4.5.7
*Randomness by
Martingale Tests

This section parallels the discussion in Sections 4.3.5 and 4.3.6. We are
presented with an infinite sequence of outcomes by an adversary who
claims that the distribution of outcomes is the computable measure µ
on S = B∞, where B is a finite nonempty set of basic symbols. We
would like to verify this claim under the assumption (guaranteed by the
adversary) that the game is fair in the following sense: Let there be given
an agreed-upon function f satisfying

∑

l(x)=n

f(x)µ(x) ≤ 1,

for all n. In every game, you pay the standard amount of $1 to the
adversary and he pays you $f(x) if the outcome of the game is x.

Below we define a type of test that embodies such a betting strategy. Let
x ∈ B∗ and b ∈ B. You receive f(x) = 2γ(x) units on an outcome x. The
first inequality of Definition 4.5.14 represents your stake in each play.
The second inequality of Definition 4.5.14 says that if you continue play-
ing another step after history x, then on average (using the conditional
probability µ(xb)/µ(x)), your payoff will not increase.

Definition 4.5.14 Let µ : B∗ → R be a computable measure on the sample space B∞. Let
γ : B∗ → R be a nonnegative, lower semicomputable function with the
property

µ(ǫ)2γ(ǫ) ≤ 1,

µ(x)2γ(x) ≥
∑

b∈B
µ(xb)2γ(xb).
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Then γ is a martingale µ-test. A martingale µ-test is universal for a class
of martingale µ-tests if it additively dominates all martingale µ-tests.

This is a ‘test’ version of the martingale we will meet in Section 4.5.8 on
page 319. We have formulated it here as a ‘test’ for ease of comparison
with the original Martin-Löf test of Definition 2.4.1, page 135.

Lemma 4.5.8 Each martingale µ-test is a µ-test. If δ(x) is a µ-test, then there exists
a constant c such that δ(x) − 2 log δ(x) − c is a martingale µ-test.

Proof. It follows immediately from the new definition that for all n,

∑

l(x)=n

{µ(x) : γ(x) > k} ≤ 2−k. (4.18)

Conversely, if γ(x) satisfies Equation 4.18, then for some constant c the
function γ(x) − 2 log γ(x) − c satisfies Definition 4.5.14. 2

Thus, the universal (Martin-Löf) µ-test of Definition 2.4.2 on page 136,
the universal sum µ-test of Definition 4.3.8 on page 278, and the universal
martingale µ-test all yield the same values up to a logarithmic additive
term.

Definition 4.5.15 A sequential martingale µ-test δ for ω ∈ B∞ is obtained from a martin-
gale µ-test γ by defining

δ(ω) = sup
n∈N

{γ(ω1:n)}.

A sequential martingale µ-test σ0(·|µ) is universal if it additively domi-
nates all sequential martingale µ-tests δ: there is a constant c such that
for all ω ∈ B∞ we have c · σ0(ω|µ) ≥ δ(ω).

Theorem 4.5.6 Let µ : B∗ → R be a computable measure on B∞.

(i) The function γ0 : B∗ → R defined by γ0(x|µ) = log(M(x)/µ(x)) is a
universal martingale µ-test.

(ii) The function σ0 : B∞ → R defined by

σ0(ω|µ) = sup
n

{

log
M(ω1:n)

µ(ω1:n)

}

is a universal sequential martingale µ-test.
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Proof. Let Vk be the set of infinite sequences ω such that there is an index
n with k < log 1/µ(ω1:n)−Km(ω1:n). Using log 1/M(ω1:n) ≤ Km(ω1:n),
this implies that

γ0(ω1:n|µ) = log
M(ω1:n)

µ(ω1:n)
> k,

for all ω in Vk. The left-hand side of the inequality satisfies Defini-
tion 4.5.14. By Equation 4.18, therefore, µ(Vk) ≤ 2−k. Since M is lower
semicomputable and µ is computable, γ0 is lower semicomputable. Hence
it is a martingale µ-test, and σ0 is a sequential martingale µ-test. By Def-
inition 4.5.14 the function µ(x)2γ(x) is a lower semicomputable semimea-
sure. Thus, for each martingale µ-test γ, there is a positive constant cγ
such that

M(x) ≥ cγµ(x)2γ(x).

Therefore, γ0 and σ0 additively dominate all martingale µ-tests and
sequential martingale µ-tests, respectively. 2

As before, we call γ0(x|µ) the randomness deficiency of x. Theorem 4.5.6
yields yet another characterization of an infinite random sequence, equiv-
alent to Martin-Löf’s characterization of randomness in Section 2.5.
Namely, for each such µ, an infinite binary sequence ω is µ-random iff

σ0(ω|µ) <∞.

By the proof of Theorem 4.5.6 this is equivalent to

sup
n

{

log
1

µ(ω1:n)
− Km(ω1:n)

}

<∞.

Corollary 4.5.3 An infinite sequence ω is random iff supn{log 1/µ(ω1:n) − Km(ω1:n)} <
∞. (The expression on the left side is yet another µ-randomness test.)

Altogether, we have found the following characterizations in this section.
An infinite sequence ω is µ-random iff

KM (ω1:n) = Km(ω1:n) +O(1) = log
1

µ(ω1:n)
+O(1).

(The O(1) term is independent of n but may depend on ω.) The µ-
random infinite sequences by definition have µ-measure one in the set of
all infinite sequences. Such sequences, and only such sequences, satisfy
all effective laws of probability theory (that is, withstand any sequen-
tial µ-test in Martin-Löf’s sense). There is also a conditional version of
Theorem 4.5.6:
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Corollary 4.5.4 Let f(ω, ζ) be a function with
∫

S
2−f(ω,ζ)λ(dω) ≤ 1, where λ is the uni-

form measure. Such functions f define conditional measures as follows:
Define f(x, ζ) = supω∈Γx

{f(ω, ζ) }. Then,

µ(x|ζ) =

∫

Γx

2−f(ω,ζ)λ(dω).

If f is upper semicomputable (the corresponding µ(ω|ζ) is lower semi-
computable), then there is a constant c such that c ·M(ω|ζ) ≥ 2−f(x,ζ),
for all ζ and all x with ω ∈ Γx.

Example 4.5.4 Let µ = λ, the uniform measure. The above discussion says that an
infinite binary sequence ω is random with respect to the uniform measure
(that is, in the original sense of Martin-Löf) iff

KM (ω1:n) = Km(ω1:n) +O(1) = n+O(1).

3

4.5.8
*Randomness by
Martingales

In gambling, the ‘martingale’ is a well-known system of play. With this
system one bets in a casino that the outcome of a roulette run will be
red each time, and after each loss the new bet is double the old one.
No matter how long the run of losses, once red comes up, the gambler
wins. The current gain minus past loss in this run equals the amount of
the first bet. But even though red is bound to come up sometime, the
gambler may go broke and lose all before this happens. In his 1853 book
The Newcomes, W.M. Thackeray admonishes, “You have not played as
yet? Do not do so; above all avoid the martingale if you do.”

According to von Mises’s Definition 1.9.1 on page 51, a random sequence
in the sense of a collective defies a player betting at fixed odds, and in
fixed amounts, on the tosses of a fair coin, to make unbounded gain in
the long run. Von Mises does not require that the player can have no
debt. Obviously, if the player cannot go broke, and he bets according to
a martingale, his gain will eventually exceed each bound.

We can test for randomness by betting. Suppose a casino claims that the
distribution of outcomes ω in sample space S = B∞ is the measure µ.
Then given any function f(ω), with

∫

S
f(ω)µ(dω) < 1, the casino should

accept 1 unit for an obligation to pay f(ω) on outcome ω. (We have
called such functions ‘unit integrable’ in Definition 4.5.10 on page 310.)
A martingale is a payoff function that leads to such a global payoff.

Definition 4.5.16 Let µ : B∗ → [0, 1) be a measure on S = B∞. Let t be a nonnegative
function from B∗ into R such that with x ∈ B∗,

µ(ǫ)t(ǫ) ≤ 1,

µ(x)t(x) ≥
∑

b∈B
µ(xb)t(xb).
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Let ω be an element of S. We call t(ω1:n) a µ-supermartingale. We call
t(ω1:n) a µ-martingale if the equations hold with equality.

Definition 4.5.17 A lower semicomputable µ-supermartingale t0 is universal for the class
of lower semicomputable µ-supermartingales if it multiplicatively domi-
nates all lower semicomputable µ-supermartingales t′. (That is, there is
a constant c such that c · t0(x) ≥ t′(x) for all x ∈ B∗.)

Theorem 4.5.7 There is a universal lower semicomputable µ-supermartingale. We de-
note it by t0(·|µ).

Proof. Define t0(x|µ) = M(x)/µ(x). Then t0(x|µ) = 2γ0(x|µ) with γ0(·|µ)
as in Theorem 4.5.6. From Definition 4.5.15 and Definition 4.5.16, it fol-
lows that γ(x) is a martingale µ-test iff t(x) = 2γ(x) is a lower semi-
computable µ-supermartingale. Hence, the theorem follows from Theo-
rem 4.5.6. 2

Example 4.5.5 We give an alternative proof of Theorem 4.5.7. Comparison with Defini-
tion 4.2.1 shows that t(x) is a lower semicomputable µ-supermartingale
iff t(x)µ(x) is a lower semicomputable semimeasure. By Theorem 4.5.1
on page 294, the semimeasure M is a universal lower semicomputable
semimeasure. Hence, for each lower semicomputable µ-supermartingale
t there is a constant c such that c ·M(x) ≥ t(x)µ(x), for all x. Therefore,

t0(x|µ) =
M(x)

µ(x)

dominates all lower semicomputable µ-supermartingales within a mul-
tiplicative constant. Thus t0(x|µ) is a universal lower semicomputable
µ-supermartingale. 3

Intuition tells us to call an outcome ω nonrandom if it allows us to win
against the adversary by choosing an appropriate payoff function, that
is, if there is a lower semicomputable supermartingale t such that t(ω1:n)
grows unboundedly. From the definitions it follows immediately that the
characterization of random infinite sequences, as the complement of the
nonrandom ones, is exactly the same as the one using sequential µ-tests.
Since γ0(x|µ) dominates all µ-tests, within additive constants, it fol-
lows that t0(x|µ) = M(x)/µ(x) dominates all lower semicomputable µ-
supermartingales within a multiplicative constant. Since γ0 is a universal
martingale µ-test, we have the following corollary to Theorem 4.5.7:

Corollary 4.5.5 An infinite sequence ω is µ-random iff

t0(ω|µ) = sup
n∈N

{t0(ω1:n|µ)} <∞.

We recall that the set of such ω has µ-measure one.
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4.5.9
*Relations
Between Tests

There is a simple relation between supermartingales and unit integrable
functions. The supermartingale condition of Definition 4.5.16 implies
that for a µ-supermartingale t, for all prefix-free sets I ⊆ B∗ we have

∑

x∈I
µ(x)t(x) ≤ 1.

This implies that t is a unit integrable function in the sense of Defini-
tion 4.5.10.

Unit integrability of a function f does not imply that it is a supermartin-
gale. A supermartingale t is not necessarily monotonic nondecreasing but
instead satisfies the restrictive supermartingale condition. We can inter-
pret the difference as saying that the unit integrable functions represent
betting strategies in a fair game where the expectation of profit in the
overall infinite game is at most 1. The supermartingale condition says
that the expectation of profit for a fair game of some finite length cannot
be increased by playing longer. The condition on prefix-free sets states
that the expectation with an arbitrary set of stopping times is still at
most 1.

Assume that a function f is unit integrable. The integral can be ex-
pressed as a sum as follows: Taking the supremum over all prefix-free
sets I ⊆ Y we have

∫

X

f0(ω)µ(dω) = sup
I

{
∑

x∈I
µ(x)f0(x)

}

.

Then we can increase f to a µ-supermartingale t by defining

t(x) = sup
I







1

µ(x)

∑

y∈I
f(xy)µ(xy)






,

where I ranges over all prefix-free subsets of B∗. The proof that t is a µ-
supermartingale is by simply writing out both sides of the supermartin-
gale condition of Definition 4.5.16 in terms of suprema and verifying the
required relations. The fact that we increase f to obtain t accounts for
the fact that the universal lower semicomputable unit integrable func-
tion f0 is slightly smaller than the universal µ-supermartingale t0(·|µ).
For fixed ω,

sup
ω∈Γx

{

2−K(x|µ)+log 1/µ(x)
}

≤ sup
ω∈Γx

{
M(x)

µ(x)

}

.

To show that a supermartingale can be used to define a function over
B∞ we use the so-called supermartingale convergence theorem:
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Claim 4.5.4 Consider a sequence of random variables ω1, ω2, . . . . If t(ω1:n) is a µ-
supermartingale and the µ-expectation E|t(ω1:n)| is finite, then it follows
that limn→∞ t(ω1:n) exists with µ-probability one.

Proof. See J.L. Doob, Stochastic Processes , Wiley, 1953, pp. 324–325. 2

This implies that each µ-supermartingale t(ω1:n) converges µ-almost ev-
erywhere to a function t(ω). But this function may not be lower semi-
computable. We obtain lower semicomputability if the function t(ω1:n)
is monotonic in n.

The relation between the universal lower semicomputable supermartin-
gale and the universal lower semicomputable unit integrable function is
as follows. The function

ρ0(ω|µ) = sup
n

{

−K(ω1:n|µ) + log
1

µ(ω1:n)

}

is a universal integral µ-test, and

σ0(ω|µ) = sup
n

{
logM(ω1:n)

µ(ω1:n)

}

is a universal martingale µ-test. Hence they are either both finite (for
µ-random ω) or both infinite (otherwise).

Lemma 4.5.9 For each infinite sequence ω, we have up to fixed additive constants

σ0(ω|µ) − 2 logσ0(ω|µ) ≤ ρ0(ω|µ) ≤ σ0(ω|µ).

Proof. The right inequality follows from the fact that we have to increase
the universal unit integrable function to make it a universal supermartin-
gale.

The left inequality is proved as follows: Let γm(ω) = m if ω has a prefix
x with log(M(x)/µ(x)) ≥ m and 0 otherwise. The function σ(ω) =
supm{γm(ω) − 2 logm} satisfies σ(ω) ≤ ρ0(ω|µ) +O(1), since

2σ(ω) = max
m

{
2γ

m(ω)

m2

}

=
∑

m

2γ
m(ω)

m2

is (π2/6) integrable (instead of unit integrable) overX with respect to µ,
as is easy to verify. Clearly, σ0(ω|µ) − 2 log σ0(ω|µ) ≤ σ(ω), from which
the inequality follows. 2

We can similarly analyze the relation between the universal sequential
µ-test δ0(·|µ) and the other tests.
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Lemma 4.5.10 For each infinite sequence ω, we have up to fixed additive constants

δ0(ω|µ) − 2 log δ0(ω|µ) ≤ σ0(ω|µ) ≤ δ0(ω|µ).

Proof. This follows from the definitions in Theorem 4.5.6 on page 317,
and Lemma 4.5.8 on page 317. 2

Exercises 4.5.1. [09] Show that with basis B = {0, 1}, we have M(ǫ) < 1 and
M(x) > M(x0) + M(x1), for all x in B∗ (strict inequality). Generalize
this to arbitrary B.

4.5.2. [31] Let the probability that an initial segment x of a binary
sequence is followed by a ∈ {0, 1}∗ be M(a|x) = M(xa)/M(x).

(a) Show that there is a constant c > 0 such that the probability (with
respect to M) of the next bit being 0 after 0n is at least c.

(b) Show that there exists a constant c such that the probability (with
respect to M) of the next bit being 1 after 0n is at least 1/(cn log2 n).

(c) Show that for every constant c and sufficiently large N , there are
at most N/c initial segments 0n (1 ≤ n ≤ N) such that the probability
(with respect to M) of the next bit being 1 is larger than (c log2 n)/n.

(d) Conclude that the probability (with respect to M) of the next bit
following 0n being 1 is f(n)/n with f(n) = Ω(1/ log2 n)

⋂
O(log2 n).

Comments. This exercise is a simple form of Occam’s razor: the condi-
tional M probability assigns high probability to the simple explanations
and low probability to the complex explanations. The assertion Item (d)
is an M prior probability variant of P.S. Laplace’s well-known exercise
to compute the expectation of a successful trial following n successful
trials in a Bernoulli process (p, 1 − p) with unknown p. Using Bayes’s
rule with uniform prior probability, this expectation is (n + 1)/(n + 2)
and is a special case of Laplace’s law of succession (Exercise 1.10.6 on
page 65). Application of this law sets the probability of a 1 following
n initial 0’s at 1/(n + 2). This is fairly close to the approximation we
found in Item (d) using conditional M probability. In A Philosophical
Essay on Probabilities, Laplace uses this rule to compute the probability
that the sun will not rise tomorrow, given that it has been rising ev-
ery morning since the creation of the world 10,000 years ago. Using the
above, it follows that the probability that the sun will not rise tomorrow
is approximately 1/3,650,000. This is correct, in case our information
about the sun were exhausted by the fact stated. Hint for Items (a)
through (c): use |K(x) − log 1/M(x)| ≤ 2 logK(x) +O(1). For all n we
have K(0n1) ≤ logn + 2 log logn + O(1), and for the majority of n we



324 4. Algorithmic Probability

haveK(0n1) ≥ logn. Source: L.A. Levin and A.K. Zvonkin, Russ. Math.
Surveys, 25:4(1970), 83–124; see also T.M. Cover and J.A. Thomas, El-
ements of Information Theory, Wiley & Sons, New York, 1991.

4.5.3. [27] Even the most common measures can be not lower semi-
computable if the parameters are not lower semicomputable. Consider
a (p, 1 − p) Bernoulli process and the measure it induces on the sample
space {0, 1}∞.

(a) Show that if p is a computable real number such as 1
2 or 1

3 or 1
2

√
2

or π/4 = 1
4 · 3.1415 . . . , then the measure is computable.

(b) Show that if p is lower semicomputable then the measure can fail to
be lower semicomputable

(c) Show that if p is a real that is not lower semicomputable, then the
measure is not lower semicomputable either.

(d) Show that if p is a random real whose successive digits in its binary
expansion are obtained by tosses of a fair coin, then with probability
one the measure is not lower semicomputable.

Comments Hint for Item (b): if p is lower semicomputable but not com-
putable, then 1−p is not lower semicomputable and it is the probability
that the first element in the sequence is 0 [P. Gács, personal communi-
cation].

4.5.4. • [25] The Solomonoff normalization of a semimeasure µ, with
B = {0, 1}, is µnorm(x) = a(x)µ(x), with a(x) as defined in Defini-
tion 4.5.7 in Section 4.5.3. We call Mnorm, the normalized version of the
universal lower semicomputable semimeasure M, the Solomonoff mea-
sure. This leads to an important parallel development of the theory,
which may be mathematically less elegant, but is possibly preferable in
some applications.

(a) Show that for each semimeasure µ, the function µnorm is a measure.
Conclude that in particular, Mnorm is a measure.

(b) Show that the normalization factor a(x) is at least 1 for all x in B∗.

(c) Show that Mnorm dominates all lower semicomputable semimeasures
µ. (That is, for each such µ, there is a positive constant c such that
for all x ∈ B∗, we have Mnorm(x) ≥ cµ(x).) Conclude that Mnorm

dominates M.

(d) Show that Solomonoff normalization is not the only normalization.

(e) Let µ be a lower semicomputable measure. Does Mnorm dominate
all µnorm’s?

Comments. Hint for Item (e): not all µnorm’s are lower semicomputable,
so we cannot use Item (c). This elaborates the discussion in Section 4.5.3.
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Source: Items (a) through (d) R.J. Solomonoff [IEEE Trans. Inform.
Theory, IT-24(1978), 422–432]; see also ‘History and References,’ Sec-
tion 4.7.

4.5.5. [32] By Exercise 4.5.4, Mnorm dominates M.

(a) Show that M does not multiplicatively dominate Mnorm.

(b) Show that for each normalizer a defining the measure M′(x) =
a(x)M(x) we have M(ω1:n) = o(M′(ω1:n), for some infinite ω.

(c) (Open) Item (b) with ‘all’ substituted for ‘some.’

Comments. Item (b) implies that M does not dominate any of its nor-
malized versions M′. This is a special case of Exercise 4.5.6.

4.5.6. • [37] What is the difference between semimeasure M and any
(not necessarily lower semicomputable) measure µ?

(a) Show that 1/M(x) differs from 1/µ(x), for infinitely many x, as the
busy beaver function BB(n) differs from n (Exercise 1.7.19 on page 45)
for every measure µ.

(b) Show the same about M(x) versus M(x0) + M(x1).

Comments. This shows that the normalization Mnorm must distort the
measure M. Exercise 4.5.7 shows thay this is rare. Hint: take the max-
imal running time T (k) of those among the first k programs that halt.
Note that T (k) is the longest running time of a halting program among
the first k programs and is related to BB(k). The following procedure
effectively generates the desired x from k (even though T is only lower
semicomputable) such that M(x0) + M(x1) < 1/T (k). Start with the
empty prefix y = ǫ of x. Find its extension y′ = y0 or y′ = y1 (whichever
you find first) such that M(y′) > 1/(2T (k)). Extend y to differ from y′.
Repeat as long as you can (up to 2T (k) times). The resulting string
x (of length < 2T (k)) will have both extensions of M-semimeasure
< 1/(2T (k)). Since x is described by k and an O(1) program, for large
enough random k we have 1/k2 ≤ M(x). See also ‘History and Refer-
ences,’ Section 4.7. Source: one of us (PV) asked L.A. Levin; Levin asked
R.M. Solovay, and returned Solovay’s solution on September 12, 1989,
by e-mail.

4.5.7. • [27] Let µ be a computable measure over B∞. We use M to
estimate the probabilities µ(a|y) for a ∈ B and y ∈ B∗. Show that for
every n,

∑

l(x)=n µ(x)
∑n

i=1 M(u|x1:i−1) ≤ K(µ) ln 2, where we define

x1:0 = ǫ and M(u|x1:i−1) = 1 −∑a∈B M(a|x1:i−1).

Comments. Let µ be an unknown computable measure, and suppose
we are given a string x = x1 . . . xn. We can use M(a|x1:i−1) to pre-
dict µ(a|x1:i−1) (a ∈ B and 1 ≤ i ≤ n). But M being a semimeasure,
we can have

∑

a∈B M(a|x) < 1. Exercise 4.5.6, with B = {0, 1}, shows
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that M(x)/(M(x0) + M(x1)) can be very large, so the universal prob-
ability that after printing x the reference monotonic machine will never
print again, M(xu) = M(x) − M(x0) − M(x1) with u the next sym-
bol being ‘undefined,’ is close to 1. The current exercise shows that this
occurs only rarely, and for long sequences produced according to com-
putable measure µ these occurrences do not have much µ-probability.
Indeed,

∑

l(x)=n µ(x)
∑n

i=1 M(u|x1:i−1) <
∑n
i=1 1/i for growing n. Hint:

in Section 4.5.3 we defined the normalized version Mnorm(x) with x =
x1 . . . xn by Equation 4.14 on page 303. Consider the negative Kullback–
Leibler divergence −D(µ ‖ Mnorm) ≤ 0 for strings of length n. Sub-
stituting Mnorm of Equation 4.14, we obtain −D(µ ‖ M) +

∑

l(x)=n

µ(x)
∑n

i=1 ln(1/(1−M(u|x1:i−1))) ≤ 0. Using Corollary 4.5.1 on page 302,
we can show that D(µ ‖ M) ≤ K(µ) ln 2. Adding the last two inequali-
ties, we obtain

∑

l(x)=n µ(x)
∑n

i=1 ln(1/(1 − M(u|x1:i−1))) ≤ K(µ) ln 2.

Since − ln(1−z) = z+(z2/2)+(z3/3)+· · · , we obtain
∑

l(x)=n µ(x)
∑n

i=1
∑∞
j=1 (M(u|x1:i−1))

j ≤ K(µ) ln 2. Since all terms are positive, we obtain
∑

l(x)=n µ(x)
∑n

i=1 M(u|x1:i−1) ≤ K(µ) ln 2. Source: R.J. Solomonoff,

Inform. Process. Lett, 106:6(2008), 238–240.

4.5.8. [17] Let ν1, ν2, . . . be an effective enumeration of all discrete
lower semicomputable semimeasures. For each i define γi(x) =

∑

y{νi(xy) :
y ∈ {0, 1}∗}.
(a) Show that γ1, γ2, . . . is an effective enumeration of a subset of the
set of lower semicomputable semimeasures. We call these the extension
semimeasures.

(b) Define Mc(x) =
∑

y{m(xy) : y ∈ {0, 1}∗}. We call Mc the extension
semimeasure. Show that Mc is universal in the γ-enumeration, that is,
for all k, there is a positive constant ck such that for all x we have
Mc(x) ≥ ckγk(x).

(c) Show that limn→∞
∑

l(x)=nMc(x) = 0.

(d) Show that the γ-enumeration doesn’t contain all lower semicom-
putable semimeasures.

(e) Show that there is no positive constant c such that for all x we have
Mc(x) ≥ cM(x). Conclude that M dominates Mc, but Mc does not
dominate M.

(f) Investigate Mc and the normed measure Mcnorm. (With (>) ≥ de-
noting (strict) domination we have obtained Mnorm ≥ M > Mc.)

Comments. Hint: for Item (d) in particular, M is not in there. Consider
the limit in Item (c) with M substituted for Mc. The relation between
this class of (continuous) measures and the discrete measures has the fol-
lowing extra property: while γ(ǫ) ≤ 1, we have γ(x) = γ(x0) + γ(x1) +
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ν(x) instead of just γ(x) ≥ γ(x0) + γ(x1). Moreover, in the γ semimea-
sures all probability is concentrated on the finite sequences and none on
the infinite sequences. Source of definition of Mc: T.M. Cover, Univer-
sal gambling schemes and the complexity measures of Kolmogorov and
Chaitin, Tech. Rept. 12, Statistics Dept., Stanford University, Stanford,
CA, 1974. Source of Item (c): R.J. Solomonoff, IEEE Trans. Inform.
Theory, IT-24(1978), 422–432.

4.5.9. [15] We compare M(x) and Mc(x). Show that for some infinite
ω (such as a recursive real) we have limn→∞ M(ω1:n)/Mc(ω1:n) = ∞.

Comments. Hint: since 0.ω is a recursive real, limn→∞ M(ω1:n) > 0.

4.5.10. [31] (a) Let ν be a probability measure and G(n) = Ef(ω1:n)
with f(ω1:n) = log ν(ω1:n) + log 1/Mc(ω1:n)). (Ef(ω1:n) denotes the ν-
expectation

∑

l(x)=n ν(x)f(x).) Show that limn→∞G(n) = ∞.

(b) Let ν be a computable probability measure, and let F be a recursive
function such that limn→∞ F (n) = ∞. Show that there is a constant c
such that for all binary x of length n we have log ν(x) + log 1/Mc(x) <
c+ F (n).

Comments. Hint: use Exercises 4.5.8, 4.5.9 to solve Item (a). We can
interpret log 1/Mc(x) as the length of the Shannon–Fano code using
distribution Mc, and log 1/ν(x) as the length of the Shannon–Fano code
using the actually reigning ν. Clearly, although log(ν/Mc) approaches
infinity with n, it does so more slowly than any recursive function. In
contrast, log(ν/M), or log(ν/Mnorm), is bounded by a constant. Source:
R.J. Solomonoff, IEEE Trans. Inform. Theory, IT-24(1978), 422–432.

4.5.11. [22] Let µ(x) be a lower semicomputable probability measure.
Suppose we define the cooccurrence of events and conditional events
anew as follows: The probability of cooccurrence µ(x, y) is µ(x, y) =
µ(x) if y is a prefix of x; it is µ(x, y) = µ(y) if x is a prefix of y,
and equals zero otherwise. The conditional probability is defined as
µ(y|x) = µ(x, y)/µ(x). Complexities are defined as follows: the uncondi-
tional Kµ(x) = log 1/µ(x); cooccurrence Kµ(x, y) = log 1/µ(x, y); and
conditional Kµ(x|y) = log 1/µ(x|y).
Show that these complexities satisfy exactly the information-theoretic
equality of symmetry of information: Kµ(x, y) = Kµ(x)+Kµ(y|x) (Sec-
tions 1.11, 2.8, 3.9.1).

Comments. Similar (probability) definitions were used by D.G. Willis [J.
ACM, 17(1970), 241–259]. Source: R.J. Solomonoff, IEEE Trans. Inform.
Theory, IT-24(1978), 422–432. Solomonoff used Mnorm instead of an
arbitrary measure µ.
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4.5.12. [48] The analogue of Theorem 4.3.3 does not hold for contin-
uous semimeasures. Therefore, the inequality in Theorem 4.5.4 cannot
be improved to equality.

(a) Show that for every upper semicomputable function g : N → N for
which Km(x) − KM (x) ≤ g(l(x)), we have Km(n) ≤ g(n) +O(1).

(b) Show that for almost all infinite ω, Km(ω1:n) − KM (ω1:n) has an
upper bound that is smaller than any unbounded recursive function.

Comments. See discussion in Section 4.5.4. Source: P. Gács, Theoret.
Comput. Sci., 22(1983), 71–93.

4.5.13. [15] Show that an infinite sequence ω is random with respect
to a computable measure µ iff the probability ratio µ(ω1:n)/M(ω1:n) is
bounded below.

Comments. Hint: see Theorem 4.5.6. This ratio can be viewed as the
likelihood ratio of hypothesis µ(x) and the fixed alternative hypothesis
M(x). Source: L.A. Levin, Soviet Math. Dokl., 14(1973), 1413–1416.

4.5.14. [42] Consider a finite or countably infinite basis B, and define
a probability function p : B → [0, 1] such that

∑

b∈B p(b) ≤ 1. If equality
holds, we call the probability function proper. The squared Hellinger
distance ρ(q, p) between two probability functions q and p is defined

as
∑

b∈B

(√

q(b) −
√

p(b)
)2

. The χ2 distance, denoted by ρ2(q, p), is

defined as
∑

b∈B (q(b) − p(b))
2
/q(b). (Use 0/0 = 0 and ∞/∞ = 0.) If µ

is a semimeasure over B∗, and ω ∈ B∞, then the probability function
µ(·|ω1:n) : B → [0, 1] is defined by µ(b|ω1:n) = µ(ω1:nb)/µ(ω1:n). If µ is
a measure and µ(ω1:n) 6= 0, then µ(·|ω1:n) is proper. The randomness
deficiency of ω1:n with respect to µ is γ0(ω1:n|µ) = log(M(ω1:n)/µ(ω1:n)).
An infinite sequence ω is µ-random iff γ0(ω1:n|µ) = O(1).

(a) Suppose µ is a computable measure, σ is a computable semimeasure
over B∗, and ω ∈ B∞. Show that

n−1∑

i=1

ρ(σ(·|ω1:i), µ(·|ω1:i)) − γ0(ω1:n|µ) −O(1) ≤ γ0(ω1:n|σ)

≤
n−1∑

i=1

ρ2(σ(·|ω1:i), µ(·|ω1:i)) + 2γ0(ω1:n|µ) +O(1).

(b) Suppose that µ and σ are computable semimeasures over B∗, and
ω ∈ B∞ is both µ-random and σ-random. Show that

∞∑

i=1

(
µ(ωi+1|ω1:i)

σ(ωi+1|ω1:i)
− 1

)2

<∞.
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(c) Suppose µ is a computable measure, σ is a computable semimeasure
over B∗, ω ∈ B∞ is σ-random, and µ(ω1:n) > 0 for all n. Show that ω is
µ-random iff

∑∞
i=1 ρ(σ(·|ω1:i), µ(·|ω1:i)) <∞.

(d) Show that if ω is both µ-random and σ-random, then µ(0|ω1:n) −
σ(0|ω1:n) → 0, as n→ ∞.

Comments. Hint for Item (c): use Items (a) and (b). Conclude from
Item (a) that if ω is random relative to a computable measure µ, and
the computable measure σ is chosen so that γ0(ω1:n|σ) = o(n), then the

mean squared Hellinger distance n−1
∑n−1

i=1 ρ(σ(·|ω1:i), µ(·|ω1:i)) goes to
0. Item (c) gives a randomness criterion for objects with respect to a
computable measure, in terms of Hellinger distance with a computable
semimeasure with respect to which the object is known to be random.
Source: V.G. Vovk, Soviet Math. Dokl., 35(1987), 656–660. See also the
estimate of prediction errors as in Theorem 5.2.1.

4.5.15. [28] Let B be a finite nonempty set of basic symbols. Let
δ0(ω|µ) be a universal sequential µ-test for sequences in B∞ distributed
according to a computable measure µ. Let φ be a monotone function as
in Definition 4.5.3, page 298, that is µ-regular as in Definition 4.5.5.

(a) Show that δ0(ω|µ) ≥ δ0(φ(ω)|µφ) +K(φ).

(b) Show that if µφ is a computable measure, then there exists a µφ-
regular monotone function ψ such that µψφ = µ and δ0(φ(ω)|µφ) ≥
δ0(ω|µ) +K(ψ).

Comments. This generalizes Exercise 3.6.2, page 228. In particular it
shows that a real number has a random binary representation iff it has
a random representation in every base r ≥ 2. Note that a sequence is
not random in itself, but random with respect to a particular measure.
Thus, if we recursively transform a sequence, then its randomness prop-
erties and the complexities of its initial segments are preserved up to
an additive constant with respect to the transformed measure. Source:
L.A. Levin, [Problems Inform. Transmission, 10:3(1974), 206–210; In-
form. Contr., 61(1984), 15–37].

4.5.16. [43] Sequences with maximal Kolmogorov complexity of the
initial segments are random in Martin-Löf’s sense of passing all effective
statistical tests for randomness. Hence, they must satisfy laws like the
law of the iterated logarithm.

(a) Show that if ω is an infinite sequence such that Km(ω1:n) = n −
o(ln lnn), then with fn = ω1 + · · · + ωn we have

lim supn→∞
|fn − n/2|√
n ln lnn

=
1√
2
.
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(b) Show that if Km(ω1:n) = n − o(n), then limn→∞ fn/n = 1
2 . Con-

versely, for every ǫ > 0 there is an ω with Km(ω1:n) ≥ (1− ǫ)n for which
the above doesn’t hold.

(c) We say that an infinite binary sequence ω satisfies the infinite recur-
rence law if fn = 1

2n infinitely often. Let ǫ > 0. Prove the following:

(i) If Km(ω1:n) ≥ n− (1
2 − ǫ) logn, for all n, then ω is recurrent.

(ii) There is a nonrecurrent ω (fn/n > 1
2 for all but finitely many n)

such that we have Km(ω1:n) > n− (2 + ǫ) logn, for all n.

Comments. Item (a) is the law of the iterated logarithm. By Theo-
rem 2.5.5, Item (a) holds for almost all infinite binary sequences ω. In
other words, the law of the iterated logarithm holds for all infinite ω in a
set that (obviously strictly) contains the Martin-Löf random sequences.
Compare this with Equation 2.3 on page 167. There it was shown that
for C(x) ≥ n − δ(n), n = l(x), we have |fn − 1

2n| ≤
√

nδ(n) ln 2. Item
(b) is a form of the strong law of large numbers (Section 1.10). By The-
orem 2.5.5 this gives an alternative proof that this law holds for almost
all infinite binary sequences. Hint for the second part of Item (b): insert
ones in an incompressible sequence at 1/ǫ-length intervals. Source: V.G.
Vovk, SIAM Theory Probab. Appl., 32(1987), 413–425.

4.6

Universal

Average-Case

Complexity,

Continued

The discrete universal distribution has the remarkable property that
the average computational complexity is of the same order of magnitude
as the worst-case complexity, Section 4.4. What about the continuous
version? This relates to algorithms for online computations that in prin-
ciple never end. Such processes are abundant: sequence of key strokes
from a computer keyboard; database insertions, deletions, and searches;
network browser requests; and so on.

Formally, assume that the input sequence is infinite over the set B of
basic symbols, say B := {0, 1}. Let the probability distribution of the
inputs be a lower semicomputable semimeasure µ according to Def-
inition 4.2.1 on page 263. Let A be an algorithm processing inputs
ω = ω1ω2 . . . ∈ {0, 1}∞. The computation time of processing input ω1:n

up to the input of symbol ωn+1 is t(ω1:n).

Definition 4.6.1 Consider a continuous sample space {0, 1}∞ with semimeasure µ. Let
t(ω1:n) be the running time of algorithm A on initial segment instance
ω1:n. Define the worst-case time complexity ofA as T (n) = max{t(ω1:n) :
ω1:n ∈ {0, 1}n}. Define the µ-average time complexity of A as

T (n|µ) =

∑

ω1:n
µ(ω1:n)t(ω1:n)

∑

ω1:n
µ(ω1:n)

.
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Theorem 4.6.1 (M-average complexity) Let A be an online algorithm with inputs
in {0, 1}∞. Let the inputs to A be distributed according to the universal
semimeasure M. Then, the average-case time complexity is of the same
order of magnitude as the corresponding worst-case time complexity.

Proof. Substitute µ for P and M for m in the proof of Theorem 4.4.1
on page 291. 2

4.7

History and

References

Napoleon’s contemporary and friend Pierre-Simon Laplace, later Mar-
quis de Laplace, may be regarded as the founder of the modern phase
in the theory of probability. His anticipation of Kolmogorov complex-
ity reasoning that we quoted at the beginning of this chapter occurs
in the “sixth principle: the reason why we attribute regular events to
a particular cause” of his Essai philosophique sur les probabilités. Simi-
lar sentiments were already formulated by the eccentric mathematician
Girolamo Cardano (1501–1576). He seems to be the first to have made
the abstraction from empiricism to theoretical concept for probability, in
[G. Cardano, Liber de Ludo Alae, published posthumously in Hieronymi
Cardani Mediolanensis philosophi ac medici celeberrimi opera omnia,
cura Car. Sponii, Basle, 1663]. “To throw in a fair game at Hazards
only three spots, when something great is at stake, or some business is
the hazard, is a natural occurrence and deserves to be so deemed; and
even when they come up the same way for a second time, if the throw
be repeated. If the third and fourth plays are the same, surely there is
occasion for suspicion on the part of a prudent man,” [G. Cardano, De
Vita Propria Liber, Milano, 1574].

The remarks of Dr. Samuel Johnson (1709–1784) are taken from the
monumental J. Boswell, Life of Johnson, 1791, possibly the most famous
biography written in the English language. For the basics of probability
theory (as in Section 1.4) we have primarily used [A.N. Kolmogorov,
Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, 1933;
English translation published by Chelsea, 1956].

The notion of semicomputable functions originates, perhaps, from L.A.
Levin and A.K. Zvonkin [Russ. Math. Surveys, 25(1970), 83–124], but
is so natural that it might have been used earlier (unknown to either of
the authors of this book, or Levin). In the earlier editions of the current
book we used ‘enumerable function’ for ‘lower semicomputable function,’
‘coenumerable function’ for ‘upper semicomputable function,’ and ‘com-
putable function’ for ‘recursive function.’ The notion of ‘semimeasure’
is most similar to ‘lower measure’ for nonmeasurable sets. They are also
called ‘defective measure’ in W. Feller, An Introduction to Probability
Theory and Its Applications, Vol. II, Wiley, 1970. In the current setting,
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semimeasures were apparently used first by Levin and Zvonkin [Russ.
Math. Surveys, 25(1970), 83–124], not by this name but in terms of an
equivalent (but awkward) measure on a non-Hausdorff space denoted
there by Ω∗. The name ‘semimeasure,’ together with the explicit defini-
tion as we used it, may originate from [L.A. Levin and V.V. Vyugin, pp.
359–364 in: Lect. Notes Comput. Sci. Vol. 53, Springer-Verlag, 1977].
The combination ‘lower semicomputable probability distribution’ (mea-
sure) as a framework for Solomonoff’s approach below is due to Levin
and Zvonkin [Russ. Math. Surveys, 25(1970), 83–124], but a related ap-
proach using computable probability distributions (measures) was given
by D.G. Willis [J. ACM, 17(1970), 241–259]. R.J. Solomonoff used the
notion of computable measures and informally noticed lower semicom-
putable semimeasures previously in [Inform. Contr., 7(1964), 1–22].

Kolmogorov’s introduction of complexity was motivated by information
theory and problems of randomness. Solomonoff introduced algorithmic
complexity independently and for a different reason: inductive reasoning.
Universal a priori probability, in the sense of a single prior probability
that can be substituted for each actual prior probability in Bayes’s rule,
was invented by Solomonoff, with Kolmogorov complexity as a side prod-
uct, several years before anybody else did. R.J. Solomonoff obtained a
Ph.B. (bachelor of philosophy) and M.Sc. in physics at the University
of Chicago. He was already interested in problems of inductive infer-
ence and exchanged viewpoints with the resident philosopher of science
Rudolf Carnap, who taught an influential course in probability theory
[Logical Foundations of Probability, Univ. Chicago Press, 1950].

In 1956, Solomonoff attended the Dartmouth Summer Study Group on
Artificial Intelligence, at Dartmouth College in Hanover, New Hamp-
shire, organized by M. Minsky, J. McCarthy, and C.E. Shannon, and
in fact stayed on to spend the whole summer there. (This meeting gave
AI its name.) There Solomonoff wrote a memo on inductive inference.
McCarthy had the idea that given every mathematical problem, it could
be brought into the form of “given a machine and a desired output, find
an input from which the machine computes that output.” Solomonoff
suggested that there was a class of problems that was not of that form:
“given an initial segment of a sequence, predict its continuation.” Mc-
Carthy then thought that if one saw a machine producing the initial
segment, and then continuing past that point, would one not think that
the continuation was a reasonable extrapolation? With that the idea got
stuck, and the participants left it at that.

Later, Solomonoff presented the paper “An Inductive Inference Ma-
chine” at the IEEE Symposium on Information Theory, 1956, describing
a program to unsupervisedly learn arithmetic formulas from examples.
At the same meeting, there was a talk by N. Chomsky, based on his
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paper “Three models for the description of language” [IRE Trans. In-
form. Theory, IT-2(1956), 113–126]. The latter talk started Solomonoff
thinking anew about formal machines in induction. In about 1958 he left
his half-time position in industry and joined Zator Company full time,
a small research outfit located in some rooms at 140 1

2 Mount Auburn
Street, Cambridge, Massachusetts, which had been founded by Calvin
Mooers sometime around 1954 for the purpose of developing information
retrieval technology. Floating mainly on military funding, Zator Co. was
a research front organization, employing Mooers, Solomonoff, Mooers’s
wife, and a secretary, as well as at various times visitors such as Marvin
Minsky. It changed its name to the more martial sounding Rockford Re-
search (Rockford, Illinois, was a place where Mooers had lived) sometime
around 1962. In 1968 Solomonoff left and founded his own (one-man)
company, Oxbridge Research, in Cambridge in 1970, and has been there
ever since, apart from spending nine months as research associate at
MIT’s Artificial Intelligence Laboratory, 1990–1991 at the University of
Saarland, Saarbrücken, Germany, and a more recent sabbatical at ID-
SIA, Lugano, Switzerland.

In 1960 Solomonoff published a report “A preliminary report on a general
theory of inductive inference” [Tech. Rept. ZTB-138, Zator Company,
Cambridge, Mass.] in which he gave an outline of the notion of universal
a priori probability and how to use it in inductive reasoning (rather,
prediction) according to Bayes’s rule (Chapter 5). This was sent out
to all contractors of the Air Force who were even vaguely interested in
this subject. In his paper of 1964 [A formal theory of inductive inference,
Part 1, Inform. Contr., 7(1964), 1–22], Solomonoff developed these ideas
further and defined the notion of enumeration of monotone machines
and a notion of universal a priori probability based on the universal
monotone machine.

In this way, it came about that the original incentive to develop a the-
ory of algorithmic information content of individual objects was Ray
Solomonoff’s invention of a universal a priori probability that can be
used instead of the actual a priori probability in applying Bayes’s rule.
His original suggestion in 1960 was to set the universal a priori proba-
bility P (x) of a finite binary string x as

∑
2−l(p), the sum taken over all

programs p with U(p) = x, where U is the reference Turing machine of
Theorem 2.1.1 on page 105. However, using plain Turing machines this is
improper, since not only does

∑

x P (x) diverge, but P (x) itself diverges
for each x. To counteract this defect, Solomonoff in 1964 introduced
a machine model tantamount to prefix machines/monotone machines.
This left the problem of the corresponding P (x) not being a probability
measure. For this Solomonoff in 1964 suggested, and in 1978 exhibited,
a normalization. However, the resulting probability measure is not even
lower semicomputable. According to Solomonoff this is a small price
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to pay. In fact, in some applications we may like the probability mea-
sure property and not care about semicomputability (Section 4.5.3 and
Chapter 5). The universal distribution has remarkable properties and
applications. Such applications are ‘simple pac-learning’ in Section 5.3;
the MDL principle in statistical inference and learning, Section 5.4; and
the notion and development of ‘logical depth,’ Section 7.7.

The remarkable property of m(·), that the average computational com-
plexity of every algorithm is always of the order of magnitude of the
worst-case complexity, Sections 4.4 and 4.6, is from [M. Li and P.M.B.
Vitányi, Inform. Process. Lett., 42(1992), 145–149]. For computable ver-
sions of m(·) this phenomenon is treated in Section 7.6. These con-
siderations involve the maximal gain of average-case complexity over
worst-case complexity for (algorithm, distribution) pairs and associated
families such as polynomial-time algorithms and polynomial-time com-
putable distributions, [P.B. Miltersen, SIAM J. Comput., 22:1(1993),
147–156; K. Kobayashi, IEICE Trans. Inform. Systems, E76-D:6(1993),
634–640; K. Kobayashi, Transformations that preserve malignness of
universal distributions, Theoret. Comput. Sci., 181(1997), 289–306; A.
Jakoby, R. Reischuk, and C. Schindelhauer, Proc. 12th Symp. Theo-
ret. Aspects Comput. Sci., 1995, pp. 628–639]. A.K. Jagota and K.W.
Regan [“Performance of MAX-CLIQUE approximation heuristics under
description-length weighed distributions,” UB-CS-TR 92-24, SUNY at
Buffalo, 1992] have extended Theorem 4.4.1 to approximation ratios for
approximation algorithms. In this paper, they have also used a distri-
bution q(x) to approximate m(x) and performed extensive experiments
for the MAX-CLIQUE problem. In their experiments, it was found that
three out of nine algorithms perform much worse under q(x) than un-
der the uniform distribution, confirming the theory; six other algorithms
showed not much difference.

Leonid A. Levin in 1970 gave a mathematical expression of a priori prob-
ability as a universal (that is, maximal) lower semicomputable semimea-
sure, Theorem 4.3.1, and showed that log 1/m(x) coincides with C(x)
to within an additive term of 2 logC(x). In 1974 he explicitly intro-
duced the notion of prefix machines and prefix complexity, and proved
the remarkable Theorem 4.3.3, which can be designated as the coding
theorem. To be able to formulate this theorem properly, we first recall
the discrete form of the universal a priori probability, using the prefix
complexity K(x). In their 1970 paper [A.K. Zvonkin and L.A. Levin,
Russ. Math. Surveys, 25(1970), 83–124], L.A. Levin analyzes the case
of continuous semimeasures related to monotone machines and presents
the construction of the universal lower semicomputable semimeasure, its
equality with the universal a priori probability, and the universal ran-
domness µ-test for arbitrary measures µ. See also [L.A. Levin, Soviet
Math. Dokl., 14(1973), 1477–1480]. The interpretation of this in terms
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of discrete semimeasures and the restriction of monotone machines to
prefix machines are also due to L.A. Levin [L.A. Levin, Problems In-
form. Transmission, 10:3(1974), 206–210; P. Gács, Soviet Math. Dokl.,
15(1974), 1477–1480]. Prefix complexity was also introduced, indepen-
dently, by G.J. Chaitin [J. ACM, 22(1975), 329–340], including Theo-
rem 4.3.3. The whole theory is brought to majestic (and hard to un-
derstand) heights in [L.A. Levin, Inform. Contr., 61(1984), 15–37]. The
theory of universal continuous semimeasure M(·) is used for induction
and prediction in Section 5.2 and in the development of the notion of
‘algorithmic entropy’ in Section 8.6.

Solomonoff insists on the use of traditional probabilistic measures (such
that µ(x0) + µ(x1) = µ(x)). This led to some difficulties with his 1964
paper. M cannot be uniquely increased to a measure, and it is hard to
choose a natural one among possible extensions (so optimality is lost).
In the relevant (commissioned) Exercise 4.5.6, R.M. Solovay has shown
that every such extension would both change M by more than a constant
factor and destroy its algorithmic properties. However, in Exercise 4.5.7
on page 325, Solomonoff has shown that if we predict a measure µ using
Mnorm, then the changes with respect to M induced by Mnorm happen
only with µ expectation going fast to 0 with growing length of the pre-
dicted sequence. Moreover, Solomonoff considers the increase by 1/o(1)
to be a merit, and loss of lower semicomputability a small price to pay
for it and for avoiding the heresy of redefining the notion of probability.
It is not clear from his 1964 paper which extension he wanted (though it
is clear that he meant to consider only ordinary probability measures),
but in his 1978 paper he rigorously specifies an extension motivated as
discussed in Section 4.5.3.

C.P. Schnorr [Lect. Notes Math., Vol. 218, Springer-Verlag, 1971] in-
troduced the use of martingales, due to P. Levy and used advanta-
geously by J. Ville in 1939 [Étude Critique de la Notion de Collectif,
Gauthier-Villars, 1939] in the study of Martin-Löf tests. Independently,
C.P. Schnorr [J. Comput. System Sci., 7(1973), 376–388] for the uniform
distribution, and L.A. Levin [Sov. Math. Dokl., 14(1973), 1413–1416]
for arbitrary computable distributions, introduced the monotone vari-
ant of complexity Km(x) in about 1973. The monotone complexity Km
smoothes out the oscillations in order to characterize randomness. Mono-
tone complexity obliterates all quantitative differences among Martin-
Löf random sequences, and hence does not allow us to make distinctions
in randomness properties, in contrast to K complexity [M. van Lambal-
gen, Random Sequences, Ph.D. thesis, University of Amsterdam, 1987;
J. Symb. Logic, 54(1989), 1389–1400]. L.A. Levin [Soviet Math. Dokl.,
14(1973), 1413–1416] introduced monotone complexity, and C.P. Schnorr
[J. Comput. System Sci., 7(1973), 376–388] introduced another complex-
ity, which he called ‘process complexity.’ The difference between those



336 4. Algorithmic Probability

two complexities is not bounded by any constant [V.V. Vyugin, Semi-
otika i Informatika, 16(1981), 14–43 (p. 35); English translation: Selecta
Mathematica formerly Sovietica, 13:4(1994), 357–389]. C.P. Schnorr in
[Basic Problems in Methodology and Linguistics, R.E. Butts and J. Hin-
tikka, eds., Reidel, 1977, pp. 193–210] introduced a variant of monotone
complexity coinciding up to an additive constant with Levin’s variant.
For further historical notes see [A.N. Kolmogorov and V.A. Uspensky,
SIAM J. Theory Probab. Appl., 32(1987), 387–412].

C.P. Schnorr’s later definition is as follows: A partial recursive function
φ : {0, 1}∗ ×N → {0, 1}∗ is called a monotone interpreter if

(i) for all (p, n) in the domain of φ we have that l(φ(p, n)) = n, and

(ii) for all (p, n), (pq, n+ k) in the domain of φ we have that φ(p, n) is a
prefix of φ(pq, n+ k).

We can think of monotone interpreters as being computed by monotone
machines according to Schnorr, which are Turing machines with two
one-way read-only input tapes containing p and n, respectively; some
work tapes; and a one-way write-only output tape. The output tape is
written in binary, and the machine halts after it outputs n bits.

Define Kmφ(x) = min{l(p) : φ(p, l(x)) = x}, and Kmφ(x) = ∞ if such p
does not exist. There is an additively optimal monotone interpreter φ0

such that for any other monotone interpreter φ there is a constant c such
that Kmφ0(x) ≤ Kmφ(x)+c for all x. Select one such φ0 as reference and
set the monotone complexity according to Schnorr as Km(x) = Kmφ0(x).
Similarly, we can define the conditional monotone complexity Km(x|y).
L.A. Levin used another definition. Instead of a function, the definition
uses a recursively enumerable relation A(p, x) with the property that if
p is a prefix of q and A(p, x), A(q, y) hold, then x, y must be compatible
(one is a prefix of the other). The meaning is that our machine on input
p outputs a (possibly infinite) string with prefix x. The minimum length
of such an input p is the monotone complexity KmA(x) with respect to
A according to Levin. Among all such recursively enumerable relations
there is a universal one, say U , such that for each A above there is a
constant c such that for all x, we have KmU (x) ≤ KmA(x) + c. We
fix such a U and define the monotone complexity according to Levin as
Km(x) = KmU (x). Let us call this a type 1 monotone machine.

The following definition of monotone machines is not equivalent but also
appropriate. We require that if p is a prefix of q and A(p, x) and A(q, y)
hold then x is a prefix of y. Let us call this a type 2 monotone machine.

There is yet another definition, the apparently most obvious one. The
machine T has a one-way input tape and a one-way output tape. It keeps
reading input symbols and emitting output symbols. For a (possibly
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infinite) string x we write T (p) = x if T outputs x after reading p and
no more. Let us call this a type 3 monotone machine. This type is used
in the main text.

The monotone complexities arising from these three different kinds of
machine are not necessarily the same. But all interesting upper bounds
work for type 3 (the largest), and P. Gács’s theorem distinguishing Km
from KM works for type 1 (the smallest). See [C.P. Schnorr, J. Com-
put. Syst. Sci., 7(1973), 376–388; A.K. Zvonkin and L.A. Levin, Russ.
Math. Surveys, 25:6(1970), 83–124, attributed to L.A. Levin; L.A. Levin,
Sov. Math. Dokl., 14(1973), 1413–1416; P. Gács, Theoret. Comput. Sci.,
22(1983), 71–93] and on generalization of monotone complexity [A.K.
Shen, Sov. Math. Dokl., 29:3(1984), 569–573].

The relation between different complexities in the table of Figure 4.2
is asserted (many relations without proofs) in V.A. Uspensky’s survey
[Kolmogorov Complexity and Computational Complexity, O. Watanabe,
ed., Springer-Verlag, 1992, pp. 85–101]. Many of the missing proofs or
references are provided in [V.A. Uspensky and A.K. Shen, Math. Sys-
tems Theory, 29(1996), 271–292]. The most difficult relation, the lower
bound on Km(x) − KM (x), which infinitely often exceeds a variant of
the nonprimitive-recursive slow-growing inverse of the Ackermann func-
tion (Exercise 1.7.18, page 45), is due to P. Gács [Theoret. Comput. Sci.,
22(1983), 71–93].

In the dictionary the word ‘martingale’ is defined as (a) a betting sys-
tem; (b) part of a horse’s harness; (c) part of a sailing rig. The de-
lightful remark of Thackeray was quoted second hand from [J. Laurie
Snell, Mathematical Intelligencer, 4:3(1982)]. The mathematical study
of martingales was started by P. Levy and continued by J. Ville [Etude
Critique de la Concept du Collectif, Gauthier-Villars, 1939] in connec-
tion with von Mises’s notion of a random sequence. Ville showed that
von Mises–Wald–Church random sequences defined in Section 1.9 do not
satisfy all randomness properties; see the exercises in Section 1.9. But
he also developed martingale theory as a tool in probability theory. A
successful application of martingales was by J.L. Doob in the theory of
stochastic processes in probability theory. In connection with random
sequences in the sense of Martin-Löf, the martingale approach was first
advocated and developed by C.P. Schnorr [Lect. Notes Math., Vol. 218,
Springer-Verlag, 1971]. Schnorr gives an overview of his work in [pp.
193–210 in: Basic Problems in Methodology and Linguistics, R.E. Butts,
J. Hintikka, eds., D. Reidel, 1977]. See also [R. Heim, IEEE Trans. In-
form. Theory, IT-25(1979), 558–566] for relations between computable
payoff functions, martingales, algorithmic information content, effective
random tests, and coding theorems. The material used here is gleaned
from [P. Gács, Lecture Notes on Descriptional Complexity and Random-
ness, Manuscript, Boston University, 1987; T.M. Cover, P. Gács and
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R.M. Gray, Ann. Probab., 17:3(1989), 840–865]. A survey of the basics
of algorithmic probability and its relation to universal betting and to
prefix complexity is given in [T.M. Cover and J.A. Thomas, Elements of
Information Theory, Wiley, 1991]. The election example is perhaps due
to L.A. Levin. In general, the material on exact expressions of universal
randomness µ-tests is partially due to unpublished work of L.A. Levin,
and is based on [P. Gács, Z. Math. Logik Grundl. Math., 28(1980), 385–
394; Theoret. Comput. Sci., 22(1983), 71–93] and personal suggestions of
P. Gács. For the great developments in the last decades on the crossroads
of randomness, Kolmogorov complexity, and recursion theory, we refer
to the specialized treatments mentioned in the history and references
sections of Chapters 2 and 3.



5

Inductive Reasoning

5.1

Introduction

The Oxford English Dictionary defines induction as “the process of
inferring a general law or principle from the observations of particular
instances.”

inductive inference. On the other hand, we regard inductive reasoning
as a more general concept than inductive inference, as a process of re-
assigning a probability (or credibility) to a law or proposition from the
observation of particular instances.

In other words, inductive inference draws conclusions that accept or
reject a proposition, possibly without total justification, while induc-
tive reasoning only changes the degree of our belief in a proposition.
In deductive reasoning one derives the absolute truth or falsehood of a
proposition, such as when a mathematical proposition is proved from
axioms. In deduction one often discards information: from the conclu-
sion one cannot necessarily deduce the assumptions. In induction one
generally increases information but does not discard information: the
observed data follow from the induced law. In this view, deduction may
be considered a special form of induction.

5.1.1
Epicurus’s
Principle

Inductive reasoning dates back at least to the Greek philosopher of sci-
ence Epicurus (342?–270? B.C.), who proposed the following approach:

Principle of Multiple Explanations. If more than
one theory is consistent with the observations, keep
all theories.

M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 339
DOI: 10.1007/978-0-387-49820-1_5,  © Springer Science + Business Media, LLC 2008 
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In his Letter to Pythocles, Epicurus motivates this as follows. There are
cases, especially of events in the heavens such as the risings and settings
of heavenly bodies and eclipses, where it is sufficient for our happiness
that several explanations be discovered. In these cases, the events “have
multiple causes of coming into being and a multiple predication of what
exists, in agreement with the perceptions.”

When several explanations are in agreement with the (heavenly) phe-
nomena, we must keep all of them for two reasons. Firstly, the degree of
precision achieved by multiple explanations is sufficient for human hap-
piness. Secondly, it would be unscientific to prefer one explanation to
another when both are equally in agreement with the phenomena. This,
he claims, would be to “abandon physical inquiry and resort to myth.”
His follower Lucretius (95–55 B.C.) considered multiple explanations as
a stage in scientific progress. According to him, to select one explana-
tion from several equally good ones is not appropriate for the person
who would “proceed step by step:”

“There are also some things for which it is not enough to state a single cause,
but several, of which one, however, is the case. Just as if you were to see the
lifeless corpse of a man lying far away, it would be fitting to state all the causes
of death in order that the single cause of this death may be stated. For you
would not be able to establish conclusively that he died by the sword or of
cold or of illness or perhaps by poison, but we know that there is something
of this kind that happened to him.” [Lucretius]

In the calculus of probabilities it has been customary to postulate the
‘principle of indifference’ or the ‘principle of insufficient reason.’ The
principle of indifference considers events to be equally probable if we
have not the slightest knowledge of the conditions under which each of
them is going to occur. When there is an absolute lack of knowledge
concerning the conditions under which a die falls, we have no reason to
assume that a certain face has a higher probability of coming up than
another. Hence, we assume that each outcome of a throw of the die has
probability 1

6 .

[Bertrand’s paradox] The principle of indifference is not without difficulties.
Consider the following elegant paradox. We are given a glass containing a
mixture of water and wine. All that is known is that 1 ≤ water/wine ≤ 2.
The principle of indifference then tells us that we should assume that the
probability that the ratio lies between 1 and 3

2
is 0.5 and the probability that

the ratio lies between 3
2

and 2 is also 0.5. Let us take a different approach.
We know 1

2
≤ wine/water ≤ 1. Hence by the same principle the probabilities

that this new ratio lies in the intervals of 1
2

to 3
4

and 3
4

to 1 should each be
0.5. Thus, according to the second calculation, there is 0.5 probability such
that the water/wine ratio lies between 1 to 4

3
and 0.5 probability such that the

water/wine ratio lies between 4
3

to 2. But the two hypotheses are incompatible.
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FIGURE 5.1. Trivial consistent automaton

5.1.2
Occam’s Razor

The second and more sophisticated principle is the celebrated Occam’s
razor principle commonly attributed to William of Ockham (1290?–
1349?). This was formulated about fifteen hundred years after Epicurus.
In sharp contrast to the principle of multiple explanations, it states:

Occam’s Razor Principle. Entities should not be
multiplied beyond necessity.

According to Bertrand Russell, the actual phrase used by William of
Ockham was, “It is vain to do with more what can be done with fewer.”
This is generally interpreted as, ‘among the theories that are consistent
with the observed phenomena, one should select the simplest theory.’
Isaac Newton (1642–1727) states the principle as rule 1 for natural phi-
losophy in the Principia:

“We are to admit no more causes of natural things than such as are both true
and sufficient to explain the appearances. To this purpose the philosophers
say that Nature does nothing in vain, and more is in vain when less will serve;
for Nature is pleased with simplicity, and affects not the pomp of superfluous
causes.” [Newton]

In Newton’s time, ‘the Philosopher’ meant Aristotle (ca. 384–322 B.C.),
who states in his Posterior Analytics, anticipating Ockham, as presum-
ably known by the latter:

“We may assume the superiority ceteris paribus [other things remaining equal]
of the demonstration which derives from fewer postulates or hypotheses—in
short, from fewer premises.” [Aristotle]

Example 5.1.1 A deterministic finite automaton (DFA) A has a finite number of states,
including a starting state and some accepting states. At each step, A
reads the next input symbol and changes its state according to the cur-
rent state and the input symbol. Let us measure simplicity by the number
of states in the automaton. The sample data are

s

0

0

FIGURE 5.2. Smallest consistent automaton

0 0 0 0 0 0 0 0 0
s
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Accepted inputs: 0, 000, 00000, 000000000;

Rejected inputs: ǫ, 00, 0000, 000000.

There are infinitely many finite automata that are consistent with these
data. Figure 5.1 shows the trivial automaton, which simply encodes the
data. Figure 5.2 shows the simplest automaton. The marker S indicates
the starting state, and the bold circles are the accepting states.

Since the automaton in Figure 5.1 simply literally encodes the data, we
do not expect that the machine anticipates future data. On the other
hand, the automaton in Figure 5.2 makes the plausible inference that
the language accepted consists of strings of an odd number of 0’s. It
selects the simplest described division of the positive and negative data.
It therefore also anticipates data it has not yet seen and that do not log-
ically follow from the observed data. The latter appeals to our intuition
as a reasonable inference. 3

A too simplistic application of Occam’s razor may also lead to nonsense, as
the following story illustrates. Once upon a time, there was a little girl named
Emma. Emma had never eaten a banana, nor had she ever been on a train.
One day she had to journey from New York to Pittsburgh by train. To relieve
Emma’s anxiety, her mother gave her a large bag of bananas. At Emma’s first
bite of her banana, the train plunged into a tunnel. At the second bite, the
train broke into daylight again. At the third bite, Lo! into a tunnel; the fourth
bite, La! into daylight again. And so on all the way to Pittsburgh. Emma,
being a bright little girl, told her grandpa at the station, “Every odd bite of
a banana makes you blind; every even bite puts things right again.” Freely
adapted from [N.R. Hanson, Perception and Discovery, 1969, Freeman and
Cooper, p. 359].

In the learning automaton example, it turns out that one can prove the
following: If sufficient data are drawn randomly from any fixed distribu-
tion, then with high probability the smallest consistent automaton (or a
reasonably small automaton) will with high probability correctly predict
acceptance or rejection of most data that are drawn afterward from this
distribution.

Example 5.1.2 In spite of common intuitive acceptance of Occam’s razor, the notion
of simplicity remains a highly controversial and elusive idea. Things are
subtler than they seem. For example, consider the following seemingly
innocent rule:

Select a hypothesis that is as well in agreement with
the observed value as possible; if there is any choice
left, choose the simplest possible hypothesis.
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Let there be an unknown number of white balls and black balls in a
sealed urn. We randomly draw one ball at a time, note its color and
replace it, and shake the urn thoroughly. After n draws we must decide
what fraction of the balls in the urn is white. The possible hypotheses
state that some rational fraction r of balls in the urn is white, where
0 < r < 1. By the above rule, if in n draws m white balls are selected,
then we should formulate the hypothesis r = m/n. Let there be 1

3 white
and 2

3 black balls. Then the probability of getting the true hypothesis
r = 1

3 is zero if n is not divisible by 3, and it tends to 0, even under
the assumption that n is divisible by 3. Even for a sequence of draws
for which the process does converge, convergence may be too slow for
practical use. 3

We still have not defined ‘simplicity.’ How does one define it? Is 1
4 simpler

than 1
10? Is 1

3 simpler than 2
3? Note that saying that there are 1

3 white
balls in the urn is the same as that there are 2

3 black balls. If one wants to
infer polynomials, is x100+1 more complicated than 13x17+5x3+7x+11?

Can a thing be simple under one definition of simplicity and not simple
under another? The contemporary philosopher Karl R. Popper (1902–
1994) has said that Occam’s razor is without sense, since there is no
objective criterion for simplicity. Popper states that every such proposed
criterion will necessarily be biased and subjective.

It is widely believed that the better a theory compresses the data con-
cerning some phenomenon under investigation, the better we learn, gen-
eralize, and the better the theory predicts unknown data. This is the
basis of the Occam’s razor paradigm about simplicity. Making these
ideas rigorous involves the length of the shortest effective description
of the theory, its Kolmogorov complexity, which is the size in bits of
the shortest binary program to compute a description of the theory
on a universal computer. This complexity, although defined in terms of
a particular machine model, is independent up to an additive constant
and acquires an asymptotically universal and absolute character through
Church’s thesis, from the ability of universal machines to simulate one
another and execute any effective process. This train of thought will lead
us to a rigorous mathematical relation between data compression and
learning.

5.1.3
Bayes’s Rule

In contrast to Epicurus and Ockham, Thomas Bayes took a probabilistic
view of nature. Assume that we have observational data D.

Bayes’s Rule. The probability of hypothesis H be-
ing true is proportional to the learner’s initial belief
in H (the prior probability) multiplied by the condi-
tional probability of D given H .
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The two fundamental components in the general inductive reasoning theory we
are developing are Bayes’s formula and the universal prior probability. They
both bear the same characteristics: superficially trivial but philosophically
deep. We have studied the mathematical theory of the universal distribution
in Chapter 4. In Section 5.2 we will develop the underlying mathematics and
validation of Solomonoff’s predictive theory. But first we develop Bayesian
theory starting from the motivation in Section 1.10 and the formal definition
in Section 1.6.

Consider a situation in which one has a set of observations of some
phenomenon and also a (possibly countably infinite) set of hypotheses
that are candidates to explain the phenomenon. For example, we are
given a coin and we flip it 100 times. We want to identify the probability
that the coin has outcome ‘heads’ in a single coin flip. That is, we want
to find the bias of the coin. The set of possible hypotheses is uncountably
infinite if we allow each real bias in [0, 1], and countably infinite if we
allow each rational bias in [0, 1].

For each hypothesis H we would like to assess the probability that H is
the true hypothesis, given the observation of D. This quantity, Pr(H |D),
can be described and manipulated formally in the following way:

Let S be a discrete sample space, and let D denote a sample of out-
comes, say experimental data concerning a phenomenon under investi-
gation. Let H1, H2, . . . be an enumeration of countably many hypotheses
concerning this phenomenon, say each Hi is a probability distribution
over S. The list H = {H1, H2, . . .} is called the hypothesis space. The
hypotheses Hi are exhaustive (at least one of them is true) and mutually
exclusive (at most one of them is true).

For example, say the hypotheses enumerate the possible rational (or
computable) biases of the coin. As another possibility there may be only
two possible hypotheses: hypothesis H1, which says that the coin has
bias 0.2, and hypothesis H2, which puts the bias at 0.8.

Let the prior distribution of the probabilities P (H) of the various pos-
sible hypotheses in H, and the data sample D, be given or prescribed.
Because the list of hypotheses is exhaustive and mutually exclusive we
have

∑

i P (Hi) = 1. In the context of Bayesian reasoning we will distin-
guish between the notation P for probabilities that are prescribed (can
be chosen freely), and Pr for a probabilities that are determined by (and
often can be computed from) the prescribed items. Thus, we assume that
for all H ∈ H we can compute the probability Pr(D|H) that sample D
arises if H is the case. Then we can also compute (or approximate in
case the number of hypotheses with nonzero probability is infinite) the
probability Pr(D) that sample D arises at all

Pr(D) =
∑

i

Pr(D|Hi)P (Hi).
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From the definition of conditional probability it is easy to derive Bayes’s
rule (Example 1.6.3, page 19),

Pr(Hi|D) =
Pr(D|Hi)P (Hi)

Pr(D)
, (5.1)

and substitution yields

Pr(Hi|D) =
Pr(D|Hi)P (Hi)
∑

i Pr(D|Hi)P (Hi)
.

Despite the fact that Bayes’s rule essentially rewrites the definition of
conditional probability, and nothing more, it is its interpretation and ap-
plication that are profound and controversial. The differentH ’s represent
the possible alternative hypotheses concerning the phenomenon we wish
to discover. The term D represents the empirically or otherwise known
data concerning this phenomenon. The term Pr(D), the probability of
data D, is considered as a normalizing factor so that

∑

i Pr(Hi|D) = 1.

The term P (Hi) is called the a priori, initial, or prior probability of
hypothesis Hi. It represents the probability of Hi being true before we
have obtained any data. The prior probability is often considered as the
learner’s initial degree of belief in the hypothesis concerned.

The term Pr(Hi|D) is called the final, inferred, or posterior probability,
which represents the adapted probability of Hi after seeing the data D.
In essence, Bayes’s rule is a mapping from prior probability P (Hi) to
posterior probability Pr(Hi|D) determined by data D.

Continuing to obtain more and more data, and repeatedly applying
Bayes’s rule using the previously obtained inferred probability as the
current prior, eventually the inferred probability will concentrate more
and more on the true hypothesis. It is important to understand that one
can find the true hypothesis also, using many examples, by the law of
large numbers. In general, the problem is not so much that in the limit
the inferred probability would not concentrate on the true hypothesis,
but that the inferred probability gives as much information as possible
about the possible hypotheses from only a limited number of data. Given
the prior probability of the hypotheses, it is easy to obtain the inferred
probability, and therefore to make informed decisions.

In many learning situations, if the data are consistent with the hypoth-
esis Hi, in the strict sense of being forced by it, then Pr(D|Hi) = 1.
Example: outcome of a throw with a die is ‘even’ while the hypoth-
esis says ‘six.’ If the data are inconsistent with the hypothesis, then
Pr(D|Hi) = 0. We assume that there is no noise that distorts the data.

Example 5.1.3 We reconsider the example given in Section 1.9. An urn contains many
dice with different biases of outcome 6 in a random throw. The set of
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biases is A. Assume that the difference between each pair of biases is
greater than 2δ with δ > 0 and the biases are properly between 0 and 1.
Randomly drawing a die from the urn, our task is to determine its bias.
This is done by experimenting. We throw the die n times, independently.
If 6 shows up m times, then our learning algorithm chooses the least bias
in A that is nearest to m/n.

Let Hp be the event of drawing a die with bias p for outcome 6 from
an urn. A success is a throw with outcome 6. For q ∈ A, let Dq be an
example of experimental data such that m successes (6’s) were observed
out of n throws and |(m/n) − q| ≤ δ. Then,

Pr(Hp|Dq) =
Pr(Dq|Hp)P (Hp)

Pr(Dq)
,

where Pr(Dq) =
∑

i∈A Pr(Dq|Hi)P (Hi). With Hp being true, the proba-
bility ofm successes out of n throws is given by the binomial distribution,
Equation 1.6 on page 61, as
(
n

m

)

pm(1 − p)n−m.

The deviation ǫ (where 0 ≤ ǫ ≤ 1) from the average number of successes
pn in a series of n experiments is analyzed by estimating the combined
tail probability

P (|m− pn| > ǫpn) =
∑

|m−pn|>ǫpn

(
n

m

)

pm(1 − p)n−m

of the binomial distribution. The estimates are given by Chernoff’s
bound of Lemma 1.10.1 on page 61,

P (|m− pn| > ǫpn) ≤ 2e−ǫ
2pn/3.

Let p be the true attribute of the die we have drawn, and define A(p) =
A−{p}. For every q ∈ A(p), the value of m/n to force us to infer a bias
of q instead of p must deviate from p by more than δ. Thus, to select
some hypothesis Dq instead of the true hypothesis Dp, we must have
|m/n− p| > δ. By Chernoff’s bound, with ǫ = δ/p, we obtain

P
(∣
∣
∣
m

n
− p
∣
∣
∣ > δ

)

≤ 2−δ
2n/3p.

Therefore,
∑

q∈A(p) Pr(Dq|Hp) < 2−Ω(n). (We have assumed that |p −
q| ≥ 2δ for every q ∈ A(p). and 0 < p, q < 1.) Hence, the probabil-
ity Pr(Dp|Hp) ≥ 1 − 1/2Ω(n). Altogether this means that the poste-
rior probability Pr(Hp|Dp) goes to 1 exponentially fast with n (because
Pr(Hq|Dp) goes to 0 as fast, for q ∈ A(p)).
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From the Bayesian formula one can see that if the number of trials is
small, then the posterior probability Pr(Hp|Dq) may strongly depend on
the prior probability P (Hp). When n grows large, the posterior proba-
bility condenses more and more around m/n. 3

In real-world problems, the prior probabilities may be unknown, incom-
putable, or conceivably may not exist. (What is the prior probability of
use of words in written English? There are many different sources of dif-
ferent social backgrounds living in different ages.) This problem would
be solved if we could find a single probability distribution to use as the
prior distribution in each different case, with approximately the same
result as if we had used the real distribution. Surprisingly, this turns
out to be possible up to some mild restrictions on the class of prior
distributions being taken into account.

5.1.4
Hume on
Induction

The philosopher D. Hume (1711–1776) argued that true induction is im-
possible because we can reach conclusions only by using known data and
methods. Therefore, the conclusion is logically already contained in the
start configuration. Consequently, the only form of induction possible is
deduction. Philosophers have tried to find a way out of this determin-
istic conundrum by appealing to probabilistic reasoning such as using
Bayes’s rule. One problem with this is where the prior probability one
uses has to come from. Unsatisfactory solutions have been proposed by
philosophers such as R. Carnap (1891–1970) and K.R. Popper.

However, R.J. Solomonoff’s inductive method of Section 5.2, of which
we have already seen a glimpse in Section 1.10, may give a rigorous and
satisfactory solution to this old problem in philosophy.

Essentially, combining the ideas of Epicurus, Ockham, Bayes, and mod-
ern computability theory, Solomonoff has successfully invented a perfect
theory of induction. It incorporates Epicurus’s multiple explanations
idea, since no hypothesis that is still consistent with the data will be
eliminated. It incorporates Ockham’s simplest explanation idea, since
the hypotheses with low Kolmogorov complexity are more probable. The
inductive reasoning is performed by means of the mathematically sound
rule of Bayes.

5.1.5
Hypothesis
Identification
and Prediction
by Compression

Our aim is to demonstrate that data compression is the answer to many
questions about how to proceed in inductive reasoning. Given a body
of data concerning some phenomenon under investigation, we want to
select the most plausible hypothesis from among all appropriate hy-
potheses or predict future data. It is widely believed that the better a
theory compresses the data concerning some phenomenon under inves-
tigation, the better we have learned and eneralized, and the better the
theory predicts unknown data, following the Occam’s razor paradigm
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about simplicity. This belief is vindicated in practice but apparently
has not been rigorously proved before. Making these ideas rigorous in-
volves the length of the shortest effective description of some object:
its Kolmogorov complexity. We treat the relation between data com-
pression and learning and show that compression is almost always the
best strategy, both in hypothesis identification using the minimum de-
scription length (MDL) principle and in prediction methods in the style
of R.J. Solomonoff. The flavor of the argument is that among all hy-
potheses consistent with the data, the one with least Kolmogorov com-
plexity is the most likely one. Prediction in Solomonoff’s manner uses
a complexity-weighted combination of all hypotheses in the form of the
universal prior M(·) (Section 5.2). Applications of the universal prior
to recursion theory are given in Section 5.2.5, and to computer science
in Section 5.3. Hypothesis identification by minimum description length
(Section 5.4) balances the complexity of the model—and its tendency
for overfitting—against the preciseness of fitting the data—the error of
the hypothesis. Nonprobabilistic statistics in Section 5.5 gives a detailed
view of all stochastic properties of data, and, among others, a rigorous
foundation and justification of MDL.

5.2

Solomonoff’s

Theory of

Prediction

Let us consider theory formation in science as the process of obtaining
a compact description of past observations together with predictions of
future ones. Ray Solomonoff argues that the preliminary data of the
investigator, the hypotheses he proposes, the experimental setup he de-
signs, the trials he performs, the outcomes he obtains, the new hypothe-
ses he formulates, and so on, can all be encoded as the initial segment
of a potentially infinite sequence over a finite alphabet. The investigator
obtains increasingly longer initial segments of an infinite sequence ω by
performing more and more experiments on some aspect of nature. To de-
scribe the underlying regularity of ω, the investigator tries to formulate
a theory that governs ω on the basis of the outcome of past experiments.
Candidate theories (hypotheses) are identified with computer programs
that compute sequences starting with the observed initial segment.

There are many different possible infinite sequences (histories) on which
the investigator can embark. The phenomenon he wants to understand
or the strategy he uses can be stochastic. In this view each phenomenon
can be identified with a measure on the continuous sample space. (For
the definition of measure see Section 1.6.)

We express the task of learning a certain concept in terms of sequences
over a basic alphabet B. We express what we know as a finite sequence
over B; an experiment to acquire more knowledge is encoded as a se-
quence over B; the outcome is encoded over B; new experiments are
encoded over B; and so on. In this way, a concept can be viewed as a



5.2. Solomonoff’s Theory of Prediction 349

probability distribution (rather, measure) µ over a sample space S = B∞

of all one-way infinite sequences. Each such sequence corresponds to one
never-ending sequential history of conjectures and refutations and confir-
mations. The distribution µ can be said to be the concept or phenomenon
involved.

Clearly, if we know µ, then we can best predict which element a ∈ B
is likely to turn up after a finite initial segment x. That is, we want to
predict or extrapolate according to the conditional distribution µ(a|x).
Below we show (by Bayes’s rule) that µ(a|x) satisfies Equation 5.2.

Example 5.2.1 Let B = {0, . . . , 9}. The phenomenon consists of those sequences ω =
ω1ω2 . . . for which ω2i+1 is the ith digit (i = 0, 1, . . .) in the decimal
expansion of π = 3.1415 . . ., and ω2i = a, with a ∈ {0, . . . , 9}, with equal
probabilities 1

10 . Some example values of the measure µ describing the
phenomenon are µ(3) = 1, µ(4) = 0, µ(31) = 1

10 , µ(41) = 0, µ(311) =
1
10 , µ(314) = 0, µ(3114) = 1

100 . Prediction should follow conditional
probabilities: µ(0|3) = 1

10 , µ(0|31) = 0, µ(1|31) = 1, and µ(4|311) = 1
10 ,

while µ(4|3114) = 1. But µ(3|3114) = 0 and µ(3|311) = 1
10 . 3

Example 5.2.2 Let our basic alphabet be B = {0, . . . , 9, E,O,H, .}. Numbers can be
written as decimals such as 5.1 because we have a decimal point in our
system. The phenomenon µ that we would like to know about is the value
of the gravitational constant g in the formula h = gt2/2, where h is the
height from which we drop an object in a vacuum (on Earth at about sea
level), and t is the time it takes to hit the ground. An experiment E10
means that we drop the object from 10 meters. An outcome O2 means
that the object takes 2 seconds to hit the ground. A hypothesis H7.8
means that we hypothesize g = 7.8 meters per second squared. Then,
µ(O2|H9.8E19.6) = 1, µ(O2|H1E2) ≪ 1, and µ(O1|H9.8E4.9) = 1,
because g = 9.8. Experimenting, the investigator will eventually discover
the law of µ and be able to confidently predict µ after every initial
sequence w, by µ(Ox|HyEz) = 1 if z = yx2/2 with y = 9.8, and ≪ 1
otherwise. 3

5.2.1
Universal
Prediction

Following Examples 5.2.1 and 5.2.2, the aim is to predict outcomes
concerning a phenomenon µ under investigation. In this case we have
some prior evidence (prior distribution over the hypotheses, experimen-
tal data) and we want to predict future events. This situation can be
modeled by considering a sample space S of one-way infinite sequences
of basic elements B defined by S = B∞. We assume a prior distribution
µ over S with µ(x) denoting the probability of a sequence starting with
x. Here µ(·) is a semimeasure satisfying

µ(ǫ) ≤ 1,
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µ(x) ≥
∑

a∈B
µ(xa).

As before, we depart from the traditional notation µ(Γx), where the
cylinder Γx is equal to {ω ∈ S : ω starts with x}, by writing µ(x) in-
stead. We use µ(x) for convenience. If equalities hold in the definition
then µ is called a measure.

Given a previously observed data string x, the inference problem is to
predict the next symbol in the output sequence, that is, to extrapo-
late the sequence x. In terms of the variables in Equation 5.1, Hxy is
the hypothesis that the sequence starts with initial segment xy. Data
Dx consists of the fact that the sequence starts with initial segment x.
Then, Pr(Dx|Hxy) = 1, that is, the data are forced by the hypothesis;
or Pr(Dz|Hxy) = 0 for z is not a prefix of xy, that is, the hypothesis
contradicts the data. For P (Hxy) and Pr(Dx) in Equation 5.1 we substi-
tute µ(xy) and µ(x), respectively. For Pr(Hxy|Dx) we substitute µ(y|x).
In this way, the formula is rewritten as

µ(y|x) =
µ(xy)

µ(x)
. (5.2)

The final probability µ(y|x) is the probability of the next symbol string
being y, given the initial string x. Obviously we now need only the
prior probability µ to evaluate µ(y|x). The goal of inductive inference in
general is to be able either to (i) predict, or extrapolate, the next element
after x or (ii) to infer an underlying effective process that generated x,
and hence to be able to predict the next symbol. In the most general
deterministic case such an effective process is a Turing machine, but it
can also be a probabilistic Turing machine or, say, a Markov process
(which makes its brief and single appearance here). The central task of
inductive inference is to find a universally valid approximation to µ that
is good at estimating the conditional probability that a given segment
x will be followed by a segment y.

In general this is impossible. But suppose we restrict the class of pri-
ors to the computable semimeasures as defined in Chapter 4. Under this
relatively mild restriction, it turns out that we can use the single uni-
versal semimeasure M (Theorem 4.5.1, page 294) as a universal prior
(replacing the real prior) for prediction. The remainder of this section
is devoted to the formal expression and proof of this loosely stated fact.
Subsequently we demonstrate that ultimate compression and shortest
programs almost always lead to optimal prediction.

Definition 5.2.1 Let µ : B∗ → [0, 1] be a semimeasure and let x, y ∈ B∗. The conditional
semimeasure µ(y|x) is defined as in Equation 5.2 above.
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For each x, the function µ(y|x) is a semimeasure on the sample space
(or the cylinder)

Γx = {xω : ω ∈ B∞}

for x ∈ B∗. If the unconditional µ is a measure, then so is µ(·|x). This
is easily verified from the definitions. We can interpret µ(y|x) as the µ-
probability that a string starting with x continues with y. Hence, if we
have observed that a sequence from a µ-distribution starts with x, then
µ(y|x) allows us to predict whether it will continue with y. This formula
solves the problem of extrapolation of sequences once we know µ.

However, in many cases µ is unknown or unknowable. We would like a
standard procedure to estimate µ. It turns out that M(y|x) is a good
estimator for all computable µ(y|x).
When we predict the continuation of a sequence over B∗ randomly drawn
from a distribution µ, can we estimate the error we make using M for
prediction instead of the actually computable distribution µ?

Example 5.2.3 Let µ be a computable semimeasure on B∞, and ω ∈ B∞. If for all n,
we have µ(ω1:n) > 0, then

M(ω1:n)

µ(ω1:n)
=

n∏

i=1

M(ωi|ω1:i−1)

µ(ωi|ω1:i−1)
≥ 2−K(µ).

This expression is the product of the ratios of the conditional probabil-
ities for the successive symbols of ω. The geometric mean of the factors
of this n-fold product is

rn =

(
n∏

i=1

M(ωi|ω1:i−1)

µ(ωi|ω1:i−1)

)1/n

. (5.3)

By Corollary 4.5.5 on page 320, for each µ-random infinite ω there is a
constant c such that

sup
n∈N

{
M(ω1:n)

µ(ω1:n)

}

≤ c.

Thus, for each element of a subset of B∞ of µ-measure one (the µ-random
ω’s), we can bound rn from both sides:

2−K(µ)/n ≤ rn ≤ c1/n.

That is, for µ-random ω’s the associated rn goes to 1 for n → ∞. But,
one may ask, would it not be possible that some factors in Equation 5.3



352 5. Inductive Reasoning

are much greater than 1 while other factors are much less than 1? Is it
possible that the geometric mean rn goes to 1, but the ratio

M(ωn+1|ω1:n)

µ(ωn+1|ω1:n)

fluctuates forever? The amplitude of the fluctuations might even in-
crease? This could mean that predictions according to M could be far
off the mark from predictions according to µ infinitely often. However,
Theorem 5.2.1 will show that if there are fluctuations of this sort, then
they must damp out quickly. 3

Convergence in
Difference

Assume that the one-way infinite sequences in S = B∞ are distributed
according to a computable measure µ. If we want to predict the next
element a ∈ B that will appear after an initial sequence x ∈ B∗, then
we can do no better than predicting according to µ(a|x). If instead we
predict according to another distribution ρ, then the prediction error
can be measured as the difference of the probabilities involved:

|ρ(a|x) − µ(a|x)| .

Solomonoff, Exercise 5.2.2 on page 366, looked at the squared difference
rather than the absolute difference. However, the squared difference of
the square roots,

(√

ρ(a|x) −
√

µ(a|x)
)2

,

has more appealing technical properties for us, and its use makes no
nontrivial difference with respect to the results. Instead of looking at the
error in the nth prediction after a particular initial segment of length
n−1 we consider the µ-average of the nth prediction error over all initial
segments of length n− 1. Of course, we are interested in the prediction
error we make if ρ is set to M.

Let us introduce some notation. Suppose that P is a discrete probability
measure and Q is a discrete semimeasure, both over a discrete set B; see
Definition 4.3.1 on page 265. Define

D (P ‖ Q) =
∑

a∈B
P (a) ln

P (a)

Q(a)
, (5.4)

where ln is the natural logarithm and we define 0 ln 0 = 0 ln 0/0 = 0.
This quantity is called the Kullback–Leibler divergence (or distance) of
Q with respect to P . Viewed as a function of P and Q it is asymmetric.
We have extended the standard definition, where both P and Q are
probabilities summing to 1. To see that this makes no difference, consider
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proper probabilities P ′ and Q′ over B⋃{u}, where u is a new element,
defined by P ′(a) = P (a) and Q′(a) = Q(a) for every a ∈ B, while
P ′(u) = 0 and Q′(u) = 1 −∑a∈BQ(a). Then, D(P ′ ‖ Q′) = D(P ‖ Q).
By the concavity of the logarithm,D(P ‖ Q) as in Equation 5.4 is always
nonnegative and is 0 only if Q = P . It is a measure of the difference
between P and Q. The squared Hellinger distance between P and Q as
above is defined as

H(P,Q) =
∑

a∈B

(√

P (a) −
√

Q(a)
)2

.

Again, it is always nonnegative and is 0 only if Q = P . It is another
measure of the difference between P and Q. It is a metric, unlike the
Kullback–Leibler distance, but nonetheless it is bounded above by the
latter distance.

Lemma 5.2.1 H(P,Q) ≤ D(P ‖ Q) for every discrete probability measure P and dis-
crete semimeasure Q.

Proof. Let x and y be nonnegative real numbers. Define

f(x, y) = x ln
x

y
− (

√
x−√

y)2 + y − x.

We want to show that f(x, y) ≥ 0 for all x, y ≥ 0. Define ln 0/0 = 0. If
x = 0 then f(x, y) = 0 for every y ≥ 0. Assume x > 0. Since lnx ≤ x−1
for every x ≥ 0, we have f(x, y)/(2x) = − ln

√

y/x +
√

y/x − 1 ≥ 0

for
√

y/x ≥ 0. Altogether, f(x, y) ≥ 0 for all x, y ≥ 0, and hence
∑

a∈B f(P (a), Q(a)) ≥ 0. Consequently,

∑

a∈B
P (a) ln

P (a)

Q(a)
−
∑

a∈B

(√

P (a) −
√

Q(a)
)2

≥
∑

a∈B
P (a) −

∑

a∈B
Q(a) ≥ 0.

2

Definition 5.2.2 Let B be a finite alphabet, and let x be a word over B. The summed
expected squared error at the nth prediction Sn is defined by

Sn(a) =
∑

l(x)=n−1

µ(x)
(√

M(a|x) −
√

µ(a|x)
)2

,

Sn =
∑

a∈B
Sn(a).

Let K(µ) be the length of the shortest program computing the function
µ in a self-delimiting binary programming language.
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Theorem 5.2.1 Let µ be a computable measure. Then,
∑

n Sn ≤ k with the constant
k = K(µ) ln 2.

Proof. Let µ be a computable measure and M the universal lower semi-
computable semimeasure, both over B∞. Replacing P (a) and Q(a) in
Equation 5.4 by the conditional discrete probabilities µ(a|x) and M(a|x),
respectively, we define

D (µ(·|x) ‖ M(·|x)) =
∑

a∈B
µ(a|x) ln

µ(a|x)
M(a|x) ,

Dn =
∑

l(x)=n−1

µ(x)D (µ(·|x) ‖ M(·|x)) .

The theorem follows directly from the following two claims.

Claim 5.2.1 For all n, we have Sn ≤ Dn.

Proof. The statement follows directly from Lemma 5.2.1. Substituting
P = µ(·|x) and Q = M(·|x) we obtain

∑

a∈B

(√

µ(a|x) −
√

M(a|x)
)2

≤
∑

a∈B
µ(a|x) ln

µ(a|x)
M(a|x) .

Multiplying both sides of the displayed inequality by µ(x) and summing
over all x with l(x) = n− 1 proves the claim. 2

Claim 5.2.2
∑

nDn ≤ K(µ) ln 2, the sum taken from 1 to ∞.

Proof. In the definition of Dn above, write x1 . . . xn−1 for x and xn for
a. Then, substitute µ(xn|x1:n−1)µ(x1:n−1) = µ(x1:n). This yields, for all
m ≥ n,

Dn =
∑

x1:n

µ(x1:n) ln
µ(xn|x1:n−1)

M(xn|x1:n−1)

=
∑

x1:m

µ(x1:m) ln
µ(xn|x1:n−1)

M(xn|x1:n−1)
,

where the last equality follows since
∑

xn+1:m
µ(x1:m) = µ(x1:n), and

the expression in the logarithm is independent of xn+1:m. Subsequently,
we rewrite

∑m
n=1Dn by moving the

∑m
n=1 into the logarithmic term as

∏m
n=1:

m∑

n=1

Dn =
∑

x1:m

µ(x1:m) ln

m∏

n=1

µ(xn|x1:n−1)

M(xn|x1:n−1)

=
∑

x1:m

µ(x1:m) ln
µ(x1:m)

M(x1:m)
≤ K(µ) ln 2.
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The second equality uses the measure property µ(x1:m) = µ(x1)µ(x2|x1)
· · ·µ(xm|x1:m−1), and the semimeasure property M(x1:m) = M(x1)M(x2

|x1) · · ·M(xm|x1:m−1). The last inequality uses the universality of M,
Corollary 4.5.1 on page 302, which states thatM(x1:m) ≥ 2−K(µ)µ(x1:m).
Since the last displayed inequality holds for every m, the finite upper
bound on the right-hand side also holds for m→ ∞. 2 2

Example 5.2.4 Since the series
∑

n Sn converges, we have limn→∞ Sn = 0 and in fact,
the entire tail sum goes to zero: limn→∞

∑∞
i=n Si = 0. Compare this with

the harmonic series
∑

n 1/n, where the individual terms 1/n go to 0 as
n goes to ∞, but all tail sums diverge: limn→∞

∑∞
i=n 1/n = ∞ for every

n. But the expected prediction error Sn in the nth prediction may not
go to 0 faster than 1/n, since Sn may not be monotonic nonincreasing
(contrary to that, one expects to predict better after having seen more
data). Consider situations such as Sn = 1/

√
n for n = i3 and Sn = 1/n2

for n 6= i3 (i ∈ N ).

Another, natural, example is that of µ a deterministic measure over
{0, 1}∞, for instance, µ(11 . . . 1) = 1 for all strings consisting of only
1’s. Then, Sn(0) = M(0|1n−1) = 2−K(n)+O(logK(n)), while Sn(1) =
(
√

M(1|1n−1)−1)2, which goes to 0 as n→ ∞. Hence for large complex
n (K(n) > l(n)) we obtain Sn < Sn′ for larger but regular n′ (K(n′) ≪
l(n′)) satisfying n < n′ < 2n. This effect is of course much more pro-
nounced for expected prediction error Sn(0), the error in predicting 0,
where we can have Sn(0) = O((log n)O(1)/n) and Sn′(0) = Ω(1/ logn)
with n′ satisfying n < n′ < 2n. 3

A more precise determination of Sn(0) = M(0|1n−1) = 2−K(n)+O(1) = O(1/n)
is given in [M. Hutter, Theoret. Comput. Sci., 1:384(2007), 33–48], Equation
(17) and Appendix A.

Lemma 5.2.2 Let µ be a measure on B∞. For every natural number n, and every
function fn : Bn → R, let Fn =

∑

l(x)=n µ(x)f2
n(x). Then,

∑

n Fn < ∞
implies that for some A ⊆ B∞ of µ-measure one, for every ω = ω1ω2 . . .
in A, we have fn(ω1:n) → 0 for n→ ∞.

Proof. Let m be a natural number, ǫ a nonnegative rational number, and
fn and Fn as in the statement of the lemma. Let Bm,ǫ = {ω : there is an
n ≥ m such that fn(ω1:n) ≥ √

ǫ}. Here we use the traditional notation
µ(A) with A ⊆ B∞ instead of the simplification µ(x) for µ(Γx). Then,

µ(Bm,ǫ) = µ




⋃

n≥m

{
ω : fn(ω1:n)

2 ≥ ǫ
}



 ≤
∞∑

n=m

µ
({
ω : fn(ω1:n)

2 ≥ ǫ
})

≤
∞∑

n=m

∑

ω1:n

µ(ω1:n)
f2
n(ω1:n)

ǫ
=

1

ǫ

∞∑

n=m

Fn,
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where we used µ(C
⋃
D) ≤ µ(C) + µ(D) and Markov’s inequality of

Example 4.3.10 on page 282. By assumption
∑∞

n=1 Fn <∞. Therefore,

lim
m→∞

1

ǫ

∞∑

n=m

Fn = 0.

Define Bǫ = limm→∞Bm,ǫ. The above two displayed equations show
that µ(Bǫ) = 0. Setting A = B∞ −⋃ǫBǫ, where the union is taken over
all nonnegative rational ǫ, of which there are only countably many, the
lemma follows. 2

Corollary 5.2.1 Let µ be a computable measure. There is a set A ⊆ B∞, of µ-measure
one, such that for every ω ∈ A, for every a ∈ B,

M(a|ω1:n−1) → µ(a|ω1:n−1),

with ω = ω1ω2 . . . and n → ∞. (Here an → bn means an − bn → 0
without implying that limn→∞ bn exists.)

Proof. Use Theorem 5.2.1 and substitute

f2
n−1(ω1:n−1) =

∑

a∈B

(√

M(a|ω1:n−1) −
√

µ(a|ω1:n−1)
)2

and Fn−1 = Sn−1 in Lemma 5.2.2. 2

Example 5.2.5 The proof of Theorem 5.2.1 does not depend on any computability prop-
erties, but only on the dominating property of M over µ. For example,
take in Theorem 5.2.1 any (possibly incomputable) measure µ, and a
semimeasure ρ over B∞ that dominates µ in the sense that there exists
a function f such that

ρ(x) ≥ 2−f(n)µ(x),

for all x ∈ B∗ of length l(x) = n. We let ρ take the role of M, and define

Si =
∑

l(x)=i−1

∑

a∈B µ(x)
(√

ρ(a|x) −
√

µ(a|x)
)2

. The same proof now

shows that
∑n

i=1 Si ≤ f(n) ln 2.

We can apply this to Laplace’s law of succession (Exercise 1.10.6 on
page 65) which states the following. For binary Bernoulli processes (p, 1−
p) with unknown p (0 < p < 1), that is, independent flips of a coin
with unknown bias p, the best prediction of an outcome 1 following a
sequence x of n outcomes containing k outcomes 1 is given by ρ(1|x) =
(k + 1)/(n + 2). To determine the unconditional Laplace’s measure ρ,
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observe that it depends only on the number of 1s and 0s in the argument,
but not on their order. This leads to

ρ(x) =
k!(n− k)!

(n+ 1)!
.

Let µ be a measure generated by independent and identically distributed
outcomes of a given Bernoulli process (p, 1 − p). Then,

µ(x)

ρ(x)
=

(n+ 1)!

k!(n− k)!
pk(1 − p)n−k

= (n+ 1)

(
n

k

)

pk(1 − p)k ≤ n+ 1.

Thus, ρ(x) ≥ 1/(n + 1)µ(x). That is, f(n) = log(n + 1). Hence, the
summed expected squared error in the first n predictions, Definition 5.2.2
on page 353, using Laplace’s measure ρ instead of the real measure µ
associated with the given Bernoulli process, is given by

n∑

i=1

Si ≤ (ln 2) log(n+ 1) = ln(n+ 1).

3

Example 5.2.6 We continue Example 5.2.1 with the measure µ defined there, and with
ω = ω1ω2 . . . being an infinite binary sequence. By Corollary 5.2.1, we
find that

lim
n→∞

M(a|ω1:n) =







1
10 for n = 2i and a = 0, 1, . . . , 9,
1 for n = 2i+ 1 and a the ith digit of π,
0 for n = 2i+ 1 and a not the ith digit of π

That is, the prediction probabilities M conditioned on growing length
initial segments become eventually precisely the conditional probabil-
ities of the true measure µ that by definition give the best possible
predictions. 3

According to [R.J. Solomonoff, IEEE Trans. Inform. Theory, 24(1978), 422–
432], “Ordinary statistical analysis of a Bernoulli sequence gives an expected
squared error for the probability of the nth symbol proportional to 1/n, and
a total squared error [expected] for the first n symbols proportional to lnn.”
This is clearly much larger than the constant K(µ) ln 2 we found in Theo-
rem 5.2.1 or the total squared error of K(µ)2 ln 2 we find in Exercise 5.2.2 on
page 366. This discrepancy can be understood by noting that the theorem re-
quires µ to be computable. The set of computable measures is countable. But
the parameter defining a Bernoulli process can be any real number between
0 and 1. The set of these measures is uncountable. It has been shown that if
one restricts the possible hypotheses to countably many, then the statistical
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error converges much more rapidly than if one considers uncountably many
hypotheses [T.M. Cover, Ann. Stat., 1:5(1973), 862–871]. However, these state-
ments may be misleading for real situations in which the data have definite
finite size. Namely, consider prediction of sequences generated by a Bernoulli
process with parameter p. Is it true that one will be able to predict better on
a limited initial segment, using Solomonoff’s method, if one knows that p is
rational? No, unless one also knows that it is a simple rational, since the error
has a multiplicative factor proportional to K(p). Therefore, for a finite seg-
ment of length n (which is what really counts), the statistical method taking
into account all p’s is inferior to the Solomonoff method only if K(p) < 1

2
lnn.

But even if p is very complex or incomputable, then still Solomonoff’s proce-
dure is not worse than the standard statistical ones; see [M. Hutter, Theoret.
Comput. Sci., 384:1(2007), 33–48]. This topic has spawned an elaborate the-
ory of prediction based on universal distributions to arbitrary loss measures
(rather than just the logarithmic loss) using extensions and variations of the
proof method; M. Hutter, Universal Artificial Intelligence: Sequential Deci-
sions Based on Algorithmic Probability, Springer-Verlag, Berlin, 2005. Assume
that a probabilistic theory concerning some phenomenon is expressible as a
computable measure µ on {0, 1}∞. We can view the universal semimeasure M

as a mixture of hypotheses, including all computable measures, with greater
weights for the simpler ones. Then Solomonoff’s inductive formula M(y|x), to
estimate the actual probabilities µ(y|x) to predict outcomes y given a sequence
of observed outcomes x, can be viewed as a mathematical form of Occam’s
razor:

find all rules fitting the data and then predict y according
to the universal distribution on them.

Formalization of this principle for probabilistic theories µ encounters difficul-
ties because of a tradeoff between the complexity K(µ) and the randomness
deficiency log M(x)/µ(x). The current approach is accurate for large x and
simple µ.

Convergence in
Ratio

Theorem 5.2.1 on page 354, and Corollary 5.2.1 on page 356, formu-
late the fact that the conditional universal measure converges to every
conditional computable measure in difference. This leaves open the con-
vergence in ratio, since the difference can become small without the
ratio going to one, for instance, when both items in the difference go to
zero at a different rate. Apart from this, there is the distinction between
the more restricted notion of on-sequence convergence and the general
notion of off-sequence convergence, which we illustrate as follows.

Example 5.2.7 Consider two infinite sequences ω = ω1ω2 . . . and ζ = ζ1ζ2 . . . . Then,
Theorem 5.2.1 shows that for every ω ∈ B∞, except for possibly a set
of µ-measure zero, and for every ζ ∈ B∞, possibly constant and not
necessarily random, we have

M(ζn|ω1:n−1) → µ(ζn|ω1:n−1)
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for n → ∞. This is called off-sequence convergence. In contrast, we can
make no such assertion about the off-sequence convergence of the ratio

M(ζn|ω1:n−1)

µ(ζn|ω1:n−1)

for n → ∞. This is because possibly lim infn→∞ µ(ζn|ω1:n−1) = 0. In
Exercise 5.2.3 on page 367 we give a quantitative example for which
this ratio diverges. But taking ζ = ω, we are considering on-sequence
convergence of the ratio. The distinction between the conditions under
which on-sequence and off-sequence convergence of the ratio holds is
formulated in Theorem 5.2.2. 3

Definition 5.2.3 Let µ be a measure over B∞. It is called conditionally bounded away
from zero if there exists a constant c > 0 such that µ(a|x) > c for all
x ∈ B∗ and a ∈ B.

Theorem 5.2.2 Let µ be a computable measure over B∞.

(i) On-sequence convergence: There is a set of µ-measure one in B∞

such that for every ω = ω1ω2 . . . in the set, if n→ ∞ then

M(ωn|ω1:n−1)

µ(ωn|ω1:n−1)
→ 1.

(ii) Off-sequence convergence: Let µ be conditionally bounded away from
zero. Then, for every fixed m and x ∈ Bm, there is a set of µ-measure
one in B∞ such that for every ω = ω1ω2 . . . in the set, if n→ ∞ then

M(x|ω1:n−1)

µ(x|ω1:n−1)
→ 1.

Clearly, off-sequence convergence implies on-sequence convergence. The strong
property of off-sequence convergence of the ratio holds for a subclass of the set
of measures for which the weaker property of on-sequence convergence holds.

Proof. (i) Set Fn in Lemma 5.2.2 equal to Sn in Definition 5.2.2 on
page 353. Then,

fn(ω1:n) =
√

M(ωn|ω1:n−1)/µ(ωn|ω1:n−1) − 1,

Fn =
∑

ω1:n−1

µ(ω1:n−1)
∑

ωn

(√

M(ωn|ω1:n−1) −
√

µ(ωn|ω1:n−1)
)2

.

By Theorem 5.2.1, we have
∑

n Fn < ∞, and applying Lemma 5.2.2
we find that limn→∞ fn(ω1:n) > 0 for a set of ω’s of µ-measure zero.
Additionally, fn(x) is not defined for x with µ(x) = 0. Recall that µ(x)
is shorthand for µ({ω : ω = x . . .}). Define Z = {x : µ(x) = 0} and
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Z = {ω : ω = x . . . , x ∈ Z}. Since the set of x’s such that µ(x) = 0 is
countable, we have µ(Z) = 0. Hence the set of ω’s such that fn(ω1:n) is
either not defined for some n, or limn→∞ fn(ω1:n) > 0, has µ-measure
zero. Since fn is either nonnegative or undefined, the set of ω’s such that
limn→∞ fn(ω1:n) = 0 has µ-measure one.

(ii) Let m ≥ 1 and set l = n+m−1. The m-step analogues of the 1-step
Sn and Dn in Theorem 5.2.1 are

Sn,m =
∑

ω1:l

µ(ω1:n−1)
(√

M(ωn:l|ω1:n−1) −
√

µ(ωn:l|ω1:n−1)
)2

,

Dn,m =
∑

ω1:l

µ(ω1:l) ln
µ(ωn:l|ω1:n−1)

M(ωn:l|ω1:n−1)
.

Thus, Sn,1 = Sn and Dn,1 = Dn. Note the different scope µ(ω1:n−1)
versus µ(ω1:l). Similarly to the proof of Claim 5.2.2 on page 354 one

shows that Dn,m =
∑l

t=nDt, and similar to the proof of Claim 5.2.1 on
page 354 one can prove Sn,m ≤ Dn,m. Therefore,

∞∑

n=1

Sn,m ≤
∞∑

n=1

l∑

t=n

Dt ≤ m

∞∑

n=1

Dn < mK(µ) ln 2 <∞.

We have assumed that there is a constant c > 0 such that µ(a|x) > c
for all x ∈ B∗ and a ∈ B. Therefore, with l(x) = m, the measure
µ(x|ω1:n−1) is greater than cm. We apply Lemma 5.2.2 with m fixed.
With Fn = Sn,m, the corresponding fn(ω1:n) can be written as

∣
∣
∣
∣
∣

√

M(x|ω1:n−1)

µ(x|ω1:n−1)
− 1

∣
∣
∣
∣
∣

=

∣
∣
∣

√

M(x|ω1:n−1) −
√

µ(x|ω1:n−1)
∣
∣
∣

√

µ(x|ω1:n−1)

< c−m/2
∣
∣
∣

√

M(x|ω1:n−1) −
√

µ(x|ω1:n−1)
∣
∣
∣ .

Since
∑

n Fn < ∞, the right-hand side goes to 0 as n → ∞ for a set of
ω’s of µ-measure one. 2

Theorem 5.2.2 in this edition differs from the corresponding theorem in the
previous editions of this work; see Section 5.6 on page 433.

Theorem 5.2.2 shows that the conditional prior probability M(y|x) suf-
fices to approximate the conditional probability µ(y|x), Equation 5.2 on
page 350, and convergence is very fast by Theorem 5.2.1. Thus, if we
use the fixed distribution M as prior in Bayes’s rule, then this single in-
ferred probability converges very fast to every inferred probability using
the actual prior µ, provided the latter is computable. The problem with
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Bayes’s rule has always been the determination of the prior. Using M
universally gets rid of that problem and is provably perfect.

5.2.4
Prediction by
Data
Compression

Above it is shown that the universal distribution itself is directly suited
for prediction. The universal distribution combines a weighted version
of the predictions of all lower semicomputable semimeasures, including
the prediction of the semimeasure with the shortest program. It is not a
priori clear that the shortest program dominates in all cases—and in fact
it does not. However, we show that in the overwhelming majority of cases
the shortest program dominates sufficiently to validate the approach that
uses only shortest programs for prediction.

Given a semimeasure µ on B∞ and an initial string x, our goal is to
find the most probable extrapolation of x. That is, taking the negative
logarithm on both sides of Equation 5.2, we want to determine y with
l(y) = n that minimizes

log
1

µ(y|x) = log
1

µ(xy)
− log

1

µ(x)
.

Theorem 5.2.3 Let µ be a semimeasure as in Theorem 5.2.2, Item (ii), on page 359.
There is a subset A ⊆ {0, 1}∞ of µ-measure one such that for every
ω ∈ A, with x denoting a finite prefix of ω that grows unboundedly, and
y a string of fixed length (not necessarily ω = xy . . .), we have

lim
l(x)→∞

log
1

µ(y|x) = Km(xy) − Km(x) +O(1) <∞.

Proof. For l(x) that grows unboundedly with l(y) fixed, we have by
Theorem 5.2.2

lim
l(x)→∞

(

log
1

M(y|x) − log
1

µ(y|x)

)

= 0, (5.5)

with µ-probability one. Therefore, if x and y satisfy the above conditions,
then minimizing log 1/M(y|x) over y implies with µ-probability 1 that
µ(y|x) is maximized over y. It is shown in Lemma 4.5.6 on page 308 that
log 1/M(x) can be slightly smaller than Km(x), the length of the short-
est program for x on the reference universal monotonic machine. For bi-
nary programs this difference is very small (Equation 4.15 on page 307)
but possibly unbounded in the length of x. That is,

log
1

M(y|x) = log
1

M(xy)
− log

1

M(x)

= (Km(xy) − g(xy)) − (Km(x) − g(x)),

where g(x) is a function that can rise to a value between the inverse of
the Ackermann function and Km(l(x)) ≤ log log x—but only in case x
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is not µ-random. Therefore, for certain x and xy, optimization using the
minimum-length programs may result in incorrect predictions. However,
for µ-random x we have that log 1/M(x) and Km(x) coincide up to
an additional constant independent of x, that is, g(xy) = O(1) and
g(x) = O(1), by Lemma 4.5.6. Since both the set of µ-random sequences
and the set of sequences satisfying Equation 5.5 have µ-measure one,
their intersection, denoted by A, has µ-measure one as well. 2

By its definition Km is monotone in the sense that always Km(xy) −
Km(x) ≥ 0. If y makes this difference equal to 0, then the shortest
effective monotone program for x is also a shortest effective monotone
program for xy and hence predicts y given x. For all large enough µ-
random x, predicting by determining y that minimizes the difference of
the minimum program lengths for xy and x gives a good prediction.
Here y should be preferably large enough to eliminate the influence of
the O(1) term.

Corollary 5.2.2 (Prediction by data compression) Assume the conditions of Theo-
rem 5.2.3. There is a constant p > 0 such that with µ-probability going
to one as l(x) grows unboundedly, an extrapolation y from x has proba-
bility µ(y|x) ≥ p/2c if y can be compressed with respect to x in the sense
that Km(xy) − Km(x) ≤ c. That is, it is a good heuristic to choose the
extrapolation y that minimizes the length difference between the short-
est program that outputs xy . . . and the shortest program that outputs
x . . . .

Example 5.2.8 Assume for convenience that B = {0, 1}. If we consider extrapolations
of length l, there are 2l possibilities. Considering large l, we say that y
compresses well with respect to x in case c ≤ log l. Then, the corollary
tells us that µ(y|x) ≥ p/l. There can be only l/p strings z of length l
with that high a probability. At least 2l − l/p possible extrapolations
of length l have lower µ(·|x)-probability. This is a fraction of the total
number of l-length extrapolations that goes to 1 as l grows unboundedly.
Stated differently, choosing a long extrapolation that compresses well
with respect to x causes us to pick an extrapolation that belongs to the
vanishing fraction of such extrapolations that have the highest µ(·|x)-
probabilities, even though it may not have the very highest probability.

3

That the compression criterion will not always give us the highest µ(·|x)-
probability can be seen as follows. Consider a measure µ with µ(0|x) = 2/3 and
choose a reference universal monotone machine with Km(x0)−Km(x) = 0 for
infinitely many l(x) with probability 1. Minimizing − log µ(y|x) gives y = 0,
and minimizing Km(xy)−Km(x) gives y = 1. A detailed study of prediction
by compression is [M. Hutter, J. Comput. Syst. Sci., 72(2006), 95–117], where
many more such examples are given.
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5.2.5
Universal
Recursion
Induction

In inductive inference, a particular abstraction of the induction ques-
tion associated with the name of E.M. Gold, we are given an effective
enumeration of partial recursive functions f1, f2, . . . mapping domain X
into range Y . Such an enumeration can be the functions computed by
Turing machines, but also the functions computed by finite automata.
We want to infer a particular function f . To do so, we are presented
with a sequence of examples, D = e1, e2, . . . , en, containing elements
(possibly with repetitions) of the form

e =

{
(x, y, 0) if f(x) 6= y,
(x, y, 1) if f(x) = y,

with x ∈ X and y ∈ Y . For n → ∞ we assume that the resulting D
contains all elements (x, y, lx,y), (x, y) ∈ X × Y and lx,y = 1 if f(x) = y
and 0 otherwise.

Hypothesis
Identification

Let the different hypotheses Hk be ‘f = fk.’ Then,
∑

j{Pr(D|Hj) : D is
consistent with fj}=1, and

∑

j{Pr(D|Hj) : D is inconsistent with fk} =
0. Take any positive prior distribution P (Hk), say P (Hk) = 1/k(k+ 1),
and apply Bayes’s rule, Equation 5.1, to obtain

Pr(Hk|D) =
Pr(D|Hk)P (Hk)
∑

j Pr(D|Hj)P (Hj)
, (5.6)

with the summation over those j such that fj is consistent with D. With
increasing n, the numerator is monotonically nonincreasing. Since all
examples eventually appear, the numerator and denominator converge
to limits. Of course, since we deal with partial computable functions,
we cannot effectively decide whether data D is consistent with those
functions that are not computable. That question is ignored here.

For each k, the inferred probability of fk is monotonically nondecreas-
ing with increasing n, until fk is inconsistent with a new example, in
which case it falls to zero and stays there henceforth. Only the fk’s that
are consistent with the sequence of presented examples have positive in-
ferred probability. Order the fk’s by decreasing probability. The ordering
between the fk’s with positive probability never changes; the only thing
that can happen is that fk’s are removed from this set because their
probability drops to zero. At each step we infer the fk with the highest
posterior probability. This is always the first element in the current or-
dering. Assuming that f occurs in the list, at some step all preceding
functions before the first occurrence of f have been deleted. From that
step onward, f has the highest probability.

Analyzing this process, we find that it is equivalent to starting with the
fk’s ordered by decreasing probability according to P (Hk) = 1/k(k+1),
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as the list f1, f2, . . . . Similar to the classical Gold method, after receiv-
ing each new example we eliminate all remaining fk’s that are inconsis-
tent from the beginning onward up to the position of the first consistent
function. When we receive a new example e, set D := D, e, and repeat
this process. Eventually, the remaining first function in the enumeration
is a copy of f and it does not change any more. This algorithm is called
learning by enumeration. One learns more and more about the unknown
target function and approximates it until the correct identification has
been achieved. This learning model is called learning in the limit. The
learner eventually learns the concept exactly but never knows when that
has happened. This deceptively simple idea has generated a large body
of sophisticated literature.

How do we use the universal prior probability in this setting? Choose
P (Hk) = m(k), with m(·) the universal discrete probability. By The-
orem 4.3.1, page 267, we have m(x) = 2−K(x), with K(·) the pre-
fix complexity. With this prior, at each stage, Pr(·|D) will be largest
for the simplest consistent hypothesis, that is, for the one with the
least prefix complexity. In the limit, this will be the case for Hk such
that fk = f with K(k) minimal. This process corresponds to enumera-
tion of the fk’s as fπ(1), fπ(2), . . . , where π is a permutation such that
K(π(i)) ≤ K(π(i+ 1)) for all i = 1, 2, . . . .

In this way, one enumerates the functions by increasing prefix complex-
ity. Assume that the looked-for f = fk is a simple function, as it in prac-
tice always is, with K(k) ≪ log k. (If f is a truly random function then
it is highly unlikely that anyone will ever conceive of its existence and
would want to learn it.) We will find simple fk much faster using m(·)
as prior than using 1/k(k + 1); see Exercise 5.2.11 on page 369. In fact,
the speed-up can be incomputably fast! But since m is incomputable,
one can use 1/k(k + 1) as a (trivially computable) approximation.

Mistake Bounds Consider an effective enumeration f1, f2, . . . of partial recursive functions
with values in the set {0, 1} only. Each function f in this enumeration
that happens to be total defines an infinite binary sequence ω = ω1ω2 . . .
by ωi = f(i), for all i. In this way, we have an enumeration of infinite
sequences ω. These sequences form a binary tree with the root labeled
ǫ, and each ω is an infinite path starting from the root. We are trying
to learn a particular function f , in the form that we predict ωi from the
initial sequence ω1 . . . ωi−1 for all i ≥ 1. We want to analyze the number
of errors, called mistakes, we make in this process. If our prediction is
wrong (say, we predict a 0 and it should have been a 1), then this counts
as one mistake.
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Lemma 5.2.3 Assume the discussion above. We try to infer f = fn. There is an al-
gorithm that makes fewer than 2 logn mistakes in all infinitely many
predictions.

Proof. Define, for each fi with associated infinite sequence ωi, a measure
µi by µi(ω

i) = 1. This implies that also µi(ω
i
1 . . . ω

i
n) = 1 for all n. Let

ξ be a so-called mixture semimeasure defined by

ξ(x) =
∑

i

1

i(i+ 1)
µi(x),

for each x ∈ {0, 1}∗. (Note that ξ is a simple computable approximation
to M.) The prediction algorithm is very simple:

If ξ(0|x) ≥ 1
2 , then predict 0; otherwise predict 1.

Suppose that the target f is fn. If there are k mistakes, then the con-
ditional in the algorithm shows that 2−k > ξ(ωn). (The combined prob-
ability of the mistakes is largest if they are concentrated in the first
predictions.) By the definition of ξ we have ξ(ωn) ≥ 1/(n(n + 1)). To-
gether this shows that k < 2 log(n+ 1). 2

Example 5.2.9 If in the proof we put weight 2−K(n) on µn (instead of weight 1/(n(n+
1))), then the number of mistakes is at most k < K(n). Recall that
always K(n) ≤ logn+ 2 log log n+O(1). But for certain simple n (such
as n = 2k) the value K(n) drops to less than log logn+ 2 log log logn+
O(1). Of course, the prediction algorithm becomes ineffective because
we cannot compute these weights. 3

Lemma 5.2.4 If the target function is f and we make k errors in the first m predictions,
then log

(
m
k

)
+K(m, k) +O(1) ≥ K(f(1) . . . f(m)).

Proof. Let A be a prediction algorithm. If k is the number of errors,
then we can represent the mistakes by the index j in the ensemble of k
mistakes out of m, where

j ≤
(
m

k

)

.

If we are given A, m, k, and j, we can reconstruct f(1) . . . f(m). There-
fore, K(A,m, k, j) ≥ K(f(1) . . . f(m)). Since K(A) = O(1), the lemma
is proven. 2

Certification The following lemma sets limits on the number of examples needed to
effectively infer a particular function f . In fact, it does more. It sets a
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limit to the number of examples we need to describe or certify a particular
function f in any effective way. Let D = e1e2 . . . en be a sequence of
examples ei = (xi, yi, bi) and let x = x1x2 . . . xn, y = y1y2 . . . yn, and
b = b1b2 . . . bn. The statement of the lemma must cope with pathological
cases such as that x simply spells out f in some programming language.

Lemma 5.2.5 Let c be a large enough constant. If K(f |x, y) > K(b|x, y) + c, then we
cannot effectively find f .

Proof. Assume, by way of contradiction, that we are able to compute f ,
given D, from a program of length significantly shorter than K(f |D).
By Theorem 3.9.1, page 247, with extra conditional x, y in all terms, we
have

K(f, b|x, y) ≤ K(b|x, y) +K(f |b, x, y) +O(1). (5.7)

We have assumed that there is an algorithm A that given D, returns f .
That is, describing A in K(A) = O(1) bits, we obtain

K(f |b, x, y) = K(f |D) + O(1) ≤ K(A) +O(1) = O(1).

Substituting this in Equation 5.7, we obtain K(f, b|x, y) ≤ K(b|x, y) +
O(1). Since, trivially,K(f, b|x, y) = K(f |x, y)+O(1), we obtainK(f |x, y)
≤ K(b|x, y) +O(1), which contradicts the assumption in the lemma. 2

Exercises 5.2.1. [25] Prove Lemma 5.2.1 on page 353 for the cases in which B is
a discrete, possibly nonbinary, alphabet.

Comment. Source: T.M. Cover, J.A. Thomas, Elements of Information
Theory, Wiley, 1991, pp. 300–301, attributed to I. Csiszár, Studia Sci.
Math. Hungar., 2(1967), 299–318, and others.

5.2.2. • [27] Define S′
n(a) =

∑

l(x)=n−1 µ(x)(M(a|x) − µ(a|x))2, with
a ∈ B, with B the basic alphabet used in Theorem 5.2.1 on page 354.
Let S′

n =
∑

a∈B S
′
n(a). This is the summed expected squared difference.

(a) Show that if B = {0, 1} then
∑

n S
′
n(0), S′

n(1) ≤ 1
2K(µ) ln 2.

(b) Show that for every finite, possibly nonbinary, alphabet B we have
∑

n S
′
n ≤ K(µ) ln 2.

Comments. The definition of S′
n is based on the Euclidean distance be-

tween two probability distributions P andQ over B, defined asE(P,Q) =
[∑

a∈B(P (a) −Q(a))2
]1/2

. Item (a) is Solomonoff’s original version of
Theorem 5.2.1 using the squared difference rather than the absolute dif-
ference. This was used in earlier editions of this book. Source for Item
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(a): R.J. Solomonoff, IEEE Trans. Inform. Theory, 24(1978), 422–432.
Source for Item (b): M. Hutter, Proc. 12th Europ. Conf. Mach. Learn.,
Lect. Notes Artif. Int., Vol. 2167, Springer-Verlag, Berlin, 2001.

5.2.3. [20] Show the nonconvergence of the ratio in Theorem 5.2.2 for
off-sequence prediction. Take the set of basic elements B = {0, 1}. Define
the measure µ(1|ω1:n−1) = (1 − µ(0|ω1:n−1)) = 1

2n
−3.

(a) Show that µ(0n) → 0.450 . . . for n→ ∞, so 0∞ is µ-random.

(b) Show that M(0n−1) = O(1), and M(0n−11) = 2−K(n)−O(1).

(c) Show that M(1|0n−1)/µ(1|0n−1) = Ω(n).

Comments. This illustrates Example 5.2.7 on page 358. Hint for Item (a):
µ(0n) =

∏n
i=1(1 − 1

2 i
−3). Hint for Item (c): M(1|0n−1) = Ω(2−K(n)) =

Ω(1/n2). Source: M. Hutter, Universal Artificial Intelligence, Springer-
Verlag, Berlin, 2004.

5.2.4. [12] Show that for every semimeasure σ and measure µ the func-
tion t(x) = σ(x)/µ(x) is a µ-supermartingale.

5.2.5. [19] For every positive measure µ and every µ-supermartingale
t(x) as in Exercise 5.2.4, the set of infinite binary sequences ω such that
there exists a finite limit of t(ω1:n) has µ-measure one.

Comments. Hint: use Claim 4.5.4 on page 322. Source: An.A. Muchnik
(personal communication by N.K. Vereshchagin on January 9, 2004).

5.2.6. [33] (a) Let µ be a positive computable measure, conditionally
bounded away from zero as in Definition 5.2.3 on page 359. Show that for
every µ-supermartingale t(x) as in Exercise 5.2.4, and for every number
k, the set of infinite binary sequences ω such that there exists a number
B (a limit) such that for every ǫ there is an n0 such that for all n > n0

and all x of length less than k we have |t(ω1:nx)−B| < ǫ has µ-measure
one.

(b) There exists a positive computable measure µ such that for the µ-
supermartingale M(x)/µ(x) the set of infinite binary sequences defined
in Item (a) has µ-measure 1 − ǫ with ǫ > 0.

Comments. Item (a) gives a formulation of the result on off-sequence
convergence described in Theorem 5.2.2, Item (ii), on page 359. Namely,
M(y|x)/µ(y|x) = t(xy)/t(x) tends to B/B = 1, with t(x) = M(x)/µ(x).
Item (b) states that the condition ‘there exists a constant c such that
µ(0|x) > c, µ(1|x) > c for all x’ of Definition 5.2.3 is necessary. There-
fore, Item (a) is the strongest formulation of Theorem 5.2.2, Item (ii):
M(y|x)/µ(y|x) = t(xy)/t(x) tends to B/B = 1, where t(x) = σ(x)/µ(x).

Source: An.A. Muchnik, Ibid.; M. Hutter and An.A. Muchnik, Theoret.
Comput. Sci., 382:3(2007), 247–261.
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5.2.7. [38] Define 0′-lower semicomputable as lower semicomputable
by a Turing machine equipped with an oracle for the halting problem,
Section 1.7.2. Here we use monotone Turing machines, since we want to
deal with infinite sequences. Define 0′ − µ-randomness of infinite binary
sequences as previously µ-randomness, but this time using a 0′-lower
semicomputable semimeasure M′ that is universal in the sense that it
majorizes every 0′-lower semicomputable semimeasure. For every posi-
tive computable measure µ, every universal semimeasure M(x) (equiva-
lently, universal reference monotonic Turing machine that generates it),
and for every 0′−µ-random infinite sequence ω, there exists a finite limit
of t(ω1:n), where t(x) = M(x)/µ(x),

Comments. This is a counterpart of Exercise 5.2.5; the counterpart of
Exercise 5.2.6 is similar. Source: An.A. Muchnik, Ibid.; M. Hutter and
An.A. Muchnik, Ibid.

5.2.8. • [40] (a) Show that there exists an infinite binary sequence ω
that is λ-random (with λ the uniform measure), and is 0′-computable,
and there exists a universal semimeasure M (that is, a universal mono-
tone Turing machine yielding this measure) such that M(ωn+1|ω1:n) 6→
λ(ωn+1|ω1:n) for n→ ∞ (here λ(x|l(x) = n) = 1/2l(x)).

(b) Show that for every universal semimeasure M there exist com-
putable measures µ and non-µ-random sequences ω such that M(ωn+1|
ω1:n)/λ(ωn+1|ω1:n) → 1 for n→ ∞.

Comments. Item (a) states that for some reference universal monotonic
machine with induced universal measure M and some random sequence
(with respect to the uniform measure) the convergence does not hold.
Hence, Theorem 5.2.2 on page 359 does not always hold for y fixed,
and xy is an increasing initial segment of a random sequences ω—in
contrast to what was claimed, without proof, in earlier editions of this
book. In fact, these random sequences for which convergence fails are
0′-computable (computable by Turing machines with an oracle for the
halting problem). An.A. Muchnik supposed, though he did not know a
proof, that for some other M the convergence is true for every random
sequence. If so, then strengthening of the convergence in Theorem 5.2.2
on page 359 with µ-probability one to convergence for all individual
random sequences is a matter of choice of reference universal monotonic
machine. This is a deviation from the usual laws in Kolmogorov complex-
ity that are invariant under change of reference universal machine. Hint
for Item (a): Define ω = ω1ω2 . . . by ωn = 0 if M(ω1:n−10|n) ≤ 1/2n,
and ωn = 1 otherwise. Prove that ω is λ-random. Construct a lower
semicomputable semimeasure ν such that ν dominates M on ω, but
ν(ωn+1|ω1:n) 6→ λ(ωn+1|ω1:n). Then mix ν with M to make the mixture
universal, but with a larger contribution of ν to preserve nonconver-
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gence. Item (b) is a converse to Item (a). Source: An.A. Muchnik, Ibid.;
M. Hutter and An.A. Muchnik, Ibid.

5.2.9. [43] Let B be a finite alphabet. Show that there exists a lower
semicomputable semimeasureW such that for every computable positive
measure µ and every µ-random infinite sequence ω we have W (a|ω1:n →
µ(a|ω1:n) with n→ ∞, for every a ∈ B.

Comments. This W is a universal predictor, but it is not universal, in
that it does not multiplicatively dominate every lower semicomputable
semimeasure, unlike M. Source: M. Hutter and An.A. Muchnik, Ibid.

5.2.10. [14] Recall Equation 5.6 on page 363. Show that as the number
m of examples D = e1, . . . , em grows, the inferred probability Pr(Hk|D)
is either monotonically nondecreasing to a limit or it suddenly falls to 0
and stays there thereafter, for every k. Argue why this process is called
‘learning in the limit’ and ‘learning by enumeration.’

5.2.11. [27] We continue Exercise 5.2.10. Let f1, f2, . . . be the standard
enumeration of the partial recursive functions.

(a) Give the implicit effective enumeration of the hypotheses for the prior
P defined by P (Hi) = 1/(i(i+ 1)) and give the implicit incomputable
enumeration according to the universal prior with the probability of Hi

equal to m(i).

(b) Given an infinite sequence e1, e2, . . . of examples of fi, the speed
of learning a function fi on that sequence is the minimal number m of
examples e1, . . . , em that contain counterexamples to every function fj
with j < i. Show that if f = fi is the function to be learned with i
minimal, then there are sequences of examples with which we learn f
about i/2K(i) times faster using prior m than using prior P . (If i = 2r

then we learn exponentially faster using m, and so on.) Moreover, for
every sequence of examples we learn f at least as fast using prior m as
we do using prior P , except possibly if f = fi is random in the sense
that K(i) ≥ log i.

Comments. Hint: enumerate all hypotheses in two lists, one listH1, H2, . . .
according to decreasing P (Hi), and one list according to decreasing m(i),
and use Gold’s learning by enumeration, Section 5.2.6. Roughly speak-
ing, the universal prior puts some simple hypotheses Hi with K(i) very
small (sometimes incomputably) much closer to the beginning of the
list, but it does not put any hypotheses Hi later in the list than position
2K(i) = O(i log2 i). Source: M. Li, P.M.B. Vitányi, J. Comput. System
Sci., 44:2(1992), 343–384.

5.2.12. [26] We apply Lemma 5.2.4 on page 365 to obtain insight into
the relation between the number k of mistakes in the first m predictions



370 5. Inductive Reasoning

and the complexity of the m predicted target-function values. Define
x = f(1) . . . f(m).

(a) Show that log
(
m
k

)
+K(m, k)+O(1) = k log m

k +m
(
1 − k

m

)
log 1

1−k/m+

O(logm).

(b) Show that if k/m is small, then the right-hand side in Item (a) is
about k log(m/k) + O(logm), and hence k ≥ K(x)/ log(m/K(x)), ap-
proximately. For instance, with K(x) =

√
m we obtain k ≥ 2

√
m/ logm.

(b) Show that if k/m is large, then the right-hand side in Item (a)
approximates mH(k/m) (the entropy of a (k/m, 1 − k/m) Bernoulli
process). For instance, if k/m = 1

3 , then nH(1
3 ) ≥ K(x).

(c) Show that another approximation than that used in Item (a) with
k/m small gives k ≥ mH−1(K(x)/m). For instance, if K(x) = m, then
k ≥ m/2.

Comments. Hint for Item (a): use Exercise 1.3.3 on page 10. Source:
Discussions with P. Gács; see page 434.

5.3

Simple

Pac-Learning

The model of pac-learning introduced in 1984 by L.G. Valiant is aimed
at describing feasible learning in a rigorous manner to remedy lack of
precision and objectivity in the ad hoc and vague descriptions of learning
used previously. While the pac model is a first step toward a rigorous
mathematical formulation of the notion of learning, it has turned out
that its requirements are too strong. That is, many tasks that intu-
itively are learnable, or are clearly learnable in practice, turn out not
to be learnable in the pac model. Moreover, there is a certain triviality
in the pac-learning idea in the sense that in many cases, pac-learning
algorithms are just algorithms that may return any hypothesis that is
consistent with the examples.

It turns out that using the notion of universal distribution, one can both
refine the pac learning concept and make it more sensible, while also the
algorithms required to achieve this new simple pac-learning must do
something cleverer than just be consistent.

5.3.1
Pac-Learning

We start with the basic theory of pac-learning. According to commonly
accepted views in the theory of computation, ‘feasibility’ means that the
learning algorithm should run in polynomial time and use a polynomial
number of examples. This requirement implies that not all examples can
turn up. Hence, it is impossible to infer a concept precisely. This means
that one can only hope to learn the concept approximately. Moreover,
one could be presented with unrepresentative examples for the concept to
be inferred. It seems reasonable to assume that the examples are drawn
randomly from a sample space according to a probability distribution.
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The approximation between the target concept and the learned concept
can be expressed in the probability of the set of examples on which the
two concepts disagree.

The sample space S can be discrete (N ) or continuous (R). The ele-
ments of S are called examples. A concept c is a subset of S. Abusing
notation, we use c and the characteristic function f : S → {0, 1} of c in-
terchangeably for the concept c ⊆ S and for the syntactic representation
of c. A concept class C is a set of concepts.

Consider a concept class C. For each concept f ∈ C and example v ∈ S,

f(v) =

{
1 if v is a positive example of f,
0 if v is a negative example of f.

The learning algorithm draws examples from the sample space S accord-
ing to a fixed but unknown probability distribution P . Each example in
the sample comes with a label Positive or Negative.

Definition 5.3.1 A concept class C is pac-learnable (probably approximately correct learn-
able) if there exists a (possibly randomized) learning algorithm A such
that for each f ∈ C and ǫ (0 < ǫ < 1), algorithm A halts in a finite num-
ber of steps and examples, and outputs a concept h ∈ C that satisfies
the following: With probability at least 1 − ǫ,

∑

f(v) 6=h(v)

P (v) < ǫ.

A concept class is polynomially pac-learnable if it is pac-learnable and
the learning algorithm always halts within time and number of examples
p(l(f), 1/ǫ), for some polynomial p.

Examples of concept classes are the set of finite automata, the set of
Boolean formulas and the set of k-DNF formulas (Boolean formulas in
disjunctive normal form such that each term has at most k literals).

5.3.2
Occam’s Razor
Formalized

Given a set of examples, Occam’s razor tells us to choose the simplest
concept consistent with the data. However, the simplest concept may be
incomputable (in the sense of shortest effective program) or infeasible to
find (in the sense of shortest description in some fixed syntax). For in-
stance, computing a shortest k-DNF formula consistent with a given set
of examples is NP-hard. It turns out that each polynomial-time reason-
able approximation to a shortest rule can be used to achieve polynomial
pac-learning.

Definition 5.3.2 Let 0 ≤ α < 1 and β ≥ 1 be constants, m the number of examples, and
s the length (in number of bits) of the smallest concept in C consistent
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with the examples. An Occam algorithm is a polynomial-time algorithm
that finds a hypothesis h ∈ C consistent with the examples and satisfying
C(h) ≤ sβmα.

Intuitively, for a sufficiently large (but still polynomial) set of examples,
generated according to the unknown probability distribution P , any con-
sistent hypothesis that is significantly smaller than the examples will be
consistent with most of the unseen examples as well. The commonly used
form of an Occam algorithm results from replacing C(h) by the size of
h. Our definition yields a stronger version (which is sometimes required)
of following Occam’s razor theorem.

Theorem 5.3.1 A concept class C is polynomially pac-learnable if there is an Occam
algorithm for it.

Proof. Fix an error tolerance ǫ (0 < ǫ < 1). Choose m such that

m ≥ max

{(
2 sβ

ǫ

)1/(1−α)

,
2

ǫ
log

1

ǫ

}

. (5.8)

This is polynomial in s and 1/ǫ.

Claim 5.3.1 Let m be as in Equation 5.8. Let C be a set of r concepts, and let f
be one of them. The probability that some concept h ∈ C both satisfies
P (f 6= h) ≥ ǫ and is consistent with m independent examples of f is at
most (1 − ǫ)mr.

Proof. If P (h 6= f) ≥ ǫ, then h is a bad hypothesis. That is, h and f
disagree with probability at least ǫ on a random example. The set of
bad hypotheses is denoted by B. Let Eh be the event that some fixed
bad hypothesis h agrees with all m examples of f . Since the m examples
of f are independent,

P (Eh) ≤ (1 − ǫ)m.

Since there are at most r bad hypotheses,

P

(
⋃

h∈B
Eh

)

≤ (1 − ǫ)mr.

2

The postulated Occam algorithm finds a hypothesis of Kolmogorov com-
plexity at most sβmα. The number r of hypotheses of this complexity
satisfies

log r ≤ sβmα.



5.3. Simple Pac-Learning 373

By assumption on m,

r ≤ (1 − ǫ)−m/2.

(Use ǫ < − log(1 − ǫ) < ǫ/(1 − ǫ) for 0 < ǫ < 1.) Using the claim, the
probability of producing a hypothesis with error larger than ǫ is at most

(1 − ǫ)mr ≤ (1 − ǫ)m/2.

Substituting m, we find that the right-hand side is at most ǫ. 2

Corollary 5.3.1 According to Definition 5.3.2 with α = 0, the theorem says that if a
learning algorithm compresses the data (ofm examples wherem satisfies
Equation 5.8) to a representation of length sβ , that is, length polynomial
in the length of the target concept, and the algorithm runs in time
polynomial in the length of the target concept, then that algorithm is a
polynomially pac-learning algorithm.

Informally, Occam’s razor theorem says that given a set of positive and
negative data, any consistent concept of size ‘reasonably’ shorter than
the size of data is an ‘approximately’ correct concept with high prob-
ability. That is, if one finds a shorter representation of data, then one
learns. The shorter the conjecture is, the more efficiently it explains the
data, hence the more precise the future prediction.

5.3.3
Making
Pac-Learning
Simple

In the pac-learning model we require that the algorithm learn under
all distributions. Therefore, pac-learning is also called distribution-free
learning. It has turned out that many problems are intractable (NP-
hard) in this model. Maybe it is feasible to learn only under some distri-
butions, such as the computable ones. And maybe it is too much to ask
to be able to learn all finite automata fast (humans cannot either), but
surely we ought to be able to learn a sufficiently simple finite automaton
fast (as humans can).

Pac-learning is not really distribution-free, since all examples are drawn inde-
pendent and identically distributed (i.i.d.) from the same, arbitrary but fixed,
distribution. This is much more restricted than the general Solomonoff setting
we saw before, where every next example may depend on, and be differently
distributed from, the previous ones. On the other hand, in the Solomonoff
setting we require recursivity of the distribution, while in pac-learning we do
not.

Certain concepts that are not known to be polynomially pac-learnable
in the distribution-free model can be polynomially pac-learned under
the uniform distribution by a specialized learning algorithm. However,
learning under one distribution may be too restrictive to be useful. It
may be useful to investigate polynomial pac-learnability under a cer-
tain class of distributions. One would like this class to be wide enough
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to be interesting, yet restrictive enough to make more concept classes
polynomially learnable. An outline of this section is as follows:

Discrete sample set. Let Q be a distribution on a discrete sample set.
A concept class is polynomially pac-learnable under all distributions
that are multiplicatively dominated by Q, provided you draw your
sample according to Q in the learning phase iff the concept class is
polynomially pac-learnable under Q. The caveat is that while pac-
learning for distribution P , we need to draw the sample according
to Q. We shall develop this theory with Q = m, the universal lower
semicomputable distribution. The remarkable property of this dis-
tribution is that in a polynomial sample, with overwhelming proba-
bility all examples of logarithmic complexity (the simple examples)
will be represented. Hence, a learning algorithm just needs to re-
construct a concept approximately when all simple examples are
given. This leads to a new type of learning algorithm.

Continuous sample set. Let µ be a semimeasure on a continuous
sample set. A concept class is polynomially pac-learnable under
all semimeasures that are multiplicatively dominated by µ iff the
concept class is pac-learnable under µ. Here we have dropped the
polynomial-time requirement and also replaced the requirement of
drawing according to µ in the learning phase. We will take for µ
the universal lower semicomputable semimeasure M and show that
there is a class that is pac-learnable under M but not pac-learnable
under all distributions.

5.3.4
Discrete Sample
Space

Consider the discrete sample space S = N . A distribution P is simple
if it is (multiplicatively) dominated by the universal distribution m; see
Section 4.3.1. That is, there exists a constant cP such that for all x,

cP m(x) ≥ P (x).

The first question is how large the class of simple distributions is. It in-
cludes the lower semicomputable (and a fortiori the computable) distri-
butions such as the uniform distribution, normal distribution, geometric
distribution, and Poisson distribution (with computable parameters). It
can be shown that there is a distribution that is simple but not lower
semicomputable and that there is a distribution that is not simple. See
Exercise 5.3.1 on page 381.

In the discrete case we needed to modify the standard pac-learning model
by the requirement that the sample in the learning phase be drawn ac-
cording to m. A possible justification (which we give for what it is worth)
is that in real life the examples are sometimes provided by mechanical
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or artificial means or good-willed teachers, rather than provided accord-
ing to the underlying distribution. Naturally, the simpler examples are
provided first—that is, more or less according to m(x) = 2−K(x). We
prove the following completeness result:

Theorem 5.3.2 A concept class C is polynomially learnable under the universal distribu-
tion m iff it is polynomially learnable under each simple distribution P ,
provided that in the learning phase the set of examples is drawn according
to m.

Proof. Since P is simple, there is a constant cP > 0 such that for all x,

cP m(x) ≥ P (x).

Assume that C is polynomially pac-learnable under distribution m. Then
one can run the learning algorithms with error parameter ǫ/cP in poly-
nomial time t. Let err be the set of strings that are misclassified by the
learned concept. So with probability at least 1 − ǫ,

∑

x∈err
m(x) ≤ ǫ

cP
.

Then,
∑

x∈err
P (x) ≤ cP

∑

x∈err
m(x) ≤ ǫ.

If the underlying distribution is P (·) rather than m(·), then we are
guaranteed to pac-learn C (in time t) if sampling according to m(·). 2

There are two undesirable aspects of Theorem 5.3.2 in this easy textbook
version. The algorithm must know cP = 2K(P ) depending on the unknown
distribution P in order to determine error parameter ǫ/cP . Secondly, in general
we are not dealing with the sample space N but with a subset such as D =
{0, 1}n. Hence we actually deal with m(·|D). Both problems are technically
resolved (essentially by polynomial oversampling) at the cost of somewhat
complicating the statement of Theorem 5.3.2 and its proof in [M. Li and
P.M.B. Vitányi, SIAM J. Comput., 20:5 (1991), 911–935].

Since m(·) assigns higher probabilities to simpler strings, one could sus-
pect that after polynomially many examples, all simple strings are sam-
pled and the probability that is concentrated on the unsampled strings
is very low (inverse polynomial). However, this is not the case. Let E
be any set of nc examples. Then it can be shown (left to the reader as
Exercise 5.3.2 on page 381) that

∑

x 6∈E
m(x) = Ω

(
1

log2 n

)

. (5.9)
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Previous approaches considered only syntactically described classes of
concepts. Kolmogorov complexity allows us to introduce the idea of re-
stricting a syntactically described class of concepts to the concepts that
are simple in the sense of having short effective descriptions.

Example 5.3.1 Learning log-DNF. We consider a class not known to be polynomial
pac-learnable (under all distributions). We show that this class is poly-
nomially pac-learnable under simple distributions.

Definition 5.3.3 Consider concepts that are Boolean formulas over variables x1, . . . , xn. A
literal is either a variable x or its negation ¬x. Denote logical disjunction
∨ by + and logical conjunction ∧ by concatenation. A DNF formula is
a Boolean formula f in disjunctive normal form f = m1 + · · ·+ms. The
terms mi are called monomials. Each mi is a product of literals. A CNF
formula is a Boolean formula g in conjunctive normal form g = c1 · · · cs.
The terms ci are called clauses. Each ci is a sum of literals.

The sample space is S = {0, 1}n. An example vector v ∈ S represents
a truth assignment to the n variables: if the ith element of v is 1, then
xi = true; otherwise xi = false. An example v is a positive example for
f if its truth assignment makes the whole formula f true. Denote this by
f(v) = 1. Otherwise v is a negative example for f , denoted by f(v) = 0.

Assume that the positive examples are distributed according to some dis-
tribution P+, and the negative examples according to some distribution
P−. The learning algorithm can choose to press a button to obtain an
example from P+, and it can press a button to obtain an example from
P−. (This is easily shown to be equivalent to the standard pac model
with one distribution of positive and negative examples.) A k-DNF for-
mula has at most k literals per monomial. Without loss of generality,
let us assume that all k-DNF (over n variables) formulas have length
at least n. The class k-DNF is known to be polynomially pac-learnable
for the case that k is a fixed constant independent of n; for other k the
status is unknown.

Let us generalize this a little. Write log-DNF to denote DNF formulas
over n variables where each monomial term m has complexity K(m) =
O(log n) and the length of the formula does not exceed a polynomial in
n. This is a nontrivial superset of k-DNF. It is not known whether log-
DNF is polynomially pac-learnable; we will show that it is polynomially
pac-learnable under m (and hence simple-distribution-free polynomially
pac-learnable in the sense of Theorem 5.3.2).

Lemma 5.3.1 The class log-DNF is polynomially learnable under m.

Proof. Let f(x1, . . . , xn) be a log-DNF with each term of prefix com-
plexity at most c logn. If m is a monomial term in f , we write m ∈ f .
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Sample nd examples, where d is large enough to satisfy the argument
below.

Claim 5.3.2 With probability greater than 1 − nc/en, all examples of the following
form will be drawn:

For each monomial term m ∈ f , the example vectors 0m, defined as the
vectors that satisfy m and have 0 entries for all variables not in m; the
example vectors 1m, defined as the vectors that satisfy m and have 1
entries for all variables not in m.

Proof. Each monomial m ∈ f satisfies K(m) ≤ c logn, and therefore
K(0m) ≤ c logn+O(1). Therefore,

m(0m) ≥ 2−c logn−O(1) ≥ n−c−1,

for large enough n. This is the probability that 0m will be sampled in
one draw. Let E be the event that 0m does not occur in nd draws. Then

Pr(E) < (1 − n−c−1)n
d ≤ 1

2
e−n,

for large enough d. The same estimate holds for the probability that
the example 1m is not sampled in nd draws. There are only nc possible
monomialsm such thatK(m) ≤ c logn. Hence, the probability such that
all vectors 0m and 1m associated with such monomials m are sampled
is at least 1 − nc/en. 2

Now we approximate f by the following learning procedure:

Step 0. Sample nd examples according to m. Set POS (NEG) to
the set of positive (negative) examples sampled.

Step 1. For each pair of examples in POS, construct a monomial
that contains xi if both vectors have 1 in position i, contains ¬xi if
both vectors have 0 in position i, and does not contain variable xi
otherwise (1 ≤ i ≤ n).

Step 2. Among the monomials constructed in Step 1, delete the
ones that imply examples in NEG. {The remainder forms a set M}

Step 3. Set Am = {v : m(v) = 1}. {That is, Am is the set of
positive examples implied by monomial m.} Use a greedy set-cover
algorithm to find a small set, say C, of monomials m ∈ M such
that

⋃

m∈C Am covers all positive examples in POS.

We need to prove the correctness of the algorithm.
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Claim 5.3.3 With probability greater than 1−nc/en, the set of monomials {m : m ∈
f} is a subset of M .

Proof. By Claim 5.3.2, with probability at least 1 − nc/en, we draw all
vectors 1m and 0m such that the monomial m has prefix complexity
at most c logn. In Step 1 of the algorithm we form the monomial m
from examples 1m and 0m. Thus, with probability at least 1−nc/en, all
monomials of f belong to M . 2

Of course, many other monomials consistent with the examples may also
be in M . Finding all of the original monomials of f precisely is NP-hard.
For the purpose of learning it is sufficient to approximate f . We use the
following well-known approximation of the standard set-cover result.

Claim 5.3.4 Let A1, . . . , An be sets such that
⋃n
i=1 Ai = A = {1, . . . , q}. If there

exist k sets Ai1 , . . . , Aik such that A =
⋃k
j=1 Aij , then it is possible

to find in polynomial time l = O(k log q) sets Ah1 , . . . , Ahl
such that

A =
⋃l
j=1 Ahj .

Let f have k monomials. The k monomials cover the positive examples in
the sense that POS ⊆ ⋃m∈f Am. There are 2n examples. By Claim 5.3.4,
we can find O(kn) monomials to approximate f and cover the examples
in POS in polynomial time. Occam’s razor theorem, Theorem 5.3.1,
implies that our algorithm polynomially learns log-DNF. 2

Step 3 of the above algorithm is needed to compress the data in order to
apply Occam’s razor theorem. One may wonder whether one can encode
each monomial as binary vectors efficiently, and hence sample all binary
vectors of prefix complexity c logn; then decode these into monomials
to get all monomials of prefix complexity c logn; then run the set-cover
algorithm to choose a small set of monomials to achieve learning. But
this does not work, since there are 2n 0-1 vectors and 3n monomials of
n variables. It can be shown that there is no effective encoding scheme
that selectively codes only 2n monomials including all monomials of
prefix complexity c logn. 3

If m is given as a table, then one can randomly sample according to
m as explained in Example 4.4.3 on page 293. Unfortunately, m is not
computable. This problem is eliminated by using a time-bounded version
of m. Then the entire theory still holds in a scaled-down version as
discussed in Example 7.6.2 on page 585.
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5.3.5
Continuous
Sample Space

Consider a continuous sample space S = {0, 1}∞, that is, the set of one-
way infinite binary sequences or, equivalently, the set of real numbers in
the unit interval [0, 1] (Section 1.6). For example, the uniform distribu-
tion now is defined as λ(Γx) = 2−2l(x)−1, where Γx denotes the set of
all one-way infinite binary strings starting with x. This is the uniform
measure on the interval [0, 1]. We will use M, the continuous universal
lower semicomputable measure of Theorem 4.3.1, page 267.

Definition 5.3.4 A measure µ over S is simple if it is dominated multiplicatively by M,
in the sense of µ(x) = O(M(x)).

Similar to the discrete case one can show that there are simple measures
that are not lower semicomputable, and there are measures that are not
simple.

A concept class is a subset C ⊆ 2S of concepts, each of which is a measur-
able set. If c is a concept to be learned, then ω ∈ S is a positive example
if ω ∈ c, and it is a negative example if ω ∈ S − c. The remaining def-
initions of pac-learning can now be rephrased in the continuous setting
in the obvious way. If c, c′ are two sets, then c∆c′ is the symmetric set
difference (c

⋃
c′) − (c

⋂
c′).

While for discrete sample spaces all concept classes are pac-learnable
(although not all are polynomially pac-learnable), this is not the case
for continuous sample spaces. Here we show that all continuous concept
classes are pac-learnable over each simple measure µ iff they are pac-
learnable under the universal measure M. In contrast with polynomial
pac-learning of discrete concepts, we do not need to require (but do
allow) that the learning algorithm sample according to the universal
measure.

Theorem 5.3.3 A concept class C of concepts in S is pac-learnable under M iff it is
learnable under each simple measure.

Proof. (If ) This holds vacuously.

(Only if) We say that Cǫ ⊆ 2S is an ǫ-cover of C, with respect to
distribution µ, if for every c ∈ C there is a ĉ ∈ Cǫ that is ǫ-close to c
(µ(c∆ĉ) < ǫ). A concept class C is finitely coverable if for every ǫ > 0
there is a finite ǫ-cover Cǫ of C, everything with respect to a given measure
µ. A finite ǫ-cover Cǫ has finitely many concepts c, and each c is in the
closure of the set of cylinders under finite union and complement (and
finite intersection).

Claim 5.3.5 A concept class C is finitely coverable with respect to µ iff C is learnable
with respect to µ.
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Proof. The proof does not use Kolmogorov complexity, so there is no
reason to give it here. It is due to G. Benedek and A. Itai, Theoret.
Comput. Sci., 86:2(1991), 377–390; also reproduced in [M. Li and P.M.B.
Vitányi, SIAM J. Comput., 20(1991), 911–935]. 2

Using Claim 5.3.5, if C can be learned under M, then C can be finitely
covered with respect to M. Let µ be a simple distribution and d > 0
such that M(x) ≥ dµ(x) for all x. Then every finite ǫd-cover of C with
respect to M is also a finite ǫ-cover with respect to µ. Using Claim 5.3.5
again, it follows that C is learnable with respect to µ. This finishes the
proof of the theorem. 2

Note that this is a strong statement, since we are saying that if one can
learn under M, then one can also learn under every simple measure µ while
sampling according to µ. In the polynomial learning of discrete concepts we
had to require sampling according to m. This improvement is made possible
by relaxing the polynomial-time learning requirement to just learning.

Example 5.3.2 If all continuous concept classes that can be simple pac-learned could also
be pac-learned, then Theorem 5.3.3 would be vacuously true. However,
there exist continuous concept classes that can be simple pac-learned
but cannot be pac-learned under all distributions. Let the witness class
C consist of all concepts of the form c =

⋃{Γx : x ∈ I}, where I satisfies
the condition that if x, y ∈ I and x 6= y, then either M(x) ≥ 2M(y)
or vice versa. (As usual, the cylinder Γx is the set of all infinite binary
sequences starting with x, and M(x) is the M-measure of Γx.)

Given a continuous concept class C (as defined in Section 5.3.3) and a
finite set E ⊆ S = {0, 1}∞, if {E⋂ c : c ∈ C} = 2E , then we say that E
is shattered by C. The Vapnik–Chervonenkis (VC) dimension of C is the
smallest integer d such that no E ⊆ S of cardinality d + 1 is shattered
by C; if no such d exists, then the dimension of C is infinite. It is known
that a class C has finite VC-dimension iff it is pac-learnable.

This was proven by A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth
J. ACM, 35:4(1989), 929–965. The fundamental Occam’s razor theorem also
appears there.

It can be easily shown, and it is left to the reader as Exercise 5.3.9 on
page 382, that C has an infinite VC-dimension and therefore is not pac-
learnable under all measures. On the other hand, C is finitely coverable
under M, and therefore pac-learnable with respect to M (and hence
under all simple measures). 3
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Exercises 5.3.1. [27] Consider discrete distributions. Show that there is a simple
distribution that is not lower semicomputable, and there is a distribution
that is not simple.

Comments. Therefore, the simple distributions properly contain the lower
semicomputable distributions but do not include all distributions. Source:
this and the next three exercises are from [M. Li and P.M.B. Vitányi,
SIAM J. Comput., 20:5(1991), 911–935].

5.3.2. [24] Prove Equation 5.9. Can you improve this bound?

5.3.3. [30] Consider DNF over n variables. A DNF formula f is simple
if for each term m of f , there is a vector vm ∈ {0, 1}n that satisfies
m but does not satisfy any other monomials of f even by changing
one bit and K(vm) = O(log n). Simple DNFs can contain many high-
prefix-complexity terms as opposed to O(log n)-DNF. For example, take
y ∈ {0, 1}n with K(y) ≥ n−O(1). Then the number of 1’s in y is about
1
2n. Construct a term m containing xi if yi = 1, and neither xi nor ¬xi
otherwise. Then K(m) ≥ n − O(1) but the vector 1m consisting of all
1’s satisfies m and has K(1m) = O(log n). The class of simple DNF is
pretty general. Show that it is polynomially learnable under m.

5.3.4. [25] Show that log-DNF of Example 5.3.1 does not contain and
is not contained in simple DNF of Exercise 5.3.3.

5.3.5. [33] A k-decision list over n variables is a list of pairs L =
(m1, b1), . . . , (ms, bs), where mi is a monomial of at most k variables and
bi ∈ {0, 1}, for 1 ≤ i ≤ s, except that always ms = 1. A decision list L
represents a Boolean function fL defined as follows: For each example v ∈
{0, 1}n, let fL(v) = bi, where i is the least index such that v satisfies mi.
Since there are at most (2n)k+1 monomials of k literals over n variables,
we have s ≤ (2n)k+1.

(a) Using Occam’s razor theorem, Theorem 5.3.1, we show that k-decision
lists are polynomially pac-learnable.

(b) Let us define a log-decision list to be a decision list with each term
having prefix complexity O(log n). Show that log-decision list is polyno-
mially learnable under m.

Comments. Source: Item (a) [R. Rivest, Machine Learning, 2:3(1987),
229–246]. Item (b) was stated as an open problem in the first edition
of this book and was solved by J. Castro and J.L. Balcázar [pp. 239–
248 in: Proc. 6th Int. Workshop on Algorithmic Learning Theory, Lect.
Notes Artific. Intell., Vol. 997, Springer-Verlag, Berlin, 1995]. They also
show that simple decision lists, a generalization of the simple DNF of
Exercise 5.3.3, are polynomial learnable under m.

5.3.6. [O35] Are any of log-DNF, simple DNF, log-decision list poly-
nomially pac-learnable?
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5.3.7. [35] A Boolean formula is monotone if no literal in it is negated.
A k-term DNF is a DNF consisting of at most k monomials.

(a) Show that pac-learning monotone k-term DNF requires more than
polynomial time unless RP=NP.

(b) Show that the class of monotone k-term DNF is polynomially pac-
learnable under m (even with the algorithm learning the exact concept
with high probability).

Comments. This shows that more concepts are simple pac-learnable than
are pac-learnable unless RP=NP. Source: for Item (a) L. Pitt and L.G.
Valiant, J. ACM, 35(1989), 965–984; for Item (b) M. Li and P.M.B.
Vitányi, SIAM J. Comput., 20:5(1991), 911–935.

5.3.8. [32] Show that the class of deterministic finite-state automata
(DFA) whose canonical representations have logarithmic Kolmogorov
complexity is polynomially pac-learnable under m.

Comments. It is known that both exact and approximate (in the pac
sense) identification of DFA is NP-hard. Source: R. Parekh, V. Honavar,
Machine Learning, 44:1-2(2001), 9–35.

5.3.9. [M36] Show that the continuous concept class C defined in Ex-
ample 5.3.2 is pac-learnable under all simple measures but not pac-
learnable (that is, under all measures).

Comments. Source: M. Li and P.M.B. Vitányi, SIAM J. Comput., 20:5
(1991), 911–935.

5.4

Hypothesis

Identification

by MDL

We can formulate scientific theories in two steps. First, we formulate a
set of possible alternative hypotheses, based on scientific observations or
other data. Second, we select one hypothesis as the most likely one.
Statistics is the mathematics of how to do this. A relatively recent
paradigm in statistical inference was developed by J.J. Rissanen and
by C.S. Wallace and his coauthors. The method can be viewed as a
computable approximation to the incomputable approach in Section 5.2
and was inspired by it. In accordance with Occam’s dictum, it tells us to
go for the explanation that compresses the data the most. The minimum
description length principle tells us:

MDL principle. Given a sample of data and an
effective enumeration of the appropriate alternative
theories to explain the data, the best theory is the
one that minimizes the sum of

• the length, in bits, of the description of the theory;
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• the length, in bits, of the data when encoded with
the help of the theory.

The idea of a two-part code for a body of data D is natural from the
perspective of Kolmogorov complexity. If D does not contain any reg-
ularities at all, then it consists of purely random data, and there is no
hypothesis to identify. Assume that the body of data D contains reg-
ularities. With help of a description of those regularities (a model) we
can describe the data compactly. Assuming that the regularities can be
represented in an effective manner (that is, by a Turing machine), we
encode the data as a program for that machine. Squeezing all effective
regularity out of the data, we end up with a Turing machine representing
the meaningful regular information in the data together with a program
for that Turing machine representing the remaining meaningless ran-
domness of the data, as in Section 2.1.1. MDL is based on striking a
balance between regularity and randomness in the data. All we will ever
see are the data at hand (if we know more, then in fact we possess more
data, which should be used as well). The best model or explanatory the-
ory is taken to be the one that optimally uses regularity in the data to
compress. ‘Optimally’ is used in the sense of maximal compression of the
data in a two-part code, that is, a model and a description from which
the data can be reproduced with help of the model. If the data are truly
random, no compression is possible and the optimum is reached for the
empty model. The empty model has description length 0. If the data
are regular, then compression is possible, and using the MDL principle
identifies the optimal model.

We call such a model or theory, a ‘hypothesis.’ With a more complex
description of the hypothesis H , it may fit the data better and therefore
decrease the misclassified data. If H describes all the data, then it does
not allow for measuring errors. A simpler description of H may be pe-
nalized by an increase in misclassified data. If H is a trivial hypothesis
that contains nothing, then all data are described literally and there is
no generalization. The rationale of the method is that a balance between
these extremes seems to be required.

5.4.1
Ideal MDL

The analysis of both hypothesis identification by ideal MDL below, and
of prediction in Section 5.2.4, shows that maximally compressed descrip-
tions give good results on data samples that are random or typical with
respect to the contemplated models. Let us assume that H and D are
expressed as natural numbers or finite binary strings.

Definition 5.4.1 The ideal MDL principle selects the hypothesis H that minimizes

K(H) +K(D|H), (5.10)
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which is the code-independent, recursively invariant, absolute form of
the MDL principle.

Example 5.4.1 (Alternative MDL principle) In Theorem 3.9.1 on page 247 it is
shown that symmetry of information holds for individual objects in the
following sense:

K(H,D) = K(H) +K(D|H,K(H)) +O(1)

= K(D) +K(H |D,K(D)) +O(1).

Substitution givesK(H |D) = K(H,D)−K(D), up to anO(logK(H,D))
additive term. The term K(D) is fixed and doesn’t change for different
H ’s. Minimizing the left-hand term, K(H |D) can then be interpreted as

Given a hypothesis space H, we want to select the
hypothesis H such that the length of the shortest en-
coding of D together with hypothesis H is minimal.

Since it is not more difficult to describe some object if we get more
conditional information, we have K(D|H,K(H)) ≤ K(D|H) + O(1).
Using the last displayed equations, the quantity in Equation 5.10 satisfies

K(H) +K(D|H) ≥ K(H,D) +O(1) ≥ K(D) +O(1),

with equalities for the trivial hypothesis H0 = D or H0 = ∅. At first
glance this would mean that the hypothesis Hmdl that minimizes the
sum of Equation 5.10 could be set to D or ∅, which is absurd in general.
It is exactly the solution how to prevent such trivialities that gives us the
key to the very meaning of ideal MDL, and by extension some insight
into applied versions. 3

5.4.2
Logarithmic
Version of
Bayes’s Rule

Bayes’s rule, Equation 5.13 on page 345, maps input (P (H), D) to out-
put Pr(H |D)—the posterior probability. For many model classes (such
as Bernoulli processes and Markov chains), if the number n of data gen-
erated by a true model in the class increases, then the total inferred
probability can be expected to concentrate on the true hypothesis (with
probability one for n → ∞). That is, as n increases, the weight of the
factor Pr(D|H)/Pr(D) dominates the influence of the prior P (·) for typ-
ical data—by the law of large numbers. The importance of Bayes’s rule
is that the inferred probability gives us as much information as possible
about the possible hypotheses from only a small number of (typical)
data and the prior probability.

We are concerned only with finding the H that maximizes Pr(H |D) with
D and P fixed. Taking the logarithms of both sides of the equation, this
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is equivalent to minimizing the expression log 1/Pr(H |D) over H :

log
1

Pr(H |D)
= log

1

Pr(D|H)
+ log

1

P (H)
− log

1

Pr(D)
.

Since the probability Pr(D) is constant under varying H , this means
that we want to find a hypothesis H that minimizes

log
1

Pr(D|H)
+ log

1

P (H)
. (5.11)

5.4.3
Discrepancy
Between
Probability and
Complexity

To obtain ideal MDL from Equation 5.11, we need to replace the log-
inverse probability terms by prefix complexities. There is a prefix-code
EQ with l(EQ(x)) = log 1/Q(x) by Example 1.11.2 on page 68. This
is the Shannon–Fano code for an alphabet of source words distributed
according to probability Q. This code realizes the least expected code-
word length among all prefix-codes up to one bit. Therefore, the H that
minimizes Equation 5.11, rewritten as

l(EPr(·|H)(D)) + l(EP (H)),

minimizes the sum of two prefix-codes in expectation.

However, in ideal MDL we want to minimize the sum of the effective
description lengths of the individual elements H,D involved, as in Equa-
tion 5.10. Thus, we cannot simply replace the logarithmic terms in Equa-
tion 5.11 by correspondingK(·) terms for each individual case. Note that
we can do so for the expectations, since the prefix-code with code-word
length K(x) for object x also has expected shortest code-word length in
the sense of Theorem 8.1.1 on page 604.

To satisfy Equation 5.10 we are free to make the new assumption that
the prior probability P in Bayes’s rule, Equation 5.1, is fixed as m, as
in Exercise 5.4.4 on page 401.

However, we cannot assume that the probability Pr(·|H) equals m(·|H).
Namely, as explained at length in Section 5.1.3, probability Pr(·|H) may
be totally determined by the hypothesis H . Depending on H therefore,
l(EPr(·|H)(D)) may be very different fromK(D|H). This holds especially
for simple data D that have low probability under the assumption of
hypothesis H .

Example 5.4.2 Let us look at a simple example evidencing this discrepancy. Suppose
we flip a coin of unknown bias n times. Let hypothesis H and data D
be defined by:

H := Probability of ‘heads’ is 1
2 ,

D := hh . . . h
︸ ︷︷ ︸

n times h(eads)
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Then we have Pr(D|H) = 1/2n and

l(EPr(·|H)(D)) = log
1

Pr(D|H)
= n.

In contrast, K(D|H) ≤ log n+ 2 log logn+O(1). 3

5.4.4
Resolving the
Discrepancy

To obtain the ideal MDL principle, Equation 5.10 on page 383, from
Bayes’s rule we need to replace the logarithmic inverse probabilities in-
volved in Equation 5.11 on page 385 by the corresponding prefix com-
plexities. The theory dealing with randomness of individual objects states
that under certain conditions the logarithm of the inverse probability and
the prefix complexity are close. This amounts to approximately replacing
the probabilities involved by the corresponding universal probabilities
m(·) of Theorem 4.3.1 on page 267 and applying the coding theorem,
Theorem 4.3.3 on page 273.

Lemma 5.4.1 (i) If P = m, then log 1/P (H) = K(H) up to an O(1) additive term.

(ii) If P is computable and H is P -random, then log 1/P (H) = K(H)
up to an additive term K(P ).

(iii) If Pr(·|H) is computable and D is Pr(·|H)-random, then log 1/Pr(D|
H) = K(D|H) up to an additive term K(Pr(·|H)+O(1) ≤ K(H)+O(1).

Proof. The functions Pr and P are computable if Pr can be computed
to any required precision for each argument D and conditional H , while
P can be computed to any required precision for each argument H .

(i) If the prior probability P (H) is m(H), then logm(H)/P (H) = 0,
that is, every object is m-random, Example 4.3.11 on page 283. There-
fore, by the coding theorem, Theorem 4.3.3, we have

∣
∣
∣
∣
K(H) − log

1

P (H)

∣
∣
∣
∣
= O(1).

(ii) If P (·) is computable and H is P -random, then

m(H) ≥ 2−K(P )P (H),

log
m(H)

P (H)
≤ K(P ).

The first inequality holds since m majorizes P this way; the second
inequality expresses the assumption of randomness of H , where K(P )
is the length of the shortest self-delimiting program for the reference
universal prefix machine to simulate the Turing machine computing the
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probability mass function P : N → [0, 1]. That is, it is the shortest
effective self-delimiting description of P . Then,
∣
∣
∣
∣
K(H) − log

1

P (H)

∣
∣
∣
∣
≤ K(P ). (5.12)

(iii) Firstly, by Example 4.3.3 on page 269 following Theorem 4.3.1 on
page 267,

m(D|H) ≥ 2−K(Pr(·|H)) Pr(D|H).

Therefore,

log
m(D|H)

Pr(D|H)
≥ −K(Pr(·|H)). (5.13)

Secondly, we call the data sample D sufficiently random with respect to
the computable probability mass function Pr(·|H) (with respect to H
therefore) in the sense of Martin-Löf if

log
m(D|H)

Pr(D|H)
≤ K(Pr(·|H)) +O(1). (5.14)

Here κ0((D|H)|Pr(·|H)) = log(m(D|H)/Pr(D|H)) is a universal sum P -test
as in Theorem 4.3.5, page 279. In Theorem 4.3.5, page 279, a finite object x
is called P -random if κ0(x|P ) = log m(x)/P (x) ≤ 0. However, as remarked
in Chapter 4, randomness of finite objects is but a matter of degree, and the
different randomness tests treated vary slightly in strength. Here we take the
test according to Equation 5.14. It has the advantage of being symmetric in the
sense that the outcome for random objects is in the interval [−K(P ),K(P )],
up to additive constants, and also guarantees that objects are P -random with
overwhelming P -probability.

With overwhelming Pr-probability, see Exercise 5.4.1 on page 400, the
D’s are random in this sense because for each H we have
∑

D

Pr(D|H)2κ0((D|H)|Pr(·|H)) =
∑

D

m(D|H) ≤ 1,

since m(·|H) is a discrete semimeasure. For D’s that are random in the
appropriate sense, Equations 5.13 and 5.14 mean by the coding theorem,
Theorem 4.3.3, that
∣
∣
∣
∣
K(D|H) − log

1

Pr(D|H)

∣
∣
∣
∣
≤ K(Pr(·|H)) +O(1).

Note that K(Pr(·|H)) ≤ K(H) + O(1), since from H we can compute
Pr(·|H) by the assumption of the computability of Pr(·|·). 2
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Example 5.4.3 Let us look at an example of a distribution for which some hypotheses
are random, and some other hypotheses are nonrandom. Let the pos-
sible hypotheses correspond to the binary strings of length n, while P
is the uniform distribution that assigns probability P (H) = 1/2n to
each hypothesis H ∈ {0, 1}n. Then H = 00 . . . 0 has low complexity
K(H) ≤ logn + 2 log log n. However, log 1/P (H) = n. Therefore, by
Equation 5.12, H is not P -random. If we obtain H by n flips of a fair
coin, then with overwhelming probability we will have that K(H) =
n+O(log n), and therefore log 1/P (H) ≈ K(H) and H is P -random. 3

Example 5.4.4 The notion that the data D is Pr(·|H)-random means that the data
are typical for the probability mass function Pr(·|H) induced by the
hypothesis H . If, for example, H = (µ, σ) induces the Gaussian dis-
tribution Pr(·|(µ, σ)) = N(µ, σ) and the data D are concentrated in a
tail of this distribution, such as D = 00 . . . 0, then D is atypical with
respect to Pr(·|H) in the sense of being nonrandom because it violates
the Pr(·|H)-randomness test of Equation 5.14. 3

Example 5.4.5 Lemma 5.4.1 does not hold if either D is not Pr(·|H)-random and there-
fore by Equation 5.14 we have log 1/Pr(D|H) > K(D|H) which means
that the data is not typical for H , or H is not P -random and therefore
log 1/P (H) > K(H) which means that the hypothesis is not typical for
the prior distribution. We give an example of the first case:

We sample a polynomial H2 = ax2 + bx + c at n arguments chosen
uniformly at random from the interval [0, 1]. The sampling process in-
troduces Gaussian errors in the function values obtained. The set of
possible hypotheses is the set of polynomials. Assume that all numbers
involved are of fixed bounded accuracy.

Because of the Gaussian error in the measuring process, with overwhelm-
ing probability the only polynomials H ′ that fit the sample precisely
are of degree n − 1. Denote the data sample by D. Such a hypothesis
H ′ is likely to minimize K(D|H), since we just have to describe the n
lengths of the intervals between the sample points along the graph of
H ′. However, data sample D is certainly not Pr(·|H ′)-random, since it
is extremely unlikely, and hence atypical, that D arises in sampling H ′

with Gaussian error. Therefore, Equation 5.14 is violated, which means
that log 1/Pr(D|H ′) > K(D|H ′), which contradicts Lemma 5.4.1, Item
(iii).

In contrast, with overwhelming likelihood H2 will show that the data
sample D is random to it. That being the case, Lemma 5.4.1, Item (iii),
holds. Now what happens if H ′ is the true hypothesis and the data
sample D by chance is as above? In that case Lemma 5.4.1, Item (iii),
does not hold, and Bayes’s rule and MDL may each select very different
hypotheses as the most likely ones. 3
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Definition 5.4.2 Given data sample D and prior probability P , hypotheses H are called
admissible if both data D is Pr(·|H)-random and H is P -random.

Theorem 5.4.1 Let the data sample be D and let the corresponding set of admissible
hypotheses be HD ⊆ H. Then the maximum a posteriori probability hy-
pothesis Hbayes ∈ HD in Bayes’s rule and the hypothesis Hmdl ∈ HD

selected by ideal MDL are roughly equal:

| log
Pr(Hmdl|D)

Pr(Hbayes|D)
| ≤ 2α(P,H), (5.15)

|K(D|Hmdl) +K(Hmdl) −K(D|Hbayes) −K(Hbayes)| ≤ 2α(P,H),

with α(P,H) = K(Pr(·|H)) + K(P ) + O(1). If P = m then we set
K(P ) = 0.

Proof. Assume that Lemma 5.4.1 holds. By definition, H = Hmdl mini-
mizes K(H |D) +K(H). Denote the minimal value by A. Then in The-
orem 5.4.1 the H ′ that minimizes log 1/Pr(D|H) + log 1/P (H) yields
a value B with |A − B| ≤ α(P,H). This is easy to see, as follows. If
A−B > α(P,H) then K(H ′|D)+K(H ′) < A by Theorem 5.4.1, contra-
dicting that A is the minimum for the sum of the complexities. If B−A >
α(P,H) then log 1/Pr(D|Hmdl)+log 1/P (Hmdl) < B, contradicting that
B is the minimum for the sum of the log inverse probabilities. Now
H = Hbayes maximizes Pr(H |D) = Pr(D|H)P (H)/Pr(D) with Pr(D)
constant and therefore Hbayes is an H ′ that minimizes log 1/Pr(D|H)+
log 1/P (H). Denote log 1/Pr(D|Hmdl) + log 1/P (Hmdl) by B′. Then by
Theorem 5.4.1 we have |A−B′| ≤ α(P,H) and therefore

|B −B′| ≤ 2α(P,H).

By Bayes’s rule, B+logPr(D) = log 1/Pr(Hbayes|D) and B′+logPr(D)
= log 1/Pr(Hmdl|D), where log Pr(D) is constant. Substitution in the
displayed equation yields the first inequality of the theorem. The second
inequality follows by the same argument with the roles of complexities
and log inverse probabilities interchanged. 2

If α(P,H) is small then this means that the prior distribution P is
simple or m and that the probability mass function Pr(·|H) over the
data samples induced by hypothesis H is simple. The theorem states
that the hypothesis selected by MDL and by Bayesianism are close both
in the sense of a posteriori probability (the Bayesian criterion) and in
sum of the complexities of the hypothesis and the data encoded with
the help of the hypothesis (the MDL criterion). In contrast, if α(P,H)
is large, which means that either of the mentioned distributions is not
simple, for example when K(Pr(·|H)) = K(H) for complex H , then the
discrepancy can widen for both criteria.
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As a consequence, if α(P,H) is small enough, and Bayes’s rule selects
an admissible hypothesis, and so does ideal MDL, then both criteria are
(approximately) optimized by both selected hypotheses. In Exercise 5.4.4
on page 401 it is shown that this is, in a certain sense, a likely situation.

5.4.5
Applying
Minimum
Description
Length

Unfortunately, the function K is not computable (Section 3.4). For
practical applications one must settle for easily computable approxi-
mations. One way to do this is as follows: First encode both H and
D|H by a simply computable bijection as a natural number in N . As-
sume that we have some standard procedure to do this. Then consider
a simple self-delimiting description of x. For example, x is encoded by
x′ = 1l(x)0l(x)x. This makes l(x′) = log x + 2 log log x + 1, which is a
simple upper approximation of K(x); see Section 3.2. Since the length of
code-word sets of prefix-codes corresponds to a probability distribution
by Kraft’s inequality, Theorem 1.11.1, this encoding corresponds to as-
signing probability 2−l(x

′) to x. In the MDL approach, this is the specific
usable approximation to the universal prior. In the literature we find a
more precise approximation, which, however, has no practical meaning.
For convenience, we smooth our encoding as follows.

Definition 5.4.3 Let x ∈ N . The universal MDL prior over the natural numbers is
M(x) = 2− log x−2 log log x.

In the Bayesian interpretation the prior distribution expresses one’s prior
knowledge about the true value of the parameter. This interpretation may
be questionable, since the used prior is usually not generated by repeated
random experiments. In Rissanen’s view, the parameter is generated by the
selection of the class of hypotheses and it has no inherent meaning. It is just
one means to describe the properties of the data. The selection of H that
minimizes K(H)+K(D|H) (or Rissanen’s approximation thereof) allows one
to make statements about the data. Since the complexity of the models plays
an important part, the parameters must be encoded. To do so, we truncate
them to a finite precision and encode them with the prefix-code above. Such a
code happens to be equivalent to a distribution on the parameters. This may
be called the universal MDL prior, but its genesis shows that it expresses no
prior knowledge about the true value of the parameter. See [J.J. Rissanen,
Stochastic Complexity and Statistical Inquiry, World Scientific, 1989]. Above
we have given a validation of MDL from Bayes’s rule, which holds irrespective
of the assumed prior, provided it is computable and the hypotheses and data
are random.

Example 5.4.6 (Statistics) In statistical applications,H is some statistical distribution
(or model) H = P (θ) with a list of parameters θ = (θ1, . . . , θk), where
the number k may vary and influence the (descriptional) complexity
of θ. (For example, H can be a normal distribution N(µ, σ) described
by θ = (µ, σ).) Each parameter θi is truncated to finite precision and
encoded with the prefix-code above.
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The data sample consists of n outcomes y = (y1, . . . , yn) of n trials
x = (x1, . . . , xn) for distribution P (θ). The data sample D in the above
formulas is given asD = (x,y). By expansion of conditional probabilities
we have therefore

Pr(D|H) = Pr(x,y|H) = Pr(x|H) · Pr(y|H,x).

In the argument above we take the negative logarithm of Pr(D|H), that
is,

log
1

Pr(D|H)
= log

1

Pr(x|H)
+ log

1

Pr(y|H,x)
.

Taking the negative logarithm in Bayes’s rule, and the analysis of the
previous section now yields that MDL selects the hypothesis with highest
inferred probability satisfying x is Pr(·|H)-random and y is Pr(·|H,x)-
random. Thus, Bayesian reasoning selects the same hypothesis as MDL
does, provided the hypothesis with maximal inferred probability causes
x,y to satisfy these randomness requirements.

Under certain general conditions, J.J. Rissanen has shown that with k
parameters and n data (for large n), Equation 5.11 is minimized for
hypotheses H with θ encoded by

log
1

P (H)
=
k

2
logn

bits. This is called the optimum model cost, since it represents the cost
of the hypothesis description at the minimum description length of the
total.

As an example, consider a Bernoulli process (p, 1 − p) with p close to
1
2 . For such processes, k = 1. Let the outcome be x = x1x2 . . . xn. Set
fx =

∑n
i=1 xi. For outcome x with C(x) ≥ n − δ(n), the number of 1’s

will be (by Lemma 2.3 on page 167)

fx =
1

2
n±

√

3

2

δ(n) + c)n

log e
.

With δ(n) = logn, the fraction of such x’s in {0, 1}n is at least 1 −
1/n and goes to 1 as n rises unboundedly. Hence, for the overwhelming
number of x’s, the frequency of 1’s will be within 1/

√
n of the value

1
2 . That is, to express an estimate of parameter p with high probability
it suffices to use a precision of 1

2 logn bits. It is easy to generalize this
example to arbitrary p. 3

Example 5.4.7 (Inferring polynomials) In biological modeling, we often wish to fit
a polynomial f of unknown degree to a set of data points

D = (x1, y1), . . . , (xn, yn),



392 5. Inductive Reasoning

such that it can predict future data y given x. Even if the data did come
from a polynomial curve of degree, say, two, because of measurement
errors and noise, we still cannot find a polynomial of degree two fitting all
n points exactly. In general, the higher the degree of fitting polynomial,
the greater the precision of the fit. For n data points, a polynomial of
degree n− 1 can be made to fit exactly, but probably has no predictive
value. Applying ideal MDL we look for Hmdl := minargH{K(x,y|H) +
K(H)}.
Let us apply the ideal MDL principle whereby we describe all (k − 1)-
degree polynomials by a vector of k entries, each entry with a precision
of d bits. Then the entire polynomial is described by

kd+O(log kd) bits. (5.16)

(We have to describe k, d, and account for self-delimiting encoding of
the separate items.) For example, ax2 + bx + c is described by (a, b, c)
and can be encoded by about 3d bits. Each data point (xi, yi) that needs
to be encoded separately with precision of d bits per coordinate costs
about 2d bits.

For simplicity assume that probability Pr(x|H) equals 1 (because x is
prescribed). To apply the ideal MDL principle we must trade the cost
of hypothesis H (Equation 5.16) against the cost of describing y with
the help of H and x. As a trivial example, suppose that n − 1 out of
n data points fit a polynomial of degree 2 exactly, but only 2 points lie
on any polynomial of degree 1 (a straight line). Of course, there is a
polynomial of degree n− 1 that fits the data precisely (up to precision).
Then the ideal MDL cost is 3d + 2d for the second degree polynomial,
2d+ (n− 2)d for the first degree polynomial, and nd for the (n− 1)th-
degree polynomial. Given the choice among those three options, we select
the second degree polynomial for all n > 5.

A more sophisticated approach, accounting for the average encoding cost
of exceptions, assumes that the data are Gaussian distributed. Consider
polynomials f of degree at most n− 1 that minimize the error

error(f) =
n∑

i=1

(f(xi) − yi)
2.

In this way, we obtain an optimal set of polynomials for each k =
1, 2, . . . , n. To apply the MDL principle we must balance the cost of
hypothesis H (Equation 5.16) against the cost of describing D|H .

To describe measuring errors (noise) in data it is common practice to
use the normal distribution. In our case this means that each yi is the
outcome of an independent random variable distributed according to
the normal distribution with mean f(x) and variance, say, constant. For
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each of them we have that the probability of obtaining a measurement
yi, given that f(x) is the true value, is of order exp(−(f(x) − yi)

2).
Considering this as a value of the universal MDL probability, this is
encoded in s(f(x)−yi)2 bits, where s is a (computable) scaling constant.
For all experiments together, we find that the total encoding of D|f,x
takes s · error(f) bits. The MDL principle thus tells us to choose a k-
degree function fk, k ∈ {0, . . . , n − 1}, that minimizes (ignoring the
vanishing O(log kd) term) kd+ s · error(fk) . 3

Example 5.4.8 (Inferring Decision Trees) We apply the MDL principle to infer de-
cision trees. We are given a set of data, possibly with noise, representing
a collection of examples. Each example is represented by a data item in
the data set, which consists of a tuple of attributes followed by a binary
Class value indicating whether the example with these attributes is a
positive or negative example.

The table in Figure 5.3 gives a small sample set. The columns in the
table, apart from the last one, describe attributes that are weather con-
ditions. The rows represent weather conditions in relation to a partic-
ular unspecified occurrence. The last column classifies the examples as

No. Attributes Class
Outlook Temperature Humidity Windy

1 overcast hot high not N
2 overcast hot high very N
3 overcast hot high medium N
4 sunny hot high not P
5 sunny hot high medium P
6 rain mild high not N
7 rain mild high medium N
8 rain hot normal not P
9 rain cool normal medium N
10 rain hot normal very N
11 sunny cool normal very P
12 sunny cool normal medium P
13 overcast mild high not N
14 overcast mild high medium N
15 overcast cool normal not P
16 overcast cool normal medium P
17 rain mild normal not N
18 rain mild normal medium N
19 overcast mild normal medium P
20 overcast mild normal very P
21 sunny mild high very P
22 sunny mild high medium P
23 sunny hot normal not P
24 rain mild high very N

FIGURE 5.3. Table of sample data set
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positive or negative, where P means that the combination of weather
conditions in the row happened and N means that it did not happen.
We would like to obtain good predictions for such occurrences by com-
pressing the data. Our task can now be explained as a communication
problem between Alice, who has observed the data in Figure 5.3, and
Bob. Alice and Bob both know the four parameters (outlook, temper-
ature, humidity, windy) and their attributes. Alice wishes to send Bob
the information in the table, using as few bits as possible. Alice and Bob
have to agree in advance on an encoding technique to be used.

Alice and Bob do not know in advance which table they have to trans-
mit. The simplest strategy for Alice is to transmit the complete table
in Figure 5.3 to Bob literally. There are 24 rows. Each row has four
attributes and one Class value. Three attributes have three alternative
values each; the other attribute and Class have two alternative values
each. Then this requires 24(3 log2 3 + 2) = 24(3 × 1.585 + 2) ≈ 162.12
bits. Or Alice can agree with Bob beforehand about a fixed order of
enumerating all 3× 3× 2× 3 = 54 combinations of attributes, and then
just send the last column of 54 bits, supplying arbitrary Class values for
the 30 rows missing from the table in Figure 5.3. These methods use no
data compression.

If Alice is clever enough to find some regularity in the data, such as
‘the Class value is N iff it rains,’ then Alice needs only a few bits to
transmit this sentence to Bob, and Bob can use this rule to reconstruct
the complete table with all the combinations of attributes with 3 × 3 ×
2 × 3 = 54 rows.

Let us say that Alice and Bob have agreed to use a decision tree. A deci-
sion tree that is consistent with the data can be viewed as a classification
procedure. The internal nodes in the tree are decision nodes. Each such
node specifies a test of a particular attribute; the possible answers are
labeled on the arcs leaving the decision node. A leaf of the tree specifies
a class to which the object that passed the attribute tests and arrived
at this leaf belongs.

 P N

PN

Humidity
normalhigh

Outlook

overcast
rainsunny

FIGURE 5.4. Imperfect decision tree
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Given data as in Figure 5.3, we can construct many different decision
trees of various sizes that agree with the data. Two such trees are given
in Figures 5.4 and 5.5. The tree in Figure 5.4 is imperfect, since it makes
an error in row 8; the tree in Figure 5.5 classifies all of the sample set
correctly. The tree in Figure 5.5 is the smallest perfect decision tree for
the data in Figure 5.3.

Some data, for example noise, may not obey the predicting rule defined
by the decision tree. One usually has a choice between using a small
imperfect tree that classifies some data falsely or a big perfect tree that
correctly classifies all given data. Alice can use a smaller imperfect tree
or the bigger perfect tree. The tree in Figure 5.5 grows much bigger just
because of a single (perhaps noisy) example (row 8), and Alice may find
that it is more economical to code it separately, as an exception.

The goal is often to construct a decision tree that has the smallest error
rate for classifying unknown future data. Is the smallest perfect decision
tree really a good predictor? It turns out that in practice this is not the
case. Due to the presence of noise or inadequacy of the given attributes,
selecting a perfect decision tree overfits the data and gives generally
poor predictions. Many ad hoc rules have been suggested and used for
overcoming this problem.

The MDL principle appears to provide a solution and generally works
well in practice. Essentially, given the data sample without the class val-
ues, we look for a reasonably small tree such that most data are correctly
classified by the tree. We encode the inconsistent data as exceptions. We
minimize the sum of

• the number of bits to encode a (not necessarily perfect) decision
tree T , that is, the model that gives the log 1/P (H) term; and

 P

hotmcool

very
mnot

Windy

Temp

Humidity

normalhigh

Outlook

overcast
rainsunny

N NN P

N PN

FIGURE 5.5. Perfect decision tree
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• the number of bits to encode (describe) the examples (xi, yi) in the
sample (x,y) that are inconsistent with T , given the entire data
sample x without the class values y. This gives the log 1/Pr(y|H,x)
term.

We have to provide a coding method. This is important in applications,
since it determines where the optimum is. If the encoding of trees is not
efficient, then we may end up with a very small tree (with relatively large
depth), and too many examples become exceptions. An inefficient en-
coding of the exceptions would result in overly large trees. In both cases,
the prediction of unseen data is affected. The reader should realize that
the choice of cost measure and encoding technique cannot be objective.
One can encode a tree by making a depth-first traversal. At each inter-
nal node, write down the attribute name in some self-delimiting form
followed by its edge label. At a leaf write down the class value. If the
tree is not perfect, then the data that do not fit in the tree are encoded
separately as exceptions (in some economical way using the provided
total data sample without the class values).

Coding the Tree. It is desirable that the smaller trees be represented
by shorter encodings. Alice can make a depth-first traversal of the tree
in Figure 5.4, and accordingly she writes down

1 Outlook 0 P 1 Humidity 0 N 0 P 0 N.

For the tree in Figure 5.5, she writes down

1 Outlook 0 P 1 Humidity 0 N 0 P 1 Windy 0 N 0 N
1 Temperature 0 N 0 N 1 P.

Alice uses a 1 to indicate that the next node in the depth-first search is an
internal node and then writes the corresponding attribute; Alice writes
a 0 followed by N (P) if she meets a leaf with value N (P). Representing
N or P requires only one bit. Representing attribute ‘Outlook’ at the
root level requires 2 bits, since there are 4 possibilities. Encoding the
next-level attributes requires log 3 bits, since there are only 3 choices
left (‘Outlook’ is already used). She can use just one bit for ‘Windy’ and
one bit for ‘Temperature’ (in fact, this one bit is not needed). Thus, the
smaller (but imperfect) tree requires 13.585 bits; the bigger (but perfect)
tree requires 25.585 bits.

Coding the Exceptions. Since the decision tree in Figure 5.4 is not
perfect, we need to indicate where the exceptions are. In this case there
is a single exception. The most straightforward way is to indicate its
position among all 54 possible combinations of attributes. This costs
log 54 ≈ 5.75 extra bits.
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Thus, the encoding using the decision tree in Figure 5.4 uses 19.335 bits;
the encoding using the decision tree in Figure 5.5 uses 25.585 bits. The
MDL principle tells us to use the former method, which is also much
shorter than the 54-bit plain encoding.

Procedures for computing decision trees have been implemented by J.R. Quin-
lan and R. Rivest [Inform. Computation, 80(1989), 227–248]. Computing the
absolute minimum decision tree is NP-hard, as shown by T. Hancock, T. Jiang,
M. Li, and J.T. Tromp, Inform. Comput., 126:2(1996), 114–122. They have
shown that approximating minimum decision trees is also NP-hard, even ap-
proximation to within some polynomial factor. Consequently, approximation
heuristics have to be used. See also K. Yamanishi, A Randomized Approxima-
tion of the MDL for Stochastic Models with Hidden Variables, Proc. 9th ACM
Comput. Learning Conference, ACM Press, 1996; and V. Vovk, J. Comput.
System Sci., 55:1(1997), 96-104.

3

Example 5.4.9 (Exception-based MDL) In the above interpretation of MDL we es-
sentially look for a hypothesis H minimizing K(D|H) + K(H). This
always satisfies

K(D|H) +K(H) ≥ K(D).

Define E := D −DH , where DH is the data set classified according to
H . In our new approach, called E-MDL, we want to minimize

K(H,E) ≈ K(H) +K(E|H)

over H . That is, E denotes the subset of the data sample D that are
exceptions to H in the sense of being not covered by H . We want to find
H such that the sum of the descriptions of H and the exception list E
are minimized. Note that in this case, we always have

min
H

{K(H) +K(E|H)} ≤ K(∅) +K(D) = K(D),

in contrast to the standard interpretation of MDL above. This incarna-
tion of MDL is not straightforwardly derived by our approach above. We
may interpret it that we look for the shortest description of an accepting
program for the data consisting of a classification rule H and an excep-
tion list E. While this principle often gives good results, application may
lead to absurdity, as the following shows:

In many problems the data sample consists of positive examples only,
for example, in learning (a grammar for) the English language, given the
Oxford English Dictionary. According to E-MDL, the best hypothesis is
the trivial grammar H0 generating all sentences over the alphabet. This
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grammar gives K(H0) = O(1) independent of D and also E0 := ∅. This
choice leads to

K(H0) +K(E0|H0) = K(H0) +O(1) = O(1),

which is true but absurd. The E-MDL principle is vindicated and re-
duces to the standard one in the context of interpreting D = (x,y) as
in Example 5.4.6 on page 390, with x fixed as in supervised learning.
This is a correct application as in Example 5.4.8 on page 393. Now for
constant K(x|H), the hypothesis He−mdl of minimal complexity among
the hypotheses that minimize

K(H) +K(y|H,x) +K(x|H)

is the same as the hypothesis Hmdl of minimal complexity among the
hypotheses that minimize

K(H) +K(y|H,x).

Ignoring the constant x in the conditional, K(y|H,x) corresponds to
K(E|H). 3

Example 5.4.10 (Maximum likelihood) The maximum likelihood (ML) principle says
that for given dataD, one should select the hypothesisH that maximizes
Pr(D|H) or equivalently, minimizes log 1/Pr(D|H). In case of finitely
many hypotheses, this is a special case of the Bayes’s rule with the
hypotheses distributed uniformly (all have equal probability). It is also
a special case of MDL. The principle has many admirers, is supposedly
objective, and is due to R.A. Fisher. 3

Example 5.4.11 (Maximum entropy) In statistics there are a number of important
applications for which the ML principle fails but the maximum entropy
principle has been successful, and conversely.

In order to apply Bayes’s rule, we need to decide what the prior proba-
bilities pi = P (Hi) are, subject to the constraint

∑

i pi = 1 and certain
other constraints provided by empirical data or considerations of sym-
metry, probabilistic laws, and so on. Usually these constraints are not
sufficient to determine the pi’s uniquely. E.T. Jaynes proposed to select
the prior by the maximum entropy (ME) principle.

The ME principle selects the estimated values p̂i that maximize the
entropy function

H(p1, . . . , pk) =
k∑

i=1

pi ln
1

pi
, (5.17)
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subject to

k∑

i=1

pi = 1 (5.18)

and some other constraints. For example, consider a loaded die, k = 6. If
we do not have any information about the die, then using the principle
of indifference, we may assume that pi = 1

6 for i = 1, . . . , 6. This actually

coincides with the ME principle, since H(p1, . . . , p6) =
∑6
i=1 pi ln 1/pi,

constrained by Equation 5.18, achieves its maximum ln 6 = 1.7917595
for pi = 1

6 for all i.

Now suppose it has been experimentally observed that the die is biased
and the average throw gives 4.5, that is,

6∑

i=1

ipi = 4.5. (5.19)

Maximizing the expression in Equation 5.17, subject to the constraints
in Equations 5.18 and 5.19, gives the estimates

p̂i = e−λi(
∑

j

e−λj)−1, i = 1, . . . , 6,

where λ = −0.37105. Hence,

(p̂1, . . . , p̂6) = (0.0543, 0.0788, 0, 1142, 0.1654, 0.2398, 0.3475).

The maximized entropyH(p̂1, . . . , p̂6) equals 1.61358. How dependable is
the ME principle? Jaynes has proven an entropy concentration theorem
that, for example, implies the following: In an experiment of n = 1000
trials, 99.99% of all 61000 possible outcomes satisfying the constraints of
Equations 5.19 and 5.18 have entropy

1.602 ≤ H
(n1

n
, . . . ,

n6

n

)

≤ 1.614,

where ni is the number of times the value i occurs in the experiment.
We show that the maximum entropy principle can be considered as a
special case of the MDL principle, as follows:

Consider the same type of problem. Let θ = (p1, . . . , pk) be the prior
probability distribution of a random variable. We perform a sequence
of n independent trials. Shannon has observed that the real substance
of Formula 5.17 is that we need approximately nH(θ) bits to record a
sequence of n outcomes. Namely, it suffices to state that each outcome
appeared n1, . . . , nk times, respectively, and afterward give the index of
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which one of the possible sequences D of n outcomes actually took place.
The number of possible sequences is given by the multinomial coefficient

(
n

n1, . . . , nk

)

=
n!

n1! · · ·nk!
,

as in Exercise 1.3.4 on page 10. For this, no more than

k logn+ log

(
n

n1, . . . , nk

)

+O(log log n) (5.20)

bits are needed. The first term corresponds to − logP (θ), the second
term corresponds to − logPr(D|θ), and the third term represents the
cost of encoding separators between the individual items. Using Stirling’s
approximation of n! ∼

√
2πn(n/e)n to evaluate the displayed multino-

mial coefficient, we find that for large n, Equation 5.20 is approximately

n
k∑

i=1

ni
n

log
n

ni
= nH

(n1

n
, . . . ,

nk
n

)

.

Since k and n are fixed, the least upper bound on the minimum descrip-
tion length, for an arbitrary sequence of n outcomes under constraints
such as those in Equations 5.18 and 5.19, is found by maximizing the dis-
played multinomial coefficient subject to said constraints. This is equiv-
alent to maximizing the entropy function in Equation 5.17 under the
constraints.

Viewed differently, let Sθ be the set of outcomes with values (n1, . . . , nk),
with ni = npi, corresponding to a distribution θ = (p1, . . . , pk). Then
due to the small number of values (k) in θ relative to the size of the sets,
we have

log
∑

θ

d(Sθ) ≈ max
θ

{log d(Sθ)}.

The left-hand side is the minimum description length; the right-hand
side is the maximum entropy. 3

Exercises 5.4.1. [20] Let R(n) denote the fraction of binary strings of length
n that are sufficiently Pr(·|H)-random as in Equation 5.14. Show that
R(n) = 1−O(1/2K(H,n)) and goes to 1 for n→ ∞. Moreover, lim supn→∞
R(n) = 1 −O(1/n).

Comments. Source for this and the next three exercises: P.M.B. Vitányi
and M. Li, IEEE Trans. Inform. Theory, 46:2(2000), 446–464.
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5.4.2. [27] Show that the probability that for data of binary length n,
the hypotheses of binary lengthm that are selected by the Bayesian max-
imum a posteriori and minimum-description-length principles, respec-
tively, are close in the sense of satisfying the relations of Theorem 5.4.1.
Show that this probabilty goes to one as m and n grow unboundedly.
Moreover, the lim sup of that probability exceeds 1 −O(1/min{m,n}).

5.4.3. [23] Show that if log 1/Pr(D|H) + log 1/P (H) = K(D|H) +
K(H) + O(1), then H is P -random up to K(Pr(·|H)) −K(P ) + O(1),
and D is Pr(·|H)-random up to K(P ) −K(Pr(·|H)) + O(1). (Negative
randomness deficiencies correspond to 0.)

5.4.4. [26] Let α(P,H) in Theorem 5.4.1 be small (for example, a con-
stant) and prior P := m. Show that Theorem 5.4.1 is satisfied iff the
data sampleD is Pr(·|Hmdl)-random. Show also that this has probability
going to one for the binary length n of the data increasing unboundedly
(and the lim sup of the probability exceeds 1 −O(1/n)).

Comments. The choice of m as prior satisfies the condition of Theo-
rem 5.4.1. This prior is an objective and recursively invariant form of
Occam’s razor: a simple hypothesis H (with K(H) ≪ l(H)) has high m-
probability, and a complex or random hypothesisH (withK(H) ≈ l(H))
has low m-probability 2−l(H). Note that all hypotheses are random
with respect to the distribution m. The exercise shows that ideal MDL
corresponds to Bayes’s rule with the universal prior distribution m(·)
and contemplated hypotheses H for which the data D are Pr(·|H)-
random. Thus, ideal MDL selects the simplest hypothesis H that bal-
ances K(D|H) and K(H) and such that the data sample D is random
to it. Hint: use the coding theorem, Theorem 4.3.3 on page 273, to show
that log 1/Pr(D|H) = K(D|H)+O(1), and so determine the admissible
hypotheses for the data D. In particular, the H := Hmdl minimizing
K(D|H) + K(H) is admissible iff D is Pr(·|H)-random. This happens
with probability going to one by Exercise 5.4.1.

5.5

Nonprobabilistic

Statistics

As one of the last scientific acts in a long and brilliant career, Kol-
mogorov in 1974 suggested a reformulation of statistical science indepen-
dent of probabilistic assumptions. This leads to model selection whereby
the performance is related to the individual data sample and the individ-
ual model selected. Moreover, it gives a nonprobabilistic foundation for
model selection and prediction, founded on the firm and uncontentious
ground of finite combinatorics and effective computation. As in Sec-
tion 1.11.5 on probabilistic statistics, we can choose a model from a set
of contemplated models only (which may or may not contain the best
possible model). Intuitively, our selection criteria are that (i) the data
should be a typical element of the model selected, and (ii) the selected



402 5. Inductive Reasoning

model should have a simple description. We need to make the meaning
of ‘typical’ and ‘simple’ rigorous and balance the requirements (i) and
(ii). The resulting theory presents a new viewpoint on the foundations
of maximum likelihood and minimum description length.

5.5.1
Algorithmic
Sufficient
Statistic

It is very difficult, if not impossible, to formalize the goodness of fit
of an individual model for individual data in the classic probabilistic
statistics setting. It is as hard to express the practically important issues
in induction in those terms, which is no doubt one of the reasons why
contention is rampant in that area. In the algorithmic setting a statistic
is defined as a data-containing finite set.

Definition 5.5.1 Let S = {x1, . . . , xn} be a finite set of strings. Let U be the reference
universal prefix machine U , and let U(p) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . .〉〉,
that is, U with binary program p computes the lexicographic listing of
the elements of S and then halts. The prefix complexity of the finite set S,
denoted by K(S), is the length of the shortest such program p. We define
S∗ = p, or, if there is more than one such shortest program, then the first
one that halts in a standard dovetailed running of all programs. Similarly,
K(x|S) denotes the length of the shortest self-delimiting binary program
that computes x from the lexicographic listing of all the elements of S.

Definition 5.5.2 A finite set S containing x is an algorithmic statistic for x.

One can describe every string x, the data, by a two part description: the
model description, or algorithmic statistic for x, in the form of a finite
set S of strings containing x, and the data-to-model code describing x
given S.

Definition 5.5.3 A string x is a typical or random element of a finite set S, and S is a
fitting model for x, if x ∈ S and the randomness deficiency δ(x|S) defined
by log d(S)−K(x|S) is O(1). Here O(1) is a constant (or possibly a small
value) independent of x and S.

Example 5.5.1 (Randomness deficiency and model fitness) (i) Randomness de-
ficiency is almost nonnegative, that is, δ(x|S) ≥ c for some, possibly
negative, constant c and every x ∈ S. This is easy to see, since every
x ∈ S can be described by its log d(S)-bit index in S once we are given
S. Thus K(x|S) ≤ log d(S) +O(1).
(ii) For every S, the randomness deficiency of almost all elements of S
is small: The number of x ∈ S with δ(x|S) > β is fewer than d(S)2−β .
Indeed, δ(x|S) > β implies K(x|S) < log d(S) − β. Since there are at
most 2log d(S)−β programs of fewer than log d(S)−β bits, the number of
x’s satisfying the inequality cannot be larger.
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(iii) Every element with small randomness deficiency in S possesses ev-
ery property possessed by a majority of elements in S (we identify a
property of elements of S with a subset of S consisting of all elements
having the property). More specifically, assume that A is a subset of
S with d(A) ≥ (1 − 2−β)d(S) and K(A|S) ≤ γ. Then the randomness
deficiency of all x 6∈ A in S satisfies δ(x|S) > β − γ − O(log log d(A)),
which is large if β is large and γ is small.

The randomness deficiency measures our disbelief that x can be obtained
by random sampling in S (where all elements of S are equiprobable). By
property (ii), the randomness deficiency of an element randomly chosen
in S is small, with high probability. On the other hand, if δ(x|S) is
small, then there is no way to refute the hypothesis that x was obtained
by random sampling in S: every such refutation is based on a simply
described property possessed by a majority of S but not by x. Here it
is important that we consider only simply described properties, since
otherwise we can refute the hypothesis by exhibiting the property A =
S − {x}.
Consider the set S1 of binary strings of length n whose every odd position
is 0. Let x be an element of this set in which the subsequence of bits in
even positions is an incompressible string. Then, x is a typical element
of S1. As another example, the string x is a typical element of the set
S2 = {x}. 3

Definition 5.5.4 A finite set S containing x is called an algorithmic sufficient statistic for
x if K(S) + log d(S) = K(x) +O(1). Here O(1) is a constant (or indeed
a small value) independent of x and S.

Intuitively, a statistic expresses the essence of the data. It is sufficient
if the two-part code describing the data consisting of the statistic and
the data-to-model code is as concise as the best one-part description.
Compare the algorithmic sufficient statistic of Definition 5.5.4 with the
probabilistic sufficient statistic of Definition 1.11.6 on page 83.

Lemma 5.5.1 If S is an algorithmic sufficient statistic for x, then x is a random,
typical element of S.

Proof.

K(x) ≤ K(x, S) ≤ K(S) +K(x|S) +O(1)

≤ K(S) + log d(S) +O(1) ≤ K(x) +O(1),

where only the substitution of K(x|S) by log d(S) + O(1) uses the fact
that x is an element of S. 2
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Example 5.5.2 Sets for which x is typical form a much wider class than algorithmic
sufficient statistics for x: If x is a simple string of length n, say K(x) =
1
4n, then x is still typical for S3 = {x, y} irrespective of y. But with
K(y) ≫ K(x), the set S3 will be too complex to be sufficient for x. For
a perhaps less artificial example, consider a random string y of length
n. Let Sy be the set of strings of length n that have 0’s exactly where y
has, and can have 0’s or 1’s where y has 1’s. Let x be a random element
of Sy. Then x has about one-quarter 1’s, so its complexity is much less
than n. The set Sy is typical with respect to x, but is too complex to be
sufficient, since its complexity is about n. 3

5.5.2
Structure
Functions

The first parameter we consider in model selection is the simplicity K(S)
of the model S explaining the data x. The second parameter is how typi-
cal the data is with respect to S, expressed by the randomness deficiency
δ(x|S) = log d(S) −K(x|S). The third parameter is how short the two-
part code Λ(S) = K(S) + log d(S) of the data sample x, using model S,
is. These parameters induce a partial order on the contemplated set of
models. We write S0 ≤ S1 if S0 scores equal or less than S1 in all three
parameters. If this is the case, then we may say that S0 is at least as
good as S1 as an explanation for x. The converse need not necessarily
hold, since it is possible that S0 is at least as good a model for x as S1

without scoring better than S1 in all three parameters simultaneously.

The algorithmic statistical properties of a data sample x are fully rep-
resented by the set

Ax = {(K(S), δ(x|S),Λ(S))}, (5.21)

such that S ∋ x, together with a componentwise order relation on the
elements of those triples. The complete characterization of this set is
given in Example 5.5.11 on page 413.

To do the analysis, for every fixed i, we consider selection of a model
S for x with K(S) ≤ i in three ways, characterized by three different
functions. In information theory this i is called the ‘rate.’

Best-Fit
Estimator

With the first method we select a model S containing x, with K(S) ≤ i,
for which the data x has least randomness deficiency δ(x|S).

Definition 5.5.5 The minimal randomness deficiency function, also called the best-fit es-
timator, is defined by (setting min ∅ = ∞)

βx(i) = min
S

{δ(x|S) : S ∋ x, K(S) ≤ i}.

This implies that a witness model of βx(i) is a model of best fit for x
among the models of complexity at most i, Example 5.5.1 on page 402.
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This gives us a proper model for x at every model complexity. Unfortu-
nately, it will turn out that the method is too difficult to apply. But we
shall show that we can obtain our goal in a round about manner.

Example 5.5.3 (Lossy compression) The function βx(i) is relevant to lossy compres-
sion, used, for instance, to compress images. Assume we need to compress
x to i bits where i≪ K(x). Of course, this implies some loss of informa-
tion present in x. One way to select redundant information to discard
is as follows: Instead of x use a set S ∋ x with K(S) ≤ i and with
small δ(x|S) in the form of a compressed version S′ (l(S′) ≤ i) of S. To
reconstruct an x′, a decompresser uncompresses S′ to S and selects at
random an element x′ of S. Since with high probability the randomness
deficiency of x′ in S is small, x′ serves the purpose of the message x as
well as x itself does. Let us look at an example. To transmit a picture of
‘rain’ through a channel with limited capacity i, one can transmit the
indication that this is a picture of the rain, and the particular drops
may be chosen by the receiver at random. In this interpretation, βx(i)
indicates how random or typical x is with respect to the best model at
complexity level i, and hence how indistinguishable from the original x
the randomly reconstructed x′ can be expected to be. 3

Maximum-
Likelihood
Estimator

A.N. Kolmogorov, at a conference in Tallinn, Estonia, in 1973 (no written
version), and in a talk at the Moscow Mathematical Society in the next
year, proposed model selection guided by the following function. We
select a model S containing data x, with K(S) ≤ i, that minimizes the
maximal data-to-model code length log d(S).

Definition 5.5.6 The Kolmogorov structure function, also called the maximum likelihood
(ML) estimator, hx of given data x is defined by

hx(i) = min
S

{log d(S) : S ∋ x, K(S) ≤ i},

where S ∋ x is a contemplated model for x, and i is a nonnegative
integer value bounding the complexity of the contemplated S’s.

Every finite set S ∋ x is equivalent to a probability mass function P
defined by P (y) = 1/d(S) for y ∈ S, and P (y) = 0 otherwise. Let
P be the family of these probability mass functions. We can rewrite
hx(i) = minP {log 1/P (x) : P (x) > 0, K(P ) ≤ i}, where the minimum
is taken over the elements of P . The minimum of log 1/P (x) is reached
for the P ∈ P that maximizes P (x), whence the name ‘ML-estimator’
for hx(i). See Exercise 5.5.19 on page 428 for the generalization of the
family P to the model class of computable probability mass functions
(probability models).
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FIGURE 5.6. Kolmogorov’s structure function (ML estimator)

Example 5.5.4 (Sufficiency line) Clearly, the function hx(i) is nonincreasing and
reaches log d({x}) = 0 for i = K(x) + c1, where c1 is the number of
bits required to change x into {x}; see Figure 5.6. For every S ∋ x we
can describe x by giving S and the index of x in S, which shows that
K(x) ≤ K(S) + log d(S) +O(1). Therefore,

K(x) ≤ i+ hx(i) +O(1),

that is, the function hx(i) never decreases more than a fixed indepen-
dent constant below the diagonal sufficiency line L defined by Lx(i) =
K(x) − i. The sufficiency line is therefore a lower bound on hx(i) and
is approached to within a constant distance by the graph of hx for
certain i’s (for instance, for i = K(x) + c1). For these i’s we have
i+hx(i) = K(x)+O(1); and a model corresponding to such an i (witness
for hx(i)) is a sufficient statistic as in Definition 5.5.4 on page 403. It is
minimal for the least such i; see Example 5.5.5 and Section 5.5.9. 3

Example 5.5.5 (Minimal sufficient statistic) The minimal algorithmic sufficient sta-
tistic for data x is a finite set S0 witnessing the least i for which βx(i) = 0
(equivalently, hx(i) = K(x) − i). Every nonminimal sufficient statistic,
say associated with witness set S, with K(S) > K(S0), in addition
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models K(S)−K(S0) bits of randomness in the data. Thus, the higher
the complexity of the sufficient statistic, the more additional noise in the
data it models. This is called overfitting. At lower complexity levels i <
K(S0), the structure function has not yet descended to the sufficiency
line Lx(i) = K(x)−i. We know from Exercise 5.5.1 on page 420 that the
complexity of a minimal sufficient statistic is at least K(K(x)), up to
a fixed additive constant, for every x. Hence, for smaller arguments the
structure function definitively rises above the sufficiency line. Continued
in Example 5.5.10 on page 413. 3

MDL Estimator We select a model S such that the total two-part description length,
consisting of one part describing S containing x and the second part
describing the maximal data-to-model code of a string in S, is minimized.

Definition 5.5.7 The length of the minimal two-part code for x using a model S containing
x, with K(S) ≤ i, consisting of the model cost K(S) and the maximal
length log d(S) of the index of an element of S, is given by the MDL
function, also called the minimum description length (MDL) estimator,

λx(i) = min
S

{Λ(S) : S ∋ x, K(S) ≤ i},

where Λ(S) = log d(S) + K(S) ≥ K(x) − O(1) is the total length of
two-part code of x with help of model S.

Relations
Between the
Structure
Functions

First we show that properties of λx translate directly into properties of
hx, since hx(i) is always close to λx(i) − i. The functions hx(i) + i (the
ML code length plus the model complexity) and λx(i) (the MDL code
length) are essentially the same function. This is not trivial, since in the
first case we minimize the first term of the sum of two terms, and in the
second case we minimize the sum of two terms.

Definition 5.5.8 Let f, g,∆ : N → N be three integer functions. Then f(i) follows the
shape of g(i) up to error ∆(i) if the graph of f(i) is situated in a strip
of width 2∆(i) +O(1) centered on the graph of g(i), as in Figure 5.8 on
page 411.

Lemma 5.5.2 The MDL estimator λx(i) follows the shape of hx(i)+i up to error K(i).
Formally, for every x and i we have

λx(i) ≤ hx(i) + i ≤ λx(i) +K(i) +O(1).

Proof. The inequality λx(i) ≤ hx(i) + i is immediate. So it suffices to
prove that hx(i) + i ≤ λx(i) +K(i) +O(1). The proof of this inequality
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uses an explicit construction of a set S ∋ x witnessing hx(i) that also
witnesses λx(i) up to an additive K(i) term. It is left to the reader as
Exercise 5.5.3 on page 421. 2

Example 5.5.6 The proof of the lemma implies that the same model witnessing hx(i) also
witnesses λx(i) up to an additive term of K(i). The converse is true only
for the smallest cardinality set witnessing λx(i). Without this restriction,
a counterexample is the following: For x of length n with K(x) ≥ n, the
set S = {0, 1}n witnesses λx(

1
2n) = n + O(K(n)) but does not witness

hx(
1
2n) = 1

2n+O(K(n)). (If λx(i) = K(x), then every set of complexity
i′ ≤ i witnessing λx(i

′) = K(x) also witnesses λx(i) = K(x).) 3

The central result of this section tells us that a model achieving the
MDL code length λx(i), or the ML code length hx(i), also achieves the
best possible fit βx(i), up to ignorable error:

Theorem 5.5.1 The graph of λx(i) follows the shape of the graph of βx + K(x) up to
error ∆ = O(log n). Formally, for every i, with 0 ≤ i ≤ K(x)−O(log n),
there is a ∆ = O(log n) such that

βx(i) +K(x) − λx(i) ≤ O(1),

0 ≤ βx(i) +K(x) − λx(i+ ∆).

Proof. Firstly, note that both functions λx(i) and βx(i) are by definition
nonincreasing in i. Therefore, the theorem follows from the fact that the
graph of λx tracks the graph of βx + K(x), in the following sense: for
every x of length n, and complexity K(x), we have

βx(i) +K(x) ≤ λx(i) +O(1), (5.22)

λx(i+O(log n)) ≤ βx(i) +K(x) +O(log n), (5.23)

with 0 ≤ i ≤ K(x) in Equation 5.22, and 0 ≤ i ≤ K(x) in Equation 5.23.
To prove these inequalities, it is convenient to first rewrite the formula
for the randomness deficiency δ(x|A) using the symmetry of information,
Theorem 3.9.2 on page 249, as follows:

δ(x|A) ≤ log d(A) +K(A) −K(A|x∗) −K(x) +O(1) (5.24)

= Λ(A) −K(A|x∗) −K(x) +O(1).

Proof of Equation 5.22. This is easy, since for every set S ∋ x witnessing
λx(i) we have by Equation 5.24 that δ(x|S) ≤ Λ(S) − K(x) + O(1) =
λx(i) −K(x) +O(1). Since βx(i) ≤ δ(x|S) by definition, we are done.
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Proof of Equation 5.23. This is more difficult. By Equation 5.24, and the
obvious K(A|x∗) ≤ K(A|x) + O(1), it suffices to prove that for every
A ∋ x there is an S ∋ x with

K(S) ≤ K(A) +O(log Λ(A)),

log d(S) ≤ log d(A) −K(A|x) +O(log Λ(A)).

To see this, note that for every set A witnessing βx(i), the set S will
witness

λx(i+O(log n)) ≤ βx(i) +K(x) +O(log n),

since Λ(A) = log d(A)+K(A) = K(x|A∗)+βx(i)+K(A) ≤ 3n+O(logn),
provided i ≥ K(n) + O(1). For i < K(n) + O(1) we use Equation 5.23
with i = i′ + 2 logn. The proof obligation is implied by the stronger
assertion of Exercise 5.5.4 on page 421, which is left to the reader. 2

Example 5.5.7 (Witness sets) The bare statement of Theorem 5.5.1 does not preclude
that βx(i), λx(i), and hx(i) are witnessed by three different sets. But in
the proof of the theorem we see that for every finite set S ∋ x, of
complexity at most i+O(log n) and minimizing Λ(S), we have δ(x|S) ≤
βx(i) +O(log n). Ignoring O(log n) terms, this means that the same set
that witnesses λx(i) also witnesses βx(i). By Example 5.5.6 on page 408,
we know that every set that witnesses hx(i) also witnesses λx(i). Hence,
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FIGURE 5.7. Relations among the structure functions
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at every complexity level i, every best model with respect to hx(i) is
also a best one with respect to λx(i) and also a best one with respect
to βx(i), that is, we have typicality. This explains why it is worthwhile
to find shortest two-part descriptions for given data x: This is the single
known way to find in an effective manner an S ∋ x (K(S) ≤ i) with
respect to which x is as typical as possible. Since by Exercise 5.5.16 on
page 426 the set

{(x, S, β) : x ∈ S, δ(x|S) < β}

is not recursively enumerable, we are not able to generate such best-fit
S’s directly. 3

Corollary 5.5.1 A model achieving the MDL code length λx(i), or the ML code length
hx(i), essentially achieves the best possible fit βx(i).

Example 5.5.8 (Witness sets, continued) Witness models for the best-fit estimator
may not be witness models for the ML estimator or the MDL estimator.
That is, not every finite set witnessing βx(i) also witnesses λx(i) or hx(i).
For example, let x be a string of length n with K(x) ≥ n. Let S1 =
{0, 1}n ∪ {y}, where y is a string of length 1

2n such that K(x, y) ≥ 3
2n,

and let S2 = {0, 1}n. Then both S1, S2 witness βx(
1
2n+O(logn)) = O(1),

but

Λ(S1) =
3

2
n+O(log n) ≫ λx

(
1

2
n+O(log n)

)

= n+O(log n),

while

log d(S2) = n≫ hx

(
1

2
n+O(log n)

)

=
1

2
n+O(log n).

However, for every i such that λx(i) decreases when i→ α with i ≤ α, a
witness set for βx(α) is also a witness set for λx(α) and hx(α). Similarly,
witness models for the MDL estimator may not be witness models for
the ML estimator. 3

Shapes The structure function graphs for data x (l(x) = n) have integer coor-
dinates and are situated in an n× n area. For the hx function it is easy
to see that the obvious constraints are

hx(i) + i ≥ K(x) +O(1), hx(K(x) +O(1)) = 0,

hx(K(n) +O(1)) ≤ n, hx(i) + i ≤ hx(j) + j +O(log n),

for every i ≥ j. In Example 5.5.9 on page 412 we see that the structure
function hx for every x of length n and complexity K(x) ≥ n− logn ap-
proximately coincides with the diagonal L(i) = n−i. But there are fewer
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FIGURE 5.8. Graph of hx(i) in strip around h(i)

than 2n/n strings x of length n that have complexity K(x) < n− logn.
Exercise 5.5.2 on page 421 shows that the number of distinct h functions
available for them is far greater. Therefore, not every one of these pos-
sibilities can constitute an hx function for some x. But Theorem 5.5.2
tells us that if we take a coarser view of the shape of a function, then
every such shape can be realized by some x.

Recall Definition 5.5.8 on page 407. The next theorem states the possible
shapes of the graphs of the λ-function in a precise form. By K(i, n, λ) we
mean the minimum length of a program that outputs n, i, and computes
λ(j) given any j in the domain of λ. We first analyze the possible shapes
of the structure functions.

Theorem 5.5.2 (i) For every n and every string x of length n and complexity K(x),
there is a nonincreasing integer-valued function λ defined on [0,K(x)]
such that λ(0) ≤ n, λ(K(x)) = K(x) and λx follows the shape of λ up
to error K(n).

(ii) Conversely, for every n, k, and nonincreasing integer-valued function
λ whose domain includes [0, k] and such that λ(0) ≤ n and λ(k) = k,
there is a string x of length n and complexity k ± (K(k, n, λ) + O(1))
such that λx(i) follows the shape of λ(i) up to error K(i, n, λ).

Proof. We defer the proof to Exercise 5.5.9 on page 424. 2
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Corollary 5.5.2 By Theorem 5.5.2, the MDL code length λx, and by Lemma 5.5.2 the
original structure function hx can assume essentially every possible shape
as a function of the contemplated maximal model complexity. The the-
orem implies that for every function h(i) defined on [0, k] such that
the function λ(i) = h(i) + i satisfies the conditions of item (ii) there
is an x such that the graph of hx(i) is situated in a strip of width
2K(h) + O(log n) centered on h(x) (absorbing the K(i, n) term in the
O(log n) term); see Figure 5.8.

Corollary 5.5.3 For every x of length n and complexity k ≤ n there is a nonincreasing
function β such that β(0) ≤ n − k, β(k) = 0, and βx follows the shape
of β up to error O(log n). Conversely, for every nonincreasing function β
such that β(0) ≤ n− k, β(k) = 0, there is x of length n and complexity
k ± δ such that βx follows the shape of β up to error O(log n) +K(β).

Example 5.5.9 (Variety of shapes) Consider strings of n bits. For every curve mono-
tonically nonincreasing at a slope of at most −1, in the triangle below
the diagonal in Figure 5.9 there is some string that realizes it as its struc-
ture function, within logarithmic precision, Corollary 5.5.2. We depict
possible structure functions for some string x of complexity K(x) = 3

4n,
some string y of complexity K(y) = 1

2n, and some string z of complexity
K(z) = 1

4n. Note that strings of these complexities can have other struc-
ture functions. There are at least (1−1/n)2n data strings u of complexity
K(u) ≥ n − logn, all of which have individual structure functions that



5.5. Nonprobabilistic Statistics 413

approximately coincide with the diagonal. They dominate to the extent
that the pointwise expectation of the total collection of structure func-
tion curves coincides with the diagonal up to the stated precision. For
another example, see Figure 5.10 on page 438. 3

Example 5.5.10 (Minimal sufficient statistic, continued) We continue Example 5.5.5
on page 406. For every n there exist so-called nonstochastic objects x
of length n that have a sufficient statistic of high complexity only. By
Theorem 5.5.2, there are strings x of length n of complexity K(x) =
n − O(log n) such that every sufficient statistic S for x has complex-
ity K(S) ≥ n − O(log n). See also Exercise 5.5.10 on page 424 and
the historical comments at Figure 5.10 on page 438. Indeed, by Exer-
cise 5.5.11 on page 425, there are even strings x of length n and com-
plexity K(x|n) = n−O(1) such that every sufficient statistic S of x has
complexity either K(S|n) > n− O(1) or K(x|S) < log d(S) − O(1). By
Lemma 5.5.1 we have K(x|S) ≥ log d(S)−O(1), so K(S|n) > n−O(1).
Clearly, we also have K(S|n) + log d(S) ≤ K(x|n) + O(1) ≤ n + O(1),
which shows that log d(S) = O(1). Therefore, d(S) is bounded by a fixed
universal constant. For such x every sufficient statistic S consists of not
much more than the singleton set consisting of the string itself. 3

Example 5.5.11 (Essence of model selection) We have argued that the algorithmic
statistical properties of a data sample x are fully represented by the
set Ax of triples of Equation 5.21 on page 404. Up to additive logarith-
mic precision, Theorems 5.5.1, 5.5.2 describe the possible shapes of the
closely related set Bx consisting of all triples (i, δ, λ) such that there is a
set S ∋ x with K(S) ≤ i, δ(x|S) ≤ δ, Λ(S) ≤ λ. That is, Ax ⊆ Bx, and
Ax and Bx have the same minimal triples. Hence, we can informally say
that our results describe completely possible shapes of the set of triples
(K(S), δ(x|S),Λ(S)) for nonimprovable models S explaining x. That is,
up to O(log n) accuracy, and writing k = K(x) and n = l(x):

• For every minimal triple (i, δ, λ) in Bx we have 0 ≤ i ≤ k, 0 ≤ δ,
and δ + k = λ ≤ n.

• There is a triple of the form (i0, 0, k) in Bx (the minimal such i0
is the complexity of the minimal sufficient statistic for x). This
property allows us to recover the complexity k of x from Bx.

• There is a triple of the form (0, λ0 − k, λ0) in Bx with λ0 ≤ n.

Conversely, for every set B of triples of integers satisfying these three
properties, there is a string x of length n and complexity close to k
such that for every triple in Bx there is a triple in B such that the
corresponding coordinates are within O(log n) of one another, and vice
versa. 3
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Example 5.5.12 (Computability) The functions hx(i), λx(i), βx(i) have finite domain
for given x and hence can be given as a table—so formally speaking
they are computable. But this evades the issue: there is no algorithm
that computes these functions for every given x and i. Considering them
as two-argument functions, we can show the following:

• The functions hx(i) and λx(i), and their witness sets, are upper
semicomputable but they are not computable up to any reasonable
precision, Exercise 5.5.14 on page 426.

• Moreover, there is no algorithm that given x, K(x), and i finds
hx(i) or λx(i) or their witness sets, Exercise 5.5.14, Item (b), on
page 426.

• The function βx(i) is not upper or lower semicomputable, not even
to any reasonable precision, Exercise 5.5.16 on page 426 and Exer-
cise 5.5.17 on page 427. It is easy to see that one can compute βx(i)
given an oracle for the halting problem. These statements hold also
for the corresponding witness sets.

• There is no algorithm that given x and K(x) finds a minimal suffi-
cient statistic for x up to any reasonable precision, Exercise 5.5.15
on page 426.

3

5.5.8
Foundations of
MDL

In Theorem 5.4.1 in Section 5.4 we have shown that ideal MDL selects
about the same model as maximum a posteriori Bayesian reasoning with
the universal distribution as prior, provided we select models only from
those for which the data are random. In Theorem 5.5.1 it turns out
that for finite-set models, the contemplated model of least cardinality
containing the data is a model for which the data are random and thus
satisfies Theorem 5.4.1. The procedure is as follows.

Given x, the data to explain, and i, the maximum allowed complexity of
an explanation, we search for programs p of length at most i that print
a finite set S ∋ x. Such pairs (p, S) are possible explanations. The best
explanation is the (p, S) for which δ(x|S) is minimal. Since K(x|S), and
therefore the function δ(x|S) = log d(S) −K(x|S), are not computable,
we cannot find the best explanation directly. To overcome this problem
we minimize the randomness deficiency by minimizing the MDL code
length maximizing the fitness of the model for this data sample, by
Theorem 5.5.1.

Definition 5.5.9 Let x be a data sample. Let A be an algorithm that, given x and some i ≤
l(x)+O(log l(x)), produces a finite sequence of pairs (p1, S1), (p2, S2), . . . ,
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(pf , Sf ), where each pt is a binary program of length at most i that prints
a finite set St ⊆ {0, 1}n with x ∈ St (1 ≤ t ≤ f). If l(pt) + log d(St) <
l(pt−1)+ log d(St−1) for all 1 < t ≤ f , then A is an MDL algorithm with
parameter i.

Note that according to this definition an MDL algorithm may consider
only a proper subset of all binary programs of length at most i. In par-
ticular, the final l(pf )+log d(Sf ) may be greater than the optimal MDL
code of length min{K(S) + log d(S) : x ∈ S, K(S) ≤ i}. This happens
when the program p printing S with x ∈ S and l(p) = K(S) ≤ i is not
in the subset of binary programs considered by the algorithm. The next
theorem gives an MDL algorithm that always finds the optimal MDL
code and, moreover, the model concerned is shown to be an approxi-
mately best-fitting model for the data.

Lemma 5.5.3 There exists an MDL algorithm with parameter i with the property that
limt→∞(pt, St) = (p̂, Ŝ), such that δ(x|Ŝ) ≤ βx(i−O(log n)) +O(log n).

Proof. We exhibit such an MDL algorithms with parameter i:

Algorithm MDL(i):

Step 1. Let x be a string of length n. Run all binary programs
p1, p2, . . . of length at most i in lexicographic length-increasing order
dovetailed fashion. The computation proceeds by stages 1, 2, . . . ,
and in each stage j the overall computation executes step j − k of
the particular subcomputation of pk, for each k such that j−k > 0.

Step 2. At every computation step t, consider all pairs (p, S) such
that program p has printed the set S ⊆ {0, 1}n containing x by time
t. We assume that there is a first elementary computation step t0
such that there is such a pair. Let a best explanation (pt, St) at
computation step t ≥ t0 be a pair that minimizes the sum l(p) +
log d(S) among all the pairs (p, S).

Step 3. We change the best explanation (pt−1, St−1) of compu-
tation step t − 1 to (pt, St) at computation step t only if l(pt) +
log d(St) < l(pt−1) + log d(St−1).

In this MDL algorithm with parameter i, the best explanation (pt, St)
changes from time to time due to the appearance of a strictly better ex-
planation. Since no pair (p, S) can be selected as best explanation twice,
and there are only finitely many pairs, from some moment onward the
explanation (pt, St) that is declared best no longer changes. Therefore
the limit (p̂, Ŝ) exists. The model Ŝ is a witness set of λx(i). The lemma
follows by Theorem 5.5.1 and Example 5.5.7. 2
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Thus, if we continue to approximate the two-part MDL code contem-
plating every relevant model, then we will eventually reach the optimal
code that is approximately the best explanation. That is the good news.
The bad news is that we do not know when we have reached this opti-
mal solution. The functions hx and λx, and their witness sets, cannot be
computed within any reasonable accuracy, Exercise 5.5.14 on page 426.
Hence, there does not exist a criterion that we could use to terminate
the approximation somewhere close to the optimum. In the practice of
real-world MDL, in the process of finding the two-part MDL code, we
often have to be satisfied with running times t that are much less than
the time to stabilization of the best explanation (p̂, Ŝ). For such small t,
the model St has a weak guarantee of goodness, since we know that

δ(x|St) +K(x) ≤ l(pt) + log d(St) +O(1),

because K(x) − K(x|St) ≤ K(St) + O(1) ≤ l(pt) + O(1). That is, the
sum of the randomness deficiency of x in St and K(x) is less than a
known value. Lemma 5.5.3 implies that Algorithm MDL gives not only
some guarantee of goodness during the approximation process, but also
that in the limit, that guarantee approaches the value of its lower bound,
that is, δ(x|Ŝ) +K(x). Thus, in the limit, Algorithm MDL will yield an
explanation that is only a little worse than the best explanation.

Example 5.5.13 (Direct method) Use the same dovetailing process as in Algorithm
MDL, with the following addition. At every elementary computation
step t, select a (p, S) for which log d(S) − Kt(x|S) is minimal among
all programs p that up to this time have printed a set S containing x.
Here Kt(x|S) is the approximation of K(x|S) defined by Kt(x|S) =
min{l(q) : the reference universal prefix machine U outputs x on input
(q, S) in at most t steps}. Let (qt, St) denote the best explanation after
t steps. We change the best explanation at computation step t only if
log d(St) −Kt(x|St) < log d(St−1) −Kt−1(x|St−1).

This time, the same explanation can be chosen as the best one twice.
However, from some time t onward, the best explanation (qt, St) no
longer changes. In the approximation process, the model St has no guar-
antee of goodness at all: since βx(i) is not semicomputable to any sig-
nificant precision by Exercise 5.5.16 on page 426, we cannot know an
upper bound, either for δ(x|St) or for δ(x|St) +K(x). Hence, we must
prefer the indirect method of Algorithm MDL, approximating a witness
set for λx(i), instead of the direct one of approximating a witness set for
βx(i). 3

In practice we often must terminate an MDL algorithm as in Defini-
tion 5.5.9 prematurely. It is seductive to assume that the longer we
approximate the optimal two-part MDL code, the better the resulting
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model explains the data, that is, that every next shorter two-part MDL
code also yields a better model. This is incorrect. To give an example
that shows where things go wrong, it is easiest first to give the condi-
tions under which premature search termination is all right. Suppose
we replace the currently best explanation (p1, S1) in an MDL algorithm
with explanation (p2, S2) only if l(p2) + log d(S2) is not just less than
l(p1) + log d(S1), but less by slightly more than the excess of l(p1) over
K(S1). Then, it turns out that every time we change the explanation, we
improve its goodness unless the change is just caused by the fact that we
have not yet found the minimum-length program for the current model.

Lemma 5.5.4 Let x be a string of length n, let A be an MDL algorithm, and let (p1, S1)
and (p2, S2) be sequential (not necessary consecutive) candidate best ex-
planations produced by A. If

l(p2) + log d(S2) ≤ l(p1) + log d(S1) − (l(p1) −K(S1)) − 10 logn,

then δ(x|S2) ≤ δ(x|S1) − 5 logn. (These conditions are satisfied by Al-
gorithm MDL.)

Proof. For every pair of sets S1, S2 ∋ x we have

δ(x|S2) − δ(x|S1) = Λ(S2) − Λ(S1) + ∆,

with

∆ = −K(S2) −K(x|S2) +K(S1) +K(x|S1)

≤ −K(S2, x) +K(S1, x) +K(S∗
1 |S1) +O(1)

≤ K(S1, x|S2, x) +K(S∗
1 |S1) +O(1).

Ignoring O(1) terms, we rewrite according to the symmetry of infor-
mation theorem, Theorem 3.9.1 on page 247, noting that −K(S2, x) ≥
−K(S2) −K(x|S2) and K(S1, x) +K(S∗

1 |S1) ≥ K(S1) + K(x|S1), and
finally use that K(a|b) ≥ K(a) −K(b). Setting Λ = Λ(S2) − Λ(S1), we
obtain, by the assumption in the theorem,

Λ ≤ l(p2) + log d(S2) − Λ(S1)

= l(p2) + log d(S2) − (l(p1) + log d(S1)) + (l(p1) −K(S1))

≤ − 10 logn.

Since by assumption the difference in MDL codes Λ(S2) − Λ(S1) > 0,
it suffices to show that K(S1, x|S2, x) + K(S∗

1 |S1) ≤ 5 logn to prove
the theorem. To identify S1 we need to know only the MDL algo-
rithm concerned, the maximal complexity i of the contemplated models,
(p2, S2), the number j of candidate best explanations between (p1, S1)
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and (p2, S2), and x. To identify S∗
1 from S1 we require only K(S1) bits.

The program p2 can be found from S2 and length of p2 as the first pro-
gram computing S2 of length l(p2) ≤ i in the process of running all
programs of length at most i dovetailed style. In an MDL algorithm,
j ≤ l(p1) + log d(S1) ≤ i+ n and K(S1) ≤ i. Therefore,

K(S1, x|S2, x) +K(S∗
1 |S1) ≤ log l(p2) + log i+ logK(Si) + log j + b

≤ 3 log i+ log(i+ n) + b,

where b is the number of bits we need to encode the description of the
MDL algorithm concerned, the delimiters to separate the descriptions
of the constituent parts given above (apart from x), and the description
of a program to reconstruct S1 and S∗

1 from these data plus x. Since
i ≤ n + O(log n), we find that K(S1, x|S2, x) + K(S∗

1 |S1) ≤ 4 logn +
O(log logn), which finishes the proof. 2

Example 5.5.14 In the sequence (p1, S1), (p2, S2), . . . of candidate best explanations pro-
duced by an MDL algorithm according to Definition 5.5.9, (pt′ , St′) is
actually better than (pt, St) (t < t′) if improvement in two-part MDL
code length is in excess of the unknown, and in general incomputable,
l(pt) −K(St). On the one hand, if l(pt) = K(St) +O(1) and

l(pt′) + log d(St′) ≤ l(pt) + log d(St) − 10 logn,

then St′ is a better explanation for data x than St in the sense that

δ(x|St′ ) ≤ δ(x|St) − 5 logn.

On the other hand, if l(pt) − K(St) is large, then St′ may be a much
worse explanation than St. Then, it is possible that we improve the two-
part MDL code length by giving a worse model St′ using, however, a pt′
such that l(pt′) + log d(St′) < l(pt) + log d(St) while δ(x|St′ ) > δ(x|St).

3

Example 5.5.15 (True model not in model class) A question arising in MDL or max-
imum likelihood (ML) estimation is its performance if the true model is
not part of the contemplated model class. Given certain data, why would
we assume that they are generated by probabilistic or deterministic pro-
cesses? They have arisen by natural processes most likely not conforming
to mathematical idealization. Even if we can assume that the data arose
from a process that can be mathematically formulated, we may restrict
modeling of data arising from a complex source (conventional analogue
being data arising from 2k-parameter sources) to simple models (conven-
tional analogue being k-parameter models). Theorem 5.5.1 shows that
within the class of models of maximal complexity i, we still select a
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model for which the data is maximally typical, even if the minimal suf-
ficient statistic has complexity ≫ i, that is, hx(i) + i ≫ K(x) + O(1).
This situation is potentially common by Theorem 5.5.2, in particular if
the data is nonstochastic, Exercise 5.5.10 on page 424. 3

5.5.9
Explanation and
Interpretation

Let l(x) = n. Theorem 5.5.1 states that within negligible additive loga-
rithmic (in n) terms, in argument and value,

K(x) + βx(i) = λx(i) = hx(i) + i. (5.25)

This relation among the structure functions is depicted in Figure 5.7.
Thus, up to logarithmic additive precision,

hx(i) − βx(i) = Lx(i),

where Lx(i) = K(x)− i is the sufficiency line. See also Exercise 5.5.8 on
page 423.

Trivial Case: hx(i) + i = K(x) + O(1). Then, the witness set S of
log-cardinality hx(i) is a sufficient statistic of x, and by Lemma 5.5.1 we
have that x is a typical element of S. This means that the randomness
deficiency δ(x|S) is O(1), that is, βx(i) = O(1). Then, Theorem 5.5.1
and Equation 5.25 hold trivially. For every x, with minimal sufficient
statistic S0, the trivial case occurs for every i ∈ [K(S0),K(x) + O(1)],
and for those arguments hx(i) = Lx(i) up to an additive constant.

Consider the case that x is random in the sense of having high prefix
complexity, K(x|n) = O(1). That is, x is a typical outcome of n fair coin
flips. Then, S = {0, 1}n is a sufficient statistic for x, implying that the
minimal sufficient statistic S0 for x has complexity K(S0) ≤ K(S) =
K(n)+O(1) = logn+O(log logn). So for these high-complexity x’s the
trivial case occurs for virtually all arguments i, that is, at least for all
i ∈ [K(n) +O(1),K(x) +O(1)].

Nontrivial Case: hx(i)+i > K(x)+O(1). Such strings x have precisely
randomness deficiency βx(i) = hx(i) + i − K(x) in the witness set S
of hx(i), ignoring logarithmic additive terms in argument and value.
This is the best fit, up to the stated precision, that we can achieve for
models of complexity at most i. The importance of Theorem 5.5.1 and
Equation 5.25 lies in the fact that for every string x containing significant
effective regularities, the minimal sufficient statistic S0 has complexity
K(S0) significantly greater than K(n). Then, hx(i) + i > K(x) + O(1)
for every i ∈ [0,K(S0)], and the bound K(S0) can take all values up to
K(x) by Theorem 5.5.2.

Since K(S0) is incomputable, Exercise 5.5.15 on page 426, and can be
quite large, it is important that if we restrict our search to a model
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of complexity i, possibly (but unknown to us) smaller than K(S0), we
still know the following: Algorithm MDL will upper semicompute ap-
proximately the MDL estimator λx(i) and a witness set (a variant of
Algorithm MDL will upper semicompute approximately the ML estima-
tor hx(i) and a witness set). Thus, these algorithms in the limit return a
model for x of almost best fit among all models satisfying the complexity
restriction i, Lemma 5.5.3.

Summary: For all data x, both the maximum likelihood estimator and
the minimum description length estimator select a model that optimizes
the best-fit estimator, in the class of complexity-restricted contemplated
models, surely and not only with high probability. In particular, when the
true model that generated the data is not in the complexity-restricted
model class considered, then the ML or MDL estimator still gives a
model that best fits the data. While the best-fit quantity βx(i) cannot
be computationally monotonically approximated up to any significant
precision, Exercise 5.5.16 on page 426, we can monotonically minimize
the two-part MDL code (find a model witnessing λx(i) Lemma 5.5.3), or
the model cardinality (find a model witnessing hx(i)), and thus mono-
tonically approximate implicitly the almost best-fitting model. But this
should be sufficient: we want a good model rather than a number that
measures its goodness. These results usher in a completely new era of
statistical inference that is always best rather than expected.

The generality of the results is at the same time a restriction. In classical
statistics one is commonly interested in model classes that are partially
poorer and partially richer than the ones we consider. For example, the
classes of Bernoulli processes or k-state Markov chains, with computable
parameters, are poorer than the class of computable probability mass
functions of moderate maximal Kolmogorov complexity i, in that the
latter may contain functions that require far more complex computa-
tions than the rigid syntax of the former classes allows. Indeed, the class
of computable probability mass functions of even moderate complexity
allows implementation of a function mimicking a universal Turing ma-
chine computation. On the other hand, even the lowly Bernoulli process
can be equipped with an incomputable real bias in (0, 1). This incompa-
rability between the algorithmic model classes and the statistical model
classes means that the current results cannot be directly transplanted
to the traditional setting. Indeed, they should be regarded as pristine
truths that hold in a Platonic world that can be used as a guideline to
develop analogues in model classes that are of more traditional concern.

Exercises 5.5.1. [25] Let x be a finite binary string and let S be a finite set
containing x. Define S to be strongly typical for x if log d(S)−K(x|S∗) =
O(1), where S∗ is the first shortest program to print S in lexicographic
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length-increasing order. (The standard Definition 5.5.3 on page 402 is
slightly weaker since it requires log d(S) − K(x|S) to be O(1).) Recall
that I(x;S) = K(x) + K(S) − K(x, S) + O(1) is the truly symmetric
variant of algorithmic mutual information.

(a) Show that if S is strongly typical for x, then I(x;S) = K(x) −
log d(S) +O(1).

(b) Show that if S is strongly typical for x, then I(x;S) ≥ K(K(x)) −
K(I(x;S))+O(1) and log d(S) ≤ K(x)−K(K(x))+K(I(x;S))+O(1).

(c) Show that S is a sufficient statistic for x iff it is strongly typical and
K(S|x∗) = O(1).

(d) Show that if S is a sufficient statistic for x, then I(x;S) = K(S) +
O(1) ≥ K(K(x)) +O(1) and log d(S) ≤ K(x) −K(K(x)) +O(1).

Comments. Item (d) tells us that every sufficient statistic for x has
complexity at least K(K(x)). Source: P. Gács, J.T. Tromp, and P.M.B.
Vitányi, IEEE Trans. Inform. Theory, 47:6(2001), 2443–2463; Correc-
tion, 48:8(2002), 2427.

5.5.2. [21] (a) Compute the number of different integer functions h
defined on 0, 1, . . . k for some k ≤ n − logn satisfying h(0) ≤ n and
h(i) + i is nonincreasing.

(b) Conclude that the number in Item (a) is far greater than the number
of x’s of length n and complexity k ≤ n− logn.

Comments. Hint for Item (a): The function h(i) starts for k = 0 at some
nonnegative value ≤ n. Here δ0 = n − h(0) can be viewed as the first
decrease. At every increment of i, the function h(i) can decrease one or
more units δi ≥ 1. There are k increments. The sum total is n. Hence we
consider n−k units that can be partitioned into k+1 nonnegative integer
summands. For every k there are

(
n
k

)
such partitions. Hence there are

∑n−logn
k=0

(
n
k

)
≥ 2n−1 ways to partition as asked in Item (a). All strings

x of length n and complexity k ≥ n − logn have structure functions
hx roughly following the diagonal L(i) = n − i. The number of x’s of
length n with complexity k ≤ n− logn is at most 2n−K(n)−logn+O(1) by
Theorem 3.3.1. This is far less than the number of functions h available
for them (potential structure functions hx) as computed in Item (a).
Source: N.K. Vereshchagin and P.M.B. Vitányi, Unpublished, 2007.

5.5.3. [30] Prove the difficult side of Lemma 5.5.2 on page 407.

Comments. Source: N.K. Vereshchagin and P.M.B. Vitányi, IEEE Trans.
Inform. Theory, 50:12(2004), 3265- 3290.

5.5.4. [39] (a) Show that for every set A ∋ x there is a set S ∋ x with
K(S) ≤ K(A) + O(log Λ(A)) and ⌈log d(S)⌉ = ⌈log d(A)⌉ − K(A|x) +
O(log Λ(A)).
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(b) Show that for every set A ∋ x there is a set S ∋ x with K(S) ≤
K(A) −K(A|x) +O(log Λ(A)) and ⌈log d(S)⌉ = ⌈log d(A)⌉. Recall that
Λ(A) = K(A) + log d(A).

Comments. Item (b) implies Item (a), which in turn proves Equation 5.23
on page 408, and hence finishes the proof of Theorem 5.5.1. Source: N.K.
Vereshchagin and P.M.B. Vitányi, Ibid.

5.5.5. • [25] (a) Show that if we recode data x by its shortest program
x∗, then this can change the structure functions.

(b) Let f be a recursive permutation of the set of finite binary strings
(one-to-one, total, and onto). Show that the graph of hf(x) follows the
shape of hx with error at most K(f) +O(1).

Comments. If the structure functions could change under common recod-
ings of the data, clearly our claim that the structure functions represent
the stochastic properties of the data would be false: One doesn’t believe
that those properties change under common recoding. Hint for Item (a):
since x∗ is incompressible, it is a typical element of the set of all strings
of length l(x∗) = K(x), and hence hx∗(i) drops to the sufficiency line
Lx(i) = K(x)− i already for some i ≤ K(K(x)), so almost immediately
(and it stays within logarithmic distance of that line henceforth). That
is, ignoring logarithmic additive terms, hx∗(i)+ i = K(x) irrespective of
the (possibly quite different) shape of hx. Since the Kolmogorov com-
plexity function K(x) = l(x∗) is not recursive, the recoding function
f(x) = x∗ is also not recursive. Moreover, while f is one-to-one and
total, it is not onto. However, the structure function is invariant under
‘proper’ recoding of the data as in Item (b). Source: N.K. Vereshchagin
and P.M.B. Vitányi, Ibid. Item (a) was first observed by O. Watanabe.

5.5.6. [35] Let x be a finite binary string. A prediction strategy P is
a mapping from the set of strings of length less than l(x) into the set
of rational numbers in the segment [0, 1]. The value P (x1 . . . xi) (i < n)
is regarded as our belief (or probability) that xi+1 = 1 after we have
observed x1, . . . , xi. If the actual bit xi+1 is 1, the strategy suffers the
loss log 1/p, otherwise log(1/(1 − p)), for p = P (x1 . . . xi). The strategy
is a finite object and K(P ) may by defined as the complexity of this
object, or as the minimum size of a program that identifies n and, given
y, finds P (y). The total loss LossP (x) of P on x is the sum of all n

losses, LossP (x) =
∑n−1

i=0 log 1/|P (x1 . . . xi) − 1 + xi+1|. The snooping
curve sx is defined by sx(i) = minP :K(P )≤i LossP (x). The snooping curve
sx(i) gives the minimal loss suffered on all of x by a prediction strategy
as a function of the complexity of the prediction strategies. Show that
sx(i + O(log l(x))) ≤ hx(i) and hx(i + O(log l(x))) ≤ sx(i) for every x
and i.
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Comments. Hence, if S ∋ x is a smallest set such that K(S) ≤ i, then S
can be converted into a best strategy of complexity at most i to predict
the successive bits of x given the preceding ones, and vice versa. The
snooping curve was proposed by V.V. Vyugin Theoret. Comput. Sci.,
276:1-2(2002), 407–415, who obtained partial results. Because of Item
(a), Lemma 5.5.2 and Theorem 5.5.2 describe the coarse shape of all
possible snooping curves. From Item (b) it follows that the witness set
of hx(i) not only is an almost best-fitting model for x, but also can
be converted into an almost best predictor for the successive bits of x.
The notion of the snooping curve sx(i) of a finite string x quantifies the
quality of prediction expressed in terms of the errors in predicting the
probabilities of the consecutive elements of x. In the prediction situation
in Section 5.2.7 we wanted to predict the actual consecutive elements of
an infinite sequence, and the quality of the prediction algorithm is given
by the number of mistakes we make. Source: N.K. Vereshchagin and
P.M.B. Vitányi, Ibid.

5.5.7. [31] (a) Show that there is a string x of length n and complexity
about 1

2n for which βx(O(log n) = 1
4n+O(log n).

(b) Show that for the set A0 = {0, 1}n we have K(A0) = O(log n) and
K(x|A0) = 1

2n + O(log n), and therefore K(A0) + K(x|A0) = 1
2n +

O(log n) is minimal up to a term O(log n).

(c) Show that the randomness deficiency of x in A0 is about 1
2n, which

is much bigger than the minimum βx(O(log(n)) ≈ 1
4n.

(d) Show that for the model A1 witnessing βx(O(log(n)) ≈ 1
4n we also

have K(A1) = O(log n) and K(x|A1) = 1
2n+ O(log n), but log d(A1) =

3
4n+O(log n), which causes the smaller randomness deficiency.

Comments. Ultimate compression of the two-part code in ideal MDL,
Section 5.4, means minimizing K(A) +K(x|A) over all models A in the
model class. In Theorem 5.5.1 we have essentially shown that the worst-
case data-to-model code is the approach that guarantees the best-fitting
model. In contrast, the ultimate compression approach can yield models
that are far from best fit. It is easy to see that this happens only if
the data are not typical for the contemplated model. Hint for Item (a):
use Corollary 5.5.3 on page 412. Source: N.K. Vereshchagin and P.M.B.
Vitányi, Ibid.

5.5.8. [23] Use the terminology of Section 5.5.1. Apart from parame-
ters i, β, γ, there a fourth important parameter, K(S|x∗), reflecting the
determinacy of model S by the data x. Prove the equality log d(S) +
K(S) − K(x) = K(S|x∗) + δ(x|S) + O(log nΛ(S)). Conclude that the
central result Equation 5.25 on page 419 establishes that K(S|x∗) is log-
arithmic in l(x) for every set S witnessing hx(i). This also shows that
there are at most polynomially many (in l(x)) such sets.
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Comments. Source: N.K. Vereshchagin and P.M.B. Vitányi, Ibid.

5.5.9. [34] Prove Theorem 5.5.2.

Comments. A less precise result of the same nature is given in The-
orem 8.1.6 on page 619, and its proof deferred to Exercise 8.1.8 on
page 626, for arbitrary distortion measures. In the terminology used
there, the Kolmogorov structure function is the distortion-rate function
of list distortion. Source: N.K. Vereshchagin and P.M.B. Vitányi, Ibid.

5.5.10. [34] Let x be string and α, β natural numbers. Kolmogorov
called a string (α, β)-stochastic if there is a finite set A ⊆ N and x ∈ A
such that

x ∈ A, K(A) ≤ α, K(x|A) ≥ log d(A) − β.

The first inequality (with α not too large) means that A is sufficiently
simple. The second inequality (with β not too large) means that x is
an undistinguished (typical) element of A. If x had properties defining
a very small subset B of A, then these could be used to obtain a simple
description of x by determining its ordinal number in B. This would
require log d(B) bits, which would be significantly less than log d(A).

(a) Show that (α, β)-stochasticity of x is equivalent to βx(α) ≤ β.

(b) Show that the overwhelming majority of strings of length n with an
equal number of 0’s and 1’s is (O(log n), O(1))-stochastic.

(c) Show that the overwhelming majority of strings in {0, 1}n is (O(log n),-
O(1))-stochastic.

(d) Show that for some constants c, C, for every n and every α, β with
α ≥ logn + C and α + β ≥ n + c logn + C, every string of length n is
(α, β)-stochastic.

(e) Show that for some constants c, C, for all n and all α, β with α+β <
n−c logn−C, there is a string x of length n that is not (α, β)-stochastic.

Comments. Hint for Item (b): the setA has cardinality
(
n
n/2

)
= Θ(2n/

√
n)

and K(A) = K(n) + O(1) = O(log n). The majority of elements x ∈ A
have complexity K(x|A) = log d(A) +O(1). Hint for Item (c): although
the overwhelming majority of strings in {0, 1}n do not belong to A, they
are nonetheless also (O(log n), O(1))-stochastic, this time with respect
to the set {0, 1}n. Source for Item (d): A.K. Shen, Soviet Math. Dokl.,
28:1(1983), 295–299. Item (e): in [A.K. Shen, Ibid.] it is proven that for
some constants c, C, for all n and all α, β with 2α+ β < n− c logn−C
there is a string x of length n that is not (α, β)-stochastic. Use Corol-
lary 5.5.3 to prove the stronger result. It follows from Items (d) and
(e) that if we take α = β, then for some boundary around 1

2n, the last
non-(α, β)-stochastic elements disappear if the complexity constraints
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are sufficiently relaxed by having α, β exceed this boundary. Source for
Item (e): N.K. Vereshchagin and P.M.B. Vitányi, Ibid.

5.5.11. [37] (a) Show that there are strings x of length n such that
the algorithmic minimal sufficient statistic is essentially the singleton
set consisting of the string itself. Formally, there are constants c, C such
that for every given k < n there exists a string x of length n with
complexity K(x|n) ≤ k that is not (k − c, n − k − C)-stochastic in the
sense of Exercise 5.5.10.

(b) Show that there are strings x of length n that have randomness
deficiency log d(S) − K(x|S∗) ≥ n − k with respect to every finite set
S ∋ x of complexity K(S|n) < k, for every k.

Comments. Item (b) improves Item (e) of Exercise 5.5.10 by an additive
logarithmic term to the best possible result on nonstochastic strings.
Since x has log d(S) − K(x|S∗) ≥ n − K(S|n) for every finite S ∋ x,
and in particular with K(S|n) more than a fixed constant below n, the
randomness deficiency log d(S) − K(x|S∗) exceeds that fixed constant:
every sufficient statistic for x has complexity at least n. But setting
S = {x}, we have K(S|n) = K(x|n) < n and log d(S) −K(x|S∗) = n−
K(S|n) = 0. Together, this shows that the absolutely nonrandom objects
x of length n of which we have established the existence have complexity
K(x|n) = n and have significant randomness deficiency with respect
to every set S ∋ x that has complexity significantly below that of x.
Here, the (in)equalities hold up to additive constants. These strings are
absolutely nonstochastic objects; they are strangely reluctant to reveal
their structure. Source: P. Gács, J.T. Tromp, and P.M.B. Vitányi, Ibid.

5.5.12. [35] Give a general uniform construction of the finite sets Si,l
witnessing the structure functions λx(i) and βx(i), at each argument i, in
terms of indexes of x in the enumeration of strings of given complexity.
That is, for every x there is a sequence l1 ≤ l2 ≤ · · · ≤ lK(x) ≤ n +
O(log n) such that the functions λ(i) = K(Si,li)+log d(Si,li), and β(i) =
log d(Si,li)−K(x|Si,li), follow the shapes of λx and βx, respectively, up
to error O(log n), according to Definition 5.5.8 on page 407. In view of
the incomputability of structure functions, the construction is of course
not computable.

Comments. This extends a technique introduced in P. Gács, J.T. Tromp,
and P.M.B. Vitányi, Ibid. Source: N.K. Vereshchagin and P.M.B. Vitányi,
Ibid.

5.5.13. [20] Consider strings x of length n. Define the conditional vari-
ant of Definition 5.5.6 on page 405 as hx(i|y) = minS{log d(S) : S ∋
x, d(S) < ∞, K(S|y) ≤ i}. Since S1 = {0, 1}n is a set containing x
and can be described by O(1) bits (given n), we find that hx(i|n) ≤ n
for i = K(S1|n) = O(1). For increasing i, the size of a set S ∋ x, which



426 5. Inductive Reasoning

one can describe in i bits, decreases monotonically until for some i0 we
obtain a first set S0 witnessing hx(i0|n)+ i0 = K(x|n)+O(1). Then, S0

is a minimal sufficient statistic for x.

(a) Consider i ≥ i0. Show that every increase of i about halves the
witness set Si of hx(i|n), for each additional bit of i, until i = K(x|n),
in the sense that hx(i0 + d|n) = K(x|n) − (i0 + d+ O(log d)), provided
the right-hand side is nonnegative, and 0 otherwise.

(b) Show that the number of different sufficient statistics for x is bounded
by a universal constant independent of x. Argue that this causes the little
bumps in the sufficient statistic region ⊆ [K(K(x)),K(x)] in Figure 5.6.

Comments. Source: Item (a) N.K. Vereshchagin and P.M.B. Vitányi,
Ibid., and Item (b) P. Gács, J.T. Tromp, and P.M.B. Vitányi, Ibid.;
N.K. Vereshchagin and P.M.B. Vitányi, Ibid.

5.5.14. [43] Consider λx(i) as a two-argument function as in Exam-
ple 5.5.12.

(a) Show that λx(i) is upper semicomputable, but not computable.

(b) Show that λx is not computable, given x,K(x), even in an approxi-
mate sense: There is no function λ that is computable given x,K(x), such
that λx(i) follows the shape of λ(i) with error at most l(x)/(10 log l(x)),
in the sense of Definition 5.5.8 on page 407.

(c) Show that given x,K(x), and i0 such that λx(i0) ≈ K(x), but λx(i)
significantly greater than K(x) for i significantly less than i0 (so that
i0 is the complexity of the minimal sufficient statistic), then we can
compute λx over all of its domain. This result underlines the significance
of the information contained in the minimal sufficient statistic. Formally,
there is a constant c ≥ 0 and an algorithm that given any x, k, i0 with
K(x) ≤ k ≤ λx(i0) finds a nonincreasing function λ defined on [0, k] such
that λx(i) follows the shape of λ with error λx(i0)−K(x)+O(1) on the
interval [i0 − i1 + c log k, k], where i1 = min{i : λx(i) ≤ k + c log k}.
Comments. What holds for λx(i) above equally holds for hx(i) and the
finite set witnessing its value. Source: N.K. Vereshchagin and P.M.B.
Vitányi, Ibid. Item (c) is attributed to An.A. Muchnik.

5.5.15. Show that it is impossible to approximate the complexity of
the minimal sufficient statistic of x, even if we are given both x and
K(x).

Comments. Source: N.K. Vereshchagin and P.M.B. Vitányi, Ibid.

5.5.16. [42] Consider βx(i) as a two-argument function as in Exam-
ple 5.5.12.

(a) Show that the function βx(i) is computable from x, i given an oracle
for the halting problem.
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(b) Show that the function βx(i) is upper semicomputable from x, i,K(x)
up to a logarithmic error.

(c) Show that the set {(x, S, β) : x ∈ S, δ(x|S) < β} is not recursively
enumerable.

(d) Show that βx(i) is not lower semicomputable to within precision
l(x)/3 (there is no lower semicomputable function f(i) such that |f(i)−
βx(i)| ≤ l(x)/3); and

(e) Show that βx(i) is not upper semicomputable to within precision
l(x)/ log4 l(x). (There is no upper semicomputable function f(i) such
that |f(i) − βx(i)| ≤ l(x)/ log4 l(x)).

Comments. Hint for Item (a): run all programs of length ≤ i dovetailed
fashion and find all finite sets S containing x that are produced. With
respect to all these sets determine the conditional complexity K(x|S)
and hence the randomness deficiency δ(x|S). Taking the minimum, we
obtain βx(i). All these things are possible using information from the
halting problem to determine whether a given program will terminate.
Hint for Item (b): this follows from the upper semicomputability of λx(i)
and Theorem 5.5.1. Items (d) and (e) show that the function βx(i) is not
semicomputable, not even within a large margin of error. Source: N.K.
Vereshchagin and P.M.B. Vitányi, Ibid.

5.5.17. [35] (a) Prove that the function βx(i) is not upper semicom-
putable to within precision l(x)/4 (there is no upper semicomputable
function f(i) such that |f(i) − βx(i)| ≤ l(x)/4).

(b) Prove that there is no algorithm that for every n and every x of
length n upper semicomputes a nonincreasing function that follows the
shape of βx with small error, in the sense of Definition 5.5.8 on page 407.
In particular, there is a function δ(n) = O(log n) with the following
property. Let α(n) and ǫ(n) be computable natural-valued functions with
2ǫ(n) ≤ α(n) ≤ n−2ǫ(n)−δ(n) and ǫ(n) > δ(n). Then, there is no upper
semicomputable function f , given x, such that for every n and every x
of length n, we have βx(α(n)) < f(α(n)) < βx(α(n) − ǫ(n)) + ǫ(n).

Comments. Item (a) improves Exercise 5.5.16, Item (e). Item (b) resolves
part of an open problem in N.K. Vereshchagin and P.M.B. Vitányi, Ibid.
Source: M.A. Ustinov Proc. Int. Comput. Sci. Symp. Russia (CSR),
Lect. Notes. Comput. Sci., Vol. 3967, Springer-Verlag, Berlin, 2006, 364–
368.

5.5.18. [O39] It is unknown whether there is an algorithm that for
every x, lower semicomputes a nonincreasing function f(i) that follows
the shape of βx(i) with error O(log n) (or even o(n)), in the sense of
Definition 5.5.8 on page 407.
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Comments. The analogous question concerning upper semicomputability
is settled in Exercise 5.5.17, Item (b). Source: N.K. Vereshchagin and
P.M.B. Vitányi, Ibid.

5.5.19. • [28] The model class of computable probability mass func-
tions (probability models) consists of the set of functions P : {0, 1}∗ →
[0, 1] with

∑
P (x) = 1. ‘Computable’ means here that there is a Turing

machine TP that given x and a positive rational ǫ, computes P (x) within
precision ǫ. The prefix complexity K(P ) of a computable (possibly par-
tial) function P is defined by K(P ) = mini{K(i) : Turing machine Ti
computes P}. A string x is typical for a distribution P if the randomness
deficiency δ(x|P ) = log 1/P (x)−K(x|P ) is small. The conditional com-
plexity K(x|P ) is defined as follows. Say that a function A approximates
P if |A(y, ǫ) − P (y)| < ǫ for every y and every positive rational ǫ. Then
K(x|P ) is the minimum length of a program that given every function
A approximating P as an oracle, prints x. Similarly, P is c-optimal for
x if K(P ) + log 1/P (x) ≤ K(x) + c.

(a) Show that, for every x and every finite set S ∋ x there is a computable
probability mass function P with ⌊log 1/P (x)⌋ = ⌊log d(S)⌋, δ(x|P ) =
δ(x|S) +O(1), and K(P ) = K(S) +O(1).

(b) Show that there is a constant c such that for every string x, the
following holds: For every computable probability mass function P there
is a finite set S ∋ x such that log d(S) < log 1/P (x) + 1, δ(x|S) ≤
δ(x|P ) +K(⌊log 1/P (x)⌋) + c, and K(S) ≤ K(P, ⌊log 1/P (x)⌋) + c.

(c) Show that we can restrict consideration to models P such that
log 1/P (x) ≤ l(x) + 1, in which case the additive terms in Item (b)
are O(log l(x)).

Comments. Hint for Item (b): Let m = ⌊log 1/P (x)⌋, that is 2−m−1 <
P (x) ≤ 2−m. Define S = {y : P (y) > 2−m−1}. Then, d(S) < 2m+1 ≤
2/P (x), which implies the claimed value for log d(S). To list S it suffices
to compute all consecutive values of P (y) to sufficient precision until the
combined probabilities exceed 1 − 2−m−1. That is, K(S) ≤ K(P,m) +
O(1). Finally, δ(x|S) = log d(S)−K(x|S) < log 1/P (x)−K(x|S) + 1 =
δ(x|P ) + K(x|P ) − K(x|S) + 1 ≤ δ(x|P ) + K(S|P ) + O(1). The term
K(S|P ) can be upper bounded by K(m) + O(1), which implies the
claimed bound for δ(x|S). Hint for Item (c): for every n and every string
x of length n, for every P consider P ′ defined as P ′(x) = (P (x)+2−n)/2
(the arithmetic mean between P and the uniform distribution on strings
of length n). The model P ′ is not worse than P as an explanation for
x, with respect to the considered parameters complexity, deficiency, and
likelihood. All results that hold for finite set models extend, up to a
logarithmic additive term, to computable probability models. Since the
results for the finite set models hold only up to additive logarithmic term
anyway, this means that all of them equivalently hold for the model class
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of computable probability mass function models. Instead of the data-to-
model code length log d(S) for finite set models, we consider the data-
to-model code length log 1/P (x). The value log 1/P (x) measures also
how likely x is under the hypothesis P . The mapping x 7→ Pmin where
Pmin minimizes log 1/P (x) over P with K(P ) ≤ i is a constrained max-
imum likelihood estimator. This justifies naming of the hx(i) function
the maximum likelihood estimator, in particular its probability-model
version hx(i) = minP {log 1/P (x) : P (x) > 0, K(P ) ≤ i}, with P
a computable probability mass function. The results thus imply that
the maximum likelihood estimator always returns a hypothesis with
almost minimum randomness deficiency. In classical statistics, uncon-
strained maximal likelihood is known to perform badly for model selec-
tion, because it tends to want the most complex models possible. This
is closely reflected in our approach: unconstrained maximization will re-
sult in the computable probability distribution of complexity aboutK(x)
that concentrates all probability on x. But the structure function hx(i)
tells us the stochastic properties of data x at all model complexities.
Source: these and related results occur in A.K. Shen [Soviet Math. Dokl.,
28:1(1983), 295–299; The Comput. J., 42:4(1999), 340–342]; V.V. Vyu-
gin [SIAM Theory Probab. Appl., 32(1987), 508–512]; N.K. Vereshchagin
and P.M.B. Vitányi, Ibid.

5.5.20. • [27] The model class of total recursive functions consists of
the set of total recursive functions p : {0, 1}∗ → {0, 1}∗. The (prefix-)
complexity K(p) of a total recursive function p is defined by K(p) =
mini{K(i) : Turing machine Ti computes p}. In place of log d(S) for
finite set models, we consider the data-to-model code length lx(p) =
mind{l(d) : p(d) = x}. A string x is typical for a total recursive function
p if the randomness deficiency δ(x|p) = lx(p) − K(x|p) is small. Here
the conditional complexity K(x|p) is defined as the minimum length of
a program that given p as an oracle prints x. The sophistication of a
string x is the complexity K(p) of the minimal sufficient statistic in the
total recursive function model class satisfyingK(p)+lx(d) = K(x)+O(1)
and p(d) = x.

(a) Show that for every x and every finite set S ∋ x there is a total
recursive function p such that lx(p) ≤ log d(S), K(p) = K(S) + O(1),
and δ(x|p) ≤ δ(x|S) +O(1).

(b) Show that there is a constant c such that for every string x, the
following holds: For every total recursive function p there is a finite
set S ∋ x with log d(S) ≤ lx(p), δ(x|S) ≤ δ(x|p) + K(lx(p)) + c, and
K(S) ≤ K(p, lx(p)) + c.

(c) Show that the additive terms in Item (b) are O(log l(x)) in the same
sense as Exercise 5.5.19, Item (c).
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Comments. Hint for Item (b): define S = {y : p(d) = y, l(d) = lx(p)}.
Then, log d(S) ≤ lx(p). To list S it suffices to compute p(d) for every
argument of length equal to lx(p). Hence, K(S) ≤ K(p, lx(p)) + O(1).
The upper bound for δ(x|S) is derived in the same way as in the proof
of Exercise 5.5.19, Item (b). All results for finite set models extend, up
to a logarithmic additive term, to total recursive function models. Since
the results for the finite set models hold only up to additive logarithmic
term anyway, this means that all of them equivalently hold for the model
class of total recursive functions. The term ‘sophistication’ was coined by
M. Koppel [Complex Systems, 1(1987), 1087–1091; pp. 435–452 in: The
Universal Turing Machine: A Half-Century Survey, R. Herken, ed., Ox-
ford Univ. Press, 1988] in a different, but related, setting of compression
and prediction properties of infinite sequences. The issue has sparked
the imagination and entered scientific popularization in [M. Gell-Mann,
The Quark and the Jaguar, W. H. Freeman and Co., New York, 1994]
as ‘effective complexity’ (here ‘effective’ is apparently used in the sense
of ‘producing an effect’ rather than ‘constructive’ as is customary in the
theory of computation). Source: P.M.B. Vitányi, IEEE Trans. Inform.
Theory, 52:10(2006), 4617–4626; N.K. Vereshchagin and P.M.B. Vitányi,
Ibid.

5.5.21. [25] Consider the model class of total recursive functions of
Exercise 5.5.20.

(a) Define the structure functions βx, hx, λx, the sufficient statistic, suf-
ficiency line, and minimal sufficient statistic for a string x in this setting.

(b) The prefix complexity of the minimal sufficient statistic is called the
‘sophistication’ in Exercise 5.5.20. Show that there are strings x of length
n such that the sophistication is at least n− logn− 2 log logn−O(1).

(c) Let x be a string. Show that at every complexity level i, a total
recursive function p with K(p) ≤ i such that p(d) = x with l(d) mini-
mal is the best model for x in the sense of having minimal randomness
deficiency δ(x|p) as in Exercise 5.5.20 (up to O(log n) precision).

(d) Investigate in this setting the relations between the structure func-
tions and the shapes that are possible.

(e) Investigate the computability properties of these structure functions
and sophistication.

Comments. Source: P.M.B. Vitányi, Ibid.; N.K. Vereshchagin and P.M.B.
Vitányi, Ibid.

5.5.22. [25] In many cases, such as the case of grammatical inference,
the data is not a single string but a set of strings, say a subset of {0, 1}n
for some given n. Develop the theory in Section 5.5 for this case of
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multiple data, and indicate the differences with the case of singleton
data.

Comments. Source: P. Adriaans and P.M.B. Vitányi, “Approximation of
the two-part MDL code,” IEEE Trans. Informat. Theory, 2008/2009.

5.5.23. • [27] Construct an example of candidate explanations (p0, S0)
and (p1, S1) for data x, with pi a program computing set Si ∋ x (i =
0, 1), such that (i) the two-part MDL codes satisfy l(p1) + log d(S1) <
l(p0) + log d(S0) − c logn (c a fixed constant); and (ii) the randomness
deficiencies satisfy δ(x|S1) > δ(x|S0).

Comments. The example shows that shorter MDL code does not neces-
sarily mean a better model. The situation is thus as follows: (i) By The-
orem 5.5.1 on page 408 the process of finding shorter and shorter MDL
codes will in the limit give us the approximately best-fitting model; (ii)
since λx is upper semicomputable, but not computable, we cannot know
when we are close to the limit; and (iii) during the approximation pro-
cess the randomness deficiency of the candidate models may fluctuate
wildly. Compare Lemma 5.5.4 on page 417. Hence, premature termina-
tion may result in a worse-fitting model than some models that preceded
the terminal one. Source: P. Adriaans and P.M.B. Vitányi, Ibid.

5.6

History and

References

The material on Epicurus can be found in E. Asmis [Epicurus Scientific
Method, Cornell University Press, 1984]. The elegant paper “The use of
simplicity in induction,” by J.G. Kemeny [Phil. Rev., 62(1953), 391–408],
contains predecessors to the ideas formulated in this chapter. Occam’s
razor is usually ascribed to William of Ockham, but is actually a general
principle that goes back via his teacher John Duns Scotus (1265–1308)
and others at least to Aristotle (384 BC–322 BC) [J. Franklin, The Sci-
ence of Conjecture, Johns Hopkins Univ. Press, Baltimore and London,
2001]. Newton is quoted from Philosophiae Naturalis Principia Math-
ematica, 1687, using a later Dover edition. The quotation of Aristotle
in the main text, anticipating Occam’s razor, occurs in Posterior An-
alytics, trans. G. R. G. Mure, in Great Books of the Western World,
Vol. 8 (Chicago: Encyclopedia Britannica, 1952), p. 118. In fact, the
principle of parsimony has been commonplace in the history of thought.
Aristotle stated it variously again and again [Physics, 189a15; On the
Heavens, 271a33], see [W. Thorburn, The myth of Occam’s razor, Mind,
27(1977), 5–17]. Claudius Ptolomy (100–178) says, “And in general, we
consider it a good principle to explain the phenomena by the simplest
hypothesis possible [Almagest 7, ch. 1 at 321]. Nicole Oresme (1323–
1382) agrees with Ptolomy’s sentiment: “And Aristotle says in Chapter
Eight of Book I [of On the Heavens] that God and nature do nothing
without some purpose [Le Livre du Ciel et du Monde, 1377, 2 Chapter
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25, 532–537, Selection in E. Grant, A Source Book in Medieval Science,
Cambridge, Mass, 1974, 508–509]. The principle has been advocated and
used in various forms by many thinkers between Aristotle and Ockham;
see [J. Franklin, Ibid., pp. 137, 145, 241].

Bayes’s formula originates from Thomas Bayes’s “An essay towards
solving a problem in the doctrine of chances” [Phil. Trans. Roy. Soc.,
25(1763), 376–398, 54(1764), 298–310, R. Price, ed.] posthumously pub-
lished by his friend Richard Price. Properly speaking, Bayes’s rule as
given in the text is not due to Bayes. P.S. Laplace stated Bayes’s rule
in its proper form and attached Bayes’s name to it in A philosoph-
ical essay on probabilities (1819). In his original memoir, Bayes as-
sumes the uniform distribution for the prior probability and derives
P (Hi|D) = P (D|Hi)/

∑

i P (D|Hi). This formula can be derived from
Bayes’s rule in its present form by setting all P (Hi) equal. Bayes did
not state the result in its general form, nor did he derive it through a
formula similar to Bayes’s rule. The books by B. de Finetti [Probability,
Induction, and Statistics, John Wiley & Sons, 1972], I.J. Good [Good
Thinking, University of Minnesota Press, 1983], P.S. Laplace [Ibid.], R.
von Mises [Probability, Statistics and Truth, Macmillan, 1939], and T.L.
Fine [Theories of Probability, Academic Press, 1973] contain good dis-
cussions on the Bayesian and nonBayesian views of inductive reasoning.

The idea of using Kolmogorov complexity in inductive inference, in the
form of using a universal prior probability, is due to R.J. Solomonoff [In-
form. Contr., 7(1964), 1–22, 224–254]. Solomonoff’s original definition
of prior probability is problematic through the use of plain Kolmogorov
complexity instead of the prefix complexity (as used here). Inductive
inference, using M as universal prior, is also due to Solomonoff [IEEE
Trans. Inform. Theory, 24(1978), 422–432]; see also [T.M. Cover, “Uni-
versal gambling schemes and the complexity measures of Kolmogorov
and Chaitin,” Tech. Rept. 12, 1974, Statistics Dept, Stanford Univ.].
Solomonoff gives a version, Exercise 5.2.2, Item (a), on page 366, of the
estimate in Theorem 5.2.1 of the expected prediction error if one uses M
instead of the actual distribution to predict. Our treatment in Section 5.2
is based on work extending the treatment in the first two editions of this
book in [M. Hutter, IEEE Trans. Inform. Theory, 49:8(2003), 2061–
2067; J. Poland, M. Hutter, IEEE Trans. Inform. Theory, 51:11(2005),
3780–3795; M. Hutter, Universal Artificial Intelligence: Sequential Deci-
sions Based on Algorithmic Probability, Springer-Verlag, Berlin, 2005].
The topic has spawned an elaborate theory of prediction in both static
and reactive unknown environments, based on universal distributions
with arbitrary loss bounds (rather than just the logarithmic loss) us-
ing extensions and variations of the proof method, represented by the
last reference. The dominance of Laplace’s measure in Example 5.2.5
on page 356 is based on a more general treatment of sequence predic-
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tion for different families of measures in [D. Ryabko, M. Hutter, Proc.
IEEE Int. Symp. Inform. Theory, 2007, 2346–2350]. Theorem 5.2.2 was
suggested to us by Gács, and seems to encapsulate the substance of the
problem of inductive inference in statistics and AI in Chapter 5. The
full statement of Theorem 5.2.2 in editions 1 and 2 corresponds to the
current Theorem 5.2.2, Item (i). The old versions omitted to mention
the on-sequence condition, and incorrectly claimed convergence for all
µ-random sequences (in the on-sequence sense); see Exercise 5.2.8, Item
(a), on page 368. Indeed, convergence holds for a set of µ-measure one,
the µ-random sequences constitute a set of µ-measure one, but there
may be µ-random sequences without the converge property. Trivially,
the set of such sequences has measure zero.

The relation between good prediction and good data compression in
Section 5.2.4 and Theorem 5.2.3 is based on [P.M.B. Vitányi and M. Li,
IEEE Trans. Inform. Theory, 46(2000), 446-464; M. Hutter, J. Com-
put. Syst. Sci., 72(2006), 95–117]. The current treatment improves and
corrects that in editions 1 and 2 of this book. A good introduction to
algorithmic probability, universal betting, and its relations to prefix com-
plexity is given in [T.M. Cover and J.A. Thomas, Elements of Informa-
tion Theory, Wiley, 1991].

Our approach in Section 5.2.5 is partially based on [M. Li and P.M.B.
Vitányi, J. Comput. System Sci., 44:2(1992), 343–384]. It rests on ma-
terial in Chapter 4 and Section 5.2. An analysis that m has related
approximative qualities to the actual computable prior like those that
M has in the continuous setting appeared in [T.M. Cover, Ibid.; T.M.
Cover, pp. 23–33 in: The Impact of Processing Techniques on Commu-
nication, J.K. Skwirzynski, ed., Martinus Nijhoff Publishers, 1985]. A
related direction on prediction and Kolmogorov complexity, using vari-
ous loss bounds, going by the name of ‘predictive complexity,’ in a time-
limited setting was introduced by V. Vovk [Problems Inform. Transmis-
sion, 25(1989), 285–292; Proc. 3rd ACM Conf. Comput. Learning The-
ory, 1990, 371–386; Inform. Comput., 96:2(1992), 245–277; J. Comput.
System Sc., 56(1998), 153–173; Int. Statistical Review 692001, 213–248].
The main technique is the aggregating algorithm. He investigates low-
complexity algorithms that give fast probability estimates, or forecasts,
of the next bit in a sequence (as opposed to incomputable ones in the
Solomonoff procedure). A forecasting algorithm is said to be ‘simple’ if
it has a short description that admits fast computation of the forecasts.
There is a universal forecasting algorithm that for every time bound T
computes forecasts within time T , and the quality of these forecasts is
not much lower than that of any simple forecasting system (of which the
descriptional complexity may increase if T increases). Solomonoff’s fore-
casting algorithm is universal in this sense, but incomputable. See also
the related work [A. DeSantis, G. Markowsky, and M. Wegman, Proc.
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29th IEEE Symp. Found. Comput. Sci., 1988, pp. 110–119; N. Little-
stone and M. Warmuth, Proc. 30th IEEE Symp. Found. Comput. Sci.,
1989, pp. 256–261]. The Gold paradigm was first introduced and studied
by E.M. Gold [Inform. Contr., 10(1967), 447–474]. D. Angluin and C.
Smith [Comput. Surveys, 16(1983), 239–269] and D. Angluin [Proc. 24th
Symp. Theory Comput., 1992, pp. 351–369] give the standard survey of
this field. The discussion of mistake bounds resulted from conversations
with P. Gács, who attributes these and/or related ideas to J.M. Barzdins
and R.V. Freivalds.

The pac-learning model was introduced by L.G. Valiant [Comm. ACM,
27(1984), 1134–1142], which also contains the learning algorithm for
k-DNF. Although similar approaches were previously studied by V.N.
Vapnik and A.Ya. Chervonenkis [Theory Probab. Appl., 16:2(1971), 264–
280] and J. Pearl [Int. J. Gen. Syst., 4(1978), 255–264] in a somewhat
different context, the field of computational learning theory emerged
only after the publication of Valiant’s paper. [D. Angluin, Ibid.] contains
a survey of this field. Textbooks are [B.K. Natarajan, Machine Learn-
ing: A Theoretical Approach, Morgan Kaufmann, 1991; M. Anthony and
N. Biggs, Computational Learning Theory, Cambridge University Press,
1992; M. Kearns and U. Vazirani, Introduction to Computational Learn-
ing Theory, MIT Press, 1994]. The important Occam’s razor theorem is
due to A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth [Inform.
Process. Lett., 24(1987), 377–380; J. ACM, 35:4(1989), 929–965]. The
latter reference also introduced the VC-dimension into the pac-learning
field. In the current (slightly stronger) version of the Occam’s razor the-
orem, Theorem 5.3.1, we have replaced size(h) by C(h). This subtle
change allows one to handle more-delicate cases when the structure of
a concept requires a concept to have unreasonable size, while the Kol-
mogorov complexity of the concept is very small. This was useful in the
computational molecular biology problem of efficiently learning a string
[M. Li, Proc. 31st IEEE Symp. Found. Comput. Sci., 1990, pp. 125–134;
T. Jiang and M. Li, Theory of Computing Systems, 29:4(1996), 387-405].
The Occam’s razor theorem is further sharpened in [M. Li, J.T. Tromp,
and P.M.B. Vitányi, Inform. Process. Lett., 85:5(2003), 267–274] to ob-
tain better sample complexity than previous length-based and VC-based
versions of the Occam’s razor theorem, and to achieve a sharper reverse
of the Occam’s razor theorem than earlier work. The word ‘pac,’ coined
by D. Angluin, stands for ‘probably approximately correct.’

Pac-learning under simple distributions in Section 5.3.3 is from M. Li
and P.M.B. Vitányi [SIAM J. Comput., 20:5(1991), 911–935]. For the
approximation of the set-cover problem we followed [V. Chvátal, Math.
Oper. Res., 4:3(1979), 233–235; D.S. Johnson, J. Comput. System Sci.,
9(1974), 256–276; L. Lovász, Discrete Math., 13(1975), 383–390]. The
definition of ǫ-cover and Lemma 5.3.5 are due to G. Benedek and A. Itai,
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Theoret. Comput. Sci., 86:2(1991), 377–390. A drawback of the ‘simple
learning’ approach in this section is that m is incomputable. Computable
versions of m are treated in Section 7.6. Simple pac-learning proceeds
the same as before. For example, simple learning of logn-DNF with re-
spect to all O(n2)-time computable distributions P ∗ can be achieved
using a time-bounded version of m. This version of universal distribu-
tion requires exponential time to compute—but this needs to be done
only once for all applications. Once we have computed an (approxi-
mation of) a table for this distribution, we can draw examples (even
deterministically) according to it in the learning phase as explained in
Example 7.6.2 on page 585 for all time and for all concepts to be learned.
Simple pac-learning, variations, and relations with query-learning are be-
ing developed in a growing body of literature, which we cannot survey
here.

The minimum description length principle was introduced by J.J. Rissa-
nen in [Automatica, 14(1978), 465–471] inspired by R. Solomonoff’s ideas
in Section 5.2. A related approach, the minimum message length (MML)
approach, is associated with C.S. Wallace and his coauthors. It was in-
troduced earlier and independently (also independently of Solomonoff’s
work) by C.S. Wallace and D.M. Boulton [Computing Journal, 11(1968),
185–195]. This approach is related to taking the negative logarithm of
both sides of Bayes’s rule, and then replacing the negative logarithms
of the probabilities by the associated code-word lengths. In contrast to
MDL, the MML method relies on priors. Although different in philoso-
phy and derivation, in practical applications MML and MDL often turn
out to be similar. For the fine points in the distinctions we refer to the
abundant literature cited below. See also [C.S. Wallace and P.R. Free-
man, J. Royal Stat. Soc. B, 49:3(1987), 240–252, 252–265, 54:1(1992),
195–209], where the MML method is refined and related to (or in-
spired by) Solomonoff’s work and Kolmogorov complexity, apparently
influenced by [G.J. Chaitin, Scientific American, 232:5(1975), 47–52].
MDL was developed by J.J. Rissanen in a series of papers [Ann. Stat.,
11(1983), 416–431, 14:3(1986), 1080–1100; Encyclopedia Stat. Sci., V, S.
Kotz and N.L. Johnson, eds., Wiley, 1986; J. Royal Stat. Soc., 49(1987),
223–239, Discussion 252–265; and as a monograph Stochastic Complexity
and Statistical Inquiry, World Scientific, 1989]. The MDL code consists
of a two-part code comprising a model part and a data part conditional
on the model, or as a one-part code called the ‘stochastic complexity’ of
the data. A recent precise estimate of stochastic complexity is given in
[J.J. Rissanen, IEEE Trans. Inform. Theory, 42:1(1996), 40–47].

Our derivation of MDL from first principles in Section 5.4 follows [M.
Li and P.M.B. Vitányi, J. Comput. Syst. Sci., 44(1992), 343–384 and pri-
marily P.M.B. Vitányi and M. Li, IEEE Trans. Inform. Theory, 46(2000),
446–464]. Approximations to the optimum MDL code are considered in
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[K. Yamanishi, Proc. 9th ACM Conf. Comput. Learning Theory, 1996,
99–109; and V. Vovk, J. Comput. System Sci., 55:1(1997), 96-104]. Rela-
tions between pac-learning and MDL are explored in [K. Yamanishi, Ma-
chine Learning, 9(1993), 165–203]. The application of the MDL principle
to fitting polynomials, as in Example 5.4.7, was originally considered
by J.J. Rissanen in [Ann. Stat., 14(1986), 1080–1100]. Example 5.4.8
is based on [J.R. Quinlan and R. Rivest, Inform. Comput., 80(1989),
227–248]. Decision trees are coded using the MML principle in [Wallace
C.S., Patrick J.D., Machine Learning, 11(1993), 7–22]. Using the MDL
principle, an application of optimal stochastic complexity in coding deci-
sion trees is given in [J.J. Rissanen, J. Comput. Syst. Theory, 55(1997),
89–95]. The most recent complete treatments of MDL and stochastic
complexity in statistical inference are [P.D. Grünwald, I.J. Myung, M.A.
Pitt, eds., Advances in Minimum Description Length; Theory and Ap-
plications, MIT Press, 2005; P.D. Grünwald, The Minimum Description
Length Principle, MIT Press, 2007], and J.J. Rissanen, Information and
Complexity in Statistical Modeling, Springer-Verlag, New York, 2007. In
the last of these works, the master of MDL does not treat the princi-
ple as evident and axiomatic, but formulates it as a statistical modeling
version of the Kolmogorov structure function approach as treated in
Section 5.5.2.

There is a plethora of applications of the MDL principle in many differ-
ent areas. Some examples are learning online handwritten characters and
robot arm movements [Q. Gao, M. Li,, and P.M.B. Vitányi, Artificial In-
telligence, 121:1-2(2000), 1–29]; surface reconstruction problems in com-
puter vision [E.P.D. Pednault, 11th IJCAI, 1989, pp. 1603–1609]; and
protein structure analysis in [H. Mamitsuka and K. Yamanishi, Comput.
Appl. Biosciences (CABIOS), 11:4(1995), 399–411]. Other applications
of the MDL principle range from evolutionary tree reconstruction in-
ference over DNA sequences pattern recognition; smoothing of planar
curves to neural network computing [A.R. Barron, pp. 561–576 in: Non-
parametric Functional Estimation and Related Topics, G. Roussas, ed.,
Kluwer, 1991]. See also [A.R. Barron and T.M. Cover, IEEE Trans. In-
form. Theory, 37(1991), 1034–1054; Correction, Sept. 1991]. A survey on
MDL and its applications to statistical problems is [A.R. Barron, J.J.
Rissanen and B. Yu, IEEE Trans. Inform. Theory, 44(1998), 2743–2760].

The MML principle is applied to the alignment of macromolecules in [L.
Allison, C.S. Wallace, C.N. Yee J. Mol. Evol., 35(1992), 77–89] and to
constructing minimal diagnostic decision trees for medical purposes in
[D.P. McKenzie, P.D. McGorry, C.S. Wallace, L.H. Low, D.L. Copolov,
B.S. Singh, Meth. Inform. Medicine, 32:2(1993), 161–166]. The state of
the MML art and its applications is given in the definitive [C.S. Wal-
lace, Statistical and Inductive Inference by Minimum Message Length,
Springer-Verlag, New York, 2005].
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A related method (which we have not discussed in the main text) for
discovery by minimum length encoding, applied to molecular evolution
and sequence similarity, is the ‘algorithmic significance method’ of A.
Milosavljević and J. Jurka, [Machine Learning, 12(1993), 69–87; Proc.
1st Int. Conf. Intelligent Systems for Molecular Biology, AAAI Press,
1993, 284–291; CABIOS, 9:4(1993), 407–411]. This method seems a
straight corollary of the fact demonstrated by Lemma 4.3.5 on page 279
that κ0(x|P ) = log(m(x)/P (x)) is a universal Martin-Löf test for ran-
domness. This shows that κ0(x|P ) has the associated properties of Defi-
nition 2.4.2 on page 136 and in particular the property of Definition 2.4.1
on page 135 that

∑{P (x|l(x) = n) : κ0(x|P ) ≥ m} ≤ 2−m, for all n. It is
interesting that such infeasible constructions can yet be directly applied
in a practical inference setting. The maximum likelihood (ML) princi-
ple was introduced by R.A. Fisher in [Phil. Trans. Royal Soc. London,
Ser. A, 222(1925), 309–368]. The ML principle has greatly influenced
the research, as well as practice, in statistics. Jaynes’s maximum en-
tropy (ME) principle was introduced by E.T. Jaynes in [IEEE Trans.
Syst. Sci. Cyb., SSC-4(1968), 227–241; Proc. IEEE, 70(1982), 939–952].
See also [E.T. Jaynes, Papers on Probability, Statistics, and Statistical
Physics, 2nd edition, Kluwer Academic Publishers, 1989]. It has exerted
a great influence on statistics and statistical mechanics. The relation-
ship between the maximum entropy principle and the MDL principle
was established by J.J. Rissanen [Ann. Stat., 14(1986), 1080–1100] and
by M. Feder [IEEE Trans. Inform. Theory, 32(1986), 847–849]. Rissanen
[Ann. Stat., 11(1983), 416–431] demonstrates that the ML principle is a
special case of the MDL principle.

The role of simplicity, Kolmogorov complexity, and the minimum de-
scription length principle in econometric modeling and forecasting is
discussed in [H.A. Keuzenkamp and M. McAleer, The Economic Jour-
nal, 105(1995), 1–21].

Universal probability and Kolmogorov complexity have been applied in
cognitive psychology to classical problems of perceptual organization
and Gestalt psychology to resolve the central debate between the com-
peting ‘likelihood principle’ and ‘simplicity principle’ as in [N. Chater,
Psych. Review, 103:3(1996), 566–581; N. Chater, P.M.B. Vitányi, J.
Math. Psych., 47:3(2003), 346–369; P.A. van der Helm, Psych. Bull.,
126:5(2000), 770–800]. Cognitive psychology has a long tradition of ap-
plying formal models of simplicity and complexity, exemplified by the
early work of E.L.J. Leeuwenberg, American J. Psych., 84:3(1971), 307–
349, and predating the advent of Kolmogorov complexity [J.E. Hochberg,
E. McAllister, J. Experimental Psych., 46(1953), 361–364]. Not surpris-
ingly, this field has a large and significant literature on applications of
Kolmogorov complexity.
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Kolmogorov’s proposal for nonprobabilistic statistics was presented at a
talk for the Bernoulli Society in Tallinn, Estonia, in 1973, and in writ-
ing only in [A.N. Kolmogorov, Complexity of Algorithms and Objective
Definition of Randomness, Uspekhi Mat. Nauk 29:4(1974), 155. (Russian
abstract of a talk at Moscow Math. Soc. meeting 4/16/1974)], which we
completely reproduce here:

“To each constructive object corresponds a function Φx(k) of a natural number
k—the log of minimal cardinality of x-containing sets that allow definitions of
complexity at most k. If the element x itself allows a simple definition, then
the function Φ drops to 1 even for small k. Lacking such definition, the element
is ‘random’ in a negative sense. But it is positively ‘probabilistically random’
only when function Φ having taken the value Φ0 at a relatively small k = k0,
then changes approximately as Φ(k) = Φ0 − (k − k0).” [Kolmogorov]

The translation is by L.A. Levin, November 2002. The Φx(k) function
is now known as the Kolmogorov structure function and we denote it
by hx(i). In Exercises 5.5.10 and 5.5.11 on page 424, the existence of
strings was shown for which essentially the singleton set consisting of
the string itself is a minimal sufficient statistic. If the complexity of the
minimal sufficient statistic is large, then we call the object nonstochastic.
In contrast, if this complexity is small, say logarithmic, then we call the
object stochastic since it has a simple satisfactory explanation (sufficient
statistic). We depict the distinction in Figure 5.10: Data string x is
positive random and stochastic, while data string y is only negative
random and nonstochastic.

According to L.A. Levin, then a student of Kolmogorov, the latter told
him in 1973 about hx(i) and asked how it could behave. Levin proved

log |S|

|x| =|y|

K(x)=K(y)

K(x)=K(y)

y

x

minimal sufficient statistic y

minimal sufficient statistic x

h

h

i

(i)

(i)

FIGURE 5.10. Positive randomness and negative randomness
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that i+h(i)+O(log i) is monotone but otherwise arbitrary within O(
√
i)

accuracy and that it stabilizes on K(x) when i exceeds I(x : Halting).
He never published anything on the topic [emails from LL to PV on
February 7, 11, 20, 2002]. In writing, (α, β)-stochastic objects were first
discussed in [A.N. Kolmogorov, Lect. Notes Math., Vol. 1021, Springer-
Verlag, 1983, 1–5; A.N. Kolmogorov, V.A. Uspensky, Theory Probab.
Appl., 32(1987), 389–412], and their existence proved, as well as the
extension to probability models as in Exercise 5.5.19 on page 428, by
A.K. Shen [Soviet Math. Dokl., 28:1(1983), 295–299; The Comput. J.,
42:4(1999), 340–342]. V.V. Vyugin established in [SIAM Theory Probab.
Appl., 32:3(1987), 508–512; The Comput. J., 42:4(1999), 294–317] for
data x and model complexity i = o(l(x)) that the randomness deficiency
function βx(i) can assume all possible shapes over this limited part of
its domain (within the obvious constraints). The snooping curve was
proposed by V.V. Vyugin, Theoret. Comput. Sci., 276:1-2(2002), 407–
415, who obtained partial results. The definition of algorithmic sufficient
statistic in the form we used is apparently due to T.M. Cover [pp. 23–
33 in: The Impact of Processing Techniques on Communications, J.K.
Skwirzynski, ed., Martinus Nijhoff Publishers, 1985; T.M. Cover, P. Gács
and R.M. Gray, Ann. Probab., 17(1989), 840–865; T.M. Cover and J.A.
Thomas, Elements of Information Theory, Wiley, New York, 1991].

Section 5.5 is based on [N.K. Vereshchagin and P.M.B. Vitányi, IEEE
Trans. Inform. Theory, 50:12(2004), 3265–3290], but Section 5.5.8 fol-
lows primarily P. Adriaans and P.M.B. Vitányi, “Approximation of the
two-part MDL code,” IEEE Trans. Informat. Theory, 2008/2009. Inter-
pretation and application of the structure function approach to stan-
dard statistical probability models in the MDL setting was begun by
J.J. Rissanen, [Proc. 2002 IEEE Information Theory Workshop, held in
Bangalore, India, IEEE Press, 2002, pp. 98–99; J.J. Rissanen, Informa-
tion and Complexity in Statistical Modeling, Springer-Verlag, New York,
2007]. The complexity of the minimal sufficient statistic of a total recur-
sive function model, as in Exercise 5.5.20 on page 429, was called the
‘sophistication’ of the object in [M. Koppel, Complex Systems, 1(1987),
1087–1091; M. Koppel, pp. 435–452 in: The Universal Turing Machine:
A Half-Century Survey, R. Herken, ed., Oxford Univ. Press, 1988] in a
different, but related, setting of compression and prediction properties of
infinite sequences. Our treatment follows [P.M.B. Vitányi, IEEE Trans.
Inform. Theory, 52:10(2006), 4617–4626; N.K. Vereshchagin and P.M.B.
Vitányi, IEEE Trans. Inform. Theory, 50:12(2004), 3265–3290].



6

The Incompressibility Method

The incompressibility of random objects yields a simple but powerful
proof technique. The incompressibility method is a general-purpose tool
and should be compared with the pigeonhole principle or the probabilis-
tic method. Whereas the older methods generally show the existence of
an object with the required properties, the incompressibility argument
shows that almost all objects have the required property. This follows
immediately from the fact that the argument is typically used on a
Kolmogorov random object. Since such objects are effectively indistin-
guishable, the proof holds for all such objects. Each class of objects has
an abundance of objects that are Kolmogorov random in it.

The incompressibility method has been successfully applied to solve open
problems and simplify existing proofs. We show its versatility and uni-
versal applicability by selecting examples from a wide range of applica-
tions. This includes combinatorics, random graphs, average-case analysis
of Heapsort, Shellsort, routing in communication networks, formal lan-
guage theory, time bounds on language recognition, string matching,
Turing machine time complexity, and circuit complexity.

The method rests on a simple fact: a Kolmogorov random string cannot
be compressed. Generally, a proof proceeds by showing that a certain
property has to hold for some typical instance of a problem. Since typi-
cal instances are difficult to define and often impossible to construct, a
classical proof usually involves all instances of a certain class.

By intention and definition, an individual Kolmogorov random object
is a typical instance. These are the incompressible objects. Although
individual objects cannot be proved to be incompressible in any given
finite axiom system, a simple counting argument shows that almost all
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objects are incompressible, Theorem 2.2.1 on page 117. In a typical proof
using the incompressibility method, one first chooses a random object
from the class under discussion. This object is incompressible. Then one
proves that the desired property holds for this object. The argument
invariably says that if the property does not hold, then the object can
be compressed. This yields the required contradiction.

Because we are dealing with only one fixed object, the resulting proofs
tend to be simple and natural. They are natural in that they supply
rigorous analogues for our intuitive reasoning. In many cases a proof
using the incompressibility method implies an average-case result, since
almost all strings are incompressible.

6.1

Three

Examples

The proposed methodology is best explained by example. The first exam-
ple contains one of the earliest lower-bound proofs by the incompressibil-
ity argument. The second example shows how to use incompressibility to
analyze the average-case complexity of an algorithm. The third example
was first proved using an incompressibility argument.

6.1.1
Computation
Time of Turing
Machines

Consider the basic Turing machine model in Figure 6.1. This is the model
explained in Section 1.7. It has a finite control and a single tape, serving
as input tape, output tape, and work tape. The tape is a one-way infinite
linear array of squares, each of which can hold a symbol from a finite,
nonempty alphabet. The leftmost square is the initial square.

There is a two-way read/write head on the tape. The head movement is
governed by the state of the finite control and the symbol in the tape
square under scan. In one step, the head may print another symbol in
the scanned tape square, move one square left or right (or not move at
all), and the state of the finite control may change. At the start of the
computation, the input occupies the initial tape segment (one symbol
per square) and is delimited by a distinguished end marker. Initially, the
tape head is on the leftmost tape square, and the finite control is in a
distinguished initial state. If x = x1 . . . xn, then xR = xn . . . x1.

Definition 6.1.1 Each pair of adjacent squares on the tape is separated by an intersquare
boundary. Consider an intersquare boundary b and the sequence of states
of T ’s finite control at the steps when the head crosses b, first from left to
right, and then alternatingly in both directions. This ordered sequence
of states is the crossing sequence at b.

Lemma 6.1.1 A Turing machine of the model above requires order n2 steps to recognize
L = {xxR : x ∈ {0, 1}∗}.
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first n cells

2-way,  read/write infinite

input

finite
control

FIGURE 6.1. Single-tape Turing machine

Proof. By way of contradiction, assume that there is a Turing machine
T of the above model that recognizes L in o(n2) steps. Without loss of
generality assume that the machine halts with the tape head scanning
the input end marker.

Fix a string x of length n with C(x|T, n) ≥ n. Such strings exist by
Theorem 2.2.1 on page 117. Consider the computation of T on x02nxR.
Let l(T ) and l(c.s .) denote the lengths of the descriptions of T and a
crossing sequence c.s., respectively. If each crossing sequence associated
with a square in the 02n segment in the middle is longer than 1

2nl(T ),
then T uses at least n2/l(T ) steps. Otherwise there is a crossing sequence
of length less than n/2l(T ). Assume that this is the crossing sequence
c.s. associated with the square in position c0. This c.s. is completely
described by at most 1

2n bits. Using c.s., one can reconstruct x by ex-
haustively checking all binary strings of length n.

For each candidate binary string y of length n, put y02n on the leftmost
3n-length initial segment of the input tape and simulate T ’s computation
from its initial configuration. Each time the head moves from square c0
to its right neighbor, skip the part of the computation of T with the
head right of c0, and resume the computation starting from the next
state q in c.s. with the head scanning square c0.

Suppose that in the computation with y, each time the head moves from
square c0 to its right neighbor, the current state of T is the correct next
state as specified in c.s. Then T accepts input y02nxR. Namely, the
computation to the right of square c0 will simply be identical to the
computation to the right of square c0 on input x02nxR. Since T halts
with its head to the right of square c0, it must either accept both y02nxR

and x02nxR or reject them both. Since T recognizes L, we must have
y = x. Therefore, given c.s., we can reconstruct x by a fixed program
from the data T , n, and c.s. This means that

C(x|T, n) ≤ l(c.s .) +O(1) ≤ 1

2
n+O(1),

which contradicts C(x|T, n) ≥ n, for large n. 2
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6.1.2
Adding
Fast—On
Average

In computer architecture design, efficient design of adders directly af-
fects the length of the CPU clock cycle. Fifty years ago, Burks, Golds-
tine, and von Neumann obtained a logn expected upper bound on the
longest carry sequence involved in the process of adding two n-bit bi-
nary numbers. This property suggests the design for an efficient adder
hardware. We give a simple analysis using the incompressibility method.
Let x and y be two n-bit binary numbers and let ⊕ denote the bitwise
exclusive-or operator. The following algorithm adds x and y.

Step 1. S := x⊕y (add bitwise, ignoring carries); C := carry sequence;

Step 2. While C 6= 0 do

S := S ⊕ C;

C := new carry sequence.

Let us call this the no-carry adder algorithm. The expected logn upper
bound on carry sequence length implies that the algorithm runs in 1 +
logn expected rounds (Step 2). This algorithm is on average the most
efficient addition algorithm currently known. But it takes n steps in the
worst case. On average, it is exponentially faster than the trivial linear-
time ripple-carry adder, and it is two times faster than the well-known
carry-lookahead adder. In the ripple-carry adder, the carry ripples from
right to left, bit by bit, and hence it takes Ω(n) steps to compute the
sum of two n-bit numbers. The carry-lookahead adder is used in nearly
all modern computers; it is based on a divide-and-conquer algorithm
that adds two n-bit numbers in 1 + 2 logn steps. We give an easy proof
of the 1 + logn average-case upper bound, using the incompressibility
method.

Lemma 6.1.2 The no-carry adder algorithm has an average running time of at most
1 + logn.

Proof. Assume that both inputs x and y have length l(x) = l(y) = n,
with the lower-order bits on the right. If the computation takes precisely
t steps (Step 2 loops t times), then some thinking shows that there exists
a u such that x and y can be written as

x = x′bu1x′′, y = y′b¬u1y′′,

where l(u) = t− 1, l(x′) = l(y′), b is 0 or 1, and ¬u is the bitwise com-
plement of u. Therefore, x can be described using y, n, and a program
q of O(1) bits to reconstruct x from the concatenation of

• the position of u in y encoded in exactly logn bits (padded with
0’s if needed); and
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• the literal representation of x′x′′.

Since the concatenation of the two strings has length n− t− 1 + logn,
the value t can be deduced from n and this length. Therefore, t+ 1 bits
of x are saved at the cost of adding logn bits. (For x′ = ǫ, bit b may not
exist. But then the algorithm also does not execute the last step because
of overflow.)

This shows that C(x|n, y, q) ≤ n − t − 1 + logn. Hence, for each x
with C(x|n, y, q) = n − i, the computation must terminate in at most
logn+ i− 1 steps. By simple counting as in Theorem 2.2.1 on page 117,
there are at most 2n−i strings x of length n with Kolmogorov complexity
C(x|n, y, q) = n − i. There are at most 2n−i programs of length n− i,
and hence at most 2n−i strings x with C(x|n, y, q) = n− i. Let pi denote
the fraction of x’s of length l(x) = n satisfying C(x|n, y, q) = n − i.
Then, pi ≤ 2−i and

∑

i pi = 1. Hence, averaging over all x’s (by having
i range from 1 to n) with y fixed, the average computation time for each
y is bounded above by

n∑

i=2−log n

pi(i− 1 + logn) =
n∑

i=2−log n

pi(i− 1) +
n∑

i=2−logn

pi logn

≤ logn+

∞∑

i=1

i− 1

2i
= 1 + logn.

Because this holds for every y, this is also the average running time of
the algorithm. 2

6.1.3
Boolean Matrix
Rank

The rank of a matrix R is the least integer k such that each row of R
can be written as a linear sum of k fixed rows. These k rows are linearly
independent, which means that no row can be written as a linear sum
of the others. Our problem is to show the existence of a Boolean matrix
with all submatrices of high rank.

Such matrices were used to obtain an optimal lower bound TS = Ω(n3)
time–space tradeoff for multiplication of two n by n Boolean matrices on
random access machines (T = time and S = space). Even with integer
entries, it is difficult to construct such a matrix. There is no known
construction with Boolean values.

Let GF (2) be the Galois field over the two elements 0, 1, with the usual
Boolean multiplication and addition: 0×0 = 0×1 = 1×0 = 0, 1×1 = 1,
1 + 0 = 0 + 1 = 1, and 1 + 1 = 0 + 0 = 0.

Lemma 6.1.3 Let n, r, s ∈ N with 2 logn ≤ r, s ≤ 1
4n and s even. For each n there is

an n × n matrix over GF (2) such that every submatrix of s rows and
n− r columns has at least rank s/2.
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Proof. Fix a binary string x of length n2, with C(x) ≥ n2. This is possible
by Theorem 2.2.1 on page 117. Arrange the bits of x into a square matrix
R, one bit per entry in, say, row-major order. We claim that this matrix
R satisfies the requirement.

Assume by way of contradiction that this were not true. Consider a
submatrix of R of s rows and n−r columns, with r, s as in the condition
in the lemma. There are at most (s/2)− 1 linearly independent rows in
it. Therefore, each of the remaining (s/2) + 1 rows can be expressed as
a linear sum of the other (s/2) − 1 rows. This can be used to describe
R by the following items:

• The characteristic sequence of the (s/2) − 1 independent rows out
of the s rows of R in s bits.

• A list of the (s/2)−1 linearly independent rows in ((s/2)−1)(n−r)
bits.

• List the remainder of (s/2)+1 rows in order. For each row give only
the Boolean coefficients in the assumed linear sum. This requires
((s/2) − 1)((s/2) + 1) bits.

To recover x, we need only the additional items below:

• A description of this discussion in O(1) bits.

• The values of n, r, s in self-delimiting form in 3 logn+6 log logn+3
bits. For large n, this is at most 4 logn bits including the O(1) bits
above.

• R without the bits of the submatrix in row-major order in n2−(n−
r)s bits.

• The indices of the columns and rows of the submatrix, in (n −
r) log n+ s logn bits.

To ensure unique decodability of these binary items, we concatenate
them as follows: First list the self-delimiting descriptions of n, r, s, then
append all other items in a fixed order. The length of each of the items
can be calculated from n, r, s. Altogether, this is an effective description
of x, a number of bits of at most

n2 − (n− r)s+ (n− r) log n+ s logn

+
(s

2
− 1
)

(n− r) +
(s

2
− 1
)(s

2
+ 1
)

+ s+ 4 logn.

For large n, this quantity drops below n2. But we have assumed that
C(x) ≥ n2, which yields the required contradiction. 2
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A proof obtained by the incompressibility method usually implies that
the result holds for almost all strings, and hence it holds for the average
case complexity.

Exercises 6.1.1. [26/M30] Let the Turing machine in Section 6.1.1 be probabilis-
tic, which means that the machine can flip a fair coin to determine its
next move.

(a) Assume that the machine is not allowed to err. Prove that such a
machine still requires on average order n2 steps to accept the palindrome
language L = {xxR : x ∈ {0, 1}∗}. The average is taken over the uniform
distribution of all inputs of length n and all coin tosses of the algorithm.

(b) Assume that the machine is allowed to err with probability ǫ. Show
that the palindrome language L can be accepted in worst-case time
O(n log n) by such a machine.

Comments. Hint for Item (a): use the symmetry of information theorem,
Theorem 2.8.2, on page 190. With high uniform probability, a sequence
of random coin tosses r and a random input x are random relative to
each other. Thus, the deterministic argument given in the proof of Sec-
tion 6.1.1 proceeds as before with r as an extra input or oracle. Hint for
Item (b): generate random primes of size logn and check whether both
sides are the same modulo these primes. Repeat this process to guar-
antee high accuracy. Source: [R. Freivalds, Information Processing 77,
Proc. IFIP Congress 77, North-Holland, Amsterdam, 1977, 839–842].

6.1.2. [10] (Converting NFA to DFA) A deterministic finite automaton
(DFA) A has a finite number of states, including a distinguished start
state and some distinguished accepting states. At every step, A reads the
next input symbol and changes its state according to the current state
and the input symbol. If A has more than one alternative at some step,
then A is nondeterministic (NFA). If A is in an accepting state when it
reads a distinguished end marker, then A accepts the input. Otherwise A
rejects it. It is well known that every NFA can be converted to a DFA.
Use an incompressibility argument to prove that there exists an NFA
with n states such that the smallest DFA accepting the same language
has Ω(2n) states.

Comments. Hint: use Lk = {x : the kth bit of x from the right is 1}.
This problem can also be solved by a simple counting argument.

6.1.3. [15] Give a simple algorithm that multiplies two n× n Boolean
matrices in O(n2) average time under uniform distribution. Use an in-
compressibility argument to show the time complexity.

Comments. Source: the original proof, without incompressibility, is given
in [P.E. O’Neil, E.J. O’Neil, Inform. Contr., 22:2(1973), 132–138].
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6.2

High-

Probability

Properties

The theory of random individual objects, Sections 2.4 and 2.5, tells us
that there is a close relation between high-probability properties and
properties of incompressible objects. For infinite binary sequences ω ∈
{0, 1}∞ and λ the uniform (coin-toss) measure, classic probabilistic laws
are formulated in global form by

λ{ω : A(ω)} = 1,

where A(ω) is some formula expressing some property. In contrast, in
the algorithmic theory of random individual objects, the corresponding
law is expressed in local form by

if ω is random then A(ω) holds.

The classical probabilistic laws as in the first displayed equation are un-
countable. The properties tested by Martin-Löf tests to determine ran-
domness as in the second displayed equation are the effectively testable
properties and hence countable. Thus, there are classical probabilistic
laws that do not hold in the pointwise sense of the second equation.
On the other hand, a pointwise algorithmic law implies the correspond-
ing classical probabilistic law: if the second displayed equation holds
for formula A, then also the first displayed equation holds for A (by
Theorem 2.5.3 on page 151). How do things work out quantitatively for
finitely many finite objects? To fix our thoughts let us look at a simple
example.

First we recall the notion of randomness deficiency of Section 2.2.1 on
page 120. The randomness deficiency of an element in a certain class of
objects is the difference between that element’s Kolmogorov complexity
and the maximal Kolmogorov complexity of an object in the class (typ-
ically the logarithm of the cardinality of the class). Formally, if x is an
element of a finite set of objects S, then by Theorem 2.1.3 on page 111
we have C(x|S) ≤ l(d(S)) + c for some c independent of x but possibly
dependent on S. The randomness deficiency of x relative to S is defined
as δ(x|S) = log d(S) − C(x|S).

Example 6.2.1 Let G = (V,E) be a graph on n nodes where every pair of nodes is
or is not connected by an edge according to the outcome of a fair coin
flip. The probability that a particular node is isolated (has no incident
edges) is 1/2n−1. Therefore, the probability that some node is isolated
is at most n/2n−1. Consequently, the probability that the graph has no
isolated nodes is at least 1 − n/2n−1.

Using the incompressibility method, the proof that random graphs have
this nonisolation property with high probability is as follows: Each la-
beled undirected graph G = (V,E) on n nodes can be described by
giving a characteristic sequence χ of the lexicographic enumeration of
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V × V without repetition, namely, χ = χ1χ2 . . . χe with e =
(
n
2

)
and

χi = 1 if the ith enumerated edge is in E and 0 otherwise. There are as
many labeled n-node graphs as there are such characteristic sequences.
Therefore, we can consider graphs G having randomness deficiency at
most δ(n),

C(G|n) ≥
(
n

2

)

− δ(n). (6.1)

Assume by way of contradiction that there is an isolated node i. Add
its identity in logn bits to the canonical description of G, and delete all
n − 1 bits indicating presence or absence of edges incident on i, saving
n−1 bits. From the new description we can reconstruct G given n. Then
the new description length cannot be smaller than C(G|n). Substitution
shows that δ(n) ≥ n− 1 − logn. The number of programs of length at
most

(
n
2

)
− δ(n) shows that at most a fraction of 2−δ(n) of all n-node

graphs contain an isolated node. Hence, the nonisolation property for
n-node graphs holds with probability at least 1 − n/2n−1. 3

For every finite class of finite objects there is a close relation between
properties that hold with high probability and properties that hold for
objects with small randomness deficiency: the almost incompressible
ones. However, the properties and the sets of objects concerned are not
identical and should be carefully distinguished. In fact, the following dis-
tinctions also indicate in which cases use of which method is preferable:

• In the probabilistic method, the subset of objects on which the prob-
ability of a property is based is the subset of all objects satisfying
that property. As an example, consider the nonisolation property
of labeled graphs again. The graphs satisfying this property include
the complete graph on n nodes, the star graph on n nodes, and the
binary hypercube on n nodes, provided n is a power of 2. These
graphs are certainly not incompressible or random and in fact have
complexity O(1) given n.

• If each object with suitable randomness deficiency at most δ(n) has
a certain property, then every such object is included in the subset
of objects on which the high probability of the property is based.

• If we prove that properties P and Q each hold with probability
at least 1 − ǫ with the probabilistic method, then we can conclude
that properties P and Q simultaneously hold with probability at
least 1−2ǫ. In contrast, if both properties P and Q hold separately
for objects with randomness deficiency at most δ(n), then they
vacuously also hold simultaneously for objects with randomness
deficiency δ(n).
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More general, suppose that every high-probability property sepa-
rately holds for an overwhelming majority (say, at least a (1−1/n)th
fraction) of all objects. Now consider a situation of n different prop-
erties each of which holds for a (1− 1/n)th fraction. Since possibly
the subsets on which the different properties fail may be disjoint,
possibly their union may constitute the set of all objects. Therefore
it is possible that no object at all possesses all the high-probability
properties simultaneously.

In contrast, if we prove properties separately for objects with ran-
domness deficiency at most δ(n), then all these properties hold si-
multaneously for each of these objects.

These considerations show that high-probability properties and incom-
pressibility properties are not a priori the same. However, we shall prove
that they almost coincide under mild conditions on the properties con-
sidered. In fact, the objects with a certain small randomness deficiency
satisfy all simply described properties that hold with high probability.
This is not just terminology: If δ(x|S) is small enough, then x satisfies
all properties of low Kolmogorov complexity that hold with high prob-
ability for the elements of S. To be precise: Consider strings of length
n and let S be a subset of such strings. A property P represented by S
is a subset of S, and we say that x satisfies property P if x ∈ P . (The
lemma below can also be formulated in terms of probabilities instead of
frequencies if we are talking about a probabilistic ensemble S.)

Lemma 6.2.1 Let S ⊆ {0, 1}n and let δ : N → N be such that δ(n) ≤ log d(S).

(i) If P is a property satisfied by all x ∈ S with δ(x|S) ≤ δ(n), then P
holds for a fraction of at least 1 − 1/2δ(n) of the elements in S.

(ii) Let P be a property that holds for a fraction of at least 1 − 1/2δ(n)

of the elements of S. Then there is a constant c such that P holds for
every x ∈ S with δ(x|S) ≤ δ(n) −K(P |S) − c.

Proof. (i) There are only
∑log d(S)−δ(n)

i=0 2i programs of length not greater
than log d(S) − δ(n) and there are d(S) elements in S.

(ii) Suppose, by way of contradiction, that P does not hold for an object
x ∈ S whose randomness deficiency satisfies δ(x|S) ≤ δ(n)−K(P |S)−c.
Then we can reconstruct x from a description of S and P , and x’s index
j in an effective enumeration of all objects in S − P . There are at most
d(S)/2δ(n) such objects by assumption. Therefore there is a constant c1
such that

K(x|S, P ) ≤ log j + c1 ≤ log d(S) − δ(n) + c1.
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Using the contradictory assumption, we obtain K(x|P, S) ≤ K(x|S) −
K(P |S)−c+c1. Also, trivially, there is a constant c2 such that K(x|S) ≤
K(x|P, S) +K(P |S) + c2. Therefore, c ≤ c1 + c2. Choosing c > c1 + c2
we have the desired contradiction. 2

These results mean that if we want to establish that a property holds
with high probability or for objects with small randomness deficiency,
then it suffices to establish either one to prove both. Moreover, the
small-randomness-deficiency objects satisfy all highly probable simple
properties simultaneously.

If a property P satisfies K(P |n) = O(1), that is P is recursive in n,
then P is simple. An example of such a property is the upper bound
of 2 logn on the size of the largest complete subgraph in a graph on
n nodes with randomness deficiency δ(n) = logn in Equation 6.1. The
quantity K(P |n) grows unboundedly for more complex properties that
require us to describe a number of parameters that grows unboundedly
as n grows unboundedly. An example is the property of containing a
labeled subgraph H on logn nodes with K(H |n) ≥

(
logn

2

)
.

Corollary 6.2.1 (i) The strings of length n of randomness deficiency at most δ(n) possess
all properties P that hold with probability at least 1−2−δ(n)−K(P |n)−O(1).

(ii) All recursive properties P with K(P |n) = O(1), each of which holds
separately for strings of length n with probability tending to 1 as n
grows unboundedly, hold simultaneously with probability tending to 1
as n grows unboundedly.

These results mean that if we want to establish that a property holds
with high probability or for objects with high Kolmogorov complexity
(which equals small randomness deficiency in the set of all such ob-
jects of the same length), then it suffices to establish either one to
prove both. Moreover, the high-Kolmogorov-complexity objects satisfy
all highly probable simple properties simultaneously.

6.3

Combinatorics

Combinatorial properties are traditionally established by counting ar-
guments or by the probabilistic method. Probabilistic arguments are
usually aimed at establishing the existence of an object in a noncon-
structive sense. It is ascertained that a certain member of a class has
a certain property without actually exhibiting that object. Usually, the
method proceeds by exhibiting a random process that produces the ob-
ject with positive probability. Alternatively, a quantitative property is
determined from a bound on its average in a probabilistic situation.

We demonstrate the utility of the incompressibility method in combi-
natorial theory on several examples. The general pattern is as follows:
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When we want to prove a certain property of a group of objects (such
as graphs), we first fix an incompressible instance of the object, justi-
fied by Theorem 2.2.1 on page 117. It is always a matter of using the
assumed regularity in this instance to compress the object to reach a
contradiction.

6.3.1
Transitive
Tournament

A tournament is defined to be a complete directed graph. That is, for
every pair of nodes i and j, exactly one of the edges (i, j) and (j, i) is
in T . The nodes of a tournament can be viewed as players in a game
tournament. If (i, j) is in T , we say player j dominates player i. We call
T transitive if (i, j), (j, k) in T implies (i, k) in T .

Let Γ = Γn be the set of all tournaments on N = {1, . . . , n}. Given a
tournament T ∈ Γ, fix a standard encoding E : T → {0, 1}n(n−1)/2, one
bit for each edge. The bit for edge (i, j) is set to 1 if i < j (j dominates
i) and 0 otherwise. There is a one-to-one correspondence between the
members of Γ and the binary strings of length n(n− 1)/2.

Let v(n) be the largest integer such that every tournament onN contains
a transitive subtournament on v(n) nodes.

Theorem 6.3.1 v(n) ≤ 1 + ⌊2 logn⌋.

Proof. For n = 1, trivially v(n) = 1. Therefore, we can assume n ≥ 2.
Fix T ∈ Γ such that

C(E(T )|n, p) ≥ n(n− 1)/2,

where p is a fixed program that on input n and E′(T ) (below) outputs
E(T ). Let S be the transitive subtournament of T on v(n) nodes. We
try to compress E(T ), to an encoding E′(T ), as follows:

1. Prefix the list of nodes in S in order of dominance to E(T ), every
node using ⌊logn⌋ bits, by encoding integers n = 2, 3, 4, . . . by bi-
nary strings 0, 1, 00, . . ., as in Exercise 1.4.2 on page 14. This adds
v(n)⌊log n⌋ bits.

2. Delete all redundant bits from the E(T ) part, representing the edges
between nodes in S, saving v(n)(v(n) − 1)/2 bits.

Then

l(E′(T )) = l(E(T )) − v(n)

2
(v(n) − 1 − 2⌊logn⌋).

Given n, the program p reconstructs E(T ) from E′(T ). Therefore,

C(E(T )|n, p) ≤ l(E′(T )).
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The three displayed equations are true only when v(n) ≤ 1 + 2⌊logn⌋.
Since it is easy to verify that 2⌊logn⌋ = ⌊2 logn⌋ for all n ≥ 1, this
proves the theorem. 2

The general idea used in the incompressibility proof of Theorem 6.3.1
is the following: If every tournament contains a large transitive sub-
tournament, or any other regular property for that matter, then also a
tournament T of maximal complexity contains one. But the regularity
induced by too large a transitive subtournament can be used to com-
press the description of T to below its complexity, leading to the required
contradiction.

P. Stearns showed by induction that v(n) ≥ 1 + ⌊logn⌋. This is the
first problem illustrating the probabilistic method in [P. Erdős and J.H.
Spencer, Probabilistic Methods in Combinatorics, Academic Press, 1974].
They collected many combinatorial properties accompanied by elegant
proofs using probabilistic arguments. The thrust was to show how to
replace counting arguments by pleasant and short probabilistic argu-
ments. To compare the incompressibility method, we include their proofs
of Theorem 6.3.1 by counting and probabilistic methods.

Proof. (by counting) Let Γ = Γn be the class of all tournaments on
{1, . . . , n} and Γ′ = the class of tournaments on {1, . . . , n} that contain
a transitive subtournament on v = 2 + ⌊2 logn⌋ players. Then

Γ′ =
⋃

A

⋃

σ

ΓA,σ,

where A ⊆ {1, . . . , n}, d(A) = v, σ is a permutation on A, and ΓA,σ is
the set of T such that T |A is generated by σ. If T ∈ ΓA,σ, the

(
v
2

)
games

of T |A are determined. Thus,

d(ΓA,σ) = 2(n
2)−(v

2),

and by elementary estimates

d(Γ′) ≤
∑

A,σ

2(n
2)−(v

2) =

(
n

v

)

v!2(n
2)−(v

2) < 2(n
2) = d(Γ).

Thus, Γ − Γ′ 6= ∅. That is, there exists T ∈ Γ − Γ′ not containing a
transitive subtournament on v players. 2

Proof. (by the probabilistic method) Assume the same notation and sup-
positions as in the proof by counting. Let T = Tn be a random variable.
Its values are the members of Γ, where for every T ∈ Γ, Pr(T = T ) =

2−(n
2). That is, all members of Γ are equally probable values of T. Then
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the probability that an outcome T of T contains a transitive subtour-
nament on v players is at most

∑

A

∑

σ

Pr(T|A generated by σ) =

(
n

v

)

v!2−(v
2) < 1.

Thus, some value T of T does not contain a transitive subtournament
on v players. 2

6.3.2
Tournament with
k-Dominators

Tournament T has property S(k) if for every subset A of k nodes (players)
there is a node (player) in N − A that dominates (beats) all nodes
(players) in A. Let s(k) be the minimum number of nodes (players) in a
tournament with property S(k).

Theorem 6.3.2 s(k) ≤ 2kk2(ln 2 + o(1)).

Proof. Choose n = 2kk2(ln 2+o(1)). Assume the notation of the previous
example. Select T on n nodes such that

C(E(T )|n, k, p) ≥ n(n− 1)/2,

where p is a fixed program to compute E(T ) from E′(T ) (given below)
and n, k. By way of contradiction, assume that S(k) is false for T . Fix
a set A of k nodes of T with no common dominator in N −A. Describe
T as follows by a compressed description E′(T ):

• List the nodes in A first, using ⌊logn⌋ bits each. As before, code
integers n = 2, 3, 4, . . . by strings 0, 1, 00, . . . .

• List E(T ) with bits representing edges betweenN−A and A deleted
(saving (n− k)k bits).

• Code the edges between N − A and A. From every i ∈ N − A,
there are 2k − 1 possible ways of directing edges to A, in total
t = (2k − 1)n−k possibilities. To encode the list of these edges,
⌊log t⌋ bits suffice.

This shows that C(E(T )|n, k, p) ≤ l(E′(T )). For large k, l(E′(T )) <
n(n− 1)/2 bits, which is a contradiction. 2

6.3.3
Ramsey
Numbers

The previous examples demonstrate a general principle that a random
graph (or its complement) cannot contain too large a subgraph that is
easily describable. We apply the incompressibility method to obtain a
lower bound on Ramsey numbers. A clique of a graph is a complete
subgraph of that graph. The Ramsey number r(k, k) is the least integer
such that for every graph G of size r(k, k), either G or G’s complement
contains a clique of size k. P. Erdős proved in 1947, using the probabilistic
method, the following result:
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Theorem 6.3.3 r(k, k) ≥ k2k/2
(

1
e
√

2
− o(1)

)

.

Proof. To describe a clique (or empty subgraph) of size k in a graph

G of r(k, k) vertices we need log
(
r(k,k)
k

)
≤ k log r(k, k) − log k! bits.

ChooseG to be incompressible. Then we must have k log r(k, k)−log k! ≥
k(k − 1)/2, since otherwise we can compress G as in the proof of The-
orem 6.3.1, Using Stirling’s formula we obtain k! ≈ kke−k

√
2πk, and a

simple calculation shows the theorem. 2

6.3.4
Coin-Weighing
Problem

A family D = {D1, D2, . . . , Dj} of subsets of N = {1, 2, . . . , n} is called
a distinguishing family for N if for every two distinct subsets M and
M ′ of N there exists an i (1 ≤ i ≤ j) such that d(Di

⋂
M) is different

from d(Di

⋂
M ′). Let f(n) denote the minimum of d(D) over all distin-

guishing families for N . To determine f(n) is commonly known as the
coin-weighing problem. It is known that

f(n) =
2n

logn
+O

(
n log logn

log2 n

)

.

The ≤ side of this equation, with small-o instead of big-O, was inde-
pendently established by [B. Lindström, Canad. Math. Bull., 8(1965),
477–490] and [D.G. Cantor, W.H. Mills, Canad. J. Math., 18(1966), 42–
48]. The ≥ side, Theorem 6.3.4, was established by P. Erdős and A.
Rényi [Publ. Hungar. Acad. Sci., 8(1963), 241–254], L. Moser [Combi-
natorial Structures and Their Applications, Gordon and Breach, 1970,
pp. 283–384], and N. Pippenger [J. Combinat. Theory, Ser. A, 23(1977),
99–104] using probabilistic and information theory methods.

We prove the ≥ side using the incompressibility method. Encode every
subset M of N by E(M) ∈ {0, 1}n such that the ith bit of E(M) is 1 if
i is in M , and 0 otherwise.

Theorem 6.3.4 f(n) ≥ (2n/ logn)[1 +O(log logn/ logn)].

Proof. Choose M such that

C(E(M)|D) ≥ n. (6.2)

Let di = d(Di) and mi = d(Di

⋂
M). Let si be the subsequence of

E(M) selected from the positions corresponding to 1’s in E(Di). Thus,
l(si) = di and the number of 1’s in si is precisely mi. Moreover,

C(si) ≥ di −O(log i),

since we can use D, i, the shortest program for si, and E(M) minus the
bits in si to reconstruct E(M).
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By Equation 2.3 on page 167, the value mi is within range di/2 ±
O(

√
di log i). Therefore, given di, every mi can be described by its dis-

crepancy with di/2, which gives

C(mi|Di) ≤
1

2
log di +O(log log i).

Pad every description of mi, givenDi, to a block of fixed length 1
2 logn+

O(log logn). Since D is a distinguishing family forN , given D, the values
m1, . . . ,mj determine M . Hence, by the established inequalities,

C(E(M)|D) ≤ C(m1, . . . ,mj |D) ≤
j
∑

i=1

(
1

2
logn+O(log logn)

)

.

Together with Equation 6.2 this implies the theorem. 2

6.3.5
High-Probability
Properties
Revisited

Almost all strings have high complexity. Therefore, almost all tourna-
ments and almost all undirected graphs have high complexity. Any com-
binatorial property proven about an arbitrary complex object in such
a class will hold for almost all objects in the class. For example, the
proof in Section 6.3.1 can trivially be strengthened as follows: By The-
orem 2.2.1, page 117, there are at least 2n(n−1)/2(1− 1/n) tournaments
T on n nodes with

C(E(T )|n, p) ≥ n(n− 1)/2 − logn.

This is a (1 − 1/n)th fraction of all tournaments on n nodes. Using the
displayed equation in the proof yields the corollary below:

Corollary 6.3.1 For almost all tournaments on n nodes (at least a (1− 1/n)th fraction),
the largest transitive subtournament has at most 1 + 2⌊2 logn⌋ nodes,
from some n onward.

Similarly, choosing C(E(T )|n, k, p) ≥ n(n− 1)/2 − logn in the proof in
Section 6.3.2 yields the following:

Corollary 6.3.2 For all large enough k, there is some n with n ≤ 2kk2(ln 2 + o(1)) such
that almost all tournaments on n nodes (at least a (1− 1/n)th fraction)
have property S(k).

The Kolmogorov complexity argument generally yields results on ex-
pected and high-probability properties rather than worst-case properties,
and is especially suited to obtaining results on random structures. Other
such applications (such as the expected maximum vertex degree of ran-
domly generated trees and a related result on random mappings) can be
found in the exercises and in Section 6.4.
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Exercises 6.3.1. [17] Let w(n) be the largest integer such that for every tour-
nament T on N = {1, . . . , n} there exist disjoint sets A and B, each of
cardinality w(n), in N such that A×B ⊆ T . Prove w(n) ≤ 2⌊logn⌋.
Comments. Hint: add 2w(n)⌊logn⌋ bits to describe nodes, and save
w(n)2 bits on edges. Source of the problem: P. Erdős and J.H. Spencer,
Probabilistic Methods in Combinatorics, Academic Press, 1974.

6.3.2. [25] Let T be a tournament on N = {1, . . . , n}. Define a ranking
R as an ordering ofN . For (i, j) ∈ T , if R(i) < R(j), we say that R agrees
with (i, j). Otherwise, it disagrees with that edge. We are interested in
a ranking that is most consistent with T , that is, such that the number
of edges that agree with R is maximized. Show that for large enough n,
there exist tournaments such that any ranking disagrees with at least
49% of its edges.

Comments. A simple incompressibility argument is given by M. Fouz and
P. Nicholson, CS798 Course Report, University of Waterloo, December
2007. Relevant literature on this problem can be found in [N. Alon, J.H.
Spencer, The Probabilistic Method, Wiley, 2000, p. 134].

6.3.3. [17] Let G = (V,E) with V = {1, . . . , n} be an undirected graph
on n nodes with C(G|n, p) ≥ n(n−1)/2, where p is a fixed program to be
used to reconstruct G. A clique of a graph is a complete subgraph of that
graph. Show that G does not contain a clique on more than 1+ ⌊2 logn⌋
nodes.

Comments. Hint: use Section 6.3.1. To compare this result with a similar
one about randomly generated graphs, N. Alon, J.H. Spencer, P. Erdős,
The Probabilistic Method, Wiley, 1992, pp. 86–87, show that a random
graph with edge probability 1

2 contains a clique on 2 logn nodes with

probability at least 1− 1/en
2

.

6.3.4. [36] Let K(N) denote the complete undirected graph of n
nodes N = {1, . . . , n}. If A and B are disjoint subsets of N , then
K(A,B) denotes the complete bipartite graph on sets A and B. A set
C = (K(A1, B1), . . . ,K(Aj , Bj)) is called a covering family of K(N) if
for every edge {u, v} ∈ K(N) there exists an i (1 ≤ i ≤ j) such that
{u, v} ∈ K(Ai, Bi). Let g(n) denote the minimum of

∑

1≤i≤j d(Ai
⋃
Bi)

over all covering families for K(N). Prove by incompressibility that
g(n)/n ≥ logn+O(log logn).

Comments. An information-theoretic proof appears in [N. Pippenger,
J. Comb. Theory, Ser. A, 23(1977), 105–115]. Hint: use the symmetry
of information, Theorem 2.8.2, on page 190. Source: M. Li and P.M.B.
Vitányi, J. Comb. Theory, Ser. A, 66:2(1994), 226–236.

6.3.5. [25] Consider a random directed graph whose n2 nodes are on
the intersections of a two-dimensional n by n grid. All vertical edges



458 6. The Incompressibility Method

(the grid edges) are present and directed upward. For every pair of hor-
izontally neighboring nodes, we flip a three-sided coin; with probability
p < 1

2 we add an edge from left to right, with probability p we add an
edge from right to left, and with probability 1− 2p we add no edge. Use
incompressibility to prove that the expected maximum path length over
all such random graphs is bounded by O(n).

Comments. Source: T. Jiang and Z.Q. Luo, personal communication,
1992. This problem was studied in connection with communication net-
works.

6.3.6. [36] From among
(
n
3

)
triangles with vertices chosen from n points

in the unit square, let Tn be the one with the smallest area, and let An
be the area of Tn. Heilbronn’s triangle problem asks for the maximum
value ∆n assumed by An over all choices of n points. We consider the
average case: Show that if the n points are chosen independently and at
random (with a uniform distribution), then there exist positive constants
c and C such that c/n3 < µn < C/n3 for all large enough values of n,
where µn is the expectation of An. Moreover, c/n3 < An < C/n3, with
probability close to one.

Comments. Hint: put the n points on the intersections of a k×k grid and
show that the description of the arrangement can be compressed signifi-
cantly below the maximum, both if the smallest triangle has too large an
area and if it has too small an area, independent of k. Source: T. Jiang,
M. Li, P.M.B. Vitányi, Random Struct. Alg., 20:2(2002), 206–219, which
contains literature pointers to other related results. A generalization of
the average case result is given in [G. Grimmett, S. Janson, Random
Struct. Alg., 23:2(2003), 206–223]. History: H.A. Heilbronn conjectured
that ∆n = O(1/n2) in 1950, and P. Erdős proved that ∆n = Ω(1/n2)
in 1950. K.F. Roth proved that ∆n = O(1/n

√
log logn) in 1951. W.M.

Schmidt improved Roth’s bound to O(1/n
√

logn) in 1972. Roth further
improved this to O(1/n1.105) and O(1/n1.117) in 1972. J. Komlós, J.
Pintz, and E. Szemerédi further improved this to O(1/n8/7−ǫ) in 1981
and they proved an Ω(logn/n2) lower bound in 1982. The problem has
many generalizations and several dedicated websites.

6.3.7. [35] Given an n-dimensional cube and a permutation π of its
nodes, each node v wants to send an information packet to node π(v) as
fast as possible. Label every edge in the cube with its dimension from
{1, . . . , n}. A route (v1 → v2 → · · · → vk) is ascending if (vi, vi+1) has
higher dimension than (vi−1, vi) for all 2 < i < k− 1. If two packets use
the same edge in the same direction at the same time, then a collision
occurs, and one packet has to wait. How do we avoid too many collisions
on each route? Consider the following probabilistic algorithm Aπ: Step
1. For every node v, choose randomly a node w. Node v sends its packet
over the uniquely determined ascending route to w. Step 2. Send the



Exercises 459

packet from w to π(v) through the unique ascending route. Prove that
for every constant c, algorithm Aπ finishes with probability greater than
1 − 2−(c−5n−O(1))/2 after at most 2n+ 2c steps.

Comments. Hint: show that the description of a route on which too
many collisions occur can be compressed. Source: L.G. Valiant and G.
Brebner, Proc. 13th ACM Symp. Theory Comput., 1981, pp. 263–277; S.
Reisch and G. Schnitger give an incompressibility proof in [Proc. 23rd
IEEE Found. Comput. Sci., 1982, pp. 45–52].

6.3.8. [39] Let L ⊂ {0, 1}2n be a language to be recognized by two
parties P and Q with unlimited computation power. Party P knows
the first n bits of the input and party Q knows the last n bits. P and
Q exchange messages to recognize L according to some bounded-error
two-way probabilistic protocol. An input is accepted if the probability
of acceptance is at least 1 − ǫ for some fixed ǫ, 0 ≤ ǫ < 1

2 ; an input is
rejected if the probability of rejection is at least 1 − ǫ; and every input
must be either rejected or accepted. The probabilistic communication
complexity of an input (x1, . . . , x2n) is the worst case, over all sequences
of fair coin tosses, of the number of bits exchanged. The probabilistic
communication complexity of the language is the maximum of this over
all inputs. The set intersection language SETIN is defined to be the
set of all sequences a1 . . . anb1 . . . bn over {0, 1} with

∑n
i=1 aibi ≥ 1. (P

knows a1, . . . , an and Q knows b1, . . . , bn.) Prove that the probabilistic
communication complexity of SETIN is Ω(n).

Comments. Source: B. Kalyanasundaram and G. Schnitger, SIAM J.
Discrete Math., 5:4(1992), 545–557.

6.3.9. [37] An (n, d,m)-graph is a bipartite multigraph with n vertices
on the left side and m vertices on the right side, with every vertex on
the left having degree d, and every vertex on the right having degree
dn/m (assuming m|dn). An (n, d,m)-graph is (α, β)-expanding if every
subset S of αn vertices on the left has more than βm neighbors on the
right, for 0 < α ≤ β < 1. Prove that for every n, 0 < α ≤ β < 1, λ > 0,
there is a

d >
h(α) + h(β)λ

h(α) − h(α/β)β

such that there is an (α, β)-expanding (n, d, λn)-graph.

Comments. Hint: take a (n, d, λn)-graph of maximal complexity. Source:
U. Schöning, Random Struct. Alg., 17(2000), 64–77. The original proba-
bilistic proof with λ = 1 is in [L.A. Bassalygo, Prob. Inform. Transmis-
sion, 17(1981), 206–211].

6.3.10. [25] An (n, d, α, c) OR-concentrator is a bipartite graph G(L+
R,E) on the independent vertex sets L and R with d(L) = d(R) = n
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such that (i) every vertex in L has degree d, and (ii) every subset S ⊆ L
with d(S) ≤ αn is connected to at least cn neighbors (in R). Show that
there exist (n, 9.48, 1

3 , 2) OR-concentrators.

Comments. A simple incompressibility proof is given by M. Fouz, CS798
Course Report, University of Waterloo, December 2007. A probabilistic
proof (with worse constants) is found in [R. Motwani, P. Raghavan,
Randomized Algorithms, Cambridge Univ. Press, 1995, pp. 108–110].

6.3.11. [40] Let s1 . . . sn be a string over an alphabet of cardinality c.
A monochromatic arithmetic progression (m.a.p.) of length k is a sub-
sequence sisi+tsi+2t . . . si+(k−1)t with all characters equal. The van der
Waerden number w(k; c) is the least number n such that every string of
length n contains a m.a.p. of length k. Use the incompressibility method
in the problems below.

(a) Show that w(k; c) >
√
k − 1 · c k

2−1.

(b) Strengthen the bound to w(k; c) > ck−2

4k · k−1
k .

Comments. The lower bound of Item (b) matches the one obtained orig-
inally by L. Lovász, and is worse than later applications of Lovász’s local
lemma by a factor 4/e; see for example [Z. Szábo, Random Struct. Alg.,
1:3(1990), 343–360]. The method can also be used for other Ramsey-type
lower bounds. Hint for Item (b):
(i) Show that ⌈logc(n ·k · k

k−1 )⌉+1 characters suffice to encode a m.a.p.,
if it is known to intersect some other fixed progression of length k.
(ii) Consider a procedure which in a long incompressible string repeat-
edly does the following: Find a m.a.p. within the first w(k; c) characters.
Encode it by some string, delete the corresponding characters, and re-
place them with characters from the end of the string.
(iii) Use the following fact without proof: With logc 4 additional char-
acters in the encoding of every deleted progression one can guarantee
that there is always a m.a.p. in the first w(k; c) characters that intersects
the positions of a previously deleted progression (determinable without
additional characters).
Implement Items (i) through (iii) as follows: maintain a stack whose ele-
ments each contain the positions of a progression that has been deleted.
Upon deletion of a progression, push its positions onto the stack. If a
progression in the current string intersects the positions on top of the
stack, encode it this way; otherwise, delete the top of the stack. Encoding
which case happened can be done with logc 2 characters and every case
happens at most once per deleted progression. Source: P. Schweitzer,
Using the incompressibility method to obtain local lemma results for
Ramsey-type problems, Inform. Process. Lett., to appear.
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6.4

Kolmogorov

Random

Graphs

Statistical properties of strings with high Kolmogorov complexity were
studied in Section 2.6. The interpretation of strings as more complex
combinatorial objects leads to a completely new set of properties and
problems that have no direct counterpart in the flatter string world. Here
we derive topological, combinatorial, and statistical properties of graphs
with high Kolmogorov complexity. Every such graph possesses simul-
taneously all properties that hold with high probability for randomly
generated graphs. They constitute almost all graphs, and the derived
properties a fortiori hold with probability that goes to 1 as the number
of nodes grows unboundedly, in the sense of Section 6.2.

Definition 6.4.1 Every labeled graph G = (V,E) on n nodes V = {1, 2, . . . , n} can be
coded (up to automorphism) by a binary string E(G) of length n(n −
1)/2. We enumerate the n(n− 1)/2 possible edges (i, j) in a graph on n
nodes in standard lexicographic order without repetitions and set the ith
bit in the string to 1 if the edge is present and to 0 otherwise. Conversely,
every binary string of length n(n − 1)/2 encodes a graph on n nodes.
Hence we can identify every such graph with its corresponding binary
string.

Definition 6.4.2 A labeled graph G on n nodes has randomness deficiency at most δ(n),
and is called δ(n)-random, if it satisfies

C(E(G)|n, δ) ≥ n(n− 1)/2 − δ(n). (6.3)

Lemma 6.4.1 A fraction of at least 1 − 1/2δ(n) of all labeled graphs G on n nodes is
δ(n)-random.

This is a corollary of Lemma 6.2.1. For example, the c logn-random
labeled graphs constitute a fraction of at least (1 − 1/nc) of all graphs
on n nodes, where c > 0 is an arbitrary constant.

High-complexity labeled graphs have many specific topological proper-
ties, which seems to contradict their randomness. However, randomness
is not lawlessness but rather enforces strict statistical regularities, for
example, to have diameter exactly two.

Lemma 6.4.2 The degree d of every node of a δ(n)-random labeled graph satisfies

|d− (n− 1)/2| = O
(√

(δ(n) + logn)n
)

.

Proof. Assume that there is a node such that the deviation of its degree d
from (n−1)/2 is greater than k. From the lower bound on C(E(G)|n, δ)
corresponding to the assumption that G is random, we can estimate an
upper bound on k as follows:
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In a description of G = (V,E) given n, δ we can indicate which edges
are incident on node i by giving the index of the interconnection pattern
(the characteristic sequence of the set Vi = {j ∈ V − {i} : (i, j) ∈ E}
in n − 1 bits where the jth bit is 1 if j ∈ Vi and 0 otherwise) in the
ensemble of

m =
∑

|d−(n−1)/2|>k

(
n− 1

d

)

≤ 2ne−2k2/3(n−1) (6.4)

possibilities. The last inequality follows from a general estimate of the
tail probability of the binomial distribution, with sn the number of suc-
cessful outcomes in n experiments with probability of success p = 1

2 .
Namely, by Chernoff’s bounds, Equation 2.4 on page 167,

Pr(|sn − pn| > k) ≤ 2e−k
2/3pn. (6.5)

To describe G it then suffices to modify the old code of G by prefixing
it with

• A description of this discussion in O(1) bits;

• the identity of node i in ⌊log(n+ 1)⌋ bits;

• the value of k in ⌊log(n + 1)⌋ bits, possibly adding nonsignificant
0’s to pad up to this amount;

• the index of the interconnection pattern in logm bits (we know n, k
and hence logm); followed by

• the old code for G with the bits in the code denoting the presence
or absence of the possible edges that are incident on node i deleted.

Clearly, given n we can reconstruct the graph G from the new descrip-
tion. The total description we have achieved is an effective program of

logm+ 2 logn+ n(n− 1)/2 − n+O(1)

bits. This must be at least the length of the shortest effective binary
program, which is C(E(G)|n, δ), satisfying Equation 6.3. Therefore,

logm ≥ n− 2 logn−O(1) − δ(n).

Since we have estimated in Equation 6.4 that

logm ≤ n− (2k2/3(n− 1)) log e,

it follows that k ≤
√

3
2 (δ(n) + 2 logn+O(1))(n− 1)/ log e. 2
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Lemma 6.4.3 All o(n)-random labeled graphs have 1
4n + o(n) disjoint paths of length

2 between every pair of nodes i, j. In particular, all o(n)-random labeled
graphs have diameter 2.

Proof. The only graphs with diameter 1 are the complete graphs that
can be described in O(1) bits, given n, and hence are not random. It
remains to consider an o(n)-random graph G = (V,E) with diameter
greater than or equal to 2. Let i, j be a pair of nodes connected by r
disjoint paths of length 2. Then we can describe G by modifying the old
code for G as follows:

• a program to reconstruct the object from the various parts of the
encoding in O(1) bits;

• the identities of i < j in 2 logn bits;

• the old code E(G) of G with the 2(n−2) bits representing presence
or absence of edges (j, k) and (i, k) for every k 6= i, j deleted;

• a shortest program for the string ei,j consisting of the (reordered)
n− 2 pairs of bits deleted above.

From this description we can reconstruct G in

O(log n) +

(
n

2

)

− 2(n− 2) + C(ei,j |n)

bits, from which we may conclude that C(ei,j |n) ≥ l(ei,j) − o(n). As
shown in Lemma 2.6.1 this implies that the frequency of occurrence
in ei,j of the aligned 2-bit block 11—which by construction equals the
number of disjoint paths of length 2 between i and j—is 1

4n+ o(n).

2

A graph is k-connected if there are at least k node-disjoint paths between
every pair of nodes.

Corollary 6.4.1 All o(n)-random labeled graphs are (1
4n+ o(n))-connected.

Lemma 6.4.4 Let G = (V,E) be a graph on n nodes with randomness deficiency
O(log n). Then the largest clique in G has at most ⌊2 logn⌋+O(1) nodes.

Proof. This is the same proof as that for the largest transitive subtour-
nament in a high-complexity tournament, Theorem 6.3.1. 2

With respect to the related property of random graphs, in [N. Alon, J.H.
Spencer, and P. Erdős, The Probabilistic Method, 1992, pp. 86, 87] it is
shown that a random graph with edge probability 1

2 contains a clique

on asymptotically 2 logn nodes with probability at least 1 − e−n
2

.
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Lemma 6.4.5 Let c be a fixed constant. If G is a c logn-random labeled graph, then
from every node i all other nodes are either directly connected to i or are
directly connected to one of the least (c+ 3) logn nodes directly adjacent
to i.

Proof. Given i, let A be the set of the least (c + 3) logn nodes directly
adjacent to i. Assume by way of contradiction that there is a node k of
G that is not directly connected to a node in A

⋃{i}. We can describe
G as follows:

• a description of this discussion in O(1) bits;

• a literal description of i in logn bits;

• a literal description of the presence or absence of edges between i
and the other nodes in n− 1 bits;

• a literal description of k and its incident edges in log n + n − 2 −
(c+ 3) logn bits;

• the encoding E(G) with the edges incident with nodes i and k
deleted, saving at least 2n− 2 bits.

Altogether the resultant description has

n(n− 1)/2 + 2 logn+ 2n− 3 − (c+ 3) logn− 2n+ 2

bits, which contradicts the c logn-randomness of G by Equation 6.3 on
page 461. The lemma is proven. 2

In the description we have explicitly added the adjacency pattern of
node i, which we deleted later again. This zero-sum swap is necessary
to be able to unambiguously identify the adjacency pattern of i in order
to reconstruct G. Since we know the identities of i and the nodes adja-
cent to i (they are the prefix where no bits have been deleted), we can
reconstruct G from this discussion and the new description, given n.

6.4.1
Statistics of
Subgraphs

We start by defining the notion of labeled subgraph of a labeled graph.
Let G = (V,E) be a labeled graph on n nodes. Consider a labeled
graph H on k nodes {1, 2, . . . , k}. Each subset of k nodes of G induces
a subgraph Gk of G. The subgraph Gk is an ordered labeled occurrence
of H when we obtain H by relabeling the nodes i1 < i2 < · · · < ik of
Gk as 1, 2, . . . , k.

It is easy to conclude from the statistics of high-complexity strings in
Lemma 2.6.1 that the frequency of every of the two labeled two-node
subgraphs in a δ(n)-random graph G is

n(n− 1)

4
±
√

3

4
(δ(n) +O(1))n(n− 1)/ log e.
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This case is easy, since the frequency of such subgraphs corresponds to
the frequency of 1’s or 0’s in the

(
n
2

)
-length standard encoding E(G)

of G. However, to determine the frequencies of labeled subgraphs on k
nodes (up to isomorphism) for k > 2 is a matter more complicated than
the frequencies of substrings of length k. Clearly, there are

(
n
k

)
subsets

of k nodes out of n and hence that many occurrences of subgraphs.
Such subgraphs may overlap in more complex ways than substrings of
a string. Let #H(G) be the number of times H occurs as an ordered
labeled subgraph of G (possibly overlapping). Let p be the probability
that we obtain H by flipping a fair coin to decide for every pair of nodes
whether it is connected by an edge. Then, p = 2−k(k−1)/2. The proof of
the following theorem is deferred to Exercise 6.4.2 on page 468.

Theorem 6.4.1 Assume the terminology above with G = (V,E) a labeled graph on n
nodes, k a positive integer dividing n, and H a labeled graph on k ≤√

2 logn nodes. Let C(E(G)|n) ≥
(
n
2

)
− δ(n). Then

∣
∣
∣
∣
#H(G) −

(
n

k

)

p

∣
∣
∣
∣
≤
(
n

k

)
√

α(k/n)p,

with α = (K(H |n) + δ(n) + log
(
n
k

)
/(n/k) +O(1))3/ log e.

6.4.2
Unlabeled Graph
Counting

An unlabeled graph is a graph with no labels. For convenience we can
define this as follows: Call two labeled graphs equivalent (up to relabel-
ing) if there is a relabeling that makes them equal. An unlabeled graph is
an equivalence class of labeled graphs. An automorphism of G = (V,E)
is a permutation π of V such that (π(u), π(v)) ∈ E iff (u, v) ∈ E. Clearly,
the set of automorphisms of a labeled graph forms a group with group
operation of function composition and the identity permutation as unity.
It is easy to verify that π is an automorphism of G iff π(G) and G have
the same binary string standard encoding, that is, E(G) = E(π(G)).
This contrasts with the more general case of permutation relabeling,
where the standard encodings may be different. A labeled graph is rigid
if its only automorphism is the identity automorphism. It turns out that
Kolmogorov random labeled graphs are rigid graphs. To obtain an ex-
pression for the number of unlabeled graphs we have to estimate the
number of automorphisms of a graph in terms of its randomness defi-
ciency. Below, ‘graph’ means ‘labeled graph’ unless indicated otherwise.

In [F. Harary and E.M. Palmer, Graphical Enumeration, Academic Press,
1973] an asymptotic expression for the number of unlabeled graphs is
derived using sophisticated methods. We give a new elementary proof
by incompressibility. Denote by gn the number of unlabeled graphs on
n nodes—that is, the number of isomorphism classes in the set Gn of
undirected labeled graphs on nodes {0, 1, . . . , n− 1}.
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Theorem 6.4.2 gn ∼ 2(
n
2)
n! .

Proof. Clearly,

gn =
∑

G∈Gn

1

d([G])
,

where [G] is the isomorphism class of graph G. By elementary group
theory,

d([G]) =
d(Sn)

d(Aut(G))
=

n!

d(Aut(G))
,

where Sn is the group of permutations on n elements, and Aut(G) is the
automorphism group of G. Let us partition Gn into Gn = G0

n

⋃ · · ·⋃ Gnn ,
where Gmn is the set of graphs for which m is the number of nodes moved
(mapped to another node) by any of its automorphisms.

Claim 6.4.1 For G ∈ Gmn , d(Aut(G)) ≤ nm = 2m logn.

Proof. d(Aut(G)) ≤
(
n
m

)
m! ≤ nm. 2

Consider every graph G ∈ Gn having a probability Pr(G) = 2−(n
2).

Claim 6.4.2 Pr(G ∈ Gmn ) ≤ 2−m( 1
2n− 3

8m−logn).

Proof. By Lemma 6.4.1 it suffices to show that if G ∈ Gmn and

C(E(G)|n,m) ≥
(
n

2

)

− δ(n,m)

then δ(n,m) satisfies

δ(n,m) ≥ m

(
1

2
n− 3

8
m− logn

)

. (6.6)

Let π ∈ Aut(G) move m nodes. Suppose π is the product of k disjoint
cycles of sizes c1, . . . , ck. Spend at most m logn bits describing π: For
example, if the nodes i1 < · · · < im are moved, then list the sequence
π(i1), . . . , π(im). Writing the nodes of the latter sequence in increasing
order, we obtain i1, . . . , im again, that is, we execute permutation π−1,
and hence we obtain π.

Select one node from each cycle—say, the lowest-numbered one. Then
for every unselected node on a cycle, we can delete the n−m bits corre-
sponding to the presence or absence of edges to stable nodes, and m− k
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half-bits corresponding to presence or absence of edges to the other,
unselected, cycle nodes. In total we delete

k∑

i=1

(ci − 1)

(

n−m+
m− k

2

)

= (m− k)

(

n− m+ k

2

)

bits. Observing that k = 1
2m is the largest possible value for k, we arrive

at the claimed δ(n,m) of G (difference between savings and spending is
1
2m(n− 3

4m) −m logn) of Equation 6.6. 2

We continue the proof of the main theorem:

gn =
∑

G∈Gn

1

d([G])
=
∑

G∈Gn

d(Aut(g))

n!
=

2(n
2)

n!
En,

where En :=
∑

G∈Gn
Pr(G)d(Aut(G)) is the expected size of the auto-

morphism group of a graph on n nodes. Clearly, En ≥ 1, yielding the
lower bound on gn. For the upper bound on gn, noting that G1

n = ∅ and
using the above claims, we find that

En =

n∑

m=0

Pr(G ∈ Gmn )AvgG∈Gm
n
d(Aut(G))

≤ 1 +
n∑

m=2

2−m( 1
2n− 3

8m−2 logn)

≤ 1 + 2−(n−4 logn−2),

with Avg meaning ‘the average,’ which proves the theorem. 2

The proof of the theorem shows that the error in the asymptotic expres-
sion is very small:

Corollary 6.4.2 2(
n
2)
n! ≤ gn ≤ 2(

n
2)
n!

(

1 + 4n4

2n

)

.

Equation 6.6 yields the following (note that m = 1 is impossible):

Corollary 6.4.3 If a graph G has randomness deficiency slightly less than n (more pre-
cisely, C(E(G)|n) ≥

(
n
2

)
− n− logn− 2) then G is rigid.

The expression for gn can be used to determine the maximal complexity
of an unlabeled graph on n nodes. Namely, we can effectively enumerate
all unlabeled graphs as follows:

Step 1. Effectively enumerate all labeled graphs on n nodes by enumer-
ating all binary strings of length n and, and for every enumerated
labeled graph G do Step 2
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Step 2. If G cannot be obtained by relabeling from any previously
enumerated labeled graph then G is added to the set of unlabeled
graphs.

In this way, we obtain every unlabeled graph by precisely one labeled
graph representing it. Since we can describe every unlabeled graph by
its index in this enumeration, we find by Theorem 6.4.2 and Stirling’s
formula that if G is an unlabeled graph, then

C(E(G)|n) ≤
(
n

2

)

− n logn+O(n).

Lemma 6.4.6 Let G be a labeled graph on n nodes and let G0 be the unlabeled version
of G. There exists a graph G′ and a label permutation π such that G′ =
π(G) and up to additional constant terms C(E(G′)) = C(E(G0)) and
C(E(G)|n) = C(E(G0), π|n).

By Lemma 6.4.6, for every graph G on n nodes with maximum com-
plexity there is a relabeling (permutation) that causes the complexity
to drop by as much as n logn. Our proofs of topological properties by
the incompressibility method required the graph G to be Kolmogorov
random in the sense of C(E(G)|n) ≥

(
n
2

)
− O(log n) or for some re-

sults C(E(G)|n) ≥
(
n
2

)
− o(n). Hence by relabeling such a graph we

can always obtain a labeled graph that has a complexity too low to use
our incompressibility proof. Nonetheless, topological properties do not
change under relabeling.

Exercises 6.4.1. [M40] Use the terminology of Theorem 6.4.1. A cover of G is a
set C = {S1, . . . , SN} with N = n/k, where the Si’s are pairwise disjoint

subsets of V and
⋃N
i=1 Si = V . There is a partition of the

(
n
k

)
different

k-node subsets into h =
(
n
k

)
/N =

(
n−1
k−1

)
distinct covers of G, every cover

consisting of N = n/k disjoint subsets. That is, every subset of k nodes
of V belongs to precisely one cover.

Comments. Source: Zs. Baranyai, pp. 91–108 in: A. Hajnal, R. Rado, and
V.T. Sós, eds., Infinite and Finite Sets, Proc. Coll. Keszthely, Colloq.
Math. Soc. János Bolyai, 10, Vol. 1, North-Holland, Amsterdam, 1975.

6.4.2. [27] Use Exercise 6.4.1 to prove Theorem 6.4.1.

Comments. Hint: similar to the proof of Theorem 2.6.1, with the labeled
graph G in the part of the overall string, and cover elements (subsets of
labeled nodes inducing subgraphs) taking the part of the blocks. Source:
H.M. Buhrman, M. Li, J.T. Tromp, and P.M.B. Vitányi, SIAM J. Com-
put, 29:2(1999), 590–599. This is also the source for the next exercise.
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6.4.3. [20] In Section 2.6 we investigated up to which length l all blocks
of length l occurred at least once in every δ(n)-random string of length n.

Let δ(n) = 2
√

2 logn/2/4 logn and G be a δ(n)-random graph on n nodes.
Show that for sufficiently large n, the graph G contains all subgraphs on√

2 logn nodes.

6.4.4. [26] Show that almost every labeled tree on n nodes has maxi-
mum degree of O(log n/ log log n).

Comments. Hint: represent a labeled tree by a binary sequence of length
(n − 2) logn (the Prüfer code). Prove a one-to-one correspondence be-
tween labeled trees and binary sequences of such length. Use incompress-
ibility to show that if a tree has larger degree, then one can compress
the corresponding binary sequence. Since most binary sequences can-
not be compressed, most trees do not have larger degree. Source: W.W.
Kirchherr, Inform. Process. Lett., 41(1992), 125–130.

6.5

Compact

Routing

In very large networks such as the global telephone network or the In-
ternet, the mass of messages being routed creates major bottlenecks,
degrading performance. We analyze a tiny part of this issue by deter-
mining the optimal space to represent routing schemes in communication
networks on average for all static networks.

A universal routing strategy for static communication networks will, for
every network, generate a routing scheme for that particular network.
Such a routing scheme comprises a local routing function for every node
in this network. The routing function of node u returns for every desti-
nation v 6= u an edge incident to u on a path from u to v. In this way,
a routing scheme describes a path, called a route, between every pair of
nodes u, v in the network.

It is easy to see that we can do shortest-path routing by entering a
routing table in every node u that for every destination node v indicates
to what adjacent node w a message to v should be routed first. If u
has degree d, it requires a table of at most n log d bits, and the overall
number of bits in all local routing tables never exceeds n2 logn. Several
factors may influence the cost of representing a routing scheme for a
particular network. We use a basic model and leave variations to the
exercises. Here we consider point-to-point communication networks on
n nodes described by an undirected labeled graphG = (V,E), where V =
{1, . . . , n}. Assume that nodes know the identities of their neighbors.

In [H.M. Buhrman, J.H. Hoepman, and P.M.B. Vitányi, SIAM J. Comput.,
28:4(1999), 1414–1432], it is shown that in most models, for almost all graphs
(that is, networks), Θ(n2) bits are necessary and sufficient for shortest-path
routing. By ‘almost all graphs’ we mean the Kolmogorov random graphs that
constitute a fraction of 1 − 1/nc of all graphs on n nodes, where c ≥ 3 is an
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arbitrary fixed constant. In contrast, there is a model that causes the average-
case lower bound to rise to Ω(n2 log n) and another model whose average-case
upper bound drops to O(n log2 n). This clearly exposes the sensitivity of such
bounds to the model under consideration.

6.5.1
Upper Bound

In general (on almost all networks), one can use shortest-path rout-
ing schemes occupying at most O(n2) bits. Relaxing the requirement of
shortest path is expressed in the stretch factor of a routing scheme. This
equals the maximum ratio between the length of a route it produces and
the shortest path between the endpoints of that route. The stretch factor
of a routing strategy equals the maximal stretch factor attained by any
of the routing schemes it generates. The shortest-path routing strategy
has stretch factor equal to 1. Allowing stretch factors larger than 1 re-
duces the space requirements—to as low as O(n) bits for stretch factors
of O(log n), Exercise 6.5.2.

Theorem 6.5.1 For shortest-path routing in O(log n)-random graphs, local routing func-
tions can be stored in 6n bits per node. Hence the complete routing
scheme is represented by 6n2 bits.

Proof. Let G be an O(log n)-random graph on n nodes. By Lemma 6.4.5
we know that from every node u we can route via shortest paths to every
node v through the O(log n) directly adjacent nodes of u that have the
least indexes. By Lemma 6.4.3, G has diameter 2. Once the message has
reached node v its destination is either node v or a direct neighbor of
node v (which is known in node v by assumption). Therefore, routing
functions of size O(n log log n) can be used to do shortest-path routing.
We can do better than this.

Let A0 ⊆ V be the set of nodes in G that are not directly connected to
u. Let v1, . . . , vm be the O(log n) least indexed nodes directly adjacent
to node u (Lemma 6.4.5), through which we can route via shortest paths

to all nodes in A0. For t = 1, 2 . . . , l define At = {w ∈ A0 − ⋃t−1
s=1As :

(vt, w) ∈ E}. Let m0 = d(A0) and define mt+1 = mt − d(At+1). Let
l be the first t such that mt < n/ log logn. Then we claim that vt is
connected by an edge in E to at least 1

3 of the nodes not connected by
edges in E to nodes u, v1, . . . , vt−1.

Claim 6.5.1 d(At) > mt−1/3 for 1 ≤ t ≤ l.

Proof. Suppose by way of contradiction that there exists a least t ≤ l
such that |d(At) −mt−1/2| > mt−1/6. Then we can describe G, given
n, as follows:

• This discussion in O(1) bits.
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• Nodes u, vt in 2 logn bits, padded with 0’s if need be.

• The presence or absence of edges incident with nodes u, v1, . . . , vt−1

in r = n− 1 + · · ·+n− (t− 1) bits. This gives us the characteristic
sequences of A0, . . . , At−1 in V , where a characteristic sequence of
A in V is a string of d(V ) bits such that for every v ∈ V , the vth
bit equals 1 if v ∈ A and the vth bit is 0 otherwise.

• A self-delimiting description of the characteristic sequence of At in
A0 −

⋃t−1
s=1 As, using Chernoff’s bound, Equation 2.4 on page 167,

in at most mt−1 − 2
3

(
1
6

)2
mt−1 log e+O(logmt−1) bits.

• The description E(G) with all bits corresponding to the presence or

absence of edges between vt and the nodes in A0−
⋃t−1
s=1 As deleted,

saving mt−1 bits. Furthermore, we also delete all bits corresponding
to presence or absence of edges incident with u, v1, . . . , vt−1, saving
a further r bits.

This description of G uses at most

1

2
n(n− 1) +O(log n) +mt−1 −

2

3

(
1

6

)2

mt−1 log e−mt−1

bits, which contradicts the O(log n)-randomness of G by Equation 6.3
on page 461, because mt−1 > n/ log logn. 2

Recall that l is the least integer such thatml < n/ log logn. We construct
the local routing function F (u) as follows:

• A table of intermediate routing node entries for all the nodes in
A0 in increasing order. For every node w in

⋃l
s=1As we enter in

the wth position in the table the unary representation of the least
intermediate node v, with (u, v), (v, w) ∈ E, followed by a 0. For

the nodes that are not in
⋃l
s=1As we enter a 0 in their position in

the table indicating that an entry for this node can be found in the
second table. By Claim 6.5.1, the size of this table is bounded by

n+

l∑

s=1

1

3

(
2

3

)s−1

sn ≤ n+

∞∑

s=1

1

3

(
2

3

)s−1

sn ≤ 4n.

• A table with explicitly binary-coded intermediate nodes on a short-
est path for the ordered set of the remaining destination nodes.
Those nodes have a 0 entry in the first table and there are at most
ml < n/ log logn of them, namely the nodes in A0 −

⋃l
s=1 As. Each

entry consists of the code of length log logn+O(1) for the position
in increasing order of a node out of v1, . . . , vm with m = O(log n)
by Lemma 6.4.5. Hence this second table requires at most 2n bits.
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The routing algorithm is as follows: The direct neighbors of u are known
in node u and are routed without the routing table. If we route from
start node u to target node w that is not directly adjacent to u, then
we do the following. If node w has an entry in the first table then route
over the edge coded in unary; otherwise find an entry for node w in the
second table.

Altogether, we have d(F (u)) ≤ 6n. Slightly more precise counting and
choosing l such that ml is the first such quantity < n/ logn shows that
d(F (u)) ≤ 3n. 2

6.5.2
Lower Bound

We show that Ω(n2) bits are required to perform routing on Kolmogorov
random graphs. Hence the upper bound in Theorem 6.5.1 is tight up to
order of magnitude.

Theorem 6.5.2 For shortest-path routing in o(n)-random graphs, every local routing
function must be stored in at least 1

2n − o(n) bits per node. Hence the
complete routing scheme requires at least n2/2 − o(n2) bits to be stored.

Proof. Let G be an o(n)-random graph. Let F (u) be the local routing
function of node u of G, and let d(F (u)) be the number of bits used
to store F (u). Let E(G) be the standard encoding of G in n(n − 1)/2
bits as in Definition 6.4.1. We now give another way to describe G using
some local routing function F (u):

• A description of this discussion in O(1) bits.

• A description of u in exactly logn bits, padded with 0’s if needed.

• A description of the presence or absence of edges between u and
the other nodes in V in n− 1 bits.

• A self-delimiting description of F (u) in d(F (u))+2 log d(F (u)) bits.

• The code E(G) with all bits deleted corresponding to edges (v, w) ∈
E for every v and w such that F (u) routes messages to w through
the least intermediary node v. This saves at least 1

2n − o(n) bits,
since there are at least 1

2n − o(n) nodes w such that (u,w) /∈ E
by Lemma 6.4.2, and since the diameter of G is 2 by Lemma 6.4.3,
there is a shortest path (u, v), (v, w) ∈ E2 for some v. Furthermore,
we delete all bits corresponding to the presence or absence of edges
between u and the other nodes in V , saving another n − 1 bits.
This corresponds to the n− 1 bits for edges connected to u that we
added in one connected block above.
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In the description we have explicitly added the adjacency pattern of
node u that we deleted elswhere. This zero-sum swap is necessary in or-
der to unambiguously identify the adjacency pattern of u to reconstruct
G given n, as follows: Reconstruct the bits corresponding to the deleted
edges using u and F (u) and subsequently insert them in the appropriate
positions of the remnants of E(G). We can do so because these posi-
tions can be simply reconstructed in increasing order. In total, this new
description has

1

2
n(n− 1) +O(1) +O(log n) + d(F (u)) − 1

2
n+ o(n)

bits, which must be at least n(n− 1)/2 − o(n) by Equation 6.3. Hence,
d(F (u)) ≥ 1

2n− o(n), which proves the theorem. 2

6.5.3
Average Case

Consider the average cost, taken over all labeled graphs of n nodes, of
representing a routing scheme for graphs over n nodes. For a graph G,
let T (G) be the number of bits used to store its routing scheme. The
average total number of bits to store the routing scheme for routing over
labeled graphs on n nodes is

∑
T (G)/2n(n−1)/2, with the sum taken over

all graphs G on nodes {1, 2, . . . , n}, that is, the uniform average over all
the labeled graphs on n nodes.

The results on Kolmogorov random graphs above have the following
corollaries. Consider the subset of (3 logn)-random graphs within the
class of O(log n)-random graphs on n nodes. They constitute a fraction
of at least (1 − 1/n3) of the class of all graphs on n nodes. The trivial
upper bound on the minimal total number of bits for all routing func-
tions together is O(n2 logn) for shortest-path routing on all graphs on
n nodes (or O(n3) for full-information shortest-path routing as in Ex-
ercise 6.5.5). Simple computation of the average of the total number of
bits used to store the routing scheme over all graphs on n nodes shows
that Theorem 6.5.1, Theorem 6.5.2, and Exercise 6.5.2 all hold for the
average case.

Exercises 6.5.1. [19] Show that there exist labeled graphs on n nodes such that
each local routing function must be stored in at least 1

2n log 1
2n− O(n)

bits per node (hence the complete routing scheme requires at least
(n2/2) log 1

2n−O(n2) bits to be stored).

Comments. Source: H.M. Buhrman, J.H. Hoepman, and P.M.B. Vitányi,
SIAM J. Comput., 28:4(1999), 1414–1432. This is also the source for the
next four exercises.

6.5.2. [22] (a) Show that routing with any stretch factor > 1 in c logn-
random graphs can be done with n− 1 − (c + 3) logn nodes with local
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routing functions stored in at most log(n + 1) bits per node, and 1 +
(c + 3) logn nodes with local routing functions stored in 6n bits per
node (hence the complete routing scheme is represented by fewer than
(6c+ 20)n logn bits).

(b) Show that routing with stretch factor 2 in c logn-random graphs
can be done using n− 1 nodes with local routing functions stored in at
most log log n bits per node and 1 node with its local routing function
stored in 6n bits (hence the complete routing scheme is represented by
n log logn+ 6n bits).

(c) Show that routing with stretch factor (c+ 3) logn in c logn-random
graphs can be done with local routing functions stored in O(1) bits per
node (hence the complete routing scheme is represented by O(n) bits).

Comments. Hint: use Lemma 6.4.5 on page 464 and restricted use of
tables (Items (a) and (b)) as in the proof of Theorem 6.5.1 and no
tables in Item (c).

6.5.3. [31] Prove the following: for shortest-path routing on c logn-
random graphs, if nodes know their neighbors and nodes may be re-
labeled by arbitrary identifiers (which therefore can code information),
then with labels of size at most (1 + (c + 3) logn) log n bits the local
routing functions can be stored in O(1) bits per node. Hence the com-
plete routing scheme including the label information is represented by
(c+ 3)n log2 n+ n logn+O(n) bits.

6.5.4. [34] Show that for shortest-path routing in graphs that are o(n)-
random, if the neighbors are not known, then the complete routing
scheme requires at least n2/32 − o(n2) bits to be stored. This holds
also under a slightly weaker model.

6.5.5. [29] In a full-information shortest-path routing scheme, the rout-
ing function in u must, for every destination v, return all edges incident
to u on shortest paths from u to v. These schemes allow alternative
shortest paths to be taken whenever an outgoing link is down. Show
that for full-information shortest-path routing on o(n)-random graphs,
the local routing function requires n2/4−o(n2) bits for every node (hence
the complete routing scheme requires at least n3/4 − o(n3) bits to be
stored). This is also the trivial upper bound.

6.5.6. [30] In interval routing on a graph G = (V,E), V = {1, . . . , n},
each node i has for each incident edge e a (possibly empty) set of pairs of
node labels representing disjoint intervals with wraparound. Each pair
indicates the initial edge on a shortest path from i to any node in the
interval, and for every node j 6= i there is such a pair. We are allowed
to permute the labels of graph G to optimize the interval setting.
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(a) Show that there are graphs such that for each interval routing scheme
some incident edge on each of Ω(n) nodes are labeled by Ω(n) intervals.

(b) Show that for every d ≥ 3 there are graphs of maximal node degree
d such that for each interval routing scheme some incident edge on each
of Ω(n) nodes is labeled by Ω(n/ logn) intervals.

Comments. Source: E. Kranakis and D. Krizanc, Proc. 13th Symp. Theo-
ret. Aspects Comput. Sci., Lect. Notes Comput. Sci., Vol. 1046, Springer-
Verlag, 1996, pp. 529–540. Item (b) is improved by C. Gavoile and S.
Pérennès [Proc. 15th ACM Symp. Principles Distr. Comput., 1996, pp.
125–133], who showed that for every interval routing scheme, each of
Ω(n) edges is labeled by Ω(n) intervals. This shows that interval routing
can be worse than straightforward coding of routing tables, which can
be done in O(n2 log d) bits total.

6.5.7. Consider routing schemes for n-node graphs G = (V,E), V =
{1, . . . , n}, with maximal node degree d. Choose the most convenient
labeling to facilitate compact routing schemes.

(a) Show that for every d ≥ 3 there are networks for which any shortest-
path routing scheme requires a total of Ω(n2/ logn) bits.

(b) Same as Item (a) but now with stretch factor < 2 requiring a total
of Ω(n2/ log2 n) bits.

Comments. Source: E. Kranakis and D. Krizanc, Ibid. Item (a) is im-
proved by C. Gavoile and S. Pérennès [Ibid.] for 3 ≤ d ≤ ǫn (0 < ǫ < 1)
to Θ(n2 log d). This is optimal, since straightforward coding of routing
tables takes O(n2 log d) bits total.

6.5.8. Consider a computer network consisting of n computers con-
nected in a ring by bidirectional communication channels. The mes-
sage transmission takes unknown time, but messages do not overtake
each other. The computers are anonymous, that is, they do not have
unique identities. To be able to discuss them individually we number
them 1, . . . , n. Let x be any string in {0, 1}n. At the start of the com-
putation every computer i in the ring owns a copy of x and a bit yi.
Define y ≡ x if there is an s (0 ≤ s < n) such that yi+s mod n = xi
for all i (1 ≤ i ≤ n). The problem is to compute a Boolean function
fx : {0, 1}n → {0, 1} defined by fx(y) = 1 if y ≡ x and 0 otherwise.
Each computer executes the same algorithm to compute fx and eventu-
ally outputs the value fx(y). Show that there is an algorithm to compute
fx(·), with C(x) ≥ n−O(log n), on an anonymous ring of n computers
using O(n logn) bit exchanges for a fraction of at least 1− 1/n of all 2n

inputs, and hence Θ(n logn) bit exchanges on average.

Comments. S. Moran and M. Warmuth [SIAM J. Comput., 22:2(1993),
379–399] have shown that to compute nonconstant functions f , the com-
puters need to exchange Ω(n logn) bits, and that this bound is tight.
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This creates a gap with the case of computing constant f requiring zero
messages. Source: E. Kranakis, D. Krizanc, and F.L. Luccio, pp. 392–401
in: Proc. 13th Symp. Math. Found. Comput. Sci., Lect. Notes Comput.
Sci., Vol. 969, Springer-Verlag, 1995.

6.6

Average-Case

Analysis of

Sorting

For many algorithms, it is very difficult to analyze their average-case
complexity. In average-case analysis, the incompressibility method has
an advantage over a probabilistic approach. In the latter approach,
one deals with expectations or variances over some ensemble of objects
changing over the course of the computation. Using Kolmogorov com-
plexity, we can reason about a fixed incompressible individual object.
Because it is incompressible, it has all statistical properties with cer-
tainty, rather than having them hold with some (high) probability as in
a probabilistic analysis. This fact greatly simplifies the resulting analysis.

6.6.1
Heapsort

Heapsort is a widely used sorting algorithm. One reason for its promi-
nence is that its running time is guaranteed to be of order n logn, and it
does not require extra memory space. The method was first discovered by
J.W.J. Williams [Comm. Assoc. Comp. Mach., 7(1964), 347–348], and
subsequently improved by R.W. Floyd. Only recently has one succeeded
in giving a precise analysis of its average-case performance. I. Munro has
suggested the simple solution using incompressibility presented here.

A ‘heap’ can be visualized as a complete directed binary tree with pos-
sibly some rightmost nodes being removed from the deepest level. The
tree has n nodes, each of which is labeled with a different key, taken
from a linearly ordered domain. The largest key k1 is at the root (on
top of the heap), and every other node is labeled with a key that is less
than the key of its parent.

Definition 6.6.1 Let keys be elements of N . An array of keys k1, . . . , kn is a heap if they
are partially ordered such that

k⌊j/2⌋ ≥ kj for 1 ≤ ⌊j/2⌋ < j ≤ n.

Thus, k1 ≥ k2, k1 ≥ k3, k2 ≥ k4, and so on. We consider in place sorting
of n keys in an array A[1..n] without use of additional memory.

Heapsort {Initially, A[1..n] contains n keys. After sorting is completed,
the keys in A will be ordered as A[1] < A[2] < · · · < A[n]}
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Heapify: {Regard A as a tree: the root is in A[1]; the two children of
A[i] are at A[2i] and A[2i+ 1], when 2i, 2i+ 1 ≤ n. We convert the
tree in A to a heap} Repeat for i = ⌊n/2⌋, ⌊n/2⌋− 1, . . . , 1: {the
subtree rooted at A[i] is now almost a heap except for A[i]} push
the key, say k, at A[i] down the tree (determine which of the two
children of A[i] possesses the greatest key, say k′ in child A[2i+ j]
with j equal 0 or 1); if k′ > k then put k in A[2i+ j] and repeat
this process, pushing k′ at A[2i+j] down the tree until the process
reaches a node that does not have a child whose key is greater than
the key now at the parent node.

Sort: Repeat for i = n, n − 1, . . . , 2: {A[1..i] contains the remaining
heap and A[i+ 1..n] contains the already sorted list ki+1, . . . , kn of
largest elements; by definition, the element on top of the heap in
A[1] must be ki} switch the key ki in A[1] with the key k in A[i],
extending the sorted list to A[i..n]. Rearrange A[1..i− 1] to a heap
with the largest element at A[1].

It is well known that the Heapify step can be performed in O(n) time.
It is also known that the Sort step takes no more than O(n log n) time.
We analyze the precise average-case complexity of the Sort step. There
are two ways of rearranging the heap: Williams’s method and Floyd’s
method.

Williams’s Method: {Initially, A[1] = k}

Repeat compare the keys of k’s two direct children; if m is the larger
of the two then compare k and m; if k < m then switch k and m
in A[1..i− 1] until k ≥ m.

Floyd’s Method: {Initially, A[1] is empty} Set j := 1;

while A[j] is not a leaf do:

if A[2j] > A[2j + 1] then j := 2j

else j := 2j + 1;

while k > A[j] do:

{back up the tree until the correct position for k} j := ⌊j/2⌋;

move keys of A[j] and each of its ancestors one node upward;

Set A[j] := k.

The difference between the two methods is as follows. Williams’s method
goes from the root at the top down the heap. It makes two comparisons
with the child nodes and one data movement at every step until the key
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k reaches its final position. Floyd’s method first goes from the root at
the top down the heap to a leaf, making only one comparison at every
step. Subsequently, it goes from the bottom of the heap up the tree,
making one comparison at each step, until it finds the final position for
key k. Then it moves the keys, shifting every ancestor of k one step up
the tree. The final positions in the two methods are the same; therefore
both algorithms make the same number of key movements. Note that in
the last step of Floyd’s algorithm, one needs to move the keys carefully
up the tree, avoiding swaps that would double the number of moves.

The heap is of height logn. If Williams’s method uses 2d comparisons,
then Floyd’s method uses d + 2δ comparisons, where δ = logn − d.
Intuitively, δ is generally very small, since most elements tend to be
near the bottom of the heap. This makes it likely that Floyd’s method
performs better than Williams’s method. We analyze whether this is the
case. Assume a uniform probability distribution over the lists of n keys,
so that all input lists are equally likely.

Theorem 6.6.1 With probability going to 1 for n→ ∞, and on average, Heapsort makes
n logn+O(n) data movements. Williams’s method makes 2n logn−O(n)
comparisons on average. Floyd’s method makes n logn + O(n) compar-
isons on average.

Proof. Given n keys, there are n! permutations. Hence we can choose a
permutation π of n keys such that

C(π|n,A, P ) ≥ logn! − n,

justified by Theorem 2.2.1, page 117. In fact, a (1 − 1/2n) fraction of
all permutations of n keys satisfy this. Here A represents the Heapsort
algorithms involved and P represents the reconstruction programs used
below. Since n! ≈ nne−n

√
2πn by Stirling’s formula, logn! < n logn−2n.

Claim 6.6.1 Let h be the heap constructed by the Heapify step with input π that
satisfies the last displayed equation. Then,

C(h|n,A, P ) ≥ logn! − 5n. (6.7)

Proof. Assume the contrary, C(h|n,A, P ) < logn! − 5n. Then we show
how to describe π, using h and n, in fewer than logn!−n bits as follows.
We will encode the Heapify process that constructs h from π. At each
loop, when we push k = A[i] down the subtree, we record the path
that key k traveled: 0 indicates a left branch, 1 means a right branch,
2 means halt. In total, this requires (n log 3)

∑

j j/2
j+1 ≤ 2n log 3 bits.

Given the final heap h and the above description of updating paths,
we can reverse the procedure of Heapify and reconstruct p. Hence,
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C(π|n,A, P ) < C(h|n,A, P ) + 2n log 3 + O(1) < logn! − n, which is a
contradiction. (The term 5n above can be reduced by a more careful
encoding and calculation.) 2

We give a description of h using the history of the n−1 heap rearrange-
ments during the Sort step. We need to record, for i := n− 1, . . . , 2, at
the (n − i + 1)st round of the Sort step, only the final position where
A[i] is inserted into the heap. Both algorithms insert A[i] into the same
slot using the same number of data moves, but a different number of
comparisons.

We encode such a final position by describing the path from the root to
the position. A path can be represented by a sequence s of 0’s and 1’s,
with 0 indicating a left branch and 1 indicating a right branch. Each path
i is encoded in self-delimiting form by giving the value δi = logn− l(si)
encoded in self-delimiting binary form, followed by the literal binary
sequence si encoding the actual path. This description requires at most

l(si) + 2 log δi (6.8)

bits. Concatenate the descriptions of all these paths into sequence H .

Claim 6.6.2 We can effectively reconstruct heap h from H and n.

Proof. Assume that H is known and the fact that h is a heap on n
different keys. We simulate the Sort step in reverse. Initially, A[1..n]
contains a sorted list with the least element in A[1].

for i := 2, . . . , n− 1 do: {now A[1..i − 1] contains the partially con-
structed heap and A[i..n] contains the remaining sorted list with
the least element in A[i]} Put the key of A[i] into A[1], while shift-
ing every key on the (n− i)th path in H one position down starting
from the root at A[1]. The last key on this path has nowhere to go
and is put in the empty slot in A[i].

termination {Array A[1..n] contains heap h}

2

It follows from Claim 6.6.2 that C(h|n,A, P ) ≤ l(H) +O(1). Therefore,
by Equation 6.7, we have l(H) ≥ logn!− 5n−O(1). By the description
in Equation 6.8, we therefore have

n∑

i=1

(l(si) + 2 log δi) =

n∑

i=1

((log n) − δi + 2 log δi) ≥ logn! − 5n−O(1).
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It follows that
∑n
i=1(δi−2 log δi) ≤ 5n. This is possible only if

∑n
i=1 δi =

O(n). Therefore, the average path length is at least logn− c, for some
fixed constant c. In every round of the Sort step the path length equals
the number of data moves. The combined total path length is at least
n logn− nc.

It follows that starting with heap h, Heapsort performs at least n logn−
O(n) data moves. Trivially, the number of data moves is at most n logn.
Together this shows that Williams’s method makes 2n logn−O(n) key
comparisons, and Floyd’s method makes n logn+O(n) key comparisons.

Since a (1 − 1/2n) fraction of all permutations π on n keys satisfies
C(π|n,A, P ) ≥ log n!−n, these bounds for one such permutation π also
hold for all permutations on average. 2

6.6.2
Shellsort

D.L. Shell [Comm. Assoc. Comp. Mach., 2:7(1959), 30–32)] proposed the
Shellsort algorithm in 1959. Since then, the question of the average-case
complexity of Shellsort has been open. Recently, the first general lower
bound for this problem was proven using the incompressibility method.

Shellsort sorts a list of n elements in p passes using a sequence of in-
crements h1, . . . , hp. In the kth pass the main list is divided into hk
separate sublists, called hk-chains, each of length ⌈n/hk⌉, where the ith
sublist consists of the elements at positions j (j mod hk ≡ i− 1) of the
main list (i = 1, . . . , hk). Every sublist is sorted using a straightforward
Bubblesort or Insertion sort, and hp = 1 to ensure sortedness of the final
list.

In Bubblesort or Insertion sort we go from left to right over the list, comparing
every key with its right neighbor and switching them if the left key is larger. At
the end, the largest key is in the rightmost position. Then repeat this process
with the remaining list, and so on.

The efficiency of the Shellsort method is governed by the number of passes p
and the selected increment sequence h1, . . . , hp. For example, the original log n-
pass increment sequence ⌊n/2⌋, ⌊n/4⌋, . . . , 1 of Shell uses worst case Θ(n2)
time. Many increment sequences have been proposed. The elegant method
of V.R. Pratt uses all log2 n increments of the form 2i3j < ⌊n/2⌋ to obtain
time O(n log2 n) in the worst case. Moreover, since every pass takes at least
n steps, the average-case time complexity using Pratt’s increment sequence is
Θ(n log2 n). D.E. Knuth proved an average-case time complexity of Θ(n5/3)
for the best choice of increments in p = 2 passes; A.C.C. Yao analyzed the
average case for p = 3 but did not obtain an analytic form; Yao’s analysis was
used by S. Janson and D.E. Knuth, who proved an O(n23/15) average-case
time-complexity upper bound for particular increments in p = 3 passes. Apart
from this, no nontrivial results had been known for the average case.

The idea of the proof is simple. For every incompressible permutation π,
encode the moves of Shellsort in the most compressed manner. If the used
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algorithm does not make a certain number of moves, then one obtains
too short an encoding of π. Since most permutations are incompressible,
like π, the particular bound for an incompressible π holds on average.
The average is taken over the uniform distribution on all permutations
of n keys.

Theorem 6.6.2 With probability going to 1 for n→ ∞, and on average, p-pass Shellsort
takes Ω

(
pn1+1/p

)
steps, for every increment sequence.

Proof. LetA be a p-pass Shellsort algorithm with increments (h1, . . . , hp),
where hk is the increment in the kth pass and hp = 1. Since the running
time is at least pn (every key is compared in every pass), the theorem is
true for p = Ω(logn). It remains to prove the theorem for p = o(logn).
There are n! permutations of n keys. Choose a permutation π on n keys
{1, . . . , n} such that

C(π|n,A, P ) ≥ logn! − n,

where P is a constant-size reconstruction program to be specified later.

For all 1 ≤ i ≤ n and 1 ≤ k ≤ p, let mi,k be the distance the ith key
moves in the hk-chain containing key i, in pass k. Then,

M =

p
∑

k=1

n∑

i=1

mi,k

is precisely the number of data movements made by A to sort π, and
therefore is a lower bound on the time complexity T of A.

Claim 6.6.3 Given all the mi,k’s in lexicographic order, we can reconstruct the orig-
inal permutation π.

Proof. Given mi,k, for i = 1, . . . , n, and the final permutation of pass k,
we can reconstruct the initial permutation of pass k. 2

The lexicographically ordered mi,k’s can be described as a partition of
M in nonnegative integer summands. There are

D(M) =

(
M + np− 1

np− 1

)

distinct partitions of M into np ordered nonnegative integral mi,k’s.
Since every mi,k ≤ n and p ≤ n, we have M ≤ n3. Given n, we can first
describe p and M self-delimitingly in O(log n) bits, and second describe
the partition of M , yielding the lexicographically ordered mi,k’s, in total
O(log n) + logD(M) bits.
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By Claim 6.6.3, and letting P be the program reconstructing π from this
description, given n, p,A, we must have

logD(M) +O(log n) ≥ C(π|n,A, P ) ≥ logn! − n.

Rewriting logD(M) using the identity in Exercise 1.3.3 on page 10,
we can estimate the resulting terms asymptotically for n → ∞ and
p = o(log n), yielding

M = Ω(pn1+1/p).

The running time T of the algorithm A on permutation π satisfies T ≥
M . The number of permutations with C(π|n,A, P ) ≥ logn!−n is at least
a (1 − 1/2n) fraction of all permutations, which proves the theorem. 2

Example 6.6.1 The question whether there exists an increment sequence for Shellsort
to achieve O(n log n) average performance is still open. Theorem 6.6.2
implies that such an increment sequence, if it exists, must be of length
Θ(logn). 3

Example 6.6.2 The initial idea to prove Theorem 6.6.2 was to simply to describe the
mi,k’s by standard self-delimiting codes, giving a total length of

p
∑

k=1

n∑

i=1

(logmi,k + 2 log logmi,k + 1).

Then,

p
∑

k=1

n∑

i=1

(logmi,k + 2 log logmi,k + 1) ≥ C(π|n,A, P ) ≥ logn! − n.

By the concavity of the logarithm function, the left-hand side of the
above is maximized when all the mi,k’s are equal, say m. Therefore,

np logm+ 2np log logm+ np ≥ logn! − n,

and since logn! ≥ n logn− 2n, we have

m = Ω

(
n1/p

((log n)/p)2

)

and T ≥ pnm ≥ Ω

(
pn1+1/p

((logn)/p)2

)

.

This is the result of Theorem 6.6.2 for p = Θ(logn), but the less optimal
code results in a slightly weaker result for p = o(logn). 3
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Exercises 6.6.1. [25] Consider the following game. Carole chooses a number from
{1, 2, . . . , n}. Paul has to guess the secret number using only “yes/no”
questions. Prove the following lower bounds on the number of questions
needed for Paul to determine the number: (i) logn if Carole answers
every question truthfully; (ii) logn+ log logn if Carole is allowed to lie
at most once; (iii) logn+log

∑

i≤k
(
n
i

)
if Carole is allowed to lie at most

k times; (iv) logn + log logn + k if Carole is allowed to lie at most k
times, but all lies (possibly fewer than k and possibly nonconsecutive)
have to occur in k consecutive rounds.

Comments. Simple proofs using the incompressibility method are due to
M. Fouz, CS798 Course Report, University of Waterloo, December 2007.
The one-lie game was fully analyzed by A. Pelc in [J. Comb. Theory,
Ser. A, 44:1(1987), 129–140]. J.H. Spencer generalized this result to the
k-lies game in [Theoret. Comput. Sci., 95:2(1992), 307–321]. The interval
variant was introduced and analyzed by B. Doerr, J. Lengler, D. Steurer
in [Proc. 17th Int. Symp. Algor. Comput., Lect. Notes Comput. Sci., Vol.
4288, Springer-Verlag, Berlin, 2006, 318–327].

6.6.2. [40] In computational biology, evolutionary trees are represented
by unrooted unordered binary trees with uniquely labeled leaves and
unlabeled internal nodes. Measuring the distance between such trees is
useful in biology. A nearest neighbor interchange (nni) operation swaps
two subtrees that are separated by an internal edge (u, v), as shown in
Figure 6.2.

(a) Show that in Figure 6.3 it takes 2 nni moves to convert (i) to (ii).

(b) Show that n logn+O(n) nni moves are sufficient to transform a tree
of n leaves to any other tree with the same set of leaves.

(c) Prove an Ω(n logn) lower bound for Item (b), using the incompress-
ibility method.

Comments. Item (b) is from [K. Culik II and D. Wood, Inform. Process.
Lett., 15(1982), 39–42; M. Li, J.T. Tromp, and L. Zhang, J. Theoret. Bi-
ology, 182(1996), 463–467]. The latter paper contains principal references
related to the nni metric. Item (c) is by D. Sleator, R.E. Tarjan, and
W. Thurston [SIAM J. Discr. Math., 5(1992), 428–450], who proved the
Ω(n logn) lower bound for a more general graph transformation system.

FIGURE 6.2. The two possible nnis on (u, v): swap B ↔ C or B ↔ D

D

u v

A

B

C BA

DC B

A

D

C
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FIGURE 6.3. The nni distance between (i) and (ii) is two

6.6.3. [25] Improve the logn! − 5n bound in Equation 6.7, page 478,
by reducing 5n via a better encoding and more precise calculation.

6.6.4. [41] Show that the worst-case time complexity of p-pass Shell-
sort of n items is at least Ω(n log2 n/(log logn)2) for every number p of
passes and every increment sequence.

Comments. This shows that the best possible average-case time com-
plexity of Shellsort for any number of passes and all increment sequences
may be of larger order of magnitude than n logn. Source: C.G. Plaxton,
B. Poonen, T. Suel, Proc. 33rd IEEE Symp. Found. Comput. Sci., pp.
226–235, 1992.

6.6.5. [O48] (a) Prove or disprove that there is a number of passes
p and an increment sequence such that Shellsort has average-case time
complexity O(log n).

(b) Find a better lower bound on average-case time complexity of Shell-
sort than Theorem 6.6.2; give a good or optimal upper bound on average-
case time complexity of p-pass Shellsort for the best increment sequences.

Comments. See Exercise 6.6.4 and the comment following the proof of
Theorem 6.6.2. Source: M. Li and P.M.B. Vitányi, J. Assoc. Comp.
Mach., 47:5(2000), 905–911.

6.6.6. [10] Use the idea in the proof for Theorem 6.6.2 to obtain Ω(n2)
average-case lower bounds for Bubblesort, Selection sort, and Insertion
sort.

6.6.7. [22/O46] Sorting by stacks. The input is a permutation of n
integers. These integers, one at a time, pass through a sequence of m
first-in-last-out stacks S1, . . . , Sm, from S1 to Sm. If an integer k is to

(i)

Reptilian Ancestor

Platypus

Ostrich

Goose

Whale

Seal

Dog
Cat

Horse

Cat Dog

Seal

Whale

Ostrich

Goose

Horse

Platypus

Reptilian Ancestor

(ii)
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be pushed on Si, then this stack can pop some integers from the top
down, pushing them on Si+1 in that order, before pushing k into Si.
The output sequence from Sm gives the final permutation.

(a) Show that we can sort integers with logn stacks.

(b) Use the incompressibility method to show that 1
2 logn stacks are

needed on average.

(c) Open: Close the gap between Item (a) and (b).

Comments. The problem was investigated by R.E. Tarjan [J. Assoc.
Comp. Mach., 19(1972), 341–346] and D.E. Knuth [The Art of Computer
Programming, Vol. 3: Sorting and Searching, 1998 (2nd edition), Section
5.2.4, Exercises 19 and 20]. Item (b), and related studies such as sorting
with parallel stacks and queues can be found in [T. Jiang, M. Li and
P.M.B. Vitányi, J. Comput. Sci. Tech., 15:5(2000), 402–408].

6.6.8. [36/O39] Consider the following algorithm.
QuickSort( Array π[1..n] ): If n = 1 then return π; p := π[1]; πL :=
(x ∈ π, x < p) in stable order; πR := (x ∈ π, x > p) in stable order;
QuickSort(πL); QuickSort(πR); π := πLpπR

(a) Use the incompressibility method to show that the average height
of a Quicksort tree (its deepest recursion level), or equivalently a bi-
nary insertion tree, is O(log n). This also gives an alternative O(n logn)
average-case analysis of Quicksort.

(b) Obtain the 4.31107 logn upper bound using the incompressibility
method.

Comments. Hint: Consider a pivot sequence (p1, p2, . . . , pk), where pi+1

is a pivot for one of the subranges defined by pi for all i. The longest such
sequence corresponds to the binary search tree height. This sequence
can be encoded efficiently. Suppose π has a pivot chain of length c logn,
where c is sufficiently large. Let x be the string of length c logn such that
x[i] = 1 iff pi occurs in the middle half of its range. Let z be the string of
length c logn such that z[i] = 1 iff pi+1 is the pivot for the smaller range
defined by pi. Then the number of ones in x is at most c′ logn, where
c′ = 1/ log 4

3 , and the number of ones in z is at most log n, since otherwise
the size of the ranges for the pi will reach 1. Now note that if we are given
x and z, we can save one bit for every entry pi in π, since pi begins in
01 or 10 iff x[i] = 1, and z tells us which of pi’s subpivots is pi+1. Thus,
given x and z, we save c logn bits from the encoding of π. Now π can be
recursively encoded by log(A!) = log

(
A
B

)
+log(B!)+ log((A−B)!) while

compressing the pivots along the pivot sequence. Source: B. Lucier, T.
Jiang, and M. Li, Inform. Process. Lett., 103:2(2007), 45–51. A tight
bound for this problem by probabilistic analysis is given in [L. Devroye,
J. Assoc. Comp. Mach. 33:3(1986), 480–498].
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6.6.9. [22] Consider two variants of p-pass Shellsort. In each pass, in-
stead of fully sorting every sublist, we make only one pass of Bubblesort,
or two such passes in opposite directions, for every sublist. In both cases
the sequence may stay unsorted, even if the last increment is 1. A final
phase, a straight insertion sort, is required to guaranty a fully sorted
list.

(a) Prove an Ω(n2/2p) lower bound on the average-case running time
for the one-pass variant of p-pass Shellsort.

(b) Prove an Ω(n2/4p) lower bound on the average-case running time
for the two-pass variant of p-pass Shellsort.

Comments. The one-pass variant of Shellsort is called Dobosiewicz sort
by D.E. Knuth [The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, 1973, Exercise 5.2.1.40, page 105]. Source:
W. Dobosiewicz, Inform. Process. Lett. 11:1(1980), 5–6. The two-pass
variant, proposed by J. Incerpi and R. Sedgewick [Inform. Process. Lett.
26:1(1980), 37–43], is called Shakersort. Solutions for both (a) and (b)
were given by B. Brejová [Inform. Process. Lett., 79:5(2001), 223–227].

6.7

Longest

Common

Subsequence

Certain problems concerning subsequences and supersequences of a given
set of sequences arise naturally in quite practical situations. For example,
in molecular biology, the longest common subsequence of some DNA se-
quences is commonly used as a measure of similarity of these sequences.
Other applications of longest common subsequences include data com-
pression and syntactic pattern recognition.

Definition 6.7.1 If s = s1 . . . sm and t = t1 . . . tn are two sequences, then s is a subsequence
of t, and equivalently, t is a supersequence of s, if for some sequence of
indices i1 < · · · < im, we have sj = tij for all j (1 ≤ j ≤ m). Given a
finite set of sequences S, a shortest common supersequence (SCS) of S
is a shortest sequence s such that each sequence in S is a subsequence
of s. A longest common subsequence (LCS) of S is a longest sequence s
such that each sequence in S is a supersequence of s.

It is well known that the SCS and LCS problems are NP-hard. In the
worst case, the SCS and LCS problems cannot even be efficiently ap-
proximated unless P = NP. For example, the following is known for
the LCS problem. If there is a polynomial-time algorithm that on some
input sequences always finds a common subsequence of length c > 0
times the length of the longest common subsequence, then P = NP.
This holds also for the problem as stated in the theorem below. How-
ever, many simple heuristic algorithms for SCS and LCS turn out to
work well in practice. An incompressibility argument shows that indeed,
these algorithms perform well on average.
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Definition 6.7.2 Consider LCS problems on an alphabet Σ = {a1, . . . , ak}. Let lcs(S)
denote the length of an LCS of a set S ⊆ Σ∗ of sequences.

Algorithm Long-Run

Step 1. Determine the greatest m such that am is a common subse-
quence of all input sequences, for some a ∈ Σ.

Step 2. Output am as a common subsequence.

Theorem 6.7.1 Assume the notation above. Let S ⊆ Σ∗ be a set of n sequences each
of length n, and let ǫ > 0 be a constant. Algorithm Long-Run outputs a
common subsequence of S of length lcs(S)−O(lcs(S)1/2+ǫ) for a fraction
of least 1 − 1/n2 of all inputs, and hence on average.

Proof. Assume the notation above. Fix a string x of length n2 over Σ
with

C(x) ≥ (n2 − 2 logn) log k . (6.9)

Divide x into n equal-length segments x1, . . . , xn. Choose the set S in
the theorem as S = {x1, . . . , xn}.
The following claim is a corollary of the proof of Theorem 2.6.1 on
page 170, counting each letter as a block of size log k, assuming that k
is a power of 2.

Claim 6.7.1 Let a ∈ Σ, xi ∈ S, and let ǫ > 0 be a constant. Denote the number
of occurrences of a in xi by m. If |m − n/k| > n1/2+ǫ, then there is a
constant δ > 0 such that

C(xi|k) ≤ (n− δn2ǫ) log k .

A direct proof of this claim is also easy. There are only D =
(
n
m

)
(k −

1)n−m strings of length n with m occurrences of a. Therefore, one can
specify xi by n, k,m and its index j, with l(j) = logD, in this ensemble.
An elementary estimate by Stirling’s formula yields, for some δ > 0,

log

(
n

m

)

(k − 1)n−m ≤ (n− δn2ǫ) log k.

Claim 6.7.2

lcs(S) <
n

k
+ n1/2+ǫ.
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Proof. Let s be an LCS of S. Then l(s) = lcs(S) ≤ n by definition.
Assume, by way of contradiction, that l(s) is greater than claimed in
the lemma. We give a short description of x, for some fixed δ > 0, by
saving nδ log k bits on the description of every xi through the use of s.

Let s = s1s2 . . . sp, with p = l(s). Fix an xi. We will do another encoding
of xi. We align s with the corresponding letters in xi as far to the left
as possible, and rewrite

xi = α1s1α2s2 . . . αpspz.

Here α1 is the longest prefix of xi containing no s1; α2 is the longest
substring of xi starting from s1 containing no s2; and so on. The string
z is the remaining part of xi after sn. In this way, αj does not contain
an occurrence of letter sj , for j = 1, . . . , p. That is, every αj contains
only letters in Σ − sj .

Then xi can be considerably compressed with the help of s. Divide xi =
yz such that the prefix y is

y = α1s1α2s2 . . . αpsp.

From s we can reconstruct which k − 1 letters from Σ appear in αi, for
every i. We map y to an equally long string y′ as follows: For i = 1, . . . , p,
change si to ak, in y. Moreover, change each occurrence of ak in αj to
the letter sj . We can map y′ back to y, using s, by reversing this process
(because the original αj did not contain an occurrence of sj).

The letter ak occurs at least (n/k) + n1/2+ǫ times in y′, since l(s) is at
least this long. Then, by Claim 6.7.1, for some constant δ > 0, we have

C(y′|k) ≤ (l(y′) − δn2ǫ) log k .

From y′, s, z, k we can reconstruct xi. (We have defined xi = yz.) Giving
also the lengths of y′, s, z in self-delimiting format in O(log n) bits, we
can describe xi, given k and s, by the number of bits in the right side of
the equation below (using l(y′) + l(z) ≤ n):

C(xi|k, s) ≤ (n− δn2ǫ) log k +O(log n). (6.10)

We repeat this for every xi. In total, we save more than Ω(n1+2ǫ log k)
bits to encode x. Thus,

C(x|k)
log k

≤ n2 − Ω(n1+2ǫ) + l(s) +O(n log n) < n2 − 2 logn.

This contradicts the incompressibility of x asserted in Equation 6.9. 2

It follows from Claim 6.7.1 and Equation 6.9, by repeating the argument
following Equation 6.10 in the proof of Claim 6.7.2, that for some ǫ > 0,
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each a ∈ Σ occurs in each x1, . . . , xn at least (n/k) − O(n1/2+ǫ) times.
This means that am with

l(m) =
n

k
−O(n1/2+ǫ) (6.11)

is a common subsequence of x1, . . . , xn. By Claim 6.7.2, lcs(S)− l(m) =
O(n1/2+ǫ).

Altogether, we have shown that the statement in the theorem is true
for this particular input x1, . . . , xn. The fraction of strings of length n2

satisfying the theorem is at least 1−1/n2, since that many strings satisfy
Equation 6.9. The theorem follows by taking the average. 2

Exercises 6.7.1. [35/O41] (a) Prove that the expected length of the longest com-
mon subsequence of two random binary sequences of length n is bounded
above by 0.867n.

(b) Open: Obtain tight bounds on expected length of the longest com-
mon subsequence of two random binary sequences of length n.

Comments. Hint: use the same encoding scheme as in Section 6.7 and
count the number of encodings. The number 0.867 is roughly the root of
the equation x− 2x logx− 2(1− x) log(1− x) = 2. Source: T. Jiang, M.
Li, and P.M.B. Vitányi, Comput. J., 42:4(1999), 287–293. R.A. Baeza-
Yates, R. Gavaldà, G. Navarro, and R. Scheihing [Theor. Comput. Syst.,
32:4(1999), 435–452] generalized the above analysis to alphabet size k >
2, and improved the constant to 0.860. This bound was first proved
by V. Chvátal and D. Sankoff in [J. Appl. Probab., 12(1975), 306–315].
The current best lower and upper bounds are 0.7739n and 0.8376n,
respectively, due to V. Dančik and M. Paterson [Random Struct. Alg.,
6(1995), 449–458; Proc. 19th Symp. Math. Found. Comput. Sci., 1994,
pp. 127–142].

6.7.2. [39] Consider the SCS problem defined in Section 6.7. Prove
by incompressibility the following: Let S ⊆ Σ∗ be a set of n sequences
of length n, and let δ =

√
2/2 ≈ 0.707. Let scs(S) be the length of

an SCS of S. The algorithm Majority-Merge below produces a common
supersequence of length scs(S) +O(scs(S)δ) on the average.

Algorithm Majority-Merge {Input: n sequences, each of length n}

Step 1. Set supersequence s := ǫ. {ǫ is the null string}

Step 2. {Let the letters a form a majority among the leftmost letters
of the remaining sequences} Set s := sa and delete the front a from
these sequences. Repeat this step until no sequences are left.
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Step 3. Output s.

Comments. Source: T. Jiang and M. Li, SIAM J. Comput., 24:5(1995),
1122–1139. Part of the proof was from [D. Foulser, M. Li, and Q. Yang,
Artificial Intelligence, 57(1992), 143–181].

6.8

Formal

Language

Theory

Part of formal language theory consists in establishing a hierarchy of
language families. The main division is the Chomsky hierarchy, with
regular languages, context-free languages, context-sensitive languages,
and recursively enumerable languages.

A ‘pumping’ lemma (for regular languages) shows that some languages
are not regular, but often does not decide which languages are regular
and which languages are not. There are many different pumping lem-
mas, each of them appropriate for limited use. Therefore, some effort has
been made to present pumping lemmas that are exhaustive, in the sense
that they characterize the regular languages [J. Jaffe, SIGACT News,
10:2(1978), 48–49; D. Stanat and S. Weiss, SIGACT News, 14:1(1982),
36–37; A. Ehrenfeucht, R. Parikh, and G. Rozenberg, SIAM J. Comput.,
10(1981), 536–541]. These pumping lemmas are complicated and hard
to use, while the last reference uses Ramsey theory. Using incompress-
ibility we find a characterization of the regular languages that makes our
intuition about the finite stateness of these languages rigorous and that
is easy to apply.

Definition 6.8.1 Let Σ be a finite nonempty alphabet, and let Q be a (possibly infinite)
nonempty set of states. A transition function is a function δ : Σ×Q→ Q.
We extend δ to δ′ on Σ∗ by δ′(ǫ, q) = q and

δ′(a1 . . . an, q) = δ(an, δ
′(a1 . . . an−1, q)).

Clearly, if δ′ is not one-to-one, then the automaton forgets because some
x and y from Σ∗ drive δ′ into the same memory state. An automaton A
is a quintuple (Σ, Q, δ, q0, Qf), where everything is as above, and q0 ∈ Q
is a distinguished initial state and Qf ⊆ Q is a set of final states. We
call A a finite automaton (FA) if Q is finite.

An alternative way of looking at it is as follows: We denote ‘indis-
tinguishability’ of a pair of histories x, y ∈ Σ∗ by x ∼ y, defined as
δ′(x, q0) = δ′(y, q0). ‘Indistinguishability’ of strings is reflexive, symmet-
ric, transitive, and right-invariant (δ′(xz, q0) = δ′(yz, q0) for all z). Thus,
‘indistinguishability’ is a right-invariant equivalence relation on Σ∗. It is
a simple matter to ascertain this formally.
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Definition 6.8.2 The language accepted by automaton A as above is the set L = {x :
δ′(x, q0) ∈ Qf}. A regular language is a language accepted by a finite
automaton.

It is a straightforward exercise to verify from the definitions the following
fact (which will be used later):

Theorem 6.8.1 (Myhill, Nerode) The following statements are equivalent.

(i) L ⊆ Σ∗ is accepted by some finite automaton.

(ii) L is the union of equivalence classes of a right-invariant equivalence
relation of finite index on Σ∗.

(iii) For all x, y ∈ Σ∗ define right-invariant equivalence x ∼ y by the
following: for all z ∈ Σ∗ we have xz ∈ L iff yz ∈ L. Then the number of
∼ equivalence classes is finite.

Subsequently, closure of finite automaton languages under complement,
union, and intersection follows by simple construction of the appropriate
δ functions from given ones. Details can be found in any textbook on
the subject.

Example 6.8.1 Consider the language {0k1k : k ≥ 1}. If it were regular, then the state
q of the accepting finite automaton A, subsequent to processing 0k, to-
gether with A, is a description of k. Namely, by running A, initialized
in state q, on input consisting of only 1’s, the first time A enters an
accepting state is after precisely k consecutive 1’s. The size of the de-
scription of A and q is bounded by a constant, say c, that is independent
of k. Altogether, it follows that C(k) ≤ c + O(1). But choosing k with
C(k) ≥ log k we obtain a contradiction for all large enough k. We gen-
eralize this observation in the lemma below. 3

Lemma 6.8.1 (KC-regularity) Let L ⊆ Σ∗ be regular, Lx = {y : xy ∈ L}. There
is a constant c such that for every x, if y is the nth string in Lx, then
C(y) ≤ C(n) + c.

Proof. Let L be a regular language. A string y such that xy ∈ L for some
x can be described by

• this discussion, and a description of the automaton that accepts L;

• the state of the automaton after processing x, and the number n.

The first item requires O(1) bits. Thus C(y) ≤ C(n) +O(1). 2
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Example 6.8.2 Prove that {1p : p is prime} is not regular. Consider the string xy = 1p

with p the (k + 1)th prime. Set x = 1p
′

, with p′ the kth prime. Then
y = 1p−p

′

, and y is the lexicographic first element in Lx. Hence, by
Lemma 6.8.1, C(p− p′) = O(1). But the difference between two consec-
utive primes grows unboundedly. Since there are only O(1) descriptions
of length O(1), we have a contradiction. 3

Example 6.8.3 Prove that L = {xxRw : x,w ∈ {0, 1}∗ − {ǫ}} is not regular (if x =
x1 . . . xm, then xR = xm . . . x1). Set x = (01)m, where C(m) ≥ logm.
Then the lexicographically first word in Lx is y = (10)m0. Hence, C(y) =
Ω(logm), contradicting the KC-regularity lemma. 3

Example 6.8.4 Prove that L = {0i1j : gcd(i, j) = 1} is not regular. Set x = 0(p−1)!1,
where p > 3 is a prime, l(p) = n, and C(p) ≥ logn − log logn. Then
the lexicographically first word in Lx is 1p−1, contradicting the KC-
regularity lemma. 3

Example 6.8.5 Prove that {p : p is the standard binary representation of a prime} is
not regular. Suppose the contrary, and pi denotes the ith prime, i ≥ 1.
Consider the least binary pm = uv (= u2l(v) + v), with u = Πi<kpi and
v not in {0}∗{1}. Such a prime pm exists, since every interval [n, n +
n11/20] of the natural numbers contains a prime [D. Heath-Brown and
H. Iwaniec, Invent. Math., 55(1979), 49–69].

Consider pm now as an integer, pm = 2l(v)Πi<kpi + v. Since the integer
v > 1, and v is not divided by any prime less than pk (because pm
is prime), the binary length l(v) is at least l(pk). Because pk goes to
infinity with k, the value C(v) ≥ C(l(v)) also goes to infinity with k.
But since v is the lexicographic first suffix, with integer v > 1 such that
uv ∈ L, we have C(v) = O(1) by the KC-regularity lemma, which is a
contradiction. 3

Characterizations (such as the Myhill–Nerode theorem, Theorem 6.8.1)
of regular languages seem to be practically useful only to show regularity.
The need for pumping lemmas stems from the fact that characterizations
tend to be very hard to use to show nonregularity. In contrast, the
compressibility characterization below is useful for both purposes.

Definition 6.8.3 Enumerate Σ∗ = {y1, y2, . . .} with yi the ith element in the total order.
For L ⊆ Σ∗ and x ∈ Σ∗, let χ = χ1χ2 . . . be the characteristic sequence
of Lx = {y : xy ∈ L}, defined by χi = 1 if xyi ∈ L, and χi = 0 otherwise.
We denote χ1 . . . χn by χ1:n.

Theorem 6.8.2 (Regular KC-characterization) There is a constant cL depending
only on L ⊆ Σ∗ such that the following statements are equivalent:
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(i) L is regular;

(ii) for all x ∈ Σ∗, for all n, C(χ1:n|n) ≤ cL;

(iii) for all x ∈ Σ∗, for all n, C(χ1:n) ≤ C(n) + cL;

(iv) for all x ∈ Σ∗, for all n, C(χ1:n) ≤ logn+ cL.

Proof. (i) → (ii). By similar proof as for the KC-regularity lemma.

(ii) → (iii) → (iv). Trivial.

(iv) → (i): By (iv) and Claim 6.8.1 below, there are only finitely many
distinct χ’s associated with the x’s in Σ∗. Define the right-invariant
equivalence relation ∼ by x ∼ x′ if χ = χ′. This relation induces a
partition of Σ∗ into equivalence classes [x] = {y : y ∼ x}. Since there is
a one-to-one correspondence between the [x]’s and the χ’s, and there are
only finitely many distinct χ’s, there are also only finitely many [x]’s.
This implies that L is regular by the Myhill–Nerode theorem: define a
finite automaton using one state for each equivalent class, and define
the transition function accordingly. The proof of the theorem is finished,
apart from proving Claim 6.8.1.

Claim 6.8.1 For each constant c there are only finitely many sequences ω ∈ {0, 1}∞
such that for all n, we have C(ω1:n) ≤ logn+ c.

This claim is a weaker version of Item (e) of Exercise 2.3.4, page 131, which
recalls that D.W. Loveland in [Inform. Contr., 15(1969), 510–526] credits the
following result to A.R. Meyer: For each constant c there are only finitely many
ω ∈ {0, 1}∞ with C(ω1:n|n) ≤ c for all n and each such ω is a recursive real.
G.J. Chaitin [Theoret. Comput. Sci., 2(1976), 45–48] improves the condition
first to C(ω1:n) ≤ C(n) + c, and then further to C(ω1:n) ≤ log n + c. We
provide an alternative and simpler proof, which is sufficient for our purpose,
avoiding establishing that the ω’s are recursive reals.

Proof. Let c be a positive constant, and let

An = {x ∈ {0, 1}n : C(x) ≤ logn+ c}, (6.12)

A = {ω ∈ {0, 1}∞ : ∀n∈N [C(ω1:n) ≤ logn+ c]} .

If the cardinality d(An) of An dips below a fixed constant c′ for infinitely
many n, then c′ is an upper bound on d(A). This is because it is an upper
bound on the cardinality of the set of prefixes of length n of the elements
in A for all n.

Fix any l ∈ N . Choose a binary string y of length 2l+ c+ 1 satisfying

C(y) ≥ 2l + c+ 1. (6.13)
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Choose i maximal such that for the division of y into mn with l(m) = i
we have

m ≤ d(An). (6.14)

(This holds at least for i = 0 = m.) Define similarly a division y = sr
with l(s) = i + 1. By maximality of i, we have s > d(Ar). From the
easily proven s ≤ 2m+ 1, it then follows that

d(Ar) ≤ 2m. (6.15)

We prove l(r) ≥ l. Since by Equations 6.14 and 6.12 we have

m ≤ d(An) ≤ 2cn,

it follows that l(m) ≤ l(n) + c. Therefore,

2l + c+ 1 = l(y) = l(n) + l(m) ≤ 2l(n) + c,

which implies that l(n) > l. Consequently, l(r) = l(n) − 1 ≥ l.

We prove d(Ar) = O(1). By dovetailing the computations of the refer-
ence universal machine U (Theorem 2.1.1, page 105) for all programs p
with l(p) ≤ logn+ c, we can enumerate all elements of An. We can re-
construct y from the mth element, say y0, of this enumeration. Namely,
from y0 we reconstruct n, since l(y0) = n, and we obtain m by enumer-
ating An until y0 is generated. By concatenation we obtain y = mn.
Therefore,

C(y) ≤ C(y0) +O(1) ≤ logn+ c+O(1). (6.16)

From Equation 6.13 we have

C(y) ≥ logn+ logm. (6.17)

Combining Equations 6.16 and 6.17, it follows that logm ≤ c + O(1).
Therefore, by Equation 6.15,

d(Ar) ≤ 2c+O(1).

Here, c is a fixed constant independent of n and m. Since l(r) ≥ l and we
can choose l arbitrarily, d(Ar) ≤ c0 for a fixed constant c0 and infinitely
many r, which implies d(A) ≤ c0, and hence the claim. 2 2

The KC-regularity lemma may be viewed as a corollary of the KC-
characterization theorem. If L is regular, then trivially Lx is regular.
It follows immediately that there are only finitely many associated χ’s,
and each can be specified in at most c bits, c a constant depending only
on L. If y is, say, the mth string in Lx, then we can specify y as the
string corresponding to the mth 1 in χ, using only C(m) +O(1) bits to
specify y (absorbing c in the O(1) term). Hence, C(y) ≤ C(m) +O(1).



Exercises 495

Exercises 6.8.1. [10] The KC-regularity lemma can be generalized in several
ways. Prove the following version. Let L be regular and Lx = {y :
xy ∈ L}. Let φ be a partial recursive function depending only on L that
enumerates strings in Σ∗. For each x, if y is the nth string in the com-
plement of Lx enumerated by φ, then C(y) ≤ C(n)+c, with c a constant
depending only on L. Use this generalization to give an alternative proof
of Example 6.8.4.

Comments. Source: M. Li and P. Vitányi, SIAM J. Comput., 24:2(1995),
398–410.

6.8.2. [10] Prove that {0n1m : m > n} is not regular.

6.8.3. [18] Prove that L = {x#y : x appears (possibly nonconsecu-
tively) in y} is not regular.

6.8.4. [20] Prove that L = {x#y : at least half of x is a substring in
y} is not regular.

6.8.5. [20] Prove that L = {x#y#z : xy = z} is not regular.

6.8.6. [37] A DCFL language is a language that is accepted by a de-
terministic pushdown automaton.

(a) Show that {xxR : x ∈ Σ∗} and {xx : x ∈ Σ∗} are not DCFL
languages, using an incompressibility argument.

(b) Similar to Lemma 6.8.1, the following is a criterion separating DCFL
from CFL. Prove it. Let L ⊆ Σ∗ be a DCFL and c a constant. Let x and
y be fixed finite words over Σ and ω a recursive sequence over Σ. Let u
be a suffix of yy . . . yx, v a prefix of ω, and w ∈ Σ∗ such that

1. v can be described in c bits given Lu in lexicographic order;

2. w can be described in c bits given Luv in lexicographic order; and

3. C(v) ≥ 2 log log l(u).

Then there is a constant c′ depending only on L, c, x, y, ω such that
C(w) ≤ c′.

(c) Use (b) to prove (a).

Comments. Source: M. Li and P. Vitányi, SIAM J. Comput., 24:2(1995),
398–410. In this paper, an incompressibility criterion more general than
Item (b) is given for separating DCFL from CFL. See also [S. Yu, In-
form. Process. Lett., 31(1989), 47–51] and [M.A. Harrison, Introduction
to Formal Language Theory, Addison-Wesley, 1978] for basics of formal
language theory and traditional approaches to this problem such as it-
eration lemmas.
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6.8.7. [35] We have characterized the regular languages using Kol-
mogorov complexity. It is immediately obvious how to characterize re-
cursive languages in terms of Kolmogorov complexity. If L ⊆ Σ∗ and
Σ∗ = {v1, v2, . . .} is an effective enumeration, then we define the char-
acteristic sequence χ = χ1χ2 . . . of L by χi = 1 if vi ∈ L and χi = 0
otherwise. A language L is recursive if χ is a recursive sequence.

(a) If a set L ⊆ Σ∗ is recursive then there exists a constant cL (depending
only on L) such that for all n, we have C(χ1:n|n) < cL.

(b) If L is recursively enumerable, then there is a constant cL such that
for all n, we have C(χ1:n|n) ≤ logn+ cL.

(c) There exists a recursively enumerable set L such that C(χ1:n) >
logn, for all n.

Comments. Item (a) is straightforward. Its converse is hard: see the text
preceding the proof of Claim 6.8.1 on page 493. This converse is given by
Item (e) of Exercise 2.3.4 on page 131. Items (b) and (c) are Barzdins’s
lemma, Theorem 2.7.2, restated. It quantitatively characterizes all recur-
sively enumerable languages in terms of Kolmogorov complexity. Hint
for Item (c): Exercise 2.3.4. With L as in Item (c), Σ∗ − L also satisfies
Item (b), so Item (b) cannot be extended to a Kolmogorov complexity
characterization of recursively enumerable sets.

6.8.8. [23] Assume the terminology in Exercise 6.8.7. Consider χ de-
fined in the proof for Item (ii) of Barzdins’s lemma, Theorem 2.7.2.
Essentially, χi = 1 if the ith program started on the ith input string
halts and outputs 0, and χi = 0 otherwise. Let A be the language with
χ as its characteristic sequence.

(a) Show that A is a recursively enumerable set and its characteristic
sequence satisfies C(χ1:n) ≥ logn, for all n.

(b) Let χ be as in Item (a). Define a sequence h by

h = χ10
2χ20

22

. . . χi0
2i

χi+1 . . . .

Prove that C(h1:n) = O(C(n)) + Θ(log logn). Therefore, if h is the
characteristic sequence of a set B, then B is not recursive, but more
sparsely nonrecursive, as is A.

Comments. Item (a) follows from the proof of Barzdins’s lemma, The-
orem 2.7.2. Source: J.M. Barzdins, Soviet. Math. Dokl., 9(1968), 1251–
1254; D.W. Loveland, Proc. 1st ACM Symp. Theory Comput., 1969, pp.
61–66.

6.8.9. [19] The probability that the universal prefix machine U halts
on self-delimiting binary input p, randomly supplied by tosses of a fair
coin, is Ω (0 < Ω < 1). Let v1, v2, . . . be an effective enumeration without
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repetitions of Σ∗. Define L ⊆ Σ∗ such that vi ∈ L iff Ωi = 1. Section 3.6.2
implies that K(Ω1:n) ≥ n for all but finitely many n. Show that L and
its complement are not recursively enumerable.

Comments. It can be proved that L ∈ ∆0
2 − (Σ0

1

⋃
Π0

1), in the arithmetic
hierarchy. See Section 3.6.2, page 225, and Exercise 1.7.21, page 46.

6.9

Online CFL

Recognition

The incompressibility proof below demonstrates a lower bound on the
time for language recognition by a multitape Turing machine, as shown
in Figure 6.4. A multitape Turing machine recognizes a language online
if before reading each successive input symbol, it decides whether the
partial input string scanned so far belongs to the language.

A context-free language is linear if it is generated by a linear context-free
grammar in which no production rule contains more than one nonter-
minal symbol on the right-hand side. The known upper bound on the
time required for online recognition of a linear context-free language by
a multitape Turing machine is O(n2), even if only one work tape is avail-
able. We prove a corresponding Ω(n2/ logn) lower bound. Let xRi denote
xi written in reverse, and let y, x1, . . . , xk ∈ {0, 1}∗. Define a language
L as

L = {y#x1@x2@ · · ·@xk : for some i, xRi is a substring of y}.

The language L is linear context-free, since it is generated by the fol-
lowing linear grammar, with starting symbol S: S → S1|S@|S0|S1;
S1 → 0S1|1S1|S2; S2 → 0S20|1S21|S3@; S3 → S30|S31|S3@|S4#; S4 →
0S4|1S4|ǫ.

work tapes

two-way

read/write

read-only

one-way

first n cells

input

finite
control

FIGURE 6.4. Multitape Turing machine
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Theorem 6.9.1 A multitape Turing machine that online recognizes L requires time Ω(n2

/ logn).

Proof. Assume that a multitape Turing machine T accepts L online in
o(n2/ logn) steps. Choose y such that C(y) ≥ l(y) = n. Using y, we will
construct a hard input of length O(n) for T . The idea of the proof is to
construct an input

y#x1@ · · ·@xk@

such that no xl is a reverse of a substring of y and yet each xl is hard
enough to make T use ǫn steps, for some ǫ > 0 not depending on n. If
k = Ω(n/ logn), then T will be forced to take Ω(n2/ logn) steps. Our
task is to prove the existence of such xl’s. We need two lemmas:

Lemma 6.9.1 Let n = l(x), and let p be a program described in the proof below. As-
sume that C(x|n, p) ≥ n. Then no substring of length longer than 2 logn
occurs, possibly overlapping, in x more than once.

Proof. Let x = uvw, with v of length greater than 2 logn occurring
exactly twice in uv. Let this discussion be formulated in terms of a
program p that reconstructs x from the description below using the
value of n (given for free). To describe x, given p and n, we need only
to concatenate the following information:

• the locations of the start bits of the two occurrences of v in uv using
logn(n− 1) bits;

• the literal word uw, using exactly l(uw) bits.

Altogether, this description requires n−2 logn+logn(n−1) bits. Since
C(x|n, p) is the shortest such description, we have C(x|n, p) < n. This
contradicts the assumption in the lemma. 2

Lemma 6.9.2 If a string has no repetition of length m, then it is uniquely determined
by the set of its substrings of length m+1; that is, it is the unique string
with no repetition of length m and with precisely this set of substrings of
length m+ 1.

Proof. Let S be the set of substrings of x of lengthm+1. Let a, b ∈ {0, 1},
and u, v, w ∈ {0, 1}∗. The prefix of x of lengthm+1 corresponds uniquely
to the ua ∈ S such that for no b is bu in S. For any prefix vw of x with
l(w) = m, there is a unique b such that wb ∈ S. Hence, the unique prefix
of length l(vw) + 1 is vwb. The lemma follows by induction. 2
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We continue to prove the theorem. By Lemmas 6.9.1 and 6.9.2 we let
m = 3 logn, so that y is uniquely determined by its set of substrings of
length m. For i = 1, . . . , k, assume inductively that x1, . . . , xi−1, each of
length m, have been chosen so that the input prefix y#x1@ · · ·@xi−1@
does not yet belong to L, and T spends at least ǫn steps on each xj@
block for j < i.

We claim that for each i (1 ≤ i ≤ k), there is an xi of length m that
is not a reverse substring of y such that appending xi@ to the input
requires at least t = ǫn additional steps by T , where ǫ > 0 does not
depend on n. Setting k = n/m, this proves the theorem.

Assume, by way of contradiction, that this is not the case. We devise
a short description of all the length-m substrings of y, and hence, by
Lemma 6.9.2, of y. Simulate T with input y#x1@ · · ·@xi−1@, and record
the following information at the time t0 when T reads the last @ sign:

• this discussion;

• the work tape contents within distance t = ǫn of the tape heads;

• the specification of T , length n, current state of T , and locations of
T ’s heads.

With this information, one can easily search for all xi’s such that l(xi) =
m and xi

R is a substring of y as follows: Simulate T from time t0,
using the above information and with input suffix xi@, for t steps. By
assumption, if T accepts or uses more than t steps, then xi is a reverse
substring of y. If ǫ is sufficiently small and n is large, then all the above
information adds up to fewer than n bits, a contradiction. 2

Exercises 6.9.1. [28] A k-head deterministic finite automaton, abbreviated k-
DFA, is similar to a deterministic finite automaton except that it has k,
rather than one, one-way read-only input heads. In each step, depending
on the current state and the k symbols read by the k heads, the machine
changes its state and moves some of its heads one step to the right. It
stops when all heads reach the end of input, and at this time it accepts
the input if it is in a final state. Use the incompressibility method to
show that for each k ≥ 1 there is a language L that is accepted by a
(k + 1)-DFA but is not accepted by any k-DFA.

Comments. Hint: use the language

Lb = {w1# · · ·#wb@wb# · · ·#w1 : wi ∈ {0, 1}∗}
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with b =
(
k
2

)
+ 1. Intuitively, when wi’s are all random, for each pair

of wi’s we must have two heads matching them concurrently. But a k-
DFA can match only

(
k
2

)
pairs. This result was first conjectured in 1965

by A. Rosenberg [IBM J. Res. Develop., 10(1966), 388–394]. The case
k = 2 was settled by H. Sudborough [Inform. Contr., 30(1976), 1–20]
and O.H. Ibarra and C.E. Kim [Acta Informatica, 4(1975), 193–200].
The case k > 2 took a decade to settle [A.C.C. Yao and R. Rivest, J.
Assoc. Comp. Mach., 25(1978), 337–340; C.G. Nelson, Technical Report,
14-76(1976), Harvard University]. These proofs use more complicated
counting arguments. The proof by Kolmogorov complexity is folklore; it
can be found in Section 6.4.3 of the first edition of this book.

6.9.2. [40/O45] Refer to Exercise 6.9.1 for the definition of k-DFAs,
prove the following. Let L = {x#y : x is a substring of y}.
(a) No 2-DFA can do string-matching, that is, no 2-DFA accepts L.

(b) No 3-DFA accepts L.

(c) No k-DFA accepts L, for any integer k.

(d) [Open] No k-DFA with sensing heads accepts L, for any k, where
the term sensing means that the heads can detect each other when they
meet.

Comments. The results in this exercise were motivated by a conjecture
of Z. Galil and J. Seiferas [J. Comput. System Sci., 26:3(1983), 280–294]
that no k-DFA can do string-matching, for any k. Galil and Seiferas
proved that 6-head two-way DFA can do string-matching in linear time.
Item (a) was first proved in [M. Li and Y. Yesha, Inform. Process. Lett.,
22(1986), 231–235]; item (b) in [M. Geréb-Graus and M. Li, J. Comput.
System Sci., 48(1994), 1–8]. Both of these papers provided useful tools
for the final solution, item (c), by T. Jiang and M. Li [Proc. 25th ACM
Symp. Theory Comput., 1993, pp. 62–70].

6.9.3. [38] A k-head PDA (k-PDA) is similar to a pushdown automa-
ton except that it has k input heads. Prove that k + 1 heads are better
than k heads for PDAs. That is, prove that there is a language that is
accepted by a (k + 1)-PDA but not by any k-PDA.

Comments. Conjectured by M.A. Harrison and O.H. Ibarra [Inform.
Contr., 13(1968), 433–470] in analogy to Exercise 6.9.1. Partial solu-
tions were obtained by S. Miyano [Acta Informatica, 17(1982), 63–67;
J. Comput. System Sci., 27(1983), 116–124]; and M. Chrobak [Theo-
ret. Comput. Sci., 48(1986), 153–181]. The complete solution, using in-
compressibility, is in [M. Chrobak and M. Li, J. Comput. System Sci.,
37:2(1988), 144–155].

6.9.4. [35] (a) A k-pass DFA is just like a usual DFA except that the
input head reads the input k times, from the first symbol to the last
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symbol, moving right only during each pass. Use incompressibility to
show that a k-pass DFA is exponentially more succinct than a (k − 1)-
pass DFA. In other words, for each k, there is a language Lk such that
Lk can be accepted by a k-pass DFA with O(kn) states, but the smallest
(k − 1)-pass DFA accepting Lk requires Ω(2n) states.

(b) A sweeping two-way DFA is again just like a usual finite automaton
except that its input head may move in two directions with the restric-
tion that it can reverse direction only at the two ends of the input. If a
sweeping two-way DFA makes k−1 reversals during its computation, we
call it a k-sweep two-way DFA. Show that there is a language Rk that
can be accepted by a 2k-sweep two-way DFA with p(k, n) states for some
polynomial p, but the smallest (2k − 1)-sweep two-way DFA accepting
Rk requires an exponential number of states in terms of k and n.

Comments. W.J. Sakoda and M. Sipser studied sweeping automata in
[Proc. 10th ACM Symp. Theory Comput., 1978, pp. 275–286]. They
called the k-pass DFA by the name ‘k-component series FA.’ Source:
T. Jiang, e-mail, 1992.

6.9.5. [32] Consider a singly linked list L of n items, where the ith
item has a pointer pointing to the (i + 1)st item, with the last pointer
being nil. Let ǫ > 0, prove:

(a) Every sequence of t(n) ≥ n steps of going backward on L can be
done in O(t(n)nǫ) steps, without modifying L or using extra memory
other than O(1) extra pointers or counters.

(b) Any program using O(t(n)nǫ) steps to go back t(n) steps on L re-
quires at least k − 1 pointers.

Comments. Hint: Item (a) does not need Kolmogorov complexity. You
can use O(n) initial start time. For Item (b), if a region passed by does
not get visited by a pointer during this process, then it can be com-
pressed. Source: A.M. Ben-Amram and H. Petersen, Proc. 31st ACM
Symp. Theory Comput., pp. 780–786, 1999.

6.9.6. [31] Let I be an index structure supporting text search in
O(l(P ))-bit probes to find pattern P in text T as a substring.

(a) If each query requires the location of P , then the size of I is Ω(l(T )).

(b) Even if each query asks only whether a substring P is in T , the size
of I is still Ω(l(T )).

Comments. Item (a) is by E.D. Demaine and A. Lopez-Ortiz, J. Alg.,
48:1(2003), 2–15. Item (b) is due to M. Li and P.M.B. Vitányi [Unpub-
lished, 2006]. Hint for (b), use Lemma 6.9.2. An upper bound of Item
(b) is O(w logN) bits for w query words, by M.L. Fredman, J. Komlós,
and E. Szemerédi [J. Assoc. Comp. Mach. 31:3(1984), 538–544].
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6.10

Turing

Machine Time

Complexity

The incompressibility method has been quite successfully applied in solv-
ing open problems. We give one such example proving a lower bound
on the time required to simulate a multitape Turing machine by a 1-
(work)tape Turing machine (with a one-way input tape).

A k-tape Turing machine with one-way input, as shown in Figure 6.4,
has k work tapes and a one-way read-only input tape that contains
the input. Initially, the input is written on the leftmost tape segment,
one symbol per tape square, and the input head scans the leftmost input
symbol. The end of the input is delimited by a distinguished end marker.
Observe that this model with k = 1 is far more powerful than the single-
tape Turing machine model of Figure 6.1, page 443, where the single
tape serves both as input tape and work tape. For instance, a Turing
machine with one work tape apart from the input tape can recognize
L = {w#wR : w ∈ {0, 1}∗} in real time, in contrast to the Ω(n2) lower
bound required in Section 6.1.1 of Section 6.1. The additional marker #
allows the positive result and does not change the lower bound result.

In the literature, an online model is also used. In this model, the input
tape is one-way, and on every prefix of the input the Turing machine
writes the output, accepting or rejecting the prefix, on a write-only one-
way output tape. Proving lower bounds is easier with the online model
than with the one-way input model we use in this section. We use the
latter model and thus prove stronger results.

A basic question in Turing machine complexity is whether additional
work tapes add power. It is known that one tape can online simulate
n steps of k tapes in O(n2) steps. It has been a two-decade-long open
question whether the known simulation is tight. Kolmogorov complexity
has helped to settle this question by an Ω(n2) lower bound; see Exer-
cise 6.10.2.

The tight Ω(n2) lower bound requires a lengthy proof. We provide a
weaker form of the result whose simpler proof yet captures the central
ideas of the full version.

Theorem 6.10.1 It requires Ω(n3/2/ logn) time to deterministically simulate a linear-time
2-tape Turing machine with one-way input by a 1-tape Turing machine
with one-way input.

Proof. We first prove a useful lemma. Let T be a 1-tape Turing machine
with input tape head h1 and work tape head h2. Let s be a segment of
T ’s input, and R a tape segment on its work tape. We say that T maps
s into R if h2 never leaves tape segment R while h1 is reading s, and T
maps s onto R if h2 traverses the entire tape segment R while h1 reads
s. The c.s . at position p of the work tape is a sequence of pairs of form

(state of T, position of h1),
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which records the status of T when h2 enters p each time.

The following lemma states that a tape segment bordered by short c.s .’s
cannot receive a lot of information without losing some. We assume
the following situation: Let the input string start with x#, where x =
x1x2 . . . xk with l(xi) = l(x)/k for all i. Let R be a segment of T ’s storage
tape such that T maps all blocks in S = {xi1 , . . . , xil} into tape segment
R, where S ⊆ {xi : 1 ≤ i ≤ k}.

Lemma 6.10.1 (Jamming lemma) The contents of the storage tape of T at the time
when h1 moves to the # marker can be reconstructed using only the
sequence of blocks S̄ = {xi : 1 ≤ i ≤ k} − S, the final contents of R, the
two final c.s .’s on the left and right boundaries of R, a description of T ,
and a description of this discussion.

Roughly speaking, if the number of missing bits
∑l

j=1
l(xij ) exceeds the num-

ber of added description bits (those for R and the two crossing sequences
around R), then the jamming lemma implies that either x = x1 . . . xk is not
incompressible or some information about x has been lost.

Proof. Let the two positions at the left boundary and the right boundary
of R be lR and rR, respectively. Subdivide the input tape into c-sized
slots with c = l(x)/k. Put the blocks xj of S̄ in their correct positions on
the input tape in the following way: In the simulation, h1 reads the input
from left to right without backing up. We have a list S̄ of c-sized blocks
available. We put the consecutive blocks of S̄ on the c-sized slots on the
input tape such that the slots, which are traversed by h1 with h2 all
the time positioned on R, are left empty. This can be easily determined
from the left and right crossing sequences of R.

Simulate T with h2 staying to the left of R using the c.s . at lR to
construct the work tape contents to the left of R. Also simulate T with
h2 staying to the right of R using the c.s . at rR to construct the work
tape contents to the right of R. Such a simulation is standard.

We now have obtained the contents of T ’s work tape at the end of
processing x#, apart from the contents of R. The final contents of R are
given and put in position. Together, we now have T ’s work tape contents
at the time when h1 reaches #.

Notice that although there are many unknown xi’s (in S), they are never
read, since h1 skips over them because h2 never goes into R. 2

To prove the theorem we use the witness language L defined by

L = {x1@x2@ · · ·@xk#y1@ · · ·@yl#0i1j : xi = yj}. (6.18)

Clearly, L can be accepted in linear time by a 2-tape machine. Assume,
by way of contradiction, that a deterministic 1-tape machine T accepts
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L in T (n) < c−5n3/2/ logn time, for some fixed new constant c and
n large enough. We derive a contradiction by showing that then some
incompressible string must have too short a description.

Assume, without loss of generality, that T writes only 0’s and 1’s in its
work squares and that l(T ) = O(1) is the number of states of T . Fix
the new constant c and take the word length n as large as needed to
derive the desired contradictions below and such that the formulas in
the sequel are meaningful.

First, choose an incompressible string x ∈ {0, 1}∗ of length l(x) = n
and C(x) ≥ n. Let x consist of the concatenation of k =

√
n substrings,

x1, x2, . . . , xk, each substring
√
n bits long. Let

x1@x2@ · · ·@xk#

be the initial input segment on T ’s input tape. Let time t# be the
step at which h1 reads #. If more than k/2 of the xi’s are mapped
onto a contiguous tape segment of size at least n/c3, then T requires
Ω(n3/2/ logn) time, which is a contradiction. Therefore, there is a set
S consisting of k/2 blocks xi such that for every xi ∈ S there is a tape
segment of ≤ n/c3 contiguous tape squares into which xi is mapped. In
the remainder of the proof we restrict attention to the xi’s in this set S.
Order the elements of S according to the order of the left boundaries of
the tape segments into which they are mapped. Let xm be the median.

The idea of the remainder of the proof is as follows: Intuitively, the only
thing T can do before input head h1 crosses # is somehow copy the
xi’s onto its work tape, and afterward copy the yj ’s onto the work tape.
There must be a pair of these xi and yj that are separated by Ω(n)
distance, since all these blocks together must occupy Ω(n) space. At
this time, head h1 still has to read the 0i1j part of the tape. Hence, we
can force T to check whether xi = yj , which means that it has to spend
about Ω(n3/2/ logn) time. To convert this intuition into a rigorous proof
we distinguish two cases:

In the first case we assume that many xi’s in S are mapped (jammed)
into a small tape segment R. That is, when h1 (the input tape head)
is reading them, h2 (the work tape head) is always in this small tape
segment R. We show that then, contrary to assumption, x can be com-
pressed (by the jamming lemma). Intuitively, some information must
have been lost.

In the second case, we assume there is no such jammed tape segment
and that the records of the xi ∈ S are spread evenly over the work tape.
In that case, we will arrange the yj ’s so that there exists a pair (xi, yj)
such that xi = yj and xi and yj are mapped into tape segments that
are far apart, at distance Ω(n). Then we complete T ’s input with final
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index 0i1j so as to force T to match xi against yj . As in Section 6.1.1,
page 442, either T spends too much time or we can compress x again,
yielding a second contradiction and proving, for large enough n,

T (n) ≥ n3/2

c5 logn
.

Case 1 (Jammed) Assume there are k/c blocks xi ∈ S and a fixed tape
segment R of length n/c2 on the work tape such that T maps all of these
xi’s into R. Let S′ be the set of such blocks.

We will construct a short program that prints x. Consider the two tape
segments of length l(R) to the left and to the right of R on the work
tape. Call them Rl and Rr, respectively. Choose positions pl in Rl and
pr in Rr with the shortest c.s.’s in their respective tape segments. Both
c.s.’s must be shorter than

√
n/(c2 logn). Namely, if the shortest c.s. in

either tape segment is at least
√
n/(c2 logn) long, then T uses at least

√
n

c2 logn
· n
c2

steps, and there is nothing to prove. Let tape segment Rl
′ (Rr

′) be the
portion of Rl (Rr) right (left) of pl (pr).

Now, using the description of

• this discussion (including the text of the program below) and sim-
ulator T in O(1) bits;

• the values of n, k, c, and the positions of pl, pr in O(log n) bits;

• the literal concatenated list {x1, . . . , xk} − S′, using n− n/c bits;

• the state of T and the position of h2 at time t# in O(log n) bits;

• the two c.s.’s at positions pr and pl at time t# in at most 2
√
n(l(T )+

O(log n)) bits; and

• the contents at time t# of tape segment Rl
′RRr

′ in at most 3n/c2+
O(log n) bits;

we can construct a program to check whether a candidate string y equals
x by running T as follows:

Check whether l(y) = l(x). By the jamming lemma (using the above
information related to T ’s processing of the initial input segment x1@ · · ·
@xk#), reconstruct the contents of T ’s work tape at time t#, the time h1

gets to the first # sign. Divide y into k equal pieces and form y1@ · · ·@yk.
Run T , initialized in the appropriate state, head positions, and work tape



506 6. The Incompressibility Method

contents (at time t#), as the starting configuration, on each input suffix
of the form

y1@ · · ·@yk#0i1i.

By definition of L, the machine T can accept for all i iff y = x.

This description of x requires not more than

n− n

c
+

3n

c2
+O(

√
n log n) +O(log n) ≤ γn

bits, for some constant 0 < γ < 1 and large enough c and n. However,
this contradicts the incompressibility of x (C(x) ≥ n).

Case 2 (Not Jammed) Assume that for each fixed tape segment R,
with l(R) = n/c2, there are at most k/c blocks xi ∈ S mapped into R.

Fix a tape segment of length n/c2 into which the median xm is mapped.
Call this segment Rm. Then, at most k/c strings xi in set S are mapped
into Rm. Therefore, for large enough c (and c > 3), at least k/6 of the
xi’s in S are mapped into the tape right of Rm. Let the set of those xi’s
be Sr = {xi1 , . . . , xik/6} ⊂ S. Similarly, let Sl = {xj1 , . . . , xjk/6} ⊂ S

consist of k/6 strings xi that are mapped into the tape left of Rm.
Without loss of generality, assume i1 < i2 < · · · < ik/6, and j1 < j2 <
· · · < jk/6.

Set y1 = xi1 , y2 = xj1 , y3 = xi2 , y4 = xj2 , and so forth. In general, for
all integers s, 1 ≤ s ≤ k/6,

y2s = xjs and y2s−1 = xis . (6.19)

Using this relationship, we now define an input prefix for T to be

x1@ · · ·@xk#y1@ · · ·@yk/3#. (6.20)

There exists a pair y2i−1, y2i that is mapped into a segment of size less
than n/(4c2). Otherwise, T uses at least

k

6
· n

4c2
=
n3/2

24c2

steps, and there is nothing to prove. Now this pair y2i−1, y2i is mapped
into a segment with distance at least n/c3 either to xis or to xjs . Without
loss of generality, let y2s−1, y2s be mapped n/c3 away from xis . So y2s−1

and xis are separated by a region R of size n/c3. Attach suffix 0is12s−1

to the initial input segment of Equation 6.20 to complete the input to
T to

x1@ · · ·@xk#y1@ · · ·@yk/3#1is12s−1. (6.21)
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So at the time when T reads the second # sign, xis is mapped into the
tape left of R, and y2s−1, which is equal to xis , is mapped into the tape
right of R.

Determine position p in R that has the shortest c.s. of T ’s computation
on the input of Equation 6.21. If this c.s. is longer than

√
n/(c2 logn),

then T uses at least

n

c3
·

√
n

c2 logn

steps, and there is nothing to prove. Therefore, assume that the shortest
c.s. has length at most

√
n/(c2 logn). Then again we can construct a

short program P to accept only x by a cut-and-paste argument, and
show that it yields too short a description of x. Using the description of

• this discussion (including the text of the program P below) and
simulator T in O(1) bits;

• the values of n, k, c, and the position p in O(log n) bits;

• n−√
n bits for S − {xis};

• O(log n) bits for the index is of xis to place it correctly on the input
tape; and

• ≤ √
n/c bits to describe the c.s. of length

√
n/(c2 logn) at p (as-

suming c≫ l(T ));

we can construct a program to reconstruct x as follows:

Construct the input of Equation 6.21 on T ’s input tape with the two
blocks xis and y2s−1 filled with blanks. Now we search for xis as follows.
For each candidate z with l(z) =

√
n put z in y2s−1’s position and do

the following simulation:

Using the c.s. at point p, we run T such that h2 always stays at the
right of p (y2s−1’s side). Whenever h2 encounters p, we check whether
the current status matches the corresponding ID in the c.s. If it does,
then we use the next ID of the c.s. to continue. If in the course of this
simulation process T rejects or there is a mismatch (that is, when h2

gets to p, machine T is not in the same state or h1’s position is not as
indicated in the c.s.), then z 6= xis . If the crossing sequence at p of T ’s
computation for candidate z matches the prescribed c.s., then we know
that T would accept the input of Equation 6.21 with y2s−1 replaced by
z. Therefore, z = xis .

The description of x requires not more than

n−√
n+

1

c

√
n+O(log n) ≤ n− γ

√
n
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bits for some positive γ > 0 and large enough c and n. This contradicts
the incompressibility of x (C(x) ≥ n) again.

Case 1 and Case 2 complete the proof that T (n) ≥ c−5n3/2/ logn. 2

Exercises 6.10.1. [33] Consider the 1-tape Turing machine as in Section 6.1.1,
page 442. Let the input be n/ logn integers each of size O(log n), sepa-
rated by # signs. The element-distinctness problem is to decide whether
all these integers are distinct. Prove that the element-distinctness prob-
lem requires Ω(n2/ logn) time on such a 1-tape Turing machine.

Comments. A similar bound also holds for 1-tape nondeterministic Tur-
ing machines. Source: [A. López-Ortiz, Inform. Process. Lett., 51:6(1994),
311–314].

6.10.2. [42] Extend the proof of Theorem 6.10.1 to prove the following:
Simulating a linear-time 2-tape deterministic Turing machine by a 1-
tape deterministic Turing machine requires Ω(n2) time. (Both machines
of the one-way input model.)

Comments. Hint: set the block size for xi to be a large constant, and
modify the language to one that requires comparison of Ω(n) pairs of
xi’s and yj ’s. The lower bound is optimal, since it meets the O(n2)
upper bound of [J. Hartmanis and R. Stearns, Trans. Amer. Math.
Soc., 117(1969), 285–306]. Source: W. Maass, Trans. Amer. Math. Soc.,
292(1985), 675–693; M. Li and P.M.B. Vitányi, Inform. Comput., 78(1988),
56–85.

6.10.3. [38] A k-pushdown store machine is similar to a k-tape Turing
machine with one-way input except that the k work tapes are replaced
by k pushdown stores. Prove: simulating a linear-time 2-pushdown store
deterministic machine with one-way input by a 1-tape nondeterministic
Turing machine with one-way input requires Ω(n3/2/

√
log n) time.

Comments. Source: M. Li and P.M.B. Vitányi, Inform. Comput., 78(1988),
56–85. This bound is optimal, since it is known that simulating a linear-
time 2-pushdown store deterministic machine with one-way input by
a 1-tape nondeterministic Turing machine with one-way input can be
done in O(n3/2

√
logn) time [M. Li, J. Comput. System Sci., 7:1(1988),

101–116].

6.10.4. [44] Show that simulating a linear-time 2-tape deterministic
Turing machine with one-way input by a 1-tape nondeterministic Turing
machine with one-way input requires Ω(n2/((logn)2 log logn)) time.

Comments. Hint: let S be a sequence of numbers from {0, . . . , k − 1},
where k = 2l for some l. Assume that each number b ∈ {0, . . . , k − 1} is
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somewhere in S adjacent to the number 2b (mod k) and 2b+1 (mod k).
Then for every partition of {0, . . . , k − 1} into two sets G and R such
that d(G), d(R) > k/4 there are at least k/(c log k) (for some fixed c)
elements of G that occur somewhere in S adjacent to a number from
R. Subsequently prove the lower bound using the language L ⊆ {0, 1}∗
defined as follows. Let u = u1 . . . uk, where the ui’s are of equal length.
Form uu = u1 . . . u2k with uk+i = ui. Then inserting ui between u2i−1

and u2i for 1 ≤ i ≤ k results in a member in L. These are the only
members of L. Source: W. Maass, Trans. Amer. Math. Soc., 292(1985),
675–693. The language L defined in this hint will not allow us to obtain
an Ω(n2) lower bound. Define a graph G = 〈Zn, Eab〉, where Zn =
{0, 1, . . . , n − 1}, Eab = {(i, j) : j ≡ (ai + b) mod n for i ∈ Zn}, and a
and b are fixed positive integers. Then G has a separator, a set of nodes
whose removal separates G into two disconnected, roughly equal-sized
components of size O(n/

√
loga n). Using such a separator, L can be

accepted in subquadratic time by a 1-tape online deterministic machine
[M. Li, J. Comput. System Sci., 7:1(1988), 101–116].

6.10.5. [46] Prove that simulating a linear-time 2-tape deterministic
Turing machine with one-way input by a 1-tape nondeterministic Tur-
ing machine with one-way input requires Ω(n2/ log(k) n) time, for any

k, where log(k) = log log · · · log is the k-fold iterated logarithm. This
improves the result in Exercise 6.10.4.

Comments. Source: Z. Galil, R. Kannan, and E. Szemerédi [J. Comput.
System Sci., 38(1989), 134–149; Combinatorica, 9(1989), 9–19].

6.10.6. [O47] Does simulating a linear-time 2-tape deterministic Tur-
ing machine with one-way input by a 1-tape nondeterministic Turing
machine with one-way input require Ω(n2) time?

6.10.7. [46] A k-queue machine is similar to a k-tape Turing machine
with one-way input except with the k work tapes replaced by k work
queues. A queue is a first-in last-out (FIFO) device. Prove (with one-way
input understood):

(a) Simulating a linear-time 1-queue machine by a 1-tape Turing machine
requires Ω(n2) time.

(b) Simulating a linear-time 1-queue machine by a 1-tape nondetermin-

istic Turing machine requires Ω(n4/3/ log2/3 n) time.

(c) Simulating a linear-time 1-pushdown store machine (which accepts
precisely CFLs) by a 1-queue machine, deterministically or nondeter-
ministically, requires Ω(n4/3/ logn) time.

Comments. Items (a) and (b) are from [M. Li and P.M.B. Vitányi, In-
form. Comput., 78(1988), 56–85]; Item (c) is from [M. Li, L. Longpré,
and P.M.B. Vitányi, SIAM J. Comput., 21:4(1992), 697–712]. The bound
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in Item (a) is tight. The bound in Item (b) is not tight; the best upper
bound is O(n3/2

√
logn), in [M. Li, J. Comput. System Sci., 7:1(1988),

101–116]. The bound in Item (c) is not tight; the upper bound is known
to be O(n2) (also to simulate a 2-pushdown store machine).

6.10.8. [43] Use the terminology of Exercise 6.10.7, with one-way input
understood.

(a) Show that simulating a linear-time deterministic 2-queue machine
by a deterministic 1-queue machine takes Ω(n2) time.

(b) Show that simulating a linear-time deterministic 2-queue machine by
a nondeterministic 1-queue machine takes Ω(n2/(log2 n log logn)) time.

(c) Show that simulating a linear-time deterministic 2-tape Turing ma-
chine by nondeterministic 1-queue machine takes Ω(n2/ log2 n log logn)
time.

Comments. The upper bounds in all cases are O(n2) time. Source: M. Li,
L. Longpré, and P.M.B. Vitányi, SIAM J. Comput., 21:4(1992), 697–712.
For additional results on simulating (k + 1)-queue machines and 2-tape
or multitape machines by k-queue machines see [M. Hühne, Theoret.
Comput. Sci., 113:1(1993), 75–91].

6.10.9. [38] Consider the stronger offline deterministic Turing machine
model with a two-way read-only input tape. Given an l × l matrix A,
with l =

√

n/ logn and element size O(log n), arranged in row-major
order on the two-way (1-dimensional) input tape,

(a) Show that one can transpose A (that is, write AT on a work tape in
row-major form) in O(n log n) time on such a Turing machine with two
work tapes.

(b) Show that it requires Ω(n3/2/
√

logn) time on such a Turing machine
with one work tape to transpose A.

(c) From Items (a) and (b), obtain a lower bound on simulating two
work tapes by one work tape for the above machines.

Comments. Source: M. Dietzfelbinger, W. Maass, and G. Schnitger, The-
oret. Comput. Sci., 82:1(1991), 113–129.

6.10.10. [37] We analyze the speed of copying strings for Turing ma-
chines with a two-way input tape and one or more work tapes.

(a) Show that such a Turing machine with one work tape can copy
a string of length s, initially positioned on the work tape, to a work
tape segment that is d tape cells removed from the original position in
O(d+ sd/ log min(n, d)) steps. Here n denotes the length of the input.

(b) Show (by the incompressibility method) that the upper bound in
Item (a) is optimal. For d = Ω(logn), such a Turing machine with one
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work tape requires Ω(sd/ log min(n, d)) steps to copy a string of length
s across d tape cells.

(c) Use Item (a) to show that such Turing machines can simulate f(n)-
time bounded multitape Turing machines in O(f(n)2/ logn) steps. This
is faster by a multiplicative factor logn than the straightforward simu-
lations.

Comments. Source: M. Dietzfelbinger, Inform. Process. Lett., 33(1989/
1990), 83–90.

6.10.11. [38] Show that it takes Θ(n5/4) time to transpose a Boolean
matrix on a Turing machine with a two-way read-only input tape, a
work tape, and a one-way write-only output tape. That is, the input is a√
n×√

n matrix A that is initially given on the input tape in row-major
order. The Turing machine must output A in column-major order on
the output tape.

Comments. Hint: for the upper bound, partition columns of A into n1/4

groups each with n1/4 consecutive columns. Process each group sepa-
rately (you need to put each group into a smaller region first). The
lower-bound proof is harder. Fix a random matrix A. Let the simulation
time be T . Split T into O(n3/4) printing intervals. Within each inter-
val, O(n1/4) entries of A are printed and half such intervals last fewer
than n1/2 steps. Also, split the work tape into (disjoint) intervals of size
O(n1/2), so that one quarter of the printing intervals do not overlap
with two work tape intervals. Say, an input bit is mapped to a work
tape interval if while the input head is reading that bit, the work tape
head is in this interval. A work tape interval is underinformed if many
bits in the printing interval it corresponds to are not mapped into this
work tape interval before they are printed. Show that if there are many
underinformed work tape intervals, A is compressible. Then show that
if there are not many underinformed intervals, there must be many over
burdened intervals, that is, more bits than the length of such intervals
are mapped in to each interval. This also implies the compressibility
of A.

Source: M. Dietzfelbinger, W. Maass, Theoret. Comput. Sci., 108(1993),
271–290.

6.10.12. [O44] Obtain a tight bound for simulating two work tapes by
one work tape for Turing machines with a two-way input tape.

Comments. W. Maass, G. Schnitger, E. Szemerédi, and G. Turan, [Com-
putational Complexity, 3(1993), pp. 392–401] proved (not using Kol-
mogorov complexity) the following: Let L = {A#B : A = Bt and
aij 6= 0 only when i, j ≡ 0 mod (logm), where m = 2k, for some k,
is the size of matrices}. Accepting L requires Ω(n logn) time on a Tur-
ing machine with a two-way input tape and one work tape. Since L can



512 6. The Incompressibility Method

be accepted in O(n) time by a similar machine with two work tapes,
this result implies that two tapes are better than one for deterministic
Turing machines with a two-way input tape. An upper bound to this
question is given in Exercise 6.10.10, Item (c).

6.10.13. [40] Consider an online deterministic Turing machine with
a one-way input tape, some work tapes/pushdown stores and a one-
way output tape. The result of computation is written on the output
tape. ‘Online simulation’ means that after reading a new input symbol
the simulating machine must write down precisely the output of the
simulated machine for the processed initial input segment before it goes
on to read the next input symbol. Prove the following:

(a) It requires Ω(n(log n)1/(k+1)) time to online simulate k+1 pushdown
stores by k tapes.

(b) Online simulating one tape plus k−1 pushdown stores by k pushdown
stores requires Ω(n(log n)1/(k+1)) time.

(c) Each of the above lower bounds holds also for a probabilistic sim-
ulation where the probabilistic simulator flips a random coin to decide
the next move. (No error is allowed. The simulation time is the average
taken over all coin-tossing sequences.)

Comments. Item (a) is from [W.J. Paul, Inform. Contr., 53(1982), 1–
8]. Item (b) is due to P. Dǔrǐs, Z. Galil, W.J. Paul, and R. Reischuk
[Inform. Contr., 60(1984), 1–11]. Item (c) is from [R. Paturi, J. Simon,
R. Newman-Wolfe, and J. Seiferas, Inform. Comput., 88(1990), 88–104].
The last paper also includes proofs for Items (a) and (b).

6.10.14. [40] Consider the machine model in Exercise 6.10.13, except
that the work tapes are two-dimensional. Such a machine works in real
time if at each step it reads a new input symbol and is online. (Then
it processes and decides each initial m-length segment in precisely m
steps.) Show that for such machines, two work tapes with one head each
cannot real-time simulate one work tape with two independent heads.

Comments. Source: W.J. Paul, Theoret. Comput. Sci., 28(1984), 1–12.

6.10.15. [48] As in Exercise 6.10.14, consider the Turing machine model
of Exercise 6.10.13 but this time with 1-dimensional tapes. Show that
a Turing machine with two single-head one-dimensional tapes cannot
recognize the set {x2x′ : x ∈ {0, 1}∗ and x′ is a prefix of x} in real time,
although it can do so with three tapes, two two-dimensional tapes, or
one two-head tape, or in linear time with just one tape.

Comments. This is considerably more difficult than the problem in Ex-
ercise 6.10.14. In particular, this settles the longstanding conjecture that
a two-head Turing machine can recognize more languages in real time
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if its heads are on the same one-dimensional tape than if they are on
separate one-dimensional tapes. Source: partial results in [W.J. Paul,
Ibid.; P.M.B. Vitányi, J. Comput. System Sci., 29(1984), 303–311]. This
forty-year open question was finally settled by T. Jiang, J.I. Seiferas,
and P.M.B. Vitányi in [J. Assoc. Comp. Mach., 44:2(1997), 237–256].

6.10.16. [38] A tree work tape is a complete, infinite, rooted binary
tree used as storage medium (instead of a linear tape). A work tape
head starts at the root and can in each step move to the direct ancestor
of the currently scanned node (if it is not the root) or to either one of the
direct descendants. A multihead tree machine is a Turing machine with a
one-way linear input tape, one-way linear output tape, and several tree
work tapes each with k ≥ 1 heads. We assume that the finite control
knows whether two work tape heads are on the same node or not. A
d-dimensional work tape consists of nodes corresponding to d-tuples of
integers, and a work tape head can in each step move from its current
node to a node with each coordinate ±1 of the current coordinates. Each
work tape head starts at the origin, which is the d-tuple with all zeros.
A multihead d-dimensional machine is like the multihead tree machine
but with d-dimensional work tapes.

(a) Show that simulating a multihead tree machine online by a multihead
d-dimensional machine requires time Ω(n1+1/d/ logn) in the worst case.
Hint: prove this for a tree machine with one tree tape with a single head
that runs in real time.

(b) Prove the same lower bound as in Item (a), where the multihead d-
dimensional machine is made more powerful by allowing the work tape
heads also to move from their current node to the current node of any
other work tape head in a single step.

Comments. Source: M.C. Loui, SIAM J. Comput., 12(1983), 463–472.
The lower bound in Item (a) is optimal, since it can be shown that every
multihead tree machine of time complexity t(n) can be simulated online
by a multihead d-dimensional machine in time O(t(n)1+1/d/ log t(n)). It
is known that every log-cost RAM (Exercise 6.10.17) can be simulated
online in real time by a tree machine with one multihead tree tape
[W.J. Paul and R. Reischuk, J. Comput. System Sci., 22(1981), 312–
327]. Hence, we can simulate RAMs online by d-dimensional machines
in time that is bounded above and below by the same bounds as the
simulation of tree machines. See also [M.C. Loui, J. Comput. System
Sci., 28(1984), 359–378].

6.10.17. [37] A log-cost random access machine (log-cost RAM) has
the following components: an infinite number of registers each capable
of holding an integer and a finite sequence of labeled instructions includ-
ing ‘output,’ ‘branch,’ ‘load/store,’ ‘add/subtract between two registers.’
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The time cost for execution of each instruction is the sum of the lengths
of the integers involved.

(a) Every tree machine with several tree tapes, each with one head, of
time complexity t can be simulated online by a log-cost RAM of time
complexity O(t log t/ log log t). Show that this is optimal.

(b) Show that online simulating a linear-time log-cost RAM by a d-
dimensional Turing machine requires Ω(n1+1/d/ logn(log logn)1+1/d).

Comments. Source: D.R. Luginbuhl, Ph.D. thesis, 1990, Univ. Illinois,
Urbana-Champaign; M.C. Loui and D.R. Luginbuhl, [SIAM J. Comput.
21:5(1992), 959–971; Math. Systems Theory, 25:4(1992), 293–308].

6.10.18. [38] Consider the machine models in Exercise 6.10.13, Item
(c). All machines below have one multidimensional tape with one head.

(a) Show that an l-dimensional machine running in time T can be
simulated by a probabilistic k-dimensional machine running in time
O(T r(logT )1/k), where r = 1 + 1/k − 1/l.

(b) Show that a probabilistic k-dimensional machine requires time Ω(T r)
to simulate an l-dimensional machine running in time T , where r =
1 + 1/k − 1/l.

Comments. Source: [N. Pippenger, Proc. 14th ACM Symp. Theory Com-
put., 1982, pp. 17–26]. Pippenger used Shannon’s information measure
to prove Item (b).

6.10.19. [30] Prove that if the number of states is fixed, then a 1-tape
nondeterministic Turing machine with no separate input tape (with only
one read/write two-way tape) can accept more sets within time bound
a2n

a than within a1n
a, for 0 < a1 < a2 and 1 < a < 2.

Comments. Source: K. Kobayashi, Theoret. Comput. Sci., 40(1985), 175–
193.

6.10.20. [30] A parallel random access machine (PRAM), also called
a ‘concurrent-read and concurrent-write priority PRAM,’ consists of a
finite number of processors, each with an infinite local memory and in-
finite computing power, indexed as P (1), P (2), P (3), . . ., and an infinite
number of shared memory cells c(i), i = 1, 2, . . ., each capable of hold-
ing any integer. Initially, the input is contained in the first n memory
cells. The number of processors is polynomial in n. Each step of the
computation consists of all processors in parallel executing three phases
as follows. Each processor (i) reads from a shared memory cell; (ii) per-
forms any deterministic computation; and (iii) may attempt writing into
some shared memory cell.

At each step, every processor is in some state. The actions and the next
state of each processor at each step depend on the current state and the
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value read. In case of a write conflict, that is, more than one processor
tries to write to the same memory cell, the processor with the minimum
index succeeds in writing. By the end of computing, the shared memory
contains the output. Prove that adding (or multiplying) n integers, each
≥ nǫ bits for a fixed ǫ > 0, requires Ω(logn) parallel steps on a PRAM.

Comments. Hint: Cut a random string x into segments x1, . . . , xn, the
segments being used as inputs for the processors. Define an input to
be ‘not useful’ if it does not ‘influence’ the final output of the sum (in
some precise way). Then show that there is an input xi that is not
useful; hence we can compress x using the rest of the inputs and the
output. Source: Independently proved by P. Beame [Inform. Comput.,
76(1988), 13–28] without using Kolmogorov complexity and by M. Li and
Y. Yesha [J. Assoc. Comp. Mach., 36:3(1989), 671–680]. Slightly weaker
versions of Exercise 6.10.20 were proved by F. Meyer auf der Heide and
A. Wigderson [SIAM J. Comput., 16(1987), 100–107] using a Ramsey
theorem, by A. Israeli and S. Moran [private communication, 1985], and
by I. Parberry [Ph.D. thesis, 1984, Warwick University, UK]. In the last
three proofs, one needs to assume that the integers have arbitrarily (or
exponentially) many bits.

6.10.21. [15] Consider the following ‘proof’ for Exercise 6.10.20 with-
out using Kolmogorov complexity: Assume that a PRAM M adds n
numbers in o(logn) time. Take any input x1, . . . , xn. Then there is an
input xk that is ‘not useful’ as in the hint in Exercise 6.10.20. If we
change xk to xk + 1, then the output should still be the same, since xk
is not useful, a contradiction. What is wrong with this proof?

6.10.22. [26] A function f(x1, . . . , xn) is called invertible if for each i,
argument xi can be computed from {x1, . . . , xn}−{xi} and f(x1, . . . , xn).
Use the PRAM model with q processors defined in this section. Show
that it requires Ω(min{log(b(n)/ log q), logn}) time to compute any in-
vertible function f(x1, . . . , xn), where l(xi) ≤ b(n), for all i, and logn =
o(b(n)).

Comments. Source: M. Li and Y. Yesha, J. Assoc. Comp. Mach., 36:3(19
89), 671–680.

6.10.23. [36] Computing the minimum index: Modify the PRAM model
as follows. We now have n processors P (1), . . . , P (n) and only one shared
memory cell, c(1). Each processor knows one input bit. If several proces-
sors attempt to write into c(1) at the same time, then they must all write
the same data; otherwise each write fails. This PRAM version requires
Ω(log n) time to find the smallest index i such that P (i) has input bit
1. Can you give two proofs, one using incompressibility arguments and
the other not?
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Comments. The original proof without using Kolmogorov complexity
is due to F. Fich, P. Ragde, and A. Wigderson [SIAM J. Comput.,
17:3(1988), 606–627].

6.11

Communication

Complexity

Suppose Alice has input x, Bob has input y, and they want to compute a
function f(x, y) by communicating information and by performing local
computation according to a fixed protocol. Assume that Alice outputs
f(x, y). Local computation costs are ignored; we are interested only in
minimizing the number of bits communicated between Alice and Bob.
Usually, one considers the worst-case or average-case over all inputs x, y
of given length n. But in many situations, for example replicated file
systems and cache coherence algorithms in multiprocessor systems and
computer networks, the worst-case and average-case are not necessarily
significant. From the individual communication complexities we can al-
ways obtain the worst-case complexity and the average-case complexity.

Definition 6.11.1 The individual communication complexity CC(x, y|P ) is defined as the
number of bits Alice with input x and Bob with input y need to exchange,
both using a communication protocol P . We assume that the protocol
is deterministic, possibly partial, and it knows parameter n. A protocol
is total if it gives a definite result for all inputs, and it is partial if
it computes correctly on input (x, y) (on other inputs P may output
incorrect results or not halt). Note that a protocol implicitly specifies
the function being computed in an operational manner.

Let f be a function defined on pairs of strings of the same length. Assume
that Alice has x, Bob has y, and Alice wants to compute f(x, y). A (total)
communication protocol P over domain X with range Z is a finite rooted
binary tree, whose internal nodes are divided into two parts, A and B, called
Alice’s nodes and Bob’s nodes. (They indicate the turn of move.) Each internal
node v is labeled by a function rv : X → {0, 1} and each leaf v is labeled by a
function rv : X → Z. A node reached by a protocol P on inputs x, y is the leaf
reached by starting at the root of P and walking toward leaves, where in each
encountered internal node we go left if rv(x) = 0, and we go right otherwise.
This leaf is called the conversation on x, y. Using P on input x and y, Alice
computes z ∈ Z if the leaf v reached on x and y satisfies z = rv(x). We say
that a protocol computes a function f : X → Z if Alice computes f(x, y) for
all x, y ∈ X. The domain X of protocols considered is always equal to the set
{0, 1}n of binary strings of certain length n. As Z we will take either {0, 1} or
{0, 1}n.

The length of communication CCP (x, y) of the protocol P on inputs x, y is
the length of the path from the root of P to the leaf reached on x, y. By the
complexity of a protocol P we mean C(P |n). Formally, a partial protocol is
a protocol, as defined above, but the functions rv may be partial. The com-
plexity C(P |n) of a partial protocol P is defined as the minimal Kolmogorov
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complexity of a program that given n, v determines whether v is a leaf or Al-
ice’s internal node or Bob’s internal node, and given n, v, x computes rv(x).
If a partial protocol happens to be total (all rv are total functions) then the
new definition of C(P |n) coincides with the old one.

6.11.1
Identity Function

Let I(x, y) = (x, y) be the identity function: Alice has to learn Bob’s
string. If Alice can compute I, then she can compute every computable
function f . In the following theorem we consider protocols that com-
pute I on all strings x, y of length n. By definition of the Kolmogorov
complexity, the lower bound for the number of bits to be transmitted is
C(y|x, P ). Since the number m of halting programs of length n + O(1)
satisfies m ≤ 2n+O(1), we can determine the halting of all programs
of length up to n + O(1) if we are given m: Run all programs up to
that length dovetail fashion; by the time m of them have halted we
know that the remainder will never halt. In this way, we can deter-
mine the shortest program, given n, for every string y of length n, since
C(y) ≤ n+O(1). Thus, Bob using a protocol P , containing m, can find
the shortest program for y and send it to Alice, who computes y. Thus,
CC(x, y|P ) ≤ C(y|n) +O(1) with C(P ) ≤ n+O(1). By Theorem 3.8.1
on page 242 we see that C(P ) ≥ n− O(log n) if it is supposed to work
for every y of length n.

Theorem 6.11.1 For every protocol P for the identity function I, and every x, y, we have
CC(x, y|P ) ≥ C(y|P ) −O(1) ≥ C(y|n) − C(P |n) −O(logC(P |n)).

Proof. Let c be the conversation between Alice and Bob on inputs x, y.
It suffices to show that given P, c we can find y. We call a set R ⊆ A×A
a rectangle if whenever both (x1, y1) and (x2, y2) are in R, then so is
(x1, y2). The definition of a communication protocol implies that the set
of all pairs (x′, y′) such that the conversation between Alice and Bob on
input (x′, y′) is equal to c is a ‘rectangle’, that is, has the form X × Y ,
for some X,Y ⊂ {0, 1}n. The set Y is a one-element set, since for every
y′ ∈ Y Alice outputs y also on the input (x, y′) (the output of Alice
depends on c, P, x only). We can find Y given P, c, and since Y = {y},
we are done. 2

Example 6.11.1 We look at the special case x = y. For every P , there are x, y with
CC(x, y|P ) ≥ C(y|x) + n − O(1). This holds in particular for y = x
with C(y) ≥ n. Then C(y|x) = O(1) and by Theorem 6.11.1 we have
CC(x, y|P ) ≥ C(y|P ) −O(1) ≥ C(y|x) + n−O(1). 3
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6.11.2
Inner Product
Function

Initially, Alice has a string x = x1, . . . , xn and Bob has a string y =
y1, . . . , yn with x, y ∈ {0, 1}n. Alice and Bob compute

f(x, y) ≡
(

n∑

i=1

xi · yi
)

mod 2,

with Alice ending up with the result.

Lemma 6.11.1 Every protocol P computing the inner product function f requires at
least CC(x, y|P ) ≥ C(x, y|P )−n−O(1) bits of communication for every
pair x, y.

Proof. Fix a communication protocol P that computes the inner prod-
uct. Let Alice’s and Bob’s input be as above. Run the communication
protocol P on x, y and let c(x, y) be a record of the communication
between Alice and Bob. Consider the set S = S(x, y) defined by

S := {(a, b) : c(a, b) = c(x, y), and Alice outputs

f(x, y) on conversation c(x, y) and input a}.

We claim that d(S) ≤ 2n. To prove this, assume first that f(x, y) = 0.
Let X = {a : (a, b) ∈ S} be the first projection of S and let Y = {b :
(a, b) ∈ S} be the second projection of S. Since P computes f we know
that f(a, b) = 0 for all (a, b) ∈ S. In other words, every element of X is
orthogonal to every element in Y , and therefore rank(X)+rank(Y ) ≤ n.
Thus,

d(S) = d(X) · d(Y ) ≤ 2rank(X)+rank(Y ) ≤ 2n.

Assume now that f(x, y) = 1. Again S = X × Y for some X,Y and
f(a, b) = 1 for all (a, b) ∈ S. Subtracting x from the first compo-
nent of all pairs in S, we obtain a rectangle S′ such that f(a, b) = 0
for all (a, b) ∈ S′. By the above argument, we have d(S′) ≤ 2n. Since
d(S′) = d(S) we are done. Given P , c(x, y), f(x, y), and the index of
(x, y) in S we can compute (x, y). Padding the index of (x, y) up to
length n, while n is known by the protocol, we observe that the index of
(x, y) and c(x, y) can be concatenated without delimiters. Consequently,
C(x, y|P ) ≤ l(c(x, y)) + n+O(1). 2

Since there are 22n pairs of n-length strings, we can choose x, y with
C(x, y|P ) ≥ 2n. Thus, the worst-case communication complexity for the
function f is n−c. There are 22n−22n−c1 pairs x, y with C(x, y|P ) ≥ 2n−
c1. Hence, the average-case communication complexity for the function
f is n−O(1).
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Exercises 6.11.1. [24] Assume that a function f : {0, 1}n × {0, 1}n → {0, 1}
satisfies C(f |n) ≥ 22n − n: the truth table describing the outcomes of f
for the 2n possible inputs x (the rows) and the 2n possible inputs for y
(the columns) has high Kolmogorov complexity. If we flip the truth table
for a prospective f using a fair coin, then with probability at least 1−2−n

it will satisfy this. Show that every deterministic protocol P computing
such a function f requires at least CC(x, y|P ) ≥ min{C(x|P ), C(y|P )}−
logn−O(1).

Comments. Source: H.M. Buhrman, H. Klauck, N.K. Vereshchagin, P.M.
B. Vitányi, J. Comput. Syst. Sci. 73(2007), 973–985.

6.11.2. [24] Let f be the equality function, with f(x, y) = 1 if x = y
and 0 otherwise. Show that for every deterministic protocol P computing
f , we have CC(x, x|P ) ≥ C(x|P )−O(1) for all x, y. On the other hand,
there is a P of complexity O(1) such that there are x, y (x 6= y) with
C(x|P ), C(y|P ) ≥ n− 1 for which CC(x, y|P ) = 2.

Comments. Source: H.M. Buhrman, H. Klauck, N.K. Vereshchagin, P.M.
B. Vitányi, Ibid.

6.11.3. [35] Define the protocol-independent communication complex-
ity TCC(x, y|C(P ) ≤ i), of computing a function f(x, y), as the min-
imum CC(x, y|P ) over all deterministic total protocols P computing
f(x, y) for all pairs (x, y) (l(x) = l(y) = n) with C(P ) ≤ i. For example,
TCC(x, y|C(P ) ≤ n+ O(1)) = 0 for all computable functions f and all
x, y.

(a) Show that for every computable function f(x, y) its TCC(x, y|C(P ) ≤
i) is always at most the TCC(x, y|C(P ) ≤ i) of the identity function
I(x, y) = (x, y), for every x, y, i.

(b) Show that for every computable function f we have TCC(x, y|C(P ) ≤
i) ≥ C(f(x, y)|x) − i− O(log i). For f = I this gives TCC(x, y|C(P ) ≤
i) ≥ C(y|x) − i−O(log i).

(c) Show that for the identity function I, restricting the protocols to
one-way (Bob sends a single message to Alice only) does not significantly
alter the protocol-independent communication complexity for total pro-
tocols: TCC(x, y|C(P ) ≤ i+O(1), P is one-way) ≤ TCC(x, y|C(P ) ≤ i),
where in the right-hand side P is allowed to be two-way.

Comments. Source: H.M. Buhrman, H. Klauck, N.K. Vereshchagin, P.M.
B. Vitányi, Ibid.

6.11.4. [37] We continue Exercise 6.11.3. Let hx(i) be the structure
function as in Definition 5.5.6 on page 405. Define, with P a proto-
col that computes the identity function I, the protocol-size function
py(j) = min{i : TCC(x, y|C(P ) ≤ i, P is one-way ) ≤ j}. The function
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py(j) gives the minimal number of bits of a protocol of the total de-
terministic type considered that transmits y ∈ {0, 1}∗ in at most j bits
of communication. By Exercise 6.11.3, Item (c), total one-way protocols
are as powerful as total two-way protocols of about the same complexity.
Note that the one-way protocol does not depend on x.

(a) Show that py(j) = hy(j) +O(log n) for all y and j.

(b) Use item (a) to show the following: (i) For every string y of length
n we have py(n) = O(1) and 0 ≤ py(j) − py(k) ≤ k − j + O(log n), for
every j < k ≤ n. Conversely, if p is a function from {0, 1, . . . , n} to the
natural numbers satisfying the conditions in (i), with the O(1), O(log n)
replaced by 0, then there is a string y of length n such that py(j) =
p(j) +O(log n+C(p)), where C(p) stands for the complexity of the set
{(j, p(j)) : j ∈ {0, . . . , n}}.
(c) Show that there exist noncommunicable strings in the following sense.
Let k < n. Apply Item (b) to the function p defined as p(j) = k for
j ≤ n−k and p(j) = n−j for j ≥ n−k. By Item (b) there exists a string
y of length n such that py(0) = k+O(log n) (thus C(y) = k+O(log n))
and the protocol-independent communication complexity for the identity
function I is TCC(x, y|C(P ) ≤ i, P is one-way) > n − i − O(log n) for
every i < k −O(log n).

Comments. Item (c) shows that Bob can hold a highly compressible
string y, but cannot use that fact to reduce the communication com-
plexity significantly below l(y). Unless all information about y is hard-
wired into the protocol, the communication between Bob and Alice re-
quires sending y almost completely literally. Indeed, For such y with, say,
C(y) = logO(1) n, we have (irrespective of x) communication complexity
that is exponential in the complexity of y for all protocols of complexity
less than that of y. When the complexity of the protocol reaches the
complexity of y, the communication complexity suddenly drops to 0.
Source: H.M. Buhrman, H. Klauck, N.K. Vereshchagin, P.M.B. Vitányi,
Ibid.

6.11.5. [33] Let the protocol-independent communication complexity
PCC(x, y|C(P ) ≤ i) stand for the minimum CCP (x, y) over all partial
deterministic protocols P of complexity at most i computing f correctly
on input (x, y) (on other inputs P may output incorrect results or not
halt). Trivially, PCC(x, y|C(P ) ≤ i) ≤ TCC(x, y|C(P ) ≤ i) for every
computable function.

(a) Show that for the identity function I we have C(y|x)− i−O(log i) ≤
PCC(x, y|C(P ) ≤ i) ≤ PCC(x, y|C(P ) ≤ i, P is one-way) ≤ C(y) for
all x, y, i such that i is at least logC(y) +O(1). The addition ‘one-way’
means that Bob communicates with Alice but not vice versa.
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(b) Prove that for the identity function I we have PCC(x, y|C(P ) =
O(log n), P is one-way) ≤ C(y|x) +O(log n), for all x, y of length n.

Comments. Item (a) is obvious. Comparing Item (b) with Exercise 6.11.4,
Item (c), we see that protocol-independent communication complexity
for the identity function I of one-way partial deterministic protocols is
strictly less than that of one-way total deterministic protocols (there
are no noncommunicable objects for protocol-independent communica-
tion complexity of partial protocols). Moreover, by Exercise 6.11.3, Item
(c), the protocol-independent communication complexity for the identity
function I of one-way total deterministic protocols equals that of two-
way ones. Hint for Item (b): use Muchnik’s theorem, Theorem 8.3.7,
on page 654. H.M. Buhrman, H. Klauck, N.K. Vereshchagin, P.M.B.
Vitányi, Ibid.

6.11.6. [34] In Theorem 6.11.1 it was shown that for a deterministic
protocol of say, complexity O(1), to compute the identity function Alice
and Bob need to exchange about C(y) bits, even if the required informa-
tion C(y|x) is much less than C(y). Show that for randomized protocols
the communication complexity is close to Cy|x).
Comments. Source: H.M. Buhrman, M. Koucký, N.K. Vereshchagin,
Randomized individual communication complexity, Manuscript, CWI,
2006.

6.12

Circuit

Complexity

A key lemma in the study of circuit complexity is the so-called H̊astad’s
switching lemma. It is used to separate depth-k and depth-(k+1) circuit
classes, and to construct oracles relative to which the polynomial hierar-
chy is infinite and properly contained in PSPACE. The traditional proof
of this lemma uses sophisticated probabilistic arguments. We describe a
simple elementary proof using the incompressibility method.

According to Definition 5.3.3 on page 376, a k-DNF formula is a disjunc-
tion of conjunctions with each conjunct (or term) containing at most k
literals. A k-CNF is a conjunction of disjunctions with each disjunct (or
clause) containing at most k literals.

Definition 6.12.1 A restriction ρ is a function from a set of variables to {0, 1, ⋆}. Given a
Boolean function f , f |ρ is the restriction of f in the natural way: xi is
free if ρ(xi) = ⋆ and xi takes on the value ρ(xi) otherwise. The domain
of a restriction ρ, dom(ρ), is the set of variables mapped to 0 or 1 by ρ.

We can also naturally view a restriction ρ as a term of f if f |ρ = 1. A
minterm is a restriction such that no proper subset of the variables set
by the restriction forms a term. Let Rl be the set of restrictions on n
variables that leave l variables free. Obviously, d(Rl) =

(
n
l

)
2n−l.
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Lemma 6.12.1 (Switching lemma) Let f be a t-CNF on n variables, ρ a random
restriction ρ ∈ Rl and α = 12tl/n ≤ 1. Then the probability that f |ρ is
an s-DNF is at least 1 − αs.

Proof. Fix a t-CNF f on n variables, and integers s and l < n. Note that
f |ρ is l-DNF; we can assume s ≤ l. In this proof, we will use conditional
complexity C(·|x), where x denotes the list of fixed values of f, t, l, n, s
and several (fixed) programs needed later.

Claim 6.12.1 For any ρ ∈ Rl such that f |ρ is not s-DNF, ρ can be effectively described
by some ρ′ ∈ Rl−s, a string σ ∈ {0, 1, ⋆}st such that σ has s non⋆
positions, and x. That is, C(ρ|ρ′, σ,x) = O(1).

Before proving Claim 6.12.1, we show that it implies the switching
lemma. Fix a random restriction ρ ∈ Rl with

C(ρ|x) ≥ log(d(Rl)α
s), (6.22)

where α = 12tl/n ≤ 1. If we show that f |ρ is an s-DNF, then since
there are at least d(Rl)(1 − αs) ρ’s in Rl satisfying Equation 6.22 by
Theorem 2.2.1, this will imply the lemma.

Assume that f |ρ is not an s-DNF and ρ′ ∈ Rl−s as in Claim 6.12.1.
Obviously C(ρ′|x) ≤ log d(Rl−s). Since l(σ) = st and σ has s non⋆
positions, we have

C(σ|x) ≤ log

(
st

s

)

+ s ≤ s log et+ s = s log 2et,

by standard estimation (Stirling’s approximation), where e = 2.718 . . . .
By Claim 6.12.1, we have

C(ρ|x) ≤ C(ρ′|x) + C(σ|x) ≤ log d(Rl−s) + s log 2et. (6.23)

By Equations 6.22 and 6.23, we have

d(Rl)α
s ≤ d(Rl−s)2

s log 2et.

Substituting
(
n
l

)
2n−l for d(Rl) and

(
n
l−s
)
2n−l+s for d(Rl−s), and using

the fact
(
n
l

)
/
(
n
l−s
)
≥ ((n− l + s)/l)s, we obtain

12tl

n
≤ 4etl

n− l + s
.

But the above formula cannot hold simultaneously with 12tl/n ≤ 1, a
contradiction. This proves the switching lemma.
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Proof. (For Claim 6.12.1) Given a t-CNF f on n variables and a restric-
tion ρ ∈ Rl such that f |ρ is not s-DNF. Let

f =

k∧

j=1

Dj , (6.24)

where each Dj is a disjunct of size at most t. We also can write f |ρ as
a DNF: f |ρ = ∨jCj , where each Cj (the corresponding restriction) is a
minterm of f |ρ. Since f |ρ is not an s-DNF, there must be a minterm π
that contains at least s + 1 variables. We will extend ρ to ρ′ using s of
the variables of π.

First we split π into subrestrictions. Assume that π1, . . . , πi−1 have al-
ready been defined and dom(π) − dom(π1 · · ·πi−1) 6= ∅. Choose the
first disjunct Dj in Equation 6.24 that is not already 1 under restriction
ρπ1 · · ·πi−1. Let S be the set of variables that appear both in Dj and in
dom(π) − dom(π1 · · ·πi−1). Define πi as

πi(x) =

{
π(x) if x ∈ S,
⋆ otherwise.

Because π is a minterm, it must force each disjunct to 1, and no subre-
striction of π (namely π1 · · ·πi−1) will. Thus the above process is always
possible. Let k be the least integer such that π1 · · ·πk sets at least s
variables. Trim πk so that π1 · · ·πk sets exactly s variables.

Change πi to π̃i: for each variable x ∈ dom(πi), if it appears in the
corresponding Dj as x then π̃i(x) = 0; if it appears in Dj as x̄ then
π̃i(x) = 1. Thus πi 6= π̃i, since ρπ1 · · ·πi−1πi forces Dj to be 1 but
ρπ1 · · ·πi−1π̃i does not. If x is the mth variable in Dj , the mth digit of
σ(i) is

σ(i)
m =

{
πi(x) if x ∈ dom(πi) (= dom(π̃i)),
⋆ otherwise.

Since Dj is of size at most t, l(σ(i)) = l(Dj) ≤ t. Let

ρ′ = ρπ̃1 · · · π̃k, σ = σ(1) · · ·σ(k) ⋆st−kt .

Pad σ with ⋆’s so that l(σ) = st. Since π1 · · ·πk sets exactly s variables,
σ has s non⋆ positions.

Now we show how to recover π1, . . . , πk, hence ρ, from σ and ρ′ (given
x). Assume that we have already recovered π1, . . . , πi−1, from which
we can infer ρπ1 · · ·πi−1π̃i · · · π̃k, using ρ′. Recall that πi was defined by
choosing the first clause Dj not already forced to 1 by ρπ1 · · ·πi−1. Since
π̃i does not force Dj to be 1 and π̃i+1 · · · π̃k are defined on variables not
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contained in Dj , we simply identify Dj from f |ρπ1···πi−1π̃i···π̃k
, as the

first non-1 clause. Given Dj , recover πi using σ(i). With ρπ1 · · ·πk and
π1 · · ·πk, we can recover ρ. This proves Claim 6.12.1, and hence the
theorem. 2 2

Let us summarize the central ideas in the above proof. When we choose
a random ρ, the number of bits needed to specify each extra variable
is roughly O(log n). However, the fact that f |ρ is not an s-DNF implies
that it has a long minterm, and this allows us to construct a σ, together
with ρ′, specifying s extra variables at the expense of roughly log 2et bits
per variable. So a large term is a kind of regularity a random restriction
ρ does not produce.

Example 6.12.1 Lemma 6.12.1 is a powerful lemma in circuit complexity. Let’s define
a depth-k (unbounded fan-in Boolean) circuit as follows: The input to
the circuit is I = {x1, . . . , xn, x̄1, . . . , x̄n}. The circuit has k alternating
levels of AND and OR gates, each with unbounded fan-in. The kth
(top) level contains just one gate, which gives the output of the circuit.
Each gate in the ith level gets an arbitrary number of inputs from the
outputs of the (i − 1)st level, assuming that I is at the zeroth level. A
parity function f(x1 . . . xn) equals 1 if and only if an odd number of xi’s
are 1’s. It is easy to show that a polynomial-size depth-2 circuit cannot
compute parity. Assume that this is the case for k − 1. For a depth-k
circuit, if we apply a random restriction to it, then by Lemma 6.12.1,
with high probability, we can switch the bottom two levels, say, from
AND-OR to OR-AND. Then the second-level OR can merge with the
third-level OR, hence reducing the circuit depth to k − 1. Note that a
restriction of a parity function remains a parity function. Making this
kind of induction precise, one can prove the following: there is a constant

c > 0 such that a depth-k circuit with at most 2c
k/k−1n1/k−1

gates cannot
compute parity. 3

6.13

History and

References

Apparently, W.J. Paul [Proc. Int. Conf. Fund. Comput. Theory, L. Bu-
dach, ed., 1979, pp. 325–334] is the pioneer of using the incompressibil-
ity method, and he proved several lower bounds with it. R.V. Freivalds
[“On the running time of deterministic and nondeterministic Turing ma-
chines,” Latv. Mat. Ezhegodnik, 23(1979) 158–165 (in Russian)] proved
a lower bound on the time of Turing machine computations for a cer-
tain problem, implicitly using a Kolmogorov complexity argument in a
veiled form of ‘optimal enumerations,’ justified by the invariance theo-
rem, Theorem 2.1.1. He did not use the incompressibility method.
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The initially most influential paper is probably the paper by W.J. Paul,
J. Seiferas, and J. Simon, [J. Comput. System Sci., 23:2(1981), 108–
126]. This was partly because the paper by W.J. Paul, which contains
the example of Section 6.1.1, was not widely circulated.

The aim of the paper by Paul, Seiferas, and Simon was “to promote the
approach” of applying Kolmogorov complexity to obtain lower bounds.
In that paper, using incompressibility arguments, the authors greatly
simplified the proof of a difficult theorem proved by S.O. Aanderaa [pp.
75–96 in: Complexity of Computation, R. Karp, ed., Amer. Math. Soc.,
1974], which proves that real time simulation of k tapes by k−1 tapes is
impossible for deterministic Turing machines. Earlier, M.O. Rabin [Is-
rael J. Math., 1(1963), 203–211] proved the particular case k = 2 of this
result. In 1982, W.J. Paul [Inform. Contr., 53(1982), 1–8] further im-
proved Aanderaa’s result from real-time to nonlinear lower bounds by
incompressibility arguments. In the same year, S. Reisch and G. Schnit-
ger [Proc. 23rd IEEE Found. Comput. Sci., 1982, pp. 45–52] published a
paper giving three applications of incompressibility in areas other than
Turing machine computational complexity. (The authors later lost con-
tact with each other and they have never written up a journal version
of this paper.) Subsequently, incompressibility arguments started to be
applied to an ever-increasing variety of problems.

Lemma 6.1.1 in Section 6.1.1 was first proved by F.C. Hennie using a
counting argument in [Inform. Contr., 8:6(1965), 553–578]. The proof we
give here is due to W.J. Paul. Section 6.1.2 is based on [R. Beigel, W.
Gasarch, M. Li, and L. Zhang, Theoret. Comput. Sci., 191(1998), 245–
248]. The original probabilistic analysis is in [A.W. Burks, H.H. Golds-
tine, and J. von Neumann, “Preliminary discussion of the logical design
of an electronic computing instrument,” Institute for Advanced Stud-
ies, Report (1946). Reprinted in John von Neumann Collected Works,
Vol. 5, 1961]. Improved probabilistic analysis can be found in [B.E. Bri-
ley, IEEE Trans. Computers, C-22:5(1973)] and [G. Schay, Amer. Math.
Monthly, 102:8(1995), 725–730]. Background material on adder design
can be found in [K. Hwang, Computer Arithmetic: Principles, Architec-
ture, and Design, Wiley, New York, 1979]. Lemma 6.1.3 in Section 6.1.3
is due to J. Seiferas and Y. Yesha [Personal communication, 1986]. The
idea of proving a lower time bound for palindrome recognition by a
probabilistic Turing machine, as mentioned in the comment at the end
of Section 6.1 and in Exercise 6.10.13, Item (c), is due to R. Paturi, J.
Simon, R. Newman-Wolfe, and J. Seiferas, [Inform. Comput., 88(1990),
88–104].

The discussion in Section 6.2 on the quantitative relation between high-
probability properties of finite objects and individual randomness of fi-
nite objects is taken from [H.M. Buhrman, M. Li, J.T. Tromp, and
P.M.B. Vitányi, SIAM J. Comput., 29:2(1999), 590–599]. With respect
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to infinite binary sequences the distinction between laws of probabil-
ity (that hold with probability one) and individual random sequences is
discussed in [M. van Lambalgen, Random Sequences, PhD thesis, Uni-
versiteit van Amsterdam, Amsterdam, 1987] and [V.V. Vyugin, Theory
Probab. Appl., 42:1(1996), 39–50].

Section 6.3, on combinatorics, follows [M. Li and P.M.B. Vitányi, J.
Comb. Theory, Ser. A, 66:2(1994), 226–236]. The problems on tourna-
ments in Section 6.3 are from [P. Erdős and J.H. Spencer, Probabilistic
Methods in Combinatorics, Academic Press, 1974]. See also [N. Alon,
J.H. Spencer, and P. Erdős, The Probabilistic Method, Wiley, 1992] for
the probabilistic method. Section 6.3.3 was suggested by W. Gasarch;
the lower bound on the Ramsey numbers was originally proved in [P.
Erdős, Bull. Amer. Math. Soc., 53(1947), 292–294]; see [P. Erdős and
J.H. Spencer, Ibid.]. The lower bound for the coin-weighing problem
in Theorem 6.3.4 was established, using probabilistic or information-
theoretic methods, by P. Erdős and A. Rényi [Publ. Hungar. Acad. Sci.,
8(1963), 241–254], L. Moser [Combinatorial Structures and Their Ap-
plications, Gordon and Breach, 1970, pp. 283–384], and N. Pippenger
[J. Comb. Theory, Ser. A, 23(1977), 105–115]. The last paper contains
proofs, by entropy methods, of Theorem 6.3.4 on page 455 and Exer-
cise 6.3.4 on page 457. Recently, entropy methods have also been used
quite successfully in proving lower bounds on parallel sorting [J. Kahn
and J. Kim, Proc. 24th ACM Symp. Theory Comput., 1992, pp. 178–
187], perfect hashing [I. Newman, P. Ragde, and A. Wigderson, 5th
IEEE Conf. Structure in Complexity Theory, 1990, pp. 78–87], and lower
bounds on parallel computation [R. Boppana, Proc. 21st ACM Symp.
Theory Comput., 1989, pp. 320–326]. On Exercise 6.3.11 on page 460
Ramsey-type results, that were earlier obtained using Lovász’s local
lemma, are obtained by incompressibility.

Section 6.4 on graphs is primarily based on [H.M. Buhrman, M. Li, J.T.
Tromp, and P.M.B. Vitányi, SIAM J. Comput., 29:2(1999), 590–599].
For random graphs in a probabilistic sense see for example [B. Bollobás,
Random Graphs, Academic Press, 1985]. The statistics of subgraphs of
high-complexity graphs, Theorem 6.4.1, has a corresponding counter-
part in quasirandom graphs, and a similar expression is satisfied almost
surely by random graphs [N. Alon, J.H. Spencer, and P. Erdős, The
Probabilistic Method, Wiley, 1992] pp. 125–140; see especially Property
P1(s) on page 126. The latter property may be weaker in terms of quan-
tification of ‘almost surely’ and the o(·) and O(·) estimates involved than
the result we present here.

The results in Section 6.5 on routing tables are from [H.M. Buhrman,
J.H. Hoepman, and P.M.B. Vitányi, SIAM J. Comput., 28:4(1999), 1414–
1432]. Related research (see exercises) appears in [E. Kranakis and D.
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Krizanc [Proc. 3nd Int. Colloq. Structure Inform. Communication Com-
plexity, Siena, Italy, 1996, pp. 119–124; Proc. 13th Symp. Theoret. As-
pects Comput. Sci., 1996, pp. 529–540], and E. Kranakis, D. Krizanc,
and F. Luccio, Proc. 13th Symp. Math. Found. Comput. Sci., 1995, pp.
392–401].

Heapsort was originally discovered by J.W.J. Williams [Comm. Assoc.
Comp. Mach., 7(1964), 347–348]. R.W. Floyd [Comm. Assoc. Comp.
Mach., 7(1964), 701] subsequently improved the algorithm. Researchers
had previously tried to analyze the precise average-case complexity of
Heapsort with no success. For example, the analysis typically works only
for the first step; after one step, the heap changes and certain properties
such as that all heaps are equally likely no longer hold. Section 6.6.1 is
based on an explanation by I. Munro on a summer evening in 1992. The
solution to the average-case complexity of Heapsort was first obtained
by R. Schaffer and R. Sedgewick [J. Algorithms, 15(1993), 76–100]. The
proof in the form given in Section 6.6.1 is due to I. Munro. Claim 6.6.1,
that the Heapify procedure produces a random heap from a random
input, was observed by T. Jiang, at a 1993 Dagstuhl seminar, and I.
Munro.

Shellsort was discovered by D.L. Shell [Comm. Assoc. Comp. Mach.,
2:7(1959), 30–32)]. Section 6.6.2 on Shellsort is based on [T. Jiang, M.
Li, and P.M.B. Vitányi [Proc. Int. Colloq. Aut. Lang. Progr., Lect. Notes
Comp. Sci., Vol 1644, Springer-Verlag, Berlin, 1999, 453–462; J. Assoc.
Comp. Mach. 47:5(2000), 905–911], where the reader can also find papers
on worst-case analysis of Shellsort not discussed here. Previously, D.E.
Knuth [The Art of Computer Programming, Vol. 3: Sorting and Search-
ing, Addison-Wesley, 1973, 1998] showed that the average running time
for two-pass Shellsort is Θ(n5/3) for the best choice of increments; A.C.C.
Yao [J. Alg., 1(1980), 14–50] analyzed the three-pass case without giving
a definite running time; Yao’s analysis was extended by S. Janson and
D.E. Knuth [Random Struct. Alg. 10(1997), 125–142] to an O(n23/15)
upper bound on the average running time for three-pass Shellsort.

Section 6.7 on longest common subsequences is from [T. Jiang and M.
Li, SIAM J. Comput., 24:5(1995), 1122–1139]. Section 6.8 on formal
language theory follows [M. Li and P.M.B. Vitányi, SIAM J. Comput.,
24:2(1995), 398–410]. For the history of and an introduction to formal
language theory, see [M.A. Harrison, Introduction to Formal Language
Theory, Addison-Wesley, 1978; J.E. Hopcroft and J.D. Ullman, Intro-
duction to Automata Theory, Languages, and Computation, Addison-
Wesley, 1979].

The proof in Section 6.9 of the lower bound on the time required for
linear context-free language recognition is due to J. Seiferas [Inform.
Contr., 69(1986), 255–260], simplifying the original proof of H. Gallaire
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[Inform. Contr., 15(1969), 288–295]. The latter paper improved a logn
multiplicative factor weaker result by F.C. Hennie. Gallaire’s proof uses
a complicated counting argument and de Bruijn sequences. T. Kasami
[Inform. Contr., 10(1967), 209–214] proved that linear context-free lan-
guages can be online recognized in O(n2) by a one-work-tape Turing
machine.

It is fair to say that the solutions to the conjectures on k-PDA in Exer-
cise 6.9.3, string-matching in Exercise 6.9.2, Theorem 6.10.1, and many
exercises in Section 6.10 would not have been possible, at least not
proved in such a short period of time, without the use of incompress-
ibility arguments. Recently, T. Jurdziński and K. Loryś [Proc. 29th Int.
Colloq. Aut., Lang., Prog., 2002, pp. 147–158] used the incompressibil-
ity method to prove a 1988 McNaughton–Narendran–Otto conjecture
that the Church–Rosser languages do not contain the set of palindromes,
hence not CFL

⋂
coCFL. The results in Section 6.10 concerning whether

an extra tape adds computational power in various Turing machine mod-
els and especially the ‘two heads are better than two tapes’ result in
Exercise 6.10.15, could probably not be proven without the incompress-
ibility method. These results were open for decades before they were
solved using the incompressibility method and some other Kolmogorov
complexity-related techniques, and no other proofs are known.

The results and methods of Section 6.10 on lower bounds for time com-
plexity of Turing machines were instrumental in initiating large-scale
use of the incompressibility method. It is well known and easy that if a
k-tape Turing machine runs in O(T (n)) time, then it can be simulated
by a 1-tape Turing machine in O(T 2(n)) time [J. Hartmanis and R.
Stearns, Trans. Amer. Math. Soc., 117(1969), 285–306] and by a 2-tape
Turing machine in O(T (n) logT (n)) time [F.C. Hennie and R. Stearns,
J. Assoc. Comp. Mach., 4(1966), 533–546]. For years, only several weak
lower bounds were known with complicated proofs, such as M.O. Ra-
bin’s paper from 1963 and S.O. Aanderaa’s paper of 1974 above. These
papers consider the restricted online model with an extra output tape.
For the more general model used in Theorem 6.10.1, P. Dǔrǐs, Z. Galil,
W.J. Paul, and R. Reischuk [Inform. Contr., 60(1984), 1–11] proved that
it requires Ω(n logn) time to simulate two tapes by one. Research ad-
vanced quickly only after the incompressibility argument was invented.
W.J. Paul [Inform. Contr., 53(1982), 1–8] proved Exercise 6.10.13, Item
(a), on page 512, improving Aanderaa’s result. Around 1983/1984, inde-
pendently and in chronological order, Wolfgang Maass at UC Berkeley,
one of us [ML] at Cornell, and the other one [PV] at CWI Amster-
dam, obtained an Ω(n2) lower bound on the time to simulate two tapes
by one tape (deterministically), and thereby closed the gap between 1
tape versus k ≥ 2 tapes (Exercise 6.10.2 on page 508). All three relied
on Kolmogorov complexity, and actually proved more in various ways.
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(One of us [PV], at first not realizing how to use incompressibility, re-
ported in [P.M.B. Vitányi, Theoret. Comput. Sci., 34(1984), 157–168]
an Ω(n3/2) lower bound on the time to simulate a single pushdown store
online by one oblivious tape unit. However, after being enlightened by
J. Seiferas about how to use incompressibility with respect to another
result, he realized how to apply it to the 1-tape versus 2-tape problem
without the oblivious restriction [P.M.B. Vitányi, Inform. Process. Lett.,
21(1985), 87–91 and 147–152], and the optimal results cited below.) W.
Maass also obtained a nearly optimal (almost square) lower bound for
nondeterministic simulation (Exercise 6.10.4 on page 508) [W. Maass,
Trans. Amer. Math. Soc., 292(1985), 675–693]. Maass’s lower bound on
nondeterministic simulation was improved bc Z. Galil, R. Kannan, and
E. Szemerédi [Proc. 18th ACM Symp. Theory Comput., 1986, pp. 39–

49] to Ω(n2/ log(k) n) by constructing a language whose computation
graph does not have small separators (Exercise 6.10.5 on page 509).
The exercises contain many more lower bounds which were proved in
this direction. Section 6.10 is based on [M. Li and P.M.B. Vitányi, In-
form. Comput., 78(1988), 56–85], which also contains results on tapes
versus stacks and queues. Many lower bounds for various models of com-
putation, such as machines with extra two-way input tapes, machines
with queues, random access machines, machines with many heads on
a tape, machines with tree tapes, machines with k-dimensional tapes,
and probabilistic machines, have since been proved using Kolmogorov
complexity. We have tried to cover these results in the exercises, where
also the references are given.

Communication complexity was invented by A.C.C. Yao, [Proc. 11th
ACM Symp. Theory Comput., 1979, 209–213]. The main reference is
[E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge Univ.
Press, 1997]. These works consider the worst-case or average-case com-
plexity. Section 6.11, on individual communication complexity, is based
on [H.M. Buhrman, H. Klauck, N.K. Vereshchagin, P.M.B. Vitányi, J.
Comput. Syst. Sci. 73(2007), 973–985].

The proof of Lemma 6.12.1 in Section 6.12 is based on a paper by L.
Fortnow and S. Laplante [Inform. Comput., 123(1995), 121–126], which
in turn was based on a proof by A. Razborov [pp. 344–386 in Feasi-
ble Mathematics II, P. Clote, J. Remmel, eds., 1995]. This lemma was
originally proved by J. H̊astad [pp. 143–170 in Randomness and Com-
putation, S. Micali, ed., JAI Press, 1989] for the purpose of simplifying
and improving Yao’s lower bound on unbounded circuits [A.C.C. Yao,
Proc. 26th IEEE Symp. Found. Comput. Sci., 1985, pp. 1–10]. Note that
in Lemma 6.12.1, in order to simplify the proof, we have α = 12tl/n in-
stead of H̊astad’s α = 5tl/n or Fortnow and Laplante’s α = 5.44tl/n.
See also [M. Agrawal, E. Allender, and S. Rudich, J. Comput. Syst. Sci.,
57:2(1998), 127–143] for more circuit lower bounds by incompressibility.
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There are applications of the incompressibility method and Kolmogorov
complexity we do not cover. This is because there are by now simply
too many of them. Also, some applications require lengthy discussions
of computational models and preliminary facts; and some others are
indirect applications. A.M. Ben-Amram and Z. Galil [J. Assoc. Comp.
Mach., 39:3(1992), 617–648] use Kolmogorov complexity to formalize
the concept of incompressibility for general data types and prove a gen-
eral lower bound for incompressible data types. J. Shallit and his coau-
thors in a series of papers study a variation of descriptional complex-
ity, ‘automaticity,’ where the description device is restricted to finite
automata; see [J. Shallit and Y. Breitbart, Proc. 11th Symp. Theoret.
Aspects Comput. Sci., 1994, pp. 619–630 and J. Comput. System Sci.
53:1(1996), 10–25]. U. Vazirani and V. Vazirani [Theoret. Comput. Sci.,
24(1983), 291–300] studied probabilistic polynomial-time reductions. It
is possible to do their reduction by Kolmogorov complexity. Kolmogorov
complexity has also been studied in relation to the tradeoff of table size
and number of probes in hashing by H.G. Mairson [Proc. 24th IEEE
Found. Comput. Sci., 1983, pp. 40–47]. See also [K. Mehlhorn, Proc.
23rd IEEE Found. Comput. Sci., 1982, 170–175]. D. Hammer and A.K.
Shen [A strange application of Kolmogorov complexity, Theor. Comput.
Syst., 31:1(1998), 1–4] use complexity to derive a geometric relation,
and a geometric relation to derive a property of complexity. Namely,
from 2C(a, b, c) ≤ C(a, b) + C(b, c) + C(c, a) + O(log n) one can derive
‖V ‖2 ≤ ‖Sxy‖ ·‖Syz‖ ·‖Szx‖. Here V is a set in three-dimensional space,
Sxy, Syz, Szx are its two-dimensional projections, and ‖ · ‖ denotes vol-
ume. Moreover, from the well-known Cauchy–Schwarz inequality one can
derive 2K(a, b, c) ≤ K(a, b) +K(b, c)+K(c, a) +O(1). The incompress-
ibility method has been applied to logical definability by M. Zimand
[Inform. Process. Lett., 57(1996), 59–64] and to finite-model theory and
database query languages by J. Tyszkiewicz [Inf. Comput., 135:2(1997),
113-135; Proc. 8th Int. Conf. Database Theory, Lect. Notes Comput. Sci.,
Vol. 893, Springer-Verlag, 1995, pp. 97–110]. M. Zimand [Ibid.] studies
a ‘high-low Kolmogorov complexity law’ equivalent to a 0-1 law in logic.
See also [R. Book, SIAM J. Comput., 23(1994), 1275–1282]. K.W. Re-
gan [Proc. 10th IEEE Conf. Structure in Complexity Theory, 1995, pp.
50–64] uses Kolmorogov complexity to prove superlinear lower bounds
for some problems in a type of hierarchical memory model that charges
higher cost for nonlocal communication.
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Resource-Bounded Complexity

Recursion theory has a resource-bounded version in computational com-
plexity theory. Similarly, Kolmogorov complexity has resource-bounded
Kolmogorov complexity. Several authors suggested early on the possibil-
ity of restricting the power of the device used to (de)compress strings.
Says Kolmogorov in 1965:

“The concept discussed . . . does not allow for the ‘difficulty’ of preparing a
program p for passing from an object x to an object y. [. . . some] object per-
mitting a very simple program, i.e., with very small complexity K(x) can be
restored by short programs only as the result of computations of a thoroughly
unreal nature. [. . . this concerns] the relationship between the necessary com-
plexity of a program and its permissible difficulty t. The complexity K(x) that
was obtained [before] is, in this case, the minimum of Kt(x) on the removal
of the constraints on t.” [Kolmogorov]

Additional restrictions on resource bounds yield a rich mathematical
theory and abundant applications. Many statements that used to be
trivial or easily provable become nontrivial or very difficult questions
with resource bounds. Even the definition of Kolmogorov complexity
itself becomes nonstandard.

If we allow unlimited computational resources such as time and space,
it does not matter whether we define the complexity of x as the length
of the shortest program that prints x, or that accepts only x; both def-
initions turn out to be equivalent. However, it is not known whether
the two definitions are still equivalent under polynomial-time restriction
of the computational processes involved. We will specifically study two
parameters of the ‘permissible difficulty’ of Kolmogorov, the time and
space complexity.

M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 531
DOI: 10.1007/978-0-387-49820-1_7,  © Springer Science + Business Media, LLC 2008 
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7.1

Mathematical

Theory

Consider Turing machines with a separate read-only input tape, a fixed
number of work tapes on which the computation takes place, and a
write-only output tape. The input is a finite binary string. Initially, it
is placed on the input tape, delimited by distinguished end markers. A
machine with k work tapes is called a k-tape Turing machine. Machines
with k ≥ 1 are generically called multitape Turing machines.

Let φ1, φ2, . . . be an effective enumeration of partial recursive functions.
Let Tφ be a multitape Turing machine that computes φ. Let n = l(x).
If Tφ(y) = x in t(n) steps (time) and s(n) tape cells (space), then we
also write φt,s(y) = x. We identify the natural numbers N and the set
of finite binary sequences {0, 1}∗ as in Equation 1.3, page 12.

Definition 7.1.1 Let x, y, p ∈ N . Every recursive function φ together with p, y such that
φ(p, y) = x is a description of x. The resource-bounded Kolmogorov com-
plexity Ct,sφ of x with respect to φ and conditional to y, is defined by

Ct,sφ (x|y) = min{l(p) : φt,s(p, y) = x},

and Ct,sφ (x|y) = ∞ if there is no such p. Define the unconditional

resource-bounded Kolmogorov complexity of x as Ct,sφ (x) = Ct,sφ (x|ǫ).

Obviously, for total recursive functions t(n) and s(n) the function Ct,sφ is
total recursive as well. We prove an invariance theorem for the resource-
bounded Kolmogorov complexity. As usual, this invariance condition
is the basis of the theories and applications to follow. The price we
pay for adding resource bounds is that the invariance property becomes
considerably weaker.

Theorem 7.1.1 There exists a universal partial recursive function φ0 such that for every
other partial recursive function φ, there is a constant c such that

Cct log t,csφ0
(x|y) ≤ Ct,sφ (x|y) + c,

for all x and y. The constant c depends on φ but not on x and y.

Proof. Consider a standard enumeration of multitape Turing machines
T1, T2, . . . . Let φi denote the partial recursive function computed by
Ti. Let n = l(y). Let 〈y, p〉 = 1l(y)0yp be the standard linear time and
space invertible pairing bijection. Let φ0 be the partial recursive function
computed by a universal Turing machine U with two worktapes such
that U simulates all Ti’s according to the well-known simulation of F.C.
Hennie and R. Stearns [J. Assoc. Comp. Mach., 13(1966), 533–546]. It
follows from that simulation that for each i there is a constant c such
that U(〈y, 〈i, p〉〉) = Ti(y, p). Suppose that Ti, started on input 〈y, p〉,
computes x in t(n) time and s(n) space. Then the computation of U ,
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started on input 〈y, 〈i, p〉〉, takes at most time ct(n) log t(n) and space
cs(n). That is,

φct log t,cs0 (〈y, 〈i, p〉〉) = φt,si (y, p).

Choosing c large enough to also exceed the length of the encoding of Ti
in the input for U , say c ≥ 2i+ 1, proves the theorem. 2

The invariance theorem allows us to select a reference universal Tur-
ing machine computing φ0 as above and drop the subscript φ0 in Ct,sφ0

and write Ct,s, provided the statement we make is not sensitive to the
additive constant term in the complexity of each string, the multiplica-
tive logarithmic factor in the time complexity, and the multiplicative
constant factor in the space complexity.

Definition 7.1.2 Let x be a string of length n and U compute φ0 of Theorem 7.1.1. The
t-time-bounded and s-space-bounded version of C(x|y) is defined by

Ct,s(x|y) = min{l(p) : U(〈y, p〉) = x in t(n) steps and s(n) space}.

Resource-bounded Kolmogorov complexity behaves differently from the
unbounded case. The complexity of string x can be defined as the length
of either the shortest program that generates x or the shortest program
that accepts only x. These definitions are clearly equivalent when there
are no resource bounds. It is unknown whether they are the same, for
example, for the polynomial-time-bounded versions. There may be a
short program that accepts precisely x in time t(n), but one may have
trouble finding an equally short program that prints x in time t(n).
In Definition 7.1.1 we have defined the resource-bounded complexity in
terms of the shortest program that generates x. We also require the other
type.

Definition 7.1.3 A predicate is a 0–1-valued function.

Let ψ1, ψ2, . . . be an effective enumeration of partial recursive predicates.
Let Tψ be the multitape Turing machine that computes ψ. The compu-
tation Tψ(〈x, 〈p, y〉〉) outputs 0 or 1. If Tψ uses at most t(n) time and
s(n) space on every x of length n, for all auxiliaries p, y, then we write
the computed function as ψt,s(x, p, y).

Definition 7.1.4 Let x, y, p ∈ N . Let ψ be a partial recursive predicate. The resource-
bounded accepting complexity CD of x with respect to ψ and conditional
to y, is defined as

CD t,s
ψ (x|y) = min{l(p) : ∀v, ψt,s(v, p, y) = 1 iff v = x},
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and CD t,s
ψ (x|y) = ∞ if there is no such p. If y = ǫ, then CD t,s

ψ (x) =

CD t,s
ψ (x|ǫ) is the unconditional CD-complexity of x. (In CD theD stands

for ‘decision.’)

The statement and proof of the invariance theorem for CD -complexity
are omitted. They are completely analogous to Theorem 7.1.1. In cases
in which this is justified by the invariance theorem, we drop the index
ψ in CD t,s

ψ .

Therefore, we distinguish between Ct,s(x) as the length of the short-
est program generating x of length n in t(n) time and s(n) space, and
CD t,s(x) as the length of the shortest program accepting precisely x in
t(n) time and s(n) space.

Definition 7.1.5 Let S ⊆ N . We define Ct,s(x|S) or CD t,s(x|S) similarly to the above,
except that conditional S now means that the underlying Turing ma-
chine is equipped with a distinguished oracle tape. In the course of its
computation the Turing machine can write questions of the form “is
z ∈ S?” on the oracle tape. After the question is written, which takes
at least l(z) steps, the oracle gives the correct answer “yes” or “no” in
one step.

In the notation Ct,s and CD t,s, we always use the first parameter t for
time and second parameter s for space. Considering only time complex-
ity, we write Ct and CD t; considering only space complexity, we write
Cs and CDs. When neither t nor s is required, that is, when t = ∞
and s = ∞, then Ct,s and CDt,s both converge to the original plain
Kolmogorov complexity C.

Definition 7.1.6 Assume the notation above. We define the following descriptional com-
plexity classes:

Cφ[f(n), t(n), s(n)|y] def
= {x : Ct,sφ (x|y) ≤ f(n), n = l(x)},

CDψ[f(n), t(n), s(n)|y] def
= {x : CDt,s

ψ (x|y) ≤ f(n), n = l(x)},

where the subscripts φ and ψ are dropped in case they are superfluous.
If y = ǫ, then we also drop the conditional |ǫ.

Theorem 7.1.2 Let p, q be polynomial-time bounds, and let A be an NP-complete set.

(i) For every p, there exist q such that CDq(x) ≤ Cp(x) +O(1).

(ii) For every p, there exist q such that Cq(x|A) ≤ CDp(x) +O(1).
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Proof. Item (i) is immediate. To prove Item (ii), use the NP oracle re-
peatedly to determine the successive bits of x = x1 . . . xn as follows: Let
T be a Turing machine that accepts only x and runs in time p(n). Define
a Turing machine TA that generates x using an appropriate oracle A.
Assume that TA has already determined x1 . . . xi. At the next step, TA

asks the oracle A whether T accepts a string with prefix x1 . . . xi0. If
the answer is “yes,” then TA sets xi+1 := 0; otherwise it sets xi+1 := 1.
The oracle can answer these questions, since the set

{〈T, y, 1t, 1n〉 : T accepts yz in time t for some z with l(yz) = n}

is in NP. The oracle machine generates all of x in this way, taking time
at most polynomial in p(n). 2

The fact that it is not known how to improve Theorem 7.1.2 may suggest
that Ct,s and CDt,s are different measures, at least for polynomial-time
bounds. This difference disappears, however, when we have enough time
available. Namely, in exponential time the machine can search through
all strings of length n.

Example 7.1.1 (Resource-bounded prefix complexity) The definition and the proof
of the invariance theorem, Theorem 2.1.1 on page 117, make the ex-
act plain Kolmogorov complexity of a string an intrinsic property of
the string itself. For the resource-bounded version of the plain Kol-
mogorov complexity, we do not have an exact invariance theorem, but
an efficient resource-bounded invariance theorem, Theorem 7.1.1. The
resource-bounded prefix complexities Kt,s and KDt,s can be defined
similarly to Ct,s and CD t,s. However, in Chapter 3 there are two defini-
tions given. The first is in terms of the standard enumeration of Turing
machines, each of which is modified so that the machines in the modi-
fied enumeration compute all and only partial recursive prefix functions,
using the algorithm of Definition 3.1.1 on page 200. This type of pre-
fix machine we called ‘partially recursive prefix function machines.’ The
second definition, Example 3.1.1 on page 201, is in terms of a new model
of Turing machine with a separate one-way read-only input tape. This
type of prefix machine we have called ‘self-delimiting machines.’ In the
absence of a resource bound, the prefix complexities resulting from the
two definitions coincide, and this single prefix complexity satisfies the
invariance theorem, Theorem 3.1.1 on page 212. This makes the pre-
fix complexity an intrinsic property of the individual string just as in
the plain Kolmogorov complexity case. In the presence of time bounds
the situation is not so simple. To prove the equivalent of Theorem 7.1.1
for self-delimiting machines is straightforward: There is an optimal self-
delimiting machine, in the sense of Theorem 3.1.1, that simulates every
self-delimiting machine in the sense of Theorem 7.1.1 such that for every
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self-delimiting machine T there is a constant c such that

Kc·t log t(x) ≤ Kt
T (x) + c, (7.1)

for every string x and number of steps t. If we want to prove the equiva-
lent of Theorem 7.1.1 for time-bounded partial recursive prefix functions,
we first must convert each partial recursive function (rather, the Turing
machine computing it) to a prefix function (rather, a prefix machine
computing it) using the algorithm of Definition 3.1.2. This construc-
tion may dramatically increase the running time of the prefix machine
over that of the original machine from which it derived. Hence, this ap-
proach for partial recursive prefix functions does not give an efficient
resource-bounded invariance theorem. We may try to do so indirectly
by simulating a partial recursive prefix machine by a self-delimiting ma-
chine and simulating the latter by a reference universal self-delimiting
machine. Thus, the question arises whether one can show that every
partially recursive prefix function can be efficiently simulated by a self-
delimiting machine. In [D.W. Juedes, J.H. Lutz, Theor. Comput. Sys-
tems, 33(2000), 111–123] this question is answered in the negative: such
an efficient simulation exists iff P = NP. Even though the self-delimiting
machines compute exactly the partial recursive prefix functions, they are
not efficient. There is such a function that cannot be computed efficiently
by a self-delimiting machine unless P = NP. Nonetheless, we can show
the following. Define K based on self-delimiting machines and K̂ based
on partial recursive prefix-function machines. For every partial recursive
prefix machine M , there is a constant c such that

Kc·t(log t)2(x) ≤ K̂t
M (x) +O(log l(x)), (7.2)

for every string x and number of steps t. To see this, observe that by
Theorem 7.1.1, for every partial recursive prefix machine M , there is a
constant c1 such that

Cc1t log t(x) ≤ CtM (x) + c1 = K̂t
M (x) + c1,

for every x and t. Also, by Equation 7.1,

Kc2t log t(x) ≤ Ct(x) + 2 logCt(x) + c2,

for some c2, and every x and t. Combining the two observations and
observing that logCt(x) ≤ log l(x)+ c3 for some c3 and all x and t gives
Equation 7.2. This is attributed to H.M. Buhrman in [D.W. Juedes, J.H.
Lutz, Ibid.]. See also Exercise 7.1.4 on page 546. 3

7.1.1
Computable
Majorants

Here, consider only time-bounded plain Kolmogorov complexity and
write Ct or CD t. Similar results to those obtained here can be derived
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for space-bounded complexities. Upper semicomputable functions (be-
low) are the functions that can be approximated from above by recursive
functions, Section 4.1. We repeat the definition in Example 4.1.1.

Definition 7.1.7 A majorant of Kolmogorov complexity is a upper semicomputable func-
tion φ such that C(x) < φ(x)+c for all x, where c is a constant depending
on φ but not on x.

Example 7.1.2 Let t be a total recursive function. Then the function Ct is a total
recursive majorant of C. We first prove that Ct is a majorant. For every
x, we can run the universal machine on all programs of length at most
l(x) + c for t(l(x)) steps each. Then Ct(x) is the length of the shortest
program that halts with output x. Clearly, Ct(x) ≥ C(x) − O(1). This
also shows that Ct is total recursive. 3

If Ct is a total recursive majorant, then C(x) and Ct(x) may be ex-
ponentially different. That is, if we impose a recursive time limit, the
length of the shortest description of some strings can sharply increase.
We prove this fact in terms of characteristic sequences. Let A be a set,
and χ = χ1χ2 . . . its characteristic sequence defined by χi = 1 if xi ∈ A
and χi = 0 otherwise. By Barzdins’s lemma, Theorem 2.7.2 on page 178,
if A is recursively enumerable, then C(χ1:n|n) ≤ logn + O(1). The fol-
lowing blowup theorem is one of the very first results in time-limited
Kolmogorov complexity.

Theorem 7.1.3 There is a recursively enumerable set A with characteristic sequence χ
such that for all total recursive t and all n we have Ct(χ1:n|n) ≥ ctn,
where 0 < ct < 1 is a constant independent of n (but dependent on t).

Proof. Let T = T1, T2, . . . be a standard enumeration of Turing machines.
Let M = M1,M2, . . . be another enumeration of Turing machines such
that Tk = Mi with i = 2k−1 + j2k, for all k ≥ 1 and j ≥ 0. Stated
differently, k is the largest integer such that 2k−1 divides i. That is, in
the following sequence, if k is the index in position i, then Mi is Tk:

1213121412131215121312141213121612 . . . .

Thus, T1 occurs every two machines in the list, T2 appears every four
machines in the list, and Tk occurs every 2k machines in the list.

Given a total recursive time bound t, there is some Tk that computes
the value t(n) from input n. We know that Tk occurs with intervals of
2k consecutive machines in the M list, starting with the (3 · 2k−1)th
machine.

The following process enumerates an infinite sequence χ = χ1χ2 . . . by
diagonalization. Later we show that there is a constant ct > 0 such that
Ct(χ1:n|n) ≥ ctn.



538 7. Resource-Bounded Complexity

Initialize. Set i = 1 and χ1 := 0.

For all i > 1 dovetail the following computations: Set n := 2i−1. {This
step will enumerate the segment χn+1:2n}

Set n′ := 22k

n, where k is the index of Mi on the T list. This
means that Mi = Tk computes the partial recursive function, say,
t. Simulate the computation of Mi(n

′). If Mi(n
′) terminates, then

its output is time bound t(n′).

Simulate all binary programs of size up to n − 1 for t(n′) steps
on the reference universal Turing machine. Choose χn+1:2n such
that it is different from the segment from position n + 1 to 2n of
the output of any of these simulations. Since there are only 2n − 1
programs of size at most n−1, and there are 2n different candidates
for χn+1:2n, this is always possible. If Mi(n

′) does not terminate,
then define χn+1:2n := 0n.

The above procedure does not give an effective construction for χ. If
Mi(n

′) does not terminate, then we have no value of t(n′) to use; hence,
we cannot decide that χn+1:2n = 0n for n = 2i−1.

Claim 7.1.1 Let A ⊆ N be defined by x ∈ A iff χx = 1. Then A is recursively
enumerable.

Proof. For all x, simultaneously dovetail the following computation:
First, determine i such that n + 1 < x ≤ 2n for n = 2i−1. Enumerate
χn+1:2n by simulating Mi. If Mi(n

′) never terminates, then χn+1:2n =
0n. That is, both x 6∈ A, and our simulation of Mi(n

′) doesn’t halt. If
Mi(n

′) terminates, then we effectively construct χn+1:2n. We enumerate
x as an element of A iff χx = 1. 2

Claim 7.1.2 Let χ be as above. It is incompressible as stated in the theorem, where
without loss of generality we take t to be a monotonic increasing total
recursive function.

Proof. Let t be some monotonic increasing total recursive function. Then
t is computed by some machine Tk. By enumeration of M, the machine
Tk occurs for the first time as Mk0 with k0 = 2k−1. Subsequently, Tk
returns in the list in fixed intervals of 2k machines. Let i run over the
infinite sequence of values

k0, k0 + 2k, k0 + 2 × 2k, k0 + 3 × 2k, . . . .

Consider the special sequence of values of n defined by n = 2i−1. Denote
this sequence by S. Since t is total, the machine Tk halts for all inputs.
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Enumerating χ, for every n ∈ S we used a copy of Tk for a terminating
computation of segment χn+1:2n. This segment was determined differ-
ently from all corresponding segments of outputs of programs of length
at most n − 1 and halting within time t(n′) on the universal Turing
machine.

For every large enough n ∈ S, there is an m ∈ S such that n/22k ≪ m ≤
1
2n and no program of length at most m− 1 outputs an initial segment

χ1:2m in t(m′) = t(22k

m) ≫ t(n) steps. (This is why we need to use t(n′)
rather than t(n) in the definition of χ.) Therefore,

Ct(m
′)(χ1:2m) ≥ m. (7.3)

By way of contradiction, assume that

Ct(n)(χ1:n|n) ≤ n/22k+1.

Then, given n, we can compute χ1:n in time t(n) ≪ t(m′) from a program
of length at most 1

2m. Subsequently, given an additional description of
m in O(logm) bits, we can output the prefix χ1:2m in linear time. Since
we have altogether used fewer than t(m′) steps, and a program of length
less than m, we contradict Equation 7.3. 2

Set the constant ct := 1/22k+1 with k an index of a Turing machine
computing t. The two claims prove the theorem. 2

This lower bound is approximately optimal. Namely, let A be a recursively
enumerable set. For the characteristic sequence χ of A and each constant
c > 0, there exists a total recursive function t such that for infinitely many n,
Ct(χ1:n|n) ≤ cn. This result, as well as Theorem 7.1.3, and Barzdins’s lemma,
Theorem 2.7.2 on page 178, are due to J.M. Barzdins [Soviet Math. Dokl.,
9(1968), 1251-1254]. See also Exercise 7.1.6 on page 546.

The theorem can be generalized to computable majorants. There is a recur-
sively enumerable set A, with characteristic sequence χ, such that for each
computable majorant φ and each n, we have φ(χ1:n|n) ≥ cφn, with cφ a con-
stant independent of n (but dependent on φ) (Exercise 7.1.5 on page 546).

If a set A is recursive, then its characteristic sequence χ is also recursive,
that is, there is a program that outputs χ1:n on input n. By Exercise 2.3.4
on page 131, the following statements are equivalent:

• χ is an infinite recursive sequence.

• There exists a constant c such that for all n, we have C(χ1:n|n) ≤ c.

• There exists a constant c such that for all n, we have C(χ1:n) ≤
logn+ c.
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Adding a recursive time bound, we obtain a blowup theorem again. It
is stated for Ct, but the same proof also works for Kt.

Theorem 7.1.4 Let f and t be unbounded total recursive functions. There is a recursive
sequence χ such that Ct(χ1:n|n) ≥ n− f(n) infinitely often.

Proof. Without loss of generality, let f(n) ≤ n and limn→∞ f(n) = ∞.
The sequence χ will be constructed by diagonalization. Define a function
g inductively by g(1) = 1, and g(n) = min{m : f(m) > g(n − 1)} for
n > 1. The function g is total recursive, nondecreasing, and unbounded.

Initialize. Set χ1 := 0.

For n := 2, 3, . . . do Compute χg(n−1)+1:g(n) as follows: Simulate all
programs of size less than g(n) − g(n − 1), each for t(g(n)) steps.
Extend χ1:g(n−1) to χ1:g(n) so that χ1:g(n) is not the initial segment
of an output of any of the above simulations. {Since there are at
most 2g(n)−g(n−1) − 1 programs of length less than g(n)− g(n− 1),
extending χ in this way is always possible}

Thus, by construction, for almost all n we have Ct(χ1:g(n)|g(n)) ≥ g(n)−
g(n − 1). By definition of g(n), we have f(g(n)) ≥ g(n − 1). Then for
infinitely many n, we have Ct(χ1:n|n) ≥ n− f(n). 2

In Theorem 2.5.5, page 153, it was stated that almost all infinite se-
quences have maximal Kolmogorov complexity. More precisely, with
probability one in the sense of the uniform measure, for every infinite
sequence χ there is a constant c such that

C(χ1:n|n) ≥ n− c

infinitely often. The above theorem shows that every recursive time
bound blows up the Kolmogorov complexity of some recursive sequences
to nearly maximal. But, similar to the complexity oscillations in pure
Kolmogorov complexity for random sequences (Theorems 2.5.1 and 2.5.4,
page 143 and page 152, respectively), recursive sequences cannot achieve
maximal Kolmogorov complexity, even when they are restricted by a lin-
ear recursive time bound. In this sense, Theorem 7.1.4 is optimal.

Theorem 7.1.5 Let t(n) = Ω(n) be an unbounded total recursive function and let χ be a
recursive sequence. There is an unbounded total function f such that for
all n, we have

Ct(χ1:n|n) ≤ n− f(n).
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Proof. Since χ is recursive, there is a Turing machine T that outputs χn
on input n. We can trivially design a short program q for the universal
Turing machine U such that U(〈q, n〉) = χ1:n. The computation of U on
input 〈q, n〉 simulates T on input 0 until T halts, then on input 1 until
T halts, and so on, for a total of n steps. Let m be the last input for
which T halted in this simulation. Then U has already obtained χ1:m.
Therefore, q needs only to additionally store χm+1:n of length n−m+1
to be able to reconstruct χ1:n totally. This means that l(q) = n−m+ c
for some constant c (the index of T ). Moreover, the computation of χ1:n

by U runs in linear time. Since m→ ∞ as n→ ∞, the theorem follows.
2

An infinite sequence χ may have maximal Kolmogorov complexity in the sense
that for some c, for all n,

K(χ1:n|n) ≥ n− c,

where K is the prefix complexity; see Theorem 3.9.1 on page 247. But Theo-
rem 7.1.5 and its proof also hold for prefix complexity. Hence, the displayed
equation doesn’t hold for all n with c a constant, χ a recursive infinite se-
quence, and K replaced by Kt with t a linear recursive time bound.

Example 7.1.3 We have considered sequences that are incompressible with respect to
time-limited Kolmogorov complexity. Sequences that are incompressible
with respect to pure Kolmogorov complexity are shown to be random in
Theorem 2.5.5, page 153, and Theorem 3.6.1, page 222. In Section 2.5,
sequential (Martin-Löf) tests were used to define randomness of a se-
quence. An infinite sequence is random iff it can withstand all sequen-
tial tests (Definition 2.5.2). A sequential test is defined by a recursive
function (Definition 2.5.1).

Random numbers cannot be generated by arithmetic means. In many
applications, such as cryptography, it is sufficient to generate numbers
that appear to be random if we do not inspect them too closely. Obvi-
ously, the notion of sequential tests can be scaled down by permitting
only time-bounded (or space-bounded) tests. In particular, one is often
interested in sequences that are just random enough to pass sequential
tests that run in polynomial time.

Let {0, 1}∞ be the set of infinite binary sequences with the uniform
(Lebesgue) measure. This measure assigns probability 2−l(x) to the set
of infinite sequences starting with x.

Definition 7.1.8 A sequential test δ is called a sequential ptime (pspace) test if δ is
polynomial-time (polynomial-space) computable. An infinite sequence
ω is ptime (pspace) pseudorandom if for every sequential ptime (pspace)
test δ, and every polynomial p, it satisfies δ(ω1:p(n)) < n for all but
finitely many n.
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The condition on ω that δ(ω1:p(n)) < n guarantees that no evidence of
nonrandomness of ω at significance level 2−n can be found by δ unless
an initial segment of length greater than p(n) is examined. For the ter-
minology of testing, consult Sections 2.4 and 2.5. Contrary to the case
of unbounded sequential tests, it appears to be the case that there is
no universal ptime sequential test. This is because a universal sequen-
tial ptime test must simulate all other sequential ptime tests, and it is
unknown how to make such a universal test run in polynomial time. By
diagonalization, on the other hand, one can show that there exist pspace
pseudorandom sequences that are double-exponential-space computable.
We give a criterion in terms of space-bounded complexity for a sequence
to be pspace random.

Lemma 7.1.1 Let Cs denote the s-space bounded generating complexity and poly(f(n))
mean polynomial in f(n). If Cq(ω1:n) > n − poly(log n) for all polyno-
mials q and all but finitely many n, then ω is pspace pseudorandom.

Every pspace pseudorandom sequence is also a ptime pseudorandom se-
quence, simply because a ptime-sequential test cannot use more than
polynomial space. See also (Exercise 7.1.11 on page 548; Ker-I Ko, The-
oret. Comput. Sci., 48(1986), 9–33). 3

7.1.2
Resource-
Bounded
Hierarchies

Given a fixed reference universal machine, the three parameters in

C[f(n), t(n), s(n)] = {x : Ct,s(x) ≤ f(n), n = l(x)}

characterize classes of strings of different resource-bounded Kolmogorov
complexity. A shortest program p of length Ct,s(x), from which we can
compute x with l(x) = n in t(n) time and s(n) space simultaneously, is
called a seed. Intuitively, with a longer seed, more time, or more space,
we should be able to obtain some string that is not obtainable with these
parameters. Conversely, with a shorter seed, less time, or less space, we
may not be able to obtain strings that are obtainable with the current
parameters.

As usual, everything needs to be related to one fixed reference universal
Turing machine. For very reasonable f, s, n, x with l(x) = n, there is al-
ways a universal Turing machine U such that x ∈ CU [f(n), n, s(n)]. This
is similar to the case of nonresource-bounded Kolmogorov complexity.

The linear-space and linear-time speedup theorems, which were useful
tools in proving Turing machine space and time hierarchies, do not apply
here because compressing time or space results in the increase of program
length.
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Theorem 7.1.6 Let f and g be unbounded total recursive functions such that f(n) +
g(n) ≤ n, and for every k we can compute the least n such that f(n) = k
in space s(n) ≥ logn and time t(n) − n. Then for large n,

C[f(n) + g(n), t(n), s(n)] − C[f(n),∞,∞] 6= ∅.

Proof. It suffices to prove that for the fixed reference universal Turing
machine U , there is a constant c depending only on U such that

C[f(n) + c, t(n), s(n)] − C[f(n),∞,∞] 6= ∅.

Now let n and constant c be large enough that the following formulas
are true. Fix a string x of length l(x) = f(n)+ 1

2c such that C(x) ≥ l(x).
We will show that

x0n−l(x) ∈ C[f(n) + c, t(n), s(n)] − C[f(n),∞,∞].

Note that l(x0n−l(x)) = n. Let p = qx be a program that computes
x0n−l(x) as follows:

• Compute the first n such that f(n) + c ≥ l(p) in t(n)− n time and
s(n) space.

• Print x followed by 0n−l(x).

The length of the program is l(p) ≤ f(n) + c. Hence, Ct,s(x0n−l(x)) ≤
f(n) + c. Therefore, x0n−l(x) ∈ C[f(n) + c, t(n), s(n)].

We show that x0n−l(x) 6∈ C[f(n),∞,∞]. Suppose the contrary. But then
we can reconstruct x as follows: Generate x0n−l(x) using f(n) bits. In
order to retrieve x, we need to remove the suffix of length n− l(x). We
know that l(x) := f(n) + 1

2c. The length of a self-delimiting program
to compute c is at most 2 log c. We know f(n) because we remembered
this value as the length of the initial program. We can compute n from
f(n) in some constant d bits by the assumption in the theorem. Delete
the suffix 0n−l(x) to retrieve x. Altogether, this description of x takes
f(n)+2 log c+ d bits. For c large enough we obtain C(x) < f(n)+ 1

2c =
l(x), a contradiction. 2

Example 7.1.4 Let f(n) =
√
n, which is computable in O(n) time, and g(n) = log logn,

which is also computable in O(n) time. By the above theorem, for the
reference universal Turing machine U , for n large enough,

CU [
√
n+ log logn, cn,∞] − CU [

√
n,∞,∞] 6= ∅.

Since CU [
√
n, cn,∞] is by definition contained in both these classes, its

containment in CU [
√
n+ log logn, cn,∞] is proper. 3
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Theorem 7.1.7 Let s′(n) ≥ 2n+ s(n) + c and let s(n) be nondecreasing and computable
in space s′(n). Let f(n) ≤ n be an unbounded nondecreasing function
computable in space s′(n) − logn. For n large enough, we have

C[f(n),∞, s′(n)] − C[n− 1,∞, s(n)] 6= ∅.

Proof. The idea is to find the first string not in C[n − 1,∞, s(n)]. The
following program p for the reference universal Turing machine U prints a
string x ∈ C[f(n),∞, s′(n)]−C[n−1,∞, s(n)]. Program p first computes
the first n such that f(n) > l(p), using s′(n) space, including log n space
to count to n. Then pmarks off s(n) tape cells. Subsequently, p simulates
all s(n) space-bounded computations of U , with inputs of sizes up to
n− 1. If x is the lexicographically first string of length n not generated
by any of these s(n) space-bounded computations, then p prints x. We
can find this x because we can simply repeat all s(n) space-bounded
computations for each next candidate in the lexicographic enumeration
of all strings of length n. Since there are 2n candidates, and only 2n− 1
inputs of sizes up to n − 1, such an x exists. With input p, reference
machine U uses s′(n) ≥ 2n+ s(n)+ c space. Here c is a constant, n tape
cells are needed to generate all strings of length n, another n tape cells
are needed to generate all inputs for the simulated computation, and
s(n) space is needed to carry out the simulation.

Program p has length less than f(n). It uses s′(n) space and generates
a string x not in C[n− 1,∞, s(n)]. 2

Example 7.1.5 Theorems 7.1.6 and 7.1.7 are still true with C replaced by CD every-
where. For example, for large enough n, we have CD [logn,∞, n2] ⊂
CD [logn,∞, n2 logn] and CD [logn,∞, n2] ⊂ CD [2 logn,∞, n2]. 3

A straightforward generalization to time-bounded Kolmogorov complex-
ity leaves an exponential gap between two time classes. We leave this
to the Exercises section. The nontrivial time counterpart of the above
theorem is still an open problem. The above proof method fails, since
time is not reusable. The time- or space-constructibility assumptions
in Theorems 7.1.6 and 7.1.7 are necessary. Indeed, as in computational
complexity theory, we can prove gap theorems.

Theorem 7.1.8 Given a total recursive function g(n) ≥ n there exists a total recursive
function s(n) such that for every f(n) < n, for large enough n,

C[f(n),∞, s(n)] = C[f(n),∞, g(s(n))].

Proof. Consider the reference universal Turing machine U . Given n, we
define s(n) to be the first i such that no program of size up to n − 1
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(starting with empty input) halts using between i + 1 and g(i) space
on U . This s(n) can always be recursively found because there are only
finitely many programs of size up to n− 1 and we can simulate them all
recursively in dovetailing style.

Let x ∈ C[f(n),∞, g(s(n))] and let p be a program of length f(n) print-
ing x using at most g(s(n)) space. Because f(n) < n and from our
construction, we know that p does not use an amount of space between
s(n) + 1 and g(s(n)). Therefore, p uses at most s(n) space, and hence
x ∈ C[f(n),∞, s(n)]. 2

Let Q be a collection of subsets in {0, 1}∗. A set is Q-immune if it is
infinite and does not have infinite subsets belonging to Q. It is easy to
see that for every unbounded total recursive f(n) < n, the set {0, 1}∗ −
C[f(n),∞,∞] is recursively enumerable-immune. For suppose {0, 1}∗−
C[f(n),∞,∞] contains an infinite recursively enumerable subset ac-
cepted by a Turing machine T . Then we can construct the following ma-
chine T ′: The machine T ′ enumerates the subset by simulating T . While
enumerating, it eventually will find a string x such that f(l(x)) > l(T ′).
Since x is enumerated by a program T ′ that is shorter than f(n) with
n = l(x), we have x ∈ C[f(n),∞,∞]. But the subset enumerated by
T ′ was in the complement of C[f(n),∞,∞], which gives the required
contradiction. We extend this idea in the following example.

Example 7.1.6 Let limn→∞ s(n)/s′(n) → 0. Let U be the reference universal Turing
machine. Let s′(n) ≥ n be a nondecreasing function. Let f(n) be an
unbounded nondecreasing function computable in space s(n) by U . We
prove that {0, 1}∗ − C[f(n),∞, s′(n)] is DSPACE[s(n)]-immune.

Assume, by way of contradiction, that {0, 1}∗ − C[f(n),∞, s′(n)] con-
tains an infinite subset A ∈ DSPACE[s(n)]. Let TA be a Turing machine
that accepts A using O(s(n)) space. We exhibit a program p for the
reference universal Turing machine U that prints a long string in A:

Step 1. Find the first i such that f(i) > l(p).

Step 2. Find the first x ∈ A {by simulating TA} such that l(x) ≥ i.
Print x. {This step uses O(s(n)) space, where n = l(x)}

For n large enough, by choice of p, the reference universal Turing machine
prints x in space s′(n) with the program p, where l(p) is at most f(n).
Therefore, x ∈ C[f(n),∞, s′(n)], a contradiction. 3

The sets C[c logn, t, s] will be especially useful in certain applications.
Such sets belong to the wider class of sparse sets. A set is sparse if it
has only a polynomial number of elements for each length.
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Exercises 7.1.1. [20] Define Kt,s and KDt,s based on self-delimiting machines,
Example 7.1.1, and prove the invariance theorems for them.

7.1.2. [20] Prove an invariance theorem for CD t,s.

7.1.3. [25] Prove the results of Theorem 7.1.2 for KDs, the space-
bounded prefix complexity.

7.1.4. [O46] We resume the discussion in Example 7.1.1.

(a) Is there an efficient invariance theorem for prefix Kolmogorov com-
plexity based on the partial recursive prefix function definition, Defini-
tion 3.1.2 on page200? Efficiency here means simulation of a machine in
the enumeration of the partial recursive prefix functions by an optimal
machine in, say, O(t log t) steps for t steps.

(b) Is there an efficient universal partially recursive function?

(c) Are the two notions of prefix Kolmogorov complexity efficiently
equivalent?

Comments. Source: D.W. Juedes, J.H. Lutz, Theor. Comput. Systems,
33(2000), 111–123.

7.1.5. [39] Prove that there is a recursively enumerable set A with
characteristic sequence χ such that for every total recursive majorant
φ of C and every n, we have φ(χ1:n|n) ≥ cφn, where cφ is a constant
independent of n (but dependent on φ).

Comments. Use the proof of Theorem 7.1.3 and also Example 4.1.1.
Source: A.K. Zvonkin and L.A. Levin, Russ. Math. Surveys, 25:6(1970),
83–124], attributed to J.M. Barzdins and N.V. Petri. See also Exam-
ple 4.1.1.

7.1.6. [35] Show that there is a recursively enumerable set A with
characteristic sequence χ such that for all total recursive functions t, and
for all 0 < c < 1, there exist infinitely many n such that Ct(χ1:n) > cn.

Comments. Compare this exercise with Theorem 7.1.3. R.P. Daley [In-
form. Contr., 23(1973), 301–312] proved a more general form of this
result using the uniform complexity of Exercise 2.3.2, page 130.

7.1.7. [40] Uniform complexity was defined in Exercise 2.3.2, page 130.
Here we define the time-bounded uniform complexity. For an infinite
string ω and the reference universal Turing machine U ,

Ct(ω1:n;n) = min{l(p) : ∀i ≤ n[U t(p, i) = ω1:i]}.

Define

CU [f, t,∞] = {ω : ∀∞n[Ct(ω1:n;n) ≤ f(n)]}.
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Let ω be a Mises–Wald–Church random sequence, with total recursive
admissible place-selection rules instead of the standard definition with
partial recursive admissible place-selection rules. Show that for every
unbounded, nondecreasing, total recursive time bound t we have ω 6∈
CU [ 1

2n, t,∞]. This holds a fortiori for the set of Mises–Wald–Church
random sequences using partial recursive place-selection rules.

Comments. This exercise shows that there is a Mises–Wald–Church
random sequence, as defined in Definition 1.9 on page 53, with lim-
iting frequency 1

2 , that has very low uniform Kolmogorov complex-
ity, but high time-bounded uniform Kolmogorov complexity. In Ex-
ercise 2.5.13, Item (a), on page 161, we have proved that there is a
Mises–Wald–Church random sequence ω, with partial recursive place-
selection rules as in Definition 1.9 and limiting frequency 1

2 , such that
C(ω1:n;n) ≤ f(n) logn+O(1) for every unbounded, nondecreasing, to-
tal recursive function f . In Exercise 2.5.13, Item (c), on page 161, we
have proved that there is a Mises–Wald–Church random sequence ω,
with total recursive place-selection rules and limiting frequency 1

2 , such
that C(ω1:n;n) ≤ f(n) +O(1) for every unbounded, nondecreasing, to-
tal recursive function f . Now we have shown that if there is a recursive
time bound, then all Mises–Wald–Church random sequences (even with
respect to only total recursive place-selection rules) indeed look quite
random. One should be able to prove similar theorems for C and K
versions of this exercise and Exercise 7.1.8. Source: R.P. Daley, Inform.
Contr., 23(1973), 301–312. The fact that some Mises–Wald–Church ran-
dom sequences have low Kolmogorov complexity is from [R.P. Daley,
Math. Systems Theory, 9(1975), 83–94].

7.1.8. [40] Use the uniform complexity of Exercise 7.1.7. We consider
a time–information tradeoff theorem for resource-bounded uniform com-
plexity. Let fi = ⌈n1/i⌉, for i = 1, 2, . . . . Construct a recursive infinite
sequence ω and a set of total recursive, nondecreasing, unbounded func-
tions {ti}, where the ti’s are recursively enumerated as t1, t2, . . . , such
that the following hold:

(a) For all i > 1, we have ω 6∈ CU [fi, ti,∞], where CU [·] is defined in
Exercise 7.1.7.

(b) For all i, ω ∈ CU [fi, ti+1,∞].

Comments. Source: R.P. Daley, J. Assoc. Comp. Mach., 20:4(1973), 687–
695. Daley proved a more general statement with a general characteri-
zation of {fi}.

7.1.9. [29] Call χ polynomial-time computable if for some polynomial
p and Turing machine T , the machine T on input n outputs χ1:n in time
p(n). Prove that χ is polynomial-time computable if and only if for some
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polynomial p and constant c for all n we have Cp(χ1:n;n) ≤ c, where
C(·; ·) is the uniform complexity of Exercise 7.1.7.

Comments. This is a polynomial-time version of the results about re-
cursive infinite sequences in Exercise 2.3.4. Source: Ker-I Ko, Theoret.
Comput. Sci., 48(1986), 9–33.

7.1.10. [30] Let f(n) be computable in polynomial time and satisfy
the condition

∑
2−f(n) = ∞. Then for every infinite sequence ω, there

is a polynomial p such that for infinitely many n, we have Cp(ω1:n|n) ≤
n− f(n).

Comments. This is a polynomial-time version of Theorem 2.5.1 on page
143. Source: Ker-I Ko, Theoret. Comput. Sci., 48(1986), 9–33.

7.1.11. [38] Use the terminology of Example 7.1.3. Prove that there
exists a pspace-pseudorandom infinite sequence ω such that ω1:n is com-
putable in 22n

space.

Comments. Hint: prove this in two steps. First, prove that there is an
infinite sequence ω, computable in double exponential space, such that
for every polynomial p the p-space bounded uniform Kolmogorov com-
plexity satisfies C∞,p[ω1:n;n] ≥ n−3 logn, for infinitely many n. Second,
prove that every ω satisfying the above condition is pspace pseudoran-
dom. Third, conclude that ω is also ptime pseudorandom. Source: Ker-I
Ko, Theoret. Comput. Sci., 48(1986), 9–33.

7.1.12. • [27/O48] In Section 3.9.1, we proved various versions of a
symmetry of information theorem, with no resource bounds. For exam-
ple, up to an O(log l(xy)) additive term, C(x, y) = C(x) +C(y|x). Here
C(x, y) = C(〈x, y〉), where 〈·, ·〉 is the standard pairing function.

(a) The symmetry of information holds for space-bounded complexity.
Let s(n) ≥ n be a nondecreasing function and f(n) be a nondecreasing
function computable in s(n) space. Show that for all x, y such that l(y) =
f(l(x)), to within an additive term of O(log l(xy)),

C∞,O(s(n))(x, y|l(xy)) = C∞,O(s(n))(x|l(x)) + C∞,O(s(n))(y|x).

(b) Use the assumptions in Item (a), except that now f(n) is computable
in exponential time. Let E =

⋃

c DTIME(2cn). Show that to within an
additive term of O(log l(xy)),

CE,∞(x, y|l(xy)) = CE,∞(x|l(x)) + CE,∞(y|x).

(c) (Open) Use the assumptions of Item (a) except that now f(n) is
computable in nondecreasing polynomial time. Prove, or disprove,

Cpoly,∞(x, y|l(xy)) = Cpoly,∞(x|l(x)) + Cpoly,∞(y|x).
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Comments. Here and in Exercise 7.1.13 we consider the question of
resource-bounded symmetry of information. The main problem in mak-
ing the proof of Item (b) work for Item (c) is a construction involving the
enumeration of a set: one needs to find in polynomial time the ith ele-
ment in an exponential-size P set. In general, is there a similar symmetry
of information theorem for subexponential time-bounded Kolmogorov
complexity? Source: L. Longpré and S. Mocas, Inform. Process. Lett.,
46:2(1993), 95–100. They proved that if a certain version of (c) holds,
then one-way functions do not exist.

7.1.13. [36] We investigate the open problem of Exercise 7.1.12, Item
(c), further. We call this problem ‘polynomial-time symmetry of informa-
tion.’ Let p(n) be a polynomial. We say that a subset of {0, 1}∗ contains
almost all strings (of {0, 1}∗) if for each n it contains a fraction of at
least 1 − 1/p(n) of {0, 1}≤n. We call a string w a polynomial-time de-
scription of x if the universal reference machine U computes x from w
in polynomial time.

(a) If the polynomial-time symmetry of information holds, then there is
a polynomial-time algorithm that computes the shortest p-time descrip-
tion of a string for almost all strings.

(b) If the polynomial-time symmetry of information holds, then every
polynomial-time computable function is probabilistic polynomial-time
invertible for almost all strings in its domain.

(c) If P = NP (which means that every polynomial-time computable
function is polynomial-time invertible), then the polynomial-time sym-
metry of information holds.

Comments. The prime question is whether symmetry of information
holds in a polynomial-time-bounded environment. Intuitively, this prob-
lem is related to the complexity of inverting a polynomial-time com-
putable function. The above evidence supports this intuition. Source: L.
Longpré and O. Watanabe, Inform. Computation, 121:1(1995), 14–22.

7.1.14. [27/O35] Let T (n), f(n) be functions both computable in time
T (n). Prove that C[f(n), T (n),∞] ⊂ C[f(n), c2f(n)T (n),∞], for some
constant c. Open problem: can we establish a tighter version of this time
hierarchy without an exponential-time gap in the hierarchy?

Comments. Source: L. Longpré, Ph.D. thesis, Cornell University, 1986.

7.1.15. [25] Show that for some c, C[n,∞, c]
⋂
C[logn,∞, c logn] 6= ∅

for large n. Can you formulate other tradeoff results (between complex-
ity, time, and space)?

7.1.16. [25] Kolmogorov complexity arguments may be used to replace
diagonalization in computational complexity. Prove the following using
Kolmogorov complexity:
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(a) If limn→∞ s(n)/s′(n) → 0, and s′(n) ≥ logn computable in space
s′(n), then DSPACE[s′(n)] − DSPACE[s(n)] 6= ∅.

(b) If limn→∞ s(n)/s′(n) → 0, with s′(n) computable in space s′(n) and
s′(n) ≥ 3n, then there is a language L ∈ DSPACE[s′(n)] such that L is
DSPACE[s(n)]-immune.

(c) Let r(n) be a total recursive function. There exists a recursive lan-
guage L such that for every Turing machine Ti accepting L in space
Si(n), there exists a Turing machine Tj accepting L in space Sj(n) such
that r(Sj(n)) ≤ Si(n), for almost all n.

(d) Exhibit a Turing machine that accepts an infinite set containing no
infinite regular sets.

Comments. Source: suggested by B.K. Natarajan. In Item (a) we con-
sider the DSPACE hierarchy. The original space hierarchy theorem was
studied by R. Stearns, J. Hartmanis, and P. Lewis II [6th IEEE Symp.
Switching Circuit Theory and Logical Design, 1965, pp. 179–190]. Item
(c) is the Blum speedup theorem from [M. Blum, J. Assoc. Comp. Mach.,
14:2(1967), 322–336].

7.2

Language

Compression

If A is a recursive set and x is lexicographically the ith element in A,
then obviously C(x) ≤ log i + cA for some constant cA depending only
on A. If further, the membership of A can be determined in polynomial-
time p(n), that is, A is in P, and A=n = {x ∈ A : l(x) = n}, then we are
inclined to conjecture,

There exists a constant cA such that for all x ∈ A=n,
we have Cp(x|n) ≤ log d(A=n) + cA.

But since a Turing machine cannot search through all 2n strings in
polynomial-time p(n), the argument that worked in the recursive case
does not apply in the polynomial-time setting. This conjecture has inter-
esting consequences in language compression. Results in this section all
stem from this question. Although whether the conjecture is true is still
an important open problem in time-bounded Kolmogorov complexity, we
try to provide some partial answers. We deal only with time-bounded
Kolmogorov complexity Ct and CDt.

Definition 7.2.1 (i) Let Σ = {0, 1}. A function f : Σ∗ → Σ∗ is a compression of language
L ⊆ Σ∗ if f is one-to-one on L and for all except finitely many x ∈ L,
we have l(f(x)) < l(x).

(ii) For a function f , the inverse of f is f−1: f(L) → L such that for every
x ∈ L, we have f−1(f(x)) = x. A language L is compressible in time
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T (n) if there is a compression function f for L that can be computed in
time T (n), and its inverse f−1 can also be computed in time T (n).

(iii) A compression function f optimally compresses a language L if for
every x ∈ L of length n, l(f(x)) ≤ ⌈log

∑n
i=0 d(L

=i)⌉.
(iv) A natural and optimal form of compression is ranking. The ranking
function rL: L→ N maps x ∈ L to its index in a lexicographic ordering
of L.

Obviously, language compression is closely related to the Kolmogorov
complexity of the elements in the language. Efficient language compres-
sion is closely related to the time-bounded Kolmogorov complexity of
the elements of the language. Using a ranking function on a recursive
set, we achieve the optimal Kolmogorov complexity for most elements
in the set. In this sense, ranking optimally compresses a recursive set.
When there is no resource bound, this compression is trivial. Our pur-
pose is to study the polynomial-time setting of the problem. This is far
from trivial.

7.2.1
Decision
Compression

Given a polynomial-time computable set A and x ∈ A=n, can we com-
press x by representing x in log d(A=n)+O(1) bits? In order to apply the
nonresource-bounded Kolmogorov complexity in previous chapters, we
have often implicitly relied on Theorem 2.1.3 on page 111. The theorem
states that given a recursively enumerable set A, for every x ∈ A=n we
have C(x|n) ≤ log d(A=n) + O(1). The short program for x is simply
its index in the enumeration of elements in A=n. Similarly, we also have
CD(x|n) ≤ log d(A=n) +O(1).

Even for A in P, a program that generates x in this way must search
through all 2n strings over Σn and test whether they belong to A=n.
Such a process takes at least exponential time. We are interested in the
compression achievable in polynomial time. Remarkably, for CD, near
optimal compression is achievable in polynomial time.

Theorem 7.2.1 Let A be a set, given as an oracle. Then, there is a constant c and a
polynomial p such that for every string x ∈ A=n,

CDp(x|A=n) ≤ 2 log d(A=n) + 2 logn+ c.

Proof. Let A be a set and d = d(A=n).

Lemma 7.2.1 Let S = {x1, . . . , xd} ⊆ {0, . . . , 2n − 1}. For every xi ∈ S there exists a
prime pi ≤ 2dn such that for every j 6= i we have xi 6≡ xj mod pi.
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Proof. Let N = 2n. Consider prime numbers between c and 2c. For each
pair xi, xj ∈ S there are at most logcN = logN/ log c different prime
numbers p such that c ≤ p ≤ 2c and xi ≡ xj mod p. Fix index i. Since
there are only d−1 pairs of strings in S containing xi, it follows that there
exists a prime number pi among (d− 1) logN/ log c+ 1 prime numbers
between c and 2c such that for every j 6= i we have xi 6≡ xj mod pi. The
prime number theorem, Exercise 1.5.8 on page 17, implies that there
are at least c/ log c prime numbers between c and 2c. Therefore, taking
c > (d− 1) logN yields that pi ≤ 2d logN = 2dn. 2

Let A play the role of S in Lemma 7.2.1. For x ∈ A, apply Lemma 7.2.1
to get px. The CD program for x works as follows:

Step 1. Input y.

Step 2. If y 6∈ A=n by oracle query to A then reject y
else if y ≡ x mod px then accept y else reject y.

The size of the above program is l(px) + l(x mod px) + O(1). This is
2 log d(A=n) + 2 logn+O(1). Notice that by padding, we can make the
descriptions of px and x mod px equally long, precisely log d+logn bits.
Concatenating the two descriptions, we can parse them in the middle,
saving an O(log log n)-bit overhead for a delimiter to separate them.
Clearly, the program runs in polynomial time, and accepts only x. 2

Corollary 7.2.1 Let A be a set in P. There is some polynomial p such that for every
string x ∈ A=n it holds that

CDp(x|n) ≤ 2 log d(A=n) + 2 logn+O(1).

Can we improve Theorem 7.2.1 and Corollary 7.2.1? Exercise 7.2.3 shows
that Theorem 7.2.1 is tight for some setA. Exercise 7.2.4 improves Corol-
lary 7.2.1 for most strings in A. The next theorem states that the com-
pression can be made almost optimal at the penalty of adding more
information to the conditional. That is, we are given a magical string s
depending only on A=n for free.

Theorem 7.2.2 Let A be a set. There is a polynomial p(n) such that for every large n,
if x ∈ A=n, then

CDp(x|A=n, s) ≤ log d(A=n) + log log d(A=n) +O(1),

where A=n is given as an oracle, and the string s depends only on A=n

and has length about n log d(A=n).
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In this theorem, as in Theorem 7.2.1, we do not need to assume that A is
accepted in polynomial time. If, for example, for some c and for each n, the
set A=n is accepted by a circuit of size nc, then the oracle A=n in the condition
can be replaced by a finite string, of polynomial length, describing the circuit.
In the proof, if we need to decide whether an element x is in A=n, then we just
simulate the circuit in polynomial time. The same applies to Theorem 7.2.4.

Proof. In order to prove the above theorem, we need a coding lemma.
Let k = d(A=n) and m = 1 + ⌈log k⌉. Let h : Σn → Σm be a linear
transformation given by a randomly chosen m × n binary matrix R =
{rij}. That is, for each x ∈ Σn, we have that Rx is a string y ∈ Σm with

yi ≡
(
∑

j rij · xj
)

mod 2.

Let H be a collection of such functions. Let B,C ⊆ Σn and x ∈ Σn. The
mapping h separates x within B if for every y ∈ B, different from x, it
maps h(y) 6= h(x). The mapping h separates C within B if it separates
each x ∈ C within B. The set of mappings H separates C within B if
for each x ∈ C some h ∈ H separates x within B. In order to give each
element in B a (logarithmic) short code, we randomly hash elements of
B into short codes. If collisions can be avoided, then elements of B can
be described by short programs. We now state and prove the promised
coding lemma.

Lemma 7.2.2 (Coding lemma) Let B ⊆ Σn, where d(B) = k. Let m = 1 + ⌈log k⌉.
There is a collection H of m random linear transformations Σn → Σm

such that H separates B within B.

Proof. Fix a random string z of length nm2 such that C(z|B,P,m, n) ≥
l(z), where P is the program for describing z (independent of the actual
z) in the following discussion. Cut z into m equal pieces. Use the nm
bits from each piece to form an n×m binary matrix in the obvious way.
Thus, we have constructed a set H of m random matrices. We claim
that H separates B within B.

Assume the contrary. That is, for some x ∈ B, no h ∈ H separates
x within B. Then there exist y1, . . . , ym ∈ B such that hi(x) = hi(yi)
(1 ≤ i ≤ m). Hence, hi(x− yi) = 0. (Here x− yi means mod 2 element-
wise subtraction.)

Since x−yi 6= 0, the first column of hi corresponding to a 1 in the vector
x− yi can be expressed by the rest of the columns using x− yi. Now we
can describe z by a fixed program P that uses the following data:

• the index of x in B, using ⌈log k⌉ bits;

• the indices of y1, . . . , ym, in at most m⌈log k⌉ bits;
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• the matrices h1, . . . , hm each minus its redundant column, in m2n−
m2 bits.

From this description of the nonredundant columns of the hi’s, and x
and the yi’s, the program P given B (as an oracle) will reconstruct hi.
The total length of the description is only

m2n−m2 + ⌈log k⌉ +m(⌈log k⌉) ≤ m2n− 1.

Hence, C(z|B,P,m, n) < l(z), a contradiction. 2

We continue the proof of the theorem. Let H be a collection of functions
as given by Lemma 7.2.2. Let s be an encoding of H . For every y ∈ A=n

there is some hi ∈ H that separates y within A=n. Given oracle A=n and
s, a short program with input ihi(y) can accept precisely y as follows:

Check in lexicographic order for every candidate x whether x ∈ A=n.
If x ∈ A=n, then decode ihi(y) into i and hi(y), and find hi using i
and s. Compute hi(x). Accept x iff hi(x) = hi(y), using the fact that hi
separates y within A=n.

Therefore, y can be described by i followed by hi(y), where i uses pre-
cisely ⌈logm⌉ bits by padding and hi(y) requires m bits. All of this can
be done in polynomial time, say p(n) time. Hence,

CDp(y|A=n, s) ≤ m+ logm+O(1)

= log d(A=n) + log log d(A=n) +O(1).

2

Example 7.2.1 We provide another application of the coding lemma, Lemma 7.2.2. A
PTM (probabilistic Turing machine) is a Turing machine that can flip
a fair coin to determine its next move. A PTM is also called a random
algorithm. The class BPP is the set of all decision problems solvable
by a polynomial-time PTM such that the “yes/no” answer always has
probability at least 1

2 + δ of being correct for some fixed δ > 0. One can
make the error probability less than 1/2n by running such an algorithm
a polynomial number of times and taking the majority answer.

Theorem 7.2.3 BPP ⊆ Σp2
⋂

Πp
2 .

Proof. Let B ∈ BPP be accepted by a PTM T using m = nk coin
flips (random bits), with error probability ǫ ≤ 1/2n on inputs of length
n. Let Ex ⊂ Σm be the collection of coin-flip sequences of length m
on which T rejects x. If x ∈ B, then we must have d(Ex) ≤ 2m−n,
since otherwise we would have ǫ > 1/2n. Setting l = 1 + m − n, the
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coding lemma, Lemma 7.2.2, states that there is a collection H of l
linear transformations from Σm to Σl separating Ex within Ex. If x 6∈ B,
then d(Ex) > 2m−1, since otherwise ǫ > 1/2n again. But then, by the
pigeonhole principle, no such collection H as above exists. Hence, x ∈ B
if and only if such an H exists. The latter can be expressed as

(∃H)(∀e ∈ Ex)(∃h ∈ H)(∀e′ ∈ Ex)[e 6= e′ ⇒ h(e) 6= h(e′)].

The second existential quantifier has polynomial range, and hence can be
absorbed into the polynomial-time computation. So, BPP ⊆ Σp2. Since
BPP is closed under complement, BPP ⊆ Πp

2 and BPP ⊆ Σp2
⋂

Πp
2. 2

Denote the set of languages accepted in random polynomial time by
R. Let R2 = RNP be the collection of languages accepted in random
polynomial time with an oracle for an NP-complete set. The above proof
also yields BPP ⊆ R2

⋂
CoR2. 3

7.2.2
Description
Compression

We discuss the compression issues with respect to Ct. Let A be a recur-
sive set and let d(A=n) ≤ p(n) for some polynomial p for all n. Then by
Theorem 2.1.3 on page 111, there exists a constant c such that for every
x ∈ A=n,

C(x|n) ≤ c logn+ c. (7.4)

The next theorem states that this is true up to a log log d(A=n) additive
term in a polynomial-time setting with the help of a Σp2 oracle.

Theorem 7.2.4 There is a polynomial p(n) such that for every set A and every large n,
if x ∈ A=n, then

Cp(x|A=n, s,NPA) ≤ log d(A=n) + log log d(A=n) +O(1), (7.5)

Cp(x|A=n,Σp,A2 ) ≤ log d(A=n) + log log d(A=n) +O(1), (7.6)

where A=n (an NPA-complete set) and some Σp,A2 -complete set are given
as oracles, and s is a string of length about n log d(A=n).

Proof. Equation 7.5 follows from Theorems 7.1.2 and 7.2.2. To prove
Equation 7.6, we use the Σp,A2 oracle B to find s, the encoding of H in
the proof of Theorem 7.2.2. By that proof there exists an H such that
for all x ∈ A=n, some hi in H separates x within A=n (H separates
A=n within A=n). The idea is to reconstruct s by asking questions of
B. Since H is not unique, we construct s bit by bit. Assume that we
have constructed the prefix s1 . . . si of s. We extend this by one more bit
si+1, where si+1 = 1 if oracle B answers “yes” to the question “is there
an H with prefix s1 . . . sisi+1 such that for all x ∈ A=n, some hi ∈ H
separates x within A=n?” 2
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We can get rid of the oracle at the cost of obtaining much weaker in-
equalities than Equation 7.4 or Theorem 7.2.4. For a given language L,
define the density function of L to be µL(n) = d(L=n)/2n.

Theorem 7.2.5 If L is acceptable in polynomial time, k > 3, and µL ≤ n−k, then L can
be compressed in probabilistic polynomial time. The compression function
maps strings of length n to strings of length at most n− (k−3) logn+ c.

Proof. Complicated and omitted. See [A. Goldberg and M. Sipser, SIAM
J. Comput., 20(1991), 524–536]. 2

Theorem 7.2.5 is far from optimal in two ways:

• If a language L is very sparse, say µL ≤ 2−n/2, then one expects to
compress 1

2n bits instead of only O(log n) bits given by the theorem.
Can the O(log n) term be improved?

• The current compression algorithm is probabilistic; can this be
made deterministic?

In computational complexity, oracles sometimes help us to understand
the possibility of proving a new theorem. The following result shows that
if S, the language to be compressed, is not restricted to be polynomial-
time acceptable, and the membership query of S is given by an oracle,
then compression by only a logarithmic term is optimal. The point here is
that polynomial-time decidability of language membership is a stronger
requirement than membership decidability by just oracle questions. The
technique used in the following proof will be used again in the proof of
Theorem 7.3.3.

Definition 7.2.2 A set A is called a sparse set if for some constant c, for all n, the cardi-
nality d(A=n) is at most nc + c.

Theorem 7.2.6 There is a sparse language L such that if L is compressed by a probabilis-
tic polynomial-time machine with an oracle for L, then the compression
function maps strings of length n to strings of length n−O(log n).

Proof. Let L be a language that contains exactly one string x for each
length n, which is a tower of 2’s:

n = 22···
2

.

The language L contains no strings other than those just described. Each
string x ∈ L is maximally complex:

C(x) ≥ l(x).
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Let T be a probabilistic machine with an oracle for L that runs in time
nk. By way of contradiction, let f be the compression function such that
for large n and x ∈ L of length n, and constant c1 to be chosen later,
l(f(x)) ≤ n − c1 − (k + c1) logn. It is enough to show that T cannot
restore x from f(x) with probability at least 1

2 .

Assume that T on input f(x) outputs x with probability 1
2 . Hence, on

half of the 2n
k

coin-toss sequences of length nk, T should output the
correct x. Let R be the set of such coin-toss sequences that lead to
correct x. Choose r ∈ R such that

C(r|x) ≥ l(r) − 1.

Since C(r) ≤ l(r) + O(1) by the last two displayed equations, we have
by the symmetry of information theorem, Theorem 2.8.2 on page 190,
that for some constant c2,

C(x|r) ≥ n− c2 logn. (7.7)

In order to give a short description of x, relative to r, we will describe in
(k+2) logn+ c1 bits all information needed to answer the oracle queries
of T on input f(x).

The language L is so sparse that on input of length of n (which is a tower
of 2’s), T has no time to write down a string in L of length greater than
n because every such string has length at least 2n. That is, for every
query “x′ ∈ L?” if l(x′) > n, then the answer is “no.” In addition, we
can write down all the strings in L of lengths less than n in fewer than
2 logn bits. This enables us to answer queries of lengths less than n.

Since T , with respect to the coin-toss sequence r, outputs x, we can
redescribe x by simulating T on input f(x), using the random sequence
r and the following information:

• This discussion, in at most c1 bits.

• 2 logn bits to encode strings in L of length less than n.

• If T queries “x ∈ L?” then we use k log n bits to indicate the first
step when T makes such query. Before this step, if T queries about
a string of length n, then the answer is “no.”

Therefore,

C(x|r) ≤ c1 + 2 logn+ k logn+ l(f(x)).

Choosing c1 > c2 + 2, the right side of the inequality is less than n −
c2 logn, contradicting Equation 7.7. 2
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There is a language L, of density µL < 2−n/2, that cannot be compressed
by any deterministic polynomial-time machine that uses an oracle for L. Fur-
ther, the following results can be shown by diagonalization: (i) There is an
exponential-time language that cannot be compressed in deterministic poly-
nomial time. (ii) There is a double-exponential-time language that cannot be
compressed in probabilistic polynomial time. See A. Goldberg and M. Sipser,
SIAM J. Comput., 20(1991), 524–536.

7.2.3
Ranking

Ranking is a special and optimal case of compression. Recall that the
ranking function rL maps the strings in L to their indices in the lexi-
cographic ordering of L. If rL : L → N is polynomial-time computable,
then so is r−1

L : N → L (Exercise 7.2.7 on page 560). We are interested
only in polynomial-time computable ranking functions. In the previous
sections we met several hard-to-compress languages. But there are also
quite natural language classes that are easy to compress.

A one-way log-space Turing machine is a deterministic Turing machine
with a separate one-way input tape on which the input is delimited
between distinguished end markers, and a fixed number of separate work
tapes. During its computation on an input of length n, the machine uses
only O(log n) space on its work tapes.

Theorem 7.2.7 If a language L is accepted by a one-way log-space Turing machine, then
rL can be computed in polynomial time.

Proof. Let T be a one-way log-space Turing machine that accepts L. We
want to compute rL(x) for each string x of length n. Write y ≤ x if y
precedes x in the length-increasing lexicographic order. Let Lx = {y ∈
L : y ≤ x}. Trivially, rL(x) = d(Lx). By storing x in the internal memory
of T , we obtain a machine Tx accepting Lx. That is, Tx simulates T on
each input and compares the input with x at the same time. The machine
Tx accepts iff T accepts the input and the input is less than or equal
to x.

Tx has size polynomial in n = l(x) and uses logn space. We can construct
a directed computation graph G = (V,E) for Tx as follows: Let an ID of
Tx be a triple,

(state, input head position, work tape content).

The set of nodes V contains all possible IDs of Tx. The set of edges
E contains directed edges that represent moves of Tx. The sets V and
E are polynomially bounded in n because Tx has a polynomial num-
ber of states, n input positions, and logn work tape cells. Since Tx is
deterministic and runs in bounded time, G is loop-free.

In order to compute rL, we need only to calculate d(Lx) by counting the
number of accepting paths in G from the initial ID to the final ID. This
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latter task can be easily done by dynamic programming, since G does
not contain loops. 2

Exercises 7.2.1. [20] (a) Show that a set S is sparse iff for all x ∈ S, CDp(x|S) ≤
O(log l(x)) for some polynomial p.

(b) Show that set S ∈ P is sparse iff for all x ∈ S, CDp(x) ≤ O(log l(x))
for some polynomial p.

Comments. Use Theorem 7.2.1. Source: H.M. Buhrman and L. Fortnow,
Proc. 14th Symp. Theoret. Aspects Comput. Sci., Lect. Notes Comput.
Sci., Springer-Verlag, Berlin, 1997; H.M. Buhrman, L. Fortnow, and S.
Laplante, SIAM J. Comput., 31:3(2001), 887–905. The authors also de-
fine a nondeterministic version of CD and prove several results.

7.2.2. [30] (a) Show that for 0 ≤ x < y < 2n there are at most n
primes p such that x ≡ y mod p.

(b) Prove that there is some polynomial p such that for all formulas
φ(x1, . . . , xn) ∈ SAT and all r such that l(r) = p(l(φ)) and C(r) ≥
l(r), there is some satisfying assignment a of (x1, . . . , xn) such that
CDp(a|φ, r) ≤ O(log n).

Comments. Hint: see the proof of Theorem 7.2.1. Source: H.M. Buhrman
and L. Fortnow, Ibid., where a connection is given between this exercise
and [L. Valiant and V. Vazirani, Theoret. Comput. Sci., 47(1986) 85–93].

7.2.3. [35] For every polynomial p and sufficiently large n, there exists
a set of strings A ⊆ {0, 1}∗ such that A=n contains more than 2n/50

strings and there is an x ∈ A=n with

CDp(x|A=n) ≥ 2 log d(A=n) −O(1).

Comments. This and the next exercise answer the open question posed in
Exercise 7.2.3 in the second edition of this book. Source: H. Buhrman, S.
Laplante, and P. Miltersen, Proc. 15th IEEE Conf. Comput. Complexity,
2000, pp. 126–130.

7.2.4. [38] For every set A in P, for all constants α, ǫ > 0, there is
a polynomial p such that for all n and for all but an ǫ fraction of the
x ∈ A=n,

CDp(x) ≤ min{log d(A=n) + logO(1)(n), (1 + α) log d(A=n) +O(log n)}.

Comments. Source: H.M. Buhrman, L. Fortnow, and S. Laplante, SIAM
J. Comput. 31:3(2001), 887–905.
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7.2.5. [30] There is an infinite set A such that for every polynomial p,
CDp(x|A) ≥ l(x)/5 for almost all x ∈ A.

Comments. A corollary is that A has no spare subsets in PA. Source: L.
Fortnow and M. Kummer, Theoret. Comp. Sci. A, 161(1996), 123–140.

7.2.6. [28] Let f be a function on the natural numbers. Let Σ = {0, 1}.
A set A belongs to the class P/f if there exist another set B ∈ P and a
function h: N → Σ∗ such that for all n, we have l(h(n)) ≤ f(n); and for
all x, we have x ∈ A iff 〈x, h(l(x))〉 ∈ B. Define P/poly =

⋃

c>0 P/nc.
Prove that BPP ⊆ P/poly, using Kolmogorov complexity.

Comments. Let T be a probabilistic machine such that the error prob-
ability is 1/2n

2

and each path is of length nk. A Kolmogorov random
string of length nk will always give a correct path. Source: W. Gasarch,
e-mail, July 16, 1991. The class P/f was defined by R.M. Karp and R.J.
Lipton in [L’Enseignement Mathématique, 28(1982), 191–209].

7.2.7. [28] Let rL be the ranking function of L. Show that if rL is
polynomial-time computable, then so is r−1

L .

Comments. Source: A. Goldberg and M. Sipser, SIAM J. Comput.,
20(1991), 524–536.

7.2.8. [30] A problem is in #P if there is a nondeterministic Turing
machine such that for each input, the number of distinct accepting paths
of the Turing machine is precisely the number of solutions for the prob-
lem for this input. #P-complete problems are defined (analogously to
NP-complete problems) as follows: the problem is in #P, and every #P
problem can be reduced to it by a polynomial-time deterministic Turing
machine computation. As an example, counting the number of satis-
fying truth assignments for SAT is #P-complete. Let C be a class of
languages. Say C is P-rankable if for all L ∈ C, the ranking function rL
is polynomial-time computable. Prove:

(a) P is P-rankable iff NP is P-rankable.

(b) P is P-rankable iff P = P#P.

(c) PSPACE is P-rankable iff P = PSPACE.

(d) P/poly is not P-rankable, where the class P/poly is defined in Exer-
cise 7.2.6.

(e) Languages accepted by two-way deterministic pushdown automata
are P-rankable iff P = #P.

(f) Languages accepted by one-way multihead DFAs are P-rankable iff
P = #P.

(g) Languages accepted by one-way log-space-bounded nondeterministic
Turing machines are P-rankable iff P = #P.
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Comments. Source: Items (a)–(d) are from [L. Hemachandra and S.
Rudich, J. Comput. System Sci., 41:2(1990), 251–271]. Items (e)–(g) are
from [D.T. Huynh, Math. Systems Theory, 23(1990), 1–19]. The #P class
was introduced by L. Valiant [Theoret. Comput. Sci., 8(1979), 189–201].

7.2.9. [40] Is it possible that #P problems have solutions of low time-
bounded Kolmogorov complexity relative to the input? Prove that if
there is a polynomial-time Turing machine that on input that is a
Boolean formula f , prints out a polynomial-sized list of numbers among
which one number is the number of solutions of f (though we may not
know which one), then P = P#P. This gives strong evidence that in
general, the number of solutions of a Boolean formula has high time-
bounded Kolmogorov complexity relative to the formula.

Comments. Source: J.-Y. Cai and L. Hemachandra, Inform. Process.
Lett., 38(1991), 215–219. Hint: use A. Shamir’s polynomial interpolation
technique in [Proc. 31st IEEE Found. Comput. Sci., 1990, pp. 11–15].

7.2.10. [35] Let χL = χ1χ2 . . . be the characteristic sequence for lan-
guage L ⊆ {0, 1}∗ such that χi = 1 iff the lexicographically ith word
wi is in L. As before, L<n is the set of strings in L with length less
than n. Define the time-space-bounded Kolmogorov complexity of L as

Ct,s(χL<n). Let t(n) = 2n
O(1)

and s(n, ǫ) = cn
ǫ

. Prove by diagonaliza-
tion:

(a) There is language L ∈ DTIME[22O(n)

] which is such that the t(n)
time-bounded Kolmogorov complexity of L is exponential almost every-
where (note: χL<n has exponential length). That is, for all but finitely
many n,

Ct(n),∞(χL<n |n) > s(n, ǫ), for some c > 1, ǫ > 0.

(b) Use Item (a) to show that if L is DTIME[22O(n)

]-hard under poly-
nomial-time Turing reduction, then the t(n) time-bounded Kolmogorov
complexity of L is exponential almost everywhere. That is, for all but
finitely many n,

Ct(n),∞(χL<n |n) > s(n, ǫ), for some c > 1, ǫ > 0.

(c) There is a language L ∈ SPACE[2O(n)] such that for all but finitely
many n, we have C∞,2n

(χL<n |n) > 2n−2.

(d) Use Item (c) to show that if L is SPACE[2O(n)]-hard under polynomial-
time Turing reduction, then there exists a constant ǫ > 0 such that for
all but finitely many n, we have C∞,s(n,ǫ)(χL<n |n) > s(n, ǫ).

(e) There is a language L ∈ SPACE[2O(n)] such that for large enough n,
C∞,2n

(χL<n) > 2n − n.
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(f) Consider the P/poly class defined in Exercise 7.2.6. It is not known
whether DTIME[t(n)] is contained in P/poly. A nonsparse language L
is said to be P/poly immune if it has only sparse subsets in P/poly. A
language L is said to be P/poly bi-immune if L and its complement are
both P/poly immune. Use Item (e) and the language L in that item
to show that there exists a language L ∈ SPACE[2O(n)] that is P/poly
bi-immune.

Comments. Source: D.T. Huynh, in [Proc. 1st Conf. Structure Complex-
ity Theory, 1986, pp. 184–195; Theoret. Comput. Sci., 96(1992), 305–
324; Inform. Comput., 90(1991), 67–85; Inform. Process. Lett., 37(1991),
165–169].

7.3

Computa-

tional

Complexity

Time- and space-bounded Kolmogorov complexities are natural tools in
the study of time- and space-bounded computations and the study of
the structures of the corresponding complexity classes. As in Chapter 6,
they provide powerful techniques and help to make intuitive arguments
rigorous.

7.3.1
Constructing
Oracles

With a simple input, a polynomial-time bounded Turing machine cannot
compute too complicated strings. Therefore, it cannot ask complicated
questions to an oracle. Kolmogorov complexity enables us to formalize
this intuition.

Definition 7.3.1 A function f : {0, 1}∗ → {0, 1}∗ is honest if there exists a k such that
for every x ∈ {0, 1}∗,

l(f(x)) ≤ l(x)k + k and l(x) ≤ l(f(x))k + k.

That is, f neither shrinks nor stretches x more than polynomially in its
length. The following result is used to prove Theorems 7.3.1 and 7.3.2.

Lemma 7.3.1 (Honesty lemma) Let f be an honest function computable in polyno-
mial time. For all t ≥ 1, and all but finitely many n,

f(C[log logn, nt,∞]) ⊆ C[logn, nlog logn,∞].

Proof. Let n = l(x). By assumption, there is a k such that Definition 7.3.1
holds. Let machine T compute f and run in time polynomial in n. For
each x in C[log logn, nt,∞] there exists a y, with l(y) ≤ log logn, such
that some T ′ computes x from y and runs in time polynomial in n. So
f(x) is computable from y, T , and T ′. This description has fewer than
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logn bits for large n. Moreover, the computation takes polynomial time,
which is less than nlog logn for large n. So, for all but finitely many n,

f(C[log logn, nt,∞]) ⊆ C[logn, nlog logn,∞].

2

We present two examples applying this lemma. Baker, Gill, and Solovay
showed how to create an oracle A as in the following theorem. We present
an alternative proof by the incompressibility argument.

Theorem 7.3.1 There is a recursive oracle A such that PA 6= NPA.

Proof. By diagonalization. Define f inductively by f(1) = 2 and f(k) =
2f(k−1) for k > 1. Choose B ⊆ {1f(k) : k ≥ 1} with B ∈ DTIME[nlogn]−
P. Use B to construct A as follows: For every k such that 1f(k) ∈ B, put
the first string of length f(k) from

C[logn, nlogn,∞] − C[logn, nlog logn,∞]

in A. This set is nonempty by Exercise 7.1.14. Clearly, A is recursive
and B ∈ NPA.

Suppose we present a polynomial-time bounded Turing machine with an
input 1f(k). This input has length n = f(k). The machine can compute
only strings not in A or of length less than logn in A by Lemma 7.3.1.
Therefore, a PA-oracle machine can in polynomial time query only about
strings not in A or of length less than logn. The former strings are not in
A anyway. The membership of the latter strings in A can be determined
in polynomial time. Therefore, the oracle is useless. Consequently, if B
is in PA, then also B ∈ P. But this contradicts our assumption that
B 6∈ P. 2

In recursion theory, all recursively enumerable-complete sets are recur-
sively isomorphic. We define a similar concept in complexity theory.

Definition 7.3.2 Two sets are said to be P-isomorphic if there is a polynomial-time com-
putable bijection between the two sets.

The Berman–Hartmanis conjecture states that all NP-complete sets are
P-isomorphic. At this time of writing, all known natural NP-complete
sets are P-isomorphic. The following theorem attempts to tackle the
conjecture. The SAT decision problem was defined in Definition 1.7.9
and Definition 5.3.3.
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Theorem 7.3.2 If there exists a set L ∈ P such that L ⊂ SAT and

C[log n, nlogn,∞]
⋂

SAT ⊆ L,

then SAT − L is an NP-complete set that is not P-isomorphic to SAT.

Proof. To see that SAT − L is ≤Pm-complete for NP we reduce SAT to
SAT − L by reducing all elements in L to a fixed element in SAT − L
and all other strings to themselves. This is possible since L ∈ P.

At the same time, SAT and SAT − L cannot be P-isomorphic, since an
isomorphism h is an honest function in P and therefore cannot map the
simple strings in L onto more complex strings in SAT − L. That is, by
the honesty lemma, Lemma 7.3.1, for all but finitely many n,

h(SAT
⋂

C[log logn, n3,∞]) ⊆ C[log n, nlogn,∞].

Since SAT
⋂
C[log logn, n3,∞] 6= ∅, it follows that

h(SAT
⋂

C[log logn, n3,∞]) 6⊆ SAT − L.

That is, SAT is not P-isomorphic to SAT − L. 2

It turns out that resource-bounded Kolmogorov complexity provides
rigor to intuition for oracle constructions. We give another slightly more
involved example.

Definition 7.3.3 A set A is exponentially low if EA = E, where E =
⋃

c∈N DTIME[2cn].
Obviously, for every A ∈ P, the set A is exponentially low.

Theorem 7.3.3 There is an exponentially low sparse set A that is not in P.

Proof. Let B = C[12n, 2
3n,∞]. The set B is the complement of B. Let

A = {x : x is a lexicographically least element of B of length 22···2

(tower
of m stacked 2’s), m > 0}. Here m is not meant to be constant. Trivially,
A ∈ E. Furthermore, A is not in P. To prove this, assume that T accepts
A in polynomial time. Then we can simulate T to find an x of length n
such that n > 2(l(T ) + logn) and x ∈ A, all in less than 23n time using
fewer than l(T ) + logn bits. Hence, x ∈ B, a contradiction.

We also need to show that EA = E. We do this by simulating an EA

oracle machine TA by an E machine. Let the machine TA run in 2cn

time. An idea from the proof of Theorem 7.2.6 is useful:

Claim 7.3.1 Let y ∈ A and l(y) ≥ c′n for a constant c′ > 3c+ 3. Then, machine TA

cannot ask a query “y ∈ A?”
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Proof. Assume, by way of contradiction, that TA can do so. Suppose
further that y is the first string in A of length greater than c′n queried
by TA on input x of length n. We will show that y ∈ B, and hence
y 6∈ A ⊆ B, a contradiction. In order to show y ∈ B, we use the fact
that A is so sparse that we can actually describe the list of all strings in
A of lengths less than l(y) in fewer than 2 log(c′n) bits.

Assume that TA with input x of length n queries y at step t < 2cn. We
can now reconstruct y by simulating TA on input x, and stop TA at time
t. If TA queries A before step t, by assumption on the computation time
to produce a string in A, either the query is shorter than l(y), or the
queried string is not in A. For short queries, we can supply the answer
from an exhaustive description of A<c

′n of fewer than 2 log(c′n) bits.
At time t, we can recover y from the query tape. In this way, we can
describe y by the following items:

• O(1) bits to describe this discussion and TA;

• n bits to describe x;

• 2 log(c′n) bits to describe A<c
′n;

• cn bits to describe t.

In total, we use fewer than 1
2c

′n ≤ 1
2 l(y) bits. The time required for the

simulation is at most 2cn < 2c
′n ≤ 2l(y). Hence,

y ∈ B = C

[
1

2
l(y), 23l(y),∞

]

.

This contradicts the assumption on A. Hence, TA queries no string in A
of length greater than or equal to c′n. 2

Now we can simulate TA without using an oracle. Whenever we meet
an oracle query about a string that is longer than c′n, we answer “no”
for A. Whenever we meet an oracle query about a string y such that
l(y) ≤ c′n, we simply perform an exhaustive search to decide whether
y ∈ A using exponential time. In this way, we simulate an EA machine
by an E machine without using oracle A. Hence, EA = E. 2

7.3.2
P-Printability

We want to characterize the sets C[k logn, nk,∞], for constant k. These
sets are said to have small time-bounded Kolmogorov complexity.

Definition 7.3.4 A set L is polynomial-time printable (P-printable) if for some integer k
all the elements of L up to size n can be printed by a Turing machine in
time nk + k. Clearly every P-printable set is a sparse set in P. Let y ≤ x
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denote that y precedes x in the length-increasing lexicographic order.
The ranking function, as defined in Definition 7.2.1, for a language L,
denoted by rL, is defined as rL(x) = d({y ∈ L : y ≤ x}). A tally set is a
set over a one-letter alphabet.

Theorem 7.3.4 Let L ⊆ {0, 1}∗. The following statements are equivalent:

(i) L is P-printable;

(ii) L is sparse and has a polynomial-time computable ranking function;

(iii) L is P-isomorphic to some tally set in P; and

(iv) L ⊆ C[k logn, nk,∞] for some constant k and L ∈ P.

Proof. (i) → (ii) is immediate.

(ii) → (iii). Let L have a polynomial-time computable ranking function
r1 and d(L≤n) < p(n) for some (nondecreasing) polynomial p(n). Then
r2(x) = 1x− r1(x) is a ranking function for the complement of L, where
1x is treated as a binary number. The set

T = {0np(n)+i : r1(1
n−1) < i ≤ r1(1

n)}

is a tally set in P. Let r3 be a ranking function for {0}∗ − T . By Exer-
cise 7.2.7, all such ranking functions have inverses that are computable
in time polynomial in the length of their output. It is now easy to see
that the function that maps x of length n to 0np(n)+r1(x) if x ∈ L, and to
r−1
3 (r2(x)) if x 6∈ L, is a P-isomorphism that maps L one-to-one onto T .

(iii) → (iv). By assumption, there is a P-isomorphism f , both f and f−1

computable in time nc for some constant c, that maps L one-to-one onto
a tally set T ⊆ {0}∗, where T ∈ P. Trivially, L ∈ P.

Since f is computable in time nc, we have l(f(x)) ≤ nc for n = l(x).
Hence, the binary representation of f(x) has length at most c logn. Then,
x can be represented by f(x) in binary using only c logn bits. To compute
x from f(x), we simply compute f−1(0f(x)), which takes polynomial time
by assumption. Thus, L ⊆ C[k logn, nk,∞] for some constant k.

(iv) → (i). Assume that L ∈ P and that for some k,

L ⊆ CU
[
k logn, nk,∞

]
.

We show how to print elements of L up to size n in polynomial time.
Given n, simulate the reference universal machine U , using each string
up to length k logn as input, for at most nk steps. For each output x,
print x if the computation halted in lk(x) steps, l(x) = n, and x ∈ L.
Clearly, this can be done in time polynomial in n. 2
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Corollary 7.3.1 Let L ⊆ {0, 1}∗. Then, L ⊆ C
[
k logn, nk,∞

]
for some constant k if and

only if A is P-isomorphic to a tally set.

The paper [L. Fortnow, J. Goldsmith, M.A. Levy, and S. Mahaney, SIAM
J. Comput., 28:1(1998), 237–151] treats logpspace-printable sets, with con-
nections to space-bounded Kolmogorov complexity, similar to the connections
between P-printable and time-bounded Kolmogorov complexity treated above.

7.3.3
Derandomization

A major question in computational complexity is whether randomized
algorithms have more power than their deterministic counterparts. For
example, is BPP = P? Intuitively, if we have an incompressible string
x, then we should be able to deterministically use x as the random
bits required during a BPP computation, and thus derandomize the
computation. This is because if a BPP computation makes only a small
percentage of errors, then the sequences that lead to erroneous answers
are rare, hence not incompressible. We present an example to illustrate
this idea.

Theorem 7.3.5 Let R = {x : C(x) ≥ l(x) − log2 l(x)}. Then, BPPR = PR.

Proof. We need to show only that BPPR ⊆ PR. First, we show how to
obtain a string inR. We construct such a string x of lengthm inductively,
starting with x = ǫ. Assume that C(x) ≥ l(x)−log2 l(x). For every string
y of length logm, we use R to check whether C(xy) ≥ l(xy)− log2 l(xy).
We are guaranteed to find a y for which the latter condition holds, since
there is a y such that C(y|x) ≥ l(y). For every such y, by the symmetry
of information theorem, Theorem 2.8.2 on page 190, with c the constant
in the latter theorem, we have

C(xy) ≥ C(x) + C(y|x) − c logC(xy)

≥ C(x) + C(y|x) − c log l(xy)

≥ l(x) − log2 l(x) + l(y) − c log l(xy)

≥ l(xy) − log2 l(xy)

for x and y long enough relative to c. Set x := xy, and repeat until
l(x) ≥ m.

Consider a BPP computation of n steps. It uses at most n random bits.
For every input of length n, repeat the BPP computation n2 times and
take the majority answer. By the Chernoff bounds, Lemma 1.10.1 on
page 61, the probability that this strategy makes a mistake is at most
2e−O(n2). Thus, only 2M2−O(n2) sequences cause errors, where n2 ≤
M ≤ n3 is the number of random bits used. The Kolmogorov complexity
of such sequences is at most M −O(n2). Therefore, if we use x from R,



568 7. Resource-Bounded Complexity

with l(x) = M , the BPP computation will give a correct answer for
every input. 2

Theorem 7.3.5 can be improved by replacing R by R′ = {x : C(x) ≥
l(x)/i}, where i is a positive integer, Exercise 7.3.13 on page 570. But
this requires tools from pseudorandom number generator theory that are
beyond the scope of the main text of this book.

Exercises 7.3.1. [28/O43] Let SAT be the set of satisfiable Boolean formulas.
By Definition 7.2.2, a set A is sparse if there is a constant c such that for
all n we have d(A=n) ≤ nc+c. In Section 1.7.4 we defined that a set B is
polynomial-time Turing reducible to set C, denoted by B ≤PT C, if there
is a polynomial-time oracle Turing machine that accepts B, using oracle
C. One might suspect that formulas with low Kolmogorov complexity
are easy to solve. Prove the following:

(a) If A ∈ NP and A is sparse, then A ≤PT C[log n, n2,∞]
⋂

SAT. Thus,
SAT

⋂
C[logn, n2,∞] is a complete set for all other sparse sets in NP

under polynomial-time Turing reduction.

(b) SAT
⋂
C[log n, n2,∞] ∈ P iff there are no sparse sets in NP − P.

(c) (Open) SAT
⋂
C[log n, n2,∞] ∈ P?

Comments. Source: this exercise and the next seven exercises are taken
from J. Hartmanis, Proc. 24th IEEE Found. Comput. Sci., 1983, pp.
439–445.

7.3.2. [29] Let g(n) ≤ n be an unbounded, monotonically increasing
function and let G(n) be such that for every k,

lim
n→∞

nk/G(n) = 0.

Show that C[g(n), G(n),∞]
⋂

SAT ⊆ A0 ⊂ SAT and A0 ∈ P implies
that SAT is not P-isomorphic to SAT − A0. Also show that SAT − A0

is NP-complete.

7.3.3. [26] If C[logn, nlogn,∞]
⋂

SAT ⊆ A0 ⊆ SAT and A0 ∈ P, then
E = NE.

7.3.4. [40] Prove the following:

(a) There is a sparse set in NP − P iff NE 6= E.

(b) Define ∆E
2 analogous to ∆p

2 (Definition 1.7.10 on page 40). If NE =
∆E

2 , and every sparse set in NP is polynomial-time many-to-one reducible
(Definition 1.7.8 on page 39) to SAT

⋂
C[log n, n2,∞], then NE = E.

Therefore, all sparse sets in NP are in P.
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Comments. For Item (b), use the Berman–Mahaney tree-labeling tech-
nique in [S. Mahaney, J. Comput. System Sci., 25(1982), 130–143].

7.3.5. [30] Show that P = NP iff for all oracles A ⊆ C[log n,∞, n2] we
have PA = NPA.

7.3.6. [29] Use Kolmogorov complexity to show that there exists a
recursive oracle A such that NPA has PA-immune sets.

7.3.7. [33] Show that the set {0, 1}∗−C[logn,∞, 2n] is DSPACE[2cn]-
immune for every c < 1.

Comments. Compare this exercise with Theorem 2.7.1.

7.3.8. [34] We construct a sparse random oracle set A as follows: For
every n, n = 1, 2, . . . , toss a fair coin. If the result is ‘tails,’ then we do
not include any string of length n in A; if the result is ‘heads,’ then we
toss the coin n times and place the resulting binary string (the ith bit
is 1 iff the ith toss is heads) in A. Prove that Pr(NPA 6= PA) = 1.

7.3.9. [32] The method using resource-bounded Kolmogorov complex-
ity to construct oracles in Section 7.3.1 can be used to obtain many more
oracles. Define

EXPTIME =
⋃

c∈N
DTIME[2n

c

].

Notice that EXPTIME is different from the class E. Let NSPACE stand
for the nondeterministic version of PSPACE. Let us consider oracle Tur-
ing machines with an unbounded oracle tape. Prove the following:

(a) There is an oracle A such that NSPACEA 6⊂ EXPTIMEA.

(b) There is an oracle B such that PSPACEB ⊂ EXPTIMEB, where the
containment is proper.

(c) There is an oracle C such that EXPTIMEC 6⊂ NSPACEC .

(d) There is an oracle D with PSPACED ⊂ NSPACED = EXPTIMED,
where the containment is proper.

Comments. Item (d) implies that Savitch’s theorem [W.J. Savitch, J.
Comput. System Sci. 4:2(1972), 177–192] does not relativize with an
unbounded oracle tape. Source: R. Gavaldà, L. Torenvliet, O. Watan-
abe, and J.L. Balcázar, Proc. 15th Math. Found. Comput. Sci. Conf.,
1991, pp. 269–276. For a comprehensive study in this direction, see [R.
Gavaldà, Ph.D. thesis, Universitat Politécnica de Catalunya, 1992].

7.3.10. [39] Show that if A is a set whose characteristic sequence is a
random infinite binary sequence in the sense of Martin-Löf (Section 2.5),
then PA 6= NPA.
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Comments. This result is presented in a more general setting using re-
sults of Section 2.5 by R.V. Book, J.H. Lutz, and K.W. Wagner in [Math.
Systems Theory, 27(1994), 201–209]. Such a set A can be used to es-
tablish other known probability-one oracle separations such as PHA 6=
PSPACEA, where PH is the polynomial hierarchy. See also [R.V. Book
and O. Watanabe, Inform. Comput., 125(1996), 70–76]. Source: C.H.
Bennett, J. Gill, SIAM J. Comput., 10:1(1981), 96–113.

7.3.11. [33] Show that for all t ≥ 2, the set C[t log n, nt,∞] is P-
isomorphic to {0}∗.
Comments. Source: [E. Allender and O. Watanabe, Inform. Comput., 86
(1990), 160–178]. In this paper, the authors also use sets C[t logn, nt,∞]
to study the equivalent classes of tally sets under various types of re-
ductions. Compare with [S. Tang and R.V. Book, Theoret. Comput.
Sci., 81:1(1991), 35–47; R. Gavaldà and O. Watanabe, SIAM J. Com-
put., 22(6) (1993), 1257–1275; H. Buhrman, E. Hemaspaandra, and L.
Longpré, SIAM J. Comput., 24:4(1995), 673–681].

7.3.12. [32] We say that A is truth-table reducible to B if there are
functions g1, . . . , gm and a Boolean function f where yi is true iff gi(a) ∈
B, and f(y1, . . . , ym) is true iff a ∈ A. We consider only polynomial-time
truth-table reductions where f and the gi’s are computable in polyno-
mial time. It is clear that if A many-to-one reduces to B, then A also
truth-table reduces to B; and if A truth-table reduces to B, then A also
Turing reduces to B. Use time-space-bounded Kolmogorov complexity
to construct a set D that is complete for E under polynomial Turing re-
duction but not complete for E under polynomial truth-table reduction.

Comments. Source: O. Watanabe, Theoret. Comput. Sci., 54(1987), 249–
265. Improved in [B. Fu, SIAM J. Comput., 24:5(1995), 1082–1090].

7.3.13. (a) [35] Improve Theorem 7.3.5 by proving BPPR
′

= PR
′

,
where R′ = {x : C(x) ≥ l(x)/i} for i a positive integer.

(b) [33] Show that PSPACE ⊆ PR and NEXP ⊆ NPR, with R as in
Theorem 7.3.5.

(c) [O38]) Is there a larger complexity class DTIME(t), NTIME(t), or
DSPACE(s), for some t or s, that is contained in PR?

Comments. Hint: For Item (a), use the pseudorandom generators of R.
Impagliazzo and A. Wigderson, Proc. 38th IEEE Symp. Found. Comp.
Sci., 1997, 220–229. Source: E. Allender, H.M. Buhrman, M. Koucký,
D. van Melkebeek, and D. Ronneburger, Proc. 43rd IEEE Symp. Found.
Comp. Sci., 2002, 669–678. Item (c) is from E. Allender, email of March
18, 2006.
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7.4

Instance

Complexity

In computational complexity, it is traditional to study the intractability
of a decision problem by treating a set collectively. With Kolmogorov
complexity, it is possible also to study the complexity of individuals in
a set, and this is called instance complexity.

Consider a partial program p that gives answers 1 (accept), 0 (reject),
and ⊥ (don’t know). For a set A we will write A(x) as the characteristic
function of A, with A(x) = 1 iff x ∈ A. We say that a function p is
consistent with a set A if p(x) = A(x) when p(x) 6=⊥. The computing
time of machine T on input y, using program p, is denoted by timeT (p, y).
In the definition below, A is an arbitrary set, possibly nonrecursively
enumerable, and t is an arbitrary function, possibly nonrecursive.

Definition 7.4.1 Let T be a Turing machine. Given a set A and time bound t, define the
(t-bounded) instance complexity of x with respect to T and A as

ictT (x : A) = min{l(p) : T (p, x) 6=⊥, and ∀y T (p, y) 6=⊥ implies

timeT (p, y) ≤ t(l(y)), T (p, y) = A(y)},

and is ∞ if no such p exists.

By this definition, also x 6∈ A can have instance complexity with respect
to A. Intuitively, the instance complexity of a string x, with respect
to a set A, measures the length of the shortest program that correctly
decides whether x is in A. This program doesn’t need to decide about
other strings as long as it does not contradictA when it makes a decision.
The goal is to identify the hard instances that make a language hard.
We state an invariance theorem for instance complexity.

Theorem 7.4.1 (Invariance of instance complexity) There exists a universal Turing
machine U such that for every Turing machine T there is a constant c
such that for all A and t and x,

ict
′

U (x : A) ≤ ictT (x : A) + c,

where t′(n) = ct(n) log t(n) + c.

The proof of this invariance theorem is similar to that of time-bounded
Kolmogorov complexity, and is left to the reader. Using the above invari-
ance theorem, we fix a reference universal machine and drop the index
U in ictU (x : A). We define timep(x) = timeU (p, x).

Example 7.4.1 The relationship between time-bounded Kolmogorov complexity and in-
stance complexity is a fundamental question. Obviously, CDt is a special
case of ict complexity because

CD t(x) = ict(x : {x}).
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If c is a large enough constant and t′(n) = ct(n) log t(n) + c, it is not
difficult to prove the following for every set A (Exercise 7.4.1):

ict
′

(x : A) ≤ C t(x) + c, and

ict
′

(x : A) ≤ CD t(x) + c.

It is clear that for some sets A, such as {0, 1}∗, the above two inequalities
are strict. This leads us to the following instance complexity conjecture:
Let a function t(n) be computable in time t(n), function t′ be as above,
and the set A be recursive. If A 6∈ DTIME[t(n)], then there is a constant
c and infinitely many x such that

ict(x : A) ≥ Ct
′

(x) − c.

Exercises 7.4.5, 7.4.7, and 7.4.8, contain solutions to various special cases
of this conjecture. 3

Instance complexity provides pleasant and simple characterizations for
many fundamental complexity-theoretic properties.

Lemma 7.4.1 A set A is in P if and only if there exist a polynomial t and a constant
c such that for all x, we have ict(x : A) ≤ c.

Proof. (Only if) If A is in P, then for every x the polynomial-time
program that decides A is trivially a consistent program for A and de-
cides whether x ∈ A. This gives constant instance complexity for every
string x.

(If) By assumption, there is a constant c, such that for every x, we have
ict(x : A) ≤ c. Let B be the set of all programs, consistent with A, of size
at most c, with running time bounded by t(n). Decide whether x ∈ A
by simulating all the programs in B and accept x if and only if some
program in B accepts x. 2

Definition 7.4.2 Let A be a recursive set. An infinite set C (not necessarily a subset of A)
is called a polynomial complexity core for A if for every total program p
that decides A and polynomial t, we have timep(x) > t(l(x)) for all but
finitely many x in C.

Lemma 7.4.2 A set C is a polynomial complexity core for A if and only if for every
polynomial t and constant c we have ict(x : A) > c for all but finitely
many x in C.

Proof. (If) Assume that there are infinitely many x in C such that
ict(x : A) ≤ c for some polynomial t and constant c. Let B be the set of
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programs, running in time t, that are consistent with A and of length less
than c. Then there are infinitely many elements x in C that we can accept
in polynomial time by simulating all programs in B simultaneously in
dovetailing style. Thus, C cannot be a polynomial complexity core for A.

(Only if) Assume that C is not a polynomial complexity core for A.
Then there is a total program p for A and a polynomial t such that for
infinitely many x in C we have timep(x) ≤ t(l(x)). The program p is
consistent with A and it accepts infinitely many x in time t(l(x)). We
modify p by adding a step counter to check for t(n) to it. When the
computation exceeds t(n) steps, we halt p. The modified p is consistent
with A, runs in polynomial time, and decides correctly infinitely many
x. Thus, for infinitely many x, we have ict

′

(x : A) ≤ c. 2

Among the strings of various instance complexities, one class is par-
ticularly interesting. This is the class of strings of logarithmic instance
complexity computable in polynomial time.

Definition 7.4.3 IC[log, poly] is the class of sets A for which there exists a polynomial t
and a constant c such that for all x, ict(x : A) ≤ c log l(x) + c.

The SAT decision problem, Definition 1.7.9 on page 40, is the following:
Given a Boolean formula φ(x1, . . . , xk) in conjunctive normal form of
binary description length n, we want to decide whether there is a truth
assignment to the variables x1, . . . , xk that makes the formula true. We
always assume that k and n are polynomially related. The set SAT is
the set of φ’s for which there is a truth assignment that makes φ true.

Theorem 7.4.2 If SAT ∈ IC[log, poly], then NP = P.

Proof. Assume that SAT ∈ IC[log, poly]. Then for some polynomial t
and constant c, we have

ict(φ : SAT) ≤ c log l(φ) + c, (7.8)

for all φ. We treat each input as a conjunctive normal form φ. If the
input is of wrong format, then it can be rejected right away. Thus, for
every φ, there is a program p of length c log l(φ) + c such that p decides
whether φ ∈ SAT correctly and p is consistent with SAT for all other
inputs. We show that if Equation 7.8 is true, then SAT can be decided
in polynomial time.

Given input φ(x1, . . . , xk), let l(φ(x1, . . . , xk)) = n. First, set A := {p :
l(p) ≤ c logn+ c}. Clearly, d(A) is of polynomial size. By Equation 7.8,
for every input of length less than or equal to n, there is a program in A
running in polynomial time t(n) that decides correctly whether this par-
ticular input is in SAT, and on other inputs it makes decisions consistent



574 7. Resource-Bounded Complexity

with SAT. In particular, there is a program p0 running in polynomial
time t(n) that decides correctly whether φ(x1, . . . , xk) ∈ SAT. Moreover,
p0 is consistent with SAT on all other inputs. The program p0 may just
output ⊥ signs for the latter two inputs.

In the procedure below we will, in a polynomial number of steps, either
decide φ(x1, . . . , xk) ∈ SAT correctly or delete at least one program p,
with p 6= p0 and p inconsistent with SAT, from A. Repeating this proce-
dure d(A)− 1 times, we will either decide φ(x1, . . . , xk) correctly or find
p0 as the last remaining element by elimination. Since d(A) is polyno-
mial, the entire process takes polynomially many steps. The procedure
is as follows:

Step 1. For all p ∈ A, simulate p for t(n) steps on input φ(x1, . . . , xk).

• If no program p rejects φ(x1, . . . , xk) {implying that p0 has ac-
cepted φ(x1, . . . , xk); some programs may output ⊥} then we
also accept φ(x1, . . . , xk) and exit the procedure.

• If no p accepts φ(x1, . . . , xk) {implying that p0 must have re-
jected φ(x1, . . . , xk)} then reject φ(x1, . . . , xk) and exit the pro-
cedure.

Step 2. If some program in A accepts φ(x1, . . . , xk) and some other
program in A rejects φ(x1, . . . , xk) then for i := 1, . . . , k do

Suppose the binary values b1, . . . , bi−1 are determined in the pre-
vious loops and p ∈ A accepts φ = φ(b1, . . . , bi−1, xi, . . . , xk).

Simulate all programs in A with inputs

φ0 = φ(b1, . . . , bi−1, 0, xi+1, . . . , xk),

φ1 = φ(b1, . . . , bi−1, 1, xi+1, . . . , xk).

{Formulas such as φ, φ0, and φ1 are all different instances}

If neither of the above inputs is accepted by some program in
A {this means φ(b1, . . . , bi−1, xi, . . . , xk) 6∈ SAT, because there
are programs q0, q1 ∈ A that are consistent with SAT and decide
correctly whether φ0, φ1 ∈ SAT; consequently p is not consistent
with SAT and p 6= p0} then delete p from A and exit the
procedure.

If one of the inputs, say with xi = 0, is accepted by some program
in A then set bi := 0.

The process either exits in Step 1 deciding φ, or exits in Step 2 with
a program p inconsistent with SAT deleted from A, or ends with a
truth assignment (b1, . . . , bk). In the latter case, we can check (in poly-
nomial time) whether the truth assignment (b1, . . . , bk) really satisfies
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φ(x1, . . . , xk). If it does, then we accept φ(x1, . . . , xk). Otherwise, we
delete p from A, since it is inconsistent with SAT. (In this way, we never
delete programs consistent with SAT.) Therefore, in Step 2, we finish ei-
ther with a satisfying assignment or by deleting an inconsistent program
from A.

Repeating the procedure at most d(A) − 1 times, we are guaranteed to
decide φ, or to find a satisfying assignment, or we have only p0 left in A
at the last step. 2

Exercises 7.4.1. [25] Let t(n) be computable in time t(n), t′(n) = ct(n) log t(n)+
c, for some constant c. For set A, string x, and some constant c, prove:

(a) ict
′

(x : A) ≤ Ct(x) + c, and

(b) ict
′

(x : A) ≤ CD t(x) + c.

Comments. Item (a) and the next three exercises are from [P. Orpo-
nen, K. Ko, U. Schöning, and O. Watanabe, J. Assoc. Comp. Mach.,
41(1994), 96–121]. Item (b) was suggested by L. Fortnow.

7.4.2. [30] The proof of Theorem 7.4.2 depends on the so-called self-
reducibility of the SAT problem. A set is self-reducible if the membership
question for an element can be reduced in polynomial time to the mem-
bership question for a number of shorter elements. For example, SAT
is self-reducible, since an arbitrary Boolean formula φ(x1, x2, . . . , xn) is
satisfiable if and only if at least one of the two shorter Boolean formu-
las φ(0, x2, . . . , xn) or φ(1, x2, . . . , xn) is satisfiable. Prove the following
generalization of Theorem 7.4.2: If a set is self-reducible and it is in
IC[log, poly], then it is also in P.

Comments. See the survey by D. Joseph and P. Young in [Complexity
Theory Retrospective, A. Selman, ed., Springer-Verlag, 1990, pp. 82–107]
for more information on self-reducibility.

7.4.3. [32] The class P/poly is defined in Exercise 7.2.6 on page 560.
Use that exercise to analogously define the class P/log =

⋃

c>0 P/c logn.
Show that P/log is properly contained in IC[log, poly], which is in its
turn properly contained in P/poly.

7.4.4. [31] There are sets with hard instance complexity everywhere.
In particular, prove that there is a set A computable in 2O(n) time such
that for some constant c and for all x,

icexp(x : A) ≥ Cexp′

(x) − 2 logCexp′

(x) − c,

where exp(n) = 2n and exp′(n) = O(n22n).
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7.4.5. [38/O43] Consider Exercise 7.4.4 on page 575 and Lemma 7.4.2.
Let us say that a set A has p-hard instances if for every polynomial t
there exists a polynomial t′ and a constant c such that for infinitely
many x we have ict(x : A) ≥ Ct

′

(x) − c.

(a) (Open) Prove or disprove: Every recursive set A 6∈ P has p-hard
instances. This may be regarded as a polynomial version of the instance
complexity conjecture in Example 7.4.1.

(b) Every recursive tally set A 6∈ P has p-hard instances.

(c) Prove the following claim: Let a recursive set A be NP-hard with
respect to the polynomial-time Turing reduction in which the length of
a query is not shorter than a fixed polynomial of the length of the input.
Then A has p-hard instances unless A ∈ P. In particular, this holds for
all natural NP-hard problems.

(d) (Open) We can also state a CD version of Item (a). Prove or dis-
prove: For every recursive set A 6∈ P and every polynomial t there
is a polynomial t′ and a constant c such that for infinitely many x,

ict(x : A) ≥ CD t′(x) − c.

Comments. Source: L. Fortnow and M. Kummer, Theoret. Comput. Sci.
A, 161(1996), 123–140. They have also shown that the instance complex-
ity conjecture, Item (a), and Item (d), all fail relative to some oracles.
Item (a) also holds relative to some oracle.

7.4.6. [35] Let t be a recursive time bound. There is a recursive set A
such that f(x) = ict(x : A) is not recursive.

Comments. This result, due to L. Fortnow and M. Kummer [Ibid.],
was originally conjectured by P. Orponen, K. Ko, U. Schöning, and O.
Watanabe, Ibid.

7.4.7. [33] In Definition 7.4.1 on page 571, when we allow t to be an
arbitrary finite time, we will remove t from ict and simply write ic.

(a) Let R = {x : C(x) ≥ l(x)}. We know that R is infinite and that it
contains at least one string of each length. Show that there is a constant
c such that for every x in R we have ic(x : R) ≥ C(x) − c. That is, R
contains only hard instances.

(b) Strings with high Kolmogorov complexity are individually hard to
recognize by bounded computations. We say that a set C is dense if
there is an ǫ such that d(C

⋂
Σn) ≥ 2ǫn. Let set A be complete for

the class
⋃

c≥0 DTIME[2cn] with respect to polynomial-time reductions.
Show that there is a dense subset C ⊆ A such that for every nondecreas-
ing polynomial t(n) ≥ n logn, for each x ∈ C, ict(x : A) ≥ Ct(x) − c,
for some constant c.
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(c) For every recursively enumerable set A with an infinite complement,
there exists a constant c such that for infinitely many x 6∈ A we have
ic(x : A) ≥ C(x) − c.

(d) Show that there is a recursively enumerable set A with ic(x : A) ≥
l(x) for infinitely many x ∈ A.

Comments. Hint for Item (a). Let L(p) be the set of strings accepted
by p in the ic sense. Observe that there is a constant d such that for
every total p for which L(p) ⊆ R, and for every x ∈ L(p), we have
l(x) ≤ l(p) + d. (This is similar to Corollary 2.7.2 on page 176.) Now
the result follows easily using the definition of ic. Item (b) may be re-
garded as another special case of the instance complexity conjecture in
Example 7.4.1. Items (a)–(c) are from [H.M. Buhrman and P. Orponen,
J. Comput. System Sci., 53:2(1996), 261–266]. Item (d) and an extensive
study of related topics can be found in [M. Kummer, SIAM J. Comput.,
25:6(1996), 1123–1143].

7.4.8. [39] Use the definition of ic in Exercise 7.4.7.

(a) Show that if ic(x : A) ≤ logC(x)−1 for all but finitely many x, then
A is recursive.

(b) There is a nonrecursive recursively enumerable set A and a constant
c such that ic(x : A) ≤ logC(x) + c for all but finitely many x.

Comments. Item (b) resolves an open question in the first edition of
this book: it refutes the unbounded version of the instance complexity
conjecture in Example 7.4.1. Originally proposed by P. Orponen, K. Ko,
U. Schöning, and O. Watanabe, Ibid. The solution is due to M. Kummer
[Ibid.], where Item (a) is attributed to J.T. Tromp.

7.5

Kt and

Universal

Search

It is meaningful to consider the age of strings. Loosely stated, the age
of a string corresponds to the time we need to generate that string
starting with a program of constant size. In this sense, the age of a
random string x should be at least 2l(x), considering the number of steps
needed to generate x by enumerating all strings in length-increasing
lexicographic order. This is also the expected time for a constant-size
probabilistic program to generate x by fair coin flips. For random x,
this yields age(x) = Ω(2l(x)). The case of nonrandom strings is more
interesting. Generate programs length-increasing lexicographically and
simulate them dovetailing style. This leads to a definition of the age as

age(x) = min
p

{2l(p)t : U(p) = x in t steps}.

In this way, age is dominated by the total time needed for a string to ap-
pear out of nothing, enumerated by a constant-size program. Taking the
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logarithm, we arrive at Levin’s Kt complexity: Kt(x) = log age(x). Let
us now define Kt complexity formally. We use the monotone machines
of Definition 4.5.2 on page 298, or the prefix machines of Example 3.1.1
on page 201. The two models are completely equivalent for use in Def-
inition 7.5.1; each model consists of a Turing machine with a one-way
read-only input tape, a one-way write-only output tape, and a work tape.
Initially, the input tape contains a one-way infinite binary sequence.

Definition 7.5.1 Let the universal monotonic machine U scan an initial input segment p
before it prints x (without necessarily halting after it does so). Let t(p, x)
be the number of steps taken until x is printed. Then Kt is defined by

KtU (x) = min
p

{l(p) + log t(p, x)}.

Since an invariance theorem such as Theorem 2.1.1, page 105, can be
proved in the standard way, we will drop the subscript U and write
Kt . For x ∈ {0, 1}∗, if x ∈ K[m − log t, t,∞], with m minimal, then x
has Kt complexity Kt(x) = m. Namely, x can be computed (and hence
enumerated) by a self-delimiting program of length m− log t in t steps.

7.5.1
Universal
Optimal Search

There is a universal search method that will solve all problems of a
certain class of inverting problems in time that is optimal but for a mul-
tiplicative constant. Despite its simplicity, the idea of universal optimal
search is a powerful one. Let T1, T2, . . . be a standard enumeration of
prefix machines, and let φ1, φ2, . . . be the corresponding enumeration
of partial recursive functions. If φ is a partial recursive function and
φ(y) = x, then y is a φ-witness for x.

Definition 7.5.2 An algorithm A inverts problem φ if given some x in the range of φ,
algorithm A computes a φ-witness y for x and checks that φ(y) = x.
Algorithm A diverges outside the range of φ.

Example 7.5.1 Many computational problems consist in finding feasible algorithms to
invert functions. Given a composite natural number, we are required to
find a factorization. Once a splitting (partial factorization) is found, we
check whether it is correct. A solution to this inversion problem does not
solve the corresponding decision problem of whether a natural number
is prime.

Given a satisfiable Boolean formula, we want to find a truth assignment
that satisfies it, Definition 1.7.9. Once an assignment is found, we check
whether it makes the formula true. A solution to this inversion problem
does not imply a solution to the corresponding decision problem SAT of
whether a given Boolean formula is satisfiable.
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To decide whether we can node color a given graph on n nodes with
k colors such that no edge connects two nodes of the same color is
an NP-complete problem. We know that we can color the graph with
n colors. Hence, there is a least number of colors χ (1 ≤ χ ≤ n) to
color the graph. This χ is the chromatic number of the graph. Suppose
we have an algorithm that finds a witness k-coloring if there is one in
time t(n). We can run this algorithm for 1 ≤ k ≤ n dovetail style.
The dovetailed algorithm finds k0 together with a k0-coloring in nt(n)
steps. This solves the k-coloring problem for all k. The drawback is that
we need to know t(n) to make the actual decision. A polynomial-time
solution to the inversion problem of finding a graph k-coloring, together
with its running time t, also gives a polynomial-time solution for the
corresponding NP-complete decision problem. 3

To solve inverting problems naively usually requires us to search through
exponentially many candidate witnesses. But we can also take the uni-
versal optimal search algorithm below.

Lemma 7.5.1 Let φ be an inverting problem. If there is an algorithm A that inverts φ
in time t(n), then the SIMPLE algorithm below inverts φ in time ct(n),
where c is a constant depending only on A.

Proof. We describe Algorithm SIMPLE. Run all machines Ti one step at
a time according to the following scheme: T1 every second step, T2 every
second step in the remaining unused steps, T3 every second step in the
remaining unused steps, and so on, that is, according to the sequence of
indices,

1213121412131215121312141213121612 . . . .

If Tk inverts φ on x in t steps, then this procedure will do the same in
2kt+ 2k−1 steps. Choosing c = 2k+1 proves the lemma. 2

A similar universal optimal search procedure A was developed by L.A.
Levin using Kt . It seems to have the advantage that the multiplicative
constant c = 2k+1 in Lemma 7.5.1 is reduced to 2K(Tk)+1, but closer
inspection shows that SIMPLE already attains this, see Example 7.5.2,
and in fact can do much better, Exercise 7.5.3 on page 582.

Theorem 7.5.1 Let φ be an inverting problem. If there is an algorithm A that inverts φ
in time t(n), then the SEARCH algorithm below inverts φ in time ct(n),
where c is a constant depending only on A.

Proof. We need a conditional and modified Kt . Define Kt ′(w|x, φ) =
min{l(p) + log t(p, w) : given x, program p prints w and tests whether
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φ(w) = x in time t(p, x)}. Given x and φ, algorithm SEARCH will
generate all strings w in order of increasing Kt ′(w|x, φ), and try whether
φ(w) = x until it has found a witness that inverts φ.

The algorithm SEARCH is as follows: The universal prefix machine U
lexicographically runs all self-delimiting programs p (of length less than
i) for 2i2−l(p) steps in phase i, i = 1, 2, . . ., until it has inverted φ on x.

Claim 7.5.1 All strings w of Kt ′ complexity less than or equal to k are generated and
tested in 2k+1 steps.

Proof. If Kt ′(w|x, φ) ≤ i, then l(p) + log t(p, x) ≤ i. That is, t(p, x) ≤
2i−l(p), which is precisely the allotted time for this program in phase
i. Since U is a prefix machine, we have by the Kraft inequality, Theo-
rem 1.11.1 on page 76, that

∑
2−l(p) ≤ 1, with the sum taken over all p

for which the computation of U with input p terminates. Consequently,

∑

1≤i≤k

∑

0<i−l(p)
2i−l(p) ≤

∑

U(p)<∞
2−l(p)

∑

1≤i≤k
2i ≤ 2k+1.

2

Let m = min{Kt ′(w|x, φ) : w is a φ-witness for x}. Suppose there exists
a prefix machine T that inverts φ on x in time t(n) with n = l(x). By
definition, m ≤ Kt ′(T |x, φ). The SEARCH algorithm inverts φ on x in
2m+1 steps by the claim. By definition, Kt ′(T |x, φ) ≤ K(T ) + log t(n).
Therefore, SEARCH uses a number of steps of at most

2K(T )+1t(n).

Setting c = 2K(T )+1, we prove the theorem. 2

Example 7.5.2 Let Tk be an inversion algorithm running in time t(n). The SEARCH
algorithm will use time 2K(k)+O(1)t(n) for the same inversion problem,
which is at most O(k(log k)2)t(n). The SIMPLE algorithm uses 2k+1t(n)
time—simulating Tk’s steps. If the inversion algorithm Tk for a given
inversion problem is very simple, for example, K(Tk) = log log k, then
SEARCH runs in time O(log k)t(n). This is much better than the time
used by SIMPLE in simulating Tk’s steps, which stays at 2k+1t(n). Or
can SIMPLE do better? It turns out that actually SIMPLE does as well
as SEARCH, an observation first made by M. Hutter. The reason is that
the SEARCH algorithm is executed by some Turing machine, Ts say.
So, whatever SEARCH does in time t(n), SIMPLE will also do in time
2s+1t(n). Therefore, SIMPLE does every task SEARCH does, and in the
time of the same order of magnitude. This type of approach is improved
further by FASTSEARCH; see Exercise 7.5.3 on page 582. If the latter
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algorithm is executed by Turing machine T (s′), then SIMPLE simulates
every inversion algorithm running in time t(n) in just 2s

′+15t(n) steps
(ignoring gigantic additive terms depending on the inversion algorithm
and FASTSEARCH but not on the input). 3

Example 7.5.3 The enumeration used in the above optimal search algorithm leads to
another variant of Kt . Let a monotonic machine T enumerate a sequence
of strings. The height hT (x) of x with respect to T is the logarithm of the
shortest time by which T outputs x, without necessarily halting. Since
an invariance theorem such as Theorem 2.1.1 can be proved in the usual
manner, we drop the subscript and write h(x). It is not difficult to show
that h(x) = Kt(x) +O(1).

For an inverting NP problem, let t(x) be the time it takes to find a
witness by the optimal algorithm for input x. Then it easy to see that

log t(x) = minKt ′(w|x) +O(1),

where the minimum is taken over all witnesses w for x. 3

Exercises 7.5.1. [30] Show that symmetry of information, Theorem 2.8.2 on
page 190, does not hold for Kt .

Comments. Hint: For each c and large n, by diagonalization find strings
x, y ∈ {0, 1}n such that Kt(x) > n

2 and Kt(y|x) > n
2 , but Kt(xy) ≤

n
2 + O(log n). Source: D. Ronneburger, Kolmogorov complexity and de-
randomization, Ph.D. thesis, Rutgers, 2004. This result provides a sharp
contrast with Exercise 7.1.12 and Exercise 7.1.13.

7.5.2. [27] Similar to Definition 7.5.1, one can define the Ct version of
Kt . Below we set n = l(x).

(a) Show that Ct(x) ≤ s(n) implies x ∈ C[s(n), 2s(n),∞], and the last
formula implies Ct(x) ≤ 2s(n).

(b) For a context-free language L, let CL(n) = min{Ct(x) : x ∈ L=n}.
Show that CL(n) = O(log n).

(c) Define CL(n) = max{Ct(x) : x ∈ L=n}. Show that L is P-printable
iff L is in P and CL(n) = O(log n).

(d) Show that CL(n) = O(log n) for all L in P iff CL(n) = O(log n) for
all L in NP.

(e) Every nondeterministic exponential-time computable predicate L is
computable in deterministic exponential time iff CL(n) = O(log n).
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Comments. Source: [E. Allender, In: Kolmogorov Complexity and Com-
putational Complexity, O. Watanabe, ed., Springer-Verlag, 1992, pp. 4–
22]. This reference contains applications of CL(n) and CL(n) in random
oracle constructions, pseudorandom generators, and circuit complexity.

7.5.3. [31] Show that there there is an algorithm FASTSEARCH that
does the following: Let A : X → Y be a given algorithm or specification.
Let B be an algorithm, computing provably the same function as A with
computation time provably upper bounded by the function tB(x). Let
time tB(x) be the time needed to compute the time bound tB(x). Then
the algorithm FASTSEARCH computes A(x) in time at most 5tB(x) +
dBtime tB(x)+cB, with constants dB and cB depending on B but not on
x. Neither B, tB, nor the mentioned proofs need to be known in advance
for the construction of FASTSEARCH.

Comment. The algorithm FASTSEARCH is an optimized version of
SEARCH, where the proportionality constant of 2K(k)+O(1) of the latter
is replaced by just 5, but at the cost of truly gigantic additive terms
depending on k but not on x. By the reasoning in Example 7.5.2, there
is a fixed constant c such that the trivial SIMPLE algorithm simulates
every inversion problem running in t(n) steps in at most c · t(n) steps
ignoring additive terms depending on the inversion problem but not on
the input. Source: M. Hutter, Int. J. Found. Comput. Sci., 13:3 (2002),
431–443.

7.6

Time-Limited

Universal

Distributions

The universal distribution m was applied to the average-case analysis of
algorithms in Section 4.4 and learning in Section 5.3.3. A drawback of m
is that it is not computable. It is not difficult to scale the entire theory
down to a more feasible domain. For each time bound t(n) we construct a
function t′(n) = O(nt(n) log(nt(n))) such that mt′ is computable in time
nt(n)2n and multiplicatively dominates every probability mass function
P with a distribution function P ∗ that is computable in time t(n).

It is convenient to formulate this section in terms of distribution func-
tions P ∗ : {1, 2, . . .} → [0, 1], where P ∗(x) is the summed probability
of all elements not exceeding x. Its probability mass function P (x) =
P ∗(x)−P ∗(x−1) is the usual probability of x. Below, all time functions
t are time-constructible, that is, functions from natural numbers to nat-
ural numbers with the property that t(n) can be constructed from n by
a Turing machine in time O(t(n)).

Definition 7.6.1 An integer function f is computable in time t(n) if there is a Turing
machine T that on input x computes output f(x) in at most t(n) steps,
where n = l(x). A distribution P ∗, which is almost always noninteger, is
computable in time t(n) if there is a Turing machine T that on input x
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and a positive integer k computes a rational number y in at most t(n+k)
steps, where n = l(x), such that |P ∗(x) − y| ≤ 1/2k.

Let U be the reference universal prefix machine U . The t-time bounded
version of K(x) is defined similarly to the one for C(·) in Definition 7.1.2
on page 533:

Kt(x) = min{l(p) : U(p) = x in t(n) steps}.

For every t and x of length n we have Kt(x) ≤ n + 2 logn + O(1).
In the limit, as t runs through a sequence of functions t1, t2, . . . with
limi→∞ ti(n) = ∞ for every fixed n, the limiting value of Kt(x) is K(x).

Definition 7.6.2 The t-time-bounded version of m, denoted by mt, is defined by

mt(x) = 2−K
t(x),

m∗t(x) =
∑

y≤x
mt(y).

Note that for all t and x, with n = l(x), we have mt(x) ≤ 2−n−2 logn+O(1),
and in the limit, as t runs through a sequence of functions t1, t2, . . . with
limi→∞ ti(n) = ∞ for every fixed n, mt(x) goes to Θ(m(x)).

Consider the class of probability mass functions P with a corresponding
distribution P∗ that is t-time computable in the sense of Definition 7.6.1.
We want to show that mt′(x) multiplicatively dominates all probability
mass functions in the class, for some t′(n) = O(nt(n) log(nt(n))).

We do not know whether mt(x) and m∗t(x) themselves are t-time com-
putable. The best we can now achieve is to compute the probability
mass function mt(x) in O(t(n)n22n) time (l(x) = n), namely, comput-
ing Kt(x) by simulating all programs of length up to n+ 2 logn+O(1),
and determining the length of the shortest program that halts with out-
put x in t(n) steps. Similarly, we compute m∗t(x) in O(t(n)n222n) time
by computing the sum

m∗t(x) =
∑

y≤x
mt(y).

Theorem 7.6.1 The distribution mt′ , for some t′(n) = O(nt(n) log(nt(n))), is universal
for the class of probability mass functions P with a t-time computable
distribution P ∗, that is, mt′ multiplicatively dominates every P in that
class as follows. There exists a constant cP such that cPmt′(x) ≥ P (x)
for every x of length n, where log cP = Kt′(P ∗) + O(1) depends on P ∗

and t but not on x.
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Proof. The theorem follows immediately from the following claim.

Claim 7.6.1 If the distribution P ∗ is computable in time t(n), in the sense of Defi-
nition 7.6.1, then there is a constant cP as in the theorem such that for
all x with l(x) = n,

Kt′(x) ≤ log
1

P (x)
+ log cP .

Proof. Without a time bound, a proof similar to that of the optimality
of a constructive version of the Shannon–Fano code would be sufficient,
as in the proof of Theorem 4.3.1 on page 267. But we have to deal with
the time bound here.

Divide the real interval [0, 1) into subintervals such that the code word
c(x) (constructed below) for a source word x occupies [P ∗(x−1), P ∗(x)).
There is room enough, since

∑

x P (x) ≤ 1. The binary interval deter-
mined by the finite binary string r is the half-open interval [0.r, 0.r +
2−l(r)) corresponding to the set of reals (cylinder) Γr consisting of all
reals 0.r . . . . If Γr is the greatest binary interval contained in Ix =
[P ∗(x − 1), P ∗(x)), then x is encoded as c(x) := r. It is easy to show
that the greatest binary interval Ir in an interval Ix of [0, 1) has size
at least one-fourth of Ix. Since length l(Ix) = P (x), it follows that
l(c(x)) ≤ log 1/P (x) + 2 in bits.

We want to give encoding and decoding algorithms that are efficient.
The encoding algorithm is trivial. Since P ∗ is computable in time t(n),
in the sense of Definition 7.6.1, given source word x (l(x) = n), the code
word c(x) can be computed from P ∗(x − 1) and P ∗(x) in altogether
O(t(n)) time. In order to compute c−1, the decoding function, given a
code word c(x), we proceed as follows:

Step 1. Set k := 1.

Step 2 (Doubling). Repeat set k := 2k until Γc(x) falls in or to the
right of interval [P ∗(k − 1), P ∗(k)). Set l := k/2 and u := k.

Step 3 (Binary search). Set m := (u + l)/2. If Γc(x) is in [P ∗(m −
1), P ∗(m)) then return x := m else set u := m if Γc(x) is to the
left of P ∗(m− 1) and set l := m if Γc(x) is to the right of P ∗(m).

This decoding algorithm is similar to a binary search, and it takes at
most

∑n
i=0O(t(i)) = O(nt(n)) time to find x. By construction l(c(x)) ≤

log 1/P (x) + 2. This completes our encoding/decoding of x using distri-
bution P .

We can reconstruct x in O(nt(n)) steps from the following description:
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• A description of this discussion (including the decoding algorithm)
in O(1) bits;

• a self-delimiting program q to compute P ∗(x) (l(x) = n) in time
t(n); and

• the self-delimiting code word c(x).

This description takes l(c(x)) + l(q) +O(1) bits and can be interpreted
and executed by a particular prefix Turing machine in time O(nt(n)). By
Equation 7.1 on page 536, the reference universal prefix Turing machine
(the self-delimiting machine variant of the prefix Turing machines) can
do this in time t′(n) = O(nt(n) log(nt(n))). Since Kt′(x) is the length
of a shortest program from which x can be reconstructed in t′(n) steps,
setting log cP = l(q) + O(1), we have Kt′(x) ≤ log 1/P (x) + log cP .
Program q computing P ∗ runs in time t(n). We can also compute P ∗

using a shortest program q′ running in time O(t′(n)). Then l(q′) ≤ l(q)
and l(q′) equals Kt′(P ∗). Therefore we can set log cP = l(q′) + O(1) =
Kt′(P ∗) +O(1), 2 2

Example 7.6.1 In many algorithms, we consider only inputs in a finite set A ⊆ N . We
can precompute the time-limited conditional version mt(x|x ∈ A) in
the form of an interval representation of a table once and for all, and
use it to sample by means of a sequence of fair coin flips analogous to
Example 4.4.3 on page 293. Such a table needs to be precomputed only
once, and being available, can be used repeatedly by every randomized
algorithm that uses this probability mass function. An application of this
is in simple pac-learning, Section 5.3.3. As an example take A = {0, 1}n.
We show how to compute mt(x|l(x) = n). Divide [0, 1) into 2n half-open
disjoint intervals Iy with

l(Iy) =
mt(y)

mt(x+ 1) + · · · + mt(x + 2n)

for y = x+ 1, . . . , x+ 2n. Then mt(y|l(y) = n) = l(Iy) and
⋃

y Iy equals
[0, 1). 3

Example 7.6.2 More generally, the entire theory of simple pac-learning can be reformu-
lated in terms of t-time limited simple distributions, mt′ , and Kt′ , for
some t′(n) = O(nt(n) log(nt(n))). Fix a low t, such as t(n) = O(n2), and
precompute once and for all the finite mt′(x) table for x ranging over
the finite set that is required. Let C be a concept class that is polyno-
mially learnable under mt′ . For example, suppose that C is the class of
n2-simple DNF (analogous to simple DNF in Exercise 5.3.3 on page 381,

using Kn2

). We can use the table, together with random coin flips as
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explained in Example 4.4.3 on page 293, to polynomially learn n2-simple
DNF under all n2-simple distributions. 3

Some further developments are given in Exercise 7.6.5 on page 588 and Ex-
ercise 7.6.6 on page 589. Computational depth is defined and studied in [L.
Antunes, L. Fortnow, D. van Melkebeek, and N.V. Vinodchandran, Theoret.
Comput. Sci., 354(2006), 391–404; L. Antunes and L. Fortnow, Electr. Coll.
Comput. Complexity, 144(2005); L. Antunes, L. Fortnow, A. Pinto, and A.
Souto, Proc. 22nd IEEE Conf. Comput. Complexity, 2007, 46–51]. Without
explaining unknown terminology: For t a time-constructible function, define
t-bounded computational depth by cdt(x|y) = Kt(x|y) − K(x|y). Then, ran-
dom and simple strings have small depth but there do exist strings of depth
nearly n. For every satisfiable formula φ, we can find an assignment of φ

probabilistically in time mint,a:a satisfies φ{2cdt(a|φ)+O(log t)}. Under a reason-
able derandomization assumption, an algorithm runs in time polynomial on
average in L.A. Levin’s sense, explained in Exercise 7.6.6 on page 589, iff for
some polynomial p, the algorithm on input x runs in time p(l(x))2cdp(x) in the
worst case. A set A is cd-shallow if for some k and for every initial segment x of

the characteristic sequence of A, we have cdlogk

(x) ≤ k log l(x). Random and
sparse sets are both shallow. Every computable set B that polynomial-time
Turing reduces to a shallow set A is in P/poly.

Exercises 7.6.1. [35] Call a probability distribution P : N → R malign for a
class of algorithms if each algorithm in the class runs in P -average time
(space) equal to worst-case time (space). In Section 4.4 it was shown that
m is malign for the recursive algorithms. As usual P ∗(x) =

∑

y≤x P (y)
and the function P ∗ is computable in time t if there exists a t(n)-time-
bounded Turing machine that on input 〈x, 1k〉 writes the truncated bi-
nary expansion y of P (x) such that |P ∗(x) − y| ≤ 1/2k.

(a) Show that for every total recursive function f there exists a prob-
ability distribution P that is malign for the class of f -time bounded
algorithms, and P ∗ is computable in polynomial time.

Define a probability ensemble as the set of probability distributions {Pn}
defined by Pn(x) = P (x|l(x) = n). It is polynomial-time computable if
each P ∗

n is polynomial-time computable. Similarly for exponential time.

(b) Show that there exists an exponential-time computable probability
ensemble that is malign for the class of polynomial-time algorithms.

(c) Show that there does not exist a polynomial-time computable prob-
ability ensemble that is malign for the class of polynomial-time algo-
rithms.

Comments. Source: P.B. Miltersen, SIAM J. Comput., 22:1(1993), 147–
156. This contains many more results on malignness. K. Kobayashi stud-
ied the differences and relations between malign measures and universal
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distributions in classes of distributions in [IEICE Trans. Inform. Sys-
tems, E76-D:6(1993), 634–640; Theoret. Comput. Sci., 181(1997), 289–
306]. A. Jakoby, R. Reischuk, and C. Schindelhauer studied malign
distributions for average-case circuit complexity in [Inform. Comput.,
150(1999), 187–208].

7.6.2. [18] (a) Let l(x) = n. Show that probabilities mt(x) = 2−K
t(x)

for the set of all x’s with Kt(x) = O(log n) can be computed in time
polynomial in t(n).

(b) Use Item (a) to show that one can precompute mt(x) with x ∈ A
for the set A of high-probability x’s (Kt(x) = O(log n)) in polynomial
time for t(n) polynomial.

Comments. Source: M. Li and P.M.B. Vitányi, SIAM J. Comput., 20:5
(1991), 911–935.

7.6.3. [26] Recall Definition 4.3.5 on page 272. The t-time-bounded
universal a priori probability is defined as QtU (x) =

∑

Ut(p)=x 2−l(p), and

U t(p) = x means that U computes x in at most t(l(x)) steps and halts.
Let < denote the standard lexicographic length-increasing ordering on
the finite binary strings.

(a) Assume that we can determine, up to a fixed multiplicative constant,
the number of programs p of length m with U t(p) = y ≤ x in time

polynomial in t(n) (n = l(x)). Show that Qt(x) ≤ Θ(2−K
r(t)(x)) for

some polynomial function r.

(b) If P=NP then Qt(x) ≤ Θ(2−K
r(t)(x)) for a polynomial function r.

Comments. The coding theorem, Theorem 4.3.3, without resource bounds
is a major result in Kolmogorov complexity. Item (b) concerns a coding
theorem about time-bounded universal distributions, conditional on the
complexity-theoretic assumption P = NP. Even though this assumption
is widely disbelieved, decades of research have not produced a stronger
result than Item (b), or shown that a time-bounded coding theorem
does not hold. Hint for Item (a): by Theorem 7.6.1, if Q∗t(x) is com-
putable in time q(t(n)) for some function q, then there is a constant c
depending on Q and t such that Qt(x) ≤ cmtq(x), for some function
tq(n) = O(nq(t(n)) log nq(t(n))). To prove that Q∗t(x) is computable in
time polynomial in t(n), we determine for each m = 1, 2, . . . , t(n) the
number im of programs of length m with U t(p) ≤ x. Since no program of
length exceeding t(n) can be scanned to the end in the available running

time t(n), we have Q∗t(x) =
∑t(n)
m=1 im2−m. Under the assumption of

Item (a) this computation of Q∗t(x) takes time O(q(t(n))) for some poly-
nomial q. Hint for Item (b): There are fewer than 2t(n)+1 programs p of
length m ≤ t(n). Hence, we can enumerate all of them in space O(t(n)).
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If t(n) is polynomial, then the entire computation of Q∗t(x) can be per-
formed in polynomial space. Naively, the complexity-theoretic assump-
tion P = #P implies the assumption in the theorem. But using a result of
L. Stockmeyer [SIAM J. Comput., 14(1985), 849–861] if P = NP andA ∈
P, then for every polynomial p(n) we can determine in polynomial time a
value a with (1−1/p(n))a ≤ d(A

⋂{0, 1}n) ≤ (1+1/p(n))a. This shows
that if P = NP we can determine Q∗t(x) up to precision ±1/p(n), which
suffices. Source: L. Antunes and P.M.B. Vitányi, Manuscript, CWI, 2000,
with H.M. Buhrman suggesting the Stockmeyer paper.

7.6.4. • [O46] Use the terminology of Exercise 7.6.3. The relation
Qt(x) ≥ mt(x) is obvious. Show whether Qt(x) = O(mt(x)) with or
without a complexity-theoretic assumption. If necessary relax the ques-
tion as in Item (b) of Exercise 7.6.3.

Comments. Here we ask for the (non)existence of a time-bounded version
of the Theorem 4.3.3.

7.6.5. [36] A probability mass function P is P-computable if it satisfies
Definition 7.6.1 with the time t(n) a polynomial in n. A probability
mass function P is P-samplable if there is a probabilistic Turing machine
T that on input k computes a string x such that |Pr(T (k) = x) −
P (x)| ≤ 1/2k and T runs in time polynomial in l(x) + k. Clearly, every
P-computable probability mass function is P-samplable.

(a) Show that if one-way functions exist then there is a P-samplable
probability mass function that is not multiplicatively dominated by a
P-computable one.

(b) Let P be a P-samplable probability mass function. For every poly-
nomial p, there is a P-samplable probability mass function P such that
mp(x) ≤ P (x)/p(x).

(c) Let P be a P-samplable probability mass function. Show that un-
der a reasonable derandomization assumption, for some polynomial p,
mp(x) ≥ P (x)/p(x).

(d) Show that if there exists a P-computable probability mass function
P such that mt(x) = O(P (x), for some t, then pseudorandom generators
do not exist.

Comments. Existence of one-way functions also figures in Exercise 7.1.12
on page 548. Source for Item (a): S. Ben-David, B. Chor, O. Goldreich,
and M. Luby, 20th ACM Symp. Theory Comput., 1989, 204–216; Item
(b): L. Antunes, L. Fortnow, D. van Melkebeek, and N.V. Vinodchan-
dran Theoret. Comput. Sci., 354(2006), 391–404; Item (c): L. Antunes
and L. Fortnow, Electr. Coll. Comput. Complexity, 144(2005); Item (d):
R. Schuler [16th Symp. Theoret. Aspects Comput. Sci., 1999, pp. 434–
443; 12th IEEE Conf. Comput. Complexity 1997, pp. 69–73].
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7.6.6. [34] Let T be a constructible time function. Show that for every

time-constructible function t we have T (x) = 2O(Kt(x)−K(x)+logn) iff T
is polynomial time on mt-average in L.A. Levin’s sense, that is, there
exists a k such that

∑

x T
1/k(x)mt(x)/l(x) <∞.

Comments. Source: L. Antunes, L. Fortnow, D. van Melkebeek, and N.V.
Vinodchandran, Ibid.

7.7

Logical Depth

One may consider a book on number theory difficult, or ‘deep.’ The book
will list a number of difficult theorems of number theory. However, it has
very low Kolmogorov complexity, since all theorems are derivable from
the initial few definitions. Our estimate of the difficulty, or ‘depth,’ of the
book is based on the fact that it takes a long time to reproduce the book
from part of the information in it. The existence of a deep book is itself
evidence of some long evolution preceding it. Currently, the sequence of
primes is being broadcast to outer space, since it is deemed deep enough
to prove to aliens that it arose as a result of a long evolution.

From the point of view of an investigator, a sequence is deep if it yields its
secrets only slowly: one will be able to discover all significant regularities
in it only if one analyzes it long enough.

Example 7.7.1 A suggestive example is provided by DNA sequences. Such a sequence
is quite regular and has some 90% redundancy, possibly due to evo-
lutionary history. A DNA sequence over an alphabet of four letters
{A,C,G, T} looks like nothing but a super-long (3 × 109 characters for
humans) computer program. A particular three-letter combination liter-
ally signifies ‘begin’ of the encoding of a protein. Following the ‘begin’
command, every next block of three consecutive letters encodes one of
the 20 amino acids. At the end, another three-letter combination sig-
nifies the ‘end’ of the program for this protein. Such a sequence is not
Kolmogorov random, and it encodes the structure of a living being.

DNA is less random than, say, a typical configuration of gas in a con-
tainer. On the other hand, DNA is more random than a crystal. Both
gases and crystals are structurally trivial; the former is in complete chaos
and the latter is in total order. Intuitively, DNA contains more useful
information than both. A deep object, such as DNA, is something really
simple but disguised by complicated manipulations of nature or compu-
tation by computer. To quote Charles Bennett: “A structure is deep, if it
is superficially random but subtly redundant, in other words, if almost all
its algorithmic probability [m] is contributed by slow-running programs
[. . .]. A priori the most probable explanation of ‘organized information’
such as the sequence of bases in a naturally occurring DNA molecule is
that it is the product of an extremely long biological process.” 3
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Logical depth is the necessary number of steps in the deductive or causal
path connecting an object with its plausible origin. Formally, the notion
of logical depth of an object is the amount of time required for an algo-
rithm to derive the object from a shorter description. In fact, with some
probability we can derive the object by simply flipping a fair coin. But
for long objects this probability is small. If the object has a short descrip-
tion then we can flip that with higher probability. Bennett’s proposal
tries to express the tradeoff between the probability of flipping a short
program and the shortest computation time from program to object.
In order to solve some stability problems, Bennett’s definition considers
not only the object’s shortest description but every description of the
object and its computation time.

It turns out that it is quite subtle to give a formal definition of ‘depth’
that satisfies our intuitive notion of it. After some attempts at a defini-
tion, we will settle for Definition 7.7.1. As usual, we write x∗ to denote
the shortest self-delimiting program (of the reference universal prefix
machine U) for x. If there is more than one of the same length, then x∗

is the first such program in a fixed enumeration.

Attempt 1. The number of steps required to compute x from x∗ is
not a stable quantity, since there might be a program of just a
few more bits using substantially less time to generate x. That this
can happen is shown by the hierarchy theorems of Section 7.1.2.
Therefore, a proper definition of depth probably should compromise
between the program length and the computation time.

Attempt 2. Relax the strict requirement of minimum program to al-
most minimum programs. Define that a string x has depth d within
error 2−b if x can be computed in d steps by a program p of no
more than b bits in excess of x∗. That is, 2−l(p)/2−K(x) ≥ 2−b.

This definition is stable but is unsatisfactory because of the way it
treats multiple programs of the same length. If 2b distinct programs
of length m + b all compute x, then together they account for the
same algorithmic probability, that is

∑

{2−l(p) : U(p) = x, l(p) = m+ b},

as one program of length m printing x does. That is, both situations
are equally likely to produce x as output of the universal reference
prefix machine in case the input is provided by fair coin tosses. But
with the proposed definition, 2b programs of length m+ b make the
emerging of x no more probable than one program of length m+ b.
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We shall explicitly take the algorithmic probability into account. The
universal prior probability of a string x is

QU (x) =
∑

U(p)=x

2−l(p),

where U is the reference universal prefix machine. This is the probability
that U would print x if its input were provided by random tosses of a
fair coin. By Theorem 4.3.3 on page 273,

log
1

QU (x)
= log

1

m(x)
= K(x), (7.9)

with equality up to additive constants. The distinguishing characteristic
of m is that it is a lower semicomputable discrete semimeasure such that
for every other lower semicomputable discrete semimeasure P there is a
constant c such that cm(x) ≥ P (x) for every x. By Equation 7.9 this is
satisfied if we simply set the reference universal semimeasure m in The-
orem 4.3.1 precisely equal to 2−K(x). Thus, weighing all possible causes
of emergence of x appropriately, we are led to the following definition:

Definition 7.7.1 The depth of a string x at significance level ǫ = 2−b is

depthǫ(x) = min

{

d :
QdU (x)

QU (x)
≥ ǫ

}

,

where QdU (x) =
∑

Ud(p)=x 2−l(p) and Ud(p) = x means that U computes

x using program p within d steps and halts. A string x is (d, b)-deep if
d = depthǫ(x) and ǫ = 2−b.

We can replace d by a time-constructible time function t in this defi-
nition. The relation of the new definition with Definition 7.7.1 is that
t(n) = d for l(x) = n.

Example 7.7.2 Logical depth is related to the randomness deficiency δ of Definition 4.3.9
on page 280, δ(x|QdU (x)) = log 1/QdU(x)−K(x), in the sense that −c ≤
δ(x|QdU (x))− logQU (x)/QdU (x) ≤ 0, where c ≥ 0 is a constant satisfying
−c ≤ logm(x)/QU (x) ≤ 0. (By definiton, m(x) is at most QU (x), and
c exists by Equation 7.9.) 3

If x is (d, b)-deep, then x receives a 1/2b±∆ fraction of its algorithmic
probability (for some small ∆) from programs running in d steps. Below
we formalize this statement and make ∆ precise. A binary string x is
b-compressible if K(x) ≤ l(x) − b. Otherwise, x is b-incompressible.

Theorem 7.7.1 A string x is (d, b)-deep (b up to precision K(d) + O(1)) if and only if
d is the least number of steps needed by a b-incompressible program to
print x.
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Proof. The precise form of the statement of the theorem is

1

2b+K(d)+O(1)
≤ QdU (x)

QU (x)
≤ 1

2b−O(1)
, (7.10)

where QdU is the d time-bounded analogue of QU , in the sense that the
right inequality implies the ‘if’ part and the left inequality implies the
‘only if’ part.

(If) We prove the right inequality of Equation 7.10. Suppose that d is the
least time required to compute x by a b-incompressible program. In other
words, each program computing x in fewer than d steps is compressible
by b bits. For each such program p, there is a program p′ such that
U(p′) = p and l(p′) ≤ l(p) − b. Let q be a program that simulates U on
p′ to obtain p and subsequently simulates p to obtain x. The length of q
is about l(p)− b+O(1). The relationship between p and q is one-to-one.

Recall that the notation Ud(p) = x means that U computes x from p
within d steps and halts. Let α = QU (x) −∑U(q)=x 2−l(q), where the
sum is taken over all q’s as defined above. By Equation 7.9, we have
α ≥ 0. Then,

QdU (x)

QU (x)
=

∑

Ud(p)=x 2−l(p)

α+
∑

U(q)=x 2−l(q)

≤
∑

Ud(p)=x 2−l(p)
∑

U(q)=x 2−l(q)

≤
∑

Ud(p)=x 2−l(p)
∑

U(q)=x 2−(l(p)−b+O(1))
≤ 1

2b−O(1)
.

(Only If) Assume, by way of contradiction, that the left inequality of
Equation 7.10 is false. Then given x∗ and d∗ (shortest self-delimiting
programs for x and d), we can enumerate the set A of all self-delimiting
programs computing x in time at most d by simulating all self-delimiting
programs of length at most l(x) + 2 log l(x) + 1 for d steps. This set A
can be computed by a program q of length

l(q) = K(x) +K(d) +O(1). (7.11)

By definition of A we have
∑

p∈A 2−l(p) = QdU (x). By the contradictory

assumption, 2b+K(d)+O(1) < QU (x)/QdU (x). By Theorem 4.3.3 we have
QU (x) = 2−K(x)+O(1). Together, it follows that

∑

p∈A
2−l(p) < 2−K(x)−b−K(d)−O(1). (7.12)
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Claim 7.7.1 Let B be a prefix-free set with
∑

x∈B 2−l(x) < 2−m, and B is enumerated
by program s. Then every string in B can be effectively compressed by
at least m− l(s) −O(1) bits.

Proof. Increasing the probability 2−l(x) of every x in B by a multiplica-
tive factor 2m, we still have

∑

x∈B 2−l(x)2m < 1. Therefore, the elements
of B can be coded by the Shannon–Fano code as in Lemma 4.3.3 on
page 274. The code word for each x in B has length at most l(x)−m+2.
In order to make this coding effective, we use s to enumerate all and
only strings in B. This takes an additional l(s) + O(1) bits in the code
for each x ∈ B. Hence, each string in B is effectively compressed by
m− l(s) −O(1) bits. 2

We can choose B = A, s = q, and m = K(x) + b + K(d) + O(1), in
Claim 7.7.1, the last equality by Equation 7.12. Therefore, every program
in A can be compressed by K(x)+b+K(d)+O(1)− l(q)−O(1) bits. By
Equation 7.11 and proper choice of the O(1) constants, we conclude that
every program in A can be compressed by more than b bits, contradicting
the fact that x is (d, b)-deep. 2

Definition 7.7.1 is not equivalent to the seemingly close Attempt 2. The reason
is that in trying to work out the equivalence Theorem 4.3.3 must be used, and
it brings in at least exponential time. The two are close when the depth we
are interested in is much larger than exponential.

Example 7.7.3 If x is (d, b)-deep at some significance level 2−b, then the universal ma-
chine must take at least d steps to compute x from x∗ (the longest
computation). Otherwise, x would be (d′, 0)-deep with d′ < d. Note that
if a string is (d, b)-deep, then then it is also (d, b + 1)-deep. A program
printing x of length l(x) − b is an explanation of how the phenomenon
x could occur with probability at least 2l(x)−b. Thus, with larger b, the
explanation provided by the program involved is less compelling and less
likely. If the object is very deep even with a larger b, then this means
that even a less compelling explanation takes a long time. 3

Definition 7.7.2 A string x is d-shallow if it is not (d+1, b)-deep for any b. Every string x
must take at least n = l(x) steps to be printed. If x is n±O(1)-shallow
(at every significance level), then we will simply call x shallow.

Example 7.7.4 A random string x of length n is always shallow, because it can be
printed by its shortest program x∗ of length n±O(1) in n steps. Thus,
a random string is shallow at every significance level.

String 1n is shallow, since a constant-size incompressible program prints
it in time n given input 0n. The strings (01)n and 01n are likewise
shallow. 3
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Example 7.7.5 We demonstrate the distinction between depth and information. Con-
sider two sequences: the halting probability Ω defined in Section 3.6.2,
and the halting sequence χ defined in the proof of Theorem 7.1.3. Al-
though both encode the halting information of Turing machines, we show
that χ is deep and Ω shallow.

One the one hand, since Ω encodes the halting problem with maximal
density, it is recursively indistinguishable from a random string and prac-
tically useless, since K(Ω1:n) ≥ n − O(1) by Section 3.6.2. Thus, Ω is
shallow.

On the other hand, since χ is a characteristic sequence of a recur-
sively enumerable set constructed in the proof of Theorem 7.1.3, we
have C(χ1:n|n) ≤ logn by Barzdins’s lemma (Theorem 2.7.2). If d(n) is
the minimum time (number of steps) required to compute χ1:n|n from
a (logn)-sized incompressible program, then χ1:n is (d(n), b)-deep for
every b.

As a matter of fact, χ1:n is very deep, since d(n), the time required to
compute an initial segment χ1:n from a program of length logn, increases
faster than any computable function. Namely, Theorem 7.1.3 implies
that χ1:n can be computed from a program logarithmic in n if unlimited
time is allowed, but can be computed only from a program that is linear
in n if a computable bound is imposed on the decoding time. 3

Example 7.7.6 Depth is stable. That is, deep strings cannot be quickly computed from
shallow ones (Exercise 7.7.3). In the genetic sense, organisms evolve
relatively slowly. This may be called the slow growth law.

There is a mathematical version of such a law. Consider a string x and
two significance parameters b2 > b1 (corresponding to significance levels
2−b2 < 2−b1). Let x be (d1, b1)-deep. A random program p generated by
tossing a fair coin has probability less than 2−(b2−b1)+O(1) of transform-
ing x into an excessively deep output y which is (d2, b2)-deep and such
that d2 > d1 +time(p(x))+O(1), where time(p(x)) is the run time of the
transforming program p. In other words, the set of self-delimiting pro-
grams p such that p(x) = y and y is (d2, b2)-deep has uniform measure
less than 2−(b2−b1)+O(1). We defer a proof to Exercise 7.7.5. 3

Example 7.7.7 It is not known whether all functions computable by algorithms that
use space at most polynomial in the input length (PSPACE) can also
be computed by deterministic algorithms that use time polynomial in
the input length (P). Consider only computations in PSPACE. If P =
PSPACE, then every string derivable from a given input has depth at
most polynomial. If a string were the result of an exponentially long
computation, then there would be a shorter computation of polynomial
length to obtain it from the input. That is, the maximal depth of a string
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computable in PSPACE would be polynomial. If, on the other hand,
P 6= PSPACE, then there would be strings computable in PSPACE
whose depth is larger than polynomial.

Consider, for example, the development of DNA. It is a fair assumption
that no computations in the evolution of DNA will exceed PSPACE.
Then the maximal logical depth achievable is possibly exponential, such
as 2n, for a seed of length n. But if P = PSPACE, then there is always a
shorter computation of length at most polynomial in n, and the evolved
DNA is at most polynomially deep.

Similar statements can be made for micro states in evolving thermody-
namic systems, for example, if the container, temperature variation, and
pressure variation for a sample of gas molecules are fixed. 3

Apparently, depth is different from Kt , since it may be the case that a random
string is greater in Kt than a nonrandom one of equal length, but shallower in
logical depth.

Exercises 7.7.1. [22] Strengthen the first inequality of Equation 7.10 to

2−b−min{K(b),K(d)}−O(1) ≤ QdU (x)

QU (x)
.

Comments. Hint: given x∗ and b∗, we can enumerate all programs in
order of increasing running time and stop when the accumulated algo-
rithmic probability measure exceeds 2−K(x)+b. Source: Lemma 3 in [C.H.
Bennett, pp. 227–257 in: The Universal Turing Machine: a Half-Century
Survey, R. Herken, ed., Oxford University Press, 1988]. This paper is also
the source of all other exercises in this section, except Exercise 7.7.4.

7.7.2. [28] Deep strings are not easy to identify, but can be constructed
by diagonalization. Prove that the following program finds a string which
is (d, b)-deep for every significance parameter b ≥ n−K(d) −O(log n):
“Find all x of length n such that QdU (x) > 2−n; print the first string
that is not in this set.”

7.7.3. [30] Prove the following ‘stability property.’ Deep strings can-
not be quickly computed from shallow ones. More precisely, there is a
polynomial p and a constant c, both depending only on the universal
machine U , such that if q is a program to compute x in d′ steps and if
q is less than (d, b)-deep, then x is less than (d+ p(d′), b+ c)-deep.

7.7.4. [25] Depth is machine-independent: If U and U ′ are two different
reference universal machines, prove that there exists a polynomial p and
a constant c, both depending only on U and U ′, such that (p(d), b+ c)-
depth on either machine is a sufficient condition for (d, b)-depth on the
other.
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7.7.5. [30] Prove the slow growth law of Example 7.7.6 on page 594.

7.8

History and

References

The earliest discussion of resource-bounded Kolmogorov complexity is
the quotation of A.N. Kolmogorov at the outset of this chapter. The
earliest result in resource-bounded Kolmogorov complexity the authors
know of is Theorem 7.1.3, due to J.M. Barzdins [Soviet Math. Dokl.,
9(1968), 1251–1254]. In the early 1970s, R.P. Daley wrote his Ph.D. the-
sis on Kolmogorov complexity with D.W. Loveland at Carnegie-Mellon
University, publishing parts as [J. Assoc. Comp. Mach., 20:4(1973), 687–
695; Inform. Contr., 23(1973), 301–312]. This work concerns resource
bounds for uniform complexity C(x;n) as defined by Loveland (Ex-
ercise 2.3.2 on page 130). These papers, and [L.A. Levin, Problems
Inform. Transmission, 9(1973), 265–266; R.P. Daley, Theoret. Com-
put. Sci., 4(1977), 301–309; L.M. Adleman, “Time, space, and random-
ness,” LCS Report TM-131, 1979, MIT], are significant early documents
of resource-bounded Kolmogorov complexity. The papers [J. Hartma-
nis, Proc. 24th IEEE Found. Comput. Sci., 1983, pp. 439–445; Ker-I
Ko, Theoret. Comput. Sci., 48(1986), 9–33; M. Sipser, Proc. 15th ACM
Symp. Theory Comput., 1983, pp. 330–335] started the research wave in
the eighties on resource-bounded Kolmogorov complexity. Related work
on polynomial resource-bounded notions of randomness is by Y. Wang
[Randomness and Complexity, Ph.D. thesis, Heidelberg, 1996; Proc. 11th
IEEE Conf. Structure in Complexity Theory, 1996, pp. 180–189].

The CD notation in Definition 7.1.4 as well as Theorem 7.1.2 were in-
troduced by M. Sipser in [Ibid.]. Theorems 7.1.4 and 7.1.5 and Defini-
tion 7.1.8 are from [Ker-I Ko, Ibid.]. The theory of upper semicomputable
and recursive majorants of complexity is found in [A.K. Zvonkin, L.A.
Levin, Russ. Math. Surveys, 25:6(1970), 83–124]; see also Example 4.1.1.
and Exercise 7.1.5 on page 546.

The notation C[f(n), t(n), s(n)] in Section 7.1.2 is from [J. Hartma-
nis, Proc. 24th IEEE Found. Comput. Sci., 1983, pp. 439–445]. This
paper had major influence on the research applying resource-bounded
Kolmogorov complexity to computational complexity theory. Earlier,
Daley [J. Assoc. Comp. Mach., 20:4(1973), 687–695] defined similar
notions for infinite sequences with uniform complexity: C[f |t] = {x :
(∀∞n)Ct(x1:n;n) ≤ f(n)}, Exercises 7.1.7, and 7.1.8. The hierarchy
theorems in Section 7.1.2 were first developed by J. Hartmanis [Ibid.].
L. Longpré’s [Ph.D. thesis, Cornell University, 1986] contains Theo-
rem 7.1.8, as well as the details of hierarchy theorems for complexity,
space, and time.

Section 7.2 on language compression is based on [M. Sipser, Proc. 15th
ACM Symp. Theory Comput., 1983, pp. 330–335; H.M. Buhrman and
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L. Fortnow, Proc. 14th Symp. Theoret. Aspects Comput. Sci., Lect.
Notes Comput. Sci., Springer-Verlag, Berlin, 1997, pp. 105-116; H.M.
Buhrman, L. Fortnow, and S. Laplante, SIAM J. Comput. 31:3(2002),
887–905; A. Goldberg and M. Sipser, SIAM J. Comput., 20(1991), 524–
536]. The elegant Theorem 7.2.1, which is new to the third edition, is
due to H.M. Buhrman and L. Fortnow, Ibid. Theorems 7.2.2 and 7.2.4
are from [M. Sipser, Ibid.]. Theorems 7.2.5 and 7.2.6 are from [A. Gold-
berg and M. Sipser, Ibid.]. The original proofs of the coding lemma,
Lemma 7.2.2, and Theorem 7.2.6 use probabilistic arguments. Exam-
ple 7.2.1 is one of the early applications of time-bounded Kolmogorov
complexity. Originally, Sipser proved BPP ⊆ Σp4

⋂
Πp

4 using time-bound-
ed Kolmogorov complexity. The current version, BPP ⊆ Σp2

⋂
Πp

2, is due
to P. Gács. Theorem 7.2.7 is independently proved in [E. Allender, [Ph.D.
thesis, Georgia Inst. Tech., 1985; A. Goldberg and M. Sipser, Ibid.]. Sec-
tion 7.3.1 is based on [J. Hartmanis, Proc. 24th IEEE Found. Comput.
Sci., 1983, pp. 439–445], which also contains Lemma 7.3.1 and Theo-
rems 7.3.1 and 7.3.2. Theorem 7.3.3 is due to R.V. Book, P. Orponen,
D. Russo, and O. Watanabe [SIAM J. Comput., 17(1988), 504–516]. A
systematic study of oracle building tools is done by S. Fenner, L. Fort-
now, S.A. Kurtz, and L. Li [Inform. Computation, 182:2(2003), 95–136].
See also [J. Feigenbaum, L. Fortnow, S. Laplante, and A. Naik, Com-
put. Complexity 7(1998), 174–191]. Theorem 7.3.4 is from [E. Allender
and R. Rubinstein, SIAM J. Comput., 17(1988), 1193–1202], while the
equivalence of Items (i) and (iv) is independently due to J.L Balcázar
and R.V. Book [Acta Informatica, 23(1986), 679–688] and J. Hartmanis
and L. Hemachandra [Inform. Process. Lett., 28(1988), 291–295]. Sec-
tion 7.3.3 intends to capture a glimpse of the recent developments in
connection with derandomization. Theorem 7.3.5 and Exercise 7.3.13
are from E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and
D. Ronneburger, Proc. 43rd IEEE Symp. Found. Comp. Sci., 2002, pp.
669–678. The reader can find more connections between variations of
resource-bounded Kolmogorov complexity and derandomization in: E.
Allender, Proc. 21st Conf. Found. Software Tech. Theor. Comp. Sci.,
2001, pp. 1–15; E. Allender, M. Koucký, D. Ronneburger, and S. Roy,
Proc. 18th IEEE Conf. Comput. Complexity, 2003, pp. 209–220; D. Ron-
neburger, Ph.D. thesis, Rutgers, 2004; M. Koucký, Ph.D. thesis, Rutgers,
2003; E. Allender, H. Buhrman, and M. Koucký, Annals Pure Applied
Logic, 138(2006), 2–19. Kolmogorov complexity has played more useful
roles in this field: R. Impagliazzo, R. Shaltiel, and A. Wigderson [Proc.
32th ACM Symp. Theory Comput. 2000, pp. 1–10] used Kolmogorov
complexity to replace circuit complexity to prevent losing ‘hardness’
in a pseudorandom generator; A.E. Andreev, A.E.F. Clementi, J.D.P.
Rolim, and L. Trevisan [SIAM J. Comput. 28:6(1999), 2103–2116] used
Kolmogorov complexity in their work of simulating BPP in polynomial
time using a weak random source; in a different direction, Y. Aumann,
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Y.Z. Ding, and M.O. Rabin [IEEE Trans. Inform. Theory, 48:6(2002),
1668–1680] used Kolmogorov complexity to prove cryptographic security
in their bounded storage model.

Application of resource-bounded Kolmogorov complexity in computa-
tional complexity is widespread. We did not cover [J.H. Lutz, J. Com-
put. Syst. Sci., 44(1992), 220–258] generalizing a uniform (Lebesgue)
measure in order to define resource-bounded measure µ over ESPACE =
⋃

c∈N DSPACE[2cn]. Note that here ESPACE is a countable set and un-
der the usual uniform measure it has measure zero. Lutz uses a special-
purpose notion of measure and shows that complete problems form a
negligibly small subclass in ESPACE. For every real number a > 1, if

X = {L : C∞,s(χL=n) ≥ 2n − an, for all but finitely many n},
where the space bound s = 2O(n), then µ(X |ESPACE) = 1, that is,
almost every language computable in 2O(n) space has high 2O(n) space-
bounded Kolmogorov complexity, almost everywhere. Every problem in
a complexity class is reducible to every complete problem in that class.
Intuitively, such complete problems must have highly organized struc-
tures and hence have low Kolmogorov complexity. This is the case for
ESPACE. It is also shown that for every hard (under many-to-one poly-
nomial reduction) language L for ESPACE there exists ǫ > 0 such that
C−,s(χA=n) < 2n − 2n

ǫ

infinitely often, with the space bound s = 22n.
In [Theoret. Comput. Sci., 81(1991), 127–135] J.H. Lutz also showed
that if P is properly contained in BPP, then µ(E|ESPACE) = 0, where
E =

⋃

c∈N DTIME[2cn]. See also [R.V. Book and J.H. Lutz, SIAM J.
Comput., 22:2(1993), 395–402]; the survey by D.W. Juedes and J.H. Lutz
in [Kolmogorov Complexity and Its Relation to Computational Complex-
ity Theory, O. Watanabe, ed., Springer-Verlag, Berlin, 1992, pp. 43–65];
and the survey by J.H. Lutz in [Proc. 8th IEEE Conf. Struct. Compl.
Theory, 1993, pp. 158–175]. H. Buhrman and L. Longpré [SIAM J. Com-
put. 31:3(2002), 876–886] treat a resource-bounded version of compress-
ibility of infinite sequences that is shown to be equivalent to the resource-
bounded martingales in [J.H. Lutz, J. Comput. Syst. Sci., 44(1992),
220–258]. In [K.W. Regan and J. Wang, SIGACT News, 25(1994), 106–
113; A. Naik, K.W. Regan, and D. Sivakumar, Theoret. Comput. Sci.,
148(1995), 325–349] it is shown how to construct oracles in a quasilinear-
time model.

Section 7.4, on instance complexity, is based on [P. Orponen, K. Ko, U.
Schöning, and O. Watanabe, J. Assoc. Comp. Mach., 41(1994), 96–121].
Several open questions in the first edition of this book were solved in
[M. Kummer, SIAM J. Comput., 25:6(1996), 1123–1143; H.M. Buhrman
and P. Orponen, J. Comput. Syst. Sci., 53:2(1996), 261–266; L. Fortnow
and M. Kummer, Theoret. Comput. Sci. A, 161(1996), 123–140]. See
Exercises 7.4.5, 7.4.8, 7.4.6, and 7.4.7.
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Kt complexity of Section 7.5 is from [L.A. Levin, Problems Inform.
Transmission, 9:3(1973), 265–266]. Levin’s universal optimal search al-
gorithm in Section 7.5.1 is Theorem 2 (without proof) of that paper.
(Theorem 1 of the paper, also without proof, is the independent discov-
ery of NP-complete problems. Earlier, S.A. Cook proved similar results
in [Proc. 3rd ACM Symp. Theory Comput., 1971, pp. 151–158]. Ap-
parently, Levin did not want to publish the NP-completeness part of
the paper. Kolmogorov urged him to publish and recommended the pa-
per to Problems Inform. Transmission. Levin agreed on the condition
that he could include the universal search part.) Our treatment partly
follows [Y. Gurevich, EATCS Bull., 35(1988), 71–82; R.J. Solomonoff,
“Optimum sequential search,” Memorandum, 1984]. In the simulation
of the search procedure, it is standard to use so-called Kolmogorov–
Uspensky machines, which allow a universal machine to simulate each
Kolmogorov–Uspensky machine in linear time. In contrast, Turing ma-
chines have a logarithmic factor of slowdown because the universal Tur-
ing machine has only a fixed number of tapes. We ignored this problem.
See [L.A. Levin, Inform. Contr., 61(1984), 17–37] for further results on
Kt complexity. Although the constant in the universal search procedure
is forbiddingly large (exponential in the size of the shortest optimal pro-
gram being looked for), there are some ideas to deal with this. R.J.
Solomonoff [L.N. Kanal, J.F. Lemmer, eds., Uncertainty in Artificial
Intelligence, Elsevier, 1986, pp. 473–491] proposes to learn first small
chunks (subgoals) using the universal distribution, which could be done
relatively fast. Then use the small chunks as building blocks to learn a
more composite goal from a new copy of the universal distribution with
the building blocks as the basic elements. In this way, one progresses
fast to composite goals. Some computer experiments with universal op-
timal search are reported in [J. Schmidhuber, Proc. 12th Int. Conf. Ma-
chine Learning, Morgan Kaufmann, 1995, 488–496] for learning simple
threshold units with high generalization capacity; and [J. Schmidhuber,
J. Zhao, and M. Wiering, Machine Learning, 28:1(1997), 105–130] for
solving partially observable mazes. M. Hutter [Int. J. Found. Comput.
Sci., 13:3(2002), 431-443] reduced the huge proportionality constant in
the universal search algorithm to 5 at the cost of an additional tremen-
dous additive constant, Exercise 7.5.3 on page 582. Related work on a
notion of ‘potential’ is based on L.M. Adleman [Ibid.] and is not treated
in this edition. In the first edition of this book we reformulated the ideas
involved in terms of Kt complexity. L. Hemachandra and G. Wechsung
[Theoret. Comput. Sci. 83(1991), 313–322] continued this approach. Our
treatment of Kt complexity, universal optimal search, and potential has
greatly profited from discussions with P. Gács and R.J. Solomonoff.

There is a great quantity of other work on resource-bounded complexity,
including G. Peterson, Proc. 21st IEEE Found. Comput. Sci., 1980, pp.
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86–95; E. Allender, J. Comput. System Sci., 39(1989), 101–124; J.H.
Lutz, J. Comput. System Sci., 41(1990), 307–320; M. Hermo and E.
Mayordomo, Math. Syst. Theory, 27(1994), 247–356; J.L. Balcázar and
U. Schöning, Theoret. Comput. Sci., 99(1992), 279–290.

Section 7.6, on computable versions of the universal distribution, is par-
tially based on [M. Li and P.M.B. Vitányi, SIAM J. Comput., 20:5(1991),
911–935]. The original nonresource-bounded versions of the universal
distribution are treated in Chapter 4. The computable version of the
universal distribution in Section 7.6 can be used as the dominating dis-
tribution in simple pac-learning (Section 5.3). Another potential appli-
cation exhibited in Section 4.4 used a distribution q(x) that is essentially
a time-bounded version of m(x). See also the comments in the ‘History
and References’ Section 4.7.

Logical depth as in Section 7.7 was first described by G.J. Chaitin
in [IBM J. Res. Develop., 21(1977), 350–359] and studied at greater
length by C.H. Bennett in [Emerging Syntheses in Science, D. Pines,
ed., Addison-Wesley, 1987, pp. 215–233; The Universal Turing Machine:
a Half-Century Survey, R. Herken, ed., Oxford Univ. Press, 1988, pp.
227–258]. The material contained in Section 7.7 is primarily based on the
last article of C.H. Bennett. There one can find Definition 7.7.1 and a
variant (Lemma 3 in the paper) of Theorem 7.7.1. The proof given in the
article is rather sketchy and informal. Bennett also defines the depth for
infinite strings, which we have not discussed. Our treatment has greatly
profited from discussions with P. Gács. For material on logical depth
and fault-tolerant evolution, see [P. Gács, [pp. 223–326 in Randomness
in Computation, Vol. 5, S. Micali, ed., JAI Press, 1989]; an asynchronous
version is in W.G. Wang, Ph.D. thesis, Boston University, 1990]. D.W.
Juedes, J.I. Lathrop, and J.H. Lutz [Theoret. Comput. Sci. 132(1994),
37–70] study relations between logical depth of infinite sequences and
recursively time-bounded reducibility.

The edited volume [Kolmogorov Complexity and Computational Com-
plexity, O. Watanabe, ed., Springer-Verlag, Berlin, 1992] contains five
survey papers related to topics in this chapter. E. Allender presented ap-
plications of time-bounded Kolmogorov complexity to questions in com-
plexity theory; see also Exercise 7.5.2 on page 581. R.V. Book treated
sets with small information content, relating Sections 7.3.1 and 7.3.2
and current research in computational complexity theory. L. Longpré
studied the statistical properties and tests for resource-bounded Kol-
mogorov random strings, supplementing Section 7.1.1. D.W. Juedes and
J.H. Lutz treated the Kolmogorov complexity of characteristic sequences
of languages. The survey by V.A. Uspensky analyzed the definitional
and quantitative relations between the various versions of (nonresource-
bounded) Kolmogorov complexity.
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Physics, Information, and
Computation

Various issues in information theory and theoretical physics can be fruit-
fully analyzed by Kolmogorov complexity. This is the case for physical
aspects of information processing and for application of complexity to
physics issues. Physicists and others have used complexity arguments
in a variety of settings such as information distance, thermodynamics,
chaos, biology, and philosophy. We touch briefly upon several themes,
but focus on five main issues.

First, we analyze the relation between Shannon’s entropy and the ex-
pected prefix complexity and the expected plain Kolmogorov complexity.
Shannon’s entropy measures the uncertainty in a probabilistic ensemble
of messages, while Kolmogorov complexity measures the algorithmic in-
formation in an individual message. In Section 2.8 it was observed that
the P -expected value of C(·) is asymptotic to the entropyH(P ) provided
P satisfies some conditions. Using the prefix complexity and the theory
of universal distributions we establish the precise relationships for every
computable P . Similar relations exist between the other primary notions
in Shannon’s theory and algorithmic information theory.

Second, we look at energy dissipation in computing. Continued advance
in the miniaturization and mobilization of computing devices will even-
tually require (near) dissipationless computing. Apparently, there are no
physical laws that require reversible computations to dissipate energy. It
is for this reason that notions of reversible computers, both physical and
logical, are rapidly gaining prominence. We treat reversible computing
first because it is used in some of the later topics in this chapter. We
give both a variety of physical implementations that are theoretically
possible, and a logical model—the reversible Turing machine. We then
define the Kolmogorov complexity variant associated with this machine.

M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 601
DOI: 10.1007/978-0-387-49820-1_8,  © Springer Science + Business Media, LLC 2008 
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Third, while Kolmogorov complexity is an absolute measure of informa-
tion in an object, it is desirable to have a similar absolute notion for the
information distance between two objects. Among other things, abso-
lute information distance is related to theories of pattern recognition in
which one wants to express the notion of similarity. We define such an
absolute notion of information distance and some of its variants based on
considerations about either reversible (dissipationless) computations or
irreversible computations. It turns out that these definitions define the
same notion. A related distance measures the amount of nonreversibil-
ity of a computation. Next, we formulate certain weak requirements that
any reasonable cognitive distance ought to satisfy. It then turns out that
our earlier notion is the optimal cognitive distance. Subsequently, we in-
troduce the theory of normalized information distance, measuring the
relative similarity between two objects, which has a plethora of appli-
cations in practice in measuring similarity of general objects, be they
genomes, English texts, music pieces, programs, patterns, time series, or
even the semantics of words.

Fourth, we look at applications of Kolmogorov complexity in statistical
thermodynamics. There, one explains the classical theory of thermody-
namics by statistical and information-theoretic analysis of an underlying
deterministic model. It turns out that a complexity analysis using the
powerful methods developed in the first few chapters gives a basis of
an algorithmic theory for physical entropy. Some applications include a
proof of an ‘entropy nondecrease over time’ property, and ‘entropy sta-
bility’ property, ‘entropy increase’ for certain systems, and an analysis
of Maxwell’s demon.

Fifth, we formulate a notion of Kolmogorov complexity of pure quantum
states, based on quantum Turing machines, and investigate its proper-
ties. We end with some miscellaneous topics.

8.1

Information

Theory

The paradigms in the computation, manipulation, and transmission of
information shift increasingly from being random-variable oriented to
individual-object oriented. In theoretical terms, this means a shift from
classical information theory to Kolmogorov complexity theory. Complex
structural data such as sound files and video images are not well mod-
eled by methods that assume that they consist of a typical sequence of
uncorrelated independent outcomes of a simple Bernoulli source or even
a stationary ergodic source. For example, storing or transmitting the
first 1,000,000,000,000,000 bits of π = 3.1415 . . . can be done the hard
way using information theory, or the easy way using a small program
incorporating an approximation algorithm that generates the successive
bits π. Listen to Shannon and Kolmogorov:
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“The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.
Frequently the messages have meaning; that is they refer to or are correlated
according to some system with certain physical or conceptual entities. These
semantic aspects of communication are irrelevant to the engineering problem.
The significant aspect is that the actual message is one selected from a set of
possible messages. The system must be designed to operate for each possible
selection, not just the one which will actually be chosen since this is unknown
at the time of design.” [Shannon]

“The probabilistic approach is natural in the theory of information transmis-
sion over communication channels carrying ‘bulk’ information consisting of a
large number of unrelated or weakly related messages obeying definite proba-
bilistic laws. . . . But what real meaning is there, for example, in asking how
much information is contained in ‘War and Peace’? Is it reasonable to include
this novel in the set of ‘possible novels,’ or even to postulate some probability
distribution for this set? Or, on the other hand, must we assume that the indi-
vidual scenes in this book form a random sequence with ‘stochastic relations’
that damp out quite rapidly over a distance of several pages?”

“Our definition of the quantity of information has the advantage that it refers
to individual objects and not to objects treated as members of a set of objects
with a probability distribution given on it. The probabilistic definition can be
convincingly applied to the information contained, for example, in a stream
of congratulatory telegrams. But it would not be clear how to apply it, for
example, to an estimate of the quantity of information contained in a novel or
in the translation of a novel into another language relative to the original. I
think that the new definition is capable of introducing in similar applications
of the theory at least clarity of principle.” [Kolmogorov]

Shannon ignores the object itself but considers only the characteristics
of the random source of which the object is one of the possible outcomes,
while Kolmogorov considers only the object itself to determine the num-
ber of bits in the ultimate compressed version irrespective of the manner
in which the object arose. For almost every Shannon theory notion there
turns out to be a Kolmogorov complexity theory notion that is equiva-
lent in the sense that the expectation of the latter is closely related to
the former.

8.1.1
Algorithmic
Complexity and
Shannon’s
Entropy

There is a close relation between information theory and coding, Sec-
tion 1.11. In particular, the quantity

H(P ) =
∑

x

P (X = x) log
1

P (X = x)

is the entropy of a random variable X with probability P (X = x) of
outcome x (Definition 1.11.1 on page 67). For convenience we abbreviate
the notation P (X = x) to P (x), conforming to our customary usage.
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Let E be a prefix-code achieving the minimum average code-word length.
It assigns code word E(x) to source word x. The noiseless coding the-
orem, Theorem 1.11.2 on page 77, asserts that the average code-word
length L(P ) =

∑

x P (x)l(E(x)) for the prefix-code E satisfies

H(P ) ≤ L(P ) ≤ H(P ) + 1.

By definition K(x) = l(x∗), where x∗ is a shortest self-delimiting pro-
gram for x with respect to the reference prefix machine. If there is more
than one such shortest program then x∗ is the first one in the standard
enumeration. Consider the mapping E defined by E(x) = x∗. This is a
prefix-code, and by its definition a very parsimonious one. Suppose the
source words x are distributed as a random variable X with probability
P (x). The expected code-word length of source words with respect to
probability mass function P is

∑

x P (x)K(x).

What we would like to know is the following: While K(x) is fixed for
each x and independent of the probability mass function P , is K still so
universal that its P -expected code-word length

∑

x P (x)K(x) achieves
the minimal average code-word length H(P ) =

∑

x P (x) log 1/P (x)?

This requirement on individually shortest programs for source words
contrasts with the Shannon–Fano code of Example 1.11.2 on page 68,
which does on average achieve the H(P ) bound by taking the code-
word length equal to the negative logarithm of the specific source-word
probability.

Surprisingly, under some mild restrictions on the probability mass func-
tions P , the expectation of K(x) comes close to H(P ). We can view
the K(x)’s as the code-word length set of a ‘universal’ Shannon–Fano
code based on the universal probability, Theorem 1.11.2 on page 77. The
expectation of K(x) differs from H(P ) by a constant depending on P .
Namely, |∑x P (x)K(x) −H(P )| ≤ cP , where the constant cP depends
on the length of the program to compute the probability mass function
P . In Exercise 8.1.4 this dependence is removed.

If the source-word alphabet is infinite, then it is possible that H(P ) is in-
finite. For example, with x ranging over all of N and P (x) = c/(x log2 x)
with c a constant chosen such that

∑

x P (x) = 1, we have H(P ) >
∑

x 1/(x log x), which diverges. We consider P such that H(P ) <∞.

Theorem 8.1.1 Let H(P ) =
∑

x P (x) log 1/P (x) be the entropy of a computable proba-
bility distribution P , and H(P ) <∞. Then,

0 ≤
∑

x

P (x)K(x) −H(P ) ≤ cP ,

with cP = K(P ) +O(1) a constant that depends only on P .
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Proof. Since K(x) is the code-word length of a prefix-code for x, the first
inequality of the noiseless coding theorem, Theorem 1.11.2 on page 77,
states that

H(P ) ≤
∑

x

P (x)K(x).

By Theorem 4.3.1 on page 267, if m is the universal lower semicom-
putable distribution, then P (x) ≤ 2K(P )m(x). By Theorem 4.3.3 on
page 273, we have log 1/m(x) = K(x) +O(1). Together this shows that
log 1/P (x) ≥ K(x) −K(P ) +O(1). It follows that

∑

x

P (x)K(x) ≤ H(P ) +K(P ) +O(1).

Define the constant cp by

cp := K(P ) +O(1),

and the theorem is proven. Note that the constant implied in the O(1)
term depends on the lengths of the programs occurring in the proof
of Theorem 4.3.3. These depend only on the reference universal prefix
machine. 2

In other words, probabilistic entropy of a random variable X taking
outcomes in N is equal, within an additive constant, to the expected
value of complexity of these outcomes.

Above we required P to be computable. Actually, we require only that P be
a lower semicomputable function, which is a weaker requirement than com-
putability. However, together with the condition that P be a probability mass
function satisfying

∑
P (x) = 1, this means that P is computable anyway by

Example 4.3.2 on page 266.

What does this mean for the plain C complexity? Since K(x) ≤ C(x) +
K(C(x))+O(1) by Example 3.1.4 on page 203, and C(x) ≤ K(x)+O(1),
also log 1/P (x) and C(x) are close to each other with high probability.
Substituting K(x) in Theorem 8.1.1 as above, we obtain (H(P ) <∞)

−cP ≤ H(P ) −
∑

x

P (x)C(x) ≤
∑

x

P (x)K(C(x)), (8.1)

all inequalities up to a constant additive term. The right-hand side
is bounded only if

∑

x P (x)K(C(x)) converges. This is certainly the
case if P runs through a sequence of distributions P1, P2, . . . such that
H(Pi) → ∞ for i → ∞ and limi→∞

∑

x Pi(x)K(C(x))/H(Pi) = 0.
Then, by Equation 8.1 we find that H(Pi) is asymptotically equal to the
expected complexity

∑

x Pi(x)C(x), as was also established in a weaker
form in Example 2.8.1 on page 188. Theorem 8.1.2 below shows that this
scenario is possible.
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A prominent example of a distribution with infinite entropy is the universal
distribution:

∑

x
m(x) log 1/m(x) = H(m) = ∞. That is, the m-expectation

of K(x) is infinite. See Exercise 4.3.4 on page 287. However,
∑

x
m(x) < 1

unlike a probability mass function P that satisfies
∑

x
P (x) = 1, and m is

lower semicomputable but not computable.

Theorem 8.1.2 Let P be a computable probability mass function and H(P ) = ∞. There
exists a sequence of functions Pi, each with a finite support, and Pi → P
for i→ ∞, such that limi→∞

∑

x Pi(x)C(x)/H(Pi) = 1.

Proof. Given i, determine n such that
∑

x≤n P (x) log 1/P (x) ≥ i. Define
Pi by Pi(x) = P (x) for x ≤ n, and 0 otherwise. Since cPi ≤ K(Pi) +
O(1) ≤ 2 log i+K(P ) +O(1), and H(Pi) ≥ i, we have

lim
i→∞

cPi

H(Pi)
= 0. (8.2)

Using Equations 8.1 and 8.2 we only need to establish

lim
i→∞

∑

x Pi(x)K(C(x))

H(Pi)
= 0.

From Equation 8.2 and Theorem 8.1.1 we have

lim
i→∞

∑

x Pi(x)K(x)

H(Pi)
= 1.

Since K(C(x)) ≤ 2 log(K(x) +O(1)) +O(1), we have

lim
i→∞

∑

x Pi(x)K(C(x))
∑

x Pi(x)K(x)
≤ lim
i→∞

∑

x 2Pi(x) logK(x)
∑

x Pi(x)K(x)
.

We need to prove that the right-hand side equals 0, which is not immedi-
ate. We need to exclude the possibility that P concentrates probability
such that equality to 0 does not hold. We reason as follows. For every
ǫ > 0 we can find an N with (logK(x))/K(x) ≤ ǫ for all x ≥ N . Divide
the sums in the numerator and the denominator of the right-hand side of
the last displayed equation into a finite sum for all x ≤ N and an infinite
sum for x > N . Deleting the finite sum in the denominator makes the
right-hand side larger. Subsequently, divide both sums in the numerator
by the infinite sum left in the denominator. Then, the first term goes to
0 because the numerator is finite and the denominator goes to infinity.
Finally, the second term is at most ǫ, which can be chosen arbitrarily
close to 0. 2

Since the expected complexities C and K are close to the probabilistic
entropy, the intended interpretation of C(x), and especially K(x), as a
measure of the information content of an individual object x is supported
by a tight quantitative relationship to Shannon’s probabilistic notion.
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Example 8.1.1 We examine the expected complexity over a set A ⊆ N of source words
under a probability mass function P , where the conditional probability
is defined by PA(x) = P (x|x ∈ A) and PA(x) = 0 for x 6∈ A. Let PA be
computable and H(PA) <∞. Then, Theorem 8.1.1 applied to PA yields

0 ≤
∑

x

PA(x)K(x) −H(PA) ≤ K(P,A) +O(1). (8.3)

If A is finite, then the expected complexity and the entropy of the con-
ditional probability PA are always finite. A natural case is to consider
the set A of all x’s of length n, that is A = {0, 1}n. Then K(P,A) =
K(P, n) + O(1). Note that K(n) can be very small for regular n and is
bounded from above by logn+ 2 log logn for all n. 3

Example 8.1.2 Example 8.1.1 essentially looks at the influence of the support of a com-
putable probability mass function P (set of arguments with positive
probabilities) with H(P ) < ∞, on the difference between the expected
prefix complexity and the entropy. It is instructive to consider the fol-
lowing example. Let x be a string of high complexity K(x), and let P
concentrate all probability on x, that is, P (x) = 1. Then, H(P ) = 0
and the expected prefix complexity is K(x). Since we can choose x
such that K(x) is arbitrarily high, this seems to contradict the equality
dictated by Theorem 8.1.1. The contradiction is only apparent, since
K(P ) = K(x) + O(1): We can compute P from x and vice versa by a
fixed program. 3

A theorem of A.E. Romashchenko shows that every linear entropy (in)-
equality holds for the corresponding Kolmogorov complexities (both C-
and K-type) to within a logarithmic additive error. Morover, every lin-
ear (in)equality that is valid for Kolmogorov complexity is also valid
for Shannon entropy—provided we require the Kolmogorov complexity
(in)equalities to hold up to additive logarithmic precision only. In view of
the importance of the result we state it precisely: Let X1, X2, . . . , Xm be
random variables with a joint distribution. For a set A ⊆ {1, 2, . . . ,m},
XA denotes the tuple 〈Xi : i ∈ A〉. For example,X{2,3,5} = 〈X2, X3, X5〉.
In the same way, if x1, x2, . . . , xm denotes a sequence of strings, then
xA = 〈xi : i ∈ A〉. For example, x{2,3,5} = 〈〈x2, x3〉, x5〉. The proof of
the following theorem is deferred to Exercise 8.1.5 on page 626.

Theorem 8.1.3 If an inequality of the form

∑

A,B

αA,BH(XA|XB) ≤ 0
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holds for all random variables X1, X2, . . . , Xm, then for some function
f(n) = O(log n) the inequality
∑

A,B

αA,BK(xA|xB) ≤ f(n)

holds for all strings x1, x2, . . . , xm with n = l(x1x2 . . . xm), where the
summation is over all subsets A,B of {1, 2, . . . ,m}, and the αA,B are real
numbers (which can be 0). Conversely, if for some function f(n) = o(n)
the second inequality holds for all x1, x2, . . . , xm, then the first inequality
holds for all X1, X2, . . . , Xm.

We have to be very careful when extending prefix complexity inequalities
such as Theorem 3.9.1 on page 247 that hold up to O(1) additive terms.
See, for example, the discussion of the conditional version of the symmetry of
information, Equation 3.22 on page 253. But up to logarithmic precision we
do not need to be that careful and can ignore the difference between x∗ and
x, as witnessed by the fact that both C-complexity and K-complexity satisfy
the symmetry of information property within an additive logarithmic term.

8.1.2
Mutual
Information

The probabilistic mutual information I(X ;Y ) is defined as in Equa-
tion 1.15 on page 71. Recall the definition of algorithmic mutual infor-
mation given in Equation 3.20 on page 252,

I(x; y) = K(x) +K(y) −K(x, y),

which is truly symmetric, since I(x; y) = I(y;x).

See Exercise 3.9.5 on page 254 about its relation to the version I(x : y) =
K(y) −K(y|x) of Equation 3.15 on page 248.

It is an important fact that the expectation of the algorithmic mutual
information is close to the probabilistic mutual information:

Lemma 8.1.1 Let X,Y be random variables with outcomes in sets of finite objects X ,
Y, respectively, with a computable joint probability mass function p, and
such that H(X,Y ) is finite. Then,

I(X ;Y ) −K(p) ≤
∑

x

∑

y

p(x, y)I(x; y) +O(1) (8.4)

≤ I(X ;Y ) + 2K(p) +O(1),

where K(p) is the length of the shortest prefix-free program that computes
p(x, y) for every (x, y) ∈ X × Y.

We need to require only that p be a lower semicomputable function, Defi-
nition 1.7.4 on page 35, which is a weaker requirement than computability.
But together with the condition that

∑

x,y
p(x, y) = 1, this means that p is

computable anyway, by Example 4.3.2 on page 266.
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Proof.
∑

x

∑

y

p(x, y)I(x; y) =
∑

x

∑

y

p(x, y)[K(x) +K(y) −K(x, y)].

Define p1(x) =
∑

y p(x, y) and p2(y) =
∑

x p(x, y) to obtain

∑

x

∑

y

p(x, y)I(x; y)

=
∑

x

p1(x)K(x) +
∑

y

p2(y)K(y) −
∑

x,y

p(x, y)K(x, y).

Given the program that computes p, we approximate p1(x) monotoni-
cally nondecreasing by q1(x, y0) =

∑

y≤y0 p(x, y) with increasing y0, and
a similar approximation holds for p2. That is, the probability mass func-
tions p1 and p2 are lower semicomputable, and by the comment following
the statement of the lemma, they are computable. For every computable
probability mass function q, we have

H(q) ≤
∑

x

q(x)K(x) +O(1) ≤ H(q) +K(q) +O(1),

by Theorem 8.1.1 on page 604. Hence,

H(pi) ≤
∑

x

pi(x)K(x) + O(1) ≤ H(pi) +K(pi) +O(1),

for i = 1, 2, and

H(p) ≤
∑

x,y

p(x, y)K(x, y) +O(1) ≤ H(p) +K(p) +O(1).

On the other hand, the probabilistic mutual information of Equation 1.15
can be expressed in the entropies of the marginal distributions p1, p2 and
the joint distribution p as

I(X ;Y ) = H(p1) +H(p2) −H(p).

By construction of the qi’s above, we have K(p1),K(p2) ≤ K(p)+O(1).
Since the complexities are positive, substitution yields the lemma. 2

Can we get rid of the K(p) error term? The answer is affirmative; by
putting p in the conditional we even get rid of the computability require-
ment.

Lemma 8.1.2 Given a joint probability mass function p(x, y) (not necessarily com-
putable) we have

I(X ;Y ) =
∑

x

∑

y

p(x, y)I(x; y|p) +O(1),
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where the auxiliary p in the conditional means that we can directly access
the values p(x, y) on the auxiliary conditional information tape of the
reference universal prefix machine.

Proof. If we show that
∑

x p(x)K(x|p) = H(p) + O(1), where the O(1)
term is independent of p, then the lemma follows from the definition of
conditional algorithmic mutual information, Example 3.9.3 on page 252.
To prove the desired equality, equip the reference universal prefix ma-
chine with an O(1) length program to compute a Shannon–Fano code
from the auxiliary table of probabilities. Then, given an input r, it
can determine whether r is the Shannon–Fano code word for some x.
Such a code word has length log 1/p(x) +O(1). If this is the case, then
the machine outputs x; otherwise it halts without output. Therefore,
K(x|p) ≤ log 1/p(x) + O(1). This shows the upper bound on the ex-
pected prefix complexity. The lower bound follows from the noiseless
coding theorem. 2

8.1.3
Mutual
Information
Nonincrease

Algorithmic mutual information is expressed in terms of the individual
outcomes rather than probabilistic characteristics of random variables,
as in the probabilistic version. Yet the data-processing inequality, the
average notion of Equation 1.19 on page 72, also holds between individ-
ual objects, by a far more subtle argument, and not precisely but with a
small tolerance. The first to observe this fact was Leonid A. Levin, who
proved ‘information nongrowth,’ and ‘information conservation inequal-
ities’ for both finite and infinite sequences under both deterministic and
randomized data processing. We prove a strong version of the informa-
tion nonincrease law under deterministic processing (later we need the
attached corollary).

Theorem 8.1.4 Given x and z, let q be a program computing z from x∗. Then

I(z; y) ≤ I(x; y) +K(q) +O(1). (8.5)

Proof. By the triangle inequality, Lemma 3.9.1 on page 249,

K(y|x∗) ≤ K(y|z∗) +K(z|x∗) +O(1)

= K(y|z∗) +K(q) +O(1).

Thus,

I(x; y) = K(y) −K(y|x∗)
≥ K(y) −K(y|z∗) −K(q) +O(1) = I(z; y)−K(q) +O(1).

2
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This also implies the slightly weaker but intuitively more appealing
statement that the mutual information between strings x and y cannot
be increased by processing x and y separately by deterministic compu-
tations.

Corollary 8.1.1 Let f, g be recursive functions. Then

I(f(x); g(y)) ≤ I(x; y) +K(f) +K(g) +O(1). (8.6)

Proof. Let qf , qg be shortest programs computing functions f, g, respec-
tively. Ignoring additive constant terms,

I(f(x); g(y)) ≤ I(x; g(y)) +K(qf )

≤ I(x; y) +K(qf) +K(qg)

≤ I(x; y) +K(f) +K(g),

where the first two inequalities are true by Equation 8.5. 2

Even randomized computation cannot increase information except with
negligible probability. Recall the universal probability m(x) = 2−K(x).
By Theorem 4.3.1 on page 267 and Theorem 4.3.3 on page 273, this
function is maximal within a multiplicative constant among lower semi-
computable semimeasures. This property also holds within certain re-
strictions (satisfied below) when we have an extra parameter, like y∗,
in the condition, Theorem 4.3.2 on page 270. In particular, for every
computable measure ν(x) we have ν(x) = O(m(x)), where the constant
factor implied in the order-of-magnitude symbol O depends on ν.

Suppose that z is obtained from x by randomized computation. For every
fixed x, the probability p(z|x) of obtaining z from x is lower semicom-
putable. Therefore,

p(z|x) = O(m(z|x)) = O(m(z|x∗)) = O(2−K(z|x∗)).

The information increase I(z; y)− I(x; y) by random computation on x
about y satisfies the theorem below.

Theorem 8.1.5 For all x, y, z we have

m(z|x∗)2I(z;y)−I(x;y) = O(m(z|x∗, y,K(y|x∗))).

For example, the probability of an increase of mutual information by an
amount d is O(2−d). The theorem implies

∑

z
m(z|x∗)2I(z;y)−I(x;y) = O(1);

the m(·|x∗)-expectation of the exponential of the increase is bounded by a
constant.
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Proof. We have

I(z; y) − I(x; y) = K(y) −K(y|z∗) − (K(y) −K(y|x∗))
= K(y|x∗) −K(y|z∗).

The negative logarithm of the left-hand side in the theorem is therefore

K(z|x∗) +K(y|z∗) −K(y|x∗).

Using Lemma 3.9.1 and the conditional additivity, Equation 3.22 on
page 253, this is at least

K(y, z|x∗) −K(y|x∗) +O(1) = K(z|x∗, y,K(y|x∗)) +O(1).

2

Example 8.1.3 (Extending Gödel’s incompleteness) An example of the use of algo-
rithmic mutual information is given by L.A. Levin: see the ‘History and
References’ section on page 714 for references. We follow Levin’s expla-
nation: D. Hilbert asked whether formal arithmetic can be consistently
extended to a complete theory. The question was somewhat vague, since
an obvious answer was “yes”: just add to the axioms of Peano arithmetic
(PA) a maximal consistent set, clearly existing albeit hard to find. K.
Gödel formalized this question as existence among such extensions of
recursively enumerable ones, and gave it a negative answer. Its math-
ematical essence is the lack of total recursive extensions of universal
partial recursive predicates. This negative answer apparently was never
accepted by Hilbert, and Gödel himself had reservations:

“Namely, it turns out that in the systematic establishment of the axioms of
mathematics, new axioms, which do not follow by formal logic from those pre-
viously established, again and again become evident. It is not at all excluded
by the negative results mentioned earlier that nevertheless every clearly posed
mathematical yes-or-no question is solvable in this way. For it is just this be-
coming evident of more and more new axioms on the basis of the meaning of
the primitive notions that a machine cannot imitate.” [Gödel]

As is well known, the absence of algorithmic solutions is no obstacle when
the requirements do not make a solution unique. A notable example is
generating strings of linear Kolmogorov complexity, for example, those
that cannot be compressed to half their length. Algorithms fail, but a
set of dice does a perfect job! Thus, while enumerable sets of axioms
cannot complete PA, completion by other realistic means remained a
possibility.

Of course, Gödel’s remark envisioned much more sophisticated ways to
choose axioms than coin flips. However, the impossibility of a task can be
formulated generically using Kolmogorov’s concept of algorithmic mu-
tual information in two finite strings. It has been refined and extended
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to infinite sequences by L.A. Levin, so that it satisfies conservation in-
equalities: cannot be increased by deterministic algorithms or in random
processes or by any combinations of both. In fact, it seems reasonable
to assume that no physically realizable process can increase information
about a specific sequence.

In this framework one can ask whether the nonmechanical means envi-
sioned by Gödel could really enable the task of consistent completion
for PA. A negative answer follows from the existence of a specific se-
quence that has infinite mutual information with all total extensions of
a universal partial recursive predicate. It plays the role of a password:
no substantial information about it can be guessed, no matter what
methods are allowed. 3

8.1.4
Rate Distortion

Rate-distortion theory analyzes the transmission and storage of infor-
mation at insufficient bit rates. The aim is to minimize the resulting
information loss expressed in a distortion measure. The choice of distor-
tion measure is a selection of which aspects of the data are relevant, in
the setting at hand, and which aspects are irrelevant (noise). For exam-
ple, lossy compression of a sound file results in a compressed file where,
among others, the very high and very low inaudible frequencies have
been suppressed. The distortion measure is chosen such that it penal-
izes the deletion of the inaudible frequencies only lightly because they
are not relevant for the auditory experience. The classical probabilistic
theory is reviewed in Section 1.11.6. Algorithmic rate-distortion theory
is a generalization of the structure function approach of Section 5.5.

As before, let X be a set of source objects, called words or messages.
Suppose we want to communicate source words x ∈ X using destination
words y ∈ Y that can be encoded with at most r bits apiece. If the
Kolmogorov complexity K(x) of the source word x ∈ X is greater than
r, or if x is not a finite object, then K(y) ≤ r < K(x) for every code
word y ∈ Y . Therefore, x cannot be reproduced from any such y. Assume
furthermore that we are given a distortion function d : X×Y → R⋃{∞}
that measures the fidelity of the coded version against the source data.

Definition 8.1.1 Given X ,Y, d(·, ·) and a particular x ∈ X , we define the rate-distortion
function rx as the minimum number of bits we need to transmit a code
word y (so that y can be effectively reconstructed from the transmission)
to obtain a distortion of at most δ:

rx(δ) = min
y

{K(y) : d(x, y) ≤ δ}.

The ‘inverse’ of the above function is is called the distortion-rate function
and is defined by

dx(r) = min
y

{d(x, y) : K(y) ≤ r}.
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These functions are analogues for individual data x of the probabilis-
tic functions, expressing the least expected rate or distortion at which
outcomes from a random source X can be transmitted, Section 1.11.6.

Definition 8.1.2 Let X be a source alphabet, Y a destination alphabet, and d a distortion
measure. A distortion ball B(y, δ) centered on y ∈ Y with radius δ is
defined by

B(y, δ) = {x : d(x, y) ≤ δ} and b(y, δ) = d(B(y, δ)).

Every (destination alphabet, distortion measure) pair gives rise to a set
of distortion balls. Without loss of generality, every such distortion ball
corresponds uniquely with a (destination word, distortion) pair (if not,
take the first pair in a given order).

Definition 8.1.3 A distortion family A is a set of finite nonempty subsets of the set of
source words X . By An we denote the restriction of A to strings of
length n.

Example 8.1.4 The class of distortion families obviously includes every family of distor-
tion balls (or distortion spheres, which is sometimes more convenient),
and hence all combinations of destination alphabets and distortion mea-
sures. Let X , Y, and distortion measure d be as before. The correspond-
ing distortion family A is defined by

A = {B(y, δ) : y ∈ Y, δ in the range of d}.

Given a string x, we can look for a finite set A ∈ A that contains x
and is both small and simple. For every x ∈ {0, 1}∗ we want to identify
the set of pairs of integers (k, l) such that there is A ∈ A with x ∈ A,
K(A) ≤ k, and log d(A) ≤ l. The set Px of all such pairs will be called
the profile of x. Strings of the same complexity can have quite different
profiles. All such pairs (k, l) satisfy the inequality k + l ≥ K(x) (since
we can specify x by providing a k-bit description of A and l-bit ordinal
number of x in A). 3

Definition 8.1.4 The canonical rate-distortion function gx of a string x is defined by

gx(l) = min
A∈A

{K(A) : x ∈ A, log d(A) ≤ l}.

Example 8.1.5 Thus, for every natural l ≤ n, the function value gx(l) is the minimum k
such that the pair (k, l) belongs to the profile of x. The rate-distortion
function rx differs from gx just by a change of scale depending on the
distortion family involved. If for X , Y, and d, we have b(y, δ) = b(y′, δ)
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for all y, y′ ∈ Y, then we drop parameter y and let b(δ) denote the
cardinality of a distortion ball of radius δ. Then,

rx(δ) ≈ gx(⌈log b(δ)⌉). (8.7)

3

Example 8.1.6 Let X = {0, 1}n. Consider Hamming distortion, with δn the number of
bits flipped out of n. Then, by Exercise 8.1.10 on page 627,

rx(δ) = gx(nH(δ)) +O(log n),

for 0 ≤ δ ≤ 1
2 , and H(δ) = δ log 1/δ + (1 − δ) log 1/(1 − δ) is the binary

entropy function, Definition 1.11.1 on page 67. Describing the family of
gx’s, we obtain a description of all possible rate-distortion functions rx
for elements of x ∈ X , one possibility being depicted in Figure 8.1. 3

Distortion
Measures

The prefix complexity of a finite family A of finite nonempty subsets
A1, . . . , Am of {0, 1}∗ is defined as K(A) = K(A1, . . . , Am), where the
sequence A1, . . . , Am is in a fixed order, say lexicographic.

We consider arbitrary distortion measures only restricted by the follow-
ing mild conditions on families A:

Property 1. For every natural number n, the family A contains the
set {0, 1}n of all strings of length n as an element.

Property 2. All x, y ∈ A ∈ A satisfy l(x) = l(y).

Property 3. Let An = {A ∈ A : A ⊆ {0, 1}n}. We assume that
K(An) = O(log n).

Property 4. For every natural n, let αn denote the minimal number
that satisfies the following. For every positive integer c every set
A ∈ An can be covered by at most αnd(A)/c sets B ∈ An with
d(B) ≤ c. Call αn the covering coefficient related to An. We desire
that αn be bounded by a polynomial of n. The smaller the covering
coefficient is, the more accurate will be the description that we
obtain of the shapes of the structure functions.

The following three example families A satisfy all four properties. Let n
be a natural number.

Example 8.1.7 L, the list distortion family. Let Ln be the family of all nonempty subsets
of {0, 1}n. This is the family of distortion balls consisting of strings of
length n, for list distortion, which we define as follows. Let X = {0, 1}n
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FIGURE 8.1. A rate-distortion function for Hamming distortion

and Y be the set of all subsets of {0, 1}n. An x ∈ {0, 1}n is encoded by
a subset or list S ⊆ {0, 1}n with x ∈ S. Given S, we can retrieve x by
its index of log d(S) bits in S, ignoring rounding up, whence the name
‘list code.’ The distortion measure is d(x, S) = log d(S) if x ∈ S, and ∞
otherwise. Thus, distortion balls come only in the form B(S, log d(S))
with cardinality b(S, log d(S)) = d(S). Trivially, the covering coefficient
as defined in property 4 on page 615, for the list distortion family Ln
satisfies αn ≤ 2. In Section 5.5.2 we described all possible profiles in
terms of Kolmogorov’s structure function hx(i) of Definition 5.5.6 on
page 405. More precisely, the function hx(i) equals dx(i), the distortion-
rate function for the distortion family Ln. The distortion-rate function
is the inverse of the rate-distortion function rx, up to some minor issues.
The rate-distortion function of x of length n for list distortion is

rx(δ) = min
S⊆{0,1}n

{K(S) : x ∈ S, log d(S) ≤ δ}.

The canonical rate-distortion function gx can be converted to the partic-
ular rate-distortion function rx for a family Ln according to Equation 8.7
on page 615. 3

Example 8.1.8 H, the Hamming distortion family. Let Hn be the family of all Hamming
balls in {0, 1}n. Let X = Y = {0, 1}n. An x ∈ {0, 1}n is encoded by a
y ∈ {0, 1}n. The Hamming distance between two strings x = x1 . . . xn
and y = y1 . . . yn is defined as

d(x, y) =
1

n
d({i : xi 6= yi}). (8.8)
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A Hamming ball with center y ∈ {0, 1}n and radius δ is the set B(y, δ) =
{x ∈ {0, 1}n : d(x, y) ≤ δ}. The cardinality b(y, δ) depends only on n
and δ but not on the center y; we denote it by bn(δ). Every x is in either
B(00 . . . 0, 1

2 ) or B(11 . . . 1, 1
2 ), so we need to consider only Hamming

distortion 0 ≤ δ ≤ 1
2 . We will use the following approximation of bn(δ).

Suppose that 0 ≤ δ ≤ 1
2 and δn is an integer, and let H(δ) be the binary

entropy function as before. Then,

2nH(δ)−log n/2−O(1) ≤ bn(δ) ≤ 2nH(δ). (8.9)

In Exercise 8.1.9 on page 626 it is shown that the covering coefficient as
defined in property 4 on page 615, for the Hamming distortion family
Hn satisfies αn = nO(1). The function

rx(δ) = min{K(y) : d(x, y) ≤ δ}

is the rate-distortion function of x for Hamming distortion. One such
function is depicted in Figure 8.1. 3

Example 8.1.9 E , the Euclidean distortion family. Let En be the family of all intervals
in {0, 1}n, where an interval is a subset of {0, 1}n of the form {x :
a ≤ x ≤ b} and ≤ denotes the lexicographic ordering on {0, 1}n. Let
X = Y = {0, 1}n. An x ∈ {0, 1}n is encoded by a y ∈ {0, 1}n. Interpret
strings in {0, 1}n as binary notations for rational numbers in the segment
[0, 1]. Consider the Euclidean distance |x− y| between rational numbers
x and y. The balls in this metric are intervals; the cardinality of a ball
of radius δ is about δ2n. Trivially, the covering coefficient as defined in
property 4 on page 615, for the Euclidean distortion family En satisfies
αn ≤ 2. The function

rx(δ) = min{K(y) : |x− y| ≤ δ}

is the rate-distortion function of x for Euclidean distortion. 3

All the properties are straightforward for all three families, except prop-
erty 4 in the case of the family of Hamming balls.

Every Shape Let A be a distortion family satisfying properties 1 through 4 on page 615.
Property 4 applied to A = {0, 1}n and c = 1, for every n, implies that
the family A contains the singleton set {x} for every x ∈ {0, 1}∗. Thus,

gx(0) = K({x}) = K(x) +O(1).

Property 1 implies that for every n and string x of length n,

gx(n) ≤ K({0, 1}n) = K(n) +O(1) ≤ logn+O(log logn).
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Together this means that for every n and every string x of length n, the
function gx(l) decreases from about K(x) to about 0 as l increases from
0 to n.

Lemma 8.1.3 Let A be a distortion family satisfying properties 1 through 4 on page 615.
For every n and every string x of length n we have gx(n) = O(logn),
and 0 ≤ gx(m) − gx(l) ≤ l −m+O(log n) for all m < l ≤ n.

Proof. The first equation and the left-hand inequality of the second equa-
tion are straightforward. To prove the right-hand inequality, translate it
into the following property of the profile of x. If a pair (k, l) is in Px
and m < l, then also (k + l − m + O(log n),m) ∈ Px. Let A witness
(k, l) ∈ Px. Find a covering of A by at most αnd(A)/2m sets in A, each
of cardinality at most 2m. Let B be a covering set containing x. It can
be specified by A and the index i of B among the covering sets, given the
list of all sets in An and m. We need also O(log k+ log log i+ log logm)
extra bits to separate the description of A, the binary representations
of i and m, and the description of An from one another. Without loss
of generality we can assume that k is less than n. Thus all the ex-
tra information and separator bits are included in O(log n). Altogether,
K(B) ≤ K(A) + l −m+O(log n) ≤ k + l −m+O(log n). 2

Example 8.1.10 Lemma 8.1.3 shows that

K(x) − i−O(log n) ≤ gx(i) ≤ n− i+O(log n),

for every 0 ≤ i ≤ n. The right-hand inequality is obtained by setting
l = n in the lemma, yielding

gx(m) − gx(n) = gx(m) −O(log n) ≤ n−m+O(log n).

The left-hand inequality is obtained by setting m = 0:

gx(0) − gx(l) = K(x) − gx(l) +O(1) ≤ l+ O(log n).

This can also be shown by a simple direct argument: x can be described
by the minimal description of the set A ∈ A witnessing gx(i) and by the
ordinal number of x in A. 3

Let Gn stand for the class of all functions g : {0, 1, . . . , n} → N such that
g(n) = 0 and g(l− 1) ∈ {g(l), g(l)+ 1} for all 1 ≤ l ≤ n. In other words,
a function g is in Gn iff it is nonincreasing and the function g(i) + i is
nondecreasing, and g(n) = 0. The following result should be compared
with Theorem 5.5.2 dealing with hx = dx in the particular case of the
distortion family Ln. There, the precision in Item (ii) is O(log n), rather
than the O(

√
n logn) we obtain for general distortion families.
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Theorem 8.1.6 Let A be a distortion family satisfying properties 1 through 4 on page 615.

(i) For every n and every string x of length n, the function gx(l) is equal
to g(l) +O(log n) for some function g ∈ Gn.

(ii) Conversely, for every n and every function g in Gn, there is a string
x of length n such that for all l = 0, . . . , n, gx(l) = g(l) +O(

√
n logn).

Proof. We defer the proof to Exercise 8.1.8 on page 626. 2

Fitness of
Destination
Word

Section 5.5 deals with the particular distortion family Ln. Every set
containing a string x is considered to be a model for x. For every string
x of length n, Theorem 5.5.1 and its examples show that x has minimal
randomness deficiency in every witness set of hx(i) (hx = dx in the
current terminology), ignoring O(log n) terms. That is, up to the stated
precision every such witness set is the best-fitting model that is possible
at model complexity at most i. It is remarkable that the analogue also
holds for more general distortion families A.

Theorem 8.1.7 Let A be a distortion family satisfying properties 2 and 3 on page 615.
Let B be a set in An and let x be a string in B. Let Ax denote a set of
minimal Kolmogorov complexity among the sets A ∈ A with x ∈ A and
⌈log d(A)⌉ = ⌈log d(B)⌉. Then,

K(Ax) + log d(Ax) −K(x) ≤ δ(x|B) +O(logK(B) + logn).

Proof. Note: δ(x|Ax) + O(log n) = K(Ax) + log d(Ax) − K(x) by the
symmetry of information, Theorem 3.9.1, and property 3. We defer the
proof to Exercise 8.1.15 on page 628. 2

Example 8.1.11 For every A ∈ A we consider the uniform probability distribution over
A. Assume that we are given a string x that was obtained by a random
sampling in an unknown set B ∈ A. Given x we want to recover B, or
some A ∈ A that is ‘a good hypothesis to be the source of x.’ The quoted
expression has a clear meaning in algorithmic statistics, Example 5.5.1
on page 402. According to Definition 5.5.4 on page 403, a set Ax ∋ x
is a sufficient statistic for x iff K(Ax) + log d(Ax) = K(x) + O(1). By
Lemma 5.5.1 on page 403, in that case x is a typical element of Ax; it
has small randomness deficiency in Ax. By Theorem 8.1.7, if x is chosen
at random in B then the probability of the event

K(Ax) + log d(Ax) −K(x) > β

is less than

ǫ = 2−β+O(logK(B)+logn).
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By Item (ii) of Example 5.5.1 on page 402, the properties of randomness
deficiency, the probability that the right-hand side of the inequality in
Theorem 8.1.7 exceeds β is at most ǫ. Thus, with high probability the
set Ax is a sufficient statistic for x. 3

Example 8.1.12 (Denoising) Assume the conditions of Example 8.1.11, and let k =
K(Ax) and l = ⌈log d(Ax)⌉. Since δ(x|Ax) ≤ K(Ax)+log d(Ax)−K(x) ≤
δ(x|B) +O(logK(B) + logn), we have

δ(x|Ax) ≤ δ(x|B) +O(logK(B) + logn),

and Ax is an (almost) best possible model for x at either complexity k,
or of log-cardinality l, and hence both. This gives a method to identify
hypotheses via compression: if Ax is a set in A of minimal Kolmogorov
complexity among sets A with x ∈ A and ⌈log d(A)⌉ = l, then the
hypothesis ‘x is chosen at random in Ax’ is (almost) at least as plausible
as the hypothesis ‘x is chosen at random in B’ for any other simply
described B ∈ A with ⌈log d(B)⌉ = l.

Let us look at an example of denoising by compression (in the ideal sense
of Kolmogorov complexity). Fix a target string x0 of length n and a non-
negative δ ≤ 1

2 . Let a string x be a noisy version of x0 by changing at
most nδ randomly chosen bits in x0. That is, the string x is chosen uni-
formly at random in the Hamming ball B = B(x0, δ). Let x̂ be a string
witnessing rx(δ), that is, a string of minimal Kolmogorov complexity in
the Hamming ball B(x, δ). We claim that x̂ is a good candidate for a
denoised version of x. Indeed, let l = ⌈nH(δ)⌉. Theorem 8.1.7 implies
that

gx(l) + l −K(x) ≤ δ(x|B) +O(log n)

(the term logK(B) is absorbed by O(log n)). Since the Hamming distor-
tion family satisfies all properties 1 through 4 on page 615, the canon-
ical structure functions gx satisfy Theorem 8.1.6. For every x the rate-
distortion function rx of x differs from gx just by changing the scale of
the argument as in Equation 8.7 on page 615. More specifically, for every
0 ≤ δ ≤ 1

2 , we have

rx(δ) = gx(⌈nH(δ)⌉) +O(log n),

and therefore

rx(δ) + l −K(x) ≤ δ(x|B) +O(log n).

Since we assume that x is chosen uniformly at random in B, the random-
ness deficiency δ(x|B) is small with high probability, and the right-hand
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FIGURE 8.2. Denoising of the noisy cross

side of the last displayed inequality is small, ignoring values of order
O(log n). Thus with high probability,

0 ≈ K(x̂) + l −K(x) ≈ K(B(x̂, δ)) + log b(x̂, δ) −K(x),

and the ball B(x̂, δ) is a sufficient statistic of x. In other words, in the
two-part description (x̂, x̂⊕x) of x, the second part (the bitwise XOR of
x and x̂) is noise. This provides a method of denoising via compression,
at least in theory (since the Kolmogorov complexity is not computable).
Practically, it turns out that using real compressors to approximate the
Kolmogorov complexity, the method works surprisingly well.

As an example, we approximated the distortion-rate function of a noise-
less cross of very low complexity, to which artificial noise was added
to obtain a noisy cross. Figure 8.2 shows two graphs. The first graph,
hitting the horizontal axis at about 3100 bits, denotes the Hamming
distortion on the vertical axis of the best model for the noisy cross with
respect to the original noisy cross at the rate given on the horizontal
axis. The line hits zero distortion at model cost bit rate about 3100,
when the original noisy cross is retrieved. The best model of the noisy
cross at this rate, actually the original noisy cross, is attached to this
point. The second graph, hitting the horizontal axis at about 250 bits,
denotes on the vertical axis the Hamming distortion of the best model
for the noisy cross with respect to the noiseless cross at the rate given
on the horizontal axis. The line hits almost zero distortion (Hamming
distance 3) at model cost bit rate about 250. The best model of the noisy
cross at this rate is attached to this point. (The three wrong bits are
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at the bottom left corner and upper right armpit.) This coincides with
a sharp slowing of the rate of decrease of the first graph. Subsequently,
the second graph rises again because the best model for the noisy cross
starts to model more noise. Thus, the second graph shows us the denois-
ing of the noisy cross, underfitting left of the point of contact with the
horizontal axis, and overfitting right of that point. This point of best
denoising can also be deduced from the first graph, where it is the point
where the distortion-rate curve sharply levels off. Since this point has
distortion of only 3 to the noiseless cross, the distortion-rate function
separates structure and noise very well in this example. 3

Example 8.1.13 Theorem 8.1.7 says that for fixed log-cardinality l the model that has
minimal complexity has also minimal randomness deficiency among mod-
els of that log-cardinality. Since gx satisfies Lemma 8.1.3, we have also
that for every k the model of complexity at most k that minimizes the
log-cardinality also minimizes randomness deficiency among models of
that complexity. These models can be computed in the limit, in the first
case by running all programs up to k bits and always keeping the one
that outputs the smallest set in A containing x, and in the second case
by running all programs up to n = l(x) bits and always keeping the
shortest one that outputs a set in A containing x having log-cardinality
at most l. 3

Characterization LetX be a random variable with outcomes in X andX1, X2, . . . , Xn con-
sist of n i.i.d. copies of X , denoted by Xn. The second part of Shannon’s
theorem, Theorem 1.11.3, states that there exists a random variable Z
taking values in the destination alphabet Y, such that we can code the
outcomes in Xn (the source words) in length about nI(X ;Z) (of the
destination words) with the average distortion between the source-word
outcomes of Xn and their destination words, divided by n, being close to
Ed(X,Z) as n grows large. The algorithmic version below about individ-
ual data differs from Shannon’s theorem as explained in Example 8.1.14.

Theorem 8.1.8 Let A be a distortion family satisfying properties 2 and 3 on page 615.
Define A(x) = {A ∈ A : x ∈ A}. For every x and every B ∈ A(x)
there is an A ∈ A(x) with ⌈log d(A)⌉ = ⌈log d(B)⌉ and K(A) ≤ I(x :
B) +O(logK(B) + logn), where I(x : B) = K(B)−K(B|x) stands for
the information in x about B and n = l(x).

Proof. The proof of Shannon’s theorem, Theorem 1.11.3, and the proof of
the current theorem are very different. The latter proof uses techniques
that may be of independent interest; see Exercises 8.1.13 and 8.1.14 on
page 628. 2
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Example 8.1.14 Note that ⌈log d(A)⌉ = ⌈log d(B)⌉ equals ⌈log b(δ)⌉ in Equation 8.7 on
page 615, where it is the log-cardinality of a distortion ball in the distor-
tion family An. In this way we can determine the value of gx(⌈log b(d)⌉)
and subsequently retrieve both the distortion δ concerned and the value
of the rate-distortion function rx(δ). The theorem states that a destina-
tion word minimizing the algorithmic mutual information with the given
source word gives no advantage in rate (a pointswise less rate-distortion
curve) over a minimal complexity destination word. This result on the
rate-distortion function of individual data contrasts with Shannon’s rate-
distortion function for a random variable (whose outcomes are the in-
dividual data). In Shannon’s case the minimum information of some
random variable with the source random variable can be less than the
minimum entropy of a function of the source variable. 3

Example 8.1.15 Theorem 8.1.8 states that for every family A of finite nonempty subsets
of {0, 1}∗ and for every string x, if there exists an A ∈ A of cardinality
2l or less containing x that has small information about x, then there
exists another set B ∈ A containing x that has also at most 2l elements
and has small prefix complexity. For example, in the case of Hamming
distortion, if for a given string x there exists a string y at Hamming
distance δ from x that has small information about x, then there exists
another string z that is also within distance δ of x and has small prefix
complexity itself (not only small information about x). 3

Algorithmic
versus
Probabilistic
Rate Distortion

Probabilistic rate-distortion theory was treated in Section 1.11.6. Let X
and Y be finite. We generalize the setting from i.i.d. random variables
to more general random variables. Let X1, X2, . . . , Xn be a sequence
of, possibly dependent, random variables with values in Xn such that
p(x1x2 . . . xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn) is rational. With
X = X1, X2, . . . , Xn and x = x1x2 . . . xn, let K(X) denote the prefix
complexity of the set of pairs (x, p(x)) ordered lexicographic. Let E :
Xn → Yn be a prefix-free code. Define the rate-distortion function by

rn(δ) = min
E

{log d(E(Xn)) : Ed(x,E(x)) ≤ δ}, (8.10)

the expectation E taken over the probability mass function p. Roughly
speaking, we prove that rn(δ) is close to the p-expected value of rx(δ)
for all δ. See also Exercise 8.1.16 on page 628.

Theorem 8.1.9 Assume the discussion above. Let E0 be a many-to-one coding function
defined by E0(x) = y with d(x, y) ≤ δ and rx(δ) = K(y). Then,

Erx(δ) − ǫ1 ≤ rn(δ) ≤ min

{

Erx(δ) + ǫ2, max
x∈Xn

rx(δ)

}

,
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with ǫ1 = O(K(δ, rn, X, n)), ǫ2 = H(L) −H(S) with S(y) =
∑{p(x) :

E0(x) = y}, L(y) is the uniform distribution over the y’s over Yn, and
the expectation E is taken over p.

Proof. Left inequality. Given δ, n, p, and the (discrete) graph of rn,
we can compute an optimal E as in Equation 8.10 such that rn(δ) =
log d(E(Xn)). Retrieve E(x) for every x by its index of rn(δ) bits in the
set E(Xn). Then,

K(E(x)) ≤ rn(δ) +O(K(δ, rn, X, n)),

and by definition, rx(δ) ≤ K(E(x)). Taking the expectation of rx(δ)
over p, we are done.

Right inequality. Define a code E0 such that K(E0(x)) = rx(δ) for every
x ∈ Xn. Let E0(Xn) be the range of E0. Although E0(Xn) cannot be
computed, it is finite, and trivially

log d(E0(Xn)) ≤ max
x∈Xn

K(E0(x)).

By definition rn(δ) ≤ log d(E0(Xn)), which yields rn(δ) ≤ maxx∈Xn rx(δ).

The noiseless coding theorem, Theorem 1.11.2 on page 77, shows that

∑

x∈Xn

p(x)rx(δ) =
∑

y∈E0(Xn)

S(y)K(y) ≥ H(S),

with S the distribution defined in the statement of the lemma. By def-
inition, rn(δ) ≤ d(Yn), which yields rn(δ) ≤ H(L), with L as in the
statement of the lemma. Together, we obtain rn(δ) ≤ Erx(δ) + ǫ2. 2

Exercises 8.1.1. [25] Let P be a (possibly incomputable) probability mass func-
tion, and let Pn(x) = P (x|l(x) = n) and Pn(x) = 0 for l(x) 6= n. Show
that H(Pn)−∑x Pn(x)C(x) ≤ logn+2 log logn+O(1), where the O(1)
term is independent of P and n.

Comments. Hint: By K(x) ≤ C(x) + K(C(x)) + O(1) and the left
side of Equation 8.3 on page 607 we have H(Pn) −∑x Pn(x)C(x) ≤
∑

x Pn(x)K(C(x)) +O(1).

8.1.2. [19] Let P be a probability mass function and let A ⊆ N be
recursively enumerable. Define PA(x) = P (x|x ∈ A) and PA(x) = 0
for x 6∈ A, and let PA be computable and H(PA) finite. Show that
∑

x PA(x)C(x|A,PA) ≤ H(PA)+O(1), where the O(1) term is indepen-
dent of P and A.
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Comments. Hint: let x1, x2, . . . be an enumeration of A by nonincreas-
ing PA(xi) probabilities. We can find this enumeration, since we can
enumerate A until the first k elements constitute Ak and max{PA(x) :
x ∈ Ak} ≥ 1 −∑y∈Ak

PA(y). The x that achieves the maximum is x1,

and so on. Clearly, C(xi|A,PA) ≤ log i + O(1). This yields
∑

x PA(x)
C(x|A,PA) ≤ ∑

i PA(xi) log i + O(1) ≤ H(PA) + O(1) with the O(1)
term independent of P and A. (The last inequality follows from PA(xi) ≤
∑

1≤j≤i PA(xj)/i yielding log(iPA(xi)) ≤ log 1 = 0. Therefore, log i ≤
log 1/PA(xi).) Source: Adaption of an idea of B. List, personal commu-
nication, 1996.

8.1.3. [21] Let P be a computable probability mass function ofm iden-
tically distributed random variables. Show that the analogue of Theo-
rem 8.1.1 holds. In this case, the entropy is proportional to m, but cP is
O(logm).

Comments. Hint: use K(P ) = O(logm) and a similar proof to Theo-
rem 8.1.1. Source: T.M. Cover, P. Gács, and R.M. Gray, Ann. Probab.,
17:3(1989), 840–865.

8.1.4. [32] Let P be a (possibly incomputable) probability mass func-
tion.

(a) Show that 0 ≤∑x P (x)K(x|P )−H(P ) = O(1), where the O(1) term
is independent of P and depends only on the reference prefix machine.

(b) Show that 0 ≤∑x P (x)K(x|P )−H(P ) < 1 for all P for some appro-
priate reference prefix machine. This achieves exactly the optimum ex-
pected code-word length of the noiseless coding theorem, Theorem 1.11.2
on page 77.

Comments. Hint: in Item (a) use a universal prefix machine with an or-
acle for (x, P (x)) pairs. With an O(1) program to compute a Shannon–
Fano code, this machine when given an input y determines whether y is
the Shannon–Fano code word for some x. By Lemma 4.3.3 on page 274
such a code word has length log 1/P (x) +O(1). If this is the case, then
the machine outputs x; otherwise, it halts without output. Therefore,
K(x|P ) ≤ log 1/P (x) + O(1). This establishes the upper bound. The
lower bound follows as usual from the noiseless coding theorem, The-
orem 1.11.2. Item (b) follows by appropriate modification of the refer-
ence machine. Source: the basic Equation 8.3 appears in [P. Gács, Lec-
ture Notes on Descriptional Complexity and Randomness, Manuscript,
Boston University, 1987; T.M. Cover, P. Gács, and R.M. Gray, Ann.
Probab., 17:3(1989), 840–865; W.H. Zurek Phys. Rev. A, 40(1989), 4731–
4751] but the result is presumably older. A complex argument for Item
(a) in a physics setting is [C. Caves, pp. 91–115 in: W.H. Zurek, ed., Com-
plexity, Entropy and the Physics of Information, Addison-Wesley, 1991].
Item (b) is spelled out in [R. Schack, Int. J. Theoret. Phys., 36(1997),
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209–226]. The last two papers use the nonstandard complexity variant
of Example 3.9.2, but this is not required to prove the result.

8.1.5. [39] Prove Theorem 8.1.3.

Comments. Source: D. Hammer, A.E. Romashchenko, A.K. Shen, and
N.K. Vereshchagin, J. Comput. Syst. Sci., 60(2000), 442–464.

8.1.6. [30] (a) Show that for every x and y there exists a z such
that 2K(z)+K(y|z, x)+K(x|z, y) ≤ 2 max{K(x|y),K(y|x)}+O(logn),
where n = l(x) + l(y).

(b) Show that for every n there are random variables X,Y with 2n + 1
outcomes each such that for every random variable Z we have 2H(Z) +
H(X |Y, Z) +H(Y |X,Z) ≥ 2 max{H(X |Y ), H(Y |X) + n.

Comments. Hint for Item (a): use the fact that for every x and y there ex-
ists a z such that K(z) ≤ max{K(x|y),K(y|x)}+O(log n), K(y|z, x) =
O(log n), and K(x|z, y) = O(log n), where n = K(x|y)+K(y|x). Source:
C.H. Bennett, P. Gács, M. Li, P.M.B. Vitányi, and W.H. Zurek, IEEE
Trans. Inform. Theory, 44:4(1998), 1407–1423. Source for Item (b): An.A.
Muchnik and N.K. Vereshchagin, Proc. Int. Comput. Sci. Symp. Russia
(CSR), Lect. Notes. Comput. Sci., Vol. 3967, Springer-Verlag, Berlin,
2006, 281–291. While all universally quantified Shannon entropy in-
equalities hold for Kolmogorov complexity, and conversely, as in The-
orem 8.1.3, this is not the case for inequalities of the same type that
are second-order quantified as ∀∃. Item (b) shows that the Kolmogorov
complexity inequality in Item (a) does not hold for Shannon entropy,
and vice versa.

8.1.7. [26] Prove Equation 8.7 on page 615.

8.1.8. [39] Prove Theorem 8.1.6.

Comments. Compare the similar Theorem 5.5.2 dealing with the par-
ticular distortion family Ln. Its proof yields a logarithmic error term,
but does not seem to generalize to the current, much more general, case.
Source: N.K. Vereshchagin and P.M.B. Vitányi, Arxiv cs.IT/0411014;
IEEE Trans. Inform. Theory, Submitted.

8.1.9. [36] Let Hn be the Hamming distortion family of strings of
length n. Show that Hn satisfies property 4 on page 615: For every
δ ≤ δ′ ≤ 1

2 , every Hamming ball of radius δ′ can be covered by at most
αnbn(δ

′)/bn(δ) Hamming balls of radius δ, where the covering coefficient
αn is nO(1), a polynomial in n.

Comments. A more precise estimate shows that αn = O(n4). The exer-
cise implies that the set of all strings of length n can be covered by at
most N = nO(1)2n/bn(δ) balls of radius δ. Source: N.K. Vereshchagin
and P.M.B. Vitányi, Ibid.
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8.1.10. [32] The distortion family Hn satisfies properties 1 through 4
on page 615, where property 4 follows from Exercise 8.1.9.

(a) Show that rx(δ) = gx(⌈nH(δ)⌉) +O(log n) for every 0 ≤ δ ≤ 1
2 .

(b) For every x of length n, we have rx(
1
2 ) = O(log n), and rx(δ) −

rx(δ
′) ≤ n(H(δ) −H(δ′)) +O(log n), for every 0 ≤ δ < δ′ ≤ 1

2 .

(c) Let r be a function mapping the set {0, 1/n, 2/n, . . . , 1
2} to the nat-

ural numbers, satisfying the second inequality of Item (b) without the
O(log n) term, and such that r(1

2 ) = 0. Show that there is a string x of
length n such that rx(δ) = r(δ) +O(

√
n logn) for every 0 ≤ δ ≤ 1

2 .

Comments. Hint for Item (a): observe that the complexity of the Ham-
ming ball in Hn of radius δ ≤ 1

2 with center y is equal to K(y) up to
an additive term of order O(log n). Thus, gx(l) + O(log n) ≤ rx(δ) ≤
gx(l−1)+O(logn), where l = ⌈log bn(δ)⌉. By Equation 8.9 on page 617,
we have l = nH(δ) + O(log n). By Lemma 8.1.3, gx(l) changes at most
by O(log n) as l changes by O(log n). Thus the left-hand side and the
right-hand side are equal to gx(⌈nH(δ)⌉) +O(log n). Hint for Items (b)
and (c): use Item (a) and Theorem 8.1.6. Source: N.K. Vereshchagin and
P.M.B. Vitányi, Ibid.

8.1.11. [35] Let r(δ) be the function shown in Figure 8.1 on page 616.

(a) Show that K(r) = O(log n), and that r satisfies the conditions of
Exercise 8.1.10.

(b) Show that the rate-distortion graph rx(δ) of the string x existing by
Exercise 8.1.10 is in the strip of size O(

√
n logn) of the graph of r(δ).

Therefore rx(δ) is almost constant for 1
6 ≤ δ ≤ 1

3 .

(c) Show that for the x of Item (b), the number of bits we have to
transmit for a string within Hamming distance 1

3 is about equal to that
we have to transmit for a string within Hamming distance 1

6 .

(d) Show that only if the fraction of incorrect bits with respect to x is
allowed to be sufficiently greater than 1

3 can we save in the number of
transmitted bits.

Comments. Source: N.K. Vereshchagin and P.M.B. Vitányi, Ibid.

8.1.12. [25] Consider the rate-distortion family En of Euclidean dis-
tortion.

(a) Show that the rate-distortion function of x is related to the structure
function gx by rx(δ) = gx(n+ log δ) +O(1).

(b) Show that for every n-bit rational number 0 ≤ x ≤ 1, we have
rx(

1
2 ) = O(1), and 0 ≤ rx(δ) − rx(δ

′) ≤ log δ′ − log δ + O(log n), for all
0 ≤ δ ≤ δ′ ≤ 1

2 .



628 8. Physics, Information, and Computation

(c) Let r be a nonincreasing function from the rational numbers to the
natural numbers such that r(1

2 ) = 0 and r(δ) + log δ is monotonic non-
decreasing. Show that there is an n-bit rational number 0 ≤ x ≤ 1 such
that rx(δ) = rx(δ) +O(

√
n logn) for all 0 ≤ δ ≤ 1

2 .

Comments. Hint for Items (b) and (c): use Theorem 8.1.6. Source: N.K.
Vereshchagin and P.M.B. Vitányi, Ibid.

8.1.13. [42] Let B be a family of nonempty subsets of {0, 1}n. Let m, k
be natural numbers. If a string x of length n is an element of at least
2m sets of complexity at most k in B, then x is an element of a set in B
of complexity at most k −m+O(K(B) + logn+ log k + logm).

Comments. For l = 0 this is Exercise 4.3.10 on page 288 expressed
in another form: If a binary string x has at least 2m descriptions of
length at most k, then K(x) ≤ k −m+O(log k + logm). As usual, p is
called a description of x if U(p) = x, where U is the reference universal
prefix machine. In [N.K. Vereshchagin and P.M.B. Vitányi, IEEE Trans.
Inform. Theory, 50:12(2004), 3265–3290] this was generalized to all l ≥
0: If a binary string belongs to at least 2m sets B of cardinality 2l and
complexity K(B) ≤ k, then x belongs to a set A of cardinality 2l and
complexityK(A) ≤ k−l+O(logm+log k+log l). Hint: The proof is based
on a finite two-player game with complete information. In his moves, the
first player generates sets in B of complexity at most k. The second player
marks some of the generated sets in his moves, so that after each of his
moves, every string that belongs to at least 2m of the sets generated
by player one belongs also to at least one marked set. If the number
of marked sets grows much greater than 2k−m, then the second player
loses. We need to prove that the second player has a winning strategy.
To this end we can prove that there exists a probabilistic strategy for the
second player that has a nonzero probability of winning the game. This
makes a deterministic winning strategy for the first player impossible,
and therefore (since the game is deterministic) proves the existence of a
deterministic winning strategy for the second player. There is also a more
complicated constructive proof. Source: N.K. Vereshchagin and P.M.B.
Vitányi, Arxiv cs.IT/0411014; IEEE Trans. Inform. Theory, Submitted.

8.1.14. [41] Use Exercise 8.1.13 to prove Theorem 8.1.8.

Comments. Source: N.K. Vereshchagin and P.M.B. Vitányi, Ibid.

8.1.15. [41] Prove Theorem 8.1.7.

Comments. Hint: use Theorem 8.1.8. Source: N.K. Vereshchagin and
P.M.B. Vitányi, Ibid.

8.1.16. [27] Use the terminology of Section 8.1.9. Compare rx(δ) for
x = x1 . . . xn obtained by random sampling a sequence X1, . . . , Xn of
n random variables, i.i.d. copies of a random variable X , with rn(δ) of
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Equation 8.10 for the same sequence of n random variables. Let X have
a finite range, and all probabilities be rational.

(a) Show that almost surely (i.e., with probability 1) for every δ the
limit limn→∞ rx(δ)/n is equal to rn(δ)/n.

(b) Show that for n→ ∞ the limit of the expectation Erx(δ)/n is equal
to rn(δ)/n.

Comments. This relates the classical and algorithmic approaches accord-
ing to traditional information-theoretic concerns. Source: E.-H. Yang
and S.-Y. Shen, IEEE Trans. Inform. Theory, 39:1(1993), 288–292; J.
Muramatsu and F. Kanaya, IEICE Trans. Fundamentals, E77-A:8(1994),
1224–1229; D.M. Sow and A. Eleftheriadis, IEEE Trans. Inform. The-
ory, 49:3(2003), 604–608.

8.2

Reversible

Computation

Computers can be regarded as engines that must dissipate energy in
order to process information. Von Neumann reputedly thought that a
computer operating at temperature T must dissipate at least kT ln 2
joules per elementary bit operation, where k ≈ 1.38×10−23 joule/kelvin
is Boltzmann’s constant and T is the absolute temperature in kelvin.
This is about 2.8 × 10−21 joules at room temperature.

Around 1960, R. Landauer more thoroughly analyzed this question and
concluded that it is only logically irreversible operations that must dis-
sipate energy. An operation is logically reversible if its inputs can always
be deduced from the outputs. Erasure of information is not reversible.
Erasing each bit costs kT ln 2 energy when the computer operates at
temperature T .

8.2.1
Energy
Dissipation

Briefly, Landauer’s line of reasoning runs as follows: Distinct logical
states of a computer must be represented by distinct physical states
of the computer hardware. Each bit has one degree of freedom (0 or 1),
corresponding to one or more degrees of freedom in the physical hard-
ware. The n bits collectively have n degrees of freedom. This corresponds
to 2n possible logical states and hence to at least 2n physical states of
the hardware.

Suppose n bits are irreversibly erased (reset to zeros). Before the erasure
operation, these n bits could be in any of 2n possible logical states. Af-
ter the erasure, they are compressed to just one unique state. According
to the second law of thermodynamics, this loss of degrees of freedom
of the physical system must be compensated for. If the information is
not simply transmitted from the system to the environment, but can
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no longer be retrieved, then the compensation must happen by an in-
crease of temperature in the system and its environment, that is, by heat
dissipation.

Thus, the only computer operations that are necessarily thermodynam-
ically costly are those that are logically irreversible, that is, operations
that map several distinct logical states of the computer onto a common
successor, thereby throwing away information about the computer’s pre-
vious state. Any computation that discards information irreversibly costs
energy. For example, a logic gate with more input lines than output lines
inevitably loses information, and hence is irreversible and therefore dis-
sipative.

Computer power has roughly doubled every 18 months for the last half-century
(Moore’s law). This increase in power is due primarily to the continuing minia-
turization of the elements of which computers are made, resulting in more and
more elementary gates per unit area with higher and higher clock frequency,
accompanied by less and less energy dissipation per elementary computing
event. Roughly, a linear increase in clock speed is accompanied by a square
increase in elements per unit area—so if all elements compute all of the time,
then the dissipated energy per time unit rises at a cubic (linear times square)
rate in absence of energy decrease per elementary event. The continuing dra-
matic decrease in dissipated energy per elementary event is what has made
Moore’s law possible. But there is a foreseeable end to this: There is a mini-
mum quantum of energy dissipation associated with elementary events. This
puts a fundamental limit on how far we can go with miniaturization, does it?

The question of how to reduce the energy dissipation of computation de-
termines future advances in computing power. Since battery technology
improves by only twenty percent every ten years, low-power computing
will similarly govern advances in mobile communication and computing.

Over the last fifty years, the energy dissipation per logic operation has been
reduced by approximately a factor of ten every five years. Such an operation in
1988 dissipated about 1/10 picojoule (1 picojoule is 10−12 joule) versus around
109 picojoule in 1945 [R.W. Keyes, IBM J. Res. Devel., 32(1988), 24–28].

Extrapolations of current trends suggest that reduction of the energy dissi-
pation per logic operation below kT (thermal noise, on the order of 10−8

picojoule at room temperature) becomes a relevant issue by 2015. Even at
kT level, a future device containing 1 trillion (1012) gates operating at room
temperature at 1 terahertz (1012) switching all gates all of the time dissipates
about 3000 watts. This is difficult to cool.

The drive for ever greater computing power through more densely packed logic
circuits will eventually require that we find methods other than cooling. An
alternative way is to develop reversible logic that computes (almost) without
energy dissipation.

Logical reversibility does not imply dissipation freedom. A computer
may compute in a logically reversible manner and yet dissipate heat.
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But the laws of physics allow for technologies to make logical reversible
computers operate in a dissipationless manner. Logically reversible com-
puters are those built from Fredkin gates, or the reversible Turing ma-
chine, discussed later. Thought experiments exhibit a computer that is
both reversible and dissipationless. An example is the billiard-ball com-
puter discussed below.

8.2.2
Reversible Logic
Circuits

To build a computer we need only two types of logical gates: AND,
NOT; all other gates can be built from AND and NOT. The NOT gate
is already logically reversible. But the AND gate is not. The AND and
OR gates have each two inputs but only one output. Hence, they must
lose information.

Can we design something like an AND gate that has the same number of
input lines and output lines and is reversible? In principle, we need only
to add garbage output lines. This is easy, and there are many such gates.
However, we would like to find a universal reversible gate from which
all Boolean gates can by synthesized. One such universal reversible gate
is the so-called Fredkin gate as shown in Figure 8.3(a). If the control
bit is 0, then the input values of A and B are transmitted unaltered to
the outputs on the same level; and if the control bit is 1, then they are
switched to the opposite output.

The Fredkin gate is universal in the sense that it can be used to construct
all other Boolean gates in a reversible variant. For example, Figure 8.3(b)
shows a reversible AND gate built from a Fredkin gate. Here, the top
wire marked by A and C is the control wire of the Fredkin gate. The
bottom wire marked 0 has a constant 0 input. The inputs to the AND
gate are marked A and B, the single output wire is marked ‘output.’ If
A = 0, then the constant input 0 is transmitted unaltered to the output.
If A = 1, then the input from B is transmitted unaltered to the output.
Hence, the output is A AND B.

Fredkin’s gate and the AND gate in Figure 8.3 are reversible because
we have added garbage output bits in order to ensure that the inputs
can always be deduced from the outputs. Therefore, in principle they
do not need to dissipate energy. In theory one can possibly build a dis-
sipationless computer using Fredkin gates or reversible AND and NOT

output
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FIGURE 8.3. Reversible Boolean gates
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A AND B

B AND NOT A

A AND NOT B

A AND B

FIGURE 8.4. Implementing reversible AND gate and NOT gate

gates. There is no thermodynamic reason that such a computer should
cost any energy. A computation would be started by an energy jolt, say
some amount of electricity, proceed without dissipating energy, and at
the end of the computation simply return the same amount of electricity
to the source.

8.2.3
Reversible
Ballistic
Computer

Consider an idealized computer using elastic frictionless billiard balls.
The presence of a ball represents a 1, and no ball represents a 0. The
ballistic computer contains walls at some positions that perfectly elasti-
cally reflect the balls. All collisions between balls are perfectly elastic as
well. Between the collisions, the balls travel in straight lines with con-
stant speed, as in Newtonian mechanics. For example, we can think of
the balls as idealized molecules. To start the computation, if an input
bit is 1, we fire a ball, if an input bit is 0, we do not fire a ball. All input
balls are fired simultaneously, and at the same speed.

Figure 8.4 implements an AND gate for inputs A and B. If we set B = 1,
then we obtain a NOT gate for A (and setting A = 1 yields a NOT gate
for B). We will also need the constructions in Figure 8.5 using walls to
deflect a ball’s path, to shift a path, to delay the ball’s motion without
changing its original direction, and to allow two lines of motion to cross.

It is possible to emulate any computation using the above gadgets. Sup-
pose the setup lets all of the balls reach the output end simultaneously.
After we observe the output, we can simply reflect back all the output
balls, including the many garbage balls, to reverse the computation. The
billiard balls will then come out of the ballistic computer exactly where
we sent them in, with the same speed. The kinetic energy can be returned
to the device that kicked the balls in. Then the computer is ready for a
next round of dissipationless action. An example input–output+garbage
scheme for a ballistic computer is shown in Figure 8.6.

A ballistic computer with molecules as balls (the molecular computer) is ex-
tremely unstable in principle. Any small initial error in the position or speed
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(s) Deflect ball's path (b) Shift path sideways

(c) Delay motion (d) Two paths cross

FIGURE 8.5. Controlling billiard-ball movements

of the balls is amplified by a factor of 2 in each collision. Due to the quantum-
mechanical uncertainty relation there are unavoidable errors of size at least
about Planck’s constant. After a few dozen collisions, the whole computer
deteriorates.

To prevent deterioration, one may use objects at the quantum level that are
more stable. R.P. Feynman suggested the use of electron spin orientation in
[Int. J. Theoret. Phys., 21(1982), 467–488; Optics News, 11(1985), 11]. Other
quantum-mechanical computer proposals are [P.A. Benioff, Int. J. Theoret.
Phys., 21(1982), 177–202; Ann. New York Acad. Sci., 480(1986), 475–486;
N. Margolus, pp. 273–287 in W.H. Zurek, ed., Complexity, Entropy and the
Physics of Information, Addison-Wesley, 1991].

C.H. Bennett [Int. J. Theoret. Phys., 21:2(1982), 905–940] suggested a Brown-
ian computer, where the computing particles are larger than molecules but
small enough to be subject to Brownian motion. The idea is to use ther-
mal noise to drive the computing balls. The computing balls can move on
a fixed computation trajectory between start and finish of the computation.
By Brownian motion they perform a random walk, back and forth along the
trajectory, until they finally arrive at the finish. These computers do dissipate
energy, but this can in principle be made arbitrarily small.

C.H. Bennett and R. Landauer [Scientific American, 253(July 1985), 48–56]
also described how to construct an idealized Fredkin gate and given such gates,
another alternative way of constructing a billiard-ball computer. All the balls
are linked together and pushed forward by one mechanism. The balls move
along pipes. The entire assembly is immersed in an ideal viscous fluid. The
frictional forces that act on the balls will be proportional to their velocity;
there will be no static friction.

If we move the balls very slowly, then the frictional force will be very weak.
The energy that must be expended to work against friction is equal to the
product of the frictional force and the distance the ball traveled. Thus, we
can use as little energy as we wish simply by slowing down the computation.
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There is no minimum amount of energy that must be expended to perform
any computation.

In [R.C. Merkle, Nanotechnology, 4(1993), 21–40], two methods to realize
such reversible computations using electronic switching devices in conven-
tional technologies (such as nMOS, CMOS, and charge-coupled devices) are
proposed. In fact, such reversible almost dissipationless electronics have al-
ready been used in existing laboratory computers. (They happened to have
been designed with other aims in mind.)

8.2.4
Thermodynamics
of Computing

Using the physical theory of reversible computation, the simple differ-
ence K(x) −K(y) turns out to be an appropriate (universal, antisym-
metric, and transitive) measure of the amount of thermodynamic work
required to transform string x into string y by the most efficient process.

Thermodynamics, among other things, deals with the amounts of heat
and work ideally required, by the most efficient process, to convert one
form of matter to another. For example, at 0◦C and atmospheric pres-
sure, it takes 80 calories of heat and no work to convert a gram of ice
into water at the same temperature and pressure.

From an atomic point of view, the conversion of ice to water at 0◦C is
a reversible process, in which each melting water molecule gains about
3.8 bits of entropy (representing the approximately 23.8-fold increased
freedom of motion it has in the liquid state), while the environment loses
3.8 bits.

During this ideal melting process, the entropy of the universe remains
constant, because the entropy gain by the melting ice is compensated by
an equal entropy loss by the environment. Perfect compensation takes
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FIGURE 8.6. A billiard-ball computer
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place only in the limit of slow melting, with an infinitesimal temperature
difference between the ice and the water.

Rapid melting, for example, when ice is dropped into hot water, is ther-
modynamically irreversible and inefficient, with the environment (the
hot water) losing less entropy than the ice gains, resulting in a net and
irredeemable entropy increase for the combined system. Strictly speak-
ing, the microscopic entropy of the universe as a whole does not increase,
being a constant of motion in both classical and quantum mechanics.
Rather, what happens when ice is dropped into hot water is that the
marginal entropy of the (ice + hot water) system increases, while the
entropy of the universe remains constant, due to a growth of mutual
information mediated by the subtle correlations between the (ice + hot
water) system and the rest of the universe. In principle, these correla-
tions could be harnessed and redirected so as to cause the warm water
to refreeze, but in practice the melting is irreversible.

Turning again to ideal reversible processes, the entropy change in going
from state x to state y is an antisymmetric function of x and y; thus,
when water freezes at 0◦C by the most efficient process, it gives up 3.8
bits of entropy per molecule to the environment. When more than two
states are involved, the entropy changes are transitive: thus the entropy
change per molecule of going from ice to water vapor at 0◦C (+32.6 bits)
plus that for going from vapor to liquid water (−28.8 bits) sum to the
entropy change for going from ice to water directly.

Because of this antisymmetry and transitivity, entropy can be regarded
as a thermodynamic potential, or state function: each state has an en-
tropy, and the entropy change in going from state x to state y by the
most efficient process is simply the entropy difference between states x
and y.

Thermodynamic ideas were first successfully applied to computation by
Landauer (Section 8.2.1). According to Landauer’s principle, an op-
eration that maps an unknown state randomly chosen from among n
equiprobable states onto a known common successor state must be ac-
companied by an entropy increase of log2 n bits in other, noninformation-
bearing degrees of freedom in the computer or its environment. At
room temperature, this is equivalent to the production of kT ln 2 (about
6.7× 10−22) calories of waste heat per bit of information discarded. The
point here is the change from ignorance to knowledge about the state,
that is, the gaining of information and not the erasure in itself (instead
of erasure one could consider measurement that would make the state
known).

Landauer’s principle follows from the fact that such a logically irre-
versible operation would otherwise be able to decrease the thermody-
namic entropy of the computer’s data without a compensating entropy
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increase elsewhere in the universe, thereby violating the second law of
thermodynamics.

Converse to Landauer’s principle is the fact that when a computer takes
a physical randomizing step, such as tossing a coin, in which a single
logical state passes stochastically into one of n equiprobable successors,
that step can, if properly harnessed, be used to remove log2 n bits of en-
tropy from the computer’s environment. Models have been constructed
(Section 8.2.1) obeying the usual conventions of classical, quantum, and
thermodynamic thought experiments showing both the ability in princi-
ple to perform logically reversible computations in a thermodynamically
reversible fashion, and the ability to harness entropy increases due to
data randomization within a computer to reduce correspondingly the
entropy of its environment.

In view of the above considerations, it seems reasonable to assign each
string x an effective thermodynamic entropy equal to its complexity
K(x). A computation that erases an n-bit random string would then
reduce its entropy by n bits, requiring an entropy increase in the envi-
ronment of at least n bits, in agreement with Landauer’s principle.

Conversely, a randomizing computation that starts with a string of n
zeros and produces n random bits has, as its typical result, an algorith-
mically random n-bit string x, that is, one for which K(x) ≈ n. By the
converse of Landauer’s principle, this randomizing computation is capa-
ble of removing up to n bits of entropy from the environment, again in
agreement with the identification of the algorithmic complexity K and
the thermodynamic entropy.

What about computations that start with one (randomly generated or
unknown) string x and end with another string y? By the transitivity of
entropy changes one is led to say that the thermodynamic cost, that is,
the minimal entropy increase in the environment, of a transformation of
x into y should be

W (y|x) = K(x) −K(y),

because the transformation of x into y could be thought of as a two-
step process in which one first erases x, and then allows y to be pro-
duced by randomization. By the elementary properties of self-delimiting
programs, this cost measure is transitive within an additive constant.
A similar antisymmetric measure of the thermodynamic cost of data
transformations, such as

W ′(y|x) = K(x|y) −K(y|x),

is slightly nontransitive. There are strings x with K(x∗|x) ≈ K(K(x)),
where x∗ is the minimal program for x (Theorem 3.8.1 on page 242).
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According to the W ′ measure, erasing such an x via the intermediate
x∗ would generate K(K(x)) less entropy than erasing it directly, while
for the W measure the two costs would be equal within an additive con-
stant. Indeed, erasing in two steps would cost only K(x|x∗)−K(x∗|x)+
K(x∗|ǫ) −K(ǫ|x∗) = K(x) −K(x∗|x), while erasing in one step would
cost K(x|ǫ) −K(ǫ|x) = K(x). (Everything up to an additive constant.)

Finally, we consider entropy changes in nonideal computations. Consider
the thermodynamics of an intelligent demon or engine that has some
capacity to analyze and transform data x before erasing it. If the demon
erases a random-looking string, such as the digits of π, without taking the
trouble to understand it, it will commit a thermodynamically irreversible
act, in which the entropy of the data is decreased very little, while the
entropy of the environment increases by a full n bits. On the other hand,
if the demon recognizes the redundancy in π, it can transform π to a
short string by a reversible computation, and thereby accomplish the
erasure at very little thermodynamic cost.

More generally, given unlimited time, a demon could approximate the
upper semicomputable function K(x) and so compress a string x to
size K(x) before erasing it. But in limited time, the demon will not be
able to compress x so much and will have to generate more entropy to
get rid of it. This tradeoff between speed and thermodynamic efficiency
is superficially similar to the tradeoff between speed and efficiency for
physical processes such as melting, but the functional form of the tradeoff
is very different.

For typical physical state changes such as melting, the excess entropy
produced per molecule goes to zero inversely in the time t allowed for
melting to occur. But the time-bounded prefix complexity Kt(x), that
is, the size of the smallest program to compute x in time at most t, in
general approaches K(x) with incomputable slowness as a function of t
and x. A formal result along these lines is stated as Exercise 8.3.5.

8.2.5
Reversible
Turing Machines

In the standard model of a Turing machine (Section 1.7) the elementary
operations are rules in quadruple format (p, s, a, q), meaning that if the
finite control is in state p and the machine scans tape symbol s, then
the machine performs action a and subsequently the finite control enters
state q. Such an action a consists in either printing a symbol s′ in the
tape square scanned, or moving the scanning head one tape square left
or right.

Quadruples are said to overlap in domain if they cause the machine
in the same state and scanning the same symbol to perform different
actions. A deterministic Turing machine is defined as a Turing machine
with quadruples no two of which overlap in domain.
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Now consider the special-format (deterministic) Turing machines using
quadruples of two types: read/write quadruples and move quadruples. A
read/write quadruple (p, a, b, q) causes the machine in state p scanning
tape symbol a to write symbol b and enter state q. A move quadruple
(p, ∗, σ, q) causes the machine in state p to move its tape head by σ ∈
{−1,+1} squares and enter state q, oblivious to the particular symbol
∗ in the currently scanned tape square. (Here −1 means ‘one square
left’, and +1 means ‘one square right’.) Quadruples are said to overlap
in range if they cause the machine to enter the same state and either
both write the same symbol or (at least) one of them moves the head.
Said differently, quadruples that enter the same state overlap in range
unless they write different symbols. A reversible Turing machine is a
deterministic Turing machine with quadruples no two of which overlap
in range. A k-tape reversible Turing machine uses (2k+2) tuples, which
for every tape separately, select a read/write or move on that tape.
Moreover, any two tuples can be restricted to some single tape where
they don’t overlap in range.

To show that every partial recursive function can be computed by a
reversible Turing machine one can proceed as follows. Take the stan-
dard irreversible Turing machine computing that function. We modify
it by adding an auxiliary storage tape called the ‘history tape’. The
quadruple rules are extended to 6-tuples to additionally manipulate the
history tape. To be able to reversibly undo (retrace) the computation
deterministically, the new 6-tuple rules have the effect that the machine
keeps a record on the auxiliary history tape consisting of the sequence
of quadruples executed on the original tape. Reversibly undoing a com-
putation entails also erasing the record of its execution from the history
tape.

This notion of reversible computation means that only one-to-one re-
cursive functions can be computed. To reversibly simulate t steps of an
irreversible computation from x to f(x) one reversibly computes from in-
put x to output 〈x, f(x)〉. We analyze the simplest time–space overhead.
Say the simulation takes t′ = O(t) time. Since the reversible simulation
at some time instant has to record the entire history of the irreversible
computation, its space use increases linearly with the number of sim-
ulated steps t. That is, if the simulated irreversible computation uses
s space, then for some constant c > 1 the simulation uses t′ ≈ c + ct
time and s′ ≈ c + c(s + t) space. After computing from x to f(x) the
machine reversibly copies f(x), reversibly undoes the computation from
x to f(x), erasing its history tape in the process, and ends with one copy
of x and one copy of f(x) in the format 〈x, f(x)〉 and otherwise empty
tapes.

Let T1, T2, . . . be the standard enumeration of prefix Turing machines
with input tape symbols 0 and 1 only (no blanks), as defined in Chap-
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ter 3. Each such Turing machine has the property that the set of pro-
grams for which it halts is a prefix set (no element in the set is a proper
prefix of another element in the set). These (in general irreversible)
prefix machines compute all and only partial recursive prefix functions
φ1, φ2, . . . (Definition 3.1.1 on page 200).

The (tedious) construction of reversible Turing machines can be found
elsewhere and is of no direct importance to us. We can find a standard
enumeration of them as a subsequence of the list of Turing machines. We
can even find a standard enumeration of the reversible prefix machines
as a subsequence of the list of prefix machines.

We list some relevant properties. Let ψi be the partial recursive function
computed by the ith such reversible prefix machine. Let 〈·〉 be a bijective
recursive pairing mapping over the integers, which can be decoded from
left to right by a prefix machine. Among the more important properties
of reversible prefix machines are the following:

Universal reversible prefix machine: There exists a reversible pre-
fix machine that is universal, say UR, computing ψ0, such that for
all k and x, we have that ψ0(〈k, x〉) = 〈k, ψk(x)〉.

Irreversible to reversible: Two irreversible algorithms, one for com-
puting y from x and the other for computing x from y, can be
efficiently combined to obtain a reversible algorithm for comput-
ing y from x. More formally, for any two indices i and j one can
effectively obtain an index k such that for any strings x and y, if
φi(x) = y and φj(y) = x, then ψk(x) = y.

Saving input copy: From any index i one may obtain an index k
such that ψk has the same domain as φi and for every x, we have
ψk(x) = 〈x, φi(x)〉. In other words, an arbitrary prefix machine can
be simulated by a reversible one that saves a copy of the irreversible
machine’s input in order to ensure a global one-to-one mapping.

Efficiency: The above simulation can be performed rather efficiently.
In particular, for any ǫ > 0 one can find a reversible simulating
machine that runs in time O(t1+ǫ) and space O(s log t) compared
to the time t and space s of the irreversible machine being simulated.

One-to-one functions: From every index i one may effectively obtain
an index k such that if φi is one-to-one, then ψk = φi. The reversible
Turing machines {ψk} therefore provide an effective enumeration of
all one-to-one partial recursive functions.

Definition 8.2.1 Let ψ(p, x) be a partial recursive function satisfying the following: For
every p, the function ψ(p, x) is one-to-one as a function of x; for every
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x, the set of p’s such that ψ(p, x) <∞ is a prefix set; and for each y the
set of p’s such that for some x we have ψ(p, x) = y is a prefix set. Then
ψ is a reversible prefix partial recursive function.

Such a ψ may be thought of as the function computed by a reversible
prefix machine that performs a one-to-one mapping on x↔ y under the
control of a program p that acts like a catalyst in that it remains on
the program tape throughout the computation. Such a machine has a
one-way read-only program tape initially containing program p, a read-
only conditional data tape initially containing input x, and a one-way
write-only output tape containing y on termination.

Any other work tapes used during the computation are supplied in blank
condition at the beginning of the computation and must be left blank at
the end of the computation. The program tape’s head begins and ends
scanning the leftmost square of the program, which is self-delimiting
both for forward computations from each input x and for backward
computations from each output y.

A universal reversible prefix machine UR whose program size is minimal
to within an additive constant can readily be shown to exist.

Definition 8.2.2 The reversible prefix complexity is KR(y|x) := min{l(p) : UR(p, x) = y}.

Exercises 8.2.1. [20] Construct reversible OR, NOT, and XOR gates using Fred-
kin gates.

8.2.2. [36] Prove the existence of a universal reversible Turing machine.

Comments. Source: C.H. Bennett, IBM J. Res. Develop., 17(1973), 525–
532. If the original computation takes t steps and uses s space then
Bennett’s simulation requires t′ = Θ(t) steps and s′ = Θ(st) space.

8.2.3. [34] Let an irreversible computation use t steps and s space.

(a) Show how to simulate it reversibly using t′ = Θ(t1+ǫ/sǫ) steps and
s′ = Θ(c(ǫ)s(1 + log t/s)) space with c(ǫ) = ǫ21/ǫ for any ǫ > 0 using
always the same simulation method with different parameters. Typically,
ǫ = log 3.

(b) Show that Item (a) implies that each irreversible computation using
s space can be simulated by a reversible computation using s2 space in
t′ = Θ(t1+ǫ) time.

Comments. Hint: in Item (a) do not save the entire history of the ir-
reversible computation, but break up the simulated computation into
segments of about s steps and save in a hierarchical manner check-
points consisting of complete instantaneous descriptions of the simulated
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machine (entire tape contents, tape heads positions, state of the finite
control). After a later checkpoint is reached and saved, the simulat-
ing machine reversibly undoes its intermediate computation reversibly
erasing the intermediate history and reversibly canceling the previously
saved checkpoint. Subsequently, the computation is resumed from the
new checkpoint onward. The reversible computation simulates kn seg-
ments of length m of irreversible computation in (2k − 1)n segments of
length Θ(m+ s) of reversible computation using n(k−1)+1 checkpoint
registers using Θ(m+S) space each, for each k, n,m. In this way, it is es-
tablished that there are various tradeoffs possible in time–space between
t′ = Θ(t) and s′ = Θ(ts) at one extreme (k = 1,m = t, n = 1) and the t′

and s′ in Item (a) at the other extreme using always the same simulation
method but with different parameters k, n, where ǫ = logk(2k − 1) and
m = Θ(s). Typically, for k = 2 we have ǫ = log 3. Since for t > 2s the
machine goes into a computational loop, we always have s ≤ log t. This
proves Item (b). Source: for Items (a) and (b) [C.H. Bennett, SIAM J.
Comput., 18(1989), 766–776; R.Y. Levine and A.T. Sherman, SIAM J.
Comput., 19(1990), 673–677]. In [M. Li and P.M.B. Vitányi, Proc. Royal
Soc. London, Ser. A, 452(1996), 769–789], reversible simulations are in-
vestigated using reversible pebble games. It is shown that the simulations
as in Item (a) are optimal in the sense of simulating the greatest num-
ber of steps using least space overhead s′ − s. It is shown that the space
overhead can be reduced at the cost of limited irreversible erasing. By
Landauer’s principle this implies a space–energy tradeoff. For further
results on time–space bounds for reversible simulation of irreversible
computation, see [M. Li, J.T. Tromp, and P.M.B. Vitanyi, Physica D,
120(1998) 168–176; K.J. Lange, P. McKenzie, and A. Tapp, J. Comput.
Syst. Sci., 60:2(2000), 354–367; H.M. Buhrman, J.T. Tromp, and P.M.B.
Vitanyi , J. Physics A: Math. and General, 34(2001), 6821–6830].

8.3

Information

Distance

Kolmogorov complexity is a measure of absolute information content of
individual objects. It is desirable to have a similar measure of absolute
information distance between individual objects. Such a notion should
be universal in the sense that it covers all other alternative or intuitive
notions of computable informational distance as special cases. Such a no-
tion should also be asymptotically machine-independent and can serve
as an absolute measure of the informational, or cognitive, distance be-
tween discrete objects x and y. A universal informational distance be-
tween two strings satisfying these requirements is the minimal quantity
of information sufficient to translate between x and y, generating either
string effectively from the other. The universality requirement necessar-
ily makes our information distance not computable. However, the study
of the abstract properties of such absolute information distance will lead
to applicable formulas and practical approaches.
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Intuitively, the minimal information distance between x and y is the
length of the shortest program for a universal computer to transform x
into y and y into x. This program then functions in a catalytic manner,
being retained in the computer before, during, and after the computa-
tion. This measure will be shown to be, up to a logarithmic additive term,
equal to the maximum of the conditional Kolmogorov complexities. The
conditional complexityK(y|x) itself is unsuitable as optimal information
distance because it is asymmetric: K(ǫ|x), where ǫ is the empty string,
is small for all x, yet obviously a long random string x is not close to the
empty string. The asymmetry of the conditional complexity K(x|y) can
be remedied by defining the algorithmic informational distance between
x and y to be the sum of the relative complexities, K(y|x)+K(x|y). The
resulting metric will overestimate the information required to translate
between x and y in case there is some redundancy between the infor-
mation required to get from x to y and the information required to get
from y to x.

8.3.1
Definitions

Let T1, T2, . . . be the standard enumeration of prefix machines of Exam-
ple 3.1.1 on page 201. For a partial recursive function φ computed by T ,
let

Eφ(x, y) = min{l(p) : φ(p, x) = y, φ(p, y) = x}.

Lemma 8.3.1 There is a universal prefix machine U computing φ0 such that for every
partial recursive prefix function φ and all x, y,

Eφ0(x, y) ≤ Eφ(x, y) + cφ,

where cφ is a constant that depends on φ but not on x and y.

Proof. This is a consequence of the existence of a universal prefix machine
and is identical to the proof of Theorem 2.1.1 on page 105. 2

By Lemma 8.3.1, for every two universal prefix machines computing φ0

and ψ0, we have for all x, y that |Eφ0(x, y) − Eψ0(x, y)| ≤ c, with c a
constant depending on φ0 and ψ0 but not on x and y. Thus the following
definition is machine-independent.

Definition 8.3.1 Fixing a particular universal prefix machine U as reference machine, we
define information distance as

E0(x, y) = min{l(p) : U(p, x) = y, U(p, y) = x}.

Definition 8.3.2 The max distance between x, y is E1(x, y) = max{K(x|y),K(y|x)}.
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We shall prove that up to an additive logarithmic term, the information
distance E0 is equal to the max distance.

8.3.2
Maximal Overlap

To what extent can the information required to compute x from y be
made to overlap with that required to compute y from x? In some sim-
ple cases, complete overlap can be achieved, so that the same minimal
program suffices to compute x from y as to compute y from x.

Example 8.3.1 If x and y are independent random binary strings of the same length
n (that is, up to additive constants K(x|y) = K(y|x) = n), then their
bitwise exclusive-or x ⊕ y serves as a minimal program for both com-
putations. Similarly, if x = uv and y = vw, where u, v, and w are
independent random strings of the same length, then u⊕w is a minimal
program to compute either string from the other.

Now suppose that more information is required for one of these compu-
tations than for the other, say,

K(y|x) > K(x|y).

Then the minimal programs cannot be made identical because they must
be of different sizes. Nevertheless, in simple cases, the overlap can still be
made complete, in the sense that the larger program (for y given x) can
be made to contain all the information in the smaller program, as well
as some additional information. This is so when x and y are independent
random strings of unequal length, for example u and vw above. Then
u ⊕ v serves as a minimal program for u from vw, and (u ⊕ v)w serves
as one for vw from u. 3

The following conversion theorem asserts the existence of a difference
string p of length l(p) = max{K(x|y),K(y|x)}, up to an additive loga-
rithmic term, that converts both ways between x and y and at least one
of these conversions is optimal. If K(x|y) = K(y|x), then the conversion
is optimal in both directions. Note that the use of prefix complexity is
not essential; the theorem also holds with K replaced by C except for
the term K(K(x|y),K(y|x)), which then becomes K(C(x|y), C(y|x)).

Theorem 8.3.1 Let x and y be strings such that K(y|x) ≥ K(x|y). There is a string r
of length K(y|x) −K(x|y) such that

E0(rx, y) = K(x|y) +K(K(x|y),K(y|x)) +O(1).

Proof. Let K(x|y) = k1 and K(y|x) = k2, and l = k2 − k1 ≥ 0. Given
k1, k2, we can enumerate the set

S = {(u, v) : K(u|v) ≤ k1,K(v|u) ≤ k2}.
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Without loss of generality, assume that S is enumerated without repe-
tition. Now consider a dynamic graph G = (V,E), where V is the set of
binary strings, and E is a dynamically growing set of edges that starts
out empty.

Whenever a pair (u, v) is enumerated, we add an edge e = {ru, v} to E.
Here, r is chosen to be the ⌊i/2k1⌋th binary string of length l, where i
is the number of times we have enumerated a pair with u as the first
element. So the first 2k1 times we enumerate a pair (u, ·) we choose
r = 0l, for the next 2k1 times we choose r = 0l−11, and so on. The
condition K(v|u) ≤ k2 implies that i ≤ 2k2 , hence i/2k1 ≤ 2l, so this
choice is well defined. (The device of adding a prefix r to u to obtain ru
takes care that there are at most 2k1 incident edges with ru, not 2k2 as
could be the case with u without the prefix r.)

In addition, we ‘color’ edge e with a binary string of length k1 + 3. Call
two edges adjacent if they have a common endpoint. If c is the minimum
color not yet appearing on any edge adjacent to either ru or v, then e is
colored c. Since the degree of every node is bounded by 2k1 (when acting
as an ru) plus 2k1 (when acting as a v), a color is always available.

A matching is a maximal set of nonadjacent edges. Note that the colors
partition E into at most 2k1+3 matchings, since no edges of the same
color are ever adjacent. Since the pair (x, y) in the statement of the
theorem is necessarily enumerated, there is some r of length l and color
c such that the edge {rx, y} is added to E with color c.

Knowing k1, k2, c and either of the nodes rx and y, one can dynamically
reconstruct G, find the unique c-colored edge adjacent to the given node,
and output the neighbour. Therefore a self-delimiting program of size
k1 +K(k1, k2)+O(1) suffices to compute in either direction between rx
and y. 2

Example 8.3.2 The theorem asserts that up to a logarithmic additive term, the informa-
tion required to translate between two strings can always be represented
in the maximally overlapping way of Example 8.3.1. Namely, there is a
string q of length k1 + O(log k1) and a string r of length l + log l such
that q serves as the minimal program both from rx to y and from y
to rx. This means that the information required to pass from x to y is
always maximally correlated with the information required to get from
y to x. It is therefore not necessary that a large amount of information
is required to get from x to y and a large but independent amount of
information is required to get from y to x. (It is very important here that
the time of computation is completely ignored: this is why this result
does not contradict the idea of one-way functions.)

The process of going from x to y may be broken into two stages. First,
add the string r; second, use the difference program q between rx and
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y. In the reverse direction, first use q to go from y to rx; second, erase
r. Thus, the computation from x to y needs both q and r, while the
computation from y to x needs only q as program. 3

Corollary 8.3.1 Let x, y be strings with K(y|x) ≥ K(x|y). Let p be a shortest program
to compute y from x and let q be a shortest program to compute x from
y. Then we can choose p and q such that p = rq, achieving maximum
overlap of l(q) = min{K(x|y),K(y|x)} between the programs p and q.

The foregoing is true of ordinary computations, but if one insists that
the computation be performed reversibly, that is, by a machine whose
transition function is one-to-one, then the full program p = rq is needed
to perform the computation in either direction. This is because reversible
computers cannot get rid of unwanted information simply by erasing it
as ordinary irreversible computers do. If they are to get rid of unwanted
information at all, they must cancel it against equivalent information
already present elsewhere in the computer.

Corollary 8.3.2 E0(x, y) = max{K(x|y),K(y|x)} +O(log max{K(x|y),K(y|x)}).

8.3.3
Universality

Suppose we want to quantify how much objects differ in terms of a given
feature, for example the length in bits of files, the number of beats per
second in music pieces, the number of occurrences of a given base in
the genomes. Every specific feature induces a distance, and every spe-
cific distance measure can be viewed as a quantification of an associated
feature difference. Every reasonable distance to measure how much one
object resembles another one should be an effectively approximable pos-
itive function of x and y satisfying a reasonable density condition and
obeying the triangle inequality. It turns out that E1 is minimal up to an
additive constant among all such distances. Hence, it is a universal infor-
mation distance that accounts for every effective resemblance between
two objects.

Let us consider an example of measuring distance between two pictures.
Identify digitized black-and-white pictures with binary strings. There
are many distances defined for binary strings, for example, the Ham-
ming distance and the Euclidean distance. Such distances are sometimes
appropriate. For instance, if we take a binary picture and change a few
bits in that picture, then the changed and unchanged pictures have small
Hamming or Euclidean distance, and they do look similar.

However, this is not always the case. The positive and negative prints
of a photo have the largest possible Hamming and Euclidean distance,
yet they look similar to us. Also, if we shift a picture one bit to the
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right, again the Hamming distance may increase considerably, but the
two pictures remain similar.

Many approaches to pattern recognition try to define resemblance met-
rics with respect to pictures, language sentences, vocal utterances, and
so on. We have seen evidence that E1(x, y) = max{K(x|y),K(y|x)} is a
natural way to formalize a notion of the minimal algorithmic informa-
tional distance between x and y. Let us show that the distance E1 is, in
a sense, minimal among all reasonable resemblance measures.

Let Ω be a nonempty set and R+ the set of nonnegative real numbers.
A distance function on Ω is a function D : Ω × Ω → R+. It is a metric
if it satisfies the metric (in)equalities:

• D(x, y) = 0 iff x = y (the identity axiom)

• D(x, y) = D(y, x) (the symmetry axiom), and

• D(x, y) ≤ D(x, z) +D(z, y) (the triangle inequality).

The value D(x, y) is called the distance between x, y ∈ Ω. A familiar
example of a distance that is also a metric is the Euclidean metric, the
everyday distance e(a, b) between two geographical objects a, b expressed
in, say, meters. Clearly, this distance satisfies the properties e(a, a) =
0, e(a, b) = e(b, a), and e(a, b) ≤ e(a, c) + e(c, b) (for instance, a =
Amsterdam, b = Beijing, and c = Chicago.) Our goal is to generalize
such a concept of distance from our physical space to the cyberspace
and characterize the set of all reasonable distance functions that would
measure informational distances between objects.

A priori we allow asymmetric distances, but we would like to exclude
degenerate distance measures such as D(x, y) = 1 for all x 6= y. For each
x and d, we want only finitely many elements y at a distance d from x.
Exactly how fast we want the distances of the strings y from x to go to
∞ is not important; it is only a matter of scaling. For convenience, we
will require the following density conditions:
∑

y:y 6=x
2−D(x,y) ≤ 1,

∑

x:x 6=y
2−D(x,y) ≤ 1. (8.11)

We consider only distances that are computable in some broad sense.
This condition will not be seen as unduly restrictive. As a matter of fact,
only upper semicomputability of D(x, y) will be required (Section 4.1).

Definition 8.3.3 An admissible information distance, D(x, y), is a total, possibly asym-
metric, nonnegative function on the pairs x, y of binary strings that is 0
if and only if x = y, is upper semicomputable, and satisfies the density
requirement in Equation 8.11.
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Example 8.3.3 The Hamming distance between two strings x = x1 . . . xn and y =
y1 . . . yn was defined in Equation 8.8 on page 616 as d(x, y) = 1

nd({i :
xi 6= yi}). This distance does not directly satisfy the density require-
ments of Equation 8.11. With minor modification, we can scale it to sat-
isfy these requirements. In representing the Hamming distance d between
x and y, strings of equal length n differing in positions i1, . . . , idn, we
can use a simple prefix-free encoding of (n, dn, i1, . . . , id) in Hn(x, y) =
2 logn+4 log logn+2+ dn logn bits. We encode n and dn prefix-free in
logn+ 2 log logn+ 1 bits each and then the literal indexes of the actual
flipped-bit positions. Thus, Hn(x, y) is the length of a prefix code word
specifying the positions where x and y differ. This modified Hamming
distance is symmetric, and it is an admissible distance by the Kraft in-
equality,

∑

y:y 6=x 2−Hn(x,y) ≤ 1. It is easy to verify that Hn is a metric in
the sense that it satisfies the metric (in)equalities up to O(log n) additive
precision. 3

The following theorem shows that E1 is an optimal admissible informa-
tion distance. It is remarkable that this distance happens also to have
a more or less physical interpretation as the approximate length of the
conversion program of Theorem 8.3.1 and, as shown in the next section,
of the smallest program that transforms x into y on a reversible machine.

Theorem 8.3.2 The distance E1(x, y) = max{K(x|y),K(y|x)} is admissible, it is a met-
ric, and it is minimal in the sense that for every admissible distance
function D(x, y), we have E1(x, y) ≤ D(x, y), every (in)equality up to
an additive constant term.

Proof. The nonnegativity and symmetry properties are immediate from
the definition. Since K(x|z) ≤ K(x|y) + K(y|z) + O(1), the triangle
inequality is immediate as well. It is straightforward that E1(x, y) is
upper semicomputable.

We verify the density requirement of Equation 8.11. For fixed x, the
function fx(y) is given by

fx(y) = 2E1(x,y) = 2−max{K(x|y),K(y|x)},

and hence fx(y) ≤ 2−K(y|x). The right-hand side 2−K(y|x) ≤ ∑
2−l(p),

where the sum is taken over all programs p for which the reference prefix
machine U , given x, computes y. This sum is the probability that U ,
given x, computes y from a program p generated bit by bit uniformly
at random. Hence,

∑

y fx(y) ≤ 1. Defining fy(x) similarly, the same
argument shows that fy(x) ≤ 1. Therefore, E1(x, y) satisfies the density
requirement of Equation 8.11.

We prove minimality. Let x be fixed. If
∑

y:y 6=x 2−D(x,y) ≤ 1, then
by Theorem 4.3.1 there is a constant c, independent of y, such that
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cm(y|x) ≥ 2−D(x,y). Theorem 4.3.4 shows that log 1/m(y|x) = K(y|x)+
O(1). Hence, D(x, y) ≥ K(x|y) + log 1/c+ O(1). Repeat this argument
with x and y interchanged. Altogether, there is a constant c′ such that
D(x, y) ≥ max{K(x|y),K(y|x)} − c′. 2

8.3.4
Reversible
Distance

Another information distance is based on the idea that one should aim
for dissipationless computations, and hence for reversible ones as in Sec-
tion 8.2. Such an information distance is given by the length of the
shortest reversible program that transforms x into y and y into x on a
universal reversible computer. The reversible prefix complexity KR was
defined in Definition 8.2.2 on page 640. The reversible information dis-
tance turns out to be E2(x, y) = KR(x|y) = KR(y|x). It will be shown
also that E2 = E1, up to a logarithmic additive term. Previously, we
have determined that E1 = E0, up to a logarthmic additive term. It is
remarkable that three so differently motivated definitions turn out to
define one and the same notion.

In Theorem 8.3.1 it was demonstrated that for all strings x and y,
there exists a conversion program p, of length at most logarithmically
greater than E1(x, y) = max{K(y|x),K(x|y)}, such that U(p, x) = y
and U(p, y) = x. We show that the length of this minimal conversion
program is equal within a constant to the length of the minimal reversible
program for transforming x into y.

Theorem 8.3.3 Up to an additive constant,

KR(y|x) = min{l(p) : U(p, x) = y and U(p, y) = x} .

Proof. This proof is an example of the general technique for combining
two irreversible programs, for y from x and for x from y, into a single
reversible program for y from x. In this case the two irreversible programs
are almost the same, since by Theorem 8.3.1 the minimal conversion
program p is both a program for y given x and a program for x given y.

The computation proceeds by several stages, as shown in the table in
Figure 8.7. To illustrate motions of the head on the self-delimiting pro-
gram tape, the program p is represented by the string ‘prog’ in the table,
with the head position indicated by a caret. Each of the stages can be
accomplished without using any many-to-one operations.

In stage 1, the computation of y from x, which might otherwise involve
irreversible steps, is rendered reversible by saving a history, on previously
blank tape, of all the information that would have been thrown away.

In stage 2, making an extra copy of the output onto blank tape is an
intrinsically reversible process, and therefore can be done without writ-
ing anything further in the history. Stage 3 exactly undoes the work of
stage 1, which is possible because of the history generated in stage 1.
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Stage and Action Program Work Tape

0. Initial configuration p̂rog x
1. Compute y, saving history proĝ y (y|x)-history
2. Copy y to blank region proĝ y (y|x)-history y
3. Undo comp. of y from x p̂rog x y
4. Swap x and y p̂rog y x
5. Compute x, saving history proĝ x (x|y)-history x
6. Cancel extra x proĝ x (x|y)-history
7. Undo comp. of x from y p̂rog y

FIGURE 8.7. Combining irreversible computations of y from x and x from

y to achieve a reversible computation of y from x

Perhaps the most critical stage is stage 5, in which x is computed from y
for the sole purpose of generating a history of that computation. Then,
after the extra copy of x is reversibly disposed of in stage 6 by cancel-
lation (the inverse of copying onto blank tape), stage 7 undoes stage
5, thereby disposing of the history and the remaining copy of x, while
producing only the desired output y.

Not only are all its operations reversible, but the computations from x
to y in stage 1 and from y to x in stage 5 take place in such a manner as
to satisfy the requirements for a reversible prefix interpreter. Hence, the
minimal irreversible conversion program p, with constant modification,
can be used as a reversible program for UR to compute y from x.

Conversely, the minimal reversible program for y from x, with constant
modification, serves as a program for y from x for the ordinary irre-
versible prefix machine U , because reversible prefix machines are a sub-
set of ordinary prefix machines. This establishes the theorem. 2

Definition 8.3.4 The reversible distance E2(x, y) between x and y is defined by

E2(x, y) = KR(y|x) = min{l(p) : UR(p, x) = y} .

As just proved, this is within an additive constant of the size of the
minimal conversion program of Theorem 8.3.1. Although it may be log-
arithmically greater than the optimal distance E1, it has the intuitive
advantage of being the actual length of a concrete program for passing
in either direction between x and y. The optimal distance E1, on the
other hand, is defined only as the greater of two one-way program sizes.

Theorem 8.3.4 The reversible distance E2 is a metric up to additive constants in the
metric (in)equalities.
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Proof. Clearly, E2 satisfies the identity axiom and is trivially symmetric.
It remains to prove that it obeys the triangle inequality.

Claim 8.3.1 E2(x, z) < E2(x, y) + E2(y, z) +O(1).

Proof. We will show that given reversible UR programs p and q for com-
puting (y|x) and (z|y), respectively, a program of the form spq, where s
is a constant supervisory routine, serves to compute z from x reversibly.
Because the programs are self-delimiting, no punctuation is needed be-
tween them. If this were an ordinary irreversible U computation, the
concatenated program spq could be executed in an entirely straightfor-
ward manner, first using p to go from x to y, then using q to go from y
to z.

However, with reversible UR programs, after executing p, the head will
be located at the beginning of the program tape, and so will not be ready
to begin reading q. It is therefore necessary to remember the length of
the first program segment p temporarily, to enable the program head to
space forward to the beginning of q, but then cancel this information
reversibly when it is no longer needed.

A scheme for doing this is shown in the table in Figure 8.8, where the pro-
gram tape’s head position is indicated by a caret. To emphasize that the
programs p and q are strings concatenated without any punctuation be-
tween them, they are represented respectively in the table by the expres-
sions ‘pprog’ and ‘qprog,’ and their concatenation pq by ‘pprogqprog.’

2 2

8.3.5
Sum Distance

Only the irreversible erasures of a computation need to dissipate energy.
This raises the question of the minimal amount of irreversibility required
in transforming string x into string y, that is, the number of bits we have
to add to x at the beginning of a reversible computation from x to y,

Stage and Action Program Work Tape

0. Initial configuration p̂progqprog x
1. Compute (y|x), transcribing pprog. p̂progqprog y pprog
2. Space forward to start of qprog. pprogq̂prog y pprog
3. Compute (z|y). pprogq̂prog z pprog
4. Cancel extra pprog as head returns. p̂progqprog z

FIGURE 8.8. Reversible execution of concatenated programs for (y|x) and

(z|y) to transform x into z
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and the number of garbage bits left (apart from y) at the end of the
computation that must be irreversibly erased to obtain a clean y.

Even though consuming and producing information may seem to be
operations of opposite sign, we can define a distance E3(·, ·) based on
the notion of information flow as the minimal sum of amounts of extra
information flowing into and out of the computer in the course of the
computation transforming x into y. This may be viewed as a measure of
the work required during a reversible computation in which the program
is not retained.

The resulting distance turns out to be within a logarithmic additive
term of the sum of the conditional complexities K(y|x) +K(x|y). The
reversible distance E2 defined in the previous section is equal to the
length of a catalytic program, which allows the interconversion of x
and y while remaining unchanged itself. Here we consider noncatalytic
reversible computations that consume some information p besides x and
produce some information q besides y.

We start with the enumeration of all reversible Turing machines. We can
take either the prefix machines or the nonprefix ones. For the validity of
the properties below it doesn’t matter whether we use prefix machines.
Using nonprefix machines gives a smaller sum distance variant, though.
We therefore use the nonprefix machines. For a function ψ computed on
a reversible Turing machine, let

Eψ(x, y) = min{l(p) + l(q) : ψ(〈x, p〉) = 〈y, q〉} .

Lemma 8.3.2 There is a universal (nonprefix) reversible Turing machine U computing
the function ψ0 such that for all functions ψ computed on a reversible
Turing machine, we have

Eψ0(x, y) ≤ Eψ(x, y) + cψ

for all x and y, where cψ is a constant that depends on ψ but not on x
or y.

Proof. Use the universal reversible Turing machines in the manner of the
proof of Theorem 2.1.1 on page 105. 2

Definition 8.3.5 The sum distance E3 is defined by E3(x, y) = Eψ0(x, y).

Theorem 8.3.5 E3(x, y) = K(x|y) +K(y|x) ± O(log(K(x|y) +K(y|x))) .

Proof. (≥) We show that E3(x, y) ≥ C(y|x) + C(x|y). Since C(x|y) ≥
K(x|y)−2 logC(x|y)−O(1) for all x and y (Example 3.1.4 on page 203),
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this will prove the lower bound. To compute y from x we must be given
a program p to do so with which to start. By definition,

C(y|x) ≤ l(p) +O(1).

Assume that the computation from x, p ends up with y, q. Since the
computation is reversible, we can compute x from y, q. Consequently,
C(x|y) ≤ l(q) +O(1).

(≤) Assume k1 = K(x|y) ≤ k2 = K(y|x) and let l = k2 − k1. According
to Theorem 8.3.1, there is a string r of length l + O(log l) such that
K(rx|y) = k1 + O(log k1) and K(y|rx) = k1 + O(log k1). We can even
assume r to be self-delimiting: the cost can be included in the O(log l)
term. According to Theorem 8.3.1 and Theorem 8.3.3, there is a program
q of length k1 +O(log k1) going reversibly between rx and y. Therefore,
with a constant extra program s, the universal reversible machine will
go from (rq, x) to (q, y). And by the above estimates,

l(rq) + l(q) ≤ 2k1 + l +O(log k2) = k1 + k2 +O(log k2) .

2

Note that all bits supplied in the beginning to the computation, apart
from input x, as well as all bits erased at the end of the computation,
are random bits. This is because we supply and delete only shortest
programs, and a shortest program p satisfies K(p) ≥ l(p), that is, it is
maximally random.

Example 8.3.4 It does not matter whether the irreversible providing and erasing opera-
tion executions are scattered throughout the computation, or whether all
required bits are irreversibly provided at the beginning and all garbage
bits are irreversibly erased at the end.

Namely, we can provide the sequence of bits that are irreversibly con-
sumed in the computation as a specially delimited sequence at the be-
ginning of the computation. Whenever the computation requires an ir-
reversibly provided bit, we use the next unused bit from this special
string.

Bits that need to be irreversibly erased are put in a special delimited
string in the order in which they need to be erased. This special string
is then erased at the very end of the computation. 3

Theorem 8.3.6 The distance E4(x, y) = K(x|y) +K(y|x) is admissible, it is a metric,
and it is minimal in the sense that for every admissible distance function
D(x, y), we have E4(x, y) ≤ 2D(x, y), all (in)equalities up to an additive
constant term.
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Proof. Similar to that of Theorem 8.3.2. 2

8.3.6
Metrics
Relations

The metrics we have considered can be arranged in increasing order.
Within an additive logarithmic term, we have

E0(x, y) = E1(x, y) = E2(x, y) ≤ E3(x, y) = E4(x, y) ≤ 2E1(x, y),

where the various items were defined or proven to be precisely

E0(x, y) = max{K(y|x),K(x|y)} +O(log max{K(y|x),K(x|y)}),
E1(x, y) = max{K(y|x),K(x|y)},
E2(x, y) = KR(y|x) = min{l(p) : U(p, x) = y, U(p, y) = x} +O(1),

E3(x, y) = K(x|y) +K(y|x) ±O(log(K(x|y) +K(y|x))),
E4(x, y) = K(x|y) +K(y|x).

The sum distance E3, in other words, can be anywhere between the
optimum distance E1 and twice the optimal distance. The former occurs
if one of the conditional entropies K(y|x) and K(x|y) is zero, the latter
if the two conditional entropies are equal.

8.3.7
Minimal Overlap

Let p be a shortest program converting y to x, and let q be a shortest
program converting x to y. Naively we expect that the shortest program
that that maps y to x contains the information about x that is lacking in
y. However, this is too simple, because different short programs mapping
y to x may have different properties.

Example 8.3.5 Let x and y be strings of length n with C(x|y), C(y|x) = n. Let p1 be a
program that ignores the input and prints x. Let p2 be a program such
that y ⊕ p = x (that is, p = x ⊕ y), where ⊕ denotes bitwise addition
modulo 2. The programs p1 and p2 have nothing in common. 3

Example 8.3.6 The fundamental Theorem 8.3.1 stated that p and q can be made de-
pendent on each other as much as possible. We express this in terms
of the mutual information, as given in Equation 3.15 on page 248,
I(x : y) = K(x)−K(x|y). There is also I(x; y) = K(x)+K(y)−K(x, y)
of Equation 3.20 on page 252. Since p and q are both shortest programs,
that is, p = p∗ and q = q∗, we have I(p : q) = I(q : p) + O(1) by
Theorem 3.9.2, and in fact I(p : q) = I(p; q) + O(1). The mutual infor-
mation in p and q is maximal: I(p : q) = min{l(p), l(q)} up to an addi-
tive O(log(K(x|y) +K(y|x))) term. The opposite question is whether p
and q can always be made completely independent. That is, we wonder
whether we can choose p and q such that I(p : q) = 0, up to some small
additive term.
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It turns out that the answer to this question depends on the size of the
additive term. If the additive term is O(log(K(x|y)+K(y|x))), then the
answer is negative; and if the additive term is O(logK(x, y)), then the
answer is positive as a consequence of Theorem 8.3.1 and Exercise 8.3.9
on page 659. The latter result also follows from a deeper analysis be-
low, with more profound and far-reaching consequences. Below, U is the
reference universal prefix machine used in Theorem 3.1.1 on page 202.

Claim 8.3.2 Let x and y be strings of length at most n. Assume that U(p, y) = x and
U(q, x) = y, so that K(x|y) = K(p) and K(y|x) = K(q). If K(p|x) = 0
and K(q|y) = 0, then I(p : q) = 0, with the last three equalities holding
up to an additive O(log n) term.

Proof. Below all (in)equalities hold up to the same additive term. We
need to prove only K(p|q) = K(p). By definition, K(p|q) ≤ K(p). If
K(p|q) < K(p), then by the assumption in the claim we can use y to
generate q, and then compute p from q using fewer than K(p) bits, and
finally x from y and p. Then, K(x|y) < K(p), contradiction. 2

This leads to a fundamental question: is there a shortest program p that
computes x from y while p is simple with respect to x? (Simplicity with
respect to x implies little dependence on y.) By Exercise 8.3.9, Item (c),
we know that I(p : q) = 0 does not hold, up to an O(log(K(x|y) +
K(y|x))) additive term, and hence by the claim neither do K(p|x) = 0
andK(q|y) = 0. But the next theorem shows that both do hold to within
an O(logK(x, y)) additive term. 3

Muchnik’s theorem below shows that there exists a shortest program p
that converts y to x (l(p) = K(x|y)) such that p is simple with respect
to x and therefore depends little on the origin y but for possibly an
O(logK(x, y)) amount. This is a fundamental coding property for indi-
vidual strings that parallels the result in information theory about ran-
dom variables known as the Slepian–Wolf and Körner–Csiszár–Marton
theorems. It is convenient to consider this question using plain Kol-
mogorov complexity, although the results in this section hold for both
C and K complexities.

Theorem 8.3.7 Let x, y be binary strings of length at most n. Then there exists a string p
of length C(x|y) such that C(p|x) = O(log n) and C(x|p, y) = O(log n).

Proof. Let m and n be positive integers with m ≤ n. Let X be a set of
cardinality 2n+1−1 (the set of strings of length at most n), and let P be
a set of cardinality 2m (the set of all strings of length m). The strategy
is to define a collection of N hash functions from X to P such that the
hash value of one of the functions can be used as a short program for x.
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Claim 8.3.3 For all m,n,N there exists a family of N hash functions ηi : X → P
(i = 1, . . . , N) satisfying:

(i) C(η1, . . . , ηN ) = C(m,n,N) +O(1); and

(ii) Every subset U ⊂ X of cardinality d(U) < 2m−(n+m+2)/N is hashed
to a subset B ⊆ P defined by B = {ηi(u) : u ∈ U, i ∈ {1, . . . , N}} such
that d(B) ≥ d(U).

Proof. (i) We need to show only that a hash function family of high
Kolmogorov complexity has the expanding property of Item (ii). This
shows that such a family exists. Then, the first such family (possibly not
the one used to prove existence) that we find by exhaustive search has
Kolmogorov complexity C(m,n,N) +O(1), yielding Item (i).

(ii) Fix a string r of length l(r) = N × d(X ) ×m satisfying

C(r|n,m,N,A) ≥ l(r) = Nd(X )m,

where A is an algorithm that reconstructs r from the description below.
This string r is used to construct a family of N hash functions of high
complexity. Partition r into N equal blocks. The ith block ri is further
partitioned into d(X ) blocks ri1, . . . , rid(X ), each of length m. Then, the
ith hash function ηi is defined by

ηi(xj) = rij ,

for j = 1, . . . , d(X ). Define η(U) = {ηi(u) : u ∈ U, i ∈ {1, . . . , N}}. We
can give r by the following description:

• Self-delimiting descriptions of d(U) and d(η(U)) of length at most

α1 = log d(U)d(η(U)) + 2 log(log d(U) log d(η(U))) + 2.

• An encoding of the arguments and function values between U and
η(U), in at most

α2 = d(U)(n+ 1) +md(η(U)) +Nd(U) log d(η(U))

bits. The d(U)(n + 1) term specifies the indices of arguments in
U ⊆ X , the second term specifies the values of η(U) in the set P ,
and the third term specifies the mapping of the N hash functions
ηi in terms of mapping U to the restricted range η(U) ⊆ P .

• Trivially, the remainder of r requires at most bit-length

α3 = N(d(X ) − d(U))m.
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The length of this description cannot be shorter than C(r|n,m,N,A)
bits. Therefore,

α1 + α2 + α3 ≥ Nd(X )m.

Assume, by way of contradiction, d(η(U)) < d(U). Then, the last dis-
played inequality yields d(U) ≥ 2m−(n+m+1+ǫ)/N , with ǫ ≤ (2 log d(U)+
4 log log d(U) + 2)/d(U) < 1, which is a contradiction. (If d(U) is too
small to make ǫ < 1 then we can use another code to make ǫ < 1, which
is left as an exercise for the reader.) Hence, we can set B = η(U). 2

The family of hash functions can be represented by a bipartite graph that
has strings from X on the left and strings from P on the right. Every
string x ∈ X is connected by edges with N strings η1(x), . . . ηN (x) on
the right, the hash values. If values coincide then there are several edges
connecting two vertices. Let Xy = {z : C(z|y) ≤ C(x|y)}. Clearly, we
have x ∈ Xy . Furthermore, d(Xy) < min{2C(x|y)+1, d(X )}, the first term
since the number of different programs of length up to C(x|y) cannot
be larger, and the second term since Xy ⊆ X . We are interested in the
restriction of the graph to Xy ⊆ X ; all vertices in X − Xy and their
incident edges can be removed.

Claim 8.3.4 Set N = n + m + 2 and m = C(x|y) + 3. There is a constant c and
an i such that some hash value ηi(x) has no more than nc neighbors in
Xy (arguments that are mapped to ηi(x) by some hash function ηj for
1 ≤ j ≤ N).

Proof. Let B be the set of hash values in P that do not satisfy the claim.
These are the bad elements. Then,

d(B) ≤ d(Xy)N/nc < 2m−2(n+m+ 2)/nc.

For n ≥ 2 we have d(B) < 2m/nc−1. Then, we can apply Claim 8.3.3 with
N = n+m+ 2, so that the claim holds for every U with d(U) < 2m−1.
Every U0 ⊆ Xy has fewer than 2m−1 elements by choice of m and so
is eligible as a set U . The claim guarantees that every U0 mapping to
the set of hash values B under any hash function in the family satisfies
d(U0) ≤ d(B). Then, every element z ∈ U0 has complexity

C(z|y) ≤ O(log n) + log d(B) ≤ m− (c− 1) logn+O(log n).

Choosing c large enough proves that x 6∈ U0, since C(x|y) = m− 3. 2

By Claim 8.3.4, the string x can be described by ηi, y, and the index of
x among ηi(x)’s neighbors. By Claims 8.3.3 and 8.3.4, setting p = ηi(x),
we have C(x|y, p) = O(log n). The fact that C(p|x) = O(log n) follows
by Claim 8.3.3, Item (i), and p = ηi(x) for some i ≤ N , since we have
set N = n+m+ 2. 2
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The theorem gives a code p for x when y is known. We have assumed that
x and y have length at most n. But the proof does not use any assumption
about y. The code p is not uniquely determined. If y and z satisfy C(y|z) =
C(z|y) = l(y) = l(z) and x = yz, then both z and y⊕ z can be used for p and
they have no mutual information at all.

Corollary 8.3.3 For all strings x and y, there are programs p and q such that U(q, x) =
y and U(p, y) = x, where l(q) = C(y|x), l(p) = C(x|y), and C(p) −
C(p|q) = C(q) − C(q|p) = 0, and the last four equalities hold up to an
additive O(logC(x, y)) term.

Exercises 8.3.1. [29] For a binary string x, let B1(x, d) be the set of strings y
with E1(x, y) ≤ d. Let the number of elements in B1(x, d) be denoted
by b1(x, d).

(a) Show that up to an additive constant, d−K(d) < log b1(x, d) < d−
K(d|x), and the same bounds apply to the cardinality of B1(x, d)

⋂{y :
l(y) = l(x)}.
(b) Let x be a binary string. Show that there is a positive constant c
such that for all sufficiently large d, the number of binary strings y with
E3(x, y) ≤ d is at most 2d/c and at least 2d/(d log2 d).

(c) For the number of strings of length n close to a random string x of
length n (that is, K(x) ≥ n) in the distance E3, the picture is different
from that for distance E1 in Item (a). In distance E3, ‘tough guys have
few neighbors.’ Show that a random string x of length n has only about
2d/2 strings of length n within distance d.

(d) Generalize Item (c): Let the binary strings x and y have length
n. Show that for every x, the number of y’s such that E3(x, y) ≤ d
is 2α, with α = 1

2 (n + d − K(x)) ± O(log n) for n − K(x) ≤ d. and
α = d±O(log n) for n−K(x) > d.

(e) Let c be a constant and let S be a set with cardinality d(S) = 2d

and K(S) = c log d. Show that almost all pairs of elements x, y ∈ S have
distance E1(x, y) ≥ d, up to an additive logarithmic term. Show that a
similar statement can be proved for the distance of a string x (possibly
outside S) to the majority of elements y in S. If K(x) ≥ n, then for
almost all y ∈ S we have E1(x, y) ≥ n+ d−O(log dn).

Comments. In a discrete space with a distance function, the rate of
growth of the number of elements in balls of size d can be considered
as a kind of dimension of the space. Hint for Item (a): the upper bound
is immediate from Exercise 3.3.9 on page 214. Hint for Item (b): the
upper bound follows from Item (a) since E3 ≥ E1; for the lower bound,
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consider strings y of the form px, where p is a self-delimiting program.
Source: C.H. Bennett, P. Gács, M. Li, P.M.B. Vitányi, and W.H. Zurek,
IEEE Trans. Inform. Theory, 44:4(1998), 1407–1423.

8.3.2. [21] Fix a reference universal reversible Turing machine, say
UR0. Define Et3(x, y) = min{l(p) + l(q) : UR0(〈p, x〉) = 〈q, y〉 in t(n)
steps of computation, where n = l(x)}. Show that for every recursive
function t there is an x such that Et3(x, ǫ) > E3(x, ǫ).

8.3.3. [32] Prove the upper bound on E3 of Theorem 8.3.5 on page 651
by a direct construction supplying logarithmically small initial programs
and ending with logarithmically small garbage.

Comments. Source: M. Li and P.M.B. Vitányi, Proc. Royal Soc. London,
Ser. A, 452(1996), 769–789. This is also the source of the four exercises
that follow.

8.3.4. [25] We determine the irreversibility cost of effective erasure. Let
x be a string and t(n) ≥ n (n = l(x)) be a time bound that is provided
at the start of the computation. Show that erasing the n-bit record x
by an otherwise reversible computation can be done in time (number of
steps) O(2nt(n)) at irreversibility cost Ct(x) + 2Ct(t|x) + 4 logCt(t|x)
bits. (Typically we consider t as some standard explicit time bound and
the last two terms adding up to O(1).)

8.3.5. [37] Use the notions of Exercise 8.3.2. Prove a time–energy
tradeoff hierarchy: For every large enough n there is a string x of length n
and a sequence of m = 1

2

√
n time functions t1(n) < t2(n) < · · · < tm(n)

such that

Et13 (x, ǫ) > Et23 (x, ǫ) > · · · > Etm3 (x, ǫ).

Improve this result by replacing ǫ by an arbitrary string y.

8.3.6. [28] Show that there is a recursively enumerable infinite se-
quence χ and some (nonrecursively) large time bound T such that for
every total recursive time bound t, for each initial segment x of χ,

Et3(x, ǫ) > ct2
ET

3 (x,ǫ)/2,

where ct > 0 is a constant depending only on t and χ.

8.3.7. [23] Define a uniform variant Eu of E3 based on the uniform
Kolmogorov complexity variant of Exercise 2.3.2 on page 130. Show that
the energy dissipation can be reduced arbitrarily far by a computation
that uses enough (that is, an incomputable amount of) time. That is,
there is an infinite sequence ω and a (nonrecursively) large time bound
T such that for every unbounded total recursive function f , no matter
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how large, for every total recursive time bound t, there are infinitely
many n for which

Etu(ω1 . . . ωn, ǫ) > f(ETu (ω1 . . . ωn, ǫ)).

Comments. Hint: use Exercise 2.5.13 on page 161 and Exercise 7.1.7 on
page 546.

8.3.8. [O40] Develop a theory of resource-bounded (polynomial-time
or logarithmic-space) information distance.

8.3.9. [39] (a) Show that for strings x and y that are random with re-
spect to one another in the sense that K(x|y) ≥ l(x) and K(y|x) ≥ l(y),
there are p and q such that K(p) = K(y|x), K(q) = K(x|y), I(p; q) = 0,
U(p, x) = y, and U(q, y) = x, where the first three equalities hold up to
an additive O(K(x|y) +K(y|x)) term.

(b) Give a proof of Corollary 8.3.3 using the conversion theorem, Theo-
rem 8.3.1.

(c) Show that Muchnik’s theorem, Theorem 8.3.7, does not hold if we
replace the additive term O(logC(xy)) by O(log(C(x|y) + C(y|x))).
Comments. Source: Item (a): C.H. Bennett, P. Gács, M. Li, P.M.B.
Vitányi, and W.H. Zurek, Ibid., attributed to N.K. Vereshchagin; Items
(b) and (c): N.K. Vereshchagin and M.V. Vyugin, Theoret. Comput. Sci.,
271(2002), 131–143.

8.3.10. [36] Use the techniques in Muchnik’s theorem, Theorem 8.3.7,
to prove the following.

(a) For all strings x, y, and z of length less than n and C(x|y) = C(x|z) =
m, there exists a string p of length m such that C(p|x) = C(x|p, y) =
C(x|p, z) = O(log n). That is, p is a program for x when y or z is known,
and p does not contain extra information beyond x.

(b) Let x, y, z be strings of length less than n. Then there exist strings
p and q such that one of them is a prefix of the other, l(p) = C(x|y),
l(q) = C(x|z), and C(x|p, y) = C(x|q, y) = C(p|x) = C(q|x) = O(log n).

Comments. Source: An.A. Muchnik, Theoret. Comput. Sci., 271(2002),
97–109.

8.3.11. [35] It is easy to see that for every string x and every integer
n, there is a y such that the information distance max{C(x|y), C(y|x)}
between x and y is n+O(1). Prove that for every n and for every string
x such that C(x) ≥ 2n + O(1) there exists a string y such that both
C(x|y) and C(y|x) are equal to n+O(1).
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Comments. If the additive term O(1) were replaced by O(log n), then
this exercise becomes straightforward. Source: M.V. Vyugin, Theoret.
Comput. Sci., 271(2002), 145–150.

8.3.12. [29] (a) Prove that for every natural number n there exist
infinitely many strings x (which may be very long compared to n) such
that C(x) > 2n and for every string y with C(y|x) < n we have either
C(y) < n+O(1) or C(x|y) < n+O(1).

(b) Show that for the x’s of Item (a) there is no y such that C(y|x) ≈ 1
2n

and C(x|y) ≈ 2n.

Comments. The string x is an indivisible piece of information; a separa-
ble part of it is either trivial or contains all of x. Source: M.V. Vyugin,
Ibid., attributed to An.A. Muchnik.

8.3.13. [38] Show that there are strings a, b, and p of lengths n, 2n,
and k ≥ 2n, respectively, having the following properties: (i) C(b|a, p) =
0; (ii) C(p|a) ≥ k; (iii) there is no string q such that C(q) ≤ k − n,
C(q|p) ≤ n, and C(b|a, q) ≤ n, all (in)equalities holding to within an
additive term O(log(k + n)).

Comments. Muchnik’s theorem, Theorem 8.3.7, can be interpreted as
follows. Given strings x and y, is it possible to find a simplification
p of x (which may be regarded as a description of itself) such that
C(x|y, p) = 0, l(p) = C(x|y), and C(p|x) = 0, with equality up to an
additive O(logC(xy)) term? In general, if we are given a description p
of x|y, a simplification of p might not exist even if p is much larger than
C(x|y). The exercise formalizes this question. Source: An.A. Muchnik,
A.K. Shen, M.A. Ustinov, N.K. Vereshchagin, and M.V. Vyugin, Proc.
Theory Applications Models Comput., Lect. Notes Comp. Sci., Vol. 3959,
Springer-Verlag, Berlin, 308–317. There it is also shown that the above
holds for all a, b, and k except for some trivial cases such as C(a) = 0.

8.4

Normalized

Information

Distance

We continue Section 8.3, in particular Section 8.3.3. The quantitative
difference in a certain feature between two objects can be considered as
an admissible distance, Definition 8.3.3 on page 646. Theorem 8.3.2 on
page 647 shows that the information distance E1 is universal in that
among all admissible distances it is always least. That is, it accounts for
the dominant feature in which two objects are alike. Many admissible
distances are absolute, but if we want to express similarity, then we are
more interested in relative ones. For example, if two strings of 1,000,000
bits differ by 1,000 bits, then we are inclined to think that those strings
are relatively similar. But if two strings of 1,000 bits differ by 1,000 bits,
then we find them very different.
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Example 8.4.1 Consider the problem of comparing genomes. The E. coli genome is
about 4.8 megabases long, whereas H. influenza, a sister species of E.
coli, has genome length only 1.8 megabases. The information distance
E1 between the two genomes is dominated by their length difference
rather than the amount of information they share. Such a measure will
trivially classify H. influenza as being closer to a more remote species of
similar genome length such as A. fulgidus (2.18 megabases), rather than
with E. coli. To deal with such problems, we need to normalize. 3

Our objective is to normalize the universal information distance E1 =
max{K(x|y),K(y|x)} to obtain a universal similarity distance. It should
give a similarity with distance 0 when objects are maximally similar and
distance 1 when they are maximally dissimilar.

8.4.1
The Similarity
Metric

It is paramount that the normalized version of the universal information
distance metric is also a metric. Were it not, then the relative relations
between the objects in the space would be disrupted and this could
lead to anomalies, for instance, if the triangle inequality were to be
violated for the normalized version. (In certain semantic applications in
Section 8.4.2 we will relax this rule.)

In order to obtain a normalized universal information distance function,
various versions of information distance occurring in Sections 8.3.3, 8.3.5,
and 8.3.4 can be normalized. We will discuss only how to normalize the
max distance E1 of Definition 8.3.2 on page 642 and call it the normal-
ized information distance or the similarity metric. See Exercise 8.4.5 on
page 672 for the normalized sum distance.

Definition 8.4.1 The normalized information distance (NID) between two binary sequences
x and y is defined as

e(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)} . (8.12)

Example 8.4.2 Several natural alternatives for the denominator turn out to be wrong.

(i) Divide by the length. Then, firstly we do not know which of the two
lengths involved is the one to divide by, possibly the sum or maximum,
but secondly the triangle inequality is not satisfied.

(ii) Divide by K(x, y). Then one has e(x, y) = 1
2 when x and y satisfy

K(x) ≈ K(y) ≈ K(x|y) ≈ K(y|x). This is improper, since when x and
y are completely dissimilar they should have e(x, y) = 1. 3

Example 8.4.3 There is a natural interpretation of e(x, y). Let I(x : y) = K(y)−K(y|x)
be the mutual information version of Equation 3.15 on page 248. Without
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loss of generality let K(y) ≥ K(x). Then

e(x, y) =
K(y) − I(x : y)

K(y)
= 1 − I(x : y)

K(y)
.

That is, 1− e(x, y) is the number of bits of information that are shared
between the two strings x and y per bit of information of the string with
the most information. 3

Theorem 8.4.1 The normalized information distance e(x, y) takes values in the range
[0, 1] and it is a metric, up to negligible errors.

Proof. Clearly, e(x, y) takes values in the range [0, 1]. It is straightforward
that the normalized information distance e(x, y) is symmetric: e(x, y) =
e(y, x). Identity e(x, x) = 0 holds up to an O(1/K(x)) additive term.
Also, e(x, y) 6= 0 for y 6= x. To show that e(x, y) is a metric, it remains
to prove the triangle inequality.

Claim 8.4.1 e(x, y) ≤ e(x, z) + e(z, y) up to an additive term O((logK)/K), where
K = max{K(x),K(y),K(z)}.

Proof. Case 1. Suppose K(z) ≤ max{K(x),K(y)}. For all x, y, z, we
have K(x|y) ≤ K(x|z) +K(z|y) +O(1). Therefore,

max{K(x|y),K(y|x)} ≤ max{K(x|z) +K(z|y),K(y|z) +K(z|x)},

and consequently

max{K(x|y),K(y|x)}
max{K(x),K(y)}

≤ max{K(x|z) +K(z|y),K(y|z) +K(z|x)}
max{K(x),K(y)}

≤ max{K(x|z),K(z|x)}
max{K(x),K(y)} +

max{K(z|y),K(y|z)}
max{K(x),K(y)} ,

with (in)equalities up to an additive O(1/K) term. Replacing K(y) by
K(z) in the denominator of the first term in the right-hand side, and
K(x) by K(z) in the denominator of the second term of the right-hand
side, respectively, can only increase the right-hand side, by assumption.

Case 2. Suppose K(z) = max{K(x),K(y),K(z)}. Further assume that
K(x) ≥ K(y) (the remaining case is symmetrical). Then, using the sym-
metry of information theorem, Theorem 3.9.2, to determine the max-
ima, we also find that K(z|x) ≥ K(x|z) and K(z|y) ≥ K(y|z), up to
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an O(logK) additive term. Then the maxima in the terms of the equa-
tion e(x, y) ≤ e(x, z) + e(y, z) are determined, and our proof obligation
reduces to

K(x|y)
K(x)

≤ K(z|x)
K(z)

+
K(z|y)
K(z)

,

up to an additive O((logK)/K) term. We proceed as follows. Dividing
both sides of the straightforward inequality K(x|y) ≤ K(x|z)+K(z|y)+
O(1) by K(x), we have

K(x|y)
K(x)

≤ K(x|z) +K(z|y)
K(x)

,

up to an additive term of O(1/K(x)), where the left-hand side is less
than or equal to 1.

Case 2.1. Assume that the right-hand side is ≤ 1. SetK(z) = K(x)+∆,
and observe that K(x|z)+∆ = K(z|x) by the symmetry of information
theorem, Theorem 3.9.2, up to an additive term O(logK). Add ∆ to
both the numerator and the denominator in the right-hand side of the
last displayed equation, which increases the right-hand side because it
is a ratio ≤ 1, and rewrite

K(x|y)
K(x)

≤ K(x|z) +K(z|y) + ∆

K(x) + ∆

=
K(z|x) +K(z|y)

K(z)
+O(logK/K),

which was what we had to prove.

Case 2.2. The right-hand side is ≥ 1. We proceed as in Case 2.1, and
add ∆ to both numerator and denominator. Although now the right-
hand side decreases, it must still be ≥ 1. 2 2

8.4.2
Applications of
Normalized
Information
Distance

The normalized information distance e(x, y), which we call ‘the’ simi-
larity metric because it accounts for the dominant similarity between
two objects, is not computable. First we observe that using K(x, y) =
K(xy) +O(log min{K(x),K(y)} and the symmetry of information the-
orem, Theorem 3.9.2 on page 249, we obtain

max{K(x|y),K(y|x)} = K(xy) − min{K(x),K(y)},

up to an additive logarithmic term O(logK(xy)), which we ignore in
the sequel. If it is practically important, we can use K(x, y) instead
of K(xy). In applications we use the compression of actual objects,
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the worldwide web as background information, and mixed usage of the
two. We consider phylogeny, clustering, classification, translation, and
question–answer systems.

Compression In order to use the NID in practice, admittedly with a leap of faith, our
first approximation of the Kolmogorov complexity uses real compres-
sors. This direction has yielded a very practical success of Kolmogorov
complexity. Substitute the last displayed equation in the NID of Equa-
tion 8.12 on page 661, and subsequently use a real-world compressor
Z (such as gzip, bzip2, PPMZ) to heuristically replace the Kolmogorov
complexity. In this way, we obtain the distance eZ , often called the nor-
malized compression distance (NCD), defined by

eZ(x, y) =
Z(xy) − min{Z(x), Z(y)}

max{Z(x), Z(y)} , (8.13)

where Z(x) denotes the binary length of the compressed version of the
file x, compressed with compressor Z. The distance eZ is actually a
family of distances parametrized with the compressor Z. The better Z
is, the closer eZ approaches the normalized information distance, the
better the results are expected to be. Since Z is computable the distance
eZ is computable. In Exercise 8.4.6 on page 672 it is shown that under
mild conditions on the compressor Z, the distance eZ takes values in
[0, 1] and is a metric, up to negligible errors.

Example 8.4.4 (Phylogeny) One cannot find more appropriate data than DNA se-
quences to test our theory. A DNA sequence is a finite string over a 4-
letter alphabet {A,C,G, T}. We used the entire mitochondrial genomes
of 20 mammals, each of about 18,000 base pairs, to test a hypothesis
about the Eutherian orders. It has been hotly debated in biology which
two of the three main placental mammalian groups, primates, ferungu-
lates, and rodents, are more closely related. One cause of the debate
is that in the analysis of the genomics the standard maximum likeli-
hood method, which depends on the multiple alignment of sequences
corresponding to an individual protein, gives (rodents, (ferungulates,
primates)) for half of the proteins in the mitochondrial genome, and
(ferungulates, (primates, rodents)) for the other half.

In recent years, as a result of more sophisticated methods, together with
biological evidence, it is believed that (rodents, (ferungulates, primates))
reflects the true evolutionary history. We confirm this from the whole-
genome perspective using the distance eZ . We use the complete mito-
chondrial genome sequences from the following 20 species: rat (Rattus
norvegicus), house mouse (Mus musculus), gray (or grey) seal (Hali-
choerus grypus), harbor seal (Phoca vitulina), cat (Felis catus), white
rhino (Ceratotherium simum), horse (Equus caballus), finback whale
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(Balaenoptera physalus), blue whale (Balaenoptera musculus), cow (Bos
taurus), gibbon (Hylobates lar), gorilla (Gorilla gorilla), human (Homo
sapiens), chimpanzee (Pan troglodytes), pygmy chimpanzee (Pan panis-
cus), orangutan (Pongo pygmaeus), Sumatran orangutan (Pongo pyg-
maeus abelii), with opossum (Didelphis virginiana), wallaroo (Macropus
robustus), and platypus (Ornithorhynchus anatinus) as the outgroup.

For every pair of mitochondrial genome sequences x and y, evaluate the
formula in Equation 8.13 using a special-purpose DNA sequence com-
pressor DNACompress, or a good general-purpose compressor such as
PPMZ. The resulting distances are the entries in an n× n distance ma-
trix. Constructing a phylogeny tree from the distance matrix, using com-
mon tree-reconstruction software, gives the tree in Figure 8.9. This tree
confirms the accepted hypothesis of (rodents, (primates, ferungulates)),
and every single branch of the tree agrees with the current biological
classification. 3

Similarity of sequences in biology is currently primarily handled using align-
ments. However, the alignment methods seem inadequate for postgenomic
studies, since they do not scale well with data-set size and they seem to be
confined only to genomic and proteomic sequences. Therefore, alignment-free
similarity measures are actively pursued. In [P. Ferragina, R. Giancarlo, V.
Greco, G. Manzini, and G. Valiente, BMC Bioinformatics, 8:1(2007) Jul 13,
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252 17629909] the authors experimentally tested the normalized information
distance using 25 compressors to obtain the NCD, and six data sets of relevance
to molecular biology. They compared the methodology with methods based on
alignments and not. They assessed the intrinsic ability of the methodology to
discriminate and classify biological sequences and structures. The compression
program PPMd, based on PPM (prediction by partial matching), for generic
data and Gencompress for DNA, are the best performers among the compres-
sion algorithms they used. The quantitative analysis supports the conclusion
that the normalized information/compression method is worth using because
of its robustness, flexibility, scalability, and competitiveness with existing tech-
niques. In particular, the methodology applies to all biological data in textual
format.

Example 8.4.5 (Hierarchical clustering) The normalized compression distance has
been used to fully automatically reconstruct language and phylogenetic
trees as above. It can, and has, also be used for a plethora of new applica-
tions of general clustering and classification of natural data in arbitrary
domains, for clustering of heterogeneous data, and for anomaly detection
across domains. It has further been applied to authorship attribution,
stemmatology, music classification, Internet knowledge discovery, to an-
alyze network traffic and cluster computer worms and viruses, software
metrics and obfuscation, web page authorship, topic and domain iden-
tification, hurricane risk assessment, ortholog detection, and clustering
fetal heart rate tracings. We test gross classification of files based on het-
erogeneous data of markedly different file types: (i) four mitochondrial
gene sequences, from a black bear, polar bear, fox, and rat obtained from
the GenBank Database on the worldwide web; (ii) four excerpts from
the novel The Zeppelin’s Passenger by E. Phillips Oppenheim, obtained
from the Project Gutenberg Edition on the worldwide web; (iii) four
MIDI files without further processing, two works by Jimi Hendrix and
two movements from Debussy’s “Suite Bergamasque,” downloaded from
various repositories on the worldwide web; (iv) two Linux x86 ELF exe-
cutables (the cp and rm commands), copied directly from the RedHat 9.0
Linux distribution; and (v) two compiled Java class files, generated di-
rectly. The program correctly classifies each of the different types of files
together with like near like. The result is reported in Figure 8.10. This
experiment shows the power and universality of the method: no features
of any specific domain of application are used. We believe that there is
no other method known that can cluster data that are so heterogeneous
this reliably. 3

Researchers from the data-mining community noticed that this methodology is
in fact a parameter-free, feature-free, data-mining tool. They have experimen-
tally tested a closely related metric on a large variety of sequence benchmarks.
Comparing the compression-based method with 51 major parameter-loaded
methods found in the 7 major data-mining conferences (SIGKDD, SIGMOD,
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ICDM, ICDE, SSDB, VLDB, PKDD, and PAKDD) in the last decade, on ev-
ery database of time sequences used, ranging from heartbeat signals to stock
market curves, they established clear superiority of the compression-based
method for clustering heterogeneous data, for anomaly detection, and competi-
tiveness in clustering domain data [E.J. Keogh, S. Lonardi, and C.A. Rtanama-
hatana, Proc. 10th ACM SIGKDD Int. Conf. Knowledge Discov. Data Mining,
2004, 206–215; E.J. Keogh, S. Lonardi, C.A. Rtanamahatana, L. Wei, S.H. Lee,
and J. Handley, Data Min. Knowl. Disc., 14:1(2007), 99–129].

The Internet Objects can be given literally, such as the literal four-letter human
genome, or the literal text of War and Peace by Tolstoy. Objects can
also be given by name, such as ‘the four-letter human genome,’ or ‘the
text of War and Peace by Tolstoy.’ There are also objects that cannot
be given literally, but only by name, and that acquire their meaning
from their contexts in background common knowledge in humankind,
such as ‘home’ or ‘red.’ A sequence contains information within itself.
Names and abstract concepts also contain information, although not
within themselves. The name ‘human genome’ implies three gigabases
of information. The phrase ‘War and Peace by Tolstoy’ perhaps carries
information even beyond the book. While ‘human genome’ and ‘War
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and Peace’ can perhaps still be associated with sequences that can be
compressed, the concept of ‘home’ or ‘red’ is even more problematic.

Can we find an equivalent of the normalized information distance for
names and abstract concepts? Let us look at an alternative way of ap-
proximating the formula in Equation 8.12. Let W be the set of pages
of the worldwide web, and let x ⊆ W be the set of pages containing
the search term x. By the conditional coding theorem, Theorem 4.3.4,
we have log 1/m(x|x ⊆ W) = K(x|x ⊆ W) + O(1), where m is the
universal lower semicomputable discrete semimeasure of Theorem 4.3.1.
This equality relates the incompressibility of the set of pages on the
web containing a given search term to its universal probability. While
we cannot compute m, a natural heuristic is to use the distribution of
x on the web to approximate m(x|x ⊆ W). Let us define the proba-
bility mass function g(x) to be the probability that the search term x
appears in a page indexed by a given Internet search engine G, that is,
the number of pages returned divided by the overall number of pages
indexed. (Actually, we need to account for the case that one page can
contain more than one search term, and hence we should divide by a
larger number. We ignore this issue here.) Then the Shannon–Fano code
length of Example 1.11.2 on page 68 associated with g can be set at

G(x) = log
1

g(x)
.

Replacing Z(x) by G(x) in the formula in Equation 8.13, we obtain
the distance eG, called the normalized web distance (NWD), our second
heuristic approximation of normalized information distance, defined by

eG(x, y) =
G(xy) − min{G(x), G(y)}

max{G(x), G(y)} (8.14)

=
max{log f(x), log f(x)} − log f(x, y)

logN − min{log f(x), log f(y)} ,

where f(x) is the number of pages containing x, the frequency f(x, y)
is the number of pages containing both x and y, and N is the total
number of indexed pages. We can view the search engine G as a com-
pressor using the web, and G(x) as the binary length of the compressed
version of the set of all pages containing the search term x, given the
indexed pages on the web. The distance eG is actually a family of dis-
tances parametrized with the search engine G. (Initially, the NWD was
called NGD.) The better G is, the closer eG approaches the normalized
information distance (with K(x) replaced by K(x|x ⊆ W) and similarly
the other terms), and the better the results are expected to be. In Ex-
ercise 8.4.8 on page 673 it is shown that the distance eG is computable,
takes values primarily (but not exclusively) in [0, 1], and is not a metric.
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In the last two properties eG differs from e and eZ . Indeed, we should
view the distance eG between two names as a relative similarity seman-
tics. Thus, while ‘name1’ is semantically close to ‘name2,’ and ‘name2’ is
semantically close to ‘name3,’ ‘name1’ can be semantically very different
from ‘name3.’

Example 8.4.6 We describe an experiment, using a search engine G, performed in the
year 2004. At the time, G indexed N =8,058,044,651 pages. A G search
for ‘horse’ returned a page count of 46,700,000. A G search for ‘rider’
returned a page count of 12,200,000. A G search for both ‘horse’ and
‘rider’ returned a page count of 2,630,000. Thus eG(horse, rider) = 0.443.
It is interesting to note that this number stays relatively fixed as the
number of pages indexed by G increases. 3

Example 8.4.7 (Classification) In cases in which the set of objects can be large, in
the millions, clustering cannot do us much good. We may also want to
do definite classification, rather than the more fuzzy clustering. One can
use the eZ and eG distances as an oblivious feature-extraction technique
to convert generic objects into finite-dimensional vectors. We have used
this technique to train a support vector machine (SVM) based OCR
system to classify handwritten digits by extracting 80 distinct, ordered
eZ features from each input image, in the manner explained below in
the context of eG experiments. We achieved a handwritten single decimal
digit recognition accuracy of 87%. The current state of the art for this
problem, after half a century of interactive feature-driven classification
research, is in the upper ninety percent level. These experiments were
benchmarked on the standard NIST Special Data Base 19.

For classification using the eG distance, the setting is, say, a binary classi-
fication problem on examples represented by search terms. In this exper-
iment, we require a human expert to provide a list of at least 40 training
words, consisting of at least 20 positive examples and 20 negative exam-
ples, to illustrate the contemplated concept class. The expert also pro-
vides, say, six anchor words a1, . . . , a6, of which half are in some way re-
lated to the concept under consideration. Then, we use the anchor words
to convert each of the 40 training words w1, . . . , w40 to 6-dimensional
training vectors v̄1, . . . , v̄40. The entry vj,i of v̄j = (vj,1, . . . , vj,6) is de-
fined as vj,i = eG(wj , ai) (1 ≤ j ≤ 40, 1 ≤ i ≤ 6). The training vectors
are then used to train an SVM to learn the concept, and then test words
may be classified using the same anchors and trained SVM model. The
LIBSVM software was used for all SVM experiments.

In an experiment to learn prime numbers, we used the literal search
terms below (digital numbers and alphabetical words) in the Google
search engine.
Positive training examples: 11, 13, 17, 19, 2, 23, 29, 3, 31, 37, 41, 43, 47,
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5, 53, 59, 61, 67, 7, 71, 73.
Negative training examples: 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26,
27, 28, 30, 32, 33, 34, 4, 6, 8, 9.
Anchor words: composite, number, orange, prime, record.
Unseen test examples: The numbers 101, 103, 107, 109, 79, 83, 89, 91,
97 were correctly classified as primes. The numbers 36, 38, 40, 42, 44,
45, 46, 48, 49 were correctly classified as nonprimes. The number 110
was a false positive, since it was incorrectly classified as a prime. There
were no false negatives. The accuracy on the test set is 18/19 = 94.74%.
Thus, the method learns to distinguish prime numbers from nonprime
numbers by example, using a search engine. 3

The NWD has been used for clustering, classification, and translation of small
samples. R.L. Cilibrasi and P.M.B. Vitányi [IEEE Trans. Knowledge Data En-
gin., 19:3 (2007), 370–383] report a massive experiment comparing the perfor-
mance of the NWD–SVM method with the human-expert-entered information
in the WordNet database [G.A. Miller et al., “WordNet, A Lexical Database
for the English Language,” Cognitive Science Lab, Princeton University]. They
showed a mean accuracy of agreement of 87.25% of the NWD–SVM method
with the WordNet semantic concordance.

Example 8.4.8 (Translation) Assume that there are five words that appear in two
different matched sentences, but the permutation associating the En-
glish and Spanish words is, as yet, undetermined. Let us say, plant, car,
dance, speak, friend versus bailar, hablar, amigo, coche, planta. At the
outset we assume a preexisting vocabulary of eight English words with
their matched Spanish translations: tooth, diente; joy, alegria; tree, ar-
bol; electricity, electricidad; table, tabla; money, dinero; sound, sonido;
music, musica. Can we infer the correct permutation mapping the un-
known words using the preexisting vocabulary as a basis?

We start by forming an English basis matrix in which each entry is the eG
distance between the English word labeling the column and the English
word labeling the row. We label the columns by the translation-known
English words, and the rows by the translation-unknown English words.
Next, we form a Spanish matrix with the known Spanish words labeling
the columns in the same order as the known English words. But now we
label the rows by choosing one of the many possible permutations of the
unknown Spanish words. For every permutation, each matrix entry is the
eG distance between the Spanish words labeling the column and the row.
Finally, choose the permutation with the highest positive correlation
between the English basis matrix and the Spanish matrix associated
with the permutation. If there is no positive correlation report a failure to
extend the vocabulary. The method inferred the correct permutation for
the testing words: plant, planta; car, coche; dance, bailar; speak, hablar;
friend, amigo. 3



Exercises 671

Unification The normalized information distance e is intended to be universally ap-
plicable. In practice, various computable distances, including eZ and eG,
can be viewed as approximations to e.

For example, all 21 measures studied in [P.N. Tan, V. Kumar, and J. Srivas-
tava, Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discov. Data Mining,
2002, 32–44] may after normalization be viewed as various degrees of approx-
imations to e (the NID), or to emin defined in Exercise 8.4.9.

Apart from providing a theoretical justification for these practical dis-
tances, the normalized information distance does more in that it em-
bodies all approximations. This fact turns out to be also practically
important, for instance in the question–answer search engine QUANTA,
which we briefly touch upon but do not explain in any detail. The in-
formation distance between a question and an answer in QUANTA is
measured by e and emin defined in Exercise 8.4.9 on page 673. The Kol-
mogorov complexity terms in e and emin are approximated as follows in
QUANTA:

• Approximate pattern matching with query sentence, using eZ style
approximation.

• Shannon–Fano code approximation, as in eG, for short conceptual
answers.

• Mixed usage of the above two, choosing the shortest encoding.

Thus, within the one Equation 8.12 on page 661, and its relative emin,
different K terms may be approximated by different methods, whichever
is the shortest. Normalized information distance provides a unification
of all metrics, not only for theoretical studies, but also for practical
applications.

Exercises 8.4.1. [33] (a) Let x, y ∈ Rn (R denotes the real numbers) and denote
by ‖x−y‖ the Euclidean metric—the L2 norm. Show that the normalized
Euclidean distance ‖x− y‖/(‖x‖ + ‖y‖), has values in [0, 1] only and is
also a metric.

(b) Let A,B be finite sets and A∆B = A
⋃
B − (A

⋂
B) the symmetric

set difference. The symmetric set difference cardinality d(A∆B) is a
metric on the family of finite sets. Show that the normalized symmetric
set difference cardinality d(A∆B)/d(A

⋃
B) has values in [0, 1] only and

is also a metric.

(c) The sum of conditional entropies H(X |Y )+H(Y |X) of joint discrete
random variables X,Y is a metric. Show that the normalized version
H(X |Y )+H(Y |X)/H(X,Y ) has values in [0, 1] only and is also a metric.
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Comments. The normalized version of Item (c) can be written as 1 −
I(X ;Y )/H(X,Y ). It is the random-variable equivalent of the normal-
ized sum distance (K(x|y)+K(y|x))/(K(x, y)) in Exercise 8.4.5. But the
random-variable variant is about expectations, and its proof is quite dif-
ferent from the Kolmogorov complexity variant that is about individual
strings. That the normalized form in Item (a) is a metric is true for the
Euclidean metric but for no other integral Minkowski metrics. Source for
Items (a) and (b): P.N. Yianilos, “Normalized Forms for Two Common
Metrics,” NEC Research Institute Technical Report, 1991, 2002, where
Item (a) is attributed to D. Robbins and M. Buck as Private Commu-
nication, May 1993; for Item (c): C. Rajski, Inform. Contr., 4(1961),
371–377.

8.4.2. [22] Show that the NID of Definition 8.4.1 on page 661 satisfies
d({y : e(x, y) ≤ δ ≤ 1}) < 2δK(x)+1.

Comments. The density requirement is implied by a normalized version
of the Kraft inequality,

∑

y:x 6=y 2−e(x,y)K(x) ≤ 1 for every x. Source: M.
Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitányi, IEEE Trans. Inform.
Theory, 50:12(2004), 3250–3264.

8.4.3. [22] Show that we can reduce the error term in Theorem 8.4.1
to O(1/K).

Comments. Use Lemma 3.9.1 on page 249. Source: M. Li, X. Chen, X.
Li, B. Ma, and P.M.B. Vitányi, Ibid.

8.4.4. [29/O42] (a) Show that the NID of Definition 8.4.1 on page 661
is not computable.

(b) Call a function f(x, y) computable in the limit if there exists a
rational-valued computable function g(x, y, t) such that limt→∞ g(x, y, t)
= f(x, y). Show that this is precisely the class of functions that are
Turing-reducible to the halting set, and that the NID is in this class.

(c) Prove or disprove that the NID is a semicomputable function.

Comments. The NID, being a ratio between two maxima of pairs of
upper semicomputable functions, may not itself be semicomputable. It
is easy to see that this is likely, but a formal proof is lacking. Source for
Item (b): W. Gasarch, email of 12 August, 2001. Item (c) is open.

8.4.5. [25] The sum distance E4 = K(x|y) + K(y|x) is a metric by
Theorem 8.3.6. Prove that its normalization defined by e4 = (K(x|y) +
K(y|x))/K(x, y) takes values in [0, 1] and is also a metric.

Source: M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, and H.
Zhang, Bioinformatics 17:2(2001), 149–154.

8.4.6. • [38] Let Z(x) denote the binary length of the compressed
version of x using compressor Z. A compressor Z is normal if it is a
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real-world compressor and satisfies the axioms (identity) Z(xx) = Z(x)
and Z(λ) = 0 where λ is the empty string, (monotonicity) Z(xy) ≥
Z(x), (symmetry) Z(xy) = Z(yx), and (distributivity) Z(xy) + Z(z) ≤
Z(xz) + Z(yz), all (in)equalities up to an additive O(log n) term, with
n the maximal binary length of a string involved in the (in)equality
concerned.

(a) Show that EZ(x, y) = Z(xy) − min{Z(x), Z(y)} with Z a normal
compressor, is computable, satisfies the density requirement in Equa-
tion 8.11 on page 646, and satisfies the metric (in)equalities up to ad-
ditive O(log n) terms, with n the maximal binary length of a string
involved in the (in)equality concerned.

(b) Show that the distance eZ of Equation 8.13 on page 664, a normalized
version of EZ(x, y), with Z a normal compressor, has values in [0, 1]
and satisfies the metric (in)equalities up to additive O((log n)/n) terms,
with n the maximal binary length of a string involved in the (in)equality
concerned.

Comments. Informal experiments by the authors of the source reference
below have shown that these axioms are in various degrees satisfied by
good real-world compressors such as gzip, bzip2, and PPMZ, where the
last one is best among the ones tested. Reference [M. Cebrián, M. Al-
fonseca, and A. Ortega, Commun. Inform. Syst., 5:4(2005), 367–384]
systematically investigated how far the performances of real-world com-
pressors gzip, bzip2, and PPMZ satisfy the identity axiom Z(xx) = Z(x)
of a normal compressor Z. Source: R.L. Cilibrasi and P.M.B. Vitányi,
IEEE Trans. Inform. Theory, 51:4(2005), 1523–1545.

8.4.7. [O45] The NID is not computable. The distance eZ is a heuris-
tic approximation that can deviate from the NID, notwithstanding the
fact that it is successfully applied. Can you formulate another, better,
practical theory of a normalized compression distance using a real-world
compressor than in Exercise 8.4.6?

8.4.8. [31] Show that the distance eG of Equation 8.14 on page 668 is
computable, takes values primarily in [0, 1] but also outside in patholog-
ical cases, and is not a metric since it violates eG(x, y) 6= 0 for x 6= y,
and eG(x, y) + eG(y, z) can be less than eG(x, z).

Comments. Source: R.L. Cilibrasi and P.M.B. Vitányi, IEEE Trans.
Knowledge Data Engin., 19:3(2007), 370–383.

8.4.9. [28] Let U be the reference universal prefix machine. The cost
of two-way conversion between x and y in the sense of a new distance
E5 is defined by E5(x, y) = min{l(p) : U(x, p, r) = y, U(y, p, q) = x},
the minimum taken over all p, q, r such that l(p) + l(q) + l(r) ≤ E(x, y).
This definition separates out r as the extra information for x, and q as
the extra information for y.
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(a) Show that E5(x, y) = min{K(x|y),K(y|x)}, up to an O(log l(xy))
additive term, which we will ignore.

(b) Show that E5(x, y) does not satisfy the triangle inequality.

(c) Show that E5(x, y) satisfies the density conditions in Equation 8.11
on page 646 only for x’s with K(x) ≥ l(x)+O(1). This is perhaps not a
surprise, since the sum distance E4(x, y) is equal to E5(x, y) +E1(x, y).
In the new metric E5, ‘good guys’ (Kolmogorov simple objects) have
even more neighbors than in E4.

(d) Show that E5(x, y) = max{K(x),K(y)} − I(x : y).

(e) Define emin(x, y) = min{K(x|y),K(y|x)}/min{K(x),K(y)}. (Thus,
emin(x, y) = E5(x, y)/min{K(x),K(y)}.) Show that emin(x, y) ≤ e(x, y).

(f) Define e′min(x, y) = E5(x, y)/min{l(x), l(y)}. Prove the following
universality statement: for every computable distance d satisfying the
density condition d({y : l(y) = n, d(x, y) ≤ δ ≤ 1}) ≤ 2δn we have
e′min(x, y) ≤ d(x, y) +O(1/n) with n = min{l(x), l(y)}.
(g) Show that emin = 1 − (I(x : y) − ∆)/min{K(x),K(y)} with ∆ =
|K(x) −K(y)|.
Comments. In question–answer systems on the Internet, as in the discus-
sion on page 671, distances are measured with partial information; hence
it is unreasonable to require the triangle inequality to hold. Also, popular
concepts have a much larger neighborhood; hence the density condition
in Exercise 8.3.1 on page 657 may also not hold. Furthermore, between
two concepts, there is a large quantity of irrelevant information we may
wish to get rid of. The definition of emin above deals with this practical
situation. Hint: for Item (a), use the proof ideas of Theorem 8.3.1. By
Item (a) the distance E5 equals the maximal overlap in Corollary 8.3.1
on page 645, up to an additive logarithmic term. Source for Items (a),
(b), (c), (e), (f): M. Li, Int. J. Found. Comput. Sci., 18:4(2007), 669–681.

8.5

Thermo-

dynamics

Classical thermodynamics deals with describing the physical properties
of substances such as gases under variations of macroscopic observables
such as volume, temperature, and pressure. Certain regularities are cod-
ified on the basis of experience and formulated as axioms of the theory.
The two fundamental laws of thermodynamics are as follows:

First Law. The total energy of an isolated system is invariant in time.

Second Law. No process is possible that has as its only result the
transformation of heat into work.
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The first law is a statement of the principle of conservation of energy for
thermodynamical systems. The variation in energy of a system during
any transformation is equal to the amount of energy that the system
receives from its environment, minus the amount of energy the system
loses to its environment. The first law arose as the result of the impos-
sibility of constructing a machine that would create energy (perpetuum
mobile of the first kind). It places no limitations on the possibility of
transforming energy from one form into another, such as the transfor-
mation of heat into work or work into heat.

The first law still allows a machine that transforms heat into work by
cooling the environment (perpetuum mobile of the second kind). The
second law rules out this possibility. An equivalent formulation of the
second law is, “no process is possible that has as its only result the
transfer of heat from a cooler to a warmer body.” To prove that the
two formulations are equivalent, it suffices to show that a process can
be created that transforms heat from a cooler body to a warmer body
if a process is available that transforms heat into work, and conversely;
this is not difficult.

8.5.1
Classical Entropy

The original definition of entropy was proposed in 1824 by the French
engineer N.L. Sadi Carnot in the context of the so-called Carnot cycle.
This is a cycle of states of thermodynamic systems such as steam engines.
The existence of an entropy can be derived from the second law by
reasoning that depends on the notion of reversible processes. The two
standard examples are the following:

Example 8.5.1 We have a cylinder filled with an ideal gas, in contact with a heat reser-
voir at temperature T1. Allow the gas to push out a frictionless piston
very slowly. The gas will expand while staying at the same tempera-
ture and meanwhile will take up heat from the reservoir. This is (in the
limit) a reversible process: by pushing in the piston again very slowly,
the whole system can be brought back into exactly the same condition
as it was before the expansion. 3

Example 8.5.2 Use the same cylinder as before, but now in thermal isolation. Again pull
out the piston very slowly. The temperature of the gas will fall. This is
again (in the limit) a reversible process. 3

A concatenation of reversible processes is again reversible. By combi-
nation of the two types of processes just mentioned, one can obtain a
reversible cycle: first isothermic expansion, then adiabatic expansion,
then isothermic compression, and finally adiabatic compression to the
initial state. This is called a Carnot cycle. The whole process can be
plotted in the (V, P )-plane, Figure 8.11, where V denotes volume and
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a

d c

b

P

V

FIGURE 8.11. Carnot cycle

P denotes pressure. The curves corresponding to isothermic expansion
and compression satisfy PV is constant (actually, PV = RT where T
is the temperature and R > 0 is a gas-specific constant). The curves
corresponding to adiabatic expansion and compression satisfy PV γ is
constant, where γ > 1 is another gas-specific constant.

In terms of heat and work, during a Carnot cycle the gas in the cylinder
consumes an amount of heat ∆Q+ from the reservoir at temperature
T1, and delivers an amount of heat ∆Q− to another reservoir at a lower
temperature T2. The total amount of work performed in the cycle is equal
to
∫
P dV , which is exactly the surface area enclosed in Figure 8.11. A

Carnot cycle is therefore a form of a heat engine.

According to the first law of thermodynamics, the amount of work done
by a heat engine, Figure 8.12, must equal the difference between the
heat extracted from the warm reservoir and the heat delivered to the
cold reservoir,

∆U = ∆Q+ + ∆Q−,

where ∆Q− is negative.

Assuming the process to be reversible, one can derive a further relation.
Denote by a, b, c, d the four intermediate stages of the Carnot cycle,

-

+

U

2

D

T

Q

Q

D

D

T
1

FIGURE 8.12. Heat engine
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Figure 8.11. Then

∆Q+ =

∫ b

a

P dV =

∫ b

a

RT1
dV

V
= RT1 log

Vb
Va
.

Likewise,

∆Q− = RT2 log
Vd
Vc
.

The relations PbV
γ
b = PcV

γ
c , PbV

γ
b = RT1, and PcV

γ
c = RT2 yield

T1V
γ−1
b = T2V

γ−1
c ,

and in the same way,

T1V
γ−1
a = T2V

γ−1
d .

Dividing, we obtain Vb/Va = Vc/Vd and therefore

∆Q+

T1
+

∆Q−

T2
= 0.

Although this was derived for the Carnot cycle, it follows from the second
law that this formula must be universal for reversible processes. Namely,
if we had a reversible process that did not satisfy the relation above, then
we could couple it to a Carnot cycle in a suitable way such as to fabricate
a process that would violate the second law. For general processes, the
law that we have just derived takes the following form:
∮
d Q

T
= 0, along reversible paths.

(An alternative form of the integral with the time parameter appearing
explicitly is

∮
Q̇(t)T−1(t) d t.) This property makes it possible to define

the entropy, as a function of temperature and volume, as follows:

S(Tb, Vb) = S(Ta, Va) +

∫ b

a

d Q

T
,

where the integral is taken along a reversible path. It follows from the
above that the answer does not depend on the choice of the reversible
path. This is the classical thermodynamic definition of entropy. It de-
termines the entropy S only up to an additive constant. If the process
is irreversible, then
∮

dS > 0. (8.15)

Thus, the entropy always increases with time, except for reversible sys-
tems, where it can stay the same. This is the classic second law.
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Example 8.5.3 We compute the entropy of an ideal gas at a constant temperature T , so
that the entropy will be a function only of volume. Using the ideal gas
law PV = RT , we obtain

S(Vb) − S(Va) =

∫ b

a

d Q

T
=

1

T
∆Q =

1

T

∫ b

a

P dV

=
1

T

∫ b

a

RT

V
d V = R(logVb − logVa).

This result may already be related to the information-theoretic en-
tropy, as follows: Assume that a volume is divided into cells, where
each cell can contain either one molecule or no molecule. A typical gas
molecule may be found with equal probabilities in one of Na cells in
volume Va and in one of Nb cells in volume Vb. By Definition 1.11.1 on
page 67, of Shannon’s entropy, the difference in entropies is proportional
to logNb − logNa = logVb − logVa. If the molecules are independent,
then we can just multiply by the number of molecules to obtain the
difference of the total entropies. In this simple case, the information-
theoretic Definition 1.11.1 is in line with the thermodynamic case. 3

8.5.2
Statistical
Mechanics and
Boltzmann
Entropy

The above theory belongs to phenomenological thermodynamics. How-
ever, it is desirable to derive all laws in physics from first principles.
Eventually, a gas consists of molecules that move about according to
the laws of mechanics. This can be classical or quantum. But whether
classical or modern, the known equations of physics are reversible in
time. This implies that if a system has a certain trajectory of its evolu-
tion from state a to state b, then there also is a trajectory of evolution
from state b to state a. In the classical case, it suffices to reverse all
final velocities of all particles and the system will trace its trajectory
backward.

This reversibility of equations seems to be in contradiction to the above
considered irreversibility of some thermodynamic processes. L. Boltz-
mann was the first to formulate the idea that entropy measures disor-
derliness, and to connect this with the origin of the distinction between
past and future in a nonrelativistic universe. This distinction is obvi-
ous in all our immediate experiences. We have no hesitation to identify
a movie that is run backwards by, say, a broken vase becoming whole
again. It would be nice if this conviction could be justified from the laws
of nature. But the laws of physics (as far as known) tell a different story:
if the movie run in one direction is physically appropriate, then so is the
movie run in the opposite direction.

A refinement of the notions of macroscopic state and reversibility is
required. Roughly speaking, the macro state of an isolated mechanical
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Q

6N dimensions

N particles

FIGURE 8.13. State space

system consists of an approximate descriptions of the values of just a few
macroscopic observables such as volume, temperature, and pressure.

The micro state of such a system determines the behavior of the system
completely, whether it is in equilibrium or not. Roughly speaking, a
micro state of a physical system consists of an exhaustive description of
the values of all the microscopic parameters of the particles. Statistical
thermodynamics, also called statistical mechanics, tries to derive the
classical laws of thermodynamics from microscopic phenomena.

Ideal gas is a convenient tool to study statistical thermodynamics. Con-
sider a (3-dimensional) container with N identical (ideal) gas molecules.
Each molecule is considered as an elastic sphere (also called ball) with
no internal freedom. The behavior of the gas is completely determined
if we specify the position, mass, and velocity of every molecule at some
time instant. Instead of the velocity, it is more convenient to use the
impulse momentum, which is mass times velocity, of every molecule.

The position of a molecule is specified by three space coordinates. The
momentum of a molecule is a vector in 3-space and hence is also specified
by three coordinates. To specify N molecules we need 6N parameters.

Definition 8.5.1 Since N ≈ 6 × 1023 (Avogadro’s number) for 1 mole of gas (1 mole of
hydrogen is 2 grams), such a system is hard to analyze. It is convenient to
use a fictional spaceX , the so-called state space of the system (also called
phase space), of 6N dimensions. There is a one-to-one correspondence
between the dimensions and the coordinates of the molecules. A micro
state of the entire system of N molecules corresponds to just one point,

Q = (q1, . . . , q3N , p1, . . . , p3N ),

in state space, where the qi’s specify the coordinates of the positions of
N molecules and the pi’s specify their momenta, Figure 8.13.
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Each coordinate is a real number. If (ω1, . . . , ω6N ) is a micro state, then
it can be encoded as a single infinite binary sequence ω.

An encoding such as representing the ith bit of ωj by the (j+6(i−1)N)th
bit of ω is improper. Since typically the number of molecules is about
6×1023, the first 1023 bits of ω give little information about the state of
the system. Our encoding should have the property that the consecutive
bits contain information about the micro state in decreasing order of
importance from a macroscopic point of view. For example, the first few
bits may describe, to a reasonable degree of precision, the amount of gas
in each half of the container, the next few bits may describe the amounts
in each quarter, the next few bits may describe the temperature in each
half, the next few bits may describe again the amount of gas in each
half, but now to more precision, and so on. We can now divide our space
into cells of different grain size.

We shall assume that the micro state moves around in a closed volume of
the state space, of a standard number of units in each dimension. Then
for each dimension we can assume the position of the decimal point
known, and we ignore it in the binary expansion of the coordinates. The
set of micro states of the state space is denoted by X ⊆ {0, 1}∞.

The total volume of the space need not measure to 1. For example, if
λ denotes the Lebesgue measure (or uniform measure), and our state
space is a 6N -dimensional hypercube R with each side 2 units, then
λ(R) = 26N . We restrict ourselves to measures that are finite over the
total volume, so that the difference with a probability measure is just a
matter of multiplication by a scaling constant.

Notation 8.5.1 In Notation 4.2.1 on page 263 we introduced the shorthand notation of
µ(x) for the µ-measure µ(Γx) of a cylinder set Γx. In this section we use
the common standard notation µ(A) for the µ-measure of a set A.

Now suppose there are m macroscopic parameters u1, . . . , um. We also
will assume that each such parameter takes only a finite number of
values: a macroscopic parameter that is a real number will be taken up
only to some reasonable precision (four digits are probably more than
sufficient). In this way we obtain a partition of the state space X into
cells

X =
⋃

x

Γx,

where x runs over all possible values of parameters u1, . . . , um. Here each
Γx consists of the set of all micro states that can occur under macroscopic
constraints x.
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Definition 8.5.2 Let x be as above. A macroscopic state of the system, or macro state, is a
cell Γx. Each cell is identified with the corresponding set of micro states.
The partition interpretation of a macro state is called coarse-graining.

Example 8.5.4 Suppose we subdivide a container into 10 × 10 × 10 parts. Determine
the pressure in each part to within 0.1 atmosphere. It is important to
note that the state-space partition according to the different values of
the macro description will have hugely different cell sizes. Therefore, the
cell volumes will depend on the partition, but these differences are for
reasonable partitions negligible in comparison to the cell-size differences
arising already within a fixed partition. 3

According to the laws of mechanics, an isolated system undergoes an
evolution described by a transformation group U t. If at time t0, the sys-
tem was in state ω, then at time t+ t0 it will be in state U tω. The group
U t is generally given by a system of differential equations that, at least in
the example of ideal gas given with coordinates and impulses, are called
the Hamiltonian equations. For this case, Liouville’s theorem holds, say-
ing that the volume of a domain remains invariant under transformation
under U t. In most other cases also, a natural measure is found on X that
remains invariant under U t, and we will call this measure the volume,
and denote the volume of a set A by L(A).

The law of energy conservation means that during an evolution of an
isolated system, it is confined to a surface of the state space determined
by the requirement that the energy be equal to a certain value. Therefore
the volume measure to use will be actually obtained by restricting the
original volume measure to a thin layer determined by the requirement
that the value of energy be in a certain small interval, and normalizing.

When we say that the transformation of a macroscopic description x to
macroscopic description y is reversible, then this statement refers to the
macro states Γx,Γy, and what is meant is that the existence of a reverse
transformation follows already from the properties of macro states. The
question arises what reversibility means in terms of micro states.

Since macro state x contains many micro states, the question is whether
this means that a reverse transformation exists for all elements of Γy or
only for some. It is easy to see that it is too much to require that the
reverse transformation exist for all micro states in Γy, and too little that
it exist only for some. The answer is that the transformation is reversible
if the reverse transformation exists for most (by volume) micro states in
Γy. Boltzmann considered as his greatest achievement to have found a
microscopic expression for entropy.
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Definition 8.5.3 The Boltzmann entropy of a system with macroscopic description x is
proportional to the logarithm of the volume of Γx,

SB(x) = (k ln 2) logL(Γx),

where k = 1.38 × 10−23 joules/kelvin is called the Boltzmann constant,
and Γx is the cell in state space corresponding to the macroscopic de-
scription x of the system, and L(Γx) is its volume.

Example 8.5.5 For the special case of a discrete state space with L the counting measure
defined as L(Γx) = d(Γx), that is, the number of elements in the set Γx,

SB(x) = (k ln 2) log d(Γx)

is the familiar form of the Boltzmann entropy. 3

Example 8.5.6 Consider a container of ideal gas consisting of n identical molecules. Let
the container be partitioned into m compartments C1, . . . , Cm, where
m is much smaller than n. For simplicity, we ignore the velocities. Let
the macro variable ni give the number of molecules in compartment Ci.
Let n = (n1, . . . , nm). A second set of variables, the numbers i1, . . . , in,
indicates that molecule j is in compartment ij .

The description i = (i1, . . . , in) is, of course, more detailed than the
description n, which is a function n(i) of i. Therefore Γn =

⋃

n=n(i) Γi.

Since the molecules are identical, the dynamics, therefore the measure
L, will certainly be invariant with respect to the exchange of molecules.
Therefore if n(i) = n(j), then L(Γi) = L(Γj). Assume that molecules
are distinguishable. Then L(Γn) = N(n)pn, where pn is the volume of
each Γi, with n(i) = n and

N(n) =
n!

n1! · · ·nm!
.

If we also assume that all the compartments Ci have the same shape
and size, and hence have the same volume V , then pn does not depend
on n. Indeed, we have pn = V n, the nth power of the volume of a single
compartment, since with i fixed only the exact position of each molecule
in its compartment is undetermined. The Boltzmann entropy of state n
is equal to

SB = (k ln 2) logN(n) ≈ (k ln 2)n

(
∑

i

fi log
1

fi
+ logV

)

,

where fi = ni/n. If the molecules are indistinguishable, then it is neces-
sary to subtract logn!. 3
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FIGURE 8.14. Atomic spin in CuO2 at low temperature

Example 8.5.7 In high-temperature superconductivity research, a material like CuO2

loses magnetic moment below a critical temperature. In such a state, the
nuclear spins all line up as in Figure 8.14. For Boltzmann entropy, one
must agree on some standard partition (coarse-graining) of the space into
subsets, and the entropy of x is the negative logarithm of the measure
of the subset that x is in. There is much arbitrariness in the choice of
the partition, but the differences caused by different reasonable choices
of partition are negligible compared to the size of the entropy. It is
important that the partition be a reasonable one.

A reasonable partition is a discretization of the state space in which
the values of the most important quantities come first. In the case of
the ferromagnetic example, the sequence x1, x2, . . . would not be simply
the sequence of spins but would begin with various global statistical
quantities, since presumably these can be measured. One may put first
the total number of ‘up’ spins, at least to some precision, then the total
number of ‘up’ spins in the left half, and so on. Then, some time later, one
may put the total number of neighborhoods of the form as in Figure 8.15.

Let us call this last number z. If the total number of atoms is N , then in
Figure 8.14 we have approximately z = N/2. On the other hand, there
is only a very small number of configurations with z = N/2, or even
in which z is almost N/2, since they must all essentially look like this.
Therefore, the Boltzmann entropy of this configuration is very low.

But suppose that the ups and downs encode the bits of 3.1415 . . . .
Then in the algorithmic sense the complexity is small, but this will be
seen only when the size of the neighborhoods is chosen as large as N .
Considering only local neighborhoods, the statistical properties suggest
randomness. In physics, it is assumed that we never look at other than
global statistical (macroscopic) quantities; hence, when the ferromagnet
encodes the digits of π, this will forever be its secret. 3

↑ ↓ ↑
↓ ↑ ↓
↑ ↓ ↑

FIGURE 8.15. Regular ‘up’ and ‘down’ spins



684 8. Physics, Information, and Computation

The most obvious problem with this definition of Bolzmann entropy
seems to be its dependence on the particular choice and number of
macroscopic variables and the precision with which we want to deter-
mine them. Indeed, another digit of precision will decrease the Boltz-
mann entropy of most states by about log 10. The volumes in question
are, however, typically so large that such a small difference is negligi-
ble (especially if we take into consideration that the actual definition of
SB(x) involves multiplication by the very small Boltzmann constant k).

Example 8.5.8 Boltzmann entropy possesses the entropy increase properties as required
by the second law. This is due to the enormous differences in cell sizes
irrespective of a small number of cells. Classical statistical-mechanical
systems are distinguished by the fact that every reasonable canonical
cell division will have this property.

For instance, suppose we are dealing with a vessel containing a mole of
gas, Definition 8.5.1 on page 679, and our macroscopic variable x is the
binary sequence x1x2 giving approximately the relative quantity of gas
in the left half of the container. Then the cells Γ00 and Γ11 are absolutely
negligible in volume compared to the cells Γ01 and Γ10.

Since entropy measures the amount of state space occupied by a macro
state, it sounds plausible that a system tends to be in states with high
entropy. According to one formulation of the second law of thermody-
namics, entropy in isolated systems cannot decrease. There are some
other related entropy increase properties, such as

• an isolated system undergoes an irreversible transformation exactly
when entropy actually increases;

• an equilibrium state of an isolated system is a maximum (or at least
a strongly pronounced local maximum) of entropy.

It is most important that Boltzmann entropy can be shown to increase
in time until equilibrium is reached. Since there are huge differences in
the cell volumes L(Γx) for different macro states Γx, typically U t takes
a point from a small cell to a bigger cell. Just as the precise notion of
reversibility had to be formulated statistically, the same can be expected
for these entropy increase properties for Boltzmann entropy.

It turns out that for certain special cases one can prove two properties
that together imply the desired entropy increase properties for Boltz-
mann entropy. The first property states that the union of all small cells
taken together is small. The second property states that if the system
starts from a state in a not very small cell then after a time t, it is
unlikely to end up in any small union of cells. 3
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Example 8.5.9 Let us go back to Example 8.5.7 on page 683. The state of CuO2 in
Figure 8.14 can be described by a program of a few bits:

repeat forever : print ↑; print ↓ .

Thus, the complexity term in the algorithmic entropy almost vanishes.
Similarly, the sequence of arrows that encodes 3.1415 . . . has a very low
complexity term, and corresponding low algorithmic entropy. 3

Example 8.5.10 Adiabatic demagnetization is an important technique that has been used
with great success to achieve record low temperatures (near zero kelvin).
A sample such as a chrome-alum salt (whose molecules may be consid-
ered as tiny magnets) is placed in a thermally insulating (adiabatic)
enclosure at the lowest attainable temperature during cooling. A strong
magnetic field is applied by an external magnet so that the tiny atomic
magnets (spins) line up, forming a very ordered state, as Figure 8.16(a)
shows. Then the magnet is removed so that its field is no longer present.

Redistributing the energy evenly among all the degrees of freedom lowers
the temperature of the specimen, since the temperature is derived only
from some of these degrees of freedom (the translational velocities). But
the state of having the same amount of energy in each degree of freedom
has the highest entropy. This clearly includes a significant increase of
Kolmogorov complexity of the spins. 3

8.5.3
Gibbs Entropy

A third definition of entropy is due to J.W. Gibbs. Consider some ther-
modynamic system. Another possible interpretation of a macro state is
as a certain distribution over microscopic states. An ensemble is some
measure with density p(ω) over the state space X interpreted as a dis-
tribution of individual points satisfying

∫
p(ω)L(dω) = 1. The ensemble

pΓ(ω) corresponding to a macro state Γ is defined as

pΓ(ω) =

{
1/L(Γ), ω ∈ Γ,
0, otherwise.

enclosure
insulating

(b) Magnetic field off(a)  Magnetic field on

FIGURE 8.16. Adiabatic demagnetization to achieve low temperature



686 8. Physics, Information, and Computation

Definition 8.5.4 The Gibbs entropy of a cell Γ is defined as

SG(p) = (k ln 2)

∫

Γ

p(ω) log
1

p(ω)
L(d ω). (8.16)

Example 8.5.11 Let X be the state space of a thermodynamic system, and U the re-
versible transformation satisfying Liouville’s theorem on page 681, mean-
ing that U is volume-preserving. The ensemble is imagined to consist of
points ω moving individually so that point ω is transformed to U tω.
For a cell Γ we find that SG(pΓ) = (k ln 2) logL(Γ). That is, the Gibbs
entropy is the same as the Boltzmann entropy.

What is the probability density of finding a state ω at time t+t0? We call
the new ensemble pt. Liouville’s theorem says that the volume L is in-
variant under the transformation U t. This implies that pt(U tω) = p(ω),
from which one can infer that SG(pt) = SG(p)—the Gibbs entropy of an
ensemble does not change at all in an isolated system during evolution.
This shows that in the case of the evolution of isolated nonequilibrium
systems, the evolution of a Gibbs ensemble does not express adequately
what we consider thermodynamic behavior. The problem is that even if
at the starting time t0 the Gibbs ensemble was something simple, it can
develop in time t into a very complicated density function that does not
correspond to any reasonable macroscopic description. 3

Example 8.5.12 If the ensemble is a discrete state space X with a probability density
function P (x), then the Gibbs entropy reduces to

SG(P ) = (k ln 2)
∑

x∈X
P (x) log

1

P (x)
.

This is proportional to Shannon’s information-theoretic entropyH(P ) =
∑

x∈X P (x) log 1/P (x) of Definition 1.11.1 on page 67. 3

8.6

Entropy

Revisited

The previous approaches treated entropy as a probabilistic notion; in
particular, each individual micro state of a system has entropy equal
to 0. However, it is desirable to find a notion of entropy that assigns a
nonzero entropy to each micro state of the system, as a measure of its
individual disorder.

We will first give a naive form. Then we give a more sophisticated algo-
rithmic form possessing properties similar to Boltzmann entropy, and in
which a version of the second law can be proved.

Assume that the set of micro states of a thermodynamic system is dis-
crete. For convenience we identify them with the natural numbers.
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Definition 8.6.1 The complexity entropy of a micro state x of a system is defined as K(x),
where K is the prefix complexity of Chapter 3.

A single regular micro state like the state of CuO2 in Figure 8.14 has low
complexity entropy, as opposed to a complex state. Such a micro state
looks regular and therefore special, only because it has low complexity.
Such nonrandom states have complexity entropy close to zero.

The new definition can even be justified to a certain degree by Theo-
rem 8.1.1 on page 604. Let X be the set of micro states of a thermody-
namic system. We prove that a discrete version of Gibbs entropy and the
expected complexity entropy are quantitatively about the same under
some mild assumptions. Consider a discrete ensemble X , with P (x) the
probability density function that the system is in micro state x ∈ X .
Then, SG(P ) = (k ln 2)

∑

x∈X P (x) log 1/P (x) is the Gibbs entropy. If
P is computable, then by Theorem 8.1.1 on page 604 we have

SG(P ) = (k ln 2)
∑

x∈X
P (x)K(x) +O(1).

In this sense, the complexity entropy inherits the successes and failures of
Gibbs entropy. A serious problem is the choice of precision in describing
micro state x. Our system will certainly have simpler micro states if we
have units on the scale of 1 kilometer, rather than of scale 5 × 10−11

meters (the diameter of a hydrogen atom).

8.6.1
Algorithmic
Entropy

In the previous approaches the macroscopic parameters were not ac-
counted for and appeared out of the blue. Considering a system from an
observer’s viewpoint occasions a modified approach. Suppose we have
determined the macroscopic parameters describing the classical entropy
of a thermodynamic system. Truncate these parameters to the required
precision (e.g., four decimal places) and encode them in an integer x.

Definition 8.6.2 Assume the discussion above, and suppose that the system in equi-
librium is described by the encoding x of the approximated macro-
scopic parameters. The algorithmic entropy of the macro state of a sys-
tem is given by K(x) + Hx, where K(x) is the prefix complexity of
x, and Hx = SB(x)/(k ln 2). Here SB(x) is the Boltzmann entropy of
the system constrained by macroscopic parameters x, and k is Boltz-
mann’s constant. The physical version of algorithmic entropy is defined
as SA(x) = (k ln 2)(K(x) +Hx).

The second term, Hx, denotes our ignorance about the micro state, given
x. The notion of algorithmic entropy reflects the fact that measurements
can increase our knowledge about a system. Initially, we have no knowl-
edge about the state of system, and therefore the algorithmic entropy
reduces to Boltzmann entropy.
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FIGURE 8.17. Algorithmic entropy: left a random micro state, right a reg-

ular micro state

If the system is in a nonrandom micro state ω, then the Hx term de-
creases significantly as we make more and more measurements, while
the K(x) term rises very slowly. Overall, the algorithmic entropy de-
creases. If a micro state ω is random, then we cannot achieve decrease
of algorithmic entropy by making more and more measurements. We
simply exchange decreased ignorance in Hx for increased knowledge in
K(x), for x is an increasing initial segment of ω. The two pictures in
Figure 8.17 describe these situations.

Example 8.6.1 (Maxwell’s demon) In 1867, J.C. Maxwell described in a letter a
thought experiment that has received widespread attention ever since:

“If we conceive a being whose faculties are so sharpened that he can follow
every molecule in its course, such a being, whose attributes are still as essen-
tially finite as our own, would be able to do what is at present impossible
to us. For we have seen that the molecules in a vessel full of air at uniform
temperature are moving with velocities by no means uniform [. . .]. Now let us
suppose that such a vessel is divided into two portions, A and B, by a division
in which there is a small hole, and that a being, who can see the individual
molecule, opens and closes this hole, so as to allow only the swifter molecules
to pass from A to B and only the slower ones to pass from B to A. He will
thus, without expenditure of work, raise the temperature of B and lower that
of A, in contradiction to the second law of thermodynamics.” [J.C. Maxwell,
Theory of Heat, 1871.]

Several solutions to this problem have been proposed and subsequently
been disposed of. L. Szilard in 1929 suggested that the required infor-
mation gathering by the demon saves the second law; and C.H. Bennett
in 1982 proposed the current interpretation that it is the destruction of
old information that must dissipate energy.

In Figure 8.18 we describe this version of Maxwell’s demon: the Szilard
engine. The engine runs on a one-molecule gas and is submerged in a
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FIGURE 8.18. Szilard engine

heat bath at temperature T . The initial state of the system is that the
molecule is located in either the left or the right chamber of the device
and the trap door is up. The demon lowers the trap door, trapping the
molecule in either the left or right chamber. The demon records where
it is in its memory. It then pushes in the frictionless and massless piston
in the chamber that does not contain the molecule. This does not cost
work, since there is no pressure (bouncing molecule) to overcome. Since
the engine is submerged in a heat bath, the molecule bounces around
vigorously. If we raise the trap door, then the molecule will push the
piston back to its original position, performing work. At the end of the
cycle, we erase memory to resume the initial state.

Common objections against the demon include the idea that opening
and closing the door must dissipate energy; the measurement of the
molecule’s position must dissipate energy (for example, the demon must
send at least one photon to the molecule in order to see it), and so on.
Such arguments have been found invalid, at least from the theoretical
point of view.

However, the demon operating the engine must either store increasingly
more information, or it must irreversibly erase some of it. Irreversible
erasure of information will dissipate energy by Sections 8.2.1 and 8.2.4.
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If the demon does not erase its memory each cycle, but keeps on adding
new information, then this is not a true cycle. The engine increases the
entropy of its memory in order to decrease the entropy of its environ-
ment.

The demon can, of course, wait for a while, accumulating information,
and then try to guess the shortest program that generates it, and sub-
sequently erase all information by irreversibly erasing only the shortest
program for it.

We can obtain some insight into what happens using the algorithmic
entropy of Definition 8.6.2.

For the sake of the present discussion we make the simplifying assump-
tion that the system consisting of the engine coupled with the comput-
erized demon has entropy SA = (k ln 2)(K(x) +Hy), where k is Boltz-
mann’s constant, K(x) is the complexity of the data in the demon’s
memory, and SB(y) = (k ln 2)Hy is the Boltzmann entropy of the en-
gine. That is, the demon has no Boltzmann entropy part and the engine
has no complexity part.

We make another important assumption by setting the total work per-
formed to the sum of the work needed to change the entropy of the
machine and the work needed to change the entropy of the demon. This
seems a possibly unrealistic assumption, since it is not obvious that the
joint effect cannot be achieved with less work. Think of the triangle in-
equality. The work to pull something north 1 meter and east 1 meter is
more than the work needed to pull it to its final place in a straight line.

Claim 8.6.1 Assume that the entropy of the system behaves as described above. Then
the net heat gained by the engine, coupled with a computerized demon
that can perform measurements and control the operation of the engine,
is no more than

∆Q = (SfA − SiA)T,

where T is the temperature in kelvins, and SiA and SfA are the initial
and final algorithmic entropies of the system, respectively.

The idea is as follows: The system is operating at temperature T . Then
the heat gained due to the change of Boltzmann entropy, denoted by
SB, is given by the usual formula

∆Q+ = (SfB − SiB)T.

Let K(i) and K(f) be the complexity of the demon’s initial memory
state i and final memory state f , respectively. In Section 8.2 we have
analyzed the absolute minimum number of bits that need to be erased in
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a computation from i to f , leaving nothing behind except the record f .
This is at least the number of garbage bits left after computing f from
i by a reversible machine. These garbage bits constitute a program to
compute f from i (executing the computation from i to f in reverse).
The length of a self-delimiting program for this purpose is by definition
K(i|f). By Theorem 3.9.1 on page 247, up to an additive constant,

K(i, f) = K(i) +K(f |〈i,K(i)〉) = K(f) +K(i|〈f,K(f)〉).

Trivially, K(i|f) ≥ K(i|〈f,K(f)〉) +O(1). Therefore, K(i|f) ≥ K(i) −
K(f + O(1)). (See also Section 8.2.4.) The heat loss to update the de-
mon’s memory is the negative of the number of erased bits:

∆Q− = (K(f) −K(i))kT ln 2.

Thus, the total heat ∆Q gained by the demon is given by

∆Q+ + ∆Q− =
[

(SfB + (k ln 2)K(f)) − (SiB + (k ln 2)K(i))
]

T

= (SfA − SiA)T.

With SA subject to the second law, ∆Q in the above claim must be less
than or equal to 0. 3

8.6.2
Algorithmic
Entropy and
Randomness
Tests

Algorithmic entropy of the physics variety, Definition 8.6.2 on page 687,
can be based roughly on the profound idea of the universal randomness
test as developed in Section 2.5 and especially Section 4.5. We will call
the resulting mathematical notion ‘algorithmic entropy’ also.

Consider the molecules of an ideal gas as points that move in 3-dimension-
al space R3, where R is the set of real numbers, and use the model of
statistical mechanics as described in Definition 8.5.1 on page 679 and
the following pages.

Definition 8.6.3 Let x be a binary string of length n. An n-cell is the set Γx of all infinite
binary sequences (micro states) with finite initial segment x, defined by
Γx = {ω : ω = xζ, ζ ∈ {0, 1}∞}.

The sets Γx are the well-known cylinder sets of measure theory (Sec-
tion 1.6). The area of state space we consider is divided into n-cells.
For n = 1, 2, . . . , this division becomes progressively finer-grained and
discerns more detail. To say that a micro state ω is in n-cell Γx means
that x is a prefix of ω.

In fact, ω is the limit point to which the infinite nested sequence of
n-cells that contain ω converges with increasing n.
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Definition 8.6.4 Assume the notation above and recall Notation 8.5.1 on page 680. The
algorithmic entropy of an n-cell Γx with respect to µ is defined as

Hµ(Γx) = K(x|µ) + logµ(Γx).

In terms of Definition 8.6.2, page 687, the algorithmic entropy of an n-
cell Γx consists of two parts, where the first part is the prefix complexity
of x (the macroscopic description of the n-cell) and the second part is
the logarithm of the measure of volume Γx (our lack of knowledge about
a member of the n-cell). This definition can serve to define successively
closer approximations to the entropy of a micro state as the minimum
of the entropies of successively smaller n-cells containing it.

For computable measures µ, we have K(x|µ) ≥ K(x) −K(µ) for all x, with
K(µ) a constant independent of x that is the length of the shortest program
to compute µ. Since by definition K(x|µ) ≤ K(x) + O(1), we have K(x|µ) =
K(x) ±O(K(µ)).

Definition 8.6.5 Let µ be a computable measure. The algorithmic entropy of ω ∈ X with
respect to µ is defined by

Hµ(ω) = inf
n

{
K(ω1:n|µ) + log µ(Γω1:n)

}
.

This definition sets Hµ(ω) equal to −ρ0(ω|µ), the universal integral µ-
test of Corollary 4.5.2 on page 315. (Recall Notation 4.2.1.) For the spe-
cial case that µ is the uniform measure, see Corollary 3.6.1 on page 223.

Example 8.6.2 (Generalized prefix complexity) Let X = {0, 1, . . .}, and for every
x ∈ X , set µ({x}) = 1. Then Hµ(x) = K(x) +O(1). Thus, the algorith-
mic entropy Hµ, defined by way of randomness tests, is a generalization
of the prefix complexity K. 3

Example 8.6.3 How large can Hµ(ω) be? The higher it is, the more random is ω. For a
finite measure µ (µ(X) ≤ ∞), the function Hµ is bounded above. Such a
bound is the ultimate maximum, or equilibrium, of algorithmic entropy
in such a system, and it is reached when the system has evolved to
total disorder. For infinite measures, it can take arbitrarily large positive
values; but it will never be +∞. By the theory of testing, ω is random in
the sense of Martin-Löf (Sections 2.5, 4.5.6) iff −Hµ(ω) = ρ0(ω|µ) <∞.
In other words, a micro state ω is random iff Hµ(ω) > −∞.

To give some idea how Hµ(ω) depends on ω and µ we give an up-
per bound. Let m(x) = µ(Γx). For ω ∈ Γx − Γx0, we have Hµ(ω) <
log(m(x) + 1) + 2 log(log(m(x) + 1) + 1) +O(1). The right-hand side is
an upper bound on the amount by which K(x|µ) can exceed logµ(Γx).

3
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Example 8.6.4 The sequence η = 00 . . . is nonrandom in the uniform measure λ, and
hence (Sections 2.5, 4.5.6) ρ0(η|λ) = ∞. This means that the algorithmic
entropy Hλ(η) is −∞. The average ω satisfies ρ0(ω|λ) < ∞, and there-
fore Hλ(ω) > −∞. (This is the case for all random sequences, and the
set of these sequences has λ-measure 1, by Theorem 2.5.3 on page 151.)

But some η ∈ {0, 1}∞ have Hλ(η) = −∞. These are precisely the se-
quences that are not λ-random. 3

Example 8.6.5 For some computable measures µ there are n-cells Γx such that all se-
quences in Γx are not µ-random. Namely, if µ(Γx) = 0, then logµ(Γx) =
−∞, while K(x|µ) is finite. It follows from the definition of algorithmic
entropy that then Hµ(ω) = −∞ for all ω ∈ Γx. (By the way, existence
of such a Γx means that µ is not the uniform measure.)

If Hµ(ω) = −∞, then the system is in an orderly state. For example, all
molecules of a gas are in the left half of the containing vessel. The set of
all such orderly states has zero probability in the sense of measure µ. 3

Example 8.6.6 We show a connection between Hµ and the Gibbs entropy SG. Consider
an ensemble X with computable probability density function p and mea-
sure µ. Define ν(d ω) = p(ω)µ(d ω). Then it can be shown that

SG(p)

k ln 2
=

∫

p(ω) log
1

p(ω)
µ(d ω) =

∫

Hµ(ω)ν(d ω) +O(1).

This means that the Gibbs entropy is essentially the average algorithmic
entropy, while the latter measures the randomness of ω with respect to
µ. The higher it is, the more random is ω. 3

The Hµ measure is important, but it does not satisfy the second law of
thermodynamics, since the source reference paper of Exercise 8.6.1 on
page 696 shows that it has a no strong increase property. We solve this
problem by considering coarse-grained entropy.

Definition 8.6.6 Assume the above notation. The nth approximation ofHµ(ω), the coarse-
grained algorithmic entropy, is given by Hn

µ (ω) defined as

Hn
µ (ω) = inf

i≤n

{
Hµ(Γω1:i

)
}
.

Example 8.6.7 If the notion of temperature is meaningful in our system, then the phys-
ical version of algorithmic entropy is to be defined as

SA(ω) = (k ln 2)Hµ(ω), SnA(ω) = (k ln 2)Hn
µ (ω),

where k is the very small Boltzmann’s constant. For appropriate fixed n,
this new quantity (k ln 2)Hn

µ (·) is our corrected version of coarse-grained
Bolzmann entropy SB(·). 3
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The coarse-grained algorithmic entropyHn
µ is important, since the source

reference paper of Exercise 8.6.1 on page 696 shows that it satisfies the
second law, by giving the required strong growth of entropy, similar to
Boltzmann entropy. The quantity Hn

µ is mathematically objective and
is related to the observation-dependent term Hx in Definition 8.6.2.

Notation 8.6.1 The subscript µ is usually understood from the context. We dispense
with the subscript from now on, using it only when there is risk of
confusion.

The relations between the algorithmic entropy of a micro state, the
coarse-grained algorithmic entropy, and the n-cell containing it are as
follows:

Theorem 8.6.1 Assume the notation above. Then

H(ω) = lim
n→∞

Hn(ω) = inf
x∈{0,1}∗

{H(Γx) : ω ∈ Γx} . (8.17)

Proof. This follows directly from the definitions. 2

The formula forH(ω) says that to determine its value we should consider
ever finer-grained n-cells (test more bits of ω1:n), but only as long as
the complexity increase of K(·) buys us an even greater decrease in
logµ(Γω1:n). For ω that are not µ-random, the latter quantity goes down
all the way to −∞ with growing n.

For µ-random ω, the value of Hn(ω) goes down to at most a finite
(possibly negative) value with n. Hence, there is a value n0 such that
Hn(ω) reaches its infimum for n = n0. This is the optimal granularity of
description for this micro state that yields the final algorithmic entropy.
The term logµ(Γx) represents our a priori uncertainty about ω as an
element of its n-cell Γx. This corresponds to the second term, Hx, in
Definition 8.6.2.

Example 8.6.8 For the systems of interest in physics, and for those precisions in the
macroscopic parameters for which Boltzmann’s entropy is generally con-
sidered, we expect the additive termK(ω1:n), which is at most n+2 logn,
to be negligible compared to the second term of algorithmic entropy. This
log-volume term is usually very large.

For example, consider a mole of gas (about 6 × 1023 molecules, Defini-
tion 8.5.1 on page 679) in a container. Let us be extremely generous and
assume that each atom can assume only two states (or each of the 6N
dimensions is of size 2 in the continuous case). Then the log-volume is
about 1023 bits in order to describe the complete state of a few grams
of matter. This is the order of magnitude of the total entropy.
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The macroscopic information given to us in ω1:n is generally just the
values of some macroscopic parameters. We may, for example, subdivide
the piece of magnet under study into 100 parts and measure the magne-
tization of each to an unlikely precision of 10 bits: this is still only 1000
bits out of 1023 bits. Therefore, K(ω1:n) is negligible compared to the
second log-volume term in such cases. Hence, H(ω) is not appreciably
larger than its log-volume term when expressed this way, and can be
interpreted as an approximation to the Boltzmann entropy. 3

Example 8.6.9 Often, the first term K(·|µ) of the algorithmic entropy infn{K(ω1:n|µ)+
logµ(Γω1:n)} is insignificant compared to the second term, which mea-
sures the Boltzmann entropy. An example of a system for which also the
complexity term of algorithmic entropy is needed is a computer memory.

The memory cells are not individual atoms but they are rather tiny. The
total number of bits in a modern computer is already measured in giga-
bytes. It is natural to view all the information in the computer memory
as macroscopic when we describe this system. However, as the memory
cells get smaller, the boundary between macroscopic and microscopic
information becomes somewhat blurred, and when describing the whole
system one will probably want to use the whole formula. All memory
states of the computer would have about the same classical Boltzmann
entropy, but more complex memory states would have larger algorithmic
entropy. Thus, the tendency of noise to increase the complexity of mem-
ory could be considered the same phenomenon as the entropy increase
in classical physical systems.

Such computer systems are typical of the systems considered by Lan-
dauer. Interpret “erasing a bit,” done by irreversible computation as
in Section 8.2, as decreasing the entropy by 1. Suppose that all of
the memory together contains the string x. Then we may say that
H(ω) = K(x) + logµ(Γx), where ω ∈ Γx, and Γx is a subset of the
memory states that can be described by saying what bits are in the
memory. This means that K(Γx) = K(x).

Erasing the information means putting 0’s everywhere into the memory.
Denote the micro state of the environment by ζ. Then the development
of the system consisting of memory and environment in time is denoted
by U t(ω, ζ) = (ωt, ζt). Arguably, we will have H(ωt) = K(y)+logµ(Γy),
where ωt ∈ Γy. Here, Γy just says that the memory contains all 0’s; hence
K(Γy) = O(1).

If we require that the memory have approximately the same amount
of Boltzmann entropy logµ(Γx) no matter what bits it holds, then this
means that logµ(Γx) = logµ(Γy). In this interpretation, the erasure in-
deed means ∆H(ω) = K(x), which will be balanced by a similar increase
in H(ζ).
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In order to argue, on the basis of Boltzmann entropy alone, that turning
all these bits to 0 results in heat dissipation, we need to consider this
operation of turning all bits to 0 as some kind of general operation
that does something similar with all possible memory contents, that is,
decreases the volume of the whole state space. This artificiality is avoided
here. 3

Exercises 8.6.1. [33] Let n = l(x). Show that for some constant c,

µ {ω ∈ Γx : H(ω) < H(Γx) −K(n) −m} < c 2−mµ(Γx).

Comments. For most elements ω of an n-cell Γx, the value of H(ω)
cannot be much less than H(Γx). That is, if some elements of a cell
are (sufficiently) random, then most of them are (sufficiently) random.
Recall that K(n) ≤ logn+ 2 log logn+O(1), for all n. Source: P. Gács,
Proc. IEEE Workshop Physics and Computation, Dallas, USA, 1994,
209–216.

8.7

Quantum

Kolmogorov

Complexity

Quantum information theory, the quantum-mechanical analogue of clas-
sical information theory, is experiencing a renaissance due to the rising
interest in the notion of quantum computation and the possibility of
realizing a quantum computer. While Kolmogorov complexity is the ac-
cepted absolute measure of information content in an individual classical
finite object, a similar absolute notion is needed for the information con-
tent of an individual pure quantum state. We base quantum Kolmogorov
complexity on quantum Turing machines.

A pure quantum state φ, represented as a unit-length vector in a Hilbert
space, is denoted by |φ〉, and the corresponding element of the dual space
(the conjugate transpose) is written as φ† or 〈φ|. The inner product of
〈φ| and |ψ〉 is written in physics notation as 〈φ | ψ〉 and in mathematics
notation as φ†ψ. The bra-ket notation is due to P. Dirac and is the
standard quantum-mechanics notation. The bra 〈x| denotes a row vector
with complex entries, and the ket |x〉 is the column vector consisting of
the conjugate transpose of 〈x| (columns interchanged with rows and
the imaginary part of the entries negated, that is,

√
−1 is replaced by

−
√
−1).

For every N , the finite-dimensional Hilbert space HN has a canonical
basis |e0〉, . . . , |eN−1〉. Assume that the canonical basis of HN is also the
beginning of the canonical basis of HN+1. The m-fold tensor product
⊗mi=1H of a Hilbert space H is denoted by H⊗m.

Of special importance is the two-dimensional Hilbert space C2, where C is
the set of complex real numbers, and |0〉, |1〉 is its canonical orthonormal
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basis. An element of C2 is called a qubit (‘quantum bit’ in analogy with
an element of {0, 1} which is called a bit for ‘binary digit’). To generalize
this to strings of n qubits, we consider the quantum state space CN with
N = 2n. The basis vectors |e0〉, . . . , |eN−1〉 of this space are parametrized
by binary strings of length n, so that |e0〉 is shorthand for |e0...0〉 and
|eN−1〉 is shorthand for |e1...1〉. Mathematically, CN is decomposed into a
tensor product of n copies of C2, written as (C2)⊗n, and an n-qubit state
|a1 . . . an〉 in bra-ket notation can also be written as the tensor product
|a1〉 ⊗ · · · ⊗ |an〉, or shorthand as |a1〉 · · · |an〉, a string of n qubits, the
qubits being distinguished by position.

8.7.1
Quantum
Computation

A quantum Turing machine can be viewed as a generalization of a prob-
abilistic Turing machine. Consider the same computation tree where
every node has two children.. In the probabilistic computation there is
a probability pi ≥ 0 associated with each node i (state of the system) at
the same level in the tree, such that

∑
pi = 1, summed over the nodes

at the same level. In a quantum-mechanical computation there is a prob-
ability amplitude αi associated with each basis state |i〉 of the system.
In the probabilistic case the states of the nodes i at the mth level of the
computation tree run through the classical values 0 through 2m − 1. In
the quantum case the states are represented by the orthonormal basis
m-qubit states |00 . . .0〉 through |11 . . . 1〉. The nodes at level m are in
a superposition |ψ〉 =

∑

i∈{0,1}m αi|i〉 with the probability amplitudes

satisfying
∑

i∈{0,1}m ||αi||2 = 1.

Generally, the probability amplitudes are complex numbers satisfying
∑ ||αi||2 = 1, where if αi = a + b

√
−1 then ||αi|| =

√
a2 + b2, and

the summation is taken over all distinct states of the observable at a
particular instant. We say distinct states since the quantum-mechanical
calculus dictates that equal states be grouped together: If state |φ〉 of
probability amplitude α equals state |ψ〉 of probability amplitude β, then

their combined contribution in the sum is ||α+ β||2|φ〉. The transitions
are governed by a matrix U that represents the program being executed.
Such a program has to satisfy the following constraints. Denote the set of
possible configurations of the Turing machine byX , whereX is the set of
m-bit column vectors (the basis states) for simplicity. Then U maps the
column vector α = (αx)x∈X to Uα. Here α is a (2m)-element complex
vector of amplitudes of the quantum superposition of the 2m basis states
before the step, and Uα the same after the step concerned. The special
property that U needs to satisfy in quantum mechanics is that it be
unitary, that is, U †U = I, where I is the identity matrix and U † is the
conjugate transpose of U (as with the bra-ket, ‘conjugate’ means that all√
−1’s are replaced by −

√
−1’s, and ‘transpose’ means that the rows and

columns are interchanged). In other words, U is unitary iff U † = U−1.
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The unitary constraint on the evolution of the computation enforces two
facts:

1. If U0α = α and U t = UU t−1 then
∑

x∈X ||(U tα)x||2 = 1 for all t
(discretizing time for convenience).

2. A quantum computation is reversible (replace U by U † = U−1). In
particular, this means that a computation U tα0 = αt is undone by

running the computation stepwise in reverse: U †tαt = α0.

Definition 8.7.1 A qubit |ψ〉 is the quantum-mechanical version of a single classical bit,

defined by |ψ〉 = α |0〉 + β |1〉 such that ||α||2 + ||β||2 = 1.

A qubit consists of partially the basis state |0〉 and partially the basis
state |1〉. The states are denoted by the column vectors of the appropriate
complex probability amplitudes. For the basis states the vector notations
are |0〉 =

(
1
0

)
(that is, α = 1 and β = 0), and |1〉 =

(
0
1

)
(that is, α = 0

and β = 1). We also write |φ〉 as the column vector φ =
(
α
β

)
.

Example 8.7.1 Physically, for example, the state |ψ〉 can be the state of a polarized
photon, and the basis states are horizontal or vertical polarization, re-
spectively. Upon measuring according to the basis states, that is, passing
the photon through a medium that is polarized either in the horizon-
tal or vertical orientation, the photon is observed with probability ||α||2
or probability ||β||2, respectively. Consider a sample computation on a
one-bit computer executing the unitary operator

S =
1√
2

(
1 1

−1 1

)

. (8.18)

It is easy to verify, using common matrix calculation, that

S|0〉 =
1√
2
|0〉 − 1√

2
|1〉, S|1〉 =

1√
2
|0〉 +

1√
2
|1〉,

S2|0〉 = 0 |0〉 − 1 |1〉 = −|1〉, S2|1〉 = 1 |0〉 + 0 |1〉 = |0〉.

If we observe the computer in state S|0〉, then the probability of ob-
serving state |0〉 is ( 1√

2
)2 = 1

2 , and the probability to observe |1〉 is

(− 1√
2
)2 = 1

2 . However, if we observe the computer in state S2|0〉, then

the probability of observing state |0〉 is 0, and the probability to observe
|1〉 is 1. Similarly, if we observe the computer in state S|1〉, then the
probability of observing state |0〉 is ( 1√

2
)2 = 1

2 , and the probability to

observe |1〉 is ( 1√
2
)2 = 1

2 . If we observe the computer in state S2|1〉, then
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the probability of observing state |0〉 is 1, and the probability to observe
|1〉 is 0. Therefore, the operator S inverts a bit when it is applied twice
in a row, and hence has acquired the charming name square root of ‘not’.

In contrast, with the analogous probabilistic calculation, flipping a coin
two times in a row, we would have found that the probability of each
computation path in the complete binary computation tree of depth 2
was 1

4 , and the states at the four leaves of the tree were |0〉, |1〉, |0〉, |1〉,
resulting in a total probability of observing |0〉 being 1

2 , and the total
probability of observing |1〉 being 1

2 as well.

The quantum principle involved in the above example is called inter-
ference, similar to the related light phenomenon in the seminal two-slit
experiment: Shining light through a screen with two small holes, we ob-
serve a diffraction pattern of bright and dark stripes due to interference.
Namely, the light hits every point on the screen via two different routes
(through the two different holes). If the two routes differ by an even
number of half wavelengths, then the wave amplitudes at the target are
added, resulting in twice the amplitude and a bright spot, and if they
differ by an odd number of half wavelengths then the wave amplitudes
are in opposite phase and are subtracted, resulting in zero and a dark
spot. 3

We are now in a position to explain the quantum equivalent of a proba-
bilistic coin flip. This is a main trick for enhancing the power of quantum
computation. A sequence of n fair coin flips corresponds to a sequence
Hn of n one-qubit unitary operations, the Hadamard transform

H =
1√
2

(
1 1
1 −1

)

on the successive bits of a register of n bits originally in the all-0 state
|ψ〉 = |00 . . . 0〉. The result is a superposition

Hn|ψ〉 =
∑

x∈{0,1}n

2−n/2 |x〉

of all the 2n possible states of the register, each with amplitude 2−n/2

(and hence probability of being observed of 2−n).

The Hadamard transform is ubiquitous in quantum computing; its sin-
glefold action is similar to that of the transform S of Equation 8.18
with the roles of 0 and 1 partly interchanged. In contrast to S2, which
implements the logical ‘not,’ we have H2 = I with I the identity matrix.

Example 8.7.2 If A is a classical algorithm for computing some function f , possibly
even irreversible such as f(x) ≡ x mod 2, then we can turn it into a
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unitary transformation that maps classical state |x, 0〉 to |x, f(x)〉. Note
that we can apply A to a superposition of all 2n inputs:

A

(

2−n/2
∑

x

|x, 0〉
)

= 2−n/2
∑

x

|x, f(x)〉.

In some sense this state contains the results of computing f for all pos-
sible inputs x, but we have applied A only once to obtain it. This ef-
fect together with the interference phenomenon is responsible for one of
the advantages of quantum over classical randomized computing and is
called quantum parallelism. 3

8.7.2
Quantum Turing
Machine

A quantum Turing machine is a Turing machine operating on strings of
quantum bits, using specific quantum-mechanical operations like those
described above. To define quantum Kolmogorov complexity by way of
quantum Turing machines leaves essentially two options:

1. We want to describe every quantum superposition exactly; or

2. we want to take into account the number of bits/qubits in the spec-
ification as well the accuracy of the quantum state produced.

We have to deal with three problems:

• There are continuously many qubit descriptions.

• There are continuously many quantum Turing machines;

• There are continuously many pure quantum states;

Definition 8.7.2 The quantum Turing machine is equipped with an input tape that is
one-way infinite with the classical input (the program) in binary left
adjusted from the beginning. The input tape is read-only from left to
right without backing up. Additionally, the machine contains a one-way
infinite work tape containing qubits, a one-way infinite auxiliary tape
containing qubits, and a one-way infinite output tape containing qubits.
Initially, the input tape contains a classical binary program p, and all
(qu)bits of the work tape, auxiliary tape, and output tape are set to |0〉.
In case the Turing machine has an auxiliary input (classical or quantum)
then initially the leftmost qubits of the auxiliary tape contain this input.
A quantum Turing machine Q with classical program p and auxiliary
input y computes until it halts with output Q(p, y) on its output tape
or it computes forever.

Since quantum Turing machines are reversible, this means that there
must be an ongoing evolution with nonrepeating configurations.
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Definition 8.7.3 Define the output Q(p, y) of a quantum Turing machine Q with classical
program p and auxiliary input y as the pure quantum state |ψ〉 resulting
from Q computing until it halts with output |ψ〉 on its ouput tape. We
write Q(p, y) < ∞. The halting convention is a complex issue, which
we ignore here. If there is no such |ψ〉 then Q(p, y) is undefined and
we write Q(p, y) = ∞. By definition the input tape is read-only from
left to right without backing up. Therefore, the set of halting programs
Py = {p : Q(p, y) <∞} is prefix-free: no program in Py is a proper prefix
of another program in Py. Put differently, the Turing machine scans all
of a halting program p but never scans the bit following the last bit of
p: it is self-delimiting.

There are uncountably many quantum Turing machines only if we allow
arbitrary quantum-mechanical operations (these are called rotations) in
the definition of the machines. Then, a quantum Turing machine can
be universal only in the sense that it can approximate the computa-
tion of an arbitrary machine. In descriptions using universal quantum
Turing machines we would have to account for the closeness of approxi-
mation, the number of steps required to get this precision, and the like.
In contrast, if we fix the rotation of all contemplated machines to a sin-
gle primitive rotation θ with cos θ = 3

5 and sin θ = 4
5 , then there are

only countably many Turing machines, and the universal machine simu-
lates the others exactly. Exact simulation of arbitrary quantum Turing
machines by a fixed universal quantum Turing machine is impossible,
since there are continuously many of the former. Close approximations
are possible by Turing machines using a fixed rotation such as θ, Ex-
ercise 8.7.3 on page 709. There are only countably many such Turing
machines. Using a standard ordering, we fix Q1, Q2, . . . as a standard
enumeration of quantum Turing machines using only rotation θ. There
is a universal machine U in this enumeration that simulates the others
exactly: U(1i0p, y) = Qi(p, y), for all i, p, y.

Since the computation time of the machine is not limited in the theory of de-
scription complexity as developed here, a quantum computer can be simulated
by a classical computer to every desired degree of precision. We can rephrase
everything in terms of the standard enumeration of T1, T2, . . . of classical Tur-
ing machines. Let |x〉 =

∑N−1

i=0
αi|ei〉 (N = 2n) be an n-qubit state. We can

write T (p) = |x〉 if T either outputs

(i) algebraic definitions of the coefficients of |x〉 (in case these are algebraic),
or

(ii) a sequence of approximations (α0,k, . . . , αN−1,k) for k = 1, 2, . . . , where
αi,k is an algebraic approximation of αi to within 2−k.
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8.7.3
Classical
Descriptions of
Pure Quantum
States

The next question is whether we want programs (descriptions) to be
in classical bits or in qubits. The intuitive notion of computability re-
quires the programs to be classical. Namely, to prepare a quantum state
requires a physical apparatus that computes this quantum state from
classical specifications. Since such specifications have effective descrip-
tions, every quantum state that can be prepared can be described effec-
tively in descriptions consisting of classical bits. Descriptions consisting
of arbitrary pure quantum states allows incomputable (or hard to com-
pute) information to be hidden in the bits of the amplitudes. In Defi-
nition 8.7.5 we call a pure quantum state directly computable if there is
a (classical) program such that the universal quantum Turing machine
computes that state from the program and then halts in an appropriate
fashion.

The complex quantity 〈x | z〉 is the inner product of vectors 〈x| and |z〉.
Since pure quantum states |x〉, |z〉 have unit length, ||〈x | z〉|| = | cos θ|,
where θ is the angle between vectors |x〉 and |z〉. The quantity ||〈x | z〉||2,
the fidelity between |x〉 and |z〉, is a measure of how close or confusable
the vectors |x〉 and |z〉 are. It is the probability of outcome |x〉 being
measured from state |z〉 that is actually there. Essentially, we project
|z〉 on outcome |x〉 using projection |x〉〈x|, resulting in 〈x | z〉|x〉.

Definition 8.7.4 The (self-delimiting) complexity of |x〉 with respect to quantum Turing
machine Q with y as conditional input given for free is

KQQ(|x〉|y) = min
p

{

l(p) +

⌈

log
1

||〈z | x〉||2

⌉

: Q(p, y) = |z〉
}

, (8.19)

where l(p) is the number of bits in the program p, auxiliary y is an input
(possibly quantum) state, and |x〉 is the target state that one is trying
to describe.

Definition 8.7.5 A pure quantum state |x〉 is computable if KQ(|x〉) < ∞. Hence all
finite-dimensional pure quantum states are computable. We call a pure
quantum state directly computable if there is a program p such that
U(p) = |x〉.

Example 8.7.3 Note that |z〉 is the quantum state produced by the computationQ(p, y),
and therefore, given Q and y, completely determined by p. Therefore, we
obtain the minimum of the right-hand side of the equality by minimizing
over p only. We call the |z〉 that minimizes the right-hand side the di-

rectly computed part of |x〉, while ⌈log 1/||〈z | x〉||2⌉ is the approximation

part. The quantity P (x) = ||〈z | x〉||2 is the probability that |z〉 passes

a test for |x〉, and vice versa. The term ⌈log 1/||〈z | x〉||2⌉ can be viewed
as the code-word length to redescribe |x〉, given |z〉 and an orthonormal
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basis with |x〉 as one of the basis vectors, using the Shannon–Fano prefix
code. This works as follows: Write N = 2n. For every state |z〉 in N -
dimensional Hilbert space with basis vectors B = {|e0〉, . . . , |eN−1〉} we

have
∑N−1
i=0 ||〈ei | z〉||2 = 1. If the basis has |x〉 as one of the basis vec-

tors, then we can consider |z〉 as a random variable that assumes value

|x〉 with probability ||〈x | z〉||2. The Shannon–Fano code word for |x〉
in the probabilistic ensemble

(

B, (||〈ei | z〉||2)i
)

is based on the prob-

ability ||〈x | z〉||2 of |x〉, given |z〉, and has length ⌈log 1/||〈x | z〉||2⌉.
Considering a canonical method of constructing an orthonormal basis
B = |e0〉, . . . , |eN−1〉 from a given basis vector, we can choose B such
that KQ(B) = mini{KQ(|ei〉)} + O(1). The Shannon–Fano code is ap-
propriate for our purpose, since it is optimal in that it achieves the least
expected code-word length—the expectation taken over the probability
of the source words—up to 1 bit by the noiseless coding theorem, Theo-
rem 1.11.2. As in the classical case, the quantum Kolmogorov complexity
is an integral number, and there is an invariance theorem. 3

Theorem 8.7.1 There is a universal quantum Turing machine U such that for every
quantum Turing machine Q, there is a constant cQ (the length of the
description of the index of Q in the enumeration) such that for all quan-
tum states |x〉 and all auxiliary inputs y we have

KQU (|x〉|y) ≤ KQQ(|x〉|y) + cQ.

Proof. Assume that the program p that minimizes the right-hand side of
(8.19) is p0 and the computed |z〉 is |z0〉:

KQQ(|x〉|y) = l(p0) +

⌈

log
1

||〈z0 | x〉||2

⌉

.

There is a universal quantum Turing machine U in the standard enumer-
ation Q1, Q2, . . . such that for every quantum Turing machine Q in the
enumeration there is a self-delimiting program iQ (the index of Q) and
U(iQp, y) = Q(p, y) for all p, y: if Q(p, y) = |z〉 then U(iQp, y) = |z〉. In
particular, this holds for p0 such that Q with auxiliary input y halts with
output |z0〉. But U with auxiliary input y halts on input iQp0 also with
output |z0〉. Consequently, the program q that minimizes the right-hand
side of (8.19) with U substituted for Q, and computes U(q, y) = |u〉 for
some state |u〉 possibly different from |z〉, satisfies

KQU (|x〉|y) = l(q) +

⌈

log
1

||〈u | x〉||2

⌉

≤ l(iQp0) +

⌈

log
1

||〈z0 | x〉||2

⌉

.
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Combining the two displayed inequalities, and setting cQ = l(iQ), proves
the theorem. 2

For every pair U,U ′ of universal Turing machines as in the proof of
Theorem 8.7.1, there is a fixed constant cU,U ′ , depending only on U and
U ′, such that for all |x〉, y we have

|KQU (|x〉|y) −KQU ′(|x〉|y)| ≤ cU,U ′ .

To see this, substitute U ′ for Q in (8.19), and, conversely, substitute U ′

for U and U for Q in (8.19), and combine the two resulting inequalities.

Definition 8.7.6 We fix once and for all a reference universal quantum Turing machine
U and define the quantum Kolmogorov complexity as

KQ(|x〉|y) = KQU (|x〉|y),
KQ(|x〉) = KQU(|x〉|ǫ),

where ǫ denotes the absence of conditional information.

Example 8.7.4 The definition is continuous in the following sense: If two quantum states
are very close then their quantum Kolmogorov complexities are very
close. Furthermore, since we can approximate every (pure quantum)
state |x〉 to arbitrary closeness, then in particular, for every constant

ǫ > 0 we can compute a (pure quantum) state |z〉 such that ||〈z | x〉||2 >
1 − ǫ. One can view this as the probability of obtaining the possibly
incomputable outcome |x〉 when executing projection |x〉〈x| on |z〉 and
measuring outcome |x〉. 3

8.7.4
Properties

Our proposal would not be useful if for a directly computable object
the complexity were less than the shortest program to compute that ob-
ject. This would imply that the code corresponding to the probabilistic
component in the description is possibly shorter than the difference in
program lengths for programs for an approximation of the object and the
object itself. This would penalize definite description compared to prob-
abilistic description and in case of classical objects would make quantum
Kolmogorov complexity less than classical Kolmogorov complexity. This
may be called consistency.

Theorem 8.7.2 Let U be the reference universal quantum Turing machine and let |x〉
be a basis vector in a directly computable orthonormal basis B, given y,
and let there be a program p such that U(p, y) = |x〉. Then KQ(|x〉|y) =
minp{l(p) : U(p, y) = |x〉} up to = KQ(B|y) +O(1).
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Proof. Let |z〉 be such that

KQ(|x〉|y) = min
q

{

l(q) +

⌈

log
1

||〈z | x〉||2

⌉

: U(q, y) = |z〉
}

.

Denote the program q that minimizes the right-hand side by qmin and
the program p that minimizes the expression in the statement of the
theorem by pmin.

A dovetailed computation is a method related to Cantor’s celebrated
diagonalization method: run all programs alternatingly in such a way
that every program eventually makes progress. On a list of programs
p1, p2, . . . one divides the overall computation into stages k = 1, 2, . . . .
In stage k of the overall computation one executes the ith computation
step of every program pk−i+1 for i = 1, . . . , k.

By running U on all binary strings (candidate programs) simultaneously
dovetailed-fashion, one can enumerate all objects that are directly com-
putable, given y, in order of their halting programs. Assume that U is
also given a program b of length KQ(B|y) such that b given y computes
B—that is, enumerates the basis vectors in B. In this way, qmin com-
putes |z〉, and the program b computes B. Now since the vectors of B
are mutually orthogonal,

∑

|e〉∈B

||〈z | e〉||2 = 1.

Since |x〉 is one of the basis vectors, we have that log 1/||〈z | x〉||2 is the
length of a prefix code (the Shannon–Fano code) to compute |x〉 from |z〉
and B. Denoting this code word by r, we have that the concatenation
qminbr is a program to compute |x〉: parse it into qmin, b, and r using
the self-delimiting property of qmin and b. Use qmin to compute |z〉 and

use b to compute B; determine the probabilities ||〈z | e〉||2 for all basis
vectors |e〉 in B. Determine the Shannon–Fano code words for all the
basis vectors from these probabilities. Since r is the code word for |x〉,
we can now decode |x〉. Therefore,

l(qmin) +

⌈

log
1

||〈z | x〉||2

⌉

≥ l(pmin) −KQ(B|y) +O(1),

which was what we had to prove. 2

Corollary 8.7.1 On classical objects (that is, the natural numbers or finite binary strings
that are all directly computable) the quantum Kolmogorov complexity
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coincides up to a fixed additive constant with the self-delimiting Kol-
mogorov complexity, since KQ(B|n) = O(1) for the standard classical
basis B = {0, 1}n. (We assume that the information about the dimen-
sionality of the Hilbert space is given conditionally.)

Theorem 8.7.3 For every n-qubit quantum state |x〉 we have KQ(|x〉|n) ≤ 2n+O(1).

Proof. Write N = 2n. For every state |x〉 in N -dimensional Hilbert space

with basis vectors |e0〉, . . . , |eN−1〉 we have
∑N−1

i=0 ||〈ei | x〉||2 = 1. Hence

there is an i such that ||〈ei | x〉||2 ≥ 1/N . Let p be a (KQ(i|n) +O(1))-
bit program to construct a basis state |ei〉 given n. Then l(p) ≤ n+O(1).
Then KQ(|x〉|n) ≤ l(p) + logN ≤ 2n+O(1). 2

Lemma 8.7.1 Let N = 2n. There is a particular (possibly nonclassical) orthonormal
basis of the N -dimensional Hilbert space HN , computed from the directly
computed pure quantum states, such that at least 2n(1−2−c) basis vectors
|ei〉 satisfy KQ(|ei〉|n) ≥ n− c.

Proof. Every orthonormal basis of HN has 2n basis vectors and there
are at most m ≤ ∑n−c−1

i=0 2i = 2n−c − 1 programs of length less than
n − c. Hence there are at most m programs of length less than n − c
available to approximate the basis vectors. We construct an orthonormal
basis satisfying the lemma, as follows. The set of directly computed pure
quantum states |x0〉, . . . , |xm−1〉 spans an m′-dimensional subspace A
with m′ ≤ m in the N -dimensional Hilbert space HN such that HN =
A⊕A⊥. Here A⊥ is a (2n −m′)-dimensional subspace of HN such that
every vector in it is perpendicular to every vector in A. We can write
every element |x〉 ∈ HN as

m′−1∑

i=0

αi|ai〉 +

2n−m′−1∑

i=0

βi|bi〉 ,

where the |ai〉’s form an orthonormal basis of A and the |bi〉’s form an or-
thonormal basis of A⊥, so that the |ai〉’s and |bi〉’s form an orthonormal
basis for HN . For every state |xj〉 ∈ A, directly computed by a pro-

gram x∗j given n, and basis vector |bi〉 ∈ A⊥, we have ||〈xj | bi〉||2 = 0.

Therefore, KQ(|bi〉|n) ≥ l(x∗j ) + log 1/||〈xj | bi〉||2 + O(1) = ∞ > n− c
(0 ≤ j < m, 0 ≤ i < 2n −m′). This proves the lemma. 2

Theorem 8.7.4 With Pr the uniform probability we have

Pr {|x〉 : l(|x〉) = n, KQ(|x〉|n) ≥ n− c} ≥ 1 − 1

2c
.
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Proof. The theorem follows immediately by generalizing Lemma 8.7.1 to
arbitrary orthonormal bases:

Claim 8.7.1 LetN = 2n. Every orthonormal basis |e0〉, . . . , |e2n−1〉 of theN -dimensional
Hilbert space HN has at least 2n(1− 2−c) basis vectors |ei〉 that satisfy
KQ(|ei〉|n) ≥ n− c.

Proof. Use the notation of the proof of Lemma 8.7.1. Let A be a set
initially containing the programs of length less than n− c, and let B be
a set initially containing the set of basis vectors |ei〉 with KQ(|ei〉|n) <
n−c. Assume to the contrary that |B| > 2n−c. Then at least two of them,
say |e0〉 and |e1〉, and some pure quantum state |x〉 directly computed
from a program of length less than (n− c) satisfy

KQ(|ei〉|n) = KQ(|x〉|n) +

⌈

log
1

||〈ei | x〉||2

⌉

, (8.20)

with |x〉 being the directly computed part of both |ei〉, i = 0, 1. This
means that KQ(|x〉|n) < n− c − 1, since not both |e0〉 and |e1〉 can be
equal to |x〉. Hence for every directly computed pure quantum state of
complexity n− c−1 there is at most one basis state, say |e〉, of the same
complexity. (In fact only if that basis state is identical to the directly
computed state.) Now eliminate every directly computed pure quantum
state |x〉 of complexity n − c − 1 from the set A, and the basis state
|e〉 as above (if it exists) from B. We are now left with |B| > 2n−c − 1
basis states of which the directly computed parts are included in A with
|A| ≤ 2n−c−1 − 1 with every element in A of complexity ≤ n − c − 2.
Repeating the same argument, we end up with |A| > 1 basis vectors
of which the directly computed parts are elements of the empty set B,
which is impossible. 2 2

Example 8.7.5 It may be instructive to check the behavior of the approximation part
log 1/||〈x | z〉||2 in Definition 8.7.4 on a nontrivial example. Let x be a
random classical string with K(x) ≥ l(x) and let y be a string obtained
from x by complementing one bit, say in position j. By Exercise 2.2.8 on
page 123, for every such x of length n there is such a y with complexity
K(y|n) = n− logn+O(1). Since K(x|n) ≤ K(y|n)+K(j|n)+O(1), we
have K(j|n) ≥ logn + O(1) (and since j ≤ n, we also have K(j|n) ≤
logn + O(1)). Now let |z〉 be a pure quantum state that has classical
bits except that the difference qubit between x and y that has equal
probabilities of being observed as 1 and as 0. We can prepare |z〉 by giving
y and the position of the difference qubit (in logn bits) and therefore
KQ(|z〉|n) ≤ n+O(1).
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From |z〉 we have probability 1
2 of obtaining x by observing the difference

qubit; it follows KQ(x|n) ≤ KQ(|z〉|n, j)+O(1), and since KQ(|z〉|n) ≥
KQ(|z〉|n, j) +O(1), we have KQ(|z〉|n) ≥ n+ O(1).

From |z〉 we also have probability 1
2 of obtaining y by observing the

difference qubit, which yields that K(y|n) ≤ KQ(|z〉|n, j) +O(1). Since
also KQ(|z〉|n) ≥ KQ(|z〉|n, j) +O(1) ≥ KQ(|z〉|n) −K(j|n) +O(1) =
KQ(|z〉|n) + O(1) = n − logn + O(1), we obtain n− log n ≤ K(y|n) +
O(1) ≤ n + O(1). This is the strongest conclusion we can draw about
y constructed as above from the fact that it is the result of observing
one qubit of a high complexity |z〉 constructed as above. That is, if we
flip an ith bit of x with complexity K(i|n) = logn+O(1), then this will
not necessarily result in a string of complexity n− logn+O(1) (take for
example i = j/2 with j as above). 3

Example 8.7.6 Theorem 8.7.3 states an upper bound of 2n on KQ(|x〉|n). This leaves
a relatively large gap with the lower bound of n established in Theo-
rem 8.7.4. Exercise 8.7.1 shows that there are states |x〉 withKQ(|x〉|n) ≥
2n− 2 logn−O(1); in fact, most states satisfy this. The proof supports
about the same incompressibility results as in this section, with n re-
placed by 2n− 2 logn. 3

Example 8.7.7 For classical complexity we haveKQ(x, x) = KQ(x) +O(1), since a clas-
sical program to compute x can be used twice; indeed, it can be used
many times. In the quantum world things are not so easy: the no-cloning
property of quantum mechanics prevents cloning an unknown pure state
|x〉 perfectly to obtain |x〉|x〉: that is,KQ(|x〉) < KQ(|x〉|x〉) ≤ 2KQ(|x〉)
+O(1). 3

Exercises 8.7.1. [34] Show that all but an exponentially vanishing fraction of
states |x〉 have KQ(|x〉|n) ≥ 2n− 2 logn−O(1).

Comments. This shows that most pure quantum states are maximally
incompressible, in line with the classical case. Hint: Since the quantum
Kolmogorov complexity of an n-qubit state is ≤ 2n + O(1), the set of
directly computable pure n-qubit states has cardinality A ≤ 22n+O(1).
The set of unit vectors in HN forms the surface of the N -dimensional
ball with unit radius in Hilbert space. Every vector can be described by
a directly computable vector closest to it and the fidelity part. Source:
P. Gács, J. Phys. A: Math. Gen., 34(2001), 6859–6880.

8.7.2. [37] Define the notion of a quantum Turing machine, and show
that there is a universal quantum Turing machine that can simulate t
steps of every other quantum Turing machine on input x up to precision
ǫ (in the fidelity sense) in time polynomial in t, l(x), and 1/ǫ.
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Comments. Source: E. Bernstein and U. Vazirani, SIAM J. Comput.,
26:5(1997), 1411–1473.

8.7.3. [34] Show that every quantum Turing machine can be simulated
to every degree of precision by a quantum Turing machine that has a
single primitive rotation θ with cos θ = 3

5 and sin θ = 4
5 .

Comments. Hence, we can restrict ourselves to such quantum Turing
machines in the definition of KQ. Then, there are only countably many
Turing machines, they can be enumerated, and the universal machine
simulates the others exactly. L.M. Adleman, J. DeMarrais, and M.-D.A.
Huang SIAM J. Comput., 26:5(1997), 1524–1540.

8.7.4. [35] Let |x〉 be a pure quantum state. LetQCǫ(|x〉) be the length
k of the smallest qubit program that when given |x〉 as input together
with ǫ, results in an output density matrix σ such that 〈x | σ | x〉 ≥ 1−ǫ.
(This requires the proper definition of a quantum Turing machine that
takes qubit strings as input.) We write QC(|x〉) ≤ k if there is a k-qubit
state |p〉 such that for all ǫ of the form 1/m, if |p〉 and ǫ are given as
input to the reference quantum Turing machine, we obtain an output
density matrix σ with 〈x | σ | x〉 with probability at least 1 − ǫ. Show
that:

(a) For classical strings x we have QC(x) = C(x) ±O(1).

(b) For every n, there is a classical x of length n such that QC(x) ≥ n,
and at least 2n − 2n−c + 1 mutually orthogonal qubit strings of length
n have complexity at least n− c.

(c) For every m and n there is an n-bit qubit state |x〉 such that with
N = 2n, the complexity of multiples |x〉⊗m consisting of m copies of |x〉
satisfies

log

(
m+N − 1

m

)

≤ QC(|x〉⊗m).

(d) For everym and n, every n-bit qubit state |x〉 satisfies, with N = 2n,

QC(|x〉⊗m) ≤ log

(
m+ 2QC(|x〉)−1

2QC(|x〉)−1

)

+O(logm).

(e) For every pair of qubit strings |x〉 and |y〉 we have

QC(|x〉, |y〉) ≤ QC(|x〉, |x〉) +QC(|y〉||x〉) +O(logQC(|x〉)).

Comments. This is the quantum Kolmogorov complexity with qubit
string descriptions [A. Berthiaume, W. van Dam, and S. Laplante, J.
Comput. Systems Sci., 63:2(2001), 201–221].
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8.7.5. [44] In analogy with the universal (greatest) lower semicom-
putable probability mass function m, show that there exists a universal
(greatest) lower semicomputable density matrix, denoted by µ. We can
define the complexity of a pure quantum state |x〉 in two manners:

KG(|x〉) = −〈x | logµ | x〉,
Kg(|x〉) = − log 〈x | µ | x〉.

We use QC and QCǫ according to the definitions in Exercise 8.7.4.

(a) Show that Kg(|x〉) ≤ KG(|x〉) +O(1).

(b) Show that there are pure quantum states |x〉 in HN with N = 2n

such that Kg(|x〉) = O(1) and KG(|x〉) = n/2 +O(1).

(c) Show that Kg(|x〉) ≤ KQ(|x〉) +O(1) ≤ 4Kg(|x〉) + 2 logKg(|x〉) +
O(1).

(d) Let |x1〉, |x2〉, . . . be a computable sequence of orthogonal states.
Show that KG(|xi〉) = Kg(|xi〉) +O(1) = C(xi) + O(1), for all i.

(e) Show that KG(|x〉) ≤ n+O(1) for an n-qubit state |x〉.
(f) Show that K(x) = KG(|x〉)+O(1) ≤ QC(|x〉)+K(QC(|x〉))+O(1).

(g) Show that for ǫ < 1
2 , ifQCǫ(|x〉) ≤ k, thenKG(|x〉) ≤ k+K(k)+2ǫn.

(h) Show that for every rational ǫ and every computable density matrix
µ we have QCǫ(|x〉) ≤ 〈x | − logµ | x〉 / ǫ+K(µ).

(i) Show that for every rational ǫ and every computable density matrix µ
we have QCǫ(|x〉|χ) ≤ KG(|x〉)/ǫ+O(1), where χ is the infinite binary
characteristic sequence of the halting set, Definition 1.7.3 on page 34.
(The notion of an oracle with a read-only classical oracle tape is not
problematic.)

(j) For |x〉 and |y〉 being n-qubit states, show thatKG(|x〉|y〉) ≤ KG(|x〉)
+KG(|y〉) +O(1), and similarly for Kg.

(k) For |x〉 and |y〉 being n-qubit states, show thatKG(|x〉) ≤ KG(|x〉|y〉)
+O(1), and similarly for Kg.

(l) Show that for every m and n, for some n-bit qubit state |x〉, with
N = 2n, the complexity of multiples satisfies

log

(
m+N − 1

m

)

≤ Kg(|x〉⊗m).

(m) Show that for every m and n, every n-bit qubit state |x〉 satisfies,
with N = 2n,

KG(|x〉⊗m) ≤ log

(
m+N − 1

m

)

+O(logm).



8.8. Compression in Nature 711

Comments. Hint for Item (b): use the n-qubit pure quantum state |x〉 =
1√
2
(|00 . . . 0〉 + |11 . . . 1〉). Source: P. Gács, Ibid.

8.7.6. [29] Show that the complexity of multiples for KQ satisfies the
following. First, for every m and n there is an n-bit qubit state |x〉 such
that with N = 2n, the complexity of multiples satisfies

log

(
m+N − 1

m

)

≤ KQ(|x〉⊗m).

Second, for every m and n, every n-bit qubit state |x〉 satisfies, with
N = 2n,

KQ(|x〉⊗m) ≤ 4

[

K(m) + log

(
m+N − 1

m

)

+O(logm)

]

.

Comments. Hint: use the argument to prove Exercise 8.7.4, Items (d),
(e), combined with Exercise 8.7.5, Items (a), (c), (l), (m). Source: P.M.B.
Vitányi, IEEE Trans. Inform, Theory, 47:6(2001), 2464–2479; Correc-
tion, 48:4(2002), 1000.

8.7.7. [26] Prove the nonsubadditivity property of KQ in two ways.
First, show that there are n-qubit states |x〉 and |y〉 such that

KQ(|x〉|y〉) > KQ(|x〉) > KQ(|x〉| |y〉) +K(|y〉).

Second, show that there are infinitely many m and n such that

KQ(|x〉⊗m > KQ(|x〉⊗m/2| |x〉⊗m/2) +KQ(|x〉⊗m/2),

where > is meant in the sense of ‘6< up to an additive constant.’

Comments. Hint for Item (a): use |y〉 = 1√
2
(|00 . . . 0〉 + |x〉). Source:

P.M.B. Vitányi, Ibid.

8.8

Compression

in Nature

Learning, in general, appears to involve compression of observed data or
the results of experiments. It may be assumed that this holds both for
the organisms that learn, as well as for the phenomena that are being
learned. If the learner can’t compress the data, he or she doesn’t learn.
If the data are not regular enough to be compressed, the phenomenon
that produces the data is random, and its description does not add value
to the data of a generalizing or predictive nature.

8.8.1
Compression by
Ants

In everyday life, we continuously compress information that is presented
to us by the environment. Perhaps animals do this as well, as the follow-
ing experiment reported by Zh.I. Reznikova and B.Ya. Ryabko [Problems
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FIGURE 8.19. The maze: a binary tree constructed from matches

Inform. Transmission, 22:3(1986), 245–249] suggests. The authors claim
that the transmission of information by ants using tactile code is a well-
established fact. This led the researchers to probe both the information
transmission rate and message-compressing capabilities of ants. We de-
scribe the latter issue.

Colonies of ants (Formica sanguinea) were put in artificial nests on lab-
oratory tables. The ants were fed only once every three days, but only
at some exit of a maze. This maze was a binary tree, as shown in Fig-
ure 8.19, with the root connecting to the nest and the food source at a
leaf.

Each leaf contained a feeder. Only one feeder contained sugar syrup. All
other feeders were empty. Since the tree was constructed by matches
floating on water, the ants could not take short cuts. To reach the maze,
an ant had to cross a bridge. This allowed hiding the maze in order that
the remaining ants could not see the maze from their nest. To prevent
marking of the trail by odorous substances, matches crossed by the ants
were periodically replaced with fresh ones. During the experiments, the
ants were marked with individual and group labels. Experiments with
different numbers of branches were conducted in several sessions. In each
case, the number of correct and wrong turns made by the ants was
recorded, and also the total duration of tactile contacts between scouts
and foragers was measured.

First, the scout ants would venture out to look for food. After a scout
located the syrup in the maze, it returned to the nest to communicate
the way to the syrup to the forager ants. Subsequently, the scouts were
isolated and the foragers went in search of the syrup with, presumably,
second-hand information. The simplest maze used was a two-leaf tree. In
this setting, the scouts had to communicate only one bit. In the course
of the experiment the depth of the tree was increased to 6. Since the
scouts still managed to transmit the location of the syrup, the number
of messages the ants could communicate is at least 27 − 1 = 127.
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No. sequence of mean time sample standard number
turns to syrup sec. deviation of tests

1 LLL 72 8 18
2 RRR 75 5 15
3 LLLLLL 84 6 9
4 RRRRR 78 8 10
5 LLLLL 90 9 8
6 RRRRRR 88 9 5
7 LRLRLR 130 11 4
8 RLRLRL 135 9 8
9 LLR 69 4 12
10 LRLL 100 11 10
11 RLLLR 120 9 6
12 RRLRL 150 16 8
13 RLRRRL 180 20 6
14 RRLRRR 220 15 7
15 LRLLRL 200 18 5

FIGURE 8.20. Time required for Formica sanguinea scouts to transmit

information about the direction to the syrup to the forager ants

Let L mean a left turn and R a right turn. It was found that the ants
could communicate simple roads, like LLLLLL or LRLRLR, faster than
more random roads. This seems to indicate that the ants compress the
information before transmitting it.

The table in Figure 8.20 contains the results of the experiments. Ap-
parently, it takes a longer time for the scouts to communicate random
sequences to the foragers than to communicate regular sequences.

8.8.2
Compression by
Science

Science may be regarded as the art of data compression. Compression
of a great number of experimental data into the form of a short natural
law yields an increase in predictive power, as shown in Chapter 5.

Whether science can exist would seem to depend on the question whether
the mass of experimentally obtained data form a compressible sequence.
A randomly generated string (or universe) is with overwhelming proba-
bility not algorithmically compressible.

In Section 2.6 it was shown that maximally random sequences must con-
tain logarithmically long very regular sequences. It may be the case that
our part of the universe is an oasis of regularity in a maximally random
universe. In practice, discovery of scientific laws with great predictive
powers and many applications progresses spectacularly. This evidences,
even if it doesn’t prove, inherent order in our universe. According to
Francis Bacon (1561–1626), “The eye of the understanding is like the
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eye of the sense: for as you may see great objects through small cran-
nies or levels, so you may see great axioms of nature through small and
contemptible instances.”

8.9
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K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and
Computation, Wiley, 1992].

Section 8.3 follows [C.H. Bennett, P. Gács, M. Li, P.M.B. Vitányi, and
W.H. Zurek, IEEE Trans. Inform. Theory, 44:4(1998), 1407–1423]. In-
formation distance was developed originally with thermodynamics of
computation in mind [M. Li and P.M.B. Vitányi, Proc. IEEE Workshop
on Physics and Computation, Dallas, 1992, 42–46 (complete version in
the Preliminary Proceedings of the 1992 Conference); M. Li and P.M.B.
Vitányi, Proc. Royal Soc. London, Ser. A, 452(1996), 769–789].

Further developments diverged in a theoretical direction and a practical
one. On the theoretical side, N.K. Vereshchagin observed and suggested
that the mutual information condition C(x)−C(x|y) = 0 can possibly be
replaced by the stronger requirement C(q|x) = 0 and C(p|y) = 0, which
led to the important work in Section 8.3.7. The main item, Muchnik’s
theorem, Theorem 8.3.7 appears in [An.A. Muchnik, Theoret. Comput.
Sci., 271(2002), 97–109]. Related topics have been investigated further
in a series of wonderful papers by Russian scientists [N.K. Vereshcha-
gin and M.V. Vyugin, Theoret. Comput. Sci., 271(2002), 131–143; A.V.
Chernov, An.A. Muchnik, A.E. Romashchenko, A.K. Shen, and N.K.
Vereshchagin, Theoret. Comput. Sci., 271(2002), 69–95; A.K. Shen and
N.K. Vereshchagin, Theoret. Comput. Sci., 271(2002), 125–129; An.A.
Muchnik and N.K. Vereshchagin, Proc. 16th Conf. Comput. Complex-
ity, 2001, pp. 256–265; M.V. Vyugin, Theoret. Comput. Sci., 271(2002),
145–150].

The practical direction of normalized information distance was initiated
by [M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang,
Bioinformatics 17:2(2001), 149–154]. Initially for the purpose of compar-
ing genomes of different sizes, it introduced the ideas of alignment-free
whole genome phylogeny and shared information distance, based on the
normalized sum distance E4, Theorem 8.3.6 and Exercise 8.4.5. They
showed that it is possible to replace Kolmogorov complexity by common
compression programs and still achieve good results, Example 8.4.4. C.H.
Bennett, M. Li, and B. Ma [Scientfic American, 288:6(2003), 76–81] fur-
ther applied this approach to infer the evolutionary history of some chain
letters. These publications were based on research in 1998–1999.

Previously, there had been efforts to use the asymmetric conditional
Kolmogorov complexity [S. Grumbach and F. Tahi, J. Inform. Process.
Management, 30:6(1994) 857–866] or a problem-dependent transforma-
tion distance, specific only for genomes, also in the spirit of conditional
Kolmogorov complexity [J.S. Varré, J.P. Delahaye, and É. Rivals, Bioin-
formatics 15:3(1999), 194–202].
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Section 8.4 and the applications in Section 8.4.3 are based on the normal-
ized version of the more optimal max distance versionE1, Theorem 8.3.2,
as used in [M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitányi, IEEE
Trans. Inform. Theory, 50:12(2004), 3250–3264]. This reference is based
on research in 2000–2001. (The survey [M. Li and P.M.B. Vitányi, pp.
376–382 in: Int. Ency. Social & Behav. Sci., N.J. Smelser, P.B. Baltes,
eds., Pergamon, Oxford, 2001/2002] already mentions normalized max
distance and its metricity.) Other applications in phylogeny are recon-
struction of the language tree and authorship attribution [D. Benedetto,
E. Caglioti, V. Loreto, Phys. Rev. Lett., 88:4(2002), 048702 in indepen-
dent work using a related compression-based distance; M. Li, X. Chen,
X. Li, B. Ma, and P.M.B. Vitányi, Ibid], and plagiarism detection [X.
Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, IEEE Trans. In-
form. Theory, 50:7(2004), 1545–1551].

The method was first applied to hierarchical clustering of nontreelike
data (nonphylogeny), see the example in Section 8.4.3, in research dat-
ing from 2002/2003 published in [R.L. Cilibrasi, P.M.B. Vitányi, and
R. de Wolf, Comput. Music J., 28:4(2004), 49–67] about music clus-
tering, and [R.L. Cilibrasi and P.M.B. Vitányi, IEEE Trans. Inform.
Theory 51:4(2005), 1523–1545] about general hierarchical clustering and
classification of artificial data, heterogeneous data, genomics, viruses,
fungi, languages, literature, music, optical character recognition, and
astronomical data. In the latter paper an axiomatic treatment of the
normalized compression distance of Equation 8.13 on page 664, based
on real-world compressors, is given together with a proof of metricity;
see Exercise 8.4.6 on page 672.

Applications of various forms of normalized information distance have
become standard in many areas. A few of those applications are [A.
Kraskov, H. Stögbauer, R.G. Andrzejak, and P. Grassberger, Europhys.
Lett. 70:2(2005), 278–284], software design [S.R. Kirk and S. Jenkins,
J. Systems and Software, 72(2004), 179–186], protein sequence classifi-
cation [A. Kocsor, A. Kertesz-Farkas, L. Kajan, and S. Pongor, Bioin-
formatics, 22:4(2006), 407–412], measuring protein structure similarity
[N. Krasnogor and D.A. Pelta, Bioinformatics 20:7(2004), 1015–1021],
phylogenetic reconstruction [C. Ané and M.J. Sanderson, Systematic Bi-
ology, 54:1(2005), 146–157; S.L.K. Pond, S.D.W. Frost, and S.V. Muse,
Bioinformatics 21:5(2004), 676–679; H.H. Otu and K. Sayood, Bioinfor-
matics 19:6(2003), 2122–2130], hurricane risk assessment [K. Emanuel, S.
Ravela, E. Vivant, and C. Risi, “A combined statistical-deterministic ap-
proach of hurricane risk assessment,” Program in Atmospheres, Oceans,
and Climate, MIT, 2005], SVM kernel for string classification [M. Cuturi
and J.P. Vert, Neural Networks, 18:4(2005), 1111–1123], ortholog detec-
tion [H.K. Pao and J. Case, Int. Conf. Comput. Intell. Dec. 17–19, 2004,
Istanbul Turkey], clustering fetal heart rate tracings in clinical medical
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data [C. Costa Santos, J. Bernardes, P.M.B. Vitányi, and L. Antunes,
Proc. 19th IEEE Int. Symp. Computer-Based Medical Systems, 2006,
685–690], analyzing worms and network traffic, S. Wehner [J. Comput.
Security, 15:3(2007), 303–320], network structure and dynamic behav-
ior [M. Nykter, N.D. Price, A. Larjo, T. Aho, S.A. Kauffman, O. Yli-
Harja, and I. Shmulevich, Phys. Rev. Lett., 100(2008), 058702(4)], gene
expression dynamics in macrophage exhibiting criticality [M. Nykter,
N.D. Price, M. Aldana, S.A. Ramsey, S.A. Kauffman, L.E. Hood, O.
Yli-Harja, and I. Shmulevich, Proc. Nat. Acad. Sci. USA, 105:6(2008),
1897–1900], and the open-source Complearn toolkit of R.L. Cilibrasi at
www.complearn.org.

The normalized information distance has been validated by performance
studies confirming that it is superior or competitive: [E.J. Keogh, S.
Lonardi, and C.A. Rtanamahatana Proc. ACM SIGKDD Int. Conf.
Knowledge Discov. Data Mining, 2004, 206–215; E.J. Keogh, S. Lonardi,
C.A. Rtanamahatana, L. Wei, S.H. Lee, and J. Handley, Data Min.
Knowl. Disc., 14:1(2007), 99–129] did a massive comparative perfor-
mance study of the compression-based normalized information method
with other methods used in data-mining of time sequences; see the com-
ment on page 666. P. Ferragina, R. Giancarlo, V. Greco, G. Manzini,
and G. Valiente, [BMC Bioinformatics, 8:1(2007) Jul 13, 252 17629909]
experimentally tested the normalized information distance using 25 com-
pressors to obtain the NCD, and six data sets of relevance to molecular
biology; see the comment on page 665. M. Cebrián, M. Alfonseca, A. Or-
tega, [Commun. Inform. Syst., 5:4(2005), 367–384] investigated how far
the performance of real-world compressors like gzip, bzip2, and PPMZ
satisfy the identity axiom of a normal compressor Z, see Exercise 8.4.6
on page 672, as well as a performance study on the well-known Calgary
Corpus. The same authors have shown in [IEEE Trans. Inform. Theory,
53:5(2007), 1895–1900] that the NCD is resistant to noise.

Section 8.4.4 is based on [R.L. Cilibrasi and P.M.B. Vitányi, IEEE Trans.
Knowledge Data Engin., 19:3(2007), 370–383]. This paper introduced the
idea of approximating a normalized semantic distance between names for
objects and abstract concepts in general using Internet statistics in the
normalized compression distance formula, with application to clustering,
classification, and language translation. A massive experiment compar-
ing the performance with the human-expert-entered information in the
WordNet database yielded a mean accuracy of agreement of 87.25%.
The method opens the door to a wider range of applications of the nor-
malized information distance, for example [W. Wong, W. Liu, and M.
Bennamoun, Proc. ACM Int. Symp. Practical Cogn. Agents and Robots,
2006, 177–191], and the QUANTA question–answer system incorporat-
ing an application of normalized information distance [X. Zhang, Y. Hao,
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X. Zhu, and M. Li, Proc. 13th ACM SIGKDD Int. Conf. Knowledge Dis-
cov. Data Mining, 2007, 874–883].

Replacing Kolmogorov complexity by real-world compression has re-
cently been used to do statistical testing, for example in [B.Ya. Ryabko,
J. Astola, and A. Gammerman Theoret. Comput. Sci., 1–3(2006), 440–
448; B.Ya. Ryabko and J. Astola, Statistical Methodology, 3:4( 2006),
375–397].

For classical thermodynamics and entropy see [E. Fermi, Thermodynam-
ics, Dover, 1956]. We partly used the survey [J. Schumacher, CWI Quar-
terly, 6:2(1993), 97–120]. The study of statistical thermodynamics using
Kolmogorov complexity was begun by C.H. Bennett, [Int. J. Theoret.
Phys., 21:12(1982), 905–940; Scientific American, 257(Nov, 1987), 108–
116]. Initially, the algorithmic entropy of Section 8.6.1 was proposed by
W.H. Zurek [Phys. Rev. A, 40:8(1989), 4731–4751; pp. 73–89 in Complex-
ity, Entropy and the Physics of Information, W.H. Zurek, ed., Addison-
Wesley, 1991; Nature, 341(September 1989), 119–124] under the name
physical entropy.

The initial discussion of Maxwell’s demon accounting for the thermody-
namic cost of irreversible information erasure as in Example 8.6.1 is due
to C.H. Bennett [Int. J. Theoret. Phys., 21:12 (1982), 905–940; Scientific
American, 257(Nov, 1987), 108–116]. These papers contain an excellent
exposition on Maxwell’s demon, including a construction of a device for
measuring the position of a molecule. This type of solution was further
explored by W.H. Zurek using physical entropy arguments in [Nature,
341(September 1989), 119–124; Phys. Rev. A, 40:8(1989), 4731–4751;
pp. 73–89 in Complexity, Entropy and the Physics of Information, W.H.
Zurek, ed., Addison-Wesley, 1991]. The discussion on Maxwell’s demon
in Example 8.6.1, and Claim 8.6.1, follow by and large Zurek’s discus-
sion. The Szilard engine was described by L. Szilard in a paper entitled
“On the decrease of entropy in a thermodynamic system by the inter-
vention of intelligent beings” [Z. Phys., 53(1929), 840–856]. Szilard in
this paper in fact also discovered the relationship between entropy and
information. However, this was not generally accepted until this relation
was rediscovered by C.E. Shannon in the 1940s. A collection of these and
other key papers on this topic is H.S. Leff and A.F. Rex, eds. [Maxwell’s
Demon: Entropy, Information, Computing, Princeton University Press,
1990; Maxwell’s Demon 2: Entropy, Classical and Quantum Informa-
tion, Computing, Institute of Physics Publishing, London, 2002]. See
also [R.G. Brewer and E.L. Hahn, Scientific American, December 1984,
42–49].

An initial approach to an algorithmic thermodynamics was partially
published in [M. Li and P.M.B. Vitányi, Proc. 19th Int. Colloq. Au-
tomata, Languages and Prog., Lect. Notes Comp. Sci., Vol. 623, Springer-
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Verlag, Berlin, 1992, 1–16]. P. Gács removed scale-dependence of our ap-
proach by adding coarse-graining and randomness tests, obtaining the
physical entropy of W.H. Zurek, Ibid. from mathematical first principles.
The definition of algorithmic entropy in Section 8.6.2 and most results
and examples are based on the treatment using continuous time by P.
Gács, Proc. 2nd IEEE Workshop on Physics and Computation, 1994,
209–216. We have tried to simplify the discussion by discretizing time.
We have considered a state space {0, 1}∞. An analogous treatment can
be given with the state space R, the real numbers. Since this space has
a different metric, we need to define appropriate notions of continuity,
computablity, and semicomputability of functions over it. Let us look at
some inherent distinctions between the R and {0, 1}∞ spaces. Our space
is {0, 1}∞ with the µ-metric. In this space, the function f(ω) = 0 for
ω ∈ Γ0 and f(ω) = 1 for ω ∈ Γ1 is a continuous computable function.
This is different from the situation in case of the set of real numbers R.
If we take the space to be R with the µ-metric defined by the measure of
all nonzero intervals (instead of just the cylinders), then the analogous
function f(r) = 0 for r < 1

2 , and f(r) = 1 for r ≥ 1
2 , is not continuous

and not computable. Namely, however close we approximate r = 1
2 , we

may never know whether f(r) = 0 or f(r) = 1.

Separating the information in an object into a part (or model) account-
ing for the useful information, the regularities, and a part describing the
remaining random information was first proposed by Kolmogorov as the
algorithmic sufficient statistic treated in Section 5.5.1. Related ideas are
‘sophistication’ in Exercise 5.5.20 on page 429 and in general the idea
of two-part codes, Section 2.1.1, and the minimum description length
(MDL) principle of Section 5.4. The latter approach is a statistical in-
ference method to obtain the right hypothesis, or model, for a given data
sample. Here ‘right’ means capturing the regular, or useful, aspects of
the data. Similar ideas were proposed in [M. Gell-Mann, The Quark and
the Jaguar, W.H. Freeman, New York, 1994; M. Gell-Mann, Complex-
ity, 1:1(1995), 16–19; M. Gell-Mann and S. Lloyd, Complexity, 2:1(1996),
44–52] and applied to quantum-mechanics theory in [M. Gell-Mann and
J.B. Hartle, Proc. 4th Drexel Symp. Quantum Non-Integrability—The
Quantum Classical Correspondence, D.H. Feng and B.L. Hu, eds., 1997,
pp. 3–35] and to the theory of adaptation and control in [S. Lloyd and
J.J. Slotine, Int. J. Adapt. Control Signal Process., 10(1996), 499]. The
sum of the useful information and the random information is called ‘to-
tal information.’ It is another version of W.H. Zurek’s [Ibid.] physical
entropy, and is closely related to both the MDL principle (Section 5.4),
and algorithmic entropy of Section 8.6.2.

[J. Ford, Phys. Today, (April 1983), 40–47; “Chaos: Solving the un-
solvable, predicting the unpredictable,” in Chaotic Dynamics and Frac-
tals, M.F. Barnsley and S.G. Demko, eds., Academic Press, 1986] may
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be the earliest paper applying Kolmogorov complexity to chaos. Use
of Kolmogorov complexity and information theory to analyze quantum
chaos related to issues in Section 8.6.2 are [R. Schack, G.M. D’Ariano,
and C.M. Caves, Phys. Rev. E, 50(1994), 972]; and R. Schack and C.
Caves [Phys. Rev. E, 53:4(1996), 3257–3270; Phys. Rev. E, 53:4(1996),
3387–3401]. The relation between chaos, Kolmogorov complexity, unpre-
dictability, and instability is treated in [P.M.B. Vitányi, pp. 301–317 in
Kolmogorov’s Heritage in Mathematics, E. Charpentier, A. Lesne, and
N.K. Nikolski, eds., Springer-Verlag, Berlin, 2007.]

Section 8.7 on quantum Kolmogorov complexity is based on the version
using classical descriptions in [P.M.B. Vitányi,, IEEE Trans. Inform.
Theory, 47:6(2001), 2464–2479; Correction, 48:4(2002), 1000]. Apart from
this, there are two other main versions of quantum Kolmogorov complex-
ity. In the exercises we discuss the version based on qubit descriptions
[A. Berthiaume, W. van Dam, and S. Laplante, J. Comput. Systems Sci.,
63:2(2001), 201–221], and the version based on the universal lower semi-
computable density matrix, forming a connection between the previous
two approaches [P. Gács, J. Phys. A: Math. Gen., 34(2001), 6859–6880].
Yet another version results from fixing the approximation precision (fi-
delity) in the classical description of quantum states [C.E. Mora and
H.J. Briegel, Phys. Rev. Lett., 95(2005), 200503; Int. J. Quantum Infor-
mation, 4(2006), 715; (and with B. Kraus), Arxiv quant-ph/0610109].
For considerations of halting and universality of quantum Turing ma-
chines and incompressibility of quantum Kolmogorov complexity in the
Berthiaume–van Dam–Laplante model see also [M. Müller, Quantum
Kolmogorov Complexity and the Quantum Turing Machine, PhD thesis,
Technische Univ. Berlin, Germany, 2007] and the references therein. An
early paper mentioning quantum Kolmogorov complexity is [K. Zvozil,
Quantum algorithmic information theory, Arxiv quant-ph/9510005, 1995].

The experiment with ants is reported by Zh.I. Reznikova and B.Ya.
Ryabko [Probl. Inform. Transmission, 22(1986), 245–249; Probl. Inform.
Transmission, 31:4(1995), 25–30] and [Zh.I. Reznikova, Animal Intel-
ligence: From Individual to Social Cognition, Cambridge Univ. Press,
2007]. In a similar spirit, J. Feldman [Nature, 407:5(2000), 630–633]
reported that human concept learning depends on the length of the
shortest Boolean formulas expressing the concept. Further studies re-
lating the concept of simplicity in psychology and cognition to Kol-
mogorov complexity can be found in [J. Feldman, Curr. Directions Psy-
chol. Sci., 12:6(2003), 227–232], N. Chater and P.M.B. Vitányi [Trends
Cognitive Sci., 7(1)(2003), 19–22; J. Math. Psychology, 47:3(2003), 346–
369; J. Math. Psychology, 51:3(2007), 135–163], and [T.L. Griffiths, J.B.
Tenenbaum, Proc. 25th Ann. Conf. Cognitive Sci. Soc., 2003; Cognition,
103:2(2007), 180-226]. Francis Bacon is quoted from Sylva Sylvarum, 337,
1627.
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[5] P. Adriaans and P.M.B. Vitányi. Approximation of the two-part MDL
code. IEEE Trans. Inform. Theory. To appear.

[6] V.N. Agafonov. Normal sequences and finite automata. Soviet Math.
Dokl., 9:324–325, 1968.

[7] V.N. Agafonov. On algorithms, frequency and randomness. PhD thesis,
University of Novosibirsk, Novosibirsk, 1970.

[8] G. Aggarwal, Q. Cheng, M.H. Goldwasser, M.Y. Kao, P. Moisset de Es-
panes, and R.T. Schweller. Complexities for generalized models of self-
assembly. SIAM J. Comput., 34:1493–1515, 2005.

[9] M. Agrawal, E. Allender, and S. Rudich. Reductions in circuit complex-
ity: an isomorphism theorem and a gap theorem. J. Comput. Syst. Sci.,
57(2):127–143, 1998.

[10] P.S. Aleksandrov. A few words on A.N. Kolmogorov. Russian Math.
Surveys, 38(4):5–7, 1983.

[11] V.M. Alekseev and M.V. Yakobson. Symbolic dynamics and hyperbolic
dynamical systems. Physics Reports, 75:287–325, 1981.

[12] E. Allender. Some consequences of the existence of pseudorandom gen-
erators. J. Comput. System Sci., 39:101–124, 1989.

[13] E. Allender. Applications of time-bounded Kolmogorov complexity in
complexity theory. In O. Watanabe, editor, Kolmogorov Complexity and
Computational Complexity, pages 4–22. Springer-Verlag, Berlin, 1992.



724 References

[14] E. Allender. When worlds collide: derandomization, lower bounds and
Kolmogorov complexity. In Proc. 21st Conf. Found. Software Technology
Theor. Comput. Sci., volume 2245 of Lect. Notes Comput. Sci., pages
1–15, Berlin, 2001. Springer-Verlag.

[15] E. Allender, H.M. Buhrman, and M. Koucký. What can be efficiently
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ment, 14, No. 54-55:125–128, 356, 1986.

[142] G.J. Chaitin. Algorithmic Information Theory. Cambridge Univ. Press,
Cambridge, England, 1987.
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[158] N. Chater and P.M.B. Vitányi. The generalized universal law of gener-
alization. J. Math Psychology, 47(3):346–369, 2003.
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[161] N. Chater, P.M.B. Vitányi, and N. Steward. Universal generalization
and universal inter-item confusability. Behavior and Brain Sciences,
24(4):559–660, 2001.

[162] F. Chen, J. Xu, F. Gu, X. Yu, X. Meng, and Z. Qiu. Dynamic process of
information transmission complexity in human brains. Biol. Cybernetics,
83:355–366, 2000.

[163] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker. Shared infor-
mation and program plagiarism detection. IEEE Trans. Inform. Theory,
50(7):1545–1550, 2004.

[164] X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA se-
quences. IEEE Eng. Med. Biol. Magaz., 20(4):61–66, 2001.



732 References

[165] Q. Cheng and F. Fang. Kolmogorov random graphs only have trivial
stable colorings. Inform. Process. Lett., 81(3):133–136, 2002.

[166] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sums of observations. Ann. Math. Stat., 23:493–509, 1952.

[167] A.V. Chernov, An.A. Muchnik, A.E. Romashchenko, A.K. Shen, and
N.K. Vereshchagin. Upper semi-lattice of binary strings with the relation
“x is simple conditional to y”. Theor. Comput. Sci., 271(1-2):69–95,
2002.

[168] I. Chlamtac and A. Farago. A new approach to the design and analysis
of peer-to-peer mobile networks. Wireless Networks, 5:149–156, 1999.

[169] M. Chrobak and M. Li. k + 1 heads are better than k for PDAs. J.
Comput. System Sci., 37:144–155, 1988.

[170] F.R.K. Chung, R.E. Tarjan, W.J. Paul, and R. Reischuk. Coding strings
by pairs of strings. SIAM J. Algebra Discrete Math., 6(3):445–461, 1985.

[171] A. Church. On the concept of a random sequence. Bull. Amer. Math.
Soc., 46:130–135, 1940.

[172] R.L. Cilibrasi. The complearn toolkit. www.complearn.org, 2003.
[173] R.L. Cilibrasi and P.M.B. Vitányi. Clustering by compression. IEEE
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[269] P. Gács. Lecture notes on descriptional complexity and randomness.
Technical report, Comput. Sci. Dept., Boston Univ., 1988–2007.
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[287] R. Gavaldá and O. Watanabe. On the computational complexity of small
descriptions. SIAM J. Comput., 22(6):1257–1275, 1993.

[288] M. Gell-Mann. The Quark and the Jaguar. W.H. Freeman, New York,
1994.

[289] M. Gell-Mann. Remarks on simplicity and complexity. Complexity,
1(1):16–19, 1995.



738 References

[290] M. Gell-Mann and J.B. Hartle. Strong decoherence. In D.H. Feng and
B.L. Hu, editors, Proc. 4th Drexel Symp. Quantum Non-Integrability
– Quantum Classical Correspondence., pages 3–35. International Press,
Cambridge, Mass., 1997.

[291] M. Gell-Mann and S. Lloyd. Information measures, effective complexity,
and total information. Complexity, 2(1):44–52, 1996.

[292] M. Geréb-Graus and M. Li. Three one-way heads cannot do string
matching. J. Comput. System Sci., 48:1–8, 1994.

[293] B.V. Gnedenko. Andrei Nikolaevich Kolmogorov (on the occasion of his
seventieth birthday). Russian Math. Surveys, 28(5):5–16, 1973.

[294] S. Goel and S. Bush. Kolmogorov complexity estimates for detection
of viruses in biologically inspired security systems: a comparison with
traditional approaches. Complexity Journal, 9(2), 2003.

[295] E.M. Gold. Language identification in the limit. Inform. Contr., 10:447–
474, 1967.

[296] A. Goldberg and M. Sipser. Compression and ranking. SIAM J. Com-
put., 20:524–536, 1991.

[297] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. Assoc. Comput. Mach., 33:792–807, 1986.

[298] P. Grassberger. Towards a quantitative theory of self-generated com-
plexity. Int. J. Theor. Physics, 25(9):907–938, 1986.

[299] T.L. Griffiths and J.B. Tenenbaum. From algorithmic to subjective ran-
domness. In Advances in Neural Information Processing Systems 16.
NIPS 2003, MIT Press, 2004.

[300] T.L. Griffiths and J.B. Tenenbaum. From mere coincidences to mean-
ingful discoveries. Cognition, 103(2):180–226, 2007.

[301] R.I. Grigorchuk. A connection between algorithmic problems and en-
tropy characteristics of groups. Soviet Math. Dokl., 32:356–360, 1985.

[302] S. Grigorieff and J.Y. Marion. Kolmogorov complexity and nondeter-
minism. Theor. Comput. Sci., 271(1-2):151–180, 2002.

[303] P. Grünwald. A minimum description length approach to grammar in-
ference. In Lect. Notes Artif. Intell., volume 1040, pages 203–216, 1996.

[304] P.D. Grünwald. The Minimum Description Length Principle. MIT Press,
2007.

[305] P.D. Grünwald, J. Myung, and M.A. Pitt, editors. Advances in Minimum
Description Length: Theory and Applications. MIT Press, 2005.
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[324] J.M. Hitchcock, M. López-Valdés, and E. Mayordomo. Scaled dimension
and the Kolmogorov complexity. In Proc. 29th Int. Symp. Math. Found.
Comput. Sci., volume 3153 of Lect. Notes Comput. Sci., pages 476–487,
Berlin, 2004. Springer-Verlag.

[325] J.M. Hitchcock and J.H. Lutz. Why computational complexity requires
stricter martingales. Theory Comput. Syst., 39(2):277–296, 2006.

[326] J.M. Hitchcock and N. V. Vinodchandran. Dimension, entropy rates,
and compression. J. Comput. Syst. Sci., 72(4):760–782, 2006.

[327] G. Hotz. Komplexität als Kriterium in der Theorienbildung. Akademie
der Wissenschaften und der Literatur (Mainz)/Abhandlungen Mathema-
tisch-Naturwissenschaftliche Klasse, 1, 1988. Steiner-Verlag, Wiesbaden.

[328] T. Housel and V.A. Kanevsky. Re-engineering business processes: a com-
plexity theory approach. Inform. Syst. Operations Res., 33(4), 1995.

[329] D.A. Huffman. A method for construction of minimum-redundancy
codes. Proceedings IRE, 40:1098–1101, 1952.

[330] M. Hühne. Linear speed-up does not hold on Turing machines with tree
storages. Inform. Process. Lett., 47(6):313–318, 1993.

[331] M. Hühne. On the power of several queues. Theor. Comput. Sci.,
113(1):75–91, 1993.

[332] M. Hutter. New error bounds for Solomonoff prediction. J. Comput.
Syst. Sci., 62(4):653–667, 2001.



740 References

[333] M. Hutter. The fastest and shortest algorithm for all well-defined prob-
lems. Int. J. Found. Comput. Sci., 13(3):431–443, 2002.

[334] M. Hutter. Convergence and loss bounds for Bayesian sequence predic-
tion. IEEE Trans. Inform. Theory, 49(8):2061–2067, 2003.

[335] M. Hutter. On the existence and convergence of computable universal
priors. In Proc. 14th Conf. Algorithmic Learn. Theory, volume 2842 of
Lect. Notes Comput. Sci., pages 298–312, Berlin, 2003. Springer-Verlag.

[336] M. Hutter. Optimality of universal Bayesian sequence prediction for gen-
eral loss and alphabet. J. Mach. Learn. Res., 4:971–1000, 2003.

[337] M. Hutter. Universal Artificial Intelligence: Sequential Decisions Based
on Algorithmic Probability. Springer-Verlag, Berlin, 2005.

[338] M. Hutter. Sequential predictions based on algorithmic complexity. J.
Comput. Syst. Sci., 72:95–117, 2006.

[339] M. Hutter. On universal prediction and Bayesian confirmation. Theor.
Comput. Sci., 384(1):33–48, 2007.

[340] M. Hutter and An.A. Muchnik. On semimeasures predicting Martin-Löf
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[466] M. Li and P.M.B. Vitányi. Two decades of applied Kolmogorov com-
plexity: In memoriam A.N. Kolmogorov 1903–1987. In Proc. 3rd IEEE
Conf. Structure in Complexity Theory, pages 80–101, 1988.
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[476] M. Li and P.M.B. Vitányi. A new approach to formal language theory
by Kolmogorov complexity. SIAM J. Comput., 24(2):398–410, 1995.
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[519] P. Martin-Löf. The definition of random sequences. Inform. Contr.,
9:602–619, 1966.
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[650] C.P. Schnorr. Optimal Gödel numberings. In Proc. 1971 IFIP Congress,
TA-2, pages 12–14, Ljubljana, Yugoslavia, 1971.

[651] C.P. Schnorr. A unified approach to the definition of random sequences.
Math. Systems Theory, 5:246–258, 1971.

[652] C.P. Schnorr. Zufälligkeit und Wahrscheinlichkeit; Eine algorithmische
Begründung der Wahrscheinlichkeitstheorie, volume 218 of Lect. Notes
Math. Springer-Verlag, Berlin, 1971.

[653] C.P. Schnorr. Process complexity and effective random tests. J. Comput.
System Sci., 7:376–388, 1973.

[654] C.P. Schnorr. Rekursive Funktionen und ihre Komplexität. Teubner,
1974.

[655] C.P. Schnorr. A survey of the theory of random sequences. In R.E. Butts
and J. Hintikka, editors, Basic Problems in Methodology and Linguistics,
pages 193–210. D. Reidel, 1977.

[656] C.P. Schnorr. A review of the theory of random sequences. In Proc. 5th
Int. Congr. Logic, Meth. Phil. of Sci., London, Ontario, August 1975.

[657] C.P. Schnorr and P. Fuchs. General random sequences and learnable
sequences. J. Symbolic Logic, 42:329–340, 1977.

[658] C.P. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen.
Acta Informatica, 1:345–359, 1972.

[659] C.P. Schnorr and G. Stumpe. A characterization of complexity se-
quences. Z. Math. Logik und Grudl. Math., 21:47–56, 1975.



756 References
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[746] P.M.B. Vitányi. Multiprocessor architectures and physical law. In Proc.
2nd IEEE Workshop Phys. Comput., pages 24–29. IEEE Comput. Soc.
Press, 1994.
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Jurdziński, T., 528
Jurka, J., 437

König’s infinity lemma, 133
Kahn, J., 526
Kajan, L., 718
Kalyanasundaram, B., 459
Kamae, T., 59, 181, 213
Kanaya, J, 629, 715
Kannan, R., 509, 529
Kanovich, M.I., 184

Karp, R.M., 560
Kasami, T., 528
Katseff, H.P., 133, 159, 161, 194
Kauffman, S.A., 719
Kearney, P., 672, 717
Kearns, M., 434
Kemeny, J.G., 431
Keogh, E.J., 667, 719
Kertesz-Farkas, A., 718
Keuzenkamp, H.A., 437
Keyes, R.W., 716
Keynes, J.M., 56
Khintchin, A.I., 65, 88
Khoussainov, B., 235
Kim, C.E., 500
Kim, J., 526
Kirchherr, W.W., 469
Kirk, S.R., 718
Klauck, H., 519–521, 529
Kleene, S.C., 35, 41, 42
Knopp, K., 90
Knuth, D.E., xiii, 16, 17, 92, 93,

194, 480, 485, 486, 527
Ko, K.-I., 548, 575–577, 596, 598
Kobayashi, K., 334, 514, 586
Kocsor, A., 718
Kolmogorov Axioms, 18
Kolmogorov random graphs,

461–469
Kolmogorov structure function,

see structure function
Kolmogorov, A.N., 18, 49, 50, 52,

53, 55, 56, 65, 66, 73,
92–99, 103, 104, 110,
125, 142, 156, 158, 173,
192–195, 221, 256, 290,
327, 331, 332, 336, 424,
438, 439, 531, 596, 599,
721

Komlós, J., 458, 501
Koppel, M., 430, 439
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Loryś, K., 528
loss

logarithmic, 358, 422
measure, 358

Loui, M.C., 513, 514
Lovász, L., 434, 460
Loveland, D.W., 122, 130, 132,

156, 160, 162, 193, 237,
493, 496, 596

Low, L.H., 436
lower bounds, 469–530

k-PDA, 500

k-head automaton, 499
k-pass DFA, 500
Boolean matrix rank, 445
circuit depth, 521–524
converting NFA to DFA, 447
for Turing machines, 502–514
in formal language theory,

490–497
index size for text, 501
multihead automata,

499–501
one-tape Turing machine,

442
online CFL recognition,

497–499
parallel computation,

514–516
Ramsey theory, 454–455,

460, 490, 515, 526
routing in networks, 472–473
singly vs doubly linked list,

501
string-matching, 500
sweeping two-way DFA, 501

Luby, M., 588
Luccio, F.L., 476, 527
Lucier, B., 485
Lucretius, 340
Luginbuhl, D.R., 514
Luo, Z.Q., 458
Lutz, J.H., 133, 536, 546, 570,

598, 600

Müller, M, 722
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Rivest, R., 381, 397, 436, 500
Robbins, D., 672
Robinson, R.M., 45
Rockford Research, 333
Rogers, H., Jr., 41–47, 92, 112
Rolim, J.D.P., 597
Romashchenko, A.E., 607, 626,

714, 717
Ronneburger, D., 570, 581, 597



784 Index

Rooij, S. de, 715
Rosenberg, A., 500
Roth, K.F., 458
routing in networks, 469–476
routing table, 469
Roy, S., 597
Rozenberg, G., 490
Rtanamahatana, C.A., 667, 719
Rubinstein, R., 597
Rudich, S., 529, 561
rule of succession, see law, of

succession
run of zeros, 118
Russell, B., 177, 341
Russo, D., 597
Ryabko, B.Ya., 132, 720, 722
Ryabko, D, 433

Sakoda, W.J., 501
sample space, 6, 18

continuous, 18, 20
discrete, 18

Sanderson, M.J., 718
Sankoff, D., 489
Santos, C.C., 719
SAT, 39, 560, 563, 564, 568, 573,

575, 578
satisfiable, 39
Savitch, W.J., 569
Sayood, K., 718
Schöning, U., 459, 575–577, 598,

600
Schack, R., 625, 714, 722
Schaffer, R., 527
Schay, G, 525
Scheihing, R., 489
Schindelhauer, C., 334, 587
Schmidhuber, J., 599
Schmidt, W.M., 458
Schmidt-Goettsch, K., 46
Schnitger, G., 459, 510, 511, 525
Schnorr’s thesis, 164
Schnorr, C.P., 59, 115, 162–164,

194, 206, 221, 233, 235,
255, 256, 335–337

Schuler, R., 588
Schumacher, J., 720
Schweitzer, P, 460
Sedgewick, R., 527

Seiferas, J.I., 500, 512, 513, 525,
527

Seker, A., 718
self-delimiting code, see code,

self-delimiting
Semenov, A.L., 158, 194, 256
semimeasure, 264, 262–265, 331,

334
computable, 264
computable continuous, 328
conditional, 350
discrete, 265, 265–290
extension, 326
lower semicomputable, 264
lower semicomputable

continuous, 294–302
lower semicomputable

discrete, 265–290
maximal, see semimeasure,

universal
maximal lower semi-

computable, see
semimeasure, universal
lower semicomputable

normalization, 303, 324, 325,
333, 335

reference universal lower
semicomputable
continuous, 297

relative enumerable, 289
Solomonoff normalization,

303, 302–304, 324–326
universal, 266, 294
universal lower semicom-

putable, 255, 324,
334

universal lower semicom-
putable conditional,
275

universal lower semicom-
putable continuous,
294, 294–298, 302, 325,
328

universal lower semicom-
putable discrete, 267,
268, 273, 276, 287, 386

universal relative
enumerable, 289

sequence



Index 785

∆0
2-definable, 225, 232, 232,

233
Π0
n-random, 164

∞-distributed, see sequence,
normal

µ-random, see sequence,
random

k-distributed, 58
Bernoulli, 59, 142, 163, 357
Champernowne, 54, 59, 93,

165
characteristic, see

characteristic sequence
computable, 262, 324
DNA, 589
effectively unpredictable, 238
finite, see string
hyperarithmetically random,

164
incompressible, 226
infinite, see sequence
Kolmogorov–Loveland

random, 157
Kolmogorov–Loveland

stochastic, 157, 158
lower semicomputable, 161
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