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Preface

The Second International Workshop on Parameterized and Exact Computation
(IWPEC) was held in Zürich, Switzerland, during September 13–15, 2006. It
was organized as a component of ALGO 2006, which also hosted the 14th An-
nual European Symposium on Algorithms, the 6th Workshop on Algorithms in
Bioinformatics, the 4th Workshop on Approximation and Online Algorithms,
and the 6th Workshop on Algorithmic Methods and Models for Optimization of
Railways.

This meeting was the second in the IWPEC series, with the first having been
held in Bergen, Norway, during September 14–16, 2004. The field continues to
experience rapid growth, in part due to its appeal as an alternative to tradi-
tional complexity theory, and in part due to the powerful practical applications
it has spawned. IWPEC events are intended to cover research in all aspects of
parameterized and exact computation and complexity, including but not limited
to new techniques for the design and analysis of parameterized and exact algo-
rithms, parameterized complexity theory, relationships between parameterized
complexity and traditional complexity, applications of parameterized and exact
computation, implementation issues and high-performance computing. A major
goal is to disseminate the latest research results, including significant work-in-
progress, and to identify, define and explore directions for future study.

The papers accepted for presentation and printed in these proceedings repre-
sent a diverse spectrum of the latest developments on parameterized and exact
algorithm design, analysis, application and implementation. We hope that you
will read them, and that you find the time spent a rewarding experience. Each
submission was thoroughly reviewed by at least three members of the IWPEC
2006 Program Committee. We are certain that many of them will find their way
to archival journal publication in more complete and polished form. We wish to
thank all authors for contributing their work for review. Many more meritable
papers were submitted than can be accommodated in the schedule. In addition,
three invited lectures were given by leading experts in the field of parameterized
and exact computation: Frank Dehne, Uwe Schöning, and Michael Fellows.

It has been a privilege to serve as Program Committee Co-chairs. Assembling
this slate of first-rate papers would not have been possible without the tireless
and professional efforts of the remainder of the IWPEC 2006 Program Commit-
tee, who are:

Jianer Chen (USA)
Frank Dehne (Canada)
Erik D. Demaine (USA)
Rodney G. Downey (New Zealand)
Michael R. Fellows (Australia)
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Henning Fernau (UK)
Jörg Flum (Germany)
Fedor V. Fomin (Norway)
Martin Grohe (Germany)
Edward A. Hirsch (Russia)
Kazuo Iwama (Japan)
Dániel Marx (Germany)
Catherine McCartin (New Zealand)
Naomi Nishimura (Canada)
Venkatesh Raman (India)
Peter Rossmanith (Germany)
Uwe Schöning (Germany)
Ulrike Stege (Canada)
Jan Arne Telle (Norway)
Dimitrios M. Thilikos (Spain)
Sue Whitesides (Canada)
Gerhard J. Woeginger (The Netherlands)

We also wish to acknowledge the assistance of the numerous external reviewers
who have been an immense technical help during committee deliberations.

Zürich, Switzerland Hans Bodlaender and
September 2006 Michael A. Langston
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Abstract. A graph G is said to be a cluster graph if G is a disjoint union
of cliques (complete subgraphs), and a bicluster graph if G is a disjoint
union of bicliques (complete bipartite subgraphs). In this work, we study
the parameterized version of the NP-hard Bicluster Graph Editing
problem, which consists of obtaining a bicluster graph by making the
minimum number of modifications in the edge set of an input bipartite
graph. When at most k modifications are allowed in the edge set of any
input graph (Bicluster(k) Graph Editing problem), this problem is
FPT, solvable in O(4km) time by applying a search tree algorithm. It is
shown an algorithm with O(4k + n + m) time, which uses a new strat-
egy based on modular decomposition techniques. Furthermore, the same
techniques lead to a new form of obtaining a problem kernel with O(k2)
vertices for the Cluster(k) Graph Editing problem, in O(n+m) time.
This problem consists of obtaining a cluster graph by modifying at most
k edges in an input graph. A previous FPT algorithm for this problem
was presented by Gramm et al. [11]. In their solution, a problem kernel
with O(k2) vertices and O(k3) edges is built in O(n3) time.

Keywords: NP-complete problems, fixed-parameter tractability, edge
modification problems, cluster graphs, bicluster graphs.

1 Introduction

Many NP-hard problems can be formulated with a parameter k, so that polyno-
mial-time algorithms can be designed for them when k is fixed. The parame-
terized complexity theory was developed by Downey and Fellows [6,7], as an
alternative to deal with such problems. They defined the class of fixed-parameter

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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tractable (FPT) problems, which admit algorithms of complexity O(f(k)nα),
where f is an arbitrary function and α is a constant independent of both n
and k. They also defined a hierarchy of parameterized decision problem classes,
FPT ⊆ W [1] ⊆ W [2] ⊆ · · · , with appropriate reducibility and completeness no-
tions, and conjectured that each of the containments in this hierarchy is proper.
More details about this theory can be found in [6,7,8,9].

Let u, v ∈ V (G). An edge modification or edge edition with respect to u, v is
either the deletion of (u, v) if (u, v) ∈ E(G), or the addition of (u, v) if (u, v) /∈
E(G).

In this paper, we study the parameterized version of the Bicluster Graph
Editing problem. In the optimization version, this problem consists of editing
the minimum number of edges in a bipartite graph so that it becomes a vertex-
disjoint union of bicliques (complete bipartite subgraphs), called bicluster graph.
The NP-hardness of this problem was proved by Amit [1]. The parameterized
version of this problem is the Bicluster(k) Graph Editing problem, whose
goal is to obtain a bicluster graph by editing at most k edges from any input
graph (not necessarily bipartite). This problem is FPT, solvable in O(4km) time
by applying a search tree algorithm. We propose an O(4k+n+m) time algorithm,
which works in two stages: firstly, a problem kernel is built, using a new strategy
based on modular decomposition. Following, a bounded seach tree is applied.

By using this strategy based on modular decomposition, we propose a new
form of obtaining a problem kernel for the Cluster(k) Graph Editing prob-
lem, whose optimization version consists of editing the minimum number of edges
from a graph so that it becomes a vertex-disjoint union of cliques (complete sub-
graphs), called cluster graph. This problem were studied by Shamir et al. [19] and
proved to be NP-hard. The tractability of the parameterized version proceeds
directly from Cai’s result [4]. From the more general view of graph modification
problems, Cai proved the fixed-parameter tractability of deciding whether an
input graph can be transformed into a graph with a specified hereditary prop-
erty by deleting vertices and/or edges, and adding edges, when the hereditary
property can be characterized by a finite set of forbidden induced subgraphs. His
result provides an O(3kn4) time algorithm for Cluster(k) Graph Editing.
In [11], Gramm et al. present an O(2.27k + n3) time algorithm, which builds a
problem kernel with O(k2) vertices and O(k3) edges in O(n3) time, and then ap-
plies a bounded search tree in O(2.27k) time. In [12], the time complexity of the
search tree algorithm was improved to O(1.92k) time. We propose an algorithm
that builds a problem kernel with O(k2) vertices in O(n + m) time. For a more
detailed study on edge modification problems, see [17].

This paper is organized as follows. Section 2 contains the definitions and
notation used in the paper. In Section 3, we provide an overview about mod-
ular decomposition of graphs and propose some definitions used along this pa-
per. In Section 4, the new FPT solution for Bicluster(k) Graph Editing
is explained. Finally, Section 5 presents how to obtain a problem kernel for
Cluster(k) Graph Editing in O(n + m) time.
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2 Basic Definitions and Notation

In this work, G denotes a finite graph, without loops nor multiple edges. The
vertex set and the edge set of G are denoted by V (G) and E(G), respectively.
Assume |V (G)| = n and |E(G)| = m.

A clique is a complete subgraph. A cluster graph is a vertex-disjoint union of
cliques. It is easy to see that G is a cluster graph if and only if it contains no P3
as an induced subgraph.

A biclique is a complete bipartite subgraph. A bicluster graph is a vertex-
disjoint union of bicliques. This class of graphs is the intersection of two other
classes, bipartite graphs and cographs (graphs containing no P4 as an induced
subgraph), inheriting therefore their forbidden induced subgraphs. Thus, G is a
bicluster graph if and only if it contains no P4 nor C2k+1 as induced subgraphs.

An edge modification set F is a set of pairs of vertices, where each pair has a
mark + or − such that:

+(a, b) represents the addition of the edge (a, b),
−(a, b) represents the deletion of the edge (a, b).

G+ F represents the addition to G of the edges (a, b) marked by +(a, b) in F
(assuming that they are not in E(G)) and the deletion of the edges (a, b) marked
by −(a, b) in F (assuming that they belong to E(G)). Similarly, G−F represents
the addition of the edges marked by −(a, b) in F and the deletion of the edges
marked by +(a, b) in F . Clearly, G′ = G + F if and only if G = G′ − F .

In the remainder of this work, F denotes an edge modification set for G, and
G′ denotes the graph G + F .

3 Modular Decompositions of Graphs

Important references for this section are [2,5,10,13,14,15,16].
The subset M ⊆ V (G) is a module in G if for all u, v ∈ M and w ∈ V (G)\M ,

(u, w) ∈ E(G) if and only if (v, w) ∈ E(G).

Theorem 1. If X and Y are disjoint modules of a graph, then either every
element of X is adjacent to every element of Y (“adjacent modules”) , or no
element of X is adjacent to an element of Y (“nonadjacent modules”).

If M = V (G) or |M | = 1, then M is a trivial module. All graphs have trivial
modules. If G has no nontrivial modules, then G is called prime. A module M
is strong if, for every module M ′, either M ∩ M ′ = ∅ or one module is included
into the other.

There exist three types of modules: parallel, series and neighbourhood. A mod-
ule is parallel when the subgraph induced by its vertices is disconnected, series
when the complement of the subgraph induced by its vertices is disconnected,
and neighbourhood when both the subgraph induced by its vertices and its com-
plement are connected.
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The process of decomposing a graph into modules is called modular decomposi-
tion. The modular decomposition of G is represented by a modular decompositon
tree TG. The nodes of TG correspond to strong modules of G. The root corre-
sponds to V (G), and the leaves correspond of all vertices of G. Each internal
node of TG is labeled P (parallel), S (series) or N (neighbourhood), according
to the type of the module. The children of every internal node M of TG are
the maximal submodules of M . The modular decomposition tree of a graph is
unique up to isomorphism and can be obtained in linear time [13].

As an important special case, modular decomposition trees containing only
series and parallel internal nodes correspond precisely to the class of cographs.
It is easy to see that P4 is the smallest nontrivial prime graph.

3.1 P-Quotient and s-Quotient Graphs

Let Π be a partition of V (G) such that each member of Π is a module. Then Π
is said to be a congruence partition. The graph whose vertices are the members of
Π and whose edges correspond to the adjacency relationships involving members
of Π is called quotient graph G/Π .

In this section we define special types of auxiliary quotient graphs, namely
the p-quotient and s-quotient graphs. Those graphs are obtained from specific
congruence partitions, defined as follows.

Definition 2. Let Π be a congruence partition of V (G).

1. Π is the p-partition of V (G) if, for every internal node M of TG:
- if M is labeled S or N then every leaf child of M is a unitary member of Π;
- if M is labeled P , then all leaf children of M form a member of Π.

2. Π is the s-partition of V (G) if, for every internal node M of TG:
- if M is labeled P or N , then every leaf child of M is a unitary member of Π;
- if M is labeled S then all leaf children of M form a member of Π.

Clearly, every member of the p-partition (s-partition) is a strong module in G.
Since the modular decomposition tree of a graph is unique, the p-partition and
the s-partition are also unique.

Definition 3. Let Π be a congruence partition of V (G).

1. If Π is the p-partition of V (G), then G/Π is the p-quotient graph of G,
denoted by Gp.

2. If Π is the s-partition of V (G), then G/Π is the s-quotient graph of G,
denoted by Gs.

A vertex of Gp (resp. Gs) corresponding to a member of Π with size larger
than one is called p-vertex (resp. s-vertex), whereas a vertex corresponding to a
unitary member {v} of Π is called u-vertex.

For simplicity, if a p-vertex (resp. s-vertex) corresponds to a module M ⊆
V (G), then we write M to stand for both the module and the p-vertex (resp.
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s-vertex); and if a u-vertex corresponds to a member {v} of Π then we write
v to stand for the u-vertex. We also say that a vertex v ∈ V (G) belongs to a
p-vertex M ∈ V (Gp) (resp. s-vertex M ∈ V (Gs)) when v ∈ M .

If H is a p-quotient (resp. s-quotient) graph, denote by Vp(H) (resp. Vs(H))
the set of p-vertices (resp. s-vertices) of H , and by Vu(H) the set of u-vertices
of H .

Figure 1 depicts a graph G, its modular decomposition tree TG and the graphs
Gp and Gs, where p-vertices are graphically represented by the symbol ©P , and
s-vertices by ©S .
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Fig. 1. (a) A graph G (b) The modular decomposition tree TG (c) Gp (d) Gs

The next lemma presents useful bounds on the sizes of Vu(G′
p), Vp(G′

p) and
V (G′

p) for the case of one edge modification in G.

Lemma 4. If |F | = 1 then the following inequalities hold:
(1) |Vu(G′

p)| ≤ |Vu(Gp)| + 4
(2) |Vp(G′

p)| ≤ |Vp(Gp)| + 2
(3) |V (G′

p)| ≤ |V (Gp)| + 2

Proof. Let (u, v) be the modified edge. The proof is based on the analysis of the
local modifications made in Gp in order to obtain G′

p, by considering the new
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adjacency relations in G′. There are four cases, described below. We present in
detail Case 1, the remaining ones are only sketched.

Case 1: u and v are u-vertices in Gp. This case is divided into the following
subcases:

Subcase 1.1: {u, v} is a module in Gp. Then u and v are adjacent in Gp, for
otherwise u and v would be contained in the same p-vertex of Gp. This implies
F = {−(u, v)}.

a) If there exists a u-vertex w in Gp such that w is nonadjacent to both u and
v and {u, v, w} is a module in Gp, then {u, v, w} is a new p-vertex in G′

p.
This implies |Vu(G′

p)| = |Vu(Gp)| − 3 and |Vp(G′
p)| = |Vp(Gp)| + 1.

b) If there exists a p-vertex M in Gp such that M is nonadjacent to both u and
v and M ∪ {u, v} is a module in Gp, then M ∪ {u, v} is a new p-vertex in
G′

p. This implies |Vu(G′
p)| = |Vu(Gp)| − 2 and |Vp(G′

p)| = |Vp(Gp)|.
c) If none of the previous situations (a) or (b) applies, then {u, v} is a new

p-vertex in G′
p. This implies |Vu(G′

p)| = |Vu(Gp)| − 2 and |Vp(G′
p)| =

|Vp(Gp)| + 1.

Overall, we have for this subcase |Vu(G′
p)| ≤ |Vu(Gp)| − 2, |Vp(G′

p)| ≤
|Vp(Gp)| + 1 and |V (G′

p)| ≤ |V (Gp)| − 1.

Subcase 1.2: {u, v} is not a module in Gp. In this subcase, u and v cannot belong
to a same p-vertex of G′

p. Since u, v are vertices in Gp, it will be useful to regard
F also as a unitary edge modification set for Gp, and look at the graph Gp + F
(which in general is not isomorphic to G′

p).

a) If there exists a u-vertex w in Gp such that w is nonadjacent to u and {u, w}
is a module in Gp + F , then {u, w} is a new p-vertex in G′

p.
b) If there exists a p-vertex M in Gp such that M is nonadjacent to u and M

together with u form a module in Gp + F , then M ∪ {u} is a new p-vertex
in G′

p.
c) If none of the previous situations (a) or (b) applies to u, then u is still a

u-vertex in G′
p.

The same possibilities (a)-(c) are applicable to v. Overall, we have for this
subcase |Vu(G′

p)| ≤ |Vu(Gp)|, |Vp(G′
p)| ≤ |Vp(Gp)| + 2 and |V (G′

p)| ≤ |V (Gp)|.
Case 2: u is a u-vertex and v belongs to a p-vertex M in Gp. In this case u is also
a u-vertex in G′

p. Write M = {v, v1, . . . , v�}. If � = 1 then v1 is a new u-vertex in
G′

p; with respect to v, there are three possibilities: v can become a new u-vertex,
v can form a new p-vertex with some u-vertex w of Gp (w 	= u), or v can be
added to a pre-existing p-vertex M ′ of Gp. If � > 1 then M\{v} is a p-vertex in
G′

p, and the possibilities for v are the same as in the previous situation. Overall,
we have for this case |Vu(G′

p)| ≤ |Vu(Gp)| + 2, |Vp(G′
p)| ≤ |Vp(Gp)| + 1 and

|V (G′
p)| ≤ |V (Gp)| + 1.

Case 3: u and v belong to distinct p-vertices M and M ′ in Gp, respectively.
Write M = {u, u1, . . . , u�} and M ′ = {v, v1, . . . , vr}. Then u and v are two new
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u-vertices in G′
p. If � = 1 and r = 1, u1 and v1 are also two new u-vertices in

G′
p. If � = 1 and r > 1, u1 is a new u-vertex and M ′\{v} is a p-vertex in G′

p.
The situation � > 1 and r = 1 is similar to the previous one. Finally, if �, r > 1
then M\{u} and M ′\{v} are p-vertices in G′

p. Overall, we have for this case
|Vu(G′

p)| ≤ |Vu(Gp)| + 4, |Vp(G′
p)| ≤ |Vp(Gp)| and |V (G′

p)| = |V (Gp)| + 2.

Case 4: u and v belong to the same p-vertex M in Gp. Write M = {u, v} ∪ W .
Then (u, v) is an added edge, and u, v are new u-vertices in G′

p. If W = {w1}, then
w1 is a new u-vertex in G′

p. Otherwise, if |W | > 1, we have that W is a p-vertex
in G′

p. Overall, we have for this case |Vu(G′
p)| ≤ |Vu(Gp)|+3, |Vp(G′

p)| ≤ |Vp(Gp)|
and |V (G′

p)| = |V (Gp)| + 2.

By considering all the cases, the lemma follows.

Lemma 5. If |F | = 1 then the following inequalities hold:
(1’) |Vu(G′

s)| ≤ |Vu(Gs)| + 4
(2’) |Vp(G′

s)| ≤ |Vp(Gs)| + 2
(3’) |V (G′

s)| ≤ |V (Gs)| + 2

Proof. Similar to the previous lemma.

4 Bicluster(k) Graph Editing

In this section, we will show a new FPT algorithm for Bicluster(k) Graph
Editing. Our algorithm solve this problem in O(4k + n + m) time, and works
in two stages. Firstly, a problem kernel is built, using the concepts given in the
previous section. Following, a bounded search tree is applied on the problem
kernel.

4.1 Building the Problem Kernel

Clearly, if a vertex v lies in a component of G which is already a biclique, then
no edge modifications involving v need to be made in order to transform G into a
bicluster graph. We can assume therefore that no component of the input graph
G is a biclique. In this subsection, we will show that if G′ is a bicluster graph,
|F | ≤ k, then a problem kernel Gk with at most 4k2 + 6k vertices can be built.

Bounding the number of vertices of Gp. If G′ is a bicluster graph, note then
that it contains at most 2k biclique components. In G′

p, each one can have one of
the graphical representations illustrated in Figure 2. G′

p has O(k) vertices, and
by applying Lemma 4 k times, we get an O(k) bound for the number of vertices
of Gp. Lemma 6 and Theorem 7 give a more precise bounds.

Lemma 6 presents bounds on the sizes of Vu(Gp), Vp(Gp) and V (Gp) when
|F | = 1 and G′ is a bicluster graph.

Lemma 6. Assume |F | = 1. If G′ is a bicluster graph then |Vu(Gp)| ≤ 6,
|Vp(Gp)| ≤ 4 and |V (Gp)| ≤ 6.
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�

� �

Fig. 2. Possible graphical representations of a biclique component in G′
p

Proof. Observe that G = G′ − F . Then we can apply the inverse modification
to G′ and obtain G. The bounds in Lemma 4 can be used by interchanging G
and G′.

G′ has at most two biclique components. If G′ consists of only one biclique
component, the proof is immediate by Lemma 4. Otherwise, there are eight
possibilities for G′

p, shown in Figure 3.

�

���

� �

�����

�

���

�

�

���

�

� �

���

�

�

�

�

���

�

�

���

Fig. 3. Possible graphical representations of G′
p with two biclique components

Since no component of G is a biclique, it is easy to see that the vertices u and
v of the modified edge lie in different bicliques of G′.

For possibility (a) in Figure 3, Subcase 1.2(c) in the proof of Lemma 4 applies
for both u and v. Thus, |Vu(Gp)| = |Vu(G′

p)| = 4, |Vp(Gp)| = |Vp(G′
p)| = 0 and

|V (Gp)| = |V (G′
p)| = 4.

For possibilities (b) to (f) in Figure 3, the proof is immediate by applying
Inequalities (1) to (3) in Lemma 4.

For possibility (g) in Figure 3, we have two cases:

- u is the u-vertex and v belongs to a p-vertex in G′
p. Then, by examining

Case 2 in the proof of Lemma 4, it follows that |Vu(Gp)| ≤ 3, |Vp(Gp)| ≤ 4
and |V (Gp)| ≤ 5.

- u and v belong to distinct p-vertices. Then, by examining Case 3 in the proof
of Lemma 4, it follows that |Vu(Gp)| ≤ 5, |Vp(Gp)| ≤ 3 and |V (Gp)| = 6.

For possibility (h) in Figure 3, by examining again Case 3 in the proof of
Lemma 4 we will have |Vu(Gp)| ≤ 4, |Vp(Gp)| ≤ 4 and |V (Gp)| ≤ 6.

The next theorem generalizes the previous lemma.

Theorem 7. Assume |F | = k. If G′ is a bicluster graph then |Vu(Gp)| ≤ 6k,
|Vp(Gp)| ≤ 4k and |V (Gp)| ≤ 6k.



Applying Modular Decomposition to Parameterized Bicluster Editing 9

Proof. Observe that G = G′ − F . Then we can apply the inverse modifications
to G′ and obtain G.

The proof is done by induction on k. The basis of the induction is given by
Lemma 6.

Let F− be a subset of F such that |F−| = |F | − 1, and let G− = G′ − F−.
By the induction hypothesis, the result is valid for F−. Hence the subgraph of
(G−)p induced by components which are not bicliques contains at most 6(k− 1)
vertices, among which at most 4(k − 1) are p-vertices. Since G′ can contain 2k
biclique components, (G−)p can possibly contain some other components which
are bicliques. See Figure 4.
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Fig. 4. (G−)p = (G′ − F −)p

Let α be the edge modification such that F = F− ∪ α. Then, G = G− − α.
Let x, y be the vertices of α. We have 3 possibilities:

a) x and y lie in components which are not bicliques in G−. Then G− contains
no biclique components. By Lemma 4, Gp contains in this case at most 6k−4
vertices, among which at most 4k − 2 are p-vertices.

b) x lies in a biclique component B, and y in a component which is not a
biclique in G−. Then, B is the only biclique component in G−. Considering
the possible p-partitions of B (see Figure 2), Bp contains at most 2 vertices.
By Lemma 4, Gp contains in this case at most 6(k − 1) + 2 + 2 = 6k − 2
vertices, among which at most 4(k − 1) + 2 + 2 = 4k are p-vertices.

c) x and y lie in different biclique components in G−. Then G− contains exactly
two biclique components B1 and B2, and −α creates from B1 and B2 a
unique component which is not a biclique in G. Other components in G−

remain unchanged in G. By Lemma 6, the p-quotient graph of the subgraph
of G induced by V (B1) ∪ V (B2) has at most 6 vertices, among which at
most 4 are p-vertices. Hence, the graph Gp contains in this case at most 6k
vertices, among which at most 4k are p-vertices.

Finding the kernel’s size. Assume that there exists a minimal edge modifi-
cation set F , |F | ≤ k, such that G′ is a bicluster graph. This implies that if F
contains a pair (a, va) such that a belongs to a p-vertex M of Gp, then (a, va) is
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an edge or a non-edge of some forbidden induced subgraph H of G (H = P4 or
H = C2k+1). Also, F must contain a pair (b, vb) for every other vertex b ∈ M ,
since these pairs also correspond to edges or non-edges of forbidden induced sub-
graphs. Therefore, if a p-vertex M of Gp satisfies |M | ≥ k + 1 then F contains
no pair (a, va) with a ∈ M .

The above argument suggests a form of obtaining a problem kernel Gk by
restricting the size of the p-vertices of Gp to k + 1.

Let Vk ⊆ V (G) constructed as follows. Initially, set Vk := Ø. Next, for every
u-vertex v ∈ V (Gp), set Vk := Vk ∪ {v}. Finally, for every p-vertex M ∈ V (Gp),
if |M | ≤ k + 1 then set Vk := Vk ∪ M , otherwise select M ′ ⊆ M such that
|M ′| = k + 1 and set Vk := Vk ∪ M ′.

Define Gk as the subgraph of G induced by Vk.
Every forbidden induced subgraph H in G has a corresponding forbidden

induced subgraph H ′ in Gk, since every p-vertex M of Gp satisfies |V (H)∩M | ≤
1, and in case |V (H) ∩ M | = {v}, Gk contains a representative vertex v′ ∈ M
which can be used to define H ′ = H − v + v′.

We then conclude that:

(i) Gk has answer “yes” for Bicluster(k) Graph Editing if and only if there
exists F , |F | ≤ k, such that G′ is a bicluster graph.

(ii) By Theorem 7, Gk has at most 4k(k + 1) + 2k = 4k2 + 6k vertices (corre-
sponding to 6k vertices, where 4k are p-vertices and 2k are u-vertices).

By (i) and (ii), Gk is a problem kernel for Bicluster(k) Graph Editing
with input G.

Theorem 8. A problem kernel with O(k2) vertices can be built for Bicluster(k)
Graph Editing.

4.2 Applying a Bounded Search Tree

The second stage of the algorithm consists of applying a bounded search tree T
on Gk, which corresponds to the root. In each node X of the tree, a search for a
forbidden subgraph (P4 or C2k+1) is made in the graph GX corresponding to X .
As odd cycles of size at least 5 contain P4 as an induced subgraph, it is sufficient
to consider P4 and K3 as forbidden subgraphs. One child of X is created for each
possible way of “destroying” the forbidden subgraph of GX , without creating
another forbidden subgraphs. As an edge modification is applied to obtain each
child, the depth of the tree is bounded by k. A node will be a leaf of T either
when its corresponding graph is a bicluster graph or its level is k (the root has
level 0). If the first case occurs, the edge modification set applied along the
root-leaf path constitutes a solution for the problem.

4.3 Running Time

First, each biclique component is removed from G. This takes linear time. Next,
the modular decomposition tree TG is built in O(n + m) time, with O(n) nodes.
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For the construction of Gk, all nodes of TG are visited. When visiting a node
labeled P , we check whether the number of leaf children of this node is larger
than k + 1, and surplus vertices are eliminated. At the end, every node of TG is
visited once. Therefore, Gk can be built in O(n + m) time.

The running time of the second stage of the algorithm is mainly determined
by the size of the search tree T . The maximum number of children a node of T
can have is 4 (this corresponds to the total number of different ways of destroying
a P4 by adding or removing one edge, whithout creating a C3).

Theorem 9. Bicluster(k) Graph Editing can be solved in O(4k + n + m)
time.

Proof. The search tree T applied on Gk has size bounded by O(4k). In each
node X of T , the corresponding graph GX has at most 4k2 + 6k vertices. This
implies an O((4k2 + 6k)3) local work, since the search for a P4 can be made in
linear time [3] and the search for a K3 can be made exhaustively in cubic time.
This yields an O(4k(4k2 + 6k)3 +(n +m))=O(4k +n +m) time complexity, due
to the interleaving technique by Niedermeier and Rossmanith [18].

5 Building a Problem Kernel for Cluster(k) Graph
Editing

In this section, we will show a new form of obtaining a problem kernel with
O(k2) vertices for Cluster(k) Graph Editing in O(n + m) time.

Similarly to the previous problem, F denotes an edge modification set for G,
and G′ denotes the graph G+F . Assume that G contains no clique components.

Lemma 10. Assume |F | = 1. If G′ is a cluster graph then |Vu(Gs)| ≤ 4,
|Vs(Gs)| ≤ 2 and |V (Gs)| ≤ 4.

Proof. By using Lemma 5, the proof structure is similar to that of Lemma 6.

Theorem 11. Assume |F | = k. If G′ is a cluster graph then |Vu(Gs)| ≤ 4k,
|Vs(Gs)| ≤ 2k and |V (Gs)| ≤ 4k.

Proof. By using Lemma 10, the proof structure is similar to that of Theo-
rem 7.

As in previous problem, the size of all s-vertices of Gs can be bounded by k +
1. By removing from G surplus vertices, we obtain a problem kernel Gk for
Cluster(k) Graph Editing in O(n + m) time. By Theorem 11, Gk has at
most 2k(k + 1) + 2k = 2k2 + 4k vertices.

Theorem 12. A problem kernel with O(k2) vertices can be built for Cluster(k)
Graph Editing in O(n + m) time.

6 Conclusion

Future research is to apply modular decomposition to l-clique editing. (A l-clique
is a complete l-partite graph.)
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Abstract. In this paper, we study the cluster editing problem which is fixed pa-
rameter tractable. We present the first practical implementation of a FPT based
method for cluster editing, using the approach in [6,7], and compare our im-
plementation with the straightforward greedy method and a solution based on
linear programming [3]. Our experiments show that the best results are obtained
by using the refined branching method in [7] together with interleaving (re-
kernelization). We also observe an interesting lack of monotonicity in the run-
ning times for “yes” instances with increasing values of k.

1 Introduction

The CLUSTER EDITING problem is defined as follows. Input: An undirected graph
G = (V, E), and a non-negative integer k. Question: Can we transform G, by inserting
and deleting at most k edges, into a graph that consists of a disjoint union of cliques?
The CLUSTER EDIT DISTANCE for a graph G is the smallest k for which cluster
editing is possible.

Our main target applications are centered around computational biology. We are in
particular interested in the analysis of putative gene co-regulation (transcriptomics via
microarray analysis), putative gene product co-occurrence (proteomics via mass spec or
MALDI), and pathway/network elucidation in data from synthetic genetic arrays (dou-
ble knockout arrays). In all these applications, the underlying biological data is very
expensive and, in some cases, requires years to produce. For example, RI strains take
more than 8 years to make isogenetically pure, pathway/network elucidation for yeast
requires 4,500 synthetic genetic arrays, and Affy U133 arrays contain more than 30k
probesets. Because of the high value of the underlying biological data, saving compu-
tation time for the analysis by using approximation is often not acceptable. Hence, we
turn to FPT based approaches for solving such problems. The cluster editing problem
is an important such problem in the context outlined above.

In this paper, we present the first practical implementation of a FPT based method
for cluster editing, using the approach in [6,7]. In order to evaluate the effectiveness
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of the FPT approach, we also implemented a well known previous method based on
linear programming [3] as well as a greedy approach for cluster editing. The total
programming effort was approx. 120 person hours, producing approx. 2500 lines of
code.

Our experiments show that the best results for cluster editing are obtained by using
the refined branching method in [7] together with interleaving (re-kernelization). Our
experiments show that the refined branching method in [7] is vastly superior to the
basic branching method, which is not obvious because the refined branching method is
considerably more complicated and incurs larger constant factors. We also demonstrate
that, in practice, branching with interleaving is indeed decidedly faster than branching
without interleaving.

A surprising observation from our experiments comes with respect to the problem
of determining the optimum edit value, k. In practice, we do of course not know k
and the general approach would be to determine k via binary search. Things turns out
to be quite different with cluster editing. If we happen to be advancing from below
(that is, solving a “no” instance), then as e.g. with vertex cover run times predictably
increase with rising parameter values. On the other hand, if we are advancing from
above (facing a “yes” instance), then run times may decrease, increase or even stay the
same with sinking parameter values. This is very different from the standard behavior
e.g. for vertex cover. For cluster editing it is not the case that run times are highest
around the optimum value of k. We conclude that a binary search may not be the best
way to implement an FPT based approach for clustering editing, and that one may be
better off steering the parameter as much as possible from below.

The remainder of this paper is organized as follows. Section 2 outlines our experi-
mental setup used throughout the paper. Section 3 outlines our implementation of LP
based and greedy based methods for cluster editing which serve as a baseline for evalu-
ating the FPT based approach. In Section 4 we present a first practical implementation
of an FPT based approach for cluster editing. Section 5 presents our experimental re-
sults for the FPT based approach and Section 6 concludes the paper.

2 Experimental Setup

In the remainder of this paper, we compare the performance of various algorithms un-
der various criteria. Experiments were performed on a Dell OptiPlex GX280 using a
3.2GHz Pentium 4 dual processor, with 1.0 gigabytes (GB) of SDRAM, and running a
Linux 2.6.8-2-686-smp kernel. Algorithms were implemented in C and compiled using
gcc version 3.4.4. The various costs of implementation are listed in Table 1.

Table 1. Implementation costs for the three cluster editing algorithms studied in this paper

Algorithm Development Time Lines of Code Library Used
LP-based method 45 hours 250 lp solve version 5.5
Greedy method 15 hours 250 None
FPT approach 60 hours 2000 None
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Unless otherwise stated, we used as input synthetic graphs for which we know the
optimum edit distances. For this, we built a graph generator which operates as fol-
lows. Our graph generator takes as input parameters the desired number of vertices
(n), clusters (c) and the required edit distance (d). First, a random size (number of
vertices) in the range [0.5(n/c), 1.5(n/c)] is assigned to each cluster. We produce
a clique graph G′ containing c fully connected cliques (clusters) of the sizes deter-
mined above, with no edges between those cliques. Then, we execute d random ed-
its on G′ resulting in an output graph G. An edit consists of randomly inserting or
deleting an edge. More precisely, for each edit we randomly decide whether to insert
or delete an edge. For an insert operation, we randomly chose two vertices i and j
that are not connected by an edge and then add an edge (i, j). For a delete opera-
tion, we randomly select an edge in the graph and remove that edge. Once an edge is
inserted in G it cannot be deleted by a future edit. Similarly once an edge has been
deleted from G it cannot be re-inserted by another edit. For random number genera-
tion we used the Mitchell-Moore algorithm as described in [9]. Note that, the above
method creates in most cases, but not always, a graph G with edit distance d. In some
cases, as observed in our test runs, the edit distance of G is smaller than d because
a different set of clusters than those used by our generator can be created with fewer
edits.

3 A Baseline for Comparisons

In order to evaluate the effectiveness of a fixed parameter tractability approach for clus-
ter editing, we need to establish a baseline to which we can compare our implemen-
tation. One well known previous method [3] is based on linear programming. Another
alternative is to use a greedy approach for cluster editing. Needless to say, both methods
only provide an approximation of the edit distance.

We implemented the LP based cluster editing method described in [3]. Given a graph,
we first build a LP model by setting the objective function and constraints for every pair
of vertices and every triple of vertices. For each pair of vertices i and j, a partitioning
into clusters can be represented with a binary variable xij , where xij = 0 if i and j are
in the same cluster, and xij = 1 if they are in different clusters. The integer constraints
can be relaxed to allow real values for xij , that is, 0 ≤ xij ≤ 1. For each triple of
vertices i, j and k, the triangle inequality xik ≤ xij + xjk holds because if xij = 0
and xjk = 0 then xik = 0. The objective is to minimize the number of edge edits: the
number of edges (i, j) ∈ E for which xij = 1 and the number of pairs of vertices that
are not adjacent (i, j) /∈ E for which xij = 0. After the LP model is built, a linear
programming C library lp solve version 5.5 is used to solve the LP model and get the
values for every variable xij . Finally, the graph is partitioned into clusters based on the
variables xij in the following way: two vertices i and j are put into the same cluster if
xij ≤ 0.5. The edit distance is calculated as the summation of the number of edges that
are needed to be added, which do not exist but the two endpoints are in same cluster,
and the number of edges that are needed to be deleted, which exist but the two endpoints
are in different clusters.
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We also implemented the following greedy method for cluster editing. Consider a
graph G. For an edge insertion consider all possible edges, for an edge deletion consider
only the edges in G. Calculate a cost for each insertion/deletion as follows. For an edge
e = (i, j) define the common neighborhood as the set of common neighbors of i and j,
and define the non-common neighborhood as the set of non-common neighbors of i and
j. For an insertion of an edge e = (i, j), define the cost as the number of edge insertions
required to transform the common and non-common neighborhood of e into a clique.
For a deletion of an edge e = (i, j), define the cost as the number of edge deletions
required to disconnect the common neighborhood of e. Select the edit operation with
smallest cost and iterate until a graph of disjoint cliques is obtained. To implement
this greedy method, we initially mark every pair of vertices as unmarked. For each
unmarked pair of vertices i and j, the smaller of the cost of having an edge between
them and the cost of not having an edge between them is chosen as the cost of i and j.
We select the pair with least cost, perform the edits associated, and mark the pair. This
is repeated until all pairs are marked, which will give a set of connected components.
The edit distance is calculated as the number of edge editions to get the set of connected
components plus the number of edge editions to transform those connected components
into cliques.

The results of our experimental evaluation of the LP and greedy methods are shown
in Figures 1 and 2. Our experiments show that the LP based cluster editing method is
consistently better than the greedy method with respect to both, the computation time
and the value for k obtained. Hence, for the remainder of this paper, we will compare
our implementation of a fixed-parameter tractability approach only to the LP based
cluster editing method.

Fig. 1. A comparison of edit distances computed by LP versus the greedy method
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Fig. 2. A comparison of run times required by LP versus the greedy method

4 An FPT-Based Approach

In this section we present an outline of our adaptation of the algorithm in [7,6] that we
used to obtain the first practical implementation for exact cluster edit distance compu-
tation.

Algorithm 1. Solving the Cluster Edit Problem Via a Fixed-Parameter Tractability
Approach

(1) Extract highly connected (e.g., 2- and 3-connected) components. Our motivation
is to eliminate sparse parts of the input. (Note: level of connectivity depends on
the application.)

(2) Bound the search space for k:
(a) Let kLP be the edit distance determined by the linear programming method

[3].
(b) The search interval for the true edit distance k is [kLP /4, kLP ] (see [3]).

(3) For increasing k, starting with kLP /4:
(a) Execute the kernelization method described in [7], Section 7.2 (see also [6]).
(b) Execute either the basic or the refined bounded tree search method described

in [7], Section 10.1 or Section 10.2, respectively (see also [6]).
(c) Use “interleaving”: at each branch node in the bounded tree search, execute

again the kernelization method from Step 3a.
— End of Algorithm —

Two kernelization rules for the cluster editing problem have been described. The first
rule is based on the neighborhood of every pair of vertices u, v ∈ V . (1) If u and v have
more than k common neighbors, then (u, v) has to belong to E; if (u, v) /∈ E, we add
it to E. (2) If u and v have more than k non-common neighbors, then (u, v) cannot
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belong to E; if (u, v) ∈ E, we delete it. (3) If u and v have both more than k common
and more than k non-common neighbors, then the given instance has no size k solution.
The other kernelization rule is to delete the connected components that are cliques from
the graph.

The bounded search tree method for cluster editing is based on the observation that
an induced path P3, a path with three vertices and two edges, is forbidden for a graph
consisting of disjoint cliques. Given a graph, considering any induced P3 = {u, v, w}
with edges (u, v) and (u, w), we can branch with three cases: delete edge (u, v), delete
edge (u, w), or add edge (v, w). For either case, the parameter k is decreased by one.
For basic branching, this leads the search tree size of O(3k) where a resulting graph
with disjoint cliques is found for k edits. At each branch node, if the parameter k goes
down to be non-positive, no solution of size ≤ k exists on that branch. If no solution
can be found on all branches, then we conclude that no solution of size k exists for the
given graph.

The bounded tree search method can be improved by making a case distinction of
P3 with three cases and giving each case a branching rule. Consider a P3 = {u, v, w}
with edges (u, v) and (u, w). There are three cases based on the neighborhood of u, v
and w: (1) v and w do not share a common neighbor other than u; (2) v and w have a
common neighbor x other than u, and x is adjacent to u; (3) v and w have a common
neighbor x other than u, but x is not adjacent to u. For each pair of vertices, an annota-
tion mapping is employed to facilitate the branching rules. Each vertex pair u and v is
assigned one of the following annotations: “permanent” meaning (u, v) ∈ E and (u, v)
cannot be deleted, “forbidden” meaning (u, v) /∈ E and (u, v) cannot be inserted, or
“none” meaning no information available and it can be edited. For every three vertices
u, v, w ∈ V , if (u, v) and (u, w) are permanent, (v, w) has to be permanent, and if
(u, v) is permanent and (u, w) is forbidden, (v, w) has to be forbidden.

Algorithm 2. Given a graph G = (V, E) and parameter k, consider a P3 = {u, v, w}
with edges (u, v) and (u, w). The refined branching strategy using the above annotation
mapping works as follows.

(1) If v and w do not share a common neighbor other than u, then branch with
(a) (G \ {(u, v)}, k − 1), and
(b) (G \ {(u, w)}, k − 1).

(2) If v and w have a common neighbor x 	= u and (u, x) ∈ E, then branch with five
subcases:

(c) (G ∪ {(v, w)}, k − 1);
(d) Set (v, w) to forbidden, and branch with (G \ {(u, v), (v, x)}, k − 2);
(e) Set (v, w) to forbidden, (v, x) to permanent, and branch with (G \ {(u, v),

(u, x), (w, x)}, k − 3);
(f) Set (v, w) to forbidden, and branch with (G \ {(u, w), (w, x)}, k − 2);
(g) Set (v, w) to forbidden, (w, x) to permanent, and branch with (G \ {(u, w),

(u, x), (v, x)}, k − 3).
(3) If v and w have a common neighbor x 	= u and (u, x) /∈ E, then branch with five

subcases:
(h) (G \ {(u, v)}, k − 1);
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(i) Set (u, v) to permanent, (v, w) to forbidden, and branch with (G \ {(u, w),
(v, x)}, k − 2);

(j) Set (u, v) to permanent, (v, w) to forbidden, (v, x) to permanent, and branch
with (G ∪ {(u, x)} \ {(u, w), (w, x)}, k − 3);

(k) Set (u, v) and (u, w) to permanent, and branch with (G ∪ {(v, w)}\{(w, x),
(v, x)}, k − 3);

(l) Set (u, v) and (u, w) to permanent, and branch with (G ∪ {(v, w), (u, x)},
k − 2).

— End of Algorithm —

Initially, all vertex pairs are set to “none”. When an edge is added it is set to “per-
manent”, and when an edge is deleted it is set to “forbidden”. The algorithm also stops
when the parameter k reaches 0 or below or when the graph G contains no induced P3.
The search tree size for the refined branching strategy is O(2.27k).

For both basic and refined bounded tree search methods, we applied the kernelization
method at each branch node. Both methods are implemented as recursive functions. For
future improvement, we plan to implement them as iterative functions to achieve better
performance.

5 Experimental Results

To gauge the practical merit of an approach based on fixed-parameter tractability, we
tested the methods just described against each other and against our LP implementation
on a variety of both synthetic and real graphs. We have already described the process
by which we generate synthetic graphs. By “real” graphs, we mean those that natu-
rally arise in application domains, in the present case, from protein domain sequence
similarity. In all cases we report branching times only because the time needed for ini-
tial preprocessing and kernelization is insignificant compared to that required during
branching.

It seems that refined branching is vastly superior to basic branching. The run times
reported in Figure 3, where the edit distance is set to 20, are typical of those we observe.
This was not obvious in advance. It is simply not always the case that asymptotically
faster methods in the worst case translate into better algorithms in the average case.
Unless the data is contrived, additional overhead and complexities incurred by ever
more sophisticated branching strategies can ofttimes negate any real gains in efficiency.

It also seems that branching with interleaving is decidedly faster than branching
without interleaving. The run times reported on larger instances in Figure 4, where the
edit distance is set to 40, are typical. Again, this makes sense, but is neither obvious nor
necessarily the case in general. [8]

Of course we do not know the optimum edit value in advance, and so generally
determine it by performing a binary search. One might expect run times to be rather
predictable. With vertex cover, for example, we have long observed [1,2] that the most
difficult computations are centered around the point at which a “no” instance becomes
a “yes” instance, with the “no” the harder of the two (with “no,” our algorithms cannot
find a solution and halt early). Because we are interested in clique, the situation is
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Fig. 3. FPT run times on a graph with 50 vertices, 5 clusters and edit distance 20

Fig. 4. FPT run times on a graph with 100 vertices, 10 clusters and edit distance 40

reversed but still monotonic above and below the optimum value. A standard example
is illustrated in Figure 5.

Things turn out to be quite different with cluster editing. If we happen to be advanc-
ing from below (that is, solving a “no” instance), then as with vertex cover run times
predictably increase with rising parameter values. On the other hand, if we are advanc-
ing from above (facing a “yes” instance), then run times may decrease, increase or even
stay the same with sinking parameter values. See Figures 6 and 7.
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Fig. 5. The monotonicity of FPT parameter effects as seen when solving clique with vertex cover

Fig. 6. FPT parameter effects on a graph with 100 vertices, 5 clusters and edit distance 40

In retrospect, we find the answer to this conundrum lies in the way solutions are
distributed and the way branching works with parameter values above the optimum.
With vertex cover, for example, a cover of size i ensures a cover of size i + 1 (as long
as i < |V |). With cluster editing, however, it is conceivable that there is a solution with
edit distance i yet no solution with distance i + 1 (or i + 2 and so forth). Thus a higher
parameter value may mean only that a cluster editing algorithm has to do more work.
See Figure 8, which depicts search tree traversals on the graph used to report run times
in Figure 7. From this we conclude that a binary search may not be the best way to
implement an FPT-based approach for clustering editing, and that one may be better off
steering the parameter as much as possible from below.
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Fig. 7. FPT parameter effects on a graph with 100 vertices, 10 clusters and edit distance 40

Fig. 8. Search trees depend on parameter values
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6 Concluding Remarks

The issue of scalability deserves scrutiny, especially if we are to scale to genome-sized
problem instances. Even for covers and cliques, supercomputers and monolithic mem-
ory may be heavily taxed [10]. In this respect, it is noteworthy that well-known prob-
lems such as vertex cover require searching a parameter space of size |V |, while cluster
editing possesses a search space of size |E|. At some problem size, of course, approx-
imation should better optimization. The exact size probably depends on many factors,
including graph density, relative efficiency of implementations, and even machine ar-
chitecture. Initial experiments have produced interesting comparisons. See Figure 9.

Fig. 9. The scalability of approximation via LP versus optimization via FPT

Related questions abound. For example, we are interested in the difficulty of enu-
merating solutions within some fixed number of edge additions and deletions [4]. Such
an enumeration may prove useful in making decisions between multiple and possibly
ambiguous solutions. We are also interested in relaxing the requirement that cluster
editing cliques be disjoint [5]. Such a relaxation makes particular sense in applications
for which vertices represent genes or gene products, because these are often pleiotropic
and thus may rightfully belong in overlapping cliques.
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Abstract. Many parameterized problems (as the clique problem or the dominat-
ing set problem) ask, given an instance and a natural number k as parameter,
whether there is a solution of size k. We analyze the relationship between the
complexity of such a problem and the corresponding maximality (minimality)
problem asking for a solution of size k maximal (minimal) with respect to set
inclusion. As our results show maximality problems may increase the parameter-
ized complexity, while “in terms of the W-hierarchy” minimality problems do not
increase the complexity.

1 Introduction

Suppose we know (or at least have an upper bound on) the complexity of deciding
whether a problem has a solution of size k. What can we say about the complexity of
the existence of maximal (or minimal) solutions with respect to set inclusion of size
k? This paper addresses this type of questions. By complexity we always mean the
parameterized complexity, the parameter being the size of the solution.

We start by mentioning three results, the first and the second one are well-known
(cf. [7]) and the third one will be derived in Section 3:

(a) The problem p-VERTEX-COVER (“Does a graph have a vertex cover of size k”)
is fixed-parameter tractable and so is the problem p-MINIMAL-VERTEX-COVER

(“Does a graph have a minimal vertex cover of size k”).
(b) The problem p-INDEPENDENT-SET (“Does a graph have an independent set of size

k”) is W[1]-complete and the problem p-MAXIMAL-INDEPENDENT-SET is W[2]-
complete.

(c) The problem p-DOMINATING-SET (“Does a graph have a dominating set of size
k”) is W[2]-complete and so is p-MINIMAL-DOMINATING-SET.

As we show these are not isolated results but special cases of general phenomena: Max-
imality problems (may) increase the complexity, while minimality problems do not.

Let us first introduce a framework appropriate to discuss this type of questions. A
set S of vertices of a graph G is a vertex cover if in G it satisfies the formula vc(Z) of
first-order logic with the set variable Z , where

vc(Z) := ∀x∀y(¬Exy ∨ Zx ∨ Zy)

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 25–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(here the quantifiers range over the vertices, Exy means that there is an edge be-
tween x and y, and Zx means that x is an element of Z). We say that vc(Z) Fagin-
defines the problem p-VERTEX-COVER (on the class of graphs). Similarly the problems
p-INDEPENDENT-SET and p-DOMINATING-SET are Fagin-defined by

indep(Z) := ∀x∀y(¬Exy ∨ ¬Zx ∨ ¬Zy) and ds(Z) := ∀y∃x(Zx ∧ (x = y ∨ Exy)),

respectively. Note that the formulas vc(Z) and ds(Z) are positive in Z (no occurrence
of Z is in the scope of a negation symbol) and the formula indep(Z) is negative in Z
(every occurrence of Z is in the scope of exactly one negation symbol).

If ϕ(Z) is an arbitrary formula, we denote by p-WDϕ the problem Fagin-defined by
ϕ(Z) (see Section 2.1 for the precise definition). It should be clear what we mean by
p-MAXIMAL-WDϕ and by p-MINIMAL-WDϕ. The problem p-MAXIMAL-DOMINA-
TING-SET is trivial, since the set of all vertices is the only maximal dominating set in a
given graph. Similarly, p-MINIMAL-INDEPENDENT-SET is trivial. More generally, one
easily verifies (cf. Section 4) that the problem p-MAXIMAL-WDϕ is trivial for ϕ(Z)
positive in Z and so is the problem p-MINIMAL-WDϕ for ϕ(Z) negative in Z .

We collect the main known results concerning the W-hierarchy and Fagin-defined
problems (cf. [5,11]). We use the following notation: If C is a class of parameterized
problems, [C]fpt is the class of problems fpt-reducible to some problem in C.

Theorem 1. Let t ≥ 1.

(1) W[t] =
[
{p-WDϕ | ϕ(Z) a Πt-formula}

]fpt
.

(2) If t is odd, then

W[t] =
[
{p-WDϕ | ϕ(Z) a Πt-formula negative in Z}

]fpt

=
[
{p-WDϕ | ϕ(Z) a Πt+1-formula negative in Z}

]fpt
.

(3) If t is even, then

W[t] =
[
{p-WDϕ | ϕ(Z) a Πt-formula positive in Z}

]fpt

=
[
{p-WDϕ | ϕ(Z) a Πt+1-formula positive in Z}

]fpt
.

The second equalities in (2) and (3) are formulations in terms of Fagin-definable prob-
lems of the Antimonotone Collapse Theorem and the Monotone Collapse Theorem,
respectively.

In this paper we first analyze maximality problems. We start by observing that
p-MAXIMAL-WDϕ can be considerably harder than p-WDϕ. In fact, there is a Π1-
formula ϕ such that p-WDϕ is W[P]-hard. In more conventional terms, we show that
the maximal weighted satisfiability problem for formulas in 4-CNF is W[P]-hard. We
then turn to formulas ϕ(Z) negative in Z and derive the following. A comparison with
part (2) of Theorem 1 shows that the transition from p-WDϕ to p-MAXIMAL-WDϕ

increases the complexity one level in the W-hierarchy. Moreover, note that the first
equality generalizes the result for the independent set problem mentioned in (b).



The Parameterized Complexity of Maximality and Minimality Problems 27

Theorem 2. If t ≥ 1 is odd, then

W[t + 1] =
[
{p-MAXIMAL-WDϕ | ϕ(Z) a Πt-formula negative in Z}

]fpt

=
[
{p-MAXIMAL-WDϕ | ϕ(Z) a Πt+1-formula negative in Z}

]fpt
.

The proof of this result implies, for example, that the maximal weighted satisfiability
problem for formulas in 2-CNF with only negative literals is W[2]-complete.

We then turn to minimality problems. The following theorem generalizes the results
for the vertex cover problem and the dominating set problem mentioned in (a) and (c),
respectively. Moreover, a comparison of (1) and (2) with (1) and (3) in Theorem 1, re-
spectively, show that for minimality problems we do not have an increase of complexity.

Theorem 3. (1) If t ≥ 2, then

W[t] =
[
{p-MINIMAL-WDϕ | ϕ(Z) a Πt-formula}

]fpt
.

(2) If t ≥ 2 is even, then

W[t] =
[
{p-MINIMAL-WDϕ | ϕ(Z) a Πt-formula positive in Z}

]fpt

=
[
{p-MINIMAL-WDϕ | ϕ(Z) a Πt+1-formula positive in Z}

]fpt
.

(3) FPT =
[
{p-MINIMAL-WDϕ | ϕ(Z) a Π1-formula}

]fpt
.

For the weighted satisfiability problem of propositional formulas in Γt,4, Γ+
t,4, and Γ−

t,4
(these sets are defined in Section 2.2) we exemplify our results on maximality and
minimality problems in the following table.

maximality problem minimality problem

t = 1: FPTΓt,4 W[P]-hard
t > 1: W[t]-complete

t even: W[t]-completeΓ+
t,4 FPT

t odd: W[t − 1]-complete

t even: W[t]-completeΓ−
t,4 t odd: W[t + 1]-complete

FPT

Of course, the existence of maximal and minimal solutions has been studied for various
problems from the classical (“unparameterized”) point of view; e.g., TRANSVERSAL

HYPERGRAPH is the problem of generating all minimal satisfying assignments for a
positive formula in CNF. We refer to [6].

Since due to space limitations we have to defer the main part of the proofs of The-
orem 2 and Theorem 3 to the full version of the paper, we finish this introduction with
some remarks concerning the proof methods. Based on [5], in [10,11] the relationship
between weighted satisfiability problems for fragments of propositional logic, model-
checking problem for fragments of first-order logic, and Fagin-definable problems has
been analyzed systematically and corresponding “translation procedures” were devel-
oped. Partly, our proofs build on these procedures. We should mention that Theorem 2
and Theorem 3 remain true if Z is replaced by a relation symbol of arbitrary arity.
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2 Preliminaries

The set of natural numbers isdenoted by N. For a natural number n let [n] := {1, . . . , n}.
We assume that the reader is familiar with the basic notions of parameterized com-
plexity theory (cf. [4,11]). We denote by FPT the class of all fixed-parameter tractable
problems.

2.1 First-Order Logic

A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. A
τ -structure A consists of a set A called the universe, which we assume to be finite, and
an interpretation RA ⊆ Ar of each r-ary relation symbol R ∈ τ . For example, we view
a graph as a structure G = (G, EG), where E is a binary relation symbol and EG is an
irreflexive and symmetric binary relation on the set of vertices G. Nevertheless, often
we denote the vertex set of a graph G by V and the edge set by E (instead of G and EG)
and use the set notation {v, w} for undirected edges.

Formulas of first-order logic are built up from atomic formulas using the boolean
connectives ¬, ∧, ∨ and existential and universal quantification. (The connectives →
and ↔ are understood as abbreviations.) For t ≥ 1, let Σt denote the class of all first-
order formulas of the form

∃x11 . . .∃x1k1∀x21 . . .∀x2k2 . . . Qxt1 . . .Qxtkt ψ,

where Q = ∀ if t is even and Q = ∃ otherwise, and where ψ is quantifier-free. Πt-
formulas are defined analogously starting with a block of universal quantifiers. Let
t, u ≥ 1. A formula ϕ is Σt,u, if it is Σt and all quantifier blocks after the leading
existential block have length ≤ u.

For a class Φ of first-order formulas we consider the parameterized model-checking
problem:

p-MC(Φ)
Input: A structure A and a sentence ϕ ∈ Φ.

Parameter: |ϕ|.
Question: Does A |= ϕ hold, that is, is A a model of ϕ?

Let Z be a fixed set variable (that is, unary relation variable). We consider first-order
formulas that may contain atomic subformulas of the form Zx. For t, d ≥ 1 we denote
by Πt/d the set of Πt-formulas ϕ(Z) with at most d occurrences of Z .

A first-order formula ϕ = ϕ(Z) Fagin-defines the problem:

p-WDϕ

Input: A structure A and k ∈ N.
Parameter: k.

Question: Is there a subset S ⊆ A of size k such that A |= ϕ(S)?
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2.2 Propositional Logic

Formulas of propositional logic are built up from propositional variables by taking con-
junctions, disjunctions, and negations. We distinguish between small conjunctions, de-
noted by ∧, which are just conjunctions of two formulas, and big conjunctions, denoted
by

∧
, which are conjunctions of nonempty finite sets of formulas. Analogously, we

distinguish between small disjunctions, ∨, and big disjunctions,
∨

.
For t ≥ 0 and d ≥ 1 we inductively define the following classes Γt,d and Δt,d of

formulas:

Γ0,d := {λ1 ∧ . . . ∧ λc | c ∈ [d], λ1, . . . , λc literals},
Δ0,d := {λ1 ∨ . . . ∨ λc | c ∈ [d], λ1, . . . , λc literals},

Γt+1,d :=
{ ∧

i∈I

δi | I finite nonempty index set, and δi ∈ Δt,d for all i ∈ I
}

,

Δt+1,d :=
{ ∨

i∈I

γi | I finite nonempty index set, and γi ∈ Γt,d for all i ∈ I
}

.

If in the definition of Γ0,d and Δ0,d we require that all literals are positive (negative) we
obtain the sets denote by Γ+

t,d and Δ+
t,d (Γ−

t,d and Δ−
t,d), respectively.

We denote by Var(α) the set of propositional variables of a propositional formula
α. Let V be a set of propositional variables. We identify an assignment S : V →
{TRUE, FALSE} with the set {X ∈ V | S(X) = TRUE}. The weight of an assignment S
is |S|, the number of variables set to TRUE. A propositional formula α is k-satisfiable
(where k ∈ N), if there is an assignment for the set of variables of α of weight k satis-
fying α. For a set Γ of propositional formulas, the parameterized weighted satisfiability
problem p-WSAT(Γ) for formulas in Γ is the following problem:

p-WSAT(Γ)
Input: A propositional formula α ∈ Γ and k ∈ N.

Parameter: k.
Question: Is α k-satisfiable?

2.3 The W-Hierarchy

The following theorem contains well-known characterizations (or definitions) of the W-
hierarchy in terms of model-checking problems and weighted satisfiability problems.
Characterizations in terms of Fagin-definable problems were given in Theorem 1.

Theorem 4. (1) Let t, u ≥ 1.Then p-MC(Σt,u) is W[t]-complete under fpt-reductions.
(2) Let t, d ≥ 1 and t + d ≥ 3. Then p-WSAT(Γt,d) is W[t]-complete under fpt-

reductions.
(3) Let t, d ≥ 1 and t + d ≥ 3. If t is even (odd), then p-WSAT(Γ+

t,d) (p-WSAT(Γ−
t,d))

is W[t]-complete under fpt-reductions.
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3 Maximality and Minimality Problems

First we derive the result mentioned in (b) at the beginning of the Introduction:

Theorem 5. p-MINIMAL-DOMINATING-SET is W[2]-complete.

Proof: We first show that p-MINIMAL-DOMINATING-SET ∈ W[2] by reducing it to
p-MC(Σ2,1). For k ∈ N we have

(G, k) ∈ p-MINIMAL-DOMINATING-SET ⇐⇒ G |= ϕk,

where (x1, . . . , xk correspond to the elements of a minimal dominating set and z1, . . .,
zk witness the minimality)

ϕk := ∃x1 . . .∃xk∃z1 . . .∃zk

( ∧
1≤i<j≤k

xi 	= xj ∧ ∀y
∨

i∈[k]

(xi = y ∨ Exiy)∧

∧
j∈[k]

∧
i∈[k],i�=j

(xi 	= zj ∧ ¬Exizj)
)
.

Since ϕk is (logical equivalent to) a Σ2,1-sentence, this gives the desired reduction.
To show the W[2]-hardness of p-MINIMAL-DOMINATING-SET we present an fpt-

reduction from p-DOMINATING-SET to it. Let G = (V, E) be a graph and k ≤ |V |. We
construct the graph G′ = (V ′, E′) as follows:

V ′ :=
(
V × [k]

)
∪̇ V ∪̇ [k]

E′ :=
⋃

�∈[k]

{{(u, �), (v, �)} | u, v ∈ V, u 	= v}

∪
⋃

�∈[k]

{{(u, �), v} | u, v ∈ V and (u = v or {u, v} ∈ E)}

∪ {{(u, �), �} | u ∈ V and � ∈ [k]}.

One easily verifies that

G has a dominating set of size k ⇐⇒ G′ has a minimal dominating set of size k. �

For p-WSAT(Γ), where Γ is a class of propositional formulas, it should be clear what we
mean by p-MINIMAL-WSAT(Γ) or by p-MAXIMAL-WSAT(Γ), as it was for
p-DOMINATING-SET. But in many cases it is not clear what a maximal or minimal
solution should be. For example, what is a maximal solution of the parameterized halt-
ing problem?

p-SHORT-NSTM-HALT

Input: A nondeterministic single-tape Turing machine M
and k ∈ N.

Parameter: k.
Question: Does M accepts the empty string in at most k steps?
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The situation is different for Fagin-defined problems.

Definition 6. Let ϕ(Z) be a first-order formula of vocabulary τ . Let A be a τ -structure
and S ⊆ A.
(1) S is a solution (of ϕ(Z) in A) if A |= ϕ(S).
(2) S is a minimal solution (of ϕ(Z) in A) if S is a solution and no subset S′ ⊂ S is a

solution.
(3) S is a maximal solution (of ϕ(Z) in A) if S is a solution and no superset S′ ⊃ S is

a solution.

For the parameterized problem p-WDϕ Fagin-defined by ϕ (see Section 2.1) we define
the maximality problem Fagin-defined by ϕ as

p-MAXIMAL-WDϕ

Input: A structure A and k ∈ N.
Parameter: k.

Question: Does there exist a maximal solution of ϕ(Z) in A
of size k?

and the minimality problem Fagin-defined by ϕ as

p-MINIMAL-WDϕ

Input: A structure A and k ∈ N.
Parameter: k.

Question: Does there exist a minimal solution of ϕ(Z) in A
of size k?

In particular, on the class of graphs, the problem p-WDindep (recall that indep(Z) =
∀x∀y(¬Exy ∨¬Zx∨ ¬Zy)) coincides with p-INDEPENDENT-SET and p-MAXIMAL-
WDindep with p-MAXIMAL-INDEPENDENT-SET.

In general, the problem p-MAXIMAL-WDϕ can be considerably harder than p-WDϕ

as shown by the following result. When reading this result recall that p-WDϕ ∈ W[1]
for all Π1-formulas.

Theorem 7. There exists a Π1-formula ϕ(Z) such that p-MAXIMAL-WDϕ is W[P]-
hard.

Proof: We give a reduction from the weighted Boolean circuit satisfiability problem
p-WSAT(CIRCUIT), a W[P]-complete problem, to p-MAXIMAL-WDϕ for an appro-
priate ϕ(Z) ∈ Π1.

We view circuits as τcirc-structures for τcirc := {E, IN ,OUT , AND , OR, NEG}
with unary relation symbols IN ,OUT ,AND ,OR,NEG and binary E. Hence, a cir-
cuit has the form C = (C, EC , IN C ,OUTC ,ANDC ,ORC ,NEGC), where (C, EC) is
the directed acyclic graph underlying the circuit, IN C is the set of all input nodes,
OUTC just contains the output node, and ANDC , ORC , and NEGC are the sets of and-
gates, or-gates, and negation-gates, respectively. Input nodes have in-degree 0, negation-
gates in-degree 1, and-gates and or-gates in-degree 2; the output node has out-degree 0.
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It is routine to verify that for every circuit D and every subset S0 of the set IND of
input nodes:

S0 does not satisfy D ⇐⇒ D |= circunsat(S) for some S with S ∩ IND = S0, (1)

where circunsat(Z) := ∀x∀y∀zψ(x, y, z, Z) with

ψ := ((NEG x ∧ Eyx) → (Zx ↔ ¬Zy))

∧ ((AND x ∧ Eyx ∧ Ezx ∧ y 	= z) → (Zx ↔ (Zy ∧ Zz)))

∧ ((OR x ∧ Eyx ∧ Ezx ∧ y 	= z) → (Zx ↔ (Zy ∨ Zz)))

∧ (OUT x → ¬Zx).

Let (C, k) be an instance of p-WSAT(CIRCUIT) and let X1, . . . Xn be the input nodes
of C. We turn C into a new circuit with input nodes {Xi,j | i ∈ [k] and j ∈ [n]} as
follows:

We replace each Xj by a circuit equivalent to
∨

i∈[k] Xi,j . We add 2k + 2 con-
secutive negation-gates on top of the output node of C. The highest negation-
gate is the new output node.

We view the circuit C∗ thus obtained as a τ∗ := τcirc ∪ {DIFF}-structure, where DIFF
is a binary relation symbol and

DIFFC∗
:= {(Xi,j, Xi′,j′ ) | i 	= i′ and j 	= j′}.

Obviously for j1, . . . , jk ∈ [n],

{Xj1 , . . . , Xjk
} satisfies C ⇐⇒ {X1,j1 , . . . , Xk,jk

} satisfies C∗. (2)

Let
ϕ(Z) :=

(
circunsat(Z) ∨ ∀x(Zx → IN x)

)
∧ assign(Z)

with assign(Z) := ∀x∀y
(
(Zx ∧ Zy ∧ IN x ∧ IN y ∧ x 	= y) → DIFF xy

)
. Intuitively

ϕ(Z) expresses:

(a) either Z ∩ IN is not a satisfying assignment and Z is the set of nodes of the circuit
set to TRUE by this assignment or Z only contains input gates; and

(b) Z ∩ IN = {Xi1,j1 , . . . Xi�,j�
} for some � ≤ k, pairwise distinct i1, . . . , i�, and

pairwise distinct j1, . . . , j�.

We claim that

C is k-satisfiable ⇐⇒ (C∗, k) ∈ p-MAXIMAL-WDϕ,

which shows the W[P]-hardness of p-MAXIMAL-WDϕ.
First assume that C is satisfied by the assignment S0 = {Xj1 , . . . Xjk

} of weight k.
Let S∗

0 := {X1,j1 , . . . Xk,jk
}. Clearly C∗ |= ∀x(Zx → IN x)(S∗

0 ) and C∗ |= assign(S∗
0 ).

Hence C∗ |= ϕ(S∗
0 ). We show that S∗

0 is a maximal solution of ϕ(Z) in C∗. Let S ⊃ S∗
0

and assume that C∗ |= ϕ(S). Since C∗ |= assign(S), we see that S∗
0 = S∩ INC∗

, and thus
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S \ INC∗ 	= ∅. Therefore C∗ 	|= ∀x(Zx → IN x)(S). Hence, C∗ |= circunsat(S). Thus, by
(1), we know that S ∩ INC∗

, that is, the set S∗
0 , does not satisfy C∗. Therefore, by (2),

S0 does not satisfy C, a contradiction.
Assume now that (C∗, k) ∈ p-MAXIMAL-WDϕ and let S∗ be a maximal solution

of size k. Then C∗ 	|= circunsat(S∗), as otherwise S∗ must contain k + 1 many of the
negation nodes added to C and hence |S∗| ≥ k + 1. Thus C∗ |=

(
∀x(Zx → IN x) ∧

assign
)
(S∗). Therefore S∗ = {X1,j1 , . . . Xk,jk

} for some pairwise distinct j1, . . . , jk ∈
[n]. We set S0 := {Xj1 , . . . , Xjk

}. Hence S0 is an assignment of C of weight k. We
claim that S0 satisfies C. Otherwise by (2), S∗ does not satisfy C∗. Then by (1), we
have some S ⊃ S∗ with S∗ = S ∩ INC∗

such that C∗ |= circunsat(S). It is clear that
C∗ |= assign(S). Hence C∗ |= ϕ(S) contradicting the maximality of S∗. �

Let circsat(Z) be the formula obtained from circunsat(Z) by replacing the conjunct
(OUT x → ¬Zx) by (OUT x → Zx). For

ϕ(Z) := ∀x(Zx → OUT x) ∨ circsat(Z)

it is not hard to show that

C is not satisfiable ⇐⇒ (C, 1) ∈ p-MAXIMAL-WDϕ

for every circuit C with at least two nodes. From this one easily gets (formulation (2)
addresses those readers familiar with the corresponding concepts):

Theorem 8. (1) There exists a Π1-formula ϕ(Z) such that p-MAXIMAL-WDϕ is not
in W[P] unless P = NP.

(2) There exists a Π1-formula ϕ(Z) such that p-MAXIMAL-WDϕ is para-co-NP-hard
under fpt-reductions.

4 Maximality Problems for Negative Formulas

Formulas ϕ(Z) negative in Z are antimonotone, that is

A |= ϕ(S) and S′ ⊆ S imply A |= ϕ(S′).

For such ϕ(Z) we see that only the empty set can be a minimal solution of ϕ(Z) in
A. And the empty set is a minimal solution if and only if A |= ϕ(∅). Since A |= ϕ(∅)
can be checked in time polynomial in the size of A, the problem p-MINIMAL-WDϕ is
fixed-parameter tractable for ϕ(Z) negative in Z .

The antimonotonicity of formulas negative in Z allows to bound the complexity of
p-MAXIMALWDϕ as claimed in Theorem 2. By the way it is well-known (cf. [2]) that
the following converse of the previous fact is true: If ϕ(Z) is antimonotone in Z in
all finite and infinite structures, then ϕ(Z) is logically equivalent to a formula ψ(Z)
negative in Z . Nevertheless, we do not know whether, in Theorem 2, we can replace
“ϕ(Z) a Πt-formula negative in Z” by “ϕ(Z) a Πt-formula antimonotone in Z;” in
fact, for t ≥ 3, it is not known if every Πt-formula antimonotone in Z is equivalent to
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a formula ψ(Z) in Πt negative in Z . For t = 1, 2 this is true (cf. [2] for t = 1 and [14]
for t = 2).

For a formula ϕ(Z) the following problem asks for solutions that are maximal with
respect to extensions by a single element:

p-1-MAXIMAL-WDϕ

Input: A structure A and k ∈ N.
Parameter: k.

Question: Is there a solution S of ϕ(Z) in A of size k such that
for all a ∈ A \ S the set S ∪ {a} is not a solution?

For ϕ(Z) negative in Z we get by antimonotonicity:

Lemma 9. Let ϕ(Z) be negative in Z . Then p-MAXIMAL-WDϕ = p-1-MAXIMAL-
WDϕ.

For an arbitrary formula ϕ(Z) let

1-max-ϕ(Z) := ϕ(Z) ∧ ∀y
(
Zy ∨ ¬ϕ(Z ∪ {y})

)
,

where ϕ(Z ∪ {y}) denotes the formula obtained from ϕ by replacing atomic formulas
Zx by (Zx ∨ x = y). The proof of the following lemma is straightforward.

Lemma 10. (1) p-1-MAXIMAL-WDϕ = p-WD1-max-ϕ.
(2) Let t ≥ 1. If ϕ(Z) is a Πt-formula, then 1-max-ϕ is (equivalent to) a Πt+1-formula.

Using these observations we already get part of Theorem 2:

Lemma 11. If t ≥ 1, then[
{p-MAXIMAL-WDϕ | ϕ(Z) a Πt-formula negative in Z}

]fpt ⊆ W[t + 1].

Proof: Let t ≥ 1 and ϕ(Z) be a Πt-formula negative in Z . Then

p-MAXIMAL-WDϕ = p-1-MAXIMAL-WDϕ (by Lemma 9 )
= p-WD1-max-ϕ (by Lemma 10).

Since 1-max-ϕ is a Πt+1-formula, the problem p-WD1-max-ϕ is in W[t + 1] by Theo-
rem 1(1). �

The proof of the remaining parts of Theorem 2 is much more involved and will be
presented in the full version of the paper.

In view of Theorem 2 one might conjecture that p-MAXIMAL-WDϕ ∈ W[1] for
every Π1-formula ϕ(Z) negative in Z with p-WDϕ ∈ FPT. In the full version we will
disprove this conjecture (unless W[1] = W[2]) and show:

Theorem 12. The problem

p-CLIQUE-OR-INDEPENDENT-SET

Input: A graph G and k ∈ N.
Parameter: k.

Question: Does G have a clique of size k or an independent set of
size k?
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is fixed-parameter tractable and p-MAXIMAL-CLIQUE-OR-INDEPENDENT-SET is
W[2]-complete. Moreover, it coincides with p-WDϕ for some Π1-formula ϕ(Z).

The fixed-parameter tractability of p-CLIQUE-OR-INDEPENDENT-SET is from [13]. In
[1] it is shown that the corresponding counting problem p-#CLIQUE-OR-INDEPEN-
DENT-SET is not in FPT (unless FPT = W[1]). We want to remark that most of our
results can be extended to counting problems. We do not pursue this topic here (we
will address counting problems in the full version of the paper), but only mention the
following result which we state for the reader familiar with [9].

Theorem 13. p-#MAXIMAL-INDEPENDENT-SET and p-#MAXIMAL-CLIQUE-OR-
INDEPENDENTSET are #W[2]-complete under parsimonious reductions.

5 Maximal Weighted Satisfiability Problems

We determine the complexity of maximal weighted satisfiability problems for some of
the standard classes of propositional formulas considered in parameterized complexity.
We obtain our results applying the well-known correspondence between weighted sat-
isfiability problems and Fagin-definable problems stated in the following two lemmas,
the first one translates Fagin-definable problems into weighted satisfiability problems
and the second one contains a translation in the other direction. For proofs we refer the
reader to [12,8].

Lemma 14. Let t, d ≥ 1 and ϕ(Z) be a Πt/d-formula of vocabulary τ . Then there
is a polynomial time algorithm associating with every τ -structure A a propositional
formula α ∈ Γt,d such that Var(α) ⊆ {Xa | a ∈ A} and for all S ⊆ A:

A |= ϕ(S) ⇐⇒ {Xb | b ∈ S} satisfies α. (3)

If ϕ(Z) is negative in Z , then α can be chosen in α ∈ Γ−
t,d.

Lemma 15. Let t, d ≥ 1. There is a Πt/2d-formula ϕ(Z) and a polynomial time algo-
rithm associating with every propositional formula α ∈ Γt,d a structure A in a vocab-
ulary τ containing a unary relation symbol VAR with VARA = Var(α) and such that for
all S ⊆ Var(α)

A |= ϕ(S) ⇐⇒ S satisfies α. (4)

If t is odd and we only consider formulas α in Γ−
t,d, then we can choose ϕ(Z) as Πt/d-

formula negative in Z .

From these lemmas one easily obtains:

Corollary 16. Let t, d ≥ 1. Then:
(1)

[
p-MAXIMAL-WSAT(Γ−

t,d)
]fpt

=
[
{p-MAXIMAL-WDϕ | ϕ(Z) ∈ Πt/d negative

in Z}
]fpt

.

(2)
[
{p-MAXIMAL-WDϕ |ϕ(Z) ∈ Πt/d′ , d′ ≥ 1}

]fpt
=

[
{p-MAXIMAL-WSAT(Γt,d′)

| d′ ≥ 1}
]fpt

.
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Proof: (1) Let ϕ(Z) ∈ Πt/d be negative in Z and (A, k) an instance of p-MAXIMAL-
WDϕ. Choose α ∈ Γ−

t,d according to Lemma 14. Let S0 be the set of a ∈ A such that
the variable Xa does not occur in α and let �0 := |S0|. Then, by (3), for all S ⊆ A

A |= ϕ(S) ⇐⇒ A |= ϕ(S ∪ S0). (5)

The equivalences (3) and (5) show that

(A, k) ∈ p-MAXIMAL-WDϕ ⇐⇒ (α, k − �0) ∈ p-MAXIMAL-WSAT(Γ−
t,d),

which yields a reduction from p-MAXIMAL-WDϕ to p-MAXIMAL-WSAT(Γ−
t,d).

Let t ≥ 1 be odd. Using Lemma 15 one gets a reduction from p-MAXIMAL-
WSAT(Γ−

t,d) to p-MAXIMAL-WDψ for some Πt/d-formula ψ(Z) negative in Z . In fact,
we can choose as ψ(Z) the formula ϕ(Z) ∧ ∀x(Zx → VAR x), where ϕ(Z) negative in
Z is as in Lemma 15. For odd one applies the Antimonotone Collapse Theorem.

The proof of (2) is similar. �

Theorem 17. (1) Let t ≥ 1 and d ≥ 2. Then p-MAXIMAL-WSAT(Γ−
t,d) is W[t + 1]-

complete for odd t and W[t]-complete for even t.
(2) p-MAXIMAL-WSAT(Γ1,4) is W[P]-hard.

Proof: Part (1) follows from Theorem 2 and its proof using Corollary 16. For (2) we
invoke Theorem 7, thereby noting that when translating the formula ϕ(Z) of the proof of
Theorem 7 into a propositional formula according to Lemma 14, one obtains a formula
in Γ1,d for d = 4. �

We close this section by stating the results for minimality weighted satisfiability prob-
lems:

Theorem 18. (1) p-MINIMAL-WSAT(Γ1,d) is fixed-parameter tractable for all d ≥ 1.
(2) p-MINIMAL-WSAT(Γt,d) is W[t]-complete for all t ≥ 2 and d ≥ 1.
(3) p-MINIMAL-WSAT(Γ+

t,d) and p-MINIMAL-WSAT(Γ+
t+1,d) are W[t]-complete for

all even t ≥ 2 and d ≥ 1.

6 Maximal Solutions with Respect to Extensions by a Single
Element

As seen in Theorem 2, for odd t, the “maximality operation” applied to problems in
W[t] yields (up to fpt-reductions) the class W[t + 1]. In the full version of the pa-
per we will show that the “1-maximality operation” has this property for all t,
that is:

Theorem 19. For every t ≥ 1, W[t + 1] =
[
{p-1-MAXIMAL-WDϕ | ϕ(Z) ∈ Πt}

]fpt
.
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7 Conclusions

Using the notion of Fagin-definability we have analyzed the parameterized complexity
of maximality and minimality problems. We believe that our results show that Fagin-
definability yields a very appropriate framework for the study of these type of questions.
In particular, as already mentioned, in this framework we will address the corresponding
counting problems in the full version of the paper.

Let us close with a remark on W[P], which often is seen as the parameterized ana-
logue of NP. In [3] it is shown that W[P] precisely consists of the problems fpt-reducible
to a problem p-WDϕ, where ϕ(Z) is a formula of fixpoint logic. For such a formula
ϕ the formula 1-max-ϕ(Z) is again in fixpoint logic. Hence: If ϕ(Z) is a formula of
fixpoint logic negative in Z , then p-MAXIMAL-WDϕ ∈ W[P].
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Abstract. We show that every problem in MAX SNP has a lower bound on the
optimum solution size that is unbounded and that the above guarantee question
with respect to this lower bound is fixed parameter tractable. We next introduce
the notion of “tight” upper and lower bounds for the optimum solution and show
that the parameterized version of a variant of the above guarantee question with
respect to the tight lower bound cannot be fixed parameter tractable unless P =
NP, for a class of NP-optimization problems.

1 Introduction

In this paper, we consider the parameterized complexity of NP-optimization prob-
lems Q with the following property: for non-trivial instance I of Q, the optimum
opt(I), is lower-bounded by an increasing function of the input size. That is, there
exists a function f : N → N which is increasing such that for non-trivial instances I ,
opt(I) ≥ f(|I|). For such an optimization problem Q, the standard parameterized ver-
sion Q̃ defined below is easily seen to be fixed parameter tractable. For if k ≤ f(|I|),
we answer ‘yes’; else, f(|I|) < k and so |I| < f−1(k)1 and we have a kernel.

Q̃ = {(I, k) : I is an instance of Q and opt(I) ≥ k}

Thus for such an optimization problem it makes sense to define an “above guarantee”
parameterized version Q̄ as

Q̄ = {(I, k) : I is an instance of Q and opt(I) ≥ f(|I|) + k}.

Such above guarantee parameterized problems were first considered by Mahajan and
Raman in [5]. The problems dealt with by them are MAX SAT and MAX CUT. An in-
stance of the MAX SAT problem is a boolean formula φ in conjunctive normal form and
the standard parameterized version asks whether φ has at least k satisfiable clauses, k
being the parameter. Since any boolean formula φ with m clauses has at least �m/2�
satisfiable clauses (see Motwani and Raghavan [6]), by the above argument, this prob-
lem is fixed parameter tractable. The above guarantee MAX SAT question considered in
[5] asks whether a given formula φ has at least �m/2�+ k satisfiable clauses, with k as
parameter. This was shown to be fixed parameter tractable.

The standard parameterized version of the MAX CUT problem asks whether an input
graph G has a cut of size at least k, where k is the parameter. This problem is also fixed

1 Assuming f to be invertible; the functions considered in this paper are.

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 38–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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parameter tractable since any graph G with m edges has a cut of size �m/2�. The above
guarantee MAX CUT question considered in [5] asks whether an input graph G on m
edges has a cut of size at least �m/2� + k, where k is the parameter. This problem was
shown to be fixed parameter tractable too.

In this paper, we consider above guarantee questions for problems in the class MAX
SNP. This paper is structured as follows. In Section 2, we introduce the necessary
ideas about parameterized complexity and state some basic definitions needed in the
rest of the paper. In Section 3, we show that every problem in the class MAX SNP has
a guaranteed lower bound that is an unbounded function of the input size and that the
above guarantee problem with respect to this lower bound is fixed parameter tractable.
In Section 4, we define a notion of tight lower bound and show that a variant of the
above guarantee question with respect to tight lower bounds is hard (unless P = NP)
for a number of NP-maximization problems. Finally in Section 5, we end with a few
concluding remarks.

2 Preliminaries

We briefly introduce the necessary concepts concerning optimization problems and
parameterized complexity.

To begin with, a parameterized problem is a subset of Σ∗ × N, where Σ is a finite
alphabet and N is the set of natural numbers. An instance of a parameterized problem
is therefore a pair (I, k), where k is the parameter. In the framework of parameterized
complexity, the run time of an algorithm is viewed as a function of two quantities: the
size of the problem instance and the parameter. A parameterized problem is said to be
fixed parameter tractable (fpt) if there exists an algorithm for the problem with time
complexity O(f(k) · |I|O(1)), where f is a recursive function of k alone. The class FPT
consists of all fixed parameter tractable problems.

A parameterized problem π1 is fixed-parameter-reducible to a parameterized prob-
lem π2 if there exist functions f, g : N → N, Φ : Σ∗ × N → Σ∗ and a polynomial p(·)
such that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 computable
in time f(k) · p(|I|) and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2.

An NP-optimization problem Q is a 4-tuple Q = {I , S, V, opt}, where

1. I is the set of input instances. (w.l.o.g., I can be recognized in polynomial time.)
2. S(x) is the set of feasible solutions for the input x ∈ I .
3. V is a polynomial-time computable function called the cost function and for each

x ∈ I and y ∈ S(x), V (x, y) ∈ N.
4. opt ∈ {max, min}.
5. The following decision problem (called the underlying decision problem) is in NP:

Given x ∈ I and an integer k, does there exist a feasible solution y ∈ S(x) such
that V (x, y) ≥ k, when Q is a maximization problem (or, V (x, y) ≤ k, when Q is
a minimization problem).

The class MAX SNP was defined by Papadimitriou and Yannakakis [7] using logical
expressiveness. They showed that a number of interesting optimization problems such
as MAX 3-SAT, INDEPENDENT SET-B, MAX CUT, MAX k-COLORABLE SUBGRAPH
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etc. lie in this class. They also introduced the notion of completeness for MAX SNP by
a reduction known as the L-reduction. We define this next.

Let Q1 and Q2 be two optimization (maximization or minimization) problems. We
say that Q1 L-reduces to Q2 if there exist polynomial-time computable functions f, g,
and constants α, β > 0 such that for each instance I1 of Q1:

1. f(I1) = I2 is an instance of Q2, such that opt(I2) ≤ α · opt(I1).
2. Given any solution y2 of I2, g maps (I2, y2) to a solution y1 of I1 such that

|V (I1, y1) − opt(I1)| ≤ β · |V (I2, y2) − opt(I2)|

We call such an L-reduction from Q1 to Q2 an 〈f, g, α, β〉 reduction.
A problem Q is MAX SNP-hard if every problem in the class MAX SNP L-reduces

to Q. A problem Q is MAX SNP-complete, if Q is in MAX SNP and is MAX SNP-
hard. Cai and Chen [1] established that all maximization problems in the class MAX
SNP are fixed parameter tractable. In the next section, we show that for all problems in
MAX SNP, a certain above-guarantee question is also fixed parameter tractable.

3 Parameterizing Above Guaranteed Values

Consider the problem MAX 3-SAT which is complete for the class MAX SNP. An
instance of MAX 3-SAT is a boolean formula f in conjunctive normal form with at
most three literals per clause. As already stated, any boolean formula with m clauses
has at least �m/2� satisfiable clauses, and the following above guarantee parameterized
problem is fixed parameter tractable.

L = {(f, k) : f is a MAX 3-SAT instance and ∃ an assignment satisfying
at least k + �m/2� clauses of the formula f }.

Since MAX 3-SAT is MAX SNP-complete and has a guaranteed lower bound, we have

Proposition 1. If Q is in MAX SNP, then for each instance x of Q there exists a
positive number γx such that γx ≤ opt(x). Further, if Q is NP-hard, then the function
γ : x → γx is unbounded, assuming P 	= NP.

Proof. Let Q be a problem in MAX SNP and let 〈f, g, α, β〉 be an L-reduction from
Q to MAX 3-SAT. Then for an instance x of Q, f(x) is an instance of MAX 3-SAT

such that opt(f(x)) ≤ α · opt(x). If f(x) is a formula with m clauses, then �m/2� ≤
opt(f(x)) and therefore opt(x) is bounded below by �m/2�/α. This proves that each
instance x of Q has a lower bound. We can express this lower bound in terms of the
parameters of the L-reduction. Since f(x) is an instance of MAX 3-SAT, we can take
the size of f(x) to be m. Then γx = |f(x)|/(2 · α). Further, note that if m is not
unbounded, then we can solve Q in polynomial time via this reduction.

Note that this lower bound γx depends on the complete problem to which we reduce
Q. By changing the complete problem, we might construct different lower bounds for
the problem at hand. It is also conceivable that there exist more than one L-reduction
between two optimization problems. Different L-reductions should give different lower
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bounds. Thus the polynomial-time computable lower bound that we exhibit in Propo-
sition 1 is a special lower bound obtained from a specific L-reduction to a specific
complete problem (MAX 3-SAT) for the class MAX SNP. Call the lower bound of
Proposition 1 a MAX 3-SAT-lower bound for the problem Q.

Since the above guarantee parameterized version L of MAX 3-SAT is known to be
in FPT, we immediately have the following.

Theorem 1. For a maximization problem Q in MAX SNP, let 〈f, g, α, β〉 be an L-
reduction from Q to MAX 3-SAT, and for an instance x of Q, let γx represent the
corresponding MAX 3-SAT-lower bound. Then the following problem is in FPT:

LQ = {〈x, k〉 : x is an instance of Q and opt(x) ≥ γx + k}

Proof. We make use of the fact that there exists a fixed parameter tractable algorithm
A for MAX 3-SAT which takes as input, a pair of the form 〈ψ, k〉, and in time O(|ψ|+
h(k)), returns YES if there exists an assignment to the variables of ψ that satisfies at
least �m/2� + k clauses, and NO otherwise. See [5,9] for such algorithms.

Consider an instance 〈x, k〉 of LQ. Then f(x) is an instance of MAX 3-SAT. Let f(x)
have m clauses. Then the guaranteed lower bound for the instance x of Q, γx = m

2α ,
and opt(f(x)) ≤ α·opt(x). Apply algorithm A on input 〈f(x), kα〉. If A outputs YES,
then opt(f(x)) ≥ m/2+k ·α, implying opt(x) ≥ m

2·α +k = γx +k. Thus 〈x, k〉 ∈ LQ.
If A answers NO, then

⌈
m
2

⌉
≤ opt(f(x)) <

⌈
m
2

⌉
+kα. Apply algorithm A kα times

on inputs (f(x), 1), (f(x), 2), . . . , (f(x), kα) to obtain opt(f(x)). Let c′ = opt(f(x)).
Then use algorithm g of the L-reduction to obtain a solution to x with cost c. By the
definition of L-reduction, we have |c − opt(x)| ≤ β · |c′ − opt(f(x))|. But since c′ =
opt(f(x)), it must be that c = opt(x). Therefore we simply need to compare c with
γx + k to check whether 〈x, k〉 ∈ LQ.

The total time complexity of the above algorithm is O(kα · (|f(x)| + h(kα)) +
p1(|x|) + p2(|f(x)|)), where p1(·) is the time taken by algorithm f to transform an
instance of Q to an instance of MAX 3-SAT, and p2(·) is the time taken by g to output
its answer. Thus the algorithm that we outlined is indeed an FPT algorithm for LQ.

Note that the proof of Proposition 1 also shows that every minimization problem in
MAX SNP has a MAX 3-SAT-lower bound. For minimization problems whose opti-
mum is lower bounded by some function of the input, it makes sense to ask how far
removed the optimum is with respect to the lower bound. The parameterized question
asks whether for a given input x, opt(x) ≤ γx + k, with k as parameter. The following
result can be proved similarly to Theorem 1.

Theorem 2. For a minimization problem Q in MAX SNP, let 〈f, g, α, β〉 be an L-
reduction from Q to MAX 3-SAT, and for an instance x of Q, let γx represent the
corresponding MAX 3-SAT-lower bound. Then the following problem is in FPT:

LQ = {〈x, k〉 : x is an instance of Q and opt(x) ≤ γx + k}

Examples of minimization problems in MAX SNP include VERTEX COVER-B and
DOMINATING SET-B which are, respectively, the restriction of the VERTEX COVER

and the DOMINATING SET problems to graphs whose vertex degree is bounded by B.
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4 Hardness Results

For an optimization problem, the question of whether the optimum is at least lower
bound + k, for some lower bound and with k as parameter, is not always interesting
because if the lower bound is “loose” then the problem is trivially fixed parameter
tractable. For instance, for the MAX CUT problem, the question of whether an input
graph has a cut of size at least m

2 + k is fpt since any graph G with m edges, n vertices
and c components has a cut of size at least m

2 + �n−c
4 � [8]. Thus if k ≤ �n−c

4 �, we
answer YES; else, �n−c

4 � < k and we have a kernel.
We therefore examine the notion of a tight lower bound and the corresponding above

guarantee question. A tight lower bound is essentially the best possible lower bound on
the optimum solution size. For the MAX SAT problem, this lower bound is m/2: if φ is
an instance of MAX SAT, then opt(φ) ≥ m/2, and there are infinitely many instances
for which the optimum is exactly m/2. This characteristic motivates the next definition.

Definition 1 (Tight Lower Bound). Let Q = {I , S, V, opt} be an NP-optimization
problem and let f : N → N. We say that f is a tight lower bound for Q if the following
conditions hold:

1. f(|I|) ≤ opt(I) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = f(|I|) for

all I ∈ I ′.

Note that we define the lower bound to be a function of the input size rather than the
input itself. This is in contrast to the lower bound of Proposition 1 which depends on
the input instance. We can define the notion of a tight upper bound analogously.

Definition 2 (Tight Upper Bound). Let Q = {I , S, V, opt} be an NP-optimization
problem and let g : N → N. We say that g is a tight upper bound for Q if the following
conditions hold:

1. opt(I) ≤ g(|I|) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = g(|I|) for

all I ∈ I ′.

Some example optimization problems which have tight lower and upper bounds are
given below. The abbreviations TLB and TUB stand for tight lower bound and tight
upper bound, respectively.

1. MAX EXACT c-SAT

INSTANCE A boolean formula F with n variables and m clauses with each clause
having exactly c distinct literals.

QUESTION Find the maximum number of simultaneously satisfiable clauses.
BOUNDS TLB = (1 − 1

2c )m; TUB = m.

The expected number of clauses satisfied by the random assignment algorithm is (1 −
1
2c )m; hence the lower bound. To see tightness, note that if φ(x1, . . . , xc) denotes the
EXACT c-SAT formula comprising of all possible combinations of c variables, then φ
has 2c clauses of which exactly 2c − 1 clauses are satisfiable. By taking disjoint copies
of this formula one can construct EXACT c-SAT instances of arbitrary size with exactly
(1 − 1

2c )m satisfiable clauses.
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2. CONSTRAINT SATISFACTION PROBLEM (CSP)
INSTANCE A system of m linear equations modulo 2 in n variables, together

with positive weights wi, 1 ≤ i ≤ m.
QUESTION Find an assignment to the variables that maximizes the total weight

of the satisfied equations.
BOUNDS TLB = W

2 , where W =
∑m

i=1 wi; TUB = W .

If we use {+1,−1}-notation for boolean values with −1 corresponding to true then we
can write the ith equation of the system as

∏
j∈αi

xj = bi, where each αi is a subset
of [n] and bi ∈ {+1,−1}. To see that we can satisfy at least half the equations in the
weighted sense, we assign values to the variables sequentially and simplify the system
as we go along. When we are about to give a value to xj , we consider all equations
reduced to the form xj = b, for a constant b. We choose a value for xj satisfying at
least half (in the weighted sense) of these equations. This procedure of assigning values
ensures that we satisfy at least half the equations in the weighted sense. A tight lower
bound instance, in this case, is a system consisting of pairs xj = bi, xj = b̄i, with each
equation of the pair assigned the same weight. See [3] for more details.

3. MAX INDEPENDENT SET-B
INSTANCE A graph G with n vertices such that the degree of each vertex is

bounded by B.
QUESTION Find a maximum independent set of G.
BOUNDS TLB = n

B+1 ; TUB = n.

A graph whose vertex degree is bounded by B can be colored using B + 1 colors,
and in any valid coloring of the graph, the vertices that get the same color form an
independent set. By the pigeonhole principle, there exists an independent set of size at
least n/(B + 1). The complete graph KB+1 on B + 1 vertices has an independence
number of n

B+1 . By taking disjoint copies of KB+1 one can construct instances of
arbitrary size with independence number exactly n

B+1 .

4. MAX PLANAR INDEPENDENT SET

INSTANCE A planar graph G with n vertices and m edges.
QUESTION Find a maximum independent set of G.
BOUNDS TLB = n

4 ; TUB = n.

A planar graph is 4-colorable, and in any valid 4-coloring of the graph, the vertices that
get the same color form an independent set. By the pigeonhole principle, there exists an
independent set of size at least n

4 . A disjoint set of K4’s can be use to construct arbitrary
sized instances with independence number exactly n

4 .

5. MAX ACYCLIC DIGRAPH

INSTANCE A directed graph G with n vertices and m edges.
QUESTION Find a maximum acyclic subgraph of G.
BOUNDS TLB = m

2 ; TUB = m.

To see that any digraph with m arcs has an acyclic subgraph of size m
2 , place the vertices

v1, . . . , vn of G on a line in that order with arcs (vi, vj), i < j, drawn above the line and
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arcs (vi, vj), i > j, drawn below the line. Clearly, by deleting all arcs either above or
below the line we obtain an acyclic digraph. By the pigeonhole principle, one of these
two sets must have size at least m

2 . To see that this bound is tight, consider the digraph
D on n vertices: v1 � v2 � v3 � . . . � vn which has a maximum acyclic digraph of
size exactly m

2 . Since n is arbitrary, we have an infinite set of instances for which the
optimum matches the lower bound exactly.

6. MAX PLANAR SUBGRAPH

INSTANCE A connected graph G with n vertices and m edges.
QUESTION Find an edge-subset E′ of maximum size such that G[E′] is planar.
BOUNDS TLB = n − 1; TUB = 3n − 6.

Any spanning tree of G has n − 1 edges; hence any maximum planar subgraph of G
has at least n−1 edges. This bound is tight as the family of all trees achieves this lower
bound. An upper bound is 3n − 6 which is tight since for each n, a maximal planar
graph on n vertices has exactly 3n − 6 edges.

7. MAX CUT

INSTANCE A graph G with n vertices, m edges and c components.
QUESTION Find a maximum cut of G.
BOUNDS TLB = m

2 + �n−c
4 �; TUB = m.

The lower bound for the cut size was proved by Poljak and Turzı́k [8]. This bound is
tight for complete graphs. The upper bound is tight for bipartite graphs.

A natural question to ask in the above-guarantee framework is whether the language

L = {〈I, k〉 : opt(I) ≥ TLB(I) + k}

is in FPT. The parameterized complexity of such a question is not known for most prob-
lems. To the best of our knowledge, this question has been resolved only for the MAX

SAT and MAX c-SAT problems [5] and, very recently, for the LINEAR ARRANGEMENT

problem [2].
In this section, we study a somewhat different, but related, parameterized question:

Given an NP-maximization problem Q which has a tight lower bound (TLB) a function
of the input size, what is the parameterized complexity of the following question?

Q(ε) = {〈I, k〉 : opt(I) ≥ TLB(I) + ε · |I| + k}

Here |I| denotes the input size, ε is some fixed positive rational and k is the parameter.
We show that this question is not fixed parameter tractable for a number of problems,
unless P = NP.

Theorem 3. For any problem Q in the following, the Q(ε) problem is not fixed para-
meter tractable unless P = NP:

Problem TLB(I) + ε · |I | + k Range of ε

1. MAX SAT ( 1
2 + ε)m + k 0 < ε < 1

2

2. MAX c-SAT ( 1
2 + ε)m + k 0 < ε < 1

2
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3. MAX EXACT c-SAT (1 − 1
2c + ε)m + k 0 < ε < 1

2c

4. CSP ( 1
2 + ε)m + k 0 < ε < 1

2

5. PLANAR INDEPENDENT SET ( 1
4 + ε)n + k 0 < ε < 3

4

6. INDEPENDENT SET-B ( 1
B+1 + ε)n + k 0 < ε < B

B+1

7. MAX ACYCLIC SUBGRAPH ( 1
2 + ε)m + k 0 < ε < 1

2

8. MAX PLANAR SUBGRAPH (1 + ε)n − 1 + k 0 < ε < 2

9. MAX CUT m
2 + �n−c

4 � + εn + k 0 < ε < 1
4

10. MAX DICUT m
4 + m

32 + 1
256 − 1

16 + εm + k 0 < ε < 3
4

The proof, in each case, follows this outline: Assume that for some ε in the specified
range, Q(ε) is indeed in FPT. Now consider an instance 〈I, s〉 of the underlying de-
cision version of Q. Here is a P-time procedure for deciding it. If s ≤ TLB, then the
answer is trivially YES. If s lies between TLB and TLB + ε|I|, then “add” a gadget of
suitable size corresponding to the TUB, to obtain an equivalent instance 〈I ′, s′〉. This in-
creases the input size, but since we are adding a gadget whose optimum value matches
the upper bound, the increase in the optimum value of I ′ is more than proportional, so
that now s′ exceeds TLB + ε|I ′|. If s already exceeds TLB + ε|I|, then “add” a gadget
of suitable size corresponding to the TLB, to obtain an equivalent instance 〈I ′, s′〉. This
increases the input size faster than it boosts the optimum value of I ′, so that now s′

exceeds TLB + ε|I ′| by only a constant, say c1. Use the hypothesized fpt algorithm for
Q(ε) with input 〈I ′, c1〉 to correctly decide the original question.

Rather than proving the details for each item separately, we use this proof sketch to
establish a more general theorem (Theorem 4 below) which automatically implies items
1 through 10 above. We first need some definitions.

Definition 3 (Dense Set). Let Q = {I , S, V, opt} be an NPO problem. A set of
instances I ′ ⊆ I is said to be dense with respect to a set of conditions C if there exists
a constant c ∈ N such that for all closed intervals [a, b] ⊆ R+ of length |b − a| ≥ c,
there exists an instance I ∈ I ′ with |I| ∈ [a, b] such that I satisfies all the conditions
in C. Further, if such an I can be found in polynomial time (polynomial in b), then I ′

is said to be dense poly-time uniform with respect to C.

For example, for the MAXIMUM ACYCLIC SUBGRAPH problem, the set of all oriented
digraphs is dense (poly-time uniform) with respect to the condition: opt(G) = |E(G)|.

We also need the notion of a partially additive NP-optimization problem.

Definition 4 (Partially Additive Problems). An NPO problem Q = {I , S, V, opt} is
said to be partially additive if there exists an operator + which maps a pair of instances
I1 and I2 to an instance I1 + I2 such that

1. |I1 + I2| = |I1| + |I2|, and
2. opt(I1 + I2) = opt(I1) + opt(I2).

A partially additive NPO problem that also satisfies the following condition is said to
be additive in the framework of Khanna, Motwani et al [4]: there exists a polynomial-
time computable function f that maps any solution s of I1 + I2 to a pair of solutions s1
and s2 of I1 and I2, respectively, such that V (I1 + I2, s) = V (I1, s1) + V (I1, s2).
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For many graph-theoretic optimization problems, the operator + can be interpreted
as disjoint union. Then the problems MAX CUT, MAX INDEPENDENT SET-B,
MINIMUM VERTEX COVER, MINIMUM DOMINATING SET, MAXIMUM DIRECTED

ACYCLIC SUBGRAPH, MAXIMUM DIRECTED CUT are partially additive. For other
graph-theoretic problems, one may choose to interpret + as follows: given graphs G
and H , G + H refers to a graph obtained by placing an edge between some (possi-
bly arbitrarily chosen) vertex of G and some (possibly arbitrarily chosen) vertex of
H . The MAX PLANAR SUBGRAPH problem is partially additive with respect to both
these interpretations of +. For boolean formulae φ and ψ in conjunctive normal form
with disjoint sets of variables, define + as the conjunction φ ∧ ψ. Then the MAX SAT

problem is easily seen to be partially additive.
Let Q = {I , S, V, max} be an NP-maximization problem with tight lower bound

f : N → N and tight upper bound g : N → N. We assume that both f and g are
increasing and satisfy the following conditions

P1 For all a, b ∈ N, f(a + b) ≤ f(a) + f(b) + c∗, where c∗ is a constant (positive or
negative),

P2 There exists n0 ∈ N and r ∈ Q+ such that g(n) − f(n) > rn for all n ≥ n0.

Property P1 is satisfied by linear functions (f(n) = an + b) and by some sub-linear
functions such as

√
n, log n, 1

n . Note that a super-linear function cannot satisfy P1.
Define R to be the set

R = {r ∈ Q+ : g(n) − f(n) > rn for all n ≥ n0},

and p = supR. For 0 < ε < p, define Q(ε) as follows

Q(ε) = {(I, k) : I ∈ I and max(I) ≥ f(|I|) + ε|I| + k}.

Note that for 0 < ε < p, the function h defined by h(n) = g(n) − f(n) − εn is strictly
increasing, and h(n) > 0 ∀n ≥ n0 ∈ N.

Theorem 4. Let Q = {I , S, V, max} be a polynomially bounded NP-maximization
problem such that the following conditions hold.

1. Q is partially additive.
2. Q has a tight lower bound (TLB) f , which is increasing and satisfies condition

P1. The infinite family of instances I ′ witnessing the tight lower bound is dense
poly-time uniform with respect to the condition max(I) = f(|I|).

3. Q has a tight upper bound (TUB) g, which with f satisfies condition P2. The infinite
family of instances I ′ witnessing the tight upper bound is dense poly-time uniform
with respect to the condition max(I) = g(|I|).

4. The underlying decision problem Q̃ of Q is NP-hard.

For 0 < ε < p, define Q(ε) to be the following parameterized problem

Q(ε) = {(I, k) : max(I) ≥ f(|I|) + ε|I| + k}

where p = sup R. If Q(ε) is FPT for any 0 < ε < p, then P = NP.
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Proof. Suppose that for some 0 < ε < p, the parameterized problem Q(ε) is fixed
parameter tractable and let A be an fpt algorithm for it with run time O(t(k)poly(|I|)).
We will use A to solve the underlying decision problem of Q in polynomial time.

Let (I, s) be an instance of the decision version of Q. Then (I, s) is a YES-instance
if and only if max(I) ≥ s. We consider three cases and proceed as described below.

Case 1: s ≤ f(|I|).
Since max(I) ≥ f(|I|), we answer YES.

Case 2: f(|I|) < s < f(|I|) + ε|I|.
In this case, we claim that we can transform the input instance (I, s) into an ‘equiv-

alent’ instance (I ′, s′) such that

1. f(|I ′|) + ε|I ′| ≤ s′.
2. |I ′| = poly(|I|).
3. opt(I) ≥ s if and only if opt(I ′) ≥ s′.

This will show that we can, without loss of generality, go to Case 3 below directly. Add
a TUB instance I1 to I . Define I ′ = I + I1 and s′ = s + g(|I1|). Then it is easy to
see that max(I) ≥ s if and only if max(I ′) ≥ s′. We want to choose I1 such that
f(|I ′|) + ε|I ′| ≤ s′. Since |I ′| = |I| + |I1| and s′ = s + g(I1), and since f(|I|) < s, it
suffices to choose I1 satisfying

f(|I| + |I1|) + ε|I| + ε|I1| ≤ f(|I|) + g(|I1|)

By Property P1, we have f(|I| + |I1|) ≤ f(|I|) + f(|I1|) + c∗, so it suffices to satisfy

f(|I1|) + c∗ + ε|I| + ε|I1| ≤ g(|I1|)

By Property P2 we have g(|I1|) > f(|I1|) + p|I1|, so it suffices to satisfy

c∗ + ε|I| ≤ (p − ε)|I1|

Such an instance I1 (of size polynomial in |I|) can be chosen because 0 < ε < p, and
because the tight upper bound is polynomial-time uniform dense.

Case 3: f(|I|) + ε|I| ≤ s
In this case, we transform the instance (I, s) into an instance (I ′, s′) such that

1. f(|I ′|) + ε|I ′| + c1 = s′, where 0 ≤ c1 ≤ c0 and c0 is a fixed constant.
2. |I ′| = poly(|I|).
3. max(I ′) ≥ s′ if and only if max(I) ≥ s.

We then run algorithm A with input (I ′, c1). Algorithm A answers YES if and only
if max(I ′) ≥ s′. By condition 3 above, this happens if and only if max(I) ≥ s. This
takes time O(t(c1) · poly(|I ′|)).

We want to obtain I ′ by adding a TLB instance I1 to I . What if addition of any
TLB instance yields an I ′ with s′ < f(I ′) + ε|I ′|? In this case, s must already be
very close to f(|I|) + ε|I|; the difference k � s − f(|I|) − ε|I| must be at most
εd + c∗, where d is the size of the smallest TLB instance I0. (Why? Add I0 to I to
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get s + f(d) < f(|I| + d) + ε(|I| + d); applying property P1, we get s + f(d) <
f(|I|) + f(d) + c∗ + ε|I| + εd, and so k < c∗ + εd.) In such a case, we can use the
fpt algorithm A with input (I, k) directly to answer the question “Is max(I) ≥ s?” in
time O(t(εd + c∗) · poly(|I|)).

So now assume that k ≥ c∗ + εd, and it is possible to add TLB instances to |I|. Since
f is an increasing function, there is a largest TLB instance I1 we can add to I to get I ′

while still satisfying s′ ≥ f(I ′) + ε|I ′|. The smallest TLB instance bigger than I1 has
size at most |I1|+ c, where c is the constant that appears in the definition of density. We
therefore have the following inequalities

f(|I ′|) + ε|I ′| ≤ s′ < f(|I ′| + c) + ε(|I ′| + c).

Since f is increasing and satisfies property P1, we have [f(|I ′| + c) + ε(|I ′| + c)] −
[f(|I ′|) + ε|I ′|] ≤ f(c) + c∗ + εc � c0, and hence s′ = f(|I ′|) + ε|I ′| + c1, where
0 ≤ c1 ≤ c0. Note that c0 is a constant independent of the input instance (I, s). Also,
since Q is a polynomially bounded problem, |I1| is polynomially bounded in |I|.

Remark. Note that there are some problems, notably MAX 3-SAT, for which the con-
stant c0 in Case 3 of the proof above, is 0. For such problems, the proof of Theorem 4
actually proves that the problem Q′ = {(I, k) : max(I) ≥ f(|I|) + ε|I|} is NP-hard.
But in general, the constant c0 ≥ 1 and so this observation cannot be generalized.

We can extend Theorem 4 to minimization problems. For a minimization problem Q =
{I , S, V, min}, we need the tight lower bound f : N → N and tight upper bound
g : N → N to be increasing functions and satisfy the following conditions

P3 For all a, b ∈ N, g(a + b) ≤ g(a) + g(b) + c∗, where c∗ is a constant,
P4 There exists r ∈ Q+ such that g(n) − f(n) > rn for all n ≥ n0 for some n0 ∈ N.

Define R to be the set

R = {r ∈ Q+ : g(n) − f(n) > rn for all n ≥ n0},

and p = sup R. For 0 < ε < p, define Q(ε) as follows

Q(ε) = {(I, k) : I ∈ I and min(I) ≤ g(|I|) − ε|I| − k}.

For minimization problems, we have the following

Theorem 5. Let Q = {I , S, V, min} be a polynomially bounded NP-minimization
problem such that the following conditions hold.

1. Q is partially additive.
2. Q has a tight lower bound (TLB) f such that the infinite family of instances I ′

witnessing the tight lower bound is dense poly-time uniform with respect to the
condition min(I) = f(|I|).

3. Q has a tight upper bound (TUB) g which is increasing, satisfies condition P3, and
with f satisfies P4. The infinite family of instances I ′ witnessing the tight upper
bound is dense poly-time uniform with respect to the condition min(I) = g(|I|).
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4. The underlying decision problem Q̃ of Q is NP-hard.

For 0 < ε < p, define Q(ε) to be the following parameterized problem

Q(ε) = {(I, k) : I ∈ I and min(I) ≤ g(|I|) − ε|I| − k}

where p = sup R. If Q(ε) is FPT for any 0 < ε < p, then P = NP.

The proof of this is similar to that of Theorem 4 and is omitted.

5 Conclusion

We have shown that every problem in MAX SNP has a lower bound on the optimal
solution size that is unbounded and that the above guarantee question with respect to
that lower bound is in FPT. We have also shown that the TLB(I)+ ε · |I|+k question is
hard for a general class that includes a number of NP-maximization problems. However
we do not know the parameterized complexity of tight lower bound + k questions for
most NPO problems. In particular, apart from MAX SAT, MAX c-SAT and LINEAR

ARRANGEMENT, this question is open for the rest of the problems stated in Theorem 3.
It would be interesting to explore the parameterized complexity of these problems and
above guarantee problems in general.
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Abstract. We prove that each parameterized counting problem in the
class #W[P] has a randomized fpt approximation algorithm using a
W[P] oracle. Analoguous statements hold for #W[t] and #A[t] for each
t ≥ 1. These results are parameterized analogues of a theorem due to
O.Goldreich and L.Stockmeyer.

1 Introduction

It is common to consider besides decision problems also other types of problems
such as search, listing or counting problems. They ask respectively to examplify,
list all or count solutions. For a wide class of problems the decision, search and
listing versions all have the same complexity1. In particular this holds for all
so-called self-reducible problems.

In contrast counting seems in general to be harder than decision. As a promi-
nent example the perfect matching problem (given a bipartite graph, decide if it
contains a perfect matching) is tractable [11] and by self-reducibility so are the
associated search and listing problems. L.G.Valiant introduced the intractable
class of counting problems #P and proved (see [14,8]) the famous.

Theorem 1 (Valiant 1979). To compute the number of perfect matchings in
a bipartite graph is #P complete under polynomial time Turing reductions.

This is not a sole standing phenomenon: later other tractable decision problems
were shown to have intractable counting versions (see e.g. [14]). Twelve years
later S.Toda reveiled [13] the surprising power of counting:

Theorem 2 (Toda 1991). Each problem in the polynomial hierarchy can be
decided in polynomial time using a #P oracle.2

This apparent intractability of (exact) counting suggests the quest for feasible
approximations. A precise notion is that of a fully polynomial time random-
ized approximation scheme (fpras). Randomized approximation turns out to be
related to almost uniform sampling: here again self-reducibility implies equi-
tractability [7,8], a fact opening the door to the rich theory of Markov chains.
This finally enabled M.Jerrum et al. to prove (see [8]).
1 Concepts of tractability for listing problems have been introduced in [9].
2 As a matter of fact one needs only one call to the oracle.

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 50–59, 2006.
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Theorem 3 (Jerrum, Sinclair, Vigoda 2001). The counting problem for
perfect matchings has a fpras.

This examplifies that we have a chance to find fast randomized approximation
algorithms for hard counting problems. From a theoretical point of view the
complexity of randomized almost correct counting is much lower than that of
exact counting. While by Toda’s theorem the latter is at least as hard as PH,
the former is at most as hard as NP [7,12]3:

Theorem 4 (Goldreich 2001, Stockmeyer 1985). Any counting problem in
#P has a fpras using a NP oracle.

In the parameterized world a theory of counting complexity has been started (see
[6] for a survey). Consider the parameterized decision problem p-Cycle and its
counting version p-#Cycle (given a graph and a parameter k ∈ N compute the
number of length k cycles). While p-Cycle is fixed-parameter tractable4 J.Flum
and M.Grohe proved [5]

Theorem 5 (Flum, Grohe 2004). p-#Cycle is complete for #W[1] under
fpt Turing reductions.

So as in the classical setting we are faced with natural tractable parameterized
decision problems having an intractable counting version. The quest is again to
find fast (randomized) approximations. V.Arvind and V.Raman [1] introduced
the notion of a fixed-parameter tractable randomized approximation scheme
(fptras) and proved a theorem implying

Theorem 6 (Arvind, Raman 2002). p-#Cycle has a fptras.

This paper is concerned with parameterized analogues of theorem 4. Both W[P]
and W[1] can be viewed as parameterized analogues of NP. It turns out that for
both of them we find analogues of theorem 4. Even more we find such analogues
for any class of the W- and the A-hierarchy. Here we focus on an analogue for
W[P]. The main result of this paper is

Theorem 7. Each parameterized counting problem (F, κ) in #W[P] has a W[P]-
fptras using a κ-balanced oracle for W[P].

In section 2 some standard terminology is recalled. Section 3 discusses para-
meterized randomization. There we introduce so-called W[P]-fptrases. Section
4 contains a proof of theorem 7. The last section 5 states further results and
problems.

2 #W[P]

This section recalls some definitions. In general we follow [6]. Fix a finite alpha-
bet Σ containing at least two elements. As in [6] we view parameterized decision
3 This was proved by O.Goldreich [7] using ,,a variant of a procedure” in [12].
4 In general the embedding problem for relational structures, where the structure to

be embedded has bounded treewidth, is fixed-parameter tractable (see [6]).
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problems as pairs (Q, κ) for Q ⊆ Σ∗ and polynomial time computable parame-
terizations κ : Σ∗ → N.

Let κ be a parameterization. An algorithm is fpt with relation to κ if and only
if for a computable function f : N → N and a polynomial p its running time on
any input x ∈ Σ∗ is bounded by f(κ(x))p(|x|).5 We sloppily allow Q ⊆ Σ∗ × N
or the like and consider natural numbers as encoded in unary.

An oracle algorithm uses a κ-balanced oracle to a parameterized decision prob-
lem (Q, κ′) if and only if there is a computable function g such that for all x ∈ Σ∗

and all oracle queries ,,y ∈ Q?” posed by the algorithm on any run on x we have
κ′(y) ≤ g(κ(x)).

A parameterized counting problem is a pair (F, κ) for a function F : Σ∗ → N
and a parameterization κ.

An fpt parsimonious reduction from one parameterized counting problem
(F, κ) to another (F ′, κ′) is a function r : Σ∗ → Σ∗ fpt computable with re-
lation to κ such that F = F ′ ◦ r and κ′ ◦ r ≤ g ◦ κ for some computable
function g.

We define W[P] by its machine characterization [2]. The machine model is that
of a nondeterministic RAM, NRAM for short. These are usual RAMs [11] using
registers 0, 1, . . ., whose contents are natural numbers r0, r1, . . .; additionally to
the usual instructions NRAMs have the instruction GUESS:

“guess a natural number < r0 and store it in register 0.”

A program is a finite sequence of instructions. Runs and acceptance are defined
as usual. An execution of GUESS is a nondeterministic step. We use the uniform
cost measure.

Let κ be a parameterization. A program P is κ-restricted if and only if there are
computable functions f, g and a polynomial p such that for all x ∈ Σ∗ and each
run of P on x the program P performs at most g(κ(x)) many nondeterministic
steps and the number f(κ(x))p(|x|) upper bounds the number of steps, the
registers used and the numbers stored in any register at any time.

Definition 8. W[P] is the class of all parameterized decision problems (Q, κ)
decidable by some κ-restricted program.

With a κ-restricted program P we associate the parameterized counting problem
(FP, κ), where FP is given by

FP(x) := the number of accepting runs of P on x .

Definition 9. #W[P] is the class of all parameterized counting problems of the
form (FP, κ) for some κ-restricted program P.

This parallels Valiant’s definition [14] of #P if we use W[P] as an analogue for
NP. The proof [2] of the machine characterization of W[P] shows.

5 In [3] such a running time corresponds to strongly uniform FPT.
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Theorem 10 (Chen, Flum, Grohe 2005). #W[P] is the class of all para-
meterized counting problems fpt parsimoniously reducible to p-#WSat(CIRC).

Here p-#WSat(CIRC) is the counting version of parameterized weighted circuit
satisfiability p-WSat(CIRC): given a circuit C and a parameter k ∈ N, compute
the number of assignments of weight k satisfying C.6

3 W[P]-Randomization

Classically a randomized polynomial time algorithm can be viewed as a binary
,,NP-machine”, where a run on some input is determined by a sequence in {0, 1}.
This sequence can be interpreted as the outcome of independent ,,coin tosses”.
The algorithm is then analyzed by means of probability statements concerning
events of runs. The probability measure concerned is the uniform measure pro-
vided the machine is exact, that is for each input x ∈ Σ∗ it performs the same
number of nondeterministic steps on every run on x.

We get different concepts of parameterized randomized computation by re-
placing ,,NP-machine” in the classical definition by ,,paraNP-machine”7 or
,,W[P]-machine”. Instead of flipping coins programs for NRAMs ,,roll dices”
(execute GUESS). In order to get these rolls induce the uniform measure on
runs, the program should besides being exact ,,always use the same dice”: in
analogy to the above restriction to binary machines we define a program P to
have uniform guess bounds if and only if for all x ∈ Σ∗ the content r0 of register
0 is the same for any two nondeterministic steps in runs of P on x.

Definition 11. Let κ be a parameterization. An exact binary nondeterministic
algorithm which is fpt with relation to κ is paraNP-randomized with relation to κ.
An exact κ-restricted program having uniform guess bounds is W[P]-randomized
with relation to κ.

Notation: let κ be a parameterization, P a κ-restricted program and x ∈ Σ∗; for
the probability space given by the uniform measure Px on the set of runs of P
on x we let P(x) denote the random variable mapping such a run to the output
of that run (say r0 of its last configuration).

For reals r and ε > 0 we write (1± ε) · r for the open intervall (r− ε · r, r + ε · r).

Definition 12. A W[P]-fptras (fixed parameter tractable W[P]-randomized
approximation scheme) for a parameterized counting problem (F, κ) is a pro-
gram P expecting inputs (x, l, l′) for x ∈ Σ∗ and positive l, l′ ∈ N which is
W[P]-randomized with relation to Σ∗ × N × N → N : (x, l, l′) �→ κ(x) such that
for all (x, l, l′) ∈ Σ∗ × N × N

P(x,l,l′) (P((x, l, l′)) ∈ (1 ± 1/l) · F (x)) > 1 − 1/l′ .

6 We always formulate counting problems sloppily like above. It will always be clear
how to make it precise by defining a function and a parameterization.

7 See [6] for a definition of paraNP.
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The following simple characterization is useful.

Definition 13. A parameterized counting problem (F, κ) is fpt paddable if and
only if there is a function r : Σ∗ × N → Σ∗ fpt computable with relation to
Σ∗ × N → N : (x, l) �→ κ(x) such that for some computable g we have for all
(x, l) ∈ Σ∗×N that F (r(x, l)) = F (x), κ(r(x, l)) ≤ g(κ(x)) and |r(x, l)| ≥ |x|+ l.

Proposition 14 Let (F, κ) be a fpt paddable parameterized counting problem
and let c, c′ ∈ N positive. Then (F, κ) has a W[P]-fptras P if and only if there is
a W[P]-randomized program P′ such that for all x ∈ Σ∗

Px

(
P′(x) ∈ (1 ± |x|−c) · F (x)

)
> 1 − |x|−c′

.

Sketch of proof: For necessity define P′ on x to simulate the given P on input
(x, |x|c, |x|c′

). For sufficiency define P on (x, l, l′) to simulate the given P′ on x
in case |x| ≥ max{l, l′}; else run P′ on r(x, max{l, l′} − |x|) for r witnessing fpt
paddability of (F, κ). �

4 Proof of the Main Theorem

In this section we prove theorem 7. We need some facts on hashing [10]. A
technical trick which has proved useful also in other contexts is to use a suffi-
ciently large finite field for encoding solutions and to use hash families on these
encodings.

Let p, k, i ∈ N be positive, k ≥ i and p prime. The field with p elements is
denoted by Fp. We don’t distinguish Fp from {0, . . . , p − 1} notationally. Fk

p is
the k-dimensional vector space over Fp. Vectors are represented with relation to
the standard base as k-tuples over {0, . . . , p − 1}.

We let Hp
k,i denote the set of all affine transformations h from Fk

p to Fi
p, i.e.

mappings of the form x̄ �→ Ax̄ + b̄ for x̄ ∈ Fk
p, where A is an i × k-matrix with

entries in Fp, and b̄ ∈ Fi
p. Set h−1(ā) :=

{
x̄ ∈ Fk

p | h(x̄) = ā
}

for ā ∈ Fi
p.

It can be shown that Hp
k,i is a so-called 2-universal family of hash functions [7].

It then easily follows:

Lemma 15 (Hashing Lemma). Let p, k ∈ N and p prime. For S ⊆ Fk
p and

i ∈ [k] = {1, . . . , k} define

Y S
i : Hp

k,i → N : h �→ |S ∩ h−1(0i)| ,

where 0i is the zero vector in Fi
p. Then for all ε > 0 we have for ρi := |S| · p−i

P
(∣∣Y S

i − ρi

∣∣ ≥ ερi

)
≤ 1

ε2ρi
,

where P is the uniform measure on Hp
k,i.
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Proof of theorem 7: The proof is similar to the one given in [7] for theorem 4.
Write p-#WSat(CIRC) as (F, κ). By the machine characterization theorem 10
it suffices to prove that (F, κ) has a W[P]-fptras using a κ-balanced oracle for
the decision problem p-WSat(CIRC).

We may restrict attention to circuits C of size polynomial in n, say ≤ n2, where
n is the number of input nodes of C: if necessary we can pass in polynomial time
to a new circuit by adding sufficiently many new input nodes and conjunct
the negations of all of them with the old output node. This does not change
the number of satisfying weight k assignments. The same argument shows that
(F, κ) is fpt paddable.

Let C have n input nodes. We identify the set of weight k assignments for C
with the set of tuples (i1, . . . , ik) ∈ [n]k with i1 < . . . < ik by stipulating that
(i1, . . . , ik) corresponds to the assignment setting exactly the i1th and the i2th
. . . and the ikth input node to True. Let S be the set of weight k assignments
satisfying C. Then S ⊆ [n]k ⊆ Fk

p for any prime p ≥ n.
l is a natural number we are going to fix during the proof. In fact l will be

≥ 6. We use the notation from the Hashing Lemma 15. Additionally we set

min ∅ := 0 and Y S
0 constantly 0 .

The program P on instance (C, k) of p-#WSat(CIRC) does the following:

1: compute p := the smallest prime > n
2: if |S| < pl then out |S|
3: else for all i ∈ [k]: guess hi ∈ Hp

k,i

4: compute i := min
{
j ∈ [k]

∣∣ Y S
j (hj) < pl

}
5: out pi · Y S

i (hi)

Probability analysis. Before explaining how P manages to do that, we first prove
that it works. Let p be the prime computed in line 1. P gives with probability one
the correct answer if |S| < pl, so let’s assume that |S| ≥ pl. For m := �logp |S|�
clearly

pm−1 < |S| ≤ pm and l ≤ m ≤ k ,

since |S| ≥ pl and S ⊆ Fk
p (wlog we assume k ≥ l). Instead of the uniform

measure Px (for x ∈ Σ∗ encoding (C, k)) on the set of runs of P on x consider
the uniform measure P on the set of all tuples (h1, . . . , hk) as guessed by P
in line 3. These tuples correspond bijectively to the runs of P on (C, k). Let
iP((h1, . . . , hk)) be the i computed by P in line 4 in the run determined by
(h1, . . . , hk). iP is a random variable with values in N defined on the set of the
(h1, . . . , hk) endowed with the measure P .

For i ∈ [k] consider the projection πi mapping (h1, . . . , hk) to hi. Because the
random variable Y S

i ◦ πi is distributed as Y S
i , we have the Hashing Lemma 15

for Y S
i ◦ πi and P as defined here. For notational simplicity we denote Y S

i ◦ πi

again by Y S
i .

For ε > 0 consider the following events:

Aε :=
{∣∣piP · Y S

iP
− |S|

∣∣ < ε|S|
}

and B := {iP ∈ [m − l + 1]} .
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The reason of line 2 is to get m − l + 1 ≥ 1 (because m ≥ l) enabling us (note
m − l + 1 < k) to apply the Hashing Lemma on Y S

m−l+1: because

pl−1 = pm/pm−l+1 ≥ ρm−l+1 > pm−1/pm−l+1 = pl−2

we have for the complement B of B (note B ⊆ {Y S
m−l+1 ≥ pl})

P
(
B

)
≤ P

(
Y S

m−l+1 ≥ pl
)
≤ P

(∣∣Y S
m−l+1 − ρm−l+1

∣∣ ≥ (p − 1)ρm−l+1
)

Hashing Lemma
≤ 1

(p − 1)2ρm−l+1
<

1
(p − 1)2pl−2 < n−l .

For all j ∈ [m − l + 1] we have ρj > pm−1/pm−l+1 = pl−2. Using the Hashing
Lemma again we get for all ε > 0 and all j ∈ [m − l + 1]

P
(∣∣Y S

j − ρj

∣∣ ≥ ερj

)
≤ 1/(ε2ρj) < 1/(ε2pl−2) < 1/(ε2nl−2) .

Note Aε ∩ {iP = j} = {|pj · Y S
j − |S|| ≥ ε|S|} = {|Y S

j − ρj | ≥ ερj}. Thus

P (Aε) ≤ P (B) + P (Aε ∩ B)

= P (B) +
m−l+1∑

j=1

P (Aε ∩ {iP = j})

< n−l +
m − l + 1

ε2nl−2 .

Now let c, c′ ∈ N be arbitrary positive constants. For ε := n−c the above is
≤ n−l + (k − 1)n2cn−l+2 < kn2c+2−l since m − l + 1 < k and hence < n2c+3−l

since k ≤ n (else we would have S = ∅). Choose l := 2c + 3 + c′ and get

P (An−c) = P
(
P((C, k)) ∈ (1 ± n−c) · |S|

)
> 1 − n−c′

.

This suffices by our assumption that the size of C is ≤ n2 and by proposition 14
(we already noted that (F, κ) is fpt paddable).

We now describe the subroutines of P and analyze the complexity.

Random complexity. For i ∈ [k] to guess hi ∈ Hp
k,i the program guesses the

entries of a i × k- matrix and a length i vector over Fp. In total P performs on
every run on (C, k) exactly

∑k
i=1(ik+ i) many guesses - especially P is exact and

performs a number of nondeterministic steps recursiveley bounded in terms of
the parameter. P has uniform guess bounds because it always guesses numbers
< p. Provided time, registers used and the numbers stored are fpt bounded, this
shows that P is κ-restricted and hence W[P]-randomized.

Time complexity. That P uses not too large numbers and not too many registers
is clear. We focus on the running time. In line 1 brute force needs only polynomial
time since there is a prime between n and 2n for any positive natural number
n.8 It follows that pl is polynomially bounded in n.
8 This is Bertrand’s Postulate (1845) proved by Chebyshev in 1850.
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We’ll later look at line 2. The remaining time needed is dominated by the
computations of i in line 4 and Y S

i (hi) in line 5. We have to solve the following
problem:

Input: a circuit C, k ∈ N, h ∈ Hp
k,i with i ∈ [k]

(where p is the smallest prime larger than the number of input nodes of
C and i is determined by h)
Parameter: k
Problem: decide if Y S

i (h) < pl and in this case compute Y S
i (h)

(where S is the set of weight k assignments satisfying C)

Consider the program P′ which on input (C, h, k) as above first guesses ā ∈ [n]k

and then checks if both ā satisfies C and h(ā) = 0i.
Clearly P′ is κ′-restricted for κ′ the parameterization mapping (C, h, k) to k.
The run of P′ determined by ā ∈ [n]k is accepting if and only if ā ∈ S ∩ h−1(0i),
especially

FP′((C, h, k)) = Y S
i (h) .

By the machine characterization theorem 10 there is a fpt parsimonious reduction
from (FP′ , κ′) to (F, κ). Using this reduction we can compute given (C, h, k) a
circuit C′ and a parameter k′ ∈ N such that

FP′((C, h, k)) = the number of weight k′ assignments satisfying C′.

We have thus reduced our problem to the parameterized counting problem:

Given x ∈ Σ∗ and a prime p, compute min{F (x), pl},

with the parameterization mapping (x, p) to κ(x). It suffices to show that this
is fixed-parameter tractable using a balanced oracle for the decison problem
p-WSat(CIRC) thereby explaining also how to serve line 2.

But p-WSat(CIRC) is self-reducible! It follows by general means that there
is an algorithm A using a κ-balanced oracle for p-WSat(CIRC) solving the
associated listing problem with fixed parameter tractable delay with relation to
κ9: A on an instance (C′, k′) of p-WSat(CIRC) puts out without repetitions all
weight k′ assignments satisfying C′ such that the delay of A is fpt bounded with
relation to κ; delay means the maximum number of steps until the first output,
between any two outputs and from the last output to the end (see [9]).

We proceed straightforwardly: simulate A on (C′, k′); increase a counter (ini-
tialized by 0) for each output of A; stop the simulation in case the counter
becomes pl; return the counter. The time needed here is at most pl times the
delay of A and that obeys a fpt bound.

For completeness we describe A. We now view assignments as strings over
{0, 1}. A on (C′, k′) is A′ on (C′, k′, λ) for the empty string λ. A′ takes inputs
(C, k, ā) for circuits C, k ∈ N the parameter, and ā ∈ {0, 1}∗. For i ∈ {0, 1} let Ci

be the circuit obtained from C by replacing its first input node by the constant i.

9 Actually we get polynomial delay [9].
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A′ on (C, k, ā) behaves as follows:

1: if C has no satisfying assignment of weight k then stop
2: else if C has no input nodes then out ā
3: else for all i ∈ {0, 1}:
4: if Ci has a satisfying assignment of weight k − i
5: then A′ on (Ci, k − i, āi)

A′ uses an oracle for p-WSat(CIRC) to check the ,,if”-conditions in lines 1 and
4. It is easy to see that this is a listing algorithm as desired. �

5 Further Results and Questions

Let κ be a parameterization. A κ-restricted program is tail-nondeterministic
if and only if for some computable g in any run on any input x ∈ Σ∗ each
nondeterministic step is any of the last g(κ(x)) steps of the computation.

W[1] is the class of all parameterized decision problems (Q, κ) decidable by
some κ-restricted tail-nondeterministic program [2].

Definition 16. #W[1] is the class of all parameterized counting problems of the
form (FP, κ) for some κ-restricted tail-nondeterministic program P.

By a proof similar to the one given for theorem 7 you can get

Theorem 17. Each parameterized counting problem (F, κ) in #W[1] has a W[P]-
fptras using a κ-balanced oracle for W[1].

A shortcoming of this result is that it does not settle the question for W[1]-
fptrases. These are defined using the concept of parameterized randomization
you get by use of W[1] as an analogue for NP, that is

Definition 18. An exact κ-restricted tail-nondeterministic program having uni-
form guess bounds is W[1]-randomized with relation to κ.

This is our third notion of parameterized randomized computation. Theorem 6
refers to paraNP-fptrases. [1] and [6] use different bounds on the ,,probability to
fail” in the definition of paraNP-fptrases (1/l′ in our definition 12). These defin-
itions can be seen to be equivalent [7] since for paraNP-randomized algorithms
classical methods of probability amplification apply. For W[P]- and W[1]-fptrases
such bounds are to be handled with care [4].

Theorem 17 can be generalized to all classes of the W- and the A-hierarchy:

Theorem 19. For all t ≥ 1 each parameterized counting problem (F, κ) in
#A[t] has a W[P]-fptras using a κ-balanced oracle for A[t].

Theorem 20. For all t ≥ 1 each parameterized counting problem (F, κ) in
#W[t] has a W[P]-fptras using a κ-balanced oracle for W[t].

A second shortcoming of these results is that the query complexity is bad. Our
program in the proof of theorem 7 uses polynomially many oracle queries.
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Under what conditions do we have these theorems ,,problemwise”? That is:
when approximating a counting problem coming from a decision problem (Q, κ),
say (Q, κ) ∈ W[t], but not W[t]-hard, are we really in need of an oracle for the
full class W[t] or could we do with (Q, κ)? This is particularly interesting for
problems in FPT with a #W[1]-hard counting version. An answer would be a
step towards a theoretical understanding of what makes certain problems have
fast randomized approximations.

One of the main gaps in parameterized counting complexity theory is that we
don’t have [4,6] an analogue of Toda’s theorem 2 such as

⋃
t≥1 A[t] ⊆ FPT#A[1]

or at least
⋃

t≥1W[t] ⊆ FPT#W[1] or
⋃

t≥1A[t] ⊆ FPT#W[P]. The main problem
here seems to be probability amplification.

Acknowledgements. The idea of looking for parameterized analogues of the-
orem 4 came from J.A. Montoya. I thank J.Flum for his advices.
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Abstract. An ordering of a graph G = (V, E) is a one-to-one map-
ping α : V → {1, 2, . . . , |V |}. The profile of an ordering α of G is
prfα(G) = v∈V (α(v) − min{α(u) : u ∈ N [v]}); here N [v] denotes the
closed neighborhood of v. The profile prf(G) of G is the minimum of
prfα(G) over all orderings α of G. It is well-known that prf(G) equals
the minimum number of edges in an interval graph H that contains G as
a subgraph. We show by reduction to a problem kernel of linear size that
deciding whether the profile of a connected graph G = (V, E) is at most
|V | − 1+ k is fixed-parameter tractable with respect to the parameter k.
Since |V | − 1 is a tight lower bound for the profile of a connected graph
G = (V, E), the parameterization above the guaranteed value |V | − 1 is
of particular interest.

1 Introduction

The profile prf(G) of a graph G is an integer-valued graph parameter defined via
vertex orderings (see Section 2). Fomin and Golovach [4] established the equiva-
lence of the profile and other parameters including one that is important in graph
searching. Further areas of application of the profile and equivalent parameters
include computational biology [2,6], archaeology [9] and clone fingerprinting [8].
The following is a well-known NP-complete problem [3,10].

Minimum Profile Problem (MPP)
Instance: A graph G = (V, E) and a positive integer k.
Question: Is the profile of G at most k?

In fact this problem is equivalent to the following problem that was proved to
be NP-complete even earlier (see [5]).
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Interval Graph Completion (IGC)
Instance: A graph G = (V, E) and a positive integer k ≥ |E|.
Question: Is there a supergraph H of G such that H is an interval graph and
contains at most k edges?

Recall that a graph G = (V, E) is an interval graph if we can associate each
vertex v ∈ V with a closed interval Iv in the real line such that two distinct
vertices x and y are adjacent in G if and only if Ix ∩ Iy 	= ∅. The equivalence of
MPP and IGC follows from the next result:

Theorem 1 ([1]). For any graph G, prf(G) equals the smallest number of edges
in an interval supergraph of G.

Consequently, prf(G) ≥ |E| holds for every graph G = (V, E), and so the follow-
ing parameterized problem is fixed-parameter tractable (FPT); that is, it can be
solved in time O(f(k)(|V | + |E|)O(1)) for some computable function f(k).

Profile Problem (PP)
Instance: A graph G = (V, E). Parameter: A positive integer k.
Question: Is the profile of G at most k?

Several authors consider the following much more interesting problem.

Profile Above Guaranteed Value (PAGV)
Instance: A graph G = (V, E). Parameter: A positive integer k.
Question: Is the profile of G at most |E| + k?

It is unknown whether this problem is FPT (private communications with L. Cai,
F. Fomin and H. Kaplan). Clearly, PAGV is equivalent to the problem of check-
ing whether a graph can be made interval by adding at most k edges. In this
paper, we restrict ourselves to connected graphs (the case of general graphs can
be reduced to connected graphs) and consider the following somewhat weaker
version of PAGV (note that |E| ≥ |V |−1 holds for connected graphs G = (V, E)).

Profile Above Vertex Guaranteed Value (PAVGV)
Instance: A connected graph G = (V, E). Parameter: A positive integer k.
Question: Is the profile of G at most |V | − 1 + k?

This problem is of interest also because of the problem VAP considered by Serna
and Thilikos [11] (see Section 5). We prove by means of a kernelization scheme
that the problem PAVGV is fixed-parameter tractable.

2 Definitions and Preliminary Results

Let G = (V, E) be a graph. An ordering of G is a one-to-one mapping α : V →
{1, 2, . . . , |V |}. We denote the set of orderings of G by OR(G). For a vertex v
in G, its neighborhood is N(v) = {u ∈ V : uv ∈ E} and its closed neighborhood
is N [v] = N(v) ∪ {v}. The profile of a vertex z of G in an ordering α of G is
prfα(G, z) = α(z) − min{α(w) : w ∈ N [z]}. The profile of a set Z ⊆ V in an
ordering α of G is prfα(G, Z) =

∑
z∈Z prfα(G, z). The profile of an ordering

α of G is prfα(G) = prfα(G, V ). An ordering α of G is optimal if prfα(G) =
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min{prfβ(G) : β ∈ OR(G)}. If α is optimal, then prf(G) = prfα(G) is called
the profile of G. If X ⊆ V and α is an ordering of G, then let αX denote the
ordering of G − X in which αX(u) < αX(v) if and only if α(u) < α(v) for all
u, v ∈ V (G) − X . If X = {x}, then we simply write αx instead of α{x}.

Lemma 1. Let G = (V, E) be a graph of order n and let X be a set of vertices
such that G− X is connected. If an optimal ordering α has {α−1(1), α−1(n)} ⊆
V (G − X) then prfα(G, V − X) ≥ prfαX

(G − X) + |X |.

Proof. Let X = {x1, x2, . . . , xr} and define Xi = {x1, x2, . . . , xi} for all 0 ≤
i ≤ r. We will by induction show the following: (*) prfαXi

(G − Xi, V − X) ≥
prfαX

(G − X) + |X | − i. The above is clearly true when i = r as Xr = X
and |X | = r. If we can show that (*) is true for i = 0, then we are done. We
will assume that (*) is true for some i > 0. Since G − X is connected and
{α−1(1), α−1(n)} ⊆ V (G − X), there is an edge uv ∈ E(G − X) such that
αXi−1(u) > αXi−1 (xi) > αXi−1(v). This implies that the profile of u is one
larger in αXi−1 than it is in αXi . This implies prfαXi−1

(G − Xi−1, V − X) ≥
prfαXi

(G − Xi, V − X) + 1 ≥ prfαX
(G − X) + |X | − i + 1. We are now done by

induction. ��

Lemma 2 ([10]). (i) If G is a connected graph with n vertices, then prf(G) ≥
n − 1. (ii) For a cycle Cn with n vertices we have prf(Cn) = 2n − 3.

For a vertex x, d(x) denotes its degree, i.e., d(x) = |N(x)|. A slightly weaker
version of the following lemma is stated in [10] without a proof.

Lemma 3. If G is an arbitrary graph of order n, x ∈ V (G) and α is an optimal
ordering of G, then prfα(G) ≥ prfαx

(G − x) + d(x).

Proof. Let α be an optimal ordering of G and let

X = {α−1(1), α−1(2), . . . , α−1(α(x) − 1)}.

Note that for all a ∈ N(x) − X we have prfα(G, a) ≥ prfαx
(G − x, a) + 1. Fur-

thermore, prfα(G, x) ≥ |N(x)∩X |. Thus, prfα(G)−prfαx
(G−x) ≥ prfα(G, x)+∑

a∈N(x)−X(prfα(G, a) − prfαx
(G − x, a)) ≥ |N(x) ∩ X | + |N(x) − X | = d(x).

Hence, prfα(G) ≥ prfαx
(G − x) + d(x). ��

Theorem 3 gives a lower bound for the profile of a 2-edge-connected graph, which
is important for our FPT algorithm. Lin and Yuan [10] used a concise and elegant
argument to show that prf(G) ≥ k(2n − k − 1)/2 for every k-connected graph
G of order n. Their argument uses Menger’s Theorem in a clever way, yet the
argument cannot be used to prove our bound. Instead of Menger’s Theorem we
will apply the following well-known decomposition of 2-edge-connected graphs
(see, e.g., Theorem 4.2.10 in [12]) called a closed-ear decomposition.

Theorem 2. Any 2-edge-connected graph G has a partition of its edges
E1, E2, . . . , Er, such that Gi = G[E1 ∪ E2 ∪ . . . ∪ Ei] is 2-edge-connected for
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all i = 1, 2, 3, . . . , r. Furthermore, Ej induces either a path with its endpoints in
V (Gj−1) but all other vertices in V (Gj) − V (Gj−1) or a cycle with one vertex
in V (Gj−1) but all other vertices in V (Gj) − V (Gj−1) for every j = 2, 3, . . . , r.
Moreover, G1 is a cycle and every cycle of G can be G1.

Theorem 3. If G is a 2-edge-connected graph of order n, then prf(G) ≥ 3n−3
2 .

Proof. Let α be an optimal ordering of V (G) and let y be the vertex with
α(y) = n. Since G is 2-edge-connected, y is contained in a cycle C. By Theorem
2, G has an ear-decomposition E1, E2, . . . , Er such that G[E1] = C. Let Gi =
G[E1 ∪ E2 ∪ . . . ∪ Ei], which by Theorem 2 are 2-edge-connected for all i =
1, 2, . . . , r. We will prove this theorem by induction. If r = 1 then the Theorem
holds by Lemma 2 (ii), as n ≥ 3. So assume that r ≥ 2. Let ni = |V (Gi)| for all
i = 1, 2, . . . , r and note that by induction we know that prf(Gr−1) ≥ 3nr−1−3

2 . If
nr = nr−1 then Er is just one edge and we are done as prf(Gr) ≥ prf(Gr−1). So
assume that a = nr − nr−1 > 0. If a = 1 and V (Gr) − V (Gr−1) = {x}, then by
Lemma 3 we obtain

prf(G) ≥ prf(Gr−1) + d(x) ≥ 3nr−1−3
2 + 2 > 3n−3

2 .

So we may assume that a ≥ 2. Let P be the path Gr − V (Gr−1), let x and
z be the endpoints of P such that α(x) < α(z), and let u be a neighbor of x in
Gr−1. Let j = min{α(q) : q ∈ V (Gr−1)}, and let Q = {p ∈ V (P ) : α(p) > j}
and M = {p ∈ V (P ) : α(p) < j}, which is a partition of V (P ). (Note that
α−1(j) ∈ V (Gr−1) and recall that α−1(n) = y ∈ V (Gr−1).) Furthermore let β
denote the ordering α restricted to P (i.e., β = αV (Gr−1)) and let H = G − M .
By Lemma 1 (with X = Q) we obtain

prfαM
(H, V (H) − Q) ≥ prfα(M∪Q)

(H − Q) + |Q| = prfαV (P )
(Gr−1) + |Q|.

Now assume that α(x) < j and note that prfα(G, u) ≥ prfαM
(H, u)+j−α(x),

as prfαM
(H, u) ≤ α(u)− j and prfα(G, u) = α(u)−α(x). As |Q| = |V (P )|− j +1

and prfα(G, V (P )) ≥ prfβ(P ) we obtain

prfα(G) = prfα(G, V (H) − Q) + prfα(G, V (P ))
≥ prfαM

(H, V (H) − Q) + j − α(x) + prfβ(P )
≥ prfαV (P )

(Gr−1) + |Q| + j − α(x) + prfβ(P )
= prfαV (P )

(Gr−1) + |V (P )| − α(x) + 1 + prfβ(P )

.

Now assume that α(x) > j. Analogously to the above we get the following:

prfα(G) = prfα(G, V (H) − Q) + prfα(G, V (P ))
≥ prfαM

(H, V (H) − Q) + prfβ(P )
≥ prfαV (P )

(Gr−1) + |Q| + prfβ(P )
≥ prfαV (P )

(Gr−1) + |V (P )| − α(x) + 1 + prfβ(P )

.

So, we always have prfα(G) ≥ prfαV (P )
(Gr−1) + |V (P )| − α(x) + 1 + prfβ(P ).

We add an artificial vertex u′ to the end of the ordering β and add the edges
u′x and u′z. This results in an ordering β′ of V (P )∪{u′} where β′(u′) = |V (P )|+
1. Since we have created a cycle we note that prfβ′(P ∪ u′) ≥ 2(|V (P )| + 1)− 3,
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by Lemma 2 (ii). Since the profile of u′ in β′ is |V (P )| + 1 − α(x) we note
that prfβ(P ) ≥ 2(|V (P )| + 1) − 3 − (|V (P )| + 1 − α(x)). We get prfα(G) ≥
prfαV (P )

(Gr−1) + |V (P )| − α(x) + 1 + 2(|V (P )| + 1) − 3 − (|V (P )| + 1 − α(x)).

By reducing this formula and using the fact that prfαV (P )
(Gr−1) ≥ 3nr−1−3

2 ,

we get prf(G) = prfα(G) ≥ 3nr−1−3
2 +2|V (P )|−1. Since |V (P )| = a ≥ 2 we note

that 2|V (P )| − 1 ≥ 3a
2 , which implies the desired result. ��

Theorem 4. Let G = (V, E) be a connected graph of order n, let prf(G) ≤
n − 1 + k and let α be an optimal ordering of G. Let V1, V2, . . . Vt be a partition
of V such that |V1|, |Vt| ≥ k + 2 and there is only one edge xiyi between G[V1 ∪
V2 ∪ · · · ∪ Vi] and G[Vi+1 ∪ Vi+2 ∪ · · · ∪ Vt] for each i = 1, 2, . . . t− 1. Let xi ∈ Vi

and yi ∈ Vi+1 for each i = 1, 2, . . . t− 1 and let α−1(1) ∈ V1 or α−1(n) ∈ Vt. Let
an ordering α′ of G be defined as follows: α′

V −Vi
= αV −Vi for each i = 1, 2, . . . t,

and α′(vi) < α′(vi+1) for each i = 1, 2, . . . , t − 1. Then α′ is optimal.

Proof. Consider first the case of t = 2. Let xy = x1y1, X = V1, Y = V2. Let
α be an optimal ordering of G and let α−1(n) = y′ ∈ Y (the case α−1(1) ∈ X
is treated similarly). Let x′ be the vertex with α(x′) = 1. If x′ ∈ Y , then
Lemma 1 implies that prfα(G, Y ) ≥ prfαX

(G−X, Y ) + |X |. Since prfα(G, X) ≥
prfαY

(G[X ]) ≥ |X | − 1 and prfαX
(G[Y ]) ≥ |Y | − 1 (both by Lemma 2 (i)) and

|X | ≥ k+2, we conclude that prfα(G) ≥ |X |+|Y |+k, a contradiction. Therefore,
x′ ∈ X .

Let i = min{α(y′′) : y′′ ∈ Y } and let j = max{α(x′′) : x′′ ∈ X}. Assume
for the sake of contradiction that i < j. Let I = α−1({i, i + 1, . . . , j}). Recall
that α′ is defined as follows: α′

X = αX and α′
Y = αY but α′(x′′) < α′(y′′) for all

x′′ ∈ X and y′′ ∈ Y . We will prove that α′ is optimal.
Let H = G[X ∪ (Y ∩ I)] and let G′ = H if xy 	∈ E(H) and G′ = H − xy,

otherwise. Let β = αV (G)−V (G′) (so β is equal to α, except we have deleted the
last n − j vertices in the ordering). Note that by Lemma 1 (used with the set
Y ∩I) we get that prfβ(G′, V (G′)−(Y ∩I)) ≥ prfβY ∩I

(V (G′)−(Y ∩I))+ |Y ∩I|.
This implies the following:

prfα(G − xy, X) ≥ prfαY
(G[X ]) + |Y ∩ I|.

Analogously we obtain that prfα(G − xy, Y ) ≥ prfαX
(Y ) + |X ∩ I|, which

implies

prfα(G − xy) ≥ prfαY
(X) + prfαX

(Y ) + |I| = prfα′(G − xy) + (j − i + 1). (1)

If α(x) > α(y), then the above implies the following contradiction, as α′(y) −
α′(x) < j − i + 1.

prfα(G) ≥ prfα(G − xy) ≥ prfα′(G − xy) + (j − i + 1) > prfα′(G).

Therefore we may assume that α(x) < α(y). Let l = min{α(z) : z ∈ N [y]−{x}}
and let L = α−1({α(x), α(x)+1, α(x)+2, . . . , l−1}). Note that L = ∅ if l < α(x).
By the definition of L and the inequality in (1), we get the following:

prfα(G) = prfα(G − xy) + |L| ≥ prfα′(G − xy) + |I| + |L|.



Fixed-Parameter Complexity of Minimum Profile Problems 65

When we add the edge xy to G − xy, we observe that, in the ordering α′, the
profile of y will increase by one for every vertex from Y with an α-value less
then l and every vertex in X with an α-value larger than α(x). This is exactly
the set R1 ∪ R2 ∪ R3 ∪ R4, where

R1 = {y′′ ∈ Y : α(y′′) < l and α(x) < α(y′′)},
R2 = {x′′ ∈ X : α(x) < α(x′′) and α(x′′) < l},
R3 = {y′′ ∈ Y : α(y′′) < l and α(y′′) < α(x)},
R4 = {x′′ ∈ X : α(x) < α(x′′) and l < α(x′′)}.

Since R1 ∪ R2 ⊆ L and R3 ∪ R4 ⊆ I (as α−1(l) ∈ Y ), we conclude that
prfα(G) ≥ prfα′(G) + |I| + |L| − |R1| − |R2| − |R3| − |R4| ≥ prfα′(G).

Now let t ≥ 3. Let X =
⋃t−1

i=1 Vi and Y = Vt. By the case t = 2, the following
ordering β is optimal: βX = αX , βY = αY , and β(x) < β(y) for each x ∈
X, y ∈ Y. Now let X ′ =

⋃t−2
i=1 Vi, Y ′ = Vt−1 ∪ Vt. By the case t = 2, the

following ordering β′ is optimal: β′
X′ = βX′ , β′

Y ′ = βY ′ , and β′(x′) < β′(y′) for
each x′ ∈ X ′, y ∈ Y ′. Combining the properties of β and β′, we obtain that
β′

Y ′ = αY ′ , β′
V −Vt−1

= αV −Vt−1 , β′
V −Vt

= αV −Vt , and β′(x′) < β′(vt−1) < β′(vt)
for each x′ ∈ X ′, vt−1 ∈ Vt−1, vt ∈ Vt. Continuation of this argument allows us
to show that α′ is an optimal ordering. ��
A bridgeless component of a graph G is a maximal induced subgraph of G with
no bridges. We call a connected graph G a chain of length t if the following holds:
(a) G has bridgeless components Ci, 1 ≤ i ≤ t such that V (G) =

⋃t
i=1 V (Ci), and

(b) Ci is linked to Ci+1 by a bridge, 1 ≤ i ≤ t − 1. A component Ci is nontrivial
if |V (Ci)| > 1, and trivial, otherwise. An ordering α of G is special if for any two
vertices x, y ∈ V (G) and x ∈ V (Ci), y ∈ V (Cj), i < j implies α(x) < α(y).

Lemma 4. Let G be a chain of order n and let η be the total number of vertices
in the nontrivial bridgeless components of G. Let α be a special ordering of G
with prfα(G) ≤ n − 1 + k. Then η ≤ 3k.

Proof. We show η ≤ 3k by induction on n. Suppose that G has a trivial compo-
nent. If C1 is trivial, then G−C1 is a chain with prfαV (C1)

(G−C1) ≤ n′ − 1+ k,
where n′ = n−1. Thus, by the induction hypothesis, η ≤ 3k. Similarly, we prove
η ≤ 3k when Ct is trivial. Assume that Ci, 1 < i < t, is trivial. Let Ci be adjacent
to x ∈ V (Ci−1) and y ∈ V (Ci+1). Consider G′ obtained from G by deleting Ci

and appending edge xy. Observe that G′ is a chain and prfαV (Ci)
(G′) ≤ n′−1+k,

where n′ = n−1. Thus, by induction hypothesis, η ≤ 3k. So, now we may assume
that η = n.

Let C1, . . . , Ct denote the bridgeless components of G as in the definition
above. Let ni = |V (Ci)|. If t = 1, then by Theorem 3 we have n ≤ 2k + 1
and we are done as k ≥ 1. Now assume t ≥ 2. Let G′ = G − V (Ct) and
n′ = n − nt. Observe that G′ is a chain and αV (Ct) is a special ordering of G′.
Let kt = prfα(G, V (Ct)) − nt + 1 and let k′ = prfα(G, V (G′)) − n′ + 1. We have
kt + k′ − 1 ≤ k. Theorem 3 implies that

nt − 1 + kt = prfα(G, V (Ct)) ≥ prf(Ct) + 1 ≥ 3nt − 3
2

+ 1 =
3nt − 1

2
,
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and thus kt ≥ nt+1
2 and nt ≤ 2kt−1. Since nt ≥ 3, we have kt ≥ 2. By induction

hypothesis, n′ ≤ 3k′. Thus n = n′ + nt ≤ 3(k − kt + 1) + 2kt − 1 ≤ 3k. ��
A connected component of a graph G is called nontrivial if it has more than one
vertex.

Lemma 5. Let G = (V, E) be a connected graph of order n, let X ⊆ V such that
G[X ] is connected. Let G1, . . . , Gr denote the nontrivial connected components of
G−X. Assume that |V (Gi)| ≤ |V (Gi+1)| for 1 ≤ i ≤ r−1. If k+n−1 ≥ prf(G),
then k + 2 ≥ r and 2k ≥

∑r−2
i=1 |V (Gi)|.

Proof. The result holds vacuously true if r < 3, hence assume r ≥ 3. Let α be
an optimal ordering of G. Let I = { 1 ≤ i ≤ r : V (Gi) ∩ {α−1(1), α−1(n)} = ∅ }.
Clearly |I| ≥ r − 2. Let Y = X ∪

⋃
i/∈I V (Gi) and Z = V \ Y . Observe that

G[Y ] = G−Z is connected and Gi, i ∈ I, are exactly the nontrivial components
of G − Y . Since also {α−1(1), α−1(n)} ⊆ Y , Lemma 1 applies. Thus we get
prf(G) = prfα(G) ≥ prfα(G, V −Z)+

∑
i∈I prfα(G, V (Gi)) ≥ prf(G−Z)+ |Z|+∑

i∈I prf(Gi). Furthermore, by Lemma 2 (i), k ≥ prf(G)−n + 1 ≥ prf(G−Z)+
|Z| − |Y | + (

∑
i∈I prf(Gi) − |V (Gi)|) + 1 ≥ (prf(G[Y ]) − |Y |) + |Z| − |I| + 1 ≥

−1 + |Z| − |I| + 1. Hence k ≥ |Z| − |I|. However, since the components Gi are
nontrivial, |Z| ≥ 2|I|. Thus, |I| ≤ k and |Z| ≤ k + |I| ≤ 2k. ��

3 Dealing with Vertices of Degree 1

In this section, G denotes a connected graph of order n. For an ordering α of G
let Eα(G) denote the set of edges uv of G such that α(u) = minw∈N [v] α(w) and
u 	= v. The length �α(uv) of an edge uv ∈ E(G) relative to α is |α(u) − α(v)| if
uv ∈ Eα(G), and 0 if uv /∈ Eα(G). Observe that prfα(G) =

∑
e∈E(G) �α(e).

Let X, Y be two disjoint sets of vertices of G and let α be an ordering of
G. We say that (X, Y ) is an α-consecutive pair if there exist integers a, b, c
with 1 ≤ a < b < c ≤ n so that X = { x ∈ V (G) : a ≤ α(x) ≤ b − 1 }
and Y = { y ∈ V (G) : b ≤ α(y) ≤ c }. By swapY,X(α) we denote the ordering
obtained from α by swapping the α-consecutive pair (X, Y ). For a set X ⊆ V (G)
let Er

α(X) (respectively, El
α(X)) denote the set of edges uv ∈ Eα with u ∈ X ,

v ∈ V (G) \ X , and α(u) < α(v) (respectively, α(u) > α(v)).

Lemma 6. Let α be an ordering of G and (X, Y ) an α-consecutive pair such
that there are no edges between X and Y . If |El

α(X)| ≤ |Er
α(X)| and |El

α(Y )| ≥
|Er

α(Y )|, then for β = swapY,X(α) we have prfβ(G) ≤ prfα(G).

Proof. Observe that Eα(G) = Eβ(G). Moreover, the only edges of Eα(G) that
have different length in α and in β are the edges in El

α(Y ) ∪ Er
α(Y ) ∪ El

α(X) ∪
Er

α(X). Observe that �β(e) = �α(e)+ |Y |, �β(e′) = �α(e′)− |Y |, �β(f) = �α(f)−
|X |, �β(f ′) = �α(f ′) + |X | for each e ∈ El

α(X), e′ ∈ Er
α(X), f ∈ El

α(Y ) and
f ′ ∈ Er

α(Y ). Using these relations and the inequalities |El
α(X)| ≤ |Er

α(X)| and
|El

α(Y )| ≥ |Er
α(Y )|, we obtain prfβ(G) ≤ prfα(G). ��
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Lemma 7. Let α be an ordering of G and ({x}, Y ) an α-consecutive pair such
that x has a neighbor z of degree 1 with α(z) > α(y) for all y ∈ Y . If |El

α(Y )| ≥
|Er

α(Y )|, then for β = swapY,{x} we have prfβ(G) ≤ prfα(G).

Proof. If there are no edges between x and vertices in Y then the result follows
from Lemma 6 since |El

α({x})| ≤ 1 ≤ |Er
α({x})|. Now consider the case where

El
α({x}) = {wx} for a vertex w. It follows that Eβ(G) ⊆ Eα(G). Moreover,

we have
∑

e∈El
β(Y )∪Er

β(Y ) �β(e) ≤
∑

e∈El
α(Y )∪Er

α(Y ) �α(e) and �β(wx) + �β(xz) ≤
�α(wx) + �α(xz). Hence the result also holds true in that case. It remains to
consider the case where x has neighbors in Y and El

α({x}) = ∅. Let y, y′ be the
neighbors of x in Y with largest α(y) and smallest α(y′). Now Eβ(G) \Eα(G) =
{xy′} and �β(xy′) + �β(xz) ≤ �α(xz). Thus, prfβ(G) ≤ prfα(G). ��

Lemma 8. Let α be an ordering of G and let ({x}, Y ) be an α-consecutive
pair. Let all vertices in Y be of degree 1 and adjacent with x. Then for β =
swapY,{x}(α) we have prfβ(G) ≤ prfα(G).

Proof. Let y, y′ denote the vertex in Y with largest α(y) and smallest α(y′).
Observe �α(yx) = |Y |. First assume that El

α({x}) contains an edge zx. We have
Eβ(G) ⊆ Eα(G) \ {xy}, and �β(e) ≤ �α(e) holds for all e ∈ Eβ(G) \ {xz}. Since
�β(zx) = �α(zx) + �α(xy), the result follows. Next assume that El

α({x}) = ∅.
We have Eβ(G) ⊆ (Eα(G) \ {xy}) ∪ {xy′}, and �β(e) ≤ �α(e) holds for all
e ∈ Eβ(G) \ {xy′}. Since �β(xy′) = �α(xy), the result follows. ��
For x ∈ V (G) let N1(X) denote the set of neighbors of x that have degree 1. We
say that an ordering α of G is conformal for a vertex x of G if {α(w) : w ∈ N1(x) }
forms a (possibly empty) interval and α(w) < α(x) holds for all w ∈ N1(x). We
say that α is conformal for a graph G if it is conformal for all vertices of G.

Theorem 5. For every connected graph G there exists an optimal ordering
which is conformal.

Proof. Let α be an optimal ordering of G. Let x be a vertex of G for which α
is not conformal. We apply the following steps to α, until we end up with an
optimal ordering which is conformal for x. In each step we transform α into an
optimal ordering β in such a way that whenever α is conformal for a vertex x′,
so is β. Hence, we can repeat the procedure for all the vertices one after the
other, and we are finally left with an optimal ordering which is conformal.

Let w1, w2 ∈ N1(x) ∪ {x} with minimal α(w1) and maximal α(w2). We call a
set B ⊆ N1(x) a block if {α(b) : b ∈ B } is a nonempty interval of integers. A
block is maximal if it is not properly contained in another block.

Step 1. Assume that there exist α-consecutive pairs ({x}, Y ), (Y, Z) with the
following properties: (a) Y and Z are nonempty; (b) Y ∩ N1(x) = ∅; (c) Z is
a maximal block. By assumption, there is a z ∈ Z such that xz ∈ E(G) and
α(z) > α(y) holds for all y ∈ Y . Moreover, there are no edges between Y and
Z and Er

α(Z) = ∅. If |El
α(Y )| ≥ |Er

α(Y )|, then we put β = swapY,{x}(α), other-
wise we put β = swapZ,Y (α). It follows from Lemmas 7 and 6, respectively, that
β is optimal.
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Step 2. Assume that there exists an α-consecutive pair ({x}, Y ) such that Y
is a maximal block. We put β = swapY,{x}(α). It follows by Lemma 8 that β is
optimal. (Remark: If neither Step 1 nor Step 2 can be applied, then α(w2) < α(x).)

Step 3. Assume that there exist α-consecutive pairs (X, Y ), (Y, Z) with the fol-
lowing properties: (a) X and Z are maximal blocks; (b) Y ⊆ V (G) \ N1(X); (c)
w1 ∈ X . Note that there are no edges between X and Y and no edges between Y
and Z. Furthermore, we have El

α(X) = ∅ and Er
α(Z) = ∅ (the former follows from

Property (c)). If |El
α(Y )| ≥ |Er

α(Y )|, then we put β = swapY,X(α), otherwise we
put β = swapZ,Y (α). In both cases it follows from Lemma 6 that β is optimal. (Re-
mark: If none of the above Steps 1, 2, or 3, applies, then α is conformal for x.) ��

4 Kernelization

For technical reasons, in this section we will deal with a special kind of weighted
graphs, but they will be nothing else but compact representations of (unweighted)
graphs. We consider a weighted graph G = (V, E, ρ) whose vertices v of degree 1
have an arbitrary positive integral weight ρ(v), vertices u of degree greater than
one have weight ρ(u) = 1. The weight ρ(G) of G = (V, E, ρ) is the sum of weights
of all vertices of G. An ordering of a weighted graph G = (V, E, ρ) is an injective
mapping α : V → {1, . . . , ρ(G)} such that for every vertex v ∈ V of degree 1 we
have α(v) 	= ρ(G) and for all u ∈ V we have α(u) /∈ {α(v) + 1, . . . , α(v) + ρ(v) −
1}. The profile prf(G) of a weighted graph is defined exactly as the profile of an
unweighted graph. A weighted graph G = (V, E, ρ) corresponds to an unweighted
graph Gu, which is obtained from G by replacing each vertex v of degree 1 (v
is adjacent to a vertex w) with ρ(v) vertices adjacent to w. By Theorem 5 and
the definitions above, prf(G) = prf(Gu) and an optimal ordering of G can be
effectively transformed into an optimal ordering of Gu. Also, ρ(G) = |V (Gu)|.
The correspondence between G and Gu allows us to use the results given in the
previous sections.

Kernelization Rule 1. Let G be a weighted graph and x a vertex of G with
N1(x) = {v1, . . . , vr}, r ≥ 2. We obtain the weighted graph G0 = (V0, E0, ρ0),
where G0 = G − {v2, . . . , vr} and ρ0(u) = ρ(u) for u ∈ V0 \ {v1} and ρ0(v1) =∑r

i=1 ρ(vi).

The next lemma follows from Theorem 5.

Lemma 9. Let G be a weighted connected graph and G0 the weighted graph
obtained from G by Kernelization Rule 1. Then prf(G) = prf(G0), and an optimal
ordering α0 of G0 can be effectively transformed into an optimal ordering α of G.

Let e be a bridge of a weighted connected graph G and let G1, G2 denote the
connected components of G− e. We define the order of e as min{ρ(G1), ρ(G2)}.
Let v be a vertex of a (weighted) graph G. We say that v is k-suppressible if the
following conditions hold: (a) v forms a trivial bridgeless component of G; (b) v
is of degree 2 or 3; (c) there are exactly two bridges e1, e2 of order at least k + 2
incident with v; (d) if there is a third edge e3 = vw incident with v, then w is a
vertex of degree 1.
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Kernelization Rule 2 (w.r.t. parameter k). Let v be a k-suppressible vertex
of a weighted graph G = (V, E, ρ) and let xv, yv be the bridges of order at least
k + 2. From G we obtain a weighted graph by removing {v} ∪ N1(v) and adding
the edge xy.

Lemma 10. Let G = (V, E, ρ) be a weighted connected graph with prf(G) ≤
ρ(G)−1+k and G′ the weighted graph obtained from G by means of Kernelization
Rule 2 with respect to parameter k. Then prf(G)−ρ(G) = prf(G′)−ρ(G′), and an
optimal ordering α′ of G′ can be effectively transformed into an optimal ordering
α of G.

Proof. Let v be a k-suppressible vertex of Gu and let xv, yv be the bridges of
order at least k + 2. We consider the case when N1(v) = {w1, . . . , wr} 	= ∅; the
proof for the case when N1(v) = ∅ is similar. Let Gu[X ] and Gu[Y ] denote the
components of Gu − v that contain x and y, respectively. Consider an optimal
ordering α of Gu and assume that α−1(n) ∈ Y . By Theorem 5, we may assume
that α(wi) < α(v) for every 1 ≤ i ≤ r. Now by Theorem 4, we can find an optimal
ordering α′ of Gu such that α′(x′) < α′(wi) < α′(v) < α′(y′) for each x′ ∈
X, y′ ∈ Y and i = 1, 2, . . . , r. Now it will be more convenient to argue using the
weighted graphs G and G′. Using Kernelization Rule 1, we transform α′ into the
corresponding optimal ordering of G. For simplicity we denote the new ordering
α′ as well. Observe that prfα′

{v,w}
(G′, y) = prfα′(G, y) + prfα′(G, v) − 1 − ρ(w).

Hence, prf(G′) − ρ(G′) ≤ prfα′
{v,w}

(G′) − ρ(G′) = prf(G) − ρ(G).
Conversely, let α′ be an optimal ordering of G′. Since the bridge xy of G′ is

of order at least k + 2, we may assume by Theorem 4 that either for all x′ ∈ X
and y′ ∈ Y we have α′(x′) < α′(y′). It is straightforward to extend α′ into an
ordering α of G such that α{v,w} = α′ and prfα(G) = prfα′(G′)+1+ρ(w). Hence
prf(G) − ρ(G) ≤ prfα(G) − ρ(G) = prfα′(G′) − ρ(G′). Thus, prf(G′) − ρ(G′) =
prf(G) − ρ(G). ��

Theorem 6. Let G = (V, E, ρ) be a weighted connected graph with n = |V | and
m = |E|. Let k be a positive integer such that prf(G) ≤ ρ(G) − 1 + k. One of
the Kernelization Rules 1 and 2 can be applied with respect to parameter k, or
n ≤ 12k + 6 and m ≤ 13k + 5.

Proof. For a weighted graph G = (V, E, ρ) let G∗ be an unweighted graph with
V (G∗) = V and E(G∗) = E. Observe that prf(G∗) ≤ prf(G). Thus, in the rest
of the proof we consider G∗ rather than G, but for the simplicity of notation
we use G instead of G∗. Assume that none of the Kernelization Rules 1 and
2 can be applied with respect to parameter k. We will show that the claimed
bounds on n and m hold. By Theorem 1 we have m ≤ prf(G) ≤ n− 1+ k. Thus,
n ≤ 12k+6 implies m ≤ 13k+5. Therefore, it suffices to prove that n ≤ 12k+6.
If G is bridgeless, then by Theorem 3, we have n − 1 + k ≥ prf(G) ≥ 3n−3

2 and,
thus, n ≤ 2k+1. Hence, we may assume that G has bridges. Let Ci, i = 1, . . . , t,
denote the bridgeless components of G such that at least one vertex in Ci is
incident with a bridge of order at least k + 2. We put X =

⋃t
i=1 V (Ci).
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Suppose that there is a component Ci incident with three or more bridges of
order at least k + 2. Then, we may assume that there are three bridges e2, e3, e4
of order at least k+2 that connect a subgraph F1 of G with subgraphs F2, F3, F4,
respectively, and V =

⋃4
i=1 V (Fi). Let α be an optimal ordering of G. Assume

without loss of generality that α−1(1) 	∈ V (F2) and α−1(n) 	∈ V (F2). Let X =
V (F2) and note that G − X is connected. Therefore Lemmas 1 and 2 (i) imply
prf(G) = prfα(G, X)+prfα(G, V −X) ≥ |X |− 1+ (|V |− |X |− 1)+ |X | ≥ n+ k,
a contradiction. Since G is connected, it follows that G[X ] is connected. Thus,
G[X ] is a chain and we may assume that Ci and Ci+1 are linked by a bridge bi

for each i = 1, 2, . . . , t − 1. Notice that each bi is of order at least k + 2 in G.
Let G1, . . . , Gr be the connected components of G − X . Observe that each Gi

(1 ≤ i ≤ r) is linked with exactly one Cj (1 ≤ j ≤ t) with a bridge eij . The bridge
eij must be of order less than k + 2, since otherwise V (Gi) ∩ X 	= ∅. Hence (**)
|V (Gi)| ≤ k + 1 follows for all i ∈ {1, . . . , r}. For each j, let IG(j) be the set of
indices i such that Gi is linked to Cj . Let N = { 1 ≤ i ≤ t : |V (Ci)| > 1 } and
T = { 1 ≤ i ≤ t : |V (Ci)| = 1 }. For i ∈ Ti let xi denote the single vertex in Ci.
Similarly, let N ′ = { 1 ≤ i ≤ r : |V (Gi)| > 1 } and T ′ = { 1 ≤ i ≤ r : |V (Gi)| =
1 }. Let Hj = G[

⋃
i∈IG(j) V (Gi) ∪ V (Cj)] for each j = 1, 2, . . . , t. By Theorem 4,

we may assume that there exists an optimal ordering β such that β(hi) < β(hj)
for all i < j, hi ∈ V (Hi), hj ∈ V (Hj). Let γ = βV (G)−X . Clearly, γ is a special
ordering of the chainG[X ], i.e., γ(ci) < γ(cj) for all i < j, ci ∈ V (Ci), cj ∈ V (Cj).

If Gi is nontrivial, then it has a vertex z such that Gi−z is connected and z is
not incident to the bridge between Gi and G[X ]. If Gi is trivial, let z = V (Gi). In
both cases, by Lemma 3, prfβz

(G−z) ≤ (n−1)−1+k. Repeating this argument,
we conclude that prfγ(G[X ]) ≤ |X |−1+k. Now by Lemma 4,

∑
i∈N |V (Ci)| ≤ 3k.

Lemma 5 yields that |N ′| ≤ k + 2. Observe that for each i ∈ T , xi is linked by a
bridge xiyπ(i) to at least one nontrivial Gπ(i), where π(i) 	= π(i′) whenever i 	= i′.
Hence, |T | ≤ k + 2. Thus, |X | =

∑
i∈N |V (Ci)| + |T | ≤ 3k + (k + 2) = 4k + 2.

Using (**) and Lemma 5, we have that
∑

i∈N ′ |V (Gi)| ≤ 2(k +1)+2k = 4k +2.
Let Y =

⋃r
i=1 V (Gi). Since Kernelization Rule 1 cannot be applied, every

vertex in X is adjacent with at most one Gi with i ∈ T ′. Hence |T ′| ≤ |X | ≤
4k + 2. Consequently |Y | ≤ 2(4k + 2) = 8k + 4. Hence n = |X |+ |Y | ≤ 4k + 2 +
8k + 4 = 12k + 6 follows. ��
Corollary 1. The problem PAVGV is fixed-parameter tractable.

Remark 1. We see that PAVGV can be solved in time O(|V |2 + f(k)), where
f(k) = (12k +6)!. It would be interesting to significantly decrease f(k), but even
as it is now our algorithm is of practical interest because the kernel produced by
the two kernelization rules can be solved using fast heuristics.

5 Vertex Average Profile Problem

Serna and Thilikos [11] asked whether the following problem is FPT.

Vertex Average Profile (VAP)
Instance: A graph G = (V, E). Parameter: A positive integer k.
Question: Is the profile of G at most k|V |?
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The following result, announced in [7] without a proof, implies that VAP is not
fixed-parameter tractable unless P = NP.

Theorem 7. Let k ≥ 2 be a fixed integer. Then it is NP-complete to decide
whether prf(H) ≤ k|V (H)| for a graph H.

Proof. Let G be a graph and let r be an integer. We know that it is NP-complete
to decide whether prf(G) ≤ r. Let n = |V (G)|. Let k be a fixed integer, k ≥
2. Define G′ as follows: G′ contains k copies of G, j isolated vertices and a
clique with i vertices (all of these subgraphs of G′ are vertex disjoint). We have
n′ = |V (G′)| = kn + i + j. Observe that prf(Ki) =

(
i
2

)
. By the definition of G′,

k · prf(G) = prf(G′)− prf(Ki) = prf(G′)−
(

i
2

)
. Therefore, prf(G) ≤ r if and only

if prf(G′) ≤ kr +
(

i
2

)
. If there is a positive integer i such that kr +

(
i
2

)
= kn′

and the number of vertices in G′ is bounded from above by a polynomial in
n, then G′ provides a reduction from to VAP with the fixed k. Observe that
kr+

(
i
2

)
≥ k(kn+i) for i = 2kn. Thus, by setting i = 2kn and j = r+ 1

k

(
i
2

)
−kn−i,

we ensure that G′ exists and the number of vertices in G′ is bounded from above
by a polynomial in n. ��
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Abstract. We study the size of OBDDs (ordered binary decision dia-
grams) for representing the adjacency function fG of a graph G on n
vertices. Our results are as follows:

-) For graphs of bounded tree-width there is an OBDD of size O(log n)
for fG that uses encodings of size O(log n) for the vertices;
-) For graphs of bounded clique-width there is an OBDD of size O(n)
for fG that uses encodings of size O(n) for the vertices;
-) For graphs of bounded clique-width such that there is a reduced term
for G (to be defined below) that is balanced with depth O(log n) there
is an OBDD of size O(n) for fG that uses encodings of size O(log n) for
the vertices;
-) For cographs, i.e. graphs of clique-width at most 2, there is an OBDD
of size O(n) for fG that uses encodings of size O(log n) for the vertices.
This last result improves a recent result by Nunkesser and Woelfel [14].

1 Introduction

The most usual way to represent graphs certainly is by adjacency lists or ad-
jacency matrices. However, for applications like traffic scheduling, Travelling
Salesman, and many more such representations can easily become very large. A
way of trying to circumvent the storing problems related to such large graphs
is to consider data structures for Boolean functions, hoping for a more succinct
representation of the graph’s adjacency function by such structures. In data
structure literature almost tight bounds for designing a shortest string encoding
a graph (with fast en- and decoding) are known for general graphs [13] and for
many subclasses such as planar graphs [10].

One of the most important data structures for Boolean functions that has
been used quite successfully are OBDDs (Ordered Binary Decision Diagrams).
For a comprehensive introduction into the theory of OBDDs we refer to [17].

The content of this paper is to study succinct graph representations using
OBDDs. By cardinality arguments we cannot represent any arbitrary graph by

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 72–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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OBDDs of small size. Thus it is a reasonable question whether succinct OBDD
representations can be found at least for significant graph classes. We shall look
for such classes among graphs whose local structure is somehow controlled. For
some graph classes including cographs and unit interval graphs this kind of
problem was recently studied by Nunkesser and Woelfel [14], where several upper
and lower bounds for the sizes of OBDDs representing such graphs were given.
Other works relating algorithmic graph problems with OBDD representations
are [9,15,16,18].

Our paper takes the work of [14] as starting point and analyzes further impor-
tant graph classes with respect to their representability by small sized OBDDs.
Two of the most important parameters for graphs are the tree-width and the
clique-width. For graphs of bounded tree- or bounded clique-width many other-
wise intractable algorithmic problems are known to be efficiently solvable [1,6,7].
Note that bounded tree-width implies bounded clique-width [8].

We study the representation of graphs belonging to one of the above classes
by OBDDs. Section 2 recalls the main concepts used in the paper. In Section 3
it is shown that for each graph with n vertices and of bounded tree-width there
exists an OBDD of size O(log n) that uses vertex encodings of length O(log n).
Section 4 is devoted to graphs of bounded clique-width. First, we show that when
using vertex encodings of length O(n), then each graph with n vertices having a
bounded clique-width allows an OBDD representation of size O(n). Thereafter,
we improve the above result for cographs, i.e. graphs of clique-width at most
2. Here, representing OBDDs of size O(n) exist which use vertex encodings of
length O(log n). This last result improves a related one in [14] by a factor of
log n.

2 Basic Concepts

In order to make the paper self-contained we briefly recall the main notions we
are dealing with in this paper, i.e. ordered binary decision diagrams as well as
the tree- and the clique-width of a graph. For more elaborate treatments refer
to [17] and [5]. At the end of this section we collect some results from [11] which
are important later on.

Definition 1 (BDD and OBDD). a) A binary decision diagram or BDD is
a directed acyclic graph having two kinds of nodes. Output nodes are nodes with
no outgoing edge and are labeled with a Boolean constant from {0, 1}. Inner
nodes are labeled with an element from some variable set {x1, . . . , xn}. They
have exactly two outgoing edges one of which is labeled by 0 and the other by 1.

b) Each node v of a BDD computes a Boolean function fv : {0, 1}n → {0, 1} in
the following way: Given an assignment for the boolean variables x1, . . . , xn one
follows, starting at v, the edges according to the value of the corresponding label
until an output node is reached whose label gives fv(x1, . . . , xn). If the underlying
graph has a root r, then fr is also called the function computed by the BDD.

c) The size of a BDD is the number of nodes of the underlying graph.
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d) A BDD is an ordered binary decision diagram with respect to the variable
ordering x1 < . . . < xn, or OBDD for short, if for every edge of the BDD from
an inner node with label xi to an inner node with label xj the indices satisfy
j > i.

In an OBDD the variables are read at most once and always in the same order.
Let G = (V, E) be a graph. We are interested in OBDDs computing the

adjacency function fG : V 2 → {0, 1} with fG(i, j) = 1 iff (i, j) ∈ E. Here, we
first have to specify how a node is encoded in order to use it as (part of) the
argument of a Boolean function.

Definition 2. Let G = (V, E) be a graph with n := |V | nodes and let name :
V → {0, 1}L be an encoding of the nodes by binary strings of length L. An
OBDD O is said to represent G if O computes a Boolean function fO from
{0, 1}2L → {0, 1} such that for all i, j ∈ V we have

fO(name(i), name(j)) = fG(i, j).

A few words concerning the used encoding are appropriate. The following upper
bound is well known.

Theorem 1. ([3]) Let f : {0, 1}N → {0, 1}. There is an OBDD of size (2 +
o(1)) · 2N

N that computes f.

For the adjacency function of a graph with n nodes this implies that we can
always find a representing OBDD of size at most O( n2

log n ) by choosing the bi-
nary representations of the elements in {1, . . . , n} as names for the vertices. The
adjacency function then takes 2 · �log n� many arguments.

Thus, if below we shall use encodings of a different length we have to keep in
mind this upper bound when comparing the sizes of the OBDDs constructed.

Definition 3 (Tree-width of a graph). A tree decomposition of width k ∈ N
of a (simple and undirected) graph G = (V, E) is a pair (T, (Xt)t∈VT ) where
T = (VT , ET ) is a rooted tree and (Xt)t∈VT is a collection of subsets Xt ⊆ V of
cardinality at most k + 1 such that for every edge uv ∈ E there is a t ∈ VT with
u, v ∈ Xt and for every vertex u ∈ V the set {t ∈ VT | u ∈ Xt} induces a subtree
of T having at least one vertex.

The tree-width of G is the minimum k such that there is a tree decomposition
of width k of G.

The final concept we recall is that of the clique-width of a graph. For k ∈ N
a k-graph is a graph G = (V, E) whose vertices are labeled with a label from
{1, . . . , k}. We consider four operations on k-graphs: First, for two k-graphs
G = (V, E) and H = (W, F ) with disjoint sets of vertices the k-graph G

⊕
H is

obtained by taking V ∪ W as new vertex set and E ∪ F as new edge set. The
original labels are maintained. Secondly, for i, j ∈ {1, . . . , k}, i 	= j and a k-graph
G the k-graph ηi,j(G) is obtained from G by connecting all vertices labeled i
with those labeled j in G. Thirdly, for i, j ∈ {1, . . . , k}, i 	= j and a k-graph G
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the k-graph ρi→j(G) is obtained from G by relabeling all nodes having label i
with label j. Finally, for i ∈ {1, . . . , k} the operation i(v) creates a k-graph with
one vertex v that carries label i.

Definition 4 (Clique-width of a graph).
a) Let k ∈ N be fixed. A k-expression is a well formed term using the above
mentioned operations that represents a graph G in the obvious way. (The term
t = η1,2(2(z)

⊕
(ρ2→1(η1,2(1(x)

⊕
2(y))))) for instance represents a clique with

the three vertices x, y and z.)
b) The clique-width cw(G) of a graph G is the minimal k ∈ N such that there

exists a k-expression representing G.

It is well known that a graph of tree-width k has a clique-width bounded by
2k+1 + 1, see [8]. Cographs, which will be important below in Section 4 can be
characterized as being exactly the graphs of clique-width at most 2.

The main concern of this paper is to find small OBDD representations of adja-
cency functions of graphs for which one of the above parameters is bounded. Note
that the converse cannot be achieved, i.e. the existence of a small sized OBDD
representing the adjacency function of a graph does not imply any significant
bounds on the tree- or clique-width of the graph as shown by the square-grid.

The construction of OBDDs representing graphs of bounded clique-width that
we perform in Section 4 relies on results established in [11]. We recall these results
before we turn to our constructions.

To each k-expression t representing a graph G there is a naturally related
reduced term red(t). It is basically obtained from t by deleting all information
about the labeling. More precisely, define R(V ) to be the set of well-formed
terms r written with the nullary symbols v for v ∈ V, the binary symbol

⊕
and

such that for every v ∈ V the term r contains exactly once the symbol v. Then
for a k-expression t we have that red(t) ∈ R(V ). (For the example in Definition
4 for instance we have red(t) = z

⊕
(x

⊕
y).)

In what follows subterms of an r ∈ R(V ) and subtrees of Tr are important.
For r ∈ R(V ) and a subterm s of r denote by Vs those vertices occuring in s.
Define a graph Hs := (Vs, Es), where for u, v ∈ Vs there is an edge (u, v) ∈ Es

if and only if u and v have at least one different neighbor in G outside Vs, i.e.
(u, v) ∈ Es ⇔ NG(u) \ Vs 	= NG(v) \ Vs, where NG(u) is the set of neighbors of
u in G.

The following result from [11] collects those properties of the graphs Hs that
will be important below.

Theorem 2. Let G be a graph of clique-width k, t a k-expression representing
G, r = red(t) a reduced term and s a subterm of r.

a) The graph Hs is a complete multipartite graph of at most k different partite
sets.

b) If s = s1
⊕

s2, then every partite set of Hs arises as the union of partite
sets of Hs1 and Hs2 .



76 K. Meer and D. Rautenbach

This result implies in particular that in order to figure out whether two different
vertices in Vs1 and Vs2 are adjacent in G it is sufficient to analyze the relation
between the at most k many partite sets in each of the graphs Hs1 and Hs2 .

3 Succinct Representations for Graphs of Bounded
Tree-Width

Let G = (V, E) be a graph with V = {1, . . . , n} of tree-width at most k for
some fixed k ∈ N. In this section we prove that the adjacency function fG has
a succinct representation by an OBDD. More precisely, we shall assign to each
vertex i ∈ V a name name(i) of length O(log n) and construct an OBDD of size
O(log n) that represents fG in the sense of Definition 2.

Suppose that G has a tree-decomposition (T, (X�)�∈VT ) such that T is a binary
tree of depth d and each X� contains at most k̃ vertices for some k̃ ∈ N. The
values d and k̃ will be specified below.

The main idea for constructing an OBDD of size O(log n) is as follows. Let
r denote the root of T. We shall assign to each vertex i an encoding name(i)
that consists of three parts. The entire length of name(i) is O(log n). By the
definition of a tree-decomposition there is a unique node �(i) of T with i ∈ X�(i)
that is closest to the root r of T. The first part of the encoding for i is the
binary string encoding the unique path from r to �(i). Its length is at most d.
For reasons that become clear below we double each bit and add a pair 01 at
the end. For example, a path 011 is encoded as 00111101. Denote this first part
of name(i) by p(i).

The second part of name(i) is simply taken as the binary representation bin(i)
of i of length �log n�.

The third part of name(i), denoted by adj(i), consists of the binary represen-
tation of at most k̃−1 other vertices. More precisely, adj(i) is the concatenation
of bin(s) for all those vertices s ∈ X�(i) that are adjacent to i. If X�(i) \ {i} has
less than k̃ − 1 many vertices we add dummy 0’s at the end of adj(i) such that
it has precisely length (k̃ − 1) · �log n�. We order the k̃ − 1 strings in adj(i) with
respect to the numerical value of the integers they represent from the largest to
the smallest.

Altogether, name(i) is the concatenation p(i)bin(i)adj(i) and has length at
most L := 2d + 2 + k̃ · �log n�.

For arbitrary tree-decompositions of tree-width k we use the following theorem
by Bodlaender [2] to obtain a situation as above with values d = O(log n) and
k̃ = O(k).

Theorem 3. ([2]) Let G = (V, E) be a graph of tree-width k with n vertices.
Then there exists a tree-decomposition (T, (X�)�∈VT ) of G of width 3k + 2 such
that T is a binary tree of depth at most 2 · �log 5

4
(2n)�.

In the present section we only need the statement of the theorem. In Section 4
below we also have to study its proof more closely in the case where G is a tree.
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Applying the theorem to our above reasoning gives a balanced tree-decomposi-
tion and an encoding of the vertices of G by names of length L := 4·�log 5

4
(2n)�+

2 + (3k + 2 + 1) · �log n�, which is O(log n) for fixed k.
We are now ready to state the main theorem of this section.

Theorem 4. Let k ∈ N be fixed and let G = (V, E) be a graph of tree-width k.
Define L as above. Then there is an OBDD O of size O(log n) which computes
a Boolean function fO of 2L input bits such that for all i, j ∈ V we have

fO(name(i), name(j)) = fG(i, j).

Proof. Let (T, (X�)�∈VT ) be a tree-decomposition of G according to Theorem 3
with tree-width k̃ − 1 = 3k + 2 and depth logarithmic in n.

We construct an OBDD using the above encoding as names for the vertices of
G. The variable ordering requirements for the OBDD will be obvious from the
description below. For vertices i, j ∈ V the OBDD works in two steps.

Step 1: First, the paths p(i) and p(j) are inspected alternately in blocks of
two bits each until we reach the end of one of the two paths. This is indicated by
reading a consecutive block 01. There are three different cases to treat: Either
none of the two paths is a prefix of the other. Then i and j cannot be adjacent
in G due to the properties of a tree-decomposition. Or p(i) is a prefix of p(j)
(of course when considering p(i) without the final 01 block), or vice versa. Both
cases are handled using the same idea in Step 2.

Step 2: Without loss of generality suppose p(i) is a prefix of p(j) (the reverse
situation is treated similarly in a parallel part of the OBDD). If p(i) = p(j),
then i and j occur in the same set X�(i) = X�(j) for the first time due to
our convention about the tree-decomposition. They are adjacent in G iff this is
already visible in the adjacency list related to i and j. If p(i) 	= p(j), then by
the same argument adjacency has to be visible in the adjacency list adj(j). By
ignoring intermediate inputs the OBDD continues by reading the input part for
bin(i) and adj(j). Thus, in both cases the OBDD has to pattern match bin(i) in
adj(j). This can be done by parallel bitwise comparison of the string bin(i) with
each of the k̃ − 1 many strings in adj(j). Since the strings in adj(j) are ordered
numerically after reading each new bit the OBDD can maintain two numbers in
{1, . . . , k̃} that indicate where a string in adj(j) has to be looked for in order to
pattern match bin(i) - if at all such a string exists in {1, . . . , k̃}. This way, we
remember a subset of {1, . . . , k} of still possible matches. There occur at most
O(k̃2 · log(n)) different situations with respect to how the two numbers look like
and which components in bin(i) still have to be read. Similarly if p(j) is a prefix
of p(i). Thus, the variable ordering can be chosen as taking alternately bitwise
the strings bin(i) and the k̃ − 1 strings in adj(j) followed by the corresponding
ordering for bin(j) and adj(i). Depending on which path is a prefix of the other
the OBDD ignores the corresponding other half of the variables.

The size of this OBDD can be estimated as follows: Step 1 can be done by
an OBDD of size O(min{|p(i)|, |p(j)|}) = O(log n). The pattern matching as
described above in Step 2 can be implemented by an OBDD of size O(log n)
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for fixed k. Note that the strings bin(i) and bin(j) are compared to O(k) many
strings each. Thus, the number of potential subcases that might occur with
respect to the question whether bin(i) is one of the strings in adj(j) is bounded
as a function in k. The total size of the OBDD therefore is of order O(log n) as
k is fixed. ��

4 OBDDs for Graphs of Bounded Clique-Width

Whereas graphs of bounded tree-width allow succinct representations by small
OBDDs, this is in general not the case for graphs of bounded clique-width.
Actually, the following lower and upper bounds are known for cographs, which
are precisely the graphs of clique-width at most 2.

Proposition 1. ([14]) a) There exist cographs G with n nodes such that each
OBDD that computes the adjacency function of G and uses names of size �log n�
has size at least 1.832 · n

log n − O(1).
b) For each cograph G with n nodes there exists an OBDD of size at most

3n · logn+2n− logn+ 1
2 that computes the adjacency function of G using names

of length �log n� for the nodes.

Thus, for OBDDs representing graphs of bounded clique-width we can guarantee
a size at most of order O( n2

log n ) and in the worst case we have at least a size of
order Ω( n

log n ).
The purpose of this section is to come closer to this lower bound. We first

show in Section 4.1 that each graph of clique-width k can be represented by an
OBDD of size O(n · f(k)) for some function f only depending on k when using
vertex encodings of length O(n · log k). The result can be improved into the
direction of using shorter encodings in case there exists a reduced term red(t)
for a k-expression t representing G such that red(t) is balanced. Unfortunately,
we do not know a general result guaranteeing such a reduced term to exist. For
cographs, however, we can prove more using once again Theorem 3. This will be
done in Section 4.2.

4.1 Representations for Graphs of Bounded Clique-Width Using
Long Vertex Encodings

Our constructions in this section are based on Theorem 2.

Theorem 5. Let k ∈ N be fixed. Let G = (V, E) be a graph with n := |V |
vertices and let t be a k-expression representing G. There is an OBDD O of size
O(n) representing G. The encodings of G’s nodes used by O have length at most
O(d · log k), where d is the depth of the binary tree Tr encoded by r = red(t).

Proof. Let G = (V, E) be a graph of clique-width k, t a k-expression representing
G, and r = red(t) its reduced term. Denote the depth of the binary tree Tr

related to r by d; clearly d ≤ n − 1. We first explain the encoding we use for
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each i ∈ V. Since all the nodes of G occur as leaves in Tr there is a unique path
p(i) ∈ {0, 1}∗ from Tr’s root to leaf i. The length of p(i) is at most d. Given two
different graph nodes i, j ∈ V the first task is to find in Tr the final common
tree node s for p(i) and p(j).

The OBDD reads alternately the bits of p(i) and p(j) until s is found. There-
after, it proceeds with a different subprogram for each s. The first part causes
an OBDD size of O(n) since there are n − 1 many internal nodes in Tr.

Consider the subtrees of Tr rooted at s1 and s2, where s is the final common
node on p(i) and p(j) and s1 is the left and s2 the right son of s.

Now the following observation is crucial with respect to the question whether
i and j are adjacent in G: According to Theorem 2 both Hs1 and Hs2 are
multipartite with ≤ k partite sets; and the question whether a node i in one of
the partite sets of Hs1 is adjacent in G to a node j in one of the partite sets of
Hs2 only depends on those sets. Thus, we can code each of the ≤ k sets by a
string of length �log k�. We then include the information to which set the vertex
i belongs in Hs1 as part of the encoding of i; more precisely, each bit of p(i) is
followed by a string of length �log k� coding the partite sets of the subsequent
subgraph to which i belongs. The encoding of each node therefore has length
O(d · log k). Finally, for deciding adjacency of nodes i and j the OBDD has
to find the splitting node as explained above and then to compute a Boolean
function depending on 2�log k� variables that represents the adjacency relations
between the partite sets of Hs1 and Hs2 . Using the upper bound from Theorem
1 this can be achieved with a sub-OBDD of size (2 + o(1)) · 4 · k2

log k . Thus, we

obtain an OBDD of size O(n · k2

log k ) using encodings of each node of length at
most O(d · log k). ��
If we do not know more about an optimal (with respect to the depth d of Tr)
reduced term r for G we can only conclude d < n and obtain vertex names of
length O(n · log k).

Recall how in the above proof the size of the OBDD depends on the depth of
Tr and the number of its internal nodes. The depth of Tr enters into the length of
the node encoding whereas the number n−1 of internal nodes always enters into
the size estimate. If the tree Tr related to r := red(t) has depth O(log n) we thus
obtain OBDDs of size O(n) using encodings of length O(log n). Currently, we
do not know whether such a balanced term always exists for graphs of bounded
clique-width. Balancing even at the cost of increasing the number of used labels
might give better results. We thus pose the

Problem 1. Let G be a graph of order n and clique-width k. Is there always a
k̃-expression t with k̃ = O(f(k)) for some function f representing G such that
red(t) encodes a binary tree of depth O(log n)?

4.2 OBDDs Representing Cographs

The goal of this section is to show that for cographs we can construct small sized
OBDDs using vertex encodings of length O(log n). More precisely, the sizes of the
OBDDs we design are of order O(n), thus improving the result of Proposition 1,
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b) by a factor log n. The proof relies on an application of the balancing algorithm
behind Theorem 3 to the so called cotree that is related to each cograph.

Definition 5. A cograph G = (V, E) is a graph of clique-width at most 2. (This
is equivalent to saying that G contains no induced P4, i.e. no chordless path with
four vertices and three edges.)

Proposition 2. ([4]) To each cograph G there exists an associated tree T (G)
called cotree representing G as follows. The leaves of T (G) are precisely the
vertices of G. The internal nodes of T (G) are labeled with either 0 or 1. Two
vertices i, j of V are adjacent in G iff their least common ancestor lca(i, j) in
T (G) is labeled with 1. Without loss of generality T (G) can be chosen to be a
binary tree.

Theorem 6. For every cograph G = (V, E) with n vertices there exists an
OBDD O representing G that has size O(n) and uses encodings of the vertices
of G of length O(log n).

Proof. Let G = (V, E) be a cograph and T (G) a binary cotree of G as explained
in Proposition 2. According to a version of Theorem 3 dealing with trees and
also proved in [2] T (G) has a tree decomposition of tree-width at most 3 whose
underlying rooted tree T ′ is of depth d := 2�log 5

4
(n)�. In order to use T ′ for the

design of an OBDD its construction from T (G) has to be studied more carefully.
We thus recall the latter from [2], giving special emphasis to some additional
information we encode in T ′.

Balancing T (G) is based on the so called parallel tree contraction of Miller and
Reif [12]. This contraction uses two basic operations RAKE and COMPRESS
in order to contract a tree to a single vertex. The intermediate steps during
the contraction process are used by Bodlaender to arrive at the desired tree
decomposition.

Starting from T (G) =: T0 = (V0, E0) the contraction process recursively con-
structs trees Ti = (Vi, Ei) for 1 ≤ i ≤ r such that |Vr| = 1 and r ≤ 2�log 5

4
(n)�

as follows. Each v ∈ Vi represents a subset ρ(v, i) ⊆ V of nodes of T (G) that
after i steps are contracted to the one node v. Starting with ρ(v, 0) := {v} the
tree Ti+1 = (Vi+1, Ei+1) and the new set ρ(v, i + 1) are obtained from Ti by
applying in parallel the following operations:

1. RAKE removes from each v ∈ Vi its children that are leaves in Ti. Then
ρ(v, i + 1) =

⋃
{ρ(w, i)|w = v, or w is a child of v in Ti that is a leaf}.

2. COMPRESS contracts pairs of two subsequent nodes in a chain of Ti.
A sequence of nodes v1, . . . , vk is a chain if vj+1 is the only child of vj for
1 ≤ j ≤ k − 1 and vk has exactly one child in Ti not being a leaf. Then for each
odd j the nodes vj and vj+1 in a maximal chain are compressed to a single node
wj in Ti+1. It represents all the nodes previously contracted to either vj or vj+1,
i.e. ρ(wj , i + 1) = ρ(vj , i) ∪ ρ(vj+1, i).

A tree decomposition of T (G) with underlying rooted tree T ′ is obtained by
Bodlaender from the above procedure as follows. Here, we modify a bit Bod-
laender’s construction for our purposes. T ′ has r + 1 levels numbered bottom
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up from 0 to r. On the bottom level (corresponding to T0 with the nodes V0 of
T (G)) tree T ′ has for each node of T (G) a box containing this node. Thus, the
nodes of T (G) occur in T ′ as leaves. By convention we order the leaves of T (G)
itself (which are the vertices of the given graph G) in such a way that they occur
as the first n leaves of T ′ from left to right. This will make it easy for the OBDD
to detect inputs not encoding a vertex of G.

Since later on we need to mark one node in each box occuring on the upper
levels of T ′ we mark each node of T (G) on the starting level 0 of T ′ in its corre-
sponding box. The further levels of T ′ are now recursively determined according
to the contracting operations used in Miller’s and Reif’s algorithm. Each level
i (counted bottom up) in T ′ contains as many boxes as the tree Ti has nodes.
Those boxes are connected in T ′ as described below:

- Suppose X1, X2, X3 are boxes on level i of T ′ that correspond to nodes in Ti

such that X2, X3 are children of X1 in Ti and at the same time X2, X3 are leaves
in Ti. Suppose furthermore that the nodes marked in these boxes are x1, x2, and
x3, respectively. Then on level i + 1 of T ′ we take a box X containing the nodes
x1, x2, x3 and mark x1 in this box. In T ′ we let X be a father (on level i + 1) of
X1, X2 and X3;
- similarly, if X1, X2, X3 are boxes on level i of T ′ as above, X2, X3 children of
X1 in Ti, but only X2 is a leaf in Ti, then on level i + 1 of T ′ we still have box
X3 with x3 marked as well as a new box X := {x1, x2} with x1 marked. X (on
level i+1) will be father of X1 and X2 (on level i) and X3 (on level i+1) father
of X3 (on level i);
- thirdly, if X1, X2 are boxes on level i of T ′ corresponding to two nodes in Ti

that are compressed in Ti+1, x1 marked in X1 and x2 marked in X2, and if X1
is father of X2, then on level i + 1 of T ′ we include a box X = {x1, x2} with x1
marked such that X in T ′ is father of X1 and X2;
- finally, if a node is not changed when going from Ti to Ti+1, then the same box
is used on both levels of T ′ and connected by an edge.

For designing the desired OBDD we encode each node i in the vertex set V
of G by a bitstring of length O(log n). One part of i’s encoding name will be the
path path(i) from T ′’s root to the leaf i. Since T ′ has depth d ≤ 2�log 5

4
(n)� this

quantity bounds as well the length of this first part of the encoding.
In order to make T ′ providing all the information about G’s vertices that

we need, we have to attach some additional information to each box occuring
along path(i) for each i ∈ V. It is here where the labels of the original cotree
representing the cograph G are important. The allover idea to decide whether
two vertices i, j of G are adjacent in G is to find the final common box along
path(i) and path(j) in T ′ and then include some additional information obtained
from T (G)’s labeling.

Towards this aim first note that each node (box) X in T ′ corresponds uniquely
to a subtree of T (G) that is contracted to this node. Therefore, the label of the
root of that subtree in T (G) is naturally related to the node of T ′ (this is not
yet the information we are looking for!). We denote this original label by ol(X)
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and use those labels in order to compute bottom up a further label lab(i, �) for
each box X� in T ′ that occurs along path(i). These new labels will be included
as part of the encoding of vertex i. The first operation that involves leaf i in
T ′ is a RAKE operation that contracts leaf i with an internal node v of T (G).
If X1 is the corresponding node on level 1 in T ′ (including the nodes i and
v with v marked) we take the original label ol(X1) as the value for lab(i, 1).
Now recursively we define each component of the string label(i) ∈ {0, 1}r+1 in
relation with the unique box along path(i) on the corresponding level of T ′. If
the label lab(i, �) on level � is determined and the corresponding box X�+1 on
level � + 1 was obtained from a RAKE operation, then we put lab(i, � + 1) =
ol(X�+1). This is justified because if path(i) and path(j) have X�+1 as the final
common component, then ol(Xl+1) is the label of their least common ancestor
in T (G). If label lab(i, �) on level � was determined and the corresponding box
X�+1 on level � + 1 was obtained from a COMPRESS operation, then we put
lab(i, �+1) = lab(i, �). In this situation, we add one additional bit of information
denoted by upper(i, � + 1). It gets value 1 if box X� was the upper box among
the two boxes compressed, otherwise we put upper(i, � + 1) = 0. Again, if for
two vertices i, j of G path(i) and path(j) split in node X�+1, then the labeling
of the upper node is the decisive one for deciding adjacency. If for example
upper(i, � + 1) = 1, upper(j, � + 1) = 0, then lab(i, � + 1) is the label of the least
common ancestor of i, j in T (G).

This finishes the description of the encoding of the vertices. The entire encod-
ing name(i) is the concatenation of path(i), lab(i, �) for all 1 ≤ � ≤ 2�log 5

4
(n)�

and of upper(i, �) for the corresponding levels �. For two inputted vertices i, j
the OBDD reads the encodings of both alternately top-down until the splitting
box Xk of path(i) and path(j) is found. Then it inspects lab(i, k) and lab(j, k). If
both are equal the label corresponds to the correct answer. If both are different
Xk must have arisen from a COMPRESS operation. Then the OBDD tests
whether upper(i, k) = 1. If yes it returns lab(i, k), else it returns lab(j, k).

The length of the used encodings is at most 6 · �log5
4

(n)� = O(log n). The size
of the OBDD is basically determined by the number of splitting points between
two paths path(i) and path(j), which in turn corresponds to the number n of
vertices of G. Then, some additional gates are necessary to decide the label and
to stop the computation for inputs that do not properly encode a vertex of the
original graph. Clearly, the size of the OBDD thus is of order O(log n). ��
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Abstract. Matching and packing problems have formed an important
class of NP-hard problems. There have been a number of recently devel-
oped techniques for parameterized algorithms for these problems, includ-
ing greedy localization, color-coding plus dynamic programming, and ran-
domized divide-and-conquer. In this paper, we provide further theoretical
study on the structures of these problems, and develop improved algorith-
mic methods that combine existing and new techniques to obtain improved
algorithms for matching and packing problems. For the 3-set packing
problem, we present a deterministic algorithm of time O∗(4.613k), which
significantly improves the previous best deterministic algorithm of time
O∗(12.83k). For the 3-d matching problem, we develop a new randomized
algorithm of running time O∗(2.323k) and a new deterministic algorithm
of running time O∗(2.773k). Our randomized algorithm improves the pre-
vious best randomized algorithm of running time O∗(2.523k), and our de-
terministic algorithm significantly improves the previous best determinis-
tic algorithm of running time O∗(12.83k). Our results also imply improved
algorithms for various triangle packing problems in graphs.

1 Introduction

Matching and packing problems have formed an important class of NP-hard
problems. In particular, the 3-d matching problem is one of the six “basic” NP-
complete problems in terms of Garey and Johnson [10], and the 3-set packing
problem is a natural extension of the 3-d matching problem. There has been
a remarkable line of research in the study of parameterized algorithms for 3-d
matching and 3-set packing problems.

Downey and Fellows [7] proved that the 3-d matching problem is fixed-
parameter tractable and gave an algorithm of time O∗((3k)!(3k)9k+1)1. Chen
et al. [3] improved the time complexity for 3-d matching to O∗((5.7k)k), and
Jia, Zhang, and Chen [11] improved the time complexity for 3-set packing to
O∗((5.7k)k).

� This work was supported in part by the National Science Foundation under the
Grants CCR-0311590 and CCF-0430683.

1 Following the recent convention, for a function f(k) of the parameter k, we will use
the notation O∗(f(k)) to denote the bound O(f(k)nO(1)).
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More progress has been made recently. For the 3-set packing problem,
Koutis [13] developed a randomized algorithm of time O∗(10.883k) and a deter-
ministic algorithm of time O∗(2O(k)). Koutis [13] did not give the exact constant
factor in the exponent of the time complexity O∗(2O(k)) for his deterministic
algorithm. He used the perfect hashing families proposed by Schmidt and Siegel
[16], in which the number of hashing functions to hash n elements into 3k colors
is larger than 2log log n+12k. It can be derived that his deterministic algorithm
has time complexity of at least O∗(320003k). These algorithms can be applied to
the 3-d matching problem without any changes. Fellows et al. [9] studied the
complexity of matching and packing problems. They first showed that the 3-d
matching problem has a kernel of size O(k3), and then presented an algorithm
of time O∗(2O(k)) for the problem, where the term O(k) was also not specified
in detail. It can be deduced that the running time of the algorithm given in [9]
for 3-d matching is at least O∗(12.673kT (k)), where T (k) is the running time
of a dynamic programming algorithm that, on a set of triples whose symbols are
colored with 13k colors, searches for a matching of k triples in which all sym-
bols are colored with distinct colors (T (k) is at least O∗(10.43k) using currently
known techniques). The paper also discussed how these techniques are applied
to solve 3-set packing and various graph packing problems.

There are at least two very recent works that give further improved algorithms
for 3-d matching and 3-set packing problems. Chen et al. [4] proposed a new
technique based on divide-and-conquer that leads to randomized algorithms of
time O∗(2.523k) for 3-d matching and 3-set packing problems. Moreover,
they proposed a color-coding scheme of O∗(6.1k) k-colorings which, when com-
bined with standard dynamic programming techniques, gives deterministic al-
gorithms of running time O∗(12.83k) for 3-d matching and 3-set packing
problems. We point out that using this new color-coding scheme, the time com-
plexity of the algorithms by Koutis [13] for 3-d matching and 3-set packing
can be improved to O∗(25.63k), and the time complexity of the algorithms by
Fellows et al. [9] can be improved to O∗(13.783k). In a work performed indepen-
dently of that in [4], Kneis et al. [12] developed a divide-and-conquer method
that leads to randomized algorithms for 3-d matching and 3-set packing
problems with time complexity similar to that in [4]. Moreover, a different de-
randomization method was proposed in [12] based on the work of [1], which
leads to deterministic algorithms of running time O∗(163k) for 3-d matching
and 3-set packing problems.

The known parameterized algorithms for 3-d matching and 3-set packing
have used either the technique of greedy localization [3,6,11], the technique of
color-coding [2] plus dynamic programming [4,9,13], or the divide-and-conquer
method [4,12]. In this paper, we show how a combination of these techniques and
new techniques will yield further improved algorithms for these problems. We
start with the 3-set packing problem. In difference from the approach used in
[3,11] that constructs a packing of k 3-sets directly from a maximal packing, we
concentrate on the construction of a packing of k + 1 3-sets based on a packing
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of k 3-sets. This slight modification enables us to derive a property for packing
that is much stronger than the one given in [11]. Moreover, instead of coloring
all elements in an instance of 3-set packing, we color only part of the elements
and use either ordering or pre-selected elements to reduce the complexity of
the coloring stage in the algorithms. Using these new techniques, we are able
to develop a parameterized algorithm of running time O∗(4.613k) for the 3-set
packing problem, significantly improving the previous best algorithm of running
time O∗(12.83k) for the problem [4]. For the 3-d matching problem, we further
show that the complexity of the dynamic programming stage in the algorithms,
which seems to have been largely neglected in the previous research, can also
be improved using a pre-ordering technique. Combining this new technique and
those developed for 3-set packing, we achieve further improved algorithms for
the 3-d matching problem. More specifically, our new randomized algorithm for
3-d matching runs in time O∗(2.323k), and our new deterministic algorithm
for 3-d matching runs in time O∗(2.773k), both significantly improving the
previous best algorithms for the problem.

We would like to point out that all previous parameterized algorithms for 3-d
matching and 3-set packing have the same time complexity for both prob-
lems, although it is obvious that 3-set packing is a nontrivial generalization
of 3-d matching. The results in the current paper seem to give faster algo-
rithms for 3-d matching than for 3-set packing. We also mention that the
difference in complexity between our deterministic algorithm (i.e., O∗(2.773k))
and our randomized algorithm (i.e., O∗(2.323k), which is also currently the best
upper bound) for 3-d matching has been significantly narrowed down, which
is remarkable considering the fact that in the previous research on the problem,
the difference between these two kinds of algorithms is in general very signifi-
cant. Table 1 gives a specific comparison of our new algorithms and the previous
algorithms for the 3-d matching problem.

Table 1. Comparison of algorithms for 3-d matching

References Randomized algorithm Deterministic algorithm

Downey and Fellows [7] O∗((3k)!(3k)9k+1)
Chen et al. [3] O∗((5.7k)k)
Koutis [13] O∗(10.883k) > O∗(320003k)
Fellows et al. [9]∗ > O∗(12.673kT (k))
Kneis et al. [12] O∗(2.523k) O∗(163k)
Chen et al. [4] O∗(2.523k) O∗(12.83k)
Our new result O∗(2.323k) O∗(2.773k)

∗T (k) is the running time of a dynamic programming process that, on a set
of triples whose symbols are colored with 13k colors, searches for a matching
of k triples in which all symbols are colored with distinct colors. Based on
currently known techniques, T (k) is at least O∗(10.43k).
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2 Preliminaries and Reformulations

Let X , Y , and Z be three pairwise disjoint symbol sets, and let U = X ×Y ×Z
be the product set of X , Y , and Z. Each element t = (x, y, z) in U , where x ∈ X ,
y ∈ Y , and z ∈ Z, is called a triple. For a triple t = (x, y, z) in U , denote by Val(t)
the set {x, y, z}, and let Val1(t) = {x}, Val2(t) = {y}, Val3(t) = {z}. We say that
a triple t1 conflicts with another triple t2 if t1 	= t2 and Val(t1)∩Val(t2) 	= ∅. Let S
be a set of triples in U . Denote Val(S) =

⋃
t∈S Val(t), and Vali(S) =

⋃
t∈S Vali(t)

for i = 1, 2, 3. A matching in S is a subset M of triples in S such that no two
triples in M conflict with each other. A matching M in S is a k-matching if M
contains exactly k triples.

Packing problems are a generalization of matching problems. We say that a
set ρ1 conflicts with another set ρ2 if ρ1 	= ρ2 and ρ1 ∩ ρ2 	= ∅. Let S be a
collection of sets. Denote Val(S) = ∪ρ∈Sρ. A packing in S is a sub-collection P
of S such that no two sets in P conflict with each other. A packing P in S is a
k-packing if P contains exactly k sets.

The main problems we study in this paper are formally defined as follows.

(parameterized) 3-d matching:
Given a pair (S, k), where S is a set of n triples, and k is an integer, ei-
ther construct a k-matching in S, or report that no such matching exists.

(parameterized) 3-set packing:
Given a pair (S, k), where S is a collection of n sets, each containing at
most three elements, and k is an integer, either construct a k-packing in
S, or report that no such packing exists.

A set is a 3-set if it contains exactly three elements. For an instance (S, k) of
3-set packing, we can assume, without loss of generality, that all sets in S are
3-sets (otherwise, we can add new elements, i.e., elements not in S, to convert
each set with fewer than three elements to a 3-set). Instead of working on the
above problems, we will concentrate on the following related problems.

3-d matching augmentation:
Given a pair (S, Mk), where S is a set of n triples, and Mk is a k-matching
in S, either construct a (k + 1)-matching Mk+1 in S, or report that no
such matching exists.

3-set packing augmentation:
Given a pair (S, Pk), where S is a collection of n 3-sets, and Pk is a
k-packing in S, either construct a (k + 1)-packing Pk+1 in S, or report
that no such packing exists.

Lemma 1. For any constant c > 1, the 3-d matching augmentation problem
can be solved in time O∗(ck) if and only if the 3-d matching problem can be
solved in time O∗(ck). Similarly, the 3-set packing augmentation problem
can be solved in time O∗(ck) if and only if the 3-set packing problem can be
solved in time O∗(ck).
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According to Lemma 1, we only need to concentrate on the 3-d matching
augmentation and 3-set packing augmentation problems.

3 Improved Packing Algorithms

The method of greedy localization has been heavily used in early algorithms for
matching and packing problems [3,11]. The method takes advantage of the fact
that information for a larger matching/packing can be obtained from a given
smaller matching/packing, which narrows down the size of the search space dur-
ing the construction of the larger matching/packing. We show that this property
can be significantly enhanced and more effectively used to develop algorithms
for the 3-set packing augmentation problem.

Lemma 2. Let (S, Pk) be an instance of 3-set packing augmentation, where
Pk is a k-packing in S. If S also has (k+1)-packings, then there exists a (k+1)-
packing Pk+1 in S such that every set in Pk contains at least two elements in
Val(Pk+1).

Proof. We prove the lemma by contradiction. Suppose that the lemma does not
hold. Then there is a k-packing Pk such that for every (k + 1)-packing P in S,
there is a set in Pk that contains at most one element in Val(P ). Let Pk+1 be
a (k + 1)-packing in S such that the number of common sets in Pk and Pk+1 is
maximized over all (k + 1)-packings in S. By our assumption, there is a set ρ in
Pk that contains at most one element in Val(Pk+1).

Case 1. Exactly one element a in the set ρ is in Val(Pk+1). Then let ρ′ be
the set in Pk+1 that contains the element a. Since no other element in ρ is in
Val(Pk+1), if we replace ρ′ in Pk+1 by ρ, we get a new (k + 1)-packing that has
one more common set (i.e., ρ) with the k-packing Pk (note that ρ′ cannot be in
Pk because ρ′ and ρ share a common element a while ρ contains another two
elements not in Val(Pk+1)). This contradicts our assumption that the (k + 1)-
packing Pk+1 maximizes the number of common sets with Pk.

Case 2. No element in ρ is in Val(Pk+1). Since Pk contains k sets while Pk+1
contains k + 1 sets, there must be a set ρ′′ in Pk+1 that is not in Pk. Since ρ
contains no element in Val(Pk+1), replacing ρ′′ in Pk+1 by ρ gives a new (k +1)-
packing that has one more common set (i.e., ρ) with Pk, again contradicting the
assumption that the (k + 1)-packing Pk+1 maximizes the number of common
sets with Pk.

This contradiction shows that the set ρ in Pk that contains at most one
element in Val(Pk+1) cannot exist. ��

According to Lemma 2, to construct a (k + 1)-packing from a given instance
(S, Pk) of 3-set packing augmentation, we can aim at the (k + 1)-packing
Pk+1 with the property described in the lemma. The advantage of this (k + 1)-
packing Pk+1 is that at least 2k elements in Pk+1 are already present in the
k-packing Pk, and we only need to identify at most k+3 other elements in Pk+1.
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We use the technique of color-coding, first introduced by Alon, Yuster, and Zwick
[2], to search for these elements that are in Pk+1 but not in Pk.

Let B be a set of elements. A coloring of B is a function mapping B to
the natural numbers {1, 2, . . .}, and an h-coloring of B is a function mapping
B to {1, 2, . . . , h}. A subset B′ of B is colored properly by a coloring f if no
two elements in B′ are colored with the same color under f . A collection C of
h-colorings of a set B is an h-color coding scheme if for every subset B′ of h
elements in B, there is an h-coloring in C that colors B′ properly. The following
proposition has been proved in [4].

Proposition 1. [4] For any finite set B and any integer h, there is an h-color
coding scheme C of O∗(6.1h) h-colorings of the set B. Moreover, the h-colorings
in C can be constructed and enumerated in time O∗(6.1h).

Let S be a collection of 3-sets and let f be a coloring of the set Val(S). We say
that a packing P in S is colored properly if the set Val(P ) is colored properly
under the coloring f . Let (S, Pk) be an instance of 3-set packing augmenta-
tion. Since the set of elements that are in Val(Pk+1) but not in Val(Pk) contains
at most k + 3 elements, by introducing 3k new colors to properly color the 3k
elements in Pk, Pk+1 can be colored properly with at most 4k + 3 colors.

Lemma 3. Let (S, Pk) be an instance of 3-set packing augmentation, and
let Pk+1 be a (k + 1)-packing in S such that each 3-set in Pk contains at least
two elements in Val(Pk+1). Then there is a collection C0 of O∗(6.1k) (4k + 3)-
colorings of the set Val(S) in which at least one properly colors Pk+1. Moreover,
the collection C0 can be constructed in time O∗(6.1k).

Now we turn to the problem of constructing a properly colored (k + 1)-packing
Pk+1. Alon, Yuster, and Zwick [2] in their seminal work on color-coding sug-
gested a general principle in which a (3k + 3)-coloring that properly colors the
3k + 3 elements is first constructed in Val(Pk+1), then a dynamic programming
process is applied to find the properly colored (k + 1)-packing Pk+1. Koutis [13]
proposed an algebraic formulation to find the properly colored (k + 1)-packing
Pk+1. Fellows et al. [9] considered a more general approach that first uses g col-
ors to properly color the (k + 1)-packing Pk+1, where g ≥ 3k + 3, then perform
a dynamic programming algorithm. For completeness, we present such a gener-
alized dynamic programming algorithm in detail, as given in Fig. 1, verify its
correctness, and analyze its precise complexity.

Lemma 4. The algorithm 3SetPack(S, k, f, g) runs in time O∗(
∑k

j=0

(
g
3j

)
),

and constructs a properly colored k-packing in S if such k-packings exist.

Proof. From steps 4.1-4.2 of the algorithm, it can be seen that every collection
P of 3-sets added to the super-collection Q in step 4.4 is a properly colored
packing. Therefore, if the algorithm returns a packing in step 5, the packing
must be a properly colored k-packing.

For each i, let Si = {ρ1, . . . , ρi}. We prove by induction on i that for all j ≤ k,
if Si has a properly colored j-packing Pj , then after the i-th execution of the
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Algorithm 3SetPack(S, k, f, g)
input: A collection S of 3-sets, an integer k, a g-coloring f of Val(S)
output: A properly colored k-packing if such a packing exists

1. remove all 3-sets in S in which any two elements have the same color;
2. let the remaining 3-sets in S be ρ1, ρ2, . . ., ρn;
3. Q = {∅};
4. for i = 1 to n do
4.1. for each packing P in Q such that no element in P is colored with the same

color as an element in ρi do
4.2. P ′ = P ∪ {ρi};
4.3. if P ′ is a j-packing with j ≤ k and Q contains no packing that uses exactly

the same colors as that used by P ′

4.4. then add P ′ to Q;
5. return a k-packing in Q if such a packing exists.

Fig. 1. Dynamic programming for 3-set packing

for-loop in step 4 of the algorithm, the super-collection Q contains a properly
colored j-packing P ′

j such that Pj and P ′
j use exactly the same 3j colors.

The initial case i = 0 is trivial since Q = {∅}. Consider i ≥ 1. Suppose that
the collection Si has a properly colored j-packing Pj = {ρi1 , ρi2 , . . . , ρij}, where
1 ≤ i1 < i2 < · · · < ij ≤ i. Then the collection Sij−1 contains the properly
colored (j−1)-packing Pj−1 = {ρi1 , ρi2 , . . . , ρij−1}. By the inductive hypothesis,
after the (ij − 1)-st execution of the for-loop in step 4, the super-collection Q
contains a properly colored (j − 1)-packing P ′

j−1 such that the (j − 1)-packings
Pj−1 and P ′

j−1 use exactly the same 3(j−1) colors. Since Pj = {ρi1 , ρi2 , . . . , ρij}
is a properly colored j-packing, and Pj−1 = {ρi1 , ρi2 , . . . , ρij−1} and P ′

j−1 use
exactly the same 3(j − 1) colors, no element in Val(P ′

j−1) is colored with the
same color as an element in the set ρij . Therefore, in the ij-th execution of the
for-loop in step 4, a properly colored j-packing P ′

j−1∪{ρij} will be added to the
super-collection Q if no properly colored j-packing that uses exactly the same
3j colors exists in Q yet. Note that the j-packing P ′

j−1 ∪{ρij} and the j-packing
Pj use exactly the same 3j colors. Therefore, after the ij-th execution of the
for-loop in step 4, a j-packing that uses exactly the same 3j colors as Pj will
exist in the super-collection Q. Finally, since packings in Q are never removed
from Q and ij ≤ i, we conclude that after the i-th execution of the for-loop in
step 4, a j-packing that uses exactly the same 3j colors as Pj will exist in the
super-collection Q. This completes the inductive proof.

Now if we let i = n, for any j ≤ k, if the original collection S contains a
properly colored j-packing Pj , then the super-collection Q contains a j-packing
that uses exactly the same 3j colors as Pj . In particular, if the collection S
contains properly colored k-packings, then the algorithm 3SetPack(S, k, f, g)
must return a properly colored k-packing.

Finally, we analyze the complexity of the algorithm. For each 0 ≤ j ≤ k
and for each set of 3j colors, the super-collection Q keeps at most one prop-
erly colored j-packing that uses exactly these 3j colors. Since there are

(
g
3j

)
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different subsets of 3j colors over a total of g colors, the total number of pack-
ings recorded in Q is bounded by

∑k
j=0

(
g
3j

)
. For each i, 1 ≤ i ≤ k, we examine

each packing P in Q in step 4.1 and check if we can construct a larger packing
by adding the set ρi to the packing P . This can be done for each packing P
in time O(k). In consequence, the algorithm 3SetPack(S, k, f, g) runs in time
O(nk

∑k
j=0

(
g
3j

)
) = O∗(

∑k
j=0

(
g
3j

)
). ��

Combining Lemmas 2, 3, and 4, the 3-set packing augmentation problem
can be solved in time O∗(6.1k24k) = O∗(4.613k).

Theorem 1. The 3-set packing augmentation problem can be solved in
time O∗(4.613k).

Corollary 1. The 3-set packing problem can be solved in time O∗(4.613k).

4 Matching Algorithms Further Improved

All the previous results are applicable to the 3-d matching problem. In fact, if
we regard each triple as a 3-set, then each instance SM of 3-d matching is also
an instance SP of 3-set packing, and a triple set is a matching in SM if and
only if it is a packing in SP .

As shown in the previous section, a dynamic programming algorithm is used
as a second stage in parameterized algorithms for 3-set packing/3-d match-
ing. In this section, we develop a new technique for the dynamic programming
stage for the 3-d matching problem so that fewer colors will be needed. This
technique has two advantages. First, the use of fewer colors will significantly
reduce the time complexity of the coloring stage. Second, since fewer colors are
used, the number of different color sets is reduced, which will reduce the time
complexity of the dynamic programming stage remarkably.

Let the universal triple set be U = X × Y × Z, where X , Y , and Z are three
pairwise disjoint symbol sets. The symbols in the sets X , Y , and Z will be called
the symbols in column-1, column-2, and column-3, respectively.

Definition 1. Let p and q be any two indices in the index set {1, 2, 3}, and let
S be a set of triples in U . A matching M in the set S is (p, q)-properly colored
by a coloring f of Valp(M) ∪ Valq(M) if no two symbols in Valp(M) ∪ Valq(M)
are colored with the same color under f .

Theorem 2. Let p and q be any two indices in the index set {1, 2, 3}. There is
an algorithm of time O∗(

∑k
j=0

(
g
2j

)
) that, on an integer k and a set S of triples in

which the symbols in Val p(S)∪Val q(S) are colored by a g-coloring f , constructs
a (p, q)-properly colored k-matching in S when such matchings exist in S.

Proof. Consider the algorithm in Fig. 2. By steps 6.3-6.6, for every set C in the
collection Qold, all symbols in C are from Valp(S) ∪ Valq(S), and no two sym-
bols in C are of the same color. The algorithm 3DMatch(S, k, f, g; p, q) either
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Algorithm 3DMatch(S, k, f, g; p, q)
input: A set S of triples, an integer k, a g-coloring f of the symbols in Valp(S)∪Valq(S)
output: A (p, q)-properly colored k-matching in S if such a matching exists

1. remove any triples in S in which any two symbols have the same color under f ;
2. let the set of remaining triples be S′;
3. r = {1, 2, 3} − {p, q};
4. let the symbols in Valr(S′) be x1, x2, . . ., xm;
5. Qold = {∅}; Qnew = {∅};
6. for i = 1 to m do
6.1. for each set C of symbol pairs in Qold do
6.2. for each t ∈ S′ with Valr(t) = xi do
6.3. if no symbol in C is of the same color as a symbol in Valp(t) ∪ Valq(t)
6.4. then C′ = C ∪ {(Valp(t),Valq(t))};
6.5. if C′ contains no more than k symbol pairs and Qnew contains no set

of symbol pairs that uses exactly the same colors as that used by C′

6.6. then add C′ to Qnew ;
6.7. Qold = Qnew;
7. return a set C of k symbol pairs in Qold if such a set exists.

Fig. 2. Dynamic programming for 3-d matching

outputs a set of k symbol pairs in the collection Qold or reports that no (p, q)-
properly colored k-matchings exist in S. We say that a set C = {w1, . . . , wi}
of i symbol pairs is extendable to an i-matching in S if there is an i-matching
M = {t1, . . . , ti} in S such that for all j, the pair (Valp(tj), Valq(tj)) is identical
to the symbol pair wj . For each i, let S′

i be the set of triples in S′ whose symbols
in column-r are among {x1, x2, . . . , xi}. For a matching M , we will denote by
cl(M) = {f(y) | y ∈ Valp(M) ∪ Valq(M)} the set of colors used by the symbols
in Valp(M) ∪ Valq(M).

We prove the following claim by induction on i:

Claim. For each i, 0 ≤ i ≤ m, and for all h ≤ k, there is a (p, q)-properly
colored h-matching Mh in S′

i if and only if after the i-th execution of the
loop 6.1-6.7 of algorithm 3DMatch(S, k, f, g; p, q), the collection Qold

contains a set Ch of h symbol pairs such that the set of colors used for
the symbols in Ch is exactly cl(Mh). Moreover, each set Ch of h symbol
pairs in the collection Qold after the i-th execution of the loop 6.1-6.7 is
extendable to an h-matching in S′

i.

The case i = 0 is obvious because we initially set Qold to {∅}. Consider i ≥ 1.
First note that the claim is always true for h = 0 because the collection Qold

always contains the empty set ∅ while the set S′
i always contains a 0-matching

(which by the definition is (p, q)-properly colored).
Suppose that after the i-th execution of the loop 6.1-6.7, the collection Qold

contains a set Ch of h symbol pairs, where h ≥ 1. Suppose that the set Ch was
created during the j-th execution of the loop 6.1-6.7, where j ≤ i, by adding
a symbol pair (Valp(t), Valq(t)) to a set Ch−1 of h − 1 symbol pairs, where t
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is a triple with Valr(t) = xj and the set Ch−1 is contained in Qold after the
(j − 1)-st execution of the loop 6.1-6.7. By the inductive hypothesis, the set
Ch−1 is extendable to an (h − 1)-matching Mh−1 in S′

j−1, which is obviously
(p, q)-properly colored. Since no symbol in Ch−1 uses the same color as a symbol
in Valp(t) ∪ Valq(t), and the matching Mh−1 does not contain the symbol xj ,
the set Mh = Mh−1 ∪ {t} makes a (p, q)-properly colored h-matching in S′

j .
Since j ≤ i and S′

j ⊆ S′
i, we conclude that the set S′

i contains a (p, q)-properly
colored h-matching Mh such that the symbols in the set Ch use exactly the color
set cl(Mh). Moreover, it is obvious that the symbol set Ch is extendable to the
h-matching Mh.

To prove the other direction, suppose that the set S′
i contains a (p, q)-properly

colored h-matching Mh.

Case 1. There is a (p, q)-properly colored h-matching M ′
h in S′

j for some j < i
such that cl(M ′

h) = cl(Mh). By the inductive hypothesis, after the j-th execution
of the loop 6.1-6.7, the collection Qold contains a set Ch of h symbol pairs such
that (1) the set of colors used for the symbols of Ch is exactly cl(M ′

h); and (2) Ch

is extendable to an h-matching in S′
j . Since j < i, S′

j ⊆ S′
i, and we never remove

symbol pairs from Qold, we conclude that in this case, after the i-th execution
of the loop 6.1-6.7, the set Ch is still contained in the collection Qold such that
(1) the set of colors used for the symbols of Ch is exactly cl(M ′

h) = cl(Mh); and
(2) Ch is extendable to an h-matching in S′

j ⊆ S′
i.

Case 2. There is no (p, q)-properly colored h-matching M ′
h in S′

j for any
j < i such that cl(M ′

h) = cl(Mh). Then by the inductive hypothesis, after the
j-th execution of the loop 6.1-6.7 for any j < i, the collection Qold contains
no set C of symbol pairs such that the symbols in C use exactly the color set
cl(Mh). Let the (p, q)-properly colored h-matching Mh be Mh = {t1, · · · , th},
where for each j, Valr(tj) = xdj , with d1 < · · · < dh−1 < dh. In this case,
we must have dh = i and Valr(th) = xi. Let y = Valp(th) and z = Valq(th).
Since dh−1 < dh = i, the triple set Mh−1 = Mh − {th} is a (p, q)-properly
colored (h − 1)-matching in S′

i−1. By the inductive hypothesis, after the (i− 1)-
st execution of the loop 6.1-6.7 in the algorithm, the collection Qold contains a
set Ch−1 of h−1 symbol pairs such that the set of colors used for the symbols in
Ch−1 is exactly cl(Mh−1). Now in the i-th execution of the loop 6.1-6.7 when the
set Ch−1 and the triple th are examined in step 6.3, a set C of symbol pairs using
the color set cl(Mh−1) ∪ {f(y), f(z)} = cl(Mh) will be created. Therefore, after
the i-th execution of the loop 6.1-6.7, a set Ch of h symbol pairs using the color
set cl(Mh) must be contained in the collection Qold. Suppose that the set Ch was
created during the i-th execution by adding a symbol pair (Valp(t′h), Valq(t′h))
to a set C′

h−1 of h − 1 symbol pairs, where t′h satisfies Valr(t′h) = xi and C′
h−1

is contained in the collection Qold after the (i − 1)-st execution of the loop 6.1-
6.7 (note that t′h and C′

h−1 are not necessarily th and Ch−1, respectively). By
the inductive hypothesis, the set C′

h−1 is extendable to a (p, q)-properly colored
(h− 1)-matching M ′

h−1 in S′
i−1. In consequence, the set Ch is extendable to the

(p, q)-properly colored h-matching M ′
h−1 ∪ {t′h} in S′

i. This completes the proof
of the claim.
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By the claim and let i = m, the algorithm 3DMatch(S, k, f, g; p, q) returns a
set Ck of k symbol pairs if and only if the triple set S contains a (p, q)-properly
colored k-matching, and the set Ck is extendable to a k-matching in S. To
construct such a k-matching from Ck, we can use the graph matching technique
suggested in [3]. Formally, from the set Ck of symbol pairs, we construct a
bipartite graph Bk = (VL ∪ VR, E), where VL contains k vertices, corresponding
to the k symbol pairs in Ck, and VR is the set of all symbols in Valr(S). There
is an edge in Bk from a vertex (y, z) in VL to a vertex x in VR if and only if the
symbols y, z, and x form a triple in S. It is easy to see that a (p, q)-properly
colored k-matching Mk in S can be obtained by constructing a graph matching
of k edges in the bipartite graph Bk, which takes polynomial time [5].

In terms of the time complexity of the above algorithm, note that since for
each set of 2j colors, we record at most one set of symbol pairs that uses exactly
these 2j colors, the collection Qold contains at most

∑k
j=0

(
g
2j

)
sets of symbol

pairs. For each set C of symbol pairs in Qold, steps 6.2-6.6 of the algorithm take
time polynomial in n and k. Therefore, each execution of the loop 6.1-6.7 of the
algorithm runs in time O∗(

∑k
j=0

(
g
2j

)
). In consequence, the running time of the

algorithm 3DMatch(S, k, f, g; p, q) is bounded by O∗(
∑k

j=0

(
g
2j

)
). ��

To solve the 3-d matching augmentation problem (S, Mk), we only color two
columns of a (k + 1)-matching properly if it exists. In this case, by Lemma 2,
there is a (k + 1)-matching Mk+1 such that Mk+1 has two columns that contain
at least 4k/3 symbols in Mk. Thus at most 2k/3 + 2 symbols in these two
columns in Mk+1 are missing in Mk. By introducing 2k new colors for each
symbol in these two columns in Mk and by Proposition 1, in time O∗(6.12k/3),
the two columns of Mk+1 can be colored properly into 8k/3 + 2 colors. By
Theorem 2, the 3-d matching augmentation problem (S, Mk) can be solved
in time O∗(6.12k/328k/3) = O∗(2.773k).

Theorem 3. The 3-d matching problem can be solved in time O∗(2.773k).

If we use a randomized color-coding scheme that properly colors a subset of size k
into k colors with high probability in time O∗(ek) [2], then the time complexity to
solve 3-d matching problem can be improved to O∗(e2k/328k/3) = O∗(2.323k).

Theorem 4. The 3-d matching problem can be solved by a randomized algo-
rithm of time O∗(2.323k).

5 Final Remarks

Recently there has been much interest in parameterized algorithms for graph
packing problems, i.e., algorithms for constructing k disjoint isomorphic sub-
graphs in a given graph [8,12,14,15]. In particular, Fellows et al. [8] presented a
parameterized algorithm of time O∗(22k log k+1.869k) for packing k vertex-disjoint
triangles in a given graph, and Mathieson, Prieto, and Shaw [14] proposed a
parameterized algorithm of time O∗(24.5k log k+4.5k) for packing k edge-disjoint



Greedy Localization and Color-Coding 95

triangles in a given graph. Since these problems can be trivially reduced to the
3-set packing problem, by Corollary 1, they can be solved in time O∗(4.613k).
This again gives significant improvements over the previous algorithms.
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Abstract. The notion of fixed-parameter approximation is introduced
to investigate the approximability of optimization problems within the
framework of fixed-parameter computation. This work partially aims at
enhancing the world of fixed-parameter computation in parallel with the
conventional theory of computation that includes both exact and ap-
proximate computations. In particular, it is proved that fixed-parameter
approximability is closely related to the approximation of small-cost so-
lutions in polynomial time. It is also demonstrated that many fixed-
parameter intractable problems are not fixed-parameter approximable.
On the other hand, fixed-parameter approximation appears to be a vi-
able approach to solving some inapproximable yet important optimiza-
tion problems. For instance, all problems in the class MAX SNP admit
fixed-parameter approximation schemes in time O(2O((1−ε/O(1))k)p(n))
for any small ε > 0.

1 Introduction

The theory of fixed-parameter complexity was initiated by Downey and Fellows
[14,16] to study the exact computation of important computational problems
whose input contains a significant numerical parameter. The complexity of such
fixed-parameter problems is measured in the value of the parameter, as well
as the size of the input. For example, the problem of determining if a given
graph G has a vertex cover of size k can be accomplished in time O(1.2852k +
n) [12]. Thus the problem is called fixed-parameter tractable since it can be
solved feasibly for small or fixed parameters. In contrast, other problems, such
as to determine if a given graph has a dominating set of size k, seem not to
behave well enough from the fixed-parameter tractability perspective. All known
algorithms for such problems run in time Ω(nk+1), formidable even for small
values of k. Studies [16] have shown that the fixed-parameter tractability of many
computational problems hinges upon the answers to some long-standing open
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questions in conventional complexity theory [14,15]. In particular, problems, such
as determining the existence of a dominating set of size k, are not fixed-parameter
tractable unless SAT ∈ DTIME(2o(n)). Given the phenomenon unfavorable to
such problems, it is natural to ask whether fixed-parameter feasible algorithms
may exist that can give “approximate” answers to decision questions involving
these computational problems [19].

Another issue motivated this research is the “non-parity” phenomenon of
fixed-parameter algorithms when they are used to find the optimal solution of
optimization problems. For instance, consider the algorithm of running time
O(1.2852k + n) that can determine if a given graph has a vertex cover of (the
given) size k. It can be used to determine the size k0 of the minimum vertex cover
and find the cover when k0 ≤ k. However, it does not guarantee, with the same
running time in k, to determine the size k0 of the minimum cover for k0 > k.
Therefore, one fundamental issue is how much time is needed in estimating
value of k0 with respect to the value of k. Such issue has been addressed for a
few individual fixed-parameter problems in the past. A typical example is the
algorithm developed for the problem of graph tree decomposition. In a fixed-
parameter feasible time, it can either determine if a given graph has a tree width
larger than parameter value k or produces a tree decomposition of width ≤ 3k.
The yielded tree decomposition is an approximate solution with a “guaranteed
ratio” of 3 with respect to the given parameter k but not to the optimum. (Note
that later there is an improved algorithm [5], which, for a given graph G and
a parameter value k, could either yield a tree decomposition of k if such a tree
decomposition of G exists, or answer “no” otherwise.) Like the conventional
approximation, this new type of approximation produces a range of values as an
estimation to the optimum.

We develop this concept into the notion of fixed-parameter (FP-)approximation
to study the existence of fixed-parameter feasible algorithms that may give ap-
proximate answers for fixed-parameter problems. Intuitively, an FP-
approximation algorithm for a minimization problem either give a negative answer
to the question of “OPT (I) ≤ k?” or produces a solution with value bounded by
g(k) for some fixed function g. In addition, the algorithm runs in time O(f(k)nc)
for some fixed function f and a constant c > 0. In section 2 we give the formal
definition for FP-approximation. The FP-approximation is well defined because
we can show that either fixed-parameter tractability or polynomial-time approx-
imation would imply FP-approximation. We believe the new notion enhances the
parameterization framework to be in parallel with the conventional theory of com-
puting that includes both exact and approximation computation.

We show that fixed-parameter approximability is equivalent to approximating
solutions of a small (but unbounded) cost in polynomial time. This complements
the known results that fixed-parameter tractability is equivalent to determining
solutions of a small cost in polynomial time [8,9]. In general, we prove that an op-
timization problem is not fixed-parameter approximable to ck unless the problem
of finding solutions of cost bounded by s(n) is approximable to the ratio c in poly-
nomial time, for some unbounded and nondecreasing function s(n). According
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to the results in [18,11], for many optimization problems, approximating solu-
tions of a small cost cannot be done in polynomial time. Therefore, our research
essentially shows the fixed-parameter inapproximability for many optimization
problems. In section 3, we show that a number of fixed-parameter problems,
including finding the minimum dominating set, are not FP-approximable.

The FP-approximation is also considered an alternative to the polynomial-
time approximation. In general, we expect the approximability of certain opti-
mization problems to be improved under the fixed-parameter setting. Indeed,
in section 4 we show that all optimization problems in the optimization class
MAX SNP admit FP-approximation schemes, i.e., they all have algorithms that
run in time O(2O((1−ε/O(1))k)p(n)) to produce a solution of value bounded by
(1+ε)k for any ε > 0 for a minimization problem (or, a solution of value bounded
by (1 − ε)k for any ε > 0 for a maximization problem). This complements the
known results that MAX SNP-complete problems do not admit polynomial time
approximation schemes unless P=NP.

In section 5, we discuss some further results in the approximability improve-
ments with the FP-approximation for some other problems. In fact, Bodlaender
and Fellows [6] are able to show the fixed-parameter approximability for the
problem of bandwidth, which is W[1]-hard under the uniform reduction due
to Bodlaender [4]. Moreover, we suspect that for many polynomial-time ap-
proximable optimization problems, the approximation ratios can be improved
when fixed-parameter feasibility is the only concern regarding the running time
of the algorithm. In particular, we show that problem bin packing, which is
MAX SNP-hard and fixed-parameter intractable unless P=NP [7], admits an
(asymptotic) FP-approximation scheme. Our result improves the one devised by
Karmarkar and Karp [23] in the sense that the ε we obtain in the ratio 1 + ε
decreases much faster with respect to OPT (I). We point out that the techniques
used in the proof may be applied to improving the approximation performance
of other fixed-parameter problems.

2 Definitions

We first briefly introduce some basic concepts in the theory of fixed-parameter
complexity. We refer the reader to Downey and Fellows [16] for further details. A
fixed-parameter problem is defined over Σ∗×N , where Σ is a finite alphabet and
N is the set of natural numbers. Each instance of the fixed-parameter problem
Π is a pair (I, k), where k is called the parameter. A fixed-parameter problem
is fixed-parameter tractable if there is an algorithm to decide the membership
of the problem in time O(f(k)nc), where f(k) is a recursive function and c is
a constant. Given an optimization problem Π , the fixed-parameter (decision)
version of the problem is defined by the question whether a given input has the
optimal cost OPT (I)Rk, where R is “≥” or “≤” depending on whether Π is
a maximization or minimization problem [7]. In this paper whenever there is
no confusion, we do not distinguish between an optimization problem and its
fixed-parameter decision version.
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We define the fixed-parameter approximation in the following. This notion
was originally conceived by Downey and Fellows [19].

Definition 1. Let Π be the fixed-parameter version of a minimization problem.
Let f be a (recursive) function, p be a polynomial independent of f , and k be
a constant. Then Π is fixed-parameter approximable to g(k) in time O(f(k)nc)
for some fixed function g if there is an algorithm such that given any instance
I with parameter k, and question OPT (I) ≤ k, the algorithm which runs in
O(f(k)nc) steps, where n = |I|, (1) either outputs “no” (asserting the optimal
cost is larger than k), or (2) produces a solution of cost at most g(k).

Fixed-parameter approximation for a maximization problem can be defined sim-
ilarly.

The problem Π is called FP-approximable to g(k) or simply FP-approximable
when g is linear in k. The algorithm is called an FP approximation algorithm
for the problem. We define FPA to be the class of fixed-parameter optimization
problems that can be FP-approximation to g(k) for some recursive function g.

Definition 2. A minimization (or, maximization) problem Π is said to have
a fixed-parameter approximation scheme, if the minimization problem Π can
be FP-approximable to (1 + ε)k for any given small constant ε > 0 (or, if the
maximization problem Π can be FP-approximable to (1−ε)k for any given small
constant ε > 0).

In the above definition, the time function of the approximation algorithm may
depend on the given value of ε. The fixed-parameter approximation scheme is
efficient if the polynomial p in the time function O(f(k)p(n)) does not depend
on ε. In addition, when Π is fixed-parameter approximable under the situation
for sufficiently large k, it is called asymptotic fixed-parameter approximable.

We show that the fixed-parameter approximability is well-defined under the
parameterization framework. Essentially, we prove that fixed-parameter tractabil-
ity implies fixed-parameter approximability. As shown in the following, this rela-
tionship holds for many optimization problems that are solution-constructible, a
property first introduced by Cai and Chen [7]. (Note that in [7] the term fixed-
parameter tractability with witness is used instead of solution constructible. Inter-
ested readers are referred to [25] for another related notion of self-reducibility.)

Definition 3. Assume the existence of a fixed algorithm with running time
T (|I|, k) that can determine OPT (I) ≤ k (or, OPT (I) ≥ k) for each input
(I, k). A minimization (or, maximization) problem is solution-constructible if for
any input (I, k), a solution of cost at most (or, at least) k (if it does exist) can
be constructed in time polynomial in both |I| and T (|I|, k).

Almost all NP-hard optimization problems studied in the literature [2,20,22] are
solution-constructible. In fact, solution-constructibility is one of the necessities
that the decision problem formulation characterizes the difficulty of the original
optimization problem.
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Theorem 1. Let Π be a fixed-parameter version of some solution-constructible
optimization problem. If Π is fixed-parameter tractable, then Π is fixed-parameter
approximable to k.

Proof. We briefly verify this for minimization problems. The proof for maximiza-
tion problems is similar. We describe a fixed-parameter feasible approximation
algorithm for the problem Π as follows.

Let B be an algorithm that solves the decision problem Π . For each input of
size n and parameter k, it runs in time O(h(k)nc) for some (recursive) function
h(k) and some constant c > 0. Given an input (I, k), B is called to determine
OPT (I) ≤ k. If k < OPT (I), output “no” and halt. Otherwise, because Π is
solution-constructible, there is an algorithm that constructs a solution of cost
at most k. The time used for the construction is O(T dp(n)) for some constant
d and polynomial p, where T is the running time of B. So the total running
time is bounded by O(h(k)dq(n)) for some polynomial q. Therefore, Π is fixed-
parameter approximable to k in time O(h(k)dq(n)). ��

We establish a tight relationship between polynomial-time approximation and
fixed-parameter approximability. We show the simple fact that if an optimization
problem admits a polynomial-time approximation algorithm then the problem is
fixed-parameter approximable. We consider minimization problems only. Similar
results hold for maximization problems as well.

Theorem 2. Let Π be a minimization problem that is approximable in polyno-
mial time to the ratio r ≥ 1 for some constant r. Then Π is fixed-parameter
approximable to rk.

Proof. Let A be a polynomial-time approximation algorithm for Π achieving
the ratio r. Let A(I) be the cost of a solution S obtained by the algorithm A
such that A(I)/OPT (I) ≤ r. Given an input I and a value for the parameter k,
one can approximately answer the question “is OPT (I) ≤ k?” by utilizing the
algorithm A in the following way. First, answer “no” if k < A(I)/r. According to
the definition of fixed-parameter approximability, this is the only correct answer
since k < A(I)/r ≤ OPT (I). Second, if k > A(I), output the solution S. Finally,
if A(I)/r ≤ k ≤ A(I), then output the solution S. Note that in the second and
third cases, the algorithm returns a solution with cost A(I) ≤ rk. ��

3 Fixed-Parameter Inapproximability

Many optimization problems including clique, dominating set, and longest
common subsequence are provably fixed-parameter intractable, i.e., they are
hard for various levels of the W-hierarchy. Since the set of all fixed-parameter
tractable problems forms the lowest level of the W-hierarchy, the above prob-
lems are not fixed-parameter tractable unless the W-hierarchy collapses. Since
it is likely that there are no fixed-parameter feasible algorithms for the deci-
sion question for any of these problems, it is desirable to know whether there
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are fixed-parameter feasible algorithms that give approximate answers. In this
section, we show that for many optimization problems such approximation al-
gorithms do not exist either. First, we relate fixed-parameter approximability to
the approximation of solutions with a small cost in polynomial time.

Lemma 1. Let Π be an optimization problem and r be a constant. Then Π
is not fixed-parameter approximable to rk unless Π is approximable in time
t(OPT (I))nc to the ratio r for some (recursive) function t and some constant c.

Proof. We give the proof for minimization problems. The proof for maximization
problems is similar.

Let Π be a minimization problem. Assume that Π is fixed-parameter approx-
imable to rk. Then there is an algorithm A for Π that runs in time O(f(k)nc),
for some nondecreasing function f and constant c. Furthermore, given an in-
put (I, k), the algorithm gives an approximate answer to the question whether
OPT (I) ≤ k, for each value of the parameter k. Fix an input I. Then for the
parameter k = 0, 1, ..., k0, where k0 = (OPT (I) − 1)/r, the algorithm will out-
put “no” because producing a solution of cost A(I) ≤ rk ≤ r(OPT (I) − 1)/r)
implies that A(I) ≤ OPT (I)− 1. Let k1 be the largest value of the parameter k
that allows the algorithm to output “no”. Then k1 + 1 allows the algorithm to
produce a solution with cost ≤ r(k1 + 1) ≤ rOPT (I) because the answer of the
algorithm on the parameter k = OPT (I) cannot be “no”.

We construct an algorithm B that calls the fixed-parameter approximation
algorithm A for k = 0, 1, ..., until A produces a solution. According to the analy-
sis above, the solution has the cost rk ≤ r(k1 + 1) ≤ rOPT (I). The solution
achieves the ratio rOPT (I)/OPT (I) = r. The total running time for algorithm
B is bounded by (k1 + 1)f(k1 + 1)nc ≤ OPT (I)f(OPT (I))nc = t(OPT (I))nc,
where t(OPT (I)) = OPT (I)f(OPT (I)). ��

Lemma 1 gives some surprisingly nice implications.

Theorem 3. For any constant r > 1, a minimization problem Π is not fixed-
parameter approximable to rk, unless the problem of finding solutions of cost
bounded by s(n) can be approximated to the ratio r in polynomial time, for some
unbounded non-decreasing function s(n).

Proof. Assume that Π is fixed-parameter approximable to rk. By Lemma 1 and
its proof, Π can be approximated to the ratio r by an algorithm A of time
t(OPT (I))nd for some recursive function t and some constant d. When the in-
put instance I is subject to the restriction that OPT (I) ≤ s(n), where s is the
inverse function of t, the algorithm A runs in time t(s(n))nd = nd+1 to approxi-
mate solutions of cost at most s(n) (see [7,8] for techniques for constructing and
computing inverse functions). ��

Theorem 3 has a direct impact on the fixed-parameter approximability of the
problem dominating set. We have the following result. Note that log domi-
nating set is the problem of finding the minimum dominating set whose size
is ≤ log n in a given graph of n vertices.
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Corollary 1. For any r ≥ 1, dominating set is not fixed-parameter approx-
imable to rk in time O(2knd), where d is a constant, unless log dominating
set is approximable to the ratio r in polynomial time.

Theorem 3 shows the close relationship between fixed-parameter approximabil-
ity and the ability to approximate small-value instances in polynomial time. The
approximability of optimization problems with small value constrained objective
functions have been studied in the literature (see for example, [11,18]). In part-
ciular, it has been shown that, for a number of important problems, including
clique, dominating set that are hard for the W-hierarchy, the approxima-
tion for small value instances, such as log clique, log dominating set, is
as hard as subexponential-time (randomized) simulation of NP-computation.
Note that subexponential-time (randomized) simulation of NP-computation is
a seemingly weaker assumption than P=NP but still highly unlikely. Since the
collapsing of the W-hierarchy would also imply subexponential-time simulation
of NP-computation, the fixed-parameter inapproximability results developed in
this section complement nicely the fixed-parameter intractability results devel-
oped in [16,7,9].

4 FP-Approximation Scheme for Problems in MAX SNP

In this section, we show that the notion of FP-approximation provides a viable
alternative for approximation. In particular, we prove that FP-approximation
schemes exist for all problems in the class MAX SNP. This is somewhat surprising
since it is well-known result that MAX SNP-complete problems do not admit
polynomial-time approximation scheme unless P=NP.

The class MAX SNP was introduced by Papadimitriou and Yannakakis [24] to
capture a collection of optimization problems. For the purpose of investigating
the approximability of these problems, the following approximation-preserving
reduction was introduced.

Definition 4 ([24]). Let Π1 and Π2 be two optimization problems with cost
functions f1 and f2. Π1 L-reduces to Π2 if there are two polynomial time al-
gorithms A and B and two constants α, β > 0 such that for each instance
I1 of Π1, (1) the algorithm A produces an instance I2 = A(I1) such that
OPTΠ2(I2) ≤ αOPTΠ1 (I1), and (2) given any solution S2 for I2 with cost
f2(I2, S2), algorithm B produces a solution S1 for I1 with cost f1(I1, S1) such
that |OPTΠ1(I1) − f1(I1, S1)| ≤ β|OPTΠ2(I2) − f2(I2, S2)|.

It is known from the work of Cai and Chen [7] that the standard parameter-
ized versions of all maximization problems in the MAX SNP are parameterized
tractable. The proof of this earlier result was later refined by Cai and Juedes [10]
to show that L-reductions actually preserve subexponential-time computability.

Lemma 2. Let Π1 and Π2 are two minimization problems and Π1 is L-reducible
to Π2. Then Π1 has an FP-approximation scheme if Π2 has one.
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Proof. Let algorithm A and B be the two algorithms associated with the L-
reduction of running time q(n) and r(n) respectively. Also let α, β be the two
associated constants. We assume that Π2 admits a FP-approximation scheme M
with running time f(k, ε)p(n, ε). We give in the following an FP-approximation
scheme for problem Π1.

FP-approximation scheme for Π1
1. Given an input instance I1 for Π1, parameter k, and ε > 0, call
algorithm A to produce an instance I2 = A(I1) for Π2.
2. For h = 0, 1, 2, ..., αk, and ε′ = ε/αβ, run M on the instance I2 to
decide if OPTΠ2(I2) ≤ h. Then there must exist an h0, 0 ≤ h0 ≤ αk,
such that M answers “no” on all h = 0, 1, ..., h0 but yields on h0 + 1 an
solution S2 with value f2(I2, S2) ≤ (1 + ε′)(h0 + 1).
3. If h0 = αk, it is clear that OPTΠ2(I2) > α · k. By the L-reduction,
OPTΠ2(I2) ≤ αOPTΠ1(I1), it can be concluded that OPTΠ1(I1) > k.
So output “no” and stop.
4. Otherwise, the solution S2 satisfies f2(I2, S2) ≤ (1 + ε′)(h0 + 1) ≤
(1 + ε′)αk. Because OPTΠ2(I2) > h0, OPTΠ2(I2) ≥ h0 + 1. This means
the ratio f2(I2, S2)/OPTΠ2(I2) ≤ 1 + ε′.
5. Call algorithm B on S2 and I2 to produce a solution S1 of value
f1(I1, S1). This solution S1 satisfies ratio f1(I1, S1)/OPTΠ1(I1) ≤ 1 +
αβε′ = 1 + ε (refer to [24], Proposition 2).
6. If f1(I1, S1) ≤ (1 + ε)k, output solution S1 and stop.
7. Otherwise, f1(I1, S1)>(1+ε)k. Because f1(I1, S1)≤(1+ε)OPTΠ1(I1),
this implies OPTΠ1(I1) > k. Output “no” and stop.

On the question “OPTΠ1(I1) ≤ k?”, the above algorithm outputs either “no”
or a solution S1 of value f1(I1, S1) ≤ (1+ε)k. The total time is bounded by q(n)+
r(n)+αkf(k, ε′)p(n, ε′). This bound remains the format of O(f ′(k, ε)p′(n, ε)) for
some polynomial p′ and recursive function f ′. ��

By carefully examining the time complexity analysis given in the proof of
Lemma 2, we have the following technical lemma

Lemma 3. Let Π1 and Π2 are two minimization problems and Π1 is L-reducible
to Π2 associated with two constants α and β. If Π2 has an FP-approximation
scheme of time O(2O((1−ε)k)p(n)) for some polynomial p, then Π1 has an FP-
approximation scheme of time O(2O((1−ε/αβ)k)q(n)) for some polynomial q.

Before we establish the main result of this section, we prove the following

Lemma 4. The MAX SNP-complete problem vertex cover with bounded de-
gree 3 (abbreviated as VC-3) admits an FP-approximation scheme of running
time O(2O((1−ε/O(1))k)p(n)), where p is a polynomial.

Proof. Let G = (V, E) be a connected graph with bounded degree 3. Suppose
n = |V | > 4, k is the parameter, and 0 < ε < 1. We first partition the vertex
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set V into two subsets V1 and V2 such that |V1| = δn and |V2| = (1− δ)n, where
δ = ε/4. Let G1 = (V1, E1) and G2 = (V2, E2) be the two subgraphs of G induced
by V1 and V2 respectively. Then we apply the fixed-parameter algorithm in [12]
to the subgraph G2.

Suppose the minimum vertex cover found by the fixed-parameter algorithm
for the subgraph G2 be C2. It is clear that the vertices in C2 plus the vertices in
V1 is a vertex cover of G. Let OPT (G) be the size of the minimum vertex cover
of G. We claim that (|C2| + |V1|)/OPT (G) ≤ 1 + ε.

Since G2 = (V2, E2) is a subgraph of the graph G, the size of its minimum
vertex cover is not larger than the size of the minimum vertex cover of G. That
is,

|C2| ≤ OPT (G),

For the graph G with n vertices, the number of edges |E| ≥ n − 1. Since G
has bounded degree 3, the size of the minimum vertex cover |OPT | satisfies:

|OPT | ≥ (n − 1)/3 ≥ n/4,

since n > 4.
Therefore,

(|C2| + |V1|)/OPT (G) ≤ (OPT (G) + |V1|)/OPT (G)
= 1 + δn/OPT (G) ≤ 1 + δn/(n/4) ≤ 1 + 4δ = 1 + ε.

The running time of the FP-approximation algorithm is bounded by the time
for finding the minimum vertex cover for G2, which is O(1.2852O((1−δ)n)p(n))
[12]. Since k ≥ OPT (G) ≥ n/4, and δ = ε/4, we have the time complexity
O(1.2852O((1−δ)k)p(n)) = O(1.2852O((1−ε/4)k)p(n)). The lemma is proved. ��

By Lemma 3 and Lemma 4, we have

Theorem 4. All minimization problems in the class MAX SNP admit FP-
approximation schemes of time O(2O((1−ε/O(1))k)p(n)), where p is a polynomial.

Note that for maximization problems in the class MAX SNP, it is proved by Cai
and Chen (Theorem 3.4, [7]) that they are in FPT and can be solved in time
O(2kp(n)). These exact algorithms can determine if OPT ≥ (1 − ε)k in time
O(2O((1−ε)k)p(n)). Therefore,

Theorem 5. All maximization problems in the class MAX SNP admit FP-
approximation schemes of time O(2O((1−ε)k)p(n)), where p is a polynomial.

In conclusion,

Corollary 2. All problems in the class MAX SNP admit FP-approximation
schemes of time O(2O((1−ε/O(1))k)p(n)), where p is a polynomial.
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Theorem 4.1 shows that, with an amount of time less than what is needed by
exact algorithms, the optimization problems in MAX SNP can be approximated
to an arbitrary accuracy. On the other hand, any improvement in the running
time of the parameterized algorithms for the parameterized decision problems
would imply more efficient FP-approximation schemes for the problems. For
example, by applying the parameterized algorithm of time O(1.194kk2 + n) for
the problem VC-3 in [13], the time complexity of the FP-approximation scheme
for VC-3 could be improved from the aforementioned O(1.2852O((1−ε/4)k)p(n))
to O(1.194O((1−ε/4)k)q(n)), where p and q are polynomials.

5 Improving Approximability for bin packing

In this section, we show that the notion of FP-approximation can be used to
improve the approximation of parameterized intractable problems as well.

Consider the bin packing problem [20]: Given a finite set U = {u1, ..., un} of
items and a rational size s(u) ∈ [0, 1] for each item u ∈ U , find a partition of U
into disjoint subsets U1, ..., Uk such that the sum of the sizes of the items in each
Ui is no more than 1 and k is minimized. Note that for the decision problem for
k = 3 is NP-hard [20] and that it is not fixed-parameter tractable unless P=NP
[7]. So, we cannot claim fixed-parameter approximability simply from the results
shown in section 2. However, based on Theorem 2 and the fact that this problem
can be approximated to the ratio 3/2 [26], we obtain the following result. (Note
that better asymptotic ratios for bin packing are known [2].)

Corollary 3. bin packing is fixed-parameter approximable to 3/2k.

We show in the following that this approximation ratio can be significantly im-
proved when fixed-parameter feasibility is the only concern regarding the running
time of the algorithm.

Let 0 < ε ≤ 1/2 be a rational number such that ε ≤ 1/OPT (U), where U is
the set of items for an instance of bin packing. Let V ⊆ U such that u ∈ V if
and only if s(u) ≥ ε. We have the following lemma.

Lemma 5. Let B be an optimal packing for the set V . There is an algorithm A
that uses B to construct an approximate packing for U such that A(U)/OPT (U)
≤ 1 + 2ε + 2/OPT (U).

Proof. (Sketch due to page limit) Assume B = U1, ..., Up is an optimal packing
for V. Then B(V ) = OPT (V ) = p. Algorithm constructs another packing A for
U as follows. Pick items from U − V and pack them into bins U1, ..., Up using
the well-known FFD (first fit decreasing) heuristic [20]. Notice that FFD may
need to use some extra bins Up+1, ..., Uq to complete the packing.

The size of the space left in each bin Ui, i = p + 1, ..., q − 1 must be smaller
than ε since each element in U −V has size < ε. Moreover, we observe that (1) if
q > p, the size of the space left in each Ui, i = 1, ..., p is also smaller than ε; and
(2) if p = q, A(U) = OPT (U). Based on these observations, A(U)/OPT (U) = 1
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in the case when p = q. When q > p, we have two cases. When Σu∈Us(u) ≥ 1−ε,
we have OPT (U) ≥ Σu∈Us(u) = Σq

i=1Σs∈Ui ≥ q(1 − ε) ≥ A(U)(1 − ε). Since
ε ≤ 1/2, we have that A(U)/OPT (U) ≤ 1 + 2ε. When Σu∈Uqs(u) < 1 − ε, we
have OPT (U) ≥ Σu∈Us(u) = Σq

i=1Σs∈Uis(u) ≥ (q − 1)(1 − ε) + Σu∈Uqs(u) ≥
A(U)(1 − ε) − α, where α = −(ε − 1 + Σu∈Uqs(u)). It is clear that α ≤ 1. So,
A(U)/OPT (U) ≤ 1 + 2ε + 2α/OPT (U) ≤ 1 + 2ε + 2/OPT (U). ��

Now we are ready to prove the main theorem of this section.

Theorem 6. For any δ > 0, problem bin packing is (asymptotic) fixed-
parameter approximable to (1 + δ)k.

Proof. (Sketch due to page limit) We describe a fixed-parameter feasible process
for bin packing in the following. For a given δ, let ε = δ/4. Given a set U of
items and an integer k for the problem, first run the approximation algorithm
FFD on U . Let the number of bins in the packing obtained by the algorithm be m
and the approximation ratio be r. Output “no” and halt if k < m/r. Otherwise,
let V ⊆ U such that u ∈ V if and only if s(u) ≥ ε. Then find an optimal
packing B for set V by a brute force approach. According to Lemma 5, there is
a packing algorithm A for the original set U of items achieving the ratio bounded
by 1+4ε = 1+ δ, because the ratio 1+2ε+2/OPT (U) ≤ 1+4ε asymptotically.
Now output “no” and halt if k < A(U)/(1 + δ). If k > A(U)/(1 + δ), output the
packing with cost A(U) bounded by (1 + δ)k. We can show that the total time
for the above process is O((ck)ck + nd) for some constant d. ��

According to the proof of Theorem 6, we obtain the following corollary regarding
approximation of a small number of bins for the problem bin packing.

Corollary 4. There is an asymptotic polynomial-time approximation scheme
for bin packing when the number of bins is bounded by log n/ log log n.

Note that bin packing cannot be approximated to the ratio 3/2 − ε in poly-
nomial time for any ε > 0 unless P=NP [20]. Therefore, it is not possible for
the problem to have a polynomial-time approximation scheme. However, Kar-
markar and Karp [23] devised an efficient approximation scheme for the problem
with asymptotic ratio 1 + β, where β = O(log2 OPT (U)/OPT (U)). Our proof
in Lemma 5 shows an improvement in that the ratio 1 + β is determined by
β = O(1/OPT (U)).

6 Further Research Work

This is a preliminary work for the new framework of fixed-parameter approxima-
tion. Further research may derive more valuable positive and negative results.
For example, the work on the fixed-parameter approximability of planar graph
problems, such as planar vertex cover, planar dominating set, and pla-
nar independent set, will be very interesting, compared with the well-known
current results of Alber et al. [1], the O(2

√
knc)-time parameterized algorithms,
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and of Baker [3], the O(21/εnc)-time PTAS algorithm for these problems. Also we
believe the inapproximability results derived in the current paper may shed light
on the study of the FP-approximability of the problems in the newly-proposed
parameterized class MINI[1] (refer to [17]).
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Abstract. Combining classical approximability questions with parame-
terized complexity, we introduce a theory of parameterized approxima-
bility. The main intention of this theory is to deal with the efficient
approximation of small cost solutions for optimisation problems.

1 Introduction

Fixed-parameter tractability and approximability are two complementary ap-
proaches to dealing with intractability: Approximability relaxes the goal of find-
ing exact or optimal solutions, but usually insists on polynomial time algorithms,
whereas fixed-parameter tractable (fpt) algorithms are exact, but may have a
super-polynomial running time that is controlled by a parameter associated with
the problem instances in such a way that for small parameter values the run-
ning time can still be considered efficient. Obviously, the two approaches can be
combined, which is what we do in this paper. Optimisation problems are often
parameterized by the cost of the solution that is to be found. That is, together
with an instance we are given a parameter k, and the goal is to find a solution
of size at least k (for maximisation problems) or at most k (for minimisation
problems). For small k, an fpt algorithm with a running time like O(2k · n) can
be quite efficient. For some problems, for example minimum vertex cover, such
an algorithm exists, but for many other problems it does not, under plausible
complexity theoretic assumptions. For such problems, can we at least find small
solutions that approximately have the desired cost k? A slightly different, but
closely related question can be asked starting from approximability: Suppose we
have a problem that is hard to approximate. Can we at least approximate it
efficiently for instances for which the optimum is small? The classical theory of
inapproximability does not seem to help answering this question, because usually
the hardness proofs require fairly large solutions.

Let us illustrate this with an example: The maximum clique problem is known
to be hard to approximate — unless ZPP = NP not approximable with ratio
n1−ε for any ε > 0 [15] — and, most likely, not fixed-parameter tractable — the
problem is W[1]-complete [9], and unless the exponential time hypothesis fails, it
is not even solvable in time no(k) [6]. Here, and in the following, k denotes the size
of the desired clique and n the number of vertices of the input graph. Now we ask:
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Is there an fpt algorithm that, given a graph G and a k ∈ N, finds a clique of size
k/2 in G provided G has a clique of size at least k. (If G does not have a clique of
size k, the algorithm may still find a clique of size at least k/2, or it may reject
the input.) We would call such an algorithm an fpt approximation algorithm
with approximation ratio 2 for the clique problem. If no such algorithm exists,
we may still ask if there is an algorithm that finds a clique of size

√
k or even

log k, provided the input graph G has a clique of size k. As a matter of fact, it
would be interesting to have an fpt approximation algorithm with approximation
ratio ρ for any function ρ on the positive integers such that k/ρ(k) is unbounded
(for technical reasons, we also require ρ to be computable and k/ρ(k) to be
nondecreasing). If such an algorithm existed, then the maximum clique problem
would be fpt approximable. It is an open problem whether the clique problem is
fpt approximable; unfortunately the strong known inapproximability results for
the clique problem do not shed any light on this question. Note that when we
go beyond a constant approximation ratio we express the ratio as a function of
the cost of the solution rather than the size of the instance, as it is usually done
in the theory of approximation algorithms. This is reasonable because in our
parameterized setting we are mainly interested in solutions that are very small
compared to the size of the instance.

Our main contribution is a framework for studying such questions. We de-
fine fpt approximability for maximisation and minimisation problems and show
that our notions are fairly robust. We also consider a decision version of the fpt
approximability problem that we call fpt cost approximability, where instead of
computing a solution of cost approximately k, an algorithm only has to decide
if such a solution exists. We observe that a few known results yield fpt approxi-
mation algorithms: Oum and Seymour [17] showed that the problem of finding
a clique decomposition of minimum width is fpt approximable. Based on results
due to Seymour [19], Even et al. [12] showed that the directed feedback vertex set
problem is fpt approximable. Then it follows from a result due to Reed et al. [18]
that the linear programming dual of the feedback vertex set problem, the vertex
disjoint cycle problem, is fpt cost approximable. This is interesting because the
standard parameterization of this maximisation problem is W[1]-hard.

The classes of the fundamental W-hierarchy of parameterized complexity the-
ory are defined as closures of so called weighted satisfiability problems under fpt
reductions. We prove that for all levels of the W-hierarchy, natural optimisation
versions of the defining weighted satisfiability problems are not fpt approximable,
not even fpt cost approximable, unless the corresponding level of the hierarchy
collapses to FPT, the class of fixed-parameter tractable problems. Furthermore,
we prove that the short halting problem, which is known to be W[1]-complete for
single tape machines and W[2]-complete in general, is not fpt cost approximable
unless W[2] = FPT.

As a final result, we show that every parameterized problem in NP is both
equivalent to the standard parameterization of an optimisation problem that is
fpt approximable and equivalent to the standard parameterization of an opti-
misation problem that is not fpt cost approximable; in other words: every para-
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meterized complexity class above FPT that contains a problem in NP contains
problems that are approximable and problems that are inapproximable.

Independently, Cai and Huang [4] and Downey, Fellows and McCartin [11]
introduced similar frameworks of parameterized approximability.

Due to space limitations, proofs are omitted here, but can be found in the full
version of this paper.

2 Preliminaries

N denotes the natural numbers (positive integers), R the real numbers, and R≥1

the real numbers greater than or equal to 1. We recall a few basic definitions on
optimisation problems and parameterized complexity. For further background,
we refer the reader to [2] and [10,14].

2.1 Optimisation Problems

In this paper we consider NP-optimisation problems O over a finite alphabet Σ
consisting of triples (solO, costO, goalO) where

1. solO is a function that associates to any input instance x ∈ Σ∗ the set of
feasible solutions of x such that the relation {(x, y) | x ∈ Σ∗ and y ∈ solO(x)}
is polynomially balanced and decidable in polynomial time;

2. costO is the measure function and is defined on the class {(x, y) | x ∈
Σ∗, and y ∈ solO(x)}; the values of costO are positive natural numbers and
costO is polynomial time computable;

3. goalO ∈ {max, min}
The objective of an optimisation problem O is to find an optimal solution
z for a given instance x, that is a solution z with costO(x, z) = optO(x) :=
goalO{costO(x, y) | y ∈ solO(x)}. If O is clear from the context, we omit the
subscript and just write opt, sol, cost and goal.

2.2 Parameterized Problems

We represent decision problems over a finite alphabet Σ as sets Q ⊆ Σ∗ of strings.
Let us briefly recall the basic definitions of parameterized problems that we will
need:

1. A parameterization of Σ∗ is a polynomial time computable mapping κ :
Σ∗ → N.

2. A parameterized decision problem is a pair (Q, κ) consisting of a set Q ⊆ Σ∗

and a parameterization κ of Σ∗.
3. An algorithm A with input alphabet Σ is an fpt-algorithm with respect to κ

if there is a computable function f : N → N such that for every instance x
the running time of A on this input x is at most f (κ(x)) · |x|O(1).

4. A parameterized decision problem (Q, κ) is fixed-parameter tractable if there
is an fpt-algorithm with respect to κ that decides Q. FPT denotes the class of
all fixed-parameter tractable decision problems. In parameterized complexity
theory the analogue to polynomial time reductions are fpt-reductions.
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5. A parameterized decision problem (Q, κ) belongs to the class XP if there is
a computable function f : N → N and an algorithm that decides if x ∈ Q for
a given x ∈ Σ∗ in at most O(|x|f (κ(x))) steps.

An important class of parameterized problems is the class of weighted satis-
fiability problems. We look at weighted satisfiability problems for propositional
formulas and circuits: A formula α is k-satisfiable if there exists a satisfying
assignment that sets exactly k many variables to True (this assignment has
weight k). A circuit γ is k-satisfiable if there is a possibility of setting exactly k
many input nodes to True and getting the value True at the output node (γ
is satisfied by an input tuple of weight k). We are interested in special classes
of propositional formulas, Γt,d and Δt,d, defined inductively for t ≥ 0, d ≥ 1 as
follows:

Γ0,d := {λ1 ∧ . . . ∧ λc | c ∈ [d], λ1, . . . , λc literals},
Δ0,d := {λ1 ∨ . . . ∨ λc | c ∈ [d], λ1, . . . , λc literals},

Γt+1,d := {
∧
i∈I

δi | I finite and nonempty, δi ∈ Δt,d for all i ∈ I},

Δt+1,d := {
∨
i∈I

γi | I finite and nonempty, γi ∈ Γt,d for all i ∈ I}.

For a class Γ of propositional formulas or Boolean circuits, the parameterized
weighted satisfiability problem for Γ is

p-WSat(Γ)
Input: γ ∈ Γ and k ∈ N.

Parameter: k.
Problem: Decide whether γ is k-satisfiable.

The problems p-WSat(Γt,d) with t, d ≥ 1 are used to define the classes W[t] of
the W-hierarchy: A parameterized problem (Q, κ) belongs to the class W[t] if
there is a d ≥ 1 such that (Q, κ) is fpt-reducible to p-WSat(Γt,d). In the same
way, the weighted satisfiability problem p-WSat(CIRC) for the class CIRC of
all Boolean circuits defines the parameterized complexity class W[P]. It holds

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

where FPT is known to be strictly contained in XP and all other inclusions are
believed to be strict as well.

3 Parameterized Approximability

Definition 1. Let O be an NP-optimisation problem over the alphabet Σ, and
let ρ : N → R≥1 be a computable function. Let A be an algorithm that expects
inputs (x, k) ∈ Σ∗ × N.
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1. A is a parameterized approximation algorithm for O with approximation
ratio ρ if for every input (x, k) ∈ Σ∗ × N with sol(x) 	= ∅ that satisfies{

opt(x) ≥ k if goal = max,

opt(x) ≤ k if goal = min,
(�)

A computes a y ∈ sol(x) such that⎧⎨
⎩cost(x, y) ≥ k

ρ(k)
if goal = max,

cost(x, y) ≤ k · ρ(k) if goal = min.
(��)

For inputs (x, k) ∈ Σ∗ × N not satisfying condition (�), the output of A can
be arbitrary.

2. A is an fpt approximation algorithm for O with approximation ratio ρ if it
is a parameterized approximation algorithm for O with approximation ratio
ρ and an fpt-algorithm with respect to the parameterization (x, k) �→ k of its
input space (that is, the running time of A is f (k)·|x|O(1) for some computable
function f).
A is a constant fpt approximation algorithm for O if there is a constant c ≥ 1
such that A is an fpt approximation algorithm for O with approximation ratio
k �→ c (the constant function with value c).

3. The problem O is fpt approximable with approximation ratio ρ if there is an
fpt approximation algorithm for O with approximation ratio ρ. The problem
O is fpt approximable if it is fpt approximable with approximation ratio ρ
for some computable function ρ : N → R≥1 such that

⎧⎨
⎩

k

ρ(k)
is unbounded and nondecreasing if O is a maximisation problem,

k · ρ(k) is nondecreasing if O is a minimisation problem

O is constant fpt approximable if there is a constant fpt approximation
algorithm for O.

Remark 2. Since it is decidable by an fpt-algorithm whether an output y is an
element of sol(x) that satisfies (��), we can assume that an fpt approximation
algorithm always (that is, even if the input does not satisfy (�)) either outputs
a y ∈ sol(x) that satisfies (��) or outputs a default value, say “reject”. Let us
call an fpt approximation algorithm that has this property normalised.

Remark 3. We have decided to let the approximation ratio ρ be a function of
the parameter k, because this is what we are interested in here. One could easily
extend the definition to approximation ratios ρ depending on the input size as
well, or even to arbitrary functions ρ : Σ∗ × N → R. A technical condition that
should be imposed then is that ρ be computable by an fpt-algorithm with respect
to the parameterization (x, k) �→ k.
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An alternative approach to parameterized approximability could be to pa-
rameterize optimisation problems by the optimum, with the goal of designing
efficient approximation algorithms for instances with a small optimum. Interest-
ingly, for minimisation problems, this yields exactly the same notion of parame-
terized approximability, as the following proposition shows.

Proposition 4. Let O be an NP-minimisation problem over the alphabet Σ, and
let ρ : N → R≥1 be a computable function such that k · ρ(k) is nondecreasing.
Then the following two statements are equivalent:

1. O has an fpt approximation algorithm with approximation ratio ρ.
2. There exists a computable function g and an algorithm B that on input x ∈

Σ∗ computes a solution y ∈ sol(x) such that cost(x, y) ≤ opt(x) · ρ(opt(x)) in
time g(opt(x)) · |x|O(1).

For maximisation problems, our definition of fpt approximation algorithm does
not coincide with the analogue of Proposition 4(2). Yet we do have an analogue
of the implication (1) ⇒ (2) of Proposition 4 for maximisation problems:

Proposition 5. Let O be an NP-maximisation problem over the alphabet Σ,
and let ρ : N → R≥1 be a computable function such that k/ρ(k) is nondecreasing
and unbounded.

Suppose that O has an fpt approximation algorithm with approximation ratio
ρ. Then there exists a computable function g and an algorithm B that on input
x ∈ Σ∗ computes a solution y ∈ sol(x) such that cost(x, y) ≥ opt(x)

ρ(opt(x)) in time
g(opt(x)) · |x|O(1).

The problem with the converse direction is best illustrated for NP-optimisation
problems where the optimal value is always large (say, of order Ω(|x|) for every
instance x). An example of such a problem is the maximum independent set
problem on planar graphs. Then an algorithm B as in Proposition 5 trivially
exists even for ρ = 1, because all NP-optimisation problems can be solved exactly
in exponential time. But this does not seem to help much for finding a solution
of size approximately k for a given, small value of k.

3.1 Cost Approximability

Sometimes, instead of computing an optimal solution of an optimisation problem
O, it can be sufficient to just compute the cost of an optimal solution (called
evaluation problem in [2]). This is equivalent to solving the standard decision
problem associated with O: Given an instance x and a natural number k, decide
whether {

opt(x) ≥ k if O is a maximisation problem,

opt(x) ≤ k if O is a minimisation problem.

If we parameterize the standard decision problem by the input number k, we
obtain the standard parameterization of O:
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Input: x ∈ Σ∗, k ∈ N.
Parameter: k.

Problem: Decide whether opt(x) ≥ k (if goal = max) or
opt(x) ≤ k (if goal = min).

To simplify the notation, for the rest of this section we only consider maximi-
sation problems. All definitions and results can easily be adapted to minimisation
problems.

What if we only want to compute the cost of the optimal solution approxi-
mately, say, with ratio ρ? On the level of the decision problem, this means that
we allow an algorithm that is supposed to decide if opt(x) ≥ k to err if k is close
to the optimum. The following definition makes this precise:

Definition 6. Let O be an NP-maximisation problem over the alphabet Σ, and
let ρ : N → R≥1 be a computable function.

Then a decision algorithm A is a parameterized cost approximation algorithm
for O with approximation ratio ρ if it satisfies the following conditions for all
inputs (x, k) ∈ Σ∗ × N:

– If k ≤ opt(x)
ρ(opt(x))

, then A accepts (x, k).

– If k > opt(x), then A rejects (x, k).

The notions of an fpt cost approximation algorithm and a constant fpt cost ap-
proximation algorithm and of a problem being (constant) fpt cost approximable
are defined accordingly.

A parameterized cost approximation algorithm may be thought of as deciding a
parameterized problem that approximates the standard parameterization of an
optimisation problem. This is made precise in the following simple proposition:

Proposition 7. Let O be an NP-maximisation problem over the alphabet Σ,
and let ρ : N → R≥1 be a computable function such that k/ρ(k) is nondecreasing
and unbounded. Then the following two statements are equivalent:

1. O has an fpt cost approximation algorithm with approximation ratio ρ.
2. There exists a parameterized problem (Q′, κ′) ∈ FPT with Q′ ⊆ Σ∗ × N

and with κ′ : Σ∗ × N → N defined by κ′(x, k) := k that “approximates” the
standard parameterization (QO, κO) of O with approximation ratio ρ:
Given input (x, k) ∈ Σ∗ × N, if (x, k) ∈ QO then (x, �k/ρ(k) ) ∈ Q′ and if
(x, k) /∈ QO then (x, k) /∈ Q′.

Mike Fellows (in a recent Dagstuhl Seminar) proposed a taxonomy of hard para-
meterized problems which is based on their approximability. In his terminology,
the standard parameterization of an optimisation problem is good if it is fixed-
parameter tractable; it is bad if it is not good, but constant fpt cost approximable;
it is ugly if it is not bad, but fpt cost approximable; otherwise, it is hideous.
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Proposition 8. Let O be an NP-maximisation problem over the alphabet Σ,
and let ρ : N → R≥1 be a computable function such that k/ρ(k) is nondecreasing
and unbounded.

Suppose that O is fpt approximable with approximation ratio ρ. Then O is fpt
cost approximable with approximation ratio ρ.

The following two propositions show that for cost approximability, we obtain a
full analogue of Proposition 4 for maximisation problems and that the notion of
fpt approximability is strictly stronger than that of fpt cost approximability:

Proposition 9. Let O be an NP-maximisation problem over the alphabet Σ,
and let ρ : N → R≥1 be a computable function such that k/ρ(k) is nondecreasing
and unbounded. Then the following two statements are equivalent:

1. O has an fpt cost approximation algorithm with approximation ratio ρ.
2. There exist a computable function g and an algorithm B that on input x ∈ Σ∗

computes an � ∈ N with opt(x) ≥ � ≥ opt(x)
ρ(opt(x)) in time g(opt(x)) · |x|O(1).

Proposition 10. Assume that NP ∩ co-NP 	= P . Then there exists an NP-
optimisation problem that is fpt cost approximable but not fpt approximable.

3.2 Examples

Example 11. Min-Clique-Width is the problem of computing a decomposition
of minimum clique-width for a given graph where Clique-width [7] is a graph
parameter that is defined by a composition mechanism for vertex-labelled graphs
and measures the complexity of a graph according to the difficulty of decompos-
ing the graph into a kind of tree-structure. Given a decomposition of clique-width
k (also called k-expression), many hard graph problems are solvable in polyno-
mial time for graphs of bounded clique-width. Fellows et al. [13] recently proved
that deciding whether the clique-width of G is at most k is NP-hard and that the
minimisation problem Min-Clique-Width cannot be absolutely approximated
in polynomial time unless P = NP.

Oum and Seymour [17] defined the notion of rank-width to investigate clique-
width and showed that rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 for the clique-width
cwd(G) and the rank-width rwd(G) of a given simple, undirected and finite graph
G. In [16], Oum presents two algorithms to compute rank-decompositions ap-
proximately: For a graph G = (V, E) and k ∈ N the algorithms either output
a rank-decomposition of width at most f (k) with f (k) = 3k + 1 or f (k) = 24k,
respectively, or confirm that the rank-width is larger than k where the running
time of these algorithms for fixed k is O(|V |4) for the first one and O(|V |3) for
the second. Returning to clique-width there therefore exist algorithms that ei-
ther output an (21+f (k) − 1)-expression or confirm that the clique-width is larger
than k and that have the above running times for fixed k.

As both algorithms fulfil the properties of parameterized approximation algo-
rithms with approximation ratio ρ defined by ρ(k) := (21+f (k) − 1)/k, we get that
Min-Clique-Width is fpt approximable.
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Example 12. One of the major open problems in parameterized complexity is
whether the following problem is fixed-parameter tractable.

p-Directed-Feedback-Vertex-Set
Input: A directed graph G = (V, E) and k ∈ N.

Parameter: k.
Problem: Decide whether there is a set S ⊆ V with |S| ≤ k such

that G \ S is acyclic.

Although still far from settling it, we note that the corresponding optimisation
problem Min-Directed-Feedback-Vertex-Set is at least fpt approximable.

It is well-known that Min-Directed-Feedback-Vertex-Set can be de-
scribed by the following integer linear program for a given directed graph G =
(V, E), where xv is a variable for each vertex v ∈ V :

Minimise
∑

v∈V

xv

subject to
∑

v∈C

xv ≥ 1 for every cycle C in G,

xv ∈ {0, 1} for every vertex v ∈ V .

(1)

We denote the minimum size of a feedback vertex set in a directed graph G by
τ (G) and the size of a fractional feedback vertex set (xv)v∈V with 0 ≤ xv ≤ 1 for
every v ∈ V by τ∗(G), where (1) without the integrality constraints can be solved
in polynomial time (see e.g. [12]). Clearly we have τ∗(G) ≤ τ (G) and Seymour [19]
proved that the integrality gap of the feedback vertex set problem can be at most
O(log τ∗ · log log τ∗). This proof can be modified to obtain a polynomial time
approximation algorithm for Min-Directed-Feedback-Vertex-Set with an
approximation ratio of O(log τ∗ ·log log τ∗) [12]. Using Proposition 4 we conclude
that Min-Directed-Feedback-Vertex-Set is fpt approximable.

Example 13. The linear programming dual of Min-Directed-Feedback-Ver-
tex-Set is the optimisation problem Max-Directed-Vertex-Disjoint-Cy-
cles, whose standard parameterization is the following problem:

p-Directed-Vertex-Disjoint-Cycles
Input: A directed graph G and k ∈ N.

Parameter: k.
Problem: Decide whether there are k vertex-disjoint cycles in G.

It is implicit in [20] that p-Directed-Vertex-Disjoint-Cycles is W[1]-
hard. For the maximum number ν(G) of vertex-disjoint cycles and for the min-
imum size τ (G) (τ∗(G)) of a (fractional) feedback vertex set in a given directed
graph G it holds that ν(G) ≤ τ∗(G) ≤ τ (G). Furthermore, there is an upper
bound of τ (G), in terms of ν(G) only as Reed et al. [18] proved the existence of
a computable function f : N ∪ {0} → N, such that

τ (G) ≤ f (ν(G)) (2)
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for any directed graph G. (The function f constructed in [18] is very large, a
multiply iterated exponential, where the number of iterations is also a multiply
iterated exponential; the best known lower bound is f (x) ≥ O(x · log x) for any
x ∈ N, a result attributed to Alon in [18].)

Together with the above inequalities, we can derive a very simple fpt cost ap-
proximation algorithm for Max-Vertex-Disjoint-Cycles: Let f be the func-
tion with property (2). Without loss of generality, we can assume f is increasing
and time-constructible. Now let ιf : N → N be defined by ιf (n) := min{i ∈ N |
f (i) ≥ n}. Then ιf is nondecreasing and unbounded, ιf (n) is computable in time
polynomial in n and ιf (f (k)) ≤ k for every k ∈ N. Therefore we conclude

ιf (ν(G)) ≤ ιf (�τ∗(G)�) ≤ ιf (τ (G)) ≤ ιf (f (ν(G))) ≤ ν(G).

Thus the algorithm that given an input (G, k) computes τ∗(G) in time polynomial
in the size of G and accepts if k ≤ ιf (�τ∗(G)�) and rejects otherwise is an fpt
cost approximation algorithm with approximation ratio ρ where ρ(k) = k/ιf (k).

4 Inapproximability Results

Under assumptions from parameterized complexity theory, the following theorem
states the non-approximability of weighted satisfiability optimisation problems
for the above defined classes of propositional formulas:

Theorem 14. Min-WSat(Γt,d) with t ≥ 2 and d ≥ 1 is not fpt cost approx-
imable unless W[t] = FPT, where the optimisation problem Min-WSat(Γt,d) is
defined as follows:

Input: A propositional formula α ∈ Γt,d.
Solutions: All satisfying assignments for α.

Cost: max{1,weight of a satisfying assignment}.
Goal: min.

Similarly as above we define the problem Min-WSat(CIRC) and maximisation
versions of weighted satisfiability problems and get the following results:

Theorem 15. Min-WSat(CIRC) is not fpt cost approximable unless W[P] =
FPT.

Theorem 16.

(1) Max-WSat(Γt,d) with t ≥ 2 and d ≥ 1 is not fpt cost approximable unless
W[t] = FPT.

(2) Max-WSat(CIRC) is not fpt cost approximable unless W[P] = FPT.

We now look at the following two versions Min-Short-NTM-Halt and Min-
Short-NSTM-Halt of optimising halting problems:
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Input: A nondeterministic Turing machine M.
Solutions: All accepting runs of M on the empty string.

Cost: The number of steps in such an accepting run.
Goal: min.

Input: A nondeterministic single-tape Turing machine
M.

Solutions: All accepting runs of M on the empty string.
Cost: The number of steps in such an accepting run.
Goal: min.

The corresponding parameterized problems p-Short-NTM-Halt and p-Short-
NSTM-Halt are to decide for a given nondeterministic (single-tape) Turing
machine M and a given parameter k ∈ N whether M accepts the empty string in
at most k steps, which is W[2]-complete [3] (W[1]-complete [5], respectively).

Theorem 17. Min-Short-NTM-Halt is not fpt cost approximable unless
W[2] = FPT.

Theorem 18. Min-Short-NSTM-Halt is not fpt cost approximable unless
W[1] = FPT.

Recall the definition of the standard parameterization of an optimisation problem
from page 114. The previous results show that each level of the W-hierarchy
contains natural complete problems that are not fpt cost approximable. Our
final result shows that artificial approximable and inapproximable problems of
any given complexity can be constructed (as long as it is in NP, because we are
dealing with NP-optimisation problems).

Theorem 19. Let (Q, κ) be a parameterized problem not in FPT such that
Q ∈ NP.

(1) (Q, κ) is fpt equivalent to the standard parameterization of an NP-optimisation
problem that is fpt approximable with approximation ratio 2.

(2) (Q, κ) is fpt equivalent to the standard parameterization of an NP-optimisation
problem that is not fpt cost approximable.

5 Further Research

Next to finding additional natural examples for problems with existing fpt
approximation algorithms, the main open problem at the moment is to spec-
ify the parameterized approximability properties of basic problems like Min-
Dominating-Set or the Max-Clique problem already mentioned as an
introductory example. Non-approximability results in the classical framework
were proved for the Clique problem using the PCP-theorem [1,8], so it might
be necessary to obtain a parameterized version of the PCP-theorem to solve
these questions.



120 Y. Chen, M. Grohe, and M. Grüber
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Abstract. Up to now, most work in the area of parameterized complex-
ity has focussed on exact algorithms for decision problems. The goal of
this paper is to apply parameterized ideas to approximation. We begin
exploration of parameterized approximation problems, where the prob-
lem in question is a parameterized decision problem, and the required
approximation factor is treated as a second parameter for the problem.

1 Introduction

Parameterized complexity is fast becoming accepted as an important strand
in the mainstream of algorithm design and analysis, alongside approximation,
randomization, and the like. It is fair to say that most of the work in the area
has focussed on exact algorithms for decision problems. On the other hand it
is clear that parameterized ideas have applications to many other questions of
algorithmic design. For example, in [6] and [8] the ideas have been applied to
counting problems and in [5], [8] the ideas were applied to online problems.

The goal of the present paper is to apply the ideas to approximation. Already
we have seen that there are close ties between classical approximation and the
theory of parameterized complexity.

For example, the following is now well-known. We can define a classical op-
timization problem to have an efficient P-time approximation scheme (EPTAS)
if it can be approximated to a goodness of (1 + ε) of optimal in time f(1/ε)nc

where c is a constant. If we set k = 1/ε as the parameter, and then produce
a reduction to the PTAS from some parametrically hard problem, we can, in
essence, demonstrate that no such EPTAS exists [1], [3].

In this paper, we begin exploration of parameterized approximation problems,
where the problem in question is a parameterized decision problem, and the
required approximation factor is treated as a second parameter for the problem.
Consider the following ‘classic’ parameterized problem:

k-Independent Set
Input: A graph G = (V, E)
Parameter: k, a positive integer
Output: An independent set V ′ ⊆ V for G of size at least k, or ‘NO’ if none
such exists.
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How might we define a problem that provides an ‘approximate’ solution to
this problem? Here are two possibilities which we will consider in this paper. In
both cases we relax our requirements by introducing a ‘gap’ between YES and
NO solutions to the problem. In the first case the gap size is additive in the
approximation parameter , in the second case the gap size is multiplicative in
the approximation parameter.

Add-Approx k-Independent Set
Input: A graph G = (V, E)
Parameters: k, c, positive integers
Output: ‘NO’, asserting that no independent set V ′ ⊆ V of size ≥ k for G
exists, or an independent set V ′ ⊆ V for G of size at least k − c.

Mult-Approx k-Independent Set
Input: A graph G = (V, E)
Parameters: k, c, positive integers
Output: ‘NO’, asserting that no independent set V ′ ⊆ V of size ≥ k for G
exists, or an independent set V ′ ⊆ V for G of size at least k/c.

The first parameterized approximation question is the the parameterized ver-
sion of absolute approximability. The question is, are there parameterized algo-
rithms to solve the above questions, in spite of our belief that there is no such
algorithm for the exact problem? More generally, we will be considering the fol-
lowing class of questions. Our setting will be languages L ⊆ Σ∗ × Σ∗ We state
the following for maximization problems, the analogous definition would work
for minimization.

g(k)-Approximation
Input 〈x, k〉
Parameter k, g
Output ‘NO’ asserting 〈x, k〉 	∈ L or 〈x, k′〉 ∈ L for some k′ ≤ g(k).

As stated, the approximation problem above is for the version where we ask
for the certificate 〈x, k′〉. There could also be a version where we simply ask
for the ‘YES’ asserting that some such certificate exists. Since all the practical
examples are self-reducible, we will get the certificates from the problem for free.

Notice that we can take a arbitrarily ‘bad’ language L = {〈x, 2k〉 : k ∈ N}
and consider L′ = L ∪ {〈x, 2k + 1〉 : x ∈ Σ∗ ∧ k ∈ N}. Then, in spite of the fact
that 〈x, m〉 ∈ L′ is as bad as you like, we can always have an approximation with
g(m) = m + 1. The problem is that the odd parameters give no information.
On the other hand, we believe that some natural problems are sufficiently well-
structured so that, for certain functions g, the approximation schemes should
give enough information so as to be able to solve the original problem.

In this paper we will consider different kinds of functions g. We first consider
g(k) = k + c, absolute additive approximation. We demonstrate that for many
of the basic W [1]-hard problems no such approximation scheme can exist unless
W [1] = FPT. These problems include k-Independent Set, k-Clique and
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k-Step Turing Machine Acceptance. We also demonstrate that no such
approximation scheme can exist for k-Dominating Set unless W [2] = FPT.

Next we consider multiplicative and other values values for g. Notice that
for instance, Bin Packing parameterized by the number of bins, has (by First
Fit) a natural approximation with g(k) = 2k, say. (See Garey and Johnson
[7].) Thus there are natural problems with such multiplicative parameterized
approximation schemes.

On the other hand we show that there exist problems where there is no ap-
proximation scheme for any function g(k) unless W [2] = FPT . One example
of this phenomenon is k-Independent Dominating Set . That is, for any
computable function g(k) ≥ k, there is no algorithm which either asserts that
there is no independent dominating set of size ≤ k for a given graph G, or oth-
erwise asserts that there is one of size ≤ g(k). We call such problems completely
inapproximable.

Up to this time there is no literature on this kind of approximation. The idea
was introduced by Downey and Fellows in [4] for Dominating Set. As we were
about to submit this paper, we were sent a copy of a new paper by Cai and
Huang [2] also studying the same kind of problems; their results being quite
complementary to ours. Interestingly, the fundamental problem we wished to
classify, Dominating Set, remains open.

2 Additive Parameterized Approximation

We show that the following parameterized approximation problems are, in
each case, reducible to the corresponding original parameterized problem:
Add-Approx k-Independent Set, Add-Approx k-Clique, Add-Approx
k-Dominating Set, Add-Approx k-Step Turing Machine Acceptance.

Theorem 1. Add-Approx k-Independent Set is W [1]-hard.

Proof. We transform from k-Independent Set.
Let G = (V, E) be a graph and let k be the parameter. We produce G′ =

(V ′, E′) such that G′ has a c-additive approximate solution for dk-Independent
Set, i.e. G′ contains an independent set of size at least dk − c, iff G contains an
independent set of size at least k.

To build G′ we begin with the original graph G, and proceed as follows:

1. Find smallest d such that �dk−c
d � ≥ k

2. G′ consists of d separate copies of G

⇐ Suppose that G contains an independent set of size at least k, then, by the
construction of G′, there must be an independent set of size at least dk in G′.
⇒ Suppose that G′ contains an independent set of size at least dk−c, then some
copy of G in G′ must contain an independent set of size at least k, by the choice
of d. ��
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This simple amplification technique can be used in parallel fashion to show:

Theorem 2. Add-Approx k-Clique is W [1]-hard.

The case of Add-Approx k-Dominating Set also employs the amplification
technique, except now we are looking to minimize, rather than maximize, the
solution.

Theorem 3. Add-Approx k-Dominating Set is W [2]-hard.

Proof. We transform from k-Dominating Set.
Let G = (V, E) be a graph and let k be the parameter. We produce G′ =

(V ′, E′) such that G′ has a c-additive approximate solution for dk-Dominating
Set, i.e. G′ contains a dominating set of size at most dk + c, iff G contains a
dominating set of size at most k.

To build G′ we begin with the original graph G, and proceed as follows:

1. Find smallest d such that �dk+c
d  ≤ k

2. G′ consists of d separate copies of G

⇐ Suppose that G contains a dominating set of size at most k, then, by the
construction of G′, there must be a dominating set of size at most dk in G′.
⇒ Suppose that G′ contains a dominating set of size at most dk + c, then some
copy of G in G′ must contain a dominating set of size at most k, by the choice
of d. ��

We now consider additive approximation for k-Turing Machine Acceptance,
the problem of deciding if a nondeterministic Turing machine with arbitrarily
large fanout has a k-step accepting path on the empty input string.

Add-Approx k-Turing Machine Acceptance
Input: A Turing machine M
Parameters: k, c, positive integers
Output: ‘NO’ asserting that no k-step accepting path for M exists, or an ac-
cepting path of length at most k + c for M .

Theorem 4. Add-Approx k-Turing Machine Acceptance is W [1]-hard.

Proof. We transform from k-Turing Machine Acceptance.
Let M be a Turing machine and let k be the parameter. We define M ′ such

that M ′ has a c-additive approximate solution for dk + 1-Turing Machine
Acceptance, iff M has an accepting path of length at most k.

Choose d >> c. Choose an alphabet for M ′ sufficiently large such that all
d-sets of symbols from the alphabet for M may be represented. On the empty
input string M ′ runs d copies of M in parallel, repeating each step of the com-
putation for M d times, before proceeding to the next. M ′ will halt and accept
immediately that all copies of M have halted and accepted.
⇐ Suppose that M has an accepting path of length at most k, then, by the
construction of M ′, there must be an accepting path of length at most dk + 1
for M ′.
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⇒ Suppose that M ′ has an accepting path of length at most dk + 1 + c, then
some copy of M run by M ′ must have an accepting path of length at most k,
by the choice of d. ��

3 A Completely Inapproximable Parameterized Problem

In this section we show that k-Independent Dominating Set is completely
inapproximable. Specifically, we show that there is no approximation scheme for
k-Independent Dominating Set for any function g(k) unless W [2] = FPT .

The natural parameterized version of the Dominating Set problem is the
following.

k-Dominating Set
Input: A graph G.
Parameter: A positive integer k.
Question: Does G have a dominating set of size k? (A dominating set for G is a
set X ⊆ V (G) such that for all y ∈ V (G), there is an x ∈ X with 〈x, y〉 ∈ E(G).)

In [4] Downey and Fellows show that k-Dominating Set is W [2]-hard via a
transformation from Weighted CNF Satisfiability.

For X a Boolean expression in conjunctive normal form consisting of m clauses
C1, ..., Cm over the set of n variables x0, ..., xn−1, they show how to produce in
polynomial-time by local replacement, a graph G = (V, E) that has a dominating
set of size 2k if and only if X is satisfied by a truth assignment of weight k.

The size 2k dominating set in G corresponding to a weight k truth assignment
for X , is in fact an independent set as well. Thus the same transformation shows
that k-Independent Dominating Set is W [2]-hard.

We outline the construction of the graph G used in the reduction here. There
are k gadgets arranged in a vertical line. Each of the gadgets has 3 main parts.
Taken from top to bottom, these are variable selection, gap selection and gap
and order enforcement. The variable selection component A(r) is a clique and
the gap selection component B(r) consists of n cliques which are called columns.
The first action is to ensure that in any dominating set of 2k elements, we must
pick one vertex from each of these two components. This goal is achieved by
2k sets of 2k + 1 enforcers, vertices from V4 and V5. (The names refer to the
sets below.) Take the V4, for instance. For a fixed r, these 2k + 1 vertices are
connected to all of the variable selection vertices in the component A(r), and
nowhere else. Thus if they are to be dominated by a 2k dominating set, then
we must choose some element in the set A(r), and similarly we must choose an
element in the set B(r) by virtue of the V5 enforcers. Since we will need exactly
2k (or even ≤ 2k) dominating elements it follows that we must pick exactly one
from each of the A(r) and B(r) for r = 1, ..., k.

Each of the k variable selection components consists of a clique of n vertices
labelled 0, ..., n − 1. The intention being that the vertex labelled i represents a
choice of variable i being made true in the formula X . Correspondingly in the



126 R.G. Downey, M.R. Fellows, and C. McCartin

next B(r) we have columns (cliques) i = 0, ..., n−1. The intention is that column
i corresponds to the choice of variable i in the preceding A(r). We join the vertex
a[r, i] corresponding to variable i, in A(r), to all vertices in B(r) except those in
column i. This means that the choice of i in A(r) will cover all vertices of B(r)
except those in this column. It follows that we must choose the dominating
element from this column and nowhere else. (There are no connections from
column to column.) The columns are meant to be the gap selection saying how
many 0’s there will be till the next positive choice for a variable. We finally need
to ensure that (i) if we chose variable i in A(r) and gap j in column i from B(r)
then we need to pick i+ j +1 in A(r+1) and (ii) that the selections are in order.
This is the role of the gap and order enforcement component which consists of
a set of n vertices (in V6.)

Thus the above provides a selection gadget that chooses k true variables with
the gaps representing false ones. We enforce that the selection is consistent with
the clauses of X via the clause variables V3. These are connected in the obvious
ways. One connects a choice in A[r] or B[r] corresponding to making a clause
Cq true to the vertex cq. Then if we dominate all the clause vertices too, we
must have either chosen in some A[r] a positive occurrence of a variable in Cq

or we must have chosen in B[r] a gap corresponding to a negative occurrence of
a variable in Cq, and conversely.

The vertex set V of G is the union of the following sets of vertices:
V1 = {a[r, s] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n − 1}
V2 = {b[r, s, t] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n − 1, 1 ≤ t ≤ n − k + 1}
V3 = {c[j] : 1 ≤ j ≤ m}
V4 = {a′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}
V5 = {b′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}
V6 = {d[r, s] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n − 1}

For convenience, we introduce the following notation for important subsets of
some of the vertex sets above.
A(r) = {a[r, s] : 0 ≤ s ≤ n − 1}
B(r) = {b[r, s, t] : 0 ≤ s ≤ n − 1, 1 ≤ t ≤ n − k + 1}
B(r, s) = {b[r, s, t] : 1 ≤ t ≤ n − k + 1}

The edge set E of G is the union of the following sets of edges. In these
descriptions we implicitly quantify over all possible indices.
E1 = {c[j]a[r, s] : xs ∈ Cj}
E2 = {a[r, s]a[r, s′] : s 	= s′}
E3 = {b[r, s, t]b[r, s, t′] : t 	= t′}
E4 = {a[r, s]b[r, s′, t] : s 	= s′}
E5 = {b[r, s, t]d[r, s′] : s + t + 1 ≤ n ∧ s′ 	= s + t} ∪{b[k − 1, s, t]d[k − 1, s′] : s′ 	=
s + t(modn)}
E6 = {a[r, s]a′[r, u]}
E7 = {b[r, s, t]b′[r, u]}
E8 = {c[j]b[r, s, t] : ∃i xi ∈ Cj , s < i < s + t}
E9 = {d[r, s]a[r′, s] : r′ = r + 1 mod k}
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Suppose X has a satisfying truth assignment τ of weight k, with variables
xi0 , xi1 , ..., xik−1 assigned the value true. Suppose i0 < i2 < ... < ik−1. Let
dr = ir+1(modk) − ir (mod n) for r = 0, ..., k − 1. It is straightforward to verify
that the set of 2k vertices

D = {a[r, ir] : 0 ≤ r ≤ k − 1} ∪ {b[r, ir, dr] : 0 ≤ r ≤ k − 1}

is a dominating set in G.
Conversely, suppose D is a dominating set of 2k vertices in G. The closed neigh-

bourhoods of the 2k vertices a′[0, 1], ..., a′[k − 1, 1], b′[0, 1], ..., b′[k − 1, 1] are dis-
joint, so D must consist of exactly 2k vertices, one in each of these closed neigh-
bourhoods. Also, none of the vertices of V4 ∪V5 are in D, since if a′[r, u] ∈ D then
necessarily a′[r, u′] ∈ D for 1 < u′ < 2k + 1 (otherwise D fails to be dominating),
which contradicts that D contains exactly 2k vertices. It follows that D contains
exactly one vertex from each of the sets A(r) and B(r) for 0 ≤ r ≤ k − 1.

The possibilities for D are further constrained by the edges of E4, E5 and E9.
The vertices of D in V1 represent the variables set to true in a satisfying truth
assignment for X , and the vertices of D in V2 represent intervals of variables set
to false. Since there are k variables to be set to true there are, considering the
indices of the variables mod n, also k intervals of variables to be set to false.
Furthermore the set E5 forces the chosen variables to be chosen so that if r < r′

and we choose a[r, q] and a[r′, q′] then q < q′.
The edges of E4, E5 and E9 enforce that the 2k vertices in D must represent

such a choice consistently. It remains only to check that the fact that D is a
dominating set ensures that the truth assignment represented by D satisfies X .
This follows by the definition of the edge sets E1 and E8.

We modify the construction described above to show that the following para-
meterized approximation problem is W [2]-hard for any choice of g(k).

g(k)-Approx Independent Dominating Set
Input: G = (V, E)
Parameter: k, g
Output: ‘NO’ asserting that no independent dominating set V ′ ⊆ V of size ≤ k
for G exists, or an independent dominating set V ′ ⊆ V for G of size at most
g(k).

Theorem 5. g(k)-Approx Independent Dominating Set is W [2]-hard.

Proof. We transform from Weighted CNF Satisfiability.
Given X , a Boolean expression in conjunctive normal form we construct a

graph G that has a g(k) approximate solution for 2k-Independent Dominat-
ing Set if and only if X is satisfied by a truth assignment of weight k.

To build G we begin with the construction from [4] described in detail above.
We single out one of the variable selection components A(q) and add to the con-
struction k′ = g(k)− 2k +1 new variable selection components, G1, G2, . . . , Gk′ ,
along with new edges between all vertices in each of these new components and
all vertices in A(q). Each of the new components is connected to B(q), to the
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(q − 1 mod k) gap and order enforcement component, and to the clause vertices
of V3 = {c[j] : 1 ≤ j ≤ m} in exactly the same way as is A(q). We modify the
edge sets E1, E4 and E9 accordingly.

For each of the new variable selection components except the last, that is Gi,
1 ≤ i < k′, we connect the jth vertex, 0 ≤ j ≤ n − 1, in Gi, by an edge to all
vertices in Gi+1 except for the jth vertex in Gi+1.

Finally, we blow up the size of the enforcement vertex sets V4, V5 and V6 so
that
V4 = {a′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ g(k) + 1}
V5 = {b′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ g(k) + 1}
V6 = {d[r, s, t] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n − 1, 1 ≤ t ≤ g(k) + 1}
and modify the edge sets E5, E6, E7 and E9 accordingly.

The construction is illustrated in Fig. 1.

B(q)

G1

Gk′

A(q)

Fig. 1. Gadget for g(k)-Approx Independent Dominating Set

⇐ Suppose X has a satisfying truth assignment τ of weight k, with variables
xi0 , xi1 , ..., xik−1 assigned the value true. Suppose i0 < i2 < ... < ik−1. Let
dr = ir+1(modk) − ir (mod n) for r = 0, ..., k − 1. It is straightforward to verify
that the set of 2k vertices

D = {a[r, ir] : 0 ≤ r ≤ k − 1} ∪ {b[r, ir, dr] : 0 ≤ r ≤ k − 1}

is an independent dominating set in G.
⇒ Suppose that G contains an independent dominating set D of size at most
g(k).

There are two possibilities here. In the first case, D has size 2k and contains
exactly one vertex from each of the sets A(r) and B(r) for 0 ≤ r ≤ k − 1. The
closed neighbourhoods of the 2k vertices a′[0, 1], ..., a′[k − 1, 1], b′[0, 1], ..., b′[k −
1, 1] are disjoint, so D must consist of at least 2k vertices, one in each of these
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closed neighbourhoods. Since D is independent we can choose at most one from
each of the A(r), 0 ≤ r ≤ k − 1, and at most one from each of the B(r),
0 ≤ r ≤ k − 1 (in the correct non-dominated column.) Also, none of the vertices
of V4∪V5 are in D, since if a′[r, u] ∈ D then necessarily a′[r, u′] ∈ D for 1 < u′ <
g(k)+1 (otherwise D fails to be dominating), which contradicts that D contains
at most g(k) vertices. None of the vertices in V6 are in D by a similar argument.
Finally, if D contains a vertex from A(q) then, since G is independent, none of
the vertices in the new variable selection components, Gi, 1 ≤ i ≤ k′ are in D. It
follows that D contains exactly one vertex from each of the sets A(r) and B(r)
for 0 ≤ r ≤ k − 1.

In the second case, D has size g(k) and contains exactly one vertex from each
of the sets A(r), 0 ≤ r ≤ k − 1, r 	= q, and B(r), 0 ≤ r ≤ k − 1, and exactly
one vertex from each of the sets Gi, 1 ≤ i ≤ k′. In the case of the Gi sets, if
D contains the jth vertex of G1, then D contains the jth vertex of each of the
other Gi, 2 ≤ i ≤ k′. Note that, as in the first case, none of the vertices of V4∪V5
are in D, since if a′[r, u] ∈ D then necessarily a′[r, u′] ∈ D for 1 < u′ < g(k) + 1
(otherwise D fails to be dominating), which contradicts that D contains at most
g(k) vertices. None of the vertices in V6 are in D by a similar argument. Finally,
if D contains a vertex from any of the Gi then, since G is independent, none of
the vertices in A(q) can be in D.

In either case, the truth assignment represented by D satisfies X . This follows
by the definition of the edge sets E1 (modified) and E8. ��
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Abstract. A subset of vertices D ⊆ V of a graph G = (V, E) is a dom-
inating clique if D is a dominating set and a clique of G. The existence
problem ‘Given a graph G, is there a dominating clique in G?’ is NP-
complete, and thus both the Minimum and the Maximum Dominating
Clique problem are NP-hard. We present an O(1.3390n) time algorithm
that for an input graph on n vertices either computes a minimum dom-
inating clique or reports that the graph has no dominating clique. The
algorithm uses the Branch & Reduce paradigm and its time analysis is
based on the Measure & Conquer approach. We also establish a lower
bound of Ω(1.2599n) for the worst case running time of our algorithm.

1 Introduction

In the last decades of the 20th century the early research on exact exponential
time algorithms for NP-hard problems had been concentrating on satisfiability
problems (see e.g. [12,20]). Nevertheless, some interesting exponential time algo-
rithms for graph problems had also been established during this period. In the
last years the design and analysis of exact exponential time algorithms for NP-
hard problems has gone through an exciting growth of interest. Various NP-hard
graph problems have attracted attention. For some of them, such as Independent
Set, Coloring and Hamiltonian Circuit, exact algorithms had been studied since
a long time [19,21,15,11]. Other problems, such as Dominating Set, Treewidth
and Feedback Vertex Set, have not been considered under this perspective until
very recently [3,22,18].

For more details we refer to the following surveys on exact algorithms:
[4,12,20,23,24]. In an important survey, Woeginger presents fundamental tech-
niques to design and analyse exact exponential time algorithms [23]. In a survey
by Fomin et al. various techniques for the design and analysis of Branch & Re-
duce algorithms are discussed, among them Measure & Conquer, Lower Bounds
and Memorization [4].

In this paper we study the Minimum Dominating Clique problem (abbr.
MinDC) and present an exact Branch & Reduce algorithm to solve it.

Basic Definitions. Let G = (V, E) be an undirected and simple graph, i.e.
without loops and multiple edges. We denote by n the number of vertices of G.
The open neighborhood of a vertex v is denoted by N(v) = {u ∈ V : {u, v} ∈ E},
and the closed neighborhood of v is denoted by N [v] = N(v) ∪ {v}. The degree

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 130–141, 2006.
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of a vertex v is |N(v)|. The subgraph of G induced by S ⊆ V is denoted by G[S].
We will write G − S short for G[V − S]. A set S ⊆ V of vertices is a clique, if
any two of its vertices are adjacent; S is independent if any two of its vertices
are non adjacent.

For a vertex set S ⊆ V , we define N [S] =
⋃

v∈S N [v] and N(S) = N [S] − S.
We also define NS(v) = N(v) ∩ S and NS [v] = N [v] ∩ S. The S-degree of v,
denoted by dS(v), is |NS(v)|. Similarly, given two subsets of vertices S ⊆ V and
X ⊆ V , we define NS(X) = N(X) ∩ S. We will write NS[v] for S \ NS [v], and
NS(v) for NS [v] ∪ {v}.
Domination. Let G = (V, E) be a graph. A set D ⊆ V with N [D] = V is
called a dominating set of G; in other words, every vertex in G either belongs
to D or has a neighbor in D. The Minimum Dominating Set problem asks to
find a dominating set of minimum cardinality. It is one of the fundamental and
well-studied NP-hard graph problems [6]. Various variants of the Dominating
Set problem have been studied extensively. Dominating sets D of a graph G are
often required to have particular additional properties, as e.g. to be an inde-
pendent set or to be a clique of G. For such particular types of dominating sets
the related problem asking to find such a set of minimum cardinality is often
NP-hard. For a large and comprehensive survey on domination theory, we refer
the reader to the books [9,10] by Haynes, Hedetniemi and Slater.

Dominating Cliques. A subset of vertices D ⊆ V of a graph G = (V, E) is
a dominating clique if D is a dominating set and a clique. The study of dom-
inating cliques was initiated in [1] with a motivation from social sciences. The
existence problem ‘Given a graph G, decide whether G has a dominating clique’
(abbr. ExDC) is NP-complete even when restricted to weakly triangulated graphs
or when restricted to cocomparability graphs [14]. This implies that both natural
optimization versions of the problem are NP-hard. The Minimum Dominating
Clique problem (abbr. MinDC) asks either to find a dominating clique of mini-
mum cardinality of the input graph G, or to output that G has no dominating
clique. The Maximum Dominating Clique problem (abbr. MaxDC) asks to find a
dominating clique of maximum cardinality, or to output that there is none. The
complexity of MinDC on various graph classes has been studied in the eighties
and nineties (see [14]).

Related Results. Exact algorithms for the Minimum Dominating Set problem
have been studied in a sequence of papers [5,17,8,3]. The fastest known algo-
rithms today are due to Fomin et al. and they are based on a Branch & Reduce
algorithm for the Minimum Set Cover problem. Their running time is O(1.5263n)
using polynomial space and O(1.5137n) using exponential space [3]. The analysis
is based on Measure & Conquer and the exponential space algorithm is obtained
using memorization.

The above results and the power of the Branch & Reduce paradigm when com-
bined with an analysis using Measure & Conquer, motivate studying exact algo-
rithms for other domination problems. For example, Gaspers et al. established
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an O(1.3575n) time Branch & Reduce algorithm to compute a minimum inde-
pendent dominating set [7].

Prior to our work, the only published exact algorithm solving a dominating
clique problem is due to Culberson et al. and it solves the existence problem
ExDC [2]. Their exact Branch & Reduce algorithm is a by-product and it is
used for experimental studies and no analysis of the worst case running time is
attempted.

There is also a simple 3n/3 nO(1) = O(1.4423n) time algorithm for ExDC or
MaxDC enumerating all maximal cliques and verifying each for being a dominating
set. It uses a polynomial delay algorithm to generate all maximal independent
sets [13], and its running time follows from Moon and Moser’s result [16] that
the number of maximal independent sets of a graph is at most 3n/3.

Our Results. We present an O(1.3390n) time and polynomial space algorithm
computing a minimum dominating clique of the input graph G, or reporting
that G has no dominating clique. Thus our algorithm also solves the existence
problem ExDC. It is designed using the Branch & Reduce paradigm aiming for
simple reduction and branching rules. To analyse the worst case running time
of the algorithm we use a non standard measure for the size of an input of a
(sub)problem and we rely heavily on the Measure & Conquer technique. The
theoretical analysis will be described in full detail. The numerical solution of a
system of about 400 linear recurrences each one depending on up to 7 parameters
is impossible without a computer. We use a program based on random local
search and obtain an upper bound of O(1.3390n) for the worst case running
time.1

Since current tools for the time analysis of Branch & Reduce algorithms (in-
cluding Measure & Conquer) seem to overestimate the running time of the al-
gorithm, lower bounds for the worst case running time are of interest. We show
that the worst case running time of our algorithm is Ω(1.2599n).

2 The Algorithm of Culberson et al.

In [2] Culberson et al. propose the Branch & Reduce algorithm DomClq to de-
cide whether a given graph has a dominating clique or not. However the main
interest of their work is in determining the phase transition of the existence
problem ExDC on random graphs in the classical Gn,p model. The algorithm
DomClq has been developed for experimental studies. Culberson et al. report on
experiments for random graphs with up to 1000 vertices (and p close to the
threshold 3−√

5
2 ). A theoretical analysis of the worst case running time had not

been attempted.
It is natural to compare the algorithm DomClq and our algorithm. However

as Fomin et al. point out in [3], upper bounds of Branch & Reduce algorithms

1 While determining optimal values of our parameters needs computing power, given
the recurrences and the optimal values of the parameters, verification of correctness
is relatively easy.
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are likely to overestimate the worst case running time. Thus comparing upper
bounds of the worst case running time of both algorithms might lead to wrong
conclusions. Here lower bounds will be of great help.

Theorem 1. The worst case running time of algorithm DomClq is Ω(1.4142n).

Proof. The graphs used to demonstrate the lower bound are denoted by Gk,� =
(Vk,�, Ek,�), k, � ≥ 1. Their vertex set is Vk,� = {w, v, a, b} ∪ {xi : 0 ≤ i ≤
�} ∪ {yi : 1 ≤ i ≤ �} ∪ {ui : 1 ≤ i ≤ k} ∪ {si : 1 ≤ i ≤ k + � − 1}. Thus Gk,� has
n = 2k + 3� + 4 vertices. The edge set of Gk,� is Ek,� = {{w, v}}∪ {{v, xi} : 0 ≤
i ≤ �} ∪ {{v, yi} : 1 ≤ i ≤ �} ∪ {{v, si} : 1 ≤ i ≤ k + � − 1} ∪

⋃k
i=1{{ui, sj} : i ≤

j ≤ i + � − 1} ∪ {{a, xi} : 0 ≤ i ≤ �} ∪ {{b, yi} : 1 ≤ i ≤ �}. Finally all pairs of
vertices in the set S = {si : 1 ≤ i ≤ k + � − 1} ∪ {xi : 0 ≤ i ≤ �} ∪ {yi : 1 ≤
i ≤ �} are adjacent in Gk,� with the exception of the following pairs {{si, x0} : i
mod � 	= 0} ∪ {{xi, yj} : 1 ≤ i, j ≤ �}. See also the graph Gk,5 in Fig. 1.

Fig. 1. Graph Gk,5 (Dashed lines represent non edges of Gk,5.)

Let C be a dominating clique of Gk,�. Clearly, C contains the vertex b or
one of its neighbors. However, b ∈ C is impossible since a could not have a
neighbor in C in this case. By the construction of Gk,�, all vertices yi have the
same neighborhood, thus w.l.o.g. we may assume y1 ∈ C. This implies x0 ∈ C
since x0 is the only common neighbor of a and y1. Consequently, and that is
important for the analysis, the vertex x0 belongs to each dominating clique,
and therefore no vertex si with i mod � 	= 0 belongs to a dominating clique
of Gk,�.

Consider the algorithm DomClq of [2]. When applied to a graph Gk,�, first a
vertex of minimum degree is determined and this is w and then the algorithm
branches on v which is the unique neighbor of w in Gk,�. Thus DomClq(Gk,�, {v}, S,
{ui : 1 ≤ i ≤ k}∪{a, b}) is executed. Hence DomClq chooses a vertex in F = {ui :
1 ≤ i ≤ k} ∪ {a, b} with smallest number of neighbors in S. Suppose that each
time the algorithm has to do such a choice it chooses the free vertex ui with the
smallest possible index i. Then the algorithm branches on the neighbors of ui. Note
that, according to the above remark, no vertex si with i mod � 	= 0 belongs to a
dominating clique, and thus DomClq really branches on each of the five neighbors
of ui.
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Consider now the search tree obtained after branching on the neighbors of
u1, u2, . . . , ut−1, 2 ≤ t ≤ k. When branching on the neighbors of ut the set of
vertices already discarded from the original graph Gk,� is {w, v} ∪ {uj : 1 ≤ j <
t} ∪ {sj : 1 ≤ j < t}. How many subproblems are obtained by branching on the
neighbors of ut?

– when branching on st (the first neighbor of ut), the algorithm discards 2
vertices (since N [st] = {st, ut}),

– when branching on st+1 (the second neighbor of ut), the algorithm discards
4 vertices: st, st+1, ut, ut+1,

– . . .
– when branching on st+�−1 (the last neighbor of ut), the algorithm removes

2� vertices: st, st+1, st+2, . . . , st+�−1, ut, ut+1, ut+2, . . . , ut+�−1.

We denote by L[q] the maximum number of leaves of the search tree when
applying DomClq to an induced subgraph of Gk,� on q ≤ n vertices. According
to our previous analysis, we obtain the following recurrence

L[q] ≥ L[q − 2] + L[q − 4] + L[q − 6] + · · · + L[q − 2�].

Solving this recurrence one obtains L[q] ≥ 1.4142q. Consequently, 1.4142n is a
lower bound for the maximum number of leaves of the search tree of an execution
of algorithm DomClq on an input graph with n vertices. ��

3 A Branch and Reduce Algorithm for MinDC

In this section we present an algorithm to solve the MinDC problem for an input
graph G = (V, E). We may assume G to be connected, otherwise G cannot have
a dominating clique.

Our algorithm uses four different types of vertices, and thus maintains a par-
tition of V into four pairwise disjoint subsets:

– S is the set of selected vertices, i.e. those vertices that have already been
chosen for the potential solution (and thus S is a clique);

– D is the set of discarded vertices, i.e. those vertices that have already been
removed from the (input) graph;

– A =
⋂

s∈S N(s) \ D is the set of available vertices, i.e. those vertices that
might still be added to the potential solution S;

– F = V \ (N [S]∪D) is the set of free vertices, i.e. those vertices are still to be
dominated (hence for each free vertex at least one of its available neighbors
must be added to S).

Our recursive algorithm mdc finds the size of an optimum solution SOL, i.e. a
dominating clique of smallest possible cardinality such that the following prop-
erties are fulfilled: (i) S ⊆ SOL, (ii) D ∩ SOL = ∅, and (iii) F ∩ SOL = ∅. If no
such dominating clique exists then mdc returns “∞”. For a discussion of halting,
reduction and branching rules of the Branch & Reduce algorithm we refer to the
next section.
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Algorithm mdc(G,S,D,A,F)
Input: A graph G = (V, E) and a partition (S, D, A, F ) of its vertex set.
Output: The minimum cardinality of a dominating clique of G

respecting the partition, if one exists.
if ∃u ∈ F s.t. dA(u) = 0 then

return ∞ (H1)

else if F = ∅ then
return |S| (H2)

else if ∃v ∈ A s.t. dF (v) = 0 then
return mdc(G, S, D ∪ {v}, A \ {v}, F ) (R1)

else if ∃u ∈ F s.t. dA(u) = 1 then
let v ∈ A be the unique neighbor of u in A
return mdc(G, S ∪ {v}, D ∪ NA[v] ∪ NF (v),A \ NA(v), F \ NF (v)) (R2)

else if ∃v1, v2 ∈ A s.t. N(v1) ⊆ N(v2) then
return mdc(G, S, D ∪ {v1}, A \ {v1}, F ) (R3)

else if ∃u1, u2 ∈ F s.t. NA(u1) ⊆ NA(u2) then
return mdc(G, S, D ∪ {u2}, A, F \ {u2}) (R4)

else if ∃u ∈ F s.t. ∀v′ ∈ NA(u), dF (v′) = 1 and
∃v ∈ NA(u) s.t. A \ NA(u) ⊆ NA(v) then

let v ∈ NA(u) be a vertex verifying the condition
return mdc(G, S ∪ {v}, D ∪ (NA(u) \ {v}) ∪ {u}, A \ NA(u), F \ {u})

(R5)

else
choose v ∈ A of maximum F -degree
if dF (v) = 1 then

let u be a vertex of F
return minv∈NA(u){mdc(G, S ∪ {v}, D ∪ (NA(u) \ {v}) ∪ {u} ∪
NA[v], A \ (NA(v) ∪ NA(u)), F \ {u})} (B1)

else
return
min mdc(G, S ∪ {v}, D ∪ NA[v] ∪ NF (v), A \ NA(v), F \ NF (v)),
mdc(G, S, D ∪ {v}, A \ {v}, F ) (B2)

To compute a minimum dominating clique of a given graph G = (V, E),
mdc(G, {v}, ∅, N(v), V \ N [v]) is called for each vertex v ∈ N [w], where w is
a vertex of G of minimum degree. To observe correctness, assume that C is a
minimum dominating clique of G. Since C is a dominating set of G it must
contain a vertex of N [w], say v0. Thus choosing S = {v0} and D = ∅ im-
plies that only neighbors of v0 are still available and all non neighbors of v0
become free vertices, and still have to be dominated (by adding vertices to S).
Thus mdc(G, {v0}, ∅, N(v0), V \ N [v0]) returns the size of a minimum dominat-
ing clique of G. Clearly if G has no dominating clique then for all v ∈ N [w],
mdc({v}, ∅, N(v), V \ N [v]) returns “∞”.

Note that with a slight modification mdc could also output a minimum dom-
inating clique SOL, if one exists, instead of the minimum cardinality |SOL|.
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4 Analysis of the Algorithm

Correctness. The algorithm halts (i.e. the subproblem corresponds to a leaf in
the search tree) if either there is a free vertex with no available neighbor (H1),
and thus there is no dominating clique for the current instance, or there are no
free vertices (H2), and thus S is a dominating clique of minimum size for this
instance.

Otherwise the algorithm possibly performs some reduction rules on the prob-
lem instance, and then it branches using (B1) or (B2) on two or more subprob-
lems, which are solved recursively. In each subproblem the algorithm selects an
available vertex and adds it to S and/or discards vertices of G (i.e. adds them
to D), and those changes of S and D imply updates on A and F .

The correctness of the reduction rules is not hard to see. Let (S, D, A, F ) be
the current partition.

(R1) If an available vertex v has no free neighbor then v can be discarded.
(R2) If v ∈ A is the unique free neighbor of u ∈ F then v must be selected (and

added to S).
(R3) If v1, v2 ∈ A such that N(v1) ⊆ N(v2) then for any dominating clique C

containing v1 there is the dominating clique C′ = (C − {v1}) ∪ {v2} with
|C′| ≤ |C|. Thus we may safely discard v1.

(R4) If u1, u2 ∈ F such that NA(u1) ⊆ NA(u2) we may discard u2 ∈ F . To
see this, notice that any dominating clique respecting the partition (S, D ∪
{u2}, A, F \ {u2}) contains a neighbor v ∈ A of u1, and thus also a neighbor
of u2.

(R5) Let u ∈ F be a free vertex such that all its neighbors v ∈ A have u as
unique free neighbor. If one of these available neighbors, say v0, is adjacent
to all vertices in A \ NA(u), then there exists a minimum dominating clique
containing v0 respecting the partition. To see this, notice that a dominating
clique must contain a vertex of NA(u), that only one of those will be chosen
(all others will be discarded immediately by rule (R1)), and that v0 is the
best choice since it does not force removal of any remaining A-vertices (i.e.
those in A \ NA(u)).

Now we consider the correctness of the branching rules. Let (S, D, A, F ) be
the partition of the vertices of G when applying a branching rule. Note that the
minimum F -degree of an available vertex is at least 1 since any available vertex
v with dF (v) = 0 would have been discarded according to reduction rule (R1).

(B1) If all available vertices have exactly one free neighbor, then (B1) chooses
any free vertex u ∈ F . Clearly any dominating clique respecting (S, D, A, F )
must contain precisely one neighbor v ∈ A of u. Thus for each neighbor
v ∈ A of u, (B1) branches to a subproblem by selecting v. Clearly, the
minimum cardinality among all dominating cliques obtained is the minimum
cardinality of a dominating clique respecting partition (S, D, A, F ).

(B2) For an available vertex v of F -degree at least 2 either v is selected or
discarded which is trivially correct.
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Analysis of the running time. In order to bound the progress made by our
algorithm at each branching step, we apply the Measure & Conquer approach
which was introduced in [3] (see also [4]). The following non standard measure
on the size of the input of a (sub)problem is used:

μ = μ(G, S, D, A, F )

=
∑
v∈A,

dF (v)=1

a1 +
∑
v∈A,

dF (v)=2

a2 +
∑
v∈A,

dF (v)≥3

a≥3

+
∑
v∈F,

dA(v)=2

f2 +
∑
v∈F,

dA(v)=3

f3 +
∑
v∈F,

dA(v)=4

f4 +
∑
v∈F,

dA(v)≥5

f≥5

To each vertex v of G, we assign a weight depending on its number of free
neighbors if v is an available vertex, or depending on its number of available
neighbors if v is a free vertex. Since (S, D, A, F ) is a partition of the vertices of
G = (V, E), it is easy see that μ(G, S, D, A, F ) ≤ |A ∪ F | ≤ |V | = n.

To simplify the analysis we impose that 0 ≤ a1, a2, a≥3, f2, f3, f4, f≥5 ≤ 1,
and a1 ≤ a2 ≤ a≥3 and f2 ≤ f3 ≤ f4 ≤ f≥5. Furthermore we introduce the
following quantities:

Δai =

⎧⎨
⎩

0 if i ≥ 4
ai − ai−1 if 2 ≤ i ≤ 3
a1 if i = 1

and Δfi =

⎧⎨
⎩

0 if i ≥ 6
fi − fi−1 if 3 ≤ i ≤ 5
f2 if i = 2

Let P [μ] denote the maximum number of subproblems recursively solved by
mdc to compute a solution on an instance of size μ.

First let us consider the reduction rules. For each of the five reduction rules,
when applying it either a vertex is selected or a non empty set of vertices is
discarded. Thus the number of consecutive applications of reduction rules to a
subproblem (without intermediate branching) is at most n. Since each reduction
rule can easily be implemented such that its execution is done in polynomial
time, the running time of mdc on a subproblem (which corresponds to a node
of the search tree) is polynomial. Furthermore, we want to emphasize that due
to the choice of the measure no application of a reduction rule to a problem
instance will increase its measure.

Let us now consider the more interesting part: the branching rules (B1) and
(B2). In the classical analysis of the running time of Branch & Reduce algorithms
with a so-called standard measure, i.e. number of vertices in case of graphs, the
two branching rules would be fairly easy to analyse and one would obtain a few
linear recurrences. Using Measure & Conquer this analysis is very interesting
(and can be quite tedious). On the other hand, Measure & Conquer allows
relatively simple algorithms with competitive running times since the tricky case
analysis that had been part of Branch & Reduce algorithms (see e.g. [21]) is now
‘transferred’ to the time analysis of the algorithm.

(B1) The algorithm mdc chooses a free vertex u and for each of its available
neighbors v, it calls itself recursively with v being selected (i.e. v added to S).
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Recall that (B1) is applied only when all available vertices have F -degree 1. Thus
when mdc selects an available neighbor v of u, then all other available neighbors
of u would decrease their F -degree to 0 and would be discarded and removed
from A by reduction rule (R1). Finally we observe that due to reduction rule
(R5), each available neighbor of u must be non-adjacent to at least one vertex
of A \ NA(u). Consequently for every dA(u) ≥ 2, we obtain a recurrence:

– if dA(u) = i and 2 ≤ i ≤ 4,

P [μ] ≤ 1 + 2 · P [μ − 2a1 − fi − a1] (1)

– if dA(u) ≥ 5,

P [μ] ≤ 1 + dA(u) · P [μ − dA(u)a1 − f≥5 − a1] (2)

(B2) Algorithm mdc chooses an available vertex v ∈ A of maximum F -degree.
Since neither (R1) nor (B1) had been applied we may conclude that dF (v) ≥ 2.
Using (B2) we branch into two subproblems by either selecting v (branch IN) or
discarding v (branch OUT).

To obtain subproblem (branch IN), v is removed from A, all free neighbors
of v are removed from F and for all w ∈ NA(NF (v)) \ {v} their F -degree will
decrease. Moreover if a vertex x ∈ NA(NF (v)) has only one free neighbor, then
x will be removed when reduction rule (R1) is applied to subproblem (branch
IN). Hence we obtain

ΔIN = adF (v) +
∑

u∈NF (v)

fdA(u) +
∑

w∈NA(NF (v))\{v}
ΔadF (w) (3)

For the subproblem (branch OUT), v is discarded and thus removed from
A. The A-degree of all free neighbors of v decreases. When applying (R2) to
subproblem (branch OUT), the free neighbors having only one available neighbor
will be removed from F . To dominate those vertices, the algorithm has to select
their only remaining neighbors in A. For y ∈ A, we denote by NF2(y) = {u ∈
NF (y) : dA(u) = 2} the set of free neighbors of v having precisely two available
neighbors and one of those is y. Consequently, we obtain

ΔOUT = adF (v) +
∑

u∈NF (v)

ΔfdA(u) +
∑

w∈NA(NF2(v))\{v}
adF (w) (4)

Finally using equations (3) and (4) we obtain the recurrence

P [μ] ≤ 1 + P [μ − ΔOUT ] + P [μ − ΔIN ]. (5)

Optimizing the values of the parameters. To optimize the parameters one
has (as an important step) to solve the system of recurrences obtained when
putting into recurrence (5) all possible values of dF (v) ≥ 2, dA(u) ≥ 2 for every
u ∈ NF (v) and dF (w) such that 1 ≤ dF (w) ≤ dF (v). The number of recurrences
is infinite; fortunately one can restrict to the recurrences with 2 ≤ dF (v) ≤ 4,
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2 ≤ dA(u) ≤ 6 for every u ∈ NF (v), and 1 ≤ dF (w) ≤ dF (v). Indeed, since
ΔadF (v) = 0 for dF (v) ≥ 4 and ΔfdA(v) = 0 for each free vertex u with dA(u) ≥ 6,
all recurrences with dF (v) > 4 or dA(u) > 6 for some vertex u ∈ NF (v) will be
majorized by some recurrence with dF (v) = 4 or dA(u) = 6. Similarly considering
recurrence (2), under the assumption a1 ≥ 0.75 and f≥5 = 1, all recurrences with
dA(u) ≥ 7 will be majorized by the one with dA(u) = 6.

We use a program to generate those linear recurrences that removes super-
fluous ones. For any fixed and valid choice of the 7 parameters this system of
420 recurrences is easy to solve. Finally using a program based on random local
search, values of the 7 parameters are searched as to minimize the bound on
the running time. We numerically obtained the following values: a1 = 0.7632,
a2 = 0.9529, a≥3 = 1, f2 = 0.3869, f3 = 0.7579, f4 = 0.9344, f≥5 = 1. Using
these values an upper bound of O(1.3390n) is established.

Theorem 2. Algorithm mdc solves problem MinDC in time O(1.3390n).

It is not unlikely that the worst case running time of the Branch & Bound
algorithm mdc is O(αn) for some α < 1.3390. Significant improvements of the
upper bound would require a more clever choice of the measure or new techniques
to analyse the running time of Branch & Reduce algorithms.

5 An Exponential Lower Bound

Since our upper bound on the running time of mdc might overestimate the worst
case running time, it is natural to ask for a lower bound that may give an idea
of how far is the established upper bound of O(1.3390n) from the real worst case
running time of mdc.

Theorem 3. The worst case running time of algorithm mdc is Ω(1.2599n).

Proof. To prove the claimed lower bound we consider the graphs Gk for integers
k ≥ 1 (see also Fig. 2).

The vertex set of Gk is Vk = {w, v} ∪
⋃

1≤i≤k
1≤j≤5

{vi,j} ∪
⋃

1≤i≤k{ui}. The

edge set Ek of the graph Gk consists of the edge {w, v} and the union of⋃
1≤i≤k
1≤j≤5

{
{v, vi,j}, {ui, vi,j}

}
and

⋃
1≤i<i′≤k

1≤j,j′≤5

{
{vi,j , vi′,j′} : (i′, j′) 	= (i + 1, j)

}
.

Notice that the graph Gk has precisely 6k + 2 vertices.

To establish an exponential lower bound of the worst case running time, we
lower bound the number of leaves of a search tree obtained by an execution of
mdc on Gk. (Notice that ties will be broken such as to maximise the number
of leaves.) A vertex of minimum degree is w, and for our analysis it suffices
to consider mdc(Gk, S1, D1, A1, F1) with S1 = {v}, D1 = ∅, A1 = NGk

(v) and
F1 = Vk \ NGk

[v] = {u1, u2, . . . , uk}.
Notice that no reduction rules can be applied. For each i, every vertex vi,j , 1 ≤

j ≤ 5, has the unique non neighbor vi+1,j in {vi+1,j : 1 ≤ j ≤ 5}. Furthermore
since all available vertices have only one free neighbor, branching rule (B1) will be
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Fig. 2. Graph Gk (Dashed lines represent non edges.)

applied. We assume that whenever mdc branches on a subproblem using (B1),
then it branches on the neighborhood of the free vertex ui with the smallest
possible value of i.

Let us consider the first branching. By our rule, the algorithm branches on
the neighborhood of u1, i.e. v1,j , 1 ≤ j ≤ 5, into 5 subproblems. Consider a
subproblem, say v1,j1 had been selected, thus the partition of the subproblem is
(S2, D2, A2, F2) with S2 = S1∪{v1,j1}, D2 = D1∪{v2,j1}∪

⋃
1≤j≤5{v1,j : j 	= j1},

A2 = A1 \ ({v2,j1} ∪
⋃

1≤j≤5{v1,j}) and F2 = F1 \ {u1}.
All five subproblems have the same sets A2 and F2 and thus the graph re-

maining after removal of discarded vertices is essentially the same. By our con-
struction the previous arguments apply to any partition (S2, D2, A2, F2), and
thus mdc branches using (B1) on all four available neighbors of u2. (Note that
v2,j1 is not adjacent to v1,j1 and thus not available.)

Inductively one can show that mdc branches succesively on the neighborhood
of u1, u2, u3, . . . uk−2, and obtains always 4 subproblems (actually 5 for u1). Thus
the number of leaves in the search tree is Ω(4n/6) = Ω(1.2599n), where n = 6k+2
is the number of vertices of Gk. ��

6 Concluding Remarks

It is worth noting that our O(1.3390n) time algorithm for MinDC can also be
applied to solve ExDC.

The problems MaxDC and ExDC are polynomial time solvable on chordal graphs
by enumerating all the at most n maximal cliques and verifying which of them
are dominating sets. On the other hand, MinDC is NP-hard on split graphs. Using
the Minimum Set Cover algorithms given in [3] one easily obtains an O(1.2303n)
algorithm for MinDC on split graphs. This approach can be extended to chordal
graphs without increasing the running time.
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Abstract. We analyze edge dominating set from a parameterized
perspective. More specifically, we prove that this problem is in FPT for
general (weighted) graphs. The corresponding algorithms rely on enu-
meration techniques. In particular, we show how the use of compact
representations may speed up the decision algorithm.

1 Introduction

Graphs and line graphs. It is a common observation that problems that are hard
for general graphs become easier when considered on line graphs, i.e., graphs
whose adjacency relation can be thought of as originating from the edge-to-
edge neighborhood of another graph. More specifically, if G = (V, E) is some
graph, then its line graph L(G) has E has the set of “vertices,” and there is
an “edge” (in L(G)) between e1, e2 ∈ E if e1 and e2 share a common endpoint
in G. For example, while vertex cover is NP-complete on general graphs, it
can be solved in polynomial time on line graphs, since this corresponds to the
edge cover problem. The same comment applies to the more general problem
weighted vertex cover. However, dominating set remains NP-complete
even when restricted to line graphs, see [23], even when restricted to planar
cubic graphs [15]. Does this mean that there is actually “no difference” between
general graphs and line graphs with respect to dominating set ? This is in
fact the case from a classical perspective, but the picture changes when one
considers two prominent approaches of how to deal with computationally hard
problems:

– while dominating set is hard to approximate on general graphs [7] (it
cannot be approximated better than lnn unless NP ⊆ DT IME(nln ln n)),
edge dominating set is constant-factor approximable (also in the weighted
case), see [3,13,18]; moreover, it is MAXSNP-hard and hence there is no
polynomial-time approximation scheme to be expected [3,23];

– while dominating set is W[2]-hard on general graphs, edge dominating
set is in FPT ; in this paper, we are going to show that edge dominating
set, when parameterized by the number of elements k in the dominating
set, can be solved in time O∗(2.62k).

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 142–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



edge dominating set: Efficient Enumeration-Based Exact Algorithms 143

Fig. 1. The two thick-line edges form an edge dominating set

Problem statements. Let us formulate the problem dealt with in this paper
without reference to line graphs. An edge dominating set of a graph is a subset
D of edges such that each edge is either in D or incident to an edge in D. An
instance of edge dominating set (EDS) is given by a graph G = (V, E), and
the parameter, a positive integer k. The task is: Is there an edge dominating set
D ⊆ E with |D| ≤ k? Consider Fig. 1 for an illustration; the two thick edges form
an edge dominating set. We will also consider a weighted variant: An instance
of weighted edge dominating set (WEDS) is given by a graph G = (V, E)
with edge weights ω : E → R≥1, and a positive integer k (the parameter). We
ask: Is there an edge dominating set D ⊆ E with ω(D) ≤ k?

We will analyze these problems in the framework of parameterized complex-
ity [6]. A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed
alphabet and N is the set of all non-negative integers. Therefore, each instance
of the parameterized problem P is a pair (I, k), where the second component k
is called the parameter. The language L(P ) is the set of all YES-instances of P .
We say that the parameterized problem P is fixed-parameter tractable [6] if there
is an algorithm that decides whether an input (I, k) is a member of L(P ) in time
f(k)|I|c, where c is a fixed constant and f(k) is a function independent of the
overall input length |I|. The class of all fixed-parameter tractable problems is
denoted by FPT . We will make use of the O∗-notation that has now become
standard in exact algorithmics: in contrast to the better known O-notation, it
not only suppresses constants but also polynomial parts of the run time denoted
this way. We are dealing with (sometimes weighted) undirected (hyper-)graphs
throughout this paper and use according standard notations.

Results. In previous work, it was claimed that edge dominating set on bipar-
tite graph (this problem is also known as matrix domination set) belongs to
FPT . More precisely, this was posed as an exercise on the kernelization chapter
in [6]. Rather recently, Weston [22] exhibited how to obtain a kernel of exponen-
tial size. Moreover, he shows a (not quite convincing) enumeration-based (this
is our interpretation of the paper) search tree approach. E. Prieto in her PhD
thesis [21] obtained a kernel of quadratic size for minimum maximal match-
ing (i.e., independent dominating set in line graphs) on general graphs, a
problem that is basically the same as edge dominating set, see [3,17,23].
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The contributions of this paper are the following ones: (1) We generalize
the enumeration-based algorithm for matrix domination set to edge dom-
inating set. (2) We further show how these techniques may also apply to the
weighted case; notice that the close relation between minimum maximal match-
ing and edge dominating set is lost in the weighted case. (3) Incidentally, we
also present a search tree algorithm for weighted hitting set, parameterized
by the number of edges. (4) We show how enumeration-based algorithms that
are usually deemed to be quite inefficient can be sped up by exploiting that not
all minimal vertex covers (in our case) need to be “completely” enumerated.
Rather, certain non-determinism can be left to the following computation phase
in the leaves of the search tree. (5) We show that auxiliary vertex cover struc-
tures can be quite useful for other algorithmic problems. The speed-up technique
mentioned in (4) can then be formalized as compact representations of vertex
covers. This can be seen as extensions of ideas presented by Damaschke [4]. (6)
We also use the mentioned vertex cover structures to obtain quadratic kernels
for the considered problems.

2 Relating to vertex cover and to weighted hitting set

First, we observe that to every edge dominating set instance G = (V, E)
with a solution D ⊆ E of size at most k, there corresponds a vertex cover of size
at most 2k: take all vertices incident to the at most k edges: CD :=

⋃
e∈D e.1

This observation is also true for weighted edge dominating set: by our
problem definitions, a solution of weight at most k can contain at most k edges.
Conversely, any vertex cover C can be extended to some edge set D with C ⊆ CD

with |CD| ≤ 2|C|; since C is a vertex cover, D will be an edge dominating set.
This gives the following idea: (1) we cycle through all minimal vertex covers

C of size up to 2k of the given graph G = (V, E); (2) we use this additional
structure to solve the problem of finding an edge dominating set D of size at
most k (or weight at most k) that contains all vertices of C, i.e., C ⊆ CD.

As to step (1), it is known how to list all minimal vertex covers up to size 2k
in time O∗(4k), see [4]. To see that the second step works, consider the following
auxiliary hypergraph G′ = (V ′, E′): G′ contains the edges E of G as its vertices,
i.e., V ′ = E, and for every x contained in the cover C, we introduce a hyperedge
hx that contains all edges of G that are incident with x. Hence, |E′| ≤ |C| ≤ 2k.

Fomin, Kratsch and Woeginger [12] recently came up with an efficient para-
meterized algorithm for the following problem: An instance of minimum hitting
set, parameterized by # edges (HSE) is given by a hypergraph G = (V, E),
and the parameter, |E|. The task is: Find a minimum hitting set C ⊆ V !

We will generalize that algorithm in the following so that it can also cope with
weighted hitting set. The algorithm uses a technique known as dynamic
programming on subsets. To this end, given a hypergraph G = (V, E) with V =
{v1, . . . , vn}, the algorithm maintains a 2-dimensional array F that contains, for
1 This observation was also the basis of a first, simple factor-4 approximation algorithm

for minimum edge dominating set presented in [3].
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Algorithm 1. A dynamic programming algorithm for minimum hitting set,
parameterized by # edges, called HSE
Input(s): a hypergraph G = (V, E) with vertex weights ω, V = {v1, . . . , vn}
Output(s): a hitting set C ⊂ V of minimum weight

for all E′ ⊆ E do
F [E, 0] = ∞

end for
F [∅, 0] = 0
for j = 1, . . . , n do

for all E′ ⊆ E do
Let E′′ := {e ∈ E′ | vj ∈ e}.
F [E′, j] := min{F [E′, j − 1], F [E′ \ E′′, j − 1] + w(vj)}
{Two cases arise: either vj is not belonging to a minimum hitting set for E′,
then, F [E′, j] = F [E′, j − 1]; or vj belongs to a minimum hitting set C for E′,
but then, C \{vj} is a minimum hitting set for E′ \E′′ relative to Vj−1, so that
F [E′, j] = F [E′ \ E′′, j − 1] + w(vj).}

end for
end for

E′ ⊆ E and for j = 0, . . . , n, in F [E′, j] the minimum weight of a subset C of
Vj := {v1, . . . , vj} that covers E′ (C is also called a hitting set for E′ (relative to
Vj)); if no such cover exists, set F [E′, j] = ∞. More details on how to construct
the entries for F are contained in Alg. 1. There, also the basic reasoning for the
inductive step in the correctness proof of that algorithm is given.

Theorem 1. minimum hitting set, parameterized by # edges can be
solved in time O∗(2|E|) on a hypergraph G = (V, E) with vertex weights ω.

Corollary 1. weighted edge dominating set can be solved in time O∗(16k).

3 Replacing the Hitting Set Phase

In this section, we are going to explain that the second hitting set phase
can be replaced by a polynomial-time computation, which already considerably
improves on the run time stated in Cor. 1.

If we have a minimal vertex cover C of size at most 2k, we first compute
a maximum matching M in the induced graph G[C]. Clearly, |M | ≤ k. There
might be a set C′ ⊆ C of vertices not matched by M . Since M is maximal, no
two vertices of C′ are neighbors. Hence, for all x ∈ C′, we can take any edge
incident with x into the edge dominating set to be constructed.

Theorem 2. Alg. 2 runs in time O∗(4k) and solves edge dominating set.

Proof. The run time is dominated by the enumeration of at most 4k minimal
vertex covers of size 2k, see [4]. The correctness is based on the fact that the
following problem can be solved in polynomial time by matching techniques: An
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Algorithm 2. EDS-enum: An enumeration-based search tree algorithm for EDS
Input(s): a graph G = (V, E), a positive integer k
Output(s): if possible: a subset D ⊂ E, |D| ≤ k, that dominates all edges or

NO if no such set exists.

Create a list L of minimal vertex covers C of G with |C| ≤ 2k, see [4].
{This hides the search tree part.}
for all C ∈ L do

Set D :=GECmatch(G, C)
if |D| ≤ k then

return D
end if

end for
return NO

instance of generalized edge cover (GEC) is given by a graph G = (V, E)
together with a set of red vertices R ⊆ V . The task is to construct a minimum
set C ⊆ E of edges that cover all vertices from R. Namely, a maximum matching
of G[R] plus adding edges to cover the hitherto unmatched vertices will do. This
describes the procedure GECmatch that gets as arguments the graph and the
set of red vertices. Moreover, if R is a vertex cover, then a GEC solution will be
an edge dominating set.

Remark 1. Observe the crucial difference between the weighted and the un-
weighted case here. For example, notice that the thick edges in Fig. 1 (that
form a minimum edge dominating set) can be obtained by computing a max-
imum matching from a vertex cover formed by the black vertices (or from a
minimal vertex cover formed by the “outermost” three black vertices). However,
if the edges that connect the outermost black vertices with the black center ver-
tex have edge weight one and all other edges weight three, then those three edges
with weight one will form a minimum edge dominating set, in there is only one
minimum edge dominating set in this weighted graph. However, starting with a
minimum matching in the graph induced by the outermost three black vertices
will never find the mentioned minimum edge dominating set, since some edge
that connects the outermost black vertices will be contained in such a solution.

It is known (see [19]) that minimum weighted edge cover can be optimally
solved in polynomial (cubic) time. Based on this result, Plesńık gave a cubic
time algorithm for a generalization of the problem we are interested in, see [20];
below, we give a shorter construction for a cubic time algorithm for generalized
minimum weighted edge cover, directly based on [19].

So, let G = (V, E) be a graph with edge weight function ω and with a set R of
distinguished vertices. The task is to find a minimum weight edge set that covers
R. As explained above, we cannot restrict our attention to G[R] = (R, ER). In
addition, we consider the following edges. For each x ∈ R, let ex be the edge
incident with x that has lowest weight amongst all edges incident with x and
not contained in ER. If all edges incident with x are contained in ER, then ex is
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undefined. So, we add all such edges ex to G[R] to obtain a graph G′ = (V ′, E′)
with R ⊆ V ′ and ER ⊆ E′. Now, we identify all vertices in V ′ \R to get one new
vertex r, so that we obtain a graph G′′ = (V ′′, E′′) with V ′′ = R∪{r}. The edge
weight function is accordingly adapted and also called ω. Let f be the function
that maps edges from E′ onto edges from E′′ (by the described identification).

Proposition 1. (G, ω, R) has a minimum generalized weighted edge cover of
weight ωopt if and only if either (G[R], ω) or (G′′, ω) has a minimum weighted
edge cover of weight ωopt.

Proof. Let C be a minimum generalized weighted edge cover covering R. With-
out loss of generality, edges from C that are not contained in G[R] could be the
edges of the form ex chosen as described above. If C contains no edges of the
form ex, then C is also a minimum weighted edge cover for G[R]. If C contains
edges of the form ex, then f(C) is a minimum weighted edge cover for G′′.

Conversely, a set C that is a feasible edge cover for G[R] is also a feasible
generalized edge cover for (G, R). Similarly, an edge set C (containing no edges
outside of E′) such that f(C) is a feasible edge cover of G′′ is also a feasible
generalized edge cover for (G, R). Taking the cover of lowest weight ensures to
produce a minimum generalized weighted edge cover for (G, ω, R).

Hence, Theorem 2 is also valid in the weighted case.

4 A Closer Look at the Search Tree

Can we further improve on the running time of Theorem 2 ? To this end, recon-
sider the main idea behind the enumeration of all minimal vertex covers C of size
up to 2k: starting from such a cover, we are going to construct a corresponding
edge dominating set D of minimum cardinality among all edge dominating sets
D′ with C ⊆ CD′ .

It is usually a good strategy to look at small-degree vertices to find nice
branching scenarios (or kernelizations). Assume that we do not branch at vertices
of degree one. If � is a bound on the vertex cover size, this gives the recurrence

T (�) ≤ T (� − 1) + T (� − 2)

for the running time, i.e., T (�) ≤ 1.6181�, i.e., with � = 2k, 2.6181k is an upper-
bound for the run time in this case.2

So, after branching we are left with a set of vertices C that covers all vertices
of the originally given graph G = (V, E) but an edge set E′ that is the set
of edges of G[V \ C] that has maximum degree one. Now, we can produce a
corresponding edge dominating set for G from this structure by finding an edge
set D with the following properties:

2 The related so-called enumerate-and-expand speed-up technique was independently
developed by Mölle, Richter and Rossmanith (see Proc. CSR and COCOON, ap-
pearing in 2006), worked out with the example of connected vertex cover.
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– every v ∈ C is covered by some e ∈ D, i.e., C ⊆ CD;
– every e′ ∈ E′ is dominated by some e ∈ D, i.e., ∀e′ ∈ E′∃e ∈ D : e′ ∩ e 	= ∅.

We will call a D satisfying both properties (C, E′)-satisfying. Coming back to
our hitting set model from the beginning, one can see that these properties can
be modeled by aiming at constructing a minimum hitting set for a hypergraph
whose vertex set is E and which has the following edges:

– for every v ∈ C, introduce the hyperedge {{u, v} | u ∈ N(v)};
– for every e′ ∈ E′, introduce the hyperedge {e | e ∩ e′ 	= ∅}.

Notice that there cannot be more than 2k hyperedges in the constructed hitting
set instance (unless we face a NO-instance), since in the previously described
complete vertex enumeration scenario, each of the edges from E′ would have
been “resolved” by a further branching step.

We can go one step further; namely, notice that we can ignore the possibility
to include any e′ ∈ E′ into the corresponding edge dominating set we construct,
as long as there is any edge e ∈ E with |e ∩ e′| = 1. To exclude that special
case, we employ in the very beginning of the algorithm (before even starting the
vertex cover enumeration phase) the following reduction rule as long as possible:

Reduction rule 1. (isolated edges) Let (G = (V, E), k) be an instance of edge
dominating set. If e ∈ E such that ∀ê ∈ E : ê ∩ e 	= ∅ ⇒ ê = e, then delete e
from the graph instance and decrease the parameter k by one.

After having performed the vertex cover enumeration phase (without branching
at vertices of degree one) on such a reduced instance G (without isolated edges),
we have arrived (at each leave of the search tree) at a partial cover set C plus
the above-mentioned edge set E′. Now, we form a new graph G′ from G by
contracting all edges from E′. Moreover, let M be the set of |E′| vertices obtained
by merging endpoints of edges from E′. Let C′ = C ∪ M . We claim that D is
a minimum edge dominating set for G that is (C, E′)-satisfying if and only if
there is a minimum general edge cover D′ for G′ (with red vertex set C′) with
|D′| = |D|. Namely, if D′ is a general edge cover D′ for G′ covering all vertices
from C′, then after “unmerging” we recover the graph G = (V, E) in which we
can view the edges from D′ as elements from E. Then, D′ is a (C, E′)-satisfying
edge set that is an edge dominating set according to our previous reasoning.
Conversely, if D is a (C, E′)-satisfying edge dominating set, then first we can
transform D into a (C, E′)-satisfying edge dominating set D′ with D′ ∩ E′ = ∅;
namely, since G contains no isolated edges, we can replace any e ∈ D ∩ E′ by
some (arbitrarily chosen) incident edge e′. The edge set D′ constructed this way
can be interpreted as an edge set of G′, and now D′ (with |D′| = |D| if we
assume minimality of D) is a general edge cover for G′.

Theorem 3. edge dominating set can be solved in time O∗((2.6181)k).

For minimum maximal matching we can conclude (based on [3,17,23]):

Corollary 2. The problem MMM can be solved in time O∗((2.6181)k).
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Algorithm 3. Reducing matrix domination set to edge dominating set.
Input(s): a matrix instance (M, k) of matrix domination set.
Output(s): a graph instance (G, k) of edge dominating set such that (M, k) is a

YES-instance iff (G, k) is a YES-instance.

Let C be the set of columns of M .
Let R be the set of rows of M .
Form the vertex set V = C ∪ R of G = (V, E).
for all i ∈ R, j ∈ C do

Put {i, j} ∈ E iff entry (i, j) of M is one.
end for

The sketched unweighted case can be transferred to the weighted case. More
precisely, the yet uncovered edges (left over from the vertex cover enumeration
phase) can be modelled by first introducing a fresh vertex u and connecting u
to all vertices [v, w] obtained by merging v and w as described above. The new
edge {u, [v, w]} will get the same weight as the former edge {v, w} had, and all
other edge weights will stay the same.

Corollary 3. The problem WEDS can be solved in time O∗((2.6181)k).

Let us finally consider a related problem, also mentioned in [23]: An instance
of matrix domination set (MDS) is given by an n × n matrix with entries
from {0, 1}, and a positive integer k (the parameter). We ask: Is there a set D of
one-entries in the matrix, where |D| ≤ k, such that every other one-entry has at
least one row or one column in common with some one-entry from D ? Observe
that this problem can be also seen as a chess piece domination problem: interpret
the matrix as a chessboard showing places where it is allowed to place a rook or
where not (by having a one- or a zero-entry in the corresponding position).

Lemma 1 (Yannakakis/Gavril). matrix domination set can be reduced
(via FPT reduction) to edge dominating set.

The corresponding reduction is formulated in Alg. 3, hence making explicit the
remark in [8, p. 249] that MDS can be solved via EDS. In [6, Exercise 3.2.9],
solving matrix domination set by means of a kernelization and search tree
based algorithm is proposed as an exercise. 3

Hence, MDS is in one-to-one correspondence to EDS, restricted to bipartite
graphs. Since our solution of edge dominating set is based on vertex cover,
and the latter (in its decision version!) is known to be easier on bipartite graph,
the following corollary might see some improvements; however, we did not man-
age to get improvements in a straightforward manner, since we are rather relying
on the enumeration than on the decision version of VC.

Corollary 4. matrix domination set can be solved in time O∗((2.6181)k).
3 In [22], a O∗(ck) algorithm is proposed for matrix domination set with c < 2; how-

ever, this is based on a wrong interpretation of our results on constraint bipartite
vertex cover as detailed in [11].
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5 Compact Representations

We have shown that auxiliary vertex cover structures can be quite useful to solve
edge dominating set and related problems. The speed-up described in the
previous section can be also interpreted as enumerating compact representations
of vertex covers that can be formalized similar to regular expressions.

1. ∅ is an expression denoting a compact representation that denotes no sets
at all, i.e., C(∅) = {∅}.

2. If a is a vertex, then a is an (atomic) compact representation of the cover
collection C(a) only containing the cover {a}, i.e., C(a) = {{a}}.

3. If e = {a, b} is an edge, then ê is an (atomic) compact representation of the
cover collection C(ê) only containing the covers {a} and {b},

4. If A and B are compact representations that represent cover collections C(A)
and C(B), resp., then A + B represents the cover collections

C(A + B) = {X ∪ Y | X ∈ C(A), Y ∈ C(B)}.

5. If A and B are compact representations that represent cover collections
C(A) and C(B), then A ∪ B represents the cover collection C(A ∪ B) =
C(A) ∪ C(B).

6. Nothing else are compact representations.

Example 1. For example, the minimal vertex covers of the graph

({1, . . . , k} × {1, 2}, {{(i, 1), (i, 2)} | 1 ≤ i ≤ k})

can be written as

̂{(1, 1), (1, 2)} + ̂{(2, 1), (2, 2)} + · · · + ̂{(k, 1), (k, 2)}.

For instance, if k = 3,

̂{(1, 1), (1, 2)} + ̂{(2, 1), (2, 2)} + ̂{(3, 1), (3, 2)}
= {{(1, 1)}, {(1, 2)}}+ {{(2, 1)}, {(2, 2)}}+ {{(3, 1)}, {(3, 2)}}
= {{(1, i), (2, j), (3, �)} | 1 ≤ i, j, � ≤ 2}

Theorem 4. Representations of all minimal vertex covers of size up to k (and
possibly some more non-minimal cover representations) can be listed in time
O∗(1.6181k).

Proof. (Sketch) The usual enumeration algorithm for listing all minimal vertex
covers up to size k can be modified by avoiding branches at vertices of degree
one. After this branching, the remaining graph has maximum degree one, and
the cover of an edge e = {x, y} can be described by ê.

The difference to the results of Damaschke [4] is that he insists on enumerating
only minimal vertex covers up to size k; hence, his running times are worse. Since
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vertex cover structure already found many applications, we believe that such
representations (or possibly similar ones) may yield interesting improvements in
the development of exact graph algorithms. For example, in [10], the problem
of finding a total vertex cover of size up to k was discussed, where a vertex
cover C is called total if every x ∈ C satisfies N(x) ∩ C 	= ∅. By a vertex cover
enumeration phase yielding covers C in the leaves, followed by a hitting set phase
(with hyperedge set {N(x) | x ∈ C}), this problem can be solved in time O∗(4k).
With compact representations, this can be readily improved to O∗(3.2361k): for
ê in the compact representation of some covers with e = {x, y}, we can introduce
a hyperedge N(x)∪N(y). Choosing z ∈ N(x)∪N(y) also determines whether x
or y is put into the cover. However, different techniques allowed to further lower
the constants for that problem to O∗(2.3655k) in [10].

6 Kernels

We have solved the problems dealt with in this paper by a search-tree technique
based on enumerating minimal vertex covers. This approach can be also used
to show quadratic kernels for all these problems. Namely, as explained in [9],
Buss’ kernelization rules are also valid for the enumeration task. Hence, we can
assume that the reduced graph has no more than 2(2k)2 = 8k2 vertices in the
enumeration phase, where k is the parameter of the say EDS instance. We can
turn this into a kernel for EDS by the following observations: (a) We keep each
vertex in the vertex cover enumeration kernel in the EDS kernel. (b) For each
vertex v that was put into each vertex cover by Buss’ rule, we have to put v plus
an arbitrary neighbor u of v that is not yet in the EDS kernel, provided that v
does not have already neighbors in the EDS kernel. This possibly complicated-
looking rule allows to cover v by some edge also in the reduced instance. Since
the number of vertices added by this special treatment of vertices put into the
vertex cover by Buss’ rule is smaller than the quantity in the general case, we
get an upper bound of 8k2 vertices for the number of vertices in the EDS kernel.

Lemma 2. Given an instance (G, k) of edge dominating set, it is possible to
produce a kernel (G′, k′) of EDS with |V (G′)| ≤ 8k2 and k′ ≤ k. Similar results
are true for WEDS, MMM, and MDS.

Notice that a kernel of size 4k(k + 2) was obtained by Prieto for MMM by
adapting crown reduction techniques, see [21]. We can improve on the kernel size
for EDS at the cost of introducing annotations (marking vertices that should go
into the vertex cover):4 (a) isolated edges are to be put into the edge dominating
set anyways; (b) vertices of degree two with two neighbors of degree one comprise
a component that can be solved by arbitrarily taking one of either edges of the
component into the dominating set; (c) vertices of degree one that are not covered
by rules (a) and (b) need not be put into the vertex covers considered in the

4 The notion of annotated kernel is further discussed in joined work of Abu-Khzwam
and Fernau, also contained in these proceedings.
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enumeration phase but rather their unique neighbors; this is reflected by deleting
the degree-one vertex and by marking its unique neighbor. By (c), also marked
vertices have minimum degree of two. Hence, the kernel (possibly containing
some marked vertices doomed to go into the vertex cover) contains at most 4k2

vertices: Buss’ rule yields that there are at most (2k)2 many edges in the graph
instance, and knowing that both marked and unmarked vertices have minimum
degree of two means: there are also at most (2k)2 many vertices in the graph.

7 Conclusions and Open Problems

We have shown how ideas stemming from the area of parameterized enumera-
tion can be useful to obtain efficient parameterized algorithms for decision prob-
lems. More precisely, we derived an O∗(2.62k) algorithms for edge dominating
set and many variants. It would be interesting to see if these constants could
be further improved. In particular, it might be possible to avoid branching at
degree-two vertices in the enumeration phase, as argued before Theorem 3 for
degree-one vertices. Notice that in terms of approximation factors, there seems to
be no difference between vertex cover, total vertex cover, edge domi-
nating set, and feedback vertex set; however, in terms of search tree based
parameterized algorithms, vertex cover appears to be the easiest of the three,
while feedback vertex set seems to be the hardest one, see [1,5,14,18].

It would be interesting to see if and how the ideas presented in this paper
can be applied to solve weighted minimum maximal matching. Notice that
the main problem is to allow Alg. 1 to cope with the additional independence
condition. In the literature, several other variants of edge dominating set
have been considered that might deserve further studies from the viewpoint of
parameterized complexity; recent papers are [2,16].

Acknowledgments. We thank M. R. Fellows, R. Niedermeier, E. Prieto Rodŕıguez,
B. Randerath, U. Stege, and M. Weston for some discussions.
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Abstract. We investigate the parameterized complexity of Maximum
Independent Set and Dominating Set restricted to certain geometric
graphs. We show that Dominating Set is W[1]-hard for the intersection
graphs of unit squares, unit disks, and line segments. For Maximum
Independent Set, we show that the problem is W[1]-complete for unit
segments, but fixed-parameter tractable if the segments are axis-parallel.

1 Introduction

For a set V of geometric objects, the intersection graph of V is a graph with
vertex set V where two vertices are connected if and only if the corresponding
two objects have non-empty intersection. Intersection graphs of disks, rectangles,
line segments, and other objects arise in applications such as facility location [5],
frequency assignment [3], and map labeling [1].

In this paper we investigate the parameterized complexity of Maximum In-
dependent Set and Dominating Set restricted to certain geometric graphs.
Both of these problems are W[1]-hard on general graphs, but fixed-parameter
tractable when restricted to planar graphs. Geometric intersection graphs are
in some sense intermediate between these two classes: they still have lot of geo-
metric structure that might be used in algorithms, but we lose some of the
simplicity of planar graphs. Therefore, it is an interesting question to investigate
the complexity of these problems on different types of geometric graphs.

This line of research was pursued in [4], where Maximum Independent Set
was proved to be W[1]-complete for unit disk and unit square graphs. Here we
extend the results by considering the intersection graphs of line segments and
the Dominating Set problem.

In Section 2, we introduce a general framework that can be used to prove
W[1]-hardness for geometric problems. We give a semi-formal definition of what
properties the gadgets of the reduction have to satisfy; in later sections the only
thing we have to do for each W[1]-hardness proof is to define the problem-specific
gadgets and verify the required properties.

In Section 3, we show that Dominating Set is W[1]-hard for unit disk graphs
and unit square graphs. In general, Dominating Set is W[2]-complete, but it
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turns out that Dominating Set is in W[1] (hence W[1]-complete) for unit
square graphs. As far as we know, this is the first example when Dominating
Set restricted to some class of graphs is not W[2]-complete, but not fixed-
parameter tractable either. Section 4 shows that Dominating Set is W[1]-
complete also for the intersection graphs of axis-parallel line segments.

Section 5 considers the Maximum Independent Set problem for the in-
tersection graphs of line segments. If the segments are axis-parallel (or more
generally, if they belong to at most d different directions), then the problem
is fixed-parameter tractable. However, if there is no restriction on the number
of different directions, then the problem becomes W[1]-complete, even if every
segment has the same length.

2 General Framework

All the W[1]-hardness proofs in the paper follow the same general framework. In
this section we present a general reduction technique that can be used to prove
hardness of a geometric or planar problem. The reduction creates an instance
that consists of some number of gadgets, and connections between gadgets. The
exact details of the gadgets and the connections are problem specific, and will
be given in later sections separately for each problem. However, we show here
that if for a particular problem there is a gadget satisfying certain properties,
then the problem is W[1]-hard.

The W[1]-hardness proof is by parameterized reduction from Maximum
Clique. Given a graph G and an integer k, it has to be decided if G has a
clique of size k. For convenience, we assume that G has n vertices and n edges.
The set of vertices and the set of edges are identified with the set {1, 2, . . . , n}.

The constructed instance contains k2 copies of the gadget, arranged in k rows
and k columns. The gadget in row i and column j will be denoted by Gi,j .
Adjacent gadgets in the same row are connected by a horizontal connection and
adjacent gadgets in the same column are connected by a vertical connection.

Let ι : {1, . . . , n2} → {1, . . . , n} × {1, . . . , n} be an arbitrary one-to-one map-
ping, and let ι(s) = (ι1(s), ι2(s)) for every s. For technical reasons, in this paper
we always use the mapping defined by s = (ι1(s) − 1)n + ι2(s). The crucial
property of the gadget is that in every optimum solution it represents an integer
number between 1 ≤ s ≤ n2, which can be also interpreted as the pair ι(s).
The role of the horizontal connections is to ensure that if the values of the two
gadgets are s and s′, then ι1(s) = ι1(s′), i.e., they agree in the first component.
Therefore, in an optimum solution the same value vi will be represented by the
first component of every gadget in row i. Similarly, the vertical connections en-
sure that if s and s′ are the values of two adjacent gadgets in a column, then
ι2(s) = ι2(s′). Thus the second component has the same value v′j in column j.

Now we encode the graph G into the instance by restricting certain gadgets.
Restricting a gadget to the subset S ⊆ {1, 2, . . . , n2} means that the gadget is
modified such that it can represent values only from S. For every 1 ≤ i ≤ k,
we restrict the gadget Gi,i to the set {s : ι1(s) = ι2(s)}. This ensures that the



156 D. Marx

first component in row i is the same as the second component in column i, i.e.,
vi = v′i for every 1 ≤ i ≤ k. To encode the structure of the graph, we restrict Gi,j

(for every i 	= j) to the set {s : ι1(s) and ι2(s) are adjacent vertices}. It is clear
that if every gadget has a value that respects these restrictions, then v1, v2, . . . ,
vk are all distinct and they form a clique of size k: if vi and vj are not adjacent,
then the value (vi, vj) = (vi, v

′
j) does not respect the restriction on gadget Gi,j .

On the other hand, if v1, v2, . . . , vk is a clique of size k, then we can assign
value ι−1((vi, vj)) to gadget Gi,j . This assignment respects the restrictions on
the gadgets and the connections.

In summary, the gadgets have to satisfy the following requirements:

Definition 1 (Matrix Gadget). A gadget satisfies the following properties:

1. (The gadget) In every solution of the constructed instance, each gadget
represents a number between 1 and n2.

2. (Restriction) The gadget can be restricted to a set ∅ 	= S ⊆ {1, . . . , n2}
such that in every solution the gadget represents a number in S.

3. (Horizontal connection) If two gadgets are connected by a horizontal con-
nection, then the values they represent agree in the first component.

4. (Vertical connection) If two gadgets are connected by a vertical connec-
tion, then the values they represent agree in the second component.

5. (Constructing a solution) If it is possible to assign values to the gadgets
such that this assignment respects the restrictions and respects the connec-
tions, then the constructed instance has a solution.

The first four requirements ensure that if the instance described above has a
solution, then G has a clique of size k. The other direction of the reduction
follows from the last requirement: if v1, . . . , vk is a clique of size k, then giving
the value (vi, vj) to gadget Gi,j respects the restrictions and the connections,
thus there is a solution.

3 Dominating Set for Squares and Disks

The first problem we consider is Dominating Set: given a graph G, the task
is to find a set S of k vertices such that each vertex of the graph is either in S
or is a neighbor of a member of S. In this section we prove hardness results for
the problem in the case of unit disk graphs and unit square graphs.

Theorem 1. Dominating Set is W[1]-hard for axis-parallel unit squares.

Proof. The proof uses the framework of Section 2. Let ε < 1/3n2. In this proof it
does not matter if the squares are open or closed. In the constructed instance of
Dominating Set the lower left corner of each square is of the form (i+αε, j+βε),
where i and j are integers, and −n ≤ α, β ≤ n. If two squares have the same i,
j values, then they belong to the same block; the blocks form a partition of the
squares. If the lower left corner of a square S is (i +αε, j + βε) then α (resp., β)
is the horizontal (resp., vertical) offset of S, and we set offset(S) = (α, β).
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Fig. 1. The gadget used in the proof of Theorem 1

The gadget. The gadget used in the reduction is shown in Figure 1. It
consists of 16 blocks X1, . . . , X8, Y1, . . . , Y8. Each block Xi contains n2 squares
Xi,1, . . . , Xi,n2 , while each block Yi contains n2 + 1 squares Yi,0, . . . , Yi,n2 . The
offsets of the squares are defined as follows:

offset(X1,j) = (j, −ι2(j)) offset(Y1,j) = (j + 0.5, j + 0.5)

offset(X2,j) = (j, ι2(j)) offset(Y2,j) = (j + 0.5, −n)

offset(X3,j) = (−ι1(j), −j) offset(Y3,j) = (j + 0.5, −j − 0.5)

offset(X4,j) = (ι1(j), −j) offset(Y4,j) = (−n, −j − 0.5)

offset(X5,j) = (−j, ι2(j)) offset(Y5,j) = (−j − 0.5, −j − 0.5)

offset(X6,j) = (−j, −ι2(j)) offset(Y6,j) = (−j − 0.5, n)

offset(X7,j) = (ι1(j), j) offset(Y7,j) = (−j − 0.5, j + 0.5)

offset(X8,j) = (−ι1(j), j) offset(Y8,j) = (n, j + 0.5)

Observe that two squares can intersect only if they belong to the same or
adjacent blocks. For example, the squares in block X2 have positive vertical
offsets and the squares in X3 have negative vertical offset, hence they do not
intersect. The crucial property of the construction is that two squares Xi,j1 ,
Xi+1,j2 dominate every square of Yi+1 if and only if j1 ≥ j2. This follows from
the fact that Xi,j1 dominates exactly Yi+1,0, . . . , Yi+1,j1−1 from block Yi+1 and
Xi+1,j2 dominates exactly Yi+1,j2 , . . . , Yi+1,n2 from block Yi+1.

Lemma 1. Assume that a gadget is part of an instance such that none of the
blocks Yi are intersected by squares outside the gadget. If there is a dominating
set D of the instance that contains exactly 8 squares from the gadget, then there
is a dominating set D′ with |D′| ≤ |D|, and there is an integer 1 ≤ j ≤ n2 such
that D′ contains exactly the squares X1,j, . . . , X8,j from the gadget.

Proof. If D contains no square from any Xi, then it has to contain at least one
square from each Yi. Remove these squares, and add the squares X1,1, . . . , X8,1
to D instead. This does not increase the size of D, and every square of the gadget
will be dominated. Furthermore, as a square from Yi cannot dominate anything
outside the gadget, the modified set is also a dominating set, and we are done.

We show that D′ can be chosen such that it contains exactly one square from
each Xi, and consequently, it contains no squares from the blocks Yi. Observe
that the squares in Yi cannot be all dominated by squares only from Xi−1 or by
squares only from Xi (the indices of the blocks are modulo 8). This implies that
if D contains no square from Yi, then D contains at least one square from Xi+1
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Fig. 2. The horizontal (a) and vertical (b) connections used in the proof of Theorem 1

and at least one square from Xi−1. Assume that D ∩ Xi = ∅ for some i, but
D ∩ (X1 ∪ · · · ∪ X8) is maximal. Since D contains a square from some Xi, there
are integers a, b such that D ∩ Xa 	= ∅, D ∩ Xb 	= ∅, and D ∩ Xi = ∅ for every
a < i < b. Therefore, D ∩ Yi 	= ∅ for every a < i ≤ b. Let Xa,j be a member of
Xa ∩D. Set D′ := (D \ (Ya+1 ∪· · ·∪Yb)∪Xa+1,j ∪· · ·∪Xb,j . Clearly, |D′| ≤ |D|,
and D is also a dominating set: the squares in Yi are dominated by Xi−1,j and
Xi,j for every a < i ≤ b. This contradicts the maximality of D ∩ (X1 ∪ · · · ∪X8).

Assume that D contains squares X1,j1 , . . . , X8,j8 , this means that D contains
no other square from the gadget. As we have observed above, the squares in Yi

are dominated only if ji−1 ≥ ji. This gives the chain of inequalities j1 ≥ j2 ≥
· · · ≥ j8 ≥ j1, thus all these values are the same integer j. Thus D contains
exactly the squares X1,j, . . . , X8,j from the gadget. ��

The constructed instance contains k2 copies of the gadget, and it will be true
that gadgets are connected to the rest of the instance only via the Xi blocks.
The new parameter (the size of the dominating set to be found) is k′ = 8k2. At
least 8 squares are required to dominate the Yi blocks of a gadget, thus every
solution has to contain exactly 8 squares from each gadget. In this case, Lemma 1
defines a number j for each gadget, which will be called the value of the gadget.
Therefore, Property 1 of Definition 1 is satisfied.

Restriction. Let S ⊆ {1, 2, . . . , n2} be an arbitrary set. We restrict the gadget
by removing every square Xi,j for 1 ≤ i ≤ 8 and j 	∈ S. It can be checked
that Lemma 1 remains true for gadgets modified this way. Obviously, if X1,j is
removed, then the gadget cannot represent value j, thus the value represented
by the gadget will be a member of S.

Horizontal connections. The horizontal connections required by Property 3
are shown in Figure 2a. We add a block A that is adjacent to block X3 of the first
gadget and block X8 of the second, and we add a block B adjacent to X4 of the
first gadget and X7 of the second. Blocks A and B contain n + 1 squares each:
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square Aj has offset (−j−0.5,−n2−1) and square Bj has offset (j +0.5, n2 +1)
(0 ≤ j ≤ n). These blocks do not intersect the Yi blocks.

Assume that a dominating set does not contain any of the squares from A and
B, it contains exactly the squares X1,j, . . . , X8,j from the first gadget, and it
contains exactly the squares X1,j′ , . . . , X8,j′ from the second gadget. We claim
that ι1(j) = ι1(j′). If ι1(j) > ι1(j′), then X3,j of the first gadget dominates the
squares Aι1(j), . . . , An2 and X8,j of the second gadget dominates squares A0,
. . . , Aι1(j′)−1, thus Aι1(j′) is not dominated. If ι1(j) < ι1(j′), then no square
dominates Bι1(j) of block B. Thus ι1(j) = ι1(j′), and the values of the two gad-
gets agree in the first component.

Vertical connections. Vertical connections are defined analogously (see Fig-
ure 2b). Square Cj of block C has offsets (n2 + 1,−ι2(j)) and square Dj has
offsets (−n2 − 1, ι2(j)) (0 ≤ j ≤ n).

Constructing a solution. It is straightforward to see that if every gadget has
a correct value, then a dominating set of size 8k2 can be found: if the value of a
gadget is j, then select the 8 squares X1,j , . . . , X8,j from the gadget. ��
The same reduction shows hardness for unit disks: it can be shown that if each
square in the constructed instance is replaced by a disk and ε is sufficiently small,
then the intersection structure does not change. Details omitted.

Theorem 2. Maximum independent set is W[1]-hard for the intersection graphs
of unit disks in the plane. ��
For general graphs Dominating Set set is W[2]-complete, therefore Theorem 1
leaves open the question whether the problem is W[1]-complete or W[2]-complete
when restricted to these graph classes. For unit squares (and more generally, for
axis-parallel rectangles) we show that dominating set is in W[1]. This is the first
example when a restriction of dominating set is easier than the general problem,
but it is not fixed-parameter tractable.

Theorem 3. Dominating Set is in W[1] for the intersection graphs of axis-
parallel rectangles.

Proof. We prove membership in W[1] by reducing Dominating Set to Short
Turing Machine Computation. We construct a Turing machine (with un-
bounded nondeterminism) that accepts the empty string in k′ steps if and only
if there is a dominating set of size k. Henceforth L(S) (resp., R(S)) denotes
the x-coordinate of the left (resp., right) edge of open rectangle S, and T (S)
(resp., B(S)) denotes the y-coordinate of the top (resp., bottom) edge.

The tape alphabet of the Turing machine consists of one symbol for each
rectangle in the instance plus two special symbols 0 and 1. In the fist k steps the
machine nondeterministically writes k symbols x1, . . . , xk on the tape, which is a
guess at a size k dominating set. Next 4k2 symbols h1,1, . . . , hk,k, h′

1,1, . . . , h′
k,k,

v1,1, . . . , vk,k, v′1,1, . . . , v′k,k are written, each of these symbols is either 0 or 1.
The intended meaning of hi,j is the following: it is 1 if and only if R(xi) ≤ L(xj).
Similarly, we will interpret h′

i,j = 1 as R(xi) ≤ R(xj). The symbols vi,j and v′i,j
have similar meaning, but with B and T instead of L and R.
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The rest of the computation is deterministic. First we check the consistency
of the symbols hi,j with the symbols xi, xj . For each 1 ≤ i, j ≤ k, we make a
full scan of the tape, and store in the internal state of the machine the symbols
hi,j , xi, xj . If these symbols are not consistent (e.g., R(xi) > L(xj) but hi,j = 1)
then the machine rejects. The length of the tape is k + 4k2, and we repeat the
check for k2 pairs i, j, thus the checks take a constant number of steps.

For technical reasons we add four dummy rectangles DL, DR, DT , DB. The
rectangle DL is to the left of the other rectangles, i.e., R(DL) ≤ L(S) for every
other rectangle S. Similarly, the rectangles DR, DT , DB are to the right, top,
bottom of the other rectangles, respectively. Instead of testing whether the k
rectangles x1, . . . , xk form a dominating set, we will test whether x1, . . . , xk,
DL, DR, DT , DB are dominating. Clearly, the answer is the same.

We say that the k + 4 selected rectangles contain an invalid window if there
are four selected rectangles SL, SR, ST , SB with the following properties.

– R(SL) ≤ L(SR) and T (SB) ≤ B(ST ). Let A be the rectangle with left edge
R(SL), right edge L(SR), bottom edge T (SB), top edge B(ST ).

– There is no selected rectangle that intersects A.
– There is a rectangle S that is completely contained in A.

If the selected rectangles contain an invalid window, then they are not dominat-
ing since rectangle S is not dominated. On the other hand, if there is a rectangle
S which is not dominated, then the selected squares contain an invalid window:
by extending S into the four directions until we reach the edge of some selected
rectangles, we obtain the window A. The four rectangles that stopped us from
further extending A can be used as SL, SR, ST , SB.

In the rest of the computation, the Turing machine checks whether the selected
rectangles contain an invalid window. For each quadruple iL, iR, iT , iB it has
to be checked whether the rectangles xiL , xiR , xiT , xiB form an invalid window.
Using the symbols hi,j etc. on the tape, it can be tested in a constant number of
steps whether a selected rectangle intersects the window determined by these four
rectangles. If not, then the machine reads into its internal state the four values
xiL , xiR , xiT , xiB , and rejects if there is a rectangle in the window determined
by these squares. There are (k + 4)4 possible quadruples and each check can be
done in a constant number of steps; therefore, the whole computation takes a
constant number k′ of steps. ��

4 Dominating Set for Line Segments

In this section we use the framework of Section 2 to prove that Dominating
Set is W[1]-complete also for axis-parallel line segments.

Theorem 4. Dominating Set is W[1]-complete for axis-parallel segments.

Proof. Membership in W[1] follows from Theorem 3. Therefore, only W[1]-
hardness has to be proven here. In the constructed instance of Dominating
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Set, there are k2 gadgets, and the new parameter is k′ = 12k2. Every domi-
nating set has to contain at least 12 segments from each gadget, hence every
solution contains exactly 12 segments from each gadget.

The gadget. The gadget satisfying the requirements of Definition 1 is shown in
Figure 3. Unless stated otherwise, the segments are open in this proof. The line
segments in the gadget can be dominated only by at least 12 segments, since a
segment can dominate at most one of a′, b′, . . . , �′. Furthermore, we claim that
there are exactly n2 dominating sets of size 12: they are of the form as, bs, . . . , �s

for 1 ≤ s ≤ n2. First, it is easy to see that a size 12 dominating set has to contain
exactly one segment from a1, . . . , an2 , exactly one segment from b1, . . . , bn2 ,
etc. For example, if none of a1, . . . , an2 is selected, then we have to select both
a′ and a′′, which makes the size of the dominating set greater than 12. Assume
that asa , bsb

, . . . , �s�
is a dominating set. Segment asa dominates b1, b2, . . . ,

bsa−1 (see Fig. 3) and csc dominates bsc+1, . . . , bn2 . Therefore, if sc > sa then
neither bsa nor bsc are dominated. At most one of these two segments can be
selected, thus there would be a segment that is neither selected nor dominated.
We can conclude that sc ≤ sa. Moreover, it is also true that if sc = sa, then
neither asa nor csc dominates bsa = bsc , hence sb = sa = sc follows. By a similar
argument, se ≤ sc with equality only if sc = sd = se. Continuing further we
obtain sa ≥ sc ≥ se ≥ sg ≥ si ≥ sk ≥ sa, thus there are equalities throughout,
implying sa = sb = sc = · · · = s�, as required. This means that the gadget
represents a value between 1 and n2 in every solution.

Restriction. Restricting a gadget to set S is implemented by removing the seg-
ments as, bs, . . . , �s from the gadget for every s 	∈ S.

Horizontal connections. Figure 4a shows how to connect two adjacent gad-
gets by a horizontal connection. We add 2n new segments x1, . . . , xn, y1, . . . ,
yn. The right end point of hi (resp., ji) in the first gadget is modified to be its
intersection with xι1(i) (resp., yι1(i)), and this end point is set to be a closed
end point. The left end point of di and bi are similarly modified, but these end
points are set to be open. Assume that there is a dominating set that contains
12 segments from each of the gadgets and contains none of the segments x1, . . . ,
xn, y1, . . . , yn. Furthermore, assume that the pair i = (ι1(i), ι2(i)) is the value
of the first gadget and the i′ = (ι1(i′), ι2(i′)) is the value of the second gadget.
In particular, this means that hi, ji are selected in the first gadget, and bi′ , di′

are selected in the second. Now if ι1(i) < ι1(i′), then xι1(i′) is not dominated,
and if ι1(i) > ι1(i′), then yι1(i′) is not dominated, thus ι1(i) = ι1(i′) follows.

Vertical connections. Done analogously, see Figure 4b. ��

5 Maximum Independent Set for Line Segments

In this section we turn our attention to the Maximum Independent Set prob-
lem. The problem is fixed-parameter tractable for axis-parallel line segments, or
more generally, if the lines have only a fixed number of different directions:
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Fig. 3. The gadget used in the proof of Theorem 4

Theorem 5. Maximum Independent Set for the intersection graphs of line
segments in the plane can be solved in 2O(k2d2 log d)n log n time if the lines are
allowed to have at most d different directions.

Proof. Let L1, L2, . . . , Ld be the partition of the line segments according to their
directions. The segments in Li lie on ni parallel lines �i,1, . . . , �i,ni . If ni ≥ k, then
we can select k parallel segments from Li that are on different lines, hence we
have an independent set of size k. Thus it can be assumed that ni < k for every i.
Therefore, the n1+n2+· · ·+nd lines have at most

(
d
2

)
(k−1)2 intersection points,

which will be called the special points. Apart from the special points, every point
in the plane is covered by segments of at most one direction only. In a solution a
special point is either not covered, or covered by a segment in one of L1, L2, . . . ,
Ld. We try all d(d

2)(k−1)2 possibilities: each special point is assigned to one of the d
directions. After deleting the segments that cross a special point from the wrong
direction, we get d independent problems: segments with different directions
do not cross each other. Furthermore, problem Li consists of ni independent
problems: the parallel lines do not intersect. Therefore, the solution for this case
can be obtained by selecting from each line as many independent segments as
possible. It is well-known that this can be done in O(n log n) time. ��
A similar result was independently obtained by Kára and Kratochv́ıl (see [2]
elsewhere in this volume). Their algorithm is somewhat faster and works even if
only the intersection graph is given (not the segments themselves).

However, the problem is W[1]-hard with arbitrary directions:

Theorem 6. Maximum Independent Set is W[1]-complete for intersection
graphs of unit line segments.
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Fig. 4. Connecting two gadgets in the same row (a) or column (b)

Proof. The proof uses the framework of Section 2. The new parameter k′ :=
4k2 + 2k(k − 1) is 4 times the number of gadgets plus 2 times the number
of connections. It is not possible to select more than 4 (resp., 2) independent
segments from a gadget (resp., connection), hence every solution has to contain
exactly that many segments from every gadget and connection.

The gadget. Henceforth we assume that the line segments are open. Each
gadget consists of 4n2 line segments. For the gadget centered at point (x, y) the
segments a1, b1, c1, d1 are arranged as shown in Figure 5. Set θ = 1/2n6. For
2 ≤ i ≤ n2, the lines ai, bi, ci, di are obtained by rotating counterclockwise the
four lines in Figure 5 around (x, y) by (i − 1)θ radians. As discussed above, the
parameter of the Maximum Independent Set problem is set in such a way
that every solution contains 4 independent segments of the gadget. We say that
the gadget represents value i in a solution if these four segments are ai, bi, ci, di.
The following lemma shows that every gadget represents a value in a solution:

Lemma 2. At most 4 segments can be selected from each gadget. If S is an
independent set of size 4 in a gadget, then S = {ai, bi, ci, di} for some 1 ≤ i ≤ n2.

Proof. Since ai and ai′ intersect each other, at most one segment can be selected
from {ai : 1 ≤ i ≤ n2}. Similarly, we can select at most one segment from the
bi’s, ci’s, and di’s, hence an independent set cannot have size more than 4.

Assume now that aia , bib
, cic , did

is an independent set in the gadget. First we
show that ia ≤ ib. It is sufficient to show that every aj with j > 1 intersects b1,
since aia and bib

has the same relation as aia−ib+1 and b1. The upper end point
of aj has y-coordinate greater than y + 0.5, while the y-coordinate of the other
end point is smaller than y, thus it is easy to see that it intersects b1. Similar
arguments show that ia ≤ ib ≤ ic ≤ id ≤ ia, hence ia = ib = ic = id ��

Restriction. To restrict the gadget to a set S, we remove ai, bi, ci, di from the
gadget for every i 	∈ S.
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Fig. 5. The four segments of the gadget

Horizontal connections. If two gadgets are connected by a horizontal connec-
tion, then their distance is 1 + δ (where the constant δ > 0 is to be determined
later), i.e., they are centered at (x0, y0) and (x′

0, y
′
0) = (x0 +1+ δ, y0). Let Ai be

the intersection of the line y = y0 + 0.1 and segment ai of the first gadget. Let
Ci be the intersection of the same line and segment ci of the second gadget. We
want to add n segments in such a way that segment ej (1 ≤ j ≤ n) intersects
only segments a1, . . . , a(j−1)n of the first gadget and segments cjn+1, . . . , cn2

of the second gadget. This can be achieved if (open) segment ej (1 ≤ j ≤ n)
connects A(j−1)n+1 and Cjn. The segments ej have different lengths, but it is
possible to modify the x-coordinates of the end points and set δ such that every
ej has unit length (details omitted).

The ej’s ensure that if ai, bi, ci, di are selected from the first gadget, ai′ , bi′ ,
ci′ , di′ are selected from the second gadget, and a segment ej is also selected, then
ι1(i) ≥ ι1(i′). Recall that i = (ι1(i) − 1)n + ι2(i) and i′ = (ι1(i′) − 1)n + ι2(i′).
As ej intersects a1, . . . , a(j−1)n, it follows that ι1(i) ≥ j, otherwise ej would
intersect ai. Segment ej intersects segments cjn+1, . . . , cn2 of the second gadget,
hence i′ ≤ (j − 1)n + n and ι1(i′) ≤ j ≤ ι1(i) follows.

In a similar way, we add segments f1, . . . , fn, whose job is to ensure that
ι1(i′) ≥ ι1(i). We want to define the segments in such a way that fj intersects
ajn+1, . . . , an2 of the first gadget and c1, . . . , c(j−1)n of the second gadget. This
can be done analogously to the definition of the segments ej, but this time we
intersect the ai’s and ci’s with the line y = y0 − 0.1. It can be shown, that if
ai of the first gadget, ci′ of the second gadget, and segment fj are independent,
then ι1(i′) ≥ ι1(i). Therefore, the horizontal connection effectively forces that
ι1(i) = ι2(i′) if i and i′ are the values represented by the two adjacent gadgets.

Vertical connections. The vertical connection consists of two sets of segments
g1, . . . , gn and h1, . . . , hn, where every gi intersects every gi′ , and every hj

intersects every hj′ . These segments are defined in such a way that

– gj1 intersects bi of the lower gadget if and only if ι2(i) > j1,
– gj1 intersects di′ of the upper gadget if and only if ι2(i′) < j1,
– hj2 intersects bi of the lower gadget if and only if ι2(i) < j2,
– hj2 intersects di′ of the upper gadget if and only if ι2(i′) > j2.
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It is easy to see that these segments do what is required from a vertical connec-
tion: if bi of the first gadget, di′ of the second gadget, and gj1 , hj2 are independent
segments, then ι2(i) = ι2(i′) = j1 = j2. The only question is how to construct
the segments such that they have the intersection structure defined above.

We modify the gadget centered at (x0, y0) as follows. Set γ = 1/n3. For each
segment bi, consider the line �i containing this segment, and shift bi along � such
that the x-coordinate of the right end point of bi becomes x0 +0.5+ ι2(i)γ−γ/2.
The bi’s are “almost horizontal,” thus it can be verified (details omitted) that

– the y-coordinate of the right end point of bi is between y0+0.5 and y0+0.5+γ,
– the x-coordinate of the left end point of bi is between x0 −0.5+ ι2(i)γ−0.6γ

and x0 − 0.5 + ι2(i)γ − 0.4γ,
– the y-coordinate of the left end point of bi is between y0+0.5−γ and y0+0.5.

In a symmetrical way, we can ensure that

– the x-coordinate of the left end point of di is x0 − 0.5 − ι2(i)γ + γ/2.
– the y-coordinate of the left end point of di is between y0−0.5−γ and y0−0.5,
– the x-coordinate of the right end point of di is between x0+0.5−ι2(i)γ+0.4γ

and x0 + 0.5 − ι2(i)γ + 0.6γ,
– the y-coord. of the right end point of di is between y0 − 0.5+ γ and y0 − 0.5.

In the vertical connection between the two gadgets centered at (x0, y0) and
(x0, y0 + 1.5), the segment gj is a unit length segment that goes through the
points (x0+0.5+jγ, y0+0.5), (x0+0.5−(j−1)γ, y0+1+γ), and the center point
of gj has y0 + 0.75 as y-coordinate. As γ < 1/n2, segment gj is almost vertical;
in particular, it reaches the line y = y0 + 0.5 + γ with an x-coordinate greater
than x0 + 0.5 + jγ − γ/2, and it reaches the line y = y0 + 1 with x-coordinate
less than x0 + 0.5 + (j − 1)γ + 0.4γ. This means that gj does not intersect a
segment bi if its right end point has x-coordinate at most x0 + jγ − γ/2 (i.e.,
ι2(i) > j) and it does intersect a gj if the x-coordinate of its right end point is
greater than x0 + jγ (i.e., ι2(i) ≤ j). Similarly, in the upper gadget, gj intersects
every di with ι2(i) < j, and does not intersect di if ι2(i) > j. ��
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Abstract. We present a fixed parameter tractable algorithm for the
Independent Set problem in 2-dir graphs and also its generalization
to d-dir graphs. A graph belongs to the class of d-dir graphs if it is
an intersection graph of segments in at most d directions in the plane.
Moreover our algorithms are robust in the sense that they do not need
the actual representation of the input graph and they answer correctly
even if they are given a graph from outside the promised class.

1 Introduction

Let G = (V, E) be a simple undirected graph. In the following we use n for the
number of vertices |V | and m for the number of edges |E|. Let deg v denote
the number of edges incident with v, N(v) the open neighborhood of v (i. e.
N(v) = {u ∈ V : {u, v} ∈ E}) and N [v] the closed neighborhood of v (i. e.
N [v] = N(v) ∪ {v}). If U ⊆ V , then we write G[U ] for the subgraph induced on
the set U (i. e., the graph G′ = (U, E′) where E′ = {{u, v} ∈ E : u ∈ U, v ∈ U}).
We write G− v instead of G[V \ {v}] for the sake of brevity. A set of vertices U
is called independent if G[U ] contains no edges, and it is called a clique if G[U ]
is a complete graph. The symbols α(G) and ω(G) denote the largest size of an
independent set and of a clique, respectively.

A graph G = (V, E) is a segment intersection graph (and seg denotes this
class of graphs) if each vertex v ∈ V can be assigned a straight line segment sv

in the plane in such a way that su and sv intersect if and only if {u, v} ∈ E.
We call a family of segments RG = {sv : v ∈ V } a seg representation of G
or simply a representation if the class is clear from the context. If there is no
danger of confusion, we sometimes identify the segments with the vertices they
are representing, i.e., we assume that V = RG. If G has a representation such
that the segments use only d different directions (the segments in the same
direction can intersect), we call such a graph a segment intersection graph in d
directions (and we denote by d-dir the class of such graphs). Note that the 1-
dir graphs are exactly the interval graphs. An interval graph is a proper interval
graph if it has a representation such that no segment properly contains another
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one (note that this is also equivalent to the requirement that all the segments
have the same length [10]). It is a well known fact that interval graphs can be
recognized in O(m+n) time [2]. On the other hand, recognition of 2-dir graphs
or seg graphs is NP-hard [5,6]. In this connection we note that the algorithms
we develop in this paper are robust in the sense that they do not need the actual
representations of the input graphs.

The problem of finding an independent set of maximum size is a well known
NP-hard problem, which remains NP-hard for many restricted graph classes.
For instance for planar cubic graphs [4]. Though it is solvable in polynomial
time in interval graphs (1-dir graphs), it is NP-hard already for 2-dir graphs
[7]. Also from the fixed parameter complexity point of view, the problem is
hard. It is W[1]-complete when parameterized by the size of the independent
set k [3]. Therefore it is reasonable to ask for its parametrized complexity for
restricted graph classes. As observed many times (and noted e.g., in the recent
monograph of Niedermeier [9]), the problem is trivial for planar graphs (when
parameterized by k) since every planar graph is guaranteed to have α(G) ≥
n
4 . Fellows asked [private communication, 2005] what is the fixed parameter
complexity of this problem when restricted to 2-dir graphs. Note that the answer
is not as obvious as for planar graphs, since 2-dir do not guarantee independent
sets of any nontrivial size — all cliques are 2-dir graphs (in fact even 1-dir
graphs).

In our paper we answer this question in affirmative, even in a more general set-
ting for d-dir graphs. This complements independent result of Marx [8] showing
that finding an independent set in segment intersection graphs (i.e. with unlim-
ited number of directions) is W[1]-complete. The author also presents a fixed
parameter tractable algorithm for the case when the number of directions is
bounded but his algorithm requires a segment representation of an input graph.

In Section 3 we present a fixed parameter tractable algorithm (i. e., an algo-
rithm running in time O(f(k)nO(1))) for the Independent Set problem in 2-dir
graphs. In Section 4 we generalize this algorithm to an FPT algorithm for d-dir
graphs (where both d and k are parameters). Our algorithms are designed to
be “robust” — i. e., they either output an independent set of size k or answer
that there is no independent set of size k or detect that the given graph is not a
2-dir (d-dir) graph. Hence they answer correctly even if the input graph is not
from the required class.

2 Reduction Step

Lemma 1. Let G = (V, E) be an arbitrary graph and u, v ∈ V two of its vertices
such that N [u] ⊆ N [v]. Then α(G) = α(G − v).

Proof. Clearly α(G) ≥ α(G−v) and so we concentrate on the second inequality.
Note that N [u] ⊆ N [v] implies {u, v} ∈ E. Hence at most one of the vertices
u, v can be in any independent set. If an independent set S contains v, the set
S \{v}∪{u} is also independent and of the same size. That proves the statement
of the observation.
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We call a graph reduced if no closed neighborhoods are in inclusion. By con-
secutive application of the reduction step described in Lemma 1 we reduce the
input graph G to a reduced graph G′ such that α(G) = α(G′). Such reduc-
tion can be performed in time O(mn) (and independent of k). In pseudocode
of algorithms presented below we use procedure Reduce to perform this graph
reduction.

3 Algorithm for 2-dir Graphs

In this section we present an FPT algorithm for Independent Set in 2-dir graphs.
We begin with an easy observation:

Lemma 2. Let G = (V, E) be a 2-dir graph. Then for each v ∈ V , the graph
G[N(v)] is an interval graph.

Proof. Consider a 2-dir representation RG of the graph G. The vertex v is
represented as a segment sv in one of the two directions. Consider the set of
segments Iv = {s∩sv : s ∈ RG, s∩sv 	= ∅}. This set clearly contains one segment
for each neighbor of v and all the segments have the same direction (some of
them can be a single point). Hence Iv induces an interval graph. Moreover, it
can be easily verified that Iv is an interval representation of G[N(v)] (for all
x, y ∈ Iv, sx ∩ sy ⊆ sv).

Next we derive an important general lemma about d-dir graphs.

Lemma 3. Let RG be a d-dir-representation of a reduced graph G = (V, E). If
|V | > ((k−1)(d−1)+1)d(k−1)2, then either there are segments s1, . . . , sk ⊆ RG

such that all of them are parallel with the same direction and no two of them lie
on the same line, or there is a line l which contains k pairwise non-intersecting
segments.

Proof. Suppose that RG does not contain k parallel segments lying on k different
lines. Let l be a line containing at least one segment. Denote by Vl the set of
vertices corresponding to the segments lying on the line l and let Gl be the
(interval) graph G[Vl]. Since G is reduced, Gl is a proper interval graph (no
interval can be contained in another one).

Let c := (k − 1)(d − 1) + 1. First we prove that ω(Gl) ≤ c. Suppose for con-
tradiction that Gl contains a clique of size c + 1. Order the vertices from left to
right by the left endpoints of their intervals (or by the the order of their right
endpoints — since this is a proper interval representation, these two orderings
are the same). Let C2, . . . , Cc+1 be the lexicographically minimal cliques of sizes
2, . . . , c+1, respectively, and denote their vertices Ci = {vi

1, v
i
2, . . . , v

i
i} (in the or-

dering). Consider the last two vertices vc+1
c , vc+1

c+1 of Cc+1. The vertex vc+1
c must

have a neighbor uc+1 (in the graph G) that is not a neighbor of vc+1
c+1 (otherwise

vc+1
c would be thrown out in the reduction step). The vertex uc+1 cannot lie
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on the line l since vc+1
c lies before vc+1

c+1 and so the vertex uc+1 would have
to lie before vc+1

c+1 and we would get a lexicographically smaller clique Cc+1 \
{vc+1

c+1} ∪ {uc+1} of the size c + 1. The same argument for cliques C2, . . . , Cc

yields vertices u2, . . . , uc in the directions different from the direction of l. Let
ri = svi

i−1
\ svi

i
be the part of the segment representing vi

i−1 that is not part
of the segment representing vi

i, for 2 ≤ i ≤ c + 1. Since the segments ri do
not overlap and each segment representing ui intersects vi

i−1 in ri, each of the
vertices u2, . . . , uc+1 lies on a different line. But by the choice of c = (k −
1)(d − 1) + 1 (applying the pigeon-hole principle), there must be a direction
with at least k segments from u2, . . . , uc+1. This is a contradiction with the
assumption that there are no such k segments. See Figure 1 for an example of
a situation in one clique and Figure 2 for an example of the whole situation on
line l.

Since Gl is an interval graph, it is in particular a perfect graph and hence
α(Gl) · ω(Gl) ≥ |Vl|. As we assumed that |V | > cd(k − 1)2 and because for
every direction, there are at most k − 1 lines containing at least one segment
in this direction (otherwise we easily find k parallel segments), there must
be a line l with at least c(k − 1) + 1 segments. Hence, for this line l, we
conclude that α(Gl) ≥ � c(k−1)+1

c � = k as claimed by the statement of the
lemma.

ri

ui vi+1
i+1

vi+1
i

Fig. 1. A situation of the last two vertices of the i-th clique

r3 r4 r5r2

1 2
3

4

5
6

7u2 u3 u4 u5

Fig. 2. A situation in a graph Gl for c = 4. The lexicographically minimal cliques are:
C2 = {1, 2}, C3 = {2, 3, 4}, C4 = {2, 3, 4, 5}, C5 = {3, 4, 5, 6, 7}.

Corollary 1. Let G = (V, E) be a reduced 2-dir graph. Then either |V | ≤
2k(k − 1)2 or α(G) ≥ k.

Proof. The corollary trivially follows from Lemma 3.



170 J. Kára and J. Kratochv́ıl

Algorithm 1
Let G = (V, E) be the input graph.
Reduce(G)
if |V | ≤ 2k2(k2 − 1)2 then begin

Compute the adjacency matrix of G.
for each I ⊆ V , |I| = k do
if I is independent then

Output I and exit.
Output that there is no independent set of size k in G.

end
else begin

Find greedily an inclusion-wise maximal independent set I.
if |I| ≥ k then

Output I and exit.
for each v ∈ I do begin

Compute G′ = G[N(v)].
if G′ is not an interval graph then

Output that G is not a 2-dir graph and exit.
Find a maximum independent set I of G′ (using the fact that

G′ is an interval graph).
if |I| ≥ k then

Output I and exit.
end
Output that G is not a 2-dir graph.

end

Theorem 1. Algorithm 1 finds in time O(k6k+2 + mn + n2 + k(m + n)) for a
given graph G = (V, E) either an independent set of size at least k or answers
that there is no independent set of size (at least) k or detects that G is not a
2-dir graph.

Proof. The algorithm first performs the reduction step as described in Section 2.
This takes O(mn) time. Let G′ = G[V ′] be the resulting graph. If |V ′| ≤ 2k2(k2−
1)2 = O(k6), we run a brute-force algorithm that tries all subsets of vertices of
size k — there are O(k6k) such sets — and for each of them, we check whether
it is an independent set or not (this can be easily done in time O(k2) if we have
precomputed adjacency matrix of the graph). Hence in this case we are done in
the time O(k6k+2 + mn + n2).

If |V ′| > 2k2(k2 − 1)2, then Corollary 1 asserts that either G′ is not a 2-dir
graph or it contains an independent set of size k2. We find an (inclusion-wise)
maximal independent set I in G′ — this can be done in O(m + n) time by a
greedy algorithm. If it has size at least k we are done. Otherwise we claim that
there must be a vertex v ∈ I such that there is an independent set of size k in
N(v) (if G was a 2-dir graph). This follows from the fact that every vertex not
in I is adjacent to at least one vertex in I. Hence if J is an independent set of
size k2, then some vertex in I must be adjacent to at least k vertices from J \ I.
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So it is enough to find a maximum independent set in G′[N(v)] for each v ∈ I.
From Lemma 2 we know that each of the graphs G′[N(v)] is an interval graph,
and thus its independence number can be computed in polynomial time. Hence,
for every vertex v of I, we verify that G′[N(v)] is an interval graph (and reject
G as not being 2-dir if it is not) in O(m+n) time and we compute a maximum
independent set in time O(m + n). If none of these independent sets has size at
least k, we again reject G as not being a 2-dir graph.

Note that if we get a 2-dir representation of the graph G as part of the input,
the algorithm from Theorem 1 would be much simpler. In the kernelization step
we would suffice to have enough vertices guaranteeing an independent set of size
k (and not k2) and we could find it by simply checking the types of independent
sets described in Lemma 3.

4 Algorithm for d-dir Graphs

In this section we present an algorithm for Independent Set in d-dir graphs. The
algorithm is in fact simpler than the one for 2-dir graphs but its correctness
is less obvious and its running time is worse. Due to Lemma 3, a large enough
reduced d-dir graph must contain a big independent set. Hence we use a similar
trick as for 2-dir graphs and for d-dir graphs whose number of vertices does
not guarantee an independent set of size k3d, we run a brute force algorithm
to decide the existence of an independent set of size k. For larger graphs we
indirectly show that there is a sufficiently limited number of cliques in whose
neighborhoods it suffices to search for independent sets of size k, and that those
neighborhoods have a simple structure. Now we formalize the above statements:

Corollary 2. Let G = (V, E) be a reduced d-dir graph. Then either |V | ≤
((k − 1)(d − 1) + 1)d(k − 1)2 or α(G) ≥ k.

Proof. The statement trivially follows from Lemma 3.

Lemma 4. Let RG be a d-dir representation of a reduced graph G = (V, E). Let
dv be the direction of the segment representing a vertex v ∈ V . Denote by G′ the
graph obtained from G[N(v)] by the reduction procedure of Section 2. Then G′

contains at most two vertices that were represented by segments in the direction
dv in RG.

Proof. Let l be the line containing sv. Note that G′ contains only neighbors of
v. Let Vl be the set of neighbors of v that are represented by segments parallel
with direction dv, and let Sl be the set of segments representing them. Then all
segments of Sl lie on the line l. Since G was reduced, no segment in Sl can contain
another one (including sv itself) and hence each segment in Sl contains exactly
one endpoint of the segment representing v. Let v1, . . . , vt be the vertices of Sl

whose segments contain the left endpoint of sv, ordered from left to right. Since
apart from Sl, G[N(v)] contains only vertices corresponding to the segments
crossing sv, we see that N [v1] ⊆ N [v2] ⊆ . . . ⊆ N [vt], and hence only the vertex
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v1 survives the reduction step and is included in G′. Similarly, at most one of
the vertices represented by segments containing the right endpoint of sv remains
in G′. See Figure 3 for an example of a reduction of a neighborhood.

v

Fig. 3. A vertex v (dotted interval) and its neighbors. Dashed intervals are the vertices
that are removed in the reduction step on G[N(v)]. Vertical thick lines represent points
of intersection with segments in other directions.

Theorem 2. There is an algorithm running in time O(d2kk9dk+2+n2+k3dmn)
that given a graph G = (V, E) either finds an independent set of size k or answers
that there is no independent set of size k or detects that G is not a d-dir graph.

Proof. The algorithm first performs the reduction step as described in Section 2.
This takes O(mn) time. Let G′ = G[V ′] be the resulting graph. If |V ′| ≤ ((k3d −
1)(d − 1) + 1)d(k3d − 1)2 = O(d2k9d) we run a brute-force algorithm that tries
all subsets of vertices of size k — there are O(d2kk9kd) such sets — and for each
set checks whether it is an independent set or not (that can be easily done in
time O(k2) provided we have precomputed the adjacency matrix of G′). Hence
in this case we are done in time O(d2kk9dk+2 + n2 + mn).

If |V ′| > ((k3d − 1)(d− 1) + 1)d(k3d − 1)2 we know by Corollary 2 that either
G′ is not a d-dir graph or G′ contains an independent set of size k3d. Now we
start the following recursive procedure:

Algorithm 2
procedure FindIndependentSet(G, depth)
begin

Find a maximal independent set I in the given graph G.
if |I| ≥ k then

Output I and abort (at all levels of recursion).
if depth ≥ 3d then

Output that G is not a d-dir graph and abort.
for each v ∈ I do begin

G′ := G[N(v)]
Reduce(G′)
if |V (G′)| ≥ k then
FindIndependentSet(G′, depth + 1)

end
end
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If the recursive procedure did not find any independent set, we answer that
G is not a d-dir graph. Hence the overall algorithm for d-dir graphs looks as
follows:

Algorithm 3
Let G = (V, E) be the input graph.
Reduce(G)
if |V | ≤ ((k3d − 1)(d − 1) + 1)d(k3d − 1)2 then begin

Compute the adjacency matrix of G.
for each I ⊆ V , |I| = k do
if I is independent then

Output I and exit.
Output that there is no independent set of size k in G.

end
else begin
FindIndependentSet(G,0)
Output that G is not a d-dir graph.
end

The time complexity of the recursive call of FindIndependentSet is obviously
O(k3dmn). What remains to be proved is that if G is a d-dir graph, then the
recursion always finds an independent set of size k (recall that if G is a d-dir
graph it must contain such an independent set). Correctness of the other answers
easily follows from this fact. If G is a d-dir graph, it contains an independent set
of size k3d. Hence some vertex from the maximal independent set must have an
independent set of size k3d−1 in its neighborhood (by a similar argument as in
Theorem 1). By induction and because the reduction does not change the size of
a maximum independent set we argue that there is a branch of recursion whose
graph considered in the depth i of the recursion contains an independent set of
size k3d−i. By Lemma 4 we know that during the recursion we can choose at
most three vertices from each direction. Thus in the depth of recursion 3d − 1
every obtained graph can contain at most one vertex. Hence we see that if G is a
d-dir graph, then the recursion must stop before the depth 3d − 1 as otherwise
we get a contradiction. There are only two ways of stopping the recursion before
the depth 3d. Either we get a graph with less than k vertices or we find an

k3d

k3d−1

k3d−2

0

1

2

Fig. 4. A recursion tree with a depth of the recursion written on the left and guaranteed
independent set size written on the right
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independent set of size k. As there must be a branch of recursion whose graph at
the depth i contains an independent set of size k3d−i, we know that this branch
cannot stop because of the lack of vertices and hence it must stop because it
found an independent set of size k.

5 Conclusion

We have presented efficient FPT algorithms for the Independent Set problem
restricted to intersection graphs of segments with segments lying in a bounded
number of direction (where both the size of the sought independent set k and
the number of directions d are considered as parameters). Given the simplicity
of the situation for two directions, it might be interesting to determine whether
there is a fixed parameter tractable algorithm running in time 2O(k) · p(m, n) in
this case.

It is worth mentioning the parallel to the (classical) complexity of the Clique
problem restricted to intersection graphs. The Clique problem is known to be
NP-hard for string graphs and also for intersection graphs of convex sets, poly-
nomial time solvable (but not FPT with regard to d as parameter) for d-dir
graphs and its complexity still remains open for seg graphs. This question was
asked in [7], for a recent survey on its development and related questions cf. [1].
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Abstract. Deciding whether two n-point sets A, B ∈ Rd are congruent
is a fundamental problem in geometric pattern matching. When the di-
mension d is unbounded, the problem is equivalent to graph isomorphism
and is conjectured to be in FPT.

When |A| = m < |B| = n, the problem becomes that of decid-
ing whether A is congruent to a subset of B and is known to be NP-
complete. We show that point subset congruence, with d as a parameter,
is W[1]-hard, and that it cannot be solved in O(mno(d))-time, unless
SNP ⊂ DTIME(2o(n)). This shows that, unless FPT = W[1], the prob-
lem of finding an isometry of A that minimizes its directed Hausdorff
distance, or its Earth Mover’s Distance, to B, is not in FPT.
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1 Introduction

Geometric pattern matching has been a topic of considerable research in com-
putational geometry with applications in computer vision, and is usually mod-
eled as the following optimization problem: given two sets A and B of geometric
primitives, an appropriate distance measure, and a transformation group, find
a transformation of A that minimizes its distance to B; see the surveys by Alt
and Guibas [2] and Hagedoorn and Veltkamp [15]. Typical geometric primitives
include points, segments, disks, while typical transformations include isome-
tries, and scaling, that is, combinations of translations, rotations, reflection, and
scaling.
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For sets of points, several distance measures have been extensively studied in
this framework, such as, the bottleneck distance [3,12,13], the (directed) Haus-
dorff distance [9,10,16] and the Earth Mover’s Distance [7,11]. The case of the
bottleneck distance with respect to isometries leads to the fundamental decision
problems of whether A is congruent to B or to a subset of B; a formal definition
will be given shortly.

The complexity of these two problems for point sets in unbounded dimen-
sions has been already studied within the classical complexity theory: the for-
mer is graph-isomorphism-hard and the latter is NP-complete. In this paper we
study subset congruence and related problems from the parameterized complex-
ity point of view, with the dimension as the parameter.

In general, geometric optimization problems have been always studied with
respect to parameters related to properties of the input objects, and the lit-
erature is scattered with algorithms that, from the parameterized complexity
theory point of view, can be seen as being in FPT. One such famous exam-
ple is Megiddo’s algorithm [18] for linear programming in d dimensions with n

constraints, which runs in O(22d

n) time. However, there is only a handful of
results concerning the fixed-parameter intractability of certain hard geometric
problems, and these concern only standard parameterizations of optimization
problems, i.e., where the parameter measures the size of the solution; see, for
example, Marx [17] for such results concerning geometric graph problems. The
dimension of the input objects is a “structural” parameter important to many
(apparently) intractable geometric problems, and, thus, a good candidate for
parameterized complexity.

Preliminaries. For a point a ∈ Rd, let a(r) denote its rth component. The origin
is denoted by o. For two points a, b ∈ Rd, let ||a− b|| = (

∑d
r=1(a(r) − b(r))2)1/2

be their Euclidean distance. A map μ : Rd → Rd is an isometry if it preserves
distances, that is, if ||μ(a) − μ(b)|| = ||a − b|| for all a, b ∈ Rd.

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be point sets in Rd with m ≤ n;
for simplicity, we will sometimes assume the obvious ordering on the elements
of sets defined in this way, e.g., a1 is the first point in A and so on. We use the
notation μ(A) = {μ(a1), . . . , μ(am)}. Sets A and B are said to be congruent if
there is an isometry μ for which μ(A) = B.

We denote by CONGRUENCE the problem of finding whether two sets A and
B are congruent. When |A| < |B|, the problem becomes the one of finding whether
A is congruent to a subset of B, and is denoted by SUBSET-CONGRUENCE.
We are interested in the parameterized version of these problems, referred to as
p-CONGRUENCE and p-SUBSET-CONGRUENCE, with the dimension d being
the input parameter.

Related work. There is a variety of algorithms that solve CONGRUENCE in
O(n log n) time for d = 2, 3; see Alt et al. [3] and references therein. In higher di-
mensions, the currently best time bound is O(n�d/3 log n) [5]; Akutsu [1] claims
that a bound of O(nd/4+O(1)) (randomized) is possible, but he gives no direct
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proof. It is conjectured [5] that p-CONGRUENCE is in FPT. Moreover, for
unbounded dimension, CONGRUENCE is polynomially equivalent to graph iso-
morphism [1,20].

SUBSET-CONGRUENCE can be solved in time of O(mn4/3 log n) and O(m
n7/4 log n β(n)) (randomized, where β(n) is an extremely slow growing function),
for d = 2 and d = 3 respectively [4]. In higher dimensions, the best known
algorithm runs in O(mnd) time [12], and the problem is NP-complete when d is
unbounded [1]. It is an open question whether the high-dimensional bound can
be improved [4]; see also Brass and Pach [6] for a survey on computational and
combinatorial problems related to geometric patterns.

Model of computation. We assume the standard TM model of computation. The
coordinates of the points used in our reduction are rational, with denominators
and numerators bounded by a polynomial in n.

Results. We show that p-SUBSET-CONGRUENCE is W[1]-hard. Our reduction
from p-CLIQUE, with d being linear in the size of the clique, shows in addition
that an O(mno(d))-time algorithm for former problem exists only if SNP ⊂
DTIME(2o(n)). Moreover, for |A| < |B| and any point set distance D for which
D(A, B) = 0 ⇔ A ⊂ B, our hardness result implies that minimizing D under
isometries is not in FPT (unless FPT = W[1]).

2 Parameterized Subset Congruence

First, it is easy to see that p-SUBSET-CONGRUENCE is in W[P]; an accepting
certificate of size O(d log n) for a NDTM can be given by guessing a bijection
between a d-point subset of A and a d-point subset of B, with log n bits needed
to represent each point. Then, one can check in polynomial time whether the
bijection is an isometry and, if yes, whether this isometry maps the rest of the
points in A to points in B.

Next, we reduce p-CLIQUE, which is known to be W[1]-complete [14], to
p-SUBSET-CONGRUENCE.

Theorem 1. p-SUBSET-CONGRUENCE is W[1]-hard.

Proof: Let k be the size of the clique being looked for in a simple and connected
graph G([n], E) with |E| = m. We first construct a set L = {Li|i = 1, . . . , k}
of auxiliary point sets Li - referred to as level sets. Each level set lies on a
two-dimensional plane in R2k, with all k planes being pairwise orthogonal, and
contains n points that lie on a unit circle centered at the origin o. A detailed
description of a level set follows.

Let Li = {lij ∈ R2k|j = 1, . . . , n}. First, we have lij(r) = 0 for r 	= 2i − 1, 2i

and
∑2k

r=1 l2ij(r) = 1; this implies that ||lij − li′j′ || =
√

2 for every j, j′ and every
i, i′ with i 	= i′. It will be convenient to choose the points on the unit circle from
a short arc such that the distance between any two points is at most

√
2/6, that
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1

o

√
2/6

lij(2i)

lij(2i − 1)

lij

Fig. 1. The points of each level set lie on a circular arc of chord length
√

2/6

is, ||lij − lij′ || <
√

2/6 for every i, j and j′; see Fig. 1. This is done according to
the following lemma.

Lemma 1. For any n > 0, there exist n distinct points on the unit circle such
that they all have rational coordinates with the numerators and denominators
bounded by a polynomial in n, and the distance between any two points is at
most

√
2/6.

Proof: Each point pi, i = 1, . . . , n, has rational non-zero coordinates generated
by Pythagorean triples αi, βi and γi:

pi(1) = (βi/γi) and pi(2) = (αi/γi),

with
αi = 2(8 + i), βi = (8 + i)2 − 1 and γi = (8 + i)2 + 1.

Defined this way, all points have distinct coordinates and p2
i (1) + p2

i (2) = 1.
Moreover, since sin−1(pi(2)) < 2 sin−1(

√
2/12), all points lie on an arc with

chord length
√

2/6, and so, any two of them can be at most
√

2/6 apart.

Next, using the level sets, we define a point set A ⊂ R2k, with |A| =
(
k
2

)
, one

point for each (unordered) pair of level sets. Each point is the middle-point of
a straight line segment whose end-points belong to two distinct level sets. The
choice of the end-points is such that any two middle-points satisfy one of the
following conditions :

(i) one common end-point and second end-point in different levels,
(ii) all four end-points in different levels.
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In addition, for every j ≤ k only the end-point ljj is used. We have

A = { l11 + l22
2

,
l11 + l33

2
, . . . ,

l11 + lkk

2
}

∪ { l22 + l33
2

, . . . ,
l22 + lkk

2
}

. . .

∪ { lk−1k−1 + lkk

2
}.

Observe that there are only two distinct inter-point distances in A:
√

2/2 and
1. For each point (ljj + lqq)/2 there are (k − 2) points (ljj + lq′q′)/2 with q 	= q′,
and (k − 2) points (lj′j′ + lqq)/2 with j 	= j′, such that

|| ljj + lqq

2
− ljj + lq′q′

2
|| =

1
2
||lqq − lq′q′ || = || ljj + lqq

2
− lj′j′ + lqq

2
||

=
1
2
||ljj − lj′j′ || =

√
2

2
;

such pairs correspond to condition (i) above. Also, for each point (ljj + lqq)/2
there are

(
k−2

2

)
points (lj′j′ + lq′q′)/2 with j, j′, q, q′ pairwise disjoint, such that

|| ljj + lqq

2
− lj′j′ + lq′q′

2
|| =

1
2
||ljj + lqq − lj′j′ − lq′q′ || =

1
2

√
1 + 1 + 1 + 1 = 1;

such pairs correspond to condition (ii) above.
Next, using the level sets and graph G, we define a set B ⊂ R2k, with |B| =

m
(
k
2

)
. For any edge {j, j′} ∈ E we assume without loss of generality that j < j′;

this is always possible since G has no loops. Each edge {j, j′} generates a set
Bjj′ of

(
k
2

)
points with

Bjj′ = { l1j + l2j′

2
,
l1j + l3j′

2
, . . . ,

l1j + lkj′

2
}

∪ { l2j + l3j′

2
, . . . ,

l2j + lkj′

2
}

. . .

∪ {
l(k−1)j + lkj′

2
}.

We set B = ∪{j,j′}∈EBjj′ .
We now prove that if G has a k-clique then there is an isometry μ such that

μ(A) ⊂ B. Let {j1, j2, j3 . . . , jk} be such a clique with j1 < j2 < · · · < jk.
Consider the set Bc ⊂ B defined by
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Bc = { l1j1 + l2j2

2
,
l1j1 + l3j3

2
, . . . ,

l1j1 + lkjk

2
}

∪ { l2j2 + l3j3

2
, . . . ,

l2j2 + lkjk

2
}

. . .

∪ {
l(k−1)jk−1 + lkjk

2
}.

Bc has
(
k
2

)
points, the first one being the first point of Bj1j2 , the second one

being the second point of Bj1j3 and so on, with the last one being the last
point of Bjk−1jk

. Observe that the points in Bc are middle-points that satisfy
the conditions (i), (ii), regarding their defining endpoints, as the points in A do.
Hence, it is straightforward to check that the bijection μ : Bc → A that maps
the first point of Bc to the first point of A and so on, is isometric.

Conversely, we can prove that an isometry μ such that μ(A) = Bc for some set
Bc ⊂ B implies that G has a k-clique. Since μ is an isometry, ||b−b′|| ∈ {

√
2/2, 1},

for any two points b, b′ ∈ Bc. Let b = (lij + lpq)/2 and b′ = (li′j′ + lp′q′)/2. Since
Bc ⊂ B, we have that i 	= p and i′ 	= p′. First, using the facts that any two points
in the same level set are at most

√
2/6 apart, and that the distance between any

two points in different level sets is
√

2, we exclude the following cases from the
valid combinations of level sets, which the endpoints of the points in Bc can
belong to:

(1) i = i′, p = p′; then, we have

||b − b′|| = || (lij + lpq)
2

− (lij′ + lpq′)
2

|| ≤ 1
2
||lij − lij′ || + 1

2
||lpq − lpq′ || <

√
2/2.

(2) i = i′, p 	= p′ with j 	= j′; then, we have

||b − b′|| = || (lij + lpq)
2

− (lij′ + lp′q′ )
2

|| ≤ 1
2
||lij − lij′ || + 1

2
||lpq − lp′q′ ||

<
√

2/12 +
√

2/2 < 1;

also, in this case, since from Lemma 1, lij(2i − 1) 	= lij′ (2i − 1) and lij(2i) 	=
lij′ (2i),

||b − b′|| =
1
2
√

((lij(2i − 1) − lij′(2i − 1))2 + (lij(2i) − lij′(2i))2 + l2pq(2p − 1) + l2pq(2p)

+ l2p′q′(2p′ − 1) + l2p′q′(2p′))

>
√

1 + 1/2 =
√

2/2.

Only two combinations of level sets to which the end-points can belong are left,
both of which are valid, the same as the ones for the points in A, given by
conditions (i) and (ii) above. Namely, ||b− b′|| =

√
2/2 implies that i = i′, j = j′

and p 	= p′, and ||b − b′|| = 1 implies that i, i′, p, p′ are pairwise disjoint. Since
i 	= p and i′ 	= p′ as well, we conclude that only one point from each level set
can be present as an end-point in Bc.



On the Parameterized Complexity 181

Since Bc and A are congruent, for any point b ∈ Bc there must be
(
k−2
2

)
points in Bc whose distance to b is 1. Therefore, all possible

(
k−2

2

)
remaining

(unordered) pairs of level sets must appear in Bc. Without loss of generality, we
fix such a point b = (l1j1 + l2j2)/2. Then,

{ l3j3 + l4j4

2
,
l3j3 + l5j5

2
, . . . ,

l3j3 + lkjk

2
}

∪ { l4j4 + l5j5

2
, . . . ,

l4j4 + lkjk

2
}

. . .

∪ {
l(k−1)jk−1 + lkjk

2
} ⊂ Bc,

with all j1, . . . , jk being distinct. The
(
k
2

)
−

(
k−2
2

)
− 1 = 2(k − 2) remaining

points in Bc must be such that their distance to b equals
√

2/2. The only valid
combinations of level sets left, give the following two sets

{ l1j1 + l3j3

2
,
l1j1 + l4j4

2
, . . . ,

l1j1 + lkjk

2
},

and
{ l2j2 + l3j3

2
,
l2j2 + l4j4

2
, . . . ,

l2j2 + lkjk

2
},

of k − 2 points each, all in Bc as well.
Since each point (lij + li′j′)/2 ∈ Bc with j, j′ ∈ {j1, . . . , jk}, is generated by a

distinct edge {i, j} ∈ E, it is easy to check that {j1, . . . , jk} is indeed a k-clique.

Since in the above fpt-reduction d = 2k, an O(mno(d))-time algorithm for p-
SUBSET-CONGRUENCE implies an O(no(k))-time algorithm for p-CLIQUE,
which in turn implies that SNP ⊂ DTIME(2o(n)) [8].

Corollary 1. p-SUBSET-CONGRUENCE can be solved in O(mno(d)) time,
only if SNP ⊂ DTIME(2o(n)).

Consider a point set distance D for which D(A, B) = 0 ⇔ A ⊂ B for every
A, B ∈ Rd with |A| < |B|; this is a desired property for any distance that is used
to find small patterns into larger ones, e.g., directed Hausdorff distance, Earth
Mover’s Distance. Then, minμ D(μ(A), B) = 0 ⇔ μ′(A) ⊂ B for some isometry
μ′. Hence, we have the following.

Corollary 2. Given two point sets A, B ∈ Rd, with |A| < |B|, and a distance
D for which D(A, B) = 0 if and only if A ⊂ B, the problem of minimizing D
under isometries, when d is part of the input, is not in FPT, unless FPT=W[1].

3 Concluding Remarks

We have studied the parameterized complexity of some fundamental point set
pattern matching problems with respect to the dimension. We proved that subset
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congruence is W [1]-hard, which also implies that minimizing under isometries
the directed Hausdorff distance, or the Earth Mover’s Distance between two
point sets in unbounded dimension is not in FPT (unless FPT=W[1]).

There are quite a few other geometric optimization problems whose complex-
ity due to unbounded dimension has been studied; see, for example, Megiddo [19].
We believe that for such problems the dimension is an interesting parameter to
be studied within the framework of parameterized complexity theory.
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Abstract. We present an O(1.7548n) algorithm finding a minimum
feedback vertex set in a graph on n vertices.
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1 Introduction

The problem of finding a minimum feedback vertex set has many applications
and its history can be traced back to the early ’60s (see the survey of Festa at
al. [2]). It is also one of the classical NP-complete problems from Karp’s list [5].
There is quite a dramatic story of obtaining faster and faster parameterized al-
gorithms with a chain of improvements (see e.g. [7]) concluding with 2O(k)nO(1)-
time algorithms obtained independently by different research groups [1,4].

A feedback vertex set of a graph on n vertices can be trivially found in time
O(2nn) by trying all possible vertex subsets. For a long time, despite attacks
of many researchers, no faster exponential time algorithm was known. Very re-
cently Razgon [8] broke the 2n barrier with an O(1.8899n) time algorithm. The
algorithm of Razgon is based on the Branch & Reduce paradigm and its analysis
is nice and clever.

In this paper we show how to find a minimum feedback vertex set in time
O(1.7548n). Our improvement is based on Razgon’s idea of measuring the progress
of the branching algorithm. The most significant improvement in the running time
of our algorithm is due to a new branching rule which is based on Proposition 2.
This rule works nicely except one case, which, luckily, can be reduced to finding
an independent set of maximum size.

2 Preliminaries

Let G = (V, E) be an undirected graph on n vertices. For V ′ ⊆ V we denote by
G[V ′] the graph induced by V ′ and by G \ V ′ the graph induced by V \ V ′. For
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a vertex v ∈ V let N(v) be the sets of its neighbors. We denote by Δ(G) the
maximum vertex degree of G.

The set X ⊆ V is called a feedback vertex set or an FVS if G\X is a forest. Thus
the problem of finding a minimum FVS is equivalent to the problem of finding
a maximum induced forest or an MIF. For the description of the algorithm it is
more convenient to work with MIF than with FVS.

We call a subset F ⊆ V acyclic if G[F ] is a forest and independent if every
component of G[F ] is an isolated vertex; F is a maximum independent set of G
if has a maximum cardinality among all independent sets. If F is acyclic but not
independent then every connected component on at least two vertices is called
non-trivial. If T is a non-trivial component then we denote by Id(T, t) the opera-
tion of contracting all edges of T into one vertex t and removing appeared loops.
Note that this operation may create multiedges in G. We denote by Id∗(T, t)
the operation Id(T, t) followed by the removal of all vertices connected with t by
multiedges.

For an acyclic subset F ⊆ V , denote by MG(F ) the set of all maximum
acyclic supersets of F in G (we omit the subindex G when it is clear from the
context which graph is meant). Let M = M(∅). Then the problem of finding a
MIF can be stated as finding an element of M. We solve a more general problem,
namely finding an element of M(F ) for an arbitrary acyclic subset F .

To simplify the description of the algorithm, we suppose that F is always an
independent set. The next proposition justifies this supposition.

Proposition 1. Let G = (V, E) be a graph, F ⊆ V be an acyclic subset of
vertices and T be a non-trivial component of F . Denote by G′ the graph obtained
from G by the operation Id∗(T, t) and let F ′ = F ∪ {t} \ T . Then X ∈ MG(F )
if and only if X ′ ∈ MG′(F ′) where X ′ = X ∪ {t} \ T .

Proof. If, after the operation Id(T, t), a vertex v is connected with t by a multi-
edge then the set T ∪ {v} is not acyclic in G. Hence, no element of MG(F ) may
contain v. Therefore, the function X �→ X ∪ {t} \ T is a bijection from MG(F )
to MG′(F ′). ��

By using the operation Id∗ on every non-trivial component of F , we obtain an
independent set F ′.

The following proposition is used to justify the main branching rule of the
algorithm.

Proposition 2. Let G = (V, E) be a graph, F ⊆ V be an independent subset of
vertices and v 	∈ F be a vertex adjacent to exactly one vertex t ∈ F . Then, there
exists X ∈ M(F ) such that either v or at least two vertices of N(v) \ {t} are
in X.

Proof. Suppose, for the sake of contradiction, that there is X ∈ M(F ) such that
v 	∈ X and only one vertex of N(v) \ {t} is in X , say z. It follows from the
maximality of X that X ∪ {v} is not acyclic. But since v has degree at most 2
in X all the cycles in X ∪ {v} must contain z. Then the set X ∪ {v} \ {z} is in
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M(F ) and satisfies the conditions. The case where no vertex of N(v) \ {t} is in
X is even simpler. ��

Consequently, if N(v) = {t, v1, v2, . . . , vk}, then there exists X ∈ M(F ) satisfy-
ing one of the following properties:

1. v ∈ X ;
2. v 	∈ X , vi ∈ X for some i ∈ {1, 2, . . . , k − 2} while vj 	∈ X for all j < i;
3. v, v1, v2, . . . , vk−2 	∈ X but vk−1, vk ∈ X .

In particular, if k ≤ 1, then v ∈ X for some X ∈ M(F ).
We also need the following

Proposition 3. Let G = (V, E) be a graph and F be an independent set in G
such that G \ F = N(t) for some t ∈ F . Consider the graph G′ = G[N(t)] and
for every pair of vertices u, v ∈ N(t) having a common neighbor in F \ {t} add
an edge uv to G′. Denote the obtained graph by H and let I be a maximum
independent set in H. Then F ∪ I ∈ MG(F ).

Proof. Let X ∈ MG(F ) and u, v ∈ G \ F . If uv ∈ E then u, v, t form a triangle.
If there is a vertex w ∈ F \{t} adjacent to both u and v then tuwv is a 4-cycle. In
both cases, X cannot contain u and v at the same time. Therefore, X ∈ MG(F )
if and only if X \ F is a maximum independent set in H . ��

There are several fast exponential algorithms computing a maximum indepen-
dent set in a graph. We use the fastest known polynomial space algorithm.

Proposition 4 ([3]). Let G be a graph on n vertices. Then a maximum inde-
pendent set in G can be found in time O(1.2210n).

3 The Algorithm

In this section the algorithm finding the maximum size of an induced forest
containing a given acyclic set F is presented. This algorithm can easily be turned
into an algorithm computing at least one element of MG(F ). During the work of
the algorithm one vertex t ∈ F is called an active vertex. The algorithm branches
on a chosen neighbor of t. Let v ∈ N(t). Denote by K the set of all vertices of
F other than t that are adjacent to v. Let G′ be the graph obtained after the
operation Id(K∪{v}, u). We say that a vertex w ∈ V \{t} is a generalized neighbor
of v in G if w is the neighbor of u in G′. Denote by gd(v) the generalized degree
of v which is the number of its generalized neighbors.

The description of the algorithm consists of a sequence of cases and subcases.
To avoid a confusing nesting of if-then-else statements let us use the following
convention: The first case which applies is used in the algorithm. Thus, inside a
given case, the hypotheses of all previous cases are assumed to be false.

Algorithm mif(G, F ) computing for a given graph G and an acyclic set F the
maximum size of an induced forest containing F is described by the following
preprocessing and main procedures. (Let us note that mif(G, ∅) computes the
maximum size of an induced forest in G.)
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Preprocessing

1. If G consists of k ≥ 2 connected components G1, G2, . . . , Gk, then the algo-
rithm is called on each of the components and

mif(G, F ) =
k∑

i=1

mif(Gi, Fi),

where Fi = Gi ∩ F for all i ∈ {1, 2, . . . , k}.
2. If F is not independent, then apply operation Id∗(T, vT ) on every non-trivial

component T of F . Moreover, if T contains the active vertex then vT becomes
active. Let G′ be the resulting graph and let F ′ be the independent set in
G′ obtained from F . Then

mif(G, F ) = mif(G′, F ′) + |F \ F ′|.

Main procedures

1. If F = V then MG(F ) = {V }. Thus,

mif(G, F ) = |V |.

2. If F = ∅ and Δ(G) ≤ 1 then MG(F ) = {V } and

mif(G, F ) = |V |.

3. If F = ∅ and Δ(G) ≥ 2 then the algorithm chooses a vertex t ∈ V (G) of
degree at least 2. Then t is either contained in a maximum induced forest
or not. Thus the algorithm branches on two subproblems and returns the
maximum:

mif(G, F ) = max { mif(G, F ∪ {t}),
mif(G \ {t}, F )}.

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F as an
active vertex. Denote the active vertex by t from now on.

5. If V \F = N(t) then the algorithm constructs the graph H from Proposition 3
and computes a maximum independent set I in H . Then

mif(G, F ) = |F | + |I|.

6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F .

mif(G, F ) = mif(G, F ∪ {v})

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove v from
G.

mif(G, F ) = max { mif(G, F ∪ {v}),
mif(G \ {v}, F )}
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8. If there is v ∈ N(t) with gd(v) = 2 then denote its generalized neighbors by
w1 and w2. Either add v to F or remove v from G but add w1 and w2 to F .

mif(G, F ) = max { mif(G, F ∪ {v}),
mif(G \ {v}, F ∪ {w1, w2})}

9. If all vertices in N(t) have exactly three generalized neighbors then at least
one of these vertices must have a generalized neighbor outside N(t), since
the graph is connected and the condition of the case Main 5 does not hold.
Denote such a vertex by v and its generalized neighbors by w1, w2 and w3
in such a way that w1 	∈ N(t). Then we either add v to F ; or remove v from
G but add w1 to F ; or remove v and w1 from G and add w2 and w3 to F .

mif(G, F ) = max { mif(G, F ∪ {v}),
mif(G \ {v}, F ∪ {w1}),
mif(G \ {v, w1}, F ∪ {w2, w3})}

The behavior of the algorithm is analyzed in the following

Theorem 1. Let G be a graph on n vertices. Then a maximum induced forest
of G can be found in time O(1.7548n).

Proof. Let us consider the algorithm mif(G, F ) described above. The correctness
of Preprocessing 1 and Main 1,2,3,4,7 is clear. The correctness of Main 5 follows
from Proposition 3, while the correctness of Preprocessing 2 and Main 6,8,9
follows from Proposition 1 and 2 (indeed, applying Proposition 2 to the vertex
u of the graph G′ shows that for some X ∈ MG(F ) either v or at least two of
its generalized neighbors are in X).

In order to evaluate the time complexity of the algorithm we use the following
measure:

μ = |V \ F | + α|V \ (F ∪ N(t))|
where α = 0.955. In other words, each vertex in F has weight 0, each vertex
in N(t) has weight 1, each other vertex has weight 1 + α, and the size of the
problem is equal to the sum of the vertex weights. We will prove that a problem
of size μ can be solved in time O(xμ) where

x < 1.333277.

Denote by f(μ) the maximum number of times the algorithm is called recursively
on a problem of size μ (i. e. the number of leaves in the search tree). Then the
running time T (μ) of the algorithm is bounded by O(f(μ) · nO(1)). We use
induction on μ to prove that f(μ) ≤ xμ. Then T (μ) = O(f(μ) · nO(1)), and
since the polynomial is suppressed by rounding the exponential base, we have
T (μ) = O(1.333277μ). Clearly, f(0) = 1. Suppose that f(k) ≤ xk for every k < μ
and consider a problem of size μ.
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It is clear that the following steps do not contribute to the exponential factor
of the running time of the algorithm: Preprocessing 1,2 and Main 1,2,4,6.

If the condition of the case Main 5 holds then the graph H has exactly μ
vertices since each vertex that is not in F has weight 1. By Theorem 4, a maxi-
mum independent set in H can be found in time O(1.2210μ). Also the algorithm
computing a maximum independent set in [3] is a branching algorithm with a
number of recursive calls bounded by 1.2210μ < 1.333277μ.

In all remaining cases the algorithm is called recursively on smaller problems.
We consider these cases separately.

In the case Main 3 every vertex has weight 1 + α. So, removing v leads to a
problem of size μ − 1 − α. Otherwise, v becomes active after the next Main 4
step. Then all its neighbors become of weight 1, and we obtain a problem of size
at most μ − 1 − 3α since v has degree at least 2. Thus

f(μ) ≤ f(μ − 1 − α) + f(μ − 1 − 3α) ≤ (xμ−1−α + xμ−1−3α) ≤ xμ

by the induction assumption and the choice of x and α.
In the case Main 7 removing the vertex v decreases the size of the problem

by 1. If v is added to F then we obtain a non-trivial component in F , which is
contracted into a new active vertex t′ at the next Preprocessing 2 step. Those
of the generalized neighbors of v that had weight 1 will be connected with t′ by
multiedges and thus removed during the next Preprocessing 2 step. If a gener-
alized neighbor of v had weight 1 + α then it will become a neighbor of t′, i. e.
of weight 1. Thus, in any case the size of the problem is decreased by at least
1 + 4α. So, we have that

f(μ) ≤ f(μ − 1) + f(μ − 1 − 4α) ≤ (xμ−1 + xμ−1−4α) ≤ xμ.

In the case Main 8 we distinguish three subcases depending on the weights
of the generalized neighbors of v. Let i be the number of generalized neighbors
of v having weight 1 + α. Adding v to F reduces the weight of a generalized
neighbor either from 1 to 0 or from 1 + α to 1. Removing v from the graph
reduces the weight of both generalized neighbors of v to 0 (since we add them
to F ). According to this, we obtain three recurrences: for i ∈ {0, 1, 2},

f(μ) ≤ f(μ − (3 − i) − iα) + f(μ − 3 − iα) ≤ (xμ−3+i−iα + xμ−3−iα) ≤ xμ.

The case Main 9 is considered analogously to the case Main 8, except that at
least one of the generalized neighbors of v has weight 1+α, that is i ≥ 1. In this
case, we have for i ∈ {1, 2, 3},

f(μ) ≤ f(μ − (4 − i) − iα) + f(μ − 2 − α) + f(μ − 4 − iα)
≤ (xμ−4+i−iα + xμ−2−α + xμ−4−iα) ≤ xμ.

Thus
f(μ) ≤ xμ.



190 F.V. Fomin, S. Gaspers, and A.V. Pyatkin

Since every vertex of G is of weight at most 1 + α, we have that the running
time of the algorithm is

T (μ) = O(xμ) = O(x(1+α)n) = O(1.3332771.955n) = O(1.7548n). ��

Remark 1. The only tight recurrence is the one of case Main 7 when v has degree
4. Thus, an improvement of this case would improve the overall (upper bound
of the) running time of the algorithm.

4 Conclusion

We have shown that a few simple changes in the branch-and-reduce algorithm of
Razgon [8] together with a flexible measure of the size of a (sub)problem leads to
a significant improvement in the proved upper bound of the worst case running
time of the algorithm.

Note added in camera-ready: Recently, we also proved that the number of
maximal induced forests (and thus the number of minimal feedback vertex sets)
in a graph on n vertices is at most 1.8638n. Schwikowski and Speckenmeyer
presented in [6] an algorithm which enumerates all minimal feedback vertex sets
of a graph with polynomial time delay. Thus our upper bound implies that all
minimal feedback vertex sets (and maximal induced forests) can be enumerated
in time O(1.8638n).
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Abstract. Resolving a noted open problem, we show that the Undi-
rected Feedback Vertex Set problem, parameterized by the size
of the solution set of vertices, is in the parameterized complexity class
Poly(k), that is, polynomial-time pre-processing is sufficient to reduce
an initial problem instance (G, k) to a decision-equivalent simplified in-
stance (G′, k′) where k′ ≤ k, and the number of vertices of G′ is bounded
by a polynomial function of k. Our main result shows an O(k11) kernel-
ization bound.

1 Introduction

One of the most important concrete problems yet to be analyzed from the pa-
rameterized perspective is the Feedback Vertex Set problem, in both its
undirected and directed forms. For a survey of many applications of feedback
sets, see [FPR99]. The problem asks whether there is a set S of at most k ver-
tices of the input graph (digraph) G, such that every cycle (directed cycle) in G
contains at least one vertex in S. The directed form of the problem is notoriously
open as to whether it is fixed-parameter tractable (FPT); the problem remains
open even for the restriction to planar digraphs.

Previous results on FPT algorithms for the Undirected Feedback Vertex
Set problem have followed a trajectory of steady improvements in the run times
[DF92, Bod94, DF99, BBG00, RSS02, KPS04, RSS05, GGHNW05, DFLRS05].
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The current best results are:

• A practical randomized FPT algorithm due to Becker, et al., runs in time
O(4kkn) and finds a feedback vertex set of size k (assuming one exists) with
probability at least 1 − (1 − 4−k)c4k

for an arbitrary constant c [BBG00] .
• A deterministic FPT algorithm due independently to Guo, et al., and to Dehne,
et al., solves the problem in time O∗(10.567k) [GGHNW05, DFLRS05] (the run-
time analysis is in the latter reference).

Here we address a noted open problem:

Is there a polynomial-time algorithm that kernelizes FVS on undi-
rected graphs to a kernel of size polynomial in k?

Kernelization bounds for FPT parameterized problems are an area of increas-
ing interest, because of the strong connection between effective kernelization and
practical algorithmics [Wei98, Wei00, Nie02]. The issue of efficient kernelization
is “completely general” for parameterized complexity because a parameterized
problem Π is in FPT if and only if there is a transformation from Π to itself,
and a function g, that reduces an instance (x, k) to (x′, k′) such that:

(1) the transformation runs in time polynomial in |(x, k)|,
(2) (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Π ,
(3) k′ ≤ k, and
(4) |x′| ≤ g(k).

In the situation described above, we say that we have a kernelization bound
of g(k). The proof of the above “point of view” on FPT that focuses on P-time
kernelization is completely trivial, giving a kernelization bound of g(k) = f(k)
for an FPT problem solvable in time f(k)nc. But for many important FPT prob-
lems, we can do much better, and the “pre-processing” routines that produce
small kernels seem to have great practical value [ACFLSS04, Nie02, Nie06]. For
example, the Vertex Cover problem can be kernelized in polynomial time to a
graph on at most 2k vertices [NT75, ACFLSS04, CFJ04]. Planar Dominating
Set also has a problem kernel of linear size [AFN04].

For typical problems that have been classified as fixed-parameter tractable,
we see steady improvements both in the f(k) in the best known FPT algorithms
solving the problem in time f(k)nc, and also (as an independent issue) in the best
known kernelization bounds g(k). In fact, polynomial-time kernelization/pre-
processing seems to be both a deeper subject than one might have thought and
also one of the most universally relevant ways of dealing with hard computa-
tional problems for realistic input distributions [Nie02, Nie06]. The practical
importance of efficient kernelization has focused attention on subclasses of FPT,
such as the class Lin(k) consisting of the parameterized problems that admit
linear problem kernels, and the class Poly(k) of FPT problems with polynomial-
sized kernels:

Lin(k) ⊆ Poly(k) ⊆ FPT
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Little is yet known about these natural subclasses of FPT. In fact, there are
many famous FPT problems for which membership in Poly(k) is unknown. It is
easy to point to examples of problems in FPT that are unlikely to be in Poly(k),
but mathematical methods to substantiate such intuitive judgements are cur-
rently lacking. (For a concrete example, we think it is unlikely that Min Cut
Linear Arrangement is in Poly(k).) It also seems that devising polynomial-
time data reduction algorithms to show membership in Lin(k) and Poly(k) may
be fruitful combinatorial ground for novel algorithmic strategies. All of this area
seems well-worth investigating because of the close connections to practical com-
puting. The recent Ph.D. dissertations of Prieto [Pr05] and Guo [Guo06] present
some of the first systematic investigations of these challenges.

In the next section, we prove our main result, an O(k11) kernelization for the
Undirected Feedback Vertex Set problem. In the concluding section we
point to some open problems.

2 UFVS Is in Poly(k)

The problem we address is formally defined as follows.

Undirected Feedback Vertex Set
Instance: An undirected multigraph G = (V, E) (that is, a graph with loops and
multiple edges allowed), and a positive integer k.
Parameter: k
Question: Is there a subset V ′ ⊆ V , |V ′| ≤ k, such that every cycle in G contains
at least one vertex of V ′?

The basic approach of our algorithm is to compute in polynomial time a spe-
cific structural map of the problem instance. Some of our polynomial-time data
reduction rules are defined relative to this structural map. We study the situa-
tion by advancing “structural claims” that hold concerning a reduced instance.
The reduction rules that are defined relative to the structural map either decide
the instance, or reduce the size of the instance, or result in an “improvement”
in the quality of the structural map (where the quality is defined so that only
polynomially many improvements are possible). (This approach to kernelization
is exposited with a number of examples in [Pr05].)

Additionally, we employ the following simple reduction rules that also play a
role in the best known FPT algorithms for the problem, and are adapted from
that context [GGHNW05, DFLRS05]:

Rule 1: The Degree One Rule. If v is a vertex of degree 1 in G, then delete
v. The parameter k is unchanged.
Rule 2: The Degree Two Rule. If v is a vertex of degree 2 in G, with
neighbors a and b (allowing possibly a = b), then modify G by replacing v and
its two incident edges with a single edge between a and b (or a loop on a = b).
The parameter k is unchanged.
Rule 3: The Loop Rule. If there is a loop on a vertex v then take v into the
solution set, and reduce to the instance (G − v, k − 1).
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Rule 4: Multiedge Reduction. If there are more than two edges between u
and v then delete all but two of these. The parameter k is unchanged.

The soundness of these reduction rules is trivial. In linear time we can deter-
mine if any of the above reduction rules can be applied to a problem instance.
An instance (G, k) is reduced if none of the reduction rules can be applied.

We will always assume that an instance we are working with is reduced with
regards to Reduction Rules (1-4).

Step One
The first step of our algorithm employs the polynomial-time 2-approximation
algorithm of Bafna, et al. [BBF99] to compute an approximate solution. If the
approximate solution S that is produced is too big, |S| > 2k, then we can decide
that (G, k) is a no-instance, and we are done.

Thus we can assume as the first part of our structural map, a feedback vertex
set S for G, where |S| ≤ 2k. Let F denote the forest G − S.

Step Two
In the second step, we greedily compute a maximal set P of pairwise internally
vertex-disjoint paths (really, cycles) ρ that satisfy:

(1) ρ begins at a vertex v of S.
(2) If ρ begins at v then ρ also ends at v (thus forming a cycle).
(3) All internal vertices of ρ belong to V − S.

The collection of paths P is the second part of our structural map. Note
that by our assumption that (G, k) is reduced relative to Reduction Rules (1-4),
every path ρ ∈ P must have at least one internal vertex, because a reduced
(G, k) does not have any loops. The following reduction rule is defined relative
to this structure.

Rule 5: Flower Reduction. If there is a vertex v ∈ S such that P contains at
least k + 1 paths that begin and end at v, then reduce (G, k) to (G − v, k − 1).

The soundness of Rule 5 is immediately apparent: any k-element feedback
vertex set V ′ must contain v, since otherwise at least one of the k + 1 internally
vertex-disjoint “loops on v” provided by P would fail to contain a vertex in V ′,
as there are too many of them, and any vertex in V ′ can only hit one of them.

Step Three (Repeated)
This is the main loop of our algorithm. Our algorithm maintains a structural
map for the reduced instance (G, k), developed in the first two steps, consisting
of:

(1) the feedback set S, where |S| ≤ 2k, and
(2) the collection of paths P .

We repeatedly either:

• Improve the quality of this structural map, according to a list of priorities
detailed below, or
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• Discover an opportunity to apply a reduction rule, or
• Output a kernelized instance.

There is one more reduction rule that is defined relative to our structural
map, but first we need some definitions concerning the overall structural picture
provided by our structural map information.

If ρ is a path in P , then let ρ′ denote the (“internal”) subpath formed by
the vertices of ρ in V − S. Let P ′ denote the collection of such subpaths ρ′ of
paths ρ in P . Let F ′ denote the subforest of F that results by deleting from
F any vertex that belongs to a path in P ′. The vertices of F can be viewed as
partitioned into:

(1) the paths ρ′ in P ′, and
(2) the trees in F ′.

Let C denote the set of vertices that either belong to S, or belong to a path
ρ′ ∈ P ′.

In order to distinguish between different kinds of trees in F ′, we consider a
graph, the F -model graph, that models this situation. In this model graph, there
is one (red) vertex for each tree in F ′, and one (blue) vertex for each path ρ′ in
P ′. Each vertex x in the model represents a set of vertices V (x) of F . (If x is a
red vertex, then it represents the vertices in a tree of F ′; if x is a blue vertex,
then it represents the vertices of a path ρ′ in P ′.)

In the F -model graph, a vertex x is adjacent to a vertex x′ if and only if
there is a vertex u ∈ V (x) that is adjacent to a vertex u′ ∈ V (x′). Note that the
F -model graph is acyclic, since otherwise S would fail to be a feedback vertex
set in G. If T is a tree in F ′, then v(T ) denotes the red vertex of the F -model
graph corresponding to T . Similarly, if ρ′ is a path in P ′, then v(ρ′) denotes the
blue vertex of the F -model graph corresponding to ρ′.

Let T0 denote the set of trees of F ′ whose corresponding vertices in the F -
model graph have degree 0. Similarly, let T1 denote the set of trees of F ′ whose
corresponding vertices in the F -model graph have degree 1, and let T2 denote
the set of trees of F ′ whose corresponding vertices in the F -model graph have
degree at least 2.

Rule 6: Tree Elimination. Suppose (G, k) is an instance with structural map
(S,P) produced at the end of Step Two, reduced with respect to Reduction
Rules (1-5), and suppose that there is a tree T of F ′ such that for every pair of
distinct vertices s, t in C where T is adjacent to both s and t in G, there are at
least k + 2 different trees T ′ in F ′ where each T ′ is also adjacent to both s and
t in G. Then reduce (G, k) to (G − T, k).

It is easy to see that determining whether Reduction Rule 6 applies in the
situation described, can be accomplished in polynomial time. Less obvious is the
soundness of the reduction rule.
Lemma 1. Reduction Rule 6 is sound.

Proof. It is obvious that if (G, k) is a yes-instance, then so is the reduced
instance, since the yes-instances are hereditary under deletion. In the converse
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direction, suppose A is a feedback set of size k in the reduced instance. We argue
that A must also be a solution for (G, k). If not, then there must be a cycle C
in G that avoids A. Because A is a solution for the reduced graph, the cycle C
must pass through T (perhaps more than once).

Any vertex v of C is joined to T by at most one edge. There are two cases to
consider to justify this assertion. If v belongs to S and is joined by two edges to
T , then P is not maximal. If v belongs to a path ρ′ ∈ P ′ and is joined by two
edges to T , then S fails to be a feedback vertex set.

It follows that the intersection of C with T consists of a number of disjoint
paths ρi, i = 1, ..., m, where for each i, a traversal of C enters ρi from a vertex
si ∈ H and exits ρi to a vertex ti ∈ H with si 	= ti. It also follows that for
i 	= j, the pair of vertices {si, ti} is disjoint from the pair of vertices {sj, tj}.
Suppose that the ρi are indexed in the order of a traversal of C. The cycle C′

that consists of (1) a path in T from s1 to tm, and (2) the path in C through
the reduced graph from tm to s1, also avoids A. In particular, s1 and tm do not
belong to A. The pre-conditions for the reduction rule include that there are at
least k+2 trees T ′ different from T in F ′, each of these connected to both s1 and
tm, and thus there are at least k + 2 internally vertex-disjoint paths from s1 to
tm in the reduced instance. But then, at least two of these must avoid A (since
A has only k vertices) and form (together with s1 and tm) a cycle in the reduced
graph that avoids A, a contradiction. Therefore A must also be a solution for
(G, k). �

In the next series of lemmas we advance some claims about the situation where
(G, k) is an instance with structural map (S,P) (with P maximal, as computed
in Step Two), that is reduced with respect to Reduction Rules (1-5).

Lemma 2. P contains at most 2k2 paths.

Proof. If there were more paths in P , then the Flower Rule would apply. �

Lemma 3. The number of trees in T2 is bounded by 2k2 − 1.

Proof. This follows from Lemma 2, since F is a forest. �

Lemma 4. If T is any tree in the forest F ′, then |T | ≤ 2k2 + 2k − 2.

Proof. We first argue that for any tree T on m vertices, there must be at least
m + 2 edges connecting T to the rest of G, that is, to G − T . First note that
any leaf of T must be connected to the rest of G by at least two edges, since
otherwise either the Degree One Reduction Rule or the Degree Two Reduction
Rule would apply. If T consists of only one vertex, then similarly it must be
connected to the rest of G by at least three edges. If u is an internal vertex of
T of degree 2 relative to T , then at least one edge must join u to the rest of G,
since otherwise the Degree Two Rule would apply. Let l denote the number of
leaves of T , let j denote the number of internal vertices of T of degree 2, and
let b denote the number of internal vertices of T of degree greater than 2. Then
m = l + j + b. By the above observations, the number of edges joining T to the
rest of G is at least c = 2l + j. The inequality we seek, c ≥ m + 2, follows from
the elmentary fact that l ≥ b + 2.
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Lemma 4 follows, since if the bound stated in the lemma did not hold, then
T would be joined by two edges either: (1) to a path ρ′ ∈ P ′, or (2) to a vertex
of S. Case (1) contradicts that S is a feedback vertex set for G, and case (2)
contradicts that P is maximal. �

The Quality of the Structural Map. The quality of the structural map may
be improved according to the following list of priorities:

(1) The size of P should be maximized.
(2) The sum of the lengths of the paths in P ′

∑
ρ′∈P′

|ρ′|

should be minimized.

Lemma 5. Suppose (G, k) is an instance with structural map (S,P) (with P
maximal, as computed in Step Two), that is reduced with respect to Reduction
Rules (1-5). Then either every path ρ′ ∈ P ′ has length at most 6k + 2(2k2 − 1),
or in polynomial time we can improve the quality of the the structural map.

Proof. Consider a path ρ′ ∈ P ′. We will argue about the length of a subpath
“in the middle” of ρ′. Suppose the vertices of ρ′ in the order of a traversal are:

ρ′ = (v1, v2, ..., vl)

Let ρ′′ denote the subpath

ρ′′ = (v2k+1, v2k+2, ..., vl−2k−1, vl−2k)

In other words, ρ′′ is the “middle” subpath excluding both the first 2k vertices
of ρ′ and the last 2k vertices of ρ′.

We argue that if |ρ′′| > 2k + 2(2k2 − 1) then we can improve the quality
of P with respect to the second priority by replacing ρ with a shorter path.
The vertices of ρ′′ do not have degree 2 in G, since otherwise the Degree Two
Reduction Rule would apply. Therefore each vertex x of ρ′′ is adjacent to some
vertex x′ that is not one of its two neighbors with respect to the path ρ′. Since
F is a forest, x′ /∈ ρ′. There are four possibilities: (1) x′ ∈ S, (2) x′ is a vertex
of a tree in T2, (3) x′ is a vertex of a different path σ′ in P ′, or (4) x′ is a vertex
of a tree T in T1.

In case (4), there must be a path ρs from x through T to a vertex s ∈ S. Any
such path is disjoint from the other paths in P ′. By the argument in the proof
of Lemma 4, if |T | = m, then T must be joined by at least m + 1 edges to S, in
view of the definition of T1. Also, T cannot be joined to s ∈ S by two different
edges, otherwise P is not maximal. It follows that |T | ≤ 2k − 1, and that the
number of internal vertices of ρs is bounded by 2k − 1.

Two distinct vertices x, y of ρ′′ cannot both be adjacent to a path σ′ 	= ρ′,
else S fails to be a feedback vertex set. Similarly, they cannot both be adjacent
to the same tree in T2. If there are distinct vertices x, y of ρ′′ that both have
paths to s ∈ S (via trees in T1), then the second priority can be improved.



The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel 199

Since S contains at most 2k vertices, there are at most 2k2 − 1 trees in T2,
and there are at most 2k2 − 1 paths in P ′ other than ρ′, the lemma follows, by
the Pigeonhole Principle. �

Theorem 1. There is a kernelization bound g(k) = O(k11) such that for an
instance (G, k) either:

(1) |G| ≤ g(k), that is, the instance is kernelized, or
(2) In polynomial time, we can compute a structural map (S,P) for (G, k) and
either discover an opportunity to apply a reduction rule, or discover an oppor-
tunity to improve the structural map according to the priorities listed above.

Proof. The forest F ′ consists of trees of size O(k2), by Lemma 4. The total
number of vertices that either belong to S, or belong to a path in P ′, by Lem-
mas 2 and 5, is bounded by z = O(k4). Both of these statements hold under the
assumption that the instance is reduced (in polynomial time) under Reduction
Rules (1-5). Now consider going through the list of trees in F ′, checking, for
each tree encountered on the list, if there is an opportunity to apply Reduction
Rule 6, the Tree Elimination Rule. We can keep a count, for each pair of vertices
s, t in C, of the number of trees on the list, up to that point, that are attached
to both s and t. Each tree T on the list must either increase the count for at
least one such pair (up to a limit of k + 2), otherwise T qualifies for the Tree
Elimination Rule. There are at most

(
z
2

)
= O(k8) such pairs in C, and therefore

O(k9) trees in F ′, else the Tree Elimination Rule is triggered. By Lemma 4, the
total number of vertices in F ′ is O(k11). �

Corollary. In polynomial time, we can kernelize an instance of UFVS to a kernel
of size O(k11).

Proof. This follows from the fact that the priorities can be improved only a
polynomial number of times. �

3 Summary and Open Problems

In this paper, we have addressed a notable concrete open problem about FPT
kernelization, and we have shown that the fixed-parameter tractable Undi-
rected Feedback Vertex Set problem has an O(k11) kernel. Might this
problem have a linear-size kernel? We think this may well be so, despite our
rather weak result here, in view of the fact that the problem admits a constant
factor P-time approximation algorithm (a different, but seemingly related issue).
Polynomial-time “crown-type” reductions may potentially play a role in showing
that UFVS is in Lin(k) [CFJ04, ACFLSS04, DFRS04, LS05, Pr05, Slo05].

The subject of parameterized complexity has been dogged from the beginning
by concerns that the definition of FPT is “too lax” to capture a really mean-
ingful framework for “coping with intractability” in the sense of [GJ79]. (The
early entanglement of the subject with graph minors theory perhaps did not
help in this regard.) In particular, the usual definition of FPT calls for solvabil-
ity in time f(k)nc where f(k) is a completely unrestricted function. Despite the
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fact that many of the most important and natural FPT parameterized problems
seem to admit FPT algorithms with relatively (surprisingly?) benign f(k), there
has been motivation to explore subclasses of FPT with stronger definitional
claims on practical parametric feasibility [FGW04, Wey04, FG06]. Certainly,
considering FPT from the point of view of polynomial-time data reduction gives
a very natural in-road to more sensitive distinctions concerning parameterized
tractability.

Pre-processing is a humble strategy for coping with hard problems, almost
universally employed. It has become clear, however, that far from being trivial
and uninteresting, that pre-processing has unexpected practical power for real-
world input distributions [Wei98,Wei00,BKV05], and is mathematically a much
deeper subject than has generally been understood. It is almost impossible to
talk about pre-processing in the classical complexity framework in any sensible
and interesting way, and the historical neglect of this vital subject may be related
to this fact.

Here is the difficulty. If my problem Π is NP-hard, then probably there is
no P-time algorithm to solve the problem, that is, to completely dispose of the
input. If you suggested that perhaps I should settle for a P-time algorithm that
instead of completely disposing of the input, at least simplifies it by getting rid
of, or reducing away, the easy parts — then this would seem a highly compelling
suggestion. But how can this be formalized? The obvious first shot is to ask for
a P-time algorithm that reduces the input I to an input I ′ where |I ′| < |I| in a
way that loses no essential information (i.e., trades the original input for smaller
input, which can be called data reduction). The difficulty with this “obvious”
formalization of the compelling suggestion is that if you had such a P-time data
reduction algorithm, then by repeatedly applying it, you could dispose of the
entire input in polynomial time, and this is impossible, since Π is NP-hard. Thus,
in the classical framework, an effort to formulate a mathematically interesting
program to explore polynomial-time preprocessing immediately crashes.

In the parameterized complexity framework, however, such a program can be
formulated in an absolutely interesting and productive way. The effectiveness of
P-time processing is measured against the structure represented by the parame-
ter. This is precisely the intellectual location of this paper. You might reasonably
call the subject of FPT kernelization the Lost Continent of Polynomial Time.

Kernelization as we have considered it here is a polynomial time many:1 trans-
formation of a parameterized problem Π to itself. One can also consider Turing
kernelizations. A nontrivial example of a 2k Turing kernelization, based on iter-
ative compression, for the Vertex Cover problem is described by Dehne, et
al. in [DFRS04]. Of course, in the case of Vertex Cover, this is matched by a
2k many:1 kernelization. Nevertheless, Turing kernelization may in general have
greater power than many:1 kernelization. It makes sense to ask if the Undi-
rected Feedback Vertex Set problem might admit a linear-size Turing
kernelization.

There seems to be much interesting work to do in exploring kernelizability,
and its limits, for the many parameterized problems now known to be in FPT.
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Abstract. We provide first-time fixed-parameter tractability results for
the NP-complete problems Maximum Full-Degree Spanning Tree
and Minimum-Vertex Feedback Edge Set. These problems are dual
to each other: In Maximum Full-Degree Spanning Tree, the task
is to find a spanning tree for a given graph that maximizes the number
of vertices that preserve their degree. For Minimum-Vertex Feedback
Edge Set the task is to minimize the number of vertices that end up with
a reduced degree. Parameterized by the solution size, we exhibit that
Minimum-Vertex Feedback Edge Set is fixed-parameter tractable
and has a problem kernel with the number of vertices linearly depending
on the parameter k. Our main contribution for Maximum Full-Degree
Spanning Tree, which is W[1]-hard, is a linear-size problem kernel when
restricted to planar graphs. Moreover, we present subexponential-time
algorithms in the case of planar graphs.

1 Introduction

The NP-complete Maximum Full-Degree Spanning Tree (FDST) problem
is defined as follows.

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Task: Find a spanning tree T of G (called solution tree) in which at
least k vertices have the same degree as in G.

Referring to vertices that maintain their degree as full-degree vertices and to
the remaining ones as reduced-degree vertices, the task basically is to maximize
the number of full-degree vertices. FDST is motivated by applications in water
distribution and electrical networks [3,4,13]. It is a notoriously hard problem
and, as such, not polynomial-time approximable within a factor of O(n1/2−ε)
for any ε > 0 unless NP-complete problems have randomized polynomial-time
algorithms [3]. The approximability bound is almost tight in that Bhatia et al. [3]
provide an algorithm with an approximation ratio of Θ(n1/2). FDST remains
NP-complete in planar graphs; however, polynomial-time approximation schemes
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(PTAS) are known here [3,4]. Broersma et al. [4] present further tractability and
intractability results for various special graph classes. By way of contrast, the
parameterized complexity [7,10,14] of FDST has so far been unexplored.

The complement (dual) problem of FDST, called Minimum-Vertex Feed-
back Edge Set (VFES), is to find a feedback edge set1 in a given graph such
that this set is incident to as few vertices as possible. In other words, we want to
minimize the number of reduced-degree vertices. VFES is motivated by an appli-
cation of placing pressure-meters in fluid networks [12,15,16]. Khuller et al. [12]
show that VFES is APX-hard and present a polynomial-time approximation
algorithm with ratio (2 + ε) for any fixed ε > 0. Moreover, they develop a PTAS
for VFES in planar graphs. As with FDST, the parameterized complexity of
VFES has so far not been investigated.

Parameterized by the respective solution size k, this work provides first-time
parameterized complexity results for FDST and its dual VFES. Somewhat anal-
ogously to the study of approximability properties, we observe that FDST seems
to be the harder problem when compared to its dual VFES: Whereas VFES is
fixed-parameter tractable, FDST is W[1]-hard.2 More specifically, our findings
are as follows:

– VFES has a problem kernel with less than 4k vertices and it can be solved
in O(4k · k2 + m) time for an m-edges graph.

– FDST becomes fixed-parameter tractable in the case of planar graphs. In
particular, as the main technical contribution of this paper, we prove a linear-
size problem kernel for FDST when restricted to planar graphs.

– For planar graphs, both VFES and FDST are solvable in subexponen-
tial time. More specifically, in n-vertices planar graphs VFES is solvable
in O(2O(

√
k log k) + k5 +n) time and FDST in O(2O(

√
k log k) + k5 +n3) time.

Herein, we make use of tree decomposition-based dynamic programming.

We remark that, when restricted to planar graphs, this work amends the so
far few examples where both a problem and its dual possess linear-size problem
kernels. Other examples we are aware of (again restricted to planar graphs) are
Vertex Cover and its dual Independent Set and Dominating Set and its
dual Nonblocker [1,5,6].

We omit most proofs in this extended abstract due to a lack of space.

2 Minimum-Vertex Feedback Edge Set

Minimum-Vertex Feedback Edge Set (VFES), the dual of Maximum
Full-Degree Spanning Tree (FDST), appears to be better tractable from a
parameterized point of view than FDST. We subsequently present a simple prob-
lem kernelization with a kernel graph whose number of vertices linearly depends
on the parameter (Sect. 2.1) and, based on this, an efficient fixed-parameter
algorithm (Sect. 2.2) for VFES.
1 A feedback edge set is a set of edges whose deletion destroys all cycles in a graph.
2 The reduction is from Independent Set and the same as the one in [3,12].
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vertices in V=1

vertices in V X
=2

vertex in V G
=2

vertices in V≥3

Fig. 1. Given a spanning tree for a graph (bold edges), the proof of the linear kernel
for VFES in Theorem 1 partitions them into four disjoint subsets as illustrated above
(see proof for details)

2.1 Data Reduction and Problem Kernel

To reduce a given instance of VFES to a problem kernel, we make use of two
very simple data reduction rules already used by Khuller et al. [12].

Rule 1. Remove all degree-one vertices.
Rule 2. For any two neighboring degree-two vertices that do not have
a common neighbor, contract the edge between them.

The correctness and the linear running time of these two rules are easy to verify;
we call an instance of VFES reduced if the reduction rules cannot be applied
any more.

Theorem 1. A reduced instance (G = (V, E), k) of VFES only has a solution
tree if |V | < 4k.

Proof. Assume that G has a solution tree T . Let X denote the set of the reduced-
degree vertices in T . We partition the vertices in V into three disjoint subsets
according to their degree in T , namely V=1 contains all degree-1 vertices, V=2
contains all degree-2 vertices, and V≥3 contains all vertices of degree higher
than 2. Furthermore, let V X

=2 := V=2 ∩ X and V G
=2 := V=2 \ V X

=2. The partition
is illustrated in Figure 1. Since G does not contain any degree-1 vertices by
Rule 1, every degree-1 vertex in T is a reduced-degree vertex. Hence, T can
have at most k leaves and |V=1| ≤ |X | ≤ k. Since T is a tree, this directly
implies |V≥3| ≤ k − 2.

As for V=2, the vertices in V=1 ∪ V≥3 are either directly connected to each
other or via a path P consisting of vertices from V=2. Because Rule 2 contracts
edges between two degree-2 vertices that have no common neighbor in the input
graph, at least one of every two neighboring vertices of P has to be a reduced-
degree vertex. Clearly, V X

=2 ∪ V1 ⊆ X . Since T is a tree, it follows that |V G
=2| ≤

|V=1 ∪ V≥3 ∪ V X
=2| − 1 ≤ 2k − 3.

Overall, this shows that |V | = |V=1 ∪ V X
=2 ∪ V G

=2 ∪ V≥3| < 4k as claimed. ��

2.2 A Fixed-Parameter Algorithm

The problem kernel obtained in Theorem 1 suggests a simple fixed-parameter
algorithm for Minimum-Vertex Feedback Edge Set: For i = 1, . . . , k, we
consider all

(4k
i

)
size-i subsets X of kernel vertices. For each of these subsets,
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all edges between the vertices in X are removed from the input graph, that is,
they become reduced-degree vertices. If the remaining graph is a forest, we have
found a solution.3 The correctness of this algorithm is obvious by its exhaustive
nature, but on the running-time side it requires the consideration of

∑k
i=1

(4k
i

)
>

9.45k vertex subsets. The next theorem shows that we can do better because an
exhaustive approach does not need to consider all vertices of the kernel but only
those with degree at least three.

Theorem 2. For an m-edge instance (G = (V, E), k) of VFES, it can be de-
cided in O(4k · k2 + m) time whether it has a solution tree.

Proof. Given an instance (G = (V, E), k) of VFES, we first perform the ker-
nelization which needs O(m) time. By Theorem 1, we know that the remaining
graph only has a solution tree if it contains fewer than 4k vertices. We now
partition the vertices in V according to their degree: vertices in V=2 have degree
two and V≥3 contains all vertices with degree at least three. For every size-i
subset X≥3 ⊆ V≥3, 1 ≤ i ≤ k, the following two steps are performed:

Step 1. Remove all edges between vertices in X≥3. Call the resulting
graph G′ = (V, E′).
Step 2. For each edge e ∈ E′, assign it a weight w(e) = m + 1 if it is
incident to a vertex in V≥3 \X≥3 and a weight of 1, otherwise. Then, find
a maximum-weight spanning tree for every connected component of G′.
If the total weight of edges that are not in a spanning tree is at most k−i,
then the original VFES instance (G = (V, E), k) has a solution tree and
the algorithm terminates; otherwise, the next subset X≥3 is tried.

To justify Step 2, observe that the edges incident to vertices in V≥3\X≥3 have to
be in the solution tree because these vertices preserve their degree. Therefore, if
a component in G′ contains cycles we can only destroy these by removing edges
between a vertex in X≥3 and a vertex in V=2. Moreover, removing such an edge
results in exactly one additional reduced-degree vertex. Thus, searching for a
maximum-weight spanning tree in the second step leads to a solution tree (the
components can easily be reconnected by edges between vertices in X≥3).

The running time of the algorithm is composed of the linear preprocessing
time, the number of subsets that need to be considered, and the time needed for
Steps 1 and 2. By Theorem 1, a reduced graph contains less than 4k vertices and,
hence, O(k2) edges, upper-bounding the time needed for Steps 1 and 2 by O(k2).
From the proof of Theorem 1, we know that |V≥3| ≤ 2k, and hence the overall
running time is bounded above by O(m +

∑
1≤i≤k

(2k
i

)
k2) = O(4k · k2 + m). ��

3 Maximum Full-Degree Spanning Tree in Planar Graphs

The reduction from Independent Set to Maximum Full-Degree Spanning
Tree (FDST) that is given in [3] already shows that FDST is W[1]-hard with
3 Since the input graph must be connected, we can add some edges from G that are

between the vertices in X in order to reconnect connected components with each
other and thus obtain a spanning tree.
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respect to the number k of full-degree vertices.4 For planar graphs, however,
this does not hold; in this section, we show that it is even possible to achieve a
linear-size problem kernel for FDST in planar graphs.

While the proof of the linear size upper bound is very involved and technical,
the actual computation of the problem kernel is based on several straightforward
data reduction rules on a given instance of FDST.5

Reduction Rules. Let N(v) denote the neighborhood of a vertex v.
For two vertices v 	= w with |N(v) ∩ N(w)| ≥ 3, perform the following
reductions:
1. Let u1, u2, u3 be three vertices in N(v) ∩ N(w).

1.1 If N(u1) = {v, w} and additionally either N(u2) = {v, w} or
N(u2) = {u3, v, w}, then remove u2.

1.2 If N(u1) = {u2, v, w}, N(u2) = {u1, u3, v, w}, and N(u3) =
{u2, v, w}, then remove u3.

2. Let u1, u2, u3, u4 be four vertices in N(v) ∩ N(w).
2.1 If N(u1) = {u2, v, w}, N(u2) = {u1, v, w}, N(u3) = {u4, v, w},

and N(u4) = {u3, v, w}, then remove u3 and u4.
2.2 If N(u2) = {u1, u3, v, w}, N(u3) = {u2, u4, v, w}, and there is no

edge {u1, u4}, then remove the edge {u2, u3}.
3. Let u1, u2, u3, u4, u5 be five vertices in N(v) ∩ N(w).

If N(u2) = {u1, u3, v, w}, N(u3) = {u2, v, w}, N(u4) = {u5, v, w},
and N(u5) = {u4, v, w}, then remove u3.

The five subcases are illustrated in Figure 2. Omitting a formal proof here,
exhaustively applying these rules yields a graph that has a spanning tree with k
full-degree vertices iff the original graph has a spanning tree with k full-degree
vertices, that is, the reduction rules are “correct.”

As we shall show in the remainder of this section, a planar graph that is re-
duced with respect to the reduction rules is a linear-size problem kernel for Max-
imum Full-Degree Spanning Tree in planar graphs:

Theorem 3. For a given planar n-vertex graph G, let k be the maximum number
of full-degree vertices in any spanning tree for G. If G is reduced with respect to
the given reduction rules, then n = O(k), that is, we have a linear-size problem
kernel for FDST on G that can be computed in O(n3) time.

The proof of this theorem is quite involved. We basically achieve it by contra-
diction, that is, we assume that we are given an optimal solution tree to FDST
on G and show that either |V | = O(k) must hold or this optimality is contra-
dicted.6 Throughout this section, we denote the set of full-degree vertices in the
optimal solution tree by F (note that |F | = k).
4 W[1]-hardness stands for (presumable) parameterized intractability. Refer

to [7,10,14] for details.
5 Note that the reduction rule applies to an arbitrary graph but the “linear-size kernel”

performance-guarantee is only shown for planar graphs.
6 This sort of proof strategy has first been used in work dealing with the Max Leaf

Spanning Tree problem [8,9].
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Fig. 2. The five subcases of the reduction rule for planar FDST that yields a linear-size
problem kernel

To this end, the following lemma is very helpful.

Lemma 4. Every vertex in G has distance at most 2 to a vertex in F . ��

Using this lemma, our strategy to prove Theorem 3 is for every vertex in F to
partition the set of vertices that have distance at most 2 to it into two sets and
separately upper-bound their size. More specifically, Section 3.1 introduces the
concept of region decompositions which use the set F to divide the input graph
into small areas.7

In Section 3.2, it is shown that the number of regions in a region decompo-
sition is bounded above by O(|F |) (Lemma 9) and that in the reduced graph,
every region contains only a constant number of vertices (Lemma 13). Overall,
this shows that there are at most O(|F |) vertices lying inside regions (Proposi-
tion 14). Essentially following the same strategy in Section 3.3, we upper-bound
the number of vertices that do not lie inside regions by O(|F |) (Proposition 18).
The linear kernel claimed in Theorem 3 directly follows from the O(|F |) upper
bounds on the number of vertices in regions and outside regions.

3.1 Neighborhood Partition and Region Decomposition

This section prepares the proof of the size-O(|F |) upper bound of a reduced
graph by introducing two partitions of the vertices in V \ F . One partition is
“local” in that for every vertex in F , it concerns vertices within distance at
most 2 to it; we partition this 2-neighborhood into so-called “exit vertices” and
“prison vertices.” The other partition, called region decomposition, is somewhat
more “global” in that it concerns the union of 2-neighborhoods for some pairs
of vertices in F . These partitions are subsequently used in Sections 3.2 and 3.3
to show the desired linear size of a reduced planar graph.

7 The proof concept is, in this sense, similar to the one for the linear-size problem
kernel for Dominating Set in planar graphs due to Alber et al. [1].
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As to the notation used, for a set V ′ ⊆ V the subgraph of G induced by V ′ is
denoted by G[V ′] = (V ′, E′). For a vertex v ∈ V , we denote the vertices having
distance 2 to v by N2(v). By N1,2(v), we denote N(v) ∪ N2(v). Furthermore,
we set N1(v) := N(v) \ F and let N2(v) denote all vertices that have distance
exactly 2 to v in the induced graph G[(V \F )∪{v}]. Finally, N1,2(v) := N1(v)∪
N2(v). This section and the following always consider some fixed embedding
of G in the plane (hence, we call G plane instead of planar).

As already mentioned, Lemma 4 shows that every vertex in G has distance at
most 2 to a full-degree vertex. Thus, if we can upper-bound the number of ver-
tices in

⋃
v∈F N1,2(v) by O(|F |), the linear problem kernel follows as claimed. In

order to do this, we partition the vertices in N1,2(v) into two subsets, separately
upper-bounding their sizes in Sections 3.2 and 3.3:

N1,2
exit(v) := {u ∈ N1,2(v) | u ∈ N(w) for a vertex w /∈ N1,2(v)},

N1,2
prison(v) := N1,2(v) \ N1,2

exit(v).

For a subset V ′ ⊆ V , we use N1,2
exit(V

′) to denote
⋃

v∈V ′ N1,2
exit(v). The intuition

of the partition is that the “exit” vertices have edges to vertices that lie out-
side of N1,2(v) whereas the “prison” vertices have no edge to a vertex different
from v ∪ N1,2(v).8 As an example, the following illustration shows the partition
of a neighborhood N1,2(v) into N1,2

exit(v) and N1,2
prison(v):

F

N1,2
exit

N1,2
prison

v

As it turns out, every vertex in N1,2
exit(v) is “caught” between two vertices in F ,

that is, for these vertices a stronger variant of Lemma 4 holds.

Lemma 5. Given a vertex v ∈ F , every vertex u ∈ N1,2
exit(v) lies on a length-at-

most-five path between v and an other vertex w ∈ F (where w 	= v). ��

Lemma 5 can be used to eventually upper-bound the size of N1,2
exit(F ) because the

length-at-most-five paths form “bounded areas” between vertices from F called
“regions.”

Definition 6. A region R(v, w) between two vertices v, w ∈ F is a closed subset
of the plane with the following properties:

1. The boundary of R(v, w) is formed by two paths between v and w; the length
of each path is at most five.

8 See [1] for a similar notion in the context of Dominating Set.
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2. All vertices which lie strictly inside of R(v, w)—that is, they do not lie on
the boundary—are from N1,2(v) ∪ N1,2(w). (Observe that no vertex from F
lies strictly inside of a region.)

To denote the vertices that lie in R(v, w), we use V (R(v, w)), that is, V (R(v, w)) is
the union of the boundary vertices and the vertices lying strictly inside of R(v, w).

Using this definition, a plane graph can be partitioned into a number of regions
by a so-called region decomposition.

Definition 7. An F -region decomposition of G is a set R of regions R(v, w)
with v, w ∈ F such that the following holds:

1. Except for v and w, no vertex from V (R(v, w)) belongs to F .
2. There is no vertex that lies strictly inside of more than one region from R.

(The boundaries of regions may touch each other.)

For an F -region decomposition R, we let V (R) :=
⋃

R∈R V (R). An F -region
decomposition R is called maximal if there is no region R /∈ R such that R′ :=
R ∪ {R} is an F -region decomposition with V (R) � V (R′).

An example of a (maximal) F -region decomposition is the following (the full-
degree vertices in F are colored black, the shaded areas are the regions of the
decomposition):

Our notions of “region” and “region decomposition” are similar to the tech-
nique used by Alber et al. [1] for proving a linear-size kernel for Dominating
Set in planar graphs. However, the problem structure of FDST makes the proof
somewhat more involved: Whereas Alber et al. were able to bound their regions
by length-3 paths, the FDST problem appears to require longer bounds (that is,
length-5 paths in our proofs). The reason for this is that in Dominating Set,
a vertex affects only its direct neighborhood whereas the full-degree property
affects vertices in the 2-neighborhood.

The following lemma shows that it is possible to construct a maximal F -
region decomposition R satisfying N1,2

exit(F ) ⊆ V (R). By subsequently bounding
the number of vertices that lie in regions in Section 3.2, this allows us to upper-
bound the number of vertices in N1,2

exit(F ) so that we only have to deal with
vertices from N1,2

prison(F ) in Section 3.3.

Lemma 8. For a plane graph G = (V, E), there exists a maximal F -region
decomposition R of G such that N1,2

exit(F ) ⊆ V (R). ��
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3.2 Bounding the Number of Vertices in Regions

In this section, we show that the F -region decomposition R from Lemma 8
has O(|F |) vertices lying inside of regions (Proposition 14). The proof of this is
achieved in several steps: First, Lemma 9 shows that the total number of regions
is O(|F |). Then, Proposition 12 upper-bounds the number of length-2 paths that
can occur between two vertices in the reduced graph; this proposition is heavily
used to prove that every region contains at most O(1) vertices in Lemma 13.
Finally, Proposition 14 follows from Lemmas 9 and 13.

Lemma 9. For |F | ≥ 3, the maximal F -region decomposition R in Lemma 8
consists of at most 6|F | − 12 regions. ��

To show the constant number of vertices in each region, we make use of the
following structure:

Definition 10. Let v and w be two distinct vertices in a plane graph G. A
diamond D(v, w) is a closed area of the plane that is bounded by two length-2
paths between v and w such that every vertex that lies inside of the closed area
is a neighbor of both v and w. If i vertices lie strictly inside of a diamond, then
the diamond is said to have (i + 1) facets (a facet is an area enclosed by two
length-2 paths).

Lemma 11. A reduced plane graph does not contain a diamond with more
than 5 facets. ��

The only two possible 5-facet diamonds (the worst-case diamonds, so to say)
that might remain after the data reduction are the following:

vv ww

The absence of diamonds with too many facets is central to showing the linear
size of the problem kernel for FDST: At most 2 vertices of any diamond can
be full-degree, and hence the possibility of arbitrarily large diamonds would
prohibit a provable upper bound of the reduced graph. For the same reason,
it is important that there cannot be arbitrarily many length-2 paths between
two vertices of the input graph. Therefore, Lemma 11 is generalized in order to
obtain a upper bound on the number of length-2 paths between two vertices.

Proposition 12. Let v and w be two vertices in a reduced plane graph G such
that an area A(v, w) of the plane is enclosed by two length-2 paths between v
and w. If neither the middle vertices of the enclosing paths nor any vertex inside
of the area are contained in F , then the following holds:
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1. If v, w 	∈ F , at most eight length-2 paths from v to w lie inside of A(v, w).
2. If v 	∈ F or w 	∈ F , at most sixteen length-2 paths from v to w lie inside

of A(v, w). ��

Using the upper bound on the number of length-2 paths between two vertices
that Proposition 12 establishes, it is possible to bound above the number of
vertices that can lie inside of a region.

Lemma 13. Every region R(v, w) ∈ R contains O(1) vertices. ��

In conjunction with the O(|F |) upper bound on the number of regions that was
established in Lemma 9, this directly allows us to bound above the number of
vertices that lie inside of regions.

Proposition 14. The total number of vertices lying inside of regions of R
is O(|F |). ��

3.3 Bounding the Number of Vertices Outside of Regions

In the last section, we have bounded above the number of vertices that lie inside
of regions of a maximal F -region decomposition R. It remains to bound above
the vertices that do not lie in regions. By Lemma 8, every one of these remaining
vertices is in N1,2

prison(v) for some vertex v ∈ F . To bound the number of these
vertices by O(|F |), we essentially follow the same strategy as in the last section:
We show that each vertex in N1,2

prison(v) lies in one of O(|F |) so-called “prison
areas” and that each such prison area contains a constant number of vertices.

Definition 15. Given a maximal F -region decomposition, a prison area for a
vertex v ∈ F is a closed area of the plane with the following properties:

1. All vertices that lie strictly inside of the area are from N1,2
prison(v).

2. The area cannot be extended to include any vertex from N1,2
prison(v) without

violating the first condition.

Analogously to the preceding section, we first show that the number of prison
areas is upper-bounded by O(|F |) and then show that each area contains a
constant number of vertices.

Lemma 16. Given a maximal F -region decomposition R, the vertices that do
not lie inside of any region of R form at most 12|F | − 24 prison areas (again,
we assume |F | ≥ 3). ��

Lemma 17. Every prison area contains O(1) vertices. ��

Proposition 18. The number of vertices lying outside of regions of R is bounded
above by O(|F |). ��



Fixed-Parameter Tractability Results for FDST and Its Dual 213

4 A Tree Decomposition-Based Algorithm

There exists a tree decomposition-based algorithm that solves both Minimum-
Vertex Feedback Edge Set and Maximum Full-Degree Spanning Tree
in O((2ω)3ω · ω · n) time on an n-vertex graph with a given tree decomposition
of width ω.9 We omit its description here due to lack of space.

Theorem 19. For an n-vertex graph G with a given width-ω tree decompo-
sition (T, X), both Minimum-Vertex Feedback Edge Set and Maximum
Full-Degree Spanning Tree can be solved in O((2ω)3ω · ω · n) time. ��

Using the linear problem kernels for VFES and FDST that were established in
Theorems 1 and 3, Theorem 19 implies subexponential-time algorithms for these
problems when restricted to planar graphs:

Theorem 20. In n-vertex planar graphs, Minimum-Vertex Feedback Edge
Set is solvable in O(2O(

√
k log k) + k5 + n) time and Maximum Full-Degree

Spanning Tree in O(2O(
√

k log k) + k5 + n3) time, where k is the number of
degree-reduced vertices or full-degree vertices, respectively.

Proof. Both problems have linear-size kernels in planar graphs, that is, the re-
duced graphs have at most O(k) vertices after performing the respective kernel-
ization. The claim follows from Theorem 19 and the facts that planar O(k)-vertex
graphs have treewidth ω = O(

√
k) and that a corresponding tree decomposition

of width 3ω/2 can be computed in O(k5) time [17]. ��

5 Conclusion

Our main technical contribution is the proof of the linear-size problem kernel
for FDST in planar graphs. It is easily conceivable that there is room for sig-
nificantly improving the involved worst-case constant factors—the situation is
comparable (but perhaps even more technical) with analogous results for Dom-
inating Set in planar graphs [1,5]. Having obtained linear problem kernel sizes
for a problem and its dual, the way for applying the lower bound technique for
kernel size due to Chen et al. [5] now seems open.

Another interesting line of future research might be to investigate whether our
problem kernel result for planar graphs can be lifted to superclasses of planar
graphs—corresponding results for Dominating Set in this direction are re-
ported in [11]. Perhaps even more importantly, it would be interesting to pursue
experimental studies (similar to Bhatia et al. [3]) with real-world data in order
to explore the practical usefulness of our algorithms and problem kernelizations.
9 Broersma et al. [4] have already shown that both VFES and FDST are solvable

in linear time for graphs with bounded treewidth by expressing the problems in
monadic second-order logic. The linear-time solvability follows then from a result
of Arnborg et al. [2]. However, this approach does not provide an exact depen-
dency of the running time on the treewidth. Therefore, their result cannot imply a
subexponential-time algorithm.
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Abstract. In the field of computational optimization, it is often the
case that we are given an instance of an NP problem and asked to
enumerate the first few ”best” solutions to the instance. Motivated by
this, we propose in this paper a new framework to measure the effec-
tive enumerability of NP optimization problems. More specifically, given
an instance of an NP problem, we consider the parameterized problem
of enumerating a given number of best solutions to the instance, and
study its average complexity in terms of the number of solutions. Our
framework is different from the previously-proposed ones. For example,
although it is known that counting the number of k-paths in a graph is
#W [1]-complete, we present a fixed-parameter enumeration algorithm
for the problem. We show that most algorithmic techniques for fixed-
parameter tractable problems, such as search trees, color coding, and
bounded treewidth, can be used for parameterized enumerations. In ad-
dition, we design elegant and new enumeration techniques and show how
to generate small-size structures and enumerate solutions efficiently.

1 Introduction

Most computational problems are concerned with finding a single solution for
a problem instance. For example, decision problems ask for the existence of a
solution (to a given instance) that satisfies certain properties [24]. On the other
hand, many computational problems in practice seek a number of good solutions
rather than a single one. Examples include seeking significant sub-structures in
biological networks [20,27], studying sequence Motifs and alignments [25], and
constructing a list of codewords in list decoding [18]. Moreover, because of the
proneness of computation to errors, a computed optimal solution may not be the
“real” optimal one. Therefore, it becomes desirable to generate several “best”
solutions rather than a single one.
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Several approaches trying to meet this need have been proposed. The most
notable one is the study of the counting complexity of a given problem, which
is the computational hardness of counting all the solutions to a given instance.
Since its initialization by Valiant [29], significant work has been done in the study
of counting complexity. Most of this work has focused on the negative side, i.e.,
proving the intractability of certain counting problems. For example, Valiant [29]
proved that counting the number of perfect matchings in a bipartite graph is
#P-complete. Flum and Grohe [17] studied the parameterized complexity of
counting problems and, in particular, proved that the problem of counting the
number of k-paths in a graph is #W[1]-complete.

Another approach along this line of research studies the complexity of enu-
merating all solutions to a given problem instance. Tomita, Tanaka, and Taka-
hashi [28] presented an exponential time algorithm that enumerates all maximal
cliques in a graph. Fernau [16] considered a number of enumeration paradigms
and studied their respective complexities.

None of the above approaches, however, has perfectly met the practical needs.
The study of counting complexity does not provide hints on how to generate so-
lutions. Even worse, the counting complexity of a problem can be significantly
different from that of generating a single solution (e.g., perfect matchings in bi-
partite graphs [29], k-paths in a graph [17]). The enumeration approach (i.e.,
enumerating all solutions to a given instance) may easily become computation-
ally infeasible, simply because the number of solutions is too large.

Motivated by this, we propose a new framework to study the effective enumer-
ability of NP optimization problems. we will be mainly interested in NP opti-
mization problems that have efficient algorithms for generating a single solution.
We will also be seeking solutions of small size k, and study the enumerability of
problems whose best solution can be generated in time f(k)nO(1), where f is a
recursive function. We associate each solution to the problem with a “weight”
that indicates the quality/ranking of the solution. We say that an NP optimiza-
tion problem is fixed-parameter enumerable if there is an algorithm that, for a
given problem instance (x, k) and an integer K, generates the K best (in terms
of the solution weight) solutions of size k to x in time f(k)nO(1)KO(1).

By setting K = 1, we can see that fixed-parameter enumerable problems
are also fixed-parameter tractable. It will be interesting to know whether these
two notions are equivalent. Along this line, we examine the most popular tech-
niques used in developing parameterized algorithms, including bounded search-
tree method, color coding schemes, and bounded tree-width algorithms. We show
that these most popular algorithm-design techniques can be non-trivially trans-
formed into techniques for fixed-parameter enumerable problems.

There has been some research in the literature that is related to this research.
For example, Chegireddy and Hamacher [8] developed algorithms for finding the
K largest perfect matchings in a weighted graph, and Eppstein considered the
problem of enumerating the K shortest paths in a digraph [14]. However, to the
authors’ knowledge, all these researches dealt with problems in P. On the other
hand, the current paper mainly focuses on NP-hard optimization problems, and
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on developing a systematical approach for effective enumeration of a larger class
of such problems.

2 Definitions and Preliminaries

Recall that a parameterized problem consists of instances of the form (x, k), where
x ∈ Σ∗ for a finite alphabet Σ, and k is a non-negative integer. A parameterized
problem Q is fixed parameter tractable if there is an algorithm A which on input
(x, k) decides if (x, k) is a yes-instance of Q in time f(k)nO(1), where f is a
recursive function independent of n = |x|. We extend the standard definition of
NP optimization problems [4] to encompass their parameterized versions.

Definition 1. A parameterized NP optimization problem Q is a 4-tuple
(IQ, SQ, fQ, optQ) where:

1. IQ is the set of input instances of the form (x, k), with x ∈ Σ∗ for a fixed
finite alphabet Σ, and k is a non-negative integer called the parameter.

2. For each instance (x, k) in IQ, SQ(x, k) is the set of feasible solutions for
(x, k), which is defined by a polynomial p and a polynomial time computable
predicate Φ as SQ(x, k) = {y : |y| ≤ p(|x|) & Φ(x, k, y)}.

3. fQ(x, k, y) is a polynomial-time computable function mapping (x, k, y) to a
real number, where (x, k) ∈ IQ and y ∈ SQ(x, k).

4. optQ ∈ {max, min}.

Note that since the length of a solution to an instance (x, k) in Q is bounded by
a polynomial of |x|, the number of solutions to the instance (x, k) is bounded by
2q(|x|) for a fixed polynomial q. Therefore, the weights of the solutions in the set
SQ(x, k) can be given in a finite sorted list L = [fQ(x, k, y1), fQ(x, k, y2), . . .], in
a non-decreasing order when optQ = min, and in a non-increasing order when
optQ = max. We say that a set {y′

1, . . . , y
′
K} of K solutions in SQ(x, k) are the K

best solutions for the instance (x, k), if the values fQ(x, k, y′
1), . . ., fQ(x, k, y′

K),
when sorted accordingly, are identical to the first K values in the list L.

Definition 2. A parameterized NP optimization problem Q is fixed-parameter
enumerable if there are two algorithms A1 and A2 such that the following holds.

1. Given an instance (x, k) of Q, the algorithm A1 generates a structure τx,k in
time f(k)nO(1), where f is a recursive function independent of n = |x|.

2. Given the structure τx,k and an integer K ≥ 0, the algorithm A2 generates
the K best solutions to the instance (x, k) in time O(|τx,k|O(1)KO(1)).1

The algorithm A1 will be called the structure algorithm, and the algorithm A2
will be called the enumeration algorithm. We say that the problem Q is linearly
fixed-parameter enumerable if the running time of the enumeration algorithm A2
is O(|τx,k|O(1)K).
1 Note that it is possible that the total number |SQ(x, k)| of solutions is smaller than

K. To avoid repeatedly distinguishing the two possible cases, we will simply use K
to refer to the value K0 = min{K, |SQ(x, k)|}.
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We comment on the above definition. Since the algorithm A1 runs in time
f(k)nO(1), the size |τx,k| of the structure τx,k is bounded by f(k)nO(1). In con-
sequence, the running time of the enumeration algorithm A2 is bounded by
f1(k)nO(1)KO(1), where f1 is a recursive function independent of n. Moreover,
we require that for each input instance (x, k), the fixed-parameter enumerable
problem Q have a small structure τx,k whose size is independent of K. Thus, the
following theorem holds directly from the above definitions.

Theorem 1. If a parameterized NP optimization problem Q is fixed-parameter
enumerable, then it is fixed-parameter tractable.

3 Effective Enumerations Based on Branch-and-Search

The branch-and-search method based on bounded search-trees has been a very
popular and powerful technique in the development of efficient exact and para-
meterized algorithms [13]. The reader is referred to [13] for more information
about the bounded search tree technique and its analysis.

We discuss how this technique can be employed in designing algorithms for
the structure-generation phase of enumeration algorithms for parameterized NP
optimization problems. As a running example, we describe the algorithm with
vertex cover as the underlying problem. Recall that a vertex set C in a graph
G is a vertex cover for G, if each edge in G has at least one end in C. A vertex
cover of k vertices will be called a k-vertex cover. The vertex cover problem is
a well-known fixed-parameter tractable problem, and parameterized algorithms
for it have been extensively studied (e.g., [6]). The best parameterized algo-
rithm for vertex cover problem uses polynomial space and O(1.2738k + kn)
running time. Moreover, the counting complexity (i.e., counting the number of
solutions to a given instance) and the complexity of enumerating all solutions
to an instance have also been examined. Moelle, Richter and Rossmanith[30]
showed that counting the number of vertex cover of size k can be done in time
O∗(1.3803k). The complexity of enumerating all k-vertex covers, however, de-
pends on whether k is the size of a minimum vertex cover of the graph or not.
Fernau [16] showed that if k is equal to the size of a minimum vertex cover, then
enumerating all k-vertex covers can be done in time O(2kk2 + kn), while if k is
not equal to the size of a minimum vertex cover, then no algorithm of running
time f(k)nO(1), for any recursive function f , can enumerate all k-vertex covers.

We investigate the fixed parameter enumerability of the problem. We assume
that the input graph G is weighted, and each vertex is associated with a real
number (the vertex weight). The weight of a vertex cover C is the sum of the
weights of the vertices in C. Therefore, a vertex cover C1 is smaller than a vertex
cover C2 if the weight of C1 is smaller than the weight of C2.

weighted vertex cover: Given a weighted graph G, and non-negative
integers k and K, generate the K smallest k-vertex covers in G.
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3.1 The Structure Algorithm

Let (G, k, K) be an instance of the weighted vertex cover problem, where
G is a graph of n vertices. Since a vertex of degree larger than k must be in every
k-vertex cover of G, we can first remove all vertices of degree larger than k in the
graph and then work on the remaining graph. This pre-processing can be done in
linear time. The resulting graph G′ has O(n) vertices and O(kn) edges, in which
we consider k′-vertex covers for an integer k′ ≤ k. So without loss of generality,
we will assume that the input graph G has n vertices and O(kn) edges.

The structure algorithm for weighted vertex cover is a recursive algo-
rithm based on the branch-and-search method, which on an input instance (G, k)
returns a collection L(G, k) of triples (I, O, R), where each (I, O, R) is a parti-
tion of the vertex set of the graph G, representing the set of all k-vertex covers
that include all vertices in I and exclude all vertices in O. Moreover, we require
that in the subgraph induced by the vertex set R, all the vertices have degree
bounded by 2. The structure algorithm is given in Figure 1.

Algorithm structure-vc

Input: G: a weighted graph; k: an integer;

1. if (k < 0) or (k = 0 but the edge set of G is not empty)
then return L(G, k) = ∅;

2. if there is no vertex of degree larger than 2 in G
then return L(G, k) = {(∅, ∅, V (G))};

3. pick any vertex v of degree d ≥ 3;
4. let G1 = G−v and G2 = G−(v∪N(v)), where N(v) is the set of neighbors

of v;
5. recursively call structure-vc(G1, k − 1) and structure-vc(G2, k − d);

let the returned collections be L(G1, k − 1) and L(G2, k − d), respectively;
6. L(G, k) = ∅;
7. for each triple (I1, O1, R1) in L(G1, k − 1)

do add (I1 ∪ {v}, O1, R1) to L(G, k);
8. for each triple (I2, O2, R2) in L(G2, k − d)

do add (I2 ∪ N(v), O2 ∪ {v}, R2) to L(G, k);

Fig. 1. The structure algorithm for weighted vertex cover

Theorem 2. On an input (G, k), the algorithm structure-vc runs in time
O(1.47kn) and returns a collection L(G, k) of at most 1.466k triples.

We say that a vertex cover C of the graph G is consistent with a partition
(I, O, R) of the vertex set of G if C contains all vertices in I and excludes all
vertices in O. The following lemma can be proved by simple induction.
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Lemma 1. Let L(G, k) be the collection returned by the algorithm structure-
vc on input (G, k). Then every k-vertex cover of G is consistent with exactly
one triple in L(G, k).

The collection L(G, k) forms the structure τG,k for the instance (G, k) of the
weighted vertex cover problem. By Theorem 2, the structure τG,k can be
constructed in time O(1.47kn).

3.2 The Enumeration Algorithm

Let L(G, k) be the structure returned by the algorithm structure-vc on the
input (G, k). By Lemma 1, every k-vertex cover C of G is consistent with exactly
one triple (I, O, R) in L(G, k), and contains all the vertices in I and excludes
all the vertices in O. Thus, the k-vertex cover C must consist of the vertex set
I, plus a vertex cover of k − |I| vertices for the subgraph G(R) induced by the
vertex set R. Therefore, the K smallest k-vertex covers for the graph G that
are consistent with the triple (I, O, R) can be generated by generating the K
smallest (k − |I|)-vertex covers for the induced subgraph G(R). Finally, the K
smallest k-vertex covers for the original graph G can be obtained by performing
the above process on all the triples in the structure L(G, k), and then picking
the K smallest k−vertex covers among all the generated k-vertex covers.

By looking at the algorithm structure-vc, we observe that all the vertices
in the induced subgraph G(R) have degree bounded by 2. Therefore, we first
discuss how we deal with such graphs.

Lemma 2. Let G be a graph of n vertices in which all vertices have degree
bounded by 2. Then the K smallest k-vertex covers of G can be generated in
time O(Kkn).

Proof. Since all the vertices in G have degree bounded by 2, every connected
component of G is either an isolated vertex, a simple path, or a simple cycle.
Order the vertices of G to form a list W = [v1, v2, . . . , vn] such that the vertices
of each connected component of G appear consecutively in W . In particular, the
vertices of a simple path appear in W in the order by which we traverse the
path from an arbitrary end to the other end, and the vertices of a simple cycle
appear in W in the order by which we traverse the entire cycle starting from an
arbitrary vertex in the cycle. A vertex vi ∈ G is a type-1 vertex if it has degree
0, a type-2 vertex if it is in a simple path of length at least 1, and a type-3 vertex
if it is in a simple cycle.

For each i, 1 ≤ i ≤ n, let Gi be the subgraph of G induced by the ver-
tex set {v1, v2, . . . , vi}. For each induced subgraph Gi, we build a list Li =
[Si,0, Si,1, . . . , Si,k], Si,j is a set of j-vertex covers for Gi, defined as follows:

(1) If vi is of type-1, then Si,j is the set of the K smallest j-vertex covers for
Gi (recall that by this we really mean “the K smallest j-vertex covers or all the
j-vertex covers if the total number of j-vertex covers is smaller than K”— this
remark also applies to the following discussion);
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(2) If vi is of type-2, then Si,j consists of two sets S′
i,j and S′′

i,j , where S′
i,j

contains the K smallest j-vertex covers of Gi that contain vi, and S′′
i,j contains

the K smallest j-vertex covers of Gi that do not contain vi;
(3) If vi is of type-3 and appears in a simple cycle [vh, . . . , vi, . . . , vt] in G,

then Si,j consists of four sets S′
i,j , S′′

i,j , S′′′
i,j and S′′′′

i,j , where S′
i,j is the set of the

K smallest j-vertex covers of Gi that contain both vh and vi, S′′
i,j is the set of

the K smallest j-vertex covers of Gi that contain vh but not vi, S′′′
i,j is the set

of the K smallest j-vertex covers of Gi that contain vi but not vh, and S′′′′
i,j is

the set of the K smallest j-vertex covers of Gi that contain neither vh nor vi.

Note that since each set Si,j contains at most 4K j-vertex covers, the set S0
i,j

consisting of the K smallest j-vertex covers of the graph Gi can be constructed
from Si,j in time O(K).

The list L1 can be trivially constructed: (1) if v1 is of type-1, then all the sets
S1,j are empty except S1,0 = {∅} and S1,1 = {(v1)}; (2) if vi is of type-2, then
all the sets S′

1,j and S′′
1,j are empty except S′′

1,0 = {∅} and S′
1,1 = {(v1)}; and

(3) if vi is of type-3, then all the sets S′
1,j , S′′

1,j , S′′′
1,j, and S′′′′

1,j are empty except
S′′′′

1,0 = {∅} and S′
1,1 = {(v1)}.

Inductively, suppose that we have built the list Li−1. To build the list Li, we
distinguish the following cases based on the type of the vertex vi.

Case 1. The vertex vi is of type-1. Then the graph Gi is the graph Gi−1 plus an
isolated vertex vi. For each j, 0 ≤ j ≤ k, let S0

i−1,j be the set of the K smallest
j-vertex covers of the graph Gi−1, which can be constructed in time O(K). Since
each vertex cover of Gi is either a vertex cover of Gi−1, or a vertex cover of Gi−1
plus the vertex vi, the set Si,j in Li can be constructed as follows: take each
(j − 1)-vertex cover of Gi−1 from S0

i−1,j−1 and add the vertex vi to it to make
a j-vertex cover of Gi. This gives a set F of K j-vertex covers for Gi. It is clear
that the K smallest j-vertex covers of Gi must be contained in the set F ∪S0

i−1,j ,
which is a set of 2K j-vertex covers for Gi. Thus, the K smallest j-vertex covers
in the set F ∪ S0

i−1,j make the set Si,j . Each set Si,j can be constructed in time
O(K), and the list Li can be constructed from the list Li−1 in time O(Kk).
Case 2. The vertex vi is of type-2. Then vi is on a simple path [vh, . . . , vi, . . . , vt]
in G of length at least 1. As in Case 1, for each j, let S0

i−1,j be the set of the K
smallest j-vertex covers for Gi−1.

If vi = vh is the first vertex on the path, then the graph Gi is the graph Gi−1
plus an isolated vertex vi. Thus, the set S′

i,j can be obtained from S0
i−1,j−1 by

adding the vertex vi to each (j − 1)-vertex cover of Gi−1 in S0
i−1,j−1. The set

S′′
i,j is equal to the set S0

i−1,j .
If h < i and vi is not the first vertex on the path, then the graph Gi is the

graph Gi−1 plus the vertex vi and the edge [vi−1, vi]. Therefore, each vertex
cover of Gi is either a vertex cover of Gi−1 plus vi, or a vertex cover of Gi−1
that contains vi−1. Thus, the set S′

i,j is again obtained from S0
i−1,j−1 by adding

the vertex vi to each (j−1)-vertex cover of Gi−1 in S0
i−1,j−1. On the other hand,

now the set S′′
i,j is equal to the set S′

i−1,j .
In this case, the list Li can be constructed from the list Li−1 in time O(Kk).
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Case 3. The vertex vi is of type-3. vi is on a simple cycle [vh, . . . , vi, . . . , vt] of
G. For each j, let S0

i−1,j be the set of the K smallest j-vertex covers of Gi−1.
If vi = vh is the first vertex on the cycle, then the graph Gi is the graph Gi−1

plus an isolated vertex vi. Thus, the set S′
i,j can be obtained from S0

i−1,j−1 by
adding the vertex vi to each (j−1)-vertex cover of Gi−1 in S0

i−1,j−1, and the set
S′′′′

i,j is equal to the set S0
i−1,j . By the definition, the sets S′′

i,j and S′′′
i,j are empty.

If h < i < t, then the graph Gi is the graph Gi−1 plus the vertex vi and the
edge [vi−1, vi]. Therefore, the set S′

i,j can be obtained by adding the vertex vi to
each (j − 1)-vertex cover in the union S′

i−1,j−1 ∪ S′′
i−1,j−1 then selecting the K

smallest ones; the set S′′
i,j is equal to the set S′

i−1,j ; the set S′′′
i,j is obtained by

adding the vertex vi to each (j −1)-vertex cover in the union S′′′
i−1,j−1 ∪S′′′′

i−1,j−1
then selecting the K smallest ones; and the set S′′′′

i,j is equal to the set S′′′
i−1,j .

If vi = vt is the last vertex on the cycle, then the graph Gi is the graph Gi−1
plus the vertex vi and two edges [vh, vi] and [vi−1, vi]. In this case, the set S′

i,j

can be obtained by adding the vertex vi to each (j−1)-vertex cover in the union
S′

i−1,j−1∪S′′
i−1,j−1 then selecting the K smallest ones; the set S′′

i,j is equal to the
set S′

i−1,j ; the set S′′′
i,j is obtained by adding the vertex vi to each (j − 1)-vertex

cover in the union S′′′
i−1,j−1 ∪ S′′′′

i−1,j−1 then selecting the K smallest ones; and
the set S′′′′

i,j is empty because [vh, vi] is an edge in Gi.
The correctness of the above constructions can be easily verified using the

definitions of the sets S′
i,j , S′′

i,j , S′′′
i,j , and S′′′′

i,j . Moreover, it is also easy to see
that the list Li can be constructed from the list Li−1 in time O(Kk).

Summarizing all the above, we conclude that the list Ln can be constructed
in time O(Kkn). Now the K smallest k-vertex covers of the graph G = Gn can
be easily obtained in time O(K) from the set Sn,k in the list Ln. This completes
the proof of the lemma. ��
Now it should be obvious in principle how we can generate the K smallest k-
vertex covers for the graph G: they can be obtained by first generating the
K smallest consistent k-vertex covers, for each triple in L(G, k). However, by
applying some enumeration tricks, we can significantly speedup this enumeration
process, as shown in the following theorem.

Theorem 3. Let (G, k) be an instance of the weighted vertex cover prob-
lem, and let L(G, k) be the structure returned by the algorithm structure-vc on
(G, k). Then the K smallest k-vertex covers of the graph G can be generated in
time O(1.47kn + 1.22kKn).

Corollary 1. The weighted vertex cover problem is linearly fixed-parameter
enumerable. More specifically, given an instance (G, k) and a nonnegative inte-
ger K, the K smallest k-vertex covers of the graph G can be generated in time
O(1.47kn + 1.22kKn), where n is the number of vertices in the graph.

4 Effective Enumeration Based on Color Coding

The color coding technique [2] is very powerful and useful in the development of
efficient parameterized algorithms. In this section, we show that the color coding
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technique is also very helpful in developing effective algorithms for the structure-
generation phase of enumeration algorithms for parameterized NP optimization
problems. We will illustrate this fact by presenting an enumeration algorithm for
the k-path problem. A simple path in a graph G is a k-path if it contains exactly
k vertices. The weight of a path in a weighted graph is the sum of the weights
of the vertices in the path. The problem can be formally defined as follows.

weighted k-path: given a weighted graph G and integers k and K,
generate the K largest k-paths in G.

4.1 The Structure Algorithm

A k-coloring of a set S is a function from S to {1, 2, . . . , k}. A collection F of
k-colorings of S is a k-color coding scheme for S if for any subset W of k elements
in S, there is a k-coloring fW in F such that no two elements in W are assigned
the same color by fW . The size of the k-color coding scheme F is equal to the
number of k-colorings in F . Alon, Yuster, and Zwick [2] showed that there is a
k-color coding scheme of size 2O(k)n for a set of n elements. This bound has been
improved recently to O(6.4kn) [7]. In the following discussion, we will assume a
k-color coding scheme F of size O(6.4kn) for a set of n elements.

On a given instance (G, k) of the weighted k-path problem, where G is
a graph of n vertices, the structure algorithm for weighted k-path produces
h = O(6.4kn) copies {G1, G2, . . . , Gh} of the graph G, where each copy Gi

is colored by a k-coloring in the k-color coding scheme F . Note that by the
definition of k-color coding schemes, every k-path in the graph G has all its
vertices colored with different colors in at least one of these copies of the graph
G. The list τG,k = {G1, G2, . . . , Gh} is the structure returned by the structure
algorithm for the weighted k-path problem, whose running time is O(6.4kn2).

4.2 The Enumeration Algorithm

The enumeration algorithm for weighted k-path is a careful and non-trivial
generalization of the dynamic programming algorithm described in [2] that finds
a k-path in a k-colored graph. We first discuss how we deal with each copy Gi of
the colored graphs in the list τG,k. We say that a k-path in a k-colored graph is
properly colored if no two vertices on the path are colored with the same color.
Consider the algorithm given in Figure 2, where c(w) denotes the color assigned
to the vertex w in the k-colored graph G. Inductively, before the j-th execution
of the loop in steps 2.1-2.5 of the algorithm, we assume that each vertex w is
associated with a collection Cj(w) of pairs (C, P ), where C is a subset of j colors
in the k-color set, and P is the set of up to K largest properly colored j-paths
ending at w that use exactly the colors in C. Then the j-th execution of steps
2.1-2.5 will produce a similar collection Cj+1(w) for (j + 1)-paths in G based on
the collection Cj(w) of j-paths.

Note that at the end of the algorithm enumerate-path(G, k, K), for each
vertex w in the k-colored graph G, the collection Ck(w) is either empty, or
contains a single pair (C, P ), where C is the set of all k colors and P is a set of
properly colored k-paths ending at w in G.
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Algorithm enumerate-path(G, k, K)

Input: a k-colored graph G, and integers k and K

1. for each vertex w in G do C1(w) = [({c(w)}; {w})];
2. for j = 1 to k − 1 do

2.1. for each edge [v, w] in G do
2.2. for each pair (C, P ) in Cj(v) do
2.3. if (c(w) �∈ C) then
2.4. construct |P | (j + 1)-paths ending at w by extending each

paht in P to the vertex w;
2.5. add these (j + 1)-paths to P ′ in the pair (C ∪ {c(w)}, P ′) in

Cj+1(w) and only keep the K largest (j + 1)-paths in P ′;

Fig. 2. The enumeration algorithm for weighted k-path

Lemma 3. For each vertex w in the k-colored graph G, the pair (C, P ) in the
collection Ck(w) returned by the algorithm enumerate-path(G, k, K) contains
the K largest properly colored k-paths ending at w. The running time of the
algorithm enumerate-path(G, k, K) is O(2kk2n2K).

Theorem 4. Given the structure τG,k and an integer K, the K largest k-paths
in the graph G can be generated in time O(12.8k + 6.4kk2n3K). In consequence,
the weighted k-path problem is linearly fixed-parameter enumerable.

5 Effective Enumeration Based on Tree Decomposition

The concept of the tree decomposition of a graph has played an important role
in the study of algorithmic graph theory [5] and in developing efficient exact and
parameterized algorithms for graph problems on planar graphs (see [1]). In this
section, we discuss how this approach can be used to develop algorithms for the
structure-generation phase of enumeration algorithms.

A vertex set D in a graph G is a dominating set if each vertex in G − D is
adjacent to a vertex in D. A dominating set of k vertices is called a k-dominating
set. Given a weighted graph, the weight of a dominating set D is the sum of the
weights of the vertices in D. The following problem is our running example.

weighted planar dominating set. Given (G, k, K), where G is a
weighted planar graph, and k and K are nonnegative integers, generate
the K smallest k-dominating sets in the graph G.

5.1 The Structure Algorithm

We omit the terminology and proofs of theorems in this section, interested read-
ers are referred to [31].
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Theorem 5. There is an O(
√

kn) time algorithm that given a planar graph G
on n vertices and a positive integer k, either constructs a nice tree decomposition
(V , T ) for G of width O(

√
k) and O(n) nodes, or reports that no dominating set

for G of size bounded by k exists.

The structure τG,k is simply the nice tree decomposition (V , T ) obtained by the
above theorem.

5.2 The Enumeration Algorithm

Given the nice tree decomposition τG,k = (V , T ), we can generate the K smallest
k-dominating sets in the graph G using dynamic programming.

Theorem 6. Given a planar graph G on n vertices and two nonnegative inte-
gers k and K, the K smallest k-dominating sets in G can be generated in time
O(2O(

√
k)nK log K).

6 Final Remarks

We have introduced the concept of effective enumerability, or more precisely,
fixed-parameter enumerability of NP optimization problems. Our objective is
to solve enumeration problems that have an increasing demand in computa-
tional science. Further investigation on the relationship between fixed-parameter
tractability and fixed-parameter enumerability may open up an interesting re-
search direction, which seems interesting and important, from both the theoret-
ical and the practical points of view.

References

1. J. Alber, H. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed
parameter algorithms for dominating set and related problems on planar graphs,
Algorithmica 33, pp. 461-493, (2002).

2. N. Alon, R. Yuster, and U. Zwick, Color-coding, Journal of the ACM 42, pp.
844-856, (1995).

3. V. Arvind and V. Raman, Approximation algorithms for some parameterized
counting problems, ISAAC’02, pp. 453-464, (2002).

4. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, M. Protasi, Complexity and Approximation, Combinatorial opti-
mization problems and their approximability properties, Springer-Verlag, 1999.

5. H. Bodlaender, Treewidth: algorithmic techniques and results, Lecture Notes in
Computer Science 1295, pp. 19-36, (1997).

6. J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations and further
improvements, Journal of Algorithms 41, pp. 280-301, (2001).

7. J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for the k-path
problem, Manuscript, (2005).

8. C. Chegireddy and H. Hamacher, Algorithms for finding K-best perfect match-
ings, Discrete Applied Mathematics 18, pp. 155-165, (1987).



226 J. Chen et al.

9. S. Chien, A determinant-based algorithm for counting perfect matching in a
general graph, SODA’04, pp. 728-735, (2004).

10. T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd Edition, McGraw-Hill Book Company, Boston, MA, 2001.

11. V. Dahllof and P. Jonsson, An algorithm for counting maximum weighted
independent sets and its applications, SODA’02, pp. 292-298, (2002).

12. M. Dyer, Approximate counting by dynamic programming, STOC’03, pp. 693-
699, (2003).

13. R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer-Verlag,
1999.

14. D. Eppstein, Finding the k shortest paths, SIAM J. Computing 28-2, pp. 652-
673, (1998).

15. M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege,
D. Thilikos, and S. Whitesides, Faster fixed-parameter tractable algorithms for
matching and packing problems, Lecture Notes in Computer Science 3221, (2004),
pp. 311-322.

16. H. Fernau, On parameterized enumeration, COCOON’02, pp. 564-573, (2002).
17. J. Flum and M. Grohe, The parameterized complexity of counting problems,

SIAM Journal on Computing 33, pp. 892-922, (2004).
18. V. Guruswami, List decoding of error-correcting codes, Lecture Notes in Computer

Science 3282, 2005.
19. H. Hunt III, M. Marathe, V. Radhakrishnan, and R. Stearns, The complex-

ity of planar counting problems, SIAM Journal on Computing 27, pp. 1142-1167,
(1998).

20. B. Kelley, R. Sharan, R. Karp, T. Sittler, D. Root, B. Stockwell, and
T. Ideker, Conserved pathways within bacteria and yeast as revealed by global
protein network alignment, Proc. Natl. Acad. Sci. USA 100, pp. 11394-11399,
(2003).

21. T. Kloks, Treewidth, computations and approximations, Lecture Notes in Com-
puter Science 842, (1994).

22. I. Koutis, A faster parameterized algorithm for set packing, Information Process-
ing Letters 94, (2005), pp. 7-9.

23. S. Nakano, Efficient generation of triconnected plane triangulations, CO-
COON’01, pp. 131-141, (2001).

24. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
25. P. Pevzner and S.-H. Sze, Combinatorial approaches to finding subtle signals

in DNA sequences, ISMB’2000, pp. 269-278, (2000).
26. S. Ravi and H. Hunt III, An application of the planar separator theorem to

counting problems, Information Processing Letters 25, pp. 317-321, (1987).
27. J. Scott, T. Ideker, R. Karp, and R. Sharan, Efficient algorithms for detect-

ing signaling pathways in protein interaction networks, RECOMB 2005, to appear.
28. E. Tomita, A. Tanaka, and H. Takahashi, The worst-case time complexity

for generating all maximal cliques, COCOON’04, pp. 161-170, (2004).
29. L. Valiant, The complexity of computing the permanent, Theoretical Computer

Science 8, pp. 189-201, (1979).
30. D. Moelle, S. Richter, P. Rossmanith, Enumerate and Expand: New Runtime

Bound for Vertex Cover Variants, COCOON 06, to appear
31. Jianer Chen, Iyad A. Kanj, Jie Meng, Ge Xia, Fenghui Zhang, On the Ef-

fective Enumerability of NP Problems, Technique Report tr2006-5-2, Department
of Computer Science, Texas A&M University.



The Parameterized Complexity of
Enumerating Frequent Itemsets�

Matthew Hamilton1, Rhonda Chaytor2, and Todd Wareham2

1 Department of Computing Science, University of Alberta, Edmonton, AB, Canada
hamilton@cs.ualberta.ca

2 Department of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, Canada

{rchaytor, harold}@cs.mun.ca

Abstract. A core problem in data mining is enumerating frequently-
occurring itemsets in a given set of transactions. The search and enu-
meration versions of this problem have recently been proven NP - and
#P -hard, respectively (Gunopulos et al, 2003) and known algorithms
all have running times whose exponential terms are functions of either
the size of the largest transaction in the input and/or the largest item-
set in the output. In this paper, we analyze the complexity of the size-k
frequent itemset enumeration problem relative to a variety of parameteri-
zations. Many of our hardness results are proved using a recent extension
of parameterized complexity to solution-counting problems (McCartin,
2002). These results include hardness for versions of this problem based
on restricted transaction-set structure. We also derive a collection of
fixed-parameter algorithms using off-the-shelf parameterized algorithm
design techniques, several of which suggest new algorithmic directions
for the frequent itemset enumeration problem.

1 Introduction

A core problem in data mining is frequent itemset enumeration – that is, given
a database of transactions T over a set I, what are the frequent itemsets, i.e.,
itemsets that occur in at least t transactions in T for some specified threshold
t? The task of mining frequent itemsets plays a critical part in many knowledge
discovery tasks, from association rule mining [2,3] to finding frequent subgraphs
in biological networks [4].

One of the main challenges facing the data mining field is discovering ways to
scale knowledge discovery algorithms to larger database systems while meeting
the demand for a quick response to data mining requests [5]. It is clear that
along with the necessary advances in hardware, efficient algorithms to solve
fundamental problems such as frequent itemset discovery must be developed in
order to meet this challenge.

From the parameterized complexity perspective, current algorithms for this
problem exploit a single parameter. Many algorithms put forth to enumerate fre-
quent itemsets (see [6,7,8] and references) are incremental improvements on the
� This paper is an extension of results that first appeared in [1].
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Apriori algorithm introduced in [9], and the exponential terms in the time com-
plexities of these algorithms are all functions based on the sizes of the largest
transaction in the input and the largest frequent itemset in the output [10] (note
that the former is an upper bound on the latter). It has been reported [11,8] that
these algorithms perform well on sparse databases such as market basket data
containing only small frequent itemsets with small average transaction size. How-
ever, their performance on dense databases suffers as the transaction and frequent
itemset sizes no longer occupy such a narrow range of values. One attempt to
get around such problems has been to focus on enumerating maximal or closed1

frequent itemsets, which are much fewer in number than frequent itemsets of speci-
fied sizes and from which size-specific frequent itemsets can be reconstructed; how-
ever, to date, algorithms for enumerating closed and maximal itemsets have been
plagued by the same limitations listed above (see [12,6,13] and references).

Given all this, it is worthwhile to investigate other algorithmic possibilities for
frequent itemset enumeration relative to different parameterizations. To this end,
we describe in this paper the results of a systematic parameterized complexity
analysis [14] of the following problem:

Frequent Itemset Enumeration (FIE)
Input: A set I = {i1, i2, . . . , im} of items, a set T = {t1, t2, . . . , tn} of subsets of
I whose largest subset is of size l ≤ m, an integer k, 1 ≤ k ≤ m, and an integer
t, 1 ≤ t ≤ n.
Output: All t-frequent k-itemsets, i.e., all subsets s of I of size k such that s
occurs in at least t members of T .

As the decision version of this problem is NP -complete ([6, Theorem 6] and
[3]), it is unlikely that there is an efficient algorithm for finding even a single
maximum-sized frequent itemset, and counting or enumerating all of them will
be more difficult still. Indeed, it has been shown that the counting version of
the problem is #P -complete [6, Theorem 7] even when we are only required to
count the maximal or closed frequent itemsets [13, Theorem 14].

Our analysis includes the obvious problem-aspects k, t, l, m, and n. Aspects
l and k are of practical interest as data mining frequently involves small trans-
action sizes and consequent small frequent itemset sizes [15]; moreover, as such
mining also frequently requires large frequent itemsets with small support and
small frequent items sets with large support [15], the dual versions2 of k and t
(denoted kd and td, respectively) are also of great interest.

In our analysis, we delimit the algorithmic possibilities for the FIE problem
relative to parameters composed of all subsets of size two of the aspects in Table
1 by deriving hardness results and fixed-parameter algorithms relative to the

1 A t-frequent itemset x is maximal if no single item i can be added to it without
lowering the occurrence of x ∪ {i} below t in T . A t-frequent itemset x is closed if
the largest subset of items in I that is common to all itemsets in T that contain at
least one item in x is x itself.

2 In these dual cases, the FIE problem is parameterized such that we ask for a frequent
itemset of size m − kd and of support n − td, respectively.
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Table 1. Aspects of the Frequent Itemset Enumeration Problem

k size of frequent itemset kd dual of size
t support threshold td dual of support threshold
l maximum transaction size
m number of items
n number of transactions

corresponding parameterized problems. Our hardness results are atypical in that
we will derive lower bounds on FIE via hardness of the corresponding counting
problem Frequent Itemset Counting (FIC) (which outputs the number of
t-frequent k-itemsets) rather than the corresponding decision problem.

The paper is organized as follows. In Section 2, we review some parameterized
complexity definitions particular to analyzing counting and enumeration prob-
lems. In Section 3, we give parameterized hardness results for the frequent itemset
enumeration problem as well as versions of this problem in which the structure of
the transaction-set is restricted. In Section 4, we give fixed-parameter tractability
results. For reasons of space, several of the proofs of lemmas and theorems in these
sections are omitted. Finally, in Section 5 we summarize our results and give some
promising directions for future research.

2 Parameterized Complexity Analysis of Counting and
Enumeration Problems

The majority of parameterized complexity results derived over the last 15 years
have focused on decision and search problems. Recently, work has been done in
the area of parameterized counting and enumeration complexity [16,17,18,19,20].
This is of great interest in applications such as data mining, which are more
interested in enumerating solutions than just finding one solution that is in some
sense optimal. It also provides an additional route for deriving enumeration
problem hardness results – even if the associated decision problem cannot be
shown intractable or is in FPT , the enumeration problem may yet be shown
intractable either directly or indirectly via a hardness result for the associated
counting problem. In the remainder of this paper, denote the version of problem
Π parameterized by k as 〈k〉-Π and an instance of such a problem by 〈x, k〉.

To show enumeration intractability results, we will use the parameterized
counting complexity framework developed in [20]. Let FFPT be the class of pa-
rameterized counting problems 〈k〉-Π that can be solved by an algorithm A that
runs in time f(k)|x|c for an arbitrary function f and a constant c. Note that FFPT
bears the same relation to FP , the class of function-computing problems that can
be solved in polynomial time, that FPT has to P . The standard parameterized
reducibility can be easily modified along the lines in [21] such that it preserves
solution-number between the parameterized counting problems involved. In ad-
dition, we define a new class #XP which is the class of parameterized counting
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problems 〈k〉-Π that can be solved by an algorithm A that runs in time f(k)|x|g(k)

for arbitrary functions f and g.
We will state parameterized enumeration tractability results within the frame-

work defined in [17,18]. This framework defines different types of tractability
relative to different types of solution-sets that can be enumerated. In particu-
lar, given a parameterized enumeration problem 〈k〉-Π , an algorithm that runs
in time f(k)|x|c for an arbitrary function f and a constant c may enumerate
all, all optimal (minimum / maximum), or all minimal / maximal solutions.
In [17,18], such a problem is said to be fixed-parameter enumerable, optimally
fixed-parameter enumerable and inclusion-minimally fixed-parameter enumer-
able, respectively. In this paper, we define the classes of problems with these
three types of algorithms as FPE, OFPE, and IMFPE, respectively.

The following lemmas are fairly trivial (the proofs are similar to those for the
analogous lemmas given in [14] and are left to the reader) but are nonetheless
useful for extending given results to fill out the final result-table in Section 5.
Where the type of the problem is clear from context, we will say that all problems
in FPT , FFPT , FPE, OFPE, or IMFPE are fixed-parameter tractable.

Lemma 1. Given a set S of aspects of a counting problem Π, if Π is #P -hard
when the value of every aspect s ∈ S is fixed, then the parameterized counting
problem 〈S〉-Π is not in #XP unless FP=#P.

Lemma 2. Given sets S ⊆ S′ of aspects of a problem Π, if parameterized prob-
lem 〈S〉-Π is fixed-parameter tractable then parameterized problem 〈S′〉-Π is
fixed-parameter tractable.

Lemma 3. Given sets S ⊆ S′ of aspects of a problem Π, if parameterized prob-
lem 〈S′〉-Π is not fixed-parameter tractable unless X for some conjecture X then
parameterized problem 〈S〉-Π is not fixed-parameter tractable unless X.

3 Negative Results: Hardness

In this section, we show fixed-parameter intractability of FIC (and hence FIE)
relative to various sets of aspects by giving parameterized counting reductions
from known intractable counting problems. This gives us two types of results:

1. There exists no algorithm that runs in time O(f(k)|x|α) for problem 〈k〉-X
(X 	∈ FFPT unless W [2] = FPT or W [1] = FPT ).

2. There exists no algorithm that runs in time O(f(k)|x|g(k)) for problem 〈k〉-X
(X 	∈ #XP unless FP = #P ).

In the subsections below, we further break down our results into those involv-
ing the general FIE problem and those in which transaction-set structure is
restricted.

Our reductions are based on both classical and parameterized versions of the
problems Weighted Monotone CNF Satisfiability (WCS+) and Wei-
ghted Antimonotone CNF Satisfiability (WCS+).
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Let the versions of these problems parameterized by the weight k of the satisfying
solutions be 〈k〉-WCS+ and 〈k〉-WCS−, respectively. Both WCS+ and WCS− are
NP -complete [22, Problems LO1 and LO2], and 〈k〉-WCS+ is W [2]-complete
[23, Theorem 2.1] while 〈k〉-WCS− is W [1]-complete [24, Theorem 12.6]. We
also need the counting versions of WCS+ and WCS−, denoted #WCS+ and
#WCS− respectively, which output the number of truth assignments of weight
k that satisfy F . Problem #WCS+ is known to be #P -hard [21, Section 4,
Problem 7].

3.1 General FIE

We first give a reduction from #WCS+ to FIC. This reduction is similar to the
one used in [6] to prove the #P -hardness of FIC.

Lemma 4. #WCS+ reduces to FIC

Theorem 5. Unless FPT = W [2], 〈k, t〉-FIC 	∈ FFPT .

Proof: Lemma 4 gives a parameterized counting reduction from 〈k〉-#WCS+ to
〈k, t〉-FIC. Hence, 〈k, t〉-FIC ∈ FFPT implies 〈k〉-#WCS+ ∈ FFPT . This in
turn implies that 〈k〉-WCS+ ∈ FPT , which is not true unless FPT = W [2] as
〈k〉-WCS+ is W [2]-complete.

Theorem 6. FIC is #P -hard when t = 1.

Proof: Follows from the #P-hardness of WCS+ and the reduction in Lemma 4
in which t = 1 in the created instance of FIC.

Corollary 7. 〈t〉−FIC 	∈ #XP unless FP = #P .

Proof: Follows from Theorem 5 and Lemma 1.

We can derive further results by showing the hardness of FIC is with respect to
t and k.

Theorem 8. 〈t〉-FIC reduces to 〈k〉-FIC and 〈k〉-FIC reduces to 〈t〉-FIC.

Corollary 9. 〈k〉−FIC 	∈ #XP unless FP = #P .

Proof: Follows from Corollary 9, Theorem 8, and Lemma 1.

We now consider parameters containing dual aspects. The following reduction
from #WCS− to FIC is similar to that in Lemma 4.

Lemma 10. #WCS− reduces to FIC

Proof: Given an instance 〈X = {X1, . . . , Xn}, C = {C1, . . . , Cm}, k〉 of #WCS−,
construct an instance 〈I, T = {T1, ..., Tm}, k′, t〉 of FIC such that I = X , Ti =
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{x ∈ X |x 	∈ Ci} for 1 ≤ i ≤ m, k′ = n − k, and t = 1. This construction can be
done in polynomial time. We now prove correctness.

Claim: There exists a weight k assignment of variables that falsifies F iff there
is a corresponding 1-frequent itemset of size n − k in T .

Proof of Claim: (←) Suppose we have Xs = {xs1 , ..., xsk
} ⊂ X , a weight k

truth assignment that falsifies the given formula F . Then there must be some
Ci that is false under assignment Xs; that is such that all of its literals are in
Xs (an antimonotone clause Ci is false iff all its literals have value true). Hence,
Ti ⊂ Xc

s , the literals in X set false under the assignment Xs, which is of size
n − k. Therefore Ti contains a 1-frequent n − k-itemset.

(→) Suppose we have a 1-frequent n − k-itemset. Then some Ti contains at
least n − k items. Then the weight k truth assignment where the k literals not
in Ti are assigned to be true falsifies clause Ci. Hence there exists a weight k
falsifying truth assignment.

Let w and v be witness functions for #WCS− and FIC, respectively. By the
claim above, the number of falsifying weight-k assignments of F is equal to
v(〈I, T, n − k, 1〉). As there are

(
n
k

)
weight k truth assignments, the number of

weight-k satisfying assignments of F is
(
n
k

)
−v(〈I, T, n−k, 1〉). Set τ(v(〈I, T, n−

k, 1〉) =
(
n
k

)
− v(〈I, T, n − k, 1〉). Hence, w(〈X, C, k〉) = τ(v(〈I, T, n − k, 1〉).

Theorem 11. Unless FPT = W [1], 〈kd, t〉-FIC 	∈ FFPT .

Proof: Lemma 10 gives a parameterized counting reduction from 〈k〉-#WCS−

to 〈kd, t〉-FIC. Hence, 〈kd, t〉-FIC ∈ FFPT implies 〈k〉-#WCS− ∈ FFPT . This
in turn implies that 〈k〉-WCS− ∈ FPT , which is not true unless FPT = W [1]
as 〈k〉-WCS− is W [1]-complete.

Corollary 12. Unless FPT = W [1], 〈k, td〉-FIC 	∈ FFPT .

Proof: Follows from Theorems 11 and 8.

3.2 Restricted FIE

In light of the bad news in the last section, it might make sense to consider
parameterized versions of the FIE problem where the underlying structure of
the transaction-set T is restricted. One way of visualizing such restrictions is to
consider each itemset in T as specifying a hyperedge in a hypergraph based on
vertex-set I. If a hypergraph constructed in such a fashion from a collection C
of sets is acyclic, C is said to be tree-like [25]. The effects of this restriction can
be dramatic, e.g., for k the maximum subset size, 〈k〉-Set Cover is not in XP
in general but fixed-parameter tractable when restricted to tree-like collections
of sets [25], and it would be interesting to know how it affects the FIE problem.

Let FTIE be the version of FIE in which T is tree-like and R be the tree in
the hypergraph underlying T ; we will refer to R as the subset-tree associated
with T .
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Lemma 13. FIE reduces to FTIE.

Proof: Given an instance 〈I, T, k, t〉 of FIE, construct an instance 〈I ′, T ′, k′, t′〉
of FTIE such that I ′ = I, T ′ = {Ta} ∪ T where Ta = {i | i ∈ I}, i.e., a
transaction-set containing every item, k′ = k and t′ = t + 1.

Claim: T ′ is a tree-like collection of subsets of I ′.

Proof of Claim: The subset-tree R consists of a root node with the remaining
nodes being leaf nodes. Specifically Ta is the root with every other Ti ∈ T
mapped to a leaf node. Since for all Ti ∈ T , Ti ⊆ Ta and every subset of nodes of
R clearly is a subtree of R, for each i ∈ I ′ all nodes that correspond to subsets
of T ′ containing i must induce a subtree.

This construction can be done in polynomial time. We now prove correctness.
Let M ⊆ I be a t-frequent itemset in T of size k. Then M ⊂ Ti for each

T ′
i ∈ T ′ \Ta, since these are sets of T ′ from T . Hence, M is at least t-frequent in

T ′. Also clearly M ⊆ Ta, hence M occurs t′ = t + 1 times in T ′, as we require.
Let M ⊆ I ′ be a t′-frequent itemset in T ′ of size k. It is clear M ⊆ Ta, hence

M must appear t′ − 1 = t times in T ′ \Ta. It follow that M occurs t times in T ,
as we require.

Theorem 14. FTIE is NP -complete.

Proof: FTIE is in NP since we know FIE is in NP. By Lemma 13, FTIE is
NP -hard since FIE is NP -hard. Thus, FTIE is NP -complete.

The hypergraph underlying T can also be characterized in terms of parameters
capturing notions of bounded cyclicity, e.g., hypertreewidth [26]. However, as
the acyclic case is the most basic case (often having a value of one) in each such
measure, the corresponding parameterized decision versions of FIE for these
measures are not even in XP unless P = NP , which bodes even worse for the
associated counting and enumeration problems. The news is not appreciably
better when we consider FTIE relative to the aspects defined in Section 1.

Theorem 15. All hardness results for parameterizations of FIE relative to aspect-
subsets of k, t, kd, and td also hold for FTIE.

Proof: In the reduction described in the proof of Lemma 13, k and t in the
constructed instances of FTIE are functions of k and t respectively in the given
instances of FIE; hence, all parameterizations of FTIE involving aspect-subsets
containing k, t, kd, and td are as hard as the corresponding parameterizations of
FIE.

Despite the above, there remain some avenues of promise. In the special case that
the subset-tree is a path (or equivalently, the associated set-collection has the
consecutive ones property), FTIE is solvable in polynomial time [27]. The method
of distance from triviality [28] might then be applicable if we can find a parameter
that captures some notion of distance from this trivial case, especially if we
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combine this with some other restriction on the problem. This begs the questions
of whether typical instances of frequent itemset mining would actually fall into
a range of small distances from such a trivial case and whether the derived
algorithm is of use in practice; however, given the current paucity of algorithmic
options for solving frequent itemset enumeration problems at present, cf. Section
4, it is worth following up.

4 Positive Results: Fixed-Parameter Algorithms

In this section, we give various fixed-parameter algorithms for solving the FIE
problem. Many of these algorithms are based on naive brute-force enumeration
that is inefficient in practice; however, they all serve to establish fixed-parameter
tractability relative to various parameters and hence pave the way for future
algorithms research.

Theorem 16. 〈l〉-, 〈m〉-, and 〈n〉-FIE are fixed-parameter tractable.

We can derive other algorithms by exploiting a connection between FIE and the
following problem:

Constraint Bipartite Vertex Cover Enumeration (CBVCE)
Input: A bipartite graph G = (V1, V2, E) and nonnegative integers k1 and k2.
Output: All subsets C1 ⊆ V1 and C2 ⊆ V2 of sizes |C1| ≤ k1 and |C2| ≤ k2
respectively such that each edge in E has at least one endpoint in C1 ∪ C2.

Theorem 17. 〈td, kd〉-FIE reduces to 〈k1, k2〉-CBVCE and 〈k1, k2〉-CBVCE re-
duces to 〈td, kd〉-FIE.

Essentially, what we do in this reduction is consider the bipartite graph Gt

induced by the transaction-itemset inclusion relation and delete bipartite vertex
covers with bipartite sets of size kd and td from the bipartite complement graph
Gc

t of Gt. In G′
t, the subgraph of Gt remaining after these vertices are deleted,

there remains a (n − td)-frequent itemset of size (m − kd). We can delete all
such bipartite vertex covers, allowing us to enumerate all the frequent itemsets
of the size we desire. Likewise in the other direction, deleting a frequent itemset
and then edge complementing the resultant bipartite graph leaves a remaining
constrained bipartite vertex cover

Though the 〈k1, k2〉-CBVC decision problem can be solved in O(1.3999k1+k2 +
(k1 + k2)(|V1|+ |V2|)) time [29,30], as 〈k1, k2〉-CBVCE is not in FPE [18], The-
orem 17 implies that 〈td, kd〉-FIE is not in FPE either. However, other types of
enumeration are still fixed-parameter tractable. In [17], it was shown that though
enumerating all k-sized vertex covers is not in FPE, enumerating all minimal
k-sized vertex covers is fixed-parameter tractable. It is easy to see the same is
true for CBVCE (and hence 〈td, kd〉-FIE) if we restrict to enumerating minimal
signatures (maximal signatures) as defined in [18] for multi-aspect parameters.

Corollary 18. 〈td, kd〉-FIE is in IMFPE.
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Proof: The reduction in Theorem 17 can be composed with the algorithm given
in [29] for solving the decision version of CBVC, yielding a O(2td+kd(|I| + |T |)
time algorithm for 〈td, kd〉-FIE.

This fairly naive algorithm can be readily improved with a full kernel [17]. The
kernelization described in [29] for CBVC works here since we are only required
to enumerate minimal signatures, hence allowing for a O((td + kd)2td+kd +(td +
kd)(|I| + |T |) time algorithm. Note that the 2 in the base of the exponent is
necessary and this algorithm is in a sense optimal – if we consider the bipartite
graph with k1 +k2 vertices in each of its bipartite sets with a single edge joining
pairs of vertices across these sets, there are 2k1+k2 minimal signatures that must
be processed.

Does further relaxing the succinctness of the enumerated sets of frequent
itemsets yield still better algorithms? It is remarked in [18] that the best decision
problem algorithm for CBVC can be used to enumerate a representative solution
for each minimal signature, allowing the 2 in the base of the algorithm runtime
exponent to be improved to 1.39. Other such improvements arise when CBVC is
restricted to enumerating minimum solutions [31,30]. Though such restrictions
are probably inadequate for most frequent itemset mining applications, they are
suggestive of directions for future research.

An obvious objection to a CBVC-based approach to FIE is that the corre-
sponding parameterization seems to correspond to impractical mining queries.
That is, small values for these parameters correspond to large itemsets of high
support, which is not what is typically desired. However, we can look to [32]
where we find an analogous situation. In this case, cliques are found in graphs
using a reduction to Vertex Cover. Due to good kernelization, fairly large
vertex covers can be found in practice despite a theoretical worst-case complex-
ity bound that suggests otherwise. One of the key lessons of the paper was that
good preprocessing can often lead to problem instances where input parameter
values are much smaller than in the given problem instances. This is yet another
direction for future research.

It is very important to note that the approaches sketched above are funda-
mentally different from those used in current algorithms for FIE. In combination
with attention to implementation details such as the use of space-efficient data
structures, these approaches may yield algorithms which perform much better
than current FIE algorithms for certain types of frequent itemset mining tasks.

5 Conclusions and Future Directions

All results derived in Sections 3 and 4 as well as other results derived by applying
Lemmas 2 and 3 are summarized in Table 2. These results specify the frontier
of parameterized intractability with respect to the problem-aspects we consider
here, at least for the most basic kinds of frequent itemset enumeration; moreover,
these results (in particular, those in Section 4) suggest several new algorithmic
directions for this problem. That being said, many open questions remain to be
answered, some of which are briefly discussed below.
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Table 2. Summary of Parameterized Results for FIE and FTIE. Note that entry
“�∈ FPE[X] in this table relative to a parameter p means that 〈p〉-FIE and 〈p〉-FTIE
are not fixed-parameter enumerable because 〈p〉-FIC is not in X unless certain unlikely
class-collapse results detailed in Section 3 occur.

– t td n

– NP -C �∈ FPE[#XP ] �∈ FPE[FFPT ] FPE

k �∈ FPE[#XP ] �∈ FPE[FFPT ] �∈ FPE[FFPT ] FPE

kd �∈ FPE[FFPT ] �∈ FPE[FFPT ] �∈ FPE, ∈ IMFPE FPE

l FPE FPE FPE FPE

m FPE FPE FPE FPE

One such question is the parameterized complexity of the decision version of
FIE relative to the parameters for which we derived counting hardness results.
Quite aside from the theoretical interest of such results, they may be useful in
investigating certain restrictions on frequent itemset enumeration that cannot
be formulated in counting problems. For example, consider relaxing the require-
ment to enumerate all frequent itemsets to enumerating only s such sets for a
given number s. A hard decision problem would automatically imply that such
a variant is hard; however, FPT results for the decision problem may give some
clues on how to enumerate s frequent itemsets efficiently.

In [17] there is some discussion about an approach to parameterized enumer-
ation that involves computing a succinct representation of the solutions for a
problem from which the solutions can quickly be explicitly enumerated. Several
such succinct representations (namely, closed and maximal frequent itemsets)
are already being used in this manner in data mining (see [33] and references).
Building on preliminary results given in Section 4, it would be interesting to
know whether FIE relative to some of the hard parameters described in this pa-
per becomes fixed-parameter tractable if these or other succinct representations
are used.
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Abstract. We develop a new randomized method, random separation,
for solving fixed-cardinality optimization problems on graphs, i.e., prob-
lems concerning solutions with exactly a fixed number k of elements (e.g.,
k vertices V ′) that optimize solution values (e.g., the number of edges
covered by V ′). The key idea of the method is to partition the vertex set
of a graph randomly into two disjoint sets to separate a solution from the
rest of the graph into connected components, and then select appropriate
components to form a solution. We can use universal sets to derandomize
algorithms obtained from this method.

This new method is versatile and powerful as it can be used to solve a
wide range of fixed-cardinality optimization problems for degree-bounded
graphs, graphs of bounded degeneracy (a large family of graphs that
contains degree-bounded graphs, planar graphs, graphs of bounded tree-
width, and nontrivial minor-closed families of graphs), and even general
graphs.

1 Introduction

1.1 Motivations and Related Work

Many NP-hard problems, when some part of input I is taken as a fixed pa-
rameter k to form fixed-parameter problems, can be solved by algorithms that
run in uniformly polynomial time, i.e., f(k)|I|O(1) time for some function f(k).
Prominent and influential examples of such algorithms include O(n3) algorithms
of Robertson and Seymour [12] for solving the subgraph homomorphism and mi-
nor containment problems, an O(n) algorithm of Bodlaender [3] for finding tree-
decompositions of tree-width k, O(n) algorithms of Courcelle [7] and Arnborg et
al. [2] for solving problems expressible in monadic second-order logic on graphs
of tree-width k, and an O(kn + 1.286k) algorithm of Chen, Kanj and Jia [6] for
finding a vertex cover of k vertices. Downey and Fellows [8] have established a
general framework for studying the complexity of fixed-parameter problems.

In this paper, we develop a new randomized method, called random separation,
for designing uniformly polynomial-time algorithms to solve fixed-parameter
� Partially supported by a Direct Research Grant from the Chinese University of Hong
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problems on graphs, especially fixed-cardinality optimization problems. A fixed-
cardinality optimization problem is a problem that asks for a solution with exactly
a fixed number k of elements (e.g., k vertices V ′) to optimize the solution value
(e.g., the number of edges covered by V ′), and recently Cai [4] has initiated a
systematic study of fixed-cardinality optimization problems from the parameter-
ized complexity point of view. The key idea in our random separation method
is to partition the vertex set of a graph randomly into two disjoint sets to sepa-
rate a solution from the rest of the graph into connected components, and then
select appropriate components to form a solution. We can use universal sets to
derandomize algorithms obtained from this method.

Our initial inspiration for developing the random separation method came
from the colour-coding method of Alon, Yuster and Zwick [1] for solving fixed-
parameter problems on graphs. The basic idea of their method is to colour ver-
tices randomly in k colours and then try to find a colourful k-solution, i.e., a
solution consisting of k vertices in distinct colours. To derandomize the algo-
rithm, they use perfect hash functions. They have used colour-coding to find, for
each fixed k, a k-path in O(n) expected time and O(n log n) worst-case time, a k-
cycle in O(nα) expected time and O(nα log n) worst-cast time, where α < 2.376,
and a subgraph isomorphic to a k-vertex graph H of tree-width w in O(nw+1)
expected time and O(nw+1 log n) worst-case time. Unfortunately, for most fixed-
parameter problems, it seems very difficult to find colourful k-solutions, which
greatly limits the applicability of colour-coding.

On the other hand, it is much easier to deal with connected components, which
enables us to use random separation to solve a wide range of fixed-parameter
problems, especially when the input graph has bounded degree or degeneracy.
In fact, it is rather surprising that we can use random separation to obtain
uniformly polynomial-time algorithms for classes of fixed-parameter problems,
especially fixed-cardinality optimization problems, on graphs of bounded degree.

For derandomization, our main tools are universal sets and perfect hash func-
tions. A collection of binary vectors of length n is (n, t)-universal if for every
subset of size t of the indices, all 2t configurations appear. Naor, Schulman and
Srinivasan [11] have a deterministic construction for (n, t)-universal sets of size
2ttO(log t) log n that can be listed in linear time. A family F of functions map-
ping a domain of size n into a range of size k is an (n, k)-family of perfect hash
functions if for every subset S of size k from the domain there is a function in F
that is 1-to-1 on S. Based on work of Schmidt and Siegel [13] and pointed out
by Moni Naor [1], an (n, k)-family of perfect hash functions of size 2O(k) log n
can be deterministically constructed in linear time.

Following the framework of Downey and Fellows [8], we say that a fixed-
parameter problem is fixed-parameter tractable if it has a uniformly polynomial-
time algorithm, and fixed-parameter intractable if it is W[i]-hard for some W[i]
in the W -hierarchy. We note that a W[i]-hard problem cannot be solved in
uniformly polynomial time unless all problems in W[i] can be solved in uniformly
polynomial time.
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1.2 Main Results

We focus on graphs of bounded degree or degeneracy as many fixed-parameter
problems are fixed-parameter intractable for general graphs. A degree-bounded
graph is a graph whose maximum degree is bounded by a constant d. A graph G
is d-degenerate if every induced subgraph of G has a vertex of degree at most d.
It is easy to see that every d-degenerate graph admits an acyclic orientation such
that the outdegree of each vertex is at most d. Many interesting families of graphs
are d-degenerate for some fixed constant d. For example, graphs embeddable on
some fixed surface (planar graphs are 5-degenerate), degree-bounded graphs,
graphs of bounded tree-width, and nontrivial minor-closed families of graphs.

In this paper we will demonstrate the power of our random separation method
by the following results:

1. For degree bounded graphs G, we obtain uniformly polynomial-time algo-
rithms for a wide range of fixed-parameter problems that ask us to find k
vertices (edges) S to optimize a value φ(S) defined by an objective function
φ that is computable in uniformly polynomial time (Section 3.2).

2. For every degree bounded graph G and every k-vertex graph H , we can
find a maximum (minimum) weight induced (partial) H-subgraph in G in
O(n log n) time for each fixed k (Section 2.2).

3. For each fixed k, we can find a subset of vertices in a general graph to cover
exactly k edges in O(m + n log n) time (Section 2.4).

4. For every k-vertex tree (forest) H and fixed k and d, we can find an induced
H-subgraph in a d-degenerate graph that contains one in O(n) expected
time and O(n log2 n) worst-case time (Section 4).

5. For fixed k and d, we can find an induced k-cycle in a d-degenerate graph
that contains one in O(n2) expected time and O(n2 log2 n) worst-case time
(Section 4).

Furthermore, we can also use random separation to solve fixed-parameter
problems on satisfiability, integer programming, set packing and covering, and
many others when the input obeys some “degree” constraints, which will be
discussed in the full paper.

1.3 Notation and Organization

We use G = (V, E) to denote the input graph (or digraph) with n vertices and
m edges. For a graph H , its vertex (edge) set is denoted by V (H) (respectively,
E(H)). For a subset V ′ of vertices, NG(V ′) denotes the neighbourhood of V ′,
i.e., the set of vertices not in V ′ that are adjacent to some vertices in V ′, and
N+

G (V ′) the out-neighbourhood of V ′, i.e., vertices not in V ′ that are heads of
edges connected with some vertices in V ′. For a subgraph H , we use NG(H) as
a shorthand for NG(V (H)) and N+

G (H) for N+
G (V (H)). We use dG(v) to denote

the degree of vertex v in G.
A subgraph in G that is isomorphic to a given graph H is an H-subgraph. For

two vertices u and v, dG(u, v) denotes their distance in G; and for two subgraphs
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H1 and H2 of G, dG(H1, H2) denotes their distance in G, i.e., dG(H1, H2) =
min{dG(u, v) | u ∈ V (H1), v ∈ V (H2)}.

In Section 2, we introduce our basic random separation method together with
several working examples. In Section 3, we extend the method to solve a wide
range of fixed-cardinality optimization problems for degree-bounded graphs, and
in Section 4 we combine random separation with colour-coding to find induced k-
vertex trees (forests) and induced k-cycles for d-degenerate graphs. We conclude
the paper with a brief summary and some open problems in Section 5.

2 Random Separation

The basic idea of our random separation method is to use a random partition of
the vertex set V of a graph G = (V, E) to separate a solution from the rest of
G into connected components and then select appropriate components to form
a solution. To be precise, we colour each vertex randomly and independently
by either green or red to define a random partition of V into green vertices Vg

and red vertices Vr, which forms the green subgraph Gg = G[Vg ] and the red
subgraph Gr = G[Vr]. For a solution S with k vertices, there is 2−(k+|NG(S)|)

chance that a random partition has the property that S is entirely in the green
subgraph Gg and its neighbourhood NG(S) is entirely in the red subgraph Gr,
i.e., S consists of a collection of connected components of Gg, referred to as green
components. For such a partition, we can usually find an appropriate collection of
green components to form a required k-solution by using the standard dynamic
programming algorithm for the 0-1 knapsack problem (see, for instance, the text-
book of Kleinberg and Tardos [10]). Therefore, with probability 2−(k+|NG(S)|),
we can find a required k-solution from a random partition. To derandomize the
algorithm, we use (n, t)-universal sets for t = k + |NG(S)|. The total time of the
whole algorithm is uniformly polynomial when t is bounded by a function of k.
We give several examples to illustrate this method in the rest of this section.

2.1 Dense k-Vertex Subgraphs in Degree-Bounded Graphs

Let us start with the problem of finding an induced subgraph on k vertices
that contains the maximum number of edges. Let d be a fixed constant and
G = (V, E) a graph of maximum degree d. First we randomly colour each vertex
of G by either green or red to form a random partition (Vg , Vr) of V . Let G′ be a
maximum k-vertex induced subgraph of G. A partition of V is a “good partition”
for G′ if all vertices in G′ are green and all vertices in its neighbourhood NG(G′)
are red. Note that NG(G′) has at most dk vertices as dG(v) ≤ d for each vertex
v. Therefore the probability that a random partition is a good partition for G′

is at least 2−(d+1)k and thus, with at least such a probability, G′ is the union of
some green components.

To find a maximum k-vertex induced subgraph for a good partition of G′, we
need only find a collection H′ of green components such that the total number
of vertices in H′ is k and the total number of edges in H′ is maximized. For
this purpose, we first compute in O(dn) time the number ni of vertices and the
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number mi of edges inside each green component Hi. Then we find a collection
H′ of green components that maximizes∑

Hi∈H′
mi

subject to
∑

Hi∈H′ ni = k. This can be solved in O(kn) time by using the stan-
dard dynamic programming algorithm for the 0-1 knapsack problem (see [10]).
Therefore, with probability at least 2−(d+1)k, we can find a maximum k-vertex
induced subgraph of G in O((d + k)n) time.

To derandomize the algorithm, we need a family of partitions such that for
every partition Π of any (d + 1)k vertices into k vertices and dk vertices, there
is a partition in the family that is consistent with Π . Clearly, any family of
(n, (d + 1)k)-universal sets can be used as the required family of partitions.
Using a construction of Naor, Schulman and Srinivasan [11], we obtain a re-
quired family of partitions of size 2(d+1)k(dk + k)O(log(dk+k)) log n that can be
listed in linear time. Therefore we obtain a deterministic algorithm that runs in
O(f(k, d)n log n) time where

f(k, d) = 2(d+1)k(dk + k)O(log(dk+k))(d + k),

which is O(n log n) for fixed k and d, and uniformly polynomial for parameter k
and fixed d.

2.2 Subgraph Isomorphism for Degree-Bounded Graphs

Although subgraph isomorphism problems are W[1]-hard for general graphs [8],
we can use random separation to solve them easily for degree-bounded graphs,
even for the weighted case. We note that the following theorem for the un-
weighted case also follows from a result of Seese [14] and a more general result
of Frick and Grohe [9].

Theorem 1. Let G = (V, E; w), where w : V
⋃

E → R, be a weighted graph
(digraph) whose maximum degree is d, and H an arbitrary k-vertex graph (di-
graph). If G contains an induced (a partial) H-subgraph, then for fixed k and d,
it takes O(n log n) time to find a maximum (minimum) weight induced (partial)
H-subgraph in G.

Proof. We consider induced subgraph first. Let H ′ be a maximum (minimum)
weight induced H-subgraph in G. Generate a random partition (Vg, Vr) of V .
With probability at least 2−(d+1)k, each connected component of H ′ is a green
component. For each connected component Hi of H , we find a maximum (min-
imum) weight Hi-subgraph H∗

i in Gg, which takes O(k!kdn) time. Then with
probability at least 2−(d+1)k, ∪Hi∈HH∗

i is a maximum (minimum) weight in-
duced H-subgraph in G, and therefore we can solve the problem in O(n) expected
time for fixed k and d. We derandomize the algorithm by using (n, (d + 1)k)-
universal sets to obtain a deterministic algorithm that runs in O(n log n) time
for fixed k and d.
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For the partial subgraph case, we use a random partition to partition edges
E into green and red edges (Eg, Er). Let H ′ be a maximum (minimum) weight
partial H-subgraph in G. With probability at least 2−kd (note that k vertices
are incident with at most kd edges), edges in H ′ are green and all other edges
adjacent to edges in H ′ are red, i.e., each connected component of H ′ is a green
component in G[Eg]. The rest of the arguments is the same as the induced
subgraph case and is omitted. ��

2.3 Weighted Independent k-Sets in d-Degenerate Graphs

Let d be a fixed constant, and G = (V, E; w) a weighted d-degenerate graph with
w : V → R. Consider the problem of finding a maximum weight independent k-
set in G, i.e., a set of k mutually nonadjacent vertices of maximum total weight.
Although the problem is W[1]-hard for general graphs [8], it is trivially solvable
for d-degenerate graphs by using random separation.

First we orient edges of G so that the outdegree of each vertex is at most d,
which is easily done in O(dn) time. Then we generate a random partition (Vg, Vr)
of V . The probability that a maximum weight independent k-set V ′ is entirely
inside Gg and the out-neighbourhood of each vertex of V ′ is entirely in Gr is at
least 2−(d+1)k. Therefore, with probability at least 2−(d+1)k, V ′ consists of sinks
of Gg and thus k sinks of largest weights in Gg. We can easily find such a V ′ in
O(kn) time, and thus, with probability at least 2−(d+1)k, we can find a maximum
weight independent k-set in O((d + k)n) time. Again, we can derandomize the
algorithm by using (n, (d+1)k)-universal sets to obtain a deterministic algorithm
that runs in O(n log n) time for fixed k and d.

Remark 2. For fixed constants k and d, we can also use random separation to
find a maximum weight induced k-matching in d-degenerate graphs in O(n log n)
time, and in Section 4 we will combine with colour coding to solve several other
induced subgraph isomorphism problems for d-degenerate graphs.

2.4 Covering Exactly k Edges in General Graphs

We now consider the problem of finding a set of vertices to cover exactly k edges
in a general graph G. W.l.o.g., we may assume that G has no isolated vertices.
Let V ′ be a set of vertices that cover exactly k edges. Clearly |V ′| ≤ k and thus
every vertex in V ′ has degree at most k. Let Vk be the set of vertices of degree
at most k in G and F = G[Vk].

A random partition of Vk is a “good partition” for V ′ if all vertices in V ′ are
green and all vertices in NF (V ′) are red. Since NF (V ′) has at most k vertices,
the probability that a random partition is a good partition for V ′ is at least
2−2k. Given a good partition for V ′, the problem of finding a subset of vertices
to cover exactly k edges is equivalent to the problem of finding a collection
H′ of green components such that the total number of edges in G covered by
vertices in H′ is exactly k. To find such an H′, we compute, for each green
component Hi, the number ei of edges in G covered by vertices in Hi. Since
for any two green components Hi and Hj , the number of edges covered by
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vertices in Hi ∪ Hj equals ei + ej, we can obtain such a collection H′ in O(kn)
time by using the standard dynamic programming algorithm for the subset sum
problem (see [10]). Therefore we can solve the problem in O(m+4kkn) expected
time when G contains such a vertex cover and, using (n, 2k)-universal sets for
derandomization, O(m+4k(2k)O(log k)kn log n) worst-case time, which is O(m+
n log n) for each fixed k.

Remark 3. This example illustrates that random separation is also useful for
finding a solution in a general graph if there is a required solution such that
the total number of elements in the solution and its neighbourhood is bounded
by a function of k. In the full paper, we will solve several problems with such
a property, in particular, some fixed-cardinality optimization problems studied
in [4].

3 Extended Random Separation

We have seen in the previous section that random separation is quite useful
for solving fixed-parameter problems. In this section, we will extend our ba-
sic method to solve a large class of fixed-cardinality optimization problems on
degree-bounded graphs.

A random partition (Vg, Vr) is i-separating, i ≥ 1, if there is a solution S such
that all vertices in S are green and all other vertices at most distance i away
from S are red. We note that our basic idea in random separation is to use a
1-separating partition to separate a solution.

3.1 Maximum Dominating k-Sets for Degree-Bounded Graphs

Let us consider the problem of finding k vertices V ′ in a graph G of maximum de-
gree d to dominate the maximum number of vertices, i.e., to maximize |NG(V ′)|.
First we note that the dynamic programming approach based on a 1-separating
partition does not work as a red vertex can be simultaneously dominated by ver-
tices in several green components. In fact, it seems that no i-separating partition,
i ≥ 1, enables us to use dynamic programming directly based on the information
of each green component.

To solve the problem, we use 2-separating partitions together with the new
idea of merging green components into clusters. Let (Vg, Vr) be a 2-separating
partition of G, and V ′ a maximum dominating k-set such that all vertices in V ′

are green and all other vertices that are at most distance 2 away from V ′ are
red. Observe that for any two green components H1 and H2, if dG(H1, H2) ≤ 2
then V (H1) ⊆ V ′ iff V (H2) ⊆ V ′. Therefore we can merge green components
into clusters so that all vertices in a cluster are either all or none in V ′.

Let GH be the graph whose vertices are green components and whose edges
correspond to pairs of green components with distance at most 2 in G. Then each
connected component of GH corresponds to a cluster of green components, called
2-cgc, whose vertices must be either all or none in V ′. Furthermore, the distance
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in G between any two 2-cgcs is at least 3 and thus a red vertex is dominated by
at most one 2-cgc. Therefore V ′ consists of a collection of 2-cgcs.

We can find all 2-cgcs in O(dn) time by using breadth-first search. For each
2-cgc C, we compute the number φ(C) of vertices dominated by C. Then φ(C1 ∪
C2) = φ(C1) + φ(C2) hold for any two 2-cgcs C1 and C2 as no vertex is simulta-
neously dominated by both C1 and C2. Therefore, given a 2-separating partition,
we can use the standard dynamic programming algorithm for the (0,1)-knapsack
problem based on 2-cgcs to find a maximum dominating k-set in O(kn) time.

Since the probability that a random partition is 2-separating is at least
2−k(1+d2), our algorithm finds, with at least this probability, a maximum dom-
inating k-set in O((d + k)n) time. We can use (n, k(1 + d2))-universal sets to
derandomize the algorithm so that it runs in O(n log n) time for fixed k and d.

3.2 Fixed-Cardinality Optimization Problems on Degree-Bounded
Graphs

The idea for solving the maximum dominating k-set problem can be generalized
to form the base of our extended random separation method. We use a random
partition (Vg , Vr) of V to obtain, with some probability p, an i-separating par-
tition for some i ≥ 1 that separates a solution S from the rest of the graph by i
layers of red vertices.

Let GH be the graph whose vertices are green components and whose edges
correspond to pairs of green components with distance at most i in G. Then
each connected component of GH corresponds to a cluster of green components,
called i-cgc, whose vertices must be either all or none in S. Furthermore, the
distance in G between any two i-cgcs is at least i + 1.

We merge green components into i-cgcs. Then solution S consists of a collec-
tion of i-cgcs. We use dynamic programming based on information of i-cgcs to
find an appropriate collection of i-cgcs to produce a solution and derandomize
the algorithm by using (n, t(k, d))-universal sets for some integer t(k, d).

The extended random separation method is quite powerful and can be used
to solve classes of fixed-cardinality optimization problems on degree-bounded
graphs that require us to find k vertices (edges) to optimize a value φ defined
on vertices (edges).1

Theorem 4. Let k, d ∈ N be fixed constants and G = (V, E) a graph of max-
imum degree d. Let φ : 2V → R ∪ {−∞, +∞} be an objective function to be
optimized. Then it takes O(nmax{c′,c+1} log n) time to find k vertices V ′ in G
that optimizes φ(V ′) if the following conditions are satisfied:

1. For all V ′ ⊆ V with |V ′| ≤ k, φ(V ′) can be computed in O(g(k, d)nc) time
for some function g(k, d) and constant c > 0.

2. There is a positive integer i computable in O(h(k, d)nc′
) time for some

function h(k, d) and constant c′ > 0 such that for all V1, V2 ⊆ V with
|V1| + |V2| ≤ k, if dG(V1, V2) > i then φ(V1 ∪ V2) = φ(V1) + φ(V2).

1 We use φ(S) = −∞ for maximization problems and φ(S) = +∞ for minimization
problems to indicate that S is not a feasible solution.
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Proof. (sketch) First we generate a random partition (Vg, Vr) of V . Let V ′ be an
optimal k-solution. Then the probability that (Vg, Vr) is an i-separating partition
for V ′ is at least 2−t(k,d) for t(k, d) = k + kd

∑i
j=1(d − 1)j−1.

It takes O(h(k, d)nc′
) time to compute i, and O(dn) time to find all i-cgcs of

an i-separating partition. For each i-cgc C, we delete it if it contains more than
k vertices. Otherwise we determine the number of vertices in C and compute
φ(V (C)) in O(g(k, d)nc) time. For any two i-cgcs C1 and C2, their distance
in G is at least i + 1 and thus φ(V (C1 ∪ C2)) = φ(V (C1)) + φ(V (C2)) when
|V (C1)|+|V (C2)| ≤ k. This enables us to use the standard dynamic programming
algorithm for 0-1 knapsack problem to find an optimal k-solution in O(kn) time.
We can derandomize the algorithm by (n, t(k, d))-universal sets to make it run
in O(nmax{c′,c+1} log n) time. ��

Remark 5. Theorem 4 is easily adapted for φ being a property of V ′. Further-
more, the theorem can be generalized to problems of selecting k disjoint (induced
or partial) subgraphs S1, S2, . . . , Sk from a degree-bounded graph (digraph) to
optimize the value of an objective function defined on them, provided that the
total number of vertices in all Si’s is bounded by a function of k and Si’s are
homogeneous, for instance, all Si’s are edges, triangles, trees, or planar graphs.
Further generalizations to hypergraphs are also possible, and we will discuss
these issues in the full paper.

4 Combining with Colour-Coding

As demonstrated in the previous two sections, random separation is very effec-
tive in solving fixed-parameter problems on degree-bounded graphs. However, it
is much more difficult to solve fixed-parameter problems on graphs of bounded
degeneracy. In fact, we can show that several problems that are fixed-parameter
tractable for degree-bounded graphs, including the (induced) subgraph isomor-
phism problem, are W[1]-hard even for 2-degenerate graphs [5].

In this section, we will combine random separation with colour-coding to solve
some induced subgraph isomorphism problems for d-degenerate graphs. Let G
be a d-degenerate graph whose edges have been oriented so that the outdegree
of each vertex is at most d. To solve a fixed-parameter problem for G, we use
random separation first to separate a k-solution from its out-neighbours and then
use colour-coding for the green subgraph to locate a solution. In other words,
we use k + 1 colours, instead of k colours in colour coding, to form a base of our
randomized algorithm, where the role of the extra colour is the same as red in
random separation. Surprisingly, this extra colour allows us to solve problems
that seem not manageable by colour-coding or random separation alone. We
can use universal sets and perfect hash functions together to derandomize the
algorithm.

The following simple observation is one of the main reasons that our combined
approach works for finding certain isomorphic induced subgraphs in d-degenerate
graphs.
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Lemma 1. Let 	G be an arbitrary orientation of a graph G and H a subgraph
of G. If N+

�G
(v) ∩ V (H) ⊆ NH(v) for every vertex v in H, then H is an induced

subgraph of G.

Proof. Let 	uv be an edge in 	G between two arbitrary vertices u and v in H .
Then v ∈ N+

�G
(u)∩V (H) and thus v ∈ NH(u). Therefore uv is an edge of H and

hence H is an induced subgraph of G. ��
We start with the isomorphic induced subtree problem.

Theorem 6. Let k and d be fixed constants, T a tree on k vertices, and G =
(V, E) a d-degenerate graph that contains an induced T -subgraph. Then we can
find an induced T -subgraph in G in O(n) expected time and O(n log2 n) worst-
case time.

Proof. Arbitrarily choose a leaf of T as the root and define a post-order traversal
of T . For convenience, we assume that vertices of T are 1, 2, · · · , k following the
post-order traversal. For each vertex i, let Ti denote the subtree of T rooted at
i, and p(i) the parent of i in T . Then i < p(i) and k is the root of T .

We orient edges of G so that the outdegree of each vertex is at most d, which is
easily done in O(dn) time. For a (k+1)-colouring c : V → {0, 1, 2, . . . , k} of G, an
induced T -subgraph T ′ in G is “well-coloured” if the vertex in T ′ corresponding
to vertex i in T has colour i and every vertex in the out-neighbourhood N+

G (T ′)
of T ′ has colour 0.

Given a (k +1)-colouring c of V , the following algorithm finds a well-coloured
induced T -subgraph T ′ in G if such a T ′ exists. To do so, we process vertices v
of colour i for each i from 1 to k: roughly speaking, when there is a Ti-subgraph
rooted at v, we mark v and add appropriate edges to E′.

Algorithm Iso-Tree
Step 1. Generate a (k + 1)-colouring c : V → {0, 1, 2, . . . , k} of G as follows:

produce a random partition (Vg, Vr) of V , colour all red vertices Vr by colour
0 and then randomly colour all green vertices Vg by colours in {1, 2, . . . , k}.

Step 2. For each vertex v of colour 1, mark it if at most one vertex in N+
G (v)

has colour p(1), and all other vertices in N+
G (v) have colour 0.

Step 3. For each i from 2 to k, process vertices of colour i as follows. For each
vertex v of colour i, mark it if the following conditions are satisfied:
1. For each child j of vertex i in T , there is a marked vertex uj ∈ NG(v) of

colour j.
2. If i 	= k then at most one vertex in N+

G (v) has colour p(i).
3. All other vertices in N+

G (v) have colour 0.
Add edge vuj to E′ when v is marked.

Step 4. If there is a marked vertex v of colour k, then E′ contains the edges of
an induced T -subgraph.

The correctness of the algorithm can be established by Lemma 1 and induction
on i. For the running time, it is easy to see that the algorithm takes O(dn)
time for a given k + 1 colouring. The probability that an induced T -subgraph
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in G is well-coloured is at least 2−k(d+1)k−k, and thus the expected time of the
algorithm is O(2k(d+1)kkdn). To derandomize the algorithm, we use (n, k(d+1))-
universal sets and then (n, k)-perfect hash functions. Therefore the derandomized
algorithm runs in O(n log2 n) time for fixed k and d. ��
A slight modification to Iso-Tree enables us to extend the above theorem to T
being an arbitrary k-vertex forest. We can also use the ideas in Iso-Tree to find
induced k-cycles in graphs of bounded degeneracy.

Theorem 7. For fixed constants k and d, we can find an induced k-cycle, if
it exists, in a d-degenerate graph G in O(n2) expected time and O(n2 log2 n)
worst-case time.

Proof. (sketch) Basically, we use algorithm Iso-Tree. The idea is to use it
to find well-coloured induced k-paths with the following modification: mark a
vertex v of colour 1 if there are at most two vertices x, y ∈ N+

G (v) with c(x) = 2
and c(y) = k and all other vertices in N+

G (v) have colour 0.
Then for each marked vertex v of colour 1, independently do a round of the

marking process to find marked vertices Mk(v) of colour k. If there is an edge
between v and some vertex in Mk(v), then we find an induced k-cycle in G.

Since we need to do O(n) rounds of independent marking, the algorithm takes
O(n2) expected time and thus O(n2 log2 n) worst-case time after derandomiza-
tion. ��
Note that it is W[1]-hard to find an induced k-path (k-cycle) in a general
graph [5].

Remark 8. We can easily extend Theorem 6 and Theorem 7 to deal with
weighted graphs. We can also use the idea in Iso-Tree to find in O(n log2 n) time
an induced k-vertex tree (forest) in a d-degenerate graph, which is W[1]-hard
for general graphs [5]. Furthermore, it seems possible that we can generalize the
idea to find, for any k-vertex graph H of tree-width w, an induced H-subgraph
in a d-degenerate graph in O(nw log2 n) time.

5 Concluding Remarks

We have introduced the innovative random separation method for solving fixed-
parameter problems and have demonstrated its power through a wide range of
such problems. It is quite surprising that this new method is much more powerful
and versatile than expected, and we believe that it is a promising and effective
tool for solving fixed-parameter problems. For further development, we list a few
open problems for the reader to ponder.

1. We feel that the power of random separation has not been fully explored for
graphs of bounded degeneracy. What kind of fixed-cardinality optimization
problems can be solved for such graphs? Is it possible to obtain some general
results, such as those for degree-bounded graphs, for planar graphs?
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2. For degree-bounded graphs G, is random separation useful for problems that
do not have the properties in Theorem 4? For instance, the problem of delet-
ing k vertices from G to create as many components as possible.

3. For the complexity of our deterministic algorithms, is it possible to remove
the log n factor? For the combined method, is there a direct way to deran-
domize the algorithms to reduce log2 n to log n?

4. Unless P = NP, it is unavoidable that functions f(k, d) in the running times
of most of our uniformly polynomial-time algorithms are exponential in both
k and d. However, is it possible to reduce f(k, d) to ck

1 +cd
2 for some constants

c1 and c2 independent of k and d?
5. Is there an O(n) expected time algorithm for finding an induced k-cycle in

a d-degenerate graph?
6. Finally, it will be interesting to see how fast our algorithms can run in

practice. For implementation purpose, it is useful to fine tune the probability
that a vertex is coloured green, and a preliminary test of our randomized
algorithm for the exact vertex cover problem shows very encouraging results.
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Abstract. A survey is given of the main techniques in parameterized
algorithm design, with a focus on formal descriptions of the less familiar
techniques. A taxonomy of techniques is proposed, under the four main
headings of Branching, Kernelization, Induction and Win/Win. In this
classification the Extremal Method is viewed as the natural maximiza-
tion counterpart of Iterative Compression, under the heading of Induc-
tion. The formal description given of Greedy Localization generalizes the
application of this technique to a larger class of problems.

1 Introduction

The field of parameterized algorithms continues to grow. It is a sign of its success
that in the literature today there exists over twenty differently named techniques
for designing parameterized algorithms1. Many parameterized algorithms build
on the same ideas, and as a problem solver it is important to be familiar with
these general themes and ideas. Several survey articles [F03, DFRS04] and books
[N02, DF99] have identified common themes like Bounded Search Trees, Kernel-
ization and Win/Win. In this paper we make an attempt at a full taxonomy
encompassing all known techniques. In addition to its pedagogic value, we be-
lieve that such a taxonomy could help in developing both new techniques and
new combinations of known techniques.

We classify the known techniques under the four main themes of Branching,
Kernelization, Induction and Win/Win, see Figure 1. The four main themes
are described in separate sections. Each technique is introduced, possibly with
an example, and its placement in the taxonomy is argued for. In this extended
abstract we focus on the most novel aspects, e.g. the grouping of Greedy Lo-
calization and Color Coding together with Bounded Search Trees under the
heading of Branching algorithms, and the placement of the Extremal Method
1 This includes Bounded Search Trees [DF99], Data Reduction [N02], Kernelization

[DF99], The Extremal Method [FMRS00], The Algorithmic Method [P05], Cat-
alytic Vertices [FMRS00], Crown Reductions [CFJ04], Modelled Crown Reduc-
tions [DFRS04], Either/Or [PS03], Reduction to Independent Set Structure [PS05],
Greedy Localization [DFRS04], Win/Win [F03], Iterative Compression [DFRS04],
Well-Quasi-Ordering [DF99], FPT through Treewidth [DF99], Search Trees [N02],
Bounded Integer Linear Programming [N02], Color Coding [AYZ95], Method of Test-
sets [DF99], Interleaving [NR00].
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Fig. 1. The first two levels of the taxonomy, labelled by section number

as the maximization counterpart of Iterative Compression under the heading of
Induction. We give a generic and formal description of Greedy Localization that
encompasses problems hitherto not known to be FPT solvable by this technique.

Sometimes a technique is known under different names2 or it is a variant of a
more general technique3. Clearly, the fastest FPT algorithm for a problem will
usually combine several techniques. In some cases such a combination has itself
been given a separate name4. For simplicity and lack of space this extended
abstract does not consider all these variations of the most general techniques,
and our discussion is restricted to the first two levels of the hierarchy in Figure 1.
A note on notation: the chosen parameter for a problem is usually not stated
explicitly, instead we use the convention that the variable name k always denotes
the parameter.

2 Branching Algorithms

We start by considering algorithm techniques that use a branching strategy to
create a set of subproblems such that at least one of the subproblems is a yes-
instance if and only if the original problem is a yes-instance. Techniques that
create branching algorithms are Bounded Search Trees, Greedy Localization and
Color Coding. For a branching algorithm to have FPT running time it suffices
to require that (see [S06] for a proof):

2 This is the case with Data Reduction=Local Reduction Rules, Either/Or=Win/Win,
Search Trees=Bounded Search Trees and other names like Hashing [DF99]=Color
Coding which do not seem to be in use anymore.

3 This is the case with Catalytic Vertices ⊆ Local Reduction Rules, The Algorithmic
Method ⊆ Extremal Method, Modelled Crown Reductions ⊆ Crown reductions, FPT
by Treewidth ⊆ Imposing FPT structure, Reduction to Independent set structure
⊆ Imposing FPT structure, Method of Testsets ⊆ Imposing FPT structure.

4 This is the case with Interleaving which combines Bounded Search Trees and Local
Reduction Rules. The technique known as Bounded Integer Linear Programming can
in a similar way be viewed as a combination of a Branching algorithm with Local
Reduction Rules.
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– each node in the execution tree has polynomial running time
– makes O((log n)g(k)f(k)) branches at each step
– reaches a polynomial time base case in at most h(k) nested calls

2.1 Bounded Search Trees

The method of Bounded Search Trees is arguably the most famous parameterized
algorithm design technique and good general descriptions of it are plentiful, see
for example the books [DF99, N02]. For lack of space we describe it very simply
by saying that it is a branching algorithm which is strictly recursive.

2.2 Greedy Localization

Greedy Localization is a technique that uses a clever first branching to start off
the recursive search for the solution. It was introduced in a paper that has since
appeared in Journal of Algorithms [JZC04] and popularized in an IWPEC’04
paper [DFRS04]. Our aim is to show that if a parameterized problem satisfies
the following conditions 1 and 2 then Greedy Localization will give an FPT
algorithm.

1. The problem can be formulated as that of finding k pairwise non-overlapping
’objects’ in an input instance G, with objects being special subsets of size
depending only on k of a ground set W of G.

2. For any R ⊆ W and X ⊆ W we can decide in FPT time if there exists
S ⊆ W \ X such that S ∪ R is an object.

Not all bounded-size subsets of W are objects, and an obvious requirement
for the problem to have an FPT algorithm is that for any R ⊆ W we must be
able to decide in FPT time if R is an object or not. Condition 2 can be seen as a
strengthening of this obvious requirement and we will refer to S as an ’extension’
of the ’partial object’ R to a ’full object’ R ∪ S avoiding X .

The figure on the next page gives the Greedy Localization algorithm, in non-
deterministic style, for a problem satisfying these two conditions. It uses the
notation that for a set of partial objects B = {B1, B2, . . . , Bk} the ground ele-
ments contained in B are denoted by WB =

⋃
Bi∈B Bi.

Theorem 1. If a parameterized problem satisfies conditions 1 and 2 above then
the algorithm ’GREEDY LOCALIZATION’ is an FPT algorithm for this problem.

Proof. The algorithm starts by computing an inclusion maximal non-overlapping
set of objects A. By condition 2 this first step can be done in FPT time as follows:
repeatedly extend the emptyset to a full object while avoiding a set X , by calling
subroutine EXTEND(∅, X) with X initially empty, and adding the extension to
X before the next iteration. When no extension exists we are assured that the
sequence of extensions found must be an inclusion maximal non-overlapping set
of objects A.

The crucial aspect that makes the algorithm correct is that if A and B are
two inclusion maximal non-overlapping sets of objects then for any object Bi in
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Algorithm. GREEDY LOCALIZATION /* non-deterministic */
Input: Instance G with ground set W , and an integer k
Output: Yes if G has k non-overlapping objects, otherwise No
compute an inclusion maximal non-overlapping set of objects A
if A contains at least k objects then halt and answer ’Yes’
else if |WA| < k then halt and answer ’No’
else guess {v1, v2, . . . , vk} ⊆ WA and let Bi be partial object containing vi (1 ≤ i ≤ k)
BRANCHING(B = {B1, B2, . . . , Bk})

Subroutine BRANCHING
Input: Set of partial objects B = {B1, B2, . . . , Bk}
Output: Yes if B can be extended to a set of full objects, otherwise No
F = S = ∅
for j = 1 to k

if Bj not full then {
S =EXTEND(Bj , WB ∪ F )
if S == ∅ then break
else F = F ∪ S
}

if all objects could be extended then halt and answer ’Yes’
else if F == ∅ then halt and answer ’No’
else guess v ∈ F and add v to Bj /* j is value of parameter at break */
BRANCHING(B = {B1, B2, . . . , Bk})

Subroutine EXTEND
Input: Partial object Bi, unavailable ground elements X
Output: Ground elements S ⊆ W \ X whose addition to Bi gives a full object or

S = ∅ if this is not possible

B there is an object Aj in A such that Aj and Bi overlap, since otherwise A is
not maximal. Thus, if the instance contains such a set B of at least k objects,
then we can guess k ground elements appearing in A, with A constructed in the
first step of the algorithm, such that these ground elements belong to k separate
objects of B (and if |WA| < k we can answer ’No’.) The Branching subroutine
is called on these k one-element partial objects and we greedily try to extend
them to full objects. If this fails for some object Bj , after having added extension
elements F to objects B1, B2, ..., Bj−1, then there must exist an element v from
F that should have instead been used to extend Bj . We then simply guess the
element v and try again.

For a deterministic algorithm the guesses are replaced by branchings, and we
give a No answer iff all branches answer No. The first branching is of size

(|WA|
k

)
,

the remainder of the branches are of size |F |, and the total height of the tree is
bounded by k times the maximum size of an object since at each level one new
ground element is added to WB . All these are bounded by a function depending
on k as we assumed in condition 1 that each object had size depending on k
only. The calls to the Extend subroutine are FPT by condition 2. Hence the
algorithm is FPT. �
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For example, this implies that deciding if a graph G contains k vertex-disjoint
cycles on k vertices is FPT by Greedy Localization. The ground set W will be the
vertex set of G and the objects will be subsets of k vertices inducing a subgraph
containing a k-cycle, to satisfy condition 1. Given R, X ⊆ W we can by an
FPT algorithm designed using the Color Coding technique, see the next section,
decide if there exists S ⊆ W \X such that R∪ S induces a subgraph containing
a k-cycle, to satisfy condition 2. By Theorem 1 the Greedy Localization meta-
algorithm therefore solves the problem in FPT time. For packing of edge-disjoint
cycles a similar argument holds, with W being the edge set of the graph.

2.3 Color Coding

Color Coding is a technique that was introduced by Alon, Yuster, and Zwick
in their paper ’Color Coding’ [AYZ95] and is characterized by a powerful first
branching step. Given an input to a parameterized graph problem we color the
vertices with k colors such that the structure we are looking for will interact
with the color classes in a specific way. To do this we create many branches of
colored graphs, using a family of perfect hash functions for the coloring.

Definition 1. A k-perfect family of hash functions is a family H of functions
from {1, . . . , n} onto {1, . . . , k} such that for each S ⊂ {1, . . . , n} with |S| = k
there exists an h ∈ H that is bijective when restricted to S.

Schmidt and Siegal [SS90] describe a construction of a k-perfect family of hash
functions of size 2O(k) log2 n, and [AYZ95] describes how to obtain an even
smaller one of size 2O(k) log n.

The technique applies a family of perfect hash functions to partition vertices
of the input graph into k color classes. By the property of perfect hash families
we know that for any k-sized subset S of the vertices, one of the hash functions in
the family will color each vertex in S with a different color. Thus, if we seek a k-
set C with a specific property (e.g., a k-cycle), we know that if there is such a set
C in the graph then its vertices will, for at least one function in the hash family,
be colored with each of the k colors. The color coding technique gives an FPT
algorithm whenever this colored subproblem can be solved in FPT time. Perhaps
the strongest results using Color Coding are obtained in [FKNRSTW04] where
it is combined with kernelization to give FPT algorithms for a large variety of
problems.

A major drawback of these algorithms is that while the hash family has an
asymptotically good size, the O-notation hides a large constant. Thus, from a
practical viewpoint the color coding algorithms could be slower than, for exam-
ple, a 2k log k algorithm obtained through other techniques.

3 Kernelization

Under the heading of kernelization we combine techniques that reduce a general
instance into an equivalent kernel, i.e. , an instance whose total size is bounded
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by a function depending only on the parameter. We distinguish between local
reductions and global reductions.

3.1 Local Reductions

Local reduction is a well known technique. We say that a local reduction rule is
a rule that identifies a certain constant-size structure LHS in the instance (the
left-hand-side) and modifies it to RHS (the right-hand-side). This must be done
in such a way that the original instance (G, k) has a positive solution iff the
reduced instance (G′, k′) has one. The goal is to find a set of rules such that
repeatedly applying the rules to an instance will either determine the answer
directly or give a kernel.

3.2 Global Reduction Rules - Crown Reduction

Lately there has been a focus on reduction rules that do not follow the pattern
of finding a local structure of constant size. In this section we describe reduction
rules based on finding crown decompositions in graphs.

Definition 2. A crown decomposition of a graph G = (V, E) is a partitioning
of V into sets C, H, R, where C and H are both nonempty, such that:

1. C is an independent set.
2. There is no edge between a vertex in C and a vertex in R.
3. There exists an injective map m : H → C, such that m(a) = b implies that

ab is an edge. We call ab a matched edge if m(a) = b.

When using a crown decomposition (C, H, R) in a reduction rule for a graph G
we must show that we can can remove or modify (C ∪ H) to obtain a reduced
instance (G′, k′) which is a Yes-instance if and only if (G, k) is a Yes-instance.
For example, it is easy to see that G has a Vertex Cover of size k iff the graph G′

resulting from removing C ∪H has a Vertex Cover of size k − |H |. Usually more
complicated reduced instances and arguments are necessary. For example, an
FPT algorithm for k-Internal Spanning Tree [PS05] uses crown reduction rules
that remove only the vertices of C not incident to a matched edge.

Although it is possible to determine if a graph has a crown decomposition in
polynomial time [ACFL04], this technique is often combined with the following
lemma by Chor, Fellows, and Juedes [CFJ04].

Lemma 1. If a graph G = (V, E) has an independent set I such that |N(I)| <
|I|, then a crown decomposition (C, H, R) for G such that C ⊆ I can be found
in time O(|V | + |E|).

The notation N(I) denotes vertices in V \ I that are adjacent to a vertex in I.
Since it is W[1]-hard to find a large independent set we cannot directly apply
Lemma 1. To see how the Lemma can be used, consider k-Vertex Cover on a
graph G. We first compute a maximal matching M in G, and let VM be the
vertices incident to the edges in M . If |VM | > 2k then there does not exist a
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Vertex Cover for G of size k. If |VM | ≤ 2k and |V \VM | ≤ 2k then G is a kernel.
Otherwise, |VM | ≤ 2k and |V \ VM | > 2k and since V \ VM is an independent
set with |N(V \ VM )| ≤ |VM | ≤ 2k < |V \ VM | we have, by Lemma 1, a crown
decomposition of G, that can be used to reduce the graph as described above.
Repeating this process gives an FPT algorithm for k-Vertex Cover.

Although crown reduction rules were independently discovered by Chor, Fel-
lows, and Juedes [CFJ04] one should note that a similar type of structure has
been studied in the field of boolean satisfiability problems (SAT). An autarky is
a partial truth assignment (assigning true/false to only a subset of the variables)
such that each clause that contains a variable determined by the partial truth
assignment is satisfied. In a matching autarky we require in addition that the
clauses satisfied and the satisfying variables form a matching cover in the natural
bipartite graph description of the satisfiability problem. It is easy to see that the
matching autarky is a crown decomposition in this bipartite graph. The main
protagonist in this field is Oliver Kullmann [K00, K03], who has developed an
extensive theory on different types of autarkies.

4 FPT by Induction

We discuss techniques closely related to mathematical induction. If we are pro-
vided a solution for a smaller instance (G, k) we can for some problems use the
information to determine the solution for one of the larger instances (G + v, k)
or (G, k + 1). We will argue that the two techniques Iterative Compression
and Extremal Method are actually two facets of this inductive technique, de-
pending on wether the problem is a minimization problem or a maximization
problem.

In his book Introduction to Algorithms [M89] Udi Manber shows how induc-
tion can be used as a design technique to create remarkably simple algorithms
for a range of problems. He suggests that one should always try to construct a
solution based on the inductive assumption that we have a solution to smaller
problems. For example, this leads to the well known Insertion Sort algorithm
by noting that we can sort sequences of n elements by first sorting n−1 elements
and then inserting the last element at its correct place.

This inductive technique may also be applied to the design of FPT algorithms
but more care must be taken on two accounts: (a) we have one or more parame-
ters and (b) we are dealing with decision problems. The core idea of the technique
is based on using the information provided by a solution for a smaller instance.
When an instance contains both a main input and a parameter input, we must
be clear about what we mean by ’smaller’ instances. Let (G, k) be an instance,
where G is the main input and k the parameter. We can now construct three
distinctly different ’smaller’ instances (G − v, k), (G, k − 1) and (G − v, k − 1).
Which one of these to use?

We first show that using smaller instances of the type (G − v, k) is very
suitable for minimization problems and leads to a technique known as Iterative
Compression. Then we show that using smaller instances of the type (G, k − 1)
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can be used to construct algorithms for maximization problems and is in fact
the technique known as the Extremal Method.

4.1 For Minimization - Iterative Compression

In this section we present Iterative Compression which works well on certain
parameterized minimization problems. Let us assume that we can inductively
(recursively) compute the solution for the smaller instance (G − v, k). Since
our problems are decision problems, we get either a ’Yes’-answer or a ’No’-
answer. In both cases we must use the information provided by the answer to
compute the solution for (G, k). We must assume that for a ’Yes’-instance we
also have a certificate that verifies that the instance is a ’Yes’-instance and it is
this certificate that must be used to compute the solution for (G, k). However,
for a ’No’-answer we may receive no extra information. A class of problems where
’No’-answers carry sufficient information is the class of monotone problems in
which the ’No’-instances are closed under element addition. Thus if a problem
is monotone we can immediately answer ’No’ for (G, k) whenever (G− v, k) is a
’No’-instance.

Two papers that use this type of induction on monotone graph minimization
problems are [RSV03] which shows that k-Odd Cycle Cover (is it possible to
delete k vertices from G to obtain a bipartite graph) is FPT, and [DFRS04]
where a 2k kernel is given for k-Vertex Cover without using the complicated
Nemhauser-Trotter results [NT75].

Note that many minimization problems are not monotone, like Dominating
Set where the addition of a universal vertex always changes a ’No’ answer to
’Yes’ (unless k ≥ n). For such problems we believe that Iterative Compression
is ill suited.

4.2 For Maximization - The Extremal Method

For maximization problems we consider smaller instances of the type (G, k − 1),
and induct on k instead of n. We say that a problem is parameter monotone if
the ’No’-instances are closed under parameter increment, i.e. if instance (G, k)
is a ’No’-instance then (G, k′) is also a ’No’-instance for all k′ > k.

The Method of Extremal Structure5 is a design technique that works well for
parameter monotone maximization problems. In this technique we do not focus
on any particular instance (G, k), but instead investigate the structure of graphs
that are ’Yes’-instances for k, but ’No’-instances for k + 1. Let G(k) be the class
of such graphs, i.e., G(k) = {G | (G, k) is a ’Yes’-instance, and (G, k + 1) is a
’No’-instance }.

Our ultimate goal is to prove that there exists a function f(k) such that
h max{|V (G)| | G ∈ G(k)} ≤ f(k). This is usually not possible without some
refinement of G(k), to do this we make a set of observations E of the following
type:

5 An exposition of this design technique can be found in E. Prieto’s PhD thesis [P05].
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Since (G, k) is a ’Yes’-instance, but (G, k + 1) is a ’No’-instance, G has
property p. (1)

Given a set of such observations E and consequently a set of properties P we
try to devise a set of reduction rules R that apply specifically to large graphs
having the properties P . We call our refined class GR(k) = {G | no reduction
rule in R applies to (G, k), and (G, k) is a ’Yes’-instance, and (G, k+1) is a ’No’-
instance }. If we can add enough observations to E and reductions rules to R to
prove that there is a function f(k) such that max{|V (G)| | G ∈ GR(k)} ≤ f(k)
we have proven that:

If i) no rule in R applies to (G, k) and ii) (G, k) is a ’Yes’-instance and
iii) (G, k + 1) is a ’No’-instance, then |V (G)| ≤ f(k)

Given such a boundary lemma and the fact that the problem is a parameter
monotone maximization problem a kernelization lemma follows, saying that ’If
no rule in R applies to (G, k) and |V (G)| > f(k), then (G, k) is a ’Yes’-instance.

It is not immediately obvious that this can be viewed as an inductive process,
but we will now make this clear by presenting the Algorithmic Method, a ver-
sion of the ’Extremal Method’. Here the ’Extremal Method’ can be used as the
inductive step, going from k to k + 1, in an inductive algorithm.

As its base case, the algorithm decides (G, 0), which is usually a trivial ’Yes’-
instance for a maximization problem. Our induction hypothesis is that we can
decide (G, k′). Then as long as k′ +1 ≤ k we try to compute (G, k′ + 1). If (G, k′)
is a ’No’-instance we can immediately answer ’No’ for (G, k′ + 1) as the problem
is parameter monotone. Otherwise we can now make an algorithmic use of obser-
vations of the type defined for extremal method ((1) above). For each of the prop-
erties p ∈ P we check if G has the property p. If G does not have property p then
since (G, k′) is a ’Yes’-instance it follows that (G, k′ + 1) is also a ’Yes’-instance.
By the same reductions and observations (although the reader should observe that
we here require properties to be FPT time verifiable), we obtain that

If no observation in E or reduction rule R applies to (G, k′ + 1) then
|V (G)| < f(k).

At that point we can invoke a brute force algorithm to obtain either a solution
S or a ’No’-answer for (G, k′ + 1). This answer for (G, k′ + 1) can then be used
in the next step, k′ + 2, of our inductive algorithm.

This technique, either the ’Extremal Method’ or its variant the ’Algorithmic
Method’, can be applied successfully to a range of problems, such as: k-Max
Cut [P04], k-Leaf Spanning Tree [P05], k-Non-Blocker [P05], k-Edge-disjoint
Triangle-Packing [MPS04], k-K1,s-packing [PS04], k-K3-packing [FHRST04], k-
Set Splitting [DFR03], and k-Internal Spanning Tree [PS05].

5 Win/Win

Imagine that we solve our problem by first calling an FPT algorithm for another
problem and use both its ’Yes’ and ’No’ answer to decide in FPT time the
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answer to our problem. Since we then ’win’ if its answer is ’Yes’ and we also
’win’ if its answer is ’No’, this is called a ’Win/Win’ situation. In this section we
focus on techniques exploting this behavior. According to [DH05] the only known
algorithms with sub-exponential running time O∗(c

√
k) are algorithms based on

imposing treewidth and branchwidth structure on the complicated cases, and
these fall into the Win/Win category.

5.1 Well-Quasi-ordering and Graph Minors

Robertson and Seymour have shown that i) the set of finite graphs are well-quasi-
ordered under minors and ii) the H-Minor problem that checks if H is a minor
of some input graph, with k = |V (H)|, is FPT. These two facts suffice to prove
that any parameterized graph problem whose Yes-instances (or No-instances)
are closed under minors is FPT. If analogous structural results could be shown
for some other relation, besides minors, then for problems closed under this other
relation we would also get FPT algorithms. Thus the general technique is called
’well-quasi-ordering’. We consider this a Win/Win algorithm as we relate the
problem we wish to solve to the FPT problem of checking if one of the forbidden
minors (or whatever other relation is involved) appear in our problem instance.

Let us briefly explain the main ideas. A well-quasi-ordering is a reflexive and
transitive ordering which has no infinite antichain, meaning that any set of ele-
ments no two of which are comparable in the ordering must be finite. A graph
H is a minor of a graph G, denoted H $m G, if a graph isomorphic to H
can be obtained from contracting edges of a subgraph of G. The Graph Mi-
nors Theorem [RS99] states that ’The set of graphs are well-quasi-ordered by
the minor relation’. Combined with H-minor testing this can be used to prove
existence of an FPT algorithm for any problem A with the property that for
any k the ’Yes’-instances are closed under minors. In other words, let us as-
sume that if Ak is the class of graphs G such that (G, k) is a ’Yes’-instance
to problem A and H $m G for some G ∈ Ak then H ∈ Ak as well. Consider
the Minimal Forbidden Minors of Ak, denoted MFM(Ak), defined as follows:
MFM(Ak) = {G | G /∈ Ak and (∀H $m G, H ∈ Ak ∨ H = G)}.

By definition, MFM(Ak) is an antichain of the $m ordering of graphs so by
the Graph Minors Theorem it is finite. Beware that the non-constructive nature
of the proof of the Graph Minors Theorem implies that we can in general not con-
struct the set MFM(Ak) and thus we can only argue for the existence of an FPT
algorithm. We do this by noting that (G, k) is a Yes-instance of problem A iff there
is no H ∈ MFM(Ak) such that H $m G. Since MFM(Ak) is independent of |G|
we can therefore decide if (G, k) is a Yes-instance in FPT time by |MFM(Ak)|
calls of H-Minor. Armed with this powerful tool, all we have to do to prove that a
parameterized graph problem is FPT is to show that the Yes-instances are closed
under the operations of edge contraction, edge deletion and vertex deletion.

5.2 Imposing FPT Structure and Bounded Treewidth

In the literature on parameterized graph algorithms there are several notable
occurrences of a Win/Win strategy that imposes a tree-like structure on the class
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of problematic graphs, in particular by showing that they must have treewidth
bounded by a function of the parameter. This is then combined with the fact
that many NP-hard problems are solvable in FPT time if the parameter is the
treewidth of the input graph.

Let us briefly explain this technique in the case of finding k-dominating sets
in planar graphs, where a very low treewidth bound on Yes-instances gives very
fast FPT algorithms. In [ABFKN02] it is shown that a planar graph that has a
k-dominating set has treewidth at most c

√
k [ST94], for an appropriate constant

c. Thus we have a win/win relationship, since we can check in polynomial time
if a planar graph has treewidth at most c′

√
k, for some slightly larger constant

c′, and if so find a tree-decomposition of this width. If the treewidth is higher we
can safely reject the instance, and otherwise we can run a dynamic programming
algorithm on its tree-decomposition, parameterized by c′

√
k, to find in FPT time

the optimal solution. In total this gives a O∗(c′′
√

k) algorithm for deciding if a
planar graph has a dominating set of size k.

A series of papers have lowered the constant c′′ of this algorithm, by several
techniques, like moving to branchwidth instead of treewidth, by improving the
constant c, and by improving the FPT runtime of the dynamic programming
stage. Yet another series of papers have generalized these ’subexponential in
k’ FPT algorithms from dominating set to all so-called bidimensional parame-
ters and also from planar graphs to all graphs not having a fixed graph H as
minor [DH05].

6 Conclusion

We believe that a taxonomy of techniques for designing parameterized algorithms
will invariably develop over time and in this paper we made a comprehensive
attempt. Many such classification schemes are possible, and the one proposed in
this paper is the result of many discussions, primarily between the two authors,
but also with other people in the field, see [S06]. Given the nature of such
classifications and the continual development of the field we expect that this
proposal will be criticized and altered over time, but it is our hope that it will
lay the ground for fruitful discussions.
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Abstract. The notion of a “problem kernel” plays a central role in
the design of fixed-parameter algorithms. The FPT literature is rich in
kernelization algorithms that exhibit fundamentally different approaches.
We highlight these differences and discuss several generalizations and
restrictions of the standard notion.

1 Introduction

A parameterized problem P is a usual decision problem together with a special
entity called parameter. Formally, this means that the language of YES-instances
of P , written L(P), is a subset of Σ∗×N. An instance of a parameterized problem
P is therefore a pair (I, k) ∈ Σ∗×N. P is called fixed-parameter tractable if there
exists an algorithm for P running in time O(f(k)p(size(I))) on instance (I, k)
for some function f and some polynomial p, i.e., the question if (I, k) ∈ L(P) or
not can be decided in time O(f(k)p(size(I))). The class of all fixed-parameter
tractable parameterized problems is called FPT . Some other notions of fixed-
parameter tractability are also used in the literature (e.g., imposing additional
computability constraints), but the above definition is particularly fit for our
discussions (especially because of the validity of Theorem 1 below).

The notion of problem reduction is at the very core of parameterized complex-
ity. Generally speaking, it can be seen as a particular form of “self-reduction.”
However, there seem to be various definitions around that formalize the idea of
a self-reduction. A quite general formulation (as can be distilled from [7, p. 39])
seems to be the following one:

Definition 1 (Kernelization). Let P be a parameterized problem. A kernel-
ization (reduction) is a function K that is computable in polynomial time and
maps an instance (I, k) of P onto an instance (I ′, k′) of P such that

• (I, k) is a YES-instance of P if and only if (I ′, k′) is a YES-instance of P
• size(I ′) ≤ f(k), and
• k′ ≤ g(k) for some arbitrary functions f and g.

To underpin the algorithmic nature of a kernelization, K may be referred to
as a kernelization reduction. (I ′, k′) is also called the (problem) kernel (of I),
and size(I ′) the kernel size. Of special interest are polynomial-size kernels and
linear-size kernels, where f is a polynomial or a linear function, respectively. A
parameterized problem that admits a kernelization is also called kernelizable.
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Here, size(I) measures the size of instance I in some “reasonable” manner.
In general, it is only the number of bits required to encode I (again, in some
“reasonable” manner). More specific size measures are used for example with
graphs, where the number of vertices is a further possibility. Observe that the
number of bits n′ required to store say an adjacency matrix of an n-vertex
graph is n′ = Θ(n2), i.e., there is a polynomial inter-relation between both size
measures.

Often, a kernelization function is provided by a set of kernelization rules that
are to be exhaustively applied to a given instance; we then also speak about a
rule-induced kernelization.

The notion of a problem kernel is so central to parameterized complexity
because of the following well-known result [8]:

Theorem 1. A parameterized problem is in FPT iff it is kernelizable.

The proof of Theorem 1 is pretty simple; we indicate the non-trivial direction
⇒: if each problem instance (I, k) is solved in time f(k)(size(I))c, a reduction
running in time (size(I))c+1 can already solve instances with f(k) ≤ size(I).
Otherwise, size(I) < f(k), and then (I, k) can be seen as a “reduced instance.”

However, the given definition of kernelization is not appropriate for several
applications. We will discuss the following problems and according modifications
of the definition in this paper:

(a) When proving lower bounds, the notion presented so far seems to be too
strong. A slightly weaker version is more convenient to establish a simple relation
between hardness of approximation results and lower bounds on problem kernels.
(b) Some “kernels” as presented in the literature do not fit into our definition,
since rather a reduction to a more general problem instance is provided.
(c) Finally, some problems can be easily solved by search tree techniques through
a reduction to a “master problem” like hitting set. However, in general the
kernel result known for the master problem does not provide an immediate kernel
result for the related problem one is interested in, since some ingredients of the
master problem kernelization may not have counterparts in the related problem.
Thus, it is interesting to investigate induced kernels that allow for transferring
kernelization rules to a new problem.

2 Proper Kernelizations

A kernelization is a proper kernelization if g(k) ≤ k in Def. 1, i.e., we have
k′ ≤ k. This additional requirement is backed by the intuition that kernelizations
are meant to provide small instances (smaller than the given one), and a blow-
up (even if only in the parameter) would counter this intuition. Secondly, as
mentioned above, kernelizations are often described purely in terms of reduction
rules. As long as k′ ≤ k and size(I ′) ≤ size(I) (and not both inequalities may turn
into equalities at the same time) is valid for each kernelization rule, rule-induced
kernelizations can be rather easily seen to work in polynomial time; this can
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be no longer guaranteed if some rules that constitute the kernelization are not
proper. Thirdly, most kernelizations that can be found in the literature are rule-
induced and therefore proper. For example, there is only one kernelization among
dozens presented in [11] that is not proper, namely, the one for nonblocker
set, also described in [4]. Also observe that rule-induced kernelizations are a
neat formalization of the heuristic idea of data reduction that is very successful
in practice. Fourthly, (rule-induced) kernelizations have been quite successfully
used as a means to speed up search tree algorithms, see [11] for a couple of
examples. To this end, kernelizations and branchings are interleaved. If non-
proper kernelizations would be used, this would at least complicate the run-time
analysis of the obtained algorithm; properness is in fact at least implicitly used
to show that applying the reduction rules never worsens the overall running time.

Browsing through the literature, we can often find problem kernels to be de-
fined via proper kernelizations. A quick analysis of the proof sketch of Theorem 1
reveals that this is no loss of generality:

Corollary 1. A parameterized problem is in FPT iff it is properly kernelizable.

It would be interesting to see if also the quality of the kernelization, measured in
terms of kernel size, is never worse when insisting on proper kernels. For example,
in the case of nonblocker set, see [4], the best proper kernel we know of is of
size 2k, while the best non-proper (and also the best annotated kernel, see the
discussion below) is of size 5/3k.

3 Parameterized Kernelizations

Conversely, we now discuss the possibility to further generalize the notion of
kernelization we had so far. Notice that in terms of a general philosophy, kernel-
izations can be seen as a sort of “self-reduction” of a problem instance to another
instance of the same kind. But is this intuition really reflected in Definition 1 ?
Possibly not, since the proper notion of a reduction in our case would be that
of a parameterized reduction. This would mean that in Definition 1, we would
weaken the requirement of a kernelization being computable in polynomial time
to being computable in FPT time. This would render Theorem 1 completely
trivial, since all work could be done by the reduction.

However, such a notion could make perfect sense from the practical point of
view of data reduction: reductions “cheaper” than the final solving methodology
should be always used as good preprocessing. In a sense, the customary branching
rules that are employed in search tree processing in order to prefer good branches
could be likewise seen as intercalated parameterized kernelizations.

When viewing branching rules as kernelizations, we are automatically lead
to two further generalizations of the notion of kernelization as discussed so far:
Firstly, it is quite natural to consider branchings as sorts of Turing-type re-
ductions instead of many-one reductions. We will not discuss Turing reductions
further here, since we did not find any other use of them in parameterized algo-
rithms so far. Secondly, branching might change the nature of the problem by
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providing what we will call annotations in the next section. For example, when
considering a branching algorithm for dominating set, putting a vertex x into
the dominating set to be constructed causes that the neighborhood N(x) need
not be dominated, although N(x) cannot be deleted, since it still might be a
good idea to put some y ∈ N(x) into the dominating set to dominate N(y).

4 Annotated Kernelizations

In the literature, there are cases where kernelization results are claimed that do
not fall under the notions discussed so far. For example, in [1], a “kernelization”
algorithm for face cover (FC) is presented. However, that reduction takes
an instance of FC and produces a kernel instance of annotated face cover
(FCann). While an instance of FC is just a usual plane graph (plus the parame-
ter bounding the size of the face cover), an instance of FCann allows annotating
(marking) the vertices and faces. Furthermore, an instance of FCann may con-
tain loops and multiple edges. Observe: any instance of FC can be trivially seen
as an instance of FCann by considering all vertices and faces as unmarked.

We therefore propose the following definition:

Definition 2. Let P and P ′ be parameterized problems. P ′ is called an annota-
tion of P iff there is a mapping r that maps I onto I ′ such that for all parameter
values k: (I, k) is a YES-instance of P iff (I ′, k) is a YES-instance of P ′ and r
can be implemented by a deterministic finite transducer.

Recall that a deterministic finite transducer is a deterministic finite automaton
with output that may output longer strings than seen in the input. In our ex-
ample, the transducer may output “unmarked” (besides the mere copying of the
input) upon seeing any occurrence of a vertex or face in the input (and this
should be viewed as a possible encoding of an annotated instance). Composing
two deterministic finite transducers gives a deterministic finite transducer.

Proposition 1. Let P, P ′ and P ′′ be parameterized problems. If P ′ is an an-
notation of P and if P ′′ is an annotation of P ′, then P ′′ is an annotation of P.

For example, FCann is an annotation of FC. We could also consider the variant
of FCann that has, in addition, real-number weights w(f) ≥ 1 associated to
each face f . Then, weighted FCann is an annotation of FCann and hence
weighted FCann is an annotation of FC.

Not all “closely related” problems are annotations. For example, consider the
problem triangle vertex deletion (TVD), first investigated in [14].
Given: A graph G = (V, E)
Parameter: a positive integer k
Question: Is there an vertex set C ⊆ V with |C| ≤ k whose removal produces
a graph without triangles as vertex-induced subgraphs?
We can abuse earlier results [10] of ours to see:

Corollary 2. TVD can be solved in time O((size(V (G)))3 +2.1788k), given G.
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Namely, we can translate every TVD instance (G, k) into a 3-hitting set (3-
HS) instance by mapping every triangle of G onto a hyperedge of the constructed
hypergraph. However, doing this could take cubic time (for example when dealing
with a complete graph Kn). This is surely not an annotation (with respect to
the usual representation(s) of a graph). However, we could also consider graph
representations that explicitly list all triangles in a graph. This shows that the
notion of annotation is dependent on the chosen representation of the instance.
However, on the very low level, a problem would also fix the coding of the
instances (although usually not explicitly given), since only then problems would
become formal languages and complexity classes would correspond to formal
language classes. In this sense, Def. 2 is sound.

How do we get the running time claimed in Cor. 2 ? After having translated
the TVD instance to the corresponding 3-HS instance, we can run the known
kernelization procedure for 3-HS (again in cubic time when measured against
the number of vertices, see [16]) and then the search tree algorithm exhibited
in [10]. Observe that we cannot claim to have yet a kernel for triangle ver-
tex deletion, but still we get the “additive parameterized complexity” seen
to be typical for FPT algorithms involving kernelization. We will see in the
following section that with additional assumptions it is even possible to inherit
a kernelization algorithm for TVD from 3-HS.

We can say that the parameterized problem P possesses a (proper) annotated
kernel if there is an annotation of P ′ that possesses a (proper) kernel. Due to
the very restricted character of operation we allow for annotation, also the size
measures and the running times immediately translate from the known kernel-
ization result for P ′ to annotated kernelization results for P . We will study an
example (namely again TVD) in more detail in the following section.

Let us turn to another example, namely nonblocker set (NB): Given a graph
G = (V, E) and a positive integer k, is there a nonblocker set N ⊆ V with
|N | ≥ k? In [4], it was recently shown how to produce a kernel of size 5/3k + 3.
Without giving the reduction rules here, we like to mention that in fact we
provided a kernel of size 5/3k for the annotation where, in addition, a vertex d
is specified and we require that d /∈ N .

In that particular example, we could produce a reduction rule that gets rid
of the annotation (called catalyzation in [4]) at the expense of introducing three
more vertices to the kernel. So, this gives us an example where a kernel for an
annotated version could be used to produce a kernel for the original version of
the problem. It would be interesting to see if there are more examples along this
venue or if the notion of an annotated kernel should be standing as a notion on
its own right.

5 Induced Kernels

The main motivation for this section is to provide a framework that allows
to transfer kernelization results (in the classical sense) from one problem to
another. A further motivation for studying linear-size induced kernels would be
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the possibility to use exponential space in order to improve on the running times.
Let us continue our discussion of the relationship between TVD and 3-HS as a
running example. Let us first repeat the reduction rules for 3-HS from [16] in a
slightly modified (and corrected) form:

1. (hyper)edge domination: A hyperedge e is dominated by another hyperedge
f if f ⊂ e. In that case, delete e.

2. tiny edges: Delete all hyperedges of degree one and place the corresponding
vertices into the hitting set (reducing the parameter accordingly).

3. vertex domination: A vertex x is dominated by a vertex y if, whenever x
belongs to some hyperedge e, then y also belongs to e. Then, we can simply
delete x from the vertex set and from all edges it belongs to.

4. too many edges containing a vertex pair: If {x, y} is a pair of vertices such
that the number of edges that contain both x and y exceeds k, then add an
edge {x, y}.

5. too many edges containing a vertex: If x is a vertex such that the number
of edges that contain x exceeds k2, then add an edge {x}.

Notice that the last two rules only seemingly increase the size of the instance,
since immediately one of the first two rules would be triggered. Hence, we could
reformulate them as follows:

4′ too many edges containing a vertex pair: If {x, y} is a pair of of vertices such
that the number of edges that contain both x and y exceeds k, then delete
all edges containing both x and y and replace them by an edge {x, y}.

5′ too many edges containing a vertex: If x is a vertex such that the number
of edges that contain x exceeds k2, then delete all edges containing x and
reduce the parameter by one.

Now, if none of the above rules applies to a 3-HS instance, the following
cutting rule applies:

• If the instance has more than k3 hyperedges, then NO.

The cutting rule implies that there is a O(k3) rule-induced kernel for 3-HS.
Annotated kernels. One immediate problem with the idea of translating these
rules into rules for TVD is that only hyperedges with exactly three vertices
have an interpretation as “triangles” in the TVD “world.” This is still true
when observing that rules 4′ and 5′ together with the cutting rule are sufficient
to provide the known kernelization result for 3-HS, since rule 4′ might introduce
hyperedges of size two even if the original instance only contains hyperedges
of size three (this would correspond to a 3-HS instance obtained from a given
TVD instance). One way out of this sort of dilemma might be a specific form of
annotation of graphs: in this sense, an annotated TVD instance would consist
of specifying a graph G = (V, E), a parameter k and another graph G′ = (V, E′)
specified by E′, and the question would be to find a vertex set C, |C| ≤ k that is
a vertex cover of G′ and whose removal destroys all triangles of G. What would
be the kernelization rules for annotated TVD ?
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1. Delete vertices of degree zero in G that are not contained in edges from E′.
2. If x is a vertex of degree one in G, then delete the incident edge from E.
3. If {x, y} is a pair of of vertices such that the number of triangles in G that

contain both x and y exceeds k, then move the edge {x, y} from E into E′.
(Hence, we “remove” the triangles containing x and y from E.)

4. If x is a vertex such that the number of triangles that contain x exceeds
k2, then delete all edges containing x from E and from E′ and reduce the
parameter by one.

Now, if none of the above rules applies to the annotated TVD instance, the
following cutting rule applies:

• If the reduced instance has more than k3 triangles, then NO.

Recently, a very similar kernelization for triangle vertex deletion was
proposed in [6], including suggesting a proper de-annotation rule. However, the
kernel obtained that way is not a subgraph of the original graph, in contrast to
our construction given below.

Another case where an annotated kernel could be smaller than a non-annotated
kernel is edge dominating set, as presented in another paper of second author
in these proceedings.
Induced kernels. A subtle drawback of the given kernelization for 3-HS is the
fact that a reduced instance is obtained by changing some edges without deleting
their vertices. In other words, the kernel is a subgraph that is not vertex-induced.
This complication may seem harmless in general, but could be serious when the
HS instance is used to model problems in such a way that certain forbidden
relations between the objects (vertices) translate to edges in the input to HS.

We offer a new kernelization algorithm to remedy this situation at the cost of
more involved reduction rules. We will also use the tiny edge rule and isolated
vertex rule to obtain the kernel. However, we cannot use the hyperedge domi-
nation rule, since this rule destroys inducedness. Whenever we face an instance
of 3-hitting set, we define: Let F = {x ∈ V | x shares more than k edges with
some y in V } and let S be the complement of F in V . Elements of F and S
will be referred to in the sequel as fat and slim vertices, respectively. The set of
(hyper-)edges E can be partitioned as follows:

Ej∗s = {e ∈ E | |e| = 3 ∧ |e ∩ S| = j} for j = 0, 1, 2, 3; and

Ep = {e ∈ E | |e| = 2}.
Observe that edges that only contain one vertex can be dealt with by using the
tiny edge rule, so that in fact we can assume that E =

⋃3
j=0 Ej∗s ∪ Ep.

Let us define the co-occurrence of a pair {x, y} of vertices to be the number
of edges that “contain” the two vertices simultaneously. Denote by co(x, y) the
co-occurrence of {x, y}. We say that x, y co-occur iff co(x, y) > 0. In the rules
listed below, whenever we say that we put x into the hitting set, then this means
that we reduce the parameter by one and delete x and all edges containing x
from the instance. Denote by H the target hitting set. In order to justify the
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actions taken by the following reduction rules, we shall assume the input is a
YES-instance (so, |H | ≤ k).

1. If x is a vertex that occurs more than k times in edges from Ep, then put x
into the hitting set.

The soundness of this first rule is obvious. If x is not in H , then its (more
than k) neighbors in Ep are all needed to cover the edges of Ep.

2. If x is a slim vertex of degree larger than k2, then put x into the hitting set.
If x does not belong to H , then the degree of x must be bounded above

by k2. Otherwise, x appears more than k times with an element of H (which
violates the definition of S). Therefore this second rule is sound.

3. If x is a fat vertex that appears more than k times with more than k different
other fat vertices, then put x into the hitting set.

To see this, note that if co(x, y) > k, then at least one element of {x, y}
must be in H . It follows that if x is excluded from H , then more than k
elements (co-occurring more than k times with x) would be needed in H , a
contradiction to the assumption that the input is a YES-instance.

4. If x is a fat vertex that belongs to more than k2 edges of E2∗s, then put x
into the hitting set.

If x were not in H , then its edges in E2∗s must be hit by slim vertices only.
Since it appears in more than k2 such edges, we conclude that a slim neighbor
of s (in E2∗s) must have more that k common edges with x, contradicting
the definition of slim vertices.

Consider the simple graph GF , constructed as follows: (i) V (GF ) = F , and
(ii) E(GF ) = {(u, v) : co(u, v) > k}. Then GF must have a vertex cover of size
k or less. It follows that, after applying rule 3 above, F contains at most k2 + k
vertices. A similar argument shows that the total number of vertices that appear
in Ep is bounded above by k2 + k. Moreover, every vertex appears in at most
k2 edges of E2∗s ∪ E3∗s. Therefore, unless we have a NO instance, the number
of edges in E2∗s ∪ E3∗s is bounded above by k3 (H has at most k vertices, each
appearing in at most k2 edges). So, it remains to find an upper bound on the
number of edges (or slim vertices) appearing in E1∗s. To do this, we partition
E1∗s further. Let E1∗s,< = {{x, y, z} ∈ E1∗s | x, y ∈ F and co(x, y) ≤ k in E} .
Moreover, let E1∗s,> = E1∗s \ E1∗s,<.

• If x is a vertex that occurs more than k2 times in edges of E1∗s,<, then put
x into the hitting set.

Let x be any vertex that belongs to more than k2 edges in E1∗s,<. If
x /∈ H , then x would share more than k edges (in E1∗s,<) with another
vertex, violating the definitions of E1∗s,< or S (depending on whether x is
fat vertex appearing more than k times with another fat vertex in E1∗s,< or
x is slim one appearing more than k times with another vertex). Therefore,
E1∗s,< has at most k3 edges.

• If x is a slim vertex that occurs in edges of E1∗s,> and does not appear
elsewhere in E, then delete x.

Any such slim vertex would be dominated. Every edge that contains such
a vertex is guaranteed to be covered by some fat vertex.
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Finally, we have showed that, after applying our reduction rules, the number
of edges containing slim vertices is bounded above by 2k3 (k3 in E1∗s,< and k3

in E2∗s ∪ E3∗s). Therefore. the number of slim vertices is in O(k3) (due to the
vertex domination rule, the upper bound is 3k3). Since the number of fat vertices
is quadratic in k, we can conclude:

Theorem 2. 3-hitting set admits a vertex-induced problem kernel of size
O(k3), measured both in the number of vertices and in the number of edges.

It is tedious but possible to generalize our approach to obtain induced kernels
for d-HS for any d > 2.

Corollary 3. TVD admits a problem kernel of size O(k3).

Proof. (Sketch) Since all rules presented above only delete vertices or conclude
that we face a NO-instance, the rules can be immediately interpreted as TVD
reduction rules.

We have used a similar translation to provide the first ever published small-size
kernel for one-layer planarization, a problem arising in the area of graph
drawing, see [13].

The reader might have noticed that we have not yet given a proper general
definition of what we might mean by “induced kernels.” This notion is quite clear
for (hyper)graphs (in particular for vertex set minimization problems, vertex-
induced would be the appropriate formalization), but less clear otherwise.

To provide our general notion of induced kernels, we consider only FPT
problems P that are naturally-parameterized, meaning the following:

• P is parameterized only by its target solution size k, and
• every instance I of P contains a set of distinguished elements that qualify

for membership in the solution set. Such elements form what we call the
candidate set and what we denote κ(I).

• Finally, we require that k ≤ |κ(I)| ≤ size(I).

In the case of hitting set, the vertex set would be the candidate set. Let P
be a naturally-parameterized FPT problem and (I, k) be an instance of P . A
kernelization K for P is said to produce induced kernels if, on (I, k), K outputs:

1. the reduced instance (I ′, k′) with k′ ≤ k;
2. a partial solution set S ⊆ κ(I) with κ(I ′)∩ S = ∅ of size k − k′ consisting of

elements of the candidate set that are selected into the solution;
3. a trash set T ⊆ κ(I) with (κ(I ′) ∪ S) ∩ T = ∅.

In the 3-HS example, the problem is naturally-parameterized and the candi-
date set is the set of vertices. Also note that our vertex-induced kernel of 3-HS
does not entail any direct deletion of edges. In other words, constraints that re-
late a set of candidates will be deleted (automatically) only when the candidates
are removed. In the case of VC, the Nemhauser-Trotter reduction explicitly pro-
vides the sets S and T , see [11]. This generalized concept of induced kernels yields
an important relationship between hardness of approximation and hardness of
kernelization.
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Theorem 3. Let P be a minimization problem. If the naturally-parameterized
version of P has a kernelization algorithm that produces, for any instance (I, k),
an induced kernel (I ′, k′) such that size(I ′) ≤ α · k′ for some constant α > 1,
then P has an approximation algorithm with ratio α.

Proof. Let I be an instance of P for which we seek an optimum solution. Let
K be a kernelization algorithm that satisfies the statement of this theorem. The
corresponding approximation algorithm AK(k) works as follows: (1) produce
I ′(k) = K(I, k); let S(k) be the partial solution and T (k) the trash set obtained
as a by-product of applying K; and (2) output S(k) ∪ κ(I ′(k)). Notice that the
output of AK(k) is a feasible solution (by the definition of an induced kernel,
since elements of T are excluded from some solution that contains S).

Let Sopt ⊆ κ(I) be an optimum solution of the instance I. Then,

|S(k) ∪ κ(I ′(k))|
|Sopt|

≤ k − k′ + α · k′

|Sopt|
≤ α · k

|Sopt|

This is not yet quite our result, but we can iterate AK(k) for all k=0, . . . , |κ(I)|.
The parameter k that yields the smallest value of |S(k)∪κ(I ′(k))| surely satisfies
|S(k)∪κ(I ′(k))| ≤ |S(kopt)∪κ(I ′(kopt))|, where kopt = |Sopt|. Hence, an algorithm
AK that finally outputs the smallest solution found by any of the AK(k) is an α-
approximation. Notice that the overall algorithm runs in polynomial time, since
K does so and |κ(I)| ≤ size(I).

It was shown in [5] that vertex cover is hard to approximate with a ratio
bound of ≈ 1.36. Combining this result with Theorem 3 yields the following.

Corollary 4. Unless P= NP, we can claim: for any ε > 0, vertex cover
does not have a (1.36 − ε)k induced kernel.

6 Kernelization Schemes

In the design of approximation algorithms, it has been quite popular to design
algorithm schemes, i.e., families of algorithms that, in the case of approximation,
provide better and better approximation guarantees, at the expense of higher
and higher running times. In the case of approximation algorithms, such schemes
were called approximation schemes. Is it possible to translate this idea into the
realm of parameterized algorithmics?

To this end, let us turn to linear arrangement (LA), see [12,15,18] for
a treatment from a parameterized perspective. Given a graph G = (V, E) and
a positive integer k, is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that

∑
{u,v}∈E |σ(u) − σ(v)| ≤ k ? It is easily seen that LA is fixed parameter

tractable, based on the following observation cast in the form of reduction rules
that immediately give a problem kernel:

Rule 1. Let (G, k) be an instance of LA. (a) If v is an isolated vertex, then
reduce to (G − v, k). (b) If e is an isolated edge, then reduce to (G − e, k).
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Namely, the endpoints of an isolated edge can be arbitrarily arranged.

Rule 2. If (G, k) is an instance of LA and if G = (V, E) is reduced with respect
to Rule 1, then return NO if |V | > 1.5k.

Proposition 2. A reduced instance of LA has at most 1.5k vertices.

Our reduction rules can be generalized: optimal arrangements for all graphs up
to q−1 vertices may be precomputed (taking exponential time, measured against
q) and stored in a huge table; this shows that each component then has at least
q vertices. With an appropriate reduction rule, we may deduce:

Proposition 3. For fixed q, a reduced instance of LA has at most q
q−1k vertices.

This certainly has the flavor of an algorithmic scheme: at the expense of larger
and larger running times, we may get smaller and smaller kernels (let q grow).
Notice however that it is not at all clear whether the bound k is sharp is some
sense. This (still) contrasts the analogous idea of approximation schemes. We
have encountered a similar scheme for other problems, as well, e.g., for posi-
tive weighted completion of an ordering, see [9]. Finally, in [2] gener-
alizations of reduction rules for planar dominating set have been presented;
unfortunately, it is unknown if their so-called data reduction scheme is really
providing smaller kernels. It would be interesting to see examples of problems
that admit kernelization schemes that actually “converge” to a provable lower
bound.

7 Conclusions

We have tried to raise some questions concerning one of the very basic notions
of parameterized complexity theory: namely, kernels. This is rather a conceptual
paper that classifies kernelization strategies found in practice than a paper pre-
senting many mathematical results. However, we hope to stir discussions of the
notions suggested in this paper. We also raised many open questions regarding
the notions. The most important conceptual ones are:

Is “properness” a real restriction for kernel sizes?
Does “annotation” really give more flexibility?
What are good “master problems” to work on induced kernels?
Can we get lower bound results on kernel sizes stronger than what was presented
in [3] or in this paper, or possibly with fewer assumptions?
Are there good examples of kernelization schemes (with sharp lower bounds)?

More generally speaking, the relationships between parameterized complexity
and approximability need further research.

Acknowledgment. We are grateful for discussions with Peter Shaw.
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Abstract. One of the main objectives of the talk is to survey the history
of the practical algorithmic strategy of preprocessing (also called data-
reduction and kernelization) since the beginnings of computer science,
and to overview what theoretical computer science has been able to say
about it.

Parameterized complexity affords the subject of preprocessing (kernelization) a
central place via the (trivial) lemma that states:

Lemma. A parameterized problem Π is fixed-parameter tractable if and only if
there is a transformation τ from Π to itself, that takes an instance (x, k) to an
instance (x′, k′) where:

(1) (x′, k′) is a yes-instance if and only if (x, k) is a yes-instance,
(2) |x′| ≤ g(k) for some function g associated to τ ,
(3) k′ ≤ k,
(4) τ runs in polynomial time, that is, in time polynomial in |(x, k)|.

In the situation described by the lemma, we say that Π can be kernelized to
instances of size g(k). The lemma is built around a transformation τ that is
many:1. This can be generalized to a notion of P-time Turing kernelization. If
the parameterized problem Π is solvable in time O(f(k)nc), then the lemma
provides only a P-time kernelization bound of g(k) = f(k). Hence, membership
in FPT generally insures only an exponential kernelization.

Many parameterized problems admit P-time kernelization bounds g(k) where
g is a polynomial, or even linear function of k. Sometimes, the bounds are stated in
terms of other instance measures than total size, for example, a Vertex Cover
instance (G, k) can be kernelized to an instance (G′, k′) where G′ has at most 2k
vertices. Another avenue for generalization is therefore to consider kernelization
as a P-time transformation that bounds one parameter in terms of another (the
overall input size, the number of vertices or edges, the treewidth, etc.).

Pre-processing is a humble strategy for coping with hard problems, almost
universally employed. It has become clear, however, that far from being trivial
and uninteresting, that pre-processing has unexpected practical power for real-
world input distributions, and is mathematically a much deeper subject than has
generally been understood. It is almost impossible to talk about pre-processing
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in the classical complexity framework in any sensible and interesting way, and
the historical relative neglect of this vital subject by theoretical computer science
may be related to this fact.

Here is the difficulty. If my problem Π is NP-hard, then probably there is
no P-time algorithm to solve the problem, that is, to completely dispose of the
input. If you suggested that perhaps I should settle for a P-time algorithm that
instead of completely disposing of the input, at least simplifies it by getting rid
of, or reducing away, the easy parts — then this would seem a highly compelling
suggestion. But how can this be formalized? The obvious first shot is to ask for
a P-time algorithm that reduces the input I to an input I ′ where |I ′| < |I| in a
way that loses no essential information (i.e., trades the original input for smaller
input, which can be called data reduction). The difficulty with this “obvious”
formalization of the compelling suggestion is that if you had such a P-time data
reduction algorithm, then by repeatedly applying it, you could dispose of the
entire input in polynomial time, and this is impossible, since Π is NP-hard. Thus,
in the classical framework, an effort to formulate a mathematically interesting
program to explore polynomial-time preprocessing immediately crashes.

In the parameterized complexity framework, however, such a program can be
formulated in an absolutely interesting and productive way. The effectiveness
of P-time preprocessing is measured against the structure represented by the
parameter. You might reasonably call the subject of FPT kernelization the Lost
Continent of Polynomial Time (a lost continent being something that is large and
interesting, that “should have been” explored long ago, and that was somehow
overlooked).

In the last few years, a number of researchers have made important, pioneer-
ing investigations of subclasses of FPT that have stronger definitional claims
on capturing practical fixed-parameter tractability. The effectiveness of kernel-
ization offers another approach to such exploration of the internal structure of
FPT, for example, the subclasses

lin(k) ⊆ poly(k) ⊆ FPT

of parameterized problems that admit problem kernels of size linear (or poly-
nomial) in k. The talk will survey some of the important open problems that
attend this perspective on the structure of FPT.

The challenges of finding effective P-time kernelization algorithms for para-
meterized problems in FPT seems to offer a rich combinatorial landscape for
novel strategies with strong payoffs for practical computing. Beyond such con-
crete challenges, there also seem to be opportunities for developing systematic
methodologies. Essentially, the issue seems to be the development of P-time ex-
tremal structure theory relating a source parameter to a target parameter (which
might be, as in the lemma, the overall instance size), modulo polynomial-time
processing.

The talk will survey some of the intriguing concrete open problems and new
approaches in this area.
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Kára, Jan 166
Knauer, Christian 175
Kratochv́ıl, Jan 166
Kratsch, Dieter 130

Langston, Michael A. 13, 192
Liedloff, Mathieu 130

Liu, Yang 84
Lu, Songjian 84
Luo, Xuemei 13

Mac, Shev 192
Mahajan, Meena 38
Marx, Dániel 154
McCartin, Catherine 121
Meer, Klaus 72
Meng, Jie 215
Müller, Moritz 50

Niedermeier, Rolf 203

Pitre, Sylvain 13
Protti, Fábio 1
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