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Foreword

When I first got into information security in the early 1970s, the little research
that existed was focused on mechanisms for preventing attacks. The goal was
airtight security, and much of the research by the end of decade and into the
next focused on building systems that were provably secure. Although there
was widespread recognition that insiders with legitimate access could always
exploit their privileges to cause harm, the prevailing sentiment was that we
could at least design systems that were not inherently faulty and vulnerable
to trivial attacks by outsiders.

We were wrong. This became rapidly apparent to me as I witnessed the
rapid evolution of information technology relative to progress in information
security. The quest to design the perfect system could not keep up with market
demands and developments in personal computers and computer networks. A
few Herculean efforts in industry did in fact produce highly secure systems,
but potential customers paid more attention to applications, performance, and
price. They bought systems that were rich in functionality, but riddled with
holes. The security on the Internet was aptly compared to “Swiss cheese.”

Today, it is widely recognized that our computers and networks are unlikely
to ever be capable of preventing all attacks. They are just way too complex.
Thousands of new vulnerabilities are reported to the Computer Emergency
Response Team Coordination Center (CERT/CC) annually. We might signifi-
cantly reduce the security flaws through good software development practices,
but we cannot expect foolproof security as technology continues to advance
at breakneck speeds. Further, the problems do not reside solely with the ven-
dors; networks must also be properly configured and managed. This can be
a daunting task given the vast and growing number of products that can be
networked together and interact in unpredictable ways.

In the middle 1980s, a small group of us at SRI International began inves-
tigating an alternative approach to security. Recognizing the limitations of a
strategy based solely on prevention, we began to design a system that could
detect intrusions and insider abuse in real time as they occurred. Our research
and that of others led to the development of intrusion detection systems. Also
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in the 1980s, computer viruses and worms emerged as a threat, leading to
software tools for detecting their presence. These two types of detection tech-
nologies have been largely separate but complementary. Intrusion detection
systems focus on detecting malicious computer and network activity, while
antiviral tools focus on detecting malicious code in files and messages.

To succeed, a detection system must know what to look for. This has been
easier to achieve with viral detection than intrusion detection. Most antiviral
tools work off a list containing the “signatures” of known viruses, worms, and
Trojan horses. If any of the signatures are detected during a scan, the file
or message is flagged. The main limitation of these tools is that they cannot
detect new forms of malicious code that do match the existing signatures.
Vendors mitigate the exposure of their customers by frequently updating and
distributing their signature files, but there remains a period of vulnerability
that has yet to be closed.

With intrusion detection, it is more difficult to know what to look for,
as unauthorized activity on a system can take so many forms and even re-
semble legitimate activity. In an attempt to not miss something that is po-
tentially malicious, many of the existing systems sound far too many false or
inconsequential alarms (often thousands per day), substantially reducing their
effectiveness. Without a means of breaking through the false-alarm barrier,
intrusion detection will fail to meet its promise.

This brings me to this book. The authors have made significant progress in
our ability to distinguish malicious activity and code from that which is not.
This progress has come from bringing machine learning and data mining to
the detection task. These technologies offer a way past the false-alarm barrier
and towards more effective detection systems.

The papers in this book address one of the most exciting areas of research
in information security today. They make an important contribution to that
area and will help pave the way towards more secure systems.

Monterey, CA Dorothy E. Denning
January 2005



Preface

In the mid-1990s, when I was a graduate student studying machine learning,
someone broke into a dean’s computer account and behaved in a way that most
deans never would: There was heavy use of system resources very early in the
morning. I wondered why there was not some process monitoring everyone’s
activity and detecting abnormal behavior. At least in the case of the dean, it
should not have been difficult to detect that the person using the account was
probably not the dean.

About the same time, I taught a class on artificial intelligence at George-
town University. At that time, Dorothy Denning was the chairperson. I knew
she worked in security, but I knew little about the field and her research; after
all, I was studying rule learning. When I told her about my idea of learning
profiles of user behavior, she remarked, “Oh, there’s been lots of work on
that.” I made copies of the papers she gave me, and I started reading.

In the meantime, I managed to convince my lab’s system administrator to
let me use some of our audit data for machine learning experiments. It was
not a lot of data—about three weeks of activity for seven users—but it was
enough for a section in my dissertation, which was not about machine learning
approaches to computer security.

After graduating, I thought little about the application of machine learning
to computer security until recently, when Jeremy Kolter and I began inves-
tigating approaches for detecting malicious executables. This time, I started
with the literature review, and I was amazed at how widespread the research
had become. (Of course, the Internet today is not the same as it was in 1994.)

Ten years ago, it seemed that most of the articles were in computer se-
curity journals and proceedings and few were in the proceedings of artificial
intelligence and machine learning conferences. Today, there are many publi-
cations in all of these forums, and we now have the new field of data mining.
Many interesting papers appear in its literature. There are also publications
in literatures on statistics, industrial engineering, and information systems.
This description does not take into account recent work on fraud detection,
which is relevant to applications in computer security, even though it does



X Preface

not involve network traffic or audit data. Indeed, many issues are common to
both endeavors.

Perhaps I am a little better at doing literature searches, but in retrospect,
this “discovery” should not have been too surprising since there is overlap
among these areas and disciplines. However, what I needed and wanted was a
book that brought this work together. In addition to research contributions,
I also wanted chapters that described relevant concepts of computer security.
Ideally, it would be part textbook, part monograph, and part special issue of
a journal.

At the time, Jeremy Kolter and I were preparing a paper for the Third
IEEE International Conference on Data Mining. Xindong Wu of the University
of Vermont was the program co-chair, and during a visit to his Web site, I
noticed that he was an editor of Springer’s series on Advanced Information
and Knowledge Processing. After a few e-mails and words of encouragement,
I submitted a proposal for this book. After peer review, Springer accepted it.

Intended Audience

The intended audience for this book consists of three groups. The first group
consists of researchers and practitioners working in this interesting intersection
of machine learning, data mining, and computer security. People in this group
will undoubtedly recognize the contributors and the connection of the chapters
to their past work.

The second group consists of people who know about one field, but would
like to learn more about the other. It is for people who know about machine
learning and data mining, but would like to learn more about computer secu-
rity. These people have a dual in computer security, and so the book is also
for people who know this field, but would like to learn more about machine
learning and data mining.

Finally, I hope graduate students, who constitute the third group, will
find this volume attractive, whether they are studying machine learning, data
mining, statistics, or information assurance. I would be delighted if a professor
used this book for a graduate seminar on machine learning and data mining
approaches to computer security.
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Introduction

Marcus A. Maloof

The Internet began as a private network connecting government, military, and
academic researchers. As such, there was little need for secure protocols, en-
crypted packets, and hardened servers. When the creation of the World Wide
Web unexpectedly ushered in the age of the commercial Internet, the net-
work’s size and subsequent rapid expansion made it impossible retroactively
apply secure mechanisms. The Internet’s architects never coined terms such
as spam, phishing, zombies, and spyware, but they are terms and phenomena
we now encounter constantly.

Computer security is the use of technology, policies, and education to
assure the confidentiality, integrity, and availability of data during its storage,
processing, and transmission [1]. To secure data, we pursue three activities:
prevention, detection, and recovery [1].

This volume is about the use of machine learning and data mining methods
to secure data, and such methods are best suited for detection. Detection is
simply the process of identifying something’s true characteristic. For example,
we might want to detect if a program contains malicious logic. Informally, a
detector is a program that reports positively when it detects the characteristic
of interest; otherwise, it reports negatively or nothing at all.

There are two ways to build a detector: We can build or program a detector
ourselves, or we can let software build a detector from data. To build a detector
ourselves, it is not enough to know what we want to detect, for we must also
know how to detect what we want. The complexity of today’s networked
computers makes this a daunting task in all but the simplest cases.

Naturally, software can help us determine what we want to detect and how
to detect it. For example, we can use software to process known benign and
known malicious executables to determine sequences of byte codes unique to
the malicious executables. These sequences or signatures could serve as the
basis for a detector.

We can use software to varying degrees when building detectors, so there is
a spectrum from the simple to the ideal. Simple software might calculate the
mean and standard deviation of a set of numbers. (A detector might report
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positively if any new number is more than three standard deviations from the
mean.) The ideal might be a fully automated system that builds detectors with
little interaction from users and with little information about data sources.
Researchers may debate where the exact point lies, but starting somewhere
on this spectrum leading to the ideal are methods of machine learning [2] and
data mining [3].

For some detection problems in computer security, existing data mining
and machine learning methods will suffice. It is primarily a matter of applying
these methods correctly, and knowing that we can solve such problems with
existing techniques is important. Alternatively, some problems in computer
security are examples of a class of problems that data mining and machine
learning researchers find interesting. An an example, for researchers investi-
gating new methods of anomaly detection, computer security is an excellent
context for such work. Still other detection problems unique to computer se-
curity require new and novel methods of data mining and machine learning.

This volume is divided into two parts: survey contributions and research
contributions. The purpose of the survey contributions is to provide back-
ground information for readers unfamiliar with information assurance or with
data mining and machine learning. In Chap. 2, Clay Shields provides an in-
troduction to information assurance and identifies problems in computer se-
curity that could benefit from machine learning or data mining approaches.
In Chap. 3, Mark Maloof similarly describes some basic concepts of machine
learning and data mining, grounded in applications to computer security.

The first research contribution deals with the problem of worms, spyware,
and other malicious programs that, in recent years, have ravaged the Internet.
In Chap. 4, Jeremy Kolter and Mark Maloof describe an application of text-
classification methods to the problem of detecting malicious executables.

One long-standing issue with detection systems is coping with a large
number of false alarms. Even systems with low false-alarm rates can produce
an overwhelming number of false alarms because of the amount of data they
process, and commercial intrusion detection systems are not an exception.
Eric Bloedorn, Lisa Talbot, and Dave DeBarr address this problem in Chap. 5,
where they discuss their efforts to reduce the number of false alarms a system
presents to analysts.

However, it is not only false alarms that have proven distracting to ana-
lysts. Legitimate but highly redundant alarms also contribute to the alarm
flood that overloads analysts. Klaus Julisch addresses this broader problem
in Chap. 6 by grouping alarms according to their root causes. The number of
resulting alarm groups turns out to be much smaller than the initial number
of elementary alarms, which makes them much more efficient to analyze and
process.

Determining features useful for detection is a challenge in many domains.
James Early and Carla Brodley describe, in Chap. 7, a method of deriving
features for network intrusion detection designed expressly to determine if a
protocol is being used improperly.
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Once we have identified features, computing them may require differing
costs or amounts of effort. There are also costs associated with operating the
detection system and with detecting and failing to detect attacks. In Chap. 8,
Wenke Lee, Wei Fan, Sal Stolfo, and Matthew Miller discuss their approach
for taking such costs into account.

Algorithms for anomaly detection build models from normal data. If such
data actually contain the anomalies we wish to detect, then it could reduce
the effectiveness of the resulting detector. Gaurav Tandon, Philip Chan, and
Debasis Mitra discuss, in Chap. 9, their method for cleaning training data
and removing anomalous data. They also investigate a variety of representa-
tions for sequences of system calls and the effect of these representations on
performance.

As one can infer from the previous discussion, the domain of intrusion
detection presents many challenges. For example, there are costs, such as
those associated with mistakes. New data arrives continuously, but we may
be uncertain about its true nature, whether it is malicious or benign, anoma-
lous or normal. Moreover, training data for malicious behavior may not be
available. In Chap. 10, Terran Lane argues that such complexities require a
decision-theoretic approach, and proposes such a framework based on partially
observable Markov decision processes.
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An Introduction to Information Assurance

Clay Shields

2.1 Introduction

The intuitive function of computer security is to limit access to a computer
system. With a perfect security system, information would never be com-
promised because unauthorized users would never gain access to the system.
Unfortunately, it seems beyond our current abilities to build a system that is
both perfectly secure and useful. Instead, the security of information is often
compromised through technical flaws and through user actions.

The realization that we cannot build a perfect system is important, because
it shows that we need more than just protection mechanisms. We should ex-
pect the system to fail, and be prepared for failures. As described in Sect. 2.2,
system designers not only use mechanisms that protect against policy viola-
tions, but also detect when violations occur, and respond to the violation.
This response often includes analyzing why the protection mechanisms failed
and improving them to prevent future failures.

It is also important to realize that security systems do not exist just to
limit access to a system. The true goal of implementing security is to pro-
tect the information on the system, which can be far more valuable than the
system itself or access to its computing resources. Because systems involve
human users, protecting information requires more than just technical mea-
sures. It also requires that the users be aware of and follow security policies
that support protection of information as needed.

This chapter provides a wider view of information security, with the goal
of giving machine learning researchers and practitioners an overview of the
area and suggesting new areas that might benefit from machine learning ap-
proaches. This wider view of security is called information assurance. It in-
cludes the technical aspects of protecting information, as well as defining poli-
cies thoroughly and correctly and ensuring proper behavior of human users
and operators. I will first describe the security process. I will then explain the
standard model of information assurance and its components, and, finally,
will describe common attackers and the threats they pose. I will conclude
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with some examples of problems that fall outside much of the normal techni-
cal considerations of computer security that may be amenable to solution by
machine learning methods.

Detect

Respond

Protect

Fig. 2.1. The security cycle

2.2 The Security Process

Human beings are inherently fallible. Because we will make mistakes, our
security process must reflect that fact and attempt to account for it. This
recognition leads to the cycle of security shown in Fig. 2.1. This cycle is really
very familiar and intuitive, and is common in everyday life, and is illustrated
here with a running example of securing an automobile.

2.2.1 Protection

Protection mechanisms are used to enforce a particular policy. The goal is
to prevent things that are undesirable from occurring. A familiar example is
securing an automobile and its contents. A car comes with locks to prevent
anyone without a key from gaining access to it, or from starting it without
the key. These locks constitute the car’s protection mechanisms.

2.2.2 Detection

Since we anticipate that our protection mechanisms will be imperfect, we at-
tempt to determine when that occurs by adding detection mechanisms. These
monitor the system, try to locate any policy violations that have occurred,
and then provide an alert or alarm to that fact. Our familiar example is again
a car. We know that a determined thief can gain entry to a car, so in many
cases, cars have alarm systems that sound loudly to attract attention when
they detect what might be a theft.

However, just as our protection mechanisms can fail or be defeated, so can
detection mechanisms. Car alarms can operate correctly and sound the alarm
when someone is breaking in. This is termed a true positive; the event that is
looked for is detected. However, as many city residents know, car alarms can
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also go off when there is no break-in in progress. This is termed a false positive,
as the system is indicating it detected something when nothing was happening.
Similarly, the alarm can fail to sound when there is an intrusion. This is termed
a false negative, as the alarm is indicating that nothing untoward is happening
when in fact it is. Finally, the system can indicate a true negative and avoid
sounding when nothing is going on.

While these terms are certainly familiar to those in the machine learning
community, it is worth emphasizing the fallibility of detection systems because
the rate at which false results occur will directly impact whether the detection
system is useful or not. A system that has a high false-positive rate will quickly
become ignored. A system that has a high false-negative rate will be useless
in its intended purpose.

2.2.3 Response

If, upon examination of an alert provided by our detection system, we find
that a policy violation has occurred, we need to respond to the situation.
Response varies, but it typically includes mitigating the current situation,
analyzing what happened, recovering from any damage, and improving the
protection and detection mechanisms to prevent similar future occurrences.

For example, if our car alarm sounds and we see someone breaking in, we
might respond by summoning the police to catch or run off the thief. Some
cars have devices that allow police to determine their location, so that if a
car is stolen, it can be recovered. Afterwards, we might try to prevent future
incidents by adding a locking device to the steering wheel or parking in a
locked garage. If we find that the car was broken into and the alarm did not
sound, we might choose also to improve the alarm system.

Confidentiality

Integrity

Availability

Processing
StorageTransmission

Technology

Policy&
Practice

E
ducation

Fig. 2.2. The standard model of information assurance
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2.3 Information Assurance

The standard model of information assurance is shown in Fig. 2.2 [4]. In this
model, the security properties of confidentiality, integrity, and availability of
information are maintained in the different locations of storage, transport, and
processing by technological means, as well as through the process of educating
users in the proper policies and practices. Each of these properties, location,
and processes is described below.

The term assurance is used because we fully expect failures and errors
to occur, as described above in Sect. 2.2. Recognizing this, we do not expect
perfection and instead work towards a high level of confidence in the systems
we build.

Though this model can apply to virtually any system which includes infor-
mation flow, such as the movement of paper through an office, our discussion
will naturally focus on computer systems.

2.3.1 Security Properties

The first aspects of this model we will examine are the security properties that
can be maintained. The traditional properties that systems work towards are
confidentiality, integrity, and availability, though other properties are some-
times included. Because different applications will have different requirements,
a system may be designed to maintain all of these properties or only a chosen
subset as needed, as described below.

Confidentiality

The confidentiality property specifies that only entities authorized to access
some particular information are allowed to do so. This is the property that
maintains the secrecy of information on a need-to-know basis, and is the most
intuitive.

The most common mechanisms for protecting confidentiality are access
control and encryption. Access control mechanisms prevent any reading of the
information until the accessing entity, either a person or computer process act-
ing on behalf of a person, prove that it is authorized to do so. Encryption does
not prevent access to the information, but instead obfuscates the information
so that even if it is read, it is not understandable.

The mechanisms for detecting violations of confidentiality and responding
to them vary depending on the situation. In the most general case, pub-
lic disclosure of the information would indicate loss of confidentiality. In an
electronic system, violations might be detectable through audit and logging
systems. In situations where the actions of others might be influenced by the
release of confidential information, such changes in behavior might indicate
a violation. For example, during World War II, an Allied effort broke the
German Enigma encryption system, violating the confidentiality of German
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communications. Concerned that unusual military success might indicate that
Enigma had been broken, the Allies were careful to not exploit all information
gained [5]. Though it will vary depending on the case, there may be learning
situations that involve monitoring the actions of others to see if access to
confidential information has been compromised.

There might be an additional requirement that the existence of information
be kept confidential as well, in which case, encryption and access control might
not be sufficient. This is a more subtle form of confidentiality.

Integrity

In the context of information assurance, integrity means that only authorized
entities can alter information within a system. This is the property that keeps
information from being changed when it should not be.

While we will use the above definition of integrity, it is an overloaded term
and other meanings exist. Integrity can be used to describe the reliability of
information. For example, a data source has integrity if it provides accurate
data. This is sometimes referred to as origin integrity. Integrity can also be
used to refer to a state that exists in several systems; if the state is consistent,
then there is high integrity. If the distributed states are inconsistent, then
there is low integrity.

Mechanisms exist to protect data integrity and to detect when it has been
violated. In practice, protection mechanisms are similar to the access control
mechanisms for confidentiality, and in implementation may share common
components. Detecting integrity violations may involve comparing the data
to a different copy, or the use of cryptographic hashes. Response typically
involves repairing the changes by reverting to an earlier, archived copy.

Availability

Availability is the property that the information on a system is obtainable
when needed. Information that is kept secret and unaltered might still be
made unavailable by attackers conducting denial-of-service attacks.

The general approach to protecting availability is to limit the amount of
system resources that can be consumed, either by rate-limiting or by requiring
access control. Another common approach is to over-provision the system. De-
tection of availability is generally conducted by polling to see if the resources
are there. It can be difficult to determine if some system is unavailable be-
cause of attack or because of some system failure. In some situations, there
may be learning problems to be solved to differentiate between failure and
attack conditions.

Response to availability problems generally includes reducing the system
load, or adding more capacity to a system.
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Other Components

The properties above are the classic components of security, and are sufficient
to describe many situations. However, there has been some discussion within
the security community for the need for other properties to fully capture
requirements for other situations. Two of the commonly suggested additions,
authentication and non-repudiation, are discussed below.

Authentication

Both the confidentiality properties and integrity properties include a notion of
authorized entities. The implication is that the system can accurately identify
entities in some manner and, given their identity, provide or deny access.
The authentication property ensures that all entities in a system have their
identities properly verified.

There are a number of ways to conduct authentication and protect against
false identification. For individuals, the standard mnemonic for describing
classes of authentication mechanisms is, What you are, what you have, and
what you know.

• “What you are” refers to specific physical attributes of an individual that
can serve to differentiate him or her from others. These are commonly bio-
metric measurements of such things as fingerprints, hand size and shape,
voice, or retinal patterns. Other attributes can be used as well, such as a
person’s weight, gait, face, or potentially DNA. It is important to realize
that these systems are not perfect. They have false-positive and false-
negative rates that can allow false authentication or prohibit legitimate
users from accessing the system. Often the overall accuracy of a biometric
system can be improved by measuring different attributes simultaneously.
As an aside, many biometric systems have been shown to be susceptible to
simple attacks, such as plastic bags of warm water placed on a fingerprint
sensor to reactivate the prior latent print, or pictures held in front of a
camera [6, 7]. Because these attacks are generally observable, it may be
more appropriate for biometric authentication to take place under human
observation. It might be a vision or machine learning problem to determine
if this type of attack is occurring.

• “What you have” describes some token that is carried by a person that
the system expects only that person to have. This token can take many
forms. In a physical system, a key could be considered an access token.
Most people have some form of identification, which is a token that can
be used to show that the issuer of the identification has some confidence
in the carrier’s identity. For computer systems, there are a variety of au-
thentication tokens. These commonly include devices that generate pass
codes at set intervals. Providing the correct pass code indicates possession
of the device.



2 An Introduction to Information Assurance 13

• “What you know” is the most familiar form of authentication for computer
users. In this form of authentication, users prove their identity by providing
some information that only they would know that can be verified. The
most common example of this is a password, which is a secret shared by
the individual and the end system conducting the authentication. The
private portion of a public/private key pair is also an example of what you
know.

More recently, it has been shown that it is possible to use location as
another form of authentication. With this “where you are” authentication,
systems can use signals from the Global Positioning System to verify that the
authentication attempt is coming from a particular location [8].

Authenticating entities across a network is a particularly subtle art. Be-
cause attackers can potentially observe, replay, and manipulate network traf-
fic, designing protocols that are resistant to attack is very difficult to do
correctly. This has been a significant area of research for some time [9].

The mechanisms outlined above provide the basis for authentication pro-
tection. Detecting authentication failures, which would be incorrectly identi-
fying a user as a legitimate user, can often be done on the basis of behavior
after authentication. There is a significant body of work addressing user profil-
ing to detect aberrant behavior that might indicate an authentication failure.
One appropriate response is to revoke the credentials gained through authen-
tication. The intruder can also be monitored to better understand attacker
behavior.

Non-repudiation

The non-repudiation property makes it difficult for any entity to deny that it
performed some action. A system with non-repudiation will allow entities to
be held responsible for what they do. Very few computer systems have effective
non-repudiation mechanisms. In general, logging and audit data is recorded,
but is often unreliable. More effective non-repudiation systems require the use
of strong cryptographic mechanisms, though these require significant overhead
for additional processing and key distribution.

System Security Requirements

Different systems have different security requirements, which might include
some or all of the properties discussed above. A financial system might need
all five: Confidentiality is required to protect the privacy of records; integrity
is needed to maintain a proper balance; availability allows access to money
when required; authentication keeps unauthorized users from withdrawing
funds; and non-repudiation keeps users from arguing that they did not take
funds out and keeps the institution from denying it received a deposit.

Other systems do not require that level of security. For example, a Web
page may be publicly available and therefore not require any confidentiality.
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The owner of the page might still desire that the integrity of the page be
maintained and that the page be available. The owner of a wiki might allow
anyone to edit the page and hence be unconcerned with integrity, but might
require that users authenticate to prevent non-repudiation of what they edit.

2.3.2 Information Location

The model of information assurance makes a clear distinction about where
information resides within a system. This is because the mechanisms used to
protect, detect, and respond differ for each case.

Processing

While information is being processed in a computer system, it is loaded into
memory, some of which may be virtual memory pages on a disk, and into
the registers of the CPU. The primary protection mechanisms in this case
are designed to prevent processes on the system from reading or altering
each other’s memory space. Modern computer systems contain a variety of
hardware and software mechanisms to provide each process with a secure,
independent memory space.

Confidentiality can also be lost through information leaking from a pro-
cess. This can happen through a covert channel, which is a mechanism that
uses shared system resources not intended for communication to transmit in-
formation between processes [10]. It is possible to prevent or rate-limit covert
channels, though it can be difficult to detect them. Response varies, but in-
cludes closing the channel through system updates. Loss of confidentiality can
also occur through electromagnetic radiation from system components, such
as the CPU, bus, video card, and CRT. These produce identifiable signals that
can be used to reconstruct information being processed on the system [11, 12].
Locations that work with highly classified information are often constructed
to keep this radiation from escaping.

Storage

Information in storage resides on some media, either within the system or
outside of it. The protection mechanisms for information stored on external
media are primarily physical, so that the media cannot be stolen or accessed. It
is also possible and frequently desirable to encrypt information that is stored
externally. Detection often consists of alarm systems to detect illicit access,
and inventory systems to detect missing media. To detect integrity violations,
cryptographic hashes can be computed for the stored data and kept separately
from the media, then periodically checked [13]. At the end of its useful lifetime,
media should be destroyed instead of discarded.

Information that is stored within a system is protected by operating sys-
tems mechanisms that prevent unauthorized access to the data. These include
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access control mechanisms and, increasingly, mechanisms that keep stored
information encrypted. There are many methods of detecting unauthorized
access. These generally fall under the classification of intrusion detection. In-
trusion detection systems can further be classified as signature-based, which
monitor systems for known patterns of attack, or as anomaly detection, which
attempt to discern attacks by identifying abnormal activity.

Transport

Information can be transported either physically or electronically. While it
is natural to think of transmitted data over a network, for large amounts of
data it can be significantly faster to send media through the mail or via an
express delivery service. Data transported in this manner can be protected
using encryption or physical security, such as locked boxes.

Data being transported over the network is best protected by being en-
crypted, and this functionality is common in existing software. In the future,
quantum cryptographic methods will increasingly be used to protect data in
transmission. Using quantum cryptography, two communicating parties can
agree on an encryption key in a way that inherently detects if their agreement
has been eavesdropped upon [14].

2.3.3 System Processes

While most computer scientists focus on the technological processes involved
in implementing security, technology alone cannot provide a complete security
solution. This is because human users are integral in maintaining security. The
model of information assurance recognizes this, and gives significant weight to
human processes. This section provides more detail about the processes that
are used to provide assurance.

Technology

Every secure information system requires some technological support to be
secure. In our discussion thus far, we have mentioned a number of technological
mechanisms that exist to support the protect, detect, and respond cycle. These
include systems that provide authentication; access control mechanisms that
limit what authenticated users can view and change; and intrusion detection
systems that identify when these prior mechanisms have failed.

There are other technological controls that protect information security
that are not part of computer systems, however, and which are often forgot-
ten. The foremost of these are physical security measures. Access control on a
computer system is of little use if an attacker has physical access and can sim-
ply steal the computer or its archive media and off-load the data later. Large
corporations are typically more aware of this than universities, and often im-
plement a number of controls designed to limit physical access. The efficacy
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of these devices can vary, however. Some systems use cards with magnetic
stripes that encode an employee number that is also shown on the front of the
card, which may be worn around the neck. Anyone who is able to read this
number can then duplicate the card with a $600 card writer. Radio frequency
identification (RFID) tags are also becoming popular. These frequently re-
spond to a particular radio-frequency query with a static ID. Because there
is no control over who can query the tag, anyone can read and potentially
duplicate the tag. Impersonation in these cases may be relatively simple for
someone who feels comfortable that they might not be noticed as out of place
within a secure area.

Policy and Practice

While technological controls are important, they are not sufficient simply be-
cause they are designed to allow some access to the system. If the people who
are permitted to access systems do not behave properly, they can inadver-
tently weaken the security of the system. A common example is users who
open or run attachments that they receive over e-mail. Because users are al-
lowed to run processes on the system, the access control mechanisms prove
ineffective.

Organizations that do security well therefore create policies that describe
how they expect their users to act, and provide best-practice documents that
detail what can be done to meet these policies. Again, these policies must go
beyond the computer system. They should include physical security as well
as policies that govern how to answer phones, how to potentially authenticate
a caller, and what information can be provided. These policies are directed
towards stopping social engineering, in which an outside attacker tries to
manipulate people into providing sufficient information to access the system.

Education

Having defined policies and practices is not sufficient. Users must know them,
accept them, and follow them. Therefore, user education is a necessity. Proper
education includes new-user orientation and training, as well as recurring, pe-
riodic training to keep the material fresh. Some organizations include security
awareness and practice as part of job performance evaluation.

2.4 Attackers and the Threats Posed

It is difficult to determine what security measures are needed without an
understanding of what capabilities different types of attackers possess. In this
section, we will examine different classes of attackers, what unique threats
each might pose, and how those threats are addressed in the information
assurance model.
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It is important to note that attackers will generally attempt to compro-
mise the system the easiest way that they can, given their capabilities. For
example, an attacker might have access to an encrypted password file and to
network traffic. In this case, it might be easier to “sniff” unencrypted pass-
words off the network instead of making the effort to decrypt the password
file. A similar attack for someone with physical access to the system might be
to place a hardware device to capture keystrokes instead of making the effort
of guessing an encryption key. Other attackers might find it easier to attack
the encryption; for example, government intelligence agencies might want to
limit their exposure to detection. In this case, given their desire for secrecy
and massive computing facilities, it might be easiest to attack the encryption.

2.4.1 Worker with a Backhoe

While they hardly seem like fearsome hackers and appear quite comical, con-
struction workers might be one of the most damaging accidental attackers.
Given the prevalence of underground power and network wiring, it is a com-
mon occurrence for lines to be severed. This can easily rob a large area of
power and network access, making services unavailable. It can also take a sig-
nificant amount of time to make repairs. The best defense is over-provisioning
through geographically separate lines for networking or power, or possession
of a separate power generator.

As a military tactic, the equivalent of an attacker with a backhoe has
proven quite effective in the past, and could be again in the future. In the
early days of World War I, British sailors located, raised, and severed an
underwater telephone line that was used to transmit orders to the German
Navy. Without the telephone line, the Germans had to transmit orders over
radio, allowing the British to attack the encryption, eventually with significant
success [5]. It is easy to believe that similar actions could occur today to force
broadcast communication.

2.4.2 Ignorant Users

Many modern security problems are caused by otherwise well-intentioned
users who make mistakes that weaken, break, or bypass security mechanisms.
Users who open or run attachments received by e-mail are a clear example
of this. Similarly, users who are helpful when contacted over the phone and
provide confidential internal information, such as the names of employees and
their phone numbers or even passwords, pose a threat. These types of em-
ployees are best prevented using proper policies, practices, and education.

2.4.3 Criminals

While most criminals lack any significant computer savvy, they are a serious
threat because of the value of computer equipment. Theft of electronics is a
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common occurrence, because of the potential resale value. Small items, such
as laptops and external drives, are easy to steal and can contain significant
amounts of information. Such information might have inherent value – pass-
words and account numbers are examples. Theft or misplacement could also
cause financial loss as a result of legal action, especially if the lost data are
like medical records, which should be kept private. Unfortunately, there is no
way to know if equipment has been stolen for its value or to gain access to its
information, and generally the worst case should be assumed.

2.4.4 Script Kiddies

The attackers discussed thus far have not been specifically targeting informa-
tion systems. The somewhat denigrating term script kiddie applies to attackers
who routinely attempt to remotely penetrate the security of networked com-
puter systems, but lack the skills or knowledge to do so in a sophisticated way.
Instead, they use a variety of tools that have been written by more capable
and experienced people.

While they generally do not have a specific target in mind, script kid-
dies tend to be exceptionally persistent, and will scan hundreds of computers
looking for vulnerabilities that they are able to exploit. They do not present a
severe threat individually, but will eventually locate any known security hole
that is presented to the network. As an analogy, imagine a group of roving
youths who go from house to house trying the doors and windows. If the house
is not properly secured, they will eventually find a way in. Fortunately, script
kiddies are relatively easy to stop with good technological security practice.

2.4.5 Automated Agents

While script kiddies are often actively looking for security vulnerabilities, the
scope of their efforts pale compared to the number of automated agents in the
current Internet. These are programs, often called malware, that run with the
sole purpose of spreading themselves to as many computers as possible. Many
of these then provide their creator the ability to access information within a
system, or to use its resources for other attacks. While there are many types
of malware, there are a few specific types that merit mention.

Worm

A worm is a self-propagating piece of code that exploits vulnerabilities in
remote systems to spread itself. Typically, a worm will infect a system and then
start scanning to find other vulnerable systems and infect those. A worm might
also have other functionality in its payload, including notifying its creator that
it has compromised a new host and allowing access to it. It might also scan
the compromised machine for interesting information and then send it to its
creator.



2 An Introduction to Information Assurance 19

Virus

Though the term virus has fallen into common use to describe any type of
malware which spreads between computers, a more precise definition is that
it is a piece of code which gets added to existing programs that only runs
when they run. At that time, the virus adds its code to other programs on
the system.

Trojan

Named after the famous Trojan horse, a Trojan is a piece of code that purports
to do one thing but actually does another, or does what it says while also
maliciously doing something else.

It should be immediately evident that a clear classification of malware into
these separate categories may not be possible because one piece of malicious
code may exhibit more than one of these characteristics. Many recent worms,
for example, were also Trojans. They spread over the network directly, but
also would search each machine compromised for e-mail addresses and then
falsify e-mail that included a Trojan version of the worm. If the recipient were
to open and run the attachment, the worm would continue from there.

These agents are stopped by common technological measures, the existence
of which indicate how large the problem is. Unfortunately, it can be time-
consuming and expensive to apply the proper patches to a large network of
computers. Additionally, new malware variants are appearing that target new
operating systems, like those in cellular phones, which do not have the same
wealth of protection mechanisms.

2.4.6 Professional System Crackers

Unlike script kiddies, who lack the skills and experience to penetrate a specific
target, professional crackers master a broad set of tools and have the intel-
ligence and sophistication to pick and penetrate a particular target. They
might do so on behalf of a government, or for financial gain, either indepen-
dently or as part of an organized crime ring. While part of the attack might
be conducted remotely over the network, they might also attempt to gain
physical access to a particular target; to go through trash looking for useful
information; or to gain the assistance of a helpful but ignorant user.

These attackers can be subtle and patient. There is no simple solution to
mitigating the threat they present; instead, the full range of security measures
is required.

2.4.7 Insiders

While the most popular image of a computer attacker is that of the profes-
sional cracker, they account for only a very small percentage of all attacks.
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Instead, the most common attacker, and the one who is most often successful,
is the insider [15]. An insider is someone who has access to some or all parts
of the computer system, then misuses that access. Note that access may not
be electronic; an insider may simply step over to someone else’s desk while
they are away and use their computer.

The insider is the most subtle and difficult attacker to identify. There is
perhaps significant room for detecting insider attacks.

2.5 Opportunities for Machine Learning Approaches

It is evident from the other chapters in this book that machine learning and
data mining are naturally most applicable to the detection phase of the se-
curity cycle. This section contains suggestions for other areas that might be
amenable to machine learning approaches.

• When an attacker manages to acquire data without being detected, the
information often ends up publicly available on the Internet. It might be
possible to detect successful intrusions by making queries to search en-
gines, such as Google. The difficulty here might not be a machine learning
problem, but a data retrieval one: How is it possible to find information
through queries without revealing what the information is to an attacker
observing the queries?

• Many biometric authentication systems are subject to attacks that lead to
false positives in identification. Most of these attacks are easily detected
by human observers. A vision or machine learning problem might be to
perform automated observation of biometric systems to detect these at-
tacks.

• Education is an important part of the security process. While not all fail-
ures of proper user education will result in loss of confidentiality, integrity,
or availability of data, problems short of these bad results might indicate
the potential for future problems. Depending on the system, it might be
possible to identify user behavior that does not result in a security viola-
tion but indicates that the user is not aware of good security practice.

• Insiders are the most insidious attackers, and the hardest to detect. One
approach to detecting and identifying insiders might be to correlate user
idle times between machines that are located in close proximity. A user
becoming idle shortly before some other system ceases its idle time could
indicate a user walking over to and using another unlocked system.

• Similarly, many companies use authentication systems that allow the phys-
ical location of employees to be known to some degree. Using data from
these systems, it might be possible to identify insider attackers by finding
odd movements or access patterns within a building or campus.

• Some insiders do not need to move to conduct attacks; instead, they are
given broad access to a data processing system and trusted to limit the



2 An Introduction to Information Assurance 21

data they examine to what they need to do their job. Without knowing
what particular subset of data they should have access to, it might be
possible to detect insider attackers based on the patterns of data access
that are different than others who have similar responsibilities.

• Many outside attackers succeed by exploiting the trust and helpfulness
of people within an organization. It might be possible to detect social
engineering attacks by tracking patterns of phone calls coming into an
organization. This data would likely be available in phone records.

• It can be difficult to classify availability failures as accidental or intentional.
For example, a sudden increase in network consumption can indicate a
denial-of-service attack, or simply a suddenly popular Web link. It might
be possible to differentiate between them by examination of the network
traffic.

• Automated agents, such as worms or Trojans, might be detectable based
on patterns of outgoing network traffic.

2.6 Conclusion

Most machine learning work has focused on detecting technical attacks that
originate from outside a particular network or system. This is actually a very
small part of the security space. The ideas above touch on some aspects of
security that seem to have appropriate data available, but that do not seem to
have been as closely examined. There are certainly many existing and emerg-
ing areas where machine learning approaches can bring new improvements in
security.
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Some Basic Concepts of Machine Learning and
Data Mining

Marcus A. Maloof

3.1 Introduction

Central to the approaches described in this volume is the use of algorithms
to build models from data. Depending on the algorithm, the model, or the
data, we might call such an activity pattern classification [16, 17], statistical
pattern recognition [18, 19], information retrieval [20], machine learning [2,
21, 22], data mining [3, 23, 24], or statistical learning [25]. Although finding
the boundaries between concepts is important in all of these endeavors, in
this chapter, we will instead focus on their commonalities. Indeed, there are
methods common to all of these disciplines, and methods from all have been
applied to problems in computer security.

Researchers and practitioners apply such algorithms to data for two main
reasons: to predict new data and to better understand existing data. Regard-
ing the former reason, one gathers data, applies an algorithm, and uses the
resulting model to predict something about new data. For instance, we may
want to predict based on audit data if a user’s current session is similar to old
ones.

Regarding the second reason, one gathers data, applies an algorithm, and
analyzes the resulting model to gain insights into the data that would be diffi-
cult to ascertain if examining only the data itself. For example, by analyzing a
model derived from audit data, we might conclude that a particular person’s
CPU usage is far higher than that of others, which might suggest inappropri-
ate usage of computing resources. In this scenario, the need to understand the
model an algorithm produces restricts the use of some algorithms, for some
algorithms produce models that are easily understood, while others do not.

The sections that follow provide an introductory overview of machine
learning and data mining, especially as it relates to applications in computer
security and to the chapters in this volume. In Sect. 3.2, we describe the
process of transforming raw data into input suitable for learning and mining
algorithms. In Sect. 3.3, we survey several such algorithms, and in Sect. 3.4,
we discuss methods for evaluating the models these algorithms produce. After
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this overview, we briefly examine ensemble methods and sequence learning,
two important topics for research and applications. In Sect. 3.6, we note online
sources of information, implementations, and data sets. Finally, in Sect. 3.7,
we identify resources for further study.

3.2 From Data to Examples

Three important activities in computer security are prevention, detection,
and recovery [1]. If taking a machine learning or data mining approach to
computer security, then the first step is to identify a data source supporting
our desired activity. Such data sources include keystroke dynamics, command
sequences, audit trails, HTTP logs, packet headers, and malicious executables.
For instance, one could improve preventive measures by mining logs to discover
the most frequent type of attack. One could also learn profiles of user behavior
from an audit trail to detect misuse of the computer system.

A raw data source is rarely suitable for learning or mining algorithms. It
almost always requires processing to remove unwanted and irrelevant informa-
tion, and to represent it appropriately for such algorithms. Input to learning
and mining algorithms is called cases, samples, examples, instances, events,
and observations. A tabular representation is common for such input, although
others include relational, logical (propositional and first-order), graphical, and
sequential representations.

Table 3.1. A hypothetical set of examples derived from raw audit data

login real system user chars blocks cpu hog
bugs 0.17 0.02 0.02 1030 9 0.5 0.2
bugs 0.07 0.02 0.02 64 1 0.5 0.5
bugs 0.05 0.03 0 64 1 0 0.67
bugs 4.77 0.07 0.02 22144 0 0.2 0.02
bugs 0.03 0.03 0 64 0 0 1
bugs 0.03 0 0.02 839 0 1 0.5
bugs 0.02 0 0 28 0 0 1
daffy 0.08 0.03 0 419 1 0 0.4
daffy 25352.5 0.2 0.22 24856 25 0.52 0
daffy 0.1 0.03 0 419 3 0 0.33
daffy 0.08 0.02 0 419 2 0 0.2
daffy 0.07 0.02 0.02 419 1 0.5 0.5

In a tabular representation, each example consists of a set of attributes
and their values. Table 3.1 shows a hypothetical set of examples for users
and metrics derived from the UNIX acctcom command, an accounting tool.
From these examples, we could build models for predicting login based on
the audit metrics or for detecting when a user’s hog factor (hog) is atypical.
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Researchers and practitioners often give special status to the attribute
they wish to predict, calling it generically the class label, or simply the label,
terms typically applied to attributes with discrete values. We should also note
that there are applications, especially in computer security, in which attribute
values and class labels for some examples are missing or difficult to determine.
Regarding class labels in particular, there is a spectrum between a fully labeled
set of examples and a fully unlabeled set. In the following discussion, we will
use the term example to mean a set of attribute values with a label and use
the term observation to mean a set of attribute values without a class label.

To transform raw data into a set of examples, we can apply a myriad of
operations. We cannot be exhaustive here, but examples of such operations
include

• adding a new attribute calculated from others
• mapping values of numeric attributes to the range [0, 1]
• mapping values of numeric attributes to discrete values (e.g., [26])
• predicting missing attribute values based on other values (e.g., [27])
• removing attributes irrelevant for prediction (e.g., [28])
• selecting examples relevant for prediction (e.g., [29])
• relabeling mislabeled examples (e.g., [30])

The transformation of raw data into a set of examples may seem like
an easy process, but it can be quite difficult and sometimes impossible, for
we must give the resulting examples not only the correct form, but also the
correct function. That is, we must create examples that facilitate learning and
mining.
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Fig. 3.1. Two representation spaces. (a) A space where learning is difficult for an
algorithm that builds “straight-line” models. (b) A space where learning is easy for
such an algorithm

To illustrate, assume we have an algorithm that constructs models that are
lines in two-dimensional space. A good model is one that separates the positive
examples and the negative examples. If the positive and negative examples
we present to the algorithm are organized in a “checkerboard pattern” (see
Fig. 3.1a), then it will be impossible for the algorithm to find an adequate
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model. On the other hand, if the examples we present are clustered together
and are linearly separable, as shown in Fig. 3.1b, then it will be easier for the
algorithm to construct a good model.

Numerous factors complicate the transformation of raw data into exam-
ples: the amount of data, the potential number of attributes, the domains of
those attributes, and the number of potential classes. However, a large amount
of data does not always make for a difficult learning or mining problem, for
the complexity of what the algorithm must learn or mine is also critical.

These difficulties of transforming a raw data source into a set of exam-
ples have prompted some researchers to investigate automated methods of
finding representations for examples. Methods of feature construction, feature
engineering, or constructive induction automatically transform raw data into
examples suitable for learning. There have been proposals for general meth-
ods, which we can apply to any domain, but because of the complexity of
such a task, we must often devise domain-specific or even ad hoc methods for
transforming raw data into examples.

There are also costs associated with attributes, examples, and mistakes
on each class. For some domains, we may know these costs; for others, we
may have only anecdotal evidence that one thing is more costly than another.
Some attribute values may be easy to collect or derive, while doing so for
others may be difficult or costly. For example, obtaining attribute values when
a connection is first established is less costly than computing such values
throughout the connection. It is also less costly to extract attribute values
from the packet header than from the data buffer, which could be encrypted.

The examples themselves may have different associated costs. If we are in-
terested in building a system to identify plants, collecting examples of plants
that grow locally in abundance is less costly than collecting examples of en-
dangered plants that grow only in remote forests. Similarly, we can easily
generate traces of attacks if they have been scripted. However, it is more
difficult – and more costly – to obtain traces of novel unscripted attacks.

Finally, the mistakes on classes are often different. For example, a system
that detects malicious executables can make two types of mistakes: It may
identify a benign program as being malicious, or it may identify a malicious
program as being benign. These mistakes do not have the same cost. If the
system informs a user that a word processor is malicious, the user will probably
just ignore the alert. However, if a new worm goes undetected, it could erase
important information and render the networked computers useless.

The number of examples we collect of each class is also important. As an
illustration, assume that we want to build a model to classify behavior as either
acceptable or malicious. Now assume, somewhat absurdly, that we cannot
collect any examples of malicious behavior. Obviously, no algorithm can build
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a model of malicious behavior without examples.1 So how many examples of
malicious behavior should we gather? One or two will not be sufficient, but
the point is that too few examples can impede learning and mining algorithms
from building adequate models. It is often the case with skewed data sets, in
which we have many examples of one class and few examples of another, that
an algorithm builds a model that almost always predicts the class with the
most examples (i.e., the majority class). It is also often the case that the class
with the fewer examples (i.e., the minority class) is the most important for
prediction.

There are methods of handling both costs and skew. For instance, if we
know the cost of mistakes for a domain, then there are techniques for gener-
ating a model that minimizes such costs [31]. The difficulty arises when we do
not know the costs, or do not know them precisely [32]. A complete discussion
of these issues is beyond the scope of this chapter, although there are exam-
ples of approaches in other chapters of this volume. So, in the next section,
we will proceed by examining how algorithms build models from examples.

3.3 Representations, Models, and Algorithms

Learning and mining algorithms have three components: the representation,
the learning element, and the performance element. The representation, hy-
pothesis language, or concept description language is a formalism used for
building models. A model, hypothesis, or concept description is a particu-
lar instantiation of a representation. Crucially, the representation determines
what models can be built.

The learning element builds a model from a set of examples. The per-
formance element applies the model to new observations. In most cases, the
model is a compact summary of the examples, and it is often easier to analyze
the model than the examples themselves. This also means that we can archive
or discard the examples. In most cases, the model generalizes the examples,
which is a desirable property, for we need not collect all possible examples to
produce a useful model. Moreover, we can use the model to make predictions
about examples absent from the original set. Researchers have used a variety
of representations for such models, including trees, rules, graphs, probabili-
ties, first-order logic, the examples themselves, and coefficients of linear and
nonlinear equations.

Once we have formed a set of examples, then learning and mining algo-
rithms can support a variety of analysis tasks. For instance, we may build a
model from all examples and detect anomalous events or observations (i.e.,
anomaly detection). We may divide the examples into two or more classes,

1 Note that algorithms for anomaly detection build models of normal behavior and
then infer that anomalous behavior is malicious. This is a slightly different issue
than the one considered here.
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build a model, and classify new observations as being of one of the classes.
Two-class problems are often referred to as detection tasks, with class labels
of positive and negative. Instead of predicting one of a set of values, we may
want to predict a numeric value (i.e., regression). We also may want to ex-
amine the associations between sets of attributes. Finally, we may want to
examine the models themselves to gain insights into the data from which they
were derived.

Previously, we noted the spectrum between a fully labeled set of examples
and a fully unlabeled set. Supervised learning is learning from a fully labeled
set of examples, whereas unsupervised learning is learning with a fully un-
labeled set. Researchers also use the terms discovery, mining, and clustering
to describe this activity. Recent work along this spectrum has given rise to
semi-supervised learning, where we have a partially labeled set of examples.

When applying algorithms to examples, if we can gather a sufficient num-
ber of examples in advance, then we can process them in a single batch. How-
ever, for many applications, examples are distributed over time and arrive as
a stream, in which case, the algorithm must process them online. We can use
a batch algorithm to process examples online if we simply store all available
examples and reapply the algorithm when new ones arrive. For large data sets
and complex algorithms, this is impractical in both time and space, so in such
situations, we can use an incremental algorithm that uses new examples to
modify the existing model.

An important phenomenon for applications for computer security is con-
cept drift [33]. Put simply, this occurs when examples have certain labels for
periods of time, and then have different labels for other periods of time. For
instance, when running experiments, a researcher’s normal behavior might be
characterized by multiple jobs requiring massive amounts of CPU time and
disk access. However, when the same researcher is writing a paper describ-
ing those experiments and results, then normal behavior might be defined by
relatively light usage. An example of low usage would be abnormal for the re-
searcher during the experiment phase, but would be considered normal during
the writing phase.

Concept drift can occur quickly or gradually and on different time scales.
Such change could be apparent in combinations of data sources: in the network
traffic, in the machine’s audit metrics, in the commands users execute, or in
the dynamics of their keystrokes.

Researchers have developed several algorithms for tracking concept drift
[33–38], but only a few methods have been developed or evaluated for problems
in computer security (e.g., [39]). All of the methods have been based to some
extent on traditional or classical algorithms, so in the sections that follow,
we describe a representative set of these algorithms. The contributors to this
volume use some of these algorithms, and they describe these and others in
their respective chapters.
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3.3.1 Instance-Based Learning

Instance-based learners [40] store examples as their concept description.
Learning is simply storing these examples. When classifying an observation,
in the simplest case, the performance element computes the distance between
the observation and every stored example. It returns as its decision the class
label of the closest example (i.e., the nearest neighbor). Implementations often
use Euclidean distance for numeric attributes and tally mismatches for sym-
bolic attributes. Variants of this method find the k closest instances (IBk) or
the k nearest neighbors (k-NN), returning the class with the majority vote as
the decision. For large sets of examples, performance can be expensive, but
there are methods of indexing examples for faster matching [41]. Instance-
based learning can be sensitive to irrelevant attributes, so one should apply
a method for feature selection. Good practice also dictates mapping numeric
attributes to the range [0, 1] so attributes with large values do not dominate
the distance calculation.

3.3.2 Naive Bayes

Naive Bayes stores as its concept description the prior probability of each class
and the conditional probability of each attribute value given the class. The
learning element estimates these probabilities from examples by simply count-
ing frequencies of occurrence. The prior probability is the portion of examples
from each class. The conditional probability is the frequency that attribute
values occur given the class. Given an observation, the performance element
operates under the assumption that attributes are conditionally independent
and uses Bayes’ rule to calculate the posterior probability of each class, return-
ing as the decision the class label with the highest probability. For continuous
attributes, implementations typically compute the mean and variance of such
values for each class, and during performance, compute the probability of an
attribute’s value as given by the normal distribution [42]. However, researchers
have shown that mapping continuous attributes to discrete intervals can im-
prove performance. In spite of violations of the independence assumption [43]
and sensitivity to irrelevant attributes [44], naive Bayes performs well on many
domains [45].

3.3.3 Kernel Density Estimation

A kernel density estimator is similar to naive Bayes. (See [19] for a general
discussion.) It stores the prior probabilities of each class, like naive Bayes,
but also stores each example. During performance, assuming attributes are
conditionally independent and normally distributed, it estimates the proba-
bility of a value given the class by averaging over Gaussian kernels centered
on each stored example. Learning is therefore a simple matter of storing each
example and computing the probability of each class. Experimental results
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suggest that a kernel density estimator is better than a single Gaussian for
handling continuous attributes [42].

3.3.4 Learning Coefficients of a Linear Function

For binary or numeric attributes, we can use as a model a linear function of
the attribute values with the form

y = w1x1 + · · · + wnxn + b ,

where x is the vector of attribute values, w is the vector of weights or coeffi-
cients, b is the intercept, and y is the output. Sometimes b is written as w0 and
called the threshold or bias [17]. This is similar to the “straight-line” model
discussed in Sect. 3.2. Given an observation, x, performance involves deter-
mining the sign of y. If y is positive, then the method predicts the positive
class, and predicts the negative class otherwise. Learning is then a process of
finding an appropriate intercept and set of weights.

Linear classifiers and linear discriminants have a long history. Fisher’s lin-
ear discriminant [46] is a special case of regression with two regressors [19]. The
perceptron algorithm is restricted to binary inputs and two-class problems,
but is guaranteed to converge to a solution if one exists [47] (i.e., if the positive
and negative examples are linearly separable; see Fig. 3.1b as an example).
Such methods find a solution, but do not necessarily find the optimal solu-
tion, defined as being the function that, in an informal sense, perfectly divides
or separates the positive and negative examples. Under some circumstances
(e.g., inputs are numeric rather than binary), no algorithm can converge to an
exact solution, but we can use methods, such as gradient descent, to find an
approximate solution. Solving both these problems, support vector machines
map examples to a (higher-dimensional) space where examples are linearly
separable and then find the optimal solution [48]. See [17] for a more detailed
discussion of linear classifiers.

3.3.5 Learning Decision Rules

A decision rule consists of an antecedent and a consequent. The antecedent is
simply a conjunction of attribute tests, and the consequent consists of a class
label. Performance entails determining if an observation’s attribute values sat-
isfy all of the rule’s conditions. If so, then the decision is the class label in the
rule’s consequent. An observation may satisfy no rule, but if necessary, we can
match flexibly by selecting the rule with the greatest number of conditions
satisfied. One method of learning rules is to select an example from a class
and generalize it as much as possible without intersecting examples from the
other classes. The algorithm removes any examples from the class that satisfy
the rule and continues until no examples remain. It repeats with each class in
the set of examples. AQ19 [49] is an implementation of this specific-to-general
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algorithm, while CN2 [50] is similar, but implements a general-to-specific al-
gorithm. RIPPER [51] also forms rules, but by growing them by repeatedly
adding conditions. Once formed, RIPPER prunes the rules to remove inef-
fective sequences of conditions. OneR forms a model using the single, most
predictive attribute [52].

3.3.6 Learning Decision Trees

A decision tree is a rooted tree with internal nodes corresponding to attributes
and leaf nodes corresponding to class labels. Internal nodes have a child node
for each value its associated attribute takes. The learning element generates
a tree recursively by selecting the attribute that best splits the examples
into their proper classes, creating child nodes for each value of the selected at-
tribute, and distributing the examples to these child nodes based on the values
of the selected attribute. The algorithm then removes the selected attribute
from further consideration and repeats for each child node until producing
nodes containing examples of the same class. These methods handle continu-
ous attributes by finding a threshold that best splits the examples into their
respective classes. Overtraining can occur, meaning that trees perform well on
training examples but perform poorly on unseen data, so as a post-processing
step, implementations may apply a pruning algorithm to remove nodes that
will likely lead to higher error. Performance is simply a traversal of the tree
from the root to a leaf node guided by the attribute values present in an obser-
vation. The class label of that leaf node is the prediction for the observation.
It is also possible to further process trees into decision rules [53]. C4.5 is the
quintessential program for learning decision trees [53]. The release comes with
C4.5-rules, which converts trees to rules. C5 and C5-rules are their respective
commercial successors. J48 is an implementation of the C4.5 algorithm present
in WEKA [24]. Decision stumps are one-level decision trees [54]. ID4 [33], ID5
[55], and ITI [56] are incremental algorithms for tree induction. VFDT is a
very fast algorithm for inducing decision trees that is particularly suitable for
data mining tasks, for it always grows trees from the leaf nodes and requires
no tree restructuring [57].

3.3.7 Mining Association Rules

Motivated by market-basket analysis, where we must discover patterns in bas-
kets of purchased items, association rules represent associations between sets
of attribute values [58]. They have an antecedent and a consequent, like deci-
sion rules. However, algorithms forming association rules return an exhaustive
set of rules. In contrast, algorithms for inducing decision rules typically pro-
duce a minimal set of rules. Indeed, as Witten and Frank describe, it is possible
to generate association rules using an algorithm for inducing decision rules by
running the algorithm on all combinations of attribute values [24, p. 104].



32 Machine Learning and Data Mining for Computer Security

The Apriori algorithm [59] generates all association rules that satisfy three
constraints: the number of attribute values to be used to form the rule,2 the
level of support the rule must have, and the level of confidence the rule must
have. Support is the percentage of the examples the rule matches. Confidence
is the percentage of the examples matching the antecedent that also match
the consequent. For example, we may use the Apriori algorithm to gener-
ate all association rules consisting of five attribute values, 66% support, and
50% confidence. Because association rules can potentially consider all possible
combinations of attribute values, the method is well suited for gaining insights
into a set of examples.

3.4 Evaluating Models

When a learning or mining algorithm builds a model from a set of examples,
the algorithm carrys out an inductive inference. That is, it reasons from ex-
amples to hypotheses, and such inference is uncertain.3 At issue then is how
to evaluate the “quality” of the models built by such algorithms.

We have only a finite set of examples, and we have presumably gathered
as many examples as possible. Furthermore, some unknown process generated
the examples we have. Let us call this unknown process the true or target
function, model, or concept. The model generated from a set of examples is
then an approximation to the true model. Ultimately, we want to determine
how well the induced model approximates the true model.

Since we have only a finite set of examples, evaluation involves splitting the
available examples into a training set and a testing set. Generally, we apply an
algorithm to the examples in the training set and evaluate the resulting model
using the examples in the test set. Since we know the labels of the examples in
the test set, we can compute a variety of performance metrics. One such metric
is simply the percentage of testing examples the model predicts correctly. This
process estimates the true error of the model, which is the error we can expect
when new observations arrive.

Researchers have devised a number of evaluation schemes, including hold-
out, leave-one-out, cross-validation, and bootstrap. The scheme we choose is
governed several factors including the number of examples available, the num-
ber and complexity of the algorithms we intend to evaluate, the amount of
computational resources available, and how well the evaluation scheme ap-
proximates the true error. This last consideration is the subject of investiga-
tion (e.g., [62]).

2 The set of such values is called an item set.
3 Some forms of induction are certain. Michalski’s conclusive induction [60] and

Cohen’s summative induction [61] are examples.
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Hold-out

The hold-out method randomly divides a data set once into training and
testing sets. We, of course, apply an algorithm to the training set and evaluate
the resulting model on the testing set, computing a performance metric, such
as percent correct. The proportion of examples in the training set varies, but
proportions of 50%, 66%, 75%, and 90% are common.

Leave-one-out

The leave-one-out method involves leaving one example out of the set of ex-
amples, building a model with those remaining, and evaluating it using the
held-out example. If classifying or detecting, the prediction will be either right
or wrong. We then repeat the process for each example in the set. The overall
accuracy is the accuracy averaged over the total number of runs or applica-
tions of the algorithm, which is equal to the number of examples in the data
set.

Cross-validation

The cross-validation method involves partioning the examples randomly into
n folds. (Ten is a fairly popular choice for n, but much depends on the num-
ber of examples available.) We use one partition as a testing set and use the
remaining partitions to form a training set. As before, we apply an algorithm
to the training set and evaluate the resulting model on the testing set, calcu-
lating percent correct. We repeat this process using each of the partitions as
the testing set and using the remaining partitions to form a training set. The
overall accuracy is the accuracy averaged over the number of runs, which is
equivalent to the number of partitions. Stratified cross-validation involves cre-
ating partitions so that the number of examples of each class is proportional
to the number in the original set of examples.

Bootstrap

The bootstrap method is a resampling technique that involves sampling with
replacement from a set of n examples to produce n sampled sets, each of n ex-
amples [63]. We then use the n bootstrap samples to estimate some statistic,
such as the population mean. We cannot use this method directly for evaluat-
ing learning and mining algorithms, for we must produce training and testing
sets. The .632 bootstrap [64] and the .632+ bootstrap [62] are methods appro-
priate for evaluating learning and mining algorithms. These methods are too
involved to discuss here, and they are often too computationally expensive to
apply to large data sets. Nonetheless, research suggests that they are superior
to other evaluation methods, such as cross-validation, for estimating the true
error of a classifier [62, 65].
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Common Measures of Performance

Once we have selected an algorithm and an evaluation methodology, we need
to select a performance metric. In previous sections, we have used accuracy
or percent correct. As we describe, it is not the only one.

Table 3.2. Quantities computed from a test set for a two-class problem

Predicted
+ −

Actual
+ a b
− c d

For two-class problems, a test case will be either positive or negative. The
performance element, when given a test case, will predict either correctly or
incorrectly. This yields four quantities that we can compute by applying a
model to a set of test cases, as shown in Table 3.2. For a set of test cases, let

• a be the number of times the model predicts positive when the example’s
label is positive,

• b be the number of times the model predicts negative when the example’s
label is positive,

• c be the number of times the model predicts positive when the example’s
label is negative,

• d be the number of times the model predicts negative when the example’s
label is negative.

Given these counts, we can define a variety of common performance met-
rics. For example, accuracy is the portion of the test examples that the model
correctly predicts:

a + d

a + b + c + d
.

Percent correct is simply accuracy expressed as a percentage. Other perfor-
mance metrics include:

• Error rate, being the portion of the examples in the test set the model
predicts incorrectly: (b + c)/(a + b + c + d).

• True-positive rate (tp), hit rate, detect rate, or sensitivity, being the por-
tion of the positive examples the model predicts correctly: a/(a + b).

• True-negative rate (tn), correct-reject rate, or specificity, being the portion
of the negative examples the model predicts correctly: d/(c + d).

• False-negative rate or miss rate, being the portion of the positive examples
the classifier predicts falsely as negative: b/(a + b). Also 1 − tp.

• False-positive rate or false-alarm rate, being the portion of the negative
examples the classifier predicted falsely as positive: c/(c + d). Also 1 − tn.
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Metrics common to document-retrieval tasks include:

• Recall (R), which is equivalent to the true-positive rate: a/(a + b).
• Precision (P ): a/(a + c).
• F-measure:

Fβ =
(β2 + 1)PR

β2P + R
,

where β is a parameter that adjusts the relative importance of precision
and recall.

Performance metrics not based on accuracy include the time an algorithm
requires to produce a model from a set of examples, the time an algorithm
requires to apply a model to a test set, and the size or complexity of the model
an algorithm produces.

For numeric prediction tasks, a common performance measure is the mean
squared error. Given n testing examples, for the ith example, let oi be the
model’s prediction for the actual value, yi. The mean squared error for the
test sample is

1
n

n∑
i=1

(yi − oi)2 . (3.1)

It is also common to take the square root of (3.1), which is called the root
mean squared (RMS) error. Instead of the squared error, researchers also use
the absolute error: |yi − oi|.

3.4.1 Problems with Simple Performance Measures

Researchers have made the case that evaluations using accuracy (or percent
correct or error) are problematic [66]. One problem is that accuracy does not
show how well a model predicts examples by class. For instance, if a testing set
contains many more negative examples than positive examples, high accuracy
could be due to the model’s exceptional performance on the majority (i.e.,
negative) class. Indeed, examining the true-positive rate may reveal that the
model performs quite poorly on positive cases.

Using the true-positive and true-negative rates (or the class accuracies)
as performance measures is a simple solution, but simple measures of perfor-
mance, such as accuracy and the true-positive rate, are problematic for other
reasons. These simple measures are appropriate only when certain conditions
hold, such as there being an equal number of examples in each class, the cost
of those examples being the same, and the cost of making mistakes on each
class being the same. For real-world problems, we will rarely be able to satisfy
all of these constraints.
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3.4.2 ROC Analysis

Researchers have used receiver operating characteristic (ROC) analysis [67] to
mitigate some of the problems with simple measures of performance, discussed
in the previous section. Briefly, ROC analysis provides a means of evaluating
an algorithm over a range of possible operating scenarios. This is in contrast
to traditional methods of evaluating performance in which we measure an
algorithm’s performance for only one operating scenario. Such scenarios stem
from a combination of factors, including the number of examples of each class,
the costs of mistakes being unequal, but unknown, and the examples not being
a truly representative sample.

An ROC curve is simply a plot of a model’s true-positive rate against its
false-positive rate, as shown in Fig. 3.2. With a true-positive rate of unity
and a false-positive rate of zero being perfect performance, we prefer curves
that “push” toward the upper left of the ROC graph. We often use the area
under the ROC curve (AUC) as a single measure of performance, a number
that ranges between 0.5 and 1.0, with larger areas preferred.

We will review three methods for evaluating an algorithm under various
operating scenarios. The first involves varying the decision threshold of the
performance element, and the exact way of doing this is usually specific to the
learning or mining method. For naive Bayes, for example, the performance
element returns the class with the maximum posterior probability, which,
for a two-class problem, is equivalent to a decision threshold of 0.5 (since
probabilities must sum to unity). So, we can change the decision threshold
of naive Bayes by predicting the positive class if its posterior probability is
greater than or equal to, say, 0.4. By evaluating performance at a variety of
thresholds, we generate a set of true-positive and false-positive rates, which we
can then plot as an ROC curve, similar to the one in Fig. 3.2a. To compute the
area under the curve, we can use the trapezoid rule, which entails summing
the areas of the trapezoids formed by two adjacent points on the curve.

The second method entails using the model to rate the test cases, rather
than to classify them. Let us again consider naive Bayes. For a two-class
problem, we can use the posterior probability of the negative class as a case
rating. Instead of indicating positive or negative, the rating indicates the
probability that a case is negative. We can then use software, such as labroc4
[68], to estimate an ROC curve from the case ratings. The software computes
operating points consisting of true-positive and false-positive rates, which we
can plot as an ROC curve, similar to the one in Fig. 3.2a. The program also
estimates parameters of a parametric ROC curve, which is based on normal
distributions, and we can use these parameters to plot a continuous ROC
curve, similar to the one pictured in Fig. 3.2b. labroc4 also computes the
areas and standard errors of both the empirical and parametric curves.

The third method uses case ratings and the predicted labels directly. We
begin by computing ∆x by dividing one by the number of positive examples
and ∆y by dividing one by the number of negative examples. After sorting the
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Fig. 3.2. Hypothetical ROC curves. (a) Generated from specific true-positive and
false-positive rates. (b) Generated from parameters of a parametric curve. (c) Gen-
erated from sorted ratings and labels
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predicted labels by their case rating, we start drawing an ROC curve from the
lower-left corner of the ROC space, where the true-positive and false-positive
rates are both zero. We process the sorted labels, and when we encounter a
negative label, we draw a vertical line of length ∆y, and when we encounter
a positive label, we draw a horizontal line of length ∆x. After processing all
of the predicted labels in this fashion, we will produce an ROC curve similar
to that pictured in Fig. 3.2c. We can compute the area under this curve by
summing the areas of the rectangles forming the curve.

Most evaluations of an algorithm will yield a set of ROC curves. For exam-
ple, ten-fold cross-validation will produce ten ROC curves, one for each fold.
To obtain a single ROC for the experiment, we can average the true-positive
and false-positive rates at each decision threshold and plot averaged rates. We
can also sort all of the ratings and predicted labels from the folds, and plot
the resulting curve. We can then compute the area under the final ROC curve
directly from the final ROC curve or by averaging the areas from individual
curves.

3.4.3 Principled Evaluations and Their Importance

Learning and mining algorithms carry out inductive inference on data sets
to produce models. These data sets, regardless of their size, are often small
samples of the space of possible examples. As a result, the models such algo-
rithms produce are approximations. We often use such models to make critical
decisions. Consequently, the importance of conducting principled evaluations
of such algorithms cannot be overstated.

We described a few of the pre-processing operations that researchers and
practitioners apply when transforming raw data into examples (see Sect. 3.2).
When evaluating algorithms, it is critically important to apply these opera-
tions only to the training examples and not to the testing examples. We must
apply such operations after creating training and testing sets. For example,
selecting the most relevant attributes before dividing a set of examples into
training and testing sets will invariably bias the evaluation of the resulting
model. The outcome of such an evaluation will probably be that the model’s
accuracy is higher than is the case. We will not discover this fact until after we
deploy the model and apply it to new observations. Depending on the domain,
this could be catastrophic.

It is impossible to determine a priori which algorithm will perform the best
on a given data set. Some algorithms work well across a large range of data
sets, problems, or tasks, but we cannot conclude that they will perform well
for any and all tasks. As a consequence, we must always evaluate as many
algorithms as possible. We should select a representative set of algorithms
that differ in their learning and performance elements, and their model rep-
resentations. For instance, it would be better to evaluate three algorithms
that produce different models than to evaluate three that all produce decision
trees.
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When evaluating several algorithms using, say, ten-fold cross-validation,
there are many sources of variability. Each of the ten training sets is slightly
different, so a given algorithm will produce slightly different models for each.
Some algorithms are unstable, meaning that a slight change in the training
set leads to a considerably different model [69]. Quantifying this variability
is as important as quantifying accuracy. One can choose from a number of
measures, such as variance, standard deviation, standard error, and confidence
intervals. Ideally, we would also apply a hypothesis test to determine if results
are significantly different [70, 71].

Because of such sources of variability, it is important to design an exper-
iment to eliminate the sources we can, thereby reducing the error variance
[72]. For example, whenever possible, it is best to apply all of the algorithms
to the same training sets and evaluate all of the resulting models to the same
testing sets. That is, whenever possible, it is better to use a within-subjects
design rather than a between-subjects design [72].

Similarly, it is important to evaluate algorithms under the same experi-
mental conditions. For instance, if we have many algorithms to evaluate, we
might be tempted to evaluate one algorithm using cross-validation on one
machine and evaluate another algorithm in the same manner on some other
machine, but this should be avoided. Potentially, each algorithm will learn
from different training examples, which introduces an unnecessary source of
variability. It would be better to distribute the training and testing sets across
the two machines and run both algorithms on each machine.

When evaluating a new algorithm, it is critically important to evaluate
it across a range of appropriate tasks, and to compare, either directly or
indirectly, to other algorithms designed for the task. Direct comparisons are
best, because we evaluate the competing algorithm under exactly the same
conditions as the new algorithm. When implementations are unavailable and
too complex to implement, then we can compare the new method to published
reports.

When evaluating an extension to an existing algorithm, it is common to
conduct a lesion study by comparing the original algorithm to the enhanced
version. Such an evaluation will show the effect of the modification and any
trade-offs in performance. Furthermore, comparing the enhanced algorithm to
other algorithms across a variety of appropriate problems will strengthen the
evaluation.

3.5 Ensemble Methods and Sequence Learning

The preceding sections provide a survey of some of the fundamental topics in
machine learning and data mining. Two topics that build upon these ideas are
ensemble methods and sequence learning. Both are important for applications
in computer security, and we briefly review them in the next two sections.
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3.5.1 Ensemble Methods

Researchers have recently begun investigating ensemble methods, which use
multiple models for prediction, rather than a single model. Critical to ensemble
methods is a scheme for producing a set of different models. Indeed, virtually
all algorithms will produce the same model when given the same training
data. While there are many techniques for creating multiple models, such
as stacking [73], arcing [69], and weighted majority [74], we will survey two
popular methods: bagging and boosting.

Bagging involves producing a set of bootstrap samples from a training
set, and then building a model from each sample [75]. To obtain a bootstrap
sample, we simply pick examples randomly with replacement (meaning that a
single example could be picked multiple times) until the bootstrap sample has
the same number of examples as the training set. We then use an algorithm
to build a model for each bootstrap sample. To classify an observation, we
obtain a prediction from each model, and the final prediction is the class label
with the majority of the predictions. For example, if we have eleven models
and six predict malicious and five predict benign, then the final prediction is
the majority: malicious. There have been several empirical studies suggesting
that bagging improves the performance of a single model on a variety of tasks
[76–79].

Boosting [80], which is a bit more complicated than bagging, also improves
the performance of single-model methods [76–79, 81]. We will give an infor-
mal account of boosting here, but, for more detail, see Witten and Frank’s
description [24] or Freund and Schapire’s original paper [82].

When applying an algorithm to a set of examples, some examples will be
easy for it to learn, and others will be difficult. After building a model from
a set of examples, because the model will perform well on some and not so
well on others, we will have some insights into which examples were easy to
learn and which were hard. This gives a way to weight the examples based on
their degree of difficulty. Algorithms, such as C4.5 [53], can use these weights
to produce a weighted model, which effectively focuses the algorithm on the
hard examples (i.e., those with high weights).

Thus, boosting entails iteratively weighting examples and building a de-
sired number of models. This produces a set of models, each with a weight
based on the model’s estimated accuracy. To classify an observation, boosting
applies each of the models to the observation, yielding a set of predictions.
Rather than returning the majority vote as the prediction, boosting predicts
the weighted majority vote.

3.5.2 Sequence Learning

For many applications, including some in computer security, a single event or
action is insufficient to identify some phenomena. For example, A occurring by
itself is not anomalous and B occurring by itself is, likewise, not anomalous.
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However, if A occurs and then B immediately occurs, then this sequence of ac-
tions might suggest malicious behavior. Individual commands or system calls
may not be sufficient for predicting, say, an intrusion. Detecting an intrusion
may require examining sequences of commands or sequences of system calls.

There are several approaches to supervised sequence learning; we will ex-
amine two: sliding windows and hidden Markov models. (See [83] for a review.)
With the first method, we use a moving window to transform a sequence into
a set of examples. Assume we have the malicious sequence abcb and a win-
dow of size two. We then create an example for each subsequence of size two,
giving the three examples: 〈 a, b, malicious 〉, 〈 b, c, malicious 〉, and 〈 c, b,
malicious 〉. After doing the same to benign sequences, we can apply many
of the methods discussed in Sect. 3.3.

Another way to approach this problem is using a hidden Markov model.
A Markov model consists of a set of states and a set of transition probabilities
[17]. As time advances, the model transitions from state to state, as dictated
by the transition probabilities. If the current state is always sufficient to de-
termine the next state, then the model is a first-order Markov model, and this
is known as the Markov assumption, thereby defining a memoryless process.

All of the states in this model are observable, but for some systems we
need to model, all could be hidden, or only some states could be hidden
(i.e., partially observable). If all of the states are hidden, then the only way
to observe a system’s behavior is through its outputs. And so a first-order
hidden Markov model (HMM) consists of a set of states, a set of transition
probabilities, a set of output symbols, and a set of output probabilities. Now,
as the model transitions between states, we cannot observe the actual states,
because they are hidden, but we can observe the output produced by it being
in these states.

There are three ways we can use HMMs [17]. First, given training data, we
can learn or estimate the transition and output probabilities. Second, given
a sequence of output symbols, we can calculate its probability. Third, given
a sequence of output symbols, we can calculate the probability of the model
being in each of the hidden states.

Consider the following simplified scenario: We want to build a model to
classify a user’s computing activity based on command sequences. A sequence
of UNIX commands such as 〈vi, make, gcc, a.out, gdb, vi〉 might imply
compiling activity, whereas 〈cp, tar, rm〉 might imply archiving activity. In
this scenario, the HMM’s output symbols are the commands, and the activities
are the hidden states.

One way to proceed is to use the HMM to infer whether a sequence of
commands is compiling, archiving, or malicious activity. This entails collecting
sequences of commands, labeling them, and using a training algorithm, such
as the forward-backward algorithm [84], to estimate the HMM’s probabilities.
During performance, given a sequence of commands, we can use the HMM to
infer the most likely hidden state, which corresponds to the user’s activity.
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As stated previously, this scenario is a simplification, but it does illustrate
one way of applying HMMs to a problem in computer security. In reality, it
is often difficult to collect malicious sequences of commands, but we can also
use HMMs to detect anomalous sequences of commands [85].

3.6 Implementations and Data Sets

Over the years, companies and researchers have developed numerous imple-
mentations of learning and mining algorithms. It is easy to find on the Internet
implementations of both individual algorithms and collections of algorithms.
Furthermore, the research community has diligently maintained publicly ac-
cessible data sets for a variety of domains.

KDnuggetsTM (http://www.kdnuggets.com) is a Web portal for data
mining, knowledge discovery, and related activities. There are links from this
site to software (both commercial and free), data sets, courses, conferences,
and other Web sites.

At the time of this writing, WEKA [24] is the most comprehensive, free
collection of tools for machine learning and data mining (http://www.cs.
waikato.ac.nz/ml/weka/). It is written in the Java programming language,
so it is portable to most platforms. It is distributed as open-source software, so
we can view the source code to learn about these methods, or we can modify
the source code for our own special purposes.

The most comprehensive repositories for a variety of data sets are the Ma-
chine Learning Database Repository (http://www.ics.uci.edu/˜mlearn/
MLRepository.html) [86] and the Knowledge Discovery in Databases Archive
(http://kdd.ics.uci.edu/) [87], both maintained by the Department of In-
formation and Computer Science at the University of California, Irvine.

The most widely used computer security data set was collected as part of
the DARPA Intrusion Detection Evaluation [88]. MIT Lincoln Labs collected
and distributes a variety of data sets based on network traffic and audit logs
(http://www.ll.mit.edu/IST/ideval). There are also data sets for specific
scenarios, such as a distributed denial of service attack by a novice.

Portions of this data collection have been used to support numerous em-
pirical studies. It was also used for the 1999 KDD Cup Competition, where
contestants had to build the best performing model for classifying connections
as either normal or one of four types of attack [89].

3.7 Further Reading

This chapter provides an overview of some of the basic concepts of machine
learning and data mining. Readers may be able to proceed to the other chap-
ters of this volume, or they may want to consult some of the cited books and
articles.
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For readers in this latter category, Witten and Frank’s book [24] is an ex-
cellent next step, mainly because readers can download WEKA, which consists
of free, open-source, high-quality Java implementations of an amazing num-
ber of algorithms for building models, selecting attributes, and other such
operations. Examining and experimenting with this software is a great way
to gain a better understanding of the practicalities of machine learning and
data mining.

There are two books about data mining approaches to computer security
complementary to this one. Mena [90] surveys several machine learning and
data mining technologies and describes companies, software, and case studies
of such technologies applied to a wide range of applications, including intrusion
detection, fraud detection, and criminal profiling. Reference [91] is a collection
of research articles, similar to the second part of this volume.

Readers with a concrete or practical understanding of such topics may
want to investigate sources that discuss these issues more generally and more
formally. Such references include those on pattern classification [17], statistical
pattern recognition [18, 19], information retrieval [20], machine learning [2,
21, 22], data mining [3, 23], and statistical learning [25]. Books dealing solely
with kernel methods and support vector machines include [92] and [93]. In this
chapter, there was little mention of neural networks, which certainly have a
role to play. Linear classifiers and the perceptron algorithm form the basis for
more powerful models, such as feed-forward neural networks trained with the
back-propagation algorithm. Reference [2] contains a chapter on the subject,
while [94] is a more thorough and formal treatment.

3.8 Concluding Remarks

In this chapter, we surveyed some of the basic concepts of machine learning
and data mining. It was an attempt to introduce some of the topics discussed
in the research contributions, and as such, it – hopefully – will give readers
new to these techniques a better ability to read the research contributions of
this volume. If not, then perhaps it has provided references for further study.
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Learning to Detect Malicious Executables�

Jeremy Z. Kolter and Marcus A. Maloof

4.1 Introduction

Malicious code is “any code added, changed, or removed from a software
system to intentionally cause harm or subvert the system’s intended function”
[95, p. 33]. Such software has been used to compromise computer systems, to
destroy their information, and to render them useless. It has also been used
to gather information, such as passwords and credit card numbers, and to
distribute information, such as pornography, all without the knowledge of
the system’s users. As more novice users obtain sophisticated computers with
high-speed connections to the Internet, the potential for further abuse is great.

Malicious executables generally fall into three categories based on their
transport mechanism: viruses, worms, and Trojan horses. Viruses inject ma-
licious code into existing programs, which become “infected” and, in turn,
propagate the virus to other programs when executed. Viruses come in two
forms, either as an infected executable or as a virus loader, a small program
that only inserts viral code. Worms, in contrast, are self-contained programs
that spread over a network, usually by exploiting vulnerabilities in the soft-
ware running on the networked computers. Finally, Trojan horses masquerade
as benign programs, but perform malicious functions. Malicious executables
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and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org
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do not always fit neatly into these categories and can exhibit combinations of
behaviors.

Excellent technology exists for detecting known malicious executables.
Software for virus detection has been quite successful, and programs such as
McAfee Virus Scan and Norton AntiVirus are ubiquitous. Indeed, Dell recom-
mends Norton AntiVirus for all of its new systems. Although these products
use the word virus in their names, they also detect worms and Trojan horses.

These programs search executable code for known patterns, and this
method is problematic. One shortcoming is that we must obtain a copy of
a malicious program before extracting the pattern necessary for its detection.
Obtaining copies of new or unknown malicious programs usually entails them
infecting or attacking a computer system.

To complicate matters, writing malicious programs has become easier:
There are virus kits freely available on the Internet. Individuals who write
viruses have become more sophisticated, often using mechanisms to change or
obfuscate their code to produce so-called polymorphic viruses [96, p. 339].
Indeed, researchers have recently discovered that simple obfuscation tech-
niques foil commercial programs for virus detection [97]. These challenges
have prompted some researchers to investigate learning methods for detecting
new or unknown viruses, and more generally, malicious code.

Our efforts to address this problem have resulted in a fielded application,
built using techniques from machine learning [2] and data mining [3]. The Ma-
licious Executable Classification System (MECS) currently detects unknown
malicious executables “in the wild,” that is, without removing any obfusca-
tion. To date, we have gathered 1, 971 system and non-system executables,
which we will refer to as “benign” executables, and 1, 651 malicious executa-
bles with a variety of transport mechanisms and payloads (e.g., key-loggers
and backdoors). Although all were for the Windows operating system, it is
important to note that our approach is not restricted to this operating system.

We extracted byte sequences from the executables, converted these into
n-grams, and constructed several classifiers: IBk, TFIDF, naive Bayes, sup-
port vector machines (SVMs), decision trees, boosted naive Bayes, boosted
SVMs, and boosted decision trees. In this domain, there is an issue of unequal
but unknown costs of misclassification error, so we evaluated the methods
using receiver operating characteristic (ROC) analysis [67], using area under
the ROC curve as the performance metric. Ultimately, boosted decision trees
outperformed all other methods with an area under the curve of 0.996.

We delivered MECS to the MITRE Corporation, the sponsors of this
project, as a research prototype. Users interact with MECS through a com-
mand line. They can add new executables to the collection, update learned
models, display ROC curves, and produce a single classifier at a specific op-
erating point on a selected ROC curve.

With this chapter, we make three main contributions. We show how es-
tablished methods for text classification apply to executables. We present
empirical results from an extensive study of inductive methods for detecting
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malicious executables in the wild. We report on a fielded application developed
using machine learning and data mining.

In the three sections that follow, we describe related work, our data col-
lection, and the methods we applied. Then, in Sect. 4.6, we present empirical
results, and in Sect. 4.7, we discuss these results and other approaches.

4.2 Related Work

There have been few attempts to use machine learning and data mining for the
purpose of identifying new or unknown malicious code. These have concen-
trated mostly on PC viruses, thereby limiting the utility of such approaches
to a particular type of malicious code and to computer systems running Mi-
crosoft’s Windows operating system. Such efforts are of little direct use for
computers running the UNIX operating system, for which viruses pose little
threat. However, the methods proposed are general, meaning that they could
be applied to malicious code for any platform, and presently, malicious code
for the Windows operating system poses the greatest threat.

In an early attempt, Lo et al. [98] conducted an analysis of several pro-
grams – evidently by hand – and identified telltale signs, which they subse-
quently used to filter new programs. While we appreciate their attempt to
extract patterns or signatures for identifying any class of malicious code, they
presented no experimental results suggesting how general or extensible their
approach might be. Researchers at IBM’s T.J. Watson Research Center have
investigated neural networks for virus detection [99], and have incorporated
a similar approach for detecting boot-sector viruses into IBM’s Anti-Virus
software [100].

Table 4.1. Results from the study conducted by Schultz et al. [101]

Method TP Rate FP Rate Accuracy (%)
Signature + hexdump 0.34 0.00 49.31
RIPPER + DLLs used 0.58 0.09 83.61
RIPPER + DLL function used 0.71 0.08 89.36
RIPPER + DLL function counts 0.53 0.05 89.07
Naive Bayes + strings 0.97 0.04 97.11
Voting Naive Bayes + hexdump 0.98 0.06 96.88

More recently, instead of focusing on boot-sector viruses, Schultz et al.
[101] used data mining methods, such as naive Bayes, to detect malicious
code. The authors collected 4, 301 programs for the Windows operating system
and used McAfee Virus Scan to label each as either malicious or benign.
There were 3, 301 programs in the former category and 1, 000 in the latter.
Of the malicious programs, 95% were viruses and 5% were Trojan horses.
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Furthermore, 38 of the malicious programs and 206 of the benign programs
were in the Windows Portable Executable (PE) format.

For feature extraction, the authors used three methods: binary profil-
ing, string sequences, and so-called hex dumps. The authors applied the first
method to the smaller collection of 244 executables in the Windows PE format
and applied the second and third methods to the full collection.

The first method extracted three types of resource information from the
Windows executables: (1) a list of Dynamically Linked Libraries (DLLs), (2)
function calls from the DLLs, and (3) the number of different system calls
from within each DLL. For each resource type, the authors constructed binary
feature vectors based on the presence or absence of each in the executable.
For example, if the collection of executables used ten DLLs, then they would
characterize each as a binary vector of size ten. If a given executable used a
DLL, then they would set the entry in the executable’s vector corresponding
to that DLL to one. This processing resulted in 2, 229 binary features, and in
a similar manner, they encoded function calls and their number, resulting in
30 integer features.

The second method of feature extraction used the UNIX strings com-
mand, which shows the printable strings in an object or binary file. The au-
thors formed training examples by treating the strings as binary attributes
that were either present in or absent from a given executable.

The third method used the hexdump utility [102], which is similar to the
UNIX octal dump (od -x) command. This printed the contents of the ex-
ecutable file as a sequence of hexadecimal numbers. As with the printable
strings, the authors used two-byte words as binary attributes that were either
present or absent.

After processing the executables using these three methods, the authors
paired each extraction method with a single learning algorithm. Using five-fold
cross-validation, they used RIPPER [51] to learn rules from the training set
produced by binary profiling. They used naive Bayes to estimate probabilities
from the training set produced by the strings command. Finally, they used
an ensemble of six naive-Bayesian classifiers on the hexdump data by training
each on one-sixth of the lines in the output file. The first learned from lines 1,
6, 12, . . . ; the second, from lines 2, 7, 13, . . . ; and so on. As a baseline method,
the authors implemented a signature-based scanner by using byte sequences
unique to the malicious executables.

The authors concluded, based on true-positive (TP) rates, that the vot-
ing naive Bayesian classifier outperformed all other methods, which appear
with false-positive (FP) rates and accuracies in Table 4.1. The authors also
presented ROC curves [67], but did not report the areas under these curves.
Nonetheless, the curve for the single naive Bayesian classifier appears to dom-
inate that of the voting naive Bayesian classifier in most of the ROC space,
suggesting that the best performing method was actually naive Bayes trained
with strings.
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However, as the authors discuss, one must question the stability of DLL
names, function names, and string features. For instance, one may be able to
compile a source program using another compiler to produce an executable
different enough to avoid detection. Programmers often use methods to ob-
fuscate their code, so a list of DLLs or function names may not be available.

The authors paired each feature extraction method with a learning method,
and as a result, RIPPER was trained on a much smaller collection of executa-
bles than were naive Bayes and the ensemble of naive-Bayesian classifiers.
Although results were generally good, it would have been interesting to know
how the learning methods performed on all data sets. It would have also been
interesting to know if combining all features (i.e., strings, bytes, functions)
into a single training example and then selecting the most relevant would
have improved the performance of the methods.

There are other methods of guarding against malicious code, such as object
reconciliation [96, p. 370], which involves comparing current files and directo-
ries to past copies; one can also compare cryptographic hashes. One can also
audit running programs [103] and statically analyze executables using prede-
fined malicious patterns [97]. These approaches are not based on data mining,
although one could imagine the role such techniques might play.

Researchers have also investigated classification methods for the determi-
nation of software authorship. Most notorious in the field of authorship are
the efforts to determine whether Sir Frances Bacon wrote works attributed
to Shakespeare [104], or who wrote the twelve disputed Federalist Papers,
Hamilton or Madison [105]. Recently, similar techniques have been used in
the relatively new field of software forensics to determine program authorship
[106]. Gray et al. [107] wrote a position paper on the subject of authorship,
whereas Krsul [108] conducted an empirical study by gathering code from
programmers of varying skill, extracting software metrics, and determining
authorship using discriminant analysis. There are also relevant results pub-
lished in the literature pertaining to the plagiarism of programs [109, 110],
which we will not survey here.

Krsul [108] collected 88 programs written in the C programming language
from 29 programmers at the undergraduate, graduate, and faculty levels. He
then extracted 18 layout metrics (e.g., indentation of closing curly brackets),
15 style metrics (e.g., mean line length), and 19 structure metrics (e.g., per-
centage of int function definitions). On average, Krsul determined correct
authorship 73% of the time. Interestingly, of the 17 most experienced pro-
grammers, he was able to determine authorship 100% of the time. The least
experienced programmers were the most difficult to classify, presumably be-
cause they had not settled into a consistent style. Indeed, they “were surprised
to find that one [programmer] had varied his programming style considerably
from program to program in a period of only two months” [111, §5.1].

While interesting, it is unclear how much confidence we should have in
these results. Krsul [108] used 52 features and only one or two examples for
each of the 20 classes (i.e., the authors). This seems underconstrained, espe-
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cially when rules of thumb suggest that one needs ten times more examples
than features [112]. On the other hand, it may also suggest that one simply
needs to be clever about what constitutes an example. For instance, one could
presumably use functions as examples rather than programs, but for the task
of determining authorship of malicious programs, it is unclear whether such
data would be possible to collect or if it even exists. Fortunately, as we discuss
in the next section, a lack of data was not a problem for our project.

4.3 Data Collection

As stated previously, the data for our study consisted of 1, 971 benign executa-
bles and 1, 651 malicious executables. All were in the Windows PE format.
We obtained benign executables from all folders of machines running the Win-
dows 2000 and XP operating systems. We gathered additional applications
from SourceForge (http://sourceforge.net).

We obtained viruses, worms, and Trojan horses from the Web site VX
Heavens (http://vx.netlux.org) and from computer-forensic experts at the
MITRE Corporation, the sponsors of this project. Some executables were ob-
fuscated with compression, encryption, or both; some were not, but we were
not informed which were and which were not. For one collection, a commer-
cial product for detecting viruses failed to identify 18 of the 114 malicious
executables. Note that for viruses, we examined only the loader programs; we
did not include infected executables in our study.

We used the hexdump utility [102] to convert each executable to hexadeci-
mal codes in an ASCII format. We then produced n-grams, by combining each
four-byte sequence into a single term. For instance, for the byte sequence ff
00 ab 3e 12 b3, the corresponding n-grams would be ff00ab3e, 00ab3e12,
and ab3e12b3. This processing resulted in 255, 904, 403 distinct n-grams. One
could also compute n-grams from words, something we explored and discuss
further in Sect. 4.6.1. Using the n-grams from all of the executables, we ap-
plied techniques from information retrieval and text classification, which we
discuss further in the next section.

4.4 Classification Methodology

Our overall approach drew techniques from information retrieval (e.g., [20])
and from text classification (e.g., [113, 114]). We used the n-grams extracted
from the executables to form training examples by viewing each n-gram as
a binary attribute that is either present in (i.e., 1) or absent from (i.e., 0)
the executable. We selected the most relevant attributes (i.e., n-grams) by
computing the information gain (IG) for each:

IG(j) =
∑

vj∈{0,1}

∑
C∈{Ci}

P (vj , C) log
P (vj , C)

P (vj)P (C)
,
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where C is the class, vj is the value of the jth attribute, P (vj , C) is the
proportion that the jth attribute has the value vj in the class Ci, P (vj) is the
proportion that the jth n-gram takes the value vj in the training data, and
P (C) is the proportion of the training data belonging to the class C. This
measure is also called average mutual information [115].

We then selected the top 500 n-grams, a quantity we determined through
pilot studies (see Sect. 4.6.1), and applied several learning methods, most of
which are implemented in WEKA [24]: IBk, TFIDF, naive Bayes, a support
vector machine (SVM), and a decision tree. We also “boosted” the last three of
these learners, and we discuss each of these methods in the following sections.

4.4.1 Instance-Based Learner

One of the simplest learning methods is the instance-based (IB) learner [40].
Its concept description is a collection of training examples or instances. Learn-
ing, therefore, is the addition of new examples to the collection. To classify an
unknown instance, the performance element finds the example in the collec-
tion most similar to the unknown and returns the example’s class label as its
prediction for the unknown. For binary attributes, such as ours, a convenient
measure of similarity is the number of values two instances have in common.
Variants of this method, such as IBk, find the k most similar instances and
return the majority vote of their class labels as the prediction. Values for k
are typically odd to prevent ties. Such methods are also known as nearest
neighbor and k-nearest neighbors.

4.4.2 The TFIDF Classifier

For the TFIDF classifier, we followed a classical approach from information
retrieval [20]. We used the vector space model, which entails assigning to
each executable (i.e., document) a vector of size equal to the total number of
distinct n-grams (i.e., terms) in the collection. The components of each vector
were weights of the top n-grams present in the executable. For the jth n-gram
of the ith executable, the method computes the weight wij , defined as

wij = tf ij × idf j ,

where tf ij (i.e., term frequency) is the number of times the ith n-gram ap-
pears in the jth executable and idf j = log d

dfj
(i.e., the inverse document

frequency), where d is the total number of executables and df j is the number
of executables that contain the jth n-gram. It is important to note that this
classifier was the only one that used continuous attribute values; all others
used binary attribute values.

To classify an unknown instance, the method uses the top n-grams from
the executable, as described previously, to form a vector, u, the components
of which are each n-gram’s inverse document frequency (i.e., uj = idf j).
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Once formed, the classifier computes a similarity coefficient (SC) between
the vector for the unknown executable and each vector for the executables in
the collection using the cosine similarity measure:

SC(u,wi) =

∑k
j=1 ujwij√∑k

j=1 u2
j · ∑k

j=1 w2
ij

,

where u is the vector for the unknown executable, wi is the vector for the ith
executable, and k is the number of distinct n-grams in the collection.

After selecting the top five closest matches to the unknown, the method
takes a weighted majority vote of the executable labels, and returns the class
with the least weight as the prediction. It uses the cosine measure as the
weight. Since we evaluated the methods using ROC analysis [67], which re-
quires case ratings, we summed the cosine measures of the negative executa-
bles in the top five, subtracted the sum of the cosine measures of the positive
executables, and used the resulting value as the rating. In the following dis-
cussion, we will refer to this method as the TFIDF classifier.

4.4.3 Naive Bayes

Naive Bayes is a probabilistic method that has a long history in informa-
tion retrieval and text classification [116]. It stores as its concept description
the prior probability of each class, P (Ci), and the conditional probability of
each attribute value given the class, P (vj |Ci). It estimates these quantities
by counting in training data the frequency of occurrence of the classes and of
the attribute values for each class. Then, assuming conditional independence
of the attributes, it uses Bayes’ rule to compute the posterior probability of
each class given an unknown instance, returning as its prediction the class
with the highest such value:

C = argmax
Ci

P (Ci)
∏
j

P (vj |Ci) .

For ROC analysis, we used the posterior probability of the negative class as
the case rating.

4.4.4 Support Vector Machines

Support vector machines (SVMs) [48] have performed well on traditional text
classification tasks [113, 114, 117], and performed well on ours. The method
produces a linear classifier, so its concept description is a vector of weights,
w, and an intercept or a threshold, b. However, unlike other linear classifiers,
such as Fisher’s, SVMs use a kernel function to map training data into a
higher dimensioned space so that the problem is linearly separable. It then
uses quadratic programming to set w and b such that the hyperplane’s margin
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is optimal, meaning that the distance is maximal from the hyperplane to the
closest examples of the positive and negative classes. During performance, the
method predicts the positive class if 〈w ·x 〉− b > 0 and predicts the negative
class otherwise. Quadratic programming can be expensive for large problems,
but sequential minimal optimization (SMO) is a fast, efficient algorithm for
training SVMs [118] and is the one implemented in WEKA [24]. During per-
formance, this implementation computes the probability of each class [119],
and for ROC analysis, we used probability of the negative class as the rating.

4.4.5 Decision Trees

A decision tree is a tree with internal nodes corresponding to attributes and
leaf nodes corresponding to class labels. For symbolic attributes, branches
leading to children correspond to the attribute’s values. The performance
element uses the attributes and their values of an instance to traverse the
tree from the root to a leaf. It predicts the class label of the leaf node. The
learning element builds such a tree by selecting the attribute that best splits
the training examples into their proper classes. It creates a node, branches, and
children for the attribute and its values, removes the attribute from further
consideration, and distributes the examples to the appropriate child node.
This process repeats recursively until a node contains examples of the same
class, at which point, it stores the class label. Most implementations use the
gain ratio for attribute selection [53], a measure based on the information
gain. In an effort to reduce overtraining, most implementations also prune
induced decision trees by removing subtrees that are likely to perform poorly
on test data. WEKA’s J48 [24] is an implementation of the ubiquitous C4.5
algorithm [53]. During performance, J48 assigns weights to each class, and we
used the weight of the negative class as the case rating.

4.4.6 Boosted Classifiers

Boosting [82] is a method for combining multiple classifiers. Researchers have
shown that ensemble methods often improve performance over single classifiers
[79, 120]. Boosting produces a set of weighted models by iteratively learning
a model from a weighted data set, evaluating it, and reweighting the data set
based on the model’s performance. During performance, the method uses the
set of models and their weights to predict the class with the highest weight. We
used the AdaBoost.M1 algorithm [82] implemented in WEKA [24] to boost
SVMs, J48, and naive Bayes. As the case rating, we used the weight of the
negative class. Note that we did not apply AdaBoost.M1 to IBk because of
the high computational expense.
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4.5 Experimental Design

To evaluate the approaches and methods, we used stratified ten-fold cross-
validation. That is, we randomly partitioned the executables into ten disjoint
sets of equal size, selected one as a testing set, and combined the remaining
nine to form a training set. We conducted ten such runs using each partition
as the testing set.

For each run, we extracted n-grams from the executables in the training
and testing sets. We selected the most relevant features from the training
data, applied each classification method, and used the resulting classifier to
rate the examples in the test set.

To conduct ROC analysis [67], for each method, we pooled the ratings
from the iterations of cross-validation, and used labroc4 [68] to produce an
empirical ROC curve and to compute its area and the standard error of the
area. With the standard error, we computed 95% confidence intervals [67]. We
present and discuss these results in the next section.

4.6 Experimental Results

We conducted three experimental studies using our data collection and exper-
imental methodology, described previously. We first conducted pilot studies to
determine the size of words and n-grams, and the number of n-grams relevant
for prediction. Once determined, we applied all of the classification methods
to a small collection of executables. We then applied the methodology to a
larger collection of executables, all of which we describe in the next three
sections.

4.6.1 Pilot Studies

We conducted pilot studies to determine three quantities: the size of n-grams,
the size of words, and the number of selected features. Unfortunately, due to
computational overhead, we were unable to evaluate exhaustively all methods
for all settings of these parameters, so we assumed that the number of features
would most affect performance, and began our investigation accordingly.

Using the experimental methodology described previously, we extracted
bytes from 476 malicious executables and 561 benign executables and pro-
duced n-grams, for n = 4. (This smaller set of executables constituted our
initial collection, which we later supplemented.) We then selected the best 10,
20, . . . , 100, 200, . . . , 1, 000, 2, 000, . . . , 10, 000 n-grams, and evaluated the
performance of an SVM, boosted SVMs, naive Bayes, J48, and boosted J48.
Selecting 500 n-grams produced the best results.

We fixed the number of n-grams at 500, and varied n, the size of the
n-grams. We evaluated the same methods for n = 1, 2, . . . , 10, and n = 4
produced the best results. We also varied the size of the words (one byte, two
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bytes, etc.), and results suggested that single bytes produced better results
than did multiple bytes.

And so by selecting the top 500 n-grams of size four produced from single
bytes, we evaluated all of the classification methods on this small collection
of executables. We describe the results of this experiment in the next section.

4.6.2 Experiment with a Small Collection

Processing the small collection of executables produced 68, 744, 909 distinct
n-grams. Following our experimental methodology, we used ten-fold cross-
validation, selected the 500 best n-grams, and applied all of the classification
methods. The ROC curves for these methods are in Fig. 4.1, while the areas
under these curves with 95% confidence intervals are in Table 4.2.

Table 4.2. Results for detecting malicious executables in the small collection. Areas
under the ROC curve (AUC) with 95% confidence intervals

Method AUC
Naive Bayes 0.8850±0.0247
J48 0.9235±0.0204
Boosted Naive Bayes 0.9461±0.0170
TFIDF 0.9666±0.0133
SVM 0.9671±0.0133
IBk, k = 5 0.9695±0.0129
Boosted SVM 0.9744±0.0118
Boosted J48 0.9836±0.0095

As one can see, the boosted methods performed well, as did the instance-
based learner and the support vector machine. Naive Bayes did not perform
as well, and we discuss this further in Sect. 4.7.

4.6.3 Experiment with a Larger Collection

With success on a small collection, we turned our attention to evaluating the
text-classification methods on a larger collection of executables. As mentioned
previously, this collection consisted of 1, 971 benign executables and 1, 651
malicious executables, while processing resulted in over 255 million distinct n-
grams of size four. We followed the same experimental methodology – selecting
the 500 top n-grams for each run of ten-fold cross-validation, applying the
classification methods, and plotting ROC curves.

Figure 4.2 shows the ROC curves for the various methods, while Table 4.3
presents the areas under these curves (AUC) with 95% confidence intervals.
As one can see, boosted J48 outperformed all other methods. Other methods,
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Fig. 4.1. ROC curves for detecting malicious executables in the small collection.
(a) The entire ROC graph. (b) A magnification
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Fig. 4.2. ROC curves for detecting malicious executables in the larger collection.
(a) The entire ROC graph. (b) A magnification
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Table 4.3. Results for detecting malicious executables in the larger collection. Areas
under the ROC curve (AUC) with 95% confidence intervals

Method AUC
Naive Bayes 0.9366±0.0099
J48 0.9712±0.0067
TFIDF 0.9868±0.0045
Boosted Naive Bayes 0.9887±0.0042
IBk, k = 5 0.9899±0.0038
Boosted SVM 0.9903±0.0038
SVM 0.9925±0.0033
Boosted J48 0.9958±0.0024

such as IBk and boosted SVMs, performed comparably, but the ROC curve
for boosted J48 dominated all others.

4.7 Discussion

To date, our results suggest that methods of text classification are appropriate
for detecting malicious executables in the wild. Boosted classifiers, IBk, and a
support vector machine performed exceptionally well given our current data
collection. That the boosted classifiers generally outperformed single classifiers
echos the conclusion of several empirical studies of boosting [69, 78, 79, 82],
which suggest that boosting improves the performance of unstable classifiers,
such as J48, by reducing their bias and variance [69, 78]. Boosting can ad-
versely affect stable classifiers [78], such as naive Bayes, although in our study,
boosting naive Bayes improved performance. Stability may also explain why
the benefit of boosting SVMs was inconclusive in our study [69].

Our experimental results suggest that the methodology will scale to larger
collections of executables. The larger collection in our study contained more
than three times the number of executables in the smaller collection. Yet,
as one can see in Tables 4.2 and 4.3, the absolute performance of all of the
methods was better for the larger collection than for the smaller. The relative
performance of the methods changed somewhat. For example, the SVM moved
from fourth to second, displacing the boosted SVMs and IBk.

Visual inspection of the concept descriptions yielded interesting insights,
but further work is required before these descriptions will be directly useful
for computer-forensic experts. For instance, one short branch of a decision
tree indicated that any executable with two PE headers is malicious. After
analysis of our collection of malicious executables, we discovered two executa-
bles that contained another executable. While this was an interesting find, it
represented an insignificantly small portion of the malicious programs.
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Leaf nodes covering many executables were often at the end of long
branches where one set of n-grams (i.e., byte codes) had to be present and
another set had to be absent. Understanding why the absence of byte codes
was important for an executable being malicious proved to be a difficult and
often impossible task. It was fairly easy to establish that some n-grams in the
decision tree were from string sequences and that some were from code se-
quences, but some were incomprehensible. For example, one n-gram appeared
in 75% of the malicious executables, but it was not part of the executable
format, it was not a string sequence, and it was not a code sequence. We have
yet to determine its purpose.

Nonetheless, for the large collection of executables, the size of the decision
trees averaged over 10 runs was about 90 nodes. No tree exceeded 103 nodes.
The heights of the trees never exceeded 13 nodes, and subtrees of heights of 9
or less covered roughly 99.3% of the training examples. While these trees did
not support a thorough forensic analysis, they did compactly encode a large
number of benign and malicious executables.

To place our results in context with the study of Schultz et al. [101], they
reported that the best performing approaches were naive Bayes trained on
the printable strings from the program and an ensemble of naive-Bayesian
classifiers trained on byte sequences. They did not report areas under their
ROC curves, but visual inspection of these curves suggests that with the
exception of naive Bayes, all of our methods outperformed their ensemble of
naive-Bayesian classifiers. It also appears that our best performing methods,
such as boosted J48, outperformed their naive Bayesian classifier trained with
strings.

These differences in performance could be due to several factors. We an-
alyzed different types of executables: Their collection consisted mostly of
viruses, whereas ours contained viruses, worms, and Trojan horses. Ours con-
sisted of executables in the Windows PE format; about 5.6% of theirs was in
this format.

Our better results could be due to how we processed byte sequences.
Schultz et al. [101] used non-overlapping two-byte sequences, whereas we used
overlapping sequences of four bytes. With their approach it is possible that
a useful feature (i.e., a predictive sequence of bytes) would be split across a
boundary. This could explain why in their study string features appeared to
be better than byte sequences, since extracted strings would not be broken
apart. Their approach produced much less training data than did ours, but
our application of feature selection reduced the original set of more than 255
million n-grams to a manageable 500.

Our results for naive Bayes were poor in comparison to theirs. We again
attribute this to the differences in data extraction methods. Naive Bayes is
well known to be sensitive to conditionally dependent attributes [45]. We used
overlapping byte sequences as attributes, so there were many that were con-
ditionally dependent. Indeed, after analyzing decision trees produced by J48,
we found evidence that overlapping sequences were important for detection.
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Specifically, some subpaths of these decision trees consisted of sequentially
overlapping terms that together formed byte sequences relevant for prediction.
Schultz et al.’s [101] extraction methods would not have produced condition-
ally dependent attributes to the same degree, if at all, since they used strings
and non-overlapping byte sequences.

Regarding our experimental design, we decided to pool a method’s rat-
ings and produce a single ROC curve (see Sect. 4.5) because labroc4 [68]
occasionally could not fit an ROC curve to a method’s ratings from a single
fold of cross-validation (i.e., the ratings were degenerate). We also considered
producing ROC convex hulls [32] and cost curves [121], but determined that
traditional ROC analysis was appropriate for our results (e.g., the curve for
boosted J48 dominated all other curves).

In our study, there was an issue of high computational overhead. Selecting
features was expensive, and we had to resort to a disk-based implementa-
tion for computing information gain, which required a great deal of time and
space to execute. However, once selected, WEKA’s [24] Java implementations
executed quickly on the training examples with their 500 binary attributes.

In terms of our approach, it is important to note that we have investigated
other methods of feature extraction. For instance, we examined whether print-
able strings from the executable might be useful, but reasoned that subsets of
n-grams would capture the same information. Indeed, after inspecting some
of the decision trees that J48 produced, we found evidence suggesting that
n-grams formed from strings were being used for detection. Nonetheless, if we
later determine that explicitly representing printable strings is important, we
can easily extend our representation to encode their presence or absence. On
the other hand, as we stated previously, one must question the use of printable
strings or DLL information since compression and other forms of obfuscation
can mask this information.

We also considered using disassembled code as training data. For malicious
executables using compression, being able to obtain a disassembly of critical
sections of code may be a questionable assumption. Moreover, in pilot studies,
a commercial product failed to disassemble some of our malicious executables.

We considered an approach that runs malicious executables in a sandbox
and produces an audit of the machine instructions. Naturally, we would not
be able to completely execute the program, but 10, 000 instructions may be
sufficient to differentiate benign and malicious behavior. We have not pur-
sued this idea because of a lack of auditing tools, the difficulty of handling
large numbers of interactive programs, and the inability of detecting malicious
behavior occurring near the end of sufficiently long programs.

There are at least two immediate commercial applications of our work. The
first is a system, similar to MECS, for detecting malicious executables. Server
software would need to store all known malicious executables and a compa-
rably large set of benign executables. Due to the computational overhead of
producing classifiers from such data, algorithms for computing information
gain and for evaluating classification methods would have to be executed in
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parallel. Client software would need to extract only the top n-grams from a
given executable, apply a classifier, and predict. Updates to the classifier could
be made remotely over the Internet. Since the best performing method may
change with new training data, it will be critical for the server to evaluate
a variety of methods and for the client to accommodate any of the potential
classifiers. Used in conjunction with standard signature methods, these meth-
ods could provide better detection of malicious executables than is currently
possible.

The second is a system oriented more toward computer-forensic experts.
Even though work remains before decision trees could be used to analyze ma-
licious executables, one could use IBk or the TFIDF classifier to retrieve
known malicious executables similar to a newly discovered malicious exe-
cutable. Based on the properties of the retrieved executables, such a system
could give investigators insights into the new executable’s function. However,
it remains an open issue whether an executable’s statistical properties are pre-
dictive of its functional characteristics, an issue we are currently investigating
and one we discuss briefly in the concluding section.

4.8 Concluding Remarks

We considered the application of techniques from information retrieval and
text classification to the problem of detecting unknown malicious executables
in the wild. After evaluating a variety of classification methods, results suggest
that boosted J48 produced the best classifier with an area under the ROC
curve of 0.996. Our methodology resulted in a fielded application called MECS,
the Malicious Executable Classification System, which we have delivered to
the MITRE Corporation.

In future work, we plan to investigate a classification task in which meth-
ods determine the functional characteristics of malicious executables. Detect-
ing malicious executables is important, but after detection, computer-forensic
experts must determine the program’s functional characteristics: Does it mass-
mail? Does it modify system files? Does it open a backdoor? This will entail
removing obfuscation, such as compression, if possible. Furthermore, most
malicious executables perform multiple functions, so each training example
will have multiple class labels, a problem that arises in bioinformatics and in
document classification.

We anticipate that MECS, the Malicious Executable Classification System,
is but one step in an overall scheme for detecting and classifying “malware.”
When combined with approaches that search for known signatures, we hope
that such a strategy for detecting and classifying malicious executables will
improve the security of computers. Indeed, the delivery of MECS to MITRE
has provided computer-forensic experts with a valuable tool. We anticipate
that pursuing the classification of executables into functional categories will
provide another.
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Data Mining Applied to Intrusion Detection:
MITRE Experiences

Eric E. Bloedorn, Lisa M. Talbot, and David D. DeBarr

5.1 Introduction

As computers and the networks that connect them become increasingly im-
portant for the storage and retrieval of vital information, efforts to protect
them become even more important. As illustrated by the Internet Storm Cen-
ter (http://isc.sans.org/), systems connected to the Internet are subject
to frequent probes and intrusion attempts; and organizations now deploy an
array of measures to counteract these attacks. Intrusion detection serves a
significant role in network defense; and a number of intrusion detection sys-
tems (IDSs) are now available, including Snort, RealSecure, and Dragon. Most
IDSs rely on static signatures of attacks to separate them from normal traffic.
However, new types of attacks are constantly being developed, and system
administrators spend increasing effort to keep these signatures up to date.

MITRE’s network security attempts to detect malicious intrusions by hav-
ing all alerts reviewed by human analysts. Without automated support, how-
ever, this task has become increasingly difficult due to the volume of alerts.
In one day, sensors can generate about 850, 000 alerts, of which about 18, 000
are labeled priority 1, the most severe. Attacks and probes can be frequent
and noisy, generating thousands of alerts in a day. This can create a burden
on the network security analyst, who must perform a kind of triage on the
enormous flood of alerts.

Data mining can play a useful role in intrusion detection. In our research,
we have pursued both classification and clustering approaches to see how they
can be used to improve MITRE’s network defense. Our goal in applying these
methods is to reduce the number of false alarms presented to network analysts
while maintaining the ability to detect unusual alert events. Toward this goal,
we developed and continue to refine an alert aggregation procedure, a classi-
fier for identifying mapping episodes, and a ranking process to identify those
episodes that are more than simple probes and may disguise more malicious
activity. To reduce false alarms, we developed a novel classification method
by incrementally learning decision trees and decision rules. To detect anoma-
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lous activity, we also developed a clustering approach based on the k-means
algorithm.

With this combination of approaches (aggregation, false-alarm filtering,
and then cluster-based anomaly detection), we have been able to significantly
reduce the number of alerts that need to be reviewed by human analysts.
For example, in one 5-day period, 71, 094 priority 1 alerts were reduced to
1, 011 (over a 98% reduction). This lets analysts spend more time reviewing
unusual alerts and potentially more stealthy attacks, and thus increase system
security.

In the process of this development, we addressed a number of problems,
including a lack of labeled data for supervised classification, incidents with
many alerts that drown out smaller classes, the need to identify behavior at
an incident level whereas data is represented at an individual alert level, and
difficulty of detecting both interesting anomalies as well as known attacks.

We have evaluated components of our approach on operational data col-
lected from the MITRE network and on data used for the 1999 KDD Cup
competition [89].

This paper gives a description of how MITRE is exploring use of data min-
ing methods to improve the processing of network alerts. We present back-
ground on MITRE’s network intrusion detection and related work. We then
describe initial feature selection, aggregation, classification, and ranking pro-
cesses. We then present a decision-tree and clustering approach for removing
false alarms and identifying anomalies.

5.1.1 Related Work

Classification has been repeatedly applied to the problem of intrusion detec-
tion either to classify events into separate attack categories (e.g., the 1999
KDD Cup Competition) [89] or to characterize normal use of a network ser-
vice [122]. In our application, the greatest need was to reduce the amount of
false alarms requiring human review. The ability to further label events into
specific attack categories is useful, but not essential. The problem of coming
up with attack categories that have clear distinctions (and thus consistent
labels) for a team of human analysts is nontrivial. For this reason, we built a
false-alarm classifier rather than an n-way attack classifier, as has been done
in previous applications of data mining to intrusion detection [123].

We are primarily seeking to improve the performance of an existing net-
work defense system rather than trying to replace current intrusion detection
methods with a data mining approach. While current signature-based com-
mercial intrusion detection methods have limitations, they do still provide
important services and represent significant investments by an organization.
This required us to determine how data mining could be used in a comple-
mentary way to existing measures and led to our use of network alert data
rather than raw connection data. In this sense, our work is similar to that of
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Lee et al. [124] and Manganaris et al. [125]. Lee et al. used a classification al-
gorithm called RIPPER to update the rules used by Network Flight Recorder
(NFR), a commercial real-time network monitoring tool. Manganaris et al.
used association rules from Intelligent Miner to reduce false alarms generated
by NetRanger’s sensors.

5.1.2 MITRE Intrusion Detection

MITRE’s network infrastructure supports several thousand internal users,
many customer collaborative networks, public Web servers, and multiple high-
speed connections to the Internet. To protect these systems, MITRE incor-
porates a layered defense posture [126], which includes the deployment of
filtering routers, state-aware firewalls, dedicated proxy servers, and intrusion
detection, coupled with regular vulnerability assessments.

MITRE’s approach to developing data mining processes to support intru-
sion detection is documented by Bloedorn et al. [127] and Skorupka et al. [128].
A general architecture illustrating our use of data mining is shown in Fig. 5.1.1

Network traffic is analyzed by a variety of available signature-based intrusion
detection sensors. All this sensor data is pulled periodically to a central server
for processing, and loaded into a relational database. Analysts review incident
data and individual alerts through the analyst interface. This interface is a
Web server front end to the database that allows analysts to launch a number
of predefined queries as well as free-form SQL queries.

Interface

Processes

Network

IDS IDS

IDS

Analyst

Database

Fig. 5.1. MITRE sensors feed into overall intrusion detection system

The nerve center of MITRE’s intrusion detection system is the processing.
This processing includes data loading, aggregation, filtering, classification, and
ranking to support data analysis. Details of some of the processes that are part

1 For security reasons, we cannot reveal details of the MITRE network architecture.
But we do employ a variety of sensor types located throughout the network both
in front of and behind firewalls.
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of MITRE’s intrusion detection system are shown in Fig. 5.2. Events from the
sensor data are filtered by a Heuristic for Obvious Mapping Episode Recogni-
tion (HOMER) before being passed on to the Back-End Analysis and Review
of Tagging (BART), and then on to the classifier and clustering analyses.
These data mining tools filter false alarms and identify anomalous behavior
in the large amounts of remaining data and are described in more detail in
later sections. All but the clustering tools are in daily operation.

Aggregation
HOMER
Filtering

BART

Classifier Clusterer

Human
Analysis

Records

Fig. 5.2. Data mining processes in MITRE’s intrusion detection system

The goal of this operational model is to detect malicious intrusions by
presenting alerts to analysts for review. In order to make the best use of
limited analyst time, we want to present the most likely alerts, aggregated by
incident, and ranked according to potential severity.

5.2 Initial Feature Selection, Aggregation, Classification,
and Ranking

Automated classification of false alarms would be of great value in the net-
work security domain, but immediate application of decision-tree or rule-based
methods was not possible. In order to use these methods, we needed labeled
examples of true attacks and false alarms. But to get these labels would mean
even more work for human analysts. Our objective was to classify with mini-
mal human intervention. To address this problem, we developed a Web-based
feedback system that made the labeling and aggregation of alerts into inci-
dents as easy as possible. Using this feedback, we were able to collect over
10, 000 labeled examples per month of 7 different classes of incidents.

The Web-based analyst interface is useful, but it does not completely solve
the problem of obtaining labeled examples because analysts were being flooded
with alerts from only one type of network event. We discovered that around
90% of the alerts (around 600, 000 in June 2000) sent to the analysts were
being generated by a small number of mapping attacks. In mapping attacks,
an external host machine sends requests to multiple IP addresses in order to
identify those machines running certain services. Obvious mapping episodes
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can involve hundreds of machines over a period of just a few minutes. These
mapping incidents were clogging our analysts’ queues and preventing us from
getting more labeled examples. Before advanced data mining approaches could
be considered, this problem of mapping episodes (data aggregation) needed
to be addressed.

Figure 5.3 shows how we use aggregation, mapping episode classifica-
tion (HOMER), and tagging review (BART) in MITRE network operations.
First, millions of alerts are aggregated by source IP address into thousands
of episodes. HOMER classifies these episodes as a mapping if the number of
destination IP addresses is greater than a threshold and then BART ranks the
mapping episodes according to a computed severity. Those alerts deemed not
to be part of a mapping episode are sent to a classifier to filter false alarms.
Those records found to be benign by the classifier are sent to a cluster-based
anomaly detector for additional testing. The following sections describe each
of these processes in more detail.

Scan

#dstips

source dest

HOMERAggregation

Non−scan
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Fig. 5.3. Aggregation, mapping episode classifier (HOMER), and tagging review
(BART) in MITRE’s intrusion detection system

5.2.1 Feature Selection and Aggregation

A subtle obstacle to learning in the network security domain is the problem
of learning descriptions of incidents from examples of alert events. Our data
source for this work is a collection of reports (stored in the central server in
Fig. 5.1) collected from a variety of network sensors. Each entry in that table is
a record of a single alert from a single sensor and has attributes such as source
IP address, destination IP address, and time. (A complete list of attributes
appears in Tables 5.5–5.11 at the end of this chapter.) One difficulty with
using this data directly for data mining is that the data are at the wrong level
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of granularity. It would be more appropriate to learn at the level of an incident
attack (i.e., a collection of alerts). But we cannot aggregate alerts into attacks
until we know what kind of attack it is. An important question is, Which do
we do first, the classification or the aggregation? We attempt to overcome this
problem by providing context for each individual alert. To do this requires a
number of additional attributes. We currently have 97 attributes beyond those
given directly by the sensors. Examples of the additional attributes include
the number of records with the same source IP and destination IP in the
last day, and the number of records with the same source IP and destination
port in the last day. Inclusion of these context features appears to allow us to
use simpler approaches to classification and clustering and still achieve good
performance.

The aggregation process operates on a batch of alert records from multiple
sensors in the database. It aggregates records generated during a time window
according to a simple aggregation criterion, such as by common source IP
address.

Aggregates that pass a filter are tagged by HOMER as mapping incidents
and all associated records are then removed from analyst view. Thus, HOMER
tags obvious mapping episodes in order to prevent mapping episode alerts from
flooding analysts’ work queues.

5.2.2 HOMER

HOMER is a simple filter classifier, described in more detail by Skorupka
et al. [128], that tags aggregates as mapping episodes according to a simple
heuristic. If the number of destination addresses in the aggregate incident
exceeds a threshold, set by domain experts to the 99.5th percentile, then it
is classified as a mapping incident. This threshold was chosen based on a
review of a random sample of incidents for the 99th percentile. All alerts
associated with an incident are summarized so that analysts do not have to
review them individually. Thus, if a source IP communicates with an unusually
large number of destination machines in a short period of time, the associated
records are summarized and removed from analyst review.

The reduction obtained by filtering events with HOMER is significant. For
example, for the period of Sep. 18 to Sep. 23, 2000, MITRE network sensors
generated 4, 707, 323 alerts, with 71, 094 labeled priority 1. After HOMER,
there were 2, 824, 559 with 3, 690 priority 1. This is a reduction of 40% overall
and 94% for priority 1.

5.2.3 BART Algorithm and Implementation

BART is a process that generates a score for aggregated network sensor alerts
that have been tagged as mapping episodes by HOMER. The score indicates
the potential that the mapping episode is more than a benign mapping and
can help analysts focus attention on critical alerts. Based on Axelsson’s [129]
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taxonomy, BART is a member of the programmed class of signature-based in-
trusion detection systems. It looks for clues of unusual behavior in a collection
of alerts that make up a mapping episode.

BART computes scores based on domain-specific metrics to identify spe-
cific characteristics. The current implementation of BART contains three met-
rics. These metrics are combined as a scaled product to generate the severity
ranking that is scaled to a range [1, 99], with 99 being the most severe. This
scale was chosen to suit the Web-based analyst interface. BART also produces
a summary report with details from each metric that helps analysts in their
investigation of the incident.

BART Metrics

BART currently considers three metrics for detecting anomalous incidents:
coverage, popularity, and uniqueness. Additional metrics could be easily added
to the process. Here, we define an event as the label assigned by the sensor to
the individual network alert.

Coverage

Each of the alerts in a mapping episode targets a set of destination IPs. If
each event in a mapping episode covers all of the destination IPs targeted in
the episode, then we expect that the mapping episode is a simple mapping.
On the other hand, if a particular event is directed toward a small subset of
destination IPs, it might indicate that a vulnerability has been detected and
further exploits have been attempted against a host. This metric indicates a
more focused attack toward a subset of targets.

We compute coverage as

c = 99

(
1 −

min
E

(ndstip)

Ndstip

)
, (5.1)

where E is the set of unique events in the incident, min
E

(ndstip) is the minimum

number of distinct destination IPs for any unique event in the incident, and
Ndstip is the total number of unique destination IP addresses in the incident.

The coverage metric detects events that target few destination IPs with
events that are not part of the mapping episode. Coverage is inversely pro-
portional to the percentage of destination addresses associated with the least
widely distributed event in the incident.

Suppose, for example, that there are 1, 000 events labeled “Scan Proxy”
to 1, 000 unique destination IPs and two “WEB MISC” events to two of
the destination IPs, all from the same source IP. Then min

E
(ndstip) = 2 and

Ndstip = 1, 000, so c = 98.8. The “WEB MISC” events are suspicious because
they did not cover the IP space covered by the “Scan Proxy” probe.
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Popularity

For a benign mapping episode, we expect that the number of alerts will be
uniformly distributed over all of the destination IPs. If a particular target is
significantly “popular” (targeted with a larger percentage of the records in
the incident), the additional attention toward one host might indicate that it
has been attacked.

We compute popularity as

p =
{

5ν − 1 if ν < 20 ;
99 otherwise ,

(5.2)

where

ν =
max

D
(nr)

n̄d
, (5.3)

and D is the set of unique destination IP addresses in the incident, max
D

(nr)

is the maximum number of records associated with any destination IP in the
incident, and n̄d is the average number of records per destination IP for the
incident.

The popularity metric detects incidents that target destination IPs with a
disproportionately large number of records. Popularity is proportional to the
ratio of the maximum number of events per destination address to the average
number of events per destination address.

For example, consider an incident that has 1, 000 events labeled “Scan
Proxy” to 1, 000 unique destination IPs and 100 additional events of various
types to one destination IP in the set, all from the same source IP. Then
max

D
(nr) = 101 and n̄d = 1.1, so ν = 91.8 and p = 99. The additional events

directed toward the single IP are suspicious because they target one particular
host, indicating higher interest by the source in that host.

Uniqueness

There are a number of records associated with each of the unique events in the
incident. For a benign mapping episode, we expect that the number of records
for each of the events would be approximately the same. If a particular event
has significantly fewer records than the average number of records per event
in the incident, it might indicate that a unique event, or an additional exploit,
is included with the mapping.

Uniqueness is computed as

u = 99

(
1 −

min
E

(nr)

Nr

)
, (5.4)

where E is the set of unique events in the incident, min
E

(nr) is the minimum

number of records for a unique alert in the incident, and Nr is the total number
of records in the incident.
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The uniqueness metric detects incidents for which there are few records
associated with any given event associated with the incident. Uniqueness is
inversely proportional to the percentage of records associated with the least
used event in the incident.

Consider an example with 1, 000 events labeled “Scan Proxy” to 1, 000
unique destination IPs and one “WEB MISC” alert to one destination IP.
Then min

E
(nr) = 1 and Nr = 1, 001, so u = 98.9. The “WEB MISC” event

is suspicious because there is only one alert of that type, whereas events in
simple mappings are usually directed to most or all of the destination IPs in
the incident.

BART Severity Ranking

The BART severity ranking combines coverage, popularity, and uniqueness
metrics into a single score of incident severity, s. The combination could be
done in many ways. We use the simple formula

s = 100(1 − c′p′u′) , (5.5)

where c′, p′, and u′ are scaled functions of the coverage, popularity, and
uniqueness metrics. We take one minus the product so that any of the scaled
metrics with a low value will result in a low product that will give a high
severity. Thus, if any of the metrics are strongly triggered, the severity will
be high.

A scaled function of coverage, popularity, and uniqueness metrics allows
us to control the number of cases that are given a high severity value. The
metric scaling can be done in many ways. We want to invert the value and also
have a sharp increase as the metric decreases, so we chose to use the function

m′ = 1 − α ln(1 − m/100) , (5.6)

where m is the metric (i.e., c, p, or u), m′ is the scaled metric, and α is a
tunable weight factor.

In our implementation, we weighted popularity and uniqueness by α ≈ 0.1
and coverage by α ≈ 0.2. This scaling emphasizes the coverage metric.

5.2.4 Other Anomaly Detection Efforts

Although not always the case, a possible attack strategy might include using
separate clients to find computers on the network, to find vulnerable services
on a target, and to exploit those vulnerabilities. Additional anomaly detection
strategies have been designed to include the identification of port scanning
incidents and vulnerability scanning incidents.

Port scanning is a form of probe where a potential intruder checks to see
what well-known services are being offered by a particular host. An unusually
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large number of “common” ports targeted on any single host by a single client
is a good indication of a port scan. Common ports to be monitored include
those listed in Appendix A of the SANS Top 20 Most Critical Vulnerabilities
document [130]. These ports include the File Transfer Protocol (FTP), the
Simple Mail Transfer Protocol (SMTP), the Domain Name Service (DNS), the
Hypertext Transfer Protocol (HTTP), the Post Office Protocol (POP3), the
Internet Message Access Protocol (IMAP), the Simple Network Management
Protocol (SNMP), the Network Basic Input Output System (NetBIOS), and
other ports. Although it might be common for networks to offer a few of
these protocols as external services, it would be unusual to find many of these
services provided by a single machine.

Vulnerability scanning is a form of probe where a potential intruder
launches a battery of exploits against a particular service. For example, the
Nessus Security Scanner could be used to probe an HTTP server for vulnera-
bilities. This is considerably more aggressive than a simple network mapping
probe. An unusually large number of IDS signatures generated by a single
client for a single target is a good indication of a vulnerability scan.

A connection logger is the best sensor to monitor for port scanning and
host mapping incidents. With the ever-increasing power of today’s personal
computers, it is relatively easy to periodically check for incidents using a
24-hour monitoring window. The distribution of the number of common ports
per source/destination pair, and the distribution of the number of IDS sig-
natures per source/destination pair, appear to follow an exponential decay
model. There are many small values and very few large values. A value from
the tail of each distribution can be used as a threshold to identify port scans
and vulnerability scans, based on a review of a random sample of possible in-
cidents from the 99th percentile. Prioritization of these alerts should account
for the fact that scans from internal hosts may be considered to be more
significant than scans from external hosts.

5.3 Classifier to Reduce False Alarms

With initial feature selection, aggregation, classification, and ranking in place,
analysts were able to detect and label more events (about 4, 000 per week),
but there was still a need to reduce the total number of alerts. To do this, we
needed to build a classifier that could learn from large numbers of examples,
provide comprehensible rules for filtering false alarms, and support incremen-
tal updates as new types of attacks and false alarms were identified over time.
Our approach was to construct an incremental learning algorithm based on
C4.5 [53], a decision-tree/rule generator.

5.3.1 Incremental Classifier Algorithm

The incremental classifier algorithm we developed uses domain-knowledge
(DK) rules in addition to labeled training examples. These DK rules can be
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directly provided by some expert or, in the case of an incremental learning ap-
plication, provided by an earlier iteration of the algorithm. The goal of these
rules is to modify the attribute selection process during tree construction so
that lower scoring attributes can be chosen if the knowledge encoded in the
rules indicates such a preference.

The challenge is to balance these preferences against the data. If we have
only rules, we learn the same classifier as in a previous iteration. With only
data, we learn a classifier fit to the current set of data, but are forgetful of the
past. With both rules and data, it is hoped the classifier is informed, but not
overwhelmed by historic and current data. An initial study in this area using a
modification of C4.5 on ten data sets with four different metrics for attribute
closeness confirmed that it is possible to consistently choose an alternative
attribute (other than the top-scoring one) without, on average, significantly
degrading classification accuracy.

We have developed a grammar for representing domain-knowledge rules.
This grammar is shown in Fig. 5.4. Each <rule> starts with a sign or a signed
number. A positive sign indicates the rule is encouraging the selection of an
attribute. A negative sign indicates the rule is discouraging the selection of
an attribute by the decision tree. The number at the start of a rule is used
for comparison of scores, explained later.

<theory> ::= <pragma> <rule list> EOF
<pragma> ::= rank | percent
<rule list> ::= { <rule> }*
<rule> ::= <rating> : <simple rule>;
<rating> ::= { - | + } <number>
<simple rule> ::=

<attribute value pair> { , <attribute value pair> }*
<attribute value pair> ::=

<optional name> <attribute value operator> <optional name>
<optional name> ::= <name> | *
<attribute value operator> ::= = | > | >= | < | <=

Fig. 5.4. Grammar for knowledge representation

Each <simple rule> includes attribute names and their values. In each
<simple rule>, the presence of at least one <attribute value pair> is re-
quired; multiple pairs are separated by commas. In each <attribute value
pair>, the presence of at least one name is required and the other name could
be an asterisk (*), meaning all values.

We modified the original decision-tree procedure, as indicated in the fol-
lowing algorithm:
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Given a set of vectors E described by attributes A:
1. Find the best attribute a given examples E
2. Apply Domain Knowledge rules to adjust attribute ordering
3. Split the set of examples E into subsets E1, . . . , En such that all

examples in Ei have a = vi, for i = 1, . . . , n.
4. Check for each Ei

a) If all examples belong to the same class then build leaf node
and stop

b) Else goto Step 1 with examples in Ei

Step 2, Apply Domain Knowledge, applies the provided positive and neg-
ative preferences. If a knowledge fragment shows that there is a preference for
splitting a certain attribute a, while the data-driven algorithm has selected
another attribute, b, for splitting, then the two attributes, a and b, are com-
pared for their rank or percentage. In the percentage method, an applicable
preference rule with rating r applies its information gain score to its chosen
attribute adjusted by r × 100%. For example, if r = +0.1, the information
gain score is increased by 10% (and attribute a may now have a higher score
than b). Then, the split method continues as usual in the algorithm. For rank,
we extend the split method in a similar way. Instead of finding the single best
candidate, the split method finds all applicable tests and sorts them by their
gain ratio score. If an attribute preferred in a DK rule is in the top N scores
it becomes the top attribute for tree construction regardless of the value of
its information gain score.

To use DK from previous iterations, the user selects beforehand a pref-
erence method (rank or percentage) and a threshold. We have found empiri-
cally that a rank > 3 or a percentage threshold ≤ 10% works best. Because
we feel it is more important for old attacks to be remembered, the sign is
always set to positive for old rules. With these defaults previously learned
rules (e.g., connection = outbound → class False Alarm) are interpreted
as “percent +10 connection = outbound.”

5.3.2 Classifier Experiments

Our experiments in false-alarm classification used MITRE operational data
labeled by analysts for the time period from Aug. 7, 2000, to Jan. 22, 2001.
We then experimented with a number of different incremental approaches. We
found methods that forget old examples based on a window of time resulted
in slightly worse performance than one that did not forget (i.e., a full-memory
approach). Therefore, we need a system that can remember relevant examples
for long periods of time, but which will not grow the training data so fast that
training times become excessive. To do this, we use a variant of a full-memory
approach that stores only the unique examples in the training data. In the
first trial, we trained on data from Aug. 7 to Aug. 20 (inclusive), and then
tested using data from Aug. 21 to Aug. 27. Trial 2 trained on data from Aug. 7
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to Aug. 27 and then tested on data from the week starting Aug. 28. Following
this pattern, we obtained 23 trials (1 week had no data). The trials were found
to be a very difficult environment for data mining: Only 17 weeks had any
false alarms, the percentage of false-alarm events in a single trial week varied
from zero to 79%, and the total number of examples in a trial week varied
from a low of 5 to a high of 6, 159. Furthermore, the data was labeled by six
different operators, but no one labeled data for more than 15 of the 24 weeks.
These large fluctuations in the makeup of the data did have some effect on the
performance of the classifier. The worst performance was on the week with
only 5 test examples labeled by an operator who was just starting.

Over the 23 trials, the learned models averaged a predictive accuracy of
88%, a detection rate of 91%, and a false-alarm rate of 12.61%, as shown in
Table 5.1. Predictive accuracy is the proportion of correctly classified samples
of all samples. Detection rate is also called the true-positive rate or sensitivity,
and is the proportion of correctly classified positive samples of all the true-
positive samples. False-alarm rate is also called the false-positive rate, and is
the proportion of incorrectly classified negative samples of all the true-negative
samples.

Another useful metric for measuring the effectiveness of these models is
to compare them to baseline constant models that always predict attack or
false alarm. Compared to a model that always predicts attack, the learned
models have 10% better accuracy and remove 7, 876 more true false alarms.
Compared to a model that always predicts false alarm, the learned models
are 69% more accurate and correctly identify 36, 976 more true attacks.

Table 5.1. Classification results for false-alarm reduction on MITRE data

Labeled Type Detected Type
Total False Alarm Anomaly

Number Number Percent Number Percent
False Alarm 8, 653 7, 876 91.02% 777 8.98%
Attack 42, 312 5, 336 12.61% 36, 976 87.39%

The high detection rate of false alarms is operationally useful because
it reduces the workload on human analysts, but the 5, 336 false positives is
problematic because these represent attacks mistakenly labeled as benign.

We then tried the incremental learning algorithm described above, which
accepted both training examples and rules. For the first week, we ran C4.5
on a set of data, originally without any domain knowledge. Then we used the
results of this first iteration as knowledge fragments for running C4.5 on a
new set of data. The results were used in turn as domain knowledge for the
third iteration and so on. The goal was to build accurate, simple classifiers.
But it is also interesting to note how rules persist in progressive data sets. We
do not have exhaustive results, but anecdotal evidence shows that concepts
do drift and return in this application. For example, we observed the following
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behavior for the discovered rules over 25 intrusion detection data sets collected
over a progressive period of time. The following two rules first appeared in
iteration 1, and made it to iterations 2 and 3:

Rule 2: connection = outbound → class False Alarm [99.9%]
Rule 5: connection = mitre → class False Alarm [99.2%]

The following rule first appeared in iteration 5, then in iteration 7, then it-
erations 10 through 13, then iteration 18, and finally in iterations 24 and
25:

Rule 5: srcipzone = boundary → class False Alarm [85.7%]

Table 5.2 compares the error rates for running C4.5 without our modifica-
tions against the new algorithm (C4.5 with our modifications to use domain
knowledge). The error rate of the DK tree approach has about half the aver-
age error rate when no DK is used (7.0% vs. 13.5%) and has a much shorter
average running time (114.8 sec vs. 1.4 sec), much fewer rules (41.6 rules vs.
4.6 rules), and improved stability over time (17.3 vs. 11.3 max error rate).

The next section describes a second stage of analysis we perform on this
data in order to reduce the number of missed attacks.

5.4 Clustering to Detect Anomalies

The previously described classifier has reasonable precision, but attacks may
still slip by, especially if they are new. Human review is difficult, again, due
to the volume of alerts. An unsupervised learning approach, specifically clus-
tering, can help with this overload to prioritize the false alarms based on a
likelihood of being an anomaly [131, 132]. Unsupervised anomaly detection
may also identify new attacks that are not explicitly characterized by the
classifier. If the identified anomalies correspond to attacks, the clustering ap-
proach will be beneficial to the intrusion detection process. In addition to
the benefits of prioritizing alerts and potentially identifying new attacks, the
resulting cluster model can also give insight into the characteristics of the
unique and dynamic nature of alerts for a particular network.

Clustering was evaluated in two experiments. The first evaluation, using
data from the 1999 KDD Cup Competition, provided evidence of how well
clustering might work for network attacks. The second experiment on MITRE
operational data evaluated how well such an approach will work for our needs.
In the KDD Cup experiments, we examined clustering for anomaly detection
with a reference model. In this scenario, we generated a cluster model from
data considered to be normal network traffic and used this model to identify
potential anomalies in a batch of alert data different from the training data.
A collection of normal alert data does not yet exist in the MITRE data, so
a slightly different approach was needed for this data. In this experiment,
we trained a cluster model from all alert data classified as false alarm by
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Table 5.2. Error rates, run time, and number of rules for two versions of false-alarm
classifier on 25 weeks of data

With DK No DKRun
Error Time # Error Time #

1 6.5 0.9 6 6.5 0.8 6
2 0.3 1.0 8 24.2 3.6 11
3 1.3 0.8 5 11.3 3.7 13
4 0.5 1.1 4 0.3 4.6 15
5 1.1 1.1 4 3.7 6.9 17
6 17.6 0.6 0 9.2 7.9 18
7 12.8 2.0 8 51.9 11.5 19
8 17.6 3.0 5 1.4 44.4 37
9 3.4 0.8 5 24.6 26.4 23

10 1.6 1.3 5 17.3 51.9 40
11 0.9 10.0 13 2.3 78.9 42
12 2.9 2.2 5 6.7 59.4 33
13 41.4 1.5 9 50.7 117.7 53
14 0 0.1 0 60.0 127.9 49
15 0 0 0 0.1 131.5 51
16 0 0.2 0 2.5 137.2 51
17 0.5 0.4 0 0.8 134.1 43
18 22.0 0.6 2 20.6 177.0 46
19 33.5 0.8 12 11.2 163.3 62
20 0 0.3 7 0 213.8 61
21 0.2 0.5 0 21.1 218.4 63
22 0 0.5 3 1.1 253.3 73
23 0.8 1.3 0 1.2 286.1 69
24 11.1 1.9 5 7.6 365.8 74
25 0 2.3 10 0.1 244.0 72

Avg. 7.0 1.4 4.6 13.5 114.8 41.6

the previously described classifier. The goal was to identify anomalies in this
clean data. The generated model is then used to prioritize the same data set
for human review.

5.4.1 Clustering with a Reference Model on KDD Cup Data

Anomalies can be more easily identified with a reference model built from
clean, non-anomalous data. With this approach, we first generate a reference
model from previously identified, normal data. Then, in a separate process,
we assign new data to the nearest cluster in the reference model and apply
an outlier criterion to determine those records that are different from normal.
We tested this approach on the 1999 KDD Cup data set with its large volume
of labeled normal training data. In practice, the explicitly labeled data may
not be available, but a body of mostly normal training data may be identified.
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In generating the reference model, we selected only the normal training
data and then subsampled 20 to 1 to reduce data volume from 972, 522 to
48, 626 records. We excluded the service field because it takes on too many
values. We then generated multiple k-means models using SPSS Clementine
[133], an interactive data mining tool, with several arbitrarily chosen numbers
of clusters: k = 3, 5, 10, 20, and 40. The k-means algorithm uses a Euclidean
distance measure. The distance between an individual alert and an alert clus-
ter is the distance between the alert and the cluster centroid. The reason for
multiple models is that there may be patterns in the data at multiple levels.
A different value of k will yield a model that captures different underlying
patterns in the data. Ideally, a validity measure could be computed for each
of the different values of k to help identify those that best fit the data. In this
work, we chose the k-values arbitrarily.

Once the models are generated, they can be used to identify anomalies in
the 311, 029 test records. For each of the cluster models, the record is assigned
to its closest cluster, and a distance to that cluster centroid is computed. We
determined the minimum distance over all models as the simple anomaly
metric. This metric is based on the argument that a data record with a very
small minimum distance must be well-represented by at least one cluster model
and is therefore likely to be a normal record. Other outlier metrics could be
computed as well. For instance, a cluster validity measure could be used to
weight each distance.

A threshold for determining whether the records are normal or anomalous
can be determined from the outlier metrics for each record. In this example, we
sorted the distances in descending order and found the point with the sharpest
decrease, indicating a transition from anomalous data that is not well-fitted
by the reference model and normal data that is similar to the model. To
determine this transition, we computed the point of maximum slope as the
change in distance over a 1% increment of records. A more robust method that
takes into account previous performance could be explored in future work.

With labeled data, we can evaluate the performance of this approach.
Table 5.3 shows that at a threshold of 74% of the records, the false-alarm rate
is 1.81%, and the detection rate is 91.47%.

Table 5.3. Clustering results for 1999 KDD Cup data with threshold equal to 74%
of records

Labeled Type Detected Type
Total False Alarm Anomaly

Number Number Percent Number Percent
Normal 60, 593 59, 497 98.19% 1, 096 1.81%
Attack 250, 436 21, 371 8.53% 229, 065 91.47%
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5.4.2 Clustering without a Reference Model on MITRE Data

Clustering without a reference model means that we do not have a separate
set of training data. We use a batch of network data to generate a cluster
model and then use the model to identify anomalies on the same data set. We
tested this approach on false-alarm output of a classifier for MITRE network
data.

In these experiments, we used the k-means algorithm implemented in SPSS
Clementine. For this example, we first used the classification model trained
on data from Sep. 18, 2000, to Sep. 22, 2000, to filter known false alarms
(Sect. 5.2). When we applied this false-alarm classifier to data from the pe-
riod, Sep. 18, 2000, to Sep. 22, 2000, 2, 880 events were labeled as false alarms
and 810 were labeled as attacks. Of the 2, 880 records, 8 were known anoma-
lies. These false alarms were input to the clustering algorithm for anomaly
detection. We did not have a measure of cluster validity to determine the
best number of clusters, k, for the model. Instead, we evaluated arbitrarily
chosen values of k for performance on this data and found that k = 3 worked
well. Intuitively, a small number of clusters would not over-fit the data, al-
lowing outliers to be detected. We currently use a simple outlier criterion,
the distance to the nearest cluster centroid. Other outlier criteria are possible
[132]. The data is ranked in order of distance, with records of highest distance
considered most likely to be anomalous.

For evaluation purposes, we applied a simple threshold algorithm to iden-
tify the sharpest drop in distances as the break between anomalous and nor-
mal. As with the KDD Cup data, we chose the threshold to be the point
of maximum slope computed as change in distance over 1% increments of
records. In practice, this threshold would more likely be determined by the
number of records that human reviewers could evaluate or by the number of
false alarms that could be tolerated in the system. Here, the data is partially
labeled by human reviewers. The labels are not used in the clustering process
but only to estimate performance of the approach. Performance is only an
estimate because the data is incompletely labeled.

Although these results are preliminary, using this approach we found some
of the rare anomalous alerts. Given 2, 880 alert events containing 8 known
anomalies, 7 of the 8 were ranked in the top 20 events. All 8 were found in the
top 225. The threshold based on maximum slope is at 201 (7%). With this
threshold, the false-alarm rate is 6.75% and detection rate is 87.5% as shown
in Table 5.4.

5.5 Conclusion

This paper gives a description of how MITRE is using data mining to im-
prove the processing of network alerts. Our goals in this work are to reduce
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Table 5.4. Clustering results for classifier false-alarm output on MITRE data with
a threshold of 201 records

Labeled Type Detected Type
Total False Alarm Anomaly

Number Number Percent Number Percent
Normal 2, 872 2, 678 93.25% 194 6.75%
Attack 8 1 12.50% 7 87.50%

the number of false alarms generated by existing network sensors and to de-
tect unusual alert events that may correspond to new attacks. To this end, we
use a combination of decision trees and k-means clustering. When tested in
23 trials using MITRE data from Aug. 7, 2000, to Jan. 22, 2001, the classifi-
cation approach had an overall detection rate of 91% and a false-alarm rate of
less than 13%. The approach also significantly reduced the number of alerts
requiring human review. Preliminary clustering results with both KDD Cup
and MITRE operational data show that this approach has potential for accu-
rate anomaly detection. With the KDD Cup data, the clustering model has a
false-alarm rate of only 1.8% and a detection rate of 91.5%. Based on an initial
experiment using MITRE data, the false-alarm rate is 6.75% and detection
rate is 87.5%.

Table 5.5. Incident Label, pertaining to the record’s incident, if one exists

Name Type Description / Sample Value
INCIDENTCLASSLABELID Short The classification ID of the associated

incident, if one exists
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Intrusion Detection Alarm Clustering

Klaus Julisch

6.1 Introduction

Over the past 10 years, the number as well as the severity of network-based
computer attacks have significantly increased [134]. As a consequence, classic
information security technologies, such as authentication and cryptography,
have gained in importance. Simultaneously, intrusion detection has emerged
as a new and potent approach to protect information systems [135, 136].
In this approach, so-called intrusion detection systems (IDSs) are used to
monitor information systems for signs of security violations. Having detected
such signs, IDSs trigger alarms to report them. These alarms are presented
to a human operator who evaluates them and initiates an adequate response.
Examples of possible responses include law suits, firewall reconfigurations, and
the repairing of discovered vulnerabilities.

Evaluating intrusion detection alarms and conceiving an appropriate re-
sponse was found to be a challenging task. In fact, practitioners [125, 137] as
well as researchers [138, 139] have observed that IDSs can easily trigger thou-
sands of alarms per day, up to 99% of which are false positives (i.e., alarms
that were mistakenly triggered by benign events). This flood of mostly false
alarms makes it very difficult to identify the hidden true positives (i.e., those
alarms that correctly flag attacks). For example, the manual investigation of
alarms has been found to be labor-intensive and error-prone [125, 137, 140].
Tools to automate alarm investigation are being developed [140–142], but
there is currently no silver-bullet solution to this problem.

In a series of past publications [139, 143–145], we have introduced a novel
semiautomatic approach for handling intrusion detection alarms efficiently.
Central to this approach is the notion of alarm root causes. Intuitively, the
root cause of an alarm is the reason for which it occurs. We have made the key
observation that in most environments, a few dozens of highly persistent root
causes account for over 90% of all alarms. Moreover, given the persistence
of these root causes, they do not disappear until someone removes them.
As a consequence, they trigger immense amounts of alarms, which distract
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the intrusion detection analyst from spotting the real (generally more subtle)
attacks. To free the intrusion detection analyst from these highly persistent
root causes and their associated alarms, we have developed the following three-
step process:

Clustering: First, we use CLARAty1 – a clustering algorithm specifically de-
veloped for this purpose – to cluster and summarize alarms that are likely
to share the same root cause.

Root Cause Analysis: Next, we interpret the clusters produced by CLARAty.
The goal of this step is to identify for each alarm cluster the root causes
that triggered its constituent alarms.

Taking Action: Finally, we act upon the clusters. For example, very often it
is possible to eliminate the identified root causes so they can no longer
trigger alarms. Other times, the processing of alarms triggered by well-
known root causes can be automated. Either way, our experience has
shown that the number of alarms that the intrusion detection analyst
must henceforth handle drops by 70% on the average.

For the sake of completeness, we will briefly review this three-step process,
but refer the reader to the original publications for details and a treatment of
related work [139, 143–146]. More specifically, Sect. 6.2 defines the notion of
root causes more precisely, and Sect. 6.3 describes the CLARAty clustering
algorithm. The novel contribution of this chapter lies in Sects. 6.4 and 6.5,
which address the difficult questions of cluster validation (does CLARAty
really find clusters whose constituent alarms share the same root cause?)
and cluster tendency (do intrusion detection alarms naturally form clusters,
or does CLARAty impose an artificial structure, which the data does not
support?). Section 6.6 concludes and summarizes this chapter.

6.2 Root Causes and Root Cause Analysis

This section defines the concepts of root causes and root cause analysis. The
root cause of an alarm, as mentioned in the introduction, is the reason for
which the alarm is triggered. Another useful mental construct is that root
causes are problems that affect components and cause them to trigger alarms.
For example, a failure can affect the implementation of a TCP/IP stack, and
cause it to fragment all outbound IP traffic, which triggers “Fragmented IP”
alarms. Similarly, a worm is a root cause that affects a set of hosts and causes
them to trigger alarms when the worm spreads. Root cause analysis is the
task of identifying root causes as well as the components they affect.

We do not attempt to formally define root causes or root cause analysis,
because such an attempt seems fruitless. In fact, in the dependability field,
the term fault denotes a concept that is very similar to a root cause, and the

1 CLustering Alarms for Root cause Analysis (CLARAty).
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dependability notion of fault diagnosis corresponds to root cause analysis [147,
148]. Neither faults nor fault diagnosis have been formally defined. Therefore,
we consider it unlikely that the intrusion detection equivalents of these terms
possess formal definitions.

By way of illustration, we next list some typical root causes that CLARAty
revealed, as well as the alarms that these root causes triggered. Note that we
observed all of the below root causes in our practical work with real-world
intrusion detection systems:

1. A popular HTTP server with a broken TCP/IP stack that fragments
outgoing traffic. “Fragmented IP” alarms ensue when the server responds
to client requests.

2. At one site, a misconfigured secondary DNS server performed half-hourly
DNS zone transfers from the primary DNS server. The resulting “DNS
Zone Transfer” alarms are no surprise.

3. A Real Audio server whose traffic remotely resembles TCP hijacking at-
tacks. This caused the deployed IDS to trigger countless “TCP Hijacking”
alarms.

4. A firewall that has Network Address Translation (NAT) enabled funnels
the traffic of many users and thereby occasionally seems to perform host
scans. In detail, a NAT-enabled firewall acts as proxy for its users. When
these users simultaneously request external services, then the firewall will
proxy these requests and the resulting SYN packets resemble SYN host
sweeps.

5. A load balancing reverse proxy, such as Cisco LocalDirector, that dis-
patches Web client requests to the least busy server. The resulting traffic
patterns resemble host scans that trigger alarms on most IDSs.

6. Many network management tools query sensitive variables in the manage-
ment information base (MIB) and thereby trigger IDS alarms. (Other net-
work management tasks such as vulnerability scanning or network map-
ping offer further examples of root causes.)

7. Macintosh FTP clients, which issue the SYST command on every FTP
connection, trigger an abundance of “FTP SYST command” alarms. The
FTP SYST command is reported by some IDSs because it provides re-
connaissance information about the FTP server.

8. A distributed denial-of-service (DDoS) attack being launched from an
external network against a Web hosting site triggered “SYN Flooding”
alarms.

9. External Code Red infected machines [149] scanning the internal network
for vulnerable servers. Most IDSs trigger alarms to report traffic resulting
from Code Red.
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6.3 The CLARAty Alarm Clustering Method

This section summarizes the CLARAty alarm clustering method in three
steps: Section 6.3.1 describes the intuition behind CLARAty, Sect. 6.3.2
presents how it actually works, and Sect. 6.3.3 contains a use case. First,
however, a few introductory definitions are in order.

Intrusion detection systems trigger alarms to report presumed security
violations. This chapter models alarms as tuples over the Cartesian product
dom(A1) × · · · × dom(An) attributes, and dom(Ai) is the domain (i.e., the
range of possible values) of attribute Ai. The alarm attributes (attributes for
short) capture intrinsic alarm properties, such as the source IP address of an
alarm, its destination IP address, its alarm type (which encodes the observed
attack), and its time stamp. The value that attribute Ai assumes in alarm a
is denoted by a[Ai]. This article models alarm log L as sets of alarms. This
model is correct because alarms are implicitly ordered by virtue of their time
stamps; moreover, unique alarm-identifiers can be used to guarantee that all
alarms are pairwise distinct.

6.3.1 Motivation

To get an intuitive understanding of how CLARAty works, let us reconsider
the sample root causes presented in Sect. 6.2. In particular, for the first root
cause (i.e., the HTTP server whose broken TCP/IP stack fragments outgoing
packets), a network-based IDS will trigger alarms of type “Fragmented IP”.
Moreover, all of these alarms will originate from source port 80 of the HTTP
server. The alarms are targeted at HTTP clients on non-privileged ports.
Furthermore, under the assumption that the HTTP server is mainly used
between Monday and Friday, one will observe that the bulk of alarms occurs
on workdays. Finally, a “Fragmented IP” alarm is triggered each time that
the HTTP server responds to a client request. For a popular HTTP server this
results literally in a flood of “Fragmented IP” alarms. The key observation
to be made is that all alarms caused by the broken TCP/IP stack can be
summarized by the following generalized alarm:

On workdays, there is a large number of “Fragmented IP” alarms
originating from port 80 of the HTTP server, targeted against non-
privileged ports of HTTP clients.

We call this a generalized alarm as it contains generalized attribute values
such as “non-privileged port”, “HTTP clients”, and “workdays”, which repre-
sent sets of elementary attribute values. The first row of Table 6.1 shows this
generalized alarm in a more schematic manner. Similarly, the second row of
the table shows that the second root cause can be modeled by the generalized
alarm of “ ‘DNS zone transfer’ alarms being triggered from a non-privileged
port of the secondary DNS server against port 53 of the primary DNS server”.
Analogously, the remaining rows of Table 6.1 show the generalized alarms that
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Table 6.1. The generalized alarms induced by nine sample root causes

RC Source-IP Src-Port Destination-IP Dst-Port Alarm Type

1 HTTP server 80 HTTP clients Non-priv. Fragmented IP

2 Sec. DNS server Non-priv. Prim. DNS server 53 DNS zone transfer

3 Real Audit server 7070 Real Audio clients Non-priv. TCP hijacking

4 Firewall Non-priv. External network Privileged Host scan

5 Reverse proxy Non-priv. HTTP servers 80 Host scan

6 Mgmt. console Non-priv. SNMP clients 161 Suspicious GET

7 Mac FTP clients Non-priv. FTP server 21 FTP SYST

8 External network Non-priv. HTTP servers 80 SYN flood

9 External network Non-priv. Internal network 80 Code Red

the other root causes induce. The “RC” (root cause) column of the table refers
to the item numbers in the enumeration of root causes in Sect. 6.2; the entry
“Non-priv.” denotes the set {1025, . . . , 65535} of non-privileged ports, and the
entry “Privileged” stands for the set of privileged ports below 1025.

From the above examples we observe that a significant class of root causes
manifest themselves in large alarm clusters that are adequately modeled by
generalized alarms. By adequately, we mean that generalized alarms are capa-
ble of capturing and representing the main features of alarm clusters without
losing much essential information. The CLARAty algorithm will search for
such large alarm clusters that are adequately modeled by generalized alarms.
According to the logic of abduction [150–152], it is then likely that the alarms
of such clusters share the same root cause.

6.3.2 The CLARAty Algorithm

The CLARAty algorithm heuristically searches for large alarm clusters that
are adequately modeled by generalized alarms. An alarm cluster is large if
it comprises more than min size alarms, with min size being a user-defined
integer parameter. Moreover, the user must also define the space of possible
generalized alarms that CLARAty searches. To this end, she defines a sepa-
rate generalization hierarchy Gi for each alarm attribute Ai. A generalization
hierarchy (also known as is-a hierarchy) is a directed tree2 whose leafs are the
elementary values in dom(Ai), and whose internal nodes are so-called gener-
alized attribute values, which represent sets of values in dom(Ai). The edges
of the tree show how lower-level concepts can be generalized into higher-level
ones.

2 More generally, a generalization hierarchy can be defined as a single-rooted, con-
nected, directed acyclic graph (DAG). This generalization is further discussed in
[144, 145].
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Fig. 6.1. Sample generalization hierarchies

By way of illustration, Fig. 6.1 shows sample generalization hierarchies
for IP addresses and port numbers. As can be seen, the IP value ip3 can be
generalized to the generalized attribute value DMZ , which in turn represents
the set {ip1 , ip2 , ip3 , ip4 , ip5} of elementary IP values. Similarly, Fig. 6.1
shows that the port number 1 can be generalized to Privileged , which in turn
can be generalized to Any-Port. Again, Privileged is a generalized attribute
value and represents the set {1, . . . , 1024} of elementary values.

We are now ready to describe the CLARAty clustering algorithm: Given an
alarm log L, a minimum cluster size min size, and generalization hierarchies
Gi for all attributes Ai, i = 1, . . . , n, CLARAty repeatedly generalizes the
alarms in L. Generalizing alarms is done by heuristically choosing an attribute
Ai and replacing the Ai values of all alarms in L by their parent values in
Gi. This process continues until an alarm has been found to which at least
min size of the original alarms can be generalized. This alarm constitutes the
output of the algorithm. As the reader might have noted correctly, CLARAty
is a variant of the well-known technique Attribute-Oriented Induction (AOI)
[153, 154].

Figure 6.2 shows the pseudo-code of the alarm clustering method. Line 1
copies the alarm log L into a relational database table T . This table has one
attribute (or column) for each alarm attribute Ai. In addition, the table T
possesses the integer-valued attribute count, which is used for bookkeeping,
only. Line 2 sets the count attributes of all alarms to 1. In lines 3 to 9, the
algorithm loops until an alarm a has been found, whose count value is at
least min size. Line 4 selects an alarm attribute Ai according to a heuristic,
which we will describe in a moment. Lines 5 and 6 replace the Ai values of
all alarms in T by their parent values in Gi. By doing so, previously distinct
alarms can become identical. Two alarms a and a′ are identical if a[Ai] =
a′[Ai] holds for all attributes Ai, while a[count ] and a′[count ] are allowed to
differ. Steps 7 and 8 merge identical alarms into a single generalized alarm
whose count value equals the sum of individual counts. In this way, the count
attribute always reflects the number of original alarms that are summarized
by a given generalized alarm. Moreover, each generalized alarm a represents
an alarm cluster of size a[count ]. To conclude the discussion, we now specify
the heuristic that we use in line 4:
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Input: An alarm clustering problem (L,min size, G1, . . . , Gn)
Output: A heuristic solution for (L,min size, G1, . . . , Gn)
Algorithm:

1: T := L; // Store log L in table T .
2: for all alarms a in T do a[count ] := 1; // Initialize counts.
3: while ∀a ∈ T : a[count ] < min size do {
4: Use heuristics to select an attribute Ai, i ∈ {1, . . . , n};
5: for all alarms a in T do // Generalize attribute Ai

6: a[Ai] := father of a[Ai] in Gi;
7: while identical alarms a,a′ exist do // Merge identical alarms.
8: Set a[count ] := a[count ] + a′[count ] and delete a′ from T ;
9: }

10: Output all generalized alarms a ∈ T with a[count ] ≥ min size;

Fig. 6.2. Heuristic alarm clustering algorithm

Definition 1 (Attribute Selection Heuristic). For each attribute Ai, let
Fi := max{fi(v) | v ∈ Gi} be the maximum of the function

fi(v) := SELECT sum(count) FROM T WHERE Ai = v ,

which counts the number of original alarms that had their Ai-attribute gen-
eralized to the value v. Line 4 of Fig. 6.2 selects any attribute Ai whose Fi

value is minimal, i.e., the Fi value must satisfy ∀j : Fi ≤ Fj. �	
The intuition behind this heuristic is that if there is an alarm a that satis-

fies a[count ] ≥ min size, then Fi ≥ fi(a[Ai]) ≥ min size holds for all alarm at-
tributes Ai, i = 1, . . . , n. In other words, an alarm a with a[count ] ≥ min size
cannot exist (and the algorithm cannot terminate) unless Fi ≥ min size holds
for all attributes Ai. We therefore use it as a heuristic to increase any of
the smallest Fi values by generalizing its corresponding attribute Ai. Other
heuristics are clearly possible, but the one above performs favorably in our ex-
perience. Moreover, rather than merely varying the heuristic, one could even
conceive a completely different clustering algorithm, for example one that is
based on partitioning or hierarchical clustering [23, 155].

6.3.3 CLARAty Use Case

We have successfully used CLARAty on millions of intrusion detection alarms
to identify their root causes [143, 145]. In typical cases, CLARAty yields
generalized alarms such as the one shown in Table 6.2.

An analysis of this generalized alarm has revealed the following root cause:
The deployed network-based IDS triggers “Cisco Catalyst 3500 XL Bug”
alarms because it observes URLs containing the substring “/exec/”. This
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Table 6.2. A sample generalized alarm

Attribute Attribute Value
Source IP Office PC users
Source port Non-privileged, i.e., ≥ 1025
Destination IP www.amazon.com
Destination port 80
Alarm type Cisco Catalyst 3500 XL Bug
Time stamp Workdays, office hours

substring is flagged because it has been associated with a vulnerability in
the Cisco Catalyst 3500 XL switch [156]. In the present case, however, the
“Office PC users” were eagerly shopping on “workdays” during “office hours”
at “www.amazon.com”. However, virtually all URLs at amazon.com contain
the substring “/exec/”, which results in the above cluster of alarms. Clearly,
all alarms in this cluster are false positives. This concludes our use case of
how CLARAty facilitates root cause analysis.

6.4 Cluster Validation

Section 6.4.1 explains why clustering results are a priori suspect and need to
be validated. Section 6.4.2 gives a brief introduction to cluster validation, and
Sect. 6.4.3 presents the form of validation we use for CLARAty.

6.4.1 The Validation Dilemma

Clustering has traditionally been used to explore new data sets whose prop-
erties were poorly understood. Therefore, the principal goal of clustering was
to uncover the hidden structures in a data set, and to stimulate theories that
explain them. Accordingly, there were claims that the main criterion for as-
sessing a clustering result was its interpretability and usefulness. However,
clustering methods have important limitations that make such an ad hoc ap-
proach to cluster validation a dangerous endeavor:

The random data phenomenon: Clustering methods always find clusters, no
matter whether they exist or not. In fact, even when applied to random
data, they mechanically group it into clusters. Clearly, such clusters are
meaningless at best, and misleading at worst.

Imposed structures: Clustering methods are not “neutral”, but have a ten-
dency to impose a structure on the data set [157–160]. For example, the
k-means method is known to favor spherical (a.k.a. globular) clusters of
approximately equal sizes [23, 159, 160]. When a data set contains clus-
ters of a different kind (e.g., clusters that form parallel lines in the plane),
then the k-means method is nonetheless inclined to impose “synthetic”
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clusters of globular shapes and similar sizes. Clearly, these clusters are an
artifact of the k-means method, and do not reflect the true structure of
the data set.

Method-dependent results: A corollary to the last point is that markedly dif-
ferent results can be obtained when a given data set is analyzed by differ-
ent clustering methods [157–159, 161].

Given these drawbacks, and given that the human mind is quite capable
of providing post hoc justification for clusters of dubious quality, there are
clear dangers in a purely manual approach to cluster validation. Specifically,
the risk of inadvertently justifying and approving meaningless clusters can be
high [155, 159, 161]. Clearly, these reservations also apply to the alarm clusters
found by CLARAty. We would therefore like to prove that the clusters found
by CLARAty are correct in the sense that the alarms in a given cluster share
the same root cause. If this form of correctness is satisfied, then CLARAty
eliminates redundancy by grouping alarms that share the same root cause.
Moreover, if one understands the root cause of any alarm in an alarm cluster,
then one understands the root causes of all alarms in the cluster. This fact
reduces the risk of misinterpreting alarm clusters.

Unfortunately, correctness of clusters cannot be guaranteed, neither by
CLARAty nor by any other clustering algorithm. In fact, root causes are a
model-world concept, which exist only in the world of our thinking. Computer
programs are not aware of root causes and can therefore not enforce the
requirement that all alarms of an alarm cluster must share the same root
cause. To illustrate this, let us consider a machine whose broken TCP/IP
stack fragments most IP traffic. Suppose that this machine is behind a router
that itself fragments a substantial fraction of the traffic passing through it.
Now, let an IDS in front of the router trigger a “Fragmented IP” alarm for a
packet from said machine. Unless substantial background knowledge about the
state of the system is available, there is no way of deciding if the alarm’s root
cause is the broken TCP/IP stack or the fragmenting router. More generally,
if only an alarm log is given, it is not possible to decide whether two or more
alarms have the same root cause. We therefore know that CLARAty cannot
be correct in the above sense.

6.4.2 Cluster Validation in Brief

Despite the negative result of the last section, the question about the quality
of clusters remains: How do we know that the clusters found by CLARAty
are any good, rather than being mere random groupings? This question is
addressed by the field of cluster validation, according to which a set of clus-
ters are valid if they cannot reasonably be explained by chance or by the
idiosyncrasies of a clustering method [155, 159, 162, 163]. In practice, a set
of clusters is declared valid, if there is evidence that it correctly captures the
natural groups of the underlying data set.
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Fig. 6.3. Example of valid clusters that have no intuitive interpretation

It is important to note that cluster validation is a completely formal en-
deavor, that is rid of any notions of semantics. This can lead to the situation
where a cluster structure is declared “valid” even though it has no meaningful
interpretation. For example, Fig. 6.3 plots for lawyers, engineers, and students
their respective wine consumptions at various wine prices. Note that only a
few data points are available in the $20 to $40 price range. Clearly, the two
elliptic clusters capture the structure of the data set rather well. Therefore,
these clusters are valid by most validity measures, even though they have no
obvious interpretations (at least not in terms of people’s professions). This
illustrates that cluster validation can at best increase our confidence in a clus-
ter structure, but it cannot prove the structure to be correct or meaningful
[157, 163–165].

In [145], we made a very detailed and critical analysis of cluster validation
methods. In summary, we found that the published validation methods are
of little practical value to us. Specifically, the most significant limitations we
encountered are as follows:

• High computational costs.
• The assumption that the “correct” clustering result is known, which gen-

erally is not the case.
• Crucial assumptions (e.g., about what a random data set looks like) whose

impact on the validation result is insufficiently understood.
• Simplifying assumptions (e.g., about the characteristics of the data set to

be clustered) that are generally not satisfied in reality.
• Contradictory results obtained by different validation methods.
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6.4.3 Validation of Alarm Clusters

Replication analysis [166–168] is the validation technique that we found most
useful for our purposes. Replication analysis is based on the logic of cross-
validation [169] as used in regression studies. Specifically, a cluster structure
is declared valid if it is consistently discovered across different samples that are
independently drawn from the same general population. Replication analyses
comprise five major steps:

1. Two samples are required to conduct a replication analysis. Perhaps the
most direct way to accomplish this is to randomly divide one larger data
set into two samples.

2. A clustering method is chosen, and the first sample is partitioned using
this method.

3. The second sample is partitioned using the same clustering method as in
step 2.

4. The second sample is repartitioned by assigning each of its data objects
to the most similar (according to some measure) cluster in the partition
of the first sample. This yields another clustering of the second sample.

5. A numeric measure of partition agreement is used to compare how well
the two partitions of the second sample match. The greater the level of
agreement between the two partitions, the more confidence one may have
in their validity.

Hence, replication analysis considers a clustering result more trustworthy
if it is not affected by sampling or other spurious/arbitrary decisions that
might have been involved in its generation. However, summarizing the results
of a replication analysis in a single number as done in step 5 seems overly for-
mal given that this number is interpreted in a qualitative way, where “larger
is better”. Moreover, the fourth step in a replication analysis partitions the
second sample according to its resemblance to the clusters in the first sam-
ple. The details of this step are open to interpretation, and few guidelines
exist. However, the choices made here are known to influence the final results
[166]. For all of these reasons, we modified the “classic” replication analysis
presented above to address these concerns.

Let L be an alarm log and let L0 ⊆ L be a randomly chosen sub-log
of L. We randomly partition the alarm log L � L0 into two disjoint equal-
sized sub-logs L1 and L2 (i.e., |L1| = |L2| and L1 � L2 = L � L0). Then, we
apply CLARAty separately to the logs L0 ∪ L1 and L0 ∪ L2 and compare the
resulting generalized alarms. One could mark generalized alarms that are not
discovered in both alarm logs as questionable, so that they are investigated
more carefully. However, generalized alarms that do not replicate are very rare
so that we decided to discard them without mention. The advantage of this
approach is that it improves the robustness of the alarm clustering method
while being completely transparent to the user. The user only sees “robust”
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alarm clusters, i.e., alarm clusters that are not affected by slight noise or
sampling.

Determining the size of the alarm log L0 is an important decision. The
larger L0 is, the more alarms the two alarm logs L0 ∪ L1 and L0 ∪ L2 share,
and the weaker the form of robustness that we enforce by means of replication.
In our practical work, we chose L0 to contain 60% of the alarms in L. This
value is based on informal experiments with different sizes of L0.

6.5 Cluster Tendency

Clustering algorithms (including CLARAty) will create clusters whether a
data set contains clusters or it is purely random. In Sect. 6.4.2, we have seen
that it is very difficult to validate clusters after the fact. It is therefore ad-
visable to verify the existence of clusters before any clustering algorithm is
applied to a data set. In that way, it is possible to prevent the inappropriate
application of clustering methods. Acknowledging this best practice, we show
in this section that intrusion detection alarms have – indeed – a natural ten-
dency to form clusters. That does not imply that CLARAty discovers these
clusters correctly, but it does imply that the application of clustering methods
to intrusion detection alarms is justified.

The tool used to establish the existence of clusters is known as a test of
cluster tendency [155, 161, 163, 170]. Such tests decide if a given data set D can
reasonably be assumed to contain clusters, even though the clusters themselves
are not identified. In a nutshell, tests of cluster tendency use a test statistic
that measures in a single number the degree to which a data set contains
clusters. Moreover, they determine the probability that a random data set
scores the same or a better value in the test statistic. If this probability is
negligible (say, smaller than 0.001), then the data set D is assumed to contain
clusters. This, however, is no proof for the existence of clusters. In fact, there
are limits to how well a single number can measure the existence of clusters.
Moreover, even when the data set D scores a value in the test statistic that is
highly unlikely for random data sets, this does not exclude the possibility that
D is actually random and rid of any clusters. Thus, tests of cluster tendency
are plausibility checks that offer corroborating evidence for the existence of
clusters.

In Sect. 6.5.1, we describe the test of cluster tendency that we have
designed to test the existence of clusters in intrusion detection alarms. In
Sect. 6.5.2, we apply this test of cluster tendency to real-world alarms. Sec-
tion 6.5.3 explains in more detail the mathematics that are used in the test
of cluster tendency.

6.5.1 Test of Cluster Tendency

In Sect. 6.3.2, we said that CLARAty heuristically searches for large alarm
clusters that are adequately modeled by generalized alarms. Hence, it is our
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goal to experimentally validate the existence of such clusters. In other words,
we want to validate the following hypothesis:

Definition 2 (Cluster Hypothesis). Alarm logs generally contain large sets
of alarms that are adequately modeled by generalized alarms. �

To validate this hypothesis, we first derive a test statistic φp(·) that maps
alarm logs to integers. Specifically, for a given alarm log L, the test statistic
φp(L) measures how well L supports the cluster hypothesis. The proposed test
statistic will return small values to indicate strong support. Unfortunately,
there is no obvious threshold below which φp(L) is “small enough” to confirm
the cluster hypothesis. Therefore, we proceed in analogy to all tests of cluster
tendency, and define that φp(L) is “small enough” if a random alarm log has
a negligible probability of scoring a φp-value that is equal to or smaller than
φp(L).

We desire the test statistic φp(L) to measure whether the alarm log L
contains – as predicted by the cluster hypothesis – large sets of alarms that are
adequately modeled by generalized alarms. The problem with this formulation
is that the terms “large” and “adequately” are too vague to be tested in a
formal way.

We begin by making the meaning of “adequate” more precise. Recall that a
generalized alarm adequately models a set of alarms if it correctly captures the
key features of the set. Therefore, alarms themselves are the “most adequate”
generalized alarms because they are maximally specific and do not sacrifice
any information to the generalization of attribute values. However, alarms can
only model sets of identical alarms. By contrast, the alarms that arise in the
real world are generally mutually distinct. Therefore, alarms are too inflexible
to model anything but the most trivial alarm sets. More flexibility is needed.

The following observation points the way to a more flexible but still “ad-
equate” class of generalized alarms: For most alarms, moderate modifications
of the source port value or the time-stamp value do not fundamentally change
the alarm’s semantic. In fact, the source port value is mostly set at random,
and time is specified in units of seconds, even though a granularity of hours
or less is generally sufficient. On the other hand, the source IP address, the
destination IP address, the destination port, and the alarm type cannot be
modified without substantially changing the meaning of an intrusion detection
alarm. This motivates the following working definition:

Definition 3. A generalized alarm is an adequate model of a set of alarms
if it contains an exact (i.e., ungeneralized) value for the source IP address,
the destination IP address, the destination port, and the alarm type, while
permitting any arbitrary value for all other attributes. �

This definition of adequacy is not the only one possible, but it certainly is
a reasonable one. For example, let G be a set of alarms that can be modeled
by the generalized alarm g ≡ ([Src−IP = 10.3.2.1] ∧ [Dst−IP = 10.3.2.2] ∧
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[Dst−port = 80]∧ [Alarm−type = 10]). (Attributes that g does not specify can
assume arbitrary values.) If g is given, then we know with absolute precision
the most important attribute values for the alarms in G. For example, we
know that all alarms in G have the source IP address 10.3.2.1 rather than,
say, 10.3.2.0, which can make a big difference. It is this specificity with respect
to the values of key attributes that makes g an adequate model for G. For
brevity, we call a generalized alarm adequate if it is an adequate model for a
set of alarms.

To define the test statistic φp(·), let L be an alarm log of size n, i.e.,
n = |L|. Let M be the set of adequate generalized alarms that is obtained by
projecting L on the four attributes source IP, destination IP, destination port,
and alarm type, which characterize an adequate generalized alarm. Note that
each alarm a ∈ L matches a g ∈ M, and conversely, each g ∈ M is matched by
at least one a ∈ L. Let m := |M| denote the size of M, let ϕ(g), g ∈ M, be the
number of alarms in L that match g, and let the indices i1, . . . , im be such that
ϕ(gi1) ≥ ϕ(gi2) ≥ · · · ≥ ϕ(gim). For any fraction p ∈ [0, 1], the test statistic
φp(L) is defined as the smallest integer k for which

∑k
z=1 ϕ(giz) ≥ �p × n�

holds. Intuitively, the test statistic tells one that the φp(L) most frequently
matched generalized alarms in M match at least 100×p percent of the alarms
in L.

Suppose that p is large (say, p = 0.85) and φp(L) is small in comparison to
m. Then, the majority of alarms (namely, at least �p×n�) match one out of a
small set of φp(L) generalized alarms. It follows that on the average, each of
these generalized alarms must be matched by �p×n�/φp(L) alarms. Given our
assumptions that p is large and φp(L) is small, we conclude that the quotient
�p×n�/φp(L) is large. As a consequence, each of the φp(L) generalized alarms
models a large set of �p × n�/φp(L) alarms on the average. For the alarm log
L, this implies that it consists of “large sets of alarms that are adequately
modeled by generalized alarms”. Hence, the alarm log L supports the cluster
hypothesis.

This raises the need to decide in a quantitative manner when φp(L) is
“small enough” to support the cluster hypothesis. As is typical for tests of
cluster tendency, we decide that φp(L) is “small enough” if a random alarm log
L′ has a probability of at most 0.00001 to score a value φp(L′) that is equal to
or smaller than φp(L). In other words, φp(L) is “small enough” if the condition
P [φp(L′) ≤ φp(L) | L′ is random] ≤ 0.00001 holds. The threshold probability
0.00001 is arbitrary, and any other small probability could have been chosen.
Random alarm logs must satisfy |L′| = |L| = n, and each alarm a ∈ L′ must
have a g ∈ M, such that a matches g. These requirements guarantee that the
alarm logs L′ and L are comparable [155, 170]. Conceptually, random alarm
logs are obtained by repeating the following experiment n times: With all
generalized alarms in M having the same probability, randomly choose one
of them, generate an alarm that matches it, and add this alarm to L′.
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6.5.2 Experimental Setup and Results

While Sect. 6.5.1 has developed a test of cluster tendency, we will now apply
it to real-world intrusion detection alarms. All the alarms we use are from
network-based, commercial misuse detection systems3 that were deployed in
operational (i.e., “real-world”) environments.

More specifically, Table 6.3 introduces the sixteen IDSs that we used in our
experiments. The sixteen IDSs are deployed at eleven different Fortune 500
companies, and no two IDSs are deployed at the same geographic site. More-
over, for each IDS, we employ all alarms that were triggered during the year
2001. The “IDS” column contains a numerical identifier that we will use below
to reference the IDSs. The “Type” column indicates the IDS type, namely,
“A” or “B”, both of which are leading commercial IDSs. To avoid unintended
commercial implications, we do not reveal the product names or vendors of
“A” and “B”. The minimum, maximum, and average number of alarms per
month are listed for each IDS in the “Min”, “Max”, and “Avg” columns,
respectively. Finally, the “Location” column indicates where the IDSs are de-
ployed: “Intranet” denotes an IDS on an internal corporate network without
Internet access; “DMZ” denotes an IDS on a perimeter network that is pro-
tected by a firewall, but offers services to the Internet; “Extranet” denotes an
IDS on a network that is shared between multiple cooperating companies, but
is not accessible from the Internet; “Internet” denotes an IDS that is deployed
before the external firewall on a direct link to the Internet.

For each IDS in Table 6.3 and for each month of the year 2001, we now
apply the test developed in Sect. 6.5.1 to the alarm log L consisting of all
alarms triggered by said IDS in said month. For example, the first IDS of
Table 6.3 triggers n = 42, 018 alarms in January 2001, and the set M consists
of m = 7, 788 generalized alarms. For p := 0.85, we obtain φp(L) = 2, 238.
In other words, using 2, 238 out of the 7, 788 generalized alarms in M, it is
possible to model 85% of the 42, 018 alarms in L. Moreover, a random alarm
log L′ satisfies φp(L′) ≤ φp(L) with a probability of less than 0.00001 (see
Sect. 6.5.3 for a proof). Therefore, the cluster hypothesis of Definition 2 is
supported by the alarm log that IDS-1 generates in January 2001. This is
indicated by a tick in row 1 and column “Jan” of Table 6.4. The other entries
of the table can be interpreted in the same way: Each IDS and month defines
a separate alarm log, and a tick in the corresponding field indicates that the
alarm log supports the cluster hypothesis. A dash, by contrast, stands for no
support. In all experiments, p is set to 0.85, and the “IDS” column of Table 6.4
refers back to Table 6.3.

It follows from Table 6.4 that 165 out of 192 alarm logs confirm the cluster
hypothesis. That offers strong evidence in favor of the cluster hypothesis. In
experiments not documented here, we have shown that this result is robust
3 A network-based misuse detection system is an IDS that sniffs network traffic and

uses knowledge about attacks to detect instances of them in the network traffic
it observes [135].
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Table 6.3. Overview of IDSs used in experiments

IDS Type Location Min Max Avg
1 A Intranet 7, 643 67, 593 39, 396
2 A Intranet 28, 585 1, 946, 200 270, 907
3 A DMZ 11, 545 777, 713 310, 672
4 A DMZ 21, 445 1, 302, 832 358, 735
5 A DMZ 2, 647 115, 585 22, 144
6 A Extranet 82, 328 719, 677 196, 079
7 A Internet 4, 006 43, 773 20, 178
8 A Internet 10, 762 266, 845 62, 289
9 A Internet 91, 861 257, 138 152, 904

10 B Intranet 18, 494 228, 619 90, 829
11 B Intranet 28, 768 977, 040 292, 294
12 B DMZ 2, 301 289, 040 61, 041
13 B DMZ 3, 078 201, 056 91, 260
14 B Internet 14, 781 1, 453, 892 174, 734
15 B Internet 248, 145 1, 279, 507 668, 154
16 B Internet 7, 563 634, 662 168, 299

with respect to variations in the definition of adequacy. Moreover, variations
in the value of p do not fundamentally change the result, either. However, we
have not experimented with other test statistics φp(·) or other formalizations
of the random log concept. Both could affect the results.

6.5.3 Derivation of Probabilities

The last section considered an alarm log L to support the cluster hypothesis
if the probability P [φp(L′) ≤ φp(L) | L′ is random] is smaller than 0.00001.
Here, we address the problem of calculating this probability. However, experi-
ence with similar problems [155, 170] suggests that it is very difficult to deter-
mine the exact value of the probability P [φp(L′) ≤ φp(L) | L′ is random]. We
will therefore overestimate this probability. Note that an overestimate makes
us err at the expense of the cluster hypothesis. In other words, the number
of ticks in Table 6.4 could only have increased if the exact probabilities had
been used.

Let L, M, n = |L|, m = |M|, p ∈ [0, 1], and φp(·) be as in Sect. 6.5.1,
and set k := φp(L). Recall that a random alarm log is defined as the result
of iterating the following experiment n times: Randomly choose a generalized
alarm from M, generate an alarm that matches this generalized alarm, and
add this alarm to the random alarm log under construction. Note that all
generalized alarms in M are equally likely to be chosen. These introductory
remarks set the stage for the following proposition:
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Table 6.4. Alarm logs that support the cluster hypothesis (p = 0.85)

IDS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1

√ √ √ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √ √ √ √

3
√

– – – – – – – – – – –
4

√ √ √ √ √ √ √ √ √ √ √ √

5
√ √ √ √ √ √ √ √ √ √ √ √

6
√ √ √

– –
√ √ √ √ √ √ √

7
√ √ √ √ √ √ √ √ √ √ √

–
8

√ √ √ √ √
– – –

√ √ √ √

9
√ √ √ √

–
√ √ √ √ √

– –
10

√ √ √ √ √ √ √ √ √ √ √ √

11
√ √ √ √ √ √ √ √ √ √ √ √

12
√ √ √ √ √ √ √ √ √ √ √ √

13
√ √ √ √ √ √ √ √ √ √ √ √

14 – – –
√ √

–
√

–
√

–
√

–
15

√ √ √ √ √ √ √ √ √ √ √ √

16
√ √ √ √ √ √ √ √ √ √ √ √

Proposition 1. Let n, m, p, φp(·), and k be as above. For a random alarm
log L′, and for λ := �p × n�, the following inequality holds:

P [φp(L′) ≤ k] ≤ 1
mn

·
(

m

k

)
·

n−λ∑
i=0

(
n

i

)
kn−i(m − k)i . (6.1)

Proof. Attach an imaginary dartboard to each generalized alarm in M and
imagine throwing n darts at the m dartboards. Suppose that we hit each dart-
board with the same probability, namely, 1/m. Then, P [φp(L′) ≤ k] (which is
the left-hand side of inequality (6.1)) equals the probability that after throw-
ing all n darts, there are k dartboards that in total have λ or more darts
sticking. We will use this more intuitive formulation of the problem, to prove
inequality (6.1).

To generate all constellations where k dartboards have at least λ darts
sticking, we can proceed as follows: Choose k dartboards and j darts, with
j = λ, . . . , n. There are

(
m
k

)×(
n
j

)
ways to do this. Moreover, there are kj×(m−

k)n−j ways to throw the darts so that the selected j darts hit one out of the
selected dartboards, whereas the remaining n − j darts hit some nonselected
dartboard. By summing over all j, we see that this process generates

n∑
j=λ

(
m

k

)(
n

j

)
kj(m − k)n−j (6.2)
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constellations. Note, however, that some constellations are generated multiple
times. Equation (6.2) counts each constellation as many times as it is gener-
ated, and therefore overestimates the actual number of distinct constellations.
It is easy to transform (6.2) into

(
m
k

) · ∑n−λ
i=0

(
n
i

)
kn−i(m − k)i (just move

(
m
k

)
before the summation, substitute j := n − i, and observe that

(
n

n−i

)
=

(
n
i

)
).

Finally, (6.1) is obtained by dividing this quantity by mn, where mn is the
total number of ways to throw n darts at m dartboards. �	

Two notes are in order. First, we researched ways to improve the bound
given by Proposition 1, but the resulting formulas were complex and did not
make a big difference in practice. Second, while calculating Table 6.4, there
were nine instances where we found the estimate of (6.1) to be too coarse. In
these instances, we used a Monte Carlo simulation to obtain a better estimate
of the probability.

6.6 Conclusion

This chapter proposes and validates a new solution to the problem that in-
trusion detection systems overload their human operators by triggering thou-
sands of mostly false alarms per day. Central to this solution is the notion of a
root cause, which is the reason for which an alarm was triggered. Building on
this notion, we proposed the following new alarm handling paradigm: First,
CLARAty, a new clustering method, is used to identify root causes that ac-
count for large numbers of alarms, and second, these root causes are fixed or
the processing of their associated alarms is automated (e.g., using a standard
event correlation product).

In this chapter, we have seen many examples of root causes (see Sect. 6.2),
we have studied how CLARAty works (see Sect. 6.3.2), and we have closely
looked at a use case for how CLARAty supports root cause analysis in practice
(see Sect. 6.3.3). Moreover, in Sect. 6.4.1 we have explained why all clustering
results are a priori a bit suspect and should be validated. Section 6.4.2 ex-
plained the limitations of today’s cluster validation techniques, and Sect. 6.4.3
showed how we used replication analysis to validate the alarm clusters found
by CLARAty. Given the difficulty of validating clusters after the fact, we
showed in Sect. 6.5 that intrusion detection alarms have, indeed, a natural
tendency to cluster. Thus, by showing the existence of clusters, we provided
further objective evidence that CLARAty produces meaningful results. This
is further confirmed by our own (somewhat subjective) experience in using
CLARAty for root cause analysis.
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Behavioral Features for
Network Anomaly Detection

James P. Early and Carla E. Brodley

7.1 Introduction

Research in network intrusion detection has traditionally been divided into
two components – misuse detection and anomaly detection. The distinction
between the two comes from the approaches used to build each component
and the resulting alerts they generate. Misuse detection systems are built
on knowledge of known attack behaviors. Alerts are generated when these
attack behaviors (signatures) are identified within current network behavior.
A misuse detection system must be periodically updated with new signatures
in order to identify new attack types. In contrast, anomaly detection systems
are built on knowledge of normal network behavior, and alerts are generated
when deviations from normal behavior occur.

The principal use of anomaly detection methods in network intrusion de-
tection is to identify novel attacks for which no attack signature exists. If we
can ascertain what makes a particular anomalous event hostile, we can create
a filter to block such events in the future. However, the key question arising
from an anomalous event is, Is this a malicious or undesirable anomaly? For
example, if an anomaly occurs in the context of a system that models behavior
based on the number of connections from a particular host [171, 172], should
the host be considered hostile? If the host belongs to a new customer placing
orders on an e-commerce server, then clearly it is not. Deploying a filter to
drop traffic from this “offending” host would negatively impact the business
of the organization. This problem also exists when looking at anomalous com-
binations of values in packet headers. Trying to filter based on anomalous
packet header values penalizes benign traffic that carries these values by co-
incidence, and does not provide any protection against an attacker (because
the attacker can alter packet header values).

Anomaly detection systems are initially trained with a collection of exam-
ples of normal data. This data is referred to as the training set. Once trained,
the system examines current behavior to identify instances that deviate from
its model of normal behavior. An important design criterion is the choice of
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features used to model normal behavior. Features provide semantics for the
values in the data. For example, a feature can be the number of host connec-
tions or a value in a packet header. Feature extraction is important because
it directly affects the accuracy and utility of the anomaly detection system.
Good features provide strong correlation between anomalous behavior and
malicious activity, whereas poorly selected features can result in irrelevant
anomalies and high false-positive rates.

In this chapter, we present an approach to feature extraction for network
anomaly detection based on protocol behavior. Such features help us identify
when a party is not using a protocol as intended, or is using a protocol in a
way that significantly deviates from the normal behavior of others using the
protocol. Many common attacks depend on an improper use of a protocol. We
refer to these types of attacks as protocol anomalies. Examples include Ping
of Death [173], SYN Flood [174], and Teardrop [175]. Protocol anomalies
are also used to conceal hostile activity from an intrusion detection system
(IDS). For example, an attacker can partition traffic using overlapping IP
fragments and TCP segments in an attempt to cause an IDS to interpret
the traffic differently than the intended victim [176]. This discrepancy can
result in a successful attack that is deemed benign by the IDS. By employing
features that can identify these types of protocol anomalies, we can establish
strong correlations between anomalous events and malicious behaviors. In
this chapter, we describe our method of deriving these types of features and
demonstrate its efficacy.

We now introduce terminology used throughout the remainder of this chap-
ter. We will use the term attribute to refer to a particular characteristic of
network traffic being measured. Examples of attributes include source and
destination IP addresses, TCP ports, and ICMP message types. In essence,
attributes are the names of values found in network packet header fields. A
feature may relate directly to a single attribute, such as the Protocol field in
an IP packet header. A feature may also be composed of multiple attributes,
or constitute the sample average of a particular attribute over time.

A protocol specification can be considered a policy for interaction. The
policy defines attributes and the range of acceptable values that are to be ex-
changed between parties. A given network protocol is likely to contain several
types of attributes (e.g., fields in a packet header) – each used in different
ways. These can identify the end points of the communication path, maintain
the logical state of the connection, or carry information to verify the integrity
of the connection. Identifying how an attribute is used in the protocol is an im-
portant step in determining whether the attribute should be used as a feature
for anomaly detection.

Finally, we will use the term flow to describe a collection of information
exchanged between entities engaged in the protocol. This information could be
in the form of packets, sessions, or commands. Flows also have directionality –
a typical protocol exchange consists of a client flow and corresponding server
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flow. Examples of flows include a Telnet session, an HTTP request, and an
ICMP message.

7.2 Inter-Flow versus Intra-Flow Analysis

In this section, we present our protocol analysis method for identifying the
relative applicability of attributes as features for anomaly detection. We call
this method Inter-flow versus Intra-flow Analysis or IVIA. The first step is to
identify the protocol attributes that will be used to partition network traffic
data into different flows and permit grouping of similar types of flows. For
example, in TCP and UDP, a logical flow is indicated by the source and
destination port values carried in the packet header [177, 178]. By partitioning
the data on these attributes, we can examine all flows with a TCP source
port value of 80 (an HTTP server flow) or a UDP source port value of 53 (a
DNS Server), for example. The next step involves examining the remaining
attributes to determine whether changes occur in the attribute’s value between
flows (inter-flow) and/or within a flow (intra-flow). Note that if attribute value
changes are observed within a flow, the attribute value also exhibits changes
among flows.

Table 7.1. Classification of protocol attributes based on observed changes in at-
tribute values between flows (Inter-flow) and/or within flows (Intra-flow)

Intra-flow Changes
Y N
I IIY

Operationally Variable Flow DescriptorInter-flow Changes
III IVN

Operationally Invariant

Table 7.1 shows a matrix of how different classes of attributes are or-
ganized using our analysis method. Attributes whose values do not change
are assigned to Quadrant IV. Example attributes for this class include those
that specify the name of the protocol, and those labeled as “reserved” by
the protocol. We call the attributes in Quadrant IV operationally invariant
attributes. Attributes in Quadrant II are designated to partition flows – for a
given flow, all values for an attribute will be identical. Conversely, the values
will likely be different when comparing different flows. Thus, we expect inter-
flow changes in attribute values, but not intra-flow changes. We call these
logical flow attributes. Examples include TCP and UDP port numbers, and
IP source and destination addresses. Quadrant III will necessarily be empty
because any changes observed intra-flow must also be visible inter-flow. Fi-
nally, Quadrant I contains attributes whose values change within flows. We
refer to these as operationally variable attributes.



110 Machine Learning and Data Mining for Computer Security

Table 7.2. IVIA method for the attributes of the IP Version 4 protocol

Intra-flow Changes

Inter-flow Changes

Y N
I II

Header Length (IHL) Flags MF Source
Service type Fragment Offset Destination

Y Total Length Time to Live Protocol
Identification Options

Flags DF
III IV

N Version
Flags Reserved

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 7.1. IP Version 4 packet header

An example of the application of our analysis to the IP Version 4 protocol
can be seen in Table 7.2. Figure 7.1 shows how the various protocol attributes
are arranged in the packet header. The Source and Destination addresses,
and Protocol are the logical flow descriptors that partition flows. These at-
tributes are placed in Quadrant II. The protocol specifies that the Version
and Flags Reserved attributes have the same value for all flows, thus they
are classified as operationally invariant attributes and placed in Quadrant IV.
The remaining attributes are classified as operationally variable attributes and
placed in Quadrant I, because changes in their values can be expected both
within and among flows.1 For example, the Time to Live attribute indicates
the number of network “hops” the packet can traverse before it is discarded.

1 Despite the fact that the IP Checksum attribute changes within flows, it was not
included in Quadrant I because its value is derived from other values in the packet
header.
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Given that packets associated with a particular flow can traverse different
network paths, the value may change within a flow from one packet to the
next. A detailed description of the remaining attributes in this class can be
found in [179].

The quadrant to which an attribute is assigned gives an indication of how
particular attribute values might be enforced through policy. Firewalls are rou-
tinely used to filter based on attributes in Quadrants II and IV. In the case of
IP Version 4, we selectively filter based on the source/destination/protocol of
a particular flow. Similarly, we can also use a firewall to drop packets carrying
a value other than 4 for the IP version. Quadrant assignment also identifies
attributes where such filtering would disrupt the protocol: in particular, those
attributes in Quadrant I. Again using IP Version 4 as an example, we can-
not arbitrarily enforce certain values for the Total Length and Identification
attributes without limiting the functionality of the protocol.

Quadrant assignment also provides some insight into the applicability of
a given feature for anomaly detection. Attributes classified as operationally
invariant (Quadrant IV) are likely to be very good features because they
have only one acceptable value. Any other value should be viewed as sus-
pect. Logical flow attributes (Quadrant II) may be useful for anomaly detec-
tion depending on whether policy statements can be made about normal and
abnormal flows. A single home user may be able to identify a small set of
acceptable hosts and protocols, but a network administrator for a large uni-
versity may not. Attributes classified as operationally variable (Quadrant I)
are of particular interest, because their values can vary significantly and still
be considered normal in the context of protocol operation. In the next sec-
tion, we will examine the implications of using these attributes as features for
anomaly detection.

7.3 Operationally Variable Attributes

In this section, we will examine some practical issues arising from the use of
operationally variable attributes as features for anomaly detection. The issues
concern the size of the normal value space (and its implications for training
data), and the use of these attributes in the context of data mining.

7.3.1 Size of Normal Value Space

Operationally variable attributes can be considered normal over their entire
range. Therefore, there is little utility in focusing on discrete values of these
attributes as indicators of normal or hostile behavior. If these attributes were
used directly to construct an anomaly detection system, any combinations of
values identified as anomalous in test data would themselves be normal with
respect to the protocol specification. This means that the potential of this
system for generating false alarms is quite large [180, 181].
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To see why, let us assume IVIA on a given protocol has identified n opera-
tionally variable attributes labeled O1 through On. The cardinality of a single
attribute, C(Oi), is the range of possible normal values for that attribute.
Thus, the size of the space of normal values for an instance of the protocol is:

n∏
i=1

C(Oi) . (7.1)

By definition, every combination of values in this space is normal with
respect to the protocol specification. If we were to build an anomaly detec-
tion system for these attributes, we would need an example for every value
combination to completely cover the value space. Any combination excluded
from training would likely result in a false positive when later encountered by
the anomaly detection system.

To understand the scope of this requirement, let us return to the example of
IVIA on the IP Version 4 protocol. We identified nine operationally variable
attributes – Header Length, Service Type, Total Length, Identification, DF
Flag, MF Flag, Fragment Offset, Time to Live, and Options. The cardinality
for each of these attributes ranges from 2 to over 65 thousand.2 The size of
the normal value space for these attributes is 267, or approximately 1.5E1020.
If we assume it takes a human operator an average of one second to collect
and verify a training instance for every combination (a very fast operator!),
it would take over 4.7E1012 person-years to complete the training set.

Certain combinations of operationally variable attribute values can be vi-
olations of the protocol. In IP Version 4, a datagram whose Total Length is
less than the Header Length is invalid. Other combinations may reveal im-
plementation errors for a particular system. For example, the Land denial
of service (DoS) attack [182] caused some network stacks to fail by using a
packet with the same value for both the source and destination IP address.
Although some of these combinations may be useful for anomaly detection,
the number of such combinations is likely to be small in comparison to the
size of the overall value space. Using anomaly detection to identify these com-
binations creates the potential for unacceptably high false-positive rates. It is
more reasonable to expect that such combinations can identified by studying
the protocol specification.

7.3.2 Data Mining on Operationally Variable Attributes

As was seen in the previous section, the collection of training data using
operationally variable attributes presents significant practical problems. We
conducted the following experiment to illustrate the drawbacks of approaches

2 Options is a variable-length attribute. We assumed the options field is not used
for our calculation. If Options were used, the size of the value space is 299 or
roughly 6.3E1029.
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that learn a model based on operationally variable attributes. In this exper-
iment, our goal was to build a model of normal IP fragments. This can be
seen as a subset of a larger data mining exercise wherein models for multiple
protocol behaviors are simultaneously constructed.

We collected approximately 5, 400 examples of normal fragments from the
1999 DARPA IDS Evaluation Data Sets [183]. The operationally variable at-
tributes for the IP Version 4 protocol (as shown in Quadrant I of Table 7.2)
were then extracted from each packet and used as features. With the training
set constructed, we used Magnum Opus [184] to create a collection of associa-
tion rules. Association rules are used to identify frequent relationships among
attribute values in the data [58, 185]. They are often used to identify buying
patterns of shoppers (e.g., those shoppers who bought bread and milk who
also bought cereal). In the context of network traffic, association rules relate
to values in the packet header frequently occurring together. This technique
has been used to develop a set of rules describing normal traffic [186, 187].
Anomaly alerts are generated when a packet fails to match a sufficient number
of these rules.

Table 7.3. Association rules generated for IP fragments in the 1999 DARPA IDS
Evaluation data sets using operationally variable attributes as features

Rule Support Strength
ipFlagsMF = 1 & ipTTL = 63 → ipTLen = 28 0.526 0.981
ipID < 2817 & ipFlagsMF = 1 → ipTLen > 28 0.309 0.968
ipID < 2817 & ipTTL > 63 → ipTLen > 28 0.299 1.000
ipTLen > 28 → ipID < 2817 0.309 1.000
ipID < 2817 → ipTLen > 28 0.309 0.927
ipTTL > 63 → ipTLen > 28 0.299 0.988
ipTLen > 28 → ipTTL > 63 0.299 0.967
ipTLen > 28 & ipOffset > 118 → ipTTL > 63 0.291 1.000

Table 7.3 shows the top eight ranking rules as generated by Magnum Opus.
The rules are sorted by two metrics – support and strength. The support metric
refers to the percentage of items in the training set whose attributes match
the left- and right-hand side of the rule. The strength metric indicates the
probability of a match of the right-hand side (RHS) of the rule given a match
of the attributes on the left-hand side (LHS). A more common name for this
metric is confidence, and we will use the more common term in the remainder
of this chapter.

Using the first rule as an example, we see that roughly 53% of the training
instances match the attribute/value combinations in the rule. This rule states
that fragments with the MF flag set (indicating it is not the last fragment) and
a TTL value of 63 are 98% likely to have a total length of 28 bytes. However,
suppose a fragment has a TTL value of 62 or a total length of 29 bytes. These
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values are perfectly valid in the context of the protocol specification, but they
would not match the above rule. Here we see the first problem associated with
using operationally variable attributes as features. Thresholds for distinctions
between normal and abnormal values are determined by the supplied training
data, but can be arbitrary with respect to the protocol specification.

Looking at the remaining rules in Table 7.3, we see a number of opera-
tionally variable attributes appearing as relevant features for describing nor-
mal behavior. Examples include ipID and ipTTL fields. The implication is
that the values associated with these attributes can be useful in distinguish-
ing normal from abnormal fragments. Unfortunately, this is not the case. The
ipID field is merely a label indicating the IP datagram to which the frag-
ment belongs. The ipTTL field can be any nonzero value. Here we see another
problem associated with using operationally variable attributes as features for
anomaly detection. Features found to be significant in the training data are
often not useful in discriminating malicious from non-malicious events.

If an anomaly detection system were based on the above rules, an alert
would be generated if an incoming IP fragment did not match any of the rules.
However, it is likely that many normal IP fragments would fail to match these
rules and thus result in a false-positive alert. Therefore, we conclude that the
features used to model IP fragments, the operationally variable attributes, are
not able to adequately model the distinction between normal and abnormal
fragments.

In conclusion, we avoid the direct use of operationally variable attributes
in our models, because (1) they do not have an inherent notion of anoma-
lous values, (2) the collection of adequate training data is time-consuming
and human-intensive, and (3) in the absence of adequate training data, the
resulting anomaly detection system has the potential for high false-positive
rates. In the next section, we show how these attributes can be transformed
into useful features for anomaly detection.

7.4 Deriving Behavioral Features

We have shown the practical problems associated with using operationally
variable attributes as features for anomaly detection. In this section, we
present a method to transform operationally variable attributes into features
that better capture the notion of anomalous behavior of a protocol. To ac-
complish this, we focus on how the values of a given attribute change during
operation. This allows us to better distinguish between normal and abnormal
protocol usage than by observing the attribute values directly.

By definition, the values associated with operationally variable attributes
change within a flow. Therefore, our approach examines how the attribute
values change over time or an event sequence window. Revisiting the Time to
Live attribute of the IP Version 4 protocol as an example, we can observe the
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range of unique values (i.e., entropy) of this attribute over fixed-length packet
window. Additional observations for other such attributes include:

• Mean and standard deviation of an attribute value
• Percentage of events with a given attribute value
• Percentage of events representing monotonically increasing (or decreasing)

values
• Step size of an attribute value

This is not an exhaustive list, because other useful measurements arise
when examining particular protocols in detail. Some examples include the
percentage of TCP packets using the PSH flag, the range of values for the IP
Identification field, and the average step size of the IP Fragment Offset. In
addition, certain measurements among events have been found to be useful,
such as the mean inter-arrival time of packets.

We refer to an attribute observed over time/events as a behavioral feature.
Using behavioral features, we can now compare how different entities use a
given protocol. Training data requirements are reduced because we do not
have the large normal value space associated with operationally variable at-
tributes. The definition of normal comes from the uses of the protocol deemed
acceptable. In the next section, we will describe an application of behavioral
features.

7.5 Authentication Using Behavioral Features

In this section, we present an approach to classify server flow behavior using
decision trees based on behavioral features. Traditional methods of determin-
ing traffic type rely on the port label carried in the packet header. This method
can fail, however, in the presence of proxy servers that remap port numbers or
host services that have been compromised to act as backdoors or covert chan-
nels. Because our classification of the traffic type is independent of port label,
it provides a more accurate classification in the presence of malicious activity.
An empirical evaluation illustrates that models of both aggregate protocol
behavior and host-specific protocol behavior obtain classification accuracies
ranging from 82 to 100%.

7.5.1 The Need for Authentication of Server Flows

Understanding the nature of the information flowing into and out of a system
or network is fundamental to determining if there is adherence to a usage
policy. The traditional method of determining the client-server protocol is
by inspecting the source and destination port numbers in the TCP header.
The mappings between port numbers and their corresponding service are well
known [188]. In essence, we rely on a correct labeling of the traffic to accurately
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determine its type. The binding between the port label and the type of traffic
is a binding by convention. This label is also used as a basis for firewall filtering
and intrusion detection [172, 189].

There are several attack scenarios for which the port number may not be
indicative of the true nature of the server traffic.

Malicious Proxies: Systems used to circumvent firewall rules [190]. The
proxy takes traffic that would normally be dropped by the firewall and
remaps the port numbers to make the traffic appear legitimate (e.g.,
HTTP traffic).

Server Backdoors: When a server has been compromised, the attacker of-
ten places a “backdoor” in the form of an altered executable. This new
executable functions as both rogue service R for the attacker and autho-
rized service S for all other users.

User-Installed Servers: This category includes the installation of unautho-
rized servers such as FTP, HTTP, peer-to-peer file sharing [191], and rogue
mail servers [192]. The user may or may not be aware that the server is
running. These servers can configured to use almost any port number.

Each of these scenarios represents an instance where the port number
label fails to accurately indicate the type of traffic. Worse yet, it is precisely
these scenarios where an accurate identification of the traffic would reveal a
compromised service or policy violation. Thus, there exists a need to classify
traffic associated with a particular service, what we will henceforth refer to as
a server flow, using a method other than a mere label that is easily modified,
ambiguous, or conceals unauthorized activity.

7.5.2 Classification of Server Flows

Server authentication can be naturally cast as either a supervised learning task
or an anomaly detection task. To cast the problem as a supervised learning
problem, we must choose k possible server applications, collect training data
for each, and then apply a supervised learning algorithm to form a classifier.
Given a new server flow, we can then classify it as one of these k types of
servers. To cast the problem as an anomaly detection problem, we look at
each service individually. For each of the k server applications of interest we
form a model of normal behavior. Given a new server flow, we compare the
new flow to each of the models to determine whether it conforms to any of
these models. Casting the problem as an anomaly detection problem uses the
same framework as user behavioral authentication [85]. In user authentication,
the goal is to identify whether the user is behaving normally with respect to
a learned profile of behavior.

We have chosen to investigate server flow authentication based on the
supervised learning framework, because we assume a policy exists specifying
the services that are to be run on a given host. A drawback of this assumption
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is that if an attacker replaces or alters an existing service it may not behave
like any of the permitted services, and this may not be readily detectable.
However, it is unlikely that it will behave identically to any of the permitted
services, but we plan to examine this conjecture in future work.

7.5.3 An Empirical Evaluation

Our experiments are designed to investigate whether we can classify server
flows based on a set of behavioral features. The following features were ex-
tracted from a variable length packet window – the percentage of packets with
each of the six TCP state flags set [177], the mean inter-arrival time, and the
mean packet length. We next describe the data used in the experiments and
the supervised learning algorithm we chose. Finally, we present experimental
results with learning aggregate flows and by-host flows using both synthetic
and real network traffic.

The first data set chosen for our experiments is the 1999 MIT Lincoln
Labs Intrusion Detection Evaluation Data Sets [183]. Although created for
a specific evaluation exercise, these data sets have subsequently been widely
used for research into other later intrusion detection systems not part of the
original evaluation [187, 193, 194].

7.5.4 Aggregate Server Flow Model

Our first experiment was designed to determine the extent to which FTP,
SSH, Telnet, SMTP, and HTTP traffic can be differentiated using a decision-
tree classifier. We used the data from week one of the Lincoln Labs data to
build our training data set. The set was created by first randomly selecting
fifty server flows for each of the five protocols. Each server flow consists of
the packets from a server to a particular client host/port. The largest flow
contained roughly 37, 000 packets, and the smallest flow contained 5 packets.
The 250 flows represented a total of approximately 290, 000 packets. We refer
to this as an aggregate model because the collection of flows came from many
different servers.

The fact that this data is certified as attack-free meant that we could have
confidence in the port numbers as indicative of the type of traffic. We used
the server port to label each of the flows in the training set. Each server flow
was then used to generate data observations based on our feature set. The
result is a data set consisting of approximately 290, 000 labeled observations.
We repeated this process for each of seven packet window sizes. The win-
dow size is an upper bound on the number of packets used to compute the
means and percentages. If an individual flow contains fewer packets than the
packet window size, the number of available packets is used to calculate each
observation.

Each of the seven training sets was then used to build a decision tree using
C5 [53] – a widely used and tested decision-tree algorithm implementation.
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We constructed test sets in the same manner – fifty server flows from each
protocol were randomly selected from week three of the Lincoln Labs data
(also certified as attack-free). These were then passed to our feature extraction
algorithm using the same seven window sizes.

tcpPerFIN > 0.01:
:...tcpPerPSH <= 0.4: www (45)
: tcpPerPSH > 0.4:
: :...tcpPerPSH <= 0.797619: smtp (13)
: tcpPerPSH > 0.797619: ftp (38)
tcpPerFIN <= 0.01:
:...meanIAT > 546773.2:

:...tcpPerSYN <= 0.03225806: telnet (6090)
: tcpPerSYN > 0.03225806:
: :...meanipTLen > 73.33: ftp (21)
: meanipTLen <= 73.33:
: :...tcpPerPSH > 0.7945206: smtp (8)

Fig. 7.2. Portion of a decision tree generated by C5

Table 7.4. Classification accuracy of the aggregate model decision trees on unseen
individual server flows. Each value represents the percentage of correctly classified
flows out of the fifty flows for each protocol

Window Size FTP SSH Telnet SMTP WWW
1, 000 100% 88% 94% 82% 100%
500 100% 96% 94% 86% 100%
200 98% 96% 96% 84% 98%
100 100% 96% 96% 86% 100%
50 98% 96% 96% 82% 100%
20 100% 98% 98% 82% 98%
10 100% 100% 100% 82% 98%

Before describing how a tree is used to classify a flow, we give an example
of a portion of a decision tree generated by C5 in Fig. 7.2. In this example,
the root node tests the percentage of packets in the packet window with the
FIN flag set (tcpPerFIN). If this percentage exceeds 1%, a test is made on
the percentage of packets with the PSH flag set (tcpPerPSH). If this value is
less than or equal to 40%, the observation is classified as “www”, indicating
HTTP traffic. The numbers in parentheses indicate the number of training ob-
servations classified with this leaf node. Other tests can be seen involving the
mean inter-arrival time (meanIAT) and mean packet length (meanipTLen).

During testing, the class label for a given flow was calculated by summing
the confidence values for each observation in the flow. The class with the
highest total confidence was assigned to that flow. The classification results are
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shown in Table 7.4. For each of seven window sizes, we report the percentage
of correctly classified server flows out of the set of fifty flows for each protocol.
As can be seen in the table, the classification accuracy ranges from 82% to
100%.

In general, the classification accuracy was lower for SMTP server flows
than for other protocols. We examined the misclassified flows in more detail
and discovered that these flows were generally 2–4 times longer than correctly
classified flows. Longer SMTP server flows represented longer periods of in-
teraction, and thus contain increasing numbers of observations classified as
Telnet or FTP. In these few cases, our feature set is not adequate for discrim-
inating between the behaviors of these flows.

It is more desirable to use a smaller window size because this decreases the
time to detect that a service is behaving abnormally. Indeed, for SSH, we see
that too large a packet window size (1, 000) hurts classification accuracy. For
FTP, SSH, and Telnet, a window size as small as ten packets achieves 100%
classification accuracy.

We conclude from our experimental results that the behavior of server
flows for the five protocols can be differentiated using a decision-tree classifier
built on aggregate flows. We will later discuss how this method can be used
to complement an intrusion detection system.

7.5.5 Host-Specific Models

Our second experiment addresses whether creating models for specific hosts
provides better performance than the aggregate model. There are three ad-
vantages to using host-specific models:

1. By creating models for individual server flows, we can monitor these flows
for changes in behavior.

2. A host-specific model can capture the implementation subtleties of a par-
ticular service running on a host. This resolution is missing in the aggre-
gate model consisting of many server flows.

3. The training examples in an aggregate model will be dominated by the
server generating the most traffic. This may dilute examples from other
servers. The host-specific model solves this problem.

We first identified a set of hosts in the Lincoln Labs data that each ran
three or more server protocols. Training data for each host was collected by
randomly selecting server flows from week one for each of the protocols running
on these hosts. The number of flows used in each model was chosen such that
each protocol was represented by the same number of flows. Table 7.5 lists
the number of training and test flows per host.

Based on our results using the aggregate models, we chose a packet window
size of 100 for generating observations. The selection was driven by the fact
that SMTP accuracy was greatest using this window size with the aggregate
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Table 7.5. Number of flows used for each protocol in training and test sets for each
host model

Host Training Flows Test Flows
172.16.112.100 20 20
172.16.112.50 30 25
172.16.113.50 35 23
172.16.114.50 10 20
197.218.177.69 25 35

Table 7.6. Classification accuracy of host model decision trees on unseen server
flows. Each row reports the host address and the percentage of correctly classified
flows for each protocol. Fields with a “–” indicate there was no traffic of this protocol
type for this host

Host FTP SSH Telnet SMTP WWW
172.16.112.100 95% – 100% 90% 100%
172.16.112.50 92% 100% 84% 100% –
172.16.113.50 100% – 100% 100% –
172.16.114.50 100% 95% 100% 95% 95%
197.218.177.69 100% – 100% 100% –

models, and other protocol classification accuracies were between 96% and
100%. We then trained a decision tree for each host that could be used to
differentiate the server flows coming from that host. Test data was collected
from week three in the same manner as the training data.

The results in Table 7.6 indicate that, in general, the host-specific models
achieve approximately the same classification accuracy as the aggregate mod-
els. One difference observed is that classification accuracy varies by protocol.
For example, the classification accuracy of Telnet flows for host 172.16.112.50
is 84% whereas the classification of Telnet flows in the aggregate models av-
eraged 96.2%. Examination of the packets in the misclassified Telnet flows
revealed an interesting phenomenon. We often observed large time gaps be-
tween packets. The time gaps indicate lapses in user activity where the Telnet
server is not echoing characters or supplying responses to commands. In our
framework, a single large gap can radically alter the values for the mean inter-
arrival time of packets, thus resulting in misclassification of the subsequent
observations. We refer to this as the Water Cooler Effect – the user tem-
porarily leaves the interactive session, then resumes it a short while later. We
are investigating the sensitivity of our classifiers to this effect. One possible
solution would be to subdivide flows based on some time gap threshold and
use the interactive sub-flows to build our classifiers.

7.5.6 Models from Real Network Traffic

In this section, we present experiments with real network traffic. We collected
a number of server flows using the protocols described. We augmented this
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set to include flows from hosts acting as Kazaa servers. Kazaa [191, 195] is
a peer-to-peer file sharing system that is growing in popularity [196, 197].
Peer-to-peer network traffic was not part of the Lincoln Labs data set.

Our goal was to determine if there was a significant difference in classifica-
tion accuracy when using synthetic versus real traffic. We observed classifica-
tion accuracies by protocol ranging from 85% to 100% for both the aggregate
and host models. The peer-to-peer traffic was classified correctly for 100% of
the unseen flows. This is an especially interesting result because Kazaa flows
carry a port label that is user-defined. Thus, we are able to correctly classify
peer-to-peer flows behaviorally – without the use of the port number. These
results indicate that our classification method is effective for real network
traffic. The range of accuracies match those observed with the synthetic data.
Thus, we can identify no appreciable difference in the per-flow behavior in the
synthetic Lincoln Labs data versus those in real network traffic.

7.5.7 Classification for Intrusion and Misuse Detection

The focus for the use of behavioral features is the creation of behavior models
that are highly useful in practice. To this end, no such work is complete
without a discussion of its operational use. The two types of classification
models presented here give rise to new functionality in the context of intrusion
and misuse detection. Aggregate models try to classify a flow based on the
general behavior of many flows of a given type. The question the aggregate
model tries to answer is, What other flows does this flow resemble? In contrast,
host models are based on the previously observed behavior of flows for a
specific host. Given an unseen flow, the host models try to answer the question,
Does this flow resemble previous server flows from this host?

Intrusion/misuse detection systems and firewalls try to identify actions
a priori as being harmful to the system or network. An IDS may passively
monitor traffic and alert in the presence of some attack condition. Firewalls
actively drop network packets that violate some network policy. Our classifi-
cation method attempts to identify activities indicative of intrusion or misuse
after such an event has occurred. Working in concert with a priori mecha-
nisms, we can attempt to determine at any moment in time whether there is
an impending attack or artifacts of a successful attack.

Figure 7.3 shows how our classification methods can be integrated into a
network with an existing IDS. The organization uses servers to provide net-
work services (internally, externally, or both) to some community of users. Our
host-flow classification system monitors the output of these servers directly.
The purpose is to determine if currently observed flows continue to behave as
expected. If an attacker manages to take control of a particular service, he or
she will need to interact with the server in such a way as to exactly match
the previous behavior.

The network carries additional user traffic to servers that are external to
the organization. This traffic is monitored with the aggregate model. Here,
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Fig. 7.3. Network placement of the host and aggregate classifiers. Host classifiers
monitor specific server flows (outbound), while aggregate classifiers monitor user
traffic (inbound)

we classify the flow generally and compare this to the port label. Observation
of traffic that resembles Telnet to some nonstandard server port may be an
indication of an installed backdoor. Traffic labeled as Web traffic (with a server
port of 80) that behaves more like Telnet traffic may indicate the presence of
a proxy used to evade firewall rules. A peer-to-peer client operating at some
user-defined port may be a violation of the network policy. In each of these
cases, the aggregate classifier can indicate if a given flow behaves in a manner
consistent with its port label.

7.6 Related Work

Introduced by Anderson [198] and formalized by Denning [199], anomaly de-
tection has been used in an attempt to identify novel attack behaviors. How-
ever, two questions posed by Denning remain unanswered to this day:

Soundness of Approach – Does the approach actually detect intru-
sions? Is it possible to distinguish anomalies related to intrusions from
those related to other factors?

Choice of Metrics, Statistical Models, and Profiles – What metrics,
models, and profiles provide the best discriminating power? Which
are cost-effective? What are the relationships between certain types
of anomalies and different methods of intrusion?

Both of these questions relate to the types of attributes, and ultimately, to
the features used for anomaly detection. These questions can be rephrased as,
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What should be measured in order to model normal behavior and subsequently
identify new types of intrusions with high accuracy? Choosing a feature with
good predictive power for inclusion in a behavior model is as important as
avoiding the choice of a likely irrelevant feature.

A variety of statistical and data mining methods have been applied to at-
tributes of network traffic in an attempt to identify attack behaviors. These
have used three methods for feature extraction: (1) direct use of packet at-
tributes (e.g., operationally variable, invariant, and flow attributes), (2) man-
ually crafted features, and (3) automated feature extraction.

The Packet Header Anomaly Detector (PHAD) [194] is an example of
the use of machine learning techniques to identify intrusions using attributes
of network packets. An anomalous packet is indicated by its “rarity” in the
training data. Training and testing of this system was performed using the
1998 Lincoln Labs Intrusion Detection Evaluation Data Sets [200]. The au-
thors identified an artifact in this data set wherein the inclusion of the IP
TTL (Time to Live) attribute in the feature set increased intrusion detection
rates by more than 30%. This was caused by the use of a small set of TTL
values for injected attacks. The authors correctly reasoned that TTL values
would be unlikely to identify attacks in real network traffic. However, such
is also the case for other operationally variable attributes. This illustrates a
problem associated with the use of operationally variable attributes (i.e., IP
TTL) as features. Such features contribute to irrelevant rules and point to
inadequacies in training data.

A number of systems have employed manually crafted features that at-
tempt to model aspects of connection behavior. These features include the
number of connections between hosts [172] and the number of bytes trans-
ferred between hosts [171, 201] in a given time frame. Models based on such
features are focused on certain types of attacks, such as worm propagation.
As such, these features may not provide the descriptive power needed for a
broad collection of attack behaviors.

In [122, 181], Lee and Stolfo presented a process of using data mining to
identify those features that are most relevant to detecting attack behaviors.
The mining techniques are performed on high-level network events called net-
work connection records. Each record is an aggregate of TCP/IP connection
information containing a combination of packet attributes (e.g., source and
destination addresses and port numbers) and crafted features (e.g., a fragment
behavior flag and Land attack flag) as their base set of features. Further, they
define a set of axis attributes used to uniquely identify connections. These
are comparable to the flow attributes we use to organize flows. The technique
relies on a comprehensive set of initial features and adequate training data to
obtain useful results. In [122], the authors note:

There are also much needed improvements to our current approach;
First, deciding upon the right set of features is difficult and time-
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consuming. For example, many trials were attempted before we came
up with the current set of features and time intervals.

The work presented in this chapter provides a method to aid in the con-
struction of the initial feature set. Further, behavioral features provide finer
granularity than features based on high-level events. Thus, we view the use of
behavioral features and the a priori identification of likely irrelevant features
(i.e., operationally variable attributes) as an opportunity to enhance this and
other feature selection techniques.

7.7 Conclusion

In this chapter, we presented our method for feature extraction based on
the interpretation of protocol specifications. Our method identifies protocol
attributes whose values frequently change within the context of normal oper-
ation and, therefore, do not make useful features for anomaly detection. We
show that the inclusion of these operationally variable attributes as features
complicates the process of collecting training data and can yield anomaly
detection models that are not useful in practice.

We also show how these attributes can be transformed into behavioral
features by examining how the values of these attributes change during op-
eration. An application of behavioral features was presented showing that a
collection of TCP application protocols can be differentiated. Using models
of normal application behavior, we can confirm that a given server flow is
behaving in a manner consistent with its port label.
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Cost-Sensitive Modeling for Intrusion
Detection

Wenke Lee, Wei Fan, Salvatore J. Stolfo, and Matthew Miller

Summary. A real-time intrusion detection system (IDS) has several performance
objectives: good detection coverage, economy in resource usage, resilience to stress,
and resistance to attacks upon itself. A cost-based modeling approach can be used
to consider the trade-offs of these IDS performance objectives in terms of cost and
value.

In this paper, we study the problem of building cost-sensitive models for real-
time IDS. We first discuss the major cost factors in IDS, including consequential
and operational costs. We propose a multiple model cost-sensitive machine learn-
ing technique to produce models that are optimized for user-defined cost metrics.
Empirical experiments in off-line analysis show a reduction of approximately 97%
in operational cost over a single model approach, and a reduction of approximately
30% in consequential cost over a pure accuracy-based approach.

8.1 Introduction

Intrusion detection (ID) is an important component of infrastructure protec-
tion mechanisms. Many intrusion detection systems (IDSs) are emerging in
the marketplace, following research and development efforts in the past two
decades. They are, however, far from the ideal security solution for customers.
Investment in IDSs should bring the highest possible benefit and maximize
user-defined security goals while minimizing costs. This requires ID models
to be sensitive to cost factors. Currently these cost factors are ignored as
unwanted complexities in the development process of IDSs.

We developed a data mining framework for building intrusion detection
models. It uses data mining algorithms to compute activity patterns and ex-
tract predictive features, and applies machine learning algorithms to generate
detection rules [202]. In this paper, we describe our research in extending our
data mining framework to build cost-sensitive models for intrusion detection.
We briefly examine the relevant cost factors, models, and metrics related to
IDSs. We propose a multiple model, cost-sensitive machine learning technique
that can automatically construct detection models optimized for given cost
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metrics. Our models are learned from training data which was acquired from
an environment similar to one in which a real-time detection tool may be de-
ployed. Our data consists of network connection records processed from raw
tcpdump [203] files using MADAM ID (a system for Mining Audit Data for
Automated Models for Intrusion Detection) [202].

The rest of the paper is organized as follows: Section 8.2 examines major
cost factors related to IDSs and outlines problems inherent in modeling and
measuring the relationships among these factors. Section 8.3 describes our
multiple model approach to reducing operational cost and a MetaCost [204]
procedure for reducing damage cost and response cost. In Sect. 8.4, we evaluate
this proposed approach using the 1998 DARPA Intrusion Detection Evalua-
tion data set. Section 8.5 reviews related work in cost-sensitive learning and
discusses extensions of our approach to other domains and machine learning
algorithms.

8.2 Cost Factors, Models, and Metrics in IDSs

8.2.1 Cost Factors

There are three major cost factors involved in the deployment of an IDS.
Damage cost, DCost, characterizes the maximum amount of damage inflicted
by an attack when intrusion detection is unavailable or completely ineffective.
Response cost, RCost, is the cost to take action when a potential intrusion
is detected. Consequential cost, CCost, is the total cost caused by a connec-
tion and includes DCost and RCost as described in detail in Sect. 8.2.2. The
operational cost, OpCost, is the (computational) cost inherent in running an
IDS.

8.2.2 Cost Models

The cost model of an IDS formulates the total expected cost of the IDS. In
this paper, we consider a simple approach in which a prediction made by a
given model will always result in some action being taken. We examine the
cumulative cost associated with each of these outcomes: false negative (FN),
false positive (FP), true positive (TP), true negative (TN), and misclassified
hits. The costs associated with these outcomes are known as consequential
costs (CCost), and are outlined in Table 8.1.

FN Cost is the cost of not detecting an intrusion. It is therefore defined as
the damage cost associated with the particular type of intrusion it, DCost(it).

TP Cost is the cost incurred when an intrusion is detected and some action
is taken. We assume that the IDS acts quickly enough to prevent the damage
of the detected intrusion, and therefore only pays RCost(it).

FP Cost is the cost incurred when an IDS falsely classifies a normal con-
nection as intrusive. In this case, a response will ensue, and we therefore pay
RCost(i), where i is the detected intrusion.
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TN Cost is always 0, as we are not penalized for correct normal classifica-
tion.

Misclassified Hit Cost is the cost incurred when one intrusion is incorrectly
classified as a different intrusion – when i is detected instead of it. We take
a pessimistic approach that our action will not prevent the damage of the
intrusion at all. Since this simplified model assumes that we always respond
to a predicted intrusion, we also include the response cost of the detected
intrusion, RCost(i).

Table 8.1. Consequential Cost (CCost) matrix. c is the connection, it is the true
class, and i is the predicted class

Outcome CCost(c)
Miss (FN ) DCost(it)
False Alarm (FP) RCost(i)
Hit (TP) RCost(it)
Normal (TN ) 0
Misclassified Hit RCost(i) + DCost(it)

8.2.3 Cost Metrics

Cost-sensitive models can only be constructed and evaluated using given cost
metrics. Qualitative analysis is applied to measure the relative magnitudes
of the cost factors, as it is difficult to reduce all factors to a common unit of
measurement (such as dollars). We have thus chosen to measure and minimize
CCost and OpCost in two orthogonal dimensions.

An intrusion taxonomy must be used to determine the damage and re-
sponse cost metrics which are used in the formulation of CCost. A more de-
tailed study of these cost metrics can be found in our ongoing work [205]. Our
taxonomy is the same as that used in the DARPA evaluation, and consists
of four types of intrusions: probing (PRB), denial of service (DoS), remotely
gaining illegal local access (R2L), and a user gaining illegal root access (U2R).
All attacks in the same category are assumed to have the same DCost and
RCost. The relative scale or metrics chosen are shown in Table 8.2a.

The operational cost of running an IDS is derived from an analysis of the
computational cost of computing the features required for evaluating classi-
fication rules. Based on this computational cost and the added complexity
of extracting and constructing predictive features from network audit data,
features are categorized into three relative levels. Level 1 features are com-
puted using at most the first three packets of a connection. Level 2 features
are computed in the middle of or near the end of a connection using infor-
mation of the current connection only. Level 3 features are computed using
information from all connections within a given time window of the current
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Table 8.2. Cost metrics. (a) Intrusion classes. (b) Feature categories

(a)
Category DCost RCost
U2R 100 40
R2L 50 40
DoS 20 20
PRB 2 20
Normal 0 0

(b)
Category OpCost
Level 1 1 or 5
Level 2 10
Level 3 100

connection. Relative magnitudes are assigned to these features to represent
the different computational costs as measured in a prototype system we have
developed using Network Flight Recorder (NFR) [206]. These costs are shown
in Table 8.2b. The cost metrics chosen incorporate the computational cost as
well as the availability delay of these features. It is important to note that
level 1 and level 2 features must be computed individually. However, because
all level 3 features require iteration through the entire set of connections in a
given time window, all level 3 features can be computed at the same time, in
a single iteration. This saves operational cost when multiple level 3 features
are computed for analysis of a given connection.

8.3 Cost-Sensitive Modeling

In the previous section, we discussed the consequential and operational costs
involved in deploying an IDS. We now explain our cost-sensitive machine
learning methods for reducing these costs.

8.3.1 Reducing Operational Cost

In order to reduce the operational cost of an IDS, the detection rules need to
use low-cost features as often as possible while maintaining a desired accuracy
level. Our approach is to build multiple rule sets, each of which uses features
from different cost levels. Low-cost rules are always evaluated first by the
IDS, and high-cost rules are used only when low-cost rules cannot predict
with sufficient accuracy. We propose a multiple rule set approach based on
RIPPER, a popular rule induction algorithm [51].

Before discussing the details of our approach, it is necessary to outline the
advantages and disadvantages of two major forms of rule sets that RIPPER
computes, ordered and unordered. An ordered rule set has the form if rule1
then intrusion1 elseif rule2 then intrusion2, . . . , else normal. To generate
an ordered rule set, RIPPER sorts class labels according to their frequency
in the training data. The first rule classifies the most infrequent class, and
the end of the rule set signifies prediction of the most frequent (or default)
class, normal, for all previously unpredicted instances. An ordered rule set
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is usually succinct and efficient, and there is no rule generated for the most
frequent class. Evaluation of an entire ordered rule set does not require each
rule to be tested, but proceeds from the top of the rule set to the bottom until
any rule evaluates to true. The features used by each rule can be computed one
by one as evaluation proceeds. An unordered rule set, on the other hand, has
at least one rule for each class and there are usually many rules for frequently
occurring classes. There is also a default class which is used for prediction
when none of these rules are satisfied. Unlike ordered rule sets, all rules are
evaluated during prediction and all features used in the rule set must be
computed before evaluation. Ties are broken by using the most accurate rule.
Unordered rule sets are less efficient in execution, but there are usually several
rules of varying precision for the most frequent class, normal. Some of these
normal rules are usually more accurate than the default rule for the equivalent
ordered rule set.

With the advantages and disadvantages of ordered and unordered rule sets
in mind, we propose the following multiple rule set approach:

• We first generate multiple training sets T1−4 using different feature subsets.
T1 uses only cost 1 features. T2 uses features of costs 1 and 5, and so forth,
up to T4, which uses all available features.

• Rule sets R1−4 are learned using their respective training sets. R4 is learned
as an ordered rule set for its efficiency, as it may contain the most costly
features. R1−3 are learned as unordered rule sets, as they will contain
accurate rules for classifying normal connections.

• A precision measurement pr
1 is computed for every rule, r, except for the

rules in R4.
• A threshold value τi is obtained for every single class, and determines the

tolerable precision required in order for a classification to be made by any
rule set except for R4.

In real-time execution, the feature computation and rule evaluation pro-
ceed as follows:

• All cost 1 features used in R1 are computed for the connection being
examined. R1 is then evaluated and a prediction i is made.

• If pr > τi, the prediction i will be fired. In this case, no more features will
be computed and the system will examine the next connection. Otherwise,
additional features required by R2 are computed and R2 will be evaluated
in the same manner as R1.

• Evaluation will continue with R3, followed by R4, until a prediction is
made.

• When R4 (an ordered rule set) is reached, it computes features as needed
while evaluation proceeds from the top of the rule set to the bottom. The

1 Precision describes how accurate a prediction is. Precision is defined as p = |P∩W |
|P | ,

where P is the set of predictions with label i, and W is the set of all instances
with label i in the data set.
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evaluation of R4 does not require any firing condition and will always
generate a prediction.

The OpCost for a connection is the total computational cost of all unique
features used before a prediction is made. If any level 3 features (of cost 100)
are used at all, the cost is counted only once since all level 3 features are
calculated in one function call.

This evaluation scheme is further motivation for our choice of learning
R1−3 as unordered rule sets. If R1−3 were learned as ordered rule sets, a
normal connection could not be predicted until R4 since the default normal
rules of these rule sets would be less accurate than the default rule of R4.
OpCost is thus reduced, resulting in greater system throughput, by only using
low-cost features to predict normal connections.

The precision and threshold values can be obtained during model training
from either the training set or a separate hold-out validation set. Threshold
values are set to the precisions of R4 on that data set. Precision of a rule can be
obtained easily from the positive, p, and negative, n, counts of a rule, p

p+n . The
threshold value will, on average, ensure that the predictions emitted by the
first three rule sets are not less accurate than using R4 as the only hypothesis.

8.3.2 Reducing Consequential Cost

We applied the MetaCost algorithm, introduced by Domingos [204], to re-
duce CCost. MetaCost relabels the training set according to the cost-matrix
and decision boundaries of RIPPER. Instances of intrusions with DCost(i) <
RCost(i) or a low probability of being learned correctly will be relabeled as
normal.

8.4 Experiments

8.4.1 Design

Our experiments use data that was distributed by the 1998 DARPA evalua-
tion, which was conducted by MIT Lincoln Lab [207]. The data was gathered
from a military network with a wide variety of intrusions injected into the
network over a period of 7 weeks. The data was then processed into connec-
tion records using MADAM ID [202]. The processed records are available from
the UCI KDD Archive as the 1999 KDD Cup Data Set [87]. A 10% sample
was taken which maintained the same distribution of intrusions and normal
connections as the original data.2 We used 80% of this sample as training
2 The full data set is around 743M. It is very difficult to process and learn over the

complete data set in a reasonable amount of time with limited resources given the
fact that RIPPER is memory-based and MetaCost must learn multiple bagging
models to estimate probabilities.
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data. For infrequent intrusions in the training data, those connections were
repeatedly injected to prevent the learning algorithm from neglecting them as
statistically insignificant and not generating rules for them. For overwhelm-
ingly frequent intrusions, only 1 out of 20 records were included in the training
data. This is an ad hoc approach, but produced a reasonable rule set. The
remaining 20% of our sample data was left unaltered and used as test data for
evaluation of learned models. Table 8.3 shows the different intrusions present
in the data, the category within our taxonomy that each belongs to, and their
sampling rates in the training data.

Table 8.3. Intrusions, categories, and sampling

U2R R2L DoS PRB
buffer overflow 1 ftp write 4 back 1 ipsweep 1
loadmodule 2 guess passwd 1 land 1 nmap 1
multihop 6 imap 2 neptune 1

20 portsweep 1
perl 6 phf 3 pod 1 satan 1
rootkit 2 spy 8 smurf 1

20
warezclient 1 teardrop 1
warezmaster 1

We used the training set to calculate the precision for each rule and the
threshold value for each class label. We experimented with the use of a hold-
out validation set to calculate precisions and thresholds. The results (not
shown) are similar to those reported below.

8.4.2 Measurements

We measure expected operational and consequential costs in our experi-
ments. The expected OpCost over all occurrences of each connection class
and the average OpCost per connection over the entire test set are defined

as
∑

c∈Si
OpCost(c)
|Si| and

∑
c∈S OpCost(c)

|S| , respectively, where S is the entire
test set, i is a connection class, and Si represents all occurrences of i in S. In
all of our reported results, OpCost(c) is computed as the sum of the feature
computation costs of all unique features used by all rules evaluated until a
prediction is made for connection c. CCost is computed as the cumulative sum
of the cost matrix entries, defined in Table 8.1, for all predictions made over
the test set.

8.4.3 Results

In all discussion of our results, including all tables, “RIPPER” is the single
model learned over the original data set, “Multi-RIPPER” is the respective
multiple model, “MetaCost” is the single model learned using RIPPER with a
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MetaCost relabeled data set, and “Multi-MetaCost” is the respective multiple
model.

Table 8.4. Average OpCost per connection class

Multi- Multi-IDS RIPPER
RIPPER

MetaCost
MetaCost

back 223 143 191 1
buffer overflow 172 125.8 175 91.6
ftp write 172 113 146 71.25
guess passwd 198.36 143 191 87
imap 172 107.17 181 108.08
ipsweep 222.98 100.17 191 1
land 132 2 191 1
loadmodule 155.33 104.78 168.78 87
multihop 183.43 118.43 182.43 100.14
neptune 223 100 191 1
nmap 217 119.63 191 1
normal 222.99 111.14 190.99 4.99
perl 142 143 151 87
phf 21 143 191 1
pod 223 23 191 1
portsweep 223 117.721 191 1
rootkit 162 100.7 155 63.5
satan 223 102.84 191 1
smurf 223 143 191 1
spy 131 100 191 46.5
teardrop 223 23 191 1
warezclient 223 140.72 191 86.98
warezmaster 89.4 48.6 191 87

Table 8.5. Average OpCost per connection

RIPPER Multi-RIPPER MetaCost Multi-MetaCost
OpCost 222.73 110.64 190.93 5.78

As shown in Table 8.5, the average OpCost per connection of the single
MetaCost model is 191, while the Multi-MetaCost model has an average Op-
Cost of 5.78. This is equivalent to the cost of computing only a few level 1
features per connection and offers a reduction of 97% from the single rule
set approach. The single MetaCost model is 33 times more expensive. This
means that in practice we can classify most connections by examining the
first three packets of the connection at most 6 times. Additional comparison
shows that the average OpCost of the Multi-RIPPER model is approximately
half as much as that of the single RIPPER model. This significant reduction
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by Multi-MetaCost is due to the fact that R1−3 accurately filter out nor-
mal connections (including low-cost intrusions relabeled as normal), and a
majority of connections in real network environments are normal. Our multi-
ple model approach thus computes more costly features only when they are
needed to detect intrusions with DCost > RCost. Table 8.4 lists the detailed
average OpCost for each connection class. It is important to note that the
difference in OpCost between RIPPER and MetaCost models is explainable
by the fact that MetaCost models do not contain (possibly costly) rules to
classify intrusions with DCost < RCost.

Table 8.6. CCost and error rate

RIPPER Multi-RIPPER MetaCost Multi-MetaCost
CCost 42, 026 41, 850 29, 866 28, 026
Error 0.0847% 0.1318% 8.24% 7.23%

Our CCost measurements are shown in Table 8.6. As expected, both
MetaCost and Multi-MetaCost models yield a significant reduction in CCost
over RIPPER and Multi-RIPPER models. These reductions are both ap-
proximately 30%. The consequential costs of the Multi-MetaCost and Multi-
RIPPER models are also slightly lower than those of the single MetaCost and
RIPPER models.

The detailed precision and TP rates3 of all four models are shown in
Table 8.7 for different connection classes. The values for the single classifier
and multiple classifier methods are very close to each other. This shows that
the coverage of the multiple classifier methods are identical to those of the
respective single classifier methods. It is interesting to point out that MetaCost
fails to detect warezclient, but Multi-MetaCost is highly accurate. The reason
is that R4 completely ignores all occurrences of warezclient and classifies them
as normal.

The error rates of all four models are also shown in Table 8.6. The er-
ror rates of MetaCost and Multi-MetaCost are much higher than those of
RIPPER and Multi-RIPPER. This is because many intrusions with DCost <
RCost are relabeled as normal by the MetaCost procedure. Multi-RIPPER
misclassified such intrusions more often than RIPPER, which results in its
slightly lower CCost and slightly higher error rate. Multi-MetaCost classifies
more intrusions correctly (warezclient, for example) and has a lower CCost
and error rate than MetaCost.

3 Unlike precision, TP rate describes the fraction of occurrences of a connection
class that were correctly labeled. Using the same notation as in the definition of
precision, TP = P∩W

W
.
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Table 8.7. Precision and recall for each connection class

Multi- Multi-RIPPER
RIPPER

MetaCost
MetaCost

TP 1.0 1.0 0.0 0.0back
p 1.0 1.0 na na
TP 1.0 1.0 0.8 0.6buffer overflow
p 1.0 1.0 0.67 0.75
TP 1.0 0.88 0.25 0.25ftp write
p 1.0 1.0 1.0 1.0
TP 0.91 0.91 0.0 0.0guess passwd
p 1.0 1.0 na na
TP 1.0 0.83 1.0 0.92imap
p 1.0 1.0 1.0 1.0
TP 0.99 0.99 0.0 0.0ipsweep
p 1.0 1.0 na na
TP 1.0 1.0 0.0 0.0land
p 1.0 1.0 na na
TP 1.0 1.0 0.44 0.67loadmodule
p 0.9 1.0 1.0 1.0
TP 1.0 1.0 1.0 0.86multihop
p 0.88 0.88 0.88 1.0
TP 1.0 1.0 na naneptune
p 1.0 1.0 na na
TP 1.0 1.0 0.0 0.0nmap
p 1.0 1.0 na na
TP 0.99 0.99 0.99 0.99normal
p 0.99 0.99 0.92 0.93
TP 1.0 1.0 1.0 1.0perl
p 1.0 1.0 1.0 1.0
TP 1.0 1.0 0.0 0.0phf
p 1.0 1.0 na na
TP 1.0 1.0 0.0 0.0pod
p 0.98 0.98 na na
TP 0.99 0.99 0.0 0.0portsweep
p 1.0 1.0 na na
TP 1.0 0.6 0.5 0.2rootkit
p 0.77 1.0 0.83 1.0
TP 1.0 0.98 0.0 0.0satan
p 0.99 0.99 na na
TP 1.0 1.0 0.0 0.0smurf
p 1.0 1.0 na na
TP 1.0 1.0 0.0 0.0spy
p 1.0 1.0 na na
TP 1.0 1.0 0.0 0.0teardrop
p 1.0 1.0 na na
TP 0.99 0.99 0.0 0.9warezclient
p 1.0 1.0 na 1.0
TP 0.6 0.6 0.0 0.0warezmaster
p 1.0 1.0 na na
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Table 8.8. Comparison with fcs-RIPPER

Multi- fcs-RIPPER
MetaCost

MetaCost
ω = .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

OpCost 5.78 191 151 171 191 181 181 161 161 171 171 171

8.4.4 Comparison with fcs-RIPPER

In previous work, we introduced a feature cost-sensitive method, fcs-RIPPER,
to reduce OpCost [205, 208]. This method favors less costly features when con-
structing a rule set. Cost sensitivity is controlled by the variable ω ∈ [0, 1] and
sensitivity increases with the value of ω. We generated a single ordered rule
set using different values of ω with fcs-RIPPER. In Table 8.8, we compare
the average OpCost over the entire test set for the proposed multiple classi-
fier method with that of fcs-RIPPER. We see that fcs-RIPPER reduces the
operational cost by approximately 10%, whereas Multi-MetaCost reduces this
value by approximately 97%. The expected cost of Multi-MetaCost is approx-
imately 30 times lower than that of fcs-RIPPER, RIPPER, and MetaCost.
This difference is significant.

8.5 Related Work

Much research has been done in cost-sensitive learning, as indicated by Tur-
ney’s online bibliography [209]. Within the subset of this research which fo-
cuses on multiple models, Chan and Stolfo proposed a meta-learning approach
to reduce consequential cost in credit card fraud detection [210]. MetaCost is
another approach which uses bagging to estimate probabilities. Fan et al. pro-
posed a variant of AdaBoost for misclassification cost-sensitive learning [211].
Within research on feature-cost-sensitive learning, Lavrac et al. applied a hy-
brid genetic algorithm effective for feature elimination [212].

Credit card fraud detection, cellular phone fraud detection, and medical
diagnosis are related to intrusion detection because they deal with detecting
abnormal behavior, are motivated by cost-saving, and thus use cost-sensitive
modeling techniques. Our multiple model approach is not limited to IDSs and
is applicable in these domains as well.

In our study, we chose to use an inductive rule learner, RIPPER. However,
the multiple model approach is not restricted to this learning method and can
be applied to any algorithm that outputs a precision along with its prediction.

8.6 Conclusion and Future Work

Our results using a multiple model approach on off-line network traffic analysis
show significant improvements in both operational cost (a reduction of 97%
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over a single monolithic model) and consequential costs (a reduction of 30%
over accuracy-based model). The operational cost of our proposed multiple
model approach is significantly lower than that of our previously proposed fcs-
RIPPER approach. However, it is desirable to implement this multiple model
approach in a real-time IDS to get a practical measure of its performance.
Since the average operational cost is close to computing at most six level 1
features, we expect efficient real-time performance. The moral of the story is
that computing a number of specialized models that are accurate and cost-
effective for particular subclasses is demonstrably better than building one
monolithic ID model.
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Data Cleaning and Enriched Representations
for Anomaly Detection in System Calls

Gaurav Tandon, Philip Chan, and Debasis Mitra

9.1 Introduction

Computer security research has two major aspects: intrusion prevention and
intrusion detection. While the former deals with preventing the occurrence of
an attack (using authentication and encryption techniques), the latter focuses
on the detection of successful breach of security. Together, these complemen-
tary approaches assist in creating a more secure system.

Intrusion detection systems (IDSs) are generally categorized as misuse-
based and anomaly-based. In misuse (signature) detection, systems are mod-
eled upon known attack patterns and the test data is checked for occurrence
of these patterns. Examples of signature-based systems include virus detec-
tors that use known virus signatures and alert the user when the system has
been infected by the same virus. Such systems have a high degree of accuracy
but suffer from the inability to detect novel attacks. Anomaly-based intru-
sion detection [199] models normal behavior of applications and significant
deviations from this behavior are considered anomalous. Anomaly detection
systems can detect novel attacks but also generate false alarms since not all
anomalies are hostile. Intrusion detection systems can also be categorized as
network-based, which monitors network traffic, and host-based, where oper-
ating system events are monitored.

There are two focal issues that need to be addressed for a host-based
anomaly detection system: cleaning the training data, and devising an en-
riched representation for the model(s). Both these issues try to improve the
performance of an anomaly detection system in their own ways. First, all the
proposed techniques that monitor system call sequences rely on clean train-
ing data to build their model. The current audit sequence is then examined
for anomalous behavior using some supervised learning algorithm. An attack
embedded inside the training data would result in an erroneous model, since
all future occurrences of the attack would be treated as normal. Moreover,
obtaining clean data by hand could be tedious. Purging all malicious content
from audit data using an automated technique is hence imperative.
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Second, normal behavior has to be modeled using features extracted
from the training set. It is important to remember that the concept of nor-
malcy/abnormality in anomaly detection is vague as compared to a virus de-
tector which has an exact signature of the virus it is trying to detect, making
anomaly detection a hard problem. Traditional host-based anomaly detection
systems focus on system call sequences to build models of normal application
behavior. These techniques are based upon the observation that a malicious
activity results in an abnormal (novel) sequence of system calls. Recent re-
search [213, 214] has shown that sequence-based systems can be compromised
by conducting mimicry attacks. Such attacks are possible by astute execution
of the exploit by inserting dummy system calls with invalid arguments such
that they form a legitimate sequence of events, thereby evading the IDS. A
drawback of sequence-based approaches lies in their non-utilization of other
key attributes, namely, the system call arguments. The efficacy of such sys-
tems might be improved upon if a richer set of attributes (return value, error
status and other arguments) associated with a system call is used to create
the model.

In this chapter, we address the issues of data cleaning and anomaly detec-
tion, both of which essentially try to detect outliers, but differ in character:

1. Off-line vs. online techniques. We present two enriched representations: (a)
motifs and their locations are used for cleaning the data (an off-line proce-
dure) whereas (b) system call arguments are modeled for online anomaly
detection.

2. Supervised algorithms assume no attacks in the training data. Unsuper-
vised algorithms, on the other hand, relax this constraint and could have
small amounts of unlabeled attacks. We present two modified detection
algorithms: Local Outlier Factor or LOF (unsupervised) and LEarning
Rules for Anomaly Detection or LERAD (supervised).

3. Low false-alarm rates are critical in anomaly detection and desirable in
data cleaning. False alarms are generated in anomaly detection systems
as not all anomalies are representative of attacks. For an online detec-
tion system, a human expert has to deal with the false alarms and this
could be overwhelming if in excess. But for data cleaning, we would like
to retain generic application behavior to provide a clean data set. Render-
ing the data free of attacks is highly critical and some other non-attack
abnormalities may also get removed in the process. Purging such anoma-
lies (program faults, system crashes among others) is hence justifiable, if
still within reasonable limits. Thus the evaluation criteria vary in the two
cases.

Empirical results indicate that our technique is effective in purging anoma-
lies in unlabeled data. Our representation can be effectively used to detect
malicious sequences from the data using unsupervised learning techniques.
The filtered training data leads to better application modeling and an en-
hanced performance (in terms of the number of detections) for online anomaly
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detection systems. Our system does not depend on the user for any param-
eter values, as is the norm for most of the anomaly detection systems. Our
sequence- and argument-based representations also result in better application
modeling and help detect more attacks than the conventional sequence-based
techniques.

This chapter is organized as follows. Section 9.2 reviews some prevalent
anomaly detection systems. In Sect. 9.3, we present the concept of motifs (in
the context of system call sequences) and motif-based representations for data
cleaning. Section 9.4 presents the argument-based representations and super-
vised learning algorithm for anomaly detection. An experimental evaluation
is presented in Sect. 9.5, and we conclude in Sect. 9.6.

9.2 Related Work

Traditional host-based anomaly detection techniques create models of normal
behavioral patterns and then look for deviations in test data. Such techniques
perform supervised learning. Forrest et al. [215] memorized normal system call
sequences using look-ahead pairs (tide). Lane and Brodley [216, 217] examined
UNIX command sequences to capture normal user profiles using a fixed size
window. Later work (stide and t-stide) by Warrender et al. [218] extended
sequence modeling by using n-grams and their frequency. Wespi et al. [219,
220] proposed a scheme with variable length patterns using Teiresias [221], a
pattern discovery algorithm in biological sequences. Ghosh and Schwartzbard
[222] used artificial neural networks, Sekar et al. [223] proposed a finite state
automaton, Jiang et al. [224] also proposed variable length patterns, Liao and
Vemuri [225] used text categorization techniques, Jones and Li [226] learned
temporal signatures, Coull et al. [227] suggested sequence alignment, Mazeroff
et al. [228] proposed probabilistic suffix trees, and Lee at al. [229] used a
machine learning algorithm called RIPPER [51] to learn normal user behavior.
All these techniques require clean or labeled training data to build models of
normal behavior, which is hard to obtain. The data sets used are synthetic
and generated in constrained environments. They are not representative of
actual application behavior, which contains many irregularities. The need for
a system to filter audit data and produce a clean data set motivates our
current research.

Unsupervised learning is an extensively researched topic in network an-
omaly detection [230–233]. Network traffic comprises continuous and discrete
attributes which can be considered along different dimensions of a feature
space. Distance and density-based algorithms can then be applied on this
feature space to detect outliers. Due to the lack of a similar feature space,
not much work has been done using unsupervised learning techniques in host-
based systems.

From the modeling/detection point of view, all the above-mentioned ap-
proaches for host-based systems use system call sequences. Parameter effec-
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tiveness for window-based techniques has been studied in [214]. Given some
knowledge about the system being used, attackers can devise some methodolo-
gies to evade such intrusion detection systems. Wagner and Soto [213] modeled
a malicious sequence by adding no-ops (i.e., system calls having no effect) to
compromise an IDS based upon the sequence of system calls. Such attacks
would be detected if the system call arguments are also taken into considera-
tion, and this provides the motivation for our work.

9.3 Data Cleaning

The goal is to represent sequences in a single feature space and refine the data
set off-line by purging anomalies using an unsupervised learning technique on
the feature space.

9.3.1 Representation with Motifs and Their Locations

Let Σ be a finite set of all distinct system calls. A system call sequence
(SCS ) s is defined as a finite sequence of system calls and is represented as
(c1c2c3 · · · cn), where ci ∈ Σ, 1 ≤ i ≤ n.

After processing the audit data into process executions, system call se-
quences are obtained as finite length strings. Each system call is then mapped
to a unique symbol using a translation table. Thereafter, they are ranked by
utilizing prior knowledge as to how susceptible the system call is to malicious
usage. A ranking scheme similar to the one proposed by Bernaschi et al. [234]
was used to classify system calls on the basis of their threat levels.

Motifs and Motif Extraction

A motif is defined as a subsequence of length greater than p if it ap-
pears more than k times, for positive integers p and k, within the finite set
S = {s1, s2, . . . , sm} comprising m SCS s. Motif discovery has been an ac-
tive area of research in bioinformatics, where interesting patterns in amino
and nucleic acid sequences are studied. Since motifs provide a higher level
of abstraction than individual system calls, they are important in modeling
system call sequences. Two sets of motifs are extracted via auto-match and
cross-match, explained next.

The set of motifs obtained through auto-match comprise frequently oc-
curring patterns within each sequence. For our experiments, we considered
any pattern at least 2 characters long, occurring more than once as frequent.
While the set of SCS s S is the input to this algorithm, a set of unique motifs
M = {m1, m2, . . . , mq} is the output. It may happen that a shorter subse-
quence is subsumed by a longer one. We prune the smaller motif only if it
is not more frequent than a larger motif that subsumes it. More formally, a
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motif extracted using auto-match (1) has length ≥ 2, (2) has frequency ≥ 2,
and (3) if there exists a motif mj ∈ M in a sequence sk ∈ S such that mi is
a subsequence of mj but occurs independently in SCS sk.

To illustrate this idea, consider the following synthetic sequence

acggcggfgjcggfgjxyz . (9.1)

Note that in this sequence we have a motif cgg with frequency 3, and an-
other motif cggf with frequency 2, which is longer and sometimes subsumes
the shorter motif but not always. We consider them as two different mo-
tifs since the frequency of the shorter motif was higher than the longer one.
The frequently occurring subsequences (with their respective frequency) are
cg (3), gg (3), gf (2), fg (2), gj (2), cgg (3), cggf (2), ggfg (2), gfgj (2), cg-
gfg (2), ggfgj (2), and cggfgj (2). The longest pattern, cggfgj, subsumes all
the smaller subsequences except cg, gg, and cgg, since they are more frequent
than the longer pattern, implying independent occurrence. But cg and gg are
subsumed by cgg, since they all have the same frequency. Thus, the final set
of motifs M = {cgg, cggfgj}.

Apart from frequently occurring patterns, we are also interested in patterns
which do not occur frequently but are present in more than one SCS. These
motifs could be instrumental in modeling an intrusion detection system since
they reflect common behavioral patterns across sequences (benign as well as
intrusive). We performed pair-wise cross-match between different sequences
to obtain these. In other words, motif mi extracted using cross-match (1)
has length ≥ 2, (2) appears in at least a pair of sequences sk, sl ∈ S, and
(3) is maximal, i.e., there does not exist a motif mj ∈ M(j �= i) such that
mj ⊆ sk, sl and mi ⊂ mj . Let us consider the following pair of synthetic
sequences:

acgfgjcgfgjxyzcg , (9.2)

cgfgjpqrxyzpqr . (9.3)

Using cross-match between the example sequences (9.2) and (9.3), we get the
motifs cgfgj and xyz, since these are the maximal common subsequences across
the two given sequences.

A simple method for comparing amino acid and nucleotide sequences called
the Matrix Method is described by Gibbs and McIntyre [235]. A matrix is
formed with one sequence written across and the other in the downward po-
sition on the left of the matrix. Any common element was marked with a dot
and a series of dots along a diagonal gave a common subsequence between
the two sequences. Using a technique similar to the Matrix Method, motifs
are extracted which occur across sequences but may not be frequent within a
single sequence itself.

Motifs obtained for a sequence (auto-match) or pairs of sequences (cross-
match) are added to the motif database. Redundant motifs are removed. Mo-
tifs are then ordered based upon the likelihood of being involved in an attack.
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The ranking for individual system calls is used here and motifs are ordered
using dictionary sort. The motifs are then assigned a unique ID based upon
their position within the ordered motif database.
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Fig. 9.1. Motif-oriented representation for sequence (9.2)

Motif-Based Representation of a Sequence

After collecting all the motifs that exist in the set S of sequences in the motif
database M , we would like to represent each sequence in terms of the motifs
occurring within it. For each sequence si ∈ S, we list all the motifs occurring
within it along with their starting positions within the sequence.

This creates a two-dimensional representation for each SCS si, where the
x-axis is the distance along the sequence from its beginning, and the y-axis is
the motif ID of those motifs present in si. A sequence can thus be visualized
as a scatter plot of the motifs present in the sequence. Figure 9.1 depicts such
a representation for the synthetic sequence (9.2), where the motifs cg, cgfgj,
and xyz are represented at the positions of occurrence within the respective
sequence. A total of 4 unique motifs (i.e., cg, cgfgj, pqr, and xyz ), obtained
from auto-match and cross-match of sequences (9.2) and (9.3), are assumed
in the motif database for the plot in Fig. 9.1. At the end of this phase, our
system stores each SCS as a list of all motifs present within along with their
spatial positions from the beginning of the sequence.

All the SCS s are modeled based upon the contained motifs. Malicious
activity results in alterations in the SCS which is reflected by the variations
in the motifs and their spatial positions. Plotting all the SCS s (based upon
their motif-based representations) in a single feature space could reflect the
similarity/dissimilarity between them.
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Fig. 9.2. Sequence space for two applications. (a) ftpd. (b) lpr

A Single Representation for Multiple Sequences

After creating a motif-based representation for each sequence, all the test
sequences S are plotted in a feature space called the sequence space. In this
representation, we measure the distance between pairs of SCS s along each of
the two axes (motifs and their locations). Utilizing one (arbitrarily chosen)
SCS from the set S as a reference sequence s1, we measure (dx, dy) distances
for all SCS s. Thus, the sequences are represented as points in this 2D sequence
space, where the sequence s1 is at the origin (reference point) on this plot.
Let s2 be any other sequence in S whose relative position with respect to
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s1 is to be computed. Let x1i (x2i) be the position of the ith motif in s1
(s2). Inspired by the symmetric Mahalanobis distance [236], the distance is
computed as follows:

dx =

∑n1
i=1(x1i

−x̄2)
σx2

+
∑n2

j=1(x2j
−x̄1)

σx1

n1 + n2
; (9.4)

dy =

∑n1
i=1(y1i

−ȳ2)
σy2

+
∑n2

j=1(y2j
−ȳ1)

σy1

n1 + n2
, (9.5)

where s1 has n1 motif occurrences and s2 has n2 motif occurrences, (dx, dy)
is the position of s2 with respect to s1, and (x̄, ȳ) is the mean and (σx, σy)
is the standard deviation along the x and y axes. Using this metric, we try to
calculate the variation in motifs and their locations in the two sequences.

After computing (dx, dy) for all sequences in S with respect to the reference
sequence (s1), we plot them in the sequence space, as represented by the two
plots in Fig. 9.2. The origin represents the reference sequence. It is important
to note that the position of another sequence (calculated using (9.4) and (9.5))
with respect to the randomly selected reference sequence can be negative (in
the x and/or y direction). In that case the sequence space will get extended
to other quadrants as well, as in Fig. 9.2b.

9.3.2 Unsupervised Training with Local Outlier Factor (LOF)

Similar sequences are expected to cluster together in the sequence space. Mali-
cious activity is known to produce irregular sequences of events. These anoma-
lies would correspond to spurious points (global outliers) or local outliers in
the scatter plot. In Fig. 9.2a, the point on the top-right corner of the plot is
isolated from the rest of the points, making it anomalous. In this section we
will concentrate on outlier detection, which has been a well-researched topic
in databases and knowledge discovery [131, 132, 237, 238]. It is important to
note that an outlier algorithm with our representation is inappropriate for
online detection since it requires complete knowledge of all process sequences.

LOF [132] is a density-based outlier finding algorithm which defines a lo-
cal neighborhood, using which a degree of “outlierness” is assigned to every
object. The number of neighbors (MinPts) is an input parameter to the algo-
rithm. A reachability density is calculated for every object which is the inverse
of the average reachability distance of the object from its nearest neighbors.
Finally, a local outlier factor (LOF ) is associated with every object by com-
paring its reachability density with each of its neighbors. A local outlier is
one whose neighbors have a high reachability density as compared to that
object. For each point this algorithm gives a degree to which that point is an
outlier as compared to its neighbors (anomaly score). Our system computes
the anomaly scores for all the SCS s (represented as points in sequence space).
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All the points for which the score is greater than a threshold are considered
anomalous and removed.

We made some modifications to the original LOF algorithm to suit our
needs. In the original paper [132], all the points are considered to be unique
and there are no duplicates. In our case, there are many instances when the
sequences are exactly the same (representative of identical application behav-
ior). The corresponding points would thus have the same spatial coordinates
within the sequence space. Density is the basis of our system, and hence we
cannot ignore duplicates. Also, a human expert would be required to analyze
the sequence space and suggest a reasonable value of MinPts. But the LOF
values increase and decrease nonmonotonically [132], making the automated
selection of MinPts highly desirable. We present some heuristics to automate
the LOF and threshold parameters, making it a parameter-free technique.

Automating the Parameters

To select MinPts, we use clustering to identify the larger neighborhoods. Then,
we scrutinize each cluster and approximate the number of neighbors in an
average neighborhood. We use the L-Method [239] to predict the number of
clusters in the representation. This is done by creating a number of clusters
vs. merge distance graph obtained from merging one data point at a time
in the sequence space. Starting with all N points in the sequence space, the
2 closest points are merged to form a cluster. At each step, a data point
with minimum distance to another cluster or data point is merged. At the
final step, all points are merged into the same cluster. The graph obtained
has 3 distinct areas: a horizontal region (points/clusters close to each other
merged), a vertical region (far away points/clusters merged), and a curved
region in between. The number of clusters is represented by the knee of this
curve, which is the intersection of a pair of lines fitted across the points in
the graph that minimizes the root mean square error. Further details can be
obtained from [239].

Assume k clusters are obtained in a given sequence space using L-Method
(with each cluster containing at least 2 points). Let αi be the actual number
of points in cluster i, 1 ≤ i ≤ k. Let ρi be the maximum pair-wise distance
between any 2 points in cluster i; and τi is the average (pair-wise) distance
between points in cluster i. Let βi be the expected number of points in cluster
i. Its value can be computed by dividing the area of the bounding box for the
cluster with the average area occupied by the bounding box of any 2 points in
the cluster (for simplicity we assume square-shaped clusters). Therefore, we
get

βi =
(

ρi

τi

)2

. (9.6)

This gives us the expected number of points within the cluster. But the actual
number of points is ai. Thus, we equally distribute the excess points among
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all the points constituting the cluster. This gives us an approximate value for
MinPts (the number of close neighbors) of the cluster i:

γi =
⌈

αi − βi

βi

⌉
. (9.7)

After obtaining MinPts for all k clusters, we compute a weighted mean over
all clusters to obtain the average number of MinPts for the entire sequence
space:

MinPts =

⌈∑k
i=1 γiαi∑k
i=1 αi

⌉
. (9.8)

Only clusters with at least 2 points are used in this computation. But
this approach gives a reasonable value for the average number of MinPts
in a sequence space if all the points are unique. In case of duplicates, (9.6)
is affected since the maximum distance still remains the same whereas the
average value is suppressed due to the presence of points with same spatial
coordinates. If there are q points corresponding to a coordinate (x, y), then
each of the q points is bound to have at least (q − 1) MinPts.

Let p be the number of frequent data points (i.e., frequency ≥ 2) in cluster
i. Let ψj be the frequency of a data point j in cluster i. In other words, it is
the number of times that the same instance occurs in the data. We compute
γ′ the same way as (9.7), where γ′ is the MinPts value for cluster i assuming
unique points (no multiple instance of the same data point) in the sequence
space:

γ′
i =

⌈
αi − βi

βi

⌉
. (9.9)

This value is then modified to accommodate the frequently occurring
points (corresponding to sequences sharing the same spatial positions in the
sequence space). We compute a weighted mean to obtain an appropriate value
of MinPts in cluster i as follows:

γi =

⌈
γ′

iαi +
∑p

j=1 ψj(ψj − 1)
αi +

∑p
j=1 ψj

⌉
. (9.10)

Average MinPts for the entire plot can then be computed using (9.8).
LOF only assigns a local outlier factor for a point in the sequence space

which corresponds to its anomaly score. If the score is above a user-specified
threshold, then it is considered as anomalous and hence filtered from the data
set. If the threshold is too low, there is a risk of filtering a lot of points,
many of which may depict normal application behavior. On the contrary, if
the threshold is too high, some of the data points corresponding to actual
intrusions (but close to many other data points on the sequence space) may
not get filtered. We present a heuristic to compute the threshold automatically
without the need of any human expert. One point to note here is that the effect
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of false alarms for data purification is not as adverse as that of false-alarm
generation during online detection, if still within reasonable limits which are
defined by the user. We compute the threshold automatically by ordering
the LOF scores and plotting them in increasing order (with each data point
along the x-axis and the anomaly/LOF score along the y-axis). Since the
normal points are assumed in abundance, their LOF scores are ideally 1.
We are interested in the scores after the first steep rise of this plot, since
these correspond to outliers. Ignoring all the scores below the first steep rise
(corresponding to normal sequences), the cutoff value can be computed as the
median of all the scores thereafter. This heuristic gives a reasonable threshold
value for the various applications in our data sets.

9.4 Anomaly Detection

The filtered data set obtained above can provide attack-free training input to
any supervised learning algorithm that performs anomaly detection.

9.4.1 Representation with Arguments

System call sequences have been effectively used in host-based systems where a
sliding window of fixed length is used. We introduce the term tuple to represent
an instance of the sliding window. The simplest representation (denoted by
S-rep) would therefore consist of 6 contiguous system call tokens (since length
6 is claimed to give best results in stide and t-stide [218]):

s0 s1 s2 s3 s4 s5 ,

where si is the system call at a distance i from the current system call within
the 6-gram.

Consider the following sequence of system calls: open, read, write, . . . ,
close. This would seem like a perfectly normal sequence of events correspond-
ing to a typical file access. But what happens if the file being accessed is
passwd? Only the super-user should have the rights to make any modifica-
tions to this file. Malicious intent involving this file would not be captured
if only the system call sequences are monitored. This lays stress on the en-
hancement of features to enrich the representation of application behavior at
the operating system level. The enhancement for host-based systems, as is
obvious from the example above, is to scrutinize the system call arguments as
well.

The argument-based representation, denoted by A-rep, takes into consid-
eration the various attributes like return value, error status, besides other
arguments pertaining to the current system call. Let the maximum number
of attributes for any system call be η. The representation would now consist
of tuples of the form:
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s0 a1 a2 a3 · · · aη ,

where s0 is the current system call and ai is its ith argument. It is important to
note that the order of the attributes within the tuple is system call dependent.
Also, by including all possible attributes associated with the system call, we
can maximize the amount of information that can be extracted from the audit
logs. We fix the total number of arguments in the tuple to the maximum
number of attributes for any system call. If any system call does not have a
particular attribute, it is replaced by a NULL value.

S-rep models system call sequences, whereas A-rep adds argument infor-
mation, so merging the two representations is an obvious choice. The merged
representation, called M-rep, comprises tuples containing all the system calls
within the 6-gram (S-rep) along with the attributes for the current system
call (A-rep). The tuple is thus represented as

s0 a1 a2 a3 · · · aη s1 s2 s3 s4 s5 .

A further modification to the feature space includes all the system calls in the
fixed sliding window and the η attributes for all the system calls within that
window. This enhanced representation is denoted as M*-rep.

9.4.2 Supervised Training with LERAD

The efficacy of host-based anomaly detection systems might be enhanced by
enforcing constraints over the system calls and their arguments. Due to the
enormous size and varied nature of the applications, manual constraint for-
mulation is a tedious task. Moreover, due to the nature of the attributes it
might not be feasible for even a group of human experts to develop a complete
set of constraints in a short span of time. The work-around to this problem
is to use a machine learning approach which can automatically learn the im-
portant associations between the various attributes without the intervention
of a human expert. An important aspect of rule learning is the simplicity and
comprehensibility of the rules. The solution can be formulated as a 5-tuple
(A, Φ, I, �, ς), where A is the set of N attributes, Φ is the set of all possible
values for the attributes in A, I is the set of input tuples which is a subset of
the N -ary Cartesian product over A, � is the rule set, and ς is the maximum
number of conditions in a rule.

LERAD is an efficient conditional rule learning algorithm. A LERAD rule
is of the form

(αi = φp) ∧ (αj = φq) ∧ · · · ∧ ςterms ⇒ αk ∈ {φa, φb, . . . } ,

where αi, αj , αk are the attributes, and φp, φq, φa, and φb are the values for
the corresponding attributes. Algorithms for finding association rules (such
as Apriori [58]) generate a large number of rules. But a large rule set would
incur large overhead during the detection phase and may not be appropriate to
attain our objective. We would like to have a minimal set of rules describing
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the normal training data. LERAD forms a small set of rules. It is briefly
described here; more details can be obtained from [240].

For each rule in �, LERAD associates a probability p of observing a value
not in the consequent:

p =
r

n
, (9.11)

where r is the cardinality of the set in the consequent and n is the number
of tuples that satisfy the rule during training. This probability estimation of
novel (zero frequency) events is due to Witten and Bell [241]. Since p estimates
the probability of a novel event, the larger p is, the less anomalous a novel
event is. During the detection phase, tuples that match the antecedent but
not the consequent of a rule are considered anomalous, and an anomaly score
is associated with every rule violated. When a novel event is observed, the
degree of anomaly (anomaly score) is estimated by:

AnomalyScore =
1
p

=
n

r
. (9.12)

A nonstationary model is assumed for LERAD since novel events are
“bursty” in conjunction with attacks. A factor t is introduced, which is the
time interval since the last novel (anomalous) event. When a novel event oc-
curred recently (i.e., small value for t), a novel event is more likely to occur at
the present moment. Hence the anomaly should be low. This factor is there-
fore multiplied by the anomaly score, modifying it to t/p. Since a record can
deviate from the consequent of more than one rule, the total anomaly score
of a record is aggregated over all the rules violated by the tuple to combine
the effect from violation of multiple rules:

Total Anomaly Score =
∑

i

(
ti
pi

)
=

∑
i

(
tni

ri

)
, (9.13)

where i is the index of a rule which the tuple has violated. The anomaly score
is aggregated over all the rules. The more the violations, the more critical the
anomaly is, and the higher the anomaly score should be. An alarm is raised
if the total anomaly score is above a threshold.

We used the various feature representations discussed in Sect. 9.4.1 to
build models per application using LERAD. We modified the rule generation
procedure enforcing a stricter rule set. All the rules were forced to have system
call in the antecedent since it is the key attribute in a host-based system. The
only exception we made was the generation of rules with no antecedent.

Sequence of System Calls: S-LERAD

Before using argument information, it was important to know whether LERAD
would be able to capture the correlations among system calls in a sequence.
So we used the S-rep to learn rules of the form:
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(s0 = close) ∧ (s1 = mmap) ∧ (s5 = open) ⇒ s2 ∈ {munmap}
(1/p = n/r = 455/1)

This rule is analogous to encountering close as the current system call (repre-
sented as s0), followed by mmap and munmap, and open as the sixth system
call (s5) in a window of size 6 sliding across the audit trail. Each rule is as-
sociated with an n/r value. The number 455 in the numerator refers to the
number of training instances that comply with the rule (n in (9.12)). The
number 1 in the denominator implies that there exists just one distinct value
of the consequent (munmap in this case) when all the conditions in the premise
hold true (r in (9.12)).

Argument-Based Model: A-LERAD

We propose that argument and other key attribute information is integral
to modeling a good host-based anomaly detection system. We used A-rep to
generate rules. A sample rule is

(s0 = munmap) ⇒ a1 ∈ {0x134, 0x102, 0x211, 0x124}
(1/p = n/r = 500/4)

In the above rule, 500/4 refers to the n/r value (9.12) for the rule, that is,
the number of training instances complying with the rule (500 in this case)
divided by the cardinality of the set of allowed values in the consequent. The
rule in the above example is complied by 500 tuples and there are 4 distinct
values for the first argument when the system call is munmap.

Merging System Call Sequence and Argument Information of the
Current System Call: M-LERAD

A merged model (M-rep) is produced by concatenating S-rep and A-rep. Each
tuple now consists of the system call, various attributes for the current system
call, and the previous five system calls. The n/r values obtained from all the
rules violated are aggregated into the anomaly score, which is then used to
generate an alarm based upon the threshold. An example of an M-LERAD
rule is

(s0 = munmap) ∧ (s5 = close) ∧ (a3 = 0) ⇒ s2 ∈ {munmap}
(1/p = n/r = 107/1)

Merging System Call Sequence and Argument Information for All
System Calls in the Sequence: M*-LERAD

All the proposed variants, namely, S-LERAD, A-LERAD, and M-LERAD,
consider a sequence of 6 system calls and/or take into the arguments for the
current system call. We propose another variant called multiple argument
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LERAD (M*-LERAD). In addition to using the system call sequence and
the arguments for the current system call, the tuples now also comprise the
arguments for the other system calls within the fixed length sequence of size
6 (M*-rep).

Can a rule learning algorithm efficiently generalize over the various fea-
tures extracted? Does extracting more features, namely, arguments along with
system call sequences, result in better application modeling? More specifically,
does the violation of rule(s) relate to an attack? And would this result in an
increase in attack detections while lowering the false-alarm rate? These are
some of the questions we seek answers for.

9.5 Experimental Evaluations

We evaluated our techniques on applications obtained from three different
data sets:

1. The DARPA intrusion detection evaluation data set was developed at the
MIT Lincoln Labs [88]. Various intrusion detection systems were evaluated
using a test bed involving machines comprising Linux, SunOS, Sun Solaris,
and Windows NT systems. We used the BSM audit log for the Solaris host;

2. The University of New Mexico (UNM) data set has been used in [215,
218, 224]; and

3. FIT-UTK data set consists of Excel macro executions [228, 242].

Table 9.1. Effect of LOF MinPts values

Application Total Attacks Number of attacks detected
(with false-alarm count) for
different values of MinPts
(% of total population)

5% 10% 15% 20% Automated
eject 2 1 (1) 2 (1) 2 (0) 2 (0) 2 (0)
fdformat 3 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
ftpd 6 0 (6) 0 (11) 6 (6) 6 (1) 0 (11)
ps 4 0 (6) 4 (1) 4 (1) 4 (2) 4 (49)
lpr 1 0 (123) 1 (193) 1 (198) 1 (157) 1 (97)
login 1 0 (1) 0 (2) 1 (2) 1 (2) 1 (2)
excel 2 2 (0) 0 (3) 0 (0) 0 (0) 2 (0)
Total 19 6 (137) 10 (211) 17 207 17 (162) 13 (159)
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9.5.1 Data Cleaning

Evaluation Procedures and Criteria

From the DARPA/LL data set, we used data for ftpd, ps, eject, and fdformat
applications, chosen due to their varied sizes. We also expected to find a good
mix of benign and malicious behavior in these applications which would help
us to evaluate the effectiveness of our models. We used BSM data logged for
weeks 3 (attack-free), 4 and 5 (with attacks and their time stamps). Two
applications (lpr and login) from the UNM data set and Excel logs from the
FIT-UTK data set were used. LOF was used to detect outliers in the sequence
space for all the applications. The number of true positives was noted for
different MinPts values 5%, 10%, 15%, 20% of the entire population, as well
as the value obtained using our heuristic.

Results and Analysis

For various values of the MinPts parameter to LOF, our technique was suc-
cessfully able to detect all the 19 attacks in the data set, as depicted in Ta-
ble 9.1. But no single value of MinPts was ideal to detect all the attacks.
The two parameter values 15% and 20% seem to have the maximum number
of detections (17 each). The only attacks missed were the ones in the Excel
application where a reasonable value of MinPts is best suggested as 5%. Our
methodology for automated MinPts calculation was successful in computing
the correct number for the parameter, and hence successfully detected the
attack sequence as outlier (for which the 15% and 20% values failed). The
automated LOF parameter detected all the attacks except the ones in the
ftpd application. The inability of LOF to detect the anomalies in this repre-
sentation is attributed to the fact that all the points in the cluster correspond
to attacks. The automated technique successfully detected all other attacks,
suggesting that the MinPts values computed using our heuristic are generally
reasonable.

The number of false alarms generated is very high for the lpr application,
which constitutes over 3, 700 sequences and approximately 3.1 million system
calls. The data was collected over 77 different hosts and represents high vari-
ance in application behavior. Though we were able to capture the lpr attack
invoked by the lprcp attack script, we also detected other behavioral anoma-
lies which do not correspond to attacks. We reiterate that our goal is to retain
generic application behavior and shun anomalies. Peculiar (but normal) se-
quences would also be deemed anomalous since they are not representative of
the general way in which the application functions.

The reason why our representation plots attacks as outliers is as follows.
An attack modifies the course of events, resulting in (1) either the absence of
a motif, or (2) altered spatial positions of motifs within the sequence due to
repetition of a motif, or (3) the presence of an entirely new motif. All these
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instances affect the spatial relationships among the different motifs within
the sequence. Ultimately, this affects the distance of the malicious sequence
with respect to the reference sequence, resulting in an outlier being plotted on
the sequence space. It is this drift within the sequence space that the outlier
detection algorithm is able to capture as an anomaly.

9.5.2 Anomaly Detection with Arguments

Evaluation Procedures and Criteria

For the DARPA/LL data set, we used data for ftpd, telnetd, sendmail, tcsh,
login, ps, eject, fdformat, sh, quota, and ufsdump applications, chosen due to
their varied sizes – ranging from very large (over 1 million audit events) to
very small (∼ 1, 500 system calls). We used week 3 data for training and weeks
4 and 5 for testing. We also used data for three applications (lpr, login, and ps)
from the UNM data set as well as logs from the FIT-UTK Excel macro data
set. The input tuples for S-LERAD, A-LERAD, M-LERAD, and M*-LERAD
were as discussed in Sect. 9.4.2. For tide, stide, and t-stide, we used a window
size of 6. For all the techniques, alarms were merged in decreasing order of
the anomaly scores and then evaluated for the number of true detections at
varied false-alarm rates.

Table 9.2. Comparison of sequence- and argument-based representations

Technique Number of attacks
detected at different

false-alarm rates
(×10−3% false alarms)
0.0 0.25 0.5 1.0 2.5

tide 5 6 6 8 9
stide 5 6 9 10 12
t-stide 5 6 9 10 13
S-LERAD 3 8 10 14 15
A-LERAD 3 10 13 17 19
M-LERAD 3 8 14 16 19
M*-LERAD 1 2 4 11 18

Results and Analysis

When only sequence-based techniques are compared, both S-LERAD and
t-stide were able to detect all the attacks in UNM and FIT-UTK data sets.
However, t-stide generated more false alarms for the ps and Excel applications
(58 and 92, respectively), as compared to 2 and 0 false alarms in the case of
S-LERAD. For the DARPA/LL data set, tide, stide, and t-stide detected the
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most attacks at zero false alarms, but are outperformed by S-LERAD as the
threshold is relaxed (Table 9.2). It can also be observed from the table that
A-LERAD fared better than S-LERAD and the other sequence-based tech-
niques, suggesting that argument information is more useful than sequence
information. A-LERAD performance is similar to that of M-LERAD, imply-
ing that the sequence information is redundant; it does not add substantial
information to what is already gathered from arguments. M*-LERAD per-
formed the worst among all the techniques at false-alarm rate lower than
0.5 × 10−3%. The reason for such a performance is that M*-LERAD gener-
ated alarms for both sequence- and argument-based anomalies. An anomalous
argument in one system call raised an alarm in six different tuples, leading to
a higher false-alarm rate. As the alarm threshold was relaxed, the detection
rate improved. At the rate of 2.5×10−3% false alarms, S-LERAD detected 15
attacks as compared to 19 detections by A-LERAD and M-LERAD, whereas
M*-LERAD detected 18 attacks correctly.

The better performance of LERAD variants can be attributed to its
anomaly scoring function. It associates a probabilistic score with every rule.
Instead of a binary (present/absent) value (as in the case of stide and t-stide),
this probability value is used to compute the degree of anomalousness. It also
incorporates a parameter for the time elapsed since a novel value was seen for
an attribute. The advantage is twofold: (1) it assists in detecting long-term
anomalies and (2) it suppresses the generation of multiple alarms for novel
attribute values in a sudden burst of data. An interesting observation is that
the sequence-based techniques generally detected the U2R attacks whereas the
R2L and DoS attacks were better detected by the argument-based techniques.

Our argument-based techniques detected different types of anomalies. In
most of the cases, the anomalies did not represent the true nature of the
attack. Some attacks were detected by subsequent anomalous user behavior;
few others were detected by learning only a portion of the attack, while others
were detected by capturing intruder errors. Although these anomalies led to
the detection of some attacks, some of them were also responsible for raising
false alarms, a problem inherent to all anomaly detection systems.

Table 9.3. Effects of filtering the training data on the performance in test phase

Application Number of attacks detected Number of attacks detected
(false alarms generated) – stide (false alarms generated) – LERAD
Without filtering With filtering Without filtering With filtering

ftpd 0(0) 3(0) 0(0) 3(0)
eject 1(0) 1(0) 1(0) 1(0)
fdformat 2(0) 2(0) 1(0) 1(0)
ps 0(0) 1(0) 0(1) 1(1)
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9.5.3 Anomaly Detection with Cleaned Data vs. Raw Data

Evaluation Procedures and Criteria

Only the MIT Lincoln Labs data set was used for this set of experiments since
it contained sufficient attacks and argument information to be used in both
adulterated training and test data sets. We combined the clean week 3 data
with the mixed week 4 data of the MIT Lincoln Labs data set to obtain an
unlabeled data set. We used this to train stide and LERAD. We then tested
on week 5 data (containing attacks with known time stamps). Subsequently,
we filtered out the outliers detected from the combined data set. The refined
data set was then used to train stide and LERAD. Week 5 data was used for
testing purposes. The input to stide and LERAD was discussed in Sect. 9.5.2.
In all cases, alarms are accumulated for the applications and then evaluated
for the number of true detections and false positives. The results are displayed
in Table 9.3.

Results and Analysis

For the four applications in the data set, stide was able to detect 3 attacks
without filtering the training data compared to 7 attacks after refining the
training set. For LERAD, there were 2 detections before filtering versus 6
true positives after purging the anomalies in training data. Thus, in both
cases, there was an improvement in the performance of the system in terms
of the number of attack detections. The better performance is attributed to
the fact that some of the attacks in the adulterated training and testing data
sets were similar in character. With the adulterated training data, the attacks
were assumed normal resulting in the creation of an improper model. Hence
both the systems missed the attacks during the test phase. But our filtering
procedure was able to remove the anomalies from the training data to create
a correct model of normal application behavior. This led to the detection of
the attacks during testing.

It can also be noted from the table that no false alarms were generated in
any experiment with stide. For LERAD, there was only one false alarm for
the ps application (with and without filtering). Our results indicate that the
filtering mechanism was effective in purging out anomalies in training data,
resulting in the detection of more attacks without increasing the number of
false alarms in the test phase.

9.6 Concluding Remarks

In this chapter, we present two enriched representations: (1) motifs and their
locations are used to represent sequences in a single sequence space, this be-
ing an off-line procedure, and (2) system call arguments modeled for online
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anomaly detection. We also presented two different aspects of machine learn-
ing: unsupervised learning and supervised learning for anomaly detection. Our
techniques cater to the various issues and can be integrated to form a complete
host-based system.

Most of the traditional host-based IDSs require a clean training data set
which is difficult to obtain. We present a motif-based representation for system
call sequences (SCS s) based upon their spatial positions within the sequence.
Our system also creates a single representation for all SCS s called a sequence
space – using a distance metric between the motif-based representations. A
local outlier algorithm is used to purge this data of all attacks and other
anomalies. We demonstrate empirically that this technique can be effectively
used to create a clean training data set. This data can then be used by any
supervised anomaly detection system to learn and create models of normal
application behavior. Results from our experiments with two online detection
systems (stide and LERAD) indicate a drastic improvement in the number of
attacks detected (without increasing the number of false alarms) during test
phase when our technique is used for filtering the training set.

Merging argument and sequence information creates a richer model for
anomaly detection. This relates to the issue of feature extraction and utiliza-
tion for better behavioral modeling in a host-based system. We portrayed the
efficacy of incorporating system call argument information and used a rule
learning algorithm to model a host-based anomaly detection system. Based
upon experiments on well-known data sets, we claim that our argument-based
model, A-LERAD, detected more attacks than all the sequence-based tech-
niques. Our sequence-based variant (S-LERAD) was also able to generalize
better than the prevalent sequence-based techniques, which rely on pure mem-
orization.

The data cleaning procedure can be integrated with a hybrid of signature-
and anomaly-based systems for better accuracy and the ability to detect novel
attacks. Our system can also be used for user profiling and detecting mas-
querades. In terms of efficiency, the only bottleneck in our system is the motif
extraction phase where cross-match is performed pair-wise. Speed-up is pos-
sible by using other techniques, such as suffix trees [243–246]. We are also
working on refining the motif relationships in the motif-based representation.
Our argument- and sequence-based representations assume fixed-size tuples.
A possible extension is a variable-length attribute window for more accurate
modeling. Also, more sophisticated features can be devised from the argument
information.
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A Decision-Theoretic, Semi-Supervised Model
for Intrusion Detection

Terran Lane

Summary. In this chapter, we develop a model of intrusion detection (IDS) based
on semi-supervised learning. This model attempts to fuse misuse detection with
anomaly detection and to exploit strengths of both. In the process of developing
this model, we examine different cost functions for the IDS domain and identify two
key assumptions that are often implicitly employed in the IDS literature. We demon-
strate that relaxing these assumptions requires a decision-theoretic control maker
based on the partially observable Markov decision process (POMDP) framework.
This insight opens up a novel space of IDS models and allows precise quantification
of the computational expense of optimal decision-making for specific IDS variants
(e.g., additional data sources) and cost functions. While decision-making for many
POMDPs is formally intractable, recognizing the equivalence of the IDS problem to
solution of a POMDP makes available the wide variety of exact and approximate
learning techniques developed for POMDPs. We demonstrate the performance of
the simplest of these models (for which optimal decision-making is tractable) on
a previously studied user-level IDS problem, showing that, at the lower limit, our
semi-supervised learning model is equivalent to a pure anomaly detection system,
but that our model is also capable of exploiting increasing degrees of intermittently
labeled data. When such intermittently labeled data is available, our system per-
forms strongly compared to a number of current, pure anomaly detection systems.

10.1 Introduction

The research presented in this chapter is an attempt to achieve three desider-
ata for adaptive intrusion detection systems (IDS):

1. An adaptive IDS should be able to exploit known attacks, known nor-
mal data, and the copious amounts of unlabeled data that are typically
available.

2. An adaptive IDS should be able to take advantage of labeled data when-
ever it becomes available, not just during a restricted “training phase”.

3. An IDS should be able to implement a number of different cost functions,
according to site-specific security policies.
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The first desideratum arises from examining the commonly cited strengths
of misuse and anomaly detection: misuse detection systems can take advan-
tage of historical attacks, while anomaly detection systems, by neglecting this
source of data, are vulnerable to even well-known attacks. On the anomaly
detection side, however, is the argument that pure anomaly detection systems
are not biased for or against any particular attack and so are less likely to be
fooled by minor variants on old attacks or wildly novel attacks. Furthermore,
anomaly detection systems do not rely on labeled training data, which is often
quite difficult to come by. We argue that this distinction is a false dichotomy –
it is vital to exploit knowledge of current attacks, but it is equally vital to not
be susceptible to radically new attacks. We believe that the usual formulation
of misuse and anomaly detection systems represent only the endpoints on a
spectrum between fully supervised (misuse) and fully unsupervised (anomaly)
learning. We demonstrate a system that lies in the continuum between the
two by modeling both the state of the system and of the attacker. This system
begins with a default, prior model of the attacker that is equivalent to the
null hypothesis often employed in anomaly detection. As labeled attack data
is added to the system, this model is updated, pushing the system closer to
misuse detection.

The second desideratum comes from a general dissatisfaction with the
traditional train/test framework that is employed for many (though certainly
not all) misuse/anomaly detection systems. Typically, the model is developed
from hand-labeled data during the training phase, then is fixed and employed
as a detector on arbitrary amounts of unlabeled data in the testing phase. In
field conditions, however, things are rarely so nicely partitioned. Some labeled
data is likely to be available for initializing the model, and the vast majority
of data thereafter is unlabeled, but labeled data does occasionally become
available later. For example:

• Short periods of normal data can be examined by hand and certified as
clean.

• New users or services are put online or the network reconfigured. At this
point, some quantity of data can be hand-labeled as normal to update the
model to the new circumstances.

• Vulnerability notifications, often with example exploits or reverse-engineered
code, are regularly posted through security agencies.

• Attacks that are initially missed by the IDS but are discovered post factum
(e.g., through consequences of the attack, such as lost data) can be hand-
labeled by a security officer from recorded audit data.

Thus, we argue that a more flexible approach to adaptive intrusion detection
is to treat it as a partially labeled data problem. That is, rather than dividing
time into training and testing phases, the learning system should treat both
uniformly, classifying any unlabeled data while learning from any available
labeled data, whenever it occurs. This allows a system to take maximum ad-
vantage of labeled data. When only a single block of labeled data is available,
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the system’s behavior should reduce to that of a standard, train/test anomaly
or misuse detection system. We give a semi-supervised training algorithm for
our IDS that allows it to flexibly handle either supervised or unsupervised
data, as available. When only unlabeled data is available, the system both
labels it and uses it to refine the existing model, while when labeled data
becomes available the learner incorporates it into the model.

The final desideratum is a result of observations made in our previous
work [247, 248] as well as the work of Fawcett and Provost [249] and a number
of others. While much IDS research has employed false-positive/false-alarm
rates as success criteria, these measures are too coarse for many practical
applications. For example, the elapsed time between the onset of an attack and
its detection is a critical measure of the damage that an attacker could cause.
Also, multiple alarms for a single attack may provide only marginal additional
utility beyond the initial alarm (indeed, they may contribute negative utility
by annoying the security officer). We wish to allow the IDS to optimize a
general cost function that can be chosen to reflect the site security policy.
In developing our IDS model, we examine common cost functions for the
IDS domain and make explicit two widely employed cost assumptions. We
demonstrate that these assumptions lead to a formulation of the intrusion
detection task as a belief state (probability distribution) monitoring problem.

We demonstrate that many desirable cost functions for the IDS problem
require relaxing these assumptions, which, in turn, yields a formulation of the
detection problem as a stochastic control problem with hidden state – that
is, as learning and planning in a partially observable Markov decision process
(POMDP). This is an unfortunate consequence because, unlike the monitor-
ing problem, optimal planning and learning in general POMDPs is known to
be intractable. It is, however, important to realize this because it clarifies the
computational complexity of various cost functions and allows us a rigorous
way to trade off complexity against descriptiveness. To our knowledge, this
is the first result on the formal complexity of decision-making in the intru-
sion detection task. We also spend some discussion on possible directions for
addressing the intractability of these models. In particular, reducing the IDS
problem to learning and planning in POMDPs opens it up to a wide variety of
approximate, yet effective, methods that have been developed in recent years.

Finally, returning to the simplest formulation of our semi-supervised ap-
proach, we demonstrate empirically that the belief-state-monitoring approach
performs well on a command-line level IDS task. Specifically, when run in a
semi-supervised mode (mixed anomaly and misuse detection, with sporadi-
cally introduced newly labeled data), it outperforms a number of previously
proposed pure anomaly detection techniques for that domain, while it per-
forms comparably to them when run in a pure anomaly detection mode.
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10.2 Related Work

Work in adaptive or statistical intrusion detection in the security community
is rich and widespread, dating back to at least 1980 with Anderson’s initial
proposal for such systems [198], followed by Denning’s model of statistical
intrusion detection which proposed n-gram and Markov chain data models
[199], and Lunt et al.’s work on expert system [250, 251] and statistical expert
system IDSs [252]. There are a number of surveys on work through the mid-
1990s in this area, including a good one by Mukherjee et al. [253].

More recently, the intrusion detection question has entered the statistics
and machine learning communities and researchers have proposed techniques
based on Markov chains [254], hidden Markov models [248], association rules
[255, 256], and a number of others. Beginning with Forrest et al. [257, 258],
a number of researchers have developed IDSs based on models of biological
immune systems [259, 260]. These “artificial immune systems” employ, effec-
tively, instance- or rule-based learners in either anomaly or misuse detection
frameworks.

One difficulty in comparing these proposals is that they are developed
for very different data sets – different methods have been applied to user
command-line data, system call data, and network packet data. There are few
uniform data sets that are widely used for measuring and comparing IDS per-
formance. The significant exceptions are the DARPA/Lincoln Labs network
attack detection testbed data set [261], and a multi-method study of user-level
anomaly detection by Schonlau et al. [262]. We base our experimental work
on the Schonlau et al. data and compare our results with the six anomaly
detection methods that they examine. They tested the relative performances
of a hypothesis test between a first-order Markov chain and a Dirichlet mix-
ture of multinomials model of command generation [263]; a Markov chain
whose statistics are exponentially discounted over time in an attempt to track
concept drift [254]; a model of the frequency distribution of rare and unique
commands [264]; an approximate order-10 Markov chain model [265]; a tech-
nique that measures the compressibility of the data with respect to a model
of “normal” (i.e., attack-free) data; and an instance-based method [266]. The
general result is that all methods suffered from high false-alarm rates (none
were able to achieve the 1% rate that they were targeting) and that none uni-
formly dominated the others, with the exception of the uniqueness method
which was uniformly the poorest.

10.3 A New Model of Intrusion Detection

In this section, we develop a new class of intrusion detection methods. We
begin with a generative model that supports the semi-supervised learning
component of our models, followed by a description of inference and learning
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algorithms for this model. We then examine action (i.e., alarm) selection, in-
cluding the influence of costs, and explicitly identify two commonly employed
assumptions about action selection. The experimental work we present in
Sect. 10.4 is based on semi-supervised learning under these assumptions, but
first we demonstrate that relaxing these assumptions yields a class of IDSs
based on the POMDP framework.

10.3.1 Generative Data Model

We will model both valid user and intruder (attacker) as unobservable, ho-
mogeneous Markov random variables denoted Ut ∈ {u1 · · ·um} and At ∈
{a1 · · · an}, respectively. This represents a distinct break from previous an-
omaly detection models which model only the valid user. The observable
state of the computer system will be represented with the vector variable
X, taking on values defined by the domains of the measurable components
of the system (e.g., network latency, memory footprint, GUI event). At time
t, the measured state of the system, Xt, is generated either by the valid
user or the intruder, governed by an intermittently observed decision variable
Dt ∈ {USER, ATTACKER}. The system is experiencing an intrusion just when
the observed data is generated by the intruder, i.e., when Dt = ATTACKER.
Initially, we model the Dt variables as a series of independent, binomially dis-
tributed random variables. This is a bit of a strong assumption, as it neglects
the possibility that attacks occur in runs or that the attacker has a preferred
temporal distribution,1 but it is the simplest assumption about the mixing
variable and can be straightforwardly relaxed. We discuss extensions to this
model in Sect. 10.5.

By treating Dt as an intermittent variable, rather than purely observed
(as in misuse detection) or purely hidden (as in anomaly detection), we can
train this model on partially labeled data. As discussed in Sect. 10.1, partially
labeled data is a plausible scenario for intrusion detection.

The generative model is displayed as a graphical model in Fig. 10.1.
This model is a temporal or dynamic Bayes network, or DBN [267–269] –
a graphical representation of the Markov independence properties of a sta-
tistical distribution over time-series data.2 Each node in this network rep-
resents one of the random variables of the system, while arcs represent sta-
tistical dependence. The model is quantified by conditional probability dis-
tributions (CPDs; not pictured here) that specify the probability distribu-
tion of a node, conditioned on the values of its parent nodes. Specifically,
this model requires the CPDs Pr[At+1|At, θA], Pr[Ut+1|Ut, θU ], Pr[Dt|θD], and
Pr[Xt|Ut, At, Dt, θX ], parameterized by θA, θU , θD, and θX , respectively. To

1 E.g., injecting attack elements periodically to avoid easily discerned clusters of
attack commands.

2 The model of Fig. 10.1 can also be viewed as a mixture of hidden Markov models
or as a variant of a factorial HMM.
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handle the first time step, t = 0, we also require Pr[U0|θU0] and Pr[A0|θA0].
In the case of discrete variables (as we assume in this chapter), the various
distributions are conditionally multinomial, the CPDs Pr[At+1|At, θA] and
Pr[Ut+1|Ut, θU ] are single-step Markov transition matrices, and there are a
total of |A|+ |U |+ |A|2 + |U |2 + |D|+ |A||U ||D||X| parameters to estimate. If
a fully Bayesian model is desired, we could also specify parameter priors, but
we will assume uniform priors in this chapter. We will discuss learning these
parameters in the next section.

X

U

A

D

X

U

A

D

t t+1

Fig. 10.1. Graphical model structure for intrusion detection inference and decision-
making. Circular nodes are hidden or intermittently observed variables; the rectan-
gular node X is a special node for the vector valued observable, potentially contain-
ing additional, currently unspecified rich Bayesian network structure

10.3.2 Inference and Learning

There are two important operations on the model of Fig. 10.1: estimating the
probability of hidden variables, such as Dt, given observed data (inference)
and estimating the values of the model parameters such as θU , etc. (learn-
ing). Both algorithms can be run in batch mode, in which all time points are
examined at every step, or in online mode, in which the model is updated
dynamically at every time point without reexamining all the previous time
points. We cover only the batch-mode cases here; the online versions can be
derived from the algorithms we present by rewriting them in a recursive fash-
ion. The learning algorithm is the expectation-maximization (EM) algorithm
[25, 270, 271], which uses inference as a subroutine, so we will begin with in-
ference. Exact inference algorithms for (dynamic) Bayesian networks are well
understood, so we do not present the derivation of the following algorithm
here. For details on the derivation, we refer the reader to a standard text on
Bayesian networks, such as Jensen’s [268].

The inference algorithm for the IDS probability model (Fig. 10.2) employs
the notion of potentials. Essentially, potentials are just denormalized proba-
bility functions – nonnegative functions with finite (but not necessarily unity)
integrals. The model of Fig. 10.1 is compiled to a series of “clique potentials”,
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φ(Ut, At, Dt,Xt), along with a pair of intermediate potentials, φ(Ut, At, Ut+1),
and φ(At, Ut+1, At+1), that allow us to propagate information backward
and forward between φ(Ut, At, Dt,Xt) and φ(Ut+1, At+1, Dt+1,Xt+1). Intu-
itively, in the inference algorithm, potential functions act as “intermediate”
or “scratch” variables, to track the estimates of probability distributions as we
propagate information about observations and labels across time. In practice,
the potentials will be implemented as tables of probability values, with one cell
for each configuration of the argument variables of that potential. During the
execution of inference(), the potentials will store intermediate results; when
execution completes, the potentials will exactly represent denormalized ver-
sions of the corresponding joint probability distributions. The desired PDFs
can be recovered through a normalization step, as in the learnEM() algorithm
of Fig. 10.3. Thus, after the execution of the inference algorithm,

Pr[Ut, At, Dt, Xt|X1:T , Dobserved
1:T , Θ] =

φ(Ut, At, Dt,Xt)∑
U,A,D,X φ(Ut, At, Dt,Xt)

.

In addition to the potential functions, we will also employ separator func-
tions, s(Ut, At), s(At, Ut+1), and s(Ut+1, At+1). Separators3 are just another
set of tables for storing intermediate results. Roughly, they correspond to
marginalizations of potentials in order to remove particular variables but, un-
like potentials, they do not have a purpose beyond the scope of the inference
algorithm.

The batch-mode version of the inference algorithm for the IDS model
with discrete variables is given in Fig. 10.2. In this pseudo-code, the func-
tion δ() represents the unit potential – 1 at the value of its argument and
0 elsewhere. The multiplication/division operation is point-by-point multipli-
cation/division across the range of two potentials, and the “∗=” operation
is a C-like combined multiplication and assignment operation. All summa-
tions are taken to be over the entire range of hidden variables (e.g., when
Dt is unobserved) and over only the single observed value when a variable is
observed.

The inference algorithm proceeds in three stages: initialization, the for-
ward (or evidence collection) pass, and the backward (or evidence distribu-
tion) pass. After these three stages, the potentials are guaranteed to accu-
rately reflect all available observable evidence [268]. Actual probabilities for
the variables of interest (e.g., Dt for some t) can be obtained by marginaliza-
tion and normalization from φ(Ut, At, Dt,Xt). During the initialization phase,
evidence (i.e., Xt and Dt when it is observed/available) is entered into the
potentials. The forward pass propagates information forward through time,
essentially calculating Pr[Ut, At, Dt,Xt|observables0, . . . , observablest−1] (ex-
pressed in denormalized potentials, rather than proper conditional proba-
bilities). The backward pass propagates information back in time, to estab-

3 So called because they appear between cliques in an intermediate step of compiling
the graph structure of Fig. 10.1 into the inference algorithm of Fig. 10.2.
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function inference
inputs:

Xt for all t ∈ 0, . . . , T
Dt for some t
model parameters, Θ = 〈θU , θA, θD, θX , θU0, θA0〉

outputs:
potentials Φ = 〈φ(Ut, At, Dt,Xt), φ(Ut, At, Ut+1), φ(At, Ut+1, At+1)〉 for

all t incorporating all observable evidence
// Initialization phase
for t = 1, . . . , T

φ(Ut, At, Dt,Xt) = δ(observed value of Xt)
if Dt observed at this time step

φ(Ut, At, Dt,Xt) ∗= δ(observed value of Dt)
endif
φ(Ut, At, Dt,Xt) ∗= Pr[Dt|θD] ∗ Pr[Xt|Ut, At, Dt, θX ]
φ(Ut, At, Ut+1) = Pr[Ut+1|Ut, θU ] ∀ai ∈ A
φ(At, Ut+1, At+1) = Pr[At+1|At, θA] ∀ui ∈ U

endfor
// Forward (collect evidence) pass
for t = 0, . . . , T − 1

s(Ut, At) =
∑

Dt

∑
Xt

φ(Ut, At, Dt,Xt)
φ(Ut, At, Ut+1) ∗= s(Ut, At) ∀ui ∈ U
s(At, Ut+1) =

∑
Ut

φ(Ut, At, Ut+1)
φ(At, Ut+1, At+1) ∗= s(At, Ut+1) ∀ai ∈ A
s(Ut+1, At+1) =

∑
At

φ(At, Ut+1, At+1)
φ(Ut+1, At+1, Dt+1,Xt+1) ∗= s(Ut+1, At+1) ∀di ∈ D, xj ∈ X

endfor
// Backward (distribute evidence) pass
for t = T − 1, . . . , 0

s′(Ut+1, At+1) = s(Ut+1, At+1)
s(Ut+1, At+1) =

∑
Dt+1

∑
Xt+1

φ(Ut+1, At+1, Dt+1,Xt+1)

φ(At, Ut+1, At+1) ∗= s(Ut+1,At+1)
s′(Ut+1,At+1) ∀ai ∈ A

s′(At, Ut+1) = s(At, Ut+1)
s(At, Ut+1) =

∑
At+1

φ(At, Ut+1, At+1)

φ(Ut, At, Ut+1) ∗= s(At,Ut+1)
s′(At,Ut+1) ∀ui ∈ U

s′(Ut, At) = s(Ut, At)
s(Ut, At) =

∑
Ut+1

φ(Ut, At, Ut+1)
φ(Ut, At, Dt,Xt) ∗= s(Ut,At)

s′(Ut,At)
∀di ∈ D, xj ∈ X

endfor

Fig. 10.2. Pseudo-code for the batch-mode inference algorithm for the IDS model
of Fig. 10.1. We have omitted the t = 0 initialization step which is similar to that
given above, except using Pr[U0|θU0] and Pr[A0|θA0] rather than their temporal,
Markov equivalents
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function learnEM
inputs:

Xt for all t ∈ 0, . . . , T
Dt for some t

outputs:
model parameters, Θ = 〈θU , θA, θD, θX , θU0, θA0〉

// Initialization
set Θ arbitrarily, subject to Pr[Xt|Ut, At, Dt = USER, θX ] = Pr[Xt|Ut, θX|D=USER]

and Pr[Xt|Ut, At, D = ATTACKER, θX ] = Pr[Xt|At, θX|D=ATTACKER]
until parameters converge, do

// Expectation step
Φ=inference(X,D,Θ)
// Maximization step

θD =
∑

t

∑
Ut

∑
At

∑
Xt

φ(Ut, At, Dt,Xt)

θU =
∑

t

∑
At

φ(Ut,At,Ut+1)
∑

At

∑
Ut+1

φ(Ut,At,Ut+1)

θA =
∑

t

∑
Ut+1

φ(At,Ut+1,At+1)
∑

Ut+1

∑
At+1

φ(At,Ut+1,At+1)

θX|D=USER =
∑

t

∑
At

φ(Ut,At,Dt=USER,Xt)
∑

At

∑
Xt

φ(Ut,At,Dt=USER,Xt)

θX|D=ATTACKER =
∑

t

∑
At

φ(Ut,At,Dt=ATTACKER,Xt)
∑

At

∑
Xt

φ(Ut,At,Dt=ATTACKER,Xt)

normalize(θD)
normalize(θU )
normalize(θA)
normalize(θX)

enduntil

Fig. 10.3. Pseudo-code for the batch-mode EM-based learning algorithm for the
IDS model of Fig. 10.1. Again, we have omitted the t = 0 parameter estimation
which is similar to the above

lish Pr[Ut, At, Dt,Xt|observables0, . . . , observablesT ]. After completion of the
backward phase, Pr[Dt|observables0, . . . , observablesT ] can be extracted from
the appropriate joint potential.

Notice that the inference algorithm makes no distinction between training
and testing phases – when Dt is observed, it is treated as an evidence variable
and is fixed to the observed value. When Dt is unobserved, it is treated as a
hidden variable and its probability distribution is estimated. This property is
key in the use of this algorithm in a semi-supervised IDS framework in which
data labels are available only intermittently.

The second critical algorithm is the learning algorithm, learnEM() (see
Fig. 10.3), which updates the model parameters. While there are a number
of possible methods for selecting model parameters in the face of missing
data, a popular and convenient method is the EM algorithm [25, 270, 271].
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This approach attempts to isolate maximum-likelihood parameters4 through
gradient descent in the parameter-likelihood space. It consists of an initial-
ization phase and two steps that are iterated until the parameters converge
to a local maximum. In the initialization phase, the parameters of the sys-
tem, Θ = 〈θA, θU , θD, θX〉, representing the conditional probability tables of
the model, are set arbitrarily,5 subject to certain consistency constraints that
ensure that the D random variable functions correctly as a decision variable
(i.e., when Dt = USER, Xt is influenced only by At, etc.) In the “Expectation”
step, the inference algorithm is run to find the expected values of each hid-
den variable at each time step, represented by the potential functions. In the
“Maximization” step, the expectations are used to update the model parame-
ters by marginalizing potentials down to the relevant variables for each of the
CPD θs and then normalizing to obtain valid probability distributions. For
discrete variables, this operation turns out to be exactly maximum likelihood
parameter estimation – thus the name of this step.

Pseudo-code for the learning algorithm is given in Fig. 10.3. In this fig-
ure, the normalize() function calculates the normalization of the functions
Pr[Dt|θD] et al. to ensure that they reflect well-formed probability functions.
For discrete variables, this operation entails normalizing the conditional multi-
nomial parameter vectors to unit mass. The conditions on the initialization
of Θ and the two-part calculation of θX exist to enforce the semantics of Dt

as an indicator of the source of the observed value Xt. After convergence,
the parameters Θ are a maximum-likelihood estimate, while the potentials Φ
from the final inference step represent best estimates of the values of hidden
variables. These final potentials can be used for alarm selection.

10.3.3 Action Selection

IDS actions are modeled by an additional exogenous control variable, Ct ∈
{ALARM, NOALARM} (not pictured in Fig. 10.1). Proper selection of Ct depends
on knowledge of the effect of Ct on the dynamics of the system of Fig. 10.1, as
well as an instantaneous cost function, v(), that relates the history of system
states and control actions to a utility. Under the principle of maximum utility,
the goal of action selection is to choose Ct at every time so as to maximize some
time-aggregate of cost, V . V relates the instantaneous cost, v, to the long-
term effects of actions; optimizing V allows the agent to balance the two. For
fixed, finite time-horizons a simple average cost (or, equivalently, total cost) is
possible. In the IDS domain, however, time is usually taken to be unbounded
(our computer may be on the network indefinitely) so the commonly employed
infinite horizon discounted utility aggregate [272] is appropriate:

4 Or maximum a posteriori (MAP) parameters, in a Bayesian framework.
5 Typical choices are uniform or random initialization or sampling multinomial

probability distributions from a Dirichlet prior distribution.
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V π(U0, A0, D0,X0) = e

[ ∞∑
t=0

γtv(Ut, At, Dt,Xt)

]

=
∞∑

t=0

∑
ui,aj ,dk,xl

(
γtv(ui, aj , dk, xl) ·

Pr[Ut = ui, At = aj , Dt = dk,Xt = xl|U0, A0, D0,X0, π]) , (10.1)

where 0 ≤ γ < 1 is a discount factor introduced to prevent the infinite sum
from diverging, and π indicates the policy by which control actions are chosen.

Most common approaches to IDS decision-making in the literature depend
on two (often implicit) assumptions:

Assumption 1 v() is purely a function of the instantaneous state of the sys-
tem:

vt(Dt, Ct) =

⎧⎨
⎩

0 if Ct = Dt ;
vFP if Ct = ALARM and Dt = USER ;
vFN if Ct = NOALARM and Dt = ATTACKER ,

where Ct = Dt denotes “(Ct = ALARM & Dt = ATTACKER) OR (Ct = NOALARM
& Dt = USER)”. The values vFP and vFN are the costs of false alarms and
false accepts, respectively.

Assumption 2 The state of the system, 〈Ut, At, Dt,Xt〉, at all times is in-
dependent of the control action (i.e., the alarm state does not affect either the
user or the attacker’s actions).

Under these two assumptions, the entire IDS task reduces to a state moni-
toring problem. Assumption 2 removes the dependence on π from (10.1), mak-
ing system model of Fig. 10.1 an uncontrolled, partially observable Markov
chain. In this case, our job is to monitor the state of the variable D (e.g., by
maximum likelihood or Viterbi decoding) as closely as possible; because the
dynamics of the system are unaffected by Ct, the optimal decision at time t is
just given by the estimate of Dt, possibly weighted by the costs vFN and vFP.
The experimental work we present in Sect. 10.4 employs the semi-supervised
learning approach under these assumptions, but we now demonstrate that re-
laxing these assumptions leads to a new class of models for the IDS problem.

10.3.4 Relaxing the Cost Function

Assumptions 1 and 2 are unrealistically strong. Assumption 2, for example,
directly contradicts the fundamental assumption of intrusion detection – we
fervently hope that an effective IDS will allow us to stop attackers, while
alarms disrupt the work of the normal user. Assumption 1 is also problem-
atic in realistic conditions. For example, additional alarms during a single
attack session may contribute only incremental utility above the value of the
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first alarm, and may even contribute negative utility (by annoying the secu-
rity officer). This is effectively the argument that Fawcett and Provost [249]
make when arguing for modeling the IDS problem as a change detection task.
We [248] and Fawcett and Provost have also proposed time to alarm (time
between onset of an attack and its detection) as an important cost criterion.

Fawcett and Provost propose a utility function for this domain of the
form vt(Ht) = f(τ, Ct, Ht), where Ht = 〈X0, D0, C0, . . . ,Xt, Ct, Dt〉 is the
history of attacks and alarms to date. The variable τ indicates the elapsed
time since the onset of (the most recent) attack: τ = min

t′
{t − t′ : Dt′ =

ATTACKER & Dt′−1 = USER}. The cost of time to alarm is expressed through
the dependence on τ . By making τ integer, rather than binary (recent missed
attack or not), we can model that the cost of missing the start of an attack
varies nonlinearly with age of the attack. For example, at the very beginning of
an attack, the attacker has had little time to do damage; as the attacker is al-
lowed more time unchecked, more damage can be done, until some asymptotic
point at which no additional damage can be done.

We can address this function by incorporating τ as an explicit variable
in our generative model, depending on Ct, Dt, and τt−1. Initially, τ0 = φ
(a special, undetermined value). As soon as Dt = ATTACKER, τt becomes 0.
Thereafter, τ is incremented every time step until Ct = ALARM, at which
point it is reset to φ. Although τt is deterministically generated by its parent
variables, by virtue of Dt’s partial observability τt is also a partially observed
variable. The updated model, including the control variable, Ct, its influence
on τt, and potential influences that we might choose to model (dashed line
arrows), is given in Fig. 10.4.

X

U

A

D

X

U

A

D

t t+1

C Cτ τ

Fig. 10.4. Extended IDS model, incorporating the control variable (C) and time-
to-alarm variable (τ). Solid arrows indicate key dependencies; dashed-line arrows
indicate dependencies that we may or may not choose to model, such as the influence
of alarms on the user’s activities
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The instantaneous utility of the system is now a function of τ . For example,
Fawcett and Provost employ a linear utility that we would write as6

v(τt) =

⎧⎨
⎩

0 if Ct = NOALARM and τt = φ ;
5 if Ct = ALARM and τt = φ ;
0.4 if τ �= φ .

Other, nonlinear time-to-alarm functions are also possible.
τ accounts for time-to-alarm; if we wish to also account for the nonlinear

utility of multiple alarms during a single attack session, we would have to
introduce an additional variable to the system to count such alarms. More
complex models are also possible, incorporating additional knowledge about
the USER or ATTACKER, structure of the observation vector, more complex cost
functions, etc. We omit such extensions here for lack of space, but they do
not change our fundamental observations.

The presence of τ increases the cardinality of the state space by as much
as |Z| in the worst case.7 More critically, however, τ couples Ct to the data
model. Specifically, if τt is observed for any t (e.g., if any USER data is ever
labeled or any ATTACKER data is ever identified), then Ci and Di become d-
connected for i ≤ t [273, 274]. That is, observing τt renders our estimates of the
probability distribution over Di dependent on our choice of Ci over time. This
is a consequence of the statistical reasoning embodied in the update equations
for a graphical model of this structure, but it reflects commonsense reasoning
about the domain. The observed value of τt can be “explained” either through
the influence of Ct or through the dependence on Dt. If we fix Ct as well (by
picking an action), that accounts for (some of) the value of τt, which in turn
forces us to reassess our estimate of the probability distribution over Dt (and,
indirectly, of X, A, and U as well).8 This interplay means that Ct intimately
affects our understanding of the state of the system (and, therefore, our future
choice of actions) even if Ct does not directly influence the state of the user
or attacker. However, as we argued above, the presence of alarms is likely to
affect U and A directly (represented by the dashed influence lines in Fig. 10.4).

6 To be precise, our utility is still nonlinear because of the discount factor γ in
(10.1) that Fawcett and Provost do not use. We argue, however, that this factor
is necessary to prevent potentially unbounded utilities in the infinite horizon IDS
model. For finite horizons, our function can be made arbitrarily close to their
linear function via an appropriate choice of γ.

7 In principle, this is an infinite state space, but this is probably not a severe
practical difficulty in itself. In practice, we can likely safely truncate τ to a finite
range representing the maximum damage (length of attack) that an attacker
can do. Alternatively, we could choose a parametric form for τ and maintain a
distribution over parameters rather than a full multinomial.

8 If this reasoning still seems somewhat convoluted, we refer the reader to a very
accessible introduction to reasoning in Bayesian networks by Charniak [274] that
describes this case in detail.
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The resulting system is formally a partially observable Markov decision
process (POMDP) [275]. Because the action variable Ct now affects the dy-
namics of the system (the evolution of the probability distribution, or belief
state, over τ and, through it, D), a pure monitoring approach is no longer
sufficient. Optimal decision-making involves searching the space of policies π
to find one which optimizes the time-aggregate utility V given by (10.1).

Unfortunately, for the partially observable case, exact decision-making is
known to be quite difficult. Even given a complete model of the system, in-
cluding all parameter values, finding exactly or even boundedly approximate
optimal policies over such a space (the planning problem) is known to be diffi-
cult – formally uncomputable [275] and EXP-hard [276], respectively. Finding
such a policy when the system parameter values are unknown is the rein-
forcement learning problem for partially observable environments. No ideal
learning algorithm is known for reinforcement learning in POMDPs, though
it remains an active area of research (see the Kaelbling et al. survey paper [275]
for a summary of proposed learning methods for this environment). While we
do not address solving the POMDP version of the IDS problem in this chap-
ter, it remains an important area of ongoing work for us, and we hope to apply
the active research from the reinforcement learning literature to this domain
in the near future.

The critical observation here is that the monitoring case that arises from
Assumptions 1 and 2 is the simplest of a set of complex learning and planning
tasks rooted in the POMDP formulation. The full-blown POMDP framework
quickly emerges as a consequence of employing complex cost functions – cost
functions that depend on the time since the onset of attack require us to
maintain a probability distribution over that elapsed time. Simplifying the
model of Fig. 10.4 by, e.g., removing the Markov dependencies in U or A will
not help – the critical factor is the existence of τ and that it couples Ct into
the rest of the system.

In practice, this leaves us with two choices:

1. Accept simpler cost functions, and the representational paucity that comes
with them (an insensitivity to the differential impacts of different attacks,
multiple alarms for the same incident, etc.) in favor of tractable exact
monitoring.

2. Employ more expressive cost functions, accept the more difficult and in-
tractable POMDP formulation, and seek tractable approximations for
learning and reasoning in these complex models.

In this chapter, we take the former approach, but we are exploring the
latter in ongoing work. Heuristic methods for reasoning in POMDPs have
had great practical success recently, even when they do not have guaranteed
approximation bounds. For example, hierarchical POMDPs have had strong
success in robotics [277] and may be appropriate for modeling complex, struc-
tured decision-making in the IDS domain.
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While the POMDP formulation is heavyweight and somewhat intimidat-
ing, bringing it to the IDS task does offer a number of theoretical and practical
advantages. We can conceive of a hierarchy of increasingly sophisticated mod-
els employing more observables, models of multiple users, more complex cost
functions, etc. By situating the IDS problem in the POMDP framework with
DBN models of transition probabilities, we can assess the computational com-
plexity of learning and reasoning in each of these models, as well as the effect
of various approximations. Thus, we have a principled framework in which to
trade off IDS model complexity for tractability and accuracy. Furthermore,
in the POMDP paradigm, cost is an intrinsic part of the learning task and
is divorced from the learning algorithm. POMDPs employ an extremely gen-
eral cost framework that subsumes many cost functions of practical interest –
it is not necessary to reengineer a POMDP learning algorithm to accommo-
date each specific cost function. Thus, costs could, in principle, be set on a
site-specific basis in response to security policy. Finally, we can bring to bear
the rich set of tools that have been developed in past years for working with
POMDPs.

10.4 Experiments

For our initial work, we treat only the simplest version of our framework,
adopting the semi-supervised component of the framework and neglecting the
extended POMDP formulation. We adopt the generative model of Fig. 10.1
and Assumptions 1 and 2 directly. This is nearly the simplest model possible
under our framework,9 but still represents an extension to existing systems by
explicitly modeling the attacker (At) and allowing an intermittently observed
decision variable (Dt).

Because this simplified model is an uncontrollable process, learning re-
duces to inferring the parameters of the generative process – the transition
CPDs Pr[Ut+1|Ut] and Pr[At+1|At]; the variable priors Pr[Dt], Pr[U0], and
Pr[A0]; and the observation/sensor function Pr[Xt|Ut, At, Dt]. We impose the
constraint that

Pr[Xt|Ut, At, Dt] =
{

Pr[Xt|Ut] if Dt = USER ;
Pr[Xt|At] if Dt = ATTACKER ,

to reflect the role of Dt as a decision variable. As noted in Sect. 10.3.3, action
selection in this case is simply estimation of Dt.

We compile this dynamic Bayesian network model into a junction tree [278]
in which inference can be carried out in time O(T |U ||A||D|) for a T -time-step
data set. Given a data sequence, including X at all time steps and D at

9 We could relax Markov assumptions further, allowing Ut and At to be multinomial
variables, but we have shown the temporal coupling of user hidden state variables
to be important for modeling many users in previous work [248].



172 Machine Learning and Data Mining for Computer Security

some time steps, we learn the parameters of this model via the EM algorithm,
employing inference on the junction tree for the E step. For observation vectors
X with only discrete elements, the M step is multinomial density estimation
from the inferred distribution.10 We take the maximum likelihood estimates
of Dt from the inference step as our action choices, weighted by vFN/vFP for
ROC analysis.

10.4.1 Data Set

For our tests, we applied our semi-supervised IDS to the “user masquerading”
data set generated by Schonlau et al. [262] for their comparative study of
anomaly detection techniques. This data comprises individual time series from
50 different UNIX users. Each user’s time series consists of 15, 000 UNIX
commands such as ls or emacs. Command arguments are omitted. In each
time series, the first 5, 000 commands are known to be valid USER data, while
the remainder of the data is unlabeled. The unlabeled data is “corrupted” with
the introduction of simulated intrusions – commands drawn from a different
user’s activities (“masquerades”, in Schonlau’s parlance). For each block of 100
commands in the unlabeled section, an intrusion is initiated with probability
0.01 or continued (if the previous block was an intrusion) with probability 0.8.
Approximately 5% of the unlabeled data is intruder data. The true labels for
the unlabeled sections of the data are available separately. For more details
on this data set, please refer to Schonlau et al.’s original report [262].

The systems examined in the Schonlau et al. report were all pure anomaly
detection systems and were employed in a strict training/testing mode – train-
ing on the labeled section of the data (first 5, 000 tokens) and testing on the
remaining 10, 000, unlabeled tokens. This case is a limiting case of our model,
in which we run it in a pure anomaly detection mode with no real semi-
supervised learning taking place (though our model can still adapt parame-
ters using completely unlabeled data). For comparison’s sake, we demonstrate
our model in this mode, but the real strength of our approach is its ability
to learn continually in a semi-supervised way, and to employ whatever frag-
ments of labeled data are available. (We discuss some ways in which such data
might become available in “field conditions” in Sect. 10.1.) This represents a
qualitative break from the earlier, pure anomaly detection systems, and we
demonstrate that, when such data is available, our system can exploit it to
advantage when the previous systems would not have.

To examine the performance of our system in semi-supervised conditions,
we constructed partially labeled data sets from the original Schonlau et al.
data by labeling a small fraction of the unlabeled data. Specifically, starting
at the beginning of the unlabeled section (t = 5, 001), we selected subsequent

10 Observation vectors containing continuous variables are quite conceivable in this
domain (time stamps, latencies, memory loads, etc.), but such variables compli-
cate inference considerably and we do not address them in this chapter.



10 A Decision-Theoretic, Semi-Supervised Model for Intrusion Detection 173

windows of data with length chosen from a geometrically distributed random
variable with parameter 1/20. At each window of data, we fully labeled the
window with probability pu if it began with a normal user datum and with
probability pa if it began with an attacker datum. A window labeled in this
way might contain both user and attacker data. Note that while the original
data contained intrusions in units of 100 time-point blocks, we did not provide
this information to our learning algorithm.

We examined the effects of changing the amount of labeled data available
to the semi-supervised IDS by varying pu across 0.1%, 1%, and 10%, while
we varied pa across 1%, 10%, and 50%. Typically, USER data has a much
higher frequency than ATTACKER data, so it is plausible that a smaller fraction
of it would be labeled. We also examined the pure anomaly detection case,
corresponding to pu = pa = 0. We applied the semi-supervised IDS learner to
the 50 partially labeled time series, learning a model for each time series with
|U | = 10 and |A| = 4, reflecting the relative paucity of labeled attacker data.
The number of states in the USER model was chosen based on previous research
that found ten-state HMMs to be reasonable anomaly detection models for
many users [248]. After learning the model parameters via EM, we assigned the
maximum likelihood labels to the remaining unlabeled data (corresponding to
the cost function vFN = vFP in Assumption 1). The selection of costs in this
model displaces the selection of “acceptable false-alarm rate” that is used in
a number of pure anomaly detection systems, and we examined a spectrum
of cost ratios, vFN/vFP, for the purposes of ROC analysis.

Table 10.1. Performance of the semi-supervised IDS for varying amounts of la-
beled USER and ATTACKER data. (a) Accuracy. (b) False-alarm/false-accept rates.
The “pure anomaly detection” mode corresponds to pu = pa = 0. All figures given
are percentages

(a) (b)

pa pa

0% 1% 10% 50% 0% 1% 10% 50%
0% 93.7 – – – 2.15/49.43 – – –

0.1% – 93.9 94.1 96.3 – 2.21/50.53 2.60/46.75 2.45/34.89
pu 1% – 94.6 94.7 96.5 – 1.53/50.07 1.79/49.07 2.17/33.60

10% – 95.2 95.4 97.4 – 0.31/51.98 0.52/48.90 1.04/36.14

10.4.2 Results

Average accuracy and false-alarm/false-accept figures for classifying unlabeled
time points are given in Table 10.1. The “pure anomaly detection” case (in
which the system is trained only on the initial 5, 000 labeled data points that
were used by the Schonlau et al. systems for training) is given in the upper
left cell of each table.
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We see that as more labeled data becomes available (moving from upper
left to lower right in each table), the IDS does increasingly well overall, demon-
strating that the semi-supervised approach is behaving as we would expect. In
particular, false-alarm rates drop with increasing levels of labeled USER data,
while false-accept rates drop with increasing levels of labeled ATTACKER data.
There is a tension between the two, reflected in the difference between the
lower right cell (pu = 10%, pa = 50%) and first cells in its row (pa = 1%) and
column (pu = 0.1%) of Table 10.1b. This effect is not unexpected – increasing
the relative proportion of USER to ATTACKER data, or vice versa (head of a row
or column, respectively) should naturally bias the model in favor of one class
or another by skewing the class priors.

The performance of the pure anomaly detection mode of this IDS learner
is nearly indistinguishable from that of the semi-supervised learner when run
on the most sparsely labeled data (pu = 0.1%; pa = 1%), indicating that
the pure anomaly detection mode is the limiting case of the semi-supervised
learner, as expected. Note that the lower right cell still dominates the upper
left, indicating that uniformly increasing the available labeled data does, in
fact, aid the learner.

Table 10.2. False-alarm and false-accept rates for the six methods examined by
Schonlau et al. All figures given are percentages

Model Name f. alarm f. accept
One-step Markov 6.7 30.7
Markov chain + drift 2.7 58.9
Uniqueness 1.4 60.6
Order-10 Markov 3.2 50.7
Compression 5.0 65.8
Instance-based 3.7 63.2

For comparison, Table 10.2 gives the false-alarm/false-accept rates re-
ported by Schonlau et al. for the six systems that they applied to this data.
Even in the the pure anomaly detection test and the most parsimoniously
labeled data experiment (pu = 0.1%; pa = 1%), the semi-supervised learner
dominates four of the six and is beaten only by “Uniqueness” on false-alarm
rate and “Bayes one-step Markov” on false-accept rate. In more generously
labeled circumstances, the semi-supervised learner’s lead improves further.

Figure 10.5 displays ROC plots of the performance of the six methods
that Schonlau et al. examined (solid lines) and of our semi-supervised learner
IDS (SSL-IDS), run in pure anomaly detection mode (a) and with varying
degrees of partially labeled data (b). (Broken lines with symbols indicate
SSL-IDS.) Note that these plots use modified ROC axes, with false-alarm
rate on the abscissa and false-accept rate on the ordinate. In these axes, the
lower left corner is the optimal condition (no error of either type) and curves
closer to the origin dominate curves farther from it. False-alarm rates are
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Fig. 10.5. ROC curves for the six anomaly detection methods examined by Schonlau
et al. and our semi-supervised learner IDS (SSL-IDS). Note that plots use non-
standard ROC axes. The optimal condition is the origin (no error of either type).
(a) When SSL-IDS is run in “pure anomaly detection” mode. (b) SSL-IDS run with
three different fractions of partially labeled data
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given on a logarithmic scale to improve legibility. The results for the SSL-IDS
are given for 〈pu = 0.1%, pa = 1%〉 (SSL-IDS LOW; broken line with plus
signs); 〈pu = 1%, pa = 10%〉 (SSL-IDS MED; broken line with triangles);
and 〈pu = 10%, pa = 50%〉 (SSL-IDS HIGH; broken line with circles). The
pure anomaly detection curve is not plotted with the SSL-IDS curves because
it is visually indistinguishable from SSL-IDS LOW (although the curves do
actually vary slightly).

Figure 10.5a shows that the performance of the IDS, when run in pure
anomaly detection mode, is largely consistent with the performance of the
six anomaly detectors tested by Schonlau et al. The learner proposed in this
chapter does appear to have stronger performance at lower false-alarm rates,
probably because it learns continually, even on the unlabeled data, and is able
to refine its model of the normal user when biased in favor of believing that
the majority of the unlabeled data originates from that source (i.e., the bias
imposed by the high cost of false alarms at the left end of the ROC curves).

Figure 10.5b shows two important features of the semi-supervised IDS.
First, increasing the fraction of labeled training data does uniformly improve
performance, as the more richly labeled SSL-IDS curves fully dominate the
more scarcely labeled curves. Second, and more importantly, while the semi-
supervised learner does not fully dominate the six methods reported in Schon-
lau et al., it does outperform them at low false-alarm rates (probably for the
reasons given above, as well as its ability to exploit bits of labeled data that
are introduced later in the data stream). This is significant because false-
alarm rate is generally seen as the greatest barrier to practical application of
adaptive IDS technologies. Even modest false-alarm rates can yield thousands
or millions of false alarms per day on large networks, so it is imperative that
we find methods that improve false-alarm rates. SSL-IDS’s superiority at low
false-alarm rates is quite promising in this regard, as is the fact that its per-
formance scales with increasing amounts of labeled data. While we can never
hope to have large quantities of labeled data in practice, it is plausible that
we can take advantage of increasing amounts of labeled hostile data over time
to substantially improve the performance of our intrusion detection systems.

10.5 Conclusions and Future Work

In this chapter, we have demonstrated a novel approach to intrusion detection
that offers a number of advantages over current approaches. By posing the
problem in a semi-supervised learning framework, we are able to exploit both
known normal and known hostile data as well as to operate in unlabeled data
conditions. Doing so eliminates the distinction between misuse and anomaly
detection while preserving some of the strengths of both methods. The distinc-
tion between “training” and “testing” data is also eliminated, allowing a more
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flexible intrusion detection system whose model can be constantly updated as
new data is seen.

We demonstrated that the resulting semi-supervised IDS performs strongly
relative to a number of previously proposed pure anomaly detection systems
on a large, human-generated, command-line intrusion detection task. Pure
anomaly detection is a limiting case of our model, achieved when only a fixed
block of single-class training data is available. When additional data becomes
available (e.g., as a result of an exploit report or a forensic analysis of an
attack that the IDS initially missed), the system adapts to this data and
takes advantage of it.

We also made explicit a pair of common assumptions in the anomaly de-
tection literature and showed that they were equivalent to the simplest of a
space of decision-theoretic models rooted in the POMDP formulation. This
observation clarifies the formal difficulty of the optimal solution of the IDS
problem under a variety of cost functions and domain models, and opens up
the IDS learning task to the entire space of POMDP learning algorithms.

It is important to note that the introduction of the POMDP formalism is
not a choice, but a position that is mathematically required in order to attain
more powerful cost functions. Nonetheless, employing this formalism does
offer a number of advantages. It allows us to explicitly analyze the complexity
of optimal decision-making for the IDS domain under a wide spectrum of
observable variables and cost functions, it decouples the cost function from
the learning algorithm, and it gives us access to a large body of literature on
planning and learning in POMDPs.

We are currently pursuing this direction and examining the applicability
of various reinforcement learning and POMDP approximate planning meth-
ods in this domain. A second direction of our near future research is handling
more complex intrusion data sets such as network intrusion detection (e.g., in
the DARPA/Lincoln Labs IDS data set [261]). While this chapter examined
a single channel of observable data (the command issued at time t), network
packet data typically includes many channels of relevant data such as time
stamps, host and destination IP address, TCP control bits, higher-level proto-
col information, etc. Taking advantage of these additional channels requires a
sensor-fusion type of approach. While dependencies among these channels can
be described in our DBN framework easily enough, the additional channels do
seriously complicate learning and decision-making. Overcoming these issues
will likely require large approximations – either existing POMDP methods, or
new approaches specific to this domain. An open issue is whether it is tractable
or desirable to attain a bounded approximation to this model, or if unbound-
able heuristic approaches work well in practice. Finally, we are interested in
modeling the effects of alarms on USER activities (e.g., the dotted-line arrows
in Fig. 10.4) as well as more complex decisions than simple ALARM/NOALARM
states, such as variable assessments of threat level, passive alarms vs. active
interruption of service, etc.
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