

Lecture Notes in Artificial Intelligence 3898
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Karl Tuyls Pieter Jan ’t Hoen
Katja Verbeeck Sandip Sen (Eds.)

Learning andAdaption
in Multi-Agent Systems

First International Workshop, LAMAS 2005
Utrecht, The Netherlands, July 25, 2005
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Karl Tuyls
Universiteit Maastricht
Tongersestraat 6, Maastricht, The Netherlands
E-mail: k.tuyls@cs.unimaas.nl

Pieter Jan ’t Hoen
Center for Mathematics and Computer Science (CWI)
Kruislaan 413, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: hoen@cwi.nl

Katja Verbeeck
Vrije Universiteit Brussel
Faculty of Sciences (WE), Department of Computer Science
Pleinlaan 2, 1050 Brussels, Belgium
E-mail: kaverbee@vub.ac.be

Sandip Sen
University of Tulsa
Department of Mathematical and Computer Sciences
600 S. College, Tulsa, OK 74104, USA
E-mail: sandip-sen@utulsa.edu

Library of Congress Control Number: 2006923098

CR Subject Classification (1998): I.2.11, I.2, C.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-33053-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33053-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11691839 06/3142 5 4 3 2 1 0

Preface

This book contains selected and revised papers of the International Workshop on Learn-
ing and Adaptation in Multi-Agent Systems (LAMAS 2005), held at the AAMAS 2005
Conference in Utrecht, The Netherlands, July 26.

An important aspect in multi-agent systems (MASs) is that the environment evolves
over time, not only due to external environmental changes but also due to agent inter-
actions. For this reason it is important that an agent can learn, based on experience, and
adapt its knowledge to make rational decisions and act in this changing environment
autonomously.

Machine learning techniques for single-agent frameworks are well established.
Agents operate in uncertain environments and must be able to learn and act au-
tonomously. This task is, however, more complex when the agent interacts with other
agents that have potentially different capabilities and goals. The single-agent case is
structurally different from the multi-agent case due to the added dimension of dynamic
interactions between the adaptive agents.

Multi-agent learning, i.e., the ability of the agents to learn how to cooperate and
compete, becomes crucial in many domains. Autonomous agents and multi-agent
systems (AAMAS) is an emerging multi-disciplinary area encompassing computer
science, software engineering, biology, as well as cognitive and social sciences. A the-
oretical framework, in which rationality of learning and interacting agents can be un-
derstood, is still under development in MASs, although there have been promising first
results.

The goal of this workshop was to increase awareness and interest in adaptive agent
research, encourage collaboration between machine learning (ML) experts and agent
system experts, and give a representative overview of current research in the area of
adaptive agents. The symposium served as an inclusive forum for the discussion of
ongoing or completed work concerning both theoretical and practical issues. An impor-
tant part of the workshop was to model MASs for different applications and to develop
robust ML techniques.

Contributions in this book cover topics on how an agent can learn, using ML tech-
niques, to act individually or to coordinate with one another towards individual or com-
mon goals, which is still an open issue in real-time, noisy, collaborative and adversarial
environments. The book start with an extensive overview article on cooperative and
competitive multi-agent learning, which also contains a description of the contributions
of this book and places them in context with the state of the art. It is a good starting
point for newcomers in the field, wishing to read a self-contained overview of the state
of the art in multi-agent learning, and also a good introduction for experts wishing to
explore the contributions of this book.

We hope that our readers will enjoy reading the efforts of the researchers. A special
word of gratitude also goes to our invited speakers, Peter Stone and Ann Nowé.

The first invited talk, “Multi-Robot Learning for Continuous Area Sweeping”, by Pe-
ter Stone, University of Texas at Austin, USA, has been shaped into the paper: “Multi-
Robot Learning for Continuous Area Sweeping”, by Mazda Ahmadi and Peter Stone.

VI Preface

In their paper they study the problem of multi-agent continuous area sweeping. In this
problem agents are situated in a particular environment in which they have to repeatedly
visit every part of it such that they can detect events of interest for their global task and
coordinate to minimize the total cost. Events are not uniformly distributed, such that
agents need to visit locations non-uniformly. The authors formalize this problem and
present an initial algorithm to solve it. Moreover they nicely illustrate their approach
with a set of experiments in a routine surveillance task.

The second invited talk of the workshop was by Ann Nowé, professor of computer
sciences at the university of Brussels, Belgium, resulting in the paper: “Learning Au-
tomata as a Basis for Multiagent Reinforcement Learning”, by Ann Nowé, Katja Ver-
beeck and Maarten Peeters. In their work they start with an overview on important theo-
retical results from the theory of learning automata in terms of game theoretic concepts
and consider them as a policy iterator in the domain of reinforcement learning prob-
lems. Doing so they gradually move from the variable structure automaton, mapping
to the single-stage single-agent case, over learning automata games, mapping to the
single-stage multi-agent case, to interconnected learning automata, considering multi-
stage multi-agent problems. The authors also show the most interesting connection with
the field of ant colony optimization.

Acknowledgements

When organizing a scientific event like LAMAS, a word of gratitude is always in place.
This book would not have been produced without the help of many persons. First of
all, the organizers would like to thank the members of the PC, who guaranteed a scien-
tifically strong and interesting LNCS volume. Secondly, we would like to express our
appreciation to the invited speakers, Ann Nowé and Peter Stone, for their distinguished
contribution to the workshop program. Finally, we also would like to thank the authors
of all contributions for submitting their scientific work to the LAMAS workshop!

December 2005 Karl Tuyls
Pieter Jan ’t Hoen

Katja Verbeeck
Sandip Sen

Tulsa

Organization

Organizing Committee

Co-chairs: Karl Tuyls
Pieter Jan ’t Hoen
Katja Verbeeck
Sandip Sen

Program Committee

Stephane Airiau
Bikramjit Banerjee
Ana Lucia Bazzan
Sander Bohté
Michael Goodrich
Daniel Kudenko

Han La Poutré
Michael Littman
Peter McBurney
Ann Nowé
Simon Parsons
Steve Phelps

Jan Ramon
Sandip Sen
Peter Stone
Kagan Tumer
Danny Weyns
David Wolpert

Additional Referees

Jacob Crandall
Alexander Helleboogh
Koen Mertens

Table of Contents

An Overview of Cooperative and Competitive Multiagent Learning
Pieter Jan ’t Hoen, Karl Tuyls, Liviu Panait, Sean Luke,
J.A. La Poutré . 1

Multi-robot Learning for Continuous Area Sweeping
Mazda Ahmadi, Peter Stone . 47

Learning Automata as a Basis for Multi Agent Reinforcement Learning
Ann Nowé, Katja Verbeeck, Maarten Peeters . 71

Learning Pareto-optimal Solutions in 2x2 Conflict Games
Stéphane Airiau, Sandip Sen . 86

Unifying Convergence and No-Regret in Multiagent Learning
Bikramjit Banerjee, Jing Peng . 100

Implicit Coordination in a Network of Social Drivers: The Role of
Information in a Commuting Scenario

Ana L.C. Bazzan, Manuel Fehler, Franziska Klügl 115

Multiagent Traffic Management: Opportunities for Multiagent Learning
Kurt Dresner, Peter Stone . 129

Dealing with Errors in a Cooperative Multi-agent Learning System
Constança Oliveira e Sousa, Luis Custódio . 139

The Success and Failure of Tag-Mediated Evolution of Cooperation
Austin McDonald, Sandip Sen . 155

An Adaptive Approach for the Exploration-Exploitation Dilemma and
Its Application to Economic Systems

Lilia Rejeb, Zahia Guessoum, Rym M’Hallah . 165

Efficient Reward Functions for Adaptive Multi-rover Systems
Kagan Tumer, Adrian Agogino . 177

Multi-agent Relational Reinforcement Learning
Tom Croonenborghs, Karl Tuyls, Jan Ramon,
Maurice Bruynooghe . 192

X Table of Contents

Multi-type ACO for Light Path Protection
Peter Vrancx, Ann Nowé, Kris Steenhaut . 207

Author Index . 217

An Overview of Cooperative and Competitive
Multiagent Learning

Pieter Jan ’t Hoen1, Karl Tuyls2, Liviu Panait3,
Sean Luke3, and J.A. La Poutré1,4

1 Center for Mathematics and Computer Science (CWI),
P.O. Box 94079, Amsterdam 1090 GB, The Netherlands

2 Computer Science Department (IKAT), Tongersestraat 6,
University of Maastricht, The Netherlands

3 George Mason University, Fairfax, VA 22030
4 TU Eindhoven, De Lismortel 2, Eindhoven 5600 MB, The Netherlands

hoen@cwi.nl, k.tuyls@cs.unimaas.nl,
{lpanait, sean}@cs.gmu.edu, hlp@cwi.nl

Abstract. Multi-agent systems (MASs) is an area of distributed artifi-
cial intelligence that emphasizes the joint behaviors of agents with some
degree of autonomy and the complexities arising from their interactions.
The research on MASs is intensifying, as supported by a growing num-
ber of conferences, workshops, and journal papers. In this survey we give
an overview of multi-agent learning research in a spectrum of areas, in-
cluding reinforcement learning, evolutionary computation, game theory,
complex systems, agent modeling, and robotics.

MASs range in their description from cooperative to being competitive
in nature. To muddle the waters, competitive systems can show apparent
cooperative behavior, and vice versa. In practice, agents can show a wide
range of behaviors in a system, that may either fit the label of cooperative
or competitive, depending on the circumstances. In this survey, we dis-
cuss current work on cooperative and competitive MASs and aim to make
the distinctions and overlap between the two approaches more explicit.

Lastly, this paper summarizes the papers of the first International
workshop on Learning and Adaptation in MAS (LAMAS) hosted at the
fourth International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS’05) and places the work in the above survey.

1 Introduction

Multi-agent systems (MASs) is an area of distributed artificial intelligence that
emphasizes the joint behaviors of agents with some degree of autonomy and the
complexities arising from their interactions. The research on MASs is intensify-
ing, as supported by a growing number of conferences, workshops, and journal
papers. This book of the first International workshop on Learning and Adapta-
tion in MAS (LAMAS), hosted at the fourth International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS’05), is a continuation
of this trend.

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 1–46, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 P.J. ’t Hoen et al.

The goal of the LAMAS workshop was to increase awareness and interest in
adaptive agent research, encourage collaboration between Machine Learning (ML)
experts and agent system experts, and give a representative overview of current
research in the area of adaptive agents. The workshop served as an inclusive forum
for the discussion of ongoing or completed work concerning both theoretical and
practical issues. More precisely, researchers from the multi-agent learning commu-
nity presented recent work and discussed their newest ideas for a first time with
their peers. An important part of the workshop was dedicated to model MASs for
different applications and to develop robust ML techniques. Contributions cover
on how an agent can learn using ML techniques to act individually or to coordi-
nate with one another towards individual or common goals. This is an open issue
in real-time, noisy, collaborative and possibly adversarial environments.

This introductory article has a twofold goal. The first is to give a broad overview
of current MASs research. We present our overview of MASs research from the two
main perspectives to be found in the literature; the cooperative and competitive
perspective. Secondly, we briefly present an overview of the included papers and
invited contributions and place them in the global context of ongoing research.

In cooperative systems, as suggested by the label, the agents pursue a com-
mon goal. Such systems are characterized by the fact that the designers of the
MAS are free in their design of the agents. The agents can be built and learn
with extensive knowledge of the system and the agents can expect benevolent
intentions from other agents. Note that we do not claim that it is easy to design
a cooperative MAS to have good emergent behavior, on the contrary!

In contrast to cooperative MASs, agents in a competitive MAS setting have
non-aligned goals, and individual agents seek only to maximize their own gains.
Recent work in competitive MASs has aimed at moving Reinforcement Learning
(RL) techniques from the domain of single-agent to multi-agent settings. There is
a growing body of work, algorithms and evaluation criteria, which we cover in the
second part of our survey. Furthermore, this section also covers a growing body
of work on non-cooperative agents [189] for economical and societal settings that
have received increasing interest only in recent years. Such agents have their own,
possibly conflicting goals and aim for local optimization. Their owners can e.g. be
competing companies or autonomous departments within a bigger organization,
where the multi-agent systems should facilitate trading, allocation, or planning
between these owners, e.g. by means of negotiation or auctioning.

The rest of this document is structured as follows. Section 2 first informally
introduces agents playing simple matrix games. We use this section to initially
introduce the concepts of play, and whether the agents can be labeled as coopera-
tive, competitive, or as something in between. Section 3 presents our overview of
cooperative MASs. Section 4 continues with our overview of competitive MASs.
Sections 3 and 4 are intended to be largely self contained, although there are
cross-links between the sections. Section 5 presents the papers of this LAMAS
proceedings and places this work in the context of the survey of MASs work,
Sections 3 and 4. Lastly, Section 6 concludes with an agenda of future research
opportunities for MASs. Appendix A includes some basic Game Theory (GT)

An Overview of Cooperative and Competitive Multiagent Learning 3

concepts universal to the domain of cooperative and competitive MASs as a
general background for readers not familiar with the subject.

The next section continues with a discussion on the labels of cooperative and
competitive as applied to MASs.

2 Agents Classified as Cooperative or Competitive

Multi-Agent Systems range in their description from cooperative to being com-
petitive in nature. To muddle the waters, competitive systems can show apparent
cooperative behavior, and vice versa. In practice, agents in a system, depending
on the circumstances, can show a wide range of behaviors that may either fit
the label of cooperative or competitive.

The fundamental distinction between systems labeled as cooperative or com-
petitive is that for the former the agents are designed with as goal the maximiza-
tion of a group utility. Competitive agents are solely focused on maximizing their
own utility. We, in this section, label the agents as either utilitarian or selfish
to stress more their intention, i.e. their design goal, than their actual behavior.
For example, a competitive/selfish agent may cooperate with other agents in a
temporary coalition. The selfish intentions of the agent are met due to a larger
expected reward from cooperation. On the other hand, a cooperative/utilitarian
agent may seem competitive if it accidentally hogs a resource to the detriment
of other agents in its group. In complex cooperative systems, agents can easily
hinder the other agents as the complexity of the interactions increase. The label
utilitarian or selfish stresses more the intentional stance of the agent (and of its
designer), as opposed to its apparent behavior.

The utilitarian stance for cooperative systems, as already mentioned in the
introduction, is also reflected in the design of the agents. Commonly, a coopera-
tive system is designed by one party (be that one designer or a team) to achieve
a set of agreed upon goals. The behavior, or the algorithm that learns the be-
havior of the agents, is largely under the control of the designers of the system.
This allows for possible intricate coordination to be a priori implemented in the
system and many interactions in the system can be anticipated. An agent can
essentially expect good intentions from other agents in the system. This is not
the case for the competitive setting. Each agent is created by separate designers
that all aim to achieve their own goals. This makes cooperation between selfish
agents, even if this is rational, a more difficult and risky task. The designer of a
competitive agent must also expend effort in considering the types of exploitive
behavior that will be encountered. This distinction in design of agents for a co-
operative or competitive setting must be kept in mind when choosing the range
of strategies the agents can choose from.

2.1 Setting

In the following, we give a sample of the type of interactions that can be observed
between agents. We discuss how these are a consequence of the utilitarian or
selfish intentional stance.

4 P.J. ’t Hoen et al.

We restrict our discussion to the well known two-agent, two-action matrix
games. For a complete taxonomy we refer the reader to [132]. Of importance is
that the listed games give an exhaustive overview of the types of settings that
the agents can encounter. This gives a sound basis to inspect how agents can
handle these types of games, both from the utilitarian and the selfish stance. We
can then classify the agent behavior as either (apparent) cooperative, (apparent)
competitive, or indistinguishable.

[132] classifies games from the perspective of selfish agents; the agents focus
on maximizing their own gain, i.e. their private utility. Game theoretical notions
prevail in the discussion of the choice of strategies of the agents. We take a
slightly broader view and also focus on utilitarian agents and how they would
play in the selected games. Utilitarian agents focus on achieving the highest
possible group utility, i.e. the sum of their individual rewards.

Note that we only consider play between two selfish agents or between two
utilitarian agents. We consider either a system of agents where all agents are
intended to achieve a common goal, or a system of agents where all agents
expect the worst. We do not cover the intricacies of a cooperative system that
has to deal with selfish agents. For a more complete discussion of this topic, we
refer the reader to [106] and Section A for a discussion on Evolutionary Stable
Strategies.

The agents in the games know the complete payoff matrices. They know their
own reward and that of their opponents for all joint actions1. They simultane-
ously must choose an action and receive their part of the reward based on the
picked joint action. What they may not know is how the other agent, be that a
malicious opponent or a benevolent agent, will play.

Note that we here as yet restrict ourselves to the single play of the presented
matrix games. Agents may also have to learn these payoffs during repeated play
of the game. We will give examples of this, along with a more formal treatment,
in Section 4. After this initial exposition, we discuss how the choice of strategies
can change due to repeated play.

2.2 Types of Games

From the viewpoint of selfish agents, [132] broadly classifies the matrix games as
either trivial, games of no conflict, games of complete opposition, or as games of
partial conflict. The latter is also called a mixed motive game. We discuss each
of the categories below. For each category, we sketch the game, give an example,
and discuss how selfish and utilitarian agents would cope with the game.

Trivial games: In trivial games (TG), the expected reward of an agent does not
depend on the choice of action of the other agent. In Table 1, we show such
a trivial game. The Row player can choose either action A1 or B1 while the
Column player can choose from actions A2 or B2. The items in the table show
the rewards for the Row player and Column player respectively for choice of
action Ai or Bi respectively. For this game, the rewards of one player are not
1 Agents in most Game Theory literature know the payoff matrix before play.

An Overview of Cooperative and Competitive Multiagent Learning 5

Table 1. A trivial game

TG A2 B2

A1 2,2 2,2

B1 2,2 2,2

influenced by the choice of actions of the opponent. Such a game is therefore
not of great interest in terms of formulating a best strategy. This strategy is
based on what they think they should play given the logical action chosen by
the opponent, a non-issue in this case.

Due to the simple nature of this game, there is no intrinsic difference in play
between utilitarian and selfish agents.

No conflict games: In no-conflict games (NCG), both players benefit from choos-
ing one, unambiguous joint action. Neither player benefits, in terms of individual
rewards, by deviating from this logical choice. Consider the game in Table 2:

Table 2. A no-conflict game

NCG A2 B2

A1 4,4 2,3

B1 3,2 2,2

Both the Row and Column player prefer the joint action A1A2 (we give
first the Row, and the Column player action) as this gives the most individual
reward. Neither player has an incentive to choose another action when the sole
goal is maximizing the private utility for selfish agents. A1A2 is also the logical
choice of action for the utilitarian players. We stress that in both cases, the
Row and Column player individually choose A1 and A2 respectively without
prior negotiations; the players base their individual choice solely on their own
strategic reasoning.

Note that the Row player may prefer to play B1A2 when the Row player
aims to maximize the relative utility of play; the Row player wants to have more
utility than the Column player. This aspect is not an issue for utilitarian players.

As for trivial games, there is little difference in play between utilitarian and
selfish agents. One distinction that can be made is that a utilitarian row player
will not pick action B1 as such a player is not interested in achieving a higher
reward than the other player. More importantly, this choice of action will lower
the utility of the group and should be avoided.

Games of Complete opposition (also known as zerosum games): In games of
complete opposition (CO), the gain of one agent is a loss for the other agent.
The Table 3 shows a typical zerosum game (rewards for one joint action sum to
0). These games are characterized by fierce competition. On average, an agent
can expect to have zero reward.

For selfish players, games of complete opposition are a difficult scenario. The
best strategy for an unknown opponent, from a game theoretical viewpoint, is

6 P.J. ’t Hoen et al.

Table 3. A game of complete opposition

CO A2 B2

A1 0,0 2,-2

B1 1,-1 -3,3

to play a random strategy; all actions are equally probable. More technically,
this is a mixed strategy. See Section A for a more formal definition. For two
utilitarian agents, the game is also problematical as coordination of joint actions,
by definition of a zerosum game, will not lead to a higher aggregated reward.

Games of Partial Conflict Mixed Motive Games: Games of partial conflict (PC)
allow for both agents to choose profitable actions, but the agents prefer different
joint actions. The latter point is the distinction between the no-conflict games
and the mixed-motive games. We give an example in Table 4.

Table 4. A partial conflict game

PC1 A2 B2

A1 2,7 -1,-10

B1 1,-5 10,1

The Row agent prefers joint action B1B2. The Column agent prefers joint
action A1A2. Blindly choosing B1 by the Row player and A2 by the Column
player results in joint action B1A2 that is preferred by neither player.

Games of partial conflict are difficult for selfish agents. Optimal play is
achieved through a mixed strategy that maximizes expected utility. This aspect
is handled in more detail in Appendix A.

Utilitarian agents that have as goal to maximize the group utility have a more
clearcut strategy; choose the joint action that maximizes the total utility. For
Table 4, joint action B1B2 is the clear choice. For Table 5, the utilitarian agents
are however faced with the choice of playing joint action A1A2 or B1B2. The
agents must however make their choices individually, with no a priori information
of the action that will be played by the other agent.

Table 5. A second no-conflict game

PC2 A2 B2

A1 3,3 1,1

B1 1,1 3,3

2.3 Repeated Play

The above section has presented play for agents for single shot play of a selection
of typical matrix games. We now focus on how the game can change if two agents
repeatedly play the same game. Repeated play opens opportunities, especially
to selfish agents, not available in single shot play of the game.

An Overview of Cooperative and Competitive Multiagent Learning 7

Force-vulnerable or Threat-vulnerable: [132] lists two opportunities in repeated
play for selfish agents. Games can be threat-vulnerable or force-vulnerable. A
player is called a disgruntled if he fails to achieve his most preferred outcome
in initial play of the game. For example, the outcome for the disgruntled Row
player is A1A2. Two cases can be distinguished: (i) Row’s largest payoff is in
A1B2, and (ii) Row’s largest payoff is in B1B2.

Consider the first case. Row can only achieve this desired outcome if the Col-
umn player shifts away from the original outcome while Row sticks to A1. Now
by threatening to shift unilaterally to B1, Row can effect an outcome where Col-
umn gets a smaller payoff than if Column where to shift unilaterally. This game is
hence threat-vulnerable. The Row player can induce the Column player to switch
by threatening to play an action that is even less preferred by the Column player.

For the second case, suppose now that Row’s payoff in B1B2 is larger than
in A1A2. The Column player can be induced to switch to this joint action if
first the Row player actually switches to play B1. The Column player may then
switch to B2 if the payoff for the Column player in B1B2 is higher than the
payoff in B1A2. Such a game is called force-vulnerable.

Exploitation: In repeated play a player may learn about the strategy of the op-
ponent. For example, in the games of complete opposition, the Row player may
learn that the Column player is not purely random and has a slight bias for play-
ing B2. This gives the Row player the opportunity to play action A1 more often
for payoff Table 3. For the single shot game, Game Theoretical considerations
lead the Row player to play a perfect random strategy for the game of complete
opposition. This behavior can change in repeated play as one player learns more
of the opposing player and exploitation opportunities are observed.

Threat or Retributive strategies: We have discussed how games may be threat
vulnerable. More generally, solutions to games that are not reachable in single
play can be achieved in iterated play due to the possibility of retributive actions.
A famous example is the Tit-for-Tat strategy [7] in iterated play of the Prisoner’s
Dilemma, of which an example is shown in Table 6:

Table 6. A Prisoner’s Dilemma game

PD A2/C B2/D

A1/C 3,3 0,5

B1/D 5,0 1,1

Players receive a reward for jointly cooperating (A1A2), but receive a higher
reward by unilaterally defecting (A1B2 or B1A2). The players however achieve
a lower reward for a joint defection (B1B2). The dominant strategy in the single
shot version of the game is to defect, due to the reasoning that the opponent
will defect.

In repeated play of the game, a higher reward can be achieved by both players,
be they selfish or utilitarian, by repeatedly jointly cooperating. Defections may

8 P.J. ’t Hoen et al.

be less common as a player has the possibility to threaten to punish a defection
with defections of its own. This is encoded in the Tit-for-Tat strategy that
initially starts the game by cooperating. A defection by the opponent is punished
by a defection in the next round of play. The Tit-for-Tat player then reverts
to playing cooperation until the next defection by the opponent. Players can
achieve a high individual reward over multiple trials of the game, while the threat
of retribution guards the player against exploitation by a malicious opponent.

In general, in repeated play, joint solutions of the game by selfish players are
possible that are not apparent in single shot play of the game. Future interactions
between agents allow for strategies that incorporate threats against exploitation,
and at the same time allow for risky joint play.

Give and take: For the games of partial opposition, i.e. the mixed motive games,
two agents are each able to gain in each round of play. The agents however
have opposed preferences for the choice of joint actions in terms of received
individual reward. Repeated play of the same game allows for give and take
by both players to achieve a higher aggregated reward than if both players
aggressively continuously strive for their own preferred action.

In Table 7, two utilitarian players are indifferent between play of A1A2, A1B2,
or B1A2. As long as B1B2 is not played, the two agents together reap the highest
possible reward. The situation is more complex for two selfish agents.

Table 7. A game of Give and Take

GT A2 B2

A1 3,3 2,4

B1 4,2 2,2

Two selfish agents are indifferent between A1A2−A1A2, A1B2−B1A2, and
B1A2−A1B2 played over two iterations of the game. Both would prefer to receive
a reward of 8 over two iterations; the row player would prefer B1A2 − B1A2
to be played. There is however the risk of playing B1B2 if the column player
reasons in a similar manner. The utilitarian players can unilaterally choose to
play the safe action A1 and A2 respectively for the role of Row and Column
player as they are only concerned about the group utility.

The selfish players have basically also the above choice; repeatedly play A1A2
as a safe, guaranteed joint action. They can also settle for the option of the more
complex interleaving of B1A2 with A1B2. The selfish agents are indifferent
between the two strategies in terms of expected reward, although the latter in-
terleaving is more difficult to achieve. For the strategy of repeated play of A1A2,
both selfish agents have an incentive to deviate. The row player can unilaterally
switch to B1 and the Column player can decide to unilaterally switch to B2
to try to reap the higher reward. This can lead the players to wind up playing
B1B2, where neither player has a strong incentive to unilaterally switch back.

Observe once again Table 4. Two selfish agents should play A1A2 9
14 of the

time and B1B2 5
14 of the time for both agents to reap the same average reward.

An Overview of Cooperative and Competitive Multiagent Learning 9

This is a difficult coordination pattern to achieve. This pattern however achieves
a higher reward than any mixed strategies the agents can choose due to the risk
of penalties for actions A1B2 and B1A2. Unilaterally striving for their own
preferred action by the Row or Column player will lead to lower reward than
for the fine grained coordination. The game in Table 5 is hence a challenge for
selfish algorithms.

In this section, we have sketched the differences between cooperative and
competitive agents using simple matrix games. We have discussed the intricacies
that arise when classifying the behavior of an agent from the perspective of single
play of a game, and the possible changes in behavior for repeated play of the
same game. Sections 3 and 4 then delve into the existing literature covering the
state-of-the-art research on cooperative and competitive MASs.

3 Cooperative MASs

In this section, we will focus on the application of machine learning to problems
in the MAS area. Machine learning explores ways to get a machine agent to
discover on its own, often through repeated trials, how to solve a given task.
Machine learning has proven a popular approach to solving multi-agent sys-
tems problems because the inherent complexity of many such problems can
make solutions by hand prohibitively difficult. Automation is attractive. We
will specifically focus on problem domains in which the multiple agents are
cooperating to solve a joint task or to maximize utility; as opposed to com-
peting with one another. This is covered in Section 4. We call this specific sub-
domain of interest cooperative multi-agent learning. Despite the relative youth
of the field, the number of cooperative multi-agent learning papers is large,
and we hope that this survey will prove helpful in navigating the current body
of work.

We argue there are two major categories of cooperative multi-agent learn-
ing approaches. The first one, team learning, applies a single learner to search
for behaviors for the entire team of agents. Such approaches are more along
the lines of traditional machine learning techniques, but they may have scala-
bility problems as the team size increases. To keep the search space manage-
able, team learning techniques might assign identical behaviors to multiple team
members.

A second category of techniques, concurent learning, uses multiple concur-
rent learning processes. Rather than learning behaviors for the entire team,
concurent learning approaches typically employ a learner for each team mem-
ber, in the hope that this reduces the joint space by projecting it into N
separate spaces. However, the presence of multiple concurrent learners makes
the environment non-stationary, which is a violation of the assumptions be-
hind most traditional machine learning techniques. For this reason, concurent
learning requires new (or significantly modified versions of) machine learning
methods.

The last section covers inter-agent communication.

10 P.J. ’t Hoen et al.

3.1 Team Learning

In team learning, there is a single learner involved: but this learner is discovering
a set of behaviors for a team of agents, rather than a single agent. Team learning
is an easy approach to multi-agent learning because it can use standard single-
agent machine learning techniques: there is a single entity that performs the
learning process. Unfortunately, team learning may have problems when scaling
to complex domains involving large numbers of agents: given an environment
with S states, a team with N agents might be in as many SN states (assuming
multiple agents might be in the same state). This explosion in the state space size
can be overwhelming for learning methods that explore the space of state utilities
(such as reinforcement learning), but it may not as drastically affect techniques
that explore the space of behaviors (such as evolutionary computation) [80, 140,
145]. For such reasons, evolutionary computation seems easier to scale up, and
it is by far the most widely used team learning technique.

Team learning may be divided into two broad categories: homogeneous and
purely-heterogeneous team learning. Homogeneous learners develop a single agent
behavior which is used by every agent on the team. Purely-heterogeneous team
learners develop a unique behavior for each agent - such approaches hold the
promise of better solutions through agent specialization, but they must cope with
larger search spaces. There exist approaches in the middle-ground between these
two categories: for example, divide the team into groups, where group mates
share the same behavior. We refer to these as hybrid team learning methods.

Choosing among these approaches depends on whether specialists are needed
in the team or not. Balch2 [9] suggests that domains where single agents can
perform well (for example, foraging) are particularly suited for homogeneous
learning, while domains that require task specialization (such as robotic soccer)
are more suitable for heterogeneous approaches. Potter et al [127] suggest that
the number of different skills required to solve the domain, and not domain
difficulty, is a determinant factor requiring a heterogeneous approach.

Homogeneous Team Learning: The assumption that all agents have the same
behavior drastically reduces the learning search space. Research in this area in-
cludes analyses of the performance of the homogeneous team discovered by the
learning process [68], comparisons of different learning paradigms [140], or the
increased power added by indirect [131] and direct [83] communication abilities.
Learning rules for cellular automata is an oft-overlooked paradigm for homoge-
neous team learning (a survey of this area is presented in [109]).

Purely-Heterogeneous Team Learning: In heterogeneous team learning, the team
is composed of agents with different behaviors, with a single learner trying to
improve the team as a whole. This approach allows for more diversity in the team
at the cost of increasing the search space. The bulk of research in heterogeneous
team learning has concerned itself with the requirement for or the emergence

2 Although both the work of Balch and that of Potter et al employ concurrent learning
processes, their findings are particularly apropos to our discussion here.

An Overview of Cooperative and Competitive Multiagent Learning 11

of specialists. For example, Luke and Spector [98] compares different strategies
for evolving heterogeneous team behaviors. Their results show that restricted
breeding (preventing cross-breeding of behaviors for different specialists) works
better than unrestricted breeding, which suggests that the specialization allowed
by the heterogeneous team representation conflicts with the inter-agent genotype
mixture allowed by the free interbreeding. However, the question is not fully
answered, as the contradictory result in [69] shows.

Hybrid Team Learning: In hybrid team learning, the set of agents is split into
several groups, with each agent belonging to exactly one group. All agents in a
group have the same behavior. One extreme (a single group), is equivalent to
homogenous team learning, while the other extreme (one agent per group) is
equivalent to heterogeneous team learning. Hybrid team learning thus permits
the experimenter to achieve some of the advantages of each method. Luke et al
compare the fully homogeneous results with a hybrid combination that divides
the team into six groups of one or two agents each, and then evolves six behaviors,
one per group [97]. Although homogeneous teams performed better, the authors
suggest that hybrid teams might have outperformed the homogeneous ones given
more time. Hara and Nagao [67] introduce a method that automatically discovers
the optimum number of groups and their compositions.

3.2 Concurrent Learning

The most common alternative to team learning in cooperative multi-agent sys-
tems is concurrent learning, where multiple learning processes attempt to con-
currently improve parts of the team. Most often, each agent has it own unique
learning process to modify its behavior.

Concurrent learning and team learning each have their champions and de-
tractors. While concurrent learning outperforms both homogeneous and hetero-
geneous team learning in [30, 79], team learning might be preferable in other
situations [108]. When then would each method be preferred over the other?
Jansen and Wiegand [81] argue that concurrent learning may be preferable in
domains for which some decomposition is possible and helpful, and when it is
useful to focus on each subproblem to some degree independently of the others.

The central challenge for concurrent learning is that each learner is adapting
its behaviors in the context of other co-adapting learners over which it has no
control. In single-agent scenarios (where traditional machine learning techniques
are applicable), a learner explores its environment, and while doing so, improves
its behavior. Things change with multiple learners: the agents’ adaptation to
the environment can change the environment itself in a way that makes that
very adaptation invalid. This is a significant violation of the basic assumptions
behind most traditional machine learning techniques.

There are three directions in concurrent learning research. First, research on
the credit assignment problem deals with how to apportion the team reward to
the individual learners. Second, there are challenges in the dynamics of learning.
Such research aims to understand the impact of co-adaptation on the learning

12 P.J. ’t Hoen et al.

processes. Third, some work has been done on modeling other agents in order to
improve the interactions (and collaboration) with them.

3.3 Credit Assignment

When dealing with multiple learners, one is faced with the task of divvying
up among them the reward received through their joint actions. The simplest
solution is to split the team reward equally among each of the learners, or in a
larger sense, divide the reward such that whenever a learner’s reward increases
(or decreases), all learners’ rewards increase (decrease). This credit assignment
approach is usually termed global reward.

There are many situations where it might be desirable to assign credit in a
different fashion, however. Clearly if certain learners’ agents did the lion’s share
of the task, it might be helpful to specially reward those learners for their actions,
or to punish others for laziness. Similarly, Wolpert and Tumer [197] argue that
global reward does not scale well to increasingly difficult problems because the
learners do not have sufficient feedback tailored to their own specific actions.
In other situations credit assignment must be done differently because global
reward cannot be efficiently computed, particularly in distributed computation
environments. For example, in a robotics foraging domain, it may not be easy
to globally gather the information about all items discovered and foraged.

If team reward is not equally divided among the agents, what options are
there, and how do they impact on learning? One extreme is to assess each agent’s
performance based solely on its individual behavior. This approach discourages
laziness because it rewards agents only for those tasks they have actually accom-
plished. However, agents do not have any rational incentive to help other agents,
and greedy behaviors may develop. We call this approach local reward.

Balch [8, 10] argues that local reward leads to faster learning rates, but not
necessarily to better results than global reward. Using local reward leads to
better performance in a foraging domain and to worse performance in a simulated
soccer domain, as compared to global reward. A few other credit assignment
schemes have been proposed as well. Chang et al [33] take a different approach
to perform credit assignment: each agent employs a Kalman filter to compute
its true contribution to the global reward. Rather than apportion rewards to an
agent based on its contribution to the team, one might instead apportion reward
based on how the team would have fared differently were the agent not present.
Wolpert and Tumer [197] call this the Wonderful Life Utility, and argue that it
is better than both local and global reward, particularly when scaling to large
numbers of agents.

The wide variety of credit assignment methods have a significant impact on
our coverage of research in the dynamics of learning, which follows in the next
section. Our initial focus will be on the study of concurrent learning processes in
fully cooperative scenarios, global reward is used. But other credit assignment
schemes may run counter the researchers’ intention for the agents to cooperate,
resulting in dynamics resembling general-sum or even competitive games, which
we also discuss in the next section.

An Overview of Cooperative and Competitive Multiagent Learning 13

3.4 The Dynamics of Learning

When applying single-agent learning to stationary environments, the agent ex-
periments with different behaviors until hopefully discovering a globally optimal
behavior. In dynamic environments, the agent may at best try to keep up with
the changes in the environment and constantly track the shifting optimal be-
havior. Things are even more complicated in multi-agent systems, where the
agents may adaptively change each others’ learning environments. We believe
two tools have the potential to help model and analyze the dynamics of con-
current learners across multiple learning techniques. The first one, Evolutionary
Game Theory, EGT was successfully used to study the properties of cooperative
coevolution [48, 195], to visualize basins of attraction to Nash equilibria for co-
operative coevolution [121], and to study trajectories of concurrent Q-learning
processes [176, 166]. The other tool combines information on the rate of be-
havior change per agent, learning and retention rates, and the rate at which
other agents are learning as well, to model and predict the behavior of existing
concurrent learners.

Many studies in concurrent learning have investigated the problem from a
game-theoretic perspective. A important concept for such investigations is that
of a Nash equilibrium, which is a joint strategy (one strategy for each agent)
such that no single agent has any rational incentive (in terms of better reward)
to change its strategy away from the equilibrium. As the learners do not usually
have control over each others’ behaviors, creating alliances to escape this equi-
librium is not trivial. For this reason, many concurrent learning methods will
converge to Nash equilibria, even if such equilibria correspond to suboptimal
team behaviors.

Fully Cooperative Scenarios: Research in simple stateless environments shows
that multiple cooperating concurrent learners can greatly benefit from being
optimistic about their teammates: the goal is not to match well your current
teammates, but to expect them to improve as well due to their learning [85,
122]. Scaling up to environments with states is computationally demanding.
Wang and Sandholm [185] present the Optimal Adaptive Learning algorithm,
which is guaranteed to converge to optimal Nash equilibria if there are a finite
number of actions and states; unfortunately, the time required for the algorithm
to achieve such optimality guarantees may be exponential in the number of
agents. Environments where the state can only be partially observed (usually due
to the agents’ limited sensor capabilities) represent even more difficult (also more
realistic) settings. The task of finding the optimal policies in partially observable
Markov decision process (POMDP) is PSPACE-complete [124], and it becomes
NEXP-complete for decentralized POMDPs [17]. Preliminary research for such
domains is presented in [125, 114].

General Sum Games: Unequal-share credit assignment techniques can inadver-
tently place learning in rather non-cooperative scenarios. For such reasons, gen-
eral sum games are applicable to the cooperative learning paradigm, even though
in some situations such games may not be in any way cooperative. Following

14 P.J. ’t Hoen et al.

the early work of Littman [92], there has been significant recent research in
concurrent (and not necessarily cooperative) learning for general-sum games
[26]. Concurrent learning algorithms for such settings3 range from Nash-Q [76],
Friend-or-Foe Q-learning [93], EXORL ([161]), Correlated-Q [62], to WolF [27].

3.5 Teammate Modeling

A final area of research in concurrent learning is teammate modeling: learning
about other agents in the environment so as to make good guesses of their ex-
pected behavior, and to act accordingly (to cooperate with them more effectively,
for example). For example, agents may use Bayesian learning to create models
of other agents, and use such models to anticipate their behavior [32]. Suryadi
and Gmytrasiewicz [162] present a similar agent modeling approach consisting
of learning the beliefs, capabilities and preferences of teammates. As the cor-
rect model cannot usually be computed, the system stores a set of such models
together with their probability of being correct, given the observed behaviors
of the other agents. On the other hand, modeling teammates is not a must for
better coordination [146]. Finally, Wellman and Hu suggest that the resulting
behaviors are highly sensitive to the agents’ initial beliefs, and they recommend
minimizing the assumptions about the other agents’ policies [192].

3.6 Learning and Communication

For some problems communication is a necessity; for others, communication may
nonetheless increase agent performance. We define communication very broadly:
altering the state of the environment such that other agents can perceive the
modification and decode information from it. Among other reasons, agents com-
municate in order to coordinate more effectively, to distribute more accurate
models of the environment, and to learn subtask solutions from one another.

But are communicating agents really multi-agent? Stone and Veloso argue
that unrestricted communication reduces a multi-agent system to something
isomorphic to a single-agent system [160]. They do this by noting that without
any restriction, the agents can send complete external state information to a
“central agent”, and to execute its commands in lock-step, in essence acting as
effectors for the central agent.

Explicit communication can also significantly increase the learning method’s
search space, both by increasing the size of the external state available to the
agent (it now knows state information communicated from other agents), and
by increasing the agent’s available choices (perhaps by adding a “communicate
with agent i” action). As noted in [40], this increase in search space can hamper
learning an optimal behavior by more than communication itself may help.

Direct Communication: Many agent communication methods employ, or assume,
an external communication method by which agents may share information

3 The algorithms are usually tested on general-sum and competitive domains, and
only very rarely in cooperative problems.

An Overview of Cooperative and Competitive Multiagent Learning 15

with one another. The method may be constrained in terms of throughput, la-
tency, locality, agent class, etc. Examples of direct communication include shared
blackboards, signaling, and message-passing. The literature has examined both
hard-coded communication methods and learned communication methods, and
their effects on cooperative learning overall. Tan [169] and Berenji and Vengerov
[15] suggest that cooperating learners can use communication to share differ-
ent knowledge about the environment in order to improve team performance.
Other research provides the agents with a communication channel but does not
hard-code its purpose; the task is for the agents to discover a language for com-
munication [183].

Indirect Communication: Indirect communication methods are those which in-
volve the implicit transfer of information from agent to agent through modifica-
tion of the world environment. Examples of indirect communication include: leav-
ing footsteps in snow, leaving a trail of bread crumbs in order to find one’s way
back home, and providing hints through the placement of objects in the environ-
ment (perhaps including the agent’s body itself). Much of the indirect commu-
nication literature has drawn inspiration from social insects’ use of pheromones
to mark trails or to recruit other agents for tasks [75]. Pheromones are chemi-
cal compounds whose presence and concentration can be sensed by fellow insects
[22], and like many other media for indirect communication, pheromones can last
a long time in the environment, though they may diffuse or evaporate. Several
pheromone-based learning algorithms have been proposed for foraging problem
domains (such as [110]).

This section has presented cooperative MASs. The next section continues with
MASs from a competitive perspective.

4 Competitive MASs

4.1 Preamble

The previous section has presented an overview of the literature concerning co-
operative MASs. These systems are characterized by the fact that the agents
implicitly or explicitly have as common goal to work together. The agents are
benevolent and choose actions to promote the overall utility of the system. This
is not an easy task, as discussed in Section 3, but the programmers of the
agents in principle are free to design the agents that cooperate and truthfully ex-
change information to promote the desired cooperation. This is however not the
case for more competitive settings where the individual agents have non-aligned
goals.

Competition in inherent in human interaction. The field of economics is
founded on this principle. Game Theory is an analytical offshoot where the
goal is to mathematically analyze the strategies required for detailed scenarios,
smaller in domain than usually encountered in economics. Electronic Agents in
competitive settings have been introduced and studied for broadly two types of
settings that we cover here:

16 P.J. ’t Hoen et al.

– E-commerce;Market-Based Games; bargaining/negotiations, markets and
market mechanisms, and auctions.

– Multi-Agent RL (MARL) usually for more restricted settings; matrix games.

The above two distinctions are not exhaustive for the field of competitive
agents as a whole. They are however two dominant streams of research. We
treat each in a separate section below, although there are overlaps.

4.2 Design of Adaptive Software Agents for Market-Based
Multi-agent Games

General. Non-cooperative agents [189] for economical and societal settings, or
competitive agents for short, received increasing interest only in recent years.
Such agents have their own, possibly conflicting goals and aim for local opti-
mization. Their owners can e.g. be competing companies or autonomous de-
partments within a bigger organization, where the multi-agent systems should
facilitate trading, allocation, or planning between these owners, e.g. by means
of negotiation or auctioning.

Due to the advances in the use of Internet technology, providing technology
for autonomous or competitive parties has become crucial, both for computer
science and for its applications [123, 82]. For competitive agents in a multi-agent
system, the question is how such a system can work properly. Here, inspired
by economics, competitive games appear to be important. Several important
problems have very recently been addressed.

A game is given by a set of rules regarding some players that interact with each
other, and it determines who gets which payoff at the end [18, 54, 111, 118, 119].
Examples are negotiation, auctioning, formation of interaction networks between
parties, production decisions in an oligopoly economy, or planning and scheduling
with self-interested parties [89, 138, 4]. In this section, we focus on prominent
competitive games as above (i.e., games between competitive players 4.), viz.
market games, and in particular, we mainly consider various types of negotiation
and auctioning.

Various forms of negotiations and auctions exist. Examples of negotiation
[18, 111, 19] are one-issue negotiations and multi-issue negotiation (dealing with
just one or with multiple issues, respectively); bilateral negotiations between
two parties; one party that negotiates simultaneously with multiple other par-
ties about one or more goods; etcetera. Similarly, many types of auctions exist
[89], such as classical auctions like the English ascending bid auction, the Dutch
clock auction, the single sealed bid second price auction (Vickrey auction); multi-
issue auctions; double auctions (buyers and sellers bid simultaneously, as in many
financial markets); reverse auctions (procurement auctions); combinatorial auc-
tions (for the allocation of a collection of multiple goods) [142]; etcetera.

In these market games, participating agents have to determine several aspects.
Of course, the direct values of the bid or the bidding strategy is important
4 We thus do not only address with “competitive games” the special constant-sum

game, but the more general class of games played by competitive agents.

An Overview of Cooperative and Competitive Multiagent Learning 17

to be determined. Similarly, other aspects can be important to get to good
bidding behavior, like models of the (changing) preferences of the opponents in
the market games, the (changing) actual strategies used by the opponents, or the
actual value of the good at hand (e.g. being private, common, with externalities
or with complementarities).

Some of the auctions have the properties that strategic behavior by the
agents is filtered out and therefore not relevant: the “truth-revealing” auctions
(e.g., Vickrey auctions, and VCG auctions: Vickrey-Clark-Grooves). Most mar-
ket games, however, allow strategic behavior by agents to influence the outcomes
of these games. Also, the bidding process in “truth-revealing auctions” becomes
strategy-dependent as well at the moment that these auctions appear in a re-
peated or concurrent fashion (e.g. [16, 43]). An example is formed by simulta-
neous auctions on the Internet, all dealing with similar goods, where an agent
just needs to acquire one good. Therefore, strategy determination is important
for agents playing in these multiple market games.

Thus, strategies, information and knowledge related to the market games are
needed for individual agents. These are studied in fields like game theory and
micro economics [18, 54, 111, 102]. Although recent game theory gives valuable
insights, its settings and results are often highly stylized, and not applicable in
or powerful enough for multi-agent systems [82, 44].5

Relations to other disciplines: Related scientific disciplines are (evolutionary)
game theory and economics. For competitive game settings with the above de-
scribed characteristics, strategies and relevant knowledge for competitive soft-
ware agents are not readily available from these disciplines, as already indicated
above. In general, these disciplines address such settings at a higher abstraction
level, while not taking into account the actual computational tractability of and
learnability of strategies and related parameters. Issues address especially how
and which equilibria can be reached or obtained [144, 53], for more idealized and
abstract settings of learning in repeated games [53, 187] (with e.g. the usage of
mathematical Bayesian rules 6 or coordinated learning in stylized games). This
does not concern computational efficiency (or tractability) considerations, but
rather whether strategies are computable (i.e., on Turing machines) [53, 112, 49].
Some of the insights, however, can be used for multi-agent systems, thus espe-
cially at a higher abstraction level or for more stylized settings, including the
use of impossibility results.

Adaptive Solutions: Participation of an agent in one competitive game cannot
be seen in its isolation, is interdependent of e.g. the future and the past, and of
e.g. slowly unraveling information about e.g. allocations, interdependencies, and
(private) valuations. The strategy of an agent should thus be adaptive. This is
also due to the limited capabilities of agents, as is also acknowledged by modern
game theory and economics, stating that agents are not fully rational:
5 We will briefly further discuss the relevance of the areas (evolutionary) game theory

and (micro-) economics later.
6 e.g. with infinite positive priors distributions.

18 P.J. ’t Hoen et al.

– the players in the market games are heterogeneous agents which are bound-
edly rational [139, 150, 6]: diverse agents that e.g. have only partial (incom-
plete) information (and knowledge) and limited computing power. 7

Thus solutions to compute adaptive strategies are needed [82, 178]: adaptive
solutions, which build on experience, and which determine, adapt and learn strate-
gies and related models and knowledge. Adaptive solutions determine the strate-
gies via appropriate models, that contain the strategy variables as well as other
appropriate parameters, representations, and relationships, and for which param-
eter settings have to be determined by intelligent computational techniques.

Since market games are more context dependent than e.g. matrix games, the
issues that must be learnt can be broader than for matrix games. Actually,
market games are often embedded in some sort of (application) setting, which
determines some of the opponent types and preferences, or e.g. some of the
repeated game settings. Depending on the closeness of the market game to an
application setting, the game settings can be considered to be more fundamental,
applicable or even applied.

Learning Agents: Feasible adaptive techniques for agents playing in market
games are e.g. fuzzy techniques, evolutionary algorithms, various (learning)
heuristics, neural networks, simulated annealing, and graphical models. Com-
bining competitive agent systems and learning techniques for market-based
games is currently appearing as one of the important ways to go in the research
on multi-agent systems.

Until now, several papers on adaptive strategies on single or multiple compet-
itive games in multiagent systems have appeared. Papers mainly presenting var-
ious kinds of heuristics, with possibly fuzzy or probabilistic models, are e.g. [1, 5,
21, 23, 44, 45, 56, 57, 72, 77, 100, 116, 134, 152, 154, 180]. Results with fully learn-
ing approaches as well as a focus on multiple competitive games have been rather
limited until now. We will give some representative references in the sequel.

Typically, learning should be done in some kind of “multiple” settings. I.e.,
learning can be done in the “classical” way of repeated one-shot games, or one
game with one opponent during the stepwise progress of the game. However, due
to the tight connections with the economic and social application fields, learning
can and should also be done in e.g. repeated interrelated games or concurrent
games, learning while playing against e.g. multiple opponents, or about multiple
goods. We will encounter instances in the sequel.

Opponent Modeling. In several settings, opponent modeling can be of im-
portance in order to derive good game outcomes [45, 88, 91, 136, 137, 154, 155].
In such models, (approximations of) preferences of opponents are represented,
which can form the base for the actual agent strategy. This is especially im-
portant, when trade-offs between game outcomes between the different players
can be made and some kind of Pareto-efficiency is involved, e.g. like in multi-
issue negotiation. Opponent models can be determined for one opponent or for a
7 This does of course not only affect an agent because of its own abilities, but also via

the abilities of its opponent agents.

An Overview of Cooperative and Competitive Multiagent Learning 19

class (type) of opponents. In the latter case, a distinction can be made between
starting with a pre-existing opponent model (offline modeling) vs. starting from
scratch and learning opponent models while repeatedly playing games (online
modeling). Learning techniques that have been applied are e.g. simulated anneal-
ing [88], probabilistic approaches [154, 155], graphical models [136, 137], neural
networks and evolutionary algorithms [21, 91]. Alternatively, opponent modeling
papers exist for e.g. combinatorial auctions, in order to reduce the search space
for the auctioneer (e.g. [78]).

In a related but different way, preference elicitation is an important issue. In
this case, the modeling of some human (or agent) is done in a cooperative way, in
order to get the preferences into an appropriate model: a user preference model
for market games. This model can then be used in an agent when playing in
market games, on behalf of that person. So, in this case, the agent is instructed
which goals to reach, by means of the preference model. The learning process
differs in that it is supposed to be carried out with a cooperating, willing “op-
ponent”: the human being. Several papers with different objectives and learning
techniques exist in this area. Learning techniques include neural networks, evo-
lutionary algorithms, and heuristics to obtain fuzzy constraints [20, 66, 99]. This
area of research is close to the more general area of preference elicitation and
knowledge acquisition from humans [74], but has a different objectives in that it
concerns decision making during negotiations.

Market and Strategy Modeling. In other settings, models of opponent pref-
erences are less relevant, and parameters concerning the goods about which the
market game is played, or the aggregate (anonymous) market behavior (deter-
mined by a substantial amount of fairly anonymous agents) is of more impor-
tance. In case of the underlying good, one may think of a good of which its
valuation can be determined from participation in multiple games. E.g., the
actual value for a seller of a customer click on a web advertisement can usu-
ally not be determined beforehand. This can be learning by approaches with
e.g. neural networks or evolutionary algorithms [21]. Also, the valuation of a
good can depend on the allocation of other goods to (other) agents [21, 165],
leading to allocative interdependencies. The level of adaptivity of the involved
agents can also influence the respective individual payoffs [165]. Similarly, ag-
gregate market behavior is of importance. This means so much as e.g: what is
the typical winning price for certain types of goods in certain types of markets
[21, 193], which can be done by various learning techniques. We also refer to
the trading agent competition (TAC) below. Some typical settings and results
exist e.g. for multiple games with an aggregated stochastic approach [1, 23], for
multiple goods in repeated auctions with bounded budgets [180], one-to-many
negotiations [57, 116], concurrent games with price prediction [120] or valuation
estimation [130], or using evolutionary or fuzzy neural techniques for one or
multiple goods in overlapping auctions [5, 71]. Also, more specific and tailored
models can be designed for market (price) prediction, e.g. for financial markets.
This, however, quickly reaches an other discipline, viz., regression and predic-
tion methods, especially if these markets are complex; this is outside the scope

20 P.J. ’t Hoen et al.

of this paper. Finally, market behavior determined by bidding agents can also
be studied by simulations, in the form of evolutionary algorithms standing for
populations of agents strategies, from which also proper bidding strategies can
be obtained [58, 5, 31, 55].

In case of market games on complex goods, strategies could be decomposed in
some substrategies, that deal with different aspects of or paradigms in the game.
E.g., a negotiation strategy can be decomposed into the concession strategy (how
much to concede in the overall value of a bid) and the Pareto-search strategy
(search for Pareto-optimal deals) [45, 152, 153]. The concession strategy could
be seen as market and strategy modeling, the Pareto-search strategy could be
seen as opponent modeling.

Models of Application Settings. Application settings and models that go
further than the conventional game theoretic stylizations are important for this
field. Market games are often studied related to more specific application models.
We briefly mention some settings and models, e.g.

– The trading agent competitions: TAC [167, 191, 194] and TAC SCM (supply
chain management) [167]. Both competitions deal with a modeled applica-
tion settings, viz., a) travel agencies that have to buy and sell holiday trips
consisting of complementary or substitutable constituents, and b) a 2-phase
supply chain for computer manufacturing and sales, respectively. Both deal
with several types of market mechanism for the distribution of goods and
services with complementarities and substitutables, and the agents have to
design strategies for both bidding in multiple games and determination of
what to buy. Approaches that have been presented until now, are e.g. price
prediction, equilibrium analysis, decision theory, and some forms of machine
learning (like Reinforcement Learning) (e.g. [35, 61, 70, 159] or [193] for a
survey).

– Market-based scheduling,resource allocation, and logistics [36, 190, 101, 134,
164].

– Information goods with negotiation and (dynamic) pricing [28, 57, 63, 86,
87, 149, 156, 152, 153].

Co-learning and Evaluation: State and Open Issues. In addition to the
development of adaptive systems for agents in market games, other aspects be-
come important as well.

When applying adaptive techniques for competitive agents in multiagent sys-
tems, the quality of an adaptive strategy for an agent depends on the (adaptive)
strategies of other agents. In the case that all agents use truly adaptive strate-
gies as well, various forms of colearning occurs. Up to now, such environments of
multiple agents are still rather restricted and mainly address learning in coop-
erative systems and e.g. stochastic (general-sum) games [147, 188]. Approaches
and requirements address e.g. various settings with stationary opponent agents
and best response, evolutionary simulations [3, 5, 31, 55, 46, 58, 64, 171], self-
play (many results [37], also for co-evolution, e.g. [177]), or, for market settings,

An Overview of Cooperative and Competitive Multiagent Learning 21

leveled learning and opponent modeling [77, 181], adaptivity and individual prof-
its [165], and some mixed approaches (e.g. [184]). Thus, learning in a dynamic
environment containing colearning competitive agents has still received limited
attention, and still substantial questions exist about what feasible and relevant
environments are [25, 37, 47, 143, 148, 158, 184, 188]. Environments of more
or less arbitrary opponent agents are not possible in general (i.e., several im-
possibility results exist [112, 113]). Therefore, appropriate classes of competitive
opponent agents have to be given for which best learning strategies must be
determined [148] (the “AI agenda”), while other robust evaluation criteria for
resulting strategies must be determined and satisfied (e.g. [25, 37]). Still, appro-
priate further insight needs to be acquired for the effects of co-learning and for
the way in which adaptive strategies can be evaluated.

4.3 MARL

In this section we give an overview of the state of art in multi-agent RL (MARL).
This section is strongly inspired by the recent work of[128],[129], and [148], .
These papers discuss current state of the art MARL algorithms and introduce
new evaluation criteria (i.e. the AI agenda) for judging MARL algorithms. We
also refer the interested reader to [13], [84], and [95] for alternative overview
papers. We discuss a number of notable MARL algorithms along with novel
evaluation criteria for competitive multi-agent RL learning. We have a bit of a
chicken and the egg scenario as novel criteria are under development and are
supported by novel learning algorithms that, of course, perform extremely well
for the newly introduced norms. We first discuss the novel criteria, and then
separately discuss the remaining algorithms. The next section begins with the
basic concepts of Multi-Agent RL and the often chosen problem domain of matrix
games.

Competitive Agents and Reinforcement Learning for Matrix games.
In this section we introduce some concepts from Reinforcement Learning. We
repeat concepts from Game Theory in Section 3 and cast these to the the MARL
perspective for the sake of reference.

In general, let S denote the set of states in the game and let Ai denote the
set of actions that agent/player i may select in each state s ∈ S. Let a =
(a1, a2, . . . , an), where ai ∈ Ai be a join action for n agents, and let A = A1 ×
· · ·×An be the set of possible joint actions. Zero-sum games are games where
the rewards of the agents for each joint action sum to zero. General sum games
allow for any sum of values for the reward of a joint action.

A strategy (or policy) for agent i is a probability distribution π(·) over its
actions set Ai. Let π(S) denote a strategy over all states s ∈ S and let π(s) (or
πi) denote a strategy in a single state s. A strategy may be a pure strategy
(an agent selects an action deterministically) or according to a mixed strategy
(a strategy that plays a random action, according a probability distribution). A
joint strategy played by n agents is denoted by π = (πi, . . . , πn). Also, let a−i

and π−i refer to the joint action and strategy of all agents except agent i.

22 P.J. ’t Hoen et al.

We focus on the more restricted matrix game, defined by a set of matrices
R = {R1, . . . , Rn}. Matrix games are the chosen domain for most recent MARL
applications. We further restrict our presentation to two-player, two-action
games as these are well classified [132] and often used. The algorithms presented
in the rest of the paper are of course applicable to more general settings.

Let R(π) = (R1(π), . . . , R(πn)) be a vector of expected payoffs when the joint
strategy π is played. Also, let Ri(πi, π−i) be the expected payoff to agent i when
it plays strategy πi and the other agents play π−i. A strategy then is dominant
if, regardless of what any other players do, the strategy earns a player a larger

payoff than any other strategy. Let Ri(
[

ai

a−i

]
) be the payoff for agent i playing

action ai while the other agents play action a−i. A strategy πi is dominant, if
and only if

∀π′
i∀π−i

∑
ai,a−i

πi(ai)π−i(a−i)Ri(
[

ai

a−i

]
) >=

∑
ai,a−i

π′
i(ai)π−i(a−i)Ri(

[
ai

a−i

]
) (1)

Each individual matrix game has certain classic game theoretic values. The min-
imax value for player i is mi = maxπi

mina−i
Ri(πi, ai), i.e. the least reward that

can be achieved if the game is known and the game is only played once. A Best-
Response (BR) to the opponents strategy π−i is defined by

BR = π∗ = maxπRi(π, π−i). (2)

This is the most expected reward that can be gained playing assuming the game
is known, the game is only played once, and the opponent strategy is known.

A Nash Equilibrium (Nash-Equilibrium) is then a joint strategy such that
no agent may unilaterally change its strategy without lowering its expected pay-
off in the one shot play of the game. Nash [115] showed that every n player
matrix game has at least one such Nash-Equilibrium. A Pareto optimal solu-
tion of the game is a joint strategy such that no agent may unilaterally increase
its expected payoff without making another agent worse off. A joint strategy π1
is said to Pareto dominate a strategy π2 if the expected payoff for π1 is at
least as high as for π2 and higher for at least one of the agents. A joint strategy
is Pareto deficient if it is not Pareto optimal.

We assume that an agent can observe its own payoffs as well as the actions
taken by all agents in each stage game, but only after the fact. All agents con-
currently choose their actions. A possible adaption of the policy of the agents,
i.e. learning as a result of observed opponent behavior, only takes effect in the
next stage game. Each agent aims to maximize its reward for iterated play of
the same matrix game, playing the same opponent.

Evaluation Criteria. General Background: Classic Reinforcement Learning
[163, 186] aims to converge to stationary policy π for an individual agent that
maximizes the expected discounted future payoffs. This amounts to

max
π

E(
T∑

τ=t

γτ−tRτ (π)) (3)

An Overview of Cooperative and Competitive Multiagent Learning 23

where T may be finite or infinite and 0 < γ < 1 is the discount factor. An al-
ternative measure is the average reward over the last t epochs. Both approaches
however implicitly assume the agent is optimizing relative to a stationary envi-
ronment, an assumption that in general does not hold for MARL. All current
MARL algorithms therefore incorporate some modeling of the opponent in some
form or other to include the opponent as part of the (changing) environment
against which an agent is optimizing.

It should be noted that [113] prove that in general it is impossible to perfectly
learn to play optimally against an adaptive opponent and at the same time
perfectly estimate the policy of this opponent. Whether this theoretical result is
relevant for specific games must be kept in mind. To complicate matters, [179]
analyzes from an information theoretical perspective how much an agent can
hinder an opponent in modeling by displaying limited random behavior, purely
to hide its real preferences. Such strategic behavior is an example of how complex
interactions between agents can be and how difficult it can be to learn a good
policy when using an opponent model.

[34] introduces a first general classification of competence of MARL algo-
rithms. The ranking of algorithms is based on the crossproduct of their possible
strategies and their possible beliefs about the opponent’s strategy. An agent’s
possible strategy can be classified based upon the amount of history it has in
its memory. An agents beliefs mirrors the strategy classification. The different
categories are supposed to be leagues of players. A fair opponent is any opponent
from the same league or less. The idea is that a new learning algorithm should
ideally be able to beat any fair opponent. [11] add to this classification scheme
with new criterion of reactivity (see later in this section).

The focus to date in MARL algorithms has been mainly on game theoreti-
cal equilibriums from single shot games, i.e Nash-Equilibrium, Pareto-Optimal,
minimax, etc Best-Response and Nash-Equilibrium are intertwined through
the circular argument that if both players play BR players will arrive at a mir-
rored minimax outcome, a Nash-Equilibrium. This is the heart of Fictitious
play; see [29], and [53].

A recent critique against the focus on such equilibriums has been launched
by [128]. This work lists some well-known problems. Nash-Equilibrium are for
example known not to be appropriate in repeated games, see also the Folk The-
orem. The work of [96] shows how to construct equilibriums for players that are
interested in average payoffs for repeated games in polynomial time. It is how-
ever unknown how the players should learn these during play as they discover the
structure of the game, and the play of their opponents. Also problematical is the
existence of multiple Nash-Equilibrium; how do the players choose to which they
should converge if the criteria is convergence to a, not the, Nash-Equilibrium.
Lastly, one-sided converge to a Nash-Equilibrium by one of the players may make
it miss out on exploitation opportunities if the opponents do not follow suit. Al-
gorithms aiming at a Nash-Equilibrium typically achieve this by updating their
policy towards the BR with respect to the current policies of their opponents.
Players will then, if all follow similar strategies, arrive at individual minimax

24 P.J. ’t Hoen et al.

values of the game, which is a Nash-Equilibrium. Such properties have been
proved for converge to Nash-Equilibrium in self-play in zero sum games [92], but
have proved less tractable for general sum games. [128] provide suggestions for
different criteria for evaluating MARL algorithms. Their main focus is on the
AI Agenda.

The AI Agenda poses as evaluation criteria as to how well a given algorithm
can perform against a restricted class of opponents. The general properties
of an algorithm against any opponent, including game theoretical conver-
gence properties, are deemed less important than the performance results
when competing with the opponents that the agent will actually encounter.
Maximizing personal reward is the criteria that we also feel should not be
forgotten in the storm of newly presented evaluation criteria that MARL
algorithms are ranked by. In the end, the only criteria of interest to a purely
competitive agent for evaluating its learning algorithm in a specific game is
how closely it approaches the highest aggregated reward possible during play
for given opponents. Game theoretical notions should however not be ignored
as they give a sense of how general the power of a MARL is. The AI agenda
however allows for a lively competition possibility by introducing open com-
petition on the extensive list of games generated, for example, in the GAMUT
framework [117].

Other Criteria: In the rest of this section we list several miscellaneous evaluation
criteria that can play a role in ranking MARL algorithms.

The criterion of asymptotic stability was developed in [51]. This provides
local dynamic robustness. Two conditions must me met: i) Any solution that is
sufficiently close to the equilibrium remains arbitrarily close to it. This condition
is called Liapunov stability. ii) Any solution that starts close enough to the
equilibrium, converges to the equilibrium. These type of criteria recur in several
papers as full convergence is a strong concept, but algorithms can be shown to
come “close enough” to an equilibrium outcome and stay there.

An example of the above is that Hyper-Q [170]. This algorithm learns the
value of joint mixed strategies,instead of joint base actions. In the rock-paper-
scissors, the well-known children’s game, in self play does not converge to the
one third all equilibrium but cycles amongst a small number of grid points, with
roughly zero average reward for both players. Quoted: “Conceivably, Hyper-Q
could have converged to a cyclic Nash-Equilibrium, which would certainly be
a nice outcome of self-play learning in a repeated game.” This is an example
where the learning algorithm achieves the same average reward as the Nash-
Equilibrium, but in a dynamic setting. Note that both outcomes are as desirable
from the AI agenda perspective.

Another example is the Extended Replicator Dynamics algorithm of [174].
Here the authors take a dynamical systems approach in which they first design
the stable differential equations, reaching an asymptotic stable Nash equilib-
rium in all types of stateless matrix games. After this they constructed the
approximating learning algorithm showing the same behavior as the pre-defined
dynamical system, i.e. reaching a stable Nash equilibrium.

An Overview of Cooperative and Competitive Multiagent Learning 25

[37] introduces the AWESOME algorithm, short for “Adapt When Everybody
is Stationary. Otherwise Move to Equilibrium”. This algorithm converges to BR
against stationary opponents, and otherwise converges to a precomputed Nash-
Equilibrium in self play. These two properties are listed as minimal conditions
for MARL algorithms.

[24] use the No-regret-measure with their GIGA-WOLF algorithm. Regret
measures how much worse an algorithm performs compared to the best static
strategy, with the goal to guarantee at least zero average regret, i.e. no-regret,
in the limit. This is general compares the performance of a learner to the best
possible hand-coded opponent that performs the best possible strategy, assuming
this is computable, for a given game.

[11] define Reactivity that measures how fast a learner can adapt to an
unexpected hypothetical change in an opponents policy; how fast can an agent
learn a best response to an unexpected worst case switch in the opponent’s
policy. They show that it approximately predicts the performance of a learner
as a function of the parameters of its learning algorithm in the matching pennies
game. The criterion of reactivity is special to the MARL domain as it is a measure
of how quickly an agent can react to being exploited. This is a relative non-issue
in single agent RL and in Game Theory concerned with single stage games, but
becomes an important factor in repeated play.

[62] introduce the notion of Correlated Equilibrium. Players maintain be-
liefs about their opponents. They are converged in a Correlated Equilibrium if
both believe, based on their beliefs about their opponents, no longer see it as
advantageous to adjust their policies.

Lastly, [126] presents and analysis a mathematical model of cuckoo parasitism.
This work is of relevance to the MARL as it presents and in depth analysis
of the cost of defense mechanisms. The main conclusion of the work is that
every defense mechanism has a non-zero cost, and expending time and energy
in defending against difficult and unlikely scenarios is not biologically smart.
Likewise, an agent in a complex situation with limited computational resources
may have to choose to focus on likely opponent strategic behavior, and not cover
all bases.

The next section discusses state of the art MARL algorithms not listed above.

Other seminal work. Universal Consistency is a strong concept from game
theory. An algorithm with this property approximates the best-response sta-
tionary policy against any opponent. [52] and [50] independently show that a
multiplicative-weight algorithm exhibits universal consistency. These algorithms
however require the strong assumption that an agent know the opponent’s policy
at each time period, which is intractable in practice.

Nash-Q [76] for general-sum games, has as goal to converge to Nash-
Equilibrium. This is accomplished for a limited class of games. Friend or Foe
[93] treats other agents as either friend or foe and converges to Nash-Equilibrium
with less restrictions than Nash-Q.

The following two papers are well known gradient-ascent type algorithms.
The Policy Hill CLimber (PHC) is illustrated in [27]. PHC is a simple adaptive

26 P.J. ’t Hoen et al.

strategy based on its own actions and rewards. It maintains a Q-table of of
values for each of its base actions, and at every time step it adjusts its mixed
strategy by a small step towards the greedy policy of its current Q-function.
In Infinitesimal Gradient Ascent (IGA) [151], an agent uses knowledge of the
current strategy pair to make to make a small change in the direction of the
gradient of its immediate payoff.

WOLF- Win or Learn Fast by [24, 27] deserves a special mention as it is one
of the few, if not the first, MARL algorithm to update its learning parameters
with as goal to exploit the opponent. The learning rate is made large if WOLF
is losing. Otherwise, the learning rate is kept small as a good strategy has been
found. Note that in [34] WOLF is exploited by a bluff and dash hand-tailored
algorithm to exploit the small step increment of the latter algorithm.

The leader strategies: Bully and Godfather are introduced in [94]. These two
strategies aim to threaten the opponent to play good equilibrium strategies, at
least from the viewpoint of the threatening agent. This work shows that many
known algorithms, like the gradient descent type, are vulnerable to exploitation
by these type of hand-tailored strategies.

Predictive state representations [196] is a recent and growing new line of re-
search. The optimization problem of an individual agent is handled by predicting
future states from past observations. This is a step beyond the optimization of
a policy by incorporating a link between past and future observations in the
decisions on how to update the current policy.

Lastly, we list [188] with the NSCP-learners (Non-Stationary Converging Poli-
cies) for n-player general sum stochastic games. This work, as claimed, has a
first proof of Convergence in self-play on general sum games. This is achieved by
slowly decreasing the area of the state space in which the adaptive policies can
“move”. This locks in the agents to stationary, possibly mixed, strategies that
are, by definition, converged.

More and more complex nested opponent models [77] will probably be the
future norm in the MARL agents arms race. Although learning about an oppo-
nent while at the same time learning is problematic [113], there is still a need to
be “smarter” than your opponents.

5 Contributions of This Book

The previous two sections gave a comprehensive overview of the state-of-the-
art research on MASs. This section discusses new contributions of the LAMAS
workshop. This event included two prestigious invited talks, which have resulted
in two extensive high quality papers included in this book.

The invited talk of Peter Stone, University of Texas at Austin, USA, has been
shaped into the paper: Multi-Robot Learning for Continuous Area Sweeping,
by Mazda Ahmadi and Peter Stone. In their paper they study the problem of
multi-agent continuous area sweeping. In this problem agents are situated in a
particular environment in which they have to repeatedly visit every part of it
such that they can detect events of interest for their global task and coordinate

An Overview of Cooperative and Competitive Multiagent Learning 27

to minimize the total cost. Events are not uniformly distributed, such that agents
need to visit locations non-uniformly. The authors formalize this problem and
present an initial algorithm to solve it. Moreover they nicely illustrate their
approach with a set of experiments in a routine surveillance task.

The second invited talk of the workshop was by Ann Nowé, professor in
computer sciences at the university of Brussels, Belgium, resulting in the paper:
Learning Automata as a Basis for Multiagent Reinforcement Learning, by Ann
Nowé, Katja Verbeeck and Maarten Peeters. In their work they start with an
overview on important theoretical results from the theory of Learning Automata
in terms of game theoretic concepts and consider them as a policy iterator in
the domain of Reinforcement Learning problems. Doing so they gradually move
from the variable structure automaton, mapping to the single stage-single agent
case, over learning automata games, mapping to the single stage multi-agent
case, to interconnected Learning Automata, considering multi stage-multi agent
problems. The authors also show the most interesting connection with the field
of Ant Colony Optimization.

The entire program of LAMAS covered a quite wide area in learning and
adaption in multi-agent systems, varying from typical application areas as traf-
fic management, rover systems, ant systems and economical systems to more
theoretical papers on state space representation, no-regret learning, evolution,
exploration-exploitation and noise in cooperative systems.

Starting with the application papers, we have [38, 14, 172, 182]. In [182], the
authors introduce a new kind of ant colony optimization algorithm, extending
the classical algorithms with multiple types of ants. They use this kind of multi-
agent approach for solving the problem of routing and backup trees in optical
networks. More precisely, they assign an ant type to each working path and and
backup tree.

In [38], the authors identify and explore several interesting opportunities,
created by their reservation based mechanism for traffic management, for
multi-agent learning. More precisely, their system consists of two kinds of
agents, i.e. intersection managers and driver agents, for which they describe
the learning opportunities and offer a first-cut solution to each of them. These
opportunities, amongst others, include delayed response for the intersection
manager, organizing an intersection as a market, agents bidding in this market
and autonomous lane changing.

The topic of the paper [14] is coordination in large multi-agent systems, study-
ing effects of guiding the decision process of individual agents. In their work they
study this problem in the context of route guidance in traffic management. The
guiding information can have different sources and agents are potential players.
Simulations of this problem show that it can be beneficial to have a recommen-
dation system for drivers. The authors discuss the different conditions for an
optimal performing recommendation system.

Adaptive Multi-Rover Systems are the topic of paper [172]. More precisely,
the authors describe how efficient reward methods can be applied to the coordi-
nation of multiple agents in a dynamic environment with limited communication

28 P.J. ’t Hoen et al.

possibilities. Difficulties lie in the design of the individual reward functions which
need to be aligned with the global reward function and must stay aligned with
changes in the reward of each individual agent. Their results show how fac-
tored reward functions, in combination with evolutionary computation, can be
successful for real world applications.

One of the fundamental problems in RL is the exploration-exploitation
dilemma, which is extensively studied in [135]. The authors propose a new algo-
rithm based on meta-heuristics to tune the tradeoff between both and validate
it on economic systems. Moreover it is shown to be a promising approach in
comparison with other adaptive techniques.

Having a glance at the less application oriented and more theoretical papers,
we find five contributions in this book [2, 12, 42, 107, 173].

In [12] the authors present a new multi-agent learning algorithm, which is a
modification of the ReDVaLeR algorithm. The new algorithm achieves conver-
gence to near-best response against eventually stationary opponents, no-regret
payoff against arbitrary opponents and convergence to the Nash equilibrium in
unique mixed equilibria games.

In [2] the authors extend their previous algorithm, which finds Pareto optimal
solutions in general sum games, to so-called preferred Pareto Optimal solutions
(PPO). A clear definition can be found in their paper. Moreover, they experiment
with the opportunity of revelation in two-player two-action conflict games. Their
experiments show that their new algorithm is an improvement over previous
results.

In [173] the authors give a new direction to research in multi-agent learning by
cross-fertilizing the multi-agent learning problem with relational reinforcement
learning (RRL). More precisely, they propose to use a relational representation
of the state space in multi-agent reinforcement learning as this has many proved
benefits over the propositional one, as for instance handling large state spaces,
a rich relational language, modeling of other agents without a computational
explosion, and generalization over new derived knowledge. Their initial exper-
iments show that the learning rates are quite good and promising when using
a relational representation in coordination problems and that they can be in-
creased by using the observations over other agents to learn a relational structure
between the agents.

The authors of [42] present their methods for dealing with a noisy environ-
ment in cooperative multi-agent learning. More precisely, they introduce an al-
gorithm to cope with perception, communication and position errors for coop-
erative multi-agent learning tasks. Although this offers interesting possibilities,
the improvements are quite expensive seen from a computational perspective.

Tag-mediated interaction has shown to stimulate cooperation in populations
of agent playing the Prisoner’s Dilemma (PD) game. In [107], the authors try
to answer why tags facilitate such cooperation. More precisely, they analyzed
the effects of the size of the tag space, mutation rate in the population, on
cooperation in a population of agents playing the PD game. Additionally, they

An Overview of Cooperative and Competitive Multiagent Learning 29

empirically analyzed why tags have this influence on this type of systems. The
conclusion suggests that tags rather promote mimicry than cooperation.

6 Open Research Issues

Multi-agent learning is a relatively young field and as such its open research
issues are still very much in flux. This section singles-out three important open
questions that need to be addressed in order to make multi-agent learning more
broadly successful as a technique in real world applications. These issues arise
from the multi in multi-agent learning, and may eventually require new learning
methods specifically tailored for multiple agents.

Scalability: Scalability is a problem for many learning techniques, but especially
so for multi-agent learning. The dimensionality of the search space grows rapidly
with the number of agents, the complexity of their behaviors, and the size of the
network of interactions among them. This search space grows so rapidly that one
cannot learn the entire joint behavior of a large, heterogeneous, strongly inter-
communicating multi-agent system. Effective learning in an area this complex
requires some degree of sacrifice: either by isolating the learned behaviors among
individual agents, by reducing the heterogeneity of the agents, or by reducing
the complexity of the agent’s capabilities. Techniques such as learning hybrid
teams, decomposition, or partially restricting the locality of reinforcement pro-
vide promising solutions in this direction.

As problem complexity increases, it gives rise to the spectre of emergent be-
havior, where the global effects of simple agent behaviors cannot be readily
predicted. This is an area of considerable study and excitement in artificial life:
but it may also be a major problem for machine learning. How does emergence
affect the smoothness of the search space? If small perturbations in agent be-
havior result in radical swings in emergent behavior, can learning methods be
expected to scale well at all in this environment?

Adaptive Dynamics and Nash Equilibria: Multi-agent systems are typically dy-
namic environments, with multiple learning agents vying for resources and tasks.
This dynamism presents a unique challenge not normally found in single-agent
learning: as the agents learn, their adaptation to one another changes the world
scenario. How do agents learn in an environment where the goalposts are con-
stantly and adaptively being moved? In many cases, existing learning methods
may converge to suboptimal Nash equilibria. We echo opinions from [90] and
express our concern with the use of Nash equilibria in cooperative multi-agent
learning: such “rational” convergence to equilibria may well be movement away
from globally team-optimal solutions [90]. We argue that, in the context of coop-
erative agents, the requirement of rationality should be secondary to that of op-
timal team behavior. Mutual trust may be a more useful concept in this context.

Large State Spaces: The state space of a large, joint multi-agent task can be
overwhelming. An obvious way to tackle this is to use domain knowledge to sim-

30 P.J. ’t Hoen et al.

plify the state space, often by providing a smaller set of more “powerful” actions
customized for the problem domain. For example, agents may use higher-level
descriptions of states and actions [104]. Another alternative has been to reduce
complexity by heuristically decomposing the problem, and hence the joint be-
havior, into separate, simpler behaviors for the agents to learn. One approach to
such decomposition is to learn basic behaviors first, then set them in stone and
learn more complex behaviors based on them. This method is commonly known
as layered learning, and was successfully applied to robotic soccer [157]. Another
approach, shaping, gradually changes the reward function from favoring easier
behaviors to favoring more complex ones based on those easy behaviors [103, 10].

Less work has been done on formal methods of decomposing tasks (and be-
haviors) into subtasks (sub-behaviors) appropriate for multi-agent solutions, how
agents’ sub-behaviors interact, and how and when learning of these sub-behaviors
may be parallelized. Guestrin et al note that in many domains the actions of
some agents may be independent [65]. Taking advantage of this, they suggest
partially decomposing the joint team behavior based on a coordination graph that
heuristically spells out which agents must interact in order to solve the prob-
lem. Ghavamzadeh and Mahadevan suggest a different hierarchical approach
to simplifying the inter-agent coordination task, where agents coordinate their
high-level behaviors, rather than each primitive action they may perform [59].

An alternative to problem decomposition, is the quest for other representa-
tions or formalisms for the state space. One such succesfull method in single-
agent learning has been the cross fertilization between reinforcement learning
and inductive logic programming [39, 41, 168]. More precisely, in this formal-
ism states are represented in a relational form, that more directly represents
the underlying world. Complex tasks as planning or information retrieval on the
web can be represented more naturally in relational form than in propositional
form, what is usually done in Reinforcement Learning. In [173], the authors are
extending this single agent work to multi-agent planning and coordination tasks.

Competitive Agents: Non-cooperative agents [189] for economical and societal
settings, or competitive agents for short, are receiving increasing interest in re-
cent years. Such agents have their own, possibly conflicting goals and aim for
local optimization. Their owners can e.g. be competing companies or autonomous
departments within a bigger organization, where the multi-agent systems should
facilitate trading, allocation, or planning between these owners, e.g. by means
of negotiation or auctioning.

Due to the advances in the use of Internet technology, providing technology
for autonomous or competitive parties has become crucial, both for computer
science and for its applications [82, 123]. For competitive agents in a multi-agent
system, the continuing question is how such a system can work properly. Here,
inspired by economics, competitive games appear to be important.

More and more complex nested opponent models [77] will likely be the future
norm in the for agents in the competitive arms race. Although learning about an
opponent while at the same time learning is problematic [113], there is still a need
to be “smarter” than your opponents. The AI Agenda will play an important role.

An Overview of Cooperative and Competitive Multiagent Learning 31

References

[1] C. P. A. Byde and N. Jennings. Decision procedures for multiple auctions. In
Proceedings of the 1st Int. Conf. Autonomous Agents and Multi-Agent Systems
(AAMAS 2002), 2002.

[2] S. Airiau and S. Sen. Towards a pareto-optimal solution in general-sum games,
study in 2x2 games. In LAMAS, 2005.

[3] A. Alkemade, J. La Poutré, and H. Amman. On social learning and robust
evolutionary algorithm design in economic games. In Proceedings of the 2005
IEEE Congress on Evolutionary Computation (CEC 2005), pages 2445–2452.
IEEE Press, 2005.

[4] F. Alkemade and J. La Poutré. Heterogeneous, boundedly rational agents in the
cournot duopoly. In In: R. Cowan and N. Jonard (eds.), Heterogenous Agents,
Interactions and Economic Performance, Springer Lecture Notes in Economics
and Mathematical Systems (LNEMS) 521, pages 3–17. Springer Verlag, 2002.

[5] P. Anthony and N. Jennings. Developing a bidding agent for multiple heteroge-
neous auctions. In ACM Transactions on Internet Technology (ACM TOIT) 3,
pages 185–217, 2003.

[6] W. Arthur. Inductive reasoning and bounded rationality. American Economic
Review 84, pages 406–411, 1994.

[7] R. Axelrod. The evolution of cooperation. Basic Books, New York, NY, 1984.
[8] T. Balch. Learning roles: Behavioral diversity in robot teams. Technical Report

GIT-CC-97-12, Georgia Institute of Technology, 1997.
[9] T. Balch. Behavioral Diversity in Learning Robot Teams. PhD thesis, College of

Computing, Georgia Institute of Technology, 1998.
[10] T. Balch. Reward and diversity in multirobot foraging. In IJCAI-99 Workshop

on Agents Learning About, From and With other Agents, pages 92–99, 1999.
[11] B. Banerjee and J. Peng. The role of reactivity in multiagent learning. In Third

International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 538–545, 2004.

[12] B. Banerjee and J. Peng. Convergence of no-regret learning in multiagent sys-
tems. In LAMAS, 2005.

[13] A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete-Event Systems journal, 13:41–77, 2003.

[14] A. L. C. Bazzan, M. Fehler, and F. Klugl. Learning to coordinate in a network
of social drivers: the role of information. In LAMAS, 2005.

[15] H. Berenji and D. Vengerov. Advantages of cooperation between reinforcement
learning agents in difficult stochastic problems. In Proceedings of 9th IEEE
International Conference on Fuzzy Systems, 2000.

[16] D. Bernhardt and D. Scoones. A note on sequential auctions. The American
Economic Review, 84(3):653–657, 1994.

[17] D. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized
control of MDPs. In Proceedings of UAI-2000: The Sixteenth Conference on
Uncertainty in Artificial Intelligence, pages 819–840, 2000.

[18] K. Binmore. Fun and Games. D.C. Heath and Company, Lexington, MA, 1992.
[19] K. Binmore and N. Vulkan. Applying game theory to automated negotiation.

Netnomics, 1:1–9, 1999.
[20] A. Biso, F. Rossi, and A. Sperdutti. Experimental results on learning soft con-

straints. In A. G. Cohn, F. Giunchiglia, and B. Selman (eds.), Proceedings of
KR2000: Principles of Knowledge Representation and Reasoning, pages 435–444,
2000.

32 P.J. ’t Hoen et al.

[21] S. Bohté, E. Gerding, and J. La Poutré. Market-based recommendation: Agents
that compete for consumer attention. ACM Transactions on Internet Technology
(ACM TOIT), (Special Issue on Machine Learning on the Internet), 4(4):420–
448, 2004.

[22] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. SFI Studies in the Sciences of Complexity. Oxford University
Press, 1999.

[23] C. Boutilier, M. Goldszmidt, , and B. Sabata. Sequential auctions for the alloca-
tion of resources with complementaries. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI 99), pages 527–534, 1999.

[24] M. Bowling. Convergence and no-regret in multiagent learning. In Advances in
Neural Information Processing Systems, volume 17, pages 209–216, 2004.

[25] M. Bowling and M. Velose. Rational and convergent learning in stochastic games.
In Proceedings of the Seventh International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 1021–1026, 2001.

[26] M. Bowling and M. Veloso. An analysis of stochastic game theory for multiagent
reinforcement learning. Technical Report CMU-CS-00-165, Computer Science
Department, Carnegie Mellon University, 2000.

[27] M. Bowling and M. Veloso. Multiagent learning using a variable learning rate.
Artificial Intelligence, 136(2):215–250, 2002.

[28] C. Brooks, S. Fay, R. Das, J. MacKie-Mason, J. Kephart, and E. Durfee. Au-
tomated strategy searches in an electronic goods market: Learning complex
price schedules. In Proceedings of the ACM Conference on Electronic Commerce
(ACM-EC), pages 31–41. ACM Press, 1999.

[29] G. W. Brown. Iterative solution of games by Fictitious Play, 1951. In Activ-
ity Analysis of Production and Allocation (T.C. Koopmans, Ed.), pp. 374-376,
Wiley: New York.

[30] L. Bull and T. C. Fogarty. Evolving cooperative communicating classifier sys-
tems. In A. V. Sebald and L. J. Fogel, editors, Proceedings of the Fourth Annual
Conference on Evolutionary Programming (EP94), pages 308–315, 1994.

[31] A. Byde. Applying evolutionary game theory to auction mechanism design. In
ACM Conference on E-Commerce (ACM-EC’03), 2003.

[32] G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement
learning: A Bayesian approach. In Proceedings of The Second International Joint
Conference on Autonomous Agents & Multiagent Systems (AAMAS 2003), pages
709–716. ACM, 2003.

[33] Y.-H. Chang, T. Ho, and L. Kaelbling. All learning is local: Multi-agent learning
in global reward games. In Proceedings of Neural Information Processing Systems
(NIPS-03), 2003.

[34] Y.-H. Chang and L. P. Kaelbling. Playing is believing: the role of beliefs in multi-
agent learning. In Advances in Neural Information Processing Systems-(NIPS),
volume 14, 2002.

[35] S.-F. Cheng, E. Leung, K. Lochner, K. O’Malley, D. Reeves, L. Schvartzman, and
M. Wellman. Walverine: A Walrasian trading agent. Decision Support Systems,
39:169–184, 2005.

[36] S. Clearwater. Market based Control of Distributed Systems. World Scientific
Press, Singapore, 1995.

[37] V. Conitzer and T. Sandholm. AWESOME: A general multiagent learning algo-
rithm that converges in self-play and learns a best response against stationary
opponents. In 20th International Conference on Machine Learning (ICML),
pages 83–90, 2003.

An Overview of Cooperative and Competitive Multiagent Learning 33

[38] K. Dresner and P. Stone. Multiagent traffic management: Opportunities for
multiagent learning. In LAMAS, 2005.

[39] K. Driessens and S. Dzeroski. Integrating guidance into relational reinforcement
learning. Machine Learning, 57(3):271–304, Dec. 2004.

[40] E. Durfee, V. Lesser, and D. Corkill. Coherent cooperation among communi-
cating problem solvers. IEEE Transactions on Computers, C-36(11):1275–1291,
1987.

[41] S. Dzeroski, L. D. Raedt, and K. Driessens. Relational reinforcement learning.
Machine Learning, 43:7–52, 2001.

[42] C. O. e Sousa and L. Custodio. Dealing with errors in a cooperative multi-agent
learning system. In LAMAS, 2005.

[43] W. Elmaghraby. The importance of ordering in sequential auctions. Management
Science, 49(5):673–682, 2003.

[44] P. Faratin, C. Sierra, and N. Jennings. Negotiation decision functions for au-
tonomous agents. International Journal of Robotics and Autonomous Systems,
34(24):159–182, 1998.

[45] P. Faratin, C. Sierra, and N. Jennings. Using similarity criteria to make issue
trade-offs. Artificial Intelligence, 142:205–237, 2002.

[46] S. Fatima, M. Wooldridge, and N. Jennings. Comparing equilibria for game
theoretic and evolutionary bargaining models. In Proceedings of the 5th Inter-
national Workshop on Agent-Mediated Electronic Commerce (AMEC V), pages
70–77, 2003.

[47] S. Ficici, O. Melnik, and J. Pollack. Selection in Coevolutionary Algorithms and
the Inverse Problem, pages 277–294. Springer, 2004.

[48] S. Ficici and J. Pollack. A game-theoretic approach to the simple coevolution-
ary algorithm. In Proceedings of the Sixth International Conference on Parallel
Problem Solving from Nature (PPSN VI). Springer Verlag, 2000.

[49] D. P. Foster and H. P. Young. On the impossibility of predicting behavior of
rational agents. In PNAS (Proceedings of the National Academy of Sciences of
the USA) 98 (22), 2001.

[50] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29:79–103, 1999.

[51] M. Frisch and S. Smale. Differential Equations, Dynamical Systems and Linear
Algebra. Academic Press, Inc, 1974.

[52] D. Fudenberg and D. Levine. Consistency and cautious fictitious play. Journal
of Economic Dynamics and Control, 19:1065–1089, 1995.

[53] D. Fudenberg and D. K. Levine. The Theory of Learning in Games. Cambridge,
Massachusetts: MIT Press, 1999.

[54] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[55] E. Gerding and J. La Poutré. Bargaining with posterior opportunities: An evo-

lutionary social simulation. In M. Gallegati and A.P. Kirman and M. Marsili
(eds.), The Complex Dynamics of Economic Interactions, Springer Lecture Notes
in Economics and Mathematical Systems (LNEMS) 531, pages 241–256, 2003.

[56] E. Gerding, K. Somefun, and H. La Poutré. Automated bilateral bargaining
about multiple attributes in a one-to-many setting. In Proceedings of the Sixth
International Conference on Electronic Commerce (ICEC04), pages 105–112.
ACM Press, 2004.

[57] E. Gerding, K. Somefun, and H. La Poutré. Bilateral bargaining in a one-to-
many bargaining setting. In Agent Mediated Electronic Commerce VI (AMEC-
VI), Springer Lecture Notes in Artificial Intelligence (LNAI), Springer Verlag,
(invited for publication), 2004. to appear.

34 P.J. ’t Hoen et al.

[58] E. Gerding, D. van Bragt, and J. La Poutré. Multi-issue negotiation processes
by evolutionary simulation: Validation and social extensions. Computational
Economics, 22:39–63, 2003.

[59] M. Ghavamzadeh and S. Mahadevan. Learning to communicate and act us-
ing hierarchical reinforcement learning. In AAMAS-2004 — Proceedings of the
Third International Joint Conference on Autonomous Agents and Multi Agent
Systems, pages 1114–1121, 2004.

[60] C. Gintis. Game Theory Evolving. University Press, Princeton, 2000.

[61] A. Greenwald and J. Boyan. Bidding under uncertainty: Theory and experi-
ments. In Twentieth Conference on Uncertainty in Artificial Intelligence, pages
209–216, 2004.

[62] A. Greenwald and K. Hall. Correlated Q-learning. In Proceedings of the Twenti-
eth International Conference on Machine Learning, ICML, pages 242–249, 2003.

[63] A. Greenwald and J. Kephart. Shopbots and pricebots. In Proceedings of the
16th International Joint Conference on Artificial Intelligence (IJCAI 99), pages
506–511, 1999.

[64] J. Grefenstette and R. Daley. Methods for competitive and cooperative coevo-
lution. In Adaptation, Coevolution and Learning in Multiagent Systems: Papers
from the 1996 AAAI Spring Symposium, pages 45–50. AAAI Press., 1996. Tech-
nical Report SS-96-01.

[65] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforcement learning. In
Proceedings of the 2002 AAAI Symposium Series: Collaborative Learning Agents,
pages 227 – 234, 2002.

[66] Y. Guo, J. Muller, and C. Weinhardt. Learning user preferences for multiat-
tribute negotiation: An evolutionary approach. In In. J. Muller, V. Marik, and
M. Pechoucek (eds.), Multi-Agent Systems and Applications III, Springer Lec-
ture Notes in Artificial Intelligence, Vol. 2691, pages 303–313. Springer-Verlag,
2003.

[67] A. Hara and T. Nagao. Emergence of cooperative behavior using ADG; Auto-
matically Defined Groups. In Proceedings of the 1999 Genetic and Evolutionary
Computation Conference (GECCO-99), pages 1038–1046, 1999.

[68] T. Haynes and S. Sen. Evolving behavioral strategies in predators and prey. In
G. Weiß and S. Sen, editors, Adaptation and Learning in Multiagent Systems,
Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Germany, 1995.

[69] T. D. Haynes and S. Sen. Co-adaptation in a team. International Journal of
Computational Intelligence and Organizations (IJCIO), 1(4), 1997.

[70] M. He and N. R. Jennings. Southampton TAC: An adaptive autonomous trading
agent. ACM Transactions on Internet Technology, 3:218–235, 2003.

[71] M. He, N. R. Jennings, and A. Prgel-Bennett. A heuristic bidding strategy
for buying multiple goods in multiple english auctions. ACM Transactions on
Internet Technology, 2006. to appear.

[72] M. He, H. Leung, and N. R. Jennings. A fuzzy logic based bidding strategy for
autonomous agents in continuous double auctions. IEEE Trans. on Knowledge
and Data Engineering, 15:1345–1363, 2003.

[73] J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, 1998.

[74] R. Hoffman and N. Shadbolt. Eliciting knowledge from experts: A methodolog-
ical analysis. Organizational and Human Decision Process, 62(2):129–158, 1995.

[75] B. Hölldobler and E. O. Wilson. The Ants. Harvard University Press, 1990.

An Overview of Cooperative and Competitive Multiagent Learning 35

[76] J. Hu and M. Wellman. Multiagent reinforcement learning: theoretical frame-
work and an algorithm. In Proceedings of the Fifteenth International Conference
on Machine Learning, pages 242–250. Morgan Kaufmann, San Francisco, CA,
1998.

[77] J. Hu and M. Wellman. Online learning about other agents in a dynamic mul-
tiagent system. In K. P. Sycara and M. Wooldridge, editors, Proceedings of
the Second International Conference on Autonomous Agents (Agents’98), pages
239–246, New York, 1998. ACM Press.

[78] B. Hudson and T. Sandholm. Effectiveness of preference elicitation in combina-
torial auctions. In J. Padget, O. Shehory, D. Parkes, N. Sadeh, and W.E. Walsh
(eds.), Agent-Mediated Electronic Commerce IV (AMEC IV): Designing Mech-
anisms and Systems, Springer Lecture Notes in Computer Science, Vol. 2531,
pages 69–86. Springer-Verlag, 2002.

[79] H. Iba. Evolutionary learning of communicating agents. Information Sciences,
108:181–206, 1998.

[80] H. Iba. Evolving multiple agents by genetic programming. In L. Spector,
W. Langdon, U.-M. O’Reilly, and P. Angeline, editors, Advances in Genetic
Programming 3, pages 447–466. The MIT Press, Cambridge, MA, 1999.

[81] T. Jansen and R. P. Wiegand. Exploring the explorative advantage of the cooper-
ative coevolutionary (1+1) EA. In E. Cantu-Paz et al, editor, Prooceedings of the
Genetic and Evolutionary Computation Conference (GECCO). Springer-Verlag,
2003.

[82] N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M. Wooldrigde.
Automated negotiation: prospects, methods, and challenges. International Jour-
nal of Group Decision and Negotiation, 10:199–215, 2001.

[83] K.-C. Jim and C. L. Giles. Talking helps: Evolving communicating agents for
the predator-prey pursuit problem. Artificial Life, 6(3):237–254, 2000.

[84] L. P. Kaelbling, M. L. Littman, and A. P. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[85] S. Kapetanakis and D. Kudenko. Reinforcement learning of coordination in co-
operative multi-agent systems. In Proceedings of the Nineteenth National Con-
ference on Artificial Intelligence (AAAI02), 2002.

[86] J. Kephart, C. Brooks, and R. Das. Pricing information bundles in a dynamic
environment. In Proceedings of the 3rd ACM Conference on Electronic Commerce
(ACMEC), pages 180–190. ACM Press, 2001.

[87] J. Kephart, J. Hanson, , and A. Greenwald. Dynamic pricing by software agents.
Computer Networks, 36(6):731–752, 2000.

[88] M. Klein, P. Faratin, H. Sayama, and Y. Bar-Yam. Negotiating complex con-
tracts. Group Decision and Negotiation, 12:111–125, 2003.

[89] V. Krishna. Auction Theory. Academic Press, 2002.
[90] M. I. Lichbach. The cooperator’s dilemma. University of Michigan Press, 1996.
[91] R. Lin. Bilateral multi-issue contract negotiation for task redistribution using

a mediation service. In Proceedings Agent Mediated Electronic Commerce VI,
2004. to appear.

[92] M. Littman. Markov games as a framework for multi-agent reinforcement learn-
ing. In Proceedings of the 11th International Conference on Machine Learning
(ML-94), pages 157–163, New Brunswick, NJ, 1994. Morgan Kaufmann.

[93] M. Littman. Friend-or-foe Q-learning in general-sum games. In Proceedings of
the Eighteenth International Conference on Machine Learning, pages 322–328.
Morgan Kaufmann Publishers Inc., 2001.

36 P.J. ’t Hoen et al.

[94] M. Littman and P. Stone. Leading best-response strategies in repeated games.
In Seventeenth International Joint Conference on Artificial Intelligence (IJCAI)
workshop on Economic Agents, Models, and Mechanisms, 2001.

[95] M. L. Littman and S. M. Majercik. Large-scale planning under uncertainty: A
survey. In Workshop on Planning and Scheduling for Space, 1997.

[96] M. L. Littman and P. Stone. A polynomial-time nash equilibrium algorithm
for repeated games. In Proceedings of the 4th ACM conference on Electronic
commerce, 2003. also appeared in Decision Support Systems,39:55–66,2005.

[97] S. Luke. Genetic programming produced competitive soccer softbot teams for
RoboCup97. In J. R. Koza et al, editor, Genetic Programming 1998: Proceedings
of the Third Annual Conference, pages 214–222. Morgan Kaufmann, 1998.

[98] S. Luke and L. Spector. Evolving teamwork and coordination with genetic pro-
gramming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First Annual Conference, pages
150–156, Stanford University, CA, USA, 28–31 1996. MIT Press.

[99] X. Luo, N. R. Jennings, and N. Shadbolt. Acquiring tradeoff preferences for
automated negotiations: A case study. In proceedings of the 5th International
Workshop on Agent-Mediated Electronic Commerce (AMEC V), pages 37–55,
2003.

[100] X. Luo, N. R. Jennings, N. Shadbolt, H. Leung, and J. H. Lee. A fuzzy con-
straint based model for bilateral multi-issue negotiations in semi-competitive
environments. Artificial Intelligence Journal, 148(1-2):53–102, 2003.

[101] J. K. MacKie-Mason, A. Osepayshvili, D. M. Reeves, and M. P. Wellman. Price
prediction strategies for market-based scheduling. In Fourteenth International
Conference on Automated Planning and Scheduling, pages 244–252, 2004.

[102] A. Mas-Collel, M. Whinston, and J. Green. Microeconomic Theory. Oxford
University Press, 1995.

[103] M. Mataric. Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4(1):73–83, 1997.

[104] M. Mataric. Using communication to reduce locality in distributed multi-agent
learning. Joint Special Issue on Learning in Autonomous Robots, Machine Learn-
ing, 31(1-3), 141-167, and Autonomous Robots, 5(3-4), Jul/Aug 1998, 335-354,
1998.

[105] J. Maynard-Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982.

[106] J. Maynard Smith and J. Price. The logic of animal conflict. Nature, 146:15–18,
1973.

[107] A. McDonald and S. Sen. The success and failure of tag-mediated evolution of
cooperation. In LAMAS, 2005.

[108] T. Miconi. When evolving populations is better than coevolving individuals:
The blind mice problem. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), pages 647–652, 2003.

[109] M. Mitchell, J. Crutchfield, and R. Das. Evolving cellular automata with genetic
algorithms: A review of recent work. In Proceedings of the First International
Conference on Evolutionary Computation and its Applications (EvCA’96), 1996.

[110] N. D. Monekosso and P. Remagnino. Phe-Q: A pheromone based Q-learning. In
Australian Joint Conference on Artificial Intelligence, pages 345–355, 2001.

[111] R. B. Myerson. Game Theory. Analysis of Conflict. Harvard University Press,
1991.

[112] J. Nachbar. Prediction, optimization, and learning in repeated games. Econo-
metrica, 65(2):275–309, 1997.

An Overview of Cooperative and Competitive Multiagent Learning 37

[113] J. H. Nachbar and W. R. Zame. Non-computable strategies and discounted
repeated games. Economic Theory, 8:103–122, 1996.

[114] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella. Taming decen-
tralized POMDPs: Towards efficient policy computation for multiagent settings.
In Proceedings of the Eighteenth International Joint Conference on Artificial In-
telligence (IJCAI-03), 2003.

[115] J. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.
[116] T. Nguyen and N. Jennings. Coordinating multiple concurrent negotiations. In

Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS 2004). ACM Press, 2004.

[117] E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown. Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms.
In Third International Joint Conference on Autonomous Agents and Multiagent
Systems, 2004.

[118] M. Osborne and A. Rubinstein. Bargaining and Markets. Academic Press, 1990.
[119] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
[120] A. Osepayshvili, M. P. Wellman, D. M. Reeves, and J. K. MacKie-Mason. Self-

confirming price prediction for bidding in simultaneous ascending auctions. In
Twenty First Conference on Uncertainty in Artificial Intelligence, pages 441–
449, 2005.

[121] L. Panait, R. P. Wiegand, and S. Luke. A visual demonstration of convergence
properties of cooperative coevolution. In Parallel Problem Solving from Nature
— PPSN-2004, pages 892–901. Springer, 2004.

[122] L. A. Panait, R. P. Wiegand, and S. Luke. Improving coevolutionary search
for optimal multiagent behaviors. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI-03), 2003.

[123] C. Papadimitriou. Algorithms, games, and the internet. In Proceedings of the
ACM Symposium on Theory of Computing (STOC 2001), pages 749–753. ACM
Press, 2001.

[124] C. Papadimitriou and J. Tsitsiklis. Complexity of markov decision processes.
Mathematics of Operations Research, 12(3):441–450, 1987.

[125] L. Peshkin, K.-E. Kim, N. Meuleau, and L. Kaelbling. Learning to cooperate via
policy search. In Sixteenth Conference on Uncertainty in Artificial Intelligence,
pages 307–314. Morgan Kaufmann, 2000.

[126] R. Planqué, N. Britton, N. Franks, and M. A. Peletier. The adaptiveness of
defense strategies against cuckoo parasitism. Bull. Math. Biol., 64:1045–1068,
2001.

[127] M. Potter, L. Meeden, and A. Schultz. Heterogeneity in the coevolved behaviors
of mobile robots: The emergence of specialists. In Proceedings of The Seventeenth
International Conference on Artificial Intelligence (IJCAI-2001), 2001.

[128] R. Powers and Y. Shoham. New criteria and a new algorithm for learning in
multi-agent systems. In Neural Information Processing Systems (NIPS), 2004.

[129] R. Powers and Y. Shoham. Learning against opponents with bounded memory.
In International Joint Conference on Artificial Intelligence (IJCAI), 2005.

[130] C. Preist, A. Byde, , and C. Bartolini. Economic dynamics of agents in multiple
autions. In Proceedings of the fifth International Conference on Autonomous
Agents, pages 545–551, 2001.

[131] M. Quinn. Evolving communication without dedicated communication chan-
nels. In Advances in Artificial Life: Sixth European Conference on Artificial Life
(ECAL01), 2001.

38 P.J. ’t Hoen et al.

[132] A. Rapoport, M. Guyer, , and D. Gordon. The 2x2 Game. MI: University of
Michigan Press, 1976.

[133] F. Redondo. Game Theory and Economics. Cambridge University Press, 2001.
[134] D. M. Reeves, M. P. Wellman, J. K. MacKie-Mason, and A. Osepayshvili. Explor-

ing bidding strategies for market-based scheduling. Decision Support Systems,
39:67–85, 2005.

[135] L. Rejeb, Z. Guessoum, and R. MHallah. An adaptive approach for the
exploration-exploitation dilemma and its application to economic systems. In
LAMAS, 2005.

[136] V. Robu and J. La Poutré. Learning the structure of utility graphs used in multi-
issue negotiation through collaborative filtering. In Proceedings of the Pacific
Rim International Workshop on Multi-Agents (PRIMA’05), Springer Lecture
Notes in Artificial Intelligence (LNCS / LNAI), 2005. to appear.

[137] V. Robu, K. Somefun, and J. La Poutré. Modeling complex multi-issue nego-
tiations using utility graphs. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2005).
ACM Press, 2005.

[138] J. Rosenschein and G. Zlotkin. Rules of Encounter. MIT Press, 1994.
[139] A. Rubinstein. Modeling Bounded Rationality. MIT Press, Cambridge, MA,

1998.
[140] R. Salustowicz, M. Wiering, and J. Schmidhuber. Learning team strategies with

multiple policy-sharing agents: A soccer case study. Technical report, ISDIA,
Corso Elvezia 36, 6900 Lugano, Switzerland, 1997.

[141] L. Samuelson. Evolutionary Games and Equilibrium Selection. MIT Press, Cam-
bridge, MA, 1997.

[142] T. Sandholm and S. Suri. BOB: Improved winner determination in combinatorial
auctions and generalizations. Artificial Intelligence, 145:33–58, 2003.

[143] T. W. Sandholm and R. H. Crites. On multiagent Q-learning in a semi-
competitive domain. In G. Weiss and S. Sen, editors, Adaptation and Learning
in Multiagent Systems, pages 191–205. Springer Verlag, 1996.

[144] H. Scarf and T. Hansen. The Computation of Economic Equilibria. Yale Uni-
versity Press, 1973.

[145] S. Sen and M. Sekaran. Multiagent coordination with learning classifier systems.
In G. Weiß and S. Sen, editors, Proceedings of the IJCAI Workshop on Adaption
and Learning in Multi-Agent Systems, volume 1042, pages 218–233. Springer
Verlag, 1996.

[146] S. Sen and M. Sekaran. Individual learning of coordination knowledge. Journal
of Experimental and Theoretical Artificial Intelligence, 10(3):333–356, 1998.

[147] S. Sen and G. Weiss. Learning in Multiagent Systems, chapter 6. MIT Press,
Cambridge MA, 1999.

[148] Y. Shoham, R. Powers, and T. Grenager. Multi-agent reinforcement learning:
a critical survey. In AAAI Fall Symposium on Artificial Multi-Agent Learning,
2004.

[149] C. Sierra. Agent-mediated electronic commerce. Autonomous Agents and Mul-
tiAgent Systems, 9(3):285–301, 2004.

[150] H. Simon. Models of Bounded Rationality, volume 2. MIT Press, 1982.
[151] S. P. Singh, M. J. Kearns, and Y. Mansour. Nash convergence of gradient dy-

namics in general-sum games. In UAI ’00: Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, pages 541–548, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

An Overview of Cooperative and Competitive Multiagent Learning 39

[152] K. Somefun, E. Gerding, S. Bohté, and J. La Poutré. Automated negotiation
and bundling of information goods. In In: Agent Mediated Electronic Commerce
V (AMECV), Springer Lecture Notes in Artificial Intelligence (LNAI), 3048,
pages 1–17, 2004.

[153] K. Somefun, E. Gerding, S. Bohté, and J. La Poutré. Efficient methods for
automated multi-issue negotiation: Negotiating over a two-part tariff. Interna-
tional Journal of Intelligent Systems (special issue on Learning Approaches for
Negotiation Agents and Automated Negotiation), 2006. to appear.

[154] K. Somefun, T. Klos, and H. La Poutré. Negotiating over bundles and prices
using aggregate knowledge. In Proceedings of the 5th International Conference on
Electronic Commerce and Web Technologies (EC-Web), Springer Lecture Notes
in Computer Science (LNCS), 3182, pages 218–227, 2004.

[155] K. Somefun, T. Klos, and H. La Poutré. Online learning of aggregate knowl-
edge about nonlinear preferences applied to negotiating prices and bundles.
In Proceedings of the Sixth International Conference on Electronic Commerce
(ICEC04), pages 361–370. ACM Press, 2005.

[156] K. Somefun and J. La Poutré. Bundling and pricing for information broker-
age: Customer satisfaction as a means to profit optimization. In Proceedings of
the IEEE/WIC International Conference on Web Intellingence (WI2003), pages
182–189. IEEE Computer Society press, 2003.

[157] P. Stone. Layered Learning in Multi-Agent Systems. PhD thesis, Carnegie Mellon
University, 1998.

[158] P. Stone and M. Littman. Implicit negotiation in repeated games. In In: J.-J.
Meyer and M. Tambe (eds.), Proceedings of The Eighth International Workshop
on Agent Theories, Architectures, and Languages (ATAL-2001), pages 393–404,
2001.

[159] P. Stone, R. S. P., M. L. Littman, J. A. Csirik, and D. McAllester. Decision-
theoretic bidding based on learned density models in simultaneous, interacting
auctions. Journal of Artificial Intelligence Research, 19:209–242, 2003.

[160] P. Stone and M. M. Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, 2000.

[161] N. Suematsu and A. Hayashi. A multiagent reinforcement learning algorithm us-
ing extended optimal response. In Proceedings of First International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS-02), pages
370–377, 2002.

[162] D. Suryadi and P. J. Gmytrasiewicz. Learning models of other agents using
influence diagrams. In Preceedings of the 1999 International Conference on User
Modeling, pages 223–232, 1999.

[163] R. Sutton and A. Barto. Reinforcement Learning: An introduction. Cambridge,
MA: MIT Press, 1998.

[164] P. ’t Hoen and J. La Poutré. A decommitment strategy in a competitive multia-
gent transportation setting. In Agent Mediated Electronic Commerce V (AMEC-
V), Springer Lecture Notes in Artificial Intelligence (LNAI), 3048, pages 56–72,
2004.

[165] P. ‘t Hoen and J. La Poutré. Repeated auctions with complementarities. In Pro-
ceedings of the 7th International Workshop on Agent-Mediated Electronic Com-
merce (AMEC VII), Springer Lecture Note in Artificial Intelligence, 2006. to
appear.

[166] P. ’t Hoen and K. Tuyls. Analyzing multi-agent reinforcement learning using evo-
lutionary dynamics. In Proceedings of the 15th European Conference on Machine
Learning (ECML), 2004.

40 P.J. ’t Hoen et al.

[167] tac dev@sics.se. Trading agent competitition (tac): Tac classic and TAC supply
chain management (scm), http://www.sics.se/tac, 2006.

[168] P. Tadepalli, R. Givan, and K. Driessens. Relational reinforcement learning: An
overview. In P. Tadepalli, R. Givan, and K. Driessens, editors, Proceedings of
the ICML’04 Workshop on Relational Reinforcement Learning, pages 1–9, 2004.

[169] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative learn-
ing. In M. N. Huhns and M. P. Singh, editors, Readings in Agents, pages 487–494.
Morgan Kaufmann, San Francisco, CA, USA, 1993.

[170] G. Tesauro. Extending Q-learning to general adaptive multi-agent systems. In
Neural Information Processing Systems (NIPS), 2003.

[171] L. Tesfatsion. Introduction to the special issue on agent-based computational
economics. Journal of Economic Dynamics and Control, 25:281–293, 2001.

[172] K. Tumer and A. Agogino. Efficient reward functions for adaptive multi-rover
systems. In LAMAS, 2005.

[173] K. Tuyls, T. Croonenborghs, J. Ramon, R. Goetschalckx, and M. Bruynooghe.
Multi-agent relational reinforcement learning. In LAMAS, 2005.

[174] K. Tuyls, D. Heytens, A. Now, and B. Manderick. Extended replicator dynamics
as a key to reinforcement learning in multi-agent systems. In 14th European
Conference on Machine Learning, Cavtat-Dubrovnik, Croatia, September 22-26,
2003, volume Lecture Notes in Computer Science 2837, pages 421–431, 2003.

[175] K. Tuyls and A. Nowé. Evolutionary game theory and multi-agent reinforcement
learning. The Knowledge Engineering Review, 20(01):63–90, 2006.

[176] K. Tuyls, K. Verbeeck, and T. Lenaerts. A selection-mutation model for Q-
learning in Multi-Agent Systems. In The second International Joint Conference
on Autonomous Agents and Multi-Agent Systems. ACM Press, Melbourne, Aus-
tralia, 2003.

[177] D. van Bragt and J. La Poutré. Co-evolving automata negotiate with a variety of
opponents. In Proceedings of the IEEE Congress on Evolutionary Computation
2002 (CEC 2002), volume 2, pages 1426–1431. IEEE Press, 2002.

[178] D. van Bragt and J. La Poutré. Why agents for automated negotiation should
be adaptive. Netnomics, 5:101–118, 2003.

[179] S. van Otterloo. The value of privacy. In AAMAS, 2005.
[180] I. Vermeulen, K. Somefun, and H. La Poutré. An efficient turnkey agent for

repeated trading with overall budget and preferences. In Proceedings of the
2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2004), pages
1072–1077. IEEE Press, 2004.

[181] J. Vidal and E. Durfee. The impact of nested agent models in an information
economy. In Proceedings Of the 2nd Intern. Conf. On Multiagent Systems, pages
377–384. AAAI press, 1996.

[182] P. Vrancx, A. Nowé, and K. Steenhaut. Multi-type ACO for light path protection.
In LAMAS, 2005.

[183] K. Wagner. Cooperative strategies and the evolution of communication. Artificial
Life, 6(2):149–179, Spring 2000.

[184] W. Walsh, R. Das, G. Tesauro, , and J. Kephart. Analyzing complex strategic
interactions in multi-agent games. In Proceedings of the The Eighteenth National
Conference on Artificial Intelligence (AAAI-02) Workshop on Game Theoretic
and Decision Theoretic Agents, pages 109–118, 2002.

[185] X. Wang and T. Sandholm. Reinforcement learning to play an optimal Nash
equilibrium in team Markov games. In Advances in Neural Information Process-
ing Systems (NIPS-2002), 2002.

An Overview of Cooperative and Competitive Multiagent Learning 41

[186] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, University of
Cambridge, 1989.

[187] J. Weibull. Evolutionary Game Theory. MIT Press, 1996.
[188] M. Weinberg and J. S. Rosenschein. Best-response multiagent learning in non-

stationary environments. In The Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, New York, July 2004.

[189] G. Weiss. Multi-agent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, 1999.

[190] M. Wellman. A market-oriented programming environment and its application
to distributed multicommodity flow problems. Journal of Artificial Intelligence
Research, 1:1–23, 1993.

[191] M. Wellman, A. Greenwald, P. Stone, and P. Wurman. The 2001 Trading Agent
Competition. Electronic Markets, 13:4–12, 2003.

[192] M. Wellman and J. Hu. Conjectural equilibrium in multiagent learning. Machine
Learning, 33(2-3):179–200, 1998.

[193] M. Wellman, D. Reeves, and a. Y. V. K. Lochner. Price prediction in a trading
agent competition. Journal of Artificial Intelligence Research, 21:19–36, 2004.

[194] M. Wellman, P. Wurman, K. O’Malley, R. Bangera, S. d. Lin, D. Reeves, and
W. Walsh. Designing the market game for the trading agent competition. IEEE
Internet Computing, 5:43–51, 2001.

[195] R. P. Wiegand. Analysis of Cooperative Coevolutionary Algorithms. PhD thesis,
Department of Computer Science, George Mason University, 2003.

[196] B. Wolfe, M. R. James, and S. Singh. Learning predictive state representations
in dynamical systems without reset. In Proceedings of the 2005 International
Conference on Machine Learning, 2005.

[197] D. H. Wolpert and K. Tumer. Optimal payoff functions for members of collec-
tives. Advances in Complex Systems, 4(2/3):265–279, 2001.

A Introductory Notions from (Evolutionary) Game
Theory

In this section, as an Appendix, we introduce elementary concepts from Game
Theory (GT) and Evolutionary Game Theory (EGT) necessary to understand
Sections 3 and 4 of this paper. Game Theory is an economical theory that models
interactions between agents as games of two or more players. More precisely, the
agents participating in such a game can choose from a set of strategies to play,
according to their own preferences. Game Theory is the mathematical study of
interactive decision making in the sense that the agents involved in the decisions
take into account their own choices and those of others. Choices are determined
by stable preferences concerning the outcomes of their possible decisions, and by
the relation between their own choices and those of others.

After the stagnation of GT for many years, John Maynard Smith applied
Game Theory to Biology, which made him relax the strong premises behind
GT. Under these biological circumstances, it becomes impossible to judge what
choices are the most rational ones. The question now becomes how a player can
learn to optimize its behavior and maximize its return. This learning process is
analogous to the concept of evolution in Biology. These new ideas have led to the

42 P.J. ’t Hoen et al.

development of the concept of Evolutionary Stable Strategies (ESS), a special
case of the Nash condition. In contrast to GT, EGT is descriptive and starts
from more realistic views of the game and its players. Here the game is no longer
played exactly once by rational players who know all the details of the game.
Details of the game include each others preferences over outcomes. Instead EGT
assumes that the game is played repeatedly by players randomly drawn from
large populations, uninformed of the preferences of the opponent players.

We provide definitions of strategic games, as well zero sum as general sum, and
introduce concepts as Nash equilibrium, Pareto optimality, Pareto Dominance,
Evolutionary Stable Strategies and Population Dynamics. For the connection
between these concepts we refer the interested reader to [175, 133, 187].

A.1 Strategic Games

In this section we define n-player normal form games as a conflict situation
involving gains and losses between n players. In such a game n players repeatedly
interact with each other by all choosing an action (or strategy) to play. All
players choose their strategy at the same time. For reasons of simplicity, we
limit the pure strategy set of the players to 2 strategies. A strategy is defined as
a probability distribution over all possible actions. In the 2-pure strategies case,
we have: s1 = (1, 0) and s2 = (0, 1). A mixed strategy sm is then defined by
sm = (x1, x2) with x1, x2 �= 0 and x1 + x2 = 1.

Defining a game more formally we restrict ourselves to the 2-player 2-action
game. Nevertheless, an extension to n-players n-actions games is straightforward,
but examples in the n-player case do not show the same illustrative strength as in
the 2-player case. A game G = (S1, S2, P1, P2) is defined by the payoff functions
P1, P2 and their strategy sets S1 for the first player and S2 for the second player.
In the 2-player 2-strategies case, the payoff functions P1 : S1 × S2 → � and
P2 : S1 ×S2 → � are defined by the payoff matrices, A for the first player and B
for the second player, see Table 8. The payoff tables A,B define the instantaneous
rewards. Element aij is the reward the row-player (player 1) receives for choosing
pure strategy si from set S1 when the column-player (player 2) chooses the pure
strategy sj from set S2. Element bij is the reward for the column-player for
choosing the pure strategy sj from set S2 when the row-player chooses pure
strategy si from set S1.

If now aij + bij = 0 for all i and j, we call the game a zero sum game. This
means that the sum of what is won by one agent (positive) and lost by another
(negative) equals zero. This corresponds to a situation of pure competition. In
case that aij + bij �= 0 for all i and j we call the game a general sum game. In
this situation it might be very beneficial for the different agents to cooperate
with one another.

The family of 2 × 2 games is usually classified in three subclasses, as follows
[133],

Subclass 1: if (a11 − a21)(a12 − a22) > 0 or (b11 − b12)(b21 − b22) > 0, at least
one of the 2 players has a dominant strategy, therefore there is just 1 strict
equilibrium.

An Overview of Cooperative and Competitive Multiagent Learning 43

Table 8. The left matrix (A) defines the payoff for the row player, the right matrix
(B) defines the payoff for the column player

A =

(
a11 a12

a21 a22

)
B =

(
b11 b12

b21 b22

)

Subclass 2: if (a11 − a21)(a12 − a22) < 0,(b11 − b12)(b21 − b22) < 0, and (a11 −
a21)(b11 − b12) > 0, there are 2 pure equilibria and 1 mixed equilibrium.

Subclass 3: if (a11 − a21)(a12 − a22) < 0,(b11 − b12)(b21 − b22) < 0, and (a11 −
a21)(b11 − b12) < 0, there is just 1 mixed equilibrium.

The first subclass includes those type of games where each player has a dom-
inant strategy8, as for instance the prisoner’s dilemma. However it includes a
larger collection of games since only one of the players needs to have a dominant
strategy. In the second subclass none of the players has a dominated strat-
egy (e.g. battle of the sexes). But both players receive the highest payoff by
both playing their first or second strategy. This is expressed in the condition
(a11 − a21)(b11 − b12) > 0. The third subclass only differs from the second in the
fact that the players do not receive their highest payoff by both playing the first
or the second strategy (e.g. matching pennies game). This is expressed by the
condition (a11 − a21)(b11 − b12) < 0.

A.2 Nash Equilibrium

In traditional game theory it is assumed that the players are rational, meaning
that every player will choose the action that is best for him, given his beliefs
about the other players’ actions. A basic definition of a Nash equilibrium is
stated as follows. If there is a set of strategies for a game with the property that
no player can increase its payoff by changing his strategy while the other players
keep their strategies unchanged, then that set of strategies and the corresponding
payoffs constitute a Nash equilibrium.

Formally, a Nash equilibrium is defined as follows. When 2 players play the
strategy profile s = (si, sj) belonging to the product set S1 ×S2 then s is a Nash
equilibrium if P1(si, sj) ≥ P1(sx, sj) ∀x ∈ {1, ..., n} and P2(si, sj) ≥ P2(si, sx)
∀x ∈ {1, ...,m} 9.

A.3 Minimax and Maximin

In the context of zero-sum games two specific value are of particular interest,
i.e. minimax and maximin. More precisely, recall from Section A.1 that in case
of zero-sum games we have, aij + bij = 0 or aij = −bij . Player one will try to
maximize this value and player two will try to minimize it. Intuitively, maximin is

8 A strategy is dominant if it is always better than any other strategy, regardless of
what the opponent may do.

9 For a definition in terms of best reply or best response functions we refer the reader
to [187].

44 P.J. ’t Hoen et al.

the maximum payoff that player one will receive if player two responds optimally
to every strategy of player one by minimizing one’s payoff. Formally, we have

maximin = max
si∈S1

min
sj∈S2

P (si, sj) (4)

max
si∈S1

min
sj∈S2

siAsT
j (5)

Note that si and sj need to be interpreted as probability distributions with
si = (x1, x2) where x1, x2 ≥ 0 and x1 + x2 = 1.

Analogously, minimax is defined as follows for the second player,

minimax = min
sj∈S2

max
si∈S1

siAsT
j (6)

Von Neumann proved that for any zero sum game there exists a v ∈ R such
that minimax = maximin = v. This means that for any 2-player finite zero
sum game maximin and minimax always coincide. Moreover, for every Nash
equilibrium (s∗i , s

∗
j)) holds: s∗i As∗j = v. The interested reader can find the proofs

in [133].

A.4 Pareto Optimality

The concept of Pareto optimality is named after the Italian economist Vilfredo
Pareto(1848-1923). Intuitively a Pareto optimal solution of a game can be defined
as follows: a combination of actions of agents in a game is Pareto optimal if there
is no other solution for which all players do at least as well and at least one agent
is strictly better off.

More formally we have: a strategy combination s = (s1, ..., sn) for n agents in
a game is Pareto optimal if there does not exist another strategy combination s′

for which each player receives at least the same payoff Pi and at least one player
j receives a strictly higher payoff than Pj .

Another related concept is that of Pareto Dominance: An outcome of a game
is Pareto dominated if some other outcome would make at least one player
better off without hurting any other player. That is, some other outcome is
weakly preferred by all players and strictly preferred by at least one player. If
an outcome is not Pareto dominated by any other, than it is Pareto optimal.

A.5 Evolutionary Stable Strategies

The core equilibrium concept of Evolutionary Game Theory is that of an Evolu-
tionary Stable Strategy (ESS). The idea of an evolutionarily stable strategy was
introduced by John Maynard Smith and Price in 1973 [106]. Imagine a popula-
tion of agents playing the same strategy. Assume that this population is invaded
by a different strategy, which is initially played by a small number of the total
population. If the reproductive success of the new strategy is smaller than the
original one, it will not overrule the original strategy and will eventually disap-
pear. In this case we say that the strategy is evolutionary stable against this new
appearing strategy. More generally, we say a strategy is an Evolutionary Stable

An Overview of Cooperative and Competitive Multiagent Learning 45

strategy if it is robust against evolutionary pressure from any appearing mutant
strategy.

Formally an ESS is defined as follows. Suppose that a large population of
agents is programmed to play the (mixed) strategy s, and suppose that this
population is invaded by a small number of agents playing strategy s

′
. The

population share of agents playing this mutant strategy is ε ∈]0, 1[. When an
individual is playing the game against a random chosen agent, chances that he
is playing against a mutant are ε and against a non-mutant are 1− ε. The payoff
for the first player, being a non mutant is:

P (s, (1 − ε)s + εs
′
)

and being a mutant is,
P (s

′
, (1 − ε)s + εs

′
)

Now we can state that a strategy s is an ESS if ∀ s
′ �= s there exists some

δ ∈]0, 1[such that ∀ ε : 0 < ε < δ,

P (s, (1 − ε)s + εs
′
) > P (s

′
, (1 − ε)s + εs

′
)

holds. The condition ∀ ε : 0 < ε < δ expresses that the share of mutants needs
to be sufficiently small.

A.6 Population Dynamics

In this section we discuss the Replicator Dynamics in a single population setting.
For a discussion on the multi-population setting we refer the reader to [60, 133,
187].

The basic concepts and techniques developed in EGT were initially formu-
lated in the context of evolutionary biology [105, 187, 141]. In this context, the
strategies of all the players are genetically encoded (called genotype). Each geno-
type refers to a particular behavior which is used to calculate the payoff of the
player. The payoff of each player’s genotype is determined by the frequency of
other player types in the environment.

One way in which EGT proceeds is by constructing a dynamic process in
which the proportions of various strategies in a population evolve. Examining
the expected value of this process gives an approximation which is called the RD.
An abstraction of an evolutionary process usually combines two basic elements:
selection and mutation. Selection favors some varieties over others, while mu-
tation provides variety in the population. The replicator dynamics highlight the
role of selection, it describes how systems consisting of different strategies change
over time. They are formalized as a system of differential equations. Each repli-
cator (or genotype) represents one (pure) strategy si. This strategy is inherited
by all the offspring of the replicator. The general form of a replicator dynamic
is the following:

dxi

dt
= [(Ax)i − x · Ax]xi (7)

46 P.J. ’t Hoen et al.

In equation (7), xi represents the density of strategy si in the population, A
is the payoff matrix which describes the different payoff values each individual
replicator receives when interacting with other replicators in the population.
The state of the population (x) can be described as a probability vector
x = (x1, x2, ..., xJ) which expresses the different densities of all the different
types of replicators in the population. Hence (Ax)i is the payoff which replicator
si receives in a population with state x and x · Ax describes the average

payoff in the population. The growth rate
dxi
dt

xi
of the population share using

strategy si equals the difference between the strategy’s current payoff and the av-
erage payoff in the population. For further details we refer the reader to [73, 187].

Multi-robot Learning for Continuous

Area Sweeping

Mazda Ahmadi and Peter Stone

Learning Agent Research Group (LARG),
Department of Computer Science
{mazda, pstone}@cs.utexas.edu

http://www.cs.utexas.edu/~{mazda,pstone}

Abstract. As mobile robots become increasingly autonomous over ex-
tended periods of time, opportunities arise for their use on repetitive
tasks. We define and implement behaviors for a class of such tasks that
we call continuous area sweeping tasks. A continuous area sweeping task
is one in which a group of robots must repeatedly visit all points in a
fixed area, possibly with non-uniform frequency, as specified by a task-
dependent cost function. Examples of problems that need continuous
area sweeping are trash removal in a large building and routine surveil-
lance. We present a formulation for this problem and an initial algorithm
to address it. The approach is analyzed analytically and is fully imple-
mented and tested, both in simulation and on physical robots.

1 Introduction

Consider a group of robots whose goal is to keep the floors clean in a large
office building. This task requires continual execution: by the time the robots
have cleaned the entire building once, some parts have become dirty again. A
first-cut approach might lead the robots to simply clean the building from top
to bottom and then start over again. However, if the rate at which areas of the
building become dirty is non-uniform and possibly even non-stationary, a more
sophisticated solution is called for. In particular, the robots should ensure that
they clean highly-trafficked areas, such as the main entrance and the restrooms,
much more frequently than, say, the closets.

We define such a task as an example of continuous area sweeping tasks. More
generally, a continuous area sweeping task is one in which a group of robots must
repeatedly visit all points in a fixed area, possibly with non-uniform frequency,
as specified by a task-dependent cost function.

Additional examples of continuous area sweeping tasks include trash removal
and the task we consider in this paper, routine surveillance. When performing
surveillance, a robot needs to continually traverse its environment in an effort to
detect some events of interest, such as gas leaks, water dripping, lights on, open
doors, etc. In the surveillance task, a location can be “visited” by observing,
rather than by occupying it physically.

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 47–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

48 M. Ahmadi and P. Stone

The goal of a continuous area sweeping task is not just to sweep the area in
minimum time, but to sweep the area in such a way as to minimize the average
event detection time, possibly weighted by the importance of different events.
Event detection time is the time-period between event occurrence and its detec-
tion. The definition of event importance is problem-dependent. For example, in
the trash collection task, the importance of collecting food trash may be higher
than that of collecting paper goods. Minimizing the weighted average event de-
tection time will result in the sensible behavior of visiting kitchens and other
public areas more often than (most) individual offices. Similarly, for the surveil-
lance task, one may define the importance of identifying gas leaks as being higher
than finding lights on.

We tackle continuous area sweeping by dividing it into two sub-problems:

1. Enabling a single robot to autonomously perform a continuous area sweeping
task in a sub-region.

2. Partitioning the overall area among the multiple robots.

Once the area is partitioned among the robots, each one of them sweeps its part
of the environment using the single-robot area sweeping method.

The remainder of the paper is organized as follows. Section 2 surveys the
previous work most related to our own. In Section 3 we formalize the class of
continuous area sweeping tasks. Section 4 introduces the algorithmic solution to
single robot continuous area sweeping tasks (subproblem 1). In Section 5 the
negotiation method for adaptive area partitioning is introduced (subproblem 2).
In the next two sections, we instantiate the formalism and algorithms on the
robot surveillance domain. In Section 6 single robot experiments are presented,
multi-robot experiments are presented in Section 7. Our methods are fully imple-
mented and tested both in simulation and on a physical robot, the Sony AIBO
ERS-7 4-legged robot. Section 8 discusses future work and concludes.

2 Related Work

Continuous area sweeping tasks are closely related to the security sweep [1], or
sweeping [2] task. In the security sweep or sweeping task, the goal is to make the
robot(s) visit the whole environment just once in minimum time. Continuous
area sweeping is also related to coverage path-planning [3], which “is a new path
planning approach that determines a path for a robot to pass over all points in
its free space.” [3] The relevant differences are that in continuous area sweeping,
the sweep must be performed i) repeatedly (continuously), and ii) non-uniformly,
that is with more frequent attention given to some areas than to others. As
surveyed by Parker [4], most previous approaches to surveillance assume ideal
sensors and no computational bounds. In contrast, in this paper we consider
solutions that are fully implementable (and implemented) on physical robots.

Most of the methods for area partitioning use fully centralized and static
approaches. For example Hert et. al. [5] tries to partition the environment into n
equal size parts. Bern et. al. [6] also try to partition the environment into equal

Multi-robot Learning for Continuous Area Sweeping 49

size parts but with the additional condition that the parts do not have any
acute angles.

Notice that these works assume a heuristic for the notion of best partitioning,
such as equal size parts, or parts without acute angles. But in our work, the goal
is to minimize the average detection time, and the algorithms will directly try to
achieve that goal. In our experimental results section, we will provide an example
in which the partitions do not follow any of these heuristics (Figure 12(b)).

There are some other methods that address dynamic area partitioning in dif-
ferent ways, but that are not suitable for continuous area sweeping. For example
Min and Kin [7] propose a dynamic area partitioning method in which the robots
start with an initial static partitioned area. When a robot finishes its assigned
task, it negotiates for more parts of the environment. Since they do not partition
the environment permanently, although it is suitable for their one sweep of the
environment, it is not good for our continuous sweeping task. For example in
Figure 1(a) the robot “a” is responsible for part A and robot “b” is responsible
of parts B and C. If by the time that robot “a” finishes part A, robot “b” is
still sweeping part B, then robot “a” will be responsible for part C. But a bet-
ter partition, which our algorithm will achieve is the one in Figure 1(b), where
robot “a” gets a little more area close to its original responsibility area. Addi-
tionally, Min and Yin assume full and error-free communication, whereas we do
not assume full communication between all robots.

Jager and Nebel [8] partition the environment into polygons such that each
robot requests to clean a polygon and the others respond if they have cleaned it.
This will result in an unpredictable area partitioning, because while a robot is
requesting a polygon, it does not consider the whole region that it has and will
sweep. Thus, this method is also most suitable for single sweep applications.

Schneider and Mataric [9] propose a dynamic method in which all the robots
have full knowledge of the positions of the other robots. The only dynamic factor
that they can respond to is the addition of a new robot. In addition to the fact
that our algorithm handles different dynamic factors (e.g. robots with changing
speeds), it does not rely on knowledge of other robots’ positions at any given time.

In contrast to these previous approaches, in our proposed method, the robots
start with an arbitrary partition, and use negotiation to transfer the parts of
the environment between themselves. The negotiation method is designed to

A B

C

(a)

A B

(b)

Fig. 1. (a) Partitioning using Min and Kin algorithm [7]. (b) Partitioning using our
method.

50 M. Ahmadi and P. Stone

adaptively partition the environment with the goal that average event-detection
time is minimized for all parts of the environment. If robot a can sustain a
better detection time for a part of the environment that belongs to robot b, robot
a will take over responsibility for that part. With this method, the partition is
adaptive to heterogeneous robots, robot malfunctions, addition of robots to the
system, and also dynamically changing event patterns. For example if a robot
slows down due to a malfunction, the average detection time that it can sustain
for the parts that it is responsible for is increased and other robots will take over
responsibility for some of its partition.

3 Continuous Area Sweeping Formulation

In this section we specify our task in detail. In a continuous area sweeping task,
the robot must repeatedly visit all the points in its environment in an effort to
detect or react to different types of events e ∈ E. The events can in general have
varying degrees of importance, impe, and each event may occur in different places
with varying frequencies. In the case that all points are equally likely locations for
an event of interest, the events are equally important, and the robot needs to be
physically present at the point to “visit” it, the problem reduces to the traveling
salesman problem. Thus, in general, continuous area sweeping is NP-Hard, and
we must rely on approximate solutions.

We begin by dividing the robot’s environment into disjoint grid G, with each
event occurring in one grid cell. We consider time as a sequence of discrete
steps. The orientation θ ∈ O = {North, South, East, West} of the robot is
also considered as being one of 4 disjoint values. We track the time a robot has
last visited each cell g ∈ G in an array LV [G] by setting LV [g] = current-time
whenever the robot visits cell g.

The problem is defined as a tuple (S, A, Tsa, Peg , CF), where:

– S = G×O×LV [G] is a set of states, representing the position and orientation
of the robot as well as the array of last-visit times to each cell.

– A is the set of possible actions. The actions in this formulation are specified
as going to a point in the environment. In particular, the environment is
divided into a coarse grid called CG (CG need not be related to G in any
way, though in general we expect it to be coarser than G). Each action a ∈ A
is defined as traversing the path between the current position and the center
point of one of the coarse grid cells in CG and at the end turning to reach one
of the four orientations. That is, there are |CG| × |O| possible actions from
each state. The time complexity of the algorithm is highly dependent on the
number of actions, which is why we usually want CG to be coarser than G.

– Tsa is the state transition probabilities. Based on the current state and ac-
tion, it gives the distribution over the states that the robot will transition
to. The transition function is stochastic, because based on possible robot
localization errors and non-determinism in its movement, the robot may end
up in grid cell gj when aiming for grid cell gi.

Multi-robot Learning for Continuous Area Sweeping 51

– Peg is the probability of appearance of event e in cell g per cycle. For example,
if Peg = 0.1, there is the expectation of event e occurring every 10 cycles in cell
g. Peg is a property of the environment and is not observable by the robots.

– CF is the cost function of the policy. The cost function that we define for
the continuous area sweeping problem is the average time elapsed from ap-
pearance to detection of the events, weighted by the importance of the event
(impe). Since the robots should collectively observe the environment in or-
der to detect all the events in minimum time, this criterion is for the whole
multi-robot system.

The goal of each robot is to find a policy π : S �→ A such that the joint policy
of all robots minimizes the cost function. For each robot, the policy determines
which action is chosen by the robot in each state.

Since the robots do not observe the times of event appearances (e.g. when a
robot finds a piece of trash, it has no way of knowing how long it has been there),
they are unable to calculate the cost function (CF) of their executed policies.
Thus direct methods to minimize CF even in the single-robot case will not work.
A heuristic single-robot algorithm will be presented in the next section.

4 Single Robot Continuous Area Sweeping

In this section, we present a detailed description of our single-robot approach to
continuous area sweeping tasks. We begin by assuming that time is discretized
into cycles representing the times at which the robot can make action decisions.
For the purposes of our algorithm, we define an expected reward of each grid-cell
g at time t as the expected sum of importance values of the events present in
grid g at time t.

The algorithm consists of two main modules:

Learning: Learn the expected accumulation rate of event importance values in
each cell (potential reward). The expected reward of visiting a cell at any
given time depends on this rate and the time at which the cell was last
visited.

Planning: Given these expected rewards and knowledge of the robot’s (possibly
stochastic) transition function, compute a sequence of actions for the robot
(policy) with minimum cost.

The details of these two modules of the algorithm are presented in Sections 4.1
and 4.2. In Section 4.3 we show that this approach approximately minimizes the
cost function defined in Section 3, which is the goal in the problem formulation.

4.1 Learning the Expected Reward

The aim of learning is to approximate the expected reward for visiting a cell at
any given time. Expected reward is defined as the expected sum of importance
values of the events present in grid g at time t. In Section 4.3 we show how

52 M. Ahmadi and P. Stone

minimizing the estimated cost (average expected reward) will result in minimiz-
ing the average detection time (i.e. maximizing the policy’s value). A greedy
approach to minimizing the expected reward is presented in Section 4.2.

Formally expected reward is defined as:

exp rewardgt =
∑
all e

(t − LV [g]) × Peg × impe (1)

where LV [g] is the last time that cell g has been visited before time t. Notice that
the value of (t−LV [g]) is known to the robot and is independent of the rest of the
equation. Thus, it is only needed to approximate the value of

∑
all e(Peg ×impe).

We refer to this quantity as the potential reward of cell g. Note that the potential
reward of cell g is independent of time: it is the sum of the importance values of
the expected events for cell g per second, or the rate of reward accumulation.

Thehigh-level pseudocode of the algorithmwhich estimates potential reward for
cell g is given in Algorithm1. For each grid-cell g, the rewardpotential pot rewardg

is initialized to ε > 0, which in our case ε = 1 (see lines 2-4 of Algorithm 1). By
initializing the pot rewardg ’s to a non-zero constant value,we are assuming that all
grid-cells have an equal positive probability of all events occurring.That is,we start
with the assumption that ∀e, g, g′, Peg = Peg′ > 0. If we have prior knowledge that
some grid-cells have a higher importance event possibility than others, potential
reward for those grid-cells can be initialized to a higher value.

Algorithm 1. High level pseudocode for learning the reward potential.
1: α = 0.9; {learning rate}
2: for all grid-cells ’g’ do
3: pot rewardg := 1; {initialize}
4: end for
5: for each cycle do
6: t[g] := current-time - LV[g];
7: for each detected event e in grid g do do
8: pot rewardg := (1 − α) × pot rewardg + α × impe/t[g];
9: end for

10: for each visited g with no event do
11: pot rewardg := pot rewardg × 0.99;
12: end for
13: end for

It is assumed that after an appearance of a rewarding event in grid-cell g, the
event will remain there until the robot visits g. Thus, if grid-cell g is visited after
tg time-units and the robot visits the events with sum of importance values of
IMP, it can be assumed that with a higher probability every ∼ tg time-units,
an event with the importance value of IMP appears in grid-cell g. Whenever a
non-empty set of events with sum of event importance values of IMP are visited
in grid-cell g, the following update happens (lines 7-9 of Algorithm 1):

pot rewardg ← (1 − α) ∗ pot rewardg + α ∗ IMP
t−LV [g]

Multi-robot Learning for Continuous Area Sweeping 53

where, α is a learning rate, which in our experiments is set to 0.9. The update
rule presented above, changes the estimation of potential rewardg to be closer
to IMP

tg
, which is the assumed sum of events importance values per time for

grid-cell g. The estimation of reward potential for g will become more accurate
after more visits to grid-cell g.

Since the frequency of event appearance may not be constant over time, there
is also a need to unlearn the reward potentials. Thus, every time that the robot
visits grid-cell g with no event, it will perform the following update on reward
potential pot rewardg (lines 10-12 of Algorithm 1):

pot rewardg ← pot rewardg ∗ f

where f is an unlearn factor and in our experiments is set to 0.99. This update
rule enables the robot to gradually unlearn the one-time events. Notice that the
learning of potential reward for grid g happens only when there is an event in
g. If no event is detected while visiting grid g, the above unlearning update will
be performed. Since a lasting influence of a detected event is desired, the rate of
learning is much faster than unlearning

Expected reward is defined as the expected sum of the importance values of
the events present in grid g at time t. We compute it incrementally by adding
potential reward (expected reward per second) in each cycle. The pseudocode
for computing the expected reward for each grid-cell is shown in Algorithm 2. In
each cycle, if a grid-cell is being visited, the expected reward for that grid-cell
will be set to zero (see lines 6-7 of Algorithm 2), otherwise it will be incremented
by the amount of the potential reward of that grid-cell (lines 8-9 of Algorithm 2).
As a result, the expected reward for cell g will be equal to the potential reward
of g multiplied by the amount of time that g has not been visited.

Algorithm 2. High level pseudocode for computing expected reward for grid-
cells in each cycle. The pot reward is computed in the Algorithm 1.
1: for all grid-cells ’g’ do
2: exp rewardg := 0;
3: end for
4: for each cycle do
5: for all grid-cells ’g’ do
6: if g is being visited then
7: exp rewardg := 0;
8: else
9: exp rewardg += pot rewardg;

10: end if
11: end for
12: end for

4.2 Choosing Actions

When choosing an action, the robot can move to the center point of any cell in
the coarse grid CG, and after reaching the destination turn to face one of the four

54 M. Ahmadi and P. Stone

orientations {North, South, East, West}. We assume that the map of the envi-
ronment is already known and that the robot has a model of its own (stochastic)
motion. As an initial approach, we use a form of greedy action selection.

The pseudocode to choose the action is given in Algorithm 3. For each action
of going to point cg, the robot computes the trajectory of going to that point (see
line 11 of Algorithm 3). For computing this trajectory, the shortest path between
all pairs of center grid cells is found using the Floyd-Warshall algorithm [10].
Let P be the shortest path from the center of the cell that robot is in, to its final
destination. The trajectory starts from where the robot is, to the center of the
next grid cell on P , and continues on the center grid cells of P . Each trajectory
is divided into discrete points, one point for each cell of G, which is the center
of the line segment that passes through G. For each one of the discrete points
of the trajectory, the grid-cells that will be seen from that point are computed
as follows. We assume a 180-degree field of view for the robot, and the robot
computes 181 rays with origin at its position and with angles ranging from -90
to 90 degrees from the robot’s orientation. For each one of the lines, the cells
that the line passes through before hitting a wall are considered “visited”.

The expected reward of these visited grid-cells will be summed up for all
the points in the trajectory and the result will be the expected received reward of

Algorithm 3. High level pseudocode for choosing the best action in one cycle.
1: s: state of the robot
2: A: possible actions in the state s
3: obs[g]: temp array to avoid double counting
4: max reward := minimum value;
5: for each action a ∈ A do
6: a reward := 0;
7: time a : time to perform a
8: for all g do
9: obs[g] := false;

10: end for
11: compute the trajectory T for a
12: for each point t ∈ T do
13: for each g visited from t do
14: if not obs[g] then
15: a reward := a reward + exp rewardg;
16: obs[g] := true;
17: end if
18: end for
19: end for
20: if a reward / time a > max reward then
21: max reward := a reward/time a;
22: best action := a;
23: end if
24: end for
25: perform best action;

Multi-robot Learning for Continuous Area Sweeping 55

performing the action (lines 12-19 of Algorithm 3). After computing the expected
reward values, the algorithm greedily chooses the action with the maximum
expected reward per time (lines 20-23 of Algorithm 3).

The intuition behind this approach is that after the grid-cells with high ex-
pected reward are visited, their expected reward is set to zero, thus the estimated
cost (average expected reward) decreases. By choosing the action with maximum
expected received reward per time, for one action, we will have the maximum
possible decrease in the estimated cost. It is possible to use more complex plan-
ning approaches to achieve closer to optimal solutions for this formulation, but
the greedy approach is sufficient to achieve a good result in this environment.

4.3 Correctness of the Approach

In this subsection, we provide a proof that minimizing the estimated cost (aver-
age expected reward) will result in minimizing the cost function of the problem
formulation. For the sake of analysis, we assume a finite horizon, with finite time
and events.

The cost function in the formulation is the average detection time multiplied
by the importance of the event. The goal is to minimize the cost function:

minimize(
E∑

e=1

(detect timee × impe)) (2)

where E is the number of events in our finite horizon, detect timee is the detec-
tion time of event e and impe is the importance value of event e.

The goal in the presented approach is to minimize the estimated cost over
time. That is:

minimize((
C∑

t=1

|G|∑
g=1

exp rewardgt)) (3)

where, |G| is the number of grids, C is the number of cycles in our horizon and
exp rewardgt is the expected reward of grid-cell g at time t.

By the definition of expected reward (Eq. 1), in the finite horizon we have:

exp rewardgt =
E∑

e=1

(t − LV [g]) × Peg × impe (4)

where LV [g] is the last time that grid-cell g has been visited before time t and
Peg is the probability of appearance of event e in grid-cell g.

Based on equations 3 and 4, the goal of the proposed approach is to minimize
the following equation:

E∑
e=1

C∑
t=1

|G|∑
g=1

((t − LV [g]) × Peg × impe) (5)

The average value of (t − LV [g]) over time (average detection time) is equal
to 0.5Tg, where Tg is the average time between two visits of the robot to grid-cell
g. Thus minimizing the Eq. 5 results in minimizing this equation:

56 M. Ahmadi and P. Stone

E∑
e=1

|G|∑
g=1

(Tg × Peg × impe) (6)

Notice
∑|G|

g=1(Tg × Peg) is the expected detection time of grid-cell g and since
impe is independent of g, minimizing the above equation will result in minimizing
the cost function (Eq. 2).

In this section, we showed that by achieving the goal of the proposed approach
(i.e. minimizing the estimated cost over time) the cost function of the problem
formulation will be minimized (which is the goal of the optimal policy). We are
using a greedy approach to minimize the estimated cost over time, which is not
necessarily optimal, but given the proven fact that minimizing estimated cost
will result in minimizing the cost function, it is a reasonable approach.

5 Multi-robot Continuous Area Sweeping

In Section 4 we considered a single robot engaged in continuous area sweep-
ing. Recall from Section 1 that our overall algorithm can be decomposed into
that and a partitioning algorithm. We achieve cooperative behavior by par-
titioning the environment among robots. Partitions are assigned to different
robots, and the robots do the exploration autonomously (using single-robot al-
gorithm presented in Section 4) in their assigned partitions. In this section,
we present a partitioning algorithm that is robust to heterogeneous robots,
robot malfunctions, unexpected additions of robots to the system, and dynamic
changes of event appearance patterns. Note that restricting robots to parti-
tions may not necessarily lead to the optimal behavior for multi-robot con-
tinuous area sweeping, but doing so allows for a convenient and efficient task
decomposition.

A näıve first approach is to statically partition the environment among the
robots. However in our environment, with the probability of event appearances
changing dynamically plus the possibility of the addition and removal of robots
from the environment, static partitioning is not suitable.

Instead, we propose a negotiation model for partitioning the environment
among robots. We define RGx as the set of grid cells that robot x is responsible
for. The basic idea behind the negotiation method is: Considering two robots,
a and b, if there is a g ∈ RGa that robot b can visit — following its own
exploration algorithm — more often than robot a, then g should be added to
RGb and removed from RGa.

The high-level negotiation procedure is shown in Fig 2. Assuming each robot
is already responsible for a partition, the negotiation structure is as follows.
The algorithm for assigning initial partitions will be specified later in the
section.

First: in fixed periods each robot (as shown in step 1 of Figure 2),
(a) labels the grid cells on the border of its RG (RGa for robot a) as can-

didates. These grid cells are the ones that the robot is considering giving up

Multi-robot Learning for Continuous Area Sweeping 57

1) (Robot 1): send S1={border line grid cells} of message type 1.

2) (Robot 2): Upon receiving S1 of message type 1:

t := big negative number;

for all g ∈ S1

t1 := possible time between visits for g (by Robot 2)

t2 := available time between visits for g (by Robot 1)

if (t2 − t1) > t do

t := t2 − t1;

gmax := g;

G∗ := cells that will be visited because of addition responsibility of gmax.

send S2 = {G∗} of message type 2 as an offer.

3) Robot 2 upon receiving message type 2, accepts the best offer, and sends an ac-
knowledgement (message type 3).

4) Robot 1 Upon receiving acknowledgement, the transfer will be complete.

Fig. 2. High level negotiation procedure

responsibility for. Note that all the grid cells on the border of a robot’s respon-
sibility area, but not on the border of the whole environment are considered
candidates.

(b) Broadcasts a message consisting of information about the candidate grid
cells. The message format is as follows:

(g, avg time, pot reward)

where, g is the grid cell id and avg time is the robot’s current average detection
time for that grid cell. pot reward is potential reward which is the learned ex-
pected accumulation rate of event importance values in cell g. pot reward is used
to compute expected reward and is sent to other robots for use in the robots’
single-robot exploration algorithm (because they have no first-hand experience
about the rate of event appearance in other robots’ grid cells). These messages
are called type 1 messages.

Second: Upon receiving type 1 messages, the robot stores them in a list. At
fixed intervals, each robot processes its stored messages as follows (step 2 in
Figure 2):

(a) For each grid cell g in the stored messages, the robot pretends that it is
responsible for it (in addition to its whole current partition), and using the single-
robot algorithm finds a new hypothetical path. With that path, it computes time
between visits for g, and stores it in timeg.

(b) For each grid cell g in stored messages, using timeg and impe the robot
computes the weighted detection time (new avg timeg) for that grid cell under
the assumption that the robot adds g to its partition.

58 M. Ahmadi and P. Stone

(c) From among all the grid cells mentioned in type 1 messages, each robot
finds the cell with the maximum difference between the computed event detection
time (new avg timeg) and the average detection time that the message sender
could provide (avg timeg from the message). That is it finds the cell maxg such
that (new avg timeg − avg timeg) is maximized. From the local information
that the robot has, from among all the candidate cells in type 1 messages, maxg
is the best one to add to the robot’s partition, because it is the one for which
its addition to the partition will most decrease the cost function. Notice that
transfer of any cell between two robots may change cells’ time between visits
for both robots. Since the robots do not have information on those changes, the
decisions based on time between visits for transferring more than a single cell
could lead to unpredictable transfers, and likely oscillations.

(d) maxg which was computed in the previous step, is the cell that the robot
will offer to take into its partition. In the new path that the robot has to take in
order to visit maxg, possibly some additional cells from other partitions will be
visited. The robot stores these cells in Vmaxg. The cells in Vmaxg will be visited
without any further effort, thus the robot offers to take over responsibility for
them as well. In particular, it sends a message to take over all the cells in Vmaxg

to the robots currently responsible for them. The message format is as follows:

(num, (g0, avg time0), (g1, avg time1), ...)

where, num is the number of offered grid cells, while gi and avg timei, for
0 ≤ i < num, are grid cell ids and average detection times for each offered grid
cell respectively. These messages are called type 2 messages.

Third: Each robot accumulates its received type 2 messages, and then processes
them at fixed intervals (step 3 in Figure 2).

(a) The robot has the chance to accept one of the offers, that is, it can give
away a set of its cells to one of the robots that has made an offer for them. For
this purpose, it assigns a value to each offer. For offer o, its value will be equal to:

∑i=num−1
i=0,gi∈RG avg timei − my avg timegi

where num is the number of cells in offer o, avg timei is the average time between
visits for grid gi in offer o and my avg timegi is the robot’s average time between
visits for that same grid cell. By accepting cell gi, avg timei will decrease to
my avg timegi . Thus, the offers that decrease the cost function the most have
the most value. If the highest value is positive, the offer associated with it is
accepted.

In other words, from all the offered grid cells, it finds the set (received from
a single robot and in the robot’s own RG) such that the sum of the difference
between the offered detection time and the current average detection time is
maximized.

(b) The robot then gives up the responsibility for the cells in the accepted
offer.

Multi-robot Learning for Continuous Area Sweeping 59

(c) Finally, if the robot has accepted an offer it sends an acknowledgement
to the robot willing to take responsibility for them (message type 3).

Fourth: When a robot receives an acknowledgement for a set of grid cells (mes-
sage type 3), it assumes the responsibility of that set of grid cells and the nego-
tiation is considered finished (step 4 in Figure 2). Each robot then resumes its
single-robot sweeping within its (possibly changed) partition.

Notice that the only message type of the three that can cause inconsistency
if it is not delivered, is the acknowledgement message (message type 3). If any
other message does not get delivered, no change of responsibility will occur. But
if the acknowledgement message does not get delivered no robot will assume the
responsibility for a set of grid cells and if there is no recovery mechanism, the
inconsistency can be permanent. In our current system, we send the acknowl-
edgement message 5 times to reduce the possibility of that inconsistency. In our
experiments the maximum of consecutive message losses was 2, and thus no
inconsistency occurred.

When a new robot is added to the environment, it sends out a message declar-
ing its presence, and the robots who are close enough to hear its message send
out their position information to it. It then takes responsibility for half of the
partition of the closest robot to it. The negotiation then continues, and ap-
propriate adjustments are made. Similarly, when a robot is removed from the
environment, it sends out a signal notifying others that it is being removed, or
if it crashes, other robots will detect its removal after not hearing from it for an
extended period of time. After that, the closest robot to it takes charge of its
responsibility area, and further negotiations will split the area appropriately.

6 Single Robot Results

To test our approach, we have implemented and evaluated our algorithm on a
physical robot in a representation of the routine surveillance task. As our robot,
we use a Sony ERS-7 four-legged AIBO robot (Figure 3). The robot’s sensor
device for “visiting” locations in its environment is a camera mounted on the
head of the robot. It can capture 208 × 160 frames of pixels at roughly 30Hz.
Due to the computational intensity of image processing, our robots typically
make decisions at roughly 25Hz, thus the cycle defined in Section 4 is set to 0.04
second. By turning its head, the robot can gain a 180-degree field of view. It has
20 degrees of freedom and a 576Mhz on-board processor.

As baseline software, we use the UT Austin Villa code base [11], which pro-
vides robust color-based vision, fast locomotion, and reasonably accurate local-
ization within a 2.9m × 4.4m area1 via a particle filtering approach. Even so, the
robot is not, in general, perfectly localized, as a result of both noisy sensations
and noisy actions. The robot also has limited processing power, which limits the
algorithms that can be designed for it. G is equal to a 18 × 15 grid, that is we

1 The field is as specified in the 2004 rules of the RoboCup Four-Legged Robot League:
http://www.tzi.de/4legged

60 M. Ahmadi and P. Stone

Fig. 3. ERS-7 Sony AIBO robot

discretize the robot’s environment into an 18 × 15 grid. CG, which defines the
available actions, is set to a 6 × 5 grid. There is just one type of event in the envi-
ronment, which is the appearance of an orange ball that the robot can recognize
from anywhere on the field provided that it has an unobstructed view. We test
two different configurations of the world with the real robot. One other config-
uration is tested in a custom-built AIBO simulator [11]. The simulator, though
abstract with respect to locomotion, provides a reasonable representation of the
Aibo’s visual and localization capabilities, and allows for a more thorough ex-
perimentation, particularly with regards to testing different distributions of ball
appearances.

6.1 Single-Robot Configuration I with a Real Robot

As an initial experiment, we configured the robot’s environment as shown in
Figure 4(a). A picture of the actual environment with the robot is shown in
Figure 5. The robot knows the locations of the walls in the environment, but
must decide for itself how to move so as to perform surveillance.

Before appearance of the balls, the path that the robot found is path 1 in
Figure 4(b). It is the minimal path for uniformly visiting the whole environment.

Region 2

Region 3

Region 1

(a)

Region 2

Region 3

B

A

Pa
th

 1

Pa
th

 3
Pa

th
 2

Region 1

(b)

Fig. 4. (a) Representation of configuration I . (b) The path the robot traverses in
configuration I .

Multi-robot Learning for Continuous Area Sweeping 61

Fig. 5. Picture of configuration I with the real robot

Region 1

Region 2

Region 3

Region 4

55

55 55

55

50

40

A B

C

D

(a) (b)

Fig. 6. (a) Representation of configuration II (b) Configuration II with a real robot

After that, we started to show the balls to the robot in region 1 and 2, but
not region 3. In this new situation the robot found path 2 in Figure 4(b). By
traversing this path, robot visits region 1 and 2 more often than 3 and that is a
desirable result2.

Later in the experiment we stopped showing any balls to the robot. As a
result of the forgetting parameter, the robot gradually went back to uniform
exploration (path 1 in Figure 4(b)). Finally, we again started to show the ball,
this time in regions 2 and 3. The path that the robot found in this new situation
is path 3 in Figure 4(b)3.

6.2 Single-Robot Configuration II with a Real Robot

As a follow-up to this initial experiment, we created a more complex environment
as is illustrated in Figure 6(a) and pictured in Figure 6(b).

2 Videos of the robot in action in this environment are available from http://www.
scs.utexas.edu/~AustinVilla/?p=research/surveillance , named configuration
I part 1.

3 A video of the robot forgetting what it has learned before and re-learning the
new distribution of the ball appearances is available at http://www.cs.utexas.
edu/~AustinVilla/?p=research/surveillance, named configuration I part 2.

62 M. Ahmadi and P. Stone

Region 1

Region 2

Region 3

Region 4

A B

C

D

(a)

Region 1

Region 2

Region 3

Region 4

A B

C

D

(b)

Fig. 7. (a) The path that the robot traverses in uniform distribution of the appearance
of the ball. (b) The path that the robot finds when there is several appearances of the
ball in region 1 and 3.

Before the appearance of the balls, the path that the robot finds is very simi-
lar to the path shown in Figure 7(a), which is the minimal path for the uniform
appearance of the balls. Because of the noise in the environment, the robot does
not exactly follow that path, but the path is very close to that one. After show-
ing the ball for several times in regions 1 and 3, the path that the robot finds is
close to the one shown in Figure 7(b) 4. As is apparent from the path, because of
the higher probability of appearance of the balls in region 1 and 3, those regions
are visited more frequently.

The robot experiments verify that our approach can run in real time on a
computationally limited platform, and that the robot can operate using the same
algorithm in multiple environments. However, due to the time-consuming nature
of running experiments in the real world, we further validate our approach in
simulation.

6.3 Single-Robot Simulation

We use an extended version of our group’s custom-built AIBO simulator5 to
test our approach. The architecture of our AIBO code is designed in two layers.
The lower layer is responsible for managing the visual sensor and translating
high-level commands to robot motor commands, while the upper layer reasons
about the visual inputs and issues high-level motion commands. Our simulator
is designed to take the place of the environment and the lower layer, providing
abstract visual input to the control code, and simulating robot motions. Full
details of the code organization and simulator interface can be found in our
technical report [11].

With this simulator platform, we are able to run identical upper-level code
both on the robot and on the simulator. Using the simulator, we are able to
control precisely the distribution of locations at which the ball appears, and we
are able to run experiments much more quickly.
4 A video of this experiment is available at http://www.cs.utexas.edu/
AustinVilla/?p=research/surveillance, named configuration II .

5 The original simulator was created by Gregory Kuhlmann.

Multi-robot Learning for Continuous Area Sweeping 63

In our simulation experiments, we test four different distributions of ball ap-
pearances in configuration II from the real robot experiments (Figure 6(a)). In
all the distributions, the ball appears in each cell g with probability Peg ∗ 50
every 50 seconds. In particular, this means that a ball can appear in more than
one cell before the robot sees any of them, and that there can be more than one
ball in the same place by the time the robot visits that place. Peg is different in
each one of the experiments.

In the same Figure 6(a), the approximate time needed (in seconds) for walking
between each pair of points, as measured on the physical robot, is given beside
the dotted lines. Notice that the time it takes to walk straight across the field —
even the long way from A to B — is less than the time it takes to move between
adjacent points such as B and D. The reason for the difference is that the robot
takes significant time to turn.

In the following subsections, we discuss the results in each of four distribu-
tions: a uniform distribution; a distribution in which the ball only appears in
one place; a biased distribution; and a non-stationary distribution.

Uniform Distribution. In our first experiment, the ball appears with identi-
cal probability in each of the four regions. Notice that were the ball to appear
anywhere else in the environment, the optimal policy would not be affected sig-
nificantly, since almost all of the actions visit the center part of the environment.
The path that the robot finds after learning is approximately the path shown in
figure Figure 7(a).

In order for the robot to visit all the regions it at least needs to go through
the points A, B, C and D or a small area around them. Based on the travel
times in Figure 6(a), the solution shown in Figure 7(a) is optimal, which we can
check by exhaustive search.

While following the path that the robot found, each ball was approximately
visited after 106 ±2.1 seconds. In the experiment, 100 balls were shown to the
robot. The optimum average detection time is 100 seconds, which is the result
of traversing the path in Figure 7(a). The whole traversing time for that path is
55+40+55+50 = 200. Thus, it takes between 0 and 200 seconds to detect each
event, and the average detection time is 100 seconds. As a result, our approach
is in 4% margin of error, which is quite close to optimal, with the error coming
mainly from action noise. The path that the robot found is not exactly the one in
Figure 7(a), since for example the robot does not always go to the exact grid-cell
of point A. Rather, to visit region 1, it goes to one of the grid-cells close to A.
The exact motion of the robot is visible in our on-line videos.

This initial experiment verifies that our greedy algorithm can produce the
optimal solution in the most benign case.

Always in One Region Distribution. As a second test, we created a distri-
bution such that the ball only appeared in region 2. The path that the robot
finds is approximately the one shown in Figure 8(a). It took the robot only one
pass through the field to approximately follow the path in Figure 8(a).

64 M. Ahmadi and P. Stone

Region 1

Region 2

Region 3

Region 4

B

D

A

C

(a)

Region 1

Region 2

Region 3

Region 4

B

D

A

C

(b)

Fig. 8. (a) The path the robot traverses when the ball always appears in region 2. (b)
The path that the robot traverses in the face of a biased distribution, where the chance
of the ball appearance is 60% in region 2, 30% in region 1 and 5% in regions 3 and 4.

On average, every ball is noticed 47 ± 1.3 seconds after its appearance. In
the experiment 100 balls were shown to the robot. Of course, the optimum so-
lution here is for the robot to stay close to region 2 and visit the balls right
after it appears, but our algorithm enforces the constraint that the robot should
continually visit the whole environment at least periodically in case new events
occur. With the condition that we want to visit the whole environment continu-
ally, 47 seconds is reasonable. In particular, learning the distribution has gained
us a 50% performance improvement: without learning the robot would traverse
the environment uniformly, resulting in an average detection time of 106 sec-
onds or ideally 100 seconds. Notice that the average detection time in uniformly
traversing the environment and visiting each cell once in the full traverse of the
environment is independent of the distribution of event appearances. Because
whatever the distribution, the average detection time for each event is constant
and equal to the half of the whole traversing time.

Biased Distribution. In our next experiment we tested the robustness of our
approach in a scenario such that the balls appear in all the regions but with
different probabilities. In the biased distribution, with probability 60% the ball
appears in region 2, with probability 30% it appears in region 1, with probability
5% in 3, and with probability 5% in 4 (Peg = .6/50, .3/50, .05/50, and .05/50
respectively). The path that the robot traverses is approximately the one in
Figure 8(b).

The time needed for the robot to change its path from the uniform case to the
path shown in Figure 8(b) is based on how fast it can learn the distribution, which
itself is based on frequency of ball appearances. In our experiment, every 50 sec-
onds an average of 1 ball appeared. In this setting, the robot took 9 complete tra-
verses (1734 seconds or 35 ball appearances) to start traversing the shown path.

After the 1734 seconds, when the robot learned the distribution, on average
every ball was visited 79 ± 1.2 seconds after its appearance. In the experiment,
200 balls were shown to the robot. This result is significantly better than uniform
traversal which results in average detection time of 106 or ideally 100 seconds.

Multi-robot Learning for Continuous Area Sweeping 65

Changing Distributions. In our final experiment we tested the robustness
of the approach to changing distributions. In particular, we consider a scenario
in which at some unknown point in time the probability of appearance of the
balls changes abruptly. The initial distribution of the ball appearance was the
same as the biased case discussed in previous section, that is 60% in region 2,
30% in region 1, 5% in region 3, and 5% in 4. After 100 ball appearances, the
distribution changes to the uniform appearance of the ball.

The path that the robot found with the starting distribution is the same
as the one in Figure 8(b). It took the robot about 1820 seconds or 36 ball
appearances to adapt to the second distribution and approximately follow the
path in Figure 7(a).

7 Multi-robot Results

The experiments in Section 6 verified the single-robot algorithms. In this sec-
tion the partitioning algorithms will be evaluated. Together single-robot and
partitioning algorithms build the full multi-robot system for continuous area
sweeping.

We have tested two different configurations of the world in a custom-built
simulator, and one configuration on real robots. The specification of the robots
and the simulator is the same as the one described in the previous section. In
this section, the focus of the experiments is on the negotiation and the adaptive
area partitioning.

7.1 Multi-robot Configuration I in Simulation

The configuration of the environment in the first experiment, is shown in Fig-
ure 9(a). For this experiment, we divide the world (4.4m × 2.9m) into a 45× 54
grid (G). The coarse grid (CG) is a 15×18 grid. The reported results are averaged
over at least 10 trials.

Region 3Region 2Region 1

(a)

Region 1

Area
Robot 2 Resp.

Region 2 Region 3

Robot 1 Responsibility Area

(b)

Fig. 9. (a) Representation of configuration I . (b) The partitioned area between two
homogeneous robots in configuration I .

66 M. Ahmadi and P. Stone

Two homogeneous robots. We start with having two homogeneous robots
on the field. In the initial partitioning, each robot gets half of the area (di-
vided vertically). The partitioned area, which is achieved after reaching equi-
librium is shown in Figure 9(b). Notice that when robot 2 traverses the path
between regions 2 and 3, it automatically visits the bottom cells, thus it takes
the responsibility for all of the bottom grid cells. They reached this assignment
with only one negotiation in which 683 cells were transferred from robot 2 to
robot 1.

Conventional area partitioning algorithms will try to divide the area equally
between the two robots, which is less efficient than the equilibrium that our
robots reached. If the area is divided equally between robots, the average event
detection time would be 33.9 ± 0.7 seconds, while with our partitioned area, it
is 32.2 ± 0.6 seconds. Since there are just two homogeneous robots in a simple
environment, a minor performance enhancement (in this case %5) is all we can
expect.

Three homogeneous robots. Later in the experiment we added a new robot
in the middle of the field. While usual non-adaptive area partitioning methods
cannot adapt to the addition of the new robot, our robots reached a new equi-
librium which is showed in Figure 10(a). It took the robots two negotiations to
reach this partitioning. 421 cells were transferred from robot 3 to robot 2 and
283 cells from robot 2 to robot 1.

A conventional static partitioning for three robots could achieve a similar
partitioning. The average event detection time in this case was 28.3±0.6 seconds.

Three heterogeneous robots. Following the previous experiment, we slowed
down robot 3 to half of its original speed. That condition can happen in the real
world as the result of a joint failure. It took the robots one negotiation with 457
cells transfered to reach the new partitioning which is shown in Figure 10(b).

If no new negotiation were performed after slowing down robot 3, the average
event detection time would have been 30.1 ± 0.4 seconds. However, after the
negotiation and the resulting new partitioning, the average event detection time

Robot 3 Resp.

Region 1 Region 2 Region 3

Robot 2 Resp.
Robot 1 Resp.

(a)

Robot 3 Responsibility

Region 1 Region 2 Region 3

Robot 3 Resp.

Robot 1 Resp. Robot 2 Responsibility

(b)

Fig. 10. (a) The partitioned area for three homogeneous robots in configuration I . (b)
The partitioned area for three heterogeneous robots in configuration I . The robot 3
has half the speed of the other two robots.

Multi-robot Learning for Continuous Area Sweeping 67

Robot 3 Resp.

Robot 2 Responsibility

Robot 1 Resp.

X

(a)

Robot 3 Resp.

Robot 2 Responsibility

X
Robot 1

(b)

Fig. 11. (a) The partitioned area between three homogeneous robots in configuration
I , when the chance of ball appearance in area X is 10 times the other cells. (b) The
partitioned area between three homogeneous robots in configuration I , when the chance
of event appearance is 1000 times more in area X.

was 29.3 ± 0.2 seconds. Notice that here we only have 3 robots, and only one
of them slows down. If there are more robots, the speedup will be more signifi-
cant. To our knowledge, previous work in the area could not adapt to this new
situation.

Non uniform distribution of event occurrences. Continuing with three
homogeneous robots, we next consider the case in which the chance of event ap-
pearance in area X (Figure 11(a)), which consists of 45 grid cells, increases by a
factor of 10. The robot can learn the distribution based on the event occurrence
by itself, though it requires time to notice the change. In this case, to speed
up the experiment, we manually increased the potential reward value in the
robot’s internal algorithm to represent the new distribution. With only one ne-
gotiation and 497 cell transfer, the new partitioning is formed, which is shown in
Figure 11(a). The average event detection time with the original partitioned area,
(shown in Figure 10(a)) was 34.7 ± 0.8 seconds, while with the new partitioning
it reduces to 29.4 ± 0.5 seconds.

If the chance of the ball appearance in area X is multiplied by 1000, one
of the robots ends up constantly staying and watching area X, while the other
two robots divide the environment as shown in Figure 11(b). With the original
partitioned area (Figure 10(a)), the average detection time would be 45.3 ± 0.2
seconds, but with the new partitioning it reduces to to 0.2 ± 0.0 seconds. Notice
that with the new partitioning, one of the robots constantly watches area X and
thus most of the events are observed in no time.

7.2 Multi-robot Configuration II in Simulation

The aim of this experiment is to show that the cooperation algorithm can scale up
to more complex situations. The environment in this experiment is shown in Fig-
ure 12(a). It is 8m × 8m and is divided into a 80×80 grid G. CG is a 20×20 grid.

There are 8 robots with different speeds, as shown in Table 1. The partitioned
area after negotiation is shown in Figure 12(b). It took the robots 67 negotia-

68 M. Ahmadi and P. Stone

(a)

32

1

8

8

5

7

5

6

6

7

4

(b)

1

2

3

7

6

8

45

(c)

Fig. 12. (a) Representation of configuration II . (b) Task decomposition of 8 robots in
configuration II , which is achieved by our partitioning algorithm. (c) A typical and
reasonable task decomposition in configuration II .

Table 1. Speed of robots for configuration II experiment

Robots 1 2 3 4 5 6 7 8

Speed (cm/s) 10 20 10 30 40 40 20 50

tions and in total 24535 cell transfers to reach this partitioning. Although some
of the shapes looks irregular, each robot can observe its whole partition while
following a simple path. Using a perfectly space-equivalent partition (as some
approaches do), leads to average event detection time of 15.3 ± 1.0 seconds. In
Figures 12(c) we show a heuristic partition chosen so as to roughly equalize
space, but in a way that follows borders and appears to be reasonable. The
average detection time in the heuristic reasonable partition (Figure 12(c)) is
9.0 ± 0.8, while with our partitioning (Figure 12(b)), it decreases to 6.1 ± 0.5.
This data is averaged over 10 trials. This significant improvement over the static

Region 2

Region 3

Region 1

(a)

Region 2

Region 3

Region 1

Robot 1 Resp.

Robot 2
Resp.

(b) (c)

Fig. 13. a) Representation of configuration III . (b) Task division for real robots in
configuration III . (c) Picture of configuration III with two robots.

Multi-robot Learning for Continuous Area Sweeping 69

area partitioning suggests that with higher number of robots, the advantage of
our method is more significant.

7.3 Multi-robot Configuration III with Real Robots

To show that the system also works on real robots, we present an experiment with
real robots in a simple environment. An overview of the configuration is shown in
Figure 13(a) and the picture of the actual environment with the robot is shown
in Figure 13(c). The robots know the locations of the walls in the environment,
but must decide for themselves how to move so as to perform surveillance.

In this case, the grid G was 15 × 18, and CG was a 5 × 6 grid. The resulting
task division between the robots is shown in Figure 13(b). For the same reason as
discussed in Section 7.1, this is the optimal task division. For a movie of
this experiment, please visit http://www.cs.utexas.edu/~AustinVilla/?p=
research/surveillance.

8 Conclusions

In this paper, the problem of multi-robot continuous area sweeping is examined.
The problem is defined as one in which robots must repeatedly visit every part
of the environment in order to detect a set of events of interest. The frequency of
the events can possibly be non-uniform. Thus the robots should visit the points
with non-uniform frequency. Examples of continuous area sweeping tasks are
surveillance and cleaning.

In this paper, we formalize the problem and introduce an initial single-robot
approach that non-uniformly visits the environment to minimize the estimated
cost. The approach is analyzed analytically and is tested both in simulation
and on real robots. The single-robot approach is extended to multi-robot cases,
with a help of a dynamic area partitioning method. Each robot will continue
with its single-robot algorithm in its assigned partition. The area partitioning is
done by a negotiation method, which is adaptive to dynamic environments. The
adaptive area partitioning is especially important if the rate of event appearance
is non-uniform in the environment, or if the robots are heterogeneous in their
capabilities.

Our on-going research agenda includes expanding the robot behavior to in-
clude non-greedy planning and to find an optimality bound for the area partition-
ing method. Also we are working on designing recovery mechanisms for the cases
where unbounded consecutive messages get lost, and an inconsistency occurs.

Acknowledgment

The authors would like to thank the members of the UT Austin Villa team for
their efforts in developing the software used as a basis for the work reported in
this paper. Special thanks to Greg Kuhlmann for developing the simulator. We
also want to thank Bikramjit Banerjee, Roozbeh Mottaghi, Ali Nouri and Mohan

70 M. Ahmadi and P. Stone

Sridharan for their comments on earlier versions of this paper. This research was
supported in part by NSF CAREER award IIS-0237699 and ONR YIP award
N00014-04-1-0545.

References

1. Kalra, N., Stentz, A.T., Ferguson, D.: Hoplites: A market framework for complex
tight coordination in multi-agent teams. Technical Report CMU-RI-TR-04-41,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2004)

2. Kurabayashi, D. Ota, J.A.T.Y.E.: Cooperative sweeping by multiple mobile robots.
In: Proc. of IEEE International Conference on Robotics & Automation (ICRA).
(1996)

3. Choset, H.: Coverage for robotics; a survey of recent results. Annals of Mathematics
and Artificial Intelligence 31 (2001) 113–126

4. Parker, L.E.: Distributed algorithms for multi-robot observation of multiple moving
targets. Autonomous Robots 12 (2002) 231–255

5. Hert, S., Lumelsky, V.: Polygon area decomposition for multiple-robot workspace
division. Special Issue of International Journal of Computational Geometry &
Applications on Applied Computational Geometry 8 (1998) 437–466

6. Bast, H., Hert, S.: The area partitioning problem. In: Proceedings of the 12th
Canadian Conference on Computational Geometry. (1995)

7. Min, T.W., Yin, H.K.: A decentralized approach for cooperative sweeping by
multiple mobile robots. In: International Conference on Intelligent Robots and
Systems (IROS). (1998)

8. Jager, M., Nebel, B.: Dynamic decentralized area partitioning for cooperating
cleaning robots. In: ICRA. (2002)

9. Schneider-Fontan, M., Mataric, M.: Territorial multi-robot task division. IEEE
Transactions on Robotics and Automation 15 (1998)

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. 2nd
edn. The MIT Press (2001)

11. Stone, P., Dresner, K., Fidelman, P., Jong, N.K., Kohl, N., Kuhlmann, G., Srid-
haran, M., Stronger, D.: The UT Austin Villa 2004 RoboCup four-legged team:
Coming of age. Technical Report UT-AI-TR-04-313, The University of Texas at
Austin, Department of Computer Sciences, AI Laboratory (2004)

Learning Automata as a Basis for Multi Agent

Reinforcement Learning

Ann Nowé, Katja Verbeeck, and Maarten Peeters�

Computational Modeling Lab, Vrije Universiteit Brussel,
Pleinlaan 2, Brussel 1050, Belgium

ann.nowe@vub.ac.be, kaverbee@vub.ac.be, mjpeeter@vub.ac.be

Abstract. In this paper we summarize some important theoretical re-
sults from the domain of Learning Automata. We start with single stage,
single agent learning schema’s, and gradually extend the setting to multi-
stage multi agent systems. We argue that the theory of Learning
Automata is an ideal basis to build multi agent learning algorithms.

1 Introduction

Learning Automata (LA) are adaptive decision making devices suited for oper-
ation in unknown environments [12]. Originally they were developed in the area
of mathematical psychology and used for modeling observed behavior. In its cur-
rent form, LA are closely related to Reinforcement Learning (RL) approaches
and most popular in the area of engineering. LA combine fast and accurate con-
vergence with low computational complexity, and have been applied to a broad
range of modeling and control problems. However, the intuitive, yet analyti-
cally tractable concept of learning automata makes them also very suitable as a
theoretical framework for Multi agent Reinforcement Learning (MARL).

Reinforcement Learning (RL) is already an established and profound theoret-
ical framework for learning in stand-alone or single-agent systems. Yet, extend-
ing RL to multi-agent systems (MAS) does not guarantee the same theoretical
grounding. As long as the environment an agent is experiencing is Markov, and
the agent can experiment sufficiently, RL guarantees convergence to the optimal
strategy. In a MAS however, the reinforcement an agent receives, may depend
on the actions taken by the other agents acting in the same environment. Hence,
the Markov property no longer holds. And as such, guarantees of convergence
are lost. In the light of the above problem it is important to fully understand
the dynamics of multi-agent reinforcement learning.

Although, they are not fully recognized as such, LA are valuable tools for
current MARL research. LA are updated strictly on the basis of the response
of the environment, and not on the basis of any knowledge regarding other
� Research funded by a Ph.D grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT Vlaanderen).

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 71–85, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 A. Nowé, K. Verbeeck, and M. Peeters

automata, i.e. nor their strategies, nor their feedback. As such LA agents are
very simple. Moreover, LA can be treated analytically. Convergence proofs do
exist for a variety of settings ranging from a single automaton model acting
in a simple stationary random environment to a distributed automata model
interacting in a complex environment.

In this paper we introduce the Learning Automaton as a Policy Iterator and
discuss some convergence issues. Then we move to collections of learning au-
tomata, that can independently converge to interesting solution concepts. We
study the single stage setting, including the analytical results. Then we general-
ize to interconnected learning automata, that can deal with multi agent multi-
stage problems. We also show how Ant Colony Optimization can be mapped to
the interconnected Learning Automata setting.

2 Variable Structure: Single Stage, Single Agent

Learning Automata (LA) are adaptive decision making devices suited for opera-
tion in unknown stochastic environments. Originally, they were developed in the
area of mathematical psychology [4], and used by psychologists and biologists
to describe the human behavior from psychological and biological viewpoints.
Nowadays, they are most popular in the domain of engineering. Since LA com-
bine fast and accurate convergence with low computational complexity, they can
be applied to a broad range of modeling and control problems. For instance, in
[17] an intelligent controller is designed, using learning automata theory, for an
automated vehicle that plans its own trajectory based on sensor and communica-
tion data. In [14] a learning-automata based solution to the capacity assignment
problem of communication networks is proposed.

The study of learning automata started in the 1960’s by Tsetlin and his
co-workers [16]. The early models were examples of fixed-structure stochastic
automata. In its current form, a LA corresponds to a variable structure stochastic
learning automaton.

2.1 Basic LA Schemes

A variable structure LA is closely related to a Reinforcement Learner of the
policy iteration type. In this section we introduce the basic case of a stateless
LA, corresponding to the single stage, single agent setting.

At each point in time the LA has a probability distribution over it’s actions,
denoted by p(t) = (p1(t), . . . , pl(t)) where pi(t) represents the probability for
selecting the ith action at time t and l denotes the number of actions. These
probabilities are adjusted in time based on a reinforcement signal coming from
the environment after an action has been performed by the automaton. Below
we introduce the most commonly used update schemes. First, we assume that
the reinforcement signal is binary, i.e. the action was a success or a failure. Then
we move to a more general setting.

Learning Automata as a Basis for Multi Agent Reinforcement Learning 73

Reward-Penalty with binary feedback. In case of success we have:⎧⎪⎪⎨
⎪⎪⎩

pi(t + 1) = pi(t) + a(1 − pi(t))
if action i was taken at time step t

pj(t + 1) = (1 − a)pj(t)
∀j �= i

where a belongs to the interval]0, 1[.
In case of failure this becomes:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi(t + 1) = pi(t) − bpi(t)
if action i was taken at time step t

pj(t + 1) = pj(t) + b[(l − 1)−1 − pj(t)]
∀j �= i

with b ∈]0, 1[and l the number of actions in the action set of the automaton.
The constants a and b are the reward and penalty parameters respectively.

When we set a = b, the algorithm is referred to as linear reward-penalty
(LR−P). When b is taken to be zero, so only reward is taken into account, it is
referred to as linear reward-inaction (LR−I). When a is small compared to b the
schema is called linear reward-ε-penalty (LR−εP).

The schema given above, applies to the binary feedback case, also referred to
as the P-model. More general schema’s allow the feedback signal to be drawn
form a set of discrete values, in this case we talk about a Q-model, and in case
the feedback is allowed to take a continuous range of values, the model is re-
ferred to as an S-model. The update schema for the more general S-model is
given below.

Reward-Penalty with continuous valued feedback. In the general setting
of continuous values reward, the update is given by:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi(t + 1) = pi(t) + a r(t)(1 − pi(t)) − b(1 − r(t))pi(t)
if action i was taken at time step t

pj(t + 1) = pj(t) − a r(t)pj(t) + b(1 − r(t))[(l − 1)−1 − pj(t)]
∀j �= i

with a ∈]0, 1[, b ∈]0, 1[, and l the number of actions of the action set of the
automaton. Again the constants a and b are the reward and penalty parameters
respectively. As mentioned above, depending on the ratio of a over b we get
(LR−P) if a = b, (LR−I) if b = 0 and (LR−εP) if b << a.

In the above schema’s it is assumed that the action set of the automaton is
finite. These automata are called Finite Action Learning Automata or for short
FALA. More general schema’s allow continuous actions sets, in these cases the
automata are Continuous Action Learning Automata or CALA. In this paper
we will only consider the FALA.

74 A. Nowé, K. Verbeeck, and M. Peeters

2.2 Illustration of LA Behavior

In Figure 1 we show the behavior of a 2-action reward penalty automaton with
reward probabilities 0.6 and 0.2 respectively, and illustrate the role of the pa-
rameters a and b. It should be noted that, in the context of LA, it is common
to use a linear, i.e. a proportional action selection mechanism.

In case of an (LR−I) schema with a = 0.1 the probability of the automaton’s
best action (i.e. action 1) converges rather smoothly to 1, see Figure 1 (Top
Left). We get a pure policy where all probability mass is given to the best action.
When we also take punishment into account, i.e. b > 0, then we no longer get
a pure policy. Figure 1 (Top Right) depicts the behavior of an (LR−εP) schema
with a = 0.1 and b = 0.05. This is a schema with a small penalty parameter
compared to the reward parameter. The policy approaches a pure policy, but
not quite. Note that the plot now shows 500 updates. The drop around update
450 is due to the fact that with some non-zero probability action 2 is selected

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Updates

P
ro

ba
bi

lit
y

of
 A

ct
io

n
1

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Updates

P
ro

ba
bi

lit
y

of
 A

ct
io

n
1

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Updates

P
ro

ba
bi

lit
y

of
 A

ct
io

n
1

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Updates

P
ro

ba
bi

lit
y

of
 A

ct
io

n
1

Fig. 1. Top Left: LR−I a=0.1, Top Right: LR−P a=0.1 b=0.05, Bottom Left: LR−P

a=b=0.1,Bottom Right: LR−I with a = b = 0.001

Learning Automata as a Basis for Multi Agent Reinforcement Learning 75

which receives with probability 0.2, a reward, this is what happened at this
point.

In Figure 1 (Top Right) we plot the behavior of an (LR−P) schema with
a = b = 0.1. The behavior is much more oscillatory for these settings of a and
b. However the oscillations tend to become smaller with the number of updates.
If we further reduce a and b we get a smoother behavior. In Figure 1 (Bottom
left) we further reduce a and b to 0.001. We observe on the one hand that the
oscillations become much smaller and on the other hand the learning process
slows down significantly. The figure now shows 500 update steps. It should be
noted that the LA in figures Figure 1 (Bottom left) and Figure 1 (Bottom right)
no longer converge to a pure policy but to a mixed policy. In general we observe
that if the ratio between a and b, i.e. γ = a

b approaches 1, the more the action
probabilities approach the reward probabilities, and express the quality of the
action like the Q-values in value iteration RL [15].

In the sequel of our discussion we will in particular be interested in the conver-
gence to pure policies. Therefore we plotted the behavior of the (LR−I) schema
on the same problem, with b = 0 and for different settings of the parameter a,
i.e. a = 0.1, a = 0.5 and a = 0.8. The plots in Figure 2 show that the bigger
we set a, the faster the convergence, so the parameter a in an (LR−I) schema
can be considered as a learning rate. However, the bigger we set a the higher
the probability of convergence to a suboptimal action, this is due to the fact
that an LR−I schema is only guaranteed to be ε-optimal (see following section).
So we should expect that with some probability the action probability of action
1 converges to zero, if parameter a is set too close to 1. This is illustrated in
Table 1, which gives the percentage of runs over which action 1 converges to 0
as a function of a. From Table 1 it is clear that if one were to tolerate a 5%
error, a suitable value for the step size parameter a would be 0.3, which would
substantially increase the speed of convergence.

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Updates

Pr
ob

ab
ilit

y
of

 A
ct

io
n

1

a=0.1

a=0.5

a=0.8

Fig. 2. LR−I a=0.1, a=0.5 and a=0.8

76 A. Nowé, K. Verbeeck, and M. Peeters

Table 1. Table taken from [12]

a % of wrong
convergence

0.9 22
0.5 12
0.3 5
0.1 0
0.01 0
0.001 0

In the following section we state some formal convergence properties of Learn-
ing automata in stationary environments.

2.3 Some Convergence Properties More Formally

In the above, it is assumed that the reward probability for a particular action is
constant. This implies that the environment is stationary and that the optimal
action am can be identified. The goal of the learning automaton is to find this
optimal action, without knowing the environments’ reward or penalty probabil-
ities. The penalty parameter1 cm for the optimal action has the property that
cm = mini{ci}. Optimality of the learning automaton can then be defined using
quantity M(t) which is the average penalty for a given action probability vector
and which can be written as:

M(t) = E[r(t) = 0|p(t)] =
l∑

i=1

cipi(t)

Consider for instance a pure-chance automaton, i.e. the action probability
vector p(n) is given by: pi(n) = 1

l for all i : 1, . . . , l. Then M(t) is a constant
(denoted by M0) and given by:

M0 =
1
l

l∑
i=1

ci

Definition 1. A learning automaton is called optimal if

lim
t→∞E[M(t)] = cm

While optimality is desirable in stationary environments, practically it may not
be achieved in a given situation. In this case, ε-optimality may be reached:

Definition 2. A learning automaton is called ε-optimal if for any arbitrary ε >
0, and proper choice of learning algorithm parameters holds that

limt→∞E[M(t)] < cm + ε

1 cm = 1 − rm, with rm the reward parameter.

Learning Automata as a Basis for Multi Agent Reinforcement Learning 77

Put differently, the objective of the learning scheme is to maximize the expected
value of reinforcement received from the environment, i.e. E[r(t)|p(t) = p] by
searching the space of all possible action probability vectors. Stated as above, a
learning automata algorithm can be viewed as a policy iteration approach.

In arbitrary environments and for arbitrary initial conditions, optimality or
ε-optimality may be hard to reach. Some form of desired behavior in these cases
can be specified by expediency and absolute expediency.

Definition 3. A learning automaton is called expedient if it performs better than
a pure-chance automaton, i.e. limt→∞M(t) < M0

Definition 4. A learning automaton is said to be absolutely expedient if

E[M(t + 1)|p(t)] < M(t)

Absolute expediency imposes an inequality on the conditional expectation of
M(t) at each instant. In [12] it is shown that in stationary environments absolute
expediency implies ε-optimality.

The reinforcement learning algorithms given above, i.e the (LR−P), (LR−I)
and (LR−εP) schemes show the following asymptotic behavior: the (LR−I)
schema is proved to be absolutely expedient and thus ε-optimal in stationary
environments. The (LR−P) schema is found to be expedient, while the (LR−εP)
schema is also ε-optimal, [12].

3 Automata Games Games: Single Stage, Multi-agent

So far we have assumed that only one single automaton was acting in the en-
vironment. In this section we consider the more interesting case of Automata
games. In Automata games multiple LA are placed in the same environment
and select their actions independently. This setting corresponds to the single
stage multi agent learning case. Clearly, the learning problem is more challeng-
ing, since in general the feedback received by a single LA depends not only on
the action taken by that LA, but also on the actions taken by the other LA.
In the context of LA, this effect of non stationarity is referred to as the state
dependent non stationarity.

With respect to learning in multi agent systems, the following theorem of
Narendra and Wheeler, apparently as yet still not know in the multi agent learn-
ing community, is of great value.

Theorem 1. (Narendra and Wheeler, 1989) Players in an n-person non-zero
sum game who use independently a reward-inaction update scheme with an ar-
bitrarily small step size will always converge to a pure equilibrium point. If the
game has a NE, the equilibrium point will be one of the NE.

Important to note is that the players are independent automata each applying
a (LR−I) update scheme. The fact that they are independent allows each LA to
update the probability vector over its actions based on private information only,

78 A. Nowé, K. Verbeeck, and M. Peeters

i.e. its own action taken, and its own reward received from the environment.
The automaton gets no information of the other automata whatsoever. It is not
informed on the actions taken by the other automata, nor their reward received.
In the context of multi agent systems, where communication is usually assumed
to come with some cost, this is a very important feature. Further, this result also
applies to games with stochastic rewards. In these games repeated sampling is
necessary to find out the expected reward of an action.

3.1 The Solution Concept

Theorem 1 guarantees convergence to a pure equilibrium point. If the game has
a pure Nash Equilibrium, the team of LA will converge to one of the NE. In
case multiple NE are present in the game, what NE will be reached depends on
the initial setting of the action probabilities, and the region of attraction of each
of the NE. Nevertheless a NE is often proposed as an interesting solution of a
game, there might be other solution concepts of interest depending on the type
of the game.

In a common interest game the individual interest coincides with the group
interest. An example of a common interest game is the penalty game given
in Figure 3. This game has 3 NE, of which 2 are Pareto optimal2. From a

a21 a22 a23

a11 (10, 10) (0, 0) (k, k)
a12 (0, 0) (2, 2) (0, 0)
a13 (k, k) (0, 0) (10, 10)

Fig. 3. The penalty game from [5]. Mis-coordination at the Pareto optimal Nash equi-
libria (a11, a21) and (a13, a23) is penalized with k, where k < 0.

learning point of view, when the payoff matrix is not known to the agents and
rewards are stochastic, coordinating on one of the NE is not obvious. Since
two NE yield the same reward to both agents, the agents are faced with a
difficult coordination problem. Mis-coordination leads to severe punishments.
However LA have no problem with this. LA are guaranteed to converge, without
any form of communication3 to a pure NE in the game. Convergence to Pareto
Optimal (Nash) Equilibrium is however not guaranteed. To which NE the LA
team will converge depends on the initial settings of the action probabilities and
the strength of attraction of each of the NE.

How to make independent LA converge to a Pareto optimal NE? The theorem
stated above only assures the convergence to a NE, however the NE converged
to is not necessarily the best one present in the game. As shown in [19, 18], it is
2 A solution is called Pareto optimal if there is no other solution in which all players

simultaneously do better and at least one player is doing strictly better.
3 Meaning that actions taken and rewards received by other agents are not communi-

cated.

Learning Automata as a Basis for Multi Agent Reinforcement Learning 79

possible to force the LA to search for other, possibly better, NE by excluding one
or more actions involved in the NE currently converged to. Excluding actions
forces the LA to explore other regions of the game and converge to other NE. In
case of a two agent games, the exclusion of the actions of both agents involved in
the NE will not remove any strictly better NE form the game, only the one just
converged to. In the case of 3 agents or more, more careful exclusions and random
restarts are necessary in order not to miss interesting NE. The strength of the
approach is that the LA will only visit points of attraction, where the potential
interesting NE are located. Exhaustive visit of all joint actions is not required.

In case of a conflicting interest, the theorem of Narendra and Wheeler also
guarantees convergence to some NE, but what do we aim for here? In conflicting
interest (i.e. non common interest) the solution concept is not always clear,
and depends on the relationship between the individual rewards given to the
agents and the goal of the overall systems. NE, correlated equilibria but also
Pareto optimal solutions can be reached by a team of LA using the idea of
repeatedly exclusion one or more actions of the attractors [18]. Therefore LA are
ideal building blocks for multi agent learning and this for a variety of learning
objectives.

4 Interconnected LA for MDPs or Multi-stage, Multi-LA
But Still Single Agent

In this section we further generalize the setting, and move to multistage prob-
lems of the Markovian decision problem(MDP) type. We get a system of inter-
connected LA by putting in each of the action states of the MDP a single LA.
These LA are activated sequentially. When a LA is active in a certain state, the
probability that a particular LA will be the next active LA, is determined by
the action taken by the currently active LA and the current active state only. In
other words, these probabilities are the state transition probabilities of the MDP.
Again Wheeler and Narendra offer an important theoretical result on which we
can build upon for multi agent learning.

4.1 Update Rule for Interconnected LA

As stated above, only one LA is active at each time step and the transition
to the next state triggers the LA from that state to become active and take
some action. The updates follow a Monte Carlo approach. This means that the
learning automaton LAi active in state i is not immediately informed of the one-
step reward resulting from taking its action ak, and leading to state j. When the
state i is visited again, the LAi receives two pieces of data: 1) the cumulative
reward generated by the process up to the current time step and 2) the current
global time. From these, LAi computes the incremental reward generated since
this last visit at time t and the corresponding elapsed global time Δt. The
environment response or the input to LAi is then taken to be:

r(t + m) =
Ri

k(t, t + m)
n

(1)

80 A. Nowé, K. Verbeeck, and M. Peeters

where Ri
k(t, t+m) is the cumulative total reward generated for action ak in state

i and n the cumulative total time elapsed4. The authors in [20] denote updating
rules (2.1) with the environment response of equation (1) as learning scheme T1.
They prove that this interconnected LA-model is capable of solving the MDP.

Theorem 2 (Wheeler and Narendra, 1986). Associate with every action
state i of an N state Markov chain, an automaton LAi using learning scheme
T1 and having li actions be associated with. Assume that the Markov Chain
corresponding to each policy π is ergodic5 . Then, the group of learning algorithms
is ε optimal in the controlled Markov chain.

5 Interconnected LA and Their Relationship to Ant
Colony Optimization

There is an apparent relationship between the updating of action probabilities
in interconnected LA, and the way ant algorithms update the pheromone trails
and as such the probabilities of selecting an action.

Ant Colony Optimization, ACO, [8, 7] is a relatively new meta heuristic based
on the observation that real ants are capable of finding the shortest path between
2 locations. To do this, ants rely on a system of indirect communication through
pheromones. An ant leaves a trail of pheromones while it walks. Other ants
that encounter this trail have a high probability of following it, and reinforcing
it with their own pheromones. When faced with multiple possible paths this
system allows an ant colony to converge on a single path. In addition, since
shorter paths allow faster travel, they accumulate pheromones faster and are
more likely to be selected by the colony.

Based on this mechanism Colorni et al [9, 6] proposed the first algorithm of the
ant colony meta heuristic. The meta heuristic consists of a number of algorithms
that mimic the pheromone communication of real ants in order to solve a wide
range of optimization problems. In ACO algorithms a number of ant like agents
construct solutions by adding (problem specific) solution components to a partial
solution. In our particular case these solution components are network links
that are added to an ant’s path. The decision of which component to add is
made probabilistically, based on an artificial pheromone associated with each
component. The original Ant System [9] assigned the following probability to
each possible next component c:

P (c) =
[τ(c)]α[η(c)]β∑

a
[τ(a)]α[η(a)]β

(2)

The probability of adding a solution component depends on the pheromone
τ that is associated with it as well as a problem specific heuristic value η. The
4 The one step reward is normalized so that r remains in [0, 1].
5 A Markov Chain x(n)nis said to be ergodic when the distribution of the chain con-

verges to a limiting distribution as n → ∞.

Learning Automata as a Basis for Multi Agent Reinforcement Learning 81

powers α and β are algorithm parameters that determine an ant’s sensitivity
toward both factors. The probability is normalized by taking the sum over all
possible next components a.

When an ant agent completes its solution, it updates the pheromones con-
centrations for each of the solution components it used. The update for each
component depends on the global quality of the solution the agent produced.
Pheromone updates consist of two parts: an evaporation and a pheromone
deposit.

τ ← ρτ + Δτ (3)

Pheromone evaporation is simulated by multiplying the current amount of
pheromones with a factor 0 ≤ ρ < 1. Evaporation is needed to bound the
increase in pheromone concentrations and prevent early stagnation of the algo-
rithm [1, 10]. Pheromone evaporation can be global (all pheromones are evapo-
rated at regular intervals) or can be performed only when a component receives
a pheromone deposit.

The pheromone deposit adds additional pheromones Δτ(c) to the components
that were used in an ant’s solution. In Ant Cycle, a basic ACO algorithm, the
amount of pheromone contributed by a single ant depends on the quality of the
solution found by ant k, here represented by rk.

Δτij(t, t + n) = Σm
k=1Δτk

ij(t, t + n) (4)

Δτk
ij(t, t + n) is the total amount of pheromone added to the link ij in the

interval [t, t + n] and consists of individual contributions of all ants (k : 1 . . . m),
i.e.

Δτk
ij(t, t + n) =

{
rk if k-th ant used edge (i, j) in its solution
0 otherwise. (5)

To make the mapping to the interconnected network of LA used for controlling
a MDP, one should notice that an ant can be viewed as a dummy mobile agent,
that walks around in the graph of interconnected LA, makes states/LA active
and brings information so that the LA involved can update their local state.
The main difference is that in the ant algorithms several ants are walking around
simultaneously, and thus several LA can be active at the same time. In the model
of Wheeler and Narendra given in Theorem 2 above, there is only one LA active
at a time.

If we translate the pheromone updates into action probability updates, and
hereby omitting the heuristic component, i.e. putting β = 0, we get

Pij(t + n) ← Pij(t) + rk(
[Δτij]

[ΣjΔτij]
− Pij(t)) (6)

And if we single out the contribution of a single ant k we get:

Pij(t + n) ← Pij(t) + rk(1 − Pij(t)) (7)

For the case the single ant included edge ij in its solution,

Pij(t + 1) ← Pij(t) + rk(0 − Pij(t)) (8)

82 A. Nowé, K. Verbeeck, and M. Peeters

with rk = Rk

ρ[Σjτij]+Rk
, where Rk represents the total reward collect by ant k on

its path. This matches a LR−I scheme with real valued reward, and a = 1.
In section 2.3 it was assumed that a was strictly smaller than 1, this is im-

portant for the theoretical results to hold. In conclusion, ant algorithms apply a
LR−I schema with an extreme setting for a. However the heuristic component
in the action selection formula, provided it is chosen in an appropriate manner,
helps to drive the system in the right direction, and as such avoids premature
convergence to a suboptimal solution.

6 Markov Games: Multi-stage, Multi Agent

A Markov game can be seen as a extension of a MDP by putting in each state a
team of agents playing a game against each other. In the special case where the
agents have the same payoff function, a Markov game has also been referred to
as a Multi-agent Markov Decision Processes [11]. Formally, a MMDP is a tuple
(S, n, (Ai)i:1...n, P r, R) where S is a set of states, n the number of agents, Ai a
finite set of actions available to agent i, P r : S × A1 × . . . × An × S → [0, 1] a
transition function and R : S → R the (expected) global reward function.

In order to solve an MMDP , Boutilier [2], decomposes the MMDP into local
(single stage) state games and the agents search for coordinated joint actions
at the individual state games instead of trying to find a coordinated sequen-
tial policy. It is assumed that every agent knows the structure of the game and
therefore is able to compute the optimal value function for the joint MDP. In
[3], the agents reason explicitly about specific coordination mechanisms. In our
view, the MMDP is a sequence of one stage games as in [2], however, our agents
are independent. The only assumption made is that the MMDP has a tree struc-
ture, i.e. there are no loops in the state diagram of the MMDP and the paths are
disjunct. For now we assume that the transitions are deterministic, but unlike
[2], we allow that the rewards of the stage games are stochastic. In Figure reffig-
ure:mmdp2 we show a two stage two player game, where each agent has in each
stage 2 actions to choose from.

This situation can be mapped into a hierarchy of LA as follows :
LA theory guarantees convergence to a Nash Path in case the LA are using

a LR−I schema, and the multistage game is a common interest game with ab-
sorbing states without loops, i.e. a game tree. Indeed, in [13], it was shown that
hierarchical learning automata systems were particularly suited for representing
systems in which decisions are made at multiple levels using decentralized deci-
sion makers. A simple problem of consistently labeling images was given. At a
first stage, the object had to be recognized and in a second stage the background
of the image was determined.

The following behavior is proved for a collective of n LR−I hierarchical learn-
ing automata involved in L levels [13]:

Theorem 3. If for a collective of n hierarchical learning automata involved in
L levels of identical payoff games, the following assumptions hold:

Learning Automata as a Basis for Multi Agent Reinforcement Learning 83

– all automata use the S-model reward-inaction scheme,
– at any stage t and for every hierarchical agent j all the L automata of agent

j involved in the play are aware of the outcomes of the L games played at
each of the L levels, and

– the reward parameter of the level l + 1 automaton chosen at stage t varies
with time as:

αl+1
reward(t) =

αl
reward(t)
pl

i(t + 1)

��
��
s1

��
��
s2

��
��
s3

��
��
s4

��
��
s5

��
��
s6

����������

����������

����������

����������

�

+10

−10

+5

(a, a); (b
, b)

(a, b); (b, a)

(a, a); (a
, b)

(a, b); (b, a)

(∗, ∗)

�
�

	

Fig. 4. A simple MMDP with a possible coordination problem in both stages

LA1
11

LA2
11 LA2

12

LA1
21

LA2
21 LA2

22

GameM2 = [m′
ij,kl]4×4

GameM1 = [mij]2×2

�

�
�

��

�

�
�

��

�

�
�
�
��

�

�
�
�
��

�

�
�
�
��

�

�
�
�
��

a11
11 a12

11 a11
21 a12

21

a21
11 a22

11 a21
12 a22

12 a21
21 a22

21 a21
22 a22

22

�

�

r2

r1

�

�
�

��

�

�
�

��
a1 a2 b1 b2

Agent 1 Agent 2

Fig. 5. An interaction of two hierarchies of learning automata at 2 stages [13]

84 A. Nowé, K. Verbeeck, and M. Peeters

where i is the action taken by this automaton during the previous game
iteration, and pl

i(t + 1) is the probability that the previous level automaton
has on action i that leads to the current level l automaton.

then the overall system is proved absolutely expedient.

Stated differently, this means that the overall performance of the system will
improve at each time step and convergence is assured toward an local optimal
path. By applying again the idea of sequential exclusions of actions, we can make
the hierarchical LA converge to the optimal Nash path, which is well defined in
a common interest Markov game. [19, 18] The research challenge is to provide a
proof of convergence to a Nash path in the more general setting of conflicting
interest games. This combined with a method for bootstrapping, would be a
major contribution in multi agent learning.

7 Conclusion

In this paper we have argued that LA are very interesting building blocks for
learning in multi agent systems. The LA can be viewed as policy iterators, who
update their action probabilities based on private information only. This is a very
attractive property in applications where communication is expensive. LA are
in particular appealing in games with stochastic payoffs. They allow to design
multi agent learning algorithms with different learning objectives. Further, LA
have also proved to be able to work in asynchronous settings, where the actions
of the LA are not taken simultaneously and where reward comes with delay.

References

1. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence, From Nat-
ural to Artificial Systems. Santa Fe Institute studies in the sciences of complexity.
Oxford University Press, 1999.

2. C. Boutilier. Planning, learning and coordination in multiagent decision processes.
In Proceedings of the 6th Conference on Theoretical Aspects of Rationality and
Knowledge, pages 195 – 210, Renesse, Holland, 1996.

3. C. Boutilier. Sequential optimality and coordination in multiagent systems. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pages 478 – 485, Stockholm, Sweden, 1999.

4. R.R. Bush and F. Mosteller. Stochastic Models for Learning. Wiley, New York,
1958.

5. C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In Proceedings of the 15th National Conference on Artificial
Intelligence, pages 746 – 752, 1998.

6. A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Trubian.
Heuristics from nature for hard combinatorial optimization problems. International
Transactions in Operational Research, 1996.

7. Marco Dorigo, Gianni Di Caro, and Luca Maria Gambardella. Ant algorithms for
discrete optimization. Artificial Life 5, pages 137–172, 1999.

Learning Automata as a Basis for Multi Agent Reinforcement Learning 85

8. Marco Dorigo and Gianno Di Caro. The ant colony optimization meta-heuristic.
D.Corne, M.Dorigo and F.Glover (Eds.), New Ideas In Optimization, Maidenhaid,
UK: McGraw-Hill, 1999.

9. Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system: Optimiza-
tion by a colony of cooperating agents. IEE Transactions on Systems, Man, and
Cybernetics, 1996.

10. Marco Dorigo and Thomas Stützle. Ant Colony Optimization. The MIT Press,
2004.

11. M. Littman. Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the 11th International Conference on Machine Learning, pages
322 – 328, 1994.

12. K. Narendra and M. Thathachar. Learning Automata: An Introduction. Prentice-
Hall International, Inc, 1989.

13. K.S. Narendra and K. Parthasarathy. Learning automata approach to hierarchical
multiobjective analysis. Technical Report Report No. 8811, Electrical Engineering
Yale University, New Haven, Connecticut, 1988.

14. B.J. Oommen and T.D. Roberts. Continuous learning automata solutions to the
capacity assignment problem. IEEE Transactions on Computations, 49:608 – 620,
2000.

15. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

16. M.L. Tsetlin. Automaton theory and modelling of biological systems. Mathematics
in Science and Engineering, 102, 1973.

17. C. Unsal, P. Kachroo, and J.S. Bay. Multiple stochastic learning automata for
vehicule path control in an automated highway system. IEEE Transactions on
Systems, Man, and Cybernetics, Part A, 29:120 – 128, 1999.

18. K. Verbeeck. Coordinated Exploration in Multi-Agent Reinforcement Learning.
PhD thesis, Computational Modeling Lab, Vrije Universiteit Brussel, Belgium,
2004.

19. K. Verbeeck, A. Nowé, K. Tuyls, and M.Peeters. Multi-agent reinforcement learning
in stochastic single and multi-stage games. In Kudenko et al (Eds): Adaptive Agents
and Multi-Agent Systems II, pages 275–294. Springer LNAI 3394, 2005.

20. R.M. Wheeler and K.S. Narendra. Decentralized learning in finite markov chains.
IEEE Transactions on Automatic Control, AC-31:519 – 526, 1986.

Learning Pareto-optimal Solutions in

2x2 Conflict Games

Stéphane Airiau and Sandip Sen

Department of Mathematical & Computer Sciences,
The University of Tulsa, USA

{stephane, sandip}@utulsa.edu

Abstract. Multiagent learning literature has investigated iterated
two-player games to develop mechanisms that allow agents to learn to
converge on Nash Equilibrium strategy profiles. Such equilibrium config-
urations imply that no player has the motivation to unilaterally change
its strategy. Often, in general sum games, a higher payoff can be ob-
tained by both players if one chooses not to respond myopically to the
other player. By developing mutual trust, agents can avoid immediate
best responses that will lead to a Nash Equilibrium with lesser payoff.
In this paper we experiment with agents who select actions based on ex-
pected utility calculations that incorporate the observed frequencies of
the actions of the opponent(s). We augment these stochastically greedy
agents with an interesting action revelation strategy that involves strate-
gic declaration of one’s commitment to an action to avoid worst-case,
pessimistic moves. We argue that in certain situations, such apparently
risky action revelation can indeed produce better payoffs than a non-
revealing approach. In particular, it is possible to obtain Pareto-optimal
Nash Equilibrium outcomes. We improve on the outcome efficiency of a
previous algorithm and present results over the set of structurally dis-
tinct two-person two-action conflict games where the players’ preferences
form a total order over the possible outcomes. We also present results on
a large number of randomly generated payoff matrices of varying sizes
and compare the payoffs of strategically revealing learners to payoffs at
Nash equilibrium.

1 Introduction

The goal of a rational learner, repeatedly playing a stage game against an op-
ponent, is to maximize its expected utility. In a two-player, general-sum game,
this means that the players need to systematically explore the joint action space
before settling on an efficient action combination1. Both agents can make con-
cessions from greedy strategies to improve their individual payoffs in the long
run [1]. Reinforcement learning schemes, and in particular, Q-learning [2] have
1 Though the general motivation behind our work and the proposed algorithms gen-

eralize to n-person games, we restrict our discussion in this paper to two-person
games.

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 86–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Pareto-optimal Solutions in 2x2 Conflict Games 87

been widely used in single-agent learning situations. In the context of two-player
games, if one agent plays a stationary strategy, the stochastic game becomes a
Markov Decision Process and techniques like Q-learning can be used to learn to
play an optimal response against such a static opponent. When two agents learn
to play concurrently, however, the stationary environment assumption does not
hold any longer, and Q-learning is not guaranteed to converge in self-play. In
such cases, researchers have used the goal of convergence to Nash equilibrium in
self-play, where each player is playing a best response to the opponent strategy
and does not have any incentive to deviate from its strategy. This emphasis on
convergence of learning to Nash equilibrium is rooted in the literature in game
theory [3] where techniques like fictitious play and its variants lead to Nash
equilibrium convergence under certain conditions.

Convergence can be a desirable property in multiagent systems, but converg-
ing to just any Nash equilibrium is not necessarily the preferred outcome. A Nash
equilibrium of the single shot,i.e., stage game is not guaranteed to be Pareto op-
timal2. For example, the widely studied Prisoner’s dilemma (PD in Table 1(b))
game has a single pure strategy Nash equilibrium that is defect-defect, which is

Table 1. Prisoner’s dilemma and Battle of Sexes games

(a) Battle of the Sexes

C D

C 1,1 3,4

D 4,3 2,2

(b) Prisoners’ dilemma

C D

C 3,3 1,4

D 4,1 2,2

dominated by the cooperate-cooperate outcome. On the other hand, a strategy
that is Pareto Optimal is not necessarily a Nash equilibrium, i.e., there might be
incentives for one agent to deviate and obtain higher payoff. For example, each
of the agents has the incentive to deviate from the cooperate-cooperate Pareto
optima in PD. In the context of learning in games, it is assumed that the players
are likely to play the game over and over again. This opens the possibility for
such defections to be deterred or curtailed in repeated games by using disin-
centives. Actually, in the context of repeated games, the Folks Theorems ensure
that any payoffs pair that dominates the security value3 can be sustained by a
Nash equilibrium. This means that in the context of the repeated games, Pareto
optimal outcome can be the outcome of a Nash equilibrium. In [4], Littman and

2 A Pareto optimal outcome is one such that there is no other outcome where some
agent’s utility can be increased without decreasing the utility of some other agent.
An outcome X strongly dominates another outcome B if all agents receive a higher
utility in X compared to Y. An outcome X weakly dominates (or simply dominates)
another outcome B if at least one agent receives a higher utility in X and no agent
receives a lesser utility compared to outcome Y. A non-dominated outcome is Pareto
optimal.

3 The security value is the minimax outcome of the game: it is the outcome that a
player can guarantee itself even when its opponent tries to minimize its payoff.

88 S. Airiau and S. Sen

Stone present an algorithm that converges to a particular Pareto Optimal Nash
equilibrium in the repeated game.

It is evident that the primary goal of a rational agent, learning or otherwise, is
to maximize utility. Though we, as system designers, want convergence and cor-
responding system stability, those considerations are necessarily secondary for
a rational agent. The question then is what kind of outcomes are preferable for
agents engaged in repeated interactions with an uncertain horizon, i.e., without
knowledge of how many future interactions will happen. Several current multi-
agent learning approaches [4, 5, 6] assume that convergence to Nash equilibrium
in self-play is the desired goal, and we concur since it is required to obtain a
stable equilibrium. We additionally claim that any Nash equilibrium that is also
Pareto optimal should be preferred over other Pareto optimal outcomes. This
is because both the goals of utility maximization and stability can be met in
such cases. But we find no rational for preferring convergence to a dominated
Nash equilibria. Based on these considerations we now posit the following goal
for rational learners in self-play:

Learning goal in repeated play: The goal of learning agents in re-
peated self-play with an uncertain horizon is to reach a Pareto-optimal
Nash equilibria (PONE) of the repeated game.

We are interested in developing mechanisms by which agents can produce
PONE outcomes. In this paper, we experiment with two-person, general-sum
games where each agent only gets to observe its own payoff and the action played
by the opponent, but not the payoff received by the opponent. The knowledge of
this payoff would allow the players to compute PONE equilibria and to bargain
about the equilibrium. For example the algorithm in [4] assumes the game is
played under complete information, and the players compute and execute the
strategy to reach a particular equilibrium (the Nash bargaining equilibrium).
However, the payoff represents a utility that is private to the player. The player
may not want to share this information. Moreover, sharing one’s payoff struc-
ture requires trust: deceptive information can be used to take advantage of the
opponent. The ignorance of the opponent’s payoff requires the player to estimate
the preference of its opponent by its actions rather than by what could be com-
municated. By observing the actions played, our goal is to make players discover
outcomes that are beneficial for both players and provide incentive to make these
outcomes stable. This is challenging since agents cannot realize whether or not
the equilibrium reached is Pareto Optimal.

We had previously proposed a modification of the simultaneous-move game
playing protocol that allowed an agent to communicate to the opponent its irre-
vocable commitment to an action [7]. If an agent makes such a commitment, the
opponent can choose any action in response, essentially mirroring a sequential
play situation. At each iteration of the play, then, agents can choose to play
a simultaneous move game or a sequential move game. The motivation behind
this augmented protocol is for agents to build trust by committing up front to a
“cooperating” move, e.g., a cooperate move in PD. If the opponent myopically
chooses an exploitative action, e.g., a defect move in PD, the initiating agent

Learning Pareto-optimal Solutions in 2x2 Conflict Games 89

would be less likely to repeat such cooperation commitments, leading to out-
comes that are less desirable to both parties than mutual cooperation. But if
the opponent resists the temptation to exploit and responds cooperatively, then
such mutually beneficial cooperation can be sustained.

We view the outcome of a Nash equilibrium of the one shot game as an
outcome reached by two players that do not want to try to build trust in search of
an efficient outcome. Though our ultimate goal is to develop augmented learning
algorithms that provably converge to PONE outcomes of the repeated game, in
this paper we highlight the advantage of outcomes from our augmented learning
schemes over Nash equilibrium outcomes of the single shot, stage game. In the
rest of the paper, by Nash equilibrium, we refer to the Nash equilibrium of the
stage game, which is a subset of the set of Nash equilibria of the repeated version
of the stage game.

We have empirically shown, over a large number of two-player games of vary-
ing sizes, that our proposed revelation protocol, that is motivated by consider-
ations of developing trusted behavior, produces higher average utility outcome
than Nash equilibrium outcomes of the single-shot games[7]. For a more sys-
tematic evaluation of the performance of our proposed protocol, we study, in
more detail, all two-player, two-action conflict games to develop more insight
about these results and to improve on our previous approach. A conflict game
is a game where both players do not view the same outcome as most profitable.
We are not interested in no-conflict games as the single outcome preferred by
both players is easily learned. We use the testbed proposed by Brams in [8] and
consisting of all 2x2 structurally distinct conflict games. In these games, each
agent rank orders each of the four possible outcomes. On closer inspection of the
results from our previous work, we identified enhancement possibilities over our
previous approaches. In this paper, we present the updated learners, the corre-
sponding testbed results and the challenges highlighted by those experiments.

2 Related Work

Over the past few years, multiagent learning researchers have adopted conver-
gence to Nash equilibrium of the repeated game as the desired goal for a rational
learner [4, 5, 6]. By modeling its opponent, Joint-Action Learners [9] converge to
a Nash equilibrium in cooperative domains. By using a variable rate, WoLF [6]
is guaranteed to converge to a Nash equilibrium in a two-person, two-actions it-
erated general-sum game, and converges empirically on a number of single-state,
multiple state, zero-sum, general-sum, two-player and multi-player stochastic
games. Finally, in any repeated game AWESOME [5] is guaranteed to learn to
play optimally against stationary opponents and to converge to a Nash equilib-
rium in self-play.

Some multiagent learning researchers have investigated other non-Nash equi-
librium concepts like coordination equilibrium [10] and correlated equilibrium [11].
If no communication is allowed during the play of the game, the players choose
their strategies independently. When players use mixed strategies, some bad

90 S. Airiau and S. Sen

outcome can occur. The concept of correlated equilibrium [12] permits depen-
dencies between the strategies: for example, before the play, the players can
adopt a strategy according to the joint observation of a public random variable.
[11] introduces algorithms which empirically converge to a correlated equilibrium
in a testbed of Markov game.

Consider the example of a Battle of Sexes game represented in Table 1(a).
The game models the dilemma of a couple deciding on the next date: they are
interested to go in different places, but both prefer to be be together than alone.
In this game, defecting is following one’s own interest whereas cooperating is
following the other’s interest. If both defect, they will be on their own, but enjoy
the activity they individually preferred, with a payoff of 2. If they both cooperate,
they will also be on their own, and will be worse off, with the lowest payoff
of 1, as they are now participating in the activity preferred by their partner.
The best (and fair) solution would consists in alternating between (Coordinate,
Defect) and (Defect, Coordinate) to obtain an average payoff of 3.5. The Nash
equilibrium of the game is to play each action with probability 0.5, which yields
an average payoff of 2.5. Only if the players observe a public random variable
can they avoid the worst outcomes.

The commitment that one player makes to an action in our revelation pro-
tocol can also be understood as a signal that can be used to reach a correlated
equilibrium [11]. For example, in the Battle of Sexes game, if a player commits
to cooperate, the other player can exploit the situation by playing defect, which
is beneficial for both players. When both players try to commit, they obtain 3.5
on average.

3 Game Protocol and Learners

In this paper, we build on the simultaneous revelation protocol [7]. Agents play
an nxn bimatrix game. At each iteration of the game, each player first announces
whether it wants to commit to an action or not (we will also use reveal an
action or not). If both players want to commit at the same time, one is chosen
randomly with equal probability. If none decides to commit, then both players
simultaneously announce their action. When one player commits an action, the
other player plays its best response to this action. Note that for now, the answer
to the committed action is myopic, we do not consider yet a strategic answer
to the revealed action. Each agent can observe whether the opponent wanted
to commit, which agent actually committed, and which action the opponent
played. Only the payoff of the opponent remains unknown, since its preferences
are considered private.

Let us use as an example matrix #27 of the testbed (Table 2(a)). The only
Nash equilibrium of the stage game is when both players play action 0, but this
state is dominated by the state where both agents play action 1. If the row
player commits to play action 1, the column player plays its best response that
is action 1: the row player gets 3, and the column player gets 4, which improves
on the payoff of the Nash equilibrium where row gets 2 and column gets 3. The

Learning Pareto-optimal Solutions in 2x2 Conflict Games 91

Table 2. Representative games where proposed strategy enhancement leads to
improvement

(a) Game 27

0 1

0 2, 3 4, 1

1 1, 2 3, 4

(b) Game 29

0 1

0 3, 2 2, 1

1 4, 3 1, 4

(c) Game 48

0 1

0 3, 3 2, 1

1 4, 2 1, 4

column player could ensure a payoff of 3 (the payoff of the Nash equilibrium)
by revealing action 0, since the row player would play the best response, i.e.
action 0. However, by choosing not to commit, the column player let the row
player commit: thus the column player obtains its most preferred outcome of 4.
If the row player learns to reveal action 1 and the column learns not to reveal in
this game matrix, the two learners can converge to a Pareto optimal state that
dominates Nash equilibrium.

3.1 Learners

The agents used are expected utility based probabilistic (EUP) learners. An
agent estimates the expected utility of each of its action and plays by sampling
a probability distribution based on the expected utilities. First, the agent must
decide whether to reveal or not. We will use the following notation:

– Q(a,b) is the payoff of the agent when it plays a and the opponent plays b.
– BR(b) denotes the best response to action b.
– pOR is the probability that the opponent wants to reveal.
– pBR(b|a) is the probability that the opponent plays action b when the agent

reveals action a.
– pR(b) is the probability that the opponent reveals b given that it reveals.
– pNR(b) is the probability that the opponent plays action b in simultaneous

play, i.e., when no agent reveals.

In [7], the expected utility to reveal an action is

EUr(a) =
∑
b∈B

pBR(b|a)Q(a, b)

and the expected utility of not revealing is

EUnr(a) =
∑
b∈B

pNR(b)Q(a, b),

where B is the opponent’s action set. Back to our example of game #27
(Table 2(a)), the row player quickly learns to reveal action 1, providing it a
payoff of 3 and allowing the column player to get its most preferred outcome.
However, the expected utility of the column player to reveal action 0 is 3, and the
expected utility of not revealing an action should be 4, and not 3 as computed
from the above equations used in our previous work. This difference is because

92 S. Airiau and S. Sen

a utility-maximizing opponent will prefer to always reveal in this game. Hence,
we need to take into account the possibility of the opponent revealing in the
computation of the expected utility. Our augmented expressions for computing
the expected utilities to reveal action a is

EUr(a) =

(1 − pOR)
∑
b∈B

pBR(b|a)Q(a, b)

+
pOR

2

∑
b∈B

(pR(b)Q(BR(b), b) + pBR(b|a)Q(a, b)) .

Two cases can occur. Either the opponent does not want to reveal, in which case
the opponent will reply to the agent’s revelation, or the opponent also wants
to reveal, and with equal probability the opponent and the agent will get to
reveal its action. We also have the same cases when computing the expected
utility of playing action a, but not revealing. If the opponent reveals, the agent
will have to play the best response to the revealed action. If the opponent does
not reveal, both agents will announce their actions simultaneously. Hence the
expected utility is:

EUnr(a) =

pOR

∑
b∈B

pR(b)Q(BR(b), b)

+
(1 − pOR)

∑
b∈B

pNR(b)Q(a, b)

To choose an action from the expected utilities computed, the agent samples
the Boltzmann probability distribution with temperature T and decides to reveal
action a with probability :

p(reveal a) =
e

EUr(a)
T∑

x∈A
(
e

EUr(x)
T + e

EUnr(x)
T

)
and it decides not to reveal with probability

p(not reveal) =
∑

x∈A e
EUnr(x)

T∑
x∈A

(
e

EU(x)
T + e

EUnr(x)
T

) ,

where A is the agent’s action set.
If the agent reveals but not the opponent, the agent is done. If the opponent

reveals action b, the agent plays its best response: argmaxaQ(a, b). If no agent has
decided to reveal, the agent computes the expected utility to play each action:

EU(a) =
∑
b∈B

pNR(b)Q(a, b).

Learning Pareto-optimal Solutions in 2x2 Conflict Games 93

The agent chooses its action a sampling the corresponding Boltzmann probabil-
ity distribution

p(a) =
e

EU(a)
T∑

b∈B e
EU(b)

T

.

The temperature parameter, T , controls the exploration versus exploitation
tradeoff. At the beginning of the game, the temperature is set to a high value,
which ensures exploration. At each iteration, the temperature is reduced un-
til the temperature reaches a preset minimum threshold (the threshold is used
to prevent exponent overflow computation errors). The use of the Boltzmann
probability distribution with a decreasing temperature means that the players
converge to play pure strategies. If both agents learn to reveal, however, the
equilibrium reached is a restricted mixed strategy (at most two states of the
games will be played with equal probability).

4 Experimental Results

In the stage game, the players cannot build any trust required to find a mu-
tually beneficial outcome of the game. The goal of our experiments is to study
whether the learners using our augmented revelation protocol and by repeatedly
playing a game can improve performance compared to Nash equilibrium payoffs
of the stage game. In the following, by Nash equilibrium we refer to the Nash
equilibrium of the single shot, stage game.

The testbed, introduced by Brams in [8] consists of all 2x2 conflicting games
with ordinal payoff. Each player has a total preference order over the 4 different
outcomes. We use the numbers 1, 2, 3 and 4 as the preference of an agent, with 4
being the most preferred. We do not consider games where both agents have the
highest preference for the same outcome. Hence games in our testbed contain
all possible conflicting situations with ordinal payoffs and two choices per agent.
There are 57 structurally different, i.e., no two games are identical by renaming
the actions or the players, 2x2 conflict games.

In order to estimate the probabilities presented in the previous section, we
used frequency counts over the history of the play. We start with a temperature
of 10, and we decrease the temperature with a decay of .5% at each iteration.
We are first presenting results on a set of interesting matrices and then provide
results on the entire testbed.

4.1 Results on the Testbed

Benefits of the Augmented Protocol. We compared the results over the
testbed to evaluate the effectiveness of the augmentation. We found out that
in the three games of Table 2, the equilibrium found strictly dominates the
equilibrium found with the non-augmented algorithm. The payoffs, averaged
over 100 runs are presented in Table 3. In the three games, one player needs to
realize that it is better off by letting the opponent reveal its action, which is
the purpose of the augmentation. Note that even without the augmentation, the

94 S. Airiau and S. Sen

Table 3. Comparison of the average payoff between the augmented and the non aug-
mented Expected Utility calculations

Not augmented Augmented

Nash Payoff average payoff strategy average payoff strategy

Game 27 (2,2) (2.5, 3.5)
row: reveal 1
col: reveal 0

(3.0, 4.0)
row: reveal 1
col: no rev

Game 29 (2.5, 2.5) (3.5, 2.5)
row: no rev 0
col: no rev 0

(4.0, 3.0)
row: no rev
col: reveal 0

Game 48 (2,3) (2.5, 3.5)
row: reveal 1
col: reveal 0

(3.0, 4.0)
row: reveal 1
col: no rev

Game 50 (2,4) (2.3, 3.3)
row: mix
col: mix

(2.5, 3.0)
row: reveal 1
col: reveal 0

opportunity of revealing the action brings an advantage since the equilibrium
found dominates the Nash equilibrium of the single stage game.

We provide in Figures 1 and 2 the learning curves of the augmented and the
non-augmented players, respectively, for game #27 of the testbed (see
Table 2(a)). The figures present the dynamics of the expected values of the
different actions and the probability distributions for both players when they
learn to play. With the augmentation, we see that the row player first learns to
play its Nash equilibrium component, before realizing that revealing its action 1
is a better option. The column player first learns to either reveal action 0 or not
reveal and then play action 0. But as soon as the column player starts to reveal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

distribution of the column player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

Expected Utility of the Column player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Distribution of the Row Player

reveal 0
reveal 1

not reveal then 0
not reveal then 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000

Expected Utility of the Row player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

Fig. 1. Learning to play game 27 - augmented

Learning Pareto-optimal Solutions in 2x2 Conflict Games 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

distribution of the column player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

Expected Utility of the Column player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Distribution of the Row Player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000

Expected Utility of the Row player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

Fig. 2. Learning to play game 27 - not augmented

its action 1, the column player learns not to reveal, which was not possible with
earlier expression of the expected utility. These observations confirm that the
augmentation can improve the performance of both players.

Comparing protocol outcome with Nash Equilibrium. 51 of the 57 games
in the testbed have a unique Nash equilibrium (9 of these games have a mixed
strategy equilibrium and 42 have pure strategy equilibrium), the remaining 6 have
multiple equilibria (two pure Nash equilibria and and a mixed strategy Nash equi-
librium). Of the 42 games that have a unique pure strategy Nash equilibrium, 4
games have a Nash equilibrium that is not Pareto-optimal: the prisoners’ dilemma,
game #27, #28 and #48 have a unique Nash equilibrium which is dominated.

The Pareto optimal outcome is reached games #27, #28 and #48 with the
augmented algorithm. The non-augmented protocol converges to the Pareto equi-
librium for game #28, but it failed to do so for games #27 and #48. We noticed
that in some games, namely games #41, #42, #44, the players learn not to re-
veal. Revealing does not help improve utility in these games. Incidentally, these
games also have a single mixed strategy Nash equilibrium.

We found that the augmented mechanism fails to produce a Pareto optimal
solution in only two games: the Prisoner’s dilemma game (Table 4(a)) and game
#50 (Table 4(b)) fails to converge because of the opportunity to reveal.

The Prisoner’s dilemma game has a single Nash equilibrium where each player
plays D. If a player reveals that it is going to cooperate (i.e. play C), the oppo-
nent’s myopic best response is to play defect (i.e. to play D). With the revelation
mechanism, the players learn to play D (by revealing or not). Hence, the players
do not benefit from the revelation protocol in the Prisoner’s dilemma game.

96 S. Airiau and S. Sen

Table 4. Games for which convergence to a Pareto optimal solution was not achieved

(a) Prisoners’ Dilemma

D C

D 2, 2 4, 1

C 1, 4 3, 3

(b) Game 50

0 1

0 2, 4 4, 3

1 1, 1 3, 2

From Table 3, we find that in game #50, the new solution with the augmented
protocol does not dominate the old solution. Without the augmentation, there
are multiple equilibria. One is when the column player reveals action 0, providing
2 for the row and 4 to the column player. The other is when both players learn to
reveal, providing 2.5 for the row player and 3 for the column player. The payoff
obtained with the revelation and the payoff of the Nash equilibrium outcome
of the stage game do not dominate one another. This game has a single Nash
equilibrium which is also a Pareto optima and where each agent plays action 0.
By revealing action 0, i.e., its component of the Nash equilibrium, the column
player can obtain its most preferred outcome since the best response of the row
player is to play action 0. The row player, however, can obtain more than the
payoff of the Nash equilibrium by revealing action 1 where the column player’s
best response is its action 1. The (1,1) outcome, however is not Pareto optimal
since it is dominated by the (0,1) outcome. The dynamics of the learning process
in this game is shown in Figure 3. Both the players learn to reveal and hence
each reveals about 50% of the time, and in each case the other agent plays its
best response, i.e., the outcome switches between (0,0) and (1,1). The interesting
observation is that the average payoff of the column player is 3, which would

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

distribution of the column player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

Expected Utility of the Column player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Distribution of the Row Player

reveal 0
reveal 1

not reveal then 0
not reveal then 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000

Expected Utility of the Row player

reveal 0
reveal 1

Do not reveal 0
Do not reveal 1

Fig. 3. Learning to play game #50

Learning Pareto-optimal Solutions in 2x2 Conflict Games 97

be its payoff if the column player played 1 instead of a myopic choice of 0 to
row player’s revealing action 0. Hence, revealing an action does not improve the
outcome of this game because of a myopic best response by the opponent.

4.2 Results on Randomly Generated Matrices

As shown in the restricted testbed of 2x2 conflicting games with a total pref-
erence over the outcomes, the structure of some games can be exploited by the
augmented protocol to improve the payoffs of both players. We have not seen
cases where both agents would be better off by playing the Nash equilibrium
(i.e. we have not encountered cases where revelation worsens the outcome). To
evaluate the effectiveness of the protocol on a more general set of matrices, we
ran experiments on randomly generated matrices as in [7].

We generated 1000 matrices of size 3x3, 5x5 and 7x7. Each matrix entry is
sampled from a uniform distribution in [0, 1]. We computed the Nash equilibrium
of the stage game of all these games using Gambit [13]. We compare the payoff
of the Nash equilibrium with the average payoff over 10 runs of the game played
with the revelation protocol. We are interested in two main questions:

– In what proportion of the games does the revelation protocol dominate all
the Nash equilibria of the stage game?

– Are there some games where a Nash equilibrium dominates the outcome of
the game played with the revelation protocol?

Results from the randomly generated matrices with both the augmented and
non-augmented variations are presented in Figure 4. The top curve on each fig-
ure represents the percentage of games where all the Nash equilibria (NE) are
dominated by the outcome of the revelation protocol. We find that the aug-
mented protocol is able to significantly improve the percentage of Nash domi-
nating outcomes and improves the outcome over Nash equilibria outcomes on
20–30% of the games. The percentage of such games where a Nash Equilibrium
is better than the outcome reached by the revelation protocol is represented in
the lower curve. We observe that this percentage decreases significantly with the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2 3 4 5 6 7 8

pe
rc

en
til

e

size of the space

Some NE dominates Reveal

Reveal dominates all NE

(a) not augmented

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2 3 4 5 6 7 8

pe
rc

en
til

e

size of the space

Some NE dominates Reveal

Reveal dominates all NE

(b) augmented

Fig. 4. Results over random generated matrices

98 S. Airiau and S. Sen

augmentation and is now at the 5–10% range. Although these results show that
the proposed augmentation is a clear improvement over the previous protocol,
there is still scope for improvement as the current protocol does not guarantee
PONE outcomes.

5 Conclusion and Future Work

In this paper, we augmented a previous algorithm from [7] with the goal of
producing PONE outcomes in repeated single-stage games. We experiment with
two-player two-action general-sum conflict games where both agents have the
opportunity to commit to an action and allow the other agent to respond to it.
Though the revealing one’s action can be seen as making a concession to the op-
ponent, it can also be seen as an effective means to force the exploration a subset
of the possible outcomes and as a means to promoting trusted behavior that can
lead to higher payoffs than defensive, preemptive behavior that eliminates mutu-
ally preferred outcomes in an effort to avoid worst-case scenarios. The outcome
of a Nash equilibrium of the single shot, stage games can be seen as outcomes
reached by myopic players. We empirically show that our augmented protocol
can improve agent payoffs compared to Nash equilibrium outcomes of the stage
game in a variety of games: the search of a mutually beneficial outcome of the
game pays off in many games. The use of the testbed of all structurally distinct
2x2 conflict games [8] also highlights the shortcomings of the current protocol.
Agents fails to produce Pareto optimal outcomes in the prisoners’ dilemma game
and game #50 . The primary reason for this is that a player answers a revelation
with a myopic best response.

To find a non-myopic equilibrium, an agent should not be too greedy! We
are working on relaxing the requirement of playing a best response when the
opponent reveals. We plan to allow an agent to estimate the effects of its var-
ious responses to a revelation on subsequent play by the opponent. This task
is challenging since the space of strategies, using the play history, used by the
opponent to react to one’s play is infinite.

Another avenue of future research is to characterize the kind of equilibrium
we reach and the conditions under which the algorithm converges to a outcome
that dominates all Nash equilibria of the stage game. We plan to actively pursue
modifications to the protocol with the goal of reaching PONE outcomes of the
repeated game in all or most situations.

Acknowledgments. This work has been supported in part by an NSF award
IIS-0209208.

References

1. Littman, M.L., Stone, P.: Leading best-response strategies in repeated games. In:
IJCAI Workshop on Economic Agents, Models and Mechanisms. (2001)

2. Watkins, C.J.C.H., Dayan, P.D.: Q-learning. Machine Learning 3 (1992) 279 – 292

Learning Pareto-optimal Solutions in 2x2 Conflict Games 99

3. Fudenberg, D., Levine, K.: The Theory of Learning in Games. MIT Press, Cam-
bridge, MA (1998)

4. Littman, M.L., Stone, P.: A polynomial-time nash equilibrium algorithm for re-
peated games. Decision Support Systems 39 (2005) 55–66

5. Conitzer, V., Sandholm, T.: Awesome: A general multiagent learning algorithm
that converges in self-play and learns a best response against stationary opponents.
In: Proceedings ont the 20th International Conference on Machine Learning. (2003)

6. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Arti-
ficial Intelligence 136 (2002) 215–250

7. Sen, S., Airiau, S., Mukherjee, R.: Towards a pareto-optimal solution in general-
sum games. In: Proceedings of the Second International Joint Conference On
Autonomous Agents and Multiagent Systems. (2003)

8. Brams, S.J.: Theory of Moves. Cambridge University Press, Cambridge: UK (1994)
9. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative

multiagent systems. In: Proceedings of the Fifteenth National Conference on Ar-
tificial Intelligence, Menlo Park, CA, AAAI Press/MIT Press (1998) 746–752

10. Littman, M.L.: Friend-or-foe q-learning in general-sum games. In: Proceedings of
the Eighteenth International Conference on Machine Learning, Morgan Kaufmann
(2001) 322–328

11. Greenwald, A., Hall, K.: Correlated-q learning. In: Proceedings of the Twentieth
International Conference on Machine Learning. (2003) 242–249

12. Aumann, R.: Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics 1 (1974) 67–96

13. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game
theory version 0.97.0.7. http://econweb.tamu.edu/gambit (2004)

Unifying Convergence and No-Regret
in Multiagent Learning

Bikramjit Banerjee and Jing Peng

Department of Electrical Engineering & Computer Science,
Tulane University, New Orleans, LA 70118
{banerjee, jp}@eecs.tulane.edu

http://www.eecs.tulane.edu/Banerjee

Abstract. We present a new multiagent learning algorithm, RVσ(t), that builds
on an earlier version, ReDVaLeR . ReDVaLeR could guarantee (a) convergence
to best response against stationary opponents and either (b) constant bounded re-
gret against arbitrary opponents, or (c) convergence to Nash equilibrium policies
in self-play. But it makes two strong assumptions: (1) that it can distinguish be-
tween self-play and otherwise non-stationary agents and (2) that all agents know
their portions of the same equilibrium in self-play. We show that the adaptive
learnng rate of RVσ(t)that is explicitly dependent on time can overcome both of
these assumptions. Consequently, RVσ(t)theoretically achieves (a’) convergence
to near-best response against eventually stationary opponents, (b’) no-regret pay-
off against arbitrary opponents and (c’) convergence to some Nash equilibrium
policy in some classes of games, in self-play. Each agent now needs to know
its portion of any equilibrium, and does not need to distinguish among non-
stationary opponent types. This is also the first successful attempt (to our knowl-
edge) at convergence of a no-regret algorithm in the Shapley game.

1 Introduction

Multiagent learning (MAL) in a reinforcement learning setting has been an active field
of study recently. The problem is simply of multiple controllers trying to learn indi-
vidually “optimal” control policies in a shared Markov Decision Process (MDP), often
called a stochastic game or a Markov game. The difficulty arises from the fact that all
agents are learning simultaneously, which means the MDP faced by each agent is es-
sentially non-stationary. Hence, the concept of “optimal” policy becomes ill-defined,
and depends on the collective behavior of the other agents. Previous research has at-
tempted to tackle this problem by considering various opponent classes such that there
is a well-defined “optimal policy” for the learner for each class of opponents. Typically
the research contributions in this aspect has been to design learning algorithms that
learn the appropriate behaviors for the corresponding class of opponents, without any
access to the class information.

The present paper follows this line of research and makes several fundamental contri-
butions. In particular, we point out that the class taxonomy of the opponents suggested
so far is incomplete. We then fill the void and present the first algorithm that can tackle
all opponent classes. More specifically, we present a new multiagent learning algorithm

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 100–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Unifying Convergence and No-Regret in Multiagent Learning 101

for repeated games, with the general philosophy of policy convergence against some
classes of opponents but otherwise ensuring high payoffs. We build on our previous al-
gorithm, ReDVaLeR [1], that we proved to guarantee (a) convergence to best response
against stationary opponents and either (b) constant bounded regret against arbitrary
opponents or (c) convergence to Nash equilibrium policies in self-play. It was shown
to achieve both (b) and (c) empirically but needed to assume that all agents must know
their portions of the same equilibrium. In this paper we present a new technique extend-
ing ReDVaLeR , called RVσ(t), that theoretically achieves (a’) convergence to near-best
response against eventually stationary opponents, (b’) no-regret payoff against arbitrary
opponents and (c’) convergence to Nash equilibrium policies in some classes of games,
in self-play. Each agent now needs to know only its portion of any equilibrium, besides
the other assumptions made in ReDVaLeR . Additionally, since RVσ(t)can achieve both
(b’) and (c’) simultaneously, it does not need to distinguish between a self-play agent
and an otherwise non-stationary agent.

No-regret has been an attractive property for a learner facing unknown opponents -
the case that precludes any meaningful definition of a “desirable behavior” even for
the agent designer. In such cases, no-regret stipulates a specific behavior sequence that
achieves “safe” play in terms of payoffs, but otherwise does not attempt convergence
to any specific behavior. However, depending on the opponents, we may want a no-
regret learner to indeed converge to some policy, e.g., we would want it to converge
to Nash equilibrium policy in self-play. Previous research [2] has empirically shown
that in some games (such as the Shapley game in Table 1), no-regret learners are un-
able to converge in self-play. A major consequence of our theoretical results is that
RVσ(t)is both no-regret and convergent in self-play in some classes of games that in-
cludes the Shapley game. The rest of the paper is organized as follows: sections 2 and
3 present the background and the related work respectively. In section 4 we present the
RVσ(t)technique and in section 5, its analysis. We present our conclusions in section 6.

2 Multiagent Reinforcement Learning

A Multiagent Reinforcement Learning task is usually modeled as a Stochastic Game
(SG, also called Markov Game), which is a Markov Decision Process with multiple con-
trollers. We focus on stochastic games with a single state, also called repeated games.
This refers to a scenario where a matrix game (defined below) is played repeatedly by
multiple agents. We shall represent the action space of the ith agent as Ai.

Definition 1. A matrix game with n players is given by an n-tuple of matrices,
〈R1,R2, . . . ,Rn〉 where Ri is a matrix of dimension |A1| × |A2| . . . × |An|, such
that the payoff of the ith agent for the joint action (a1, a2, . . . , an) is given by the entry
Ri(a1, a2, . . . , an), ∀i.

As is usual, we assume that payoffs are bounded, Ri(a1, a2, . . . , an) ∈ [ri, r̄i], for real
ri, r̄i. Table 1 shows an example game of 2 players with 3 actions per player, called the
Shapley game.

A mixed policy, vector πi ∈ Δ(Ai) for agent i, is a probability distribution over
Ai. If the entire probability mass is concentrated on a single action (some actions), it

102 B. Banerjee and J. Peng

Table 1. The Shapley Game

R1 =
1 0 0
0 1 0
0 0 1

, R2 =
0 1 0
0 0 1
1 0 0

is also called a pure policy (partially mixed policy). The joint policies of the opponents
of the ith agent will be given by the vector π−i. We shall usually refer to the ith agent
as the learner and the rest of the agents as the opponents. The expected payoff of the
learner at any stage in which the policy tuple 〈π1, π2, . . . ,πn〉 is followed is given by
Vi(πi, π−i) =

∑
(a1,...,an)∈ k Ak

π1(a1) . . . πn(an)Ri(a1, . . . , an).

Definition 2. For an n-player matrix game, an ε-best response (BRi
ε,π−i

) of the ith
agent to its opponents’ joint policy (π−i), for some ε ≥ 0, is given by

BRi
ε,π−i

= {πi|Vi(πi, π−i) ≥ Vi(π′
i, π−i) − ε, ∀π′

i ∈ Δ(Ai)}

Definition 3. A mixed-policy Nash Equilibrium (NE) for a matrix game
〈R1,R2, . . . ,Rn〉 is a tuple of probability vectors 〈π∗

1, π
∗
2, . . . ,π

∗
n〉 (policy profile)

such that each is a best response to the rest, i.e., π∗
i ∈ BRi

π∗
−i

∀i. In terms of payoffs,
these conditions can be restated as

Vi(π∗
i , π

∗
−i) ≥ Vi(πi, π

∗
−i) ∀πi ∈ Δ(Ai) , ∀i

No player in this game has any incentive for unilateral deviation from the Nash equilib-
rium policy, given the others’ policy. There always exists at least one such equilibrium
profile for an arbitrary finite matrix game [3]. As an example, the only NE of the 2
player Shapley game in Table 1 is

〈
[13 , 1

3 , 1
3], [13 , 1

3 , 1
3]
〉
.

Definition 4. For a given time range t = 0 . . . T , the regret of a learner (agent i), RgT
i

is given by RgT
i = maxπi

∑t=T
t=1 Vi(πi, π

t
−i) −∑t=T

t=1 Vi(πt
i, π

t
−i).

This compares the total payoff of the actual sequence of policies of the learner with the
best response to the empirical distribution of the opponent.

3 Related Work

Multiagent Reinforcement Learning has produced primarily two types of algorithms.
One type learns some fixed point of the game e.g., NE (Minimax-Q [4, 5], Nash-Q [6],
FFQ [7]) or correlated equilibrium (CE-Q [8]). These algorithms can guarantee a cer-
tain minimal expected payoff asymptotically, but it may be possible to guarantee higher
payoff in certain situations if the learner is adaptive to the opponents’ play, instead of
learning the game solution alone. This brings us to the other type of learners that learn
a best response to the opponents’ actual play e.g., IGA [9], WoLF-IGA [10, 11], AWE-
SOME [12]. Since mutual best response is an equilibrium, two similar best responding

Unifying Convergence and No-Regret in Multiagent Learning 103

players (such situations referred to as self-play) should be able to converge to an equi-
librium. WoLF-IGA achieves this in 2 × 2 games (assuming it knows its portion of any
equilibrium) and AWESOME achieves it for arbitrary sized games. But an AWESOME
agent needs to know an entire equilibirum profile, meaning that it not only knows the
others’ equilibrium policy, but also that all agents agree on which equilibrium they
know in games with multiple equilibria.

Performance guarantees during the learning process are provided by regret match-

ing learners. These are algorithms that achieve limT→∞
RgT

i

T ≤ 0 (called no-regret
algorithms) but their convergence properties in policies are unknown [13, 14, 15, 16] or
at best limited [2]. A generalized version of IGA, called GIGA, was shown to be no-
regret [17] but its convergence property is unknown. Clearly, there was a need for a
MAL algorithm that could address (eventually) stationary opponents and self-play as
well as other types of opponents. Our previous work on ReDVaLeR [1] filled this void
and allowed a learner to be no-regret against this large class of opponents, in addition
to satisfying the base cases againt stationary and self-play opponents. Subsequently, the
WoLF version of GIGA [18] was shown to be also no-regret but convergent to NE only
in 2 × 2 games against GIGA. Our previous algorithm, ReDVaLeR [1] also had limita-
tions. It was shown to achieve both convergence and no-regret in arbitrary sized games,
but for conflicting settings of a parameter σ. Each ReDVaLeR agent was also assumed
to know its portion of some equilibrium, i.e., there was agreement on equilibrium se-
lection. Our present work builds on ReDVaLeR and uses a single time dependent σ that
achieves both convergence and no-regret properties simultaneously. More importantly,
we relax the assumption that agents agree on which equilibrium they know their por-
tions of. Another recent work proposed a similar set of properties for a MAL algorithm,
with a greater focus on payoff [19]. This algorithm achieves near best response against
stationary players (in contrast we guarantee near best response against the larger set
of eventually stationary opponents), at least non-Pareto dominated (by another equi-
librium) equilibrium payoff in self-play (in contrast we provide convergence to some
equilibrium policy), and at least the minimax payoff against all other players (in con-
trast, we guarantee the stronger property of no-regret payoff that could be greater than
the minimax payoff depending on the opponents) in polynomial time. However, this
algorithm needs to know the game matrix of all agents which is stronger than our 2
assumptions combined that the learner knows only its own game matrix and its portion
of any equilibrium policy.

4 Our Approach: ReDVaLeR with Variable σ

We make the following assumptions for the current work,

1. that the learner knows its own bounded game payoffs (like AWESOME)
2. that the agents can observe each other’s instantaneous policies 1 and can use van-

ishing step sizes for policy improvement (similar to IGA and WoLF-IGA).

1 This assumption is only used in Theorem 10 but it is dispensable. It is possible to collapse
this and the previous assumption into a single assumption that the learner can only observe its
payoff vector at every round, as in [18]. We shall show the details in a consolidated version.

104 B. Banerjee and J. Peng

3. that the agents are given at the start, their portions of any equilibrium policy profile
(like WoLF-IGA). They might see their portions of different equilibria in games
with multiple equilibria.

We write the probability of the jth action of the ith agent at time t as πt
i(j) and the

expected payoff of this action against the opponent’s current policy as Vi(j, πt
−i) and

note that
∑

j πt
i(j)Vi(j, πt

−i) = Vi(πt
i, π

t
−i).

We use the ReDVaLeR algorithm (see [1] for details) with a time-varying sched-
ule for σ in place of a constant. The discrete form of the algorithm (slightly different
from [1]) is

πt+1
i (j) =

πt
i(j) + ηπt

i(j)l
t
i(j)Vi(j, πt

−i)
1 + η

∑
j lti(j)π

t
i(j)Vi(j, πt

−i)
(1)

for η being a small step size and initial condition: π0
i (j) = 1

|Ai| . Note that the probabil-
ity values generated above are automatically bounded in the range [0, 1] if ri ≥ 0. Also
the distribution is indeed a probability distribution (i.e., sum 1) without the need of a
projection operation unlike GIGA or GIGA-WoLF.

In continuous time, i.e., as η → 0, the above equation yields the same differential
equation as ReDVaLeR for the dynamics of the n-player system

d

dt
(πt

i(j)) = πt
i(j) × [lti(j)Vi(j, π

t
−i) −

j

lti(j)π
t
i(j)Vi(j, π

t
−i)] (2)

j = 1 . . . |Ai|, i = 1 . . . n. In contrast with [1], the learning rates (lti(j)) for this
algorithm, RVσ(t), are defined as

lti(j) =
{

1 + σ(t) if πt
i(j) < π∗

i (j)
1 − σ(t) if πt

i(j) ≥ π∗
i (j) (3)

for a suitable σ-schedule as defined below.

Definition 5 (σ-Schedule). A time decaying schedule for σ(t) is defined by the 3
conditions:

1. σ(t) is continuous and 1 ≥ σ(t) ≥ 0, ∀t,
2. σ(t) ≥ σ(t′), ∀t′ ≥ t,
3. σ(t) → 0 as t → ∞.

5 Analysis of RVσ(t)

In the following analysis, we shall use the symbol ‖x‖ to mean the L∞ norm of a vector,
i.e., ‖x‖ = maxi |xi| and the symbol 1 to mean a vector of all 1’s. We also assume that
the game payoffs are all positive (i.e., ri ≥ 0), which is merely a technical assumption,
since if the agent knows its game payoffs it can easily make an affine transformation
to satisfy this assumption. The new game is strategically unchanged and the no-regret
property also holds in the original game.

Unifying Convergence and No-Regret in Multiagent Learning 105

For the sake of brevity, we write Vi(j, πt
−i) simply as V j

i . Let Di(π̃i, π
t
i) be the

Kullback Leibler divergence between the ith agent’s policy at time t and an arbitrary
distribution π̃i, given by

Di(π̃i, π
t
i) =

∑
j

π̃i(j) log
(

π̃i(j)
πt

i(j)

)
(4)

With a slight abuse of notation, we will refer to Ḋi or dDi

dt as the projection of the
gradient of the function Di (equation 4) along the solution trajectory of (2) for a given
initial policy profile. When the trajectory follows the unmodified Replicator Dynamics,

we write the same as dDRD
i

dt . The following result is crucial to all subsequent analyses.

Lemma 1. [1] For any fixed policy π̃i,

d

dt
(Di(π̃i, π

t
i)) =

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̃i(j)V
j
i

d

dt
(DRD

i (π̃i, π
t
i)) = Vi(πt

i, π
t
−i) − Vi(π̃i, π

t
−i)

5.1 Convergence Against Eventually Stationary Opponents

Here we establish that RVσ(t)with σ-schedule of definition 5 converges to the set of ε-
best responses against stationary opponents from which follow the convergence against
eventually stationary opponents. The following lemma is used and is straightforward to
prove.

Lemma 2 (Payoff-continuity). If πi1 and πi2 are two policy vectors of agent i against
the stationary joint policy of the opponents π−i and if ‖πi1−πi2‖ ≤ α for some α > 0,
then

|Vi(πi1, π−i) − Vi(πi2, π−i)| ≤ α|Ai|r̄i

In other words, if two policies are close then so are their payoffs against a given joint
policy of the opponents.

The following Theorem establishes that RVσ(t)with a non-stationary σ (Definition 5)
converges to the set of ε-best responses against stationary opponents.

Theorem 3. For a given ε > 0, there exists a time τ , such that after τ a RVσ(t)agent
i using σ-schedule in Definition 5 against n − 1 stationary agents, is guaranteed to
converge to the set of ε-best response policies, BRi

ε,π−i
.

Proof: Suppose the opponents’ joint stationary policy is given by π−i, and let us con-
sider some π̄i ∈ BRi

0,π−i
. Clearly the payoff of all policies in BRi

0,π−i
have the same

value and let this value be V̄i. At any given time t we consider the following two cases:

Case 1: πt
i �∈BRi

ε,π−i

This means
V (πt

i, π−i) < V̄i − ε (5)

106 B. Banerjee and J. Peng

Now substituting π̄i in place of the arbitrary policy in Lemma 1, we get

d

dt
(Di(π̄i, π

t
i)) =

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̄i(j)V
j
i

≤ (1 + σ(t))Vi(πt
i, π−i) − (1 − σ(t))Vi(π̄i, π−i)

= Vi(πt
i, π−i) − Vi(π̄i, π−i) + σ(t)[Vi(πt

i, π−i) + Vi(π̄i, π−i)]
< −ε + σ(t)[Vi(πt

i, π−i) + Vi(π̄i, π−i)] , by (5)

≤ −ε + 2σ(t)V̄i

Now according to Definition 5 there exists a time (τ) such that for all t′ > τ ,
σ(t′) < ε

2V̄i
. Thus at all such times d

dt(Di(π̄i, π
t′
i)) < 0 whenever πt′

i �∈BRi
ε,π−i

.
This means, the policy approaches a best response at such times. By Lemma 2, the
policy cannot approach a best response without its payoff approaching V̄i. Thus at
some point t′, the value of the policy will exceed V̄i − ε and so, πt′

i ∈ BRi
ε,π−i

.
This brings us to the 2nd case.

Case 2: πt
i ∈ BRi

ε,π−i
. Also t ≥ τ

If πt′
i ∈ BRi

ε,π−i
, ∀t′ > t then we are done. Otherwise, there exists a time t′ > t

such that πt′−η
i ∈ BRi

ε,π−i
and πt′

i �∈BRi
ε,π−i

, where η is the time step size used

in Equation 1. So Vi(π
t′−η
i , π−i) ≥ Vi(πt′

i , π−i). Also

‖πt′−η
i − πt′

i ‖ ≤ η(1 + σ(t′ − η))r̄i

≤ 2ηr̄i

Then by Lemma 2,

Vi(π
t′−η
i , π−i) − Vi(πt′

i , π−i) ≤ 2η|Ai|r̄2
i

that is
Vi(πt′

i , π−i) ≥ V̄i − (ε + 2η|Ai|r̄2
i)

So even though πt′
i is not an ε-best response, it is an (ε + 2η|Ai|r̄2

i)-best response.
Also from time t′ case 1 applies and both of the policy and the payoff approach
that of a strict best response. Thus after τ , the payoff never falls below V̄i − (ε +
2η|Ai|r̄2

i) = V̄i − ε, since η → 0. Lastly, πt
i may not converge to any specific

policy in BRi
ε,π−i

, only stay in this set asymptotically. ��

An immediate corollary of Theorem 3 is that RVσ(t)will converge to an ε-best response
even if the opponents do not always play stationary policies, as long as they settle down
to a stationary profile at some finite time, τ1. This is justified by replacing τ in the proof
of Theorem 3 by max{τ, τ1}. We state this result as the following corollary.

Corollary 4. If there exists a time τ1 such that all other agents play stationary poli-
cies at all times t > τ1, then for a given ε > 0, there exists a time τ , such that after
max{τ1, τ} an RVσ(t)agent i using σ-schedule in definition 5, is guaranteed to con-
verge to the set of ε-best response policies, BRi

ε,π−i
.

Unifying Convergence and No-Regret in Multiagent Learning 107

Note that this does not require all of the opponents to start playing a stationary profile
simultaneously, only that the last opponent to settle down should do so at some finite
time point τ1. Also note that this notion of eventually stationary opponent profile is
a stronger condition than the non-stationary opponent policies with a limit considered
in [20]. In the latter the opponents may never actually settle down but continue with an
ever decreasing distance from a limiting profile.

5.2 No-Regret Property

Here we prove the no-regret property of RVσ(t). Compared to ReDVaLeR , now the
regret is no longer constant bounded but can grow with time. However, with the help
of the following lemma (stated without proof) we can show that the average regret
goes to 0.

Lemma 5 (Vanishing average). Given definition 5 for σ(t), we have lim

T→∞
T
0 σ(t)dt

T = 0.

Theorem 6. If a RVσ(t)agent i uses the decaying σ-schedule of definition 5, then

lim
T→∞

RgT
i

T
≤ 0

i.e., the algorithm is asymptotically no-regret.

Proof: As in Theorem 2 in [1], we have

−D0 ≤
∫ T

0

⎛
⎝∑

j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̃i(j)V
j
i

⎞
⎠ dt

≤
∫ T

0
(1 + σ(t))Vi(πt

i, π
t
−i)dt −

∫ T

0
(1 − σ(t))Vi(π̃i, π

t
−i)dt

=
∫ T

0
Vi(πt

i, π
t
−i)dt −

∫ T

0
Vi(π̃i, π

t
−i)dt

+
∫ T

0
σ(t)

[
Vi(πt

i, π
t
−i) + Vi(π̃i, π

t
−i)

]
dt

Rearranging and again noting that D0 ≤ log |Ai| and that π̃i was chosen arbitrarily, we
have ∫ T

0
Vi(πt

i, π
t
−i)dt ≥ max

π̃i

∫ T

0
Vi(π̃i, π

t
−i)dt − log |Ai|

−
∫ T

0
σ(t)

[
Vi(πt

i, π
t
−i) + Vi(π̃i, π

t
−i)

]
dt

≥ max
π̃i

∫ T

0
Vi(π̃i, π

t
−i)dt − 2r̄i

∫ T

0
σ(t)dt − log |Ai|

108 B. Banerjee and J. Peng

Thus the regret of the ith agent is bounded by

RgT
i ≤ 2r̄i

∫ T

0
σ(t)dt + log |Ai|

The result now follows from Lemma 5. ��
We postpone the choice of actual form of σ(t) till the end of section 5.3 in order to sat-
isfy both convergence and no-regret, whereby we also compare the emerging expression
of regret with those from GIGA, GIGA-WoLF.

5.3 Convergence in Self-play

Since we do not assume any coordination in the choice of the equilibrium, for games
with multiple equilibria, the agents may be given their portions of different equilibria.
Although this is not difficult to handle in 2×2 games [11], in larger games this becomes
a daunting task. In this paper we show that the variable learning rate is useful for this
purpose, in games of any size but with a unique mixed equilibrium. Even though coor-
dination in equilibrium selection is by default in such games, it has proven to be a hard
case for convergence in self-play beyond 2 × 2 games. RVσ(t)is the first algorithm that
extends this property to such games of arbitrary size, and this is also experimentally
validated in two such games, viz., the Shapley game (Table 1) and the game in Table 2
with a unique partially mixed equilibrium. This is addition to RVσ(t)being convergent
in all 2 × 2 games with possibly multiple equilibria, which we show next.

2×2 games. In all 2×2 games, the RVσ(t)algorithm can be shown to be equivalent to
WoLF-IGA. In cases where IGA converges (in policy) in self-play, only the direction of
the gradient matters and this remains same for RVσ(t). In the special case where WoLF-
IGA (but not IGA) converges in policy, the learning rate change in RVσ(t)turns out
to be the same as WoLF-IGA thus guaranteeing convergence like WoLF-IGA. Hence
RVσ(t)always converges to an equilibrium policy in all 2 × 2 games, when given its
portion of any equilibrium, similar to WoLF-IGA.

Games with unique mixed equilibrium. Here we prove that a σ-schedule can be
designed satisfying definition 5 such that convergence to equilibrium can be achieved
in these games. We make another technical assumption, that the minimum game payoff
of i is strictly positive, ri > 0, for all i. Again this is easy to satisfy in self-play without
changing the game strategically. The following lemmas will be used in the proof of the
final Theorem for convergence of RVσ(t)in self-play.

As a first step we show that the requirement on the value of σ (i.e., σ = 1; Theorem
3 in [1]) from the perspective of any learner i can be relaxed in two ways. The first is a
direct but minor relaxation given by the lemma below.

Lemma 7. If the policy of i is not εi-close to its equilibrium, i.e., minj |πt
i(j) − π∗

i (j)
| > εi, for some εi > 0, then d

dtDi(π∗
i , π

t
i) < −α for some 0 < α < εiri, if i uses

σ >
1

1 + εiri−α

r̄i+α

.

Unifying Convergence and No-Regret in Multiagent Learning 109

Proof: The proof closely follows Theorem 3 in [1]. In case 1 of that proof, σ only needs
to be positive. It is really case 2 that needs to be relaxed. It is easily seen that the proof
of case 2 in that theorem can be stated for individual agents as well. Consequently when
dDRD

i

dt > 0, we have

dDRD
i

dt
− dDi

dt
= σ

∑
j

∣∣πt
i(j) − π∗

i (j)
∣∣V j

i (6)

Now since minj |πt
i(j) − π∗

i (j)| > εi, there is at least one action, say k, such that
πt

i(k) < π∗
i (k). Therefore, |πt

i(k) − π∗
i (k)|V k

i ≥ εiri. So,

dDRD
i

dt
=
∑
j �=k

(πt
i(j) − π∗

i (j))V j
i + (πt

i(k) − π∗
i (k))V k

i

=
∑
j �=k

(πt
i(j) − π∗

i (j))V j
i − |πt

i(k) − π∗
i (k)|V k

i

≤
∑
j �=k

(πt
i(j) − π∗

i (j))V j
i − εiri

Hence, ∑
j �=k

(πt
i(j) − π∗

i (j))V j
i ≥ dDRD

i

dt
+ εiri (7)

Equation 6 gives us dDRD
i

dt − dDi

dt ≥ σ
∑

j �=k(πt
i(j) − π∗

i (j))V j
i . Substituting from

Equation 7, we have dDRD
i

dt − dDi

dt ≥ σ(dDRD
i

dt + εiri). The result follows noting that
dDRD

i

dt ≤ r̄i. ��

To illustrate the nature of this relaxation, if εi = 2 × 10−3, r̄i = 2, ri = 1, and
α = 10−3, then we have σ > 0.9995. The main Theorem on convergence of RVσ(t)in
self-play, however, depends on this to be maintained for only a finite time (O(1

α)).
The following lemma allows σ to approach 0 in self-play, but applies only when

the others are sufficiently close to their portions of the equilibrium. First we define
“sufficiently close”. Let us write the vector of ith agents payoff, V j

i over index j (j ∈
Ai), as Vi. Also from Game Theory [21] we know that for a non-negative game with a
unique completely mixed equilibrium there is a constant V ∗

i > 0 for each i such that,
Vi(j, π∗

−i)=V ∗
i , ∀j. Clearly when the opponents’ policies are close to their respective

equilibria, V j
i = Vi(j, πt

−i) is also close to Vi(j, π∗
−i)=V ∗

i , since payoffs are bounded.

Definition 6. The opponents of agent i are said to be sufficiently close to their equilib-
ria if ‖Vi − V ∗

i 1‖ < V ∗
i , and this distance does not exceed V ∗

i at any future time.

Now the following Lemma relaxes the the value of σ from 1 when the opponents are
sufficiently close to their equilibria.

110 B. Banerjee and J. Peng

Lemma 8. In self-play in non-negative games with a unique completely mixed equilir-
ium, when the opponents of agent i are sufficiently close to their equilibria, the value of
σ used by i need only satisfy σ(t) >

‖Vi−V ∗
i 1‖

V ∗
i

to ensure convergence of πt
i to π∗

i .

Proof: Let us call c = ‖Vi − V ∗
i 1‖. Note that under the given conditions, V ∗

i − c ≤
V j

i ≤ V ∗
i + c, ∀j. Then the rate of variation in Di(π∗

i , π
t
i) can be given as before by,

dDi

dt
=
∑

j

(πt
i(j) − π∗

i (j))lti(j)V
j
i

=
∑

j:πt
i (j)≥π∗

i (j)

(πt
i(j) − π∗

i (j))(1 − σ(t))V j
i +

∑
j:πt

i (j)<π∗
i (j)

(πt
i(j) − π∗

i (j))(1 + σ(t))V j
i

≤
∑

j:πt
i (j)≥π∗

i (j)

(πt
i(j) − π∗

i (j))(1 − σ(t))(V ∗
i + c)

+
∑

j:πt
i(j)<π∗

i (j)

(πt
i(j) − π∗

i (j))(1 + σ(t))(V ∗
i − c)

= (1 − σ(t))(V ∗
i + c)

∑
j:πt

i (j)≥π∗
i (j)

(πt
i(j) − π∗

i (j))

+(1 + σ(t))(V ∗
i − c)

∑
j:πt

i (j)<π∗
i (j)

(πt
i(j) − π∗

i (j))

= (1 − σ(t))(V ∗
i + c)

∑
j:πt

i (j)≥π∗
i (j)

(πt
i(j) − π∗

i (j))

−(1 + σ(t))(V ∗
i − c)

∑
j:πt

i (j)≥π∗
i (j)

(πt
i(j) − π∗

i (j))

=

⎡
⎣ ∑

j:πt
i (j)≥π∗

i (j)

(πt
i(j) − π∗

i (j))

⎤
⎦ [(1 − σ(t))(V ∗

i + c) − (1 + σ(t))(V ∗
i − c)]

The equality of the last but one step follows from the fact that
∑

j:πt
i (j)≥π∗

i (j)(π
t
i(j) −

π∗
i (j))+

∑
j:πt

i (j)<π∗
i (j)(π

t
i(j)− π∗

i (j)) = 0. Since the factor in the first square braces
in the last step is strictly positive, the only situation when this is strictly negative is
when σ(t) > c

V ∗
i

. This makes Di Lyapunov implying convergence to π∗
i . ��

Interestingly, if all agents are sufficiently close to their equilibria and all use the σ as in
Lemma 8, then all of them will converge to their respective equilibria. This means for
each i, ‖Vi − V ∗

i 1‖ will decrease and that agent will be able to further decrease its σ
with time while satisfying Lemma 8. The key is to get them sufficiently close to their
equilibria. We show how in the next Theorem but before that we state one last necessary
Lemma.

Lemma 9 (KLD-L∞ correspondence). For any two probability distributions, x,y,
we have ‖x − y‖ ≤ ε for some 1 > ε > 0 if D(x,y) ≤ 2ε2

log 2 .

Unifying Convergence and No-Regret in Multiagent Learning 111

The following Theorem establishes the convergence of RVσ(t)to Nash equilibrium in
self-play under appropriate assumptions.

Theorem 10. There exists a σ-schedule satisfying definition 5, which when followed by
n RVσ(t)agents guarantees the convergence of their policies to the unique completely
mixed equilibrium profile of the strictly positive game, provided each agent knows

1. the maximum game payoff of any agent, Rmax = maxi r̄i,
2. the maximum size of action space among all agents, maxi |Ai|,
3. the minimum equilibrium payoff among all agents, mini V ∗

i

4. the total number of agents, n.

Proof: The proof is stated in two steps. In step 1, we establish how agents can get suf-
ficiently close to their equilibria. In step 2, we show how they can continue to approach
their equilibria in self-play satisfying condition 3 of Definition 5.

Step 1: For each i, we need the opponents (−i) to be sufficiently close to their equi-
libria. Now any agent p can make ‖πt

p − π∗
p‖ ≤ δp for some δp by using σp >

1

1+
εprp−αp

r̄p+αp

(Lemma 7) for sufficiently long (say τ) to bring Dp(π∗
p, π

t
p) down from

initial value Dp(π∗
p, π

0
p) = log |Ap| +

∑
j π∗

p(j) log π∗
p(j) to Dp(π∗

p, π
τ
p) ≤ 2δ2

p

log 2
(Lemma 9) at the rate of αp (Lemma 7). Therefore,

τ ≥ Dp(π∗
p, π

0
p) − Dp(π∗

p, π
τ
p)

αp

and this can be easily computed. Note that agent p can also compute appropriate εp

and αp since it has the knowledge of the necessary policies, πt
p and π∗

p.
Now if ‖πt

p − π∗
p‖ ≤ δp ∀p ∈ {−i}, then ‖πt

−i − π∗
−i‖ ≤ ∑

p δp approxi-
mately (ignoring the terms in second and higher powers of δ). As a consequence,
i’s opponents will be sufficiently close to their equilibria if

‖Vi − V ∗
i 1‖ ≤ max

j
|V j

i − V ∗
i |

≤ |Ai|r̄i‖πt
−i − π∗

−i‖
≤ |Ai|r̄i

∑
p

δp

is less than V ∗
i . This can be ensured for all agents p, by forcing

δp ≤ mini V ∗
i

nRmax maxi |Ai|

Hence the conditions in the Theorem statement. Thus all agents can be brought
sufficiently close to their equilibria by some σ-schedule following Definition 5.

112 B. Banerjee and J. Peng

Step 2: After τ , each agent i must always satisfy Lemma 8. Since the starting value
(σ(τ)) has been specified in Step 1, i only needs to know an appropriate dσ

dt to keep
changing its σ satisfying Lemma 8. It is easy to see that a suitable dσ

dt is

0 >
dσ

dt
>

(−1
V ∗

i

)
max

j

∣∣∣∣∣∣
∑
a−i

Ri(j, a−i)
d

dt

(
πt
−i(a−i)

)∣∣∣∣∣∣ (8)

where a−i is a joint action played by i’s opponents. The appropriate rate in (8) can
be computed from i’s observation of its opponents’ policies at all times. Also since
(8) requires dσ

dt be always negative after τ , Definition 5 is satisfied. This completes
the proof. ��

Note that while in self-play (8) will lead dσ
dt to approach 0 from below as t → ∞, if

the opponents are not self-play dσ
dt may not approach 0. But since dσ

dt is negative, the
no-regret property (Theorem 6) will be preserved if we make

∣∣dσ
dt

∣∣ explicitly decay with
time. A sample schedule that does this and satisfies (8) is (for t ≥ 1)

dσ

dt
=
(−1

V ∗
i

√
t

)
max

j

∣∣∣∣∣∣
∑
a−i

Ri(j, a−i)
d

dt

(
πt
−i(a−i)

)∣∣∣∣∣∣ (9)

Table 2. A 3 actions game with lone mixed equilibrium

R1 =
1 3 1
1 10 1
5 1 2

, R2 =
7 1 1
1 0 1

10 15 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 40000 80000 120000 160000

S
u
m

 o
f

K
L

 D
iv

er
g
en

ce
s

Number of iterations (i)

 = 0.1
 = 0.5
 = 0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000

S
u
m

 o
f

K
L

 D
iv

er
g
en

ce
s

Number of iterations (i)

 = 0.8
 = 2.0
 = 5.0

Fig. 1. The Sum of KL Divergences in the Shapley game (left) and in the game in Table 2 (right),
with σ = 1

1+β
√

t

Unifying Convergence and No-Regret in Multiagent Learning 113

Thus a RVσ(t)agent can use the above σ-schedule for convergence to equilibrium in
self-play while being oblivious of the nature of the others. In case the others are not
self-play agents, the same schedule will guarantee the results of Theorem 3, Corollary 4
and Theorem 6.

Theorem 10 basically says that if σ decays slow enough, then monotonic conver-
gence of the sum of KL divergences can be achieved in self-play. For the following
experiments we use a σ-schedule σ(t) = 1

1+β
√

t
(of the form of (9)) and show the re-

sults for various values of β in Figure 1 corresponding to the Shapley game (Table 1)
and the game in Table 2 respectively. We used η = 2 × 10−4 and the starting policies
were selected close to the edges of the probability simplex since these are the policies
that make convergence most difficult in RD. Note that the game in Table 1 is not strictly
positive, and that in Table 2 is not strictly positive for the column agent. Also note that
σ does not really need to be close to 1 as long as step 1 of Theorem 10 requires. In
both experiments, in just 2000 iterations σ climbs down to less than 75% for the middle
values of β as shown in Figure 1.

6 Conclusion

We have presented a modification of ReDVaLeR that could guarantee (a) convergence
to best response against stationary opponents and either (b) constant bounded regret
against arbitrary opponents, or (c) convergence to Nash equilibrium policies in self-
play. The original ReDVaLeR algorithm was shown to achieve both (b) and (c) empir-
ically but assumed that all agents must know their portions of the same equilibrium.
The new algorithm, RVσ(t), theoretically achieves (a’) convergence to near-best re-
sponse against eventually stationary opponents, (b’) no-regret payoff against arbitrary
opponents and (c’) convergence to some Nash equilibrium policy in some classes of
games, in self-play. Each agent now needs to know only its portion of any equilib-
rium. Although we have shown property c’ in games with unique mixed equilibrium
only, we have also found it to hold in some other classes of games, like coordination
games (omitted here). Future work include further generalization and discrete analysis.
We also intend to experiment further with learning rate schedules identical to GIGA to
directly compare their regret growth rates.

References

1. Banerjee, B., Peng, J.: Performance bounded reinforcement learning in strategic intercations.
In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04), San
Jose, CA, AAAI Press (2004) 2 – 7

2. Jafari, A., Greenwald, A., Gondek, D., Ercal, G.: On no-regret learning, fictitious play,
and Nash equilibrium. In: Proceedings of the 18th International Conference on Machine
Learning. (2001) 216 – 223

3. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54 (1951) 286 – 295
4. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In:

Proc. of the 11th Int. Conf. on Machine Learning, San Mateo, CA, Morgan Kaufmann (1994)
157–163

114 B. Banerjee and J. Peng

5. Littman, M., Szepesvári, C.: A generalized reinforcement learning model: Convergence and
applications. In: Proceedings of the 13th International Conference on Machine Learning.
(1996) 310 – 318

6. Hu, J., Wellman, M.P.: Nash Q-learning for general-sum stochastic games. Journal of Ma-
chine Learning Research 4 (2003) 1039 – 1069

7. Littman, M.L.: Friend-or-foe Q-learning in general-sum games. In: Proceedings of the Eigh-
teenth International Conference on Machine Learnig, Williams College, MA, USA (2001)

8. Greenwald, A., Hall, K.: Correlated Q-learning. In: Proceedings of AAAI Symposium on
Collaborative Learning Agents. (2002)

9. Singh, S., Kearns, M., Mansour, Y.: Nash convergence of gradient dynamics in general-sum
games. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence.
(2000) 541–548

10. Bowling, M., Veloso, M.: Rational and convergent learning in stochastic games. In: Proceed-
ings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA (2001)
1021 – 1026

11. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial
Intelligence 136 (2002) 215 – 250

12. Conitzer, V., Sandholm, T.: AWESOME: A general multiagent learning algorithm that con-
verges in self-play and learns a best response against stationary opponents. In: Proceedings
of the 20th International Conference on Machine Learning. (2003)

13. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino: The
adversarial multi-arm bandit problem. In: Proceedings of the 36th Annual Symposium on
Foundations of Compter Science, Milwaukee, WI, IEEE Computer Society Press (1995)
322 – 331

14. Fudenberg, D., Levine, D.K.: Consistency and cautious fictitious play. Journal of Economic
Dynamics and Control 19 (1995) 1065 – 1089

15. Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights. Games and
Economic Behavior 29 (1999) 79 – 103

16. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Information and Computa-
tion 108 (1994) 212 – 261

17. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent.
In: Proceedings of the 20th International Conference on Machine Learning, Washington DC
(2003)

18. Bowling, M.: Convergence and no-regret in multiagent learning. In: Proceedings of NIPS
2004/5. (2005)

19. Powers, R., Shoham, Y.: New criteria and a new algorithm for learning in multi-agent sys-
tems. In: Proceedings of NIPS 2004/5. (2005)

20. Weinberg, M., Rosenschein, J.S.: Best-response multiagent learning in non-stationary envi-
ronments. In: Proceedings of the 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS). Volume 2., New York, NY, ACM (2004) 506 – 513

21. Owen, G.: Game Theory. Academic Press, UK (1995)

Implicit Coordination in a Network of Social Drivers:
The Role of Information in a Commuting Scenario

Ana L.C. Bazzan�, Manuel Fehler, and Franziska Klügl

1 Instituto de Informática, UFRGS, Caixa Postal 15064,
Porto Alegre 91.501-970, RS, Brazil

bazzan@inf.ufrgs.br
2 Dep. of Artificial Intelligence, University of Würzburg,

Am Hubland, Würzburg 97074, Germany
{fehler, kluegl}@informatik.uni-wuerzburg.de

Abstract. One of the major research directions in multi-agent systems is dedi-
cated to learning how to coordinate and whether individual agents´ decisions can
lead to globally optimal or at least acceptable solutions. Our long term goal is to
study the effect of several types of information to guide the decision process of
the individual agents. This present paper addresses simulation of agents’ decision-
making regarding route choice, and the role of an information component. This
information can be provided by group colleagues, by acquaintances from other
groups (small-world), or by route guidance. Besides, we study the role of agents
lying about their choices. We compare these scenarios, concluding that informa-
tion (from some kind of source) is beneficial in general: lying helps only to a
certain extent, and route guidance is the best type of information.

1 Introduction

In multi-agent systems it is almost impossible to oversee the issue of learning how
to coordinate. In particular, we focus here on a route choice scenario, in which social
drivers have to select a route based on information sharing. The behavior of these agents
is influenced by information, be it route recommendation, be it driving experiences
exchanged within a group. Thus, we address not only the individual agent behavior, but
also how information sharing and recommendations could influence this behavior so
that a coordinated situation emerges.

A route choice scenario is normally characterized by an agent facing repeated action
selection. In a previous paper [7], we concluded that the more reliable the information
that an agent gets about the current and future state of the environment is, the more his
actions depend on his beliefs about the decisions of the other agents.

The rest of this paper is organized as follows. The next section briefly reviews
some background ideas on decision-making regarding binary choice and organization
of agents in groups, with and without information sharing. In Section 3 we present the
scenarios used to simulate route choice under several conditions, whereas the results of
the corresponding simulations are presented in Section 4. The last section summarizes
the conclusions and outlines the possible extensions.
� Author partially supported by CNPq.

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 115–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 A.L.C. Bazzan, M. Fehler, and F. Klügl

2 Background

2.1 Coordination Games and Route Choice

The El Farol Bar Problem (EFBP) [1], and, more generally, the Minority Game (MG) [5]
are particular instances of coordination models. Basically, these deal with the situation
in which N players or agents have the choice between two alternatives (e.g. buy/sell
stocks, go to a bar, use route A or B). Variants of these games have been proposed in
economics, computer science, and physics. Two relate to multi-agent systems and traffic
problems. In [2], personalities are introduced in the MG and populations of agents with
these personalities interact in a commuting scenario.

In the second one [6] under the focus of dynamic adaptation, in a commuting scenario,
in which drivers have to daily select a route to drive from home to office and back. One
route, namely M (main), provides more capacity. The other alternative is a secondary one
(thus S). At the end of the trip, every agent gets a reward that is computed based on the
number of agents who selected the same alternative. This mimics the actual travel time
experienced by the driver himself. The agents know nothing about the reward function
or about other agents, but their decisions do influence the reward each receives. Rewards
for each agent i were computed based on the the number of agents selecting each route;
the less agents select one alternative, the more reward each of them receive for their
choice. The overall goal is to reach the best distribution of agents. This is the case when
the system reaches the user equilibrium and no agent can change to another alternative at
a strictly lower cost. Also, especially for traffic scenarios, the Wardrop Second Principle
(optimum) states that the average travel time is minimal [9]. This corresponds to the best
social optimum in economic terms.

To investigate this, a simple model for adaptive choice was initially developed [6].
Each agent decides which route to select based on the probability according to which it
selects the main route. In the adaptive scenario the agent updates this heuristic with a
certain periodicity according to the rewards he has obtained selecting that alternative up to
that point. An important factor is how often and in which intervals the heuristic is updated.
Changes in this and other parameters are detailed in [6]. Without any information from
outside, this yields a configuration where, on average, the agents learn the optimal
heuristic.

2.2 Social Attachments and Networks

Also related to the present paper, we discuss some previous works on simulating the
Iterated Prisoner’s Dilemma (IPD) under different conditions, with agents having various
kinds of social attachment.

Watts and Strogatz [10] studied networks of coupled elements through an analogy
with the small-world phenomenon. The small-world concept is based on the fact that,
in large societies, there is normally a shortcut between any two persons via a path of
acquaintances [8].

In [3], the performance of a society composed of agents playing the IPD in the
presence of agents with attachment to others was analyzed. These agents may have
an altruistic behavior towards its acquaintances. These so-called altruistic agents are
interested in the good performance of their group as a whole, as well as on their own,

Implicit Coordination in a Network of Social Drivers 117

since the social group provides also a base for support in case the agent itself is not
performing well.

This contributes to the further understanding of how coordination mechanisms can
be developed. It is not enough to consider pure rationality when agents are autonomous
but also interact in a social group.

3 Description of the Information Sharing Scenarios

The main motivation is to check whether egoistic agents who seek only to maximize a
utility function or are overconcerned with self-interest can miss good opportunities for
themselves. We use a scenario similar to the one described in Section 2.1 adding the
issue of people interacting in groups, using the iterated route choice and the two options
(main and secondary routes). The goal remains to have agents distributed between the
two routes so that no agent is better off by deviating from its selection. The learning
scheme is based on information sharing among the group and, in some scenarios, among
people in a network of acquaintances, bringing in the idea of small world explained in
Section 2.2. The reward functions are slightly changed here, as explained next.

The N agents acting in these scenarios have to select one of the two available routes
as explained in Section 2.1. After all agents have made their decisions and have driven,
they receive their rewards, which are inversely proportional to their travel times. Since
we use an abstract model here, the travel time is actually computed as in Eq. 1.

Ri =

⎧⎨
⎩

4
3 − M

N if M selected

1 − S
N if S selected

(1)

where:

– Ri is the reward for driver i
– M and S are the number of drivers driving main and secondary routes respectively
– N is the total number of drivers (M + S)

These formulas arise from the fact that we assume that topological constraints of both
routes allow twice more vehicles at the main route than at the secondary one (this is a
more didactic example than just allowing 50-50% distribution). Thus, at the equilibrium,
2
3 of the vehicles should drive on main. The reward on main would then be, for each driver
i, Ri = 2

3 − M
N . Similarly, the reward on the secondary route would be Ri = 1

3 − S
N .

However, these formulas would yield negative rewards (e.g. in case all drivers go to side,
the reward would be − 2

3), which is not desirable. Therefore, we normalize the rewards
adding 2

3 in all cases, what puts the distribution of rewards between 0 and 4
3 . Table 1

shows rewards for some particular distributions of drivers.
When agents meet their colleagues, they can share information about which route

was the best in the group. As said before, from time to time these agents can meet
acquaintances from other groups, sharing information about routes as well.

This set of simulations is based on groups composed by either “social” people (in
the sense that they share their information within their group and with acquaintances

118 A.L.C. Bazzan, M. Fehler, and F. Klügl

Table 1. Rewards for particular distribution of drivers between main and secondary routes, for
N=150

#nb. main #nb. sec. rew. main rew. sec.
149 1 ≈ 1/3 ≈ 1

1 149 ≈ 4/3 ≈ 0
100 50 2/3 2/3
50 100 1 1/3
75 75 5/6 1/2

about which route is good), “nasty” people (always lie giving the opposite informa-
tion), and “noisy” drivers (do not belong to any group since they do not commute
frequently).

We can see these groups as being formed by colleagues (e.g. people working to-
gether). Agents in the group can ask for rewards of colleagues (or, more directly, which
route was good) and eventually (if the reward is higher) do what other(s) have done.
This is important because even if agent i has a good driving history (e.g. it is always on
time because it has a good strategy for selecting routes), it does not bring much to be the
only one on time in the office. Ideally, assuming that they work together or meet every
morning for important decisions, it is desirable that every one in the group is on time!
(thus the motivation for route information sharing).

Some of these agents also know people belonging to other groups (e.g. partners in
leisure activities, etc.) in a small-world-like configuration, so that they have opportunity
to ask for route tips from time to time. Finally, there are agents who like to experiment
a different route with a given probability.

Noisy drivers select routes randomly and do not ask for information. However, they
might meet other non-noisy agents (e.g. at the gas station) and give information.

Nasty agents have an operational behavior similar to the social drivers except that
they do not care about the group or acquaintances; they just want to drive in the route
with as few drivers as possible. Thus, in a quite “naı̈ve” way, they give the opposite
information (e.g. if one used the main route and got a good reward, it advises others to
use the secondary one, if asked). In fact, in some scenarios, given that the information
propagates, this can be a good strategy, as it will be shown. At this stage, we do not
have groups of mixed people because we want to compare performance at the group
level.

Finally, in some scenarios, we introduced a private message system (PMS) which
recommends drives what to do. The aim of the PMS is to direct people to an equilibrium
situation, based on the optimal distribution of drivers. Again, we assume that noisy
drivers do not get this kind of message.

Several scenarios were simulated, changing the composition of groups, the charac-
teristics of agents, and the presence or not of PMS. These scenarios are summarized in
Table 2.

All scenarios of type 1 are without PMS, and without noisy and nasty drivers. In
scenario 1A, infos are exchanged among group colleagues only; everyone select the
route of the best colleague in the group. Scenario 1B is pretty much the same, except
that agents have a probability p1 of trying a different route. 1C is also similar to 1A,
except that agents have a probability p2 of asking for infos outside their groups.

Implicit Coordination in a Network of Social Drivers 119

Table 2. Description of scenarios (∗ means that the parameter assumed different values, as
described in the experiment’s specific section)

nb. of nb. of
scenario PMS nasty noisy p1 p2 p3

1A no 0 0 0 0 0
1B no 0 0 ∗ 0 0
1C no 0 0 0 ∗ 0
2A no 0 ∗ 0 0 0
2B no 0 ∗ 0.01 0 0
2C no 0 ∗ 0 0.2 0
3A no ∗ 0 0 0 0
3B no ∗ 0 0.01 0 0
3C no ∗ 0 0 0.2 0

4A yes 0 0 0 0 0
4B yes 0 0 0.01 0 ∗
4C yes 0 0 0 0.2 ∗
5A yes ∗ 0 0 0 0
5B yes ∗ 0 0.01 0 0
5C yes ∗ 0 0 0.2 0
5D yes ∗ 0 0 0 ∗
6A yes 0 ∗ 0 0 0
6B yes 0 50 0 0 ∗
6C yes 0 50 0 0.2 0

Scenarios of type 2 are similar to type 1 but include noisy drivers. In 2A we changed
only their number. In 2B we also have a non zero probability p1. 2C is similar to 2B but
p2 is used instead of p1.

Scenarios of type 3 are similar to type 2 but include nasty instead of noisy drivers.
Their number was changed in scenario 3A while 3B and 3C are similar to 2B and 2C
respectively.

Scenarios of type 4, 5, and 6 all have agents receiving recommendations from the
PMS. In type 4 there are no noisy or nasty drivers. In 4A all agents do follow the
recommendation. In 4B they deviate from the recommendation with probability p3
(this means doing the opposite as recommended), plus they try different routes with
probability p1. 4C is similar to 4B but we use p2 instead of p1.

In type 5, there are nasty drivers. In 5A we change only the number of them. In 5B
and 5C p1 and p2 are non zero respectively. In 5D we also vary p3.

Type 6 is similar to type 5 but includes noisy instead of nasty drivers. In 6A we vary
the number of noisy drivers. The other drivers all follow the recommendations. In 6B
the number of noisy drivers is constant and we vary the probability to deviate from the
recommendation (p3), and in 6C we vary the probability p2.

Simulations take 500 time steps (in the graphics we show up to 1000 simulation steps
because each time step takes two simulation steps due to the nature of the simulation:
decide and drive). The parameters used in the simulations are: N = 150 drivers, and
these are divided in 15 groups. Since agents are created with a probability of belonging
to a group, groups may not have exactly N/15 members. Depending on the scenario,

120 A.L.C. Bazzan, M. Fehler, and F. Klügl

two of those groups are fixed: one group with only noisy and one group with only nasty
drivers.

4 Results

We now present and discuss the main results regarding the scenarios just described.
In the graphics we depict only the number M of drivers on main (the secondary is
given by N − M). In fact, we measure both the actual number at each time step and a
discounted average (by a factor δ) as follow: Mδ = δ × Mold + (1 − δ) × Mcurrent. In
the simulations presented here δ = 0.9 so that we put much less weight on the current
time step. In most graphics we plot only the discounted average which is more smooth
than the actual number M (see for instance how it looks when both are plotted at Fig. 2).
Remember that the optimal situation is when two-thirds of the drivers (100) are on main
and one-third (50) on the secondary route.

4.1 Scenarios Without Recommendation

In Fig. 1 we depict all simulations of type 1: case 1A is the topmost curve in the up-
per box. Here we see that after a short time the N agents select the main route! This
happens because they share the information and all copy the best strategy in the group.
Since there is no probability of trying something new, they are all stuck in a very poor
situation in terms of performance (see Table 1). Similar performance is noticed for
case 1C. This happens because, although agents do ask acquaintances in other groups,
since they all behave the same regarding copying strategies and there are no noisy

100

120

140

160

1A, 1C (p2 = 0.2)
1B (p1 = 0.001)
1B (p1 = 0.001, discounted)

250 500 750 1000

80

100

120

140

1B (p1 = 0.01)
1B (p1 = 0.01, discounted)

Fig. 1. Number of drivers on main for scenarios 1A, 1B, and 1C, with p1 = 0.001 (upper box)
and p1 = 0.01 (lower box)

Implicit Coordination in a Network of Social Drivers 121

drivers, this behavior brings nothing. Thus, the result is that again all N drivers end up
selecting main.

Of course these are determinisitic and thus very unrealistic situations. In case 1B
we used probability p1 of people trying different routes. This is depicted in Fig. 1 as
well. The curves in the upper box are for p1 = 0.001 and the curves in the lower box
are for p1 = 0.01. We can see that in both cases the average number of drivers on main
fluctuates around 100 drivers, with a much higher deviation in the latter case, which is
explained by the fact that the experimentation happens more frequently.

Fig. 2 shows the simulations for scenario 2A for various numbers of noisy drivers,
with p1 = p2 = 0. From top to bottom, their numbers are 10, 50, 100, and 150. When
there are only 10, on average 5 go to main and 5 to secondary, what puts the number
of people at main to 145 on average (remember that the non-noisy just copy the best
route and thus go to main as in 1A). Similar situation happen with 50 (125 on main),
100 (100 on main), and when all are noisy (of course 75 go to each route on average).
Notice that the deviation from the expected average increases with increasing number
of noisy drivers.

In the simulations depicted on Fig. 3 (scenario 2B), a probability p1 = 0.01 of
trying another route was used, and the number of noisy drivers varied: 10, 30, and 50.
From now on, in most of the figures, we show only the discounted average in order
to plot several curves in a single graphic. The overall average is below 100 due to the
noisy drivers who select randomly thus bringing the average as close to 75 the higher
their number is.

In scenario 2C, the probability p2 was set to 0.2 (keeping p1 = 0), changing the
number of noisy drivers (10, 30, and 50). Fig. 4 show the results: the more noisy drivers,

0 250 500 750 1000
60

80

100

120

140

0 500 1000

Fig. 2. Number of drivers on main for scenario 2A, for 10, 50, 100, and 150 (from top to bottom)
noisy drivers

122 A.L.C. Bazzan, M. Fehler, and F. Klügl

0 250 500 750 1000
80

90

100

110

0 500 1000

10 noisy
30 noisy
50 noisy

Fig. 3. Number of drivers on main for scenario 2B

0 250 500 750 1000
80

90

100

110

120

130

0 500 1000

10 noisy
30 noisy
50 noisy

Fig. 4. Number of drivers on main for scenario 2C

the more the small-world metaphor is effective. The high/low peaks in the curves appear
because when agent i asks agent j in another group and learns a better route, then all
agents of the group of agent i will copy and change, if agent i got a good reward.

Cases with nasty drivers are discussed next. In 3A, p1 and p2 are zero and we vary
only the number of nasty drivers: 10, 30, 50, 75, 100, and 140. With 10 nasty drivers,
those who select the side route at the beginning (5 on average) perform very well because

Implicit Coordination in a Network of Social Drivers 123

0 250 500 750 1000

85

90

95

100

105

110

10 nasty
30 nasty
50 nasty

Fig. 5. Number of drivers on main for scenario 3B

all social drivers go to main (again, because they copy the best route in their groups).
The remaining nasty drivers get wrong information from the others in the group and go
to main as well. Thus, a few nasties are better off driving the secondary route. Similar
situations happen for 30 and 50. However, with 75, 100, and 140 nasty drivers their
performance decreases (in this order) because around 50% of them go to each route and
they are simply too many in each. Compared to situations 1A and 1C (no nasty drivers),
here, with the presence of false information, at least some of the nasty drivers have a
good performance (especially when they are few).

To escape from this unrealistic situation, simulations were performed in which both
social and nasty drives have a probability p1 (here equal to 0.01) to try another route. Re-
sults are depicted in Fig. 5. There is not so much difference comparing cases 3B and 1B:
nasty drivers do not cause more fluctuation because every driver can find a better route.

The scenario with nasties was also combined with the small world (3C) using p2 =
0.2. Only 10 nasty drivers are not enough to influence the other 140 (in a situation
similar to 1C – see Fig. 1, topmost box), so that all social drivers get stuck selecting
main, while the nasty drivers go to both and those on the side route have a much better
reward. However, when we increase the number of nasty drivers, the wrong information
they give to people outside their group plays the role of diversity and makes other agents
select a different route, avoiding everyone being stuck. Because nasty drivers also get
information from outside their group, they find out the best route (from someone who
does not lie) and eventually all go to either main (2/3) or side (1/3).

An interesting conclusion here is that nasty drivers, although not intensionally, pro-
vide the diversity necessary for the whole society to converge to the equilibrium, which
is not in the best interest of those nasty drivers who give the false information (since this
was actually intended to free their own routes!).

124 A.L.C. Bazzan, M. Fehler, and F. Klügl

4.2 Scenarios with Recommendation

Now we discuss similar scenarios in which all drivers (except for noisy) receive a rec-
ommendation from the PMS in order to direct 2/3 of them to the main route. In case
of 4A, there are no nasty or noisy drivers and all probabilities (p1, p2, and p3) are set
to zero. One simulation is shown in Fig. 6. The top most curve shows the expected: on
average, 2/3 of the drivers use the main route.

More interesting are the cases where those probabilities are non-zero. We start with
variations in the probability of deviating from the recommendation and change route
(4B), i.e. p3 assuming values of 0.01, 0.1, 0.5, and 1.0, while p1 is set to 0.01. These
results are also depicted in Fig. 6. With p3 = 0.01, the number of drivers on main
is not different from the above case. For p3 = 0.1, the number of drivers on main
goes down to around 95. Similar for p3 = 0.5 (75) and p3 = 1.0 (50). The case 4C
is depicted in the same figure, only for p2 = 0.2 and p3 = 0.01 (others are simi-
lar). Asking people from other groups introduces more noise in the scenario (compared
to 4A).

Summarizing case 4, the best situation happens of course when everybody follows
the recommendation; however this is not realistic. The more noise there is (introduced
by the probabilities p3), the less drivers deviate from equilibrium.

However, case 4 does not account for noisy or nasty drivers. The latter is studied in
case 5. We have simulated case 5A with different number of nasty drivers, keeping p1,
p2, and p3 at zero. Nasty drivers also get recommendations but, when asked, give the
wrong selection. In all cases the average fluctuates around 100 drivers on main because
nasty drivers have low influence due to the recommendation. This is pretty much the
case also regarding cases 5B and 5C. Neither probability p1 nor probability p2 affects
the distribution which is in equilibrium.

0 200 400 600 800 1000
simulation steps

40

50

60

70

80

90

100

110

nb
 o

f
dr

iv
er

s
m

ai
n

ro
ut

e

4A (p3 = 0)
4B (p3 = 0.01)
4B (p3 = 0.1)
4B (p3 = 0.5)
4B (p3 = 1.0)
4C (p2 = 0.2)

Fig. 6. Number of drivers on main for scenario 4

Implicit Coordination in a Network of Social Drivers 125

0 250 500 750 1000
70

80

90

100

110

0 500 1000

5D (p3 = 0.01)
5D (p3 = 0.1)
5D (p3 = 0.5)

Fig. 7. Number of drivers on main for scenario 5D

0 250 500 750 1000
70

80

90

100

0 500 1000

Fig. 8. Number of drivers on main for scenario 6A, for 10, 50, 100, and 150 (top to bottom) noisy
drivers

However, this changes when we introduce the probability p3 of drivers deviating
from the recommendation. Fig. 7 shows this situation for different values of p3 (0.01,
0.1, and 0.5), while keeping p1 and p2 at zero. As expected, the number of drivers on
main decreases and this happens the more drivers deviate from the recommendation.

126 A.L.C. Bazzan, M. Fehler, and F. Klügl

0 500 1000
70

75

80

85

90

95

6B (p3 = 0.01)
6B (p3 = 0.1)
6B (p3 = 0.5)
6C (p2 = 0.2)

Fig. 9. Number of drivers on main for scenarios 6B and 6C

With p3 = 0.5, the overall behavior is similar to random selection, even if no noisy
driver is present.

Scenario 6A includes noisy drivers, and p1, p2, and p3 are zero. Fig. 8 shows the
results of the simulations for number of noisy drivers equal to 10, 50, 100, and 150 (from
top to down). As expected, in each case we have 2/3 of the social drivers who follow
the recommendations and half of the noisy drivers in the main route, which destroys the
equilibrium.

Now, when we add non-zero probability for p3 (6B), the number of drivers on main
decreases further because some drivers deviate (Fig. 9). In this figure we also plot for
p2 = 0.2 (6C).

4.3 Final Remarks About All Scenarios

Regarding the performances of groups, we discuss only cases which are far from the
equilibrium because these situations indicate the performance of a given group.

Regarding the analysis of the simulations without recommendation, generally, the
performance of noisy drivers is just boring: they tend to perform around the equilibrium
when they are too many (see last entry on Table 1 whose average reward for main and
side is 5

6 ∗ 1
2 + 1

2 ∗ 1
2 = 2/3) or when they are too few (they have little influence). In

other cases, they tend to destroy the equilibrium pattern, pushing the number of drivers
on main below 100.

In the case of nasty drivers, their best performance happens for 3A with 10 nasty
drivers since only half of these few go to S because of the false information they give
inside their group. With the increasing number of nasty drivers, their performance as
a group drops. In fact, their worst performance is in case 3A with 140 nasty drivers,
followed by 3A with 100 nasty.

Implicit Coordination in a Network of Social Drivers 127

In the case of social drivers, their best performance is case 3A when there are 140
nasty drivers (which, not surprisingly is the worst performance for these). All of the
nasty drivers go to secondary route most of the time, leaving the main route for the few
social ones.

The worst performance for social people are 1A and 1C because they all copy the
best route in the group and select the same route. In 2A, the performance of social drivers
is bad only when there are few noisy drivers; when there are many, these select randomly
leaving less people on main, thus increasing the reward of the social drivers. 3A is also
bad for social drivers because the few nasty drivers do very well as explained above.

Regarding the performance for the situations with recommendation, the observations
above do not apply (except for noisy drivers). Regarding nasty drivers, in no case they
do very good or very bad. There are high fluctuations over the average for case 5D when
p3 is 0.5 because drivers deviate from the recommendation frequently. Social drivers
do well in case 6A, when there is a high number of noisy drivers (again, these select
randomly leaving less people on main). They have a low performance in case 4B when
p3 is 1.0 because they all deviate from the recommendation, thus ending up in a situation
opposed to the equilibrium.

5 Conclusions and Future Work

This paper discusses the effect of information sharing in a scenario of adaptation re-
garding which route to take in a route choice scenario. The simulations of the situations
described in Section 3 show that it is interesting to have a system giving recommenda-
tions to the drivers. However, the performance of the groups decreases when too many
drivers deviate from the recommendation,which seems to be a current practice regarding
driving because people not always trust the recommendation given bad past experiences
or they just want to experiment new routes.

Also, when there is no social attachment and the behavior is myopic towards maxi-
mization of short time utility, the performance is bad for nasty drivers (at least), except
when they are few. Being a nasty driver pays off up to a certain level only. Another point
that can be stressed is that in scenario 3C nasty drivers help the social ones, even if this
is not intended.

Regarding the noisy drivers, these tend to destroy good patterns of equilibrium (and
hence performance). However they also help social drivers when these are stuck in a bad
choice in situations, especially when the probability of meeting acquaintances is non-
zero. Therefore, the recommendation system must consider the ratio of noisy drivers.
When the number of noisy drivers is unknown or too high, the recommendation may fail.

Finally, this work is based on a series of assumptions that may not be bearable in every
real world application. For instance, we assume a global control component that is able
to compute the exact utility of the agent decisions for producing the recommendation.
In [4], we investigate a scenario in which the control system has imperfect information.

In the future, we plan to also investigate the influence of group size. Also, we will
add an adaptation component to the social and nasty drivers, as well as to the PMS so
that they can adapt to the changing conditions, with an eventual recognition of nasty
drivers in order to mark them as untrustable as information source.

128 A.L.C. Bazzan, M. Fehler, and F. Klügl

Acknowledgments

The first author is partially supported by CNPq. We also thank the anonymous reviewers
for their valuable suggestions.

References

1. B. Arthur. Inductive reasoning, bounded rationality and the bar problem. Technical Report
94–03–014, Santa Fe Institute, 1994.

2. A. L. C. Bazzan, R. H. Bordini, G. Andriotti, R. Viccari, and J. Wahle. Wayward agents
in a commuting scenario (personalities in the minotity game). In Proc. of the Int. Conf. on
Multi-Agent Systems (ICMAS). IEEE Computer Science, July 2000.

3. A. L. C. Bazzan and A. P. Cavalheiro. Influence of social attachment in a small-world network
of agents playing the iterated prisoners dilemma. In S. Parsons and P. Gmytrasiewicz, editors,
5th Workshop of Game Theoretic and Decision Theoretic Agents, pages 17–24, July 2003.
held together with AAMAS 2003.

4. A. L. C. Bazzan and R. Junges. Congestion tolls as utility alignment between agent and
system optimum. In Proceedings of the Fifth Int. Joint Conference on Autonomous Agents
and Multiagent Systems, 2006. submitted to AAMAS 2006.

5. D. Challet and Y. C. Zhang. Emergence of cooperation and organization in an evolutionary
game. Physica A, 246:407–418, 1997.

6. F. Klügl and A. L. C. Bazzan. Route decision behaviour in a commuting scenario. Journal
of Artificial Societies and Social Simulation, 7(1), 2004.

7. F. Klügl, A. L. C. Bazzan, and J. Wahle. Selection of information types based on personal
utility - a testbed for traffic information markets. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 377–384,
Melbourne, Australia, July 2003. ACM Press.

8. S. Milgram. The small world problem. Psychol. Today, 2, 1967.
9. J. G. Wardrop. Some theoretical aspects of road traffic research. In Proceedings of the Institute

of Civil Engineers, volume 2, pages 325–378, 1952.
10. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,

393(6684):397–498, June 1998.

Multiagent Traffic Management:
Opportunities for Multiagent Learning

Kurt Dresner and Peter Stone

Department of Computer Sciences, University of Texas at Austin,
Austin, TX 78712, USA

{kdresner, pstone}@cs.utexas.edu

Abstract. Traffic congestion is one of the leading causes of lost productivity
and decreased standard of living in urban settings. In previous work published at
AAMAS, we have proposed a novel reservation-based mechanism for increasing
throughput and decreasing delays at intersections [3]. In more recent work, we
have provided a detailed protocol by which two different classes of agents (in-
tersection managers and driver agents) can use this system [4]. We believe that
the domain created by this mechanism and protocol presents many opportunities
for multiagent learning on the parts of both classes of agents. In this paper, we
identify several of these opportunities and offer a first-cut approach to each.

1 Introduction

Traffic congestion is one of the leading causes of lost productivity and decreased standard
of living in urban settings. According to a recent study of 85 U.S. cities [18], annual time
spent waiting in traffic has increased from 16 hours per capita to 46 hours per capita since
1982. In the same period, the annual financial cost of traffic congestion has swollen from
$14 billion to more than $63 billion (in 2002 US dollars). Each year, Americans burn
approximately 5.6 billion gallons of fuel while idling in heavy traffic. Recent advances
in artificial intelligence suggest that autonomous vehicle navigation will be possible in
the near future. Individual cars can now be equipped with features of autonomy such as
cruise control, GPS-based route planning [14,16], and autonomous steering [10,12]. It
is inevitable that before long many of the cars on the road will have such capabilities,
thus opening up the possibility of autonomous interactions among multiple vehicles.

Multiagent Systems (MAS) is the subfield of AI that aims to provide both principles
for construction of complex systems involving multiple agents and mechanisms for co-
ordination of independent agents’ behaviors [17]. In earlier work published at AAMAS,
we have proposed a MAS-based approach to alleviating traffic congestion, specifically
at intersections [4].

Current methods for enabling traffic to flow through intersections include building
overpasses and installing traffic lights. However, the former is very expensive and forbids
turning, while the latter can be quite inefficient, often requiring cars to remain stopped
even when no cars are present on the intersecting road.

At this time, it is possible to create a small-scale system in which all cars are piloted
by a central computer. Consider, for example, the task of controlling ten vehicles on an

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 129–138, 2006.
c© © Springer-Verlag Berlin Heidelberg 2006

130 K. Dresner and P. Stone

open factory floor. However, scaling such a system to handle an intersection in which a
city’s worth of cars might turn up would involve prohibitively expensive and inefficient
communication and control infrastructure. Our goal is to maximize the efficiency of
moving cars through intersections with minimal centralized infrastructure. We assume
that intersections can be outfitted with a simple wireless communication system and a
protocol (which we introduced in a previous paper[2]) for communicating with oncoming
traffic and giving permission for cars to pass. In the system we developed, vehicles must
traverse intersections according to a set of parameters agreed upon by the vehicle and the
intersection manager (as they do today by obeying red and green lights), but otherwise
are free to decide for themselves how to drive. Each car is an autonomous agent, and in
particular need not surrender control to any centralized decision maker.

We have demonstrated that our novel reservation system dramatically outperforms
systems used in common practice, including traffic lights and stop signs. We began with
a model in which cars could only go straight and move at constant velocity through the
intersection [3]. In our latest results, we have extended the system to allow for turns and
acceleration in the intersection [4].

In all of this prior work, the behaviors of both the driver agents and the intersection
control agent were all identical and fixed throughout the simulation. However, a main
feature of our research has been the definition of an agent-indepedent protocol for car-
intersection interaction. In particular, we expect that in general, intersections will have
different traffic control algorithms (perhaps depending on the topology of the intersection
and/or expected traffic flows), and that indeed each vehicle manufacturer will create
proprietary vehicle control algorithms. As long as they adhere to our pre-defined protocol,
there is no reason to prevent such diversity.

Once we open the possibility of varying behaviors on the part of the agents, the
intersection scenario becomes, in a sense, a multiagent game, admitting for the possibility
of strategic behavior on the part of the agents, and ultimately multiagent learning-based
approaches.

In this paper, we identify several possible directions for extending our current model
that will require such multiagent learning. For each direction, we discuss the strategic
issues and propose a first approach towards multiagent learning.

The remainder of this paper is organized as follows. In Section 2, we present a list
of properties we believe a multiagent intersection control mechanism should have. In
Section 3 we describe the reservation-based system that we have created (in simula-
tion) which we believe has these properties. In Sections 5 and 6 we present several
opportunities for using machine learning in the intersection manager and driver agents,
respectively. In Section 7, we mention other work that has been done in this area. We
conclude in Section 8.

2 Desired Properties

In the process of developing our system we outlined several properties we believed
should hold in order for the system to be realistic and practical.

1. The agents should only communicate information which is necessary for the system
to function properly.

Multiagent Traffic Management: Opportunities for Multiagent Learning 131

2. The agents should only have access to information that can be reliably obtained with
current technology.

3. Communication failure (dropped messages) should not violate the system’s safety
properties.

4. The vehicles should be treated as individual agents, and no centralized controller
should have any more control over them than necessary.

5. The system should incorporate a simple communication protocol that allows agents
to know only a minimal amount about each other. As long as agents obey and
understand the protocol, no extra information exchange or other interaction should
be required.

6. Every vehicle should eventually make it through the intersection (i.e. no deadlocks
or starvation).

Many of these properties also ensure that the system will be amenable to machine
learning techniques. Specifically, the simple, reliable protocol ensures that agents are
more or less self-contained — the intersection manager isn’t extensively involved in the
driver agent’s decision making process (and vice versa). Furthermore, the requirement
that every vehicle makes it through the intersection means that a machine learning
algorithm in its early stages will not bring the system to a halt as a result of risky
exploration.

3 The Reservation System

In our previous work, we proposed a novel reservation-based multi-agent approach to
alleviating traffic, specifically at intersections. This system consisted of two types of
agents: intersection managers and driver agents. Each system consists of an intersec-
tion manager for each intersection and a driver agent for each vehicle. Intersection
managers are responsible for directing the vehicles through the intersection, while the
driver agents are responsible for controlling the vehicles to which they are assigned.
To improve the throughput and efficiency of the system, the driver agents “call ahead”
to the intersection manager and request space-time in the intersection. The intersection
manager then determines whether or not these requests can be met. Depending on the
decision the intersection manager makes, the driver agent either records the parameters
of the request (the reservation) and attempts to meet them, or it makes another request
at a later time. We have described our implementation of a driver agent in previous
papers [4,2]. Note that our implementations of the reservation system and the driver
agent are just two possibilities. As long as the agents adhere to the protocol, the system
will still work. In practice, each agent could run a different algorithm or use a different
heuristic to improve performance.

To determine whether or not a request can be met, the reservation manager simulates
the journey of the vehicle across the intersection, which it divides into a grid of n × n
tiles. The parameter n is called the granularity of the reservation manager. At each time
step of the simulation, it determines which tiles the vehicle occupies. If throughout this
simulation, no required tile is occupied by another vehicle (from a previous reservation),
the manager reserves the tiles for this vehicle.

132 K. Dresner and P. Stone

Fig. 1. A screenshot of our simulator in action

In order to evaluate the performance of the reservation system, we created a cus-
tom simulator. A screenshot of the simulator in action can be seen in Figure 1. We
tested the reservation system against two other intersection control policies - the over-
pass and the traffic light. An intersection control policy is a method the intersection
managers use to determine when specific vehicles are allowed in the intersection. Us-
ing the simulator, we showed that using the reservation-based policy, vehicles crossing
an intersection experience much lower delay (increase in travel time from the opti-
mal) versus the traffic light. Furthermore, we showed that the reservation-based policy
also drastically increases the throughput of the intersection. For any realistic intersec-
tion control policy, there exists an amount of traffic above which vehicles arrive at the
intersection more frequently than they can go through the intersection. At this point,
the average delay experienced by vehicles travelling through the intersection grows
without bound. Compared to the traffic light, this amount of traffic is much higher
for the reservation system. Videos of our most recent developments can be found at
http://www.cs.utexas.edu/users/kdresner/papers/2005aamas/.

4 Communication Protocol

In our latest work, we added the protocol by which the agents can communicate the bare
minimum of information necessary to function appropriately. The protocol consists of
several message types for each kind of agent, as well as some rules governing when
the messages should be sent and what sorts of guarantees accompany them. A detailed
specification of the protocol including full syntax and semantics is available in our
technical report [2]. We believe that this protocol will help facilitate the application of

Multiagent Traffic Management: Opportunities for Multiagent Learning 133

machine learning techniques to the intersection domain. Here we give a brief overview
of the types of messages available to the agents using this protocol.

4.1 Vehicle → Intersection

There are four types of messages that can be sent from vehicles to the intersection.

1. REQUEST — This is the message a vehicle sends when it does not have a reservation
and wishes to make one. It contains the properties of the vehicle (ID number, per-
formance, size, etc.) as well as some properties of the proposed reservation (arrival
time, arrival velocity, type of turn, arrival lane, etc.).

2. CHANGE-REQUEST — This is the message a vehicle sends when it has a reservation,
but would like to switch to a different set of parameters.

3. CANCEL — This is the message a vehicle sends when it no longer desires its current
reservation.

4. RESERVATION-COMPLETED — This message is used when the vehicle has com-
pleted its traversal of the intersection. This message can be used to collect statistics
for each vehicle, which can be recorded in order to analyze and improve the perfor-
mace of the intersection manager.

4.2 Intersection → Vehicle

There are three types of messages that can be sent from the intersection to the individual
vehicles.

1. CONFIRMATION — This message is a response to a vehicle’s REQUEST

(or CHANGE-REQUEST) message. It can contain a counter-offer by the intersection.
The reservation parameters in this message are implicitly accepted by the vehicle,
and must be explicitly cancelled if the driver agent of the vehicle does not approve.
Note that this is safe to faulty communication — the worst that can happen is that
the intersection reserves space that does not get used.

2. REJECTION — By sending this message, an intersection can inform a vehicle that
the parameters sent in the latest REQUEST (or CHANGE-REQUEST) were not ac-
ceptable, and that the intersection either could not or did not want to make a counter-
offer. This message also contains a field indicating whether or not the rejection was
because the reservation manager requires the vehicle to stop at the intersection be-
fore entering. This lets the driver agent know that it should not attempt any more
reservations until it reaches the intersection.

3. ACKNOWLEDGMENT — This message acknowledges the receipt of a CANCEL or
RESERVATION-COMPLETED message.

5 Learning Opportunities for the Intersection Manager

At this point in the paper we have described the current state of our implementation,
describing mainly the aspects required to motivate the multiagent learning opportunities
we see in the future. We now turn our attention to those opportunities. Our goal at the
outset of this project was to improve the efficiency of intersections. It seems natural,
then, to start with the agent controlling which vehicles have access to the intersection:
the intersection manager.

134 K. Dresner and P. Stone

5.1 Delayed Response

Incorporating any nontrivial learning into the intersection manager may require a few
conceptual changes to the intersection manager. As it stands, all intersection managers
in the system respond immediately to requests made by vehicles. Given this constraint,
the current reservation system performs as well as it can — it can’t tell what is going
to happen in the future. However, if we relax this constraint and allow the reserva-
tion manager to respond to requests at a later time, the intersection manager would
have time to get a feel for the competing requests and can make a more well-informed
decision.

This modification suggests a straightforward method for determining whether or not
to grant reservations. When the intersection manager receives a request, it can calculate
the last possible point at which it can respond without forcing the sending vehicle to
slow down for lack of having a reservation. The intersection manager holds on to the
reservation request until that time. In the meantime, it considers other vehicles’ requests
and can then grant reservations more efficiently.

Allowing this delayed response offers an immediate improvement over the current
system. Consider the following example in which three vehicles, A, B, and C all send
reservation requests to the intersection manager a short time after one another. Now
suppose that vehicle A’s request conflicts with both B’s and C’s (that is, they require
the same reservation tile at a specific time), but that B’s request does not conflict with
C’s. With our current system, the reservation manager would approve A’s request, but
reject both B and C. With the new system, only A would be rejected.

In addition to improving the efficiency of the system, adding a delayed response
creates some opportunites to apply machine learning. In particular, as the number of
outstanding reservation requests increases, the number of possible responses scales ex-
ponentially. Since timeliness is an important constraint, the intersection manager will
need to intelligently search through set of possible responses in order to optimize the
overall performance. Learned search control knowledge based on off-line optimization
trials could play an important role in this regard.

Furthermore, projected incoming traffic can also play an important role. Once a
reservation is accepted, it can’t be cancelled. However, the parameters of reservations
made in the near future are going to be related to the parameters of the reservations made
now. For example, in heavy traffic, it may be best to reject a reservation request even
when it doesn’t conflict with many other requests in the same time frame — granting
that reservation may cause the system to perform much more poorly at a slightly later
time. In this sense, a learned model of incoming traffic as a function of time of day, day
of week, and/or recent history could improve performance by serving as an input to the
forward simulations of the impact of any given decision.

5.2 Vehicles with Priorities

In our current simulation, all vehicles are treated as equally important with regards to
the performance metric. However in practice, the intersection should be able to give
preferential treatment to a subset of vehicles, such as emergency vehicles. For example,
a normal commuter would have a low priority, a police car would have a high priority,
and an ambulance or fire truck en route to a fire would have yet a higher priority.

Multiagent Traffic Management: Opportunities for Multiagent Learning 135

The first-cut solution to this problem is straightforward: whenever the reservation
manager receives a request that conflicts with a request which it is currently holding, it
rejects the lower priority request. This does enforce the constraint that higher priority
vehicles are given preference, but is not optimal by any stretch of the imagination.
Consider again three vehicles: a daily communter, a police car, and an ambulance racing
a heart-attack victim to the hospital. If the commuter is in front of the ambulance and it is
forced to yield to the police car, it will hold up the ambulance as well. If the intersection
manager instead just allowed the commuter through, the ambulance may have been able
to pass unhindered. The actual relationship between the times of a particular vehicle’s
reservation, that vehicle’s priority, the characteristics of other approaching vehicles, and
how much it is worth to the intersection to accept the reservation is very complicated.
However, a reinforcement learning algorithm may be able to capture this relationship.
When vehicles complete a trip across the intersection, the intersection manager could be
given a reward signal inversely proportional to the delay the vehicle experienced. The
manager could eventually learn to grant reservations based on the vehicles’ priorities
and the current traffic patterns so as to maximize the system’s overall future reward.

5.3 The Intersection as a Market

Another consideration is that vehicles might have to pay to use the intersection. With
states in the U.S. such as Oregon and California already considering taxing motorists by
the mile, this is not far-fetched. Along with reservation requests, vehicles would transmit
a bid. The reservation manager’s goal would be to collect the most revenue. A first-cut
solution would be analagous to the example with vehicle priorities: when a reservation
comes in, reject any currently pending reservations that conflict with it and have a lower
bid. This is obviously not optimal — consider any set of n vehicles such that for all
0 < i < n, vehicle i and i+1 conflict. As long as the bid for vehicle i+1 is greater than
that of vehicle i, the reservation manager will wind up only letting through vehicle n.
Instead, it might have been able to allow through vehicles 1, 3, This is approximately
n
2 vehicles and would generate a lot more revenue.

In this context, the intersection can be framed as a continually clearing combinatorial
auction. The decision for any given grid cell must occur whenever the first car that needs
it is about to enter the intersection. There is a tradeoff between letting a car through and
retaining flexibility for later that the intersection manager must maintain. That is, letting
an individual car through is good for the intersection manager. However, not letting that
car through may lead to more positive benifits later on. Since even a single combinatorial
auction can be computationally costly to solve, continually clearing, interacting combi-
natorial auctions are likely to be intractable. However, based on off-line simulation, the
intersection manager could learn expected marginal values for granting a request to a
given driver and therefore more effectively balance the above tradeoff.

6 Learning Opportunities for the Driver Agent

While there are many opportunities for the intersection manager to improve, they are
mostly of the form of a single agent learning how to interact with multiple fixed agents
(the drivers). The true multiagent learning opportunities lie in the vehicles.

136 K. Dresner and P. Stone

6.1 Bidding in the Market System

In Section 5, we showed how a market could play an important role in the intersection
management problem. In the example we gave, it wasn’t clear how the agents should
determine what bid to place with their reservation requests. An agent could start with
a low bid and then continue raising it until one gets accepted, but this process takes
time and it could wind up severely delayed just because it wasn’t willing to commit
to the higher bid up front. This is a very challenging problem — to solve it effectively
would require a more detailed response from the intersection manager: the amount of
the bid that caused the request to be rejected, the average bid amount for this particular
intersection at this time of day, and so forth. Even with this type of information, though, it
is unclear how to proceed. Learning the relationship between time of day, day of week,
recent traffic reports, and a reasonable price for a reservation is a task well-suited to
a neural network or other supervised learning algorithm. In off-line simulation, many
vehicles could be run through the intersection, and when one gets a reservation, it could
use the cost it eventually had to pay as a target value, weighted perhaps by how quickly
it got the reservation.

6.2 Lane Changing

One of the features of our reservation system is the complete autonomy of driver agents
while they are outside the intersection. Thus, when considering how to incorporate some
sort of lane changing behavior, ideally we’d like to avoid having the intersection manager
tell the vehicles which lane they should be in. However, as in the previous example,
having the reservation manager (or some other source) provide the vehicle with relevant
information could be extremely useful. For example, if an intersection manager realizes
that one lane has a lot of cancelled reservations (e.g. from a stalled vehicle in that lane
preventing other vehicles from fulfilling their reservations), this information might let
vehicles know that they should switch to another lane instead of trying to make it through
in the lane with the stalled car. It would then be interesting to explore how much and
what kind of information the intersection manager is required to give the vehicles such
that they can best choose which lane to use. If the driver agents were able to learn a
better policy for lane choice, we could examine which information is useful for making
that decision without having to first determine precisely how they are using it.

6.3 Making Better Reservations

In the current implementation, driver agents must find a way to make reservations that
they can keep. To do this, they must be able to accurately predict when they will reach the
intersection, accounting for delays from other vehicles and road hazards. In a real-life
implementation, statistics and data the intersection manager has collected may be useful
and thus made available to the driver agent. For example, as in both the bidding and
lane-changing examples, the intersection manager may be able to provide vehicles with
statistics on recent reservations. Once again, how to use these data is not immediately
obvious and certainly depends on the algorithms (learning or otherwise) used by the
other drivers. While the sensors in our simulated vehicles do not do it currently, they
might be able to track the speed of the vehicle in front over the 10 seconds before making

Multiagent Traffic Management: Opportunities for Multiagent Learning 137

a reservation, or determine that the vehicle in front is a public bus and therefore might
stop before the intersection for a long period of time. Given these new inputs, the driver
agent could learn to better predict when and how it will arrive at the intersection.

7 Related Work

Rasche and Naumann have worked extensively on decentralized solutions to intersec-
tion collision avoidance problems [9,11]. Many approaches focus on improving current
technology (systems of traffic lights). For example, Roozemond allows intersections
to act autonomously, sharing the data they gather [15]. The intersections then use this
information to make both short- and long-term predictions about the traffic and adjust
accordingly. This approach still assumes human-controlled vehicles. Bazzan has used
an approach using both MAS and evolutionary game theory which involves multiple in-
tersection managers (agents) that must focus not only on local goals, but also on global
goals [1].

Work is also being done with regard to the control of the individual vehicles. Hallé
and Chaib-draa have taken a MAS approach to collaborative driving by allowing vehicles
to form platoons, groups of varying degrees of autonomy, that then coordinate using a
hierarchical driving agent architecture [5]. While not focusing on intersections, Moriarty
and Langley have shown that reinforcement learning can train efficient driver agents for
lane, speed, and route selection during freeway driving [8].

On real autonomous vehicles, Kolodko and Vlacic have created a primitive system
for intersection control which is very similar to the granularity-1 reservation system [7].

Actual systems in practice (not MAS) for traffic light optimization include TRAN-
SYT [13], which is an off-line system requiring extensive data gathering and analysis,
and SCOOT [6], which is an advancement over TRANSYT, responding to changes in
traffic loads on-line. However, almost all of the methods in practice or discussed above
still rely on traditional signalling systems.

8 Conclusion

The intersection management problem presents a challenging yet promising domain for
multi-agent learning research. The intersection control mechanism we developed is a
vast improvement over current methods, but with a few extensions poses some chal-
lenging problems. We have provided several examples of such problems where machine
learning could be used to improve the performance of both intersection managers and
driver agents. These examples are at this point speculative. In ongoing research we are
investigating how to bring them and other learning opportunities into practice.

References

1. A. L. C. Bazzan. A distributed approach for coordination of traffic signal agents. Autonomous
Agents and Multi-Agent Systems, 10(2):131–164, March 2005.

2. K. Dresner and P. Stone. Multiagent traffic management: A protocol for defining intersection
control policies. Technical Report UT-AI-TR-04-315, The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, December 2004.

138 K. Dresner and P. Stone

3. K. Dresner and P. Stone. Multiagent traffic management: A reservation-based intersection
control mechanism. In The Third International Joint Conference on Autonomous Agents and
Multiagent Systems, July 2004.

4. K. Dresner and P. Stone. Multiagent traffic management: An improved intersection con-
trol mechanism. In The Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 471–477, July 2005.

5. S. Hallé and B. Chaib-draa. A collaborative driving system based on multiagent modelling and
simulations. Journal of Transportation Research Part C (TRC-C): Emergent Technologies,
2005. To appear.

6. P. B. Hunt, D. I. Robertson, R. D. Bretherton, and R. I. Winton. SCOOT - a traffic responsive
method of co-ordinating signals. Technical Report 1014, TRL Laboratory, 1981.

7. J. Kolodko and L. Vlacic. Cooperative autonomous driving at the intelligent control systems
laboratory. IEEE Intelligent Systems, 18(4):8–11, July/August 2003.

8. D. Moriarty and P. Langley. Learning cooperative lane selection strategies for highways. In
Proceedings of the Fifeenth National Conference on Artificial Intelligence, pages 684–691,
Madison, WI, 1998. AAAI Press.

9. R. Naumann and R. Rasche. Intersection collision avoidance by means of decentralized
security and communication management of autonomous vehicles. In Proceedings of the
30th ISATA - ATT/IST Conference, 1997.

10. D. A. Pormerleau. Neural Network Perception for Mobile Robot Guidance. Kluwer Academic
Publishers, 1993.

11. R. Rasche, R. Naumann, J. Tacken, and C. Tahedl. Validation and simulation of decentralized
intersection collision avoidance algorithm. In Proceedings of IEEE Conference on Intelligent
Transportation Systems (ITSC 97), 1997.

12. C. W. Reynolds. Steering behaviors for autonomous characters. In Proceedings of the Game
Developers Conference, pages 763–782, 1999.

13. D. I. Robertson. TRANSYT — a traffic network study tool. Technical Report TRRL-LR-253,
Transport and Road Research Laboratory, Crowthorne, 1969.

14. S. Rogers, C.-N. Flechter, and P. Langley. An adaptive interactive agent for route advice. In
O. Etzioni, J. P. Müller, and J. M. Bradshaw, editors, Proceedings of the Third International
Conference on Autonomous Agents (Agents’99), pages 198–205, Seattle, WA, USA, 1999.
ACM Press.

15. D. A. Roozemond. Using intelligent agents for urban traffic control control systems. In Pro-
ceedings of the International Conference on Artificial Intelligence in Transportation Systems
and Science, pages 69–79, 1999.

16. T. Schonberg, M. Ojala, J. Suomela, A. Torpo, and A. Halme. Positioning an autonomous
off-road vehicle by using fused DGPS and inertial navigation. In 2nd IFAC Conference on
Intelligent Autonomous Vehicles, pages 226–231, 1995.

17. P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8(3):345–383, July 2000.

18. Texas Transportation Institute. 2004 urban mobility report, September 2004. Accessed at
http://mobility.tamu.edu/ums in December 2004.

Dealing with Errors in a Cooperative

Multi-agent Learning System

Constança Oliveira e Sousa and Luis Custódio

Institute for Systems and Robotics, Instituto Superior Técnico,
Av. Rovisco Pais 1049-001 Lisboa, Portugal
c.osousa@sapo.pt, lmmc@isr.ist.utl.pt

Abstract. This paper presents some methods of dealing with the prob-
lem of cooperative learning in a multi-agent system, in error prone en-
vironments. A system is developed that learns by reinforcement and is
robust to errors that can come from the agents sensors, from another
agent that shares wrong information or even from the communication
channel.

1 Introduction

In robotics, learning a specific task in an efficient manner is usually considered
individually for one robot. However, when the application involves a set of robots
with common objectives, it can be an advantage if the robots work as a team,
and share knowledge to accelerate the learning process. Unfortunately, in real
environments there are often errors that interfere in the agents perception and
delay learning.

In this paper three sources of errors are considered:

− Perception errors: an agent can have errors in perceiving the environment
due to, e.g., its sensors malfunctioning, causing an inaccurate representation
of the world.

− Communication errors: in a multi-agent system with communication between
agents, the information shared can contain errors. In this case, it is important
to have a robust system that prevents errors propagating from agent to agent.

− Position errors: with real robots it is common to have errors that mislead
the robot about its location in the world, e.g., odometry errors. This source
of errors is not predictable and its negative effects are not easy to handle.

In this work we build robust agents by developing methods that handle these
errors, so that they do not interfere in the worlds learning process.

To increase the applicability of the methods developed, the learning process
was made independent of the world to explore: the agents start learning with
no knowledge of the world, and stop their learning process autonomously. A
limitation of this method is that the world to be explored must be bounded by
walls. We have also introduced a method of self-orientation so that the agents

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 139–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 C. Oliveira e Sousa and L. Custódio

can relate their frames of reference, because communication between agents is
possible only if they are oriented.

In this paper we also propose some innovative methods to accelerate the
worlds learning rate. We have introduced (i) a method that varies the initial
position of the agents at the beginning of each episode, in order to improve the
learning process and to make it independent of the environment, (ii) a change in
the learning algorithm so that an agent learns faster, and (iii) a criteria so that
the agents know what and when to communicate. This criteria is based on how
important a Q-value is. If it is very important, it shall be communicated. If not, it
shall not be communicated. Note that if there is too much sharing of information,
the communication system can be full and, therefor, work improperly. However,
the maximum communication quantity is ignored in this work, although it can
be specified.

The price to pay for the improvements obtained is an increase in the memory
that an agent must have available.

2 Reinforcement Learning

One of the computational approaches to learning by interaction that is often
used is Reinforcement Learning (RL), by which an agent learns based on the
information that it receives from the world: rewards are received if the action
executed by the agent provides a positive contribution to reaching the goal, and
penalties otherwise [1].

2.1 Reinforcement Learning Elements

The RL problem involves an agent that decides and learns, and an environment
(or world), composed of everything external to the agent.

Let us assume an experiment takes place during a discrete time t=0,1,2,....
At each instant t , the agent receives a representation of the environment state,
st ∈ S, where S is the set of possible states, based on which it chooses an action
at ∈ A(st), where A(st) is the set of possible actions in state st. As a response
to the action taken, the agent receives a numerical reinforcement, rt ∈ R, where
R is the set of possible reinforcements, and moves to a new state, st+1.

At each time instant, the agent maps the state space to a probability space
that weights each possible action in that instant. This mapping is called a policy
πt, where πt(s, a) is the probability of choosing the action a in state s at instant
t (st = s and at = a). The agent’s objective is to find a policy that maximizes
the reinforcements, i.e., to find a sequence of actions that leads to the goal state
with the minimum possible costs [1].

2.2 Decision Making in a Stochastic World

In classical Artificial Intelligence, the objective for a certain task is a desired
state of the world, and planning is finding an optimal path to the goal state.
When the world is deterministic, planning can be reduced to a graph search
problem,for which a wide variety of solution methods exist [2]. In a stochastic

Dealing with Errors in a Cooperative Multi-agent Learning System 141

world, planning is not a graph search problem because transitions between states
are non-deterministic [1].

In a stochastic world with a transition model P (st+1|st, at), an agent cur-
rently in state st will choose the optimal action a∗

t that maximizes the expected
utility [3].

2.3 Markov Decision Process

An agent’s sequential decision making in an observable stochastic world with a
Markovian1 transition model is called a Markov Decision Process (MDP). In an
MDP it is assumed that an agent receives an immediate reinforcement rt ∈ R
from the environment, in each state st. The agent’s task is to maximize its total
discounted future reward

Rt = rt + γrt+1 + γ2rt+2 + ... =
T∑

k=0

γkrt+k (1)

where, assuming an episodic environment, T is the terminal time instant and
γ ∈ [0, 1] is a discount rate that ensures that even with infinite sequences the
sum is finite.

The state-action pair value function for a certain policy, also known as Q-
value, defines the future discounted expected reward by choosing, at each time
instant t, an action at for state st, following an optimal policy, and can be
described by the Bellman optimality equation for Q-values,

Q∗(st, at) = rt + γ
∑

st+1∈S

P (st+1|st, at)max
a∈A

Q∗(st+1, a) . (2)

Note that rule (2) corresponds to updating the policy, in a state st, for a given
action that maximizes the Q-value of the next state st+1 [1].

An optimal policy is any policy that allows an optimal sequence of actions to
be found

a∗(s) = arg max
a∈A

Q∗(s, a) . (3)

Equation (3) is simple to calculate because it is not necessary to know the
worlds transition model [3].

2.4 Q-Learning

The Q-Learning method qualifies state-action pairs: at each time instant t, an
agent in state st will choose an available action at using an exploring strategy,
execute that action at which takes it to the next state st+1 and register the
reinforcement rt that the world provides. The agent then updates the state-
action pair value correspondent to action at in state st, based on the following
update rule:
1 A world is said to be Markovian if the information that each state gives in a certain

instant t summarizes all of the information of the past that is relevant to fulfil a
given task [3]. For a more accurate definition see [1, section 3.5].

142 C. Oliveira e Sousa and L. Custódio

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)] (4)

where α is the step size, and 0 < α < 1 can change from iteration to iteration
and ∑

t

αt = +∞ and
∑

t

α2
t = const . (5)

All that is needed to guarantee the convergence of the method is the con-
tinuous updating of the pairs, using well studied exploration strategies such as
ε-greedy and Softmax . If this condition is verified and if conditions in (5) hold,
Q converges to the optimal value Q∗ with probability one [1].

3 Proposed Approach

The basic generic principles of RL were presented in the previous section. In
the following section an environment is specified, as well as the agents structure
used to develop the proposed methods. Then, the agent’s performance will be
evaluated. Assuming there is a team of agents, we want every agent to find the
optimal policy in an environment with errors.

3.1 The Environment

A discrete, stochastic, episodic and bounded world is used in this work, repre-
sented by a grid map in Fig.1. There are three types of states, distinguished by
the value of the reinforcement with which they respond to an agents action:

• walls undesirable states; these states constitute the worlds boundaries; rep-
resented in Fig.1 by crosses; respond to an agents action with a penalty of -10;

• goal state terminal state; responds to the agents action with a reward of
+1; identified in Fig.1 by a star;

• passing states all other states; respond to an agents action with reinforce-
ment -1/33.

There is only one goal state, and the initial state cannot be a wall. The
world must have two pillars, for agents to orientate themselves and commu-
nicate with each other. A pillar can be any state of the world which not only
responds with the corresponding reinforcement, but also identifies itself as a fixed
mark, a reference to all agents, allowing them to be oriented in relation to this
mark.

3.2 The Agent

All agents used in this work are identical and very simple, in order to facilitate
the analysis of the results and the causes of the observed behaviors. An agents
task is to learn the shortest path, minimizing the Manhattan distance, from
any state of the world to the goal state. This means that each agent must find
the optimal policy of the world, from any state to the goal state, as shown in
Fig.1.

Dealing with Errors in a Cooperative Multi-agent Learning System 143

0 5 10

−12

−10

−8

−6

−4

−2

0

2

4

WORLD B

Fig. 1. World B, used to test the developed ideas. The arrows in the figure on the right
show the set of optimal policies that can be found in World B.

Movement. The actions an agent can take are to move North, South, East or
West and changing direction therefore implies a rotation and a translation. When
there are multiple agents, it is assumed that they move sequentially, one at a
time, and thus a communication order known by all the agents is imposed [3].

A priori knowledge. What an agent knows when it starts:

� its learning parameters (in this work it was used α = 0.4 and γ = 0.9);
� the actions it can take;
� its own identification number;
� its sensors uncertainty as well as some other parameters used for error de-

tection.

An agent does not know the other agents characteristics nor the worlds (neither
its size nor its own position in the worlds frame).

Memory. As an agent moves, it holds the following information in its memory:

� a World Model with the knowledge acquired, which is a grid map represent-
ing the states visited, for each possible action. This is only updated by the
individual agent;

� a Shared World , another model of the world, where the values of the state-
action pairs are updated with information provided by all agents. This Shared
World will have an important role in accelerating learning and will help the
agents to be more robust to incorrect information coming from other agents;

� the number of visits to each state;
� the reinforcements received and the information shared;
� transformation matrices between agents internal frames;
� a mail box to keep the other agents responses to the questions that the agent

itself posed.

144 C. Oliveira e Sousa and L. Custódio

The growth in memory is the price to pay for the robustness of the agents, as the
amount of memory needed to save all information is minimized by (6 + n) ∗ N ,
where n is the number of agents learning the world, and N is the number of
state-action pairs the world has.

State Machine. An agent can operate in two modes: a Learning mode where it
chooses an action and learns the world following the method mentioned above,
and a Directional mode in which the agent executes a sequence of previously
planned actions that lead it to a certain state of the world.

Orientation. Consider a fixed world frame, identified by two pillars, in which the
agents are moving. While exploring, each agent will eventually find the pillars
and, when it does, it will transmit the pillars location in its internal frame to the
other agents. When the other agents receive these coordinates, they can relate
them with the pillars coordinates in their own internal frame and then determine
the transformation matrix that relates both agents frames. Note that an agent
does not know, and does not need to know, its location in the world frame:
it just has to know its relation to the other agents internal frame, in order to
understand what they communicate.

This orientation method is very simple because it does not require a large
amount of memory nor a large data analysis, and it is easy to implement: rec-
ognizing a pillar can be as easy as identifying a color, and the only requirement
is that both pillars must be in different states of the world and distinguishable
from each other.

Shared Worlds and Trust Factor. A formal way to describe communication is to
consider each communicative act as an action that updates the agents knowledge
about a certain state.

Ideally, it would be desirable that each agent share all its knowledge. In prac-
tice, sharing all information is not reasonable because, even if communication
between agents were reliable, there would be a large amount of information trav-
eling between agents requiring extensive and complex data analysis and conse-
quent processing time.

Each agent has its independent world model and policies map. When an agent
finds a result that it considers relevant to share, it transmits the obtained Q-value
and the correspondent state-action pair. An agent that receives the shared infor-
mation updates its world by adding that information to its knowledge, updating
the correspondent state-action pair following the rule

QR(s, a) =
gRQR(s, a) + gT QT (s, a)

gR + gt
(6)

where index R refers to the agent that receives the shared state-action pair,
Q(s, a), sent by the transmitter agent represented by index T . gT ∈ [0, 1] is
a certain trust factor that quantifies how much agent R trusts agent T , and
gR ∈ [0, 1] is the trust that agent R has in itself.

The trust factor defines how much an agent believes in the information re-
ceived which, in turn, depends on how much it trusts the transmitting agent:

Dealing with Errors in a Cooperative Multi-agent Learning System 145

� gT = 0 → the agent R does not believe in the information sent by agent T ,
and does not update its own state with this new information. This may be
useful if agent T sends incorrect information as a result of, e.g., a malfunction
of its sensors.

� gT = 1 → agent R fully believes in the information sent, and absorbs it
totally.

� gR = 0 → agent R does not believe in itself and refuses its own knowledge.
This can occur if the information of the agent itself is incorrect because,
e.g., of a malfunction of its own sensors. Here an agent continues its learning
”seeing through other agent’s eyes”.

� gR = 0 and gT = 0 → the state action pair is not updated. If this happens
it means that the agent does not trust anyone, not even itself.

� g has another value → updates the world by weighing the received informa-
tion by value g.

When trust factors are zero, the presence of the respective agents does not
contribute to increase worlds knowledge nor to accelerate the joint learning.
However, an agent that does not believe in itself (because it is not working
correctly) can be guided by the others and will not be lost, which is a form of
cooperation.

The trust factor can change. Whenever an error, coming from the agent it-
self or from another agent, is detected, the correspondent trust factor decreases
following gk+1 = gk

τ , where k is the instant where the errors occur and τ > 1 is
a variation rate previously defined.2 If an error is detected more than a certain
number of successive times, the correspondent trust factor becomes null. This
predefined limit is introduced before the learning process begins.

In the same way, if the errors are no longer detected, the trust factor for the
source increases following gk+1 = gk · τ . If the error is no longer detected for a
certain number of consecutive times, the trust factor is fixed at its maximum
value. This predefined limit from which the agent considers that the information
source is correct, is the same as the one referred above.

If, for any reason, an agent receives incorrect information during its learning
process, it will no longer believe in the values shared by that agent from that
point onwards. However, values sent earlier could also be incorrect, resulting
in a deficient update of both worlds. To avoid these cases of misleading the
learning process from its objective, each agent has two world models: one that
is only updated with its own knowledge, and other that is also updated with the
information received by the other agents, the Shared World . An agent generally
decides using its Shared World values, however every time it notices that the
information received could have been incorrect, it appeals to its own World
Model, which should still be free of errors.

As this Shared World is updated with information that comes from all agents,
the policies found are different from the ones found using the World Model
updated by each agent individually, and converge faster to an optimal policy.

2 In this work τ = 10 was used for the simulations.

146 C. Oliveira e Sousa and L. Custódio

3.3 The Learning Algorithm

Initially the algorithm used in this work was Q-Learning, but later a small change
was made to this method in order to speed up learning convergence. For instance,
consider the state (10,0) in world B in Fig.1. If the agent chooses to go South,
which takes it to state (10,-1), the Q-Learning updating rule considers the best
state-action pair of this last state, which corresponds, in this specific case, to go
North, which takes the agent back to state (10,0), because the other directions
would lead it to walls. In this case, and in all other cases in which the best action
of the next state is the one that brings the agent back to its actual position, it
would be preferable, when updating the Q-value, only to consider the best action
that is not the reverse action. This method can be reduced to Q-learning with
the following update rule

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)] (7)

with a′ �= reverse action(a)

where reverse action(a) is the action that leads the agent from state s back to
state s. Note that this rule does not limit the actions that the agent can take.
It only removes the reverse action from the set of possible actions that can be
taken in the next state, from which the state-action pair with maximum value
will be elected.

This method increases learning performance in worlds with many walls or
mazes, such as world B, where about 9,1% of the steps are speared. In a world
with no inner walls, changing the Q-Learning algorithm as mentioned above does
not bring any advantage; on the contrary, it introduces a relay of 25% of steps
because it is ignoring one of each possible actions, which are 4, thereby ignoring
1/4 of the information.

In this work, we developed criteria so that the agent could decide autono-
mously when to stop the learning process. Focusing on the various states Q-
values, as time increases, it is expected that the Q-values get closer to the re-
spective optimal values, which implies that the variation between successive ac-
tualizations of each Q-value decreases. When this variation is inferior to a small
threshold, called Stop Limit , the optimal value can be considered achieved and
the correspondent state-action pair learnt.

An agent can know when it has found an optimal value, but does not know
which states are worth learning to fulfil its task, so it keeps learning until it
knows the entire world. We assume that the world is learnt when all states reach
that Stop Limit.

For this work the Stop Limit was fixed at 0.04% of the maximum Q-value
attained.3 The higher this percentage, the fewer steps an agent will give to reach
the end of the learning process but, at the same time, it is important to find
a percentage small enough to ensure that all states are correctly learnt. The
highest value that verifies this last condition for world B is 0.04%.
3 The maximum Q-value attained is 10 given the learning parameters (α = 0.4 and

γ = 0.9) and the reinforcements used.

Dealing with Errors in a Cooperative Multi-agent Learning System 147

3.4 Cooperative Learning in Environments with Errors

In this section we will analyze how we can protect learning from errors. Given
the different types of possible consequences of the errors, let us separate the
errors into three distinct sets Perception Errors , Communication Errors and
Position Errors .

Results presented here were obtained using agents that:

→ use initial state variation: in order to allow an agent to return autonomously
to an initial position, it was endowed with a state machine, as mentioned in
section 3.2, allowing it to return directly (Directional mode) to a new starting
position after it finishes an episode. An agent saves the number of visits to
every state, and which are already learnt (i.e., which crossed the Stop Limit).
Therefore, at the end of each episode, it can find out which area is less visited
and not learned yet, and return to a state of that area by a path found using a
breadth-first search. When it reaches its new starting position (which varies
from episode to episode), it restarts the learning process (Learning mode).
This automatically provides a more uniform distribution of the agents over
the physical space of the world thereby improving the learning process and
making it independent of the environment to explore.

→ share only information that they are sure is correct, which is walls4 and all
states that have already passed the Stop Limit. Crossing the Stop Limit
is the criteria used to know which states are already learnt and also what
information is relevant to share. Results considering self-interested agents
exploring the world in the presence of other exploring agents can be found
in [4]. It addresses the issues of communication and cooperation, and how
one influences the other, as well as a comparison with non-cooperative
scenarios.

Perception errors. Perception errors include all errors that limit the worlds
perception, generally caused by sensors faulty operation or perceptual aliasing.5

They will not allow an agent to identify correctly in which type of state they are.
If there was no communication, these errors would no be propagated between
agents, and they would only interfere in the learning process of the agent in
which they occurred. The presence of these errors can be detected if a certain
state-action pair receives a different reinforcement from what it usually receives
when that action is taken in that state. In order to have a robust multi-agent
learning system, each agent keeps a register with the reinforcements received,
and compares them at all instants with the ones it received earlier. Each time
4 When an agent finds a wall it assumes that the state-action pair that led it to that

wall is already learnt.
5 Perceptual aliasing is an inherent property of an environment that reflects the in-

capacity of the robots sensors to perceive complete information about the state of
the world, which can mislead the robot when identifying the environment. In other
words, two states may look the same to an agent, although they are distinct from
each other.

148 C. Oliveira e Sousa and L. Custódio

an agent receives an unexpected reinforcement, it decreases the trust factor for
itself and, after detecting a certain number of consecutive errors, informs the
other agents that it has Perception errors. When the other agents receive this
information, they decrease the trust factor in this agent.

If these errors are not permanent, the agent increases the trust factor in itself
every time it receives the expected reinforcements. If it receives a certain number
of consecutive expected reinforcements, the agent informs the other agents that
there are no more problems in its sensors and that it has became a credible
source of information again.

If these errors are permanent (such as when the sensors are badly damaged),
the agent informs the others about its limitation and stops sending information.
At this point, this agents presence can no longer increase learning knowledge
and so it returns to a pre-defined position (e.g., the initial state) and stays still.
This agent will not learn the world.

For simulation effects, errors are applied to the reinforcement r(s, a) with
which the world responds to the action a taken by the agent in state s. The
reinforcement r̂(s, a) received is described by a probability distribution

r̂(s, a) =
{

r(s, a) with probability (1 − p)
r(s, a) + δ with probability p

(8)

where p is the probability of an error δ. The sensors’ uncertainty Δ > 0, usually
specified by the devices’ vendor, is also considered and introduced a priori in
the agents’ parameter set. In this way, error detection by the agent can be
described as

if r̂(s, a) ∈ [r(s, a) − Δ, r(s, a) + Δ], there is no error;
if r̂(s, a) /∈ [r(s, a) − Δ, r(s, a) + Δ], there is error. (9)

The reinforcements r(s, a) used as reference are the ones received the first
time that the agent visits the correspondent state-action pair. This assumes
that an agent does not have errors initially. Note that this type of error does not
include those coming from the agents movement, like odometry errors, which
are handled as Position errors. Assuming that the errors are only provided by
sensors malfunction and perceptual aliasing and that the robot has been revised
before starting to learn, it is natural to assume that robot sensors should start
by working well apart from normal uncertainties, which are handled in rule 9.

The described error prevention measures revealed to be efficient (see Table 1)
where the agent with errors is agent 1:

• when errors are not permanent, the other agents’ learning process was not
delayed, and agent 1 is the only one affected, but only with a small delay.
The values presented here were simulated for the worst case, i.e., forcing
p = 1 and |δ| > |Δ| during a limited time period after the agent visited
at least once each state-action pair, so that reinforcements r(s, a) used as
reference have no errors.

• errors are permanent, agent 1 returns to the initial position and stops, and
other agents continue learning. Agent 1’s policy map is wrong, but the other

Dealing with Errors in a Cooperative Multi-agent Learning System 149

agents are able to find optimal policies. The values presented in Table 1
were also simulated for the worst case, i.e., forcing p = 1 and |δ| > |Δ|
for an unlimited time period after agent 1 visited at least once each state-
action pair.

Communication Errors. This type of errors was divided in two groups:

� Receptors Communication Errors, which include all errors that can occur in
the agents reception device;

� Transmitters Communication Errors, which include all errors that can occur
in the communication channel or in the agents transmitter device.

The influence of the distance between agents and the presence of walls were not
considered in the communication errors.

Once again, the agent detects that the received information is wrong using
the reinforcements. If the reinforcement received for a certain state-action pair
is different from the one received earlier from the same agent, there could be
communication errors, arising from the receptor or the transmitter. The agent
that detected this irregularity, after decreasing the trust factor of the transmitter
agent, asks all the other agents if any of them detected that same error. If no
more agents have detected the problem, the agent concludes that it has problems
in its reception device. If these errors persist, the agent ignores all information
shared by other agents.

On the other hand, if the other agents, other than the transmitter, also detect
this irregularity, it is a communication problem with the transmitter agent or
in the communication channel. If the error persists, the transmitter is informed
that transmitting is useless, and it stops transmitting; however, it still receives
what other agents share.

To allow this conversation, it is essential to have at least three agents, and
it is this interchange of questions and answers that allows an agent to find the
errors source.

Note that communication is only used to accelerate the world learning rate,
but it is not essential for each agent to learn the world. So, loss of communi-
cation can never damage each individual learning process. In the worst case,
which happens when all communications are lost, the agents will learn the world
individually.

Tests performed to deal with this type of errors revealed the efficiency of the
method adopted (Table 1). Once again it is agent 1 who has errors, but, given
there is no significant variation of other agents number of steps, we can conclude
that the negative effect was not propagated.

To simulate this, an error δ was applied to the Q-values and to the reinforce-
ments sent, if they were transmitter’s errors, or received, if they were receptor’s
errors. The reinforcement r̂(s, a), received or sent, is described as a probability
distribution following (5) and its detection can be described by (5) , where Δ is
the sensors’ uncertainty of the agent that sent the information.

The reinforcements r(s, a) used as reference are the ones received for the first
time that the agent receives a sharing for the correspondent state-action pair.

150 C. Oliveira e Sousa and L. Custódio

Table 1. Errors influence in learning World B: Perception Errors (PeE), Receptor’s
Communication Errors (RCE), Transmitter’s Communication Errors (TCE), Position
Errors (PoE). Results are presented in number of steps needed to learn the world, in
the form: (mean) ± (standard deviation).

Agent # 1 Agent # 2 Agent#3

Without errors 30 928.88±2 393.45 30 010.90±1 850.21 30 105.18±1 441.19
PeE - limited period 33 190.80±2 686.36 31 821.30±1 417.90 30 661.70±1 495.04
PeE - permanent 5 043.50± 7.30 29 926.50± 910.60 30 400.00±1 880.40
RCE - limited period 32 382.50±2 597.30 29 668.70±1 425.70 30 764.10±1 520.10
RCE - permanent 33 066.90±2 260.30 30 600.60±2 224.12 30 679.30±2 594.90
TCE - limited period 30 240.50±1 637.30 30 842.80±1 460.60 30 104.30±1 944.36
TCE - permanent 30 306.20±2 131.80 30 693.00±1 604.40 30 876.20±1 748.60
PoE 36 320.33±8 738.22 30 883.44±2 668.05 30 146.49±1 577.26

This assumes that communication errors only happen after agents share at least
once each state-action pair.

Values in Table 1 were simulated for the worst case, where all reinforcements
arrive with errors bigger than the considered uncertainty, forcing p = 1 and
|δ| > |Δ| for an unlimited or a limited time interval, depending on whether their
errors are or not permanent.

Position Errors. Position errors can happen frequently if robots actuators are
not well calibrated, or simply caused by odometry errors, and they can have a
more drastic effect than the errors mentioned above because they are usually
detected too late. Detection of errors is based on unexpected reinforcements,
however, there are similar reinforcements for different states, so an agent with
position errors6 can only detect its error if it finds a wall or a goal state in an
unexpected position, and even in this case it will think that the errors are due
to its sensors bad operation.

The only way an agent can really detect position errors is if it finds a pillar in
an unexpected position. In this case, the agent decreases the trust factor in itself
and warns all other agents that it has position errors. As it cannot know for
how long it has these errors, all agents erase the information they have in their
Shared Worlds and continue learning using their own World Models information.
This way, learning is delayed but not all information is lost.

There is no way to correct an agent with position errors, unless it finds the
pillars. In this case the other agents cannot help because they do not know where
the lost agent is. The agent with position errors keeps moving randomly through
the world: physically the agent does not leave the worlds limits, however, in
its internal World Model, it might. This map can grow significantly and bring
memory problems. The other agents are robust to these errors (Table 1), but
the agent who has them cannot correct itself.

If the World Model of the agent with position errors grows too much before
it notices it, the agent shares states out of the worlds limits, allowing the other

6 If it is in a position (x, y) �= (x, y)real.

Dealing with Errors in a Cooperative Multi-agent Learning System 151

agents to detect this irregularity and to protect themselves from these errors as
mentioned above.

Another negative consequence of the position errors is the probable communi-
cation saturation because, while an agent doesn’t realize that it is lost, it thinks
that the errors it detects are due to sensors problems, and is constantly warning
the others about it.

To simulate these errors, a deviation error was applied to the actions taken
by the agent.

Again, the reference values to decide if there are errors are based on the first
time step, which, in this type of error, is unrealistic. It is also very probable that an
agents position error increases as the robot moves. To avoid this, an agent should
keep updating its localization using some more complex and efficient technique.

4 Related Work

The field of multi-agent RL in which many agents are simultaneously learning
by interacting with the environment and with each other is not yet mature. The
number of parameters to learn in a cooperative system increases dramatically
with the increase in the number of agents. One way to deal with this problem
is to use Hierarchical RL, e.g. the MAXQ method [5], which allows the agent
to learn simultaneously more than one task and limits the exponential growth
of the required memory. Based on this idea, many other works, such as [6] [7],
used hierarchies to avoid the growth of the state space and to speed up learning.
However, these methods build a world map for each task to be learned, which is
not efficient in the way that the knowledge acquired to execute one task is not
used to update the policy maps of other tasks. This is equivalent to learning the
world as many times as the number of goals to reach and, at the same time, the
required computer memory increases with the number of tasks to execute.

When improving methods focused on reduction of complexity, caused by the
high number of agents and goals, some cooperative potentialities are ignored,
and this subject has been studied in order to develop new approaches to the RL
problem [8][9][10][11][12], such as the Profit-Sharing method, latter used by [13].
This method also deals with the problem of non-stationarity, which is essential
because, when there are multiple agents executing actions at the same time,
the environment becomes non-stationary, and frequently non Markovian, and
some of the convergence conditions that guarantee the correct function of the
developed methods for individual RL fail. Profit-Sharing is a robust multi-agent
learning method to use in dynamic domains with uncertainties.

Other authors explored communication in multi-agent systems, and varied
the type and the amount of the shared information. In [15] three forms of com-
municating are identified. In the first one, agents can instantaneously communi-
cate information, such as actions, reinforcements and state-action pairs. This is
equivalent to sharing all information from all agents, which can be unbearable
to communicate. In the second form of communicating, agents share episodes,
which are sequences of triples (action, Q(s,a), reinforcement) that the agents ex-

152 C. Oliveira e Sousa and L. Custódio

perienced. This approximation has the inconvenient of sharing information only
at the end of each episode, which can already be obsolete. There is also a big
amount of information to be communicated. In the third form of communicating,
agents share the policies learned.

In this paper we introduced new criteria to establish communication, similar
to the approach presented in [14] since it shares instantaneous information, but
we create a filter to avoid sharing irrelevant information. The problem of this
filter is that it evaluates what is important based on a rule (crossing the Stop
Limit) which is reached very late in the learning process. So, when agents share
information, other agents already know much of it. It may be more useful to
assign each agent to a specific part of the world, however, this will have to
remain for future work.

Learning to communicate has also been studied in [14], but in a hierarchical
approach. A communication level was added to the hierarchical decomposition of
the problem, allowing agents to learn to balance the amount of communication
needed for proper coordination, and communication cost.

Recently, experiments have been made that apply game theory to multi-agent
RL [16], combining matrix games with MDPs. This has opened up new ways of
studying cases where agents are limited, and where it is not possible to guaran-
tee convergence and full observation of the environment, two properties usually
considered separately, allowing agents to make decisions based on principles like
the WoLF (Win or Learn Fast) [17].

5 Conclusions and Future Work

This paper presents methods for dealing with perception, communication and
positioning errors in cooperative reinforcement learning frameworks. In order to
have a learning process independent of the environment:

− each agent starts learning without knowing anything about the worlds char-
acteristics;

− agents can communicate with each other and orientate themselves using a
self-orientation method based on pillars fixed in certain states of the world;

− agents return to an initial position at the end of each episode in an au-
tonomous way, and this initial position can change according to a rule that
finds regions which are less explored;

− agents stop learning autonomously when they find the optimal Q-values of
the world, which is detected based on a Stop Limit.

To avoid error propagation among agents, each agent constructs a World Model
and updates it only with information obtained by itself, while, at the same time,
constructs another model of the world, the Shared World, that is updated with
information shared by all the other agents.

A trust factor is attributed to each agent, allowing the increase or decrease
of the influence of the shared Q-values accordingly to the sources credibility. In
this manner, an agent is protected against negative effects of errors and has the

Dealing with Errors in a Cooperative Multi-agent Learning System 153

possibility to ignore all knowledge acquired jointly with other agents, given it
has its own individual World Model.

Methods were developed to protect agents against errors from sensors (in-
cluding perceptual aliasing), from communication between agents and position
errors. This last case is sometimes unsolvable, but error propagation between
agents was avoided.

The price paid for these improvements is the increase of memory an agent
must have available.

Based on the work developed, the following possibilities of future work have
been identified: (i) to make the multi-agent system robust to errors by using a
probabilistic model where shared Q-values are the model’s samples and errors
are dealt as outliers; (ii) to study these methods in dynamic worlds; (iii) to
develop a way to learn multiple goals.

References

1. Sutton, R. S. and Barto, A. G., Reinforcement Learning, An Introduction, The
MIT Press, UK (1998).

2. Russel, S. J. and Norvig, P., Artificial Intelligence, A Modern Approach, Prentice
Hall, New Jersey, USA (2003).

3. Vlassis, N., Multiagent Systems and Distributed AI, Intelligent Autonomous Sys-
tems, Informatics Institute, University of Amsterdam (2003).

4. Sousa, C. and Custdio, L., Cooperative Reinforcement Learning: exploring Commu-
nication and Cooperation Problems. In: Proceedings of the 6th IEEE International
Symposium on Computational Intelligence in Robotics and Automation (2005).

5. Dietterich, T. G., The MAXQ Method for Hierarquical Reinforcement Learning.
In: International Conference on Machine Learning (1998).

6. Parr, R. and Russel, S., Reinforcement Learning with Hierarchies of Machines,
Computer Science Division, UC Berkeley, CA (1998).

7. Makar, R., Mahadevan, S. and Ghavamzadeh, M., Hierarquical Multi-Agent RL,
Department of Computer Science, Michigan State University (2001).

8. Arai, S. and Sycara, K., Credit Assignment Method for Learning Effective Stochas-
tic Policies in Uncertain Domains. In: Proceedings of Genetic and Evolutionary
Computation Conference (2001).

9. Arai, S., Sycara, K. and Payne, T., Experience-based RL to Acquire Effective
Behaviour in a Multi-agent Domain. In: Proc. of the 6th Pacific Rim Int. Conference
on Artificial Intelligence, Lecture Notes in AI 1886, Springer-Verlag (2000), pp.125-
135.

10. Arai, S. and Sycara, K., Effective Learning Approach for Planning and Scheduling
in Multi-agent Domain. In: Proceedings oh the 6th ISAB - From animals to animats
6 (2000), pp. 507-516.

11. Arai, S. and Sycara, K., Multi-agent RL for Planning and Conflict Resolution in a
Dynamic Domain, Carnegie Mellon University (2000).

12. Arai, S., Sycara, K. and Payne, T., Multi-agent Reinforcement Learning for Plan-
ning and Scheduling Multiple Goals. In: Proceedings of Fourth International Con-
ference on Multi-Agent Systems (2000).

13. Wahab, M., Reinforcement Learning in Multi-Agent Systems, McGill Univ. School
of Computer Science.

154 C. Oliveira e Sousa and L. Custódio

14. Ghavamzadeh, M. and Mahadevan, S, Learning to Communicate and Act in Co-
operative Multiagent Systems using Hierarchical Reinforcement Learning. Third
International Joint Conference on Autonomous Agents and Multiagent Systems -
Volume 3 (AAMAS’04), (2004), pp. 1114-1121.

15. Tan, M., Multi-Agent RL: Independent vs. Cooperative Agents. In: Proceedings of
the Tenth International Conference on Machine Learning (1993), pp.330-337.

16. Bowling, M. and Veloso, M., An Analysis of Stochastic Game Theory for Multiagent
Reinforcement Learning, CMU-CS-00-165 (2000).

17. Bowling, M., Multiagent Learning in the Presence of Agents with Limitations,
PhD. Thesis (2003), Carnegie Mellon University, Pittsburg.

The Success and Failure of Tag-Mediated
Evolution of Cooperation

Austin McDonald and Sandip Sen

University of Tulsa, Mathematics and Computer Science Department,
600 S College, Tulsa 74104, OK

{austin, sandip}@utulsa.edu

Abstract. Use of tags to limit partner selection for playing has been shown to
produce stable cooperation in agent populations playing the Prisoner’s Dilemma
game. There is, however, a lack of understanding of how and why tags facilitate
such cooperation. We start with an empirical investigation that identifies the key
dynamics that result in sustainable cooperation in PD. Sufficiently long tags are
needed to achieve this effect. A theoretical analysis shows that multiple simula-
tion parameters including tag length, mutation rate and population size will have
significant effect on sustaining cooperation. Experiments partially validate these
observations. Additionally, we claim that tags only promote mimicking and not
coordinated behavior in general, i.e., tags can promote cooperation only if coop-
eration requires identical actions from all group members. We illustrate the failure
of the tag model to sustain cooperation by experimenting with domains where
agents need to take complementary actions to maximize payoff.

1 Introduction

Learning and reasoning in single or multistage games have been an active area of research
in multiagent systems [1,2,3,4,5,6,7]. Most of this research has concentrated on simulta-
neous move games with solution concepts like Nash equilibria [8,9]. Nash Equilibrium,
however, does not guarantee that agents will obtain the best possible payoffs, i.e., Nash
Equilibrium does not ensure Pareto-optimal solutions. Some non-Nash Equilibrium ac-
tion combinations may yield better payoffs for both agents, which may be reached if the
agents look ahead to future iterations of the game while selecting actions [10].

That Nash Equilibria may not be the preferred outcome is particularly evident in the
widely-studied Prisoner’s Dilemma (PD) game (see Figure 1). In this game, the only
Nash Equilibria is the strategy profile (D,D) which is also the only non-Pareto-optimal
outcome! The (D,D) strategy profile is dominated by the (C,C) strategy profile. Un-
fortunately, in a single-shot PD game, rational play will produce the Nash Equilibrium
strategy profile. In repeated or iterated play, however, learning approaches can produce
higher payoff by choosing the (C,C) strategy profile. Numerous researchers in game the-
ory and in multiagent systems have attempted various mechanisms to induce cooperation
in iterated PDs [11,12,7,13,14,15].

We are particularly interested in recent work using tags in a population of interacting
players (agents) [16,17]. Tags have been proposed by John Holland as a primitive means

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 155–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

156 A. McDonald and S. Sen

C D
C R, R S, T
D T, S P, P

Fig. 1. Utilities to players in a two-player Prisoner’s Dilemma game. Constraints on the utility
values are T>R>P>S and 2R>T+S>2P.

of communication that can aid in the evolution of a group [18]. Tags have also been used
by other researchers to promote cooperation in variations of PDs [19,20]. Whereas these
papers provided a reasonable high-level explanation of how the use of tags promotes
cooperation, a detailed analysis that clearly explains the fundamental subtleties of the
interactions in the population was missing. As a result, design of tag systems was based
on trial and error and did not explain why certain parameter choices for such systems
succeeded in inducing cooperation whereas others did not.

Another key observation was that all the domains to which tags have been applied
so far contained a narrow characterization of cooperation as imitation of behavior. In
multiagent domains in general, cooperation requires a richer, divergent collection of
behaviors. It was unclear from the current state of knowledge whether tags can support
cooperation in a broad spectrum of multiagent problems.

In this paper, we plan to carefully characterize the detailed interactions of agents
using tags. The goal is to identify domains where tags would be useful for promot-
ing cooperation and to develop a methodology for choosing parameter values in the
tag framework that will actually facilitate the evolution of cooperation in such
domains.

2 Related Work

The usage of tags to bias interactions on iterated Prisoner’s Dilemma has been suggested
by [21,22,18]. Riolo performed the pioneering experiments in [19]. Riolo’s agents were
modeled as a stochastic strategy, based on Tit-For-Tat, combined with a real-valued tag
and a real-valued bias, both on the interval [0, 1]. Agents then attempt to pair up, where the
difference between the agents’ tags is less than each agents’ bias. If no suitable pairing
can be found within a small number of tries, the agent simply chooses a partner at
random. When each agent has an identical, fixed bias, Riolo’s model results in increased
performance for the society. However, when each agent’s bias is allowed to evolve,
behavior varies drastically according to initial conditions and the results are less clear.

Hales and Edmonds [17] used a different model where the population consists of
a collection of agents represented as a binary string of l + 1 bits. The first bit repre-
sents a pure strategy (always cooperate or always defect), while the remaining l bits
are the tag. In each population generation, every agent plays a PD game against one
other agent with an identical tag. If an agent has a unique tag in the population, it
plays against a randomly selected opponent. The next generation is formed via fit-
ness proportionate reproduction where the fitness of an agent is the payoff received in
this round of play. Mutation is then applied to each bit. This process is described in
Algorithm 1.

The Success and Failure of Tag-Mediated Evolution of Cooperation 157

Algorithm 1. Hales and Edmond’s model of population evolution with tags
for some number of generations do

for each agent a in the population do
Select a game partner agent b with the same tag (if possible)
Agent a and b invoke their strategies and a gets corresponding payoff.

end for
Reproduce agents in proportion to their average payoff (with some low level of mutation)

end for

3 Tag-Based Model for Population Evolution

Our model is characterized as follows: Each agent in a population of size N is rep-
resented by two numbers: an integer s representing its strategy 0 ≤ s ≤ (number of
valid strategies), and a real number t representing its tag 0 ≤ t ≤ 1. The real number
representation of the tag provides for an infinite tag space. Additionally, we divide the
interval [0, 1] into subintervals of length δ called tag groups.

The population is evolved over a number of generations. Each generation, every
agent chooses another agent in the same tag group and plays a round of the game with
the other agent. If an agent is the only member of a tag group, it randomly chooses
another agent from the population. The first agent receives the payoff from that round.
This process is repeated for all agents. Thus, an agent may interact with many agents per
generation, but receives only one payoff per generation. This prevents singleton agents
from interfering with other groups, while still giving them a chance to play, and hence
survive.

The next generation is selected by a payoff proportionate reproduction scheme. For
each selected agent the mutation operator, which replaces the current value of a parameter
with a new number randomly chosen from the range for that parameter, is applied to the
strategy with probability μS and to the tag with probability μT . The new generation is
then evolved as described above.

The goal of this framework is to enable consistent evaluation of the performance of
agent societies on a variety of games. Our proposed setup can be used to approximate
a variety of existing tag models. It is similar to Riolo’s model using a global fixed bias,
with two exceptions: we use a pure strategy, and being in the same tag group is transitive
in our model (but such is not necessarily the case in Riolo’s). To compare to Hales’ and
Edmonds’ model, we observe that there are 2l distinct tag groups possible when using a
tag with l bits. So we use 1

δ = 2l, which lets us choose a corresponding δ for any given
l. Additionally, in Hales’ and Edmonds’ original model1, the mutation rate of the tag
was a function of tag length, which is not the case here.

4 Tags in Prisoner’s Dilemma and Related Games

We recount Hales’ [17] explanation of how tags help promote cooperation in the PD
game. A homogeneous group of cooperators will prosper and grow. When such a group is

1 This was changed in a later paper [23].

158 A. McDonald and S. Sen

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
o

lle
ct

iv
e

 P
a

yo
ff

Rounds

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u

m
u

la
tiv

e
 P

a
yo

ff

Rounds

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
o
lle

ct
iv

e
 P

a
yo

ff

Rounds

Fig. 2. Average payoffs for l= 0 (left), 4 (right), and 32 (bottom) for the Prisoner’s Dilemma game

invaded, via mutation of the strategy or tag, by a defector, the defector will prosper, result-
ing in imitators in the next generations. Over time, the group will fill with defectors, re-
sulting in worsening performance and eventual extinction. Thus defectors, even if formed
by chance, will not live long, and hence a majority of the population will be cooperators.

Our additional observation is that individuals with unique tags, i.e., singletons, can
prosper if the randomly chosen individual they interact with is cooperative in nature. If
the singleton is cooperative, then it will perform well, leading to perhaps more agents
copying its tag bits and strategy and thus the group expands as a group of cooperators. If
the singleton is a defector, when others copy its strategy and tag, all agents in this group
will be defectors, they will perform poorly in the following generation and the group
will die out.

We were puzzled, however, by the observation by Hales that sufficiently long tags
were required to sustain cooperation in the PD game. For example, Hales observed that
while 32 bit tags were able to sustain cooperation, 8 bit tags were not for a population of
100 agents! Note that this translates into the requirement of huge tag spaces, e.g., 32-bit
tags produce a tag space of 232! The explanation of how tags facilitate cooperation has no
apparent requirement for such massive tag spaces. We also did not find any theoretical jus-
tification in Hales’s work on characterizing the effect of tag length on promoting cooper-
ation. This led us to believe that the current understanding of the working of the tag mech-
anism is incomplete and we need to improve on it in order to design working tag-based
systems for arbitrary populations playing the iterated PD game and for other applications.

The Success and Failure of Tag-Mediated Evolution of Cooperation 159

We are interested in investigating whether longer tags are required solely for the
associated increase in mutation rate, or whether there were other beneficial effects.
Additionally, we sought to validate the claim that tags are useful only in cases where
mimicry is a desirable strategy.

To investigate tag length, we chose a game that tags were known to perform well
on: the Prisoner’s Dilemma (Figure 1). We chose T=1.9, R=1.0, P=.002, and S=.001 in
order to accentuate the differences in the outcomes. Using closer values yields results
that are similar to those presented here. Unless otherwise stated, all experiments use
μs = μt = .1. Since we are primarily interested in comparisons to Hales’ and Edmonds’
work, we will specify δ in terms of bits of tag length, l. The average payoffs per agent
over time in a set of typical Prisoner’s Dilemma runs are presented in Figure 2. The
left plot is equivalent to not using tags, and is presented to demonstrate that tags do
produce improvement. We see that for shorter tags, the payoffs are clustered around a
lower average than for progressively higher tag lengths.

The population characteristic that we found most distinguished runs with long versus
short tags was the number of populated groups. We present the corresponding plot for
the number of groups over a run in Figure 3. The left plot uses l = 8, μT = .001 and
the right plot uses l = 32, μT = .1. The figures clearly denote significant differences in
the population features with larger number of groups and smaller average group sizes in
the case of longer tags and higher mutation rates.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 G

ro
up

s

Rounds

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 G

ro
up

s

Rounds

Fig. 3. Number of populated groups in Prisoner’s Dilemma for l = 8, μT =.001 (left) and l =
32, μT = .1 (right)

This observation is key to the following conjecture: Cooperation is sustained in a
population of tag-based players playing PD and evolved based on fitness if sufficient
number of cooperative groups are created via mutation. The conjecture is supported by
the following reasoning. If there are too few cooperative groups, invasion by defectors
will destroy them. If there are sufficiently many cooperative groups, destroying a few
will still leave the possibility of other groups spawning more new cooperative groups via
mutation. The basic argument is that there has to be enough groups such that the rate of
destruction via invasion by defectors is less than the formation of new groups by mutation.

To further investigate this conjecture, we now attempt a partial theoretical charac-
terization of this phenomena. We first calculated the expected number of new groups
formed each generation, M .

M = N(1 − δg)μT

160 A. McDonald and S. Sen

where g is the current number of populated groups and N is the population. This is
only an approximation; after a new group is formed, the value of g changes. However,
when N � 1

δ , this approximation is valid. From this equation, consider P = M/N , the
fraction of agents in the population that formed new groups. Higher values for P can be
thought of as having two complementary effects: the likelihood of an agent forming a new
group is increased, and the likelihood of an agent joining an existing group is decreased.
This directly increases the rate of formation of new cooperative groups (proportional
to the aggregate payoffs of cooperative agents) while decreasing the rate that groups
are invaded by defectors from outside. However, P cannot be allowed to become too
high; this would result in too many agents forming new groups and not staying behind
to achieve the cooperative payoff.

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 P
ay

of
f p

er
 R

ou
nd

Tag Bits

Fig. 4. Average payoffs per round with decreasing δ (increasing tag length)

So by varying P , we should enhance the payoffs obtained by a population. However,
we cannot directly lower g, even if doing so were to be beneficial. So instead we focus
on δ and μT . By simply lowering δ to zero, we can ensure that any mutation will result in
a new tag group being formed (note that this would correspond to an infinite tag length).
Then, we will have P = μT . Note that we have not lost generality, since all values of P
we could achieve with any given δ are still achievable with μT . We present the effect of
progressively lowering δ in Figure 4.

The above characterization explains how smaller δ (or equivalently, longer tags) can
increase the performance of a population on Iterated Prisoner’s Dilemma (up to a certain
bound) despite a fixed mutation rate. According to our theory, then, when δ = 0 there
should be a μT with which we can achieve the best performance possible from the system.
When δ = 0, the only way agents can be in the same group is if they have identical
real-valued tags. Since the chances of an agent randomly mutating to an existing tag are
infinitely small, agents with identical tags must have been reproduced from the same
parent.2 So, it is likely that they will share common strategy bits. This behavior leads us
to speculate that tag systems are merely promoting mimicry, rather than cooperation.

2 This is only theoretically true. In practice, machines have a finite precision for representing
real numbers. However, this precision is typically large enough that we can consider it to be
infinite.

The Success and Failure of Tag-Mediated Evolution of Cooperation 161

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 P
ay

of
f

Tag Mutation Rate

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 P
ay

of
f

Strategy Mutation Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 P
ay

of
f P

er
 A

ge
nt

Tag Length

Fig. 5. Average payoffs as we increase μT (left) μS (center) and N (right)

Having decided on a fixed δ = 0, we now investigate the effects of altering μT

and μS . (Figure 5). From the figure, we see that there exists an optimal value for μT

near μT = .2. Higher values result in groups not remaining together long enough for
cooperation to occur; lower values result in fewer new groups being formed, and thus
a higher proportion being lost due to defection. With regards to μS , we conjecture that
higher values are causing agents to switch strategies too quickly to be able to cooperate,
while lower values aren’t producing enough cooperators.

5 Effect of Tags Where Cooperation �= Mimicry

Several authors have suggested other applications of tags [24,16,20]. However, we ob-
served that in all of the applications mentioned mimicry is an effective strategy for
increasing performance. Though mimicking behavior can produce cooperation in PD
and other domains, for a large gamut of multiagent interactions complementary, rather
than identical behavior is required for cooperation. For tags to be used as an effective
facilitator for promoting cooperation in general, it is imperative that we better understand
their role in aiding cooperation through complementary behavior. Our own experiments
(see above) suggest that tags may only be helpful in games where cooperative actions
are identical.

To investigate the performance of tag systems on a game where complementary
actions are required to maximize payoff, we look at the performance of a tagged system on
a game where mimicry is useless: the Anti-Coordination game. In this game, cooperation
occurs when players choose ıcomplementary actions; note that this game is not a dilemma

162 A. McDonald and S. Sen

0 1
0 L, L H, H
1 H, H L, L

Fig. 6. Utilities to players in Anti-Coordination. Constraints on the utility values are H > L.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 P
ay

of
f

Rounds

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
A

ve
ra

ge
 P

ay
of

f

Rounds

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 P
ay

of
f

Rounds

Fig. 7. Average payoffs for l = 0 (left), 8 (middle), and 32 (right) for the Anti-Coordination game

(ie, one player cannot succeed at the other player’s expense). We expect that tags can
improve the performance of a society on this game by increasing the likelihood of
pairing a 1 with a 0 from the expected equilibrium strategy without tags, which is an
even spread across the strategies (half 1’s, half 0’s). Next we present similar results for
the anti-coordination game (Figure 6).

Figure 7 shows the average payoffs of a society over time with varying tag lengths.
We see that changing l has no noticeable effect on the population. We show the effects
of changing l over time in Figure 8, where each point is an average of 5 runs. We also
present the average performance of the population as we alter the strategy mutation rate
μS while holding fixed δ = 0. The tagging mechanism has no effect on the society
playing this game.

To explain why tags fail to increase performance on this game, assume we begin
with an equally distributed population of 0’s and 1’s. Without tags, this is the optimal
distribution. Any increase in 0’s or 1’s will be detrimental to the society. For example,
say the number of 0’s increases. Then the average 0 will receive a lower payoff than the
average 1, and so the number of 0’s will decrease and the number of 1’s will increase,
pushing the system back to equilibrium.

The Success and Failure of Tag-Mediated Evolution of Cooperation 163

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 P
ay

of
f

Tag Length

Fig. 8. Average payoffs as tag length increases

In order to improve the performance of this system, we need to restrict the agents
such that they only play with other agents who have opposite tags. As we discovered in
our experiments with the Prisoner’s Dilemma, the chance of an agent joining a tag group
from outside is vanishingly small (and gets smaller as δ decreases). So in all likelihood
any agent with the same tag as another agent is a copy of that agent (either directly or
as a copy of a copy). So they will tend to have the same tag bit, and will both get low
payoffs.

By this mechanism, the anti-coordination game actually discourages growth of ho-
mogeneous strategy groups, which totally negates the function of tags.

6 Conclusion

In this paper we show how and when tag-mediated agent interaction can promote and
sustain cooperative behavior. In particular, we analyze how size of the tag space, mutation
rate, and population size effect the evolution of cooperation in populations repeatedly
playing the Prisoner’s Dilemma game. Additionally, we have identified the function tags
perform on influencing such systems: they promote mimicry, and not necessarily coop-
eration. We demonstrated this by studying the performance of a tagged society playing
the Anti-Coordination Game. Our analysis and observations suggest that existing tag
models primarily promote cooperative behavior in games where mimicry is the best
strategy. While this means that tags can improve group performance in coordination
games and games like the PD, they are inadequate for sustaining cooperation in gen-
eral multiagent situations where effective cooperation requires complementary, and not
identical, behaviors by the cooperators.

References

1. Banerjee, B., Sen, S., Peng, J.: Fast concurrent reinforcement learners. In: Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence. (2001) 825–830

2. Bowling, M., Veloso, M.: Rational and convergent learning in stochastic games. In: Pro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligence. (2001)
1021–1026

164 A. McDonald and S. Sen

3. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent
systems. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence,
Menlo Park, CA, AAAI Press/MIT Press (1998) 746–752

4. Hu, J., Wellman, M.P.: Multiagent reinforcement learning: Theoretical framework and an
algorithm. In Shavlik, J., ed.: Proceedings of the Fifteenth International Conference on
Machine Learning, San Francisco, CA, Morgan Kaufmann (1998) 242–250

5. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In:
Proceedings of the Eleventh International Conference on Machine Learning, San Mateo, CA,
Morgan Kaufmann (1994) 157–163

6. Littman, M.L.: Friend-or-foe q-learning in general-sum games. In: Proceedings of the Eigh-
teenth International Conference on Machine Learning, San Francisco: CA, Morgan Kaufmann
(2001) 322–328

7. Littman, M.L., Stone, P.: Implicit negotiation in repeated games. In: Intelligent Agents VIII:
AGENT THEORIES, ARCHITECTURE, AND LANGUAGES. (2001) 393–404

8. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press (1991)
9. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54 (1951) 286 – 295

10. Brams, S.J.: Theory of Moves. Cambridge University Press, Cambridge: UK (1994)
11. Axelrod, R.: The Evolution of Cooperation. Basic Books (1984)
12. Dugatkin, L.A.: The evolution of cooperation: four paths to the evolution and maintenance

of cooperative behavior. BioScience 47 (1997) 355–361
13. Sigmund, K., Nowak, M.A.: The alternating prisoner’s dilemma. Journal of Theoretical

Biology 38 (1994) 262–275
14. Stimpson, J.L., Goodrich, M.A., Walters, L.C.: Satisficing and learning cooperation in the

prisoner’s dilemma. In: Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence. (2001) 535–540

15. Trivers, R.: The evolution of reciprocal altruism. Quarterly Review of Biology 46 (1972)
35–57

16. Hales, D., Edmonds, B.: Can tags build working systems? from mabs to esoa. In: Engineering
Self-Organising Systems. Lecture Notes in AI-2977, Springer Verlag (2003) 186–194

17. Hales, D., Edmonds, B.: Evolving social rationality for mas using "tags". In: Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent Systems,
Melbourne,Australia, ACM Press (2003) 497–503

18. Holland, J.H., Holyoak, K., Nisbett, R., Thagard, P.: Induction: Processes of Inferences,
Learning, and Discovery. MIT Press, Cambridge, MA (1986)

19. Riolo, R.: The effects and evolution of tag-mediated selection of partners in populations play-
ing the Iterated Prisoner’s Dilemma. In: Proceedings of the Seventh International Conference
on Genetic Algorithms, Morgan Kaufmann Publishers, Inc. (1997) 378–385

20. Riolo, R., Cohen, M.D., Axelrod, R.: Cooperation without reciprocity. Nature 414 (2001)
441–443

21. Allison, P.D.: The cultural evolution of beneficent norms. Social Forces 71 (1992) 279–301
22. Holland, J.: The effect of labels (tags) on social interactions. Technical Report Working Paper

93-10-064, Santa Fe Institute (1993)
23. Hales, D., Edmonds, B.: Change your tags fast! - a necessary condition for cooperation?

In: Proceedings of the Joint Workshop on Multi-Agent and Multi-Agent-Based Simulation.
(2004)

24. Hales, D.: Self-organising, open and cooperative p2p societies - from tags to networks. In:
Proceedings of the 2nd Workshop on Engineering Self-Organsing Applications. (2004)

An Adaptive Approach for the Exploration-Exploitation
Dilemma and Its Application to Economic Systems

Lilia Rejeb1, Zahia Guessoum1,2, and Rym M’Hallah3

1 CReSTIC, MODECO Team, Rue des Crayères, Reims Cedex2, France
2 Université de Paris-VI, LIP6, OASIS Team, 4 place Jussieu, 75252 cedex 5, France

3 Kuwait University, Dep. of Statistics and Operations Research,
P.O. Box 5969, Safat 13060

Abstract. Learning agents have to deal with the exploration-exploitation
dilemma. The choice between exploration and exploitation is very difficult in
dynamic systems; in particular in large scale ones such as economic systems.
Recent research shows that there is neither an optimal nor a unique solution for
this problem. In this paper, we propose an adaptive approach based on meta-
rules to adapt the choice between exploration and exploitation. This new adaptive
approach relies on the variations of the performance of the agents. To validate
the approach, we apply it to economic systems and compare it to two adaptive
methods originally proposed by Wilson: one local and one global. Moreover, we
compare different exploration strategies and focus on their influence on the per-
formance of the agents.

1 Introduction

The exploration-exploitation dilemma, which is an important problem frequently en-
countered in reinforcement learning [19], is defined as follows. When an agent is faced
with a state of the environment, it either chooses to explore its environment and try new
actions in search for better ones to be adopted in the future [14], or exploit already tested
actions and adopt them. When opting to explore, the agent is considering its long term
performance whereas when opting to exploit tested actions, the agent is considering its
short term performance [17].

Formally, the agent has to solve two subproblems. The first subproblem consists of
choosing an exploration method. The exploration can be either directed or undirected.
The second subproblem consists of identifying a method that switches the agent’s mode
between exploration and exploitation according to the state of the agent and the state of
its environment. The two subproblems are important since they influence the learning
speed, the performances and the actions of an agent. This influence is more critical
when the agent environment is dynamic, which is the case of economic systems.

In this paper, we study the aforementioned two subproblems in the context of an
economic system characterized by a set of firms in competition in a shared market.
We propose an adaptive approach to the exploration-exploitation problem in a dynamic
economic context where firms are modeled using the XCS-learning classifier system
for their decision process [11]. We show that a firm performance can be improved when

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 165–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 L. Rejeb, Z. Guessoum, and R. M’Hallah

it opts for directed exploration and uses a meta-rules based approach to choose between
exploration and exploitation.

This paper is organized as follows. Section 2 presents the firm model and an
overview of the learning classifier system XCS. Section 3 investigates exploration tech-
niques. Section 4 presents the proposed meta-rules approach and the adaptation of Wil-
son’s techniques to our context. Section 5 presents and analyzes the experimental re-
sults. Finally, Section 6 summarizes the contributions of this paper and provides future
extensions.

2 Adaptive Firms

We study the exploration-exploitation dilemma in the context of a dynamic economic
system where a set of firms are in indirect interaction in a shared market. We model the
firms as adaptive agents with the XCS-learning classifier system for their learning. In
Section 2.1, we present the model of a firm while in Section 2.2, we detail the charac-
teristics of the XCS classifier system, and explain how agents learn when using it.

2.1 The Firm Model

We model firms using a resource-based approach [12]. We regard a firm as a collection
of physical and human resources. We stipulate that the survival of a firm depends on the
way it allocates its resources. A firm is characterized by:

– a set X of resources,
– a set Yt = (Yt[1], Yt[2]) of performance indicators, where Yt[1] is profitability

and Yt[2] is market share at time t (Yt[1]andYt[2]are measured using the statistical
Lisrel Model),

– a capital K ,
– a budget B (which when allocated updates the status of the firm resources),
– a set S of strategies available for the firm.

The allocation of the budget B to the different resources X according to the firm priority
defines the firm strategy.

A firm behavior is dynamic over time. Each time period, a firm

– observes its environment and updates its competition model;
– updates its internal parameters (eg., its capital K and budget B);
– opts for a strategy; and
– updates its performance.

A firm chooses the strategy that best suits its current context. The context of a firm
is determined by the its internal parameters (K, B, X, and Yt), and its perception of
the environment which is strongly competitive and non-stationary. At the end of a time
period, firms can either join or leave the market. A firm leaves the market either when
its performance decreases over a number of successive periods or when its capital de-
creases and reaches an exit threshold. Its exit or extinction is the result of a bad strategy
used by the firm not disposing of all the information about its rivals.

An Adaptive Approach for the Exploration-Exploitation Dilemma 167

Each firm, represented by an agent, bases its perception of its current context on its
environment. This perception is an aggregation of the performances and the capital of
the firms present in the market. Based on this perception, the firm chooses the most
suited strategy. The dynamic nature of the environment makes it difficult for a firm
to anticipate all the possible outcomes of its strategy and/or to take into account the
inadequate outcomes of its prior strategies. We propose then to endow the firm with a
capacity of learning to build gradually its decision rules as it acquires knowledge from
its environment. Herein, the XCS classifier system defined by Wilson [18]: constructs
the model of the firm environment, updates the model as a firm acquires experiences
and foresees the possible consequences of the decision before it is undertaken.

2.2 XCS and Adaptive Firms

We use XCS [18] to model the decision process of adaptive firms. XCS constructs
a complete and accurate model of a firm environment. It develops a readable set of
“condition-action” rules or classifiers which explain the evolution of the environment
[10].

A classifier is also characterized by three parameters: its prediction p, its prediction
error e and its fitness F which evaluates the quality of the prediction p. The condition
part of a classifier is a representation of the context of the firm. The set of possible ac-
tions or strategies is defined by the economist. In our case, the set has twenty strategies
oriented towards customers, suppliers and production. Table 1 presents an example of a
classifier. This classifier associates the strategy one to the described context.

At each decision period, XCS undertakes a perception, prediction, action cycle. It
determines the set [M] of classifiers whose conditions match the context of the firm. If
[M] is empty, covering takes place; else the average prediction PSi of each action ai

proposed by the classifiers in [M] is calculated:

PSi =
∑

Fclj pclj∑
Fclj

, (1)

where Fclj and pclj are respectively the fitness and the prediction of classifier j when
undertaking action ai. The PSi serves as the decisional basis for the firm strategy se-

Table 1. Example of a classifier

Classifier Classifier in XCS
K ∈ [300,400[0001
B ∈ [100,200[0010
X = {x1 ∈ [0,10[, x2 e∈ [20,30[, x3 ∈ [10,20[, x4 ∈ [0,10[, 0000,0010,0001,0000,
x5 ∈ [0,10[, x6 ∈ [0,10[, x7 ∈ [0,10[, x8 ∈ [0,10[} 0000,0000,0000,0000,
Y = {y1 ∈ [10,20[, y2 ∈ [10,20[} 0001,0001,
Average K x3 ∈ [600,700[0011,
Average B ∈ [200,250[0111,
Firms-Number ∈ [0,100[0000,
Average Y={y aver1 ∈ [20,30[,y aver2 ∈ [10,20[} 0010, 0001
Action = Strategy1 1,
(p)=0.5, (e)=0.01,(F)=100 0.5, 0.01, 100

168 L. Rejeb, Z. Guessoum, and R. M’Hallah

lection which is either done by exploration (random choice) or exploitation (choice of
the action having the largest PSi). Exploration encourages a firm to take risks whereas
exploitation incites a firm to avoid risks.

The firm adopts the chosen strategy and gets a reward rt at time t. This reward is an
aggregation of the variations of the firm performances:

rt = aggreg

(
Yt[1] − Yt−1[1]

Yt−1[1]
,
Yt[2] − Yt−1[2]

Yt−1[2]

)
(2)

where aggreg is the average aggregation operator. rt is used by the reinforcement learn-
ing component represented by the Q-Learning algotithm [16] to update the p, e and F
of the classifiers proposing the chosen action. These classifiers are blocked in a set [A]
which is updated by a Michigan genetic algorithm when possible.

The current version of XCS randomly chooses between exploration and exploitation.
A number is randomly generated according to the continuous Uniform (0,1) distribu-
tion, and compared to the exploration probability fixed by the designer prior to the
beginning of the simulation. In addition, the current version of XCS allows undirected
exploration only. In the following section, we discuss the impact of the exploration
strategy on a firm’s performance and survival.

3 Exploration Techniques

Exploration techniques are classified as undirected and directed [15]. Undirected tech-
niques are random. They are difficult to use in real-valued domains and in large state-
action spaces. They increase the learning time exponentially. Directed exploration tech-
niques seek to improve the knowledge of the environment by adopting more informa-
tive actions. They include techniques such as recency-based exploration and frequency-
based exploration.

To compare the performance of firms under directed and undirected techniques, we
need to integrate directed exploration techniques in XCS. In the following, we explain
how we integrate, within XCS, the best known directed exploration techniques: recency
based technique and frequency based technique.

The recency-based technique selects the oldest selected action independently of its
number of occurrences. To do this, it determines the recency value which correspond to
the smaller period from the last activation time of the action. It finds, for each action ai,
the matching classifiers j, j = 1, . . . , n and determine the recency value Rec(ai):

Rec(ai) = min
j=1,n

{t − ActivationT ime(clj)} (3)

where ActivationT ime(clj) is the last activation date of classifier clj , and t is the
current time. It selects then the action ai having the highest recency value.

The Frequency-based exploration selects the least frequently used action a. It tallies
for each action the frequency value Freq(ai) of the corresponding matching classifiers
that were previously used and rewarded at least once.

Freq(ai) =
∑

j=1,n

(clj) : experience(clj) ≥ 1 (4)

An Adaptive Approach for the Exploration-Exploitation Dilemma 169

where experience is the activation frequency of clj in a similar context of the firm. It
then selects the action ai having the lowest frequency value Freq(ai).

Wiering [17] states that when the firm is interested in immediate reward, it has to
switch to exploitation and to gradually increase its rate of switching to exploitation. An
exploitation-exploration tradeoff is therefore needed.

4 Exploration-Exploitation Tradeoff

Finding a balance between exploration and exploitation is not an easy task [5, 7]. Most
existing methods, such as the “interval estimation” [7, 9] and the “Gittings index” [5, 1]
techniques, deal with small non-complex problems [15]. Methods that are applicable
to more complex contexts such as a multi-agent context are limited in number [13, 4].
Peres [13] underlined the necessity to link the changing rate of exploration and the
changing indicators of performance to the changing prediction, but proposed no so-
lution. Carmel [4] integrated an exploration technique to a learning-based model and
applied to game theory with a small number of agents.

Wilson [19] proposed ten techniques that were tested on small simple test problems
only. Their performance is sensitive to the constant gain factor fixed by the designer.
The behavior of these techniques in complex systems remains however an open issue.
In the following, we propose to test the behavior of two of these techniques in more
complex settings.

4.1 Wilson Techniques

Wilson techniques focus on an “on-line ”choice between exploration and exploitation
in a dynamic environment. They are based on the rate of variation of the performance
(prediction) or the prediction errors. These techniques could be local or global. A tech-
nique is local when the degree of exploration relies on the quantities raising from the
immediate responses of the current state. A technique is global when the exploration
degree is a statistic of the system overall behavior [19]. In this section, we adapt two
adaptive Wilson techniques: a local and a global one to use them in the context of eco-
nomic systems.

The adaptive local technique is applied at each activation of XCS. It determines
the exploration probability p1 based on the error variation of each action. When all the
classifiers matching the current context are identified, the values of the moving average
Êi of the difference between the current and estimated error are computed for each
action ai. The exploration probability p1 is then determined:

p1 = min
{
1, f

(
Êi

)
× Gf

}
, (5)

where Gf is a given gain factor, and

f
(
Êi

)
=

∑
i=1,na(Êi)

na
(6)

where na is the number of the identified actions in the set of matching classifiers [M].

170 L. Rejeb, Z. Guessoum, and R. M’Hallah

For a gain factor equal to 0.5 for example, if Êj is large (equals 5 for example), the
probability of exploration is set to 1: the action aj generates a change in the prediction
error; subsequently exploration must be pursued. On the other hand, if Êj is small
(equals 1 for example), the probability of exploration is set to 0: the firm should move
to exploitation.

The adaptive global technique is applied after n steps of exploration. It determines
the exploration probability p1 based on the average prediction error during exploration
periods. It estimates Ê the average prediction error during exploration periods and de-

termines the error rate of change g
(
Ê
)

which is the difference between the moving

averages of Ê before and after n periods of exploration (where n is usually set to 100).
The rate of change is then used to determine the probability p1:

p1 = min
{
1, g

(
Ê
)

× Gf
}

. (7)

Thus, if the average prediction error changes, n other steps of exploration are executed
prior to switching to exploitation.

The performance of both of Wilson strategies -the local and the global- are sensitive
to the gain factor Gf and to the exploration probability fixed in XCS. We avoid this
shortcoming by using an approach based on meta-rules.

4.2 A Meta-rules Based Approach

We use meta-rules to control the activation of exploration and exploitation. These meta-
rules adapt the choice between exploration and exploitation to the evolution of the firm
performance. They account for the new variations of the environment, once the firm has
learned. They are simple and make the behavior of the classifier system close to that
of a decision maker. Contrary to some techniques of Wilson, they allow the return of a
firm to exploration and do not use the gain factor.

After n periods of exploration and m periods of exploitation, the following meta-
rules are applied:

– If MYt+n > MYt+n+m, the system must continue learning. Subsequently, m must
be decreased: m = m ∗ (1 − Exploitation Rate).

– If MYt+n ≤ MYt+n+m, the system has achieved enough learning. Subsequently,
m must be increased: m = m ∗ (1 + Exploitation Rate).

MYt+n and MYt+n+m correspond to the moving average of the aggregation of the
performances Y[1] and Y[2] during the exploration and exploitation periods, respec-
tively. Exploitation Rate represents the variation rate of m. Once the system has ac-
quired enough learning, the value of m becomes very large. The value of n is maintained
positive to allow the system to adapt to small changes of the environment.

5 Experimental Results

The objective of this experimentation is twofold. First, we investigate the impact of
exploration techniques on the performance of a firm. Second, we study the impact of

An Adaptive Approach for the Exploration-Exploitation Dilemma 171

the meta-rules approach and compare it to other choice techniques of exploration and
exploitation.

The XCS parameters are fixed as follows:

– the population size is 6000 (allowing the system to represent all the possible clas-
sifiers when the generalization is not used),

– the generalization probability is 0.5,
– the learning rate is 0.001,
– the crossover rate is 0.8,
– the mutation rate equals 0.02,
– the minimum error is 0.01,
– the genetic algorithm frequency is 10 (allowing an update of the classifiers popula-

tion),
– the exploration probability equals 0.5.

Each simulation is replicated 20 times. The reported results correspond to the aver-
age values of these 20 replications.

5.1 Exploration Techniques

The first series of experiments compares exploration techniques. The comparison is
based on the results of the simulation of three populations involving 300 firms each.
These populations use respectively recency, frequency, and random based exploration
techniques. The three populations use identical initial parameters and the same explora-
tion-exploitation method.

Figures 1 and 2 show the difference between the directed and undirected exploration
techniques. They show that directed exploration is interesting at the beginning of the
simulation period. It directs the exploration towards the use of new actions; which is
not always the case for random exploration. It enriches the classifier population at the
beginning better than random exploration, and results in a larger accumulation of the
environment knowledge. On average, directed exploration does not greatly improve the
performance of a firm. The average percent improvement is 3.4 %, reaching a maximum

Fig. 1. Random vs. recency-based exploration techniques

172 L. Rejeb, Z. Guessoum, and R. M’Hallah

Fig. 2. Random vs. frequency-based exploration techniques

of 9.1% and a minimum of -7%. Table 2 displays the mean and standard deviation of
the capital of firms from different simulation runs. The mean of the two techniques of
directed exploration is greater than that of the random exploration but this difference is
not statistically significant at the 99.95 % level. Therefore, directed-exploration alone
is not sufficient to improve the performance of a firm. A balance between exploration
and exploitation remains needed.

Table 2. Summary statistics for the capital of firms

Technique Run 1 2 3 4 5
Random Standard deviation 99.78 104.22 111.21 128.57 50.11

Average 869.63 854.64 880.57 875.57 862.43
Frequency Standard deviation 58.72 123.48 123.53 113.77 125.35

Average 882.66 874.73 861.91 870.71 883.02
Recency Standard deviation 123.87 118.44 131.30 122.32 55.35

Average 872.38 869.61 880.31 886.91 877.57

5.2 Exploration-Exploitation Techniques

The second series of experiments compares the techniques of choice between explo-
ration and exploitation. First, we compare the proposed meta-rules based approach to a
random switch approach. Second, we compare the proposed meta-rules based approach
to the adapted Wilson techniques.

Meta-rules vs. random switch techniques. To compare the proposed meta-rules ap-
proach to a random switch approach, we run a simulation involving two types of popu-
lations of firms. The first population uses a random choice between exploration and ex-
ploitation whereas the second uses the meta-rules with an exploitation Rate = 20 %.
To focus on the exploration-exploitation switch technique, we endow these populations
with identical parameters and with the same exploration technique. We set n = 20 and
m = 10.

An Adaptive Approach for the Exploration-Exploitation Dilemma 173

Fig. 3. Comparison of the capital of random XCS firms and meta-rules firms

Figure 3 shows that the use of meta-rules improves the performance of surviving
firms. The comparison of the average life span for firms adopting meta-rules (112 peri-
ods) to the average life span for random-XCS firms (107 periods) shows that meta-rules
improve the resistance of firms. The important degradation of firms performance when
meta-rules are applied coincides with the beginning of the exploitation period. This
degradation shows that firms should have pursued learning and that it was too early for
them to consider exploitation.

Despite their positive impact on the performance of firms, the meta-rules are sen-
sitive to the values of n and m. Large periods of exploration are advantageous at the
beginning when a firm has not learned enough. However, large n values could become
hazardous when the firm has acquired enough learning. At the end of the simulation,
shorter periods of exploration are preferred.

Meta-rules vs. Wilson techniques. The following results are obtained by two sim-
ulations. The first includes a population of 300 firms adopting the meta-rules based
approach and a population of 300 firms using Wilson adaptive local technique. The
second includes the first population and a population of 300 firms using Wilson global
adaptive technique. The gain factor for Wilson techniques is set to 0.5. The three popu-
lations share the same parameters and strategies except for the exploration-exploitation
switch strategy. We compare Wilson local strategy to the meta-rules strategy on Figure
4 while we compare Wilson global strategy to the meta-rules strategy on Figure 5.

Figures 4 and 5 show that the use of meta-rules improves the performance of firms.
This improvement is more pronounced with respect to Wilson global adaptive tech-
nique. In fact, this strategy does not allow firms to return to exploration once they have
acquired enough knowledge and the environment has changed. The improvement is less
pronounced when comparing the meta rules to Wilson local technique as the latter re-
considers the choice for each period. The local Wilson strategy is clearly better at the
beginning of the simulation period as the meta-rules based approach engages only in
exploration for long periods, at the beginning of the simulation. However, in the long
run, meta-rules outperform Wilson local strategy. Basing decisions only on current in-
formation is not wise on the long run. The meta-rules based approach is promising and
could be improved by adapting the exploitation Rate to the age of the firm.

174 L. Rejeb, Z. Guessoum, and R. M’Hallah

Fig. 4. Comparison of the meta-rules based approach to Wilson local technique

Fig. 5. Comparison of the meta-rules based approach to Wilson global techniques

Table 3. Summary statistics for the average capital of firms under different exploitation-
exploration strategies

Meta-rules GlobalWilson LocalWilson
Standard Deviation 44.65 47.97 85.07
Average 912.50 862.19 962.75

These conclusions are further confirmed when we compare the standard deviation
and mean capital, displayed in Table 3, of the three populations. A smaller standard
deviation of the capitals reflects a more stable behavior of an approach; thus, the meta-
rules strategy is more stable than either Wilson Local or Global strategies. Even though
its mean is the largest, Wilson local strategy is not necessarily the best strategy because
of its very high variation: it could cause a large drop of the capital due to successive
erroneous choices between exploration and exploitation and subsequently cause the
disappearance of the firm. However, on the long run, the average capital doesn’t greatly
improve as all firms are simultaneously learning.

An Adaptive Approach for the Exploration-Exploitation Dilemma 175

6 Conclusion

In this paper, we studied the exploration-exploitation dilemma and learning in the con-
text of large scale economic systems. According to March [8], the choice between ex-
ploration and exploitation is the basic component of the organizational learning. It is
important for the firm as much more exploitation (over-exploitation) sentences the firm
to the obsolescence [6] whereas much more exploration (over-exploration) carries un-
certainty and does not guarantee an immediate reward for the firm. The over-exploration
and over-exploitation can cause the firm death. In this paper we propose an adaptive
approach to avoid over-exploration and over-exploitation by finding a balance between
exploration and exploitation. This approach is based on meta-rules that adapt this choice
to the evolution of the performance and knowledge of the firm.

The experiments showed that the use of the meta-rules improves the performances
of the firm and that the use of directed exploration is useful at the beginning for the
construction of the classifiers population as it decreases the learning time of firms. The
comparison of these meta-rules to two adaptive techniques, originally proposed by Wil-
son and adapted herein to a dynamic environment, showed that our approach is the best
in the context of our application. However, the adaptation of the rate of change of the
meta-rules to the age of the firm is needed.

References

1. Azoulay-Schwartz, R., Kraus, S., Wilkenfeld, J.: Exploration vs. exploitation: choosing a
supplier in an environment of incomplete information. Elsevier Science (2003).

2. Baum, J.A.C., Rao, H.: Handbook of Organizational Change and Development: Evolutionary
Dynamics of Organizational Populations and Communities. Oxford University Press (1999).

3. Butz, M. V., Wilson, S. W.: An algorithmic description of XCS. Journal of Soft Computing,
6 (2002) 144–153.

4. Carmel, D., Markovitch, S.: Exploration Strategies for Model-Based Learning in Multi-agent
Systems. Autonomous Agents and Multi-agent systems. Nicholas Jennings and Katia Sycara
and Michael Georgeff (eds.). 2(2) (1999) 141–172.

5. Gittings, J. C.: Multi-armed bandit allocation indices. NY: John Wiley and sons (1989).
6. Roux-Dufort, C.: L’apprentissage organisationnel et le développement de l’organisation.

Développement de l’organisation, Nouveaux regards. Durand, R., Economica (2002) 111-
134.

7. Kaelbling, L. P., Moore, A. W.: Reinforcement learning: A survey. Journal of Artificial Intel-
ligence Research, 4, (1996) 237–285.

8. March, J. G. and Simon, H. A.: Les organisations, Editions Dunod,1991.
9. Meuleau, N., Bourgine, P.: Exploration of multi-state environments: Local measure and back-

propagation of uncertainty. Machine Learning. 35(2) (1999) 117–154.
10. Miramontes Hercog, L., Fogarty, T. C.: Social Simulation Using a Multi-agent Model Based

on Classifier Systems: The emergence of Vacillating Behavior in the “ El Farol” Bar Problem.
In P.L. Lanzi, W. Soltzman and S. Wilson eds.: IWLCS 2001,Volume 2321 of Lecture Notes
in Artificial Intelligence. (2002) 88-111.

11. Rejeb, L., Guessoum, Z.: Adaptive Firms. In Proc. AISTA’04 International Conference on
Advances in Intelligent Systems - Theory and Applications. In cooperation with the IEEE
Computer Society. Luxembourg November (2004).

176 L. Rejeb, Z. Guessoum, and R. M’Hallah

12. Penrose, E. T.: The theory of the growth of the firm. Basil Blackwell, (1959).
13. Peres-Uribe, A., Hirsbrunner, B.: The risk of Exploration in multi-agent learning systems: a

case study. Proc. Agents-00 Joint workshop on learning agents, Barcelona, June 3–7, (2000)
33–37.

14. Sutton, R. S., Barto, A.G.: Reinforcement learning, an introduction. The MIT Press, (1998).
15. Thrun S. B.: The role of exploration in learning control. In D A. Sofge (eds.). Handbook

of Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Florence, Kentucky: Van
Nostrand Reinhold (1992).

16. Watkins, C., Dayan, P.: Q-Learning. Machine Learning, 8 (1999) 279-292.
17. Wiering, M.: Explorations in Efficient Reinforcement Learning. Ph.D. thesis. February

(1999).
18. Wilson, S.W.: Classifiers Fitness Based on Accuracy. Evolutionary computation, 3(2) (1995)

149-175.
19. Wilson, S.W.: Explore/Exploit Strategies in Autonomy. In P. Maes, M. Mataric, J. Pollac,

J.-A. Meyer and S. Wilson eds. From Animals to Animats 4, Proc. of the 4th International
Conference of Adaptive Behavior, Cambridge (1996).

Efficient Reward Functions for Adaptive

Multi-rover Systems

Kagan Tumer1 and Adrian Agogino2

1 NASA Ames Research Center,
Mail Stop 269-4, Moffet Field, CA 94035,
Phone:650-604-4940, Fax:650-604-4036

ktumer@mail.arc.nasa.gov
2 UC Santa Cruz, NASA Ames Research Center,

Mail Stop 269-3, Moffet Field, CA 94035,
Phone:650-604-5985, Fax:650-604-4036

adrian@email.arc.nasa.gov

Abstract. This chapter focuses on deriving reward functions that al-
low multiple agents to co-evolve efficient control policies that maximize
a system level reward in noisy and dynamic environments. The solution
we present is based on agent rewards satisfying two crucial properties.
First, the agent reward function and global reward function has to be
aligned, that is, an agent maximizing its agent-specific reward should
also maximize the global reward. Second, the agent has to receive suffi-
cient “signal” from its reward, that is, an agent’s action should have a
large influence over its agent-specific reward. Agents using rewards with
these two properties will evolve the correct policies quickly. This hypoth-
esis is tested in episodic and non-episodic, continuous-space multi-rover
environment where rovers evolve to maximize a global reward function
over all rovers. The environments are dynamic (i.e. changes over time),
noisy and have restriction on communication between agents. We show
that a control policy evolved using agent-specific rewards satisfying the
above properties outperforms policies evolved using global rewards by
up to 400%. More notably, in the presence of a larger number of rovers
or rovers with noisy and communication limited sensors, the proposed
method outperforms global reward by a higher percentage than in noise-
free conditions with a small number of rovers.

1 Introduction

Using learning agents to control a large distributed system is a difficult problem,
especially when the environment is noisy and dynamic [4, 7, 14]. In particular,
treating the collection of agents as a single entity and directly applying sucessful
single-agent learning algorithms is problematic because of the exploding state
space. Furthermore, many problems are naturally distributed, especially ones
where agents have communication limitations. In this chapter we discuss how to
extend successful single-agent learning algorithms (e.g., neuro-evolutionary al-
gorithms) are to collectives. A collective is a large, distributed system of agents

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 177–191, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

178 K. Tumer and A. Agogino

where each agent attempts to maxize its own reward and where there is a system-
wide global reward to maximize [21, 17, 18]. Our application domain is a collec-
tive of data-gathering rovers whose task is to maximize the aggregate information
collected by the full collective. In order to distinguish the members of the col-
lective from the individuals in the population of an evolutionary algorithm, we
will use “rovers” exclusively to refer to the members of a collective through this
paper.1

Our approach is based on giving each rover in the collective its own reward
function, which it tries to maximize using a learning algorithm. The key issue
in such an approach is to ensure that the rover reward function possesses the
following two properties: (i) it is aligned with the global reward, ensuring that
the rovers that maximize their own reward do not hinder one another and hurt
the reward of the collective; and (ii) it is sensitive to the actions of the rover,
ensuring that it provides the right selective pressure on the rover (i.e., it limits
the impact of other rovers in the reward function).

Our domain has a number of properties that make it particularly difficult for
learning algorithms:

1. The environment is dynamic, meaning that the conditions under which the
rovers evolve change with time. The rovers need to evolve general control
policies, rather than specific policies tuned to their current environment.

2. The rovers have restrictions on their sensing abilities, meaning that the infor-
mation they have access to is limited. The rovers need to formulate policies
that satisfy the global reward function based on limited, local information.

3. The number of rovers in the system can be larger. The rovers need to de-
couple the impact of other rovers from their reward functions.

This paper provides methods to learn control policies in dynamic environ-
ments for large collectives of rovers with limited communication capabilities. In
Sections 2 and 3 we discuss the properties needed in a collective, how to evolve
rovers using reward functions possessing such properties along with a discussion
of related work. In Section 4 we present the “Rover Problem” where planetary
rovers in a collective use neural networks to determine their movements based on
a continuous-valued array of sensor inputs. Section 5 presents the performance
of the rover collective evolved using rover reward functions in dynamic and com-
munication limited domains. The results show the the effectiveness of the rovers
in gathering information is 400% higher with properly derived rover reward func-
tions than in rovers using a global reward function. Finally Section 6 we discuss
the implication of these results and their applicability to different domains.

2 Rover Reward Function Properties

Let us now derive effective rover reward functions based on the theory of col-
lectives described in [21]. Let the global reward function be given by G(z),
1 Note, one can have individuals in a population of rovers or in a population of col-

lectives, depending on where the evolutionary operators are applied.

Efficient Reward Functions for Adaptive Multi-rover Systems 179

where z is the state of the full system (e.g., the position of all the rovers in the
system, along with their relevant internal parameters and the state of the envi-
ronment). Let the rover reward function for rover i be given by gi(z). Let us
further decompose z into two components: z = zi +z−i. In this decomposition zi

represents all the component of z that are affected by rover i and z−i represents
all components of z on which i has no effect.

First we want the private reward functions of each agent to have high fac-
toredness with respect to G, intuitively meaning that an action taken by an
agent that improves its private reward function also improves the global reward
function (i.e. G and gi are aligned). Formally, the degree of factoredness between
gi and G is given by:

Fgi =

∫
z

∫
z′ u[(gi(z) − gi(z′)) (G(z) − G(z′))]dz′dz∫

z

∫
z′ dz′dz

(1)

where z′−i = z−i, that is z′ differs from z only in the state of rover i, and u[x]
is the unit step function, equal to 1 when x > 0. Intuitively, a high degree of
factoredness between gi and G means that a rover evolved to maximize gi will
also maximize G.

Second, the rover reward function must be more sensitive to changes in that
rover’s actions than to changes in the actions of other rovers in the collective.
Formally we can quantify the rover-sensitivity of reward function gi, at z as:

λi,gi(z) = Ez′

[‖gi(z) − gi(z − zi + z′i)‖
‖gi(z) − gi(z′ − z′i + zi)‖

]
(2)

where Ez′ [·] provides the expected value over possible values of z′, and (z−zi+z′i)
notation specifies the state vector where the components of rover i have been
removed from state z and replaced by the components of rover i from state z′.
So at a given state z, the higher the rover-sensitivity, the more gi(z) depends
on changes to the state of rover i, i.e., the better the associated signal-to-noise
ratio for i is. Intuitively then, higher rover-sensitivity means there is “cleaner”
(e.g., less noisy) selective pressure on rover i.

As an example, consider the case where the rover reward function of each
rover is set to the global reward function, meaning that each rover is evaluated
based on the actions of the full collective. Such a system will be factored by
the definition of Equation 1. However, the rover reward functions will have low
rover-sensitivity (the reward of each rover depends on the actions of all other
rovers).

3 Difference Reward Functions

Let us now focus on improving the rover-sensitivity of the reward functions. To
that end, consider difference reward functions [21], which are of the form:

Di(z) ≡ G(z) − G(z−i + ci) (3)

180 K. Tumer and A. Agogino

where ci is a fixed vector. Intuitively, in the second term of Equation 3, all the
components of z that are affected by rover i are replaced with the fixed vector
ci. Such difference reward functions are fully factored no matter what the choice
of ci, because the second term does not depend on i’s states [21] (e.g., D and
G will have the same derivative with respect to zi). Furthermore, they usually
have far better rover-sensitivity than does a global reward function, because the
second term of D removes some of the effect of other rovers (i.e., noise) from i’s
reward function. In many situations it is possible to use a ci that is equivalent
to taking rover i out of the system. Intuitively this causes the second term of
the difference reward function to evaluate the value of the system without i and
therefore D evaluates the rover’s contribution to the global reward.

Though for linear reward functions Di simply cancels out the effect of other
rovers in computing rover i’s reward function, its applicability is not restricted
to such functions. In fact, it can be applied to any linear or non-linear global
utility function. However, its effectiveness is dependent on the domain and the
interaction among the rover reward functions. At best, it fully cancels the effect
of all other rovers. At worst, it reduces to the global reward function, unable
to remove any terms (e.g., when z−i is empty, meaning that rover i effects all
states). In most real world applications, it falls somewhere in between, and has
been successfully used in many domains including rover coordination, satellite
control, data routing, job scheduling and congestion games [3, 19, 21]. Also note
that the computation of Di is a “virtual” operation in that rover i computes
the impact of its not being in the system. There is no need to re-evolve the
system for each rover to compute its Di, and computationally it is often easier
to compute than the global reward function [19]. Indeed in the problem pre-
sented in this paper, for rover i, Di is easier to compute than G is (see details
in Section 5).

4 Continuous Rover Problem

In this section, we show how evolutionary computation with the difference reward
function can be used effectively in the Rover Problem2. In this problem, there is a
collective of rovers on a two dimensional plane, which is trying to observe points
of interests (POIs). Each POI has a value associated with it and each observation
of a POI yields an observation value inversely related to the distance the rover
is from the POI. In this paper the metric will be the squared Euclidean norm,
bounded by a minimum observation distance, δmin:3

δ(x, y) = max{‖x − y‖2, δ2
min} . (4)

2 This problem was first presented in [3].
3 The square Euclidean norm is appropriate for many natural phenomenon, such as

light and signal attenuation. However any other type of distance metric could also
be used as required by the problem domain. The minimum distance is included to
prevent singularities when a rover is very close to a POI.

Efficient Reward Functions for Adaptive Multi-rover Systems 181

The global reward function is given by:

G =
∑

t

∑
j

Vj

mini δ(Lj, Li,t)
, (5)

where Vj is the value of POI j, Lj is the location of POI j and Li,t is the location
of rover i at time t. Intuitively, while any rover can observe any POI, as far as
the global reward function is concerned, only the closest observation matters4.

Rover Sensor

POI Sensor

Fig. 1. Diagram of a Rover’s Sensor Inputs. The world is broken up into four quadrants
relative to rover’s position. In each quadrant one sensor senses points of interest, while
the other sensor senses other rovers.

4.1 Rover Capabilities

At every time step, the rovers sense the world through eight continuous sensors.
From a rover’s point of view, the world is divided up into four quadrants relative
to the rover’s orientation, with two sensors per quadrant (see Figure 1). For each
quadrant, the first sensor returns a function of the POIs in the quadrant at time
t. Specifically the first sensor for quadrant q returns the sum of the values of the
POIs in its quadrant divided by their squared distance to the rover and scaled
by the angle between the POI and the center of the quadrant:
4 Similar reward functions could also be made where there are many different levels of

information gain depending on the position of the rover. For example 3-D imaging
may utilize different images of the same object, taken by two different rovers.

182 K. Tumer and A. Agogino

s1,q,j,t =
∑
j∈Jq

Vj

δ(Lj , Li,t)

(
1 − |θj,q|

90

)
(6)

where Jq is the set of observable POIs in quadrant q and |θj,q| is the magnitude
of the angle between POI j and the center of the quadrant. The second sensor
returns the sum of inverse square distances from a rover to all the other rovers
in the quadrant at time t scaled by the angle:

s2,q,i,t =
∑

i′∈Nq

1
δ(Li′ , Li,t)

(
1 − |θi′,q|

90

)
(7)

where Nq is the set of rovers in quadrant q and |θi′,q| is the magnitude of the
angle between rover i′ and the center of the quadrant.

The sensor space is broken down into four regions to facilitate the input-output
mapping. There is a trade-off between the granularity of the regions and the di-
mensionality of the input space. In some domains the tradeoffs may be such that
it is preferable to have more or fewer than four sensor regions. Also, even though
this paper assumes that there are actually two sensors present in each region at
all times, in real problems there may be only two sensors on the rover, and they
do a sensor sweep at 90 degree increments at the beginning of every time step.

4.2 Rover Control Strategies

With four quadrants and two sensors per quadrant, there are a total of eight
continuous inputs. This eight dimensional sensor vector constitutes the state
space for a rover. At each time step the rover uses its state to compute a two
dimensional output. This output represents the x, y movement relative to the
rover’s location and orientation.

The mapping from rover state to rover output is done through a Multi Layer
Perceptron (MLP), with eight input units, ten hidden units and two output
units. The MLP uses a sigmoid activation function, therefore the outputs are
limited to the range (0, 1). The actual rover motions dx and dy, are determined
by normalizing and scaling the MLP output by the maximum distance the rover
can move in one time step. More precisely, we have:

dx = dmax(o1 − 0.5)
dy = dmax(o2 − 0.5)

where dmax is the maximum distance the rover can move in one time step, o1 is
the value of the first output unit, and o2 is the value of the second output unit.

4.3 Rover Policy Selection

In this work, the MLP for a rover is selected using an evolutionary algorithm.
This approach has a long history of success in continuous single agent control
problems[20, 10, 7, 2, 11, 1]. In this case, we will assign a population of MLPs
to each rover. At each N time steps (N set to 15 in these experiments), the

Efficient Reward Functions for Adaptive Multi-rover Systems 183

rover uses ε-greedy selection (ε = 0.1) to determine which MLP it will use
(e.g., it it selects the best MLP from its population with 90% probability and
a random MLP from its population with 10% probability). The selected MLP
is then mutated by adding a value sampled from the Cauchy Distribution (with
scale parameter equal to 0.3) to each weight, and is used for those N steps. At
the end of those N steps, the MLP’s performance is evaluated by the rover’s
reward function and re-inserted into its population of MLPs, at which time, the
poorest performing member of the population is deleted. Both the global reward
for system performance and rover reward for MLP selection is computed using
an N-step window, meaning that the rovers only receive an reward after N steps.

While this is not a sophisticated evolutionary algorithm, it is ideal in this work
since our purpose is to demonstrate the impact of principled reward functions
selection on the performance of a collective. Even so, this algorithm has shown to
be effective if the reward function used by the rovers is factored with G and has
high rover-sensitivity. We expect more advanced algorithms from evolutionary
computation, used in conjunction with these same reward functions, to improve
the perform collective further.

4.4 Learning Control Strategies in a Collective

The key to success in this approach is to determine the correct rover reward
functions. In this work we test three different reward function for rover selec-
tion. The first reward function is the global reward function (G), which when
implemented results in approach two discussed in Section 2:

G =
∑

t

∑
j

Vj

mini δ(Lj, Li,t)
(8)

The second reward function is the “perfectly rover-sensitive” reward function(P):

Pi =
∑

t

∑
j

Vj

δ(Lj , Li,t)
(9)

The P reward function is equivalent to the global reward function in the single
rover problem. In a collective of rover setting, it has infinite rover-sensitivity (in
the way rover sensitivity is defined in Section 2). This is because the P reward
function for a rover is not affected by the states of the other rovers, and thus
the denominator of Equation 2 is zero. However the P reward function is not
factored. Intuitively P and G offer opposite benefits, since G is by definition fac-
tored, but has poor rover-sensitivity. The final reward function is the difference
reward function. It does not have as high rover-sensitivity as P, but is still fac-
tored like G. For the rover problem, the difference reward function, D, becomes:

Di =
∑

t

⎡
⎣∑

j

Vj

mini′ δ(Lj , Li′,t)
−
∑

j

Vj

mini′ �=i δ(Lj , Li′,t)

⎤
⎦

=
∑

t

∑
j

Ij,i,t(z)
(

Vj

δ(Lj , Li,t)
− Vj

mini′ �=i δ(Lj , Li′,t)

)

184 K. Tumer and A. Agogino

where Ij,i,t(z) is an indicator function, returning one if and only if rover i is the
closest rover to POI j at time t. The second term of the D is equal to the value
of all the information collected if rover i were not in the system. Note that for
all time steps where i is not the closest rover to any POI, the subtraction leaves
zero. As mentioned in Section 3, the difference reward in this case is easier to
compute as long as rover i knows the position and distance of the closest rover
to each POI it can see (and the second closest when rover i is the closest). In
that regard it requires knowledge about the position of fewer rovers than if it
were to use the global reward function. In the simplified form, this is a very intu-
itive reward function yet it was generated mechanically from the general form if
the difference reward function [21]. In this simplified domain we could expect a
hand-crafted reward function to be similar. However the difference reward func-
tion can still be used in more complex domains with a less tractable form of the
global reward, even when it is difficult to generate and evaluate hand-crafted so-
lution. Even in domains where an intuitive feel is lacking, the difference reward
function will be provably factored and rover-sensitive.

In the presence of communication limitations, it is not always possible for a
rover to compute its exact Di, nor is it possible for it to compute G. In such
cases, Di can be compute based on local information with minor modifications,
such as limiting the radius of observing other rovers in the system. This has the
net effect or reducing the factoredness of the reward function while increasing
its rover-sensitivity.

5 Results

We performed extensive simulation to test the effectiveness of the different rover
reward function under a wide variety of environmental conditions and rover
capabilities. In these experiments, each rover had a population of MLPs of size
10. The world was 75 units long and 75 units wide. All of the rovers started the
experiment at the center of the world. Unless otherwise stated as in the scaling
experiments, there were 30 rovers in the simulations. The maximum distance
the rovers could move in one direction during a time step, dmax, was set to
3. The rovers could not move beyond the bounds of the world. The minimum
observation distance, δmin, was equal to 5.

In these experiments the environment was dynamic, meaning that the POI
locations and values changed with time. There were as many POIs as rovers,
and the value of each POI was set to between three and five using a uniformly
random distribution. In these experiments, each POI disappeared with proba-
bility 2.5%, and another one appeared with the same probability at 15 time step
intervals. Because the experiments were run for 3000 time steps, the initial and
final environments had little similarity.

All of the experiments (except the last one) were done in a non-episodic
domain, where the environment continually changed with time. The dynamic
environment experiments reported here explore how rover control policies can
be generalized from one set of POIs to another, regardless of how significantly the

Efficient Reward Functions for Adaptive Multi-rover Systems 185

Fig. 2. Sample POI Placement. Left: Environment at time = 15. Middle: Environment
at time = 150. Right: Environment at time = 1500.

environment changes. Figure 2 shows an instance of change in the environment
throughout a simulation. The final POI set is not particularly close to the initial
POI set and the rovers are forced to focus on the sensor input-output mappings
rather than focus on regions in the (x, y) plane.

5.1 Learning Rates

The first set of experiments tested the performance of the three reward functions
in a dynamic environment for 30 rovers. Figure 3 shows the performance of each
reward function. In all cases, performance is measured by the same global reward
function, regardless of the reward function used to evolve the system. All three
reward functions performed adequately in this instance, though the difference

Fig. 3. Performance of a 30-rover collective for all three reward functions in noise-
free environment. Difference reward function provides the best collective performance
because it is both factored and rover-sensitive. (Random curve smoothed).

186 K. Tumer and A. Agogino

reward Di outperformed both the perfectly rovers sensitive reward, P and the
global reward G.

The evolution of this system also demonstrates the different properties of the
rover reward functions. Rovers using all rewards improve initially, even rovers
using random utilities (utilities returning uniformly random values between 0.0
and 1.0). This improvement happens since the domain is non-episodic, and the
initial rover locations are very poor, so even rovers using random neural networks
spread out to superior locations. After initial improvements, the system with the
G reward function improves slowly. This is because the G reward function has
low rover-sensitivity. Because the reward of each rover depends on the state of
all other rovers, the noise in the system overwhelms the reward function. P on
the other hand has a different problem: After an initial improvement, the per-
formance of systems with this reward function decline. This is because though P
has high rover-selectivity, it is not fully factored with the global reward function.
This means that rovers selected to improve P do not necessarily improve G. D
on the other hand is both factored and has high rover-sensitivity. As a conse-
quence, it continues to improve well into the simulation as the reward signal the
rovers receive is not swamped by the states of other rovers in the system. This
simulation highlights the need for having reward function that are both factored
with the global reward function and have high rover-sensitivity. Having one or
the other is not sufficient.

5.2 Scaling Properties

The second set of experiments focused on the scaling properties of the three
reward functions in a dynamic environment. Figure 4 shows the performance
of each reward function at t=3000 for a collective of 10 to 70 rovers. For each
different collective size, the results are qualitatively similar to those reported
above, except where there are only 5 rovers, in which case P performs as well as
G. This is not surprising since with so few rovers, there are almost no interactions
among the rovers, and in as large a space as the one used here, the 5 rovers act
almost independently.

As the size of the collective increases though, an interesting pattern emerges:
The performance of both P and G drop at a faster rate than that of D. Again,
this is because G has low rover-sensitivity and thus the problem becomes more
pronounced as the number of rovers increases. Similarly, as the number of rovers
increases, P becomes less and less factored. D on the other hand handles the
increasing number of rovers quite effectively. Because the second term in Equa-
tion 3 removes the impact of other rovers from rover i, increasing the number
of rovers does very little to limit the effectiveness of this rover reward functions.
This is a powerful results suggesting that D is well suited to learning in large
collectives in this and similar domains where the interaction among the rovers
prevents both G and P from performing well. This result also supports the in-
tuition expressed in Section 2 that Approach Two (i.e., evolving rovers based on
the actions of the full collective) is ill-suited to evolving effective collectives in
all but the smallest examples.

Efficient Reward Functions for Adaptive Multi-rover Systems 187

Fig. 4. Scaling properties of the three reward functions. The D reward function not only
outperforms the alternatives, but the margin by which it outperforms them increases
as the size of the collective goes up.

5.3 Learning with Communication Limitations

The third set of experiments tested the performance of the three reward func-
tions in a dynamic environment where not only the rover sensors were noisy,
but the rovers were subject to communication limitations. The communications
limitations reduce the amount of information that is available to compute a
rover’s utility, by reducing the number of other rovers that a rover can observe.

Fig. 5. Results for noisy domain under communication limitations. Rovers can only
see of rovers covering an area of 1% of the domain. Difference reward is superior since
it is both factored and rover-sensitive. (Random curve smoothed).

188 K. Tumer and A. Agogino

Figure 5 shows the performance of all three reward function when the rovers were
only aware of other rovers when they were within a radius of 4 units from their
current location. This amounts to the rovers being able to communicate with
only 1% of the grid. (Because P is not affected by communication limitations,
its performance is the same as that of Figure 3.)

The performance of D is almost identical to that of full communication D. G
on the other hand suffers significantly. The most important observation is that
communication limited G is no longer factored with respect to the global reward
function. Though the rover-sensitivity of G goes up in this case, the drop in
factoredness is more significant and as a consequence collectives evolved using
G cannot handle the limited communication domain.

Figure 6 expands on this issue by showing the dependence of all three reward
function on the communication radius for the rovers (P is flat since rovers using
P ignore all other rovers). Using D provides better performance across the board
and the performance of D does not degrade until the communication radius is
dropped to 2 units. This is a severe restriction that practically cuts off the
rover from other rovers in the system. G on the other hand needs a rather large
communication radius (over 20) to outperform the collectives evolved using P .
This result is significant in that it shows that D can be effectively used in many
practical information-poor domains where neither G nor “full” D as given in
Equation 3 can be accurately computed.

Another interesting phenomena appears in the results presented in Figure 6,
where there is a dip in the performance of the collective when the communication
radius is at 10 units for both D and G (the “bowl” is wider for G than D, but
it is the same effect). This phenomenon is caused by the interaction between
the degree of factoredness of the reward functions and their sensitivity. At the
maximum communication radius (no limitations) D is highly factored and has

Fig. 6. Sensitivity of the three reward functions to the degree of communication limi-
tations. Difference reward is not affected by communication limitations by as much as
global reward.

Efficient Reward Functions for Adaptive Multi-rover Systems 189

high rover-sensitivity. Reducing the communication radius starts to reduce the
factoredness, while increasing the rover-sensitivity. However, the rate at which
these two properties change is not identical. At a communication radius of 10,
the drop in factoredness has outpaced the gains in rover-sensitivity and the
performance of the collective suffers. When the communication radius drops to
5, the increase in rover-sensitivity compensates for the drop in factoredness. This
interaction among the rover-sensitivity and factoredness is domain dependent
and has also been observed in previous applications of collectives [16, 18].

5.4 Leaning in Changing Episodic Environment

All the previous experiments were non-episodic, meaning that the environment
is not reset over the course of a trial. In episodic domains, learning is performed
over a series of episodes with the environment being reset at the beginning of
each episode. This section shows results for the episodic version of the Rover
Problem. In this problem the rovers move for fifteen time-steps to complete an
episode and at the end of the episode the rovers are returned to their original
position. In most episodic domains, the environment is also reset to its starting
configuration at the beginning of the episode. However, to make this problem
more difficult, we reset the POIs to new random positions at the beginning of
each trial. By placing the POIs this way, the rovers have to learn a general policy
for efficiently navigating using sensors, and cannot form a specific policy to a
single environmental configuration.

Figure 7 shows that rovers using D performed best in this scenario. Rovers us-
ing D were effective in generalizing the knowledge gained from exploring previous
POI configurations and applying that knowledge to new POI configurations. In
contrast, rovers using the P rewards were especially ineffective in this scenario.

Fig. 7. Learning in an Episodic Domain with Changing Environment. Even in an
episodic domain where the environment changes at the end of every episode, agents
using the difference reward, D, are still able to achieve high performance.

190 K. Tumer and A. Agogino

We attribute this to the congested nature of the problem, where the rovers com-
peted rather than cooperating with each other. Since a rover’s P rewards only
returns the value of what that rover observes, a rover using the P rewards tends
to move towards the highest valued POI in its area. However all the other rovers
in that vicinity are also moving towards the same high-valued POI, and thus
many other POIs are not properly observed.

6 Discussion

This paper presented a method for providing rover specific reward functions
to directly evolve individual rovers in a collective. The fundamental issue in
this approach is in determining the rover specific reward functions that are both
aligned with the global reward function and are as sensitive as possible to changes
in the reward of each member.

In dynamic environments rovers using the difference reward function D, de-
rived from the theory of collectives, were able to achieve high levels of perfor-
mance because the reward function was both factored and highly rover-sensitive.
These rovers performed better than rovers using the non-factored perfectly rover-
sensitive reward and more than 400% better (over random rovers) than rovers
using the hard to learn global rewards.

We then extended these results to rovers with limited communication capa-
bilities and larger collectives. In each instance the collectives evolved using D
performed better than alternatives and in most cases (e.g., larger collectives,
communication limited rovers) the gains due to D increase as the conditions
worsened. These results show the power of using factored and rover-sensitive
reward functions, which allow evolutionary computation methods to be suc-
cessfully applied to large distributed systems in real world applications where
communication among the rovers cannot be maintained.

References

1. A. Agah and G. A. Bekey. A genetic algorithm-based controller for decentralized
multi-agent robotic systems. In In Proc. of the IEEE International Conference of
Evolutionary Computing, Nagoya, Japan, 1996.

2. A. Agogino, K. Stanley, and R. Miikkulainen. Online interactive neuro-evolution.
Neural Processing Letters, 11:29–38, 2000.

3. A. Agogino and K. Tumer. Efficient evaluation functions for multi-rover systems.
In The Genetic and Evolutionary Computation Conference, pages 1–12, Seatle,
WA, June 2004.

4. T. Balch. Behavioral diversity as multiagent cooperation. In Proc. of SPIE ’99
Workshop on Multiagent Systems, Boston, MA, 1999.

5. G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to display
collective behavior. Artificial Life, pages 9: 255–267, 2003.

6. M. Dorigo and L. M. Gambardella. Ant colony systems: A cooperative learning
approach to the travelling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

Efficient Reward Functions for Adaptive Multi-rover Systems 191

7. S. Farritor and S. Dubowsky. Planning methodology for planetary robotic explo-
ration. In ASME Journal of Dynamic Systems, Measurement and Control, volume
124, pages 4: 698–701, 2002.

8. D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Genetic
evolution of a neural-network driven robot. In Proc. of Conf. on Simulation of
Adaptive Behavior, 1994.

9. F. Gomez and R. Miikkulainen. Active guidance for a finless rocket through neu-
roevolution. In Proc. of Genetic and Evolutionary Comp. Conf., Chicago, IL, 2003.

10. F. Hoffmann, T.-J. Koo, and O. Shakernia. Evolutionary design of a helicopter au-
topilot. In Advances in Soft Computing - Engineering Design and Manufacturing,
Part 3: Intelligent Control, pages 201–214, 1999.

11. E. Lamma, F. Riguzzi, and L. Pereira. Belief revision by multi-agent genetic search.
In In Proc. of the 2nd International Workshop on Computational Logic for Multi-
Agent Systems, Paphos, Cyprus, December 2001.

12. A. Martinoli, A. J. Ijspeert, and F. Mondala. Understanding collective aggrega-
tion mechanisms: From probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems, 29:51–63, 1999.

13. A. Martinoli and F. Mondala. Collective and cooperative group behaviors: Biolog-
ically inspired experiments in robotics. In O. Khatib and J. Salisbur, editors, Proc.
of the Fourth Intl. Symp. on Experimental Robotics. Springer, New York, 1995.

14. M. J. Mataric. Coordination and learning in multi-robot systems. In IEEE Intel-
ligent Systems, pages 6–8, March 1998.

15. K. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolv-
ing neural network topologies. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), San Francisco, CA, 2002.

16. K. Tumer and A. Agogino. Overcoming communication restrictions in collec-
tives. In Proceedings of the International Joint Conference on Neural Networks,
Budapest, Hungary, July 2004.

17. K. Tumer and D. Wolpert, editors. Collectives and the Design of Complex Systems.
Springer, New York, 2004.

18. K. Tumer and D. Wolpert. A survey of collectives. In Collectives and the Design
of Complex Systems, pages 1,42. Springer, 2004.

19. K. Tumer and D. H. Wolpert. Collective intelligence and Braess’ paradox. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence, pages
104–109, Austin, TX, 2000.

20. D. Whitley, F. Gruau, and L. Pyeatt. Cellular encoding applied to neurocontrol.
In International Conference on Genetic Algorithms, 1995.

21. D. H. Wolpert and K. Tumer. Optimal payoff functions for members of collectives.
Advances in Complex Systems, 4(2/3):265–279, 2001.

Multi-agent Relational Reinforcement Learning

Explorations in Multi-state Coordination Tasks

Tom Croonenborghs1, Karl Tuyls2, Jan Ramon1, and Maurice Bruynooghe1

1 Department of Computer Science,
Katholieke Universiteit Leuven, Belgium

2 Institute for Knowledge and Agent Technology,
Universiteit Maastricht, The Netherlands

Abstract. In this paper we report on using a relational state space
in multi-agent reinforcement learning. There is growing evidence in the
Reinforcement Learning research community that a relational represen-
tation of the state space has many benefits over a propositional one.
Complex tasks as planning or information retrieval on the web can be
represented more naturally in relational form. Yet, this relational struc-
ture has not been exploited for multi-agent reinforcement learning tasks
and has only been studied in a single agent context so far. In this paper
we explore the powerful possibilities of using Relational Reinforcement
Learning (RRL) in complex multi-agent coordination tasks. More pre-
cisely, we consider an abstract multi-state coordination problem, which
can be considered as a variation and extension of repeated stateless Dis-
persion Games. Our approach shows that RRL allows to represent a
complex state space in a multi-agent environment more compactly and
allows for fast convergence of learning agents. Moreover, with this tech-
nique, agents are able to make complex interactive models (in the sense
of learning from an expert), to predict what other agents will do and
generalize over this model. This enables to solve complex multi-agent
planning tasks, in which agents need to be adaptive and learn, with
more powerful tools.

1 Introduction

In recent years, Relational Reinforcement Learning (RRL) has emerged in the
machine learning community as a new interesting subfield of Reinforcement
Learning (RL) [7, 4, 20]. It offers to RL a state space representation that is much
richer than that used in classical (or propositional) methods. More precisely,
states are represented in a relational form, that more directly represents the
underlying world and allows the representation of complex real world tasks as
planning or information retrieval on the web in a more natural manner (see
section 2 for an example).

Compared to single agent RL, learning in a MAS is a complex and cumber-
some task. Typical for a MAS is that the environment is not stationary and the
Markov property is not valid. These characteristics make the transition from a

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 192–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Multi-agent Relational Reinforcement Learning 193

one-agent system to a multi-agent system very hard. Furthermore, an agent in
a MAS needs to take in account that other agents are also trying to attain the
highest utility for their task. A possible solution would be to provide all pos-
sible situations an agent can encounter in a MAS and define the best possible
behavior in each of these situations beforehand. However, such a solution suffers
from combinatorial explosion and is not the most intelligent solution in terms of
efficiency and performance.

Yet different approaches have been introduced to solve this multi-agent learn-
ing problem ranging from joint action learners [10] to individual local Q-learners.
All of these approaches have as well their own merits as disadvantages in learn-
ing in a multi-agent context. In the first approach, i.e., the joint action space
approach, the state and action space are respectively defined as the Cartesian
product of the agent’s individual state and action spaces. More precisely, if S
is the set of states and A1, ..., An the action sets of the n different agents, the
learning will be performed in the product space S × A1 × ... × An, where each
agent has a reward function of the form: S × A1 × ... × An → R. This implies
that the state information is shared amongst the agents and actions are taken
and evaluated synchronously. It is obvious that this approach leads to very big
state-action spaces, and assumes instant communication between the agents.
Clearly this approach is in contrast with the basic principles of many contempo-
rary multi-agent applications such as distributed control, asynchronous actions,
incomplete information, cost of communication. In the local or selfish Q-learners
setting, the presence of the other agents is totally neglected, and agents are
considered to be selfish reinforcement learners. The effects caused by the other
agents also acting in that same environment are considered as noise. In between
these approaches we can find examples which try to overcome the drawbacks
of the joint action approach, examples are [13, 2, 15, 23, 17, 18]. There has also
been quite some effort to extend these RL techniques to Partially Observable
Markovian decision problems and non-Markovian settings [11].

However, to our knowledge, almost all of these different techniques have been
used so far in combination with a state space which is in propositional form,
where by no means relations between different features are expressed or ex-
ploited. To our belief, multi-agent RL in general could greatly benefit from the
ideas of RRL, which has proved to be very successful in the single agent case.
In this paper we illustrate the advantages of using RRL in MAS, by doing ex-
periments in an abstract multi-state coordination task. This problem can be
considered as a variation and extension of the abstract Dispersion Game (DG),
introduced in [8]. More precisely, DGs are a stateless abstract representation of
typical load-balancing problems. The goal of the game is to achieve coordination
between the different participating agents and fast convergence to a maximally
dispersed situation by avoiding to work on cross-purposes. This coordination
problem has been acknowledged to be difficult and complex, but can be solved
quite good by different RL approaches as for instance local Q-learning. Unfortu-
nately, this problem remains stateless, which is of course a great simplification
of real world complex coordination tasks. In this paper we study RRL in an

194 T. Croonenborghs et al.

abstract multi-state coordination problem in which tasks consists of multiple
subtasks as opposed to in DGs. We believe that RRL can overcome many of the
problems encountered by classical RL techniques when trying to solve this type
of multi-agent learning problems. These issues include large state spaces, gener-
alization of knowledge, building models of agents and computational cost of the
problem. In a first step we study how agents can learn the relational structure
of such a problem. We do not consider at this moment the allocation of tasks to
agents. Interference of agents in different tasks will be subject of our future work.
Questions we answer now include: Can agents learn the relational structure of
the problem and other agents? Can they build models of each other improving
learnability? Does this improve convergence properties and can agents generalize
over the knowledge they learned about other agents?

The rest of this document is structured as follows. Section 2 introduces Rela-
tional Reinforcement Learning, Section 3 gives an overview of relevant existing
work and introduces the multi-agent RRL task. The experiments are presented
in Section 4 and finally Section 5 concludes.

2 Single Agent Relational Reinforcement Learning

2.1 Reinforcement Learning

Reinforcement Learning offers a general framework, including several methods,
for constructing intelligent agents that optimize their behavior in stochastic en-
vironments with minimal supervision. The problem task of RL [19] using the
discounted sum of rewards is most often formulated as follows: Given a set
of possible states S, a set of possible actions A, unknown transition proba-
bilities t: S × A × S → [0, 1] and an unknown real-valued reward function
r : S × A → R, find a policy which maximizes the expected discounted sum
of rewards V (st) = E

(∑∞
i=0 γirt

)
for all st, where 0 ≤ γ < 1.

At every time step t, the learning agent is in one of the possible states st of S
and selects an action at = π(st) ∈ A according to his policy π. After executing
action at in st, the agent will be in a new state st+1 (this new state is chosen
according to the transition probabilities) and receives a reward rt = r(st, at).

A drawback of most work on RL, using a propositional representation1, is the
difficulty to represent states that are defined by the objects that are present in
this state and the relations between these objects. The real world contains ob-
jects. Objects with certain properties, that relate to each other. To apply RL in
such complex environments, a structural or relational representation is needed.

To illustrate the need for these structural representations, we will describe the
blocks world domain as a Reinforcement Learning problem. The blocks world con-
sists of a number of blocks, which can be on the floor or onto each other. It is as-
sumed that an infinite number of blocks can be put on the floor and that all blocks
are neatly stacked onto each other, e.g. a block can only be on one other block at
1 In propositional representations a feature vector is used with an attribute for every

possible property of the agent’s environment.

Multi-agent Relational Reinforcement Learning 195

the same time. The possible actions consist of moving one clear block (e.g. a block
with no other block on top of it) onto another clear block or onto the floor. It is
impossible to represent such blocks world states with a propositional represen-
tation without an explosion of the number of states. Using First-Order Logic, a
blocks world state can be represented as a conjunction of predicates, describing
the relations between the blocks, e.g. {on(s, b, floor)∧on(s, a, b)∧clear(s, a) . . .}.

2.2 Relational Reinforcement Learning

Relational Reinforcement Learning combines the RL setting with relational
learning or Inductive Logic Programming (ILP). Because of this structural repre-
sentation, it is possible to abstract from and generalize over specific goals, states
and actions and exploit the results of previous learning phases when addressing
new and possibly more complex situations.

Furthermore, because relational learning algorithms are used, there is the pos-
sibility to use background knowledge. Background knowledge consists of facts or
general rules relevant to the examples or problem domain in the context of RL.
E.g., in the blocks world, a predicate above(S, A, B) could be defined as the tran-
sitive closure of the predicate on(S, A, B). These predicates in the background
knowledge can be used in the learning process, i.e., in the representation of a
Q-function.

Although, RRL is a relatively new domain, several approaches have been
proposed during the last few years, we refer to [20] for an overview.

One of the first methods within RRL, is relational Q-learning [7]. In this
work, a Q-learning algorithm is proposed that allows a relational representation
for states and actions. The Q-function is represented and learned using an incre-
mental relational regression algorithm. So far, a number of different relational
regression learners are developed2.

Besides relational Q-learning, there has been some work on other methods
which is not discussed here. So far, all work on RRL has focused on the single
agent case. To our knowledge, there is no existing work on applying relational
reinforcement learning in a multi-agent system. Earlier, van Otterlo et al. [24]
already mentioned the possible benefits of using RRL in (multi-) agent systems.
They state that cognitive and sapient agents especially need a learning compo-
nent where the reinforcement learning paradigm is the most logical choice for
this. Since these agents are (usually) logic-based, RRL is indicated as a very
suitable learning method for intelligent agents.

Furthermore, there has been some work in the past on guiding learning agents
[5] and combinations with behavioral cloning [14].

3 Relational Multi-agent Reinforcement Learning

During the 90’s multi-agent systems have become a very popular approach in
solving computational problems of distributed nature as for instance load bal-
2 A thorough discussion and comparison can be found in [4].

196 T. Croonenborghs et al.

ancing or distributed planning systems. They are a conceptually proved solution
method for problems of this nature.

However, designing a cooperative multi-agent system with both a global high
utility for the system and high individual utilities for the different agents is still
a difficult problem [21, 9].The joint actions of all agents derive some reward from
the outside world. To enable local learning, this reward has to be divided among
the individual agents where each agent aims to increase its received reward.
However, unless special care is taken as to how reward is assigned, there is a risk
that agents in the collective work at cross-purposes. For example, agents can
reach sub-optimal solutions in the blocks world example by competing for the
same block or goal state, i.e., by inefficient task distribution among the agents
as they each might only consider their own goals which can result in a Tragedy
of the Commons situation, or policy oscillations [15].

In this setting different researches have already obtained some very nice re-
sults within the framework of stochastic Dispersion Games [8, 21, 9]. Dispersion
games are an abstract representation of typical load balancing and niche selec-
tion problems. The games are played repeatedly, during which the agents learn
to disperse. Still, these dispersion games are far more simple than for instance
blocks world planning problems, as there is only one state to consider. We ex-
tend this type of work to large planning problems with multiple states, which
we will try to solve by an agent-based system, consisting of learning agents in a
relational state space.

Combining multi agent systems and relational reinforcement learning com-
bines two complex domains. We believe that, in order to study the integration
of these both settings, one should take care not to make the learning task too
complex at once, as a mix up of the many different effects playing a role in
both domains could make (especially experimental) results difficult to interpret.
Therefore, we will first try to separate a number of effects we want to investigate
as much as possible independently. In a second part of this section, we will then
propose a number of settings of increasing difficulty in which we plan to conduct
experiments.

3.1 Complexity Factors

One could describe the main complexity factors of multi agent systems as unin-
formedness, communication and interference. First, agents are often assumed to
be unaware of parts of the world far away where the other agents are operating.
This essentially makes the world only partially observable, and hence agents are
less informed than in the Markovian situation. Second, agents are unaware of
each other’s knowledge and intentions. Though these cannot be observed, these
can be (partially) revealed by communication. In fact, a lot of work has been
published on the study of agent communication. Third, plans and actions of
agents can interfere. To act optimally, an agent should take plans and actions of
other agents into account (e.g. by knowing them, or by predicting them, or by
making his own plan robust).

Multi-agent Relational Reinforcement Learning 197

Relational learning adds extra complexity with increased state and hypothe-
sis spaces, generalization and informedness. This does not necessarily mean that
relational learning has a negative impact on the time complexity. First, RRL has
been proposed in answer to the need to describe larger state spaces. Through
their generalization ability, relational languages allow the compact representa-
tion of state spaces, policies, reward, transition and value functions. However,
they do not take away the fundamental problem of difficult tasks that the op-
timal policy is complex and that the learning hardness increases with the state
space size. This is illustrated by the fact that in the single agent relational case
only some initial convergence results exist [12, 16], but no global guarantees that
the policy will converge to an optimal policy in the case generalization over
the state space is performed. Second, while the generalization ability is usually
beneficial, it also often has the consequence that due to the generalization the
world is only partially observable, i.e., it may be difficult to see the difference
between states over which the agent generalizes. Third, while a reason for intro-
ducing relational languages was the ability to introduce background knowledge
and hence make the agent better informed and put him in a better situation to
act intelligently, the background knowledge will only be useful when the algo-
rithm has the ability to exploit it. This often adds an extra level of complexity
to the algorithm.

3.2 Settings

We will introduce first some terminology. A setting is a set of properties of the
problem and the agent abilities under consideration. We say a setting has the
comm reward property iff the agents are trying to maximize the same common
reward function (if one agent gets a reward, all other agents get the same reward).
We say a setting has the know aim property iff the agents know what function
the other agents are trying to maximize. A setting has property full obs iff the
agents can observe the full world, including actions performed by other agents
(but excluding internals of the other agents). A setting has property know abil
iff the agents know the ability of the other agents, i.e., how good they are at
their task (e.g., whether an other agent will perform random actions, or whether
an other agent always performs the optimal action). A setting has the property
comm schedule iff the agents have a way of communication for deciding who
is performing actions at which time point. This e.g., would allow to let more
experienced or specialized (but maybe also more costly) agents perform actions
in certain types of situations. In a setting with the property talk the agents
have the ability to communicate about their knowledge.

These properties are defined as general ones, but the same settings can of
course be studied when some of these properties are only partially valid, e.g.
there is only partial observability, based on some constraints like the kind of
agents, their location or agents only know a part of the function other agents
are trying to maximize etc. This will make the learning problem obviously more
difficult, but the ideas about these properties and the settings in which they are
used remain the same.

198 T. Croonenborghs et al.

Table 1. A number of settings with their properties

other’s comm know know observe comm
Setting full learn learn or

ability rew abil aim obs beh abil talk
0. Std. RRL (1 agent) no x x
1. Local learners any x
2. Guidance teacher x x x
3. Guided policy learning perfect x x x x
4. Active guidance teacher x x x c
5. Actively guided policy learning perfect x x x x c
6. Describing the solution perfect x x x x c + t
7. Collaborative RRL any x x x t
8. Find the teacher any x x x
9. Learning behavior any x x x
10. Learning abilities any x x x x
11. Learning who to imitate any x x x x
12. Knowing and learning abil any x x x x x
13. Informed active guidance any x x x x c
14. Partially observable world any x x x
15. Different interests any x

If it is the case that the full obs property holds, agents can use these obser-
vations to learn extra information. Therefore we define two properties based on
the capabilities of the agents. We say the learn beh property holds iff the agents
are capable of learning the behavior of the agents they can observe. When agents
use their observations about other agents to learn their abilities, the learn abil
holds.

We will now describe a number of settings. Table 1 lists these settings together
with their properties. In the column “other’s ability” we list the ability of the
other agents in the world: ’teacher’ means an agent having a good (but perhaps
not optimal) policy; ’perfect’ means an agent with an optimal policy. In the
text we will refer to specific entries in the table with numbers between round
brackets. The comm column has a ’c’ if the comm schedule property holds and a
’t’ if talk holds for that particular setting.

The first two settings, are the standard settings, (0) for the single agent case
and (1) for the situation in which n single (R)RL-agents are put together in the
same environment.

Probably one of the simplest settings is the case where comm reward,
know aim and full obs hold. Still, even this simple situation is not fully studied
in the relational case. One empirical work is on “guidance” [5]. One can see guid-
ance as a setting with two agents where one is a teacher, and the other is a learner
(2). Both the teacher and the learner perform actions, and hence it is more likely
that reward is obtained compared to the classical reinforcement learning case.
This can be important in difficult planning domains where it would be unlikely
to obtain a reward by only exploration. The main advantage is that the teacher
directs the exploration towards difficult to reach parts of the state space.

Multi-agent Relational Reinforcement Learning 199

If we also have know abil and the teacher is known to make only optimal
actions (3), the learner can directly use the actions performed by the teacher as
examples of optimal actions. He could then use a direct learning algorithm that
learns actions from states. Another interesting situation (4,5) is the case with
comm schedule where the learner may ask the teacher to perform an action (at a
certain cost). This is described in [5], while several open questions remain. This
can also be seen as a form of active learning.

In the presence of a perfect teacher, the talk property together with
know abil (6) makes the problem somewhat trivial as the learner can just ask
the teacher for the optimal policy (at least if the learner is able to represent that
policy). However, the situation gets much more interesting when we have only
comm reward, know aim, full obs, talk and maybe know abil but no perfect
teacher (7). We then have a situation where agents can discuss their learning
experiences and even though there is full knowledge, the problem is far from triv-
ial. Indeed, in the relational setting, agents can use very expressive languages to
talk. Furthermore, extending the idea of Informed Reinforcement Learning [3],
the agents can exchange their learned information. Possible interesting informa-
tion to share could be subgoals, information about actions like pre- or postcondi-
tions but also learned options or macro-actions. No work has been published on
which languages are suitable and which questions are most efficient. One could
use a language which is a super language of the language to describe states and
actions, and can also describe past episodes and statistics. E.g. one could imag-
ine that one agent asks “did you ever see a state with four stacks containing
each a red block above a light blue block?” And another agent might answer:
“No, but I did see something very similar: I visited 13 states with four stacks
containing each a red block above a dark blue one. Is that of interest to you?”.
Apart from the usual communication issues, one could investigate issues such
as the following. What questions are useful in a communication? How to get
the desired information at the lowest cost? What generalizations are needed for
that? When is it cheaper to explore and find it out yourself?

Another unsolved task (8) occurs in the situation where an agent sees several
other agents and knows that some of them are quite good agents. In such a
situation it may be interesting to try and find the best agent to learn from. But
as the reward is collective, it may not be trivial to detect who is performing the
best actions. Or maybe, some agents are experts in certain areas of the state
space, and it might be interesting to learn concepts describing the other agent’s
expertise (the areas where they perform well).

So far we have described settings that are determined by the environment,
but agents can also learn information that is not provided by the environment.
One such interesting setting is when learn beh holds (9). Here the agents will
use their observations to learn the behavior of the agents they observe. This can
for instance be obtained by learning a model for every observable agent that
predicts the probability that this agent will perform some action in a certain
state. Examples to learn such a model can easily be generated if one can observe
(some of) the actions made by other agents. Positive examples are the actual

200 T. Croonenborghs et al.

actions that are executed by that agent (at least according to their observation),
actions executed by other agents can be used as negative examples or they can
also be randomly generated. Interesting to note is that since negative examples
can be easily generated, one can supply the learner with more examples per
observation to accelerate the learning.

This setting becomes particularly interesting when also the know abil prop-
erty holds (11), because agents can then execute the actions they believe the
expert would make in that situation. Note that this learning task boils down to
behavioral cloning [1].

If know abil does not hold, one can still have learn abil where the agents
can use their observations to try to learn these abilities (10). Learning these abili-
ties can be based on the rewards the agents receive for their actions, but since this
information is often not available, another possibility is for instance to learn the
average time an agent is working on some task to estimate his abilities for that
task. It is of course also possible to have both know abil and learn abil espe-
cially when the given information about the agents abilities is only partial (12).

When we also have the comm schedule or even talk property (13), an exten-
sion of the active guidance settings occurs. This could be seen as informed active
guidance since agents can use their learned knowledge about the other agents to
restrict communication. The list of learnable knowledge from observations can
of course be extended with models that learn what the results of an agents ac-
tions are, that learns what other agents are trying to achieve, i.e., the know aim
property, etc.

In what precedes, we have listed a number of (partly) unsolved tasks which
may be assumed to be ’easy’ for the learner. Of course, one can make the prob-
lems much more difficult by adding a number of supplementary complexity fac-
tors, such as partial observability (14) or situations where not all agents try to
reach the same goal (15).

4 Experiments

In this section, we will present results from experiments in some of the settings of
Table 1, more specifically on experiments where the full obs property is used to
learn extra information about the other agents and hence accelerate convergence.
Previously, we reported on preliminary results where the RRL system is used in
the blocks world with multiple agents to analyze the problem of interference and
incomplete information, see [22] for more details. Here, we will concentrate on
experiments showing the gain of learning the relational structure between the
different agents in the system.

4.1 Experimental Setup

The test environment we use can be seen as a first step toward multi-state
dispersion- and cooperation games, but since at the moment we would like to
avoid the problem of interference between the agents, all agents are working on

Multi-agent Relational Reinforcement Learning 201

their own task without the possibility to interfere with each other. Not only is
this still a challenging problem, an isolated study of the relations between the
agents and methods that gain maximally from this, are necessary to tackle more
complex problems involving communication and especially interference between
agents as for instance in multi-state coordination tasks.

The agents need to fulfill some identical task, this task can be solved by
sequentially solving a number of subtasks. Since all tasks are identical, all agents
need to solve the same subtasks in the same order.

More specifically, the basic setting is a system with four agents, where each
agent needs to solve a certain task by sequentially solving four subtasks. A
subtask can only be solved by executing the optimal action and only one of a
possible 40 actions is optimal.

When all subtasks are successfully solved, the agents are rewarded with a
reward of 1.0, for all other actions they receive neither reward nor punishment.
Episodes are ended when all agents have solved all of their subtasks or when a
maximum of 800 actions is executed (by all agents together). When the quality
of the learned policies are tested, episodes are ended after 40 actions to indicate
how many agents learned at least a near-optimal policy.

It is also possible that some agents have prior knowledge about some subtask,
i.e. they know what the optimal action is for that subtask. In the basic setting,
each agent knows a priori how to solve one subtask optimally and hence he can
be called an expert for that subtask. So, the goal of the agents is to learn how
to optimally solve the full task.

The settings and language bias. We will compare results obtained with
the basic setting where all agents are local learners (1) and the settings where
observations are used to learn extra knowledge about the other agents and the
environment (9-12). One can note that for this environment setting (1) converts
to the single-agent case, but averaged over the different agents.

All the agents in the different settings use the same tree building regression
algorithm (RRL-TG [6]). To guide this tree building a declarative bias can
be specified. This declarative bias can contain a language bias to specify the
predicates that can be used as tests in the tree to partition the state and action
space. For all agents this language bias contains predicates that identify the
subtask and inequalities to partition the action space.

If agents have the learn beh property they can build a model, using the
same algorithm and declarative bias, predicting the probability that an agent
will perform some action for some subtask. The examples generated to learn these
models consists of the actual actions taken as possible examples and for every
positive examples, 10 random actions (different from the actual taken action)
are generated as negative examples. In fact, different models will be learned for
every subtask. Their language bias for building the Q-function is extended with
predicates that test the probability that a specific agent will perform a specific
action for some specific subtask, according to the learned model. Note, that it
would be possible to test for the most probable action to be executed by an agent,
but with the current implementation of the RRL-TG algorithm this requires to

202 T. Croonenborghs et al.

iterate over all possible actions every time this query would be posed. Due to
their complexity such predicates are not used in the experiments here.

Agents having the learn abil property will learn models that estimate the
percentage of the time spent by some agent on some subtask during an episode.
To use this information, tests that partition this probability space can be used
in the Q-function.

4.2 Experimental Results

First, we will present the results obtained using the above described settings
and test environment. In the following subsection, we will discuss the scaling
possibilities of these settings and we conclude this section with some notes on
generalization. The figures show the reward received by all agents averaged over
ten test episodes and five test runs.

Basic settings. As illustrated by Figure 1 the learning rate increases sig-
nificantly when the agents have the learn beh property. It is also clear that
having know abil or learn abil outperforms the setting with just learn beh.
These experiments also show that for this test environment learn abil performs
equally well as having know abil, which means that the abilities of the other
agents are easily learned for this environment setup. It is needless to say that in
general there can be a big difference between these two properties. Consequently,
it is no surprise that having both know abil and learn abil does not further
increase the learning rate.

When learn beh holds, the learned Q-functions make use of the subtask
identification predicates and the expected actions by the experts for that subtask.
Since the learning agent is only interested in distinguishing the optimal actions
from the non-optimal actions, it is easier to learn this directly from positive and
negative examples. Having this knowledge, it is easy for the learning agent to
detect that the Q-values will be higher when executing this action (since he will
progress to the next subtask). Hence, when also know abil or learn abil holds,

Fig. 1. Standard experiments

Multi-agent Relational Reinforcement Learning 203

it becomes easier for the learning agent to know which agent to address for every
subtask.

Scaling. In this section, we will show the results when the environment param-
eters are increased: the number of possible actions, the agents in the system and
the number of subtasks. Since the settings (10), (11) and (12) performed more
or less the same, we only show one in the following graphs. We have omitted the
variances in order not to overload the images too much.

Figure 2(a) shows the results when we increase the number of actions to
80 possible actions (per subtask). This is a more difficult learning problem for
setting (1), although the variance in these 5 runs was rather high, there is no
significant change on the learning rate of settings (9) and (11). This can easily
be explained by the structure of the learned Q-function as described above.

To test the settings with 8 agents (Figure 2(b)), the length of test episodes
was increased to 80 in order to keep the number of available steps per agent
constant. Since each agent still has prior expert knowledge about one subtask,

(a) 80 actions (b) 8 agents

(c) 8 subtasks (d) generalization

Fig. 2. Scaling and generalization experiments

204 T. Croonenborghs et al.

the situation arises where two agents are expert in one subtask. This means that
the learning task for every agent does not really become more difficult since the
percentage of experts per subtask remains the same.

When we increase to number of subtasks to 8 (Figure 2(c)), the learning
problem becomes more difficult, even if every agent is expert for two different
subtasks, so that the results are not influenced by the lack of experts for some
subtask.

Generalization. In the previous experiments, the agents learned a different
model for every agent. In practice, there will often be a distinction between
different kind of agents and the agents can be described by characteristics. The
last experiment will show that it is also possible to learn models that generalize
over several agents. The setup used for this experiment consists of 6 agents that
need to solve 6 subtasks. The main difference with the previous experiments is
that the agents and subtasks are described by their characteristics. The agents
and subtasks all have a color (green, blue or yellow) and a size (small or large)
and every agent is expert for the subtask that has the same characteristics,
but the environment is set up in such a way that only the color of the subtask
determines the optimal action. So, the agents will no longer learn models for
every other agent but they will learn a model for every property an agent can
have. The results of this experiment can be found in Figure 2(d) where it is also
shown that the agents can benefit from this extra generalization.

5 Conclusions

In this paper we introduced the novel idea of cross-fertilization between relational
reinforcement learning and multi-agent systems to solve complex multi-state
dynamic planning tasks. Current state-of-the-art has mainly focused on stateless
(anti) coordination games as for instance Dispersion Games. By using RRL we
try to extend this work to more difficult multi-agent learning problems. More
precisely, we proposed to use a relational representation of the state space in
multi-agent reinforcement learning as this has many proved benefits over the
propositional one, as for instance handling large state spaces, a rich relational
language, modelling of other agents without a computational explosion, and
generalization over new derived knowledge.

We defined different settings in which we believe this research should be care-
fully conducted, according to six different properties. The different settings are
summarized according to their level of complexity in Table 1. Our experiments
clearly show that the learning rates are quite good and promising when using a
relational representation in this kind of problems and that they can be increased
by using the observations over other agents to learn a relational structure be-
tween the agents. Moreover, it is clearly shown that in this relational setting
it becomes possible and beneficial to generalize over new derived knowledge of
other agents.

In our future work we plan to continue along this track and study the addition
of communication and interference between the agents since this is an important

Multi-agent Relational Reinforcement Learning 205

part of every multi-agent system. A thorough theoretical study of the described
properties and settings will also be part of our future research.

Acknowledgements

Tom Croonenborghs is supported by the Flemish Institute for the Promotion of
Science and Technological Research in Industry (IWT). Karl Tuyls is sponsored
by the Interactive Collaborative Information Systems (ICIS) project, supported
by the Dutch Ministry of Economic Affairs, grant nr: BSIK03024. Jan Ramon
is a post-doctoral fellow of the Fund for Scientific Research (FWO) of Flanders.

References

1. M. Bain and C. Sammut. Machine Intelligence Agents, chapter A Framework for
Behavioral Cloning, pages 103–129. Oxford University Press, 1995.

2. C. Claus and C. Boutilier. The dynamics of reinforcement learning in coopera-
tive multi-agent systems. In Proceedings of the 15th International Conference on
Artificial Intelligence, p.746-752, 1998.

3. T. Croonenborghs, J. Ramon, and M. Bruynooghe. Towards informed reinforce-
ment learning. In P. Tadepalli, R. Givan, and K. Driessens, editors, Proceedings
of the ICML2004 Workshop on Relational Reinforcement Learning, pages 21–26,
Banff, Canada, July 2004.

4. K. Driessens. Relational Reinforcement Learning. PhD thesis, Department
of Computer Science, Katholieke Universiteit Leuven, 2004. http://www.cs.
kuleuven.be/publicaties/doctoraten/cw/CW2004 05.abs.html.

5. K. Driessens and S. Dzeroski. Integrating guidance into relational reinforcement
learning. Machine Learning, 57(3):271–304, Dec. 2004.

6. K. Driessens, J. Ramon, and H. Blockeel. Speeding up relational reinforcement
learning through the use of an incremental first order decision tree learner. In
L. De Raedt and P. Flach, editors, Proceedings of the 12th European Conference
on Machine Learning, volume 2167 of Lecture Notes in Artificial Intelligence, pages
97–108. Springer-Verlag, 2001.

7. S. Džeroski, L. De Raedt, and K. Driessens. Relational reinforcement learning.
Machine Learning, 43:7–52, 2001.

8. T. Grenager, R. Powers, and Y. Shoham. Dispersion games: General definitions
and some specific learning results. In Eighteenth National Conference on Artificial
Intelligence, Edmonton, Alberta, Canada, Pages: 398 - 403, 2002.

9. P. Hoen and K. Tuyls. Engineering multi-agent reinforcement learning using evo-
lutionary dynamics. In Proceedings of the 15th European Conference on Machine
Learning, 2004.

10. J. Hu and M. P. Wellman. Experimental results on Q-learning for general-sum
stochastic games. In ICML ’00: Proceedings of the Seventeenth International Con-
ference on Machine Learning, pages 407–414. Morgan Kaufmann Publishers Inc.,
2000.

11. L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey. Jour-
nal of Artificial Intelligence Research, 1996.

206 T. Croonenborghs et al.

12. K. Kersting and L. De Raedt. Logical Markov Decision Programs and the Con-
vergence of Logical TD(λ). In Proceedings of the 14th International Conference on
inductive logic programming. Springer-Verlag, 2004. To appear.

13. M. Littman. Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning, p
157 - 163, 1994.

14. E. F. Morales and C. Sammut. Learning to fly by combining reinforcement learning
with behavioural cloning. In ICML ’04: Proceedings of the Twenty-First Interna-
tional Conference on Machine Learning, page 76, New York, NY, USA, 2004. ACM
Press.

15. A. Nowé, J. Parent, and K. Verbeeck. Social agents playing a periodical policy. In
Proceedings of the 12th European Conference on Machine Learning, p 382 - 393,
Freiburg, 2001.

16. J. Ramon. On the convergence of reinforcement learning using a deci-
sion tree learner. In Proceedings of ICML-2005 Workshop on Rich Rep-
resentation for Reinforcement Learning, Bonn, Germany, 2005. URL =
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41743.

17. S. Sen, S. Airiau, and R. Mukherjee. Towards a Pareto-optimal solution in general-
sum games. In in the Proceedings of the Second Intenational Joint Conference on
Autonomous Agents and Multiagent Systems, (pages 153-160), Melbourne, Aus-
tralia, July 2003, 2003.

18. P. Stone. Layered learning in multi-agent systems. Cambridge, MA: MIT Press,
2000.

19. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The MIT
Press, Cambridge, MA, 1998.

20. P. Tadepalli, R. Givan, and K. Driessens. Relational reinfocement learning: An
overview. In Proceedings of the ICML’04 Workshop on Relational Reinfocement
Learning, 2004.

21. K. Tumer and D. Wolpert. COllective INtelligence and Braess’ Paradox. In Proceed-
ings of the Sixteenth National Conference on Artificial Intelligence, pages 104-109.,
2000.

22. K. Tuyls, T. Croonenborghs, J. Ramon, R. Goetschalckx, and M. Bruynooghe.
Multi-agent relational reinforcement learning. In K. Tuyls, K. Verbeeck, P. J.
’t Hoen, and S. Sen, editors, Proceedings of the First International Workshop on
Learning and Adaptation in Multi Agent Systems, pages 123–132, Utrecht, The
Netherlands, July 25-26 2005.

23. K. Tuyls, K. Verbeeck, and T. Lenaerts. A selection-mutation model for Q-learning
in Multi-Agent Systems. In The second International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems. ACM Press, Melbourne, Australia,
2003.

24. M. van Otterlo. A characterization of sapient agents. In International Conference
Integration of Knowledge Intensive Multi-Agent Systems (KIMAS-03), Boston,
Massachusetts, 2003.

Multi-type ACO for Light Path Protection

Peter Vrancx, Ann Nowé, and Kris Steenhaut

Vrije Universiteit Brussel
{pvrancx, ann.nowe, kris.steenhaut}@vub.ac.be

Abstract. Backup trees (BTs) are a promising approach to network
protection in optical networks. BTs allow us to protect a group of work-
ing paths against single network failures, while reserving only a minimum
amount of network capacity for backup purposes. The process of con-
structing a set of working paths together with a backup tree is computa-
tionally very expensive, however. In this paper we propose a multi-agent
approach based on ant colony optimization (ACO) for solving this prob-
lem. ACO algorithms use a set of relatively simple agents that model the
behavior of real ants. In our algorithm multiple types of ants are used.
Ants of the same type collaborate, but are in competition with the ants
of other types. The idea is to let each type find a path in the network that
is disjoint with that of other types. We also demonstrate a preliminary
version of this algorithm in a series of simple experiments.

1 Introduction

High speed optical transport networks (OTNs) have been gaining importance
during the last years. By using Wavelength Division Multiplexing these net-
works are able to transmit multiple signals simultaneously over the different
wavelengths on a single optical link. In these wavelength-routed networks opti-
cal cross-connects can be used to establish light paths, or end-to-end high speed
optical links. These light paths allow signals to be sent through the network
without having to convert them between optical and electrical signals at each
network node. In this paper we consider the problem of protecting a set of these
lightpaths against single network failures through the use of a backup tree (BT).
We propose a heuristic approach based on ant colony optimization to route these
light paths and establish a backup tree to protect them.

We first explain the concept of backup trees and clearly state the problem at
hand. In the next section we give a short overview of the ant colony optimization
metaheuristic. We then explain how we extended the original metaheuristic to
include multiple competing types of ants and explain our Ant Colony Optimiza-
tion (ACO) algorithm for finding BTs.

2 Backup Trees

In many networks it is crucial that the network can recover quickly from single
(node or link) failures. This is especially the case in OTNs were a single failure

K. Tuyls et al. (Eds.): LAMAS 2005, LNAI 3898, pp. 207–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 P. Vrancx, A. Nowé, and K. Steenhaut

can affect an enormous amount of traffic. One approach used in Multi-Protocol
Label Switched (MPLS) IP networks is to have a backup path (BP) for each
working path (WP). This means that each source node in the network keeps 2
(node) disjoint paths for every destination node it has to address in the network:
a working path and a backup path. As long as the primary working path does
not fail, this path is used to forward all packets to the destination node. If the
working path fails, the node switches to the backup path. Such a pre-configured
scheme has the advantage that it is very fast and minimizes network outages.

In optical networks this approach causes problems because of the use of wave-
length domain multiplexing. Each optical link offers a number of wavelengths or
channels that can be used to transmit data over. When we establish a (light)
path in an OTN we reserve a channel on each link from the source node to
the destination node. The wavelength used by the light path is then no longer
available for other traffic until the light path is removed. As we want our backup
paths to be ready at the instant that a failure occurs, this circuit based approach
means we need a dedicated wavelength on each link used by a backup path. This
leads to a large amount of network capacity being reserved for backup purposes.
Earlier studies [10] have reported savings in network capacity of about 15% by
using backup trees over a dedicated path scheme.

Backup trees [9] are a strategy to minimize the capacity drain while still
protecting the working paths. The idea is to join backup paths that lead to the
same destination node into a single backup tree. In Figure 1 we see an example
of how 2 backup paths are combined into a single tree. Using a tree instead of
a set of distinct paths means that the wavelengths on common links are shared,
thus reducing the amount of capacity reserved.

It should be noted that this scheme only protects against single path failures.
Multiple failures can still cause interruptions as they can disable multiple paths
protected by the same backup tree or both the working path and backup tree.
To make sure that the network can deal with single failures all working paths
and the backup tree protecting them should be mutually node disjoint.

The optimization problem of routing the working paths and protecting them
by a backup tree was stated by Groebbens et al [9, 10] as follows:

Fig. 1. Example of 2 working paths (bold) protected by a backup tree (dashed)

Multi-type ACO for Light Path Protection 209

– Working Paths should fulfill the connection demand,
– a Backup Path should be (node) disjoint with its Working Path,
– Working Paths to the same destination node should be mutually disjoint as

much as possible,
– Backup Paths of disjoint Working Paths to the same destination should

overlap as much as possible,
– Backup Paths of disjoint Working Paths to the same destination that overlap

should form a tree structure (a BT) to that destination (so once they overlap
they should continue to overlap until the destination node is reached),

– The objective is to minimize the cost in terms of wavelengths that are con-
sumed by the WPs and the BTs (note there are several BTs to each desti-
nation node).

In this paper we propose a heuristic approach for routing the WPs and an as-
sociated backup tree. Given a destination and a number of source nodes, our
algorithm will try to route the working paths and the associated backup paths
in a way that satisfies the above constraints. It should be noted that this is not a
dynamic, but a static routing problem. Typically the working paths and backup
trees are routed before the network is set up. The traffic demands for which
we have to find paths and backup trees are assumed to be known in advance.
Because the problem is highly coupled, however, it remains very hard to solve
and a heuristic approach is called for. In [9, 10] an heuristic approach based on
Integer Linear Programming is suggested. Our ultimate goal is to develop an
ACO algorithm for this problem and compare its performance with these “tra-
ditional” algorithms. ACO algorithms have already been proposed for dynamic
routing problems [3, 14] and recently ACO approaches for static (edge) disjoint
path problems were introduced [12, 1].

3 Ant Colony Optimization

Ant Colony Optimization [6, 5] is a relatively new metaheuristic based on the
observation that real ants are capable of finding the shortest path between 2
locations. To do this ants rely on a system of indirect communication through
pheromones. An ant leaves a trail of pheromones while it walks. Other ants
that encounter this trail have a high probability of following it, and reinforcing
it with their own pheromones. When faced with multiple possible paths this
system allows an ant colony to converge on a single path. In addition, since
shorter paths allow faster travel, they accumulate pheromones faster and are
more likely to be selected by the colony.

Based on this mechanism Colorni et al [7, 4] proposed the first algorithm of the
ant colony metaheuristic. The metaheuristic consists of a number of algorithms
that mimic the pheromone communication of real ants in order to solve a wide
range of optimization problems. In ACO algorithms a number of antlike agents
construct solutions by adding (problem specific) solution components to a partial
solution. In our particular case these solution components are network links
that are added to an ant’s path. The decision of which component to add is

210 P. Vrancx, A. Nowé, and K. Steenhaut

made probabilistically, based on an artificial pheromone associated with each
component. The original Ant System [7] assigned following probability to each
possible next component c:

P (c) =
[τ(c)]α[η(c)]β∑

a
[τ(a)]α[η(a)]β

(1)

The probability of adding a solution component depends on the pheromone τ
that is associated with it as well as a problem specific heuristic value η. The
powers α and β are algorithm parameters that determine an ant’s sensitivity
towards both factors. The probability is normalized by taking the sum over all
possible next components a.

When an ant agent completes its solution, it updates the pheromones con-
centrations for each of the solution components it used. The update for each
component depends on the global quality of the solution the agent produced.
Pheromone updates consist of two parts: an evaporation and a pheromone
deposit.

τ(c) ← ρτ(c) + Δτ(c) (2)

Pheromone evaporation is simulated by multiplying the current amount of
pheromones with a factor 0 ≤ ρ ≤ 1. Evaporation is needed to bound the increase
in pheromone concentrations and prevent early stagnation of the algorithm [2, 8].
Pheromone evaporation can be global (all pheromones are evaporated at regular
intervals) or can be performed only when a component receives a pheromone
deposit.

The pheromone deposit adds additional pheromones Δτ(c) to the components
that were used in an ant’s solution. The amount of pheromones deposited de-
pends on the quality of the solutions that the component was used in. Generally
a solution cost function cost(S) is used to calculate the cost of a solution S.
The pheromone deposit obtained from an ant with solution S, is calculated as
1/cost(S) if the component was used in S, and 0 otherwise. Several different
strategies have been proposed [8] for the pheromone deposit ranging from an eli-
tist system that only lets the best ant deposit pheromones to systems in which
each ant is allowed to deposit pheromones.

4 Multi-type ACO

Multi-type ACO extends the original Ant Colony algorithms with multiple types
of competing ants, each using their own type of pheromones. The purpose is to
better adapt the algorithms to problem situations where there is an inherent
amount of competition present. An example of this arises in network routing,
where ants need to collaborate to find good paths, but at the same time ants
from different source nodes are in competition for the use of good links.

In the multi-type system this is modeled by using different types of ants
that each work on their own solution (e.g. a source-destination path in routing

Multi-type ACO for Light Path Protection 211

problems). The ants still collaborate with other ants of the same type, but com-
pete with ants of different types. This collaboration and competition system is
modeled through the pheromones the ants deposit. Ants are still attracted to
pheromone of their own type, but repulsed by pheromones left by other types. A
multi-type system for the Multiple Edge Disjoint Paths problem was previously
reported in [12, 16]. Similar systems were proposed earlier by Varela and Sinclair
[15] for routing and wavelength assignment in optical networks, and by Kawa-
mura et al.[11] with the aim of increasing variation in the ACO search process.

4.1 Our Algorithm

In this section we outline the multi-type algorithm for light path protection.
The algorithm routes a set of working paths together with their backup tree.
Currently we assume sufficient wavelengths are available. In practice we will
also need to consider the problem of wavelength assignment.

Problem decomposition. The algorithm we propose finds a set of WPs and a
backup tree to a single destination. This is a subproblem of the problem stated in
section 2. Typically we will have several destinations each possibly requiring more
than 1 BT, depending on the number of sources sending to the destination. This
means that in order to apply our algorithm we must group together a number
of sources sending to the same destination. During this grouping we must take
in account which nodes can effectively share a BT and the number of feasible
disjoint paths. The degrees of both source and destination nodes together with
the topology of the network play an important role in determining the number of
feasible paths. One possible method for grouping source nodes is proposed in [9].

Given a group of source nodes and a destination node in the network, the
algorithm will look for a set of working paths and a backup tree so that following
constraints are met:

– Working paths should be mutually disjoint.
– Each working path should be protected by a node disjoint backup path.
– Backup paths should form a tree rooted at the destination node, sharing as

many links as possible.
– The total cost of all paths should be minimal.

Solution construction. The algorithm assigns 1 ant type to find each working
path and 1 type to build the backup tree. The WP ants types each start from a
their own source node, the backup ants are distributed equally among the source
nodes. The idea is that the BT ants starting from different source nodes will be
attracted by each other, but repulsed by the ants looking for working paths. This
will lead BT ants to share links with BT ants starting form other source nodes,
while trying to avoid sharing with WP ants. The working path ants are repelled
by both other WP types and the BT type. Their goal is to find a path that is
completely node disjoint with that of all other types.

In order to build a path each ant makes a number of probabilistic choices.
These choices are based on the pheromones left on networks links by the ants.

212 P. Vrancx, A. Nowé, and K. Steenhaut

An ant considers 2 quantities of pheromones: pheromones of its own type and
foreign pheromones which are the total amount of pheromones deposited by all
other ant types. In each node the ant uses Formula 3 to assign a probability to
each outgoing link leading to an unvisited neighbour node. The ant then chooses
the next node according to the assigned probabilities. The formula we use is an
extension of the original Ant System formula that was stated earlier:

P (i, j) =
[τ(i, j)]α[η(i, j)]β [1/φ(j)]γ∑
l

[τ(i, l)]α[η(i, l)]β[1/φ(l)]γ
(3)

The powers α, β and γ are parameters that dictate the ants sensitivity towards
the different factors. τ(i, j) is the pheromone associated with the link (i, l) that
belongs to the ant’s own type. φ(l) represents the total foreign pheromone as-
sociated with the possible next node l. We explain below how this is calculated.
The η heuristic factor is equal to 1

cost(i,j) so that the ant initially has a preference
towards using lower cost links. The probabilities are normalized with the sum of
the probabilities of all possible links (i, l).

It has been shown in earlier papers that repulsion by foreign pheromones can
be used to obtain edge disjoint paths [12]. In [12] the total foreign pheromones
were defined as the sum of all pheromones on the link deposited by other ant
types. In the application studied here we want to obtain node disjoint paths, how-
ever. In order to achieve this we do not simply consider the foreign pheromones
on the link. In the backup tree algorithm we consider all foreign pheromones
associated with the destination node of the link an ant is considering. The for-
eign pheromone associated with a node is taken to be the maximum amount of
foreign pheromones on any link arriving or starting from the node. This amount
indicates how intensively the node is used by other ant types. Nodes that are
heavily used by other ant types will have at least one incoming or outgoing link
that has a high amount of foreign pheromones.

5 Experimental Results

In this section we show some experimental results obtained for the proposed algo-
rithm. We use here a simplified version that operates on a graph. The algorithm
runs for a number of iterations. Each iteration the source nodes simultaneously
launch a fixed number of ants. When all ants have finished their paths, the
pheromones in the graph are updated. The purpose of this section is only to
indicate the possibilities of the proposed approach. Parameter values were based
on settings found to be appropriate for the edge disjoint path problem. These
settings seem to give reasonable results but a more thorough investigation of the
influence of parameter settings is still needed.

The algorithm was run on a graph based on the Qwest North American Tele-
com network [13]. This network has 14 nodes corresponding to major North
American cities. The nodes are connected by 25 links which we assume to be
bidirectional. Each link in the network has an associated cost that is proportional
to the link length.

Multi-type ACO for Light Path Protection 213

Table 1. Finding disjoint paths. Column 1 shows the number of sources considered.
Column 2 shows the percentage of tries in which the algorithm successfully found
disjoint paths. Column 3 shows the average number of shared nodes in non disjoint
paths. Results were taken over 100 algorithm runs. Settings: α = 1, β = 1, γ = 3, ρ =
0.99, 10 ants , 500 iterations.

sources disjoint shared

3 94 1
4 86 1.2
5 96 1

Table 2. Building trees. Column 1 shows the number of sources used. Column 2 shows
the percentage of tries in which a valid tree was produced. Column 3 shows the average
percentage of edges shared in the trees. Results were taken over 100 runs. Settings:
α = 2, β = 1, γ = 0, ρ = 0.9, 5 ants , 500 iterations.

sources valid trees %shared

3 100 72.3102
4 100 59.2742
5 100 56.8921

5.1 Finding Node Disjoint Paths

This experiment was performed to show that the pheromone system we proposed
is indeed capable of discovering node disjoint paths. We chose 3 fixed nodes as
destination nodes. For each node we randomly chose 3, 4 and 5 nodes respectively
as sources. The results are shown in Table 1. We see that the algorithm succeeds
in finding node disjoint paths in most runs. In cases were the algorithm does not
find a valid set of disjoint paths only a very low number of nodes are shared.

5.2 Building Backup Trees

In this experiment we investigated whether ants that are launched from different
source nodes, heading for the same destination node can actually build a tree.
All ants used in this experiment are of the same type; no foreign pheromone or
repulsion is considered in this setting. In Table 2 we show the percentage of runs
in which ants found a valid tree for different numbers of source nodes. A valid
tree is found if the ants stay on the same route to the destination node once
their paths meet. In this experiment the same destination nodes as above were
used with randomly selected source nodes. The results show that the algorithm
always succeeds in building a valid tree.

5.3 The Complete Algorithm

In the last experiment we consider the complete algorithm. The working path
ants try to find disjoint paths, while the backup tree ants try and build a valid
tree that is node disjoint with the working paths. Fixed sources and destinations

214 P. Vrancx, A. Nowé, and K. Steenhaut

Table 3. Working path protection. Column 1 shows the number of sources used. Col-
umn 2 shows the percentage of runs in which a valid disjoint solution was produced.
Column 3 shows the average number of shared edges in the backup tree and column
4 shows the average percentage reduction in cost of the tree by sharing these edges.
Results were taken over 50 algorithm runs. Settings α = 1, β = 1, γ = 4, ρ = 0.96, 10
ants per type, 500 iterations.

sources valid shared edges shared cost

2 100 1 40.0
3 32 3.75 43.2
4 94 4 59.1

were used because the network topology constraints often prevent a valid solution
if the nodes are chosen randomly. In Table 3 we see that the algorithm finds valid
solutions, but results for the case of 3 nodes are much worse than other cases.
This is possibly due to topology constraints that make a disjoint solution harder
to find. In a realistic setting we would need to solve this problem, possibly by
regrouping the source nodes.

6 Conclusion

In this paper we described a Multi-type ACO algorithm for light path protec-
tion in optical networks. Different ant types in this system compete by using
pheromones that repel ants of other types. This mechanism allows them to find
disjoint paths in a network.

Our proposition is to use this system to route working paths and their as-
sociated backup trees in optical networks. To do this we assign an ant type to
each WP and a type to the backup tree. In a number of simplified experiments
we showed that the algorithm is capable of finding WPs and a BT in a graph.
Further research is needed to determine if it is feasible to use the algorithm in a
realistic optical network setting.

References

1. M.J. Blesa and C. Blum. Ant colony optimization for the maximum edge-disjoint
paths problem. In EvoWorkshops 2004, volume 3005 of LNCS, pages 160–169,
2004.

2. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence, From Nat-
ural to Artificial Systems. Santa Fe Institute studies in the sciences of complexity.
Oxford University Press, 1999.

3. Gianni Di Caro, Marco Dorigo, and Luca Maria Gambardella. Antnet: A mobile
agents approach to adaptive routing. Technical report, IRIDIA, Université Libre
de Bruxelles Brussels, Belgium, 1997.

4. A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Trubian.
Heuristics from nature for hard combinatorial optimization problems. International
Transactions in Operational Research, 1996.

Multi-type ACO for Light Path Protection 215

5. Marco Dorigo, Gianni Di Caro, and Luca Maria Gambardella. Ant algorithms for
discrete optimization. Artificial Life 5, pages 137–172, 1999.

6. Marco Dorigo and Gianno Di Caro. The ant colony optimization meta-heuristic.
D.Corne, M.Dorigo and F.Glover (Eds.), New Ideas In Optimization, Maidenhaid,
UK: McGraw-Hill, 1999.

7. Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system: Optimiza-
tion by a colony of cooperating agents. IEE Transactions on Systems, Man, and
Cybernetics, 1996.

8. Marco Dorigo and Thomas Stützle. Ant Colony Optimization. The MIT Press,
2004.

9. Adelbert Groebbens, Lan Tran, Didier Colle, Kris Steenhaut, Sophie De Maess-
chalck, Ann Nowe, Ilse Lievens, Mario Pickavet, and Piet Demeester. Efficient
protection in mplambdas networks using backup trees: Part1- concepts and heuris-
tics. Photonic Network Communications, vol 6(3):p207–222, 2003.

10. Adelbert Groebbens, Lan Tran, Didier Colle, Kris Steenhaut, Sophie De Maess-
chalck, Ann Nowe, Ilse Lievens, Mario Pickavet, and Piet Demeester. Efficient
protection in mplambdas networks using backup trees: Part2- simulations. Pho-
tonic Network Communications, vol 6(3):p191–206, 2003.

11. H. Kawamura, M. Yamamoto, K. Suzuki, and A. Ohuchi. Multiple ant colonies al-
gorithm based on colony level interactions. IEICE Transactions on Fundamentals,
E83-A, no. 2:371–379, 2000.

12. Ann Nowé, Katja Verbeeck, and Peter Vrancx. Multi-type ant colony: the edge-
disjoint paths problem. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella,
F. Mondada, and T. Stützle, editors, Ant Colony Optimization and Swarm Intel-
ligence, 4th International Workshop, ANTS 2004, volume 3172 of LNCS, pages
202–213, Berlin, Germany, 2004. Springer-Verlag.

13. Qwest Nationwide network: http://www.qwest.com/about/inside/network/
nationip.html.

14. D. Subramanian, P. Druschel, and P. Chen. Ants and reinforcement learning: A
case study in routing in dynamic networks. Proceedings of IJCAI-97, International
Joint Conference on Artificial Intelligence, pages 832–838, 1997.

15. G. Navarro Varela and M.C. Sinclair. Ant colony optimisation for virtual-
wavelength-path routing and wavelength allocation. Proceedings of the Congress
on Evolutionary Computation (CEC’99), 1999.

16. P. Vrancx. Multi-type ant system: Introducing competition to ant algorithms.
Master’s thesis, Vrije Universiteit Brussel, 2004.

Author Index

Agogino, Adrian 177
Ahmadi, Mazda 47
Airiau, Stéphane 86

Banerjee, Bikramjit 100
Bazzan, Ana L.C. 115
Bruynooghe, Maurice 192

Croonenborghs, Tom 192
Custódio, Luis 139

Dresner, Kurt 129

Fehler, Manuel 115

Guessoum, Zahia 165

Klügl, Franziska 115

La Poutré, J.A. 1
Luke, Sean 1

M’Hallah, Rym 165
McDonald, Austin 155

Nowé, Ann 71, 207

Oliveira e Sousa, Constança 139

Panait, Liviu 1
Peeters, Maarten 71
Peng, Jing 100

Ramon, Jan 192
Rejeb, Lilia 165

Sen, Sandip 86, 155
Steenhaut, Kris 207
Stone, Peter 47, 129

’t Hoen, Pieter Jan 1
Tumer, Kagan 177
Tuyls, Karl 1, 192

Verbeeck, Katja 71
Vrancx, Peter 207

	Frontmatter
	An Overview of Cooperative and Competitive Multiagent Learning
	Multi-robot Learning for Continuous Area Sweeping
	Learning Automata as a Basis for Multi Agent Reinforcement Learning
	Learning Pareto-optimal Solutions in 2x2 Conflict Games
	Unifying Convergence and No-Regret in Multiagent Learning
	Implicit Coordination in a Network of Social Drivers: The Role of Information in a Commuting Scenario
	Multiagent Traffic Management: Opportunities for Multiagent Learning
	Dealing with Errors in a Cooperative Multi-agent Learning System
	The Success and Failure of Tag-Mediated Evolution of Cooperation
	An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems
	Efficient Reward Functions for Adaptive Multi-rover Systems
	Multi-agent Relational Reinforcement Learning
	Multi-type ACO for Light Path Protection
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

