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Preface

The papers contained in this volume were presented at the Second International
Conference on Algorithmic Aspects in Information and Management (AAIM
2006), held on June 20–22, 2006 at the City University of Hong Kong, Hong
Kong, China.

The series of AAIM conferences provides an annual international forum for
the communication of research advances on algorithms pertinent to information
management and management science. The first conference (AAIM 2005) was
held in Xi’an, China and it is planned for the near future that conferences of the
series will be held in cities in the Pacific Rim.

This volume contains 34 papers selected from a total of 263 papers submitted
from places all over the world: Australia, Canada, China, France, Germany,
India, Israel, Italy, Japan, Mexico, Mongolia, Netherlands, New Zealand, Poland,
Singapore, South Korea, Sweden, Taiwan, Ukraine, UK and USA. In addition to
the selected papers, the volume also contains two papers by the invited speakers,
Allan Borodin and Ming-Yang Kao.

We thank all the people who made this meeting possible: the authors who
submitted papers, the Program Committee members and external reviewers, the
invited speakers, the local organizers, and the sponsors for their effort, advice
and support. We also thank EasyChair (www.easychair.org) for providing the
free conference software.

April 2006 Siu-Wing Cheng
Chung Keung Poon
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Further Reflections on a Theory for Basic
Algorithms

Allan Borodin

Department of Computer Science
University of Toronto
bor@cs.toronto.edu

1 Introduction

Can we optimally solve Max2SAT in (say) time (|F | log |F |) where |F | is the
length of formula F . Of course, since Max2SAT is NP-hard, we can confidently
rely on our strongly held belief that no NP-hard problem can be solved opti-
mally in polynomial time. But obtaining unconditional complexity lower bounds
(even linear or near linear bounds) remains the central challenge of complexity
theory. In the complementary fields of complexity theory and that of algorithm
design and analysis, we ask questions such as “what is the best polynomial time
approximation ratio” that can be achieved for Max2SAT . The best negative re-
sults are derived from the beautiful development of PCP proofs. In terms of ob-
taining better1 approximation algorithms, we appeal to a variety of algorithmic
techniques, including very basic techniques such as greedy algorithms, dynamic
programming (with scaling), divide and conquer, local search and some more
technically involved methods such as LP relaxation and randomized rounding,
semi-definite programming (see [34] and [30] for an elegant presentation of these
randomized methods and the concept of derandomization using conditional ex-
pectations). A more refined question might ask “what is the best approximation
ratio (for a given problem such as Max2SAT ) that can be obtained in (say)
time O(n log n)” where n is the length of the input in some standard represen-
tation of the problem. What algorithmic techniques should we consider if we are
constrained to time O(n log n)?

In order to bring some coherence to the “Design and Analysis of Algorithms”,
most courses and texts will organize much of the content in terms of basic “algo-
rithmic paradigms”, such as greedy algorithms, backtracking, dynamic program-
ming, divide and conquer, local search, primal-dual, IP/LP rounding, etc. (but
not etc. etc.). To this small set of paradigms, we can add randomization and
sometimes very creative ways to utilize and combine these basic algorithmic ap-
proaches. Although we seem to be able to intuitively describe these basic classes
of algorithms, we (in computer science) rarely attempt to precisely define what
we mean by such terms as greedy, dynamic programming, etc. Clearly, a precise
definition is required if we want to defend statements such as “there is no greedy
1 For maximization (respectively, minimization) problems we will use approximation

ratios ≤ 1 (resp. ≥ 1).

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 1–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Borodin

algorithm that provides a good approximation for problem X” or “there is no
efficient dynamic programming algorithm for optimally solving problem Y ”.

In the context of combinatorial search and optimization problems, I will sug-
gest some simple but precise algorithmic models for some basic algorithmic par-
adigms. This is not a new approach, as there were (for example) a number of
important attempts to characterize greedy algorithms (e.g. in terms of matroids
[16] and greedoids [25]), and characterizing dynamic programming and branch
and bound (e.g. in terms of formal languages [20]). In contrast to the elegant
abstraction provided by matroids, we are not attempting to (say) characterize
when the greedy algorithm is optimal for a set system but rather (similar, for
example, to some previous studies for local search [24], “branch and bound al-
gorithms” [12] and IP/LP rounding [4]) we are trying to explore the limitations
of basic (simply defined) methods in terms of approximation ratios (or time
complexity vs approximation/optimality results).

This talk is based on ideas and results from a number of recent papers. In
particular, I will present formulations for greedy and greedy-like algorithms [8],
simple dynamic programming and backtracking [10], and basic primal-dual/local
ratio algorithms [7]. As will be explained, these models are all based on giving
priorities to input items and concern worst case time complexity2 for search and
optimization problems.

2 Priority Algorithms as a Model of Greedy and
Greedy-Like Algorithms

With the exception of naive brute force search, greedy algorithms are arguably
the simplest approach3 for solving combinatorial optimization problems. The re-
lation between the greedy algorithm for set systems and matroids was formalized
by Rado [31] and Edmonds [16] with later extension to greedoids [25]. This early
development did not address the use of greedy algorithms to achieve guaranteed
approximation ratios but rather focused on the question of understanding when
the greedy algorithm was optimal. Recently, k-extendible set systems are defined
in [29] to help address the issue of when the greedy algorithm can provide a good
approximation. In [8], we offered a simple model, called priority algorithms for
greedy algorithms that can be applied in a wide variety of applications not re-
stricted to set systems. We will briefly describe this model and some examples
of well known greedy algorithms that are captured by this model. In the next
section, we will use priority algorithms as the starting point for some other

2 We note that the algorithmic models can be applied to any measure of complexity
(e.g. space complexity, time vs space, average case or smoothed analysis).

3 On a conceptual level, local search algorithms are perhaps equally simple. Obvi-
ously, simplicity is in the eyes of the beholder and ignoring the complexity of op-
timally solving an LP relaxation, one can easily argue that IP/LP relaxations are
also conceptually very simple. But whatever one’s experience and intuition, greedy
algorithms are certainly considered to be conceptually simple.
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“priority based” paradigms, namely “simple dynamic programming”, “simple
backtracking” and “simple primal dual” algorithms.

The priority model (and the extensions that will follow) relies on the assump-
tion that we represent an input instance as a set of “locally defined input items”,
each item represented in some “natural” way. For a scheduling problem (such as
interval or job scheduling to maximize profit, makespan minimization, etc.) the
choice and representation of an “input item” is usually quite natural and not an
issue. Namely, for scheduling problems, an input item is a “job” and each job
is represented by the parameters of that job (e.g., the duration, deadline, value,
etc. of the job). For other applications, such as graph theory there is a choice
of whether to represent the items as edges or as vertices, and having done so
there is a choice of how much information to provide within the representation
of (say) a vertex. For the well known greedy Kruskal and Prim MST algorithms,
the input items are edges, represented by their weights and their end points. For
greedy vertex cover approximation algorithms the input items are the vertices,
each vertex represented by its weight and its list of adjacent vertices4. Similarly,
for the CNF-SAT problem, we can think of the clauses as the items or the propo-
sitional variables as the items. In the latter case, a variable could be represented
by a full description of each clause in which it appears.

Of course there is no one “correct way” to define what is an input item and
exactly how much “local information” should be included in the representation
of an input item. For example, with regard to the interval selection problem, it
seems that the most natural representation would be that each input interval
is an item and is represented by a triple (s, f, v) where s (respectively, t and
v) is the start (respectively, finish and value) of the interval. But one could
also represent the input as an interval graph, or combining these representations
by representing each interval I by the tuple (s, f, v, L) where L is a list of the
intervals that intersect I. But, of course, this representation or the representation
as an interval graph could result in a representation of size Ω(n2) for an input
instance having n intervals. This would seem to defeat the purpose of greedy
algorithms which are utilized because of their efficiency.

After agreeing on the nature of the input representation, we are able to define a
priority algorithm as formulated in [8]. The basic idea is that a priority algorithm
is a one-pass algorithm in which the input is processed one input item at a time.
The order or priority in which input items are “considered” is determined by
a “local ordering”. When an input item is considered, the algorithm makes an
irrevocable decision about this item. The nature of a problem usually determines
the set of allowable decisions (e.g. accept/reject, schedule on particular machine,
etc.). But what is an allowable ordering of the input items? We impose the
priority condition that if inputs Ij and Ik are in the input sets I ′ ⊆ I and Ij

has higher priority than Ik in I then that priority is maintained in the subset
I ′. In particular then, any function f : I → R induces an allowable ordering by
ordering input items in (say) non-decreasing (or non-increasing) order of their f

4 In fact, as discussed in [9], it is usually sufficient to represent a vertex by its list of
adjacent edges.
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value. Any function (including functions of arbitrarily high complexity or even
non computable functions) that takes an input item given by its representation
and produces a real number can use this real value as the priority of an item. The
only other distinction to be made about the ordering is whether the ordering
is fixed initially (before any item is considered) or if the ordering is adaptive in
that the priority of an item can depend on the items previously considered.

In either the fixed or adaptive case, we emphasize that priority algorithms
do not impose any explicit complexity limitations as the ordering and decisions
being made can be of arbitrary complexity. It is only the “syntactic structure”
of a priority algorithm that limits its power. Finally, we view priority algorithms
as being “greedy-like” and reserve the term greedy for those priority algorithms
which make “greedy (irrevocable) decisions” for each input item in the sense
of making a decision as if this is the last input item and the decision must
minimize/maximize the given objective function5.

We claim that the priority model seems to capture almost all algorithms that
we commonly consider as greedy algorithms. The following are examples of fixed
order priority algorithms: Kruskals MST, the maximal matching algorithm for
unweighted vertex cover, optimal scheduling of unit profit intervals (ordering
intervals according to non-decreasing finishing times), Graham’s “online” and
LPT greedy approximation algorithms for minimizing makespan on identical
machines. We also claim that for the exact MaxkSAT problem (where each
clause has exactly k literals), the naive randomized algorithm (independently
set each variable to true/false with probability 1/2) can be derandomized to
be a (online) priority algorithm (where the input items are the propositional
variables represented by the description of the clauses in which they appear).
This is similar to exercise 16.6 in [34] which indicates how to turn the naive ran-
domized algorithm for MaxCut (independently place each vertex in S or S̄ with
probability 1/2) into an (online) greedy algorithm. The following are examples
of adaptive order priority algorithms: the Hn approximation greedy set cover
algorithm, Prim’s MST, Dijkstra’s shortest path algorithm (for digraphs where
all edge costs are non-negative)6, Huffman optimal prefix trees7, various greedy
algorithms for weighted vertex cover (see, for example, [13]). It also can be shown
that the best (to date) polynomial time computable approximation ratio for the
uncapactitated facility location problem is a greedy priority algorithm [27].

5 This “live for today” definition of greediness may not always make sense in settings
where the input items are not “isolated”; for example, in a graph problem, if the
items are the vertices, we may already know that a given vertex v is present since it
is adjacent to a vertex already considered but v itself has not yet been considered.
Our view is that in the context of approximation algorithms the distinction between
greedy priority and (non-greedy) priority algorithms is not an essential distinction
beyond the historical importance of the term. For optimal algorithms, each decision
must be greedy by definition.

6 Here we view Dijkstra’s algorithm as computing the optimal tree from a single source
to all other vertices.

7 Here we consider the input items to be nodes of the prefix tree, with leaf nodes
representing the keys to be coded and internal nodes representing subtrees.
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The priority algorithm model includes online algorithms (where the ordering
of input items can be assumed to be dictated by an adversary) and as in the
case of online algorithms one can derive negative results on approximation ratios
(called the competitive ratio in the online setting). For example, it can be shown
that weighted interval scheduling cannot have a c-approximation priority algo-
rithm for any constant c (see [8]). Other negative results for priority algorithms
can be found in [8, 32, 15, 3, 10, 9].

But have we captured everything that one would tend to call greedy? In [17],
a 4-approximation algorithm called “greedy” is given for the weighted interval
scheduling problem. The algorithm is a one pass algorithm in which rejections are
irrevocable but acceptances are revocable. The condition that must be satisfied
is that after each interval is considered, the partial solution being constructed
is feasible. To incorporate such revocable acceptances, an appropriate extension
of the priority model has been introduced and studied in [21].

3 Using Priorities Beyond Priority Algorithms

Obviously (and by design) the priority algorithm framework is a very limited
algorithmic model. However, a number of other conceptually simple algorithms
can also be viewed in terms of priorities given to input items. We briefly consider
the stack model of [7], and the BT model of [10].

3.1 The Stack Model as a Model of Simple Primal Dual Algorithms

One of the most interesting developments in approximation algorithms has been
the use of primal dual algorithms as pioneered in [1] and [18]. In many cases,
primal dual algorithms can be realized as greedy algorithms (for example, as
in the greedy approximation algorithms [23, 19] for the uncapacitated facility
location problem) and also can be used to analyze known greedy algorithms
(i.e. using the method of dual fitting). Simply stated, in a one pass primal dual
algorithm, dual variable are increased until at least one constraint becomes tight.
When each constraint corresponds to an input variable, then the fact that a
constraint becomes tight can be used to make a decision about the corresponding
variable. If our input representation has enough information to determine that
a constraint has become tight then we can view the primal dual algorithm as an
adaptive priority algorithm. For some applications of the primal dual method, a
second clean up phase is also required (e.g. for covering problems to remove items
not needed for a feasible solution and for packing problems to insure feasibility).
The primal dual framework has been shown to be equivalent to the local ratio
method [5, 6]. The local ratio method is used in [7] to motivate a stack model
which attempts to model primal dual algorithms where the second clean up phase
is a simple “popping” of a stack of items that were pushed onto the stack in the
first phase (i.e. when dual constraints became satisfied). To be more precise, in a
stack algorithm, the priority framework is used to decide on the order in which to
consider input items and an “irrevocable accept/reject decision” is replaced by
a decision to push the item onto the stack or else reject it. Once again, as in the
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one pass priority model, no explicit complexity considerations are introduced.
Some negative results are obtained in [7] for adaptive ordering stack algorithms
(applied to the set cover and Steiner tree problems) and for fixed order stack
algorithms (applied to packing problems).

3.2 The BT Model as a Model of Simple Dynamic Programming
and Simple Backtracking

For the knapsack problem where every item has a value v and a weight w, it is
shown in [10] that no priority algorithm can achieve a constant approximation.
In particular, the natural “cost effective” greedy algorithm which orders items
by non-increasing v/w does not have a constant approximation ratio. However,
either the item having largest value or the cost effective greedy solution will
achieve a 1/2 approximation. We can view this “1/2” approximation as a “more
permissive” priority algorithm where we are allowed to maintain two partial so-
lutions as we consider each item. More generally, we can think of taking each
possible subset of the k largest valued items and then extending each such partial
solution using the greedy most cost effective ordering for the remaining items.
This results in a k − 1/k approximation algorithm (i.e. a PTAS) at a cost of
maintaining 2k partial solutions [33]. In fact, the well known FPTAS algorithms
for knapsack based on dynamic programming and scaling [22, 26, 28] can be im-
plemented so as to achieve a 1 − ε approximation at the cost of maintaining
polynomial (in (1/ε)) many partial solutions. These algorithms for the knap-
sack problem and the well known optimal dynamic programming algorithm for
weighted interval scheduling are called simple dynamic programming algorithms
in [35]. Such simple dynamic programming (DP) algorithms can be nicely formu-
lated as BT algorithms [10]. Simply stated, BT algorithms are “priority based”
algorithms which generate a computation tree of partial solutions by consider-
ing one item at a time and branching on a set of decisions being made for each
item. As in the more basic priority framework, the order in which items are
considered can be determined by a fixed ordering or an adaptive ordering where
the item considered depends on previously seen items but not on the decisions
taken; i.e. the same item is being considered at all nodes on any given level of
the tree. Moreover, in BT algorithms the ordering can be fully adaptive in the
sense that the item being considered at any node of the computation tree can
depend on the path of item (i.e. on the items already seen and the decisions taken
along the path). In this way, BT algorithms also become a model for “simple
backtracking”.

In the BT framework, it is no longer a question of studying the best approx-
imation factor. For now, by allowing an exponential size tree, we can optimally
solve any NP-optimization problem. Rather, we study the tradeoff between the
width of the BT (i.e. the largest number of nodes at any level = the largest
number of partial solutions being maintained) and the approximation ratio, or
we can study the width required for computing optimal solutions (or finding a
solution in a search problem). Or one can study the related measure of “depth
first size” instead of width to better capture the sense of backtracking. Within
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the BT model and for the different types of ordering , a number of results are
derived for interval scheduling, knapsack, Max2SAT, vertex cover, and the 2SAT
and 3SAT search problems [10].

In what sense, do BT algorithms only capture “simple” DP and “simple”
backtracking? The BT model seems to capture those DP algorithms where the
“DP recursion” is based on an induction on the number of items in the (partial)
solution. In contrast, consider a standard DP algorithm for least cost paths in
a graph with negative edges but no negative cycles (or similarly for the longest
path in a DAG). Here the recursion is based on the number of edges in a path.
The standard DP algorithm for edit distance between two strings is based on
the sum of the two prefix lengths. And there are also so-called “non-serial” DP
applications such as the standard optimal algorithms for constructing binary
search trees, and matrix chain products (see, for example, [14]). With regard
to backtracking, the fully adaptive BT model does not allow information to be
shared between different paths on the tree8. Recently, [11] extend the BT model
from computation trees to DAGS to provide a model that can capture (serial)
non-simple DPs such as in the least cost path algorithm.

4 Where Is This All Going?

Keeping in mind Samuel Johnson’s (1709-1784) warning that “All theory is
against freedom of the will; all experience for it”, the reader may well won-
der by now what is the goal of this type of research. An algorithm designer is
not restricted to any small set of algorithmic paradigms no matter how well
they may capture many useful algorithms. Why try to formalize some kinds of
restrictive thinking? But these basic simple kinds of algorithms we have been
discussing are often the first approach that is used by “practitioners” and it is
what we teach in our courses. If for no other than pedagogical reasons, it seems
worthwhile to be able to give some clarity to terms we use in our algorithm
design courses. But, moreover, as we sometimes religiously profess, by carefully
understanding the limitations of basic methods and our inability to derive good
negative results for a particular problem, we may be led to new algorithms. This
has been the case in (for example) online algorithms and we believe similarly
that new simple offline approximation algorithms can and will be derived by a
more careful understanding of these simple algorithmic design methods.

If indeed, the difficulty of providing significant negative results is any indica-
tion, there are great opportunities to derive new algorithms within the simple
algorithmic methods we have been studying. We have found it difficult to pro-
duce significant negative results in many settings even for priority algorithms,
especially with regard to unweighted graph theoretic problems. For the more
expressive BT model, although we do have some strong results concerning the
(width or depth first size) complexity required for optimality, we only have one
approximation lower bound (somewhat matching the FPTAS for the knapsack
8 By definition, fixed order and adaptive order BT algorithms implicitly know what

has happened on each path.
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problem) for polynomial width BT algorithms using an adaptive ordering. We
are also unable to obtain results for the stack model with adaptive ordering when
applied to packing problems. Developing a much more expressive framework that
can model more general dynamic programming, backtracking, and primal dual
algorithms and yet be amenable to analysis is a major challenge. Would such
a framework for dynamic programming include divide and conquer algorithms
as a special case? Can we show that dynamic programming cannot optimally
solve graph matching problems? How much power can be added to these models
by allowing randomization? Only one paper [2] thus far has considered priority
algorithms allowing randomization. And so far, all of our efforts toward defining
precise algorithmic definitions have been restricted priority based algorithms for
search and optimization problems. Can we develop a more inclusive theory?
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Abstract. Self-assembly is the ubiquitous process by which objects au-
tonomously assemble into complexes. This phenomenon is common in na-
ture and yet is poorly understood from mathematical and programming
perspectives. It is believed that self-assembly technology will ultimately
permit the precise fabrication of complex nanostructures. Of particular
interest is DNA self-assembly. Double and triple crossover DNA mole-
cules have been designed that can act as four-sided building blocks for
DNA self-assembly. Experimental work has been done to show the ef-
fectiveness of using these building blocks to assemble DNA crystals and
perform DNA computation. With these building blocks (called tiles) in
mind, researchers have considered the power of the tile self-assembly
model.

The tile assembly model extends the theory of Wang tilings of the
plane by adding a natural mechanism for growth. Informally, the model
consists of a set of four sided Wang tiles whose sides are each associated
with a type of glue. The bonding strength between any two glues is
determined by a glue function. A special tile in the tile set is denoted
as the seed tile. Assembly takes place by starting with the seed tile and
attaching copies of tiles from the tile set one by one to the growing seed
whenever the total strength of attraction from the glue function meets
or exceeds a fixed parameter called the temperature.

Algorithmic DNA self-assembly is both a form of nanotechnology and
a model of DNA computing. As a computational model, algorithmic
DNA self-assembly encodes the input of a computational problem into
DNA patterns and then manipulates these patterns to produce new DNA
patterns that encode the desired output of the computational problem.
As a nanotechnology, algorithmic DNA self-assembly aims to design tiles
with carefully chosen glue types on their four sides. Two tiles are said
to be of different types if their sides have different glue types. Useful tile
types are nontrivial to design but relatively easy to duplicate in large
quantity. A key design challenge for algorithmic DNA self-assembly is
to use only a small number of different tile types to assemble a target
nanostructure.

This talk will survey recent results in algorithmic DNA self-assembly
and discuss future research directions.
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Yiwei Jiang
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Abstract. This paper investigates the online scheduling problem on
parallel and identical machines with a new feature that service requests
from various customers are entitled to many different grade of service
(GoS) levels. Hence each job and machine are labelled with the GoS lev-
els, and each job can be processed by a particular machine only when
the GoS level of the job is not less than that of the machine. The goal is
to minimize the makespan. In this paper, we consider the problem with
two GoS levels. It assumes that the GoS levels of the first k machines
and the last m − k machines are 1 and 2, respectively, and every job
has a GoS level of 1 alternatively or 2. We first prove the lower bound
of the problem under consideration is at least 2. Then we discuss the
performance of algorithm AW presented in [2] for the problem and show
it has a tight bound of 4 − 1/m. Finally, We present an approximation
algorithm with a competitive ratio of 12+4

√
2

7 ≈ 2.522.

Keywords: Online algorithm, Competitive analysis, Parallel machine
scheduling, Grade of Service.

1 Introduction

We study the problem of online scheduling on identical parallel machines with
a new feature that service requests from various customers are entitled to many
different grade of service (GoS) levels. The goal is to minimize the makespan
under the constraint that all requests are satisfied. This problem is first pro-
posed by Hwang et al. [1] and is motivated by the following scenario. In service
industry, the service providers often have special customers, such as, gold, silver,
or platinum members who are more valued than the regular members. Those
special members are usually entitled to premium services, and hence, some kind
of differentiated service policy must be implemented by the service provider. One
simple scheme for providing differentiated service is to label machines and jobs
with pre-specified GoS levels and allow each job to be processed by a particular
machine only when the GoS level of the job is not less than that of the machine.
In effect, the processing capability of the machines labelled with high GoS levels

� Research supported by National Natural Science Foundation of China (10271110)and
Natural Science Foundation of Zhejiang Province (Y605316).

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 11–21, 2006.
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tends to be reserved for the jobs with high GoS levels. In such situation, assign-
ing jobs to the machines becomes a parallel machine scheduling problem with a
special eligibility constraint.

Formally, this problem can be described as follows. We are given a sequence
J = {p1, p2, . . . , pn} of independent jobs with positive processing time, which
must be processed onto m identical machines M1, M2, · · · , Mm. We identify jobs
with their processing time. Each job pj is labelled with the GoS level of g(pj), and
each machine Mi is also labelled with the GoS level of g(Mi). Mi is allowed to
process job pj only if g(Mi) ≤ g(pj). The objective is to minimize the makespan,
i.e., the maximum completion time of all jobs. This problem is called parallel
machine scheduling with GoS eligibility [1].

We consider online algorithms in this paper, hence, we assume that jobs arrive
in online over list, that is to say, jobs arrive one by one and the jobs are required
to be scheduled irrevocably onto machines as soon as they are given, without
any knowledge of the jobs that will arrive later. If we have full information on
the job data before constructing a schedule, it is called offline. Algorithms for
an online/offline problem are called online/offline algorithms.

The performance of an online algorithm is measured by its competitive ratio.
For a job sequence J and an algorithm A, let cA(J ) (or shortly cA) denote
the makespan produced by A and let c∗(J ) (or shortly c∗) denote the optimal
makespan in an off-line version. Then the competitive ratio of A is defined as the
smallest number C such that for any J , cA(J ) ≤ Cc∗(J ). An online problem
has a lower bound ρ if no online deterministic algorithm has a competitive ratio
smaller than ρ. An online algorithm is called optimal if its competitive ratio
matches the lower bound.

Clearly, the offline version of the problem is NP-hard. Note that Lenstra et
al. [3] propose a binary search algorithm based on linear programming with
makespan no more than 2 times the optimum for the most general problem of
unrelated parallel machine scheduling which certainly covers the problem under
consideration. Recently, for the offline version of the problem, Hwang et al. [1]
present an algorithm LG − LPT with makespan no more than 5/4 for m = 2
and 2− 1/(m− 1) for m ≥ 3 times the optimum. For the online version, Azar et
al. [2] present an online algorithm with competitive ratio log2 2m for any m. In
particular, the competitive ratio turns into 2 for m = 2. All the results are for
non-preemptive algorithms.

In most service industry, the service provider always divides their customers
into two parts such as VIP and regular members. So, in this paper, we consider
the online version of the problem on m identical machines with two GoS levels,
that is, g(Mi) is equal to 1 or 2 for all 1 ≤ i ≤ m, and g(pj) is also equal to
1 or 2 for all 1 ≤ j ≤ n. Without loss of generality, we assume that g(Mi) = 1
for i = 1, · · · , k and g(Mi) = 2 for i = k + 1, · · · , m, where 0 ≤ k ≤ m. If k = 0
or k = m, then the problem can be reduced to the classical parallel machine
scheduling with the objective of minimizing the makespan, which has been well
studied in the literature. Therefore, we suppose 1 ≤ k ≤ m − 1 in this paper.
Especially, for k = 1 and m = 2, Jiang et al. in [4] presented an optimal online
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algorithm with a competitive ratio of 5/3. For the off-line version of the problem
under consideration, Zhou et al.[5] present an algorithm with worst-case ratio of
4
3 + (1

2 )r, where r is the desired number of iteration.
For our result, we first prove that the lower bound of the considered problem is

at least 2. Then we consider the upper bound of the problem. We show that the
competitive ratio of algorithm AW proposed in [2] for this problem has a tight
bound of 4− 1/m. Finally, we proposed an online algorithm with a competitive
ratio of 12+4

√
2

7 ≈ 2.522.
The rest of the paper is organized as follows. Section 2 gives some basic

notation and the lower bound of the problem. Section 3 discuss the performance
of the algorithm AW . Section 4 present a new online algorithm. Finally, section
5 contains some remarks.

2 Preliminary

To simplify the presentation, the following notation and definitions are required
in the remainder of the paper.

– Tj The total size of the first j jobs.
– Tji The total size of the jobs with GoS level of i in the first j jobs, i = 1, 2.

Then Tj = Tj1 + Tj2.
– pmax

j The largest job size in the first j jobs.
– Li

j The completion time of machine Mi at time j ≥ 0 (i.e., the moment
right after the j -th job is scheduled) in an online algorithm A, i=1, 2, · · · , m.

– LA
j The current makespan yielded by algorithm A at time j.

– L∗
j The optimal makespan at time j.

It clearly follows that cA = LA
n and c∗ = L∗

n.
– Ui The set of the jobs with the GoS level of i, i = 1, 2.
– Vi The set of the machines with the GoS level of i, i = 1, 2.

Then V1 = {M1, · · · , Mk} and V2 = {Mk+1, · · · , Mm}.
– Sp The starting time of the job p.
– Cp The completion time of the job p.

Let C0
j

.= max{pmax
j ,

Tj

m ,
Tj1
k }, then we have a lower bound of optimal makea-

pan as described as following Theorem.

Theorem 1. The optimal makespan of the problem L∗
j ≥ C0

j at any time j ≥ 1.

Proof. It is clear that the optimal makespan satisfies L∗
j ≥ max{pmax

j ,
Tj

m } at
any time j. By the definition of the problem, all the jobs in set U1 only can
be processed on the machines in V1, which implies that the optimal makespan
L∗

j ≥
Tj1
k according to the definition of Tj1. ��

Theorem 2. The competitive ratio of any non-preemptive online algorithm is
at least 2.
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Proof. We use adversary method to establish the result. Let k = 4 and m = 16,
that is, the numbers of machines in V1 and V2 are 4 and 12, respectively. Assume
that there exists an online algorithm A with competitive ratio C. The first 16
jobs with pi = 1 and pi ∈ U2 arrive, i = 1, · · · , 16. If there are at least two jobs to
be processed on the same machine by algorithm A, then no more job arrives. It
follows that cA = 2 and c∗ = 1 which implies that C ≥ 2. Therefore we assume
that the algorithm schedules these jobs onto different machines. In other words,
every machine exactly has a job. Then 7 jobs with pi = 2 and pi ∈ U2 arrive,
i = 17, · · · , 23.

We claim that these seven jobs must be processed on the different machines.
Otherwise, no more job arrives and there are at least two jobs to be processed on
the same machine, which, together with the assignment of the first 16 jobs, follows
that cA ≥ 5. It is easy to obtain that c∗ = 2, which yields that C ≥ 5/2 > 2. More
detailed assignment of these 7 jobs is distinguished by the following two cases.

Case 1. Suppose that there is at least one job to be processed on the first 4
machines. It yields that there exists at least one machine with the load of 3.
Then the last 4 jobs with pi = 3 and pi ∈ U1 arrive, i = 24, · · · , 27, which must
be processed on the first 4 machines. Thus we can conclude that there is at least
one machine with load of 6. While the optimal makespan is 3 by scheduling the
last 4 jobs on the machines in V1 and the first 23 jobs on the machines in V2. It
follows that C ≥ 6/3 = 2.

Case 2. Suppose that all these seven jobs are processed on the last 12 machines.
That is, there are exactly 7 machines in V2 with load of 3. Then 6 jobs with pi = 3
and pi ∈ U2 arrive, i = 24, · · · , 29. If all these jobs are processed on the last 12
machines, then no more job arrives. Therefore, we can obtain that the makespan
yielded by A is at least 6. However, it is not hard to obtain that the optimal
makespan is 3. It follows that C ≥ 6/3 = 2. Hence, we assume there is at least
one job pi for some 24 ≤ i ≤ 29 to be processed on the first 4 machines. It means
that there is at least one of the first 4 machines has a load of 1 + 3 = 4. Then
the last 4 jobs with pi = 4 and pi ∈ U1 arrive, i = 30, · · · , 33. It is clear that
the last 4 jobs must be processed on the first 4 machines, which implies that
the makespan yielded by A is at least 4 + 4 = 8. While we can obtain that the
optimal makespan is 4 by scheduling the last 4 jobs on the machines in V1 and
the rest jobs on the machines in V2.

In summary, we have shown that the competitive ratio of any online algorithm
is at least 2. ��

3 Algorithm AW

In this section, we show that the competitive ratio of algorithm AW proposed
in [2] for this problem has a tight bound of 4− 1/m. The main idea of the algo-
rithm AW is to assign the arriving job to the machine with currently minimum
load. Therefore, for the problem under consideration, the algorithm AW can be
described as follows:
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Algorithm AW :

For any 1 ≤ j ≤ n, if pj ∈ U2, schedule pj onto the machine with the minimum
load at time j − 1 in all m machines (i.e., V1

⋃
V2). Otherwise, if pj ∈ U1,

schedule pj onto the machine with the minimum load at time j−1 in the first
k machines (i.e., V1).

Let job pl be the job which determined the makespan produced by AW . It
yields that cAW = Spl

+ pl.

Lemma 1. If pl is assigned to the machine with minimum load in m machines
at time l − 1, then we have Cpl

= Spl
+ pl ≤ (2− 1

m )c∗.

Proof. It is clear that the minimum load is Spl
in m machines at time l − 1.

Then we conclude that Spl
≤ Tn−pl

m ≤ Tn−pl

m , which together with Theorem 1,
leads that Cpl

= Spl
+ pl ≤ Tn−pl

m + pl = Tn

m + (1− 1
m )pl ≤ (2− 1

m )c∗. ��

Theorem 3. The algorithm AW has a competitive ratio of 4− 1/m.

Proof. Two cases are considered with respect to the GoS level of pl.

Case 1. g(pl) = 2, i.e., pl ∈ U2. By the algorithm rule, pl is assigned to the
machine with minimum load at time l− 1 in V1

⋃
V2. It is easy to obtain cAW =

Spl
+ pl ≤ (2− 1

m )c∗ from Lemma 1.

Case 2. g(pj) = 1. i.e., pl ∈ U1. It is clear that, from step 3 of the algorithm, pl

is assigned to the machine with minimum load in V1 at time l−1. If no jobs from
U2 to be processed on machines in V1, that is, all jobs processed on machines in
V1 are from U1, then by Theorem 1 we have

Cpl
= Spl

+ pl ≤
Tl1 − pl

k
+ pl =

Tn1

k
+ (1− 1

k
)pl ≤ (2− 1

m
)c∗.

Therefore, we assume there exist some jobs from U2 to be processed on machines
in V1 and let q be the job with maximum completion time in those jobs. It means
that all jobs processed on the machines in V1 after the completion time of q (i.e.,
Cq) are from U1. From Lemma 1, we can obtain that Cq = Sq +q ≤ (2−1/m)c∗.
If Spl

≤ Cq, then we obtain that cAW = Spl
+ pl ≤ Cq + pmax

n ≤ (3 − 1/m)c∗.
Suppose Spl

> Cq. By the definitions of q and Tj1, we conclude that Tn1 ≥ Tl1 ≥
pl + k(Spl

− Cq). It follows that Spl
< Tn1

k + Cq. According to Theorem 1, we
obtain that

cAW = Spl
+ pl ≤ Tn1

k + Cq + pmax
n ≤ c∗ + (2 − 1

m )c∗ + c∗ = (4− 1
m )c∗. ��

We next show the bound is tight. Let ε be a sufficiently small number and
m = 2k2 + k. Consider an instance in arriving order of A1, A2, A3, A4, A5, A6, pn

as follows:

– A1 A set of jobs in U2 with total size of m. The size of every job is ε.
– A2 A set of k jobs in U1. The size of every job is ε.
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– A3 A set of m− k jobs in U2. The size of every job is 2ε.
– A4 A set of k jobs in U2. The size of every job is 1.
– A5 A set of k − 1 jobs in U1. The size of every job is 1.
– A6 A set of k jobs in U1. The size of every job is 1/k
– The last job pn = 1 in U1.

Clearly, we have U1 = A2
⋃

A5
⋃

A6
⋃
{pn} and U2 = A1

⋃
A3
⋃

A4.
According to the rule of the algorithm AW , the assignment of the instance

can be shown as Figure 1, from which we can obtain that the makespan of AW
is 4 + ε.

Fig. 1. The schedule of AW Fig. 2. A feasible schedule

It is not difficult to obtain a feasible schedule as shown as Figure 2. It schedules
all jobs in Ui onto the machines in Vi, i = 1, 2. For jobs in U1, every machine in
V1 exactly contains one of the jobs in A2, one of the jobs in A5

⋃
{pn} and one

of the jobs in A6. It follows that the load of each machine is ε + 1 + 1
k . For jobs

in U2, we assign all m − k jobs in A3 onto m − k machines in V2 exactly, and
all k jobs in A4 to different machines in V2. Finally, we can assign those small
jobs in A1 such that the load of each machine in V2 is identical so far as ε is
sufficiently small. Since the total size of all jobs in U2 is m + k + 2(m− k)ε, we
have the load of each machine in V2 is 2ε + m+k

m−k = 2ε + 2k2+2k
2k2 = 2ε + 1 + 1

k . It
is clear that c∗ ≤ max{ε + 1 + 1

k , 2ε + 1 + 1
k} = 2ε + 1 + 1

k .
Hence,

cAW

c∗
≥ 4 + ε

2ε + 1 + 1
k

→ 4. (ε→ 0, k → +∞)

4 A New Algorithm HA

In this section, we present a new online algorithm with a competitive ratio
of 2 + α, where α = 4

√
2−2
7 . We partition our algorithm into two parts with

respect to the ratio of m and k. The first part considers the cases m
k ≤ 1 + α

or m
k ≥ 1 + 1

α . The second part of the algorithm is presented for the case
1 + α < m

k < 1 + 1
α . The detailed can described as follows:
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Algorithm HA
Part 1

1. If m
k ≤ 1 + α, assign the arriving job to the machine with the current

minimum load in V1.
2. If m

k ≥ 1 + 1
α and the arriving job belongs to U1, assign it to the machine

with the current minimum load in V1.
3. If m

k ≥ 1 + 1
α and the arriving job belongs to U2, assign it to the machine

with the current minimum load in V2.

Part 2 (For the case 1 + α < m
k < 1 + 1

α )

1. Let j = 1.
2. If pj ∈ U1, go to 3. Otherwise, go to 4.
3. Schedule pj onto the machine with the minimum load at time j − 1 in V1,

go to 5.
4. Let Lt

j−1 = min
k+1≤i≤m

Li
j−1. If pj + Lt

j−1 ≤ (2 + α)C0
j , then schedule pj onto

the machine Mt, go to 5. Otherwise, go back to 3.
5. Let j = j + 1. If no new job arrives, stop. Otherwise, go back to 2.

Remark 1. It is clear that Part 1 of the above algorithm is based on a greedy
idea in some sense. If m

k ≤ 1 + α, all jobs are schedule on the first k machines
(i.e., V1) and the machines in V2 are not used . On the other hand, if m

k ≥ 1+ 1
α ,

the algorithm assigns the jobs in U1 and U2 to the machines in V1 and V2,
respectively.

Remark 2. For Part 2, the main idea is that we assign the jobs in U2 to the
machines in V2 as many as possible, in other wards, we would not assign them
to the machines in V1 unless the sum of the current job size and the minimum
load in V2 is too large. And the jobs in V1 just are assigned to the machine in V1.

Let pl be the job which determined the makespan. Then cHA = pl + Spl
.

Theorem 4. Part 1 of algorithm HA achieves a competitive ratio of 2+α− 1
m .

Proof. By the algorithm rule, if m
k ≤ 1 + α, all jobs are scheduled onto the first

k machines. It is obvious that Spl
≤ Tn−pl

k due to the assignment of pl. It follows
that

cHA ≤ pl +
Tn − pl

k
≤ pl +

(1 + α)(Tn − pl)
m

≤ (1− 1
m

)pmax
n + (1 + α)

Tn

m
≤ (2 + α− 1

m
)c∗.

The last inequality above holds because of Theorem 1.
If m

k ≥ 1 + 1
α , we conclude that all jobs in U1 are scheduled on the machines

in V1 and jobs in U2 on the machines in V2. Suppose pl ∈ U1. Then by Theorem
1, cHA = pl + Sp ≤ pl + Tn1−pl

k = (1 − 1
k )pmax

n + Tn1
k ≤ (2 − 1

k )c∗. On the other
hand, if pl ∈ U2, it is easy to obtain that
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cHA = pl + Sp ≤ pl +
Tn2 − pl

m− k

≤ pl +
Tn − pl

m− m
1+1/α

≤ (1− 1 + α

m
)pl + (1 + α)

Tn

m

< (1− 1
m

)pmax
n + (1 + α)c∗ ≤ (2 + α− 1

m
)c∗. ��

Note that, if α = 1, Part 1 can be regarded as an independent and complete
algorithm with a competitive ratio of 3 − 1/m. Clearly, it is better than the
algorithm AW though both them seem like greedy algorithms. The difference
between them is that the algorithm AW only considers the current minimum
load (which assigns the current job to a machine with the currently minimum
load) while Part 1 considers both the currently minimum load and the ratio of
m and k.

In the remainder of this section, we focus on discussing the performance of
Part 2 of HA. We begin with the following lemma.

Lemma 2. If pl ∈ U2, we have cHA ≤ (2 + α)c∗.

Proof. Note that the algorithm schedules all jobs in U2 by step 3 or alternatively
by step 4. If pl is scheduled by step 4, that is, it is scheduled onto machine Mt with
minimum load, then we obtain that cHA = Spl

+ pl = Lt
l−1 + pl ≤ (2 + α)C0

j ≤
(2 + α)c∗. If pl is scheduled by step 3, then we conclude that

pl + Lt
l−1 > (2 + α)C0

j . (1)

Then we claim that pl is scheduled onto the machine with minimum load (de-
noted by Mt′) in V1

⋃
V2 at time l−1. In fact, by the rule of step 3, it is obvious

that the load of the machine Mt′ is minimum in V1 at time l − 1. Clearly, the
load of machine Mt is minimum in V2 by the definition of Mt. Then we only
need to show that Lt′

l−1 ≤ Lt
l−1. Otherwise, suppose Lt′

l−1 > Lt
l−1, that is, Mt

is the machine with minimum load in V1
⋃

V2. Therefore, by Lemma 1, we can
obtain that Spl

+pl = Lt
l−1 +pl ≤ (2−1/m)C0

j , which contradicts the inequality
(1). So Mt′ is the machine with minimum load in V1

⋃
V2, which, together with

Lemma 1, yields that

cHA = Spl
+pl = Lt′

l−1 +pl ≤ (2− 1
m

)c∗ < (2+α)c∗. ��

We next show that the desired result still holds when the job pl ∈ U1.

Lemma 3. If pl ∈ U1 and there are no jobs in U2 to be processed on the ma-
chines in V1, then we have cHA ≤ (2 + α)c∗.

Proof. By the assumption, we can conclude that all jobs in Ui are scheduled on
the machines in Vi, i = 1, 2. As pl ∈ U1 and Theorem 1, we obtain that

cHA = Spl
+ pl ≤

Tl1 − pl

k
+ pl ≤

Tn1

k
+ (1− 1

k
)pl ≤ (2− 1

k
)c∗ < (2 + α)c∗. ��
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Now we are ready to consider the case that there are many jobs from U2 to be
processed on the machines in V1. And let job px be the last completion one in
those jobs. That is to say, after the time Cpx , all jobs processed on machines in
V1 are from U1. We first give a lemma on the completion time of px.

Lemma 4. The following inequalities hold:
(i) Li

x−1 > (1 + α)C0
x, i = k + 1, · · · , m;

(ii) Cpx ≤ (2 + α− m
k α)C0

x .

Proof. (i) As px belongs to U2 and is scheduled on the machine in V1 by step 3,
we can obtain that px +Lt

x−1 > (2+α)C0
x. It yields that Li

x−1 > (2+α)C0
x− px

for every i = k+1, · · · , m. The result can obtained directly from px ≤ pmax
x ≤ C0

x.
(ii) It is clear that Spx ≥ 0. Since px is scheduled onto the machine with

minimum load in V1, which, together with (i) and Tx ≤ mC0
x from Theorem 1,

leads

Spx ≤
Tx − px −

∑m
i=k+1 Li

x−1

k

≤ Tx − px − (m− k)(1 + α)C0
x

k

≤ mC0
x − (m− k)(1 + α)C0

x

k
= (1 + α− m

k
α)C0

x.

Note that m/k < 1 + 1/α, which implies that (1 + α − m
k α)C0

x > 0. It follows
that 0 ≤ Spx < (1 + α− m

k α)C0
x. Hence, Cpx = Spx + px ≤ (2 + α− m

k α)C0
x with

px ≤ C0
x. ��

Parallel to Lemma 3, we have the following lemma:

Lemma 5. If pl ∈ U1 and there are some jobs in U2 to be processed on the
machines in V1, then we have cHA ≤ (2 + α)c∗.

Proof. Let � = Spl
− Cpx , then we have cHA = pl + Spl

= pl +� + Cpx . Two
cases are considered according to the value of �.

Case 1. � > 0. By the definition of Cpx and Spl
, we conclude that all machines

in V1 is busy between time Cpx and Spl
and all jobs processed on these machine

in this time interval are from U1. It implies that Tn1 ≥ k�, which follows that
c∗ ≥ Tn1

k ≥ � due to Theorem 1. If Cpx ≤ α�, then we have

cHA = pl +�+ Cpx ≤ pmax
n +�+ α� ≤ (2 + α)c∗.

Now we turn to consider the case that Cpx > α�. Since cHA = pl +�+Cpx ≤
c∗ +�+ Cpx , we only need to show that �+ Cpx ≤ (1 + α)c∗, i.e.,

�+ Cpx − (1 + α)c∗ ≤ 0. (2)

By the assignment of pl, it is clear that Li
l−1 ≥ Spl

= � + Cpx for any
1 ≤ i ≤ k. Together with Lemma 4(i), we have

Tn ≥
k∑

i=1

Li
x−1 +

m∑
i=k+1

Li
x−1 ≥ k(�+ Cpx) + (m− k)(1 + α)C0

x,
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which follows that c∗ ≥ Tn

m ≥
k(�+Cpx )+(m−k)(1+α)C0

x

m by Theorem 1. Hence the
left member of the inequality (2)

≤ �+ Cpx − (1 + α)
k(�+ Cpx) + (m− k)(1 + α)C0

x

m

=
(m− (1 + α)k)(�+ Cpx)− (m− k)(1 + α)2C0

x

m
. (3)

Recall that m/k > 1 + α and Cpx > α�, which, together with Lemma 4(ii),
leads that

(3) ≤
(m− (1 + α)k)( 1

αCpx + Cpx)− (m− k)(1 + α)2C0
x

m

=
(m− (1 + α)k)Cpx − (m− k)(1 + α)αC0

x

mα
(1 + α)

≤
(m− (1 + α)k)(2 + α− m

k α)C0
x − (m− k)(1 + α)αC0

x

mα
(1 + α)

= [−α(
m

k
)2 + (2 + α)

m

k
− 2(1 + α)]

(1 + α)C0
x

m
k α

.

Hence, to obtain (2), we only need to show that −α(m
k )2 + (2 + α)m

k − 2(1 +
α) ≤ 0, which holds because that (2 + α)2 − 4α · 2(1 + α) = 0 with α = 4

√
2−2
7 .

Case 2.� ≤ 0, i.e., Spl
≤ Cpx . If Spl

≤ Lt
x−1, since pl is assigned to the machine

with minimum load in V1, we can obtain that Spl
≤ (Tn− pl)/m. It follows that

cHA = pl + Spl
≤ Tn/m + (1 − /m)pl ≤ (2 − 1/m)c∗ < (2 + α)c∗. Now we

assume that Spl
> Lt

x−1. It yields that the load of each machine is at least Lt
x−1,

which, together with Lemma 4(i), deduces that c∗ ≥ Lt
x−1 ≥ (1 + α)C0

x. By
the assumption and Lemma 4(ii), we obtain that cHA = pl + Spl

≤ pl + Cpx ≤
c∗ + (2 + α− m

k α)C0
x . Note that m

k > 1 + α, hence,

cHA

c∗
≤

c∗ + (2 + α− m
k α)C0

x

c∗

≤ 1 +
2 + α− m

k α

(1 + α)
< 1 +

2 + α− (1 + α)α
(1 + α)

< 2 + α. ��

Now we give the main Theorem of this section:

Theorem 5. Part 2 of the algorithm HA has a competitive ratio of 2+α. Thus,
we have cHA ≤ (2 + α)c∗ for all k and m.

Proof. It is a direct result due to Lemmas 2, 3 and 5. Together with Theorem 4,
we have cHA ≤ (2 + α)c∗ for all k and m. ��

5 Conclusion and Open Problems

In this paper, we studied the online scheduling problem on parallel machines
with two GoS levels. We proved the lower bound of the problem is at least 2.
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The upper bound was also considered. We first analyzed the performance of
algorithm AW presented in [2]. Then we presented an online algorithm HA
which greatly improved the bound of AW .

The results of this paper suggest a number of problems deserving further
study. An important and natural open question is to design an optimal online
algorithm. As this paper only consider the case of two GoS levels, it can be very
interesting to extend the result to general m GoS levels case. In addition, it is
also worthy studying the preemptive version of the problem as presented in [4].
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Abstract. In online dial-a-ride problem with time-windows, requests for
rides consist of two points in a metric space, a source and a destination.
One server with some finite capacity is required to transports a specified
amount of goods for requests from the sources to the destinations. Calls
for rides come in while the server is travelling. Each request also specifies
a deadline. If a request is not be served by its deadline, it will be called off.
The server travels at unit speed in the metric space and the goal is to plan
the motion of the server in an online way so that the maximum number
of requests (or the maximum quantity of goods) is met by the deadlines
of the requests. Usually it is assumed that the server knows the complete
information on the ride when the requests are presented. We study this
problem under a restricted information model. At the release time of one
request, only the information on the source is presented. The server does
not have the information on the destination until it reaches the source of
the request. This models, e.g. the taxi problem, or elevator problem. We
study the problem in the uniform metric space and K-constrained metric
space. We perform competitive analysis of two deterministic strategies in
the two types of metric spaces. The competitive ratios of the strategies
are obtained. We also prove a lower bound on the competitive ratio of
any deterministic algorithm of Z for the uniform metric space and of
KZ for the K-constrained metric space, where Z denotes the capacity
of the server and K denotes the diameter of the metric space.

1 Introduction

The class of Dial-A-Ride Problem (DARP) has been studied extensively in the
area of operations research, management science, and combinatorial optimization
because of its usefulness to the logistics and transportation industry. In DARP,
there are servers that travel in some metric space to serve requests for rides. Each
ride is characterized by two points in the metric space, a source, the starting point
of the ride, and a destination, the ending point of the ride. The problem is to
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design routes for the servers through the metric space, such that all requested
rides are made and some optimality criterion is met. To meet real life needs, many
new side constraints have been added to the problem. One useful extension is the
Dial-A-Ride Problem with Time-Windows (DARPTW). Each request specifies
a deadline. If a request is not be served by its deadline, it will be called off. The
goal is to plan the motion of servers so that the maximum number of requests
is met by their deadlines. In the natural online setting, requests for rides are
presented over time while the servers are enroute serving other rides. And the
servers do not know any information on the future requests at any time until
they are presented. In other words, the time flows while decisions are made and
executed in the online setting of the problem.

Traditionally, when a certain request is presented, all the information on the
request becomes known. That is, both the source and the destination of the ride
are specified completely upon presentation at the release time. However, in many
practical situations complete specification of the rides is not realistic. Often only
the source of the ride is presented at the release time of the request. The server
is not able to get the information on the destination of the ride until it arrives
at the source. This models, e.g. the taxi problem, or elevator problem. So this
model is called the restricted information model.

In this paper we study the Online Dial-A-Ride Problem with Time-Windows
under the Restricted Information Model (ODARPTWRIM). There is a server
which has some finite capacity, travelling in an unit speed in a metric space to
serve a set of requests for ride. Calls for rides come in with some amount of goods
while the server is travelling. Each request specifies a deadline. If the server does
not arrive at the source of the request by its deadline, the request will be called
off. At the release time of one request, only the information on the source is
presented. The server does not have the information on the destination until it
reaches the source of the request. The goal is to plan the motion of the server
in an online way so that the maximum quantity of goods is transported by the
deadlines of the requests.

The online DARP and in general vehicle routing and scheduling problems
have been widely studied for more than three decades (see [1] for a survey on
the subject). Most previous researches on online routing problems focused on the
objectives of minimizing the makespan [2, 3, 4], the weighted sum of completion
times [2, 5], and the maximum/average flow time [6, 1]. In the paper [7, 8, 9],
results on the online k-taxi scheduling problem have been presented, in which a
request consists of two points (a source and a destination) on a graph or in a
metric space. Subsequently, a similar problem, online k-truck scheduling problem
has been studied in [10]. Both of them (online k-taxi/truck scheduling) assumed
that k servers (taxies or trucks) are all free when a new service request occurs,
and the goal is to minimize the total distance travelled by servers. [2] studied the
online DARP in which calls for rides come in while the server is travelling. The
authors also considered two different cases, where the server has infinite capacity
and where the server has finite capacity. The first results of the online DARP
under a restricted information model have been presented in [11] in which the
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objective function is to minimize the time by which the server has executed all
the rides and is back in the origin. All of these previous work assumed that the
requests could wait for any length of time until the server completed them. That
is, they did not consider the constraints of the time window.

Most previous works on the DARP with time window constraints are the off-
line point of view. The input is known completely beforehand. For some related
works, please refer to [12, 13]. In reference [14], we presented the first results on
the online DARP with time windows. We study the problem again in this paper
under the restricted information model .

We perform competitive analysis of deterministic algorithm for ODARPTW-
RIM in two types of metric space, respectively. In the first metric space, uniform
metric space, we present an online FCFS (First-Come-First-Serve) algorithm.
We prove that FCFS is 2Z-competitive, where Z denotes the server’s capacity.
And in the second metric space, K-constrained metric space, another online
algorithm, Greedy Algorithm (abbr.GR), is shown which has a 2KZ-competitive
ratio, where K is the diameter of the metric space. We also prove a lower bound
on the competitive ratio of any deterministic algorithm of Z for the uniform
metric space and of KZ for the K-constrained metric space.

The rest of this paper is organized as follows. In section 2 we give some defini-
tions and notations. Section 3 contains two online algorithms and the discussions
of their performances. In section 4 we present lower bounds for the problem in
two types of metric space. Section 5 concludes this paper.

2 Definitions and Notations

Let M = (X, d) be a metric space with n points which is induced by an undi-
rected unweighted graph G = (V, E) with V = X , i.e., for each pair of points
from the metric space M we have d(x, y) that equals the shortest path length
in G between vertices x and y. We consider two types of metric space in this
paper, the uniform metric space and the K-constrained metric space. In the uni-
form metric space, the distance between any two points is unit length. It can be
considered as a special metric space that is induced by a complete graph with
unit edge weights. And in the K-constrained metric space, dmax

dmin
= K, where

dmax = max d(x, y), dmin = min d(x, y), x �= y, x, y ∈ V . Without loss of general-
ity, we assume that dmin equals 1 and dmax is K long in the K-constrained metric
space. We call K the diameter of the metric space which can be considered the
maximum time required to travel between the two farthest points in the metric
space. Note that in the uniform metric space, K = 1. An instance of the basic
ODARPTW in the metric space M consists of a sequence R = (r1, r2, · · · , rm)
of requests. Each request is a quadruple ri = (ti, zi, ai, bi) ∈ R ×N × X × X
with the following meaning: ti ∈ R is the time that request ri is released and
zi ∈ N is the quantity of goods that needs to be transported by the server;
ai ∈ X and bi ∈ X are the source and destination, respectively, between which
the goods corresponding to request ri is to be transported. The capacity of the
server is finite, denoted by constant Z. That is, the upper bound of the goods
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loaded by the server is Z units. We assume the goods of the requests is partible.
If a given request has overmany goods in the sense of the current capacity of
the server, it can be divided into several partitions. The server is allowed to
load some partitions of them. And the rest of them can be considered as the
goods of new requests. In this paper we assume that zi ≤ Z, ∀i ∈ N. It is also
assumed that the sequence R = (r1, r2, · · · , rm) of requests is given in order of
non-decreasing release times, that is, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm. A request is said
to be accepted request if the corresponding object is picked up by the server at
source, and a request is said to be completed request if the corresponding object
is transported to the destination. We do not allow preemption: it is not allowed
to drop an accepted request at any other place than its destination. This means,
once a request is accepted, it will not be called off.

Definition 1. [11] Under the restricted information model only the source ai

of ri is revealed at time ti. The destination of the ride becomes known only at
picking up the ride in the source.

In this paper, we consider the following assumptions for ODARPTWRIM as we
did in [14]: a) The speed of the server is constant 1. This means that, the time it
takes to travel from one point to another is exactly the distance between the two
points; b) The window sizes for all requests are uniform, denoted by T . To make
sure that the problem is feasible, we assume that T ≥ dmin in the K-constrained
metric space and T ≥ 1 in the uniform metric space.

We evaluate the quality of online algorithms by competitive analysis [1-3],
which has become a standard yardstick to measure the performance. In compet-
itive analysis, the performance of an online algorithm is compared to the per-
formance of the optimal off-line algorithm, which knows about all future jobs.
An algorithm A for ODARPTWRIM is called α-competitive if for any instance
R the number of goods completed (transported) by A is at least 1/α times the
number of goods completed by an optimal off-line algorithm OPT.

3 Algorithms for Two Types of Metric Space

In this sections we firstly study the problem in a general metric space. We
prove that there is no competitive deterministic online algorithm for a non-
constrained metric space if the time windows T > 0 is arbitrary. Then we study
the problem in two types of metric space, the uniform metric space and the K-
constrained metric space, respectively. We propose the FCFS algorithm for the
uniform metric space and the Greedy algorithm for the K-constrained metric
space. The performance guarantees of the two algorithms for the problem are
shown in this section.

Proposition 1. If the time windows T > 0 is arbitrary, there is a metric space
in which no deterministic online algorithm can obtain a constant competitive
ratio for ODARPTWRIM.
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Proof. Consider a metric space which contains a line. At time 0, two request
with one unit of goods is presented on the line. One request requires the server
to load the goods at position T and deliver it to position 2T , where T is the
time window of requests. And the other requires the server to transport the
goods from position −T to position −2T . Note that the requests will be called
off at time T if the server does not arrive at the sources by time T . If the online
server does not immediately leave for the requests, the sequence stops and the
server can not serve any one of the requests. Otherwise, we assume without loss
of generality that at time T the online server reaches position −T .The off-line
server arrives at position T at time T and delivers the goods to the destination
2T at time 2T . Then, from time t = 2T onwards a request is presented with
the source position t and the destination position t + T at each time (2 + i)T
(i = 0, 1, 2, . . .). The off-line server can serve all the requests whereas the online
server is not able to complete any of them. ��

3.1 FCFS Algorithm in the Uniform Metric Space

The FCFS algorithm works as follows. The online server always goes to the source
of the request firstly that has been presented for the longest time among all yet
unserved requests, getting the information on the destination and picking up the
goods, then delivering them to the destination. If there are not unserved requests
that can be accepted by their deadlines after completing a certain request, the
server remains at its current point and waits for new requests to occur.

Theorem 1. In the uniform metric space, FCFS algorithm is 2Z-competitive
for ODARPTWRIM, where Z is the capacity of the server.

Proof. Given any input sequence R, it can always be divided into such m max-
imal sub-sequences, R = (R1, R2, . . . , Rm) that in each sub-sequence Ri =
(ri,1, ri,2, . . .)(1 ≤ i ≤ m), the online server works continuously i.e. it serves
constantly some requests in Ri one after another.

We will first analyze an arbitrary sub-sequence Ri and then extend the result
to the whole sequence R. We will show that in each sub-sequence OPT can not
transport (or pick up) more than 2Z times as many goods as FCFS does which
is followed by the theorem.

Denote by t1 the released time of the first request ri,1 in Ri. Let ri,l ∈ Ri

and ri,l′ ∈ Ri be the last requests that FCFS and OPT served, respectively. Let
tFCFS be the time when FCFS reaches the ride destination of ri,l, and tOPT

denote the time when OPT reaches the ride destination of ri,l′ . We define t∗

which makes sure that (tOPT − t∗)/2 is an integral and t1 ≤ t∗ ≤ t1 + 2. There
are two possible cases for tFCFS and tOPT .

Case 1. FCFS completes ri,l no later than time tOPT , i.e., tFCFS ≤ tOPT . It
can be proved that tOPT − tFCFS < 2. Since the sub-sequence Ri is maximal
and the server works continuously in Ri, no new requests which belongs to Ri

can be presented at time t ≥ tFCFS. And the total time needed to pick up the
goods of one request at the source and deliver them to the destination is not
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more than 2 units of time in the unit metric space. Thus, in any interval (t, t+2]
for t = t∗, t∗ + 2, . . . , tOPT − 2, the server of FCFS can pick up at least one
unit of goods and/or deliver it to the destination while the OPT’s server can
not pick up more than 2Z units of goods at the sources and/or deliver them to
the destinations due to the finite capacity of Z. Also, in the interval (t1, t∗] the
FCFS’s server can accept at least one request which has one unit of goods, and
the OPT’s server can not accept more than 2 requests (with 2Z units of goods)
because t∗ − t1 ≤ 2. We notice that the number of the goods which is accepted
(picked up) by the server is as many as the one that is transported (delivered)
since we do not allow preemption. So we can say that in any interval of (t1, t∗]
and (t, t + 2] for t = t∗, t∗ + 2, . . . , tOPT − 2, OPT can not transport more than
2Z times as many goods as FCFS does.

Case 2. FCFS still works after time tOPT , i.e., tFCFS > tOPT . Obviously, in
each interval (t, t+2] for t = t∗, t∗ +2, . . . , tOPT −2, OPT can transport at most
2Z times as many goods as FCFS does. It also holds in the interval (t1, t∗] with
the same reasoning in case 1.

This completes the proof. ��

3.2 Greedy Algorithm in the K-Constrained Metric Space

We present the GR as follows. At any time t when the server arrives at one point
in the metric space, it finds the source of the request which has the least time
path from its current position among all the outstanding requests that it can
reach by their deadlines, picking up the goods and getting the information on
the destinations, until it is overweighted or there are no outstanding requests.
Then it delivers the goods of the accepted requests to their destinations.

Theorem 2. In the K-constrained metric space, the Greedy algorithm is 2ZK-
competitive for ODARPTWRIM, where Z is the capacity of the server and K
denotes the diameter of the metric space.

Proof. The proof of theorem 1 goes through with a few changes. Given any
input sequence R, we can always divide it into such m sub-sequences R =
(R1, R2, . . . , Rm) that in each sub-sequence Ri = (ri,1, ri,2, . . .)(1 ≤ i ≤ m),
the GR’s server is empty when it begins to serve the first request ri,1 of Ri.
According to the algorithm of GR, under the circumstance of that the online
server is not overweighted, the server always picks up the goods of requests if
there are some outstanding requests existing or delivers the accepted goods to
the destinations otherwise. So in each sub-sequence the online server will works
continuously. As we did in theorem 1, we need only to show that OPT can
transport at most 2ZK times as many goods as GR does for each sub-sequence.

Denote by t1 the released time of the first request ri,1 in Ri. Let ri,l ∈ Ri

and ri,l′ ∈ Ri be the last requests that GR and OPT served, respectively. Let
tGR be the time when GR reaches the ride destination of ri,l, and tOPT denote
the time when OPT reaches the ride destination of ri,l′ . We define t∗ such that
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(tOPT − t∗)/2K is an integral and t1 ≤ t∗ ≤ t1 + 2K, where K is the diameter
of the metric space. There are two possible cases for tGR and tOPT in the same
way. Note that in case 1, tOPT − tGR < 2K since the total time needed to pick
up the goods of one request at the source and deliver them to the destination is
not more than 2K units of time in the K-constrained metric space. The rest of
the proof holds unchanged. ��

Corollary 1. GR is 2Z-competitive for ODARPTWRIM in the uniform metric
space.

Though GR has the same competitive ratio as FCFS does in the uniform metric
space, we notice that FCFS is simpler than GR and the FCFS’s server may carry
less goods than GR’s server during the working time.

4 Lower Bounds

In this section we derive lower bounds on the competitive ratio of any determin-
istic online algorithm for serving the requests in the version of the problem in
two types of metric space, respectively. The results are obtained by considering
the optimal algorithm as an adversary that specifies the request sequence in a
way that the online algorithm performs badly.

Theorem 3. In the uniform metric space, no deterministic online algorithm
can obtain a competitive ratio less than Z for ODARPTWRIM, where Z is the
capacity of the server.

Proof. We consider an arbitrary deterministic algorithm A and an adversary
(AD) which constructs an input request sequence so that A will not achieve a
competitive ratio small than Z. At time 0 both of their servers locate at the
origin. Set the size of time window T is 1. AD will present the requests in steps.
In the first step, AD ensures that the server of itself and the server of A are not
at the same point in the metric space.

Step 1. Two requests with different positions of sources and destinations from
each other are presented at time 0, each with one unit goods. That is, r1 =
(0, 1, a1, b1) and r′1 = (0, 1, a′

1, b
′
1) where a1 �= a′

1 �= b1 �= b′1. If the server of A
does not leave immediately for the requests, then AD stops the sequence and let
its server go to any one of points a1 and a′

1, completing one request with 1 unit
goods. Otherwise, we assume without loss of generality that A’s server goes to
a′
1, then the server of AD goes to a1 for serving the request r1. So A can serve

at most 1 unit goods while AD is able to complete at least 1 unit goods. Go to
the step 2.

Step 2. After step 1, there are two possible position for the server of A.
P1. The server of A is at a vertex point different from the position of AD.
P2. A’s server is on an edge.
If P1 holds, AD releases another two requests which have the same character-

istic to the ones that are presented in step 1. If A’s server does not immediately
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go to one of points of the sources, it does not serve any one of these two requests,
whereas AD’s server can complete at least one request. Otherwise, after a short
period of time 0 < Δt < 1, AD releases a request r∗ with Z units goods whose
source point is not incident to the edge on which A’s server is. Hence, the A’s
server can not pick up the goods by the deadline of request r∗, whereas AD’s
server can do that by remaining in its position for Δt time and then going to
the source of r∗.

If P2 holds, A’s server is in the interior of and edge. Hence, it can not reach
any vertex point which is not incident to this edge in 1 unit time. Now AD
presents a request with Z units goods whose point of source is not incident to
the edge on which A’s server is. Thus, A’s server is not able to serve the request,
whereas AD can complete these Z units goods.

So in this step the server of A can complete at most 1 unit goods, and AD’s
server is able to serve at leat Z units goods.

In step 2, the adversary can arrange to make its server stay at a point different
from the position of A’s server when presenting the requests.

Step 3. Repeating step 2 for M times.
Denote by |AD| and |A| the total number of goods completed by AD and A

respectively. We get
|AD|
|A| ≥

ZM + 1
M + 1

As M grows, the right hand side gets arbitrarily close to Z. So the theorem
holds. ��

Theorem 4. In the K-constrained metric space, no deterministic online algo-
rithm can obtain a competitive ratio less than KZ for ODARPTWRIM, where
Z is the capacity of the server and K denotes the diameter of the metric space.

Proof. The proof follows the proof of theorem 3 closely. Let T = K. In step 1
the way in which AD presents the requests is the same to theorem 3.

In step 2, when P1 holds, AD then presents a request r∗ with 1 unit goods of
which the source point a∗ is K units length away from the current position of A’s
server. If the server of A does not go to a∗ immediately, AD stop the sequence
and let its server to complete the request r∗ while A’s server can not serve the
request. Otherwise, AD releases K requests, ri(i = 1, 2, . . . , K), each with Z
units goods just after the A’s server leaves. The source points ai(i = 1, 2, . . . , K)
and the destination points bi(i = 1, 2, . . . , K) of the requests have the following
characteristic. Each request for ride needs only 1 unit time to complete,.i.e.,
d(ai, bi) = 1(i = 1, 2, . . . , K) and ai = bi−1 for i = 2, 3, . . . , K. The source point
of the first request is the current position of AD’s server. And none of the source
points of K requests is incident to the edge on which A’s server is. Thus, the
A’s server can not serve any one of the K requests, whereas AD’s server can
complete all of them with KZ units goods. The rest of the proof remains the
same. ��
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5 Conclusions

In this paper we discuss the online dial-a-ride problems with time windows under
the restricted information model which is occurring in a wide variety of practical
settings. It is an important issue since in practice complete information is often
lacking[11]. We present two online algorithm for two types of metric space. For
upper bounds, we analyze the performance of FCFS in the uniform metric space
and of GR in the K-constrained metric space respectively. We also give the
analysis for lower bounds on the competitive ratio of any deterministic algorithm
for the problem in different metric spaces.

It is worth the whistle that the uniform metric space is in fact a special
case of the K-constrained metric space with K = 1. It is shown in corollary 1
that GR has the same competitive ratio as FCFS does in the uniform metric
space. However, we feel that FCFS is a simpler algorithm than GR. And more
important, the FCFS’s server may carry less goods than GR’s server during the
working time which implies that FCFS may cost less energy for per unit of goods
than GR does in practice.

An interesting extension of the problem considered in this paper may take
into account the non-uniform time windows. That is, each of the requests has
a different size of time window. It would also be interesting to study other
particular metric spaces (such as trees, cycles, etc.) to see if better bounds can
be obtained. Other possible extension of the problem is to crew scheduling in
which more than one server is used to serve the requests. All of these can be
further investigated.
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Abstract. In this paper, motivated by on-line admission control in the
hard deadline model, we deal with the following scheduling problem. We
are given m identical machines (multi-streams). All jobs (requests) have
identical processing time. Each job is associated with a release time and
a deadline, neither of which is known until the job arrives. As soon as
a job is available, we must immediately decide if the job is accepted or
rejected. If a job is accepted, then it must be completed no later than
its deadline. The goal is to maximize the total number of jobs accepted.
The one-machine case has been extensively studied while little is known
for multiple machines. Our main result is deriving a nontrivial optimal
online algorithm with competitive ratio 3

2 for the two-machine case by
carefully investigating various strategies. Deterministic lower bounds for
the general case are also given.

1 Introduction

Problem statement. We deal with the following real-time scheduling problem
with online admission control. We are given m identical machines. Each job j
arrives at its release time rj that is not known in advance. Upon arrival of job j
its deadline dj is revealed. All jobs have equal processing times of 1. Preemption
is not allowed. At any time when some machine is idle, we have to decide whether
to start an “accepted” job or not, and if so, to choose which one, based only on
the information on the jobs released so far. Those jobs that can not be scheduled
to meet their deadlines will be lost (not processed at all). The objective is to
maximize the number of completed jobs, i.e., the number of jobs meeting their
deadlines. We also call this objective throughput maximization.

To evaluate online algorithms we adopt the standard measure of competitive-
ness. An online algorithm is c-competitive if on every input instance the number
of early jobs by the algorithm is at least 1

c times that of an optimum schedule.

Previous work. The throughput maximization problem on a single machine
has been extensively studied in the literature. Goldman et al. [6] gave a lower
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bound of 4
3 on the competitive ratio of randomized algorithms and the tight

bound of 2 for deterministic algorithms for the online problem. They further
proved that a greedy algorithm is a 3

2 -competitive if dj − rj ≥ 2 for all jobs j,
which implies that the lower bound of 2 can be beaten if the jobs have sufficiently
large slack. Along this line, Goldwasser [3] made a parameterized extension of
this result: if dj − rj ≥ λ for all jobs j, where λ > 0 is a real number, then the
competitive ratio is 1 + 1

λ . In 2003 Goldwasser and Kerbikov [4] extended the
previous results [3] under a reasonable assumption called immediate notification.
This assumption requires the scheduler to determine whether to accept job j
immediately at its arrival. If the job is accepted it must be completed by this
deadline.

Chrobak et al. [2] considered randomization and restarts for online schedul-
ing of equal-length jobs. They gave a 5

3 -competitive randomized algorithm. For
the restart model (allowed to abort a job during execution and an aborted job
can be restarted and completed later), they presented an optimal 3

2 -competitive
algorithm.

In contrast, to our best known, there are few results for the throughput max-
imization problem on parallel machines. The offline problem on m machines can
be solved in polynomial time [1]. For the online case Lee [7] considered the prob-
lem of maximizing the sum of the length of accepted jobs on m machines, where
each job of length L can be delayed for at least k ·L for k < 1 before it is started,
while still meeting its deadline. He presented an O(log(1/k))-competitive ran-
domized algorithm for m machines where m = 1, 2, . . . , O(log(1/k)). For m ≥ 2
a [m + 1 + m · (1/k)(1/m)]-competitive deterministic algorithm was derived.

Our results. We first derive simple deterministic lower bounds for m parallel
machines. Then we show that the competitive ratio of a simple algorithm is
exactly two. Our main result is an optimal non-trivial on-line algorithm with
competitive ratio of 3/2 for the two-machine case (very recently Goldwasser and
Pedigo [5] obtained the same ratio independently). Moreover all our results are
still valid under the assumption of immediate notification.

2 Lower Bounds for m ≥ 2 Machines

Theorem 1. For on-line scheduling of unit-length jobs on m machines to max-
imize the number of jobs completed, the competitive ratio of any deterministic
online algorithm is not smaller than

R =

⎧⎪⎪⎨⎪⎪⎩
3/2 if m = 2
6/5 + 1/(5k) if m = 3k
(6k + 2)/(5k + 1) if m = 3k + 1
(6k + 3)/(5k + 2) if m = 3k + 2

, k ≥ 1.

Proof. We only prove the lower bound for m = 2. At time 0, a job with deadline
5 comes. For any algorithm A, let t(0 ≤ t ≤ 4) denote the start time of the job (If
the algorithm does not start the job by time 4, the job will not be scheduled. It
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results in an unbounded competitive ratio.) Then two jobs with deadline t+1+x
come at time t + x(0 < x < 1). So one job is lost and the algorithm accepts two
jobs. But the optimal schedule can accept all the three jobs. So the competitive
ratio is at least 3

2 for m = 2.

3 Online Algorithms

For an instance I, let σ and σ∗ denote the schedule produced by an algorithm
A and the optimum schedule respectively. For given schedules σ∗ and σ, we say
job i blocks job j if a) j ∈ σ∗, j /∈ σ and b) job i is processed in σ on the same
machine with j in σ∗ and si ≤ s∗j < si + 1, where si is the start time of job i in
σ and s∗j is the start time of job j in σ∗.

Simple Algorithm LS. Before we start scheduling jobs all machine loads Li =
0 for i = 1, 2, . . . , m. As a job j is coming check if there exists a machine that
is able to complete the job by its deadline. If such a machine, say Mi, exists,
schedule the job j at time sj = max{rj , Li} and set Li = sj + 1. If such a
machine does not exist, discard job j (job j is thus lost).

Clearly the Simple Algorithm satisfies immediate notification. The following
theorem can be easily shown with the similar analysis as in [6]. For the sake of
completeness we also give a proof.

Theorem 2. The competitive ratio of algorithm LS is 2.

Proof. Consider the following instance with 2m jobs. The first m jobs are avail-
able at time zero, each of which has a deadline 5

2 . And the other m ones with a
common deadline 3

2 come at time 1
2 . Using algorithm LS the second m jobs will

be lost, while the optimal schedule, that the first m jobs are processed immedi-
ately after the second m jobs are completed at time 3

2 , enable all jobs to meet
their deadlines. Thus we have RLS ≥ 2.

Let σ and σ∗ denote schedules produced by algorithm LS and a given optimal
schedule respectively. For each job Ji ∈ σ∗, if Ji ∈ σ, then assign 1

2 of Ji to Ji;
if Ji /∈ σ, then some job Jj ∈ σ must block Ji, we assign 1

2 of Jj to Ji, because
each job can block at most one job. So the number of jobs in σ is at least half
that of σ∗. So we have RLS ≤ 2.

Note that algorithm LS is simple but not greedy. However, even if the algorithm
becomes greedy in the following sense the ratio of two is still tight: always pick
the available job with the smallest deadline, and always assign the job to the
machine with the least load. To improve the algorithm we are suggested to leave
some space in the schedule for the future jobs. Basically we have to answer two
questions below.

Q1. How to decide if the incoming jobs can be accepted and make an immediate
notification?

Q2. How to manage a schedule so that all accepted jobs will not be lost and
there is some idle space for the future jobs? More precisely, for how long an
accepted job can wait and when it should be processed?
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To prepare our answers to the above questions we need some preliminaries.

EDF (Earliest Deadline First) Rule. Re-number the available jobs in nondecreas-
ing order of their deadlines. Always pick the first job from the remaining job list
and schedule the job on the machine with the smallest load (the completion time
of the last job on this machine); remove the job from the job list. Continue the
process till the job list is null.

Online Admission Control. Let P (t) denote the set of the accepted jobs that have
not been started at time t. Set P (t) = ∅ if t < 0. If some new jobs arrive, then
we test the new jobs one by one in the nondecreasing order of their deadlines,
namely, for a newly arrived job set J(t) = {j1, j2, . . . , jk}, d1 ≥ d2 ≥ . . . dk,
where di is the deadline of job ji, we first “put” j1 into P (t) and use EDF to
pre-schedule all the jobs in P (t) on the two machines (they may have already
completed/started some old jobs before the jobs in P (t) are put). If all the jobs
meet their deadlines then we accept j1 (and update P (t) by adding j1), otherwise
reject job j1 (remove it from P (t)). Continue this process until all jobs in J(t)
has been tested.

In Online Admission Control a new job is tested immediately. It is either
accepted (but may be processed later) or rejected. Thus an online algorithm
with Online Admission Control satisfies the immediate notification. Thus we
have answered question Q1. In the next subsection we will present an improved
online algorithm for the case m = 2, where question Q2 will be answered.

3.1 Algorithm MEDF for Two Machines

If at time t some new jobs arrive, we update P (t) according to the Online
Admission Control. For the job set P (t), we pre-schedule P (t) at time t with
EDF rule and let Cj denote the completion time of job j for each job j ∈ P (t).
If for every job j ∈ P (t) we have dj − Cj > 1, then we call P (t) an open job
group; Otherwise, we call it an impatient job group. For the jobs that satisfy
dj − Cj ≤ 1, we call them critical jobs at time t.

In the following algorithm MEDF , at any time t, we always use L1(t) and
L2(t)) to denote the earliest time points not smaller than t at which either
machine can start processing next jobs. Assume that L1(t) ≤ L2(t). The machine
of L1(t) is called the Min machine while the other is called Max machine.

Algorithm MEDF (Modified EDF):

0. Set t = 0.
1. If P (t) = ∅, then go to 5.
2. At time t, if both the machines are idle, then start the ED job in P (t) to one

of the two machines and remove this job from P (t). L1(t) := t, L2(t) := t+1.
3. Pre-schedule P (t) according to EDF rule at time t and let M1(t)(⊂ P (t))

denote the set of jobs arranged to the machine Min. Let Cj be the completion
time of job j for each j ∈ P (t). Then compute β′ = minj∈P (t){dj − Cj − 1}
and β = minj∈M1(t){dj − Cj − 1}.
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3.1: If β′ > 0, then we do not arrange any job at time t. Once some new
jobs come in (t, min{L2(t), t + β}], then update P (t); Otherwise replace
t with min{L2(t), t + β}. Go to 1.

3.2: If β′ < 0, then find the last critical job and denote by U(t) the job set that
contains all the jobs (∈ P (t)) with deadline not larger than the deadline
of the last critical job. If U(t) cannot be completed by either machine,
then arrange the ED job in P (t). L1(t) := L2(t), L2(t) := L1(t) + 1.
If some jobs arrive in (t, L2(t)] then update P (t). Replace t with L2(t)
and go to 1. If U(t) can be completed on one machine then compute
γ = minj∈M1(t)\U(t){dj − Cj − 1}. Go to 4.

4. U(t) can be completed on one machine.
4.1: U(t) cannot be completed on the machine Max. Pre-schedule U(t) on the

machine Min according to EDF Rule and let C′
j denote the completion

time of job j for each job j ∈ U(t). Then compute α = minj∈U(t){dj −
C′

j},
4.1.1 If α = 0 or α > 0 but minj∈U(t){dj} < L2(t) + 1, we start the ED
job in U(t) on the machine Min. If some jobs arrive in (t, L2(t)] then
update P (t). Replace t with L2(t). Go to 1.
4.1.2 If α > 0 and minj∈U(t){dj} ≥ L2(t)+1, we do not arrange any job
at time t. Once some new jobs arrive in (t, t + min{α, γ}] then update
P (t). Go to 1 . If no job arrives in (t, t + min{α, γ}], then replace t with
t + min{α, γ}. Go to 1.

4.2: U(t) can be completed on the machine Max, then we do not arrange any
job at time t. Once some new jobs arrive in (t, min{L2(t), t+γ}], update
P (t) and go to 1. Otherwise, replace t with min{L2(t), t + γ}. Go to 1.

5. If no more jobs arrive, stop. Otherwise let t be the arrival time of the next
incoming job. Update P (t) and go to 1.

An Example. There are thirteen jobs in total. One job j0 with very large
deadline arrives at time zero. At time x(0 < x < 1), eight jobs with deadline 7
arrive. At time 3 + x, two jobs with deadline 4 + x come. At time 4 + x, two
jobs with deadline 5+x come. For this instance, it is obvious that the algorithm
accepts nine jobs, but the optimal schedule accepts all the thirteen jobs (see
Figure 1 and Figure 2).

x x+3 x+4

0j

Fig. 1. The MEDF schedule

x x+3 x+4

0j

Fig. 2. An optimal schedule

3.2 Analysis of Algorithm MEDF

We will prove that algorithm MEDF has a competitive ratio of 3/2 with the help
of a minimum counterexample. Let I be a counterexample with the minimum
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number of jobs. Let σ and σ∗ be the schedule produced by the algorithm MEDF
and an optimum schedule on I, respectively. According to MEDF , it is obvious
that at any time t smaller than the makespan of the schedule σ, at least one
machine is busy. Otherwise if at some time t both machines are idle, then either
the jobs arriving before time t or the jobs arriving after time t forms a job list
conflicting with competitive ratio 3/2. It is a contradiction with the assumption
of a minimum counterexample. Let j0 be the first job arranged in the schedule σ.

Let [si, Ci,min], i = 1, . . . , k, be the i-th period during which both machines
are busy in σ (see Figure 3). Let fi be the number of jobs starting before time
Ci,min in σ. Denote by Ci,max the largest completion time among the jobs starting
before time Ci,min. Let Ai, Bi denote the job sets in which all the jobs arrive
before time Ci,min and are started at or after Ci,min in σ and in σ∗, respectively.
Moreover assume that |Ai| = ai and |Bi| = bi. Without loss of generality letAi =
{j1, j2, . . . , jai} and the deadlines of the jobs in Ai satisfy d1 ≥ d2 ≥ . . . ≥ dai .
We also sort the jobs in Bi\{j0} = {j′1, . . . , j′|Bi\{j0}|} in non-increasing order of
their deadlines, i.e., d′1 ≥ d′2 ≥ . . . ≥ d′|Bi\{j0}|. Consider those jobs with release
times smaller than Ci,min in I and assume that σ∗ accepts Li more such jobs than
σ does. Then the number of jobs released before time Ci,min that are accepted
in σ∗ is exactly fi + ai +Li. Thus (fi + ai +Li− bi) jobs are started before time
Ci,min in σ∗. Check these jobs and let c1 and c2 be the largest completion times
among them on the two machines, respectively, where c1 ≤ c2. We further define
C′

i,min = max{Ci,min, c1} and C′
i,max = max{Ci,min, c2} in σ∗. For the sake of

convenience, let li = 1
2 [fi−(ai−bi)], i = 1, . . . , k. Let xi, i = 1, . . . , k, denote the

number of jobs which are started before time Ci,min but completed after time si

in σ.
We will prove that Li ≤ li for 1 ≤ i ≤ k by induction. Then for the last

busy period we obtain Lk ≤ lk = 1
2 [fk − (ak − bk)]. Finally we can achieve

Lk ≤ 1
2 (fk + ak) with the analysis of the values of ak and bk. In the following

we first give some properties of the algorithm.

1s min, 1 C max, 1 C 2s min,2C max,2C
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Fig. 3. Illustration of the MEDF schedule

Lemma 1. Let C0 be the makespan of the schedule σ, then at most one job,
namely the first job j0 arranged by the algorithm in σ, which has deadline larger
than C0 + 1.

Proof. We prove it by contradiction. We assume j∗(�= j0) is the last job with
deadline larger than C0 + 1. Let s∗ be the starting time of the job j∗, it is easy
to verify that at time s∗ only j∗ is available. Now we construct another instance
I ′ from instance I. We change the release time and the deadline of the job j∗ to
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s∗ and +∞ in instance I ′. Any other jobs in I ′ are the same as the job in I. It
is obvious that for instance I and I ′, the algorithm generates the same schedule.
And any optimal schedule for instance I ′ accepts at least the same number of
jobs as the optimal schedule for instance I. So I ′ is a counterexample too. We
can easy to verify that either the jobs with arrival time smaller than s∗ in I ′ or
the jobs with arrival time not smaller than s∗ in I ′ construct a counterexample.
It contradicts with the minimum counterexample I.

Lemma 2. Let C0,min = 0, then for any t0 ∈ [Ci−1,min, si), i = 1, . . . , k, while
one of the two machines is idle in σ all the jobs with arrival time t0 must be
accepted by the algorithm.

Proof. Suppose that t0 ∈ [Ci−1,min, si) and one machine is idle during
[Ci−1,min, si) in σ. We consider the job set P (t0) after the deletion of the job
arranged at time t0 by the algorithm if at time t0 a job is really arranged. We
prove that j∗ must be accepted by the algorithm if job j∗ comes at time t0 for
such P (t0). Therefore j∗ must be accepted by the algorithm before the job is
arranged by the algorithm at time t0. We have |U(t0)| ≤ 2. Otherwise both
machines should be busy from t0. If P (t0) is an open job group at time t0, then
it is obvious that the algorithm can accept job j∗. If P (t0) is an impatient job
group at time t0.

Case 1. |U(t0)| = 1. Then the deadline of the job in U(t0) is not smaller
than L2(t0) + 1. The i-th job in P (t0)\U(t0) must have a deadline larger than
L2(t0) + (i + 1)/2 + 1 when i is odd and t0 + i/2 + 2 when i is even. So job j∗ is
accepted by the algorithm.

Case 2. |U(t0)| = 2. Let j1, j2 be the jobs in U(t0). Then we have d1 ≥ L2(t0)+1
and d2 > t0 + 2. The i-th job in P (t0)\U(t0) must have deadline larger than
t0 + i+1

2 + 2 when i is odd and L2(t0) + i
2 + 2 when i is even. So job j∗ can be

accepted by the algorithm.

Remark. By Lemma 2, we get that all the jobs with deadline not smaller than
Ci,min + 1 and arrival time not larger than Ci,min must be accepted by the
algorithm.

Lemma 3. If one machine is idle in [Ci−1,min, si) and there are jobs coming at
time si, then the job with smallest deadline must be accepted by the algorithm.
b). If L2(si) > si and only jobs with deadline not smaller than L2(si) + 1 come
in [si , L2(si)], then at least one job with deadline smaller than Ci,min + 1 can
be accepted by the algorithm if such jobs come in [si , L2(si)].

Proof. Let r < si be the largest arrival time over all the jobs arrived before si.
There must exist a t0 ∈ (r, si) such that for any t ∈ (t0, si) we have P (t) = P (t0)
and U(t) = U(t0) (see Figure 4). It is obvious that |U(t0)| ≤ 2. Otherwise both
machines should be busy from time t0. If we schedule all the jobs in P (t0) using
EDF at time si, then we must have minj∈P (t0)\U(t0){dj − Cj} ≥ 1.

a) If |U(t0)| = 0, then it is obvious that the job with smallest deadline can be
accepted by the algorithm if some jobs arrive at time si. If |U(t0)| = 1, then the
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job in U(t0) must have deadline not smaller than L2(si)+1. We can schedule one
newly arrived job with smallest deadline at time si on one machine and arrange
the job in U(t0) on the other machine at time L2(si). If |U(t0)| = 2, let j1, j2 be
the jobs in U(t0), Then we have d1 ≥ L2(si)+1 and d2 ≥ si +2. We can schedule
one newly arrived job with smallest deadline at time si on one machine and the
job with smaller deadline in U(t0) at time L2(si) on another machine. For the
jobs in P (t0)\U(t0), they must be completed before their deadlines by EDF
algorithm. Therefore if some jobs arrive at time si, then the job with smallest
deadline can be accepted by the algorithm.

. . .

. . .

0t is )(2 isL min,iC

Fig. 4. The case L2(si) > si in the MEDF schedule

b) If only those jobs with deadline not smaller than Ci,min+1 come in [si , L2(si)]
and we schedule the jobs in P (L2(si)) at time L2(si) by the MEDF algorithm
then the time C∗

i,min when one machine is idle must not larger than Ci,min. If
|U(t0)| ≤ 1, then for the jobs in P (L2(si)), with deadline smaller than Ci,min+1,
started before C∗

i,min we have dj−Cj ≥ 1. For the jobs, with deadline not smaller
than Ci,min +1, started before C∗

i,min, they can be delayed one by one. So if some
jobs with deadline smaller than Ci,min +1 come in [si , L2(si)], then at least one
of them can be accepted. If |U(t0)| = 2, note that the job j1 in U(t0) must have
been arranged at time si, we can schedule one job with deadline smaller than
Ci,min +1 at time L2(si) on one machine and the job j2 at time si +1 on another
machine. The remaining jobs must be completed before their deadlines by EDF
algorithm. So at least one such job can be accepted by the algorithm.

Lemma 4. For the jobs in Ai and Bi, i = 1, . . . , k, we have dj ≥ d′j , j =
1, 2, . . . ,min{ai, |Bi\{j0}|}.

Proof. (By induction) We first prove that d1 ≥ d′1; Otherwise d1 < d′1. According
to Lemma 2 all the job with deadline at least d′1 must be accepted by the algo-
rithm. Let j∗ be the last job, with deadline at least d′1, which is started before
Ci,min in σ. Let s∗ be the starting time of the job j∗. If s∗ ≥ si, then all the jobs
in job set Ai must have deadline at least d′t+1, it is a contradiction. So it must
be processed before time si(see Figure 5). According to the algorithm, P (s∗)
contains only job j∗. Let I ′1 = {j|rj ≤ s∗}. Now we consider I ′1\j∗. According
to the algorithm j∗ cannot affect the configuration of schedule of the algorithm
on job set I ′1\j∗, so if I ′1\j∗ is a counterexample then we derive a smaller coun-
terexample than I, it is a contradiction; if it is not, then we construct I ′ from I.
We change the release time of job j∗ to s∗ and omit all the jobs arrived before
s∗; For the jobs with release time larger than s∗ in I ′, they are the same as the
jobs in I. Then we get a smaller counterexample I ′ than I. It is a contradiction.
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Fig. 5. The case that s∗ < si

Now suppose that d1 ≥ d′1, . . . , dt ≥ d′t, then we show that dt+1 ≥ d′t+1.
Otherwise dt+1 < d′t+1. According to the algorithm all the job with deadline
at least d′t+1 must be accepted by the algorithm. Let j∗ be the last job, with
deadline at least d′t+1, which is started to be processed before Ci,min in the
schedule produced by the algorithm. Let s∗ be the starting time of the job j∗.
If s∗ ≥ si, then all the jobs in job set Ai must have deadline at least d′t+1,
it is a contradiction. So it must be processed before time si. According to the
algorithm, P (s∗) must be an open job group. Otherwise, any job in Ai must
have deadline at least d′t+1, it is a contradiction. For the optimal schedule, at
least |P (s∗)| jobs arrived at or before s∗ are processed at or after Ci,min. Let
I ′1 = {j|rj ≤ s∗}. Now we consider I ′1\P (s∗). According to the algorithm, P (s∗)
cannot affect the configuration of schedule of the algorithm on job set I ′1\P (s∗),
so if I ′1\P (s∗) is a counterexample we derive a smaller counterexample than I, it
is a contradiction; if it is not, then we construct I ′ from I. We change the release
time of jobs in P (s∗) into s∗ and omit all the jobs arrived before s∗; For other
jobs in I ′, it is the same as the jobs in I. Then we get a smaller counterexample
I ′ than I. It is a contradiction.

Lemma 5. If ai = 0, i = 1, . . . k, then |Bi\{j0}| = 0.

Proof. We prove this lemma by contradiction. If |Bi\{j0}| ≥ 1, then there exists
a job j′ �= j0 in Bi\{j0}, with deadline at least d′j ≥ Ci,min+1, which is processed
at or after time Ci,min in σ∗. According to the algorithm all the jobs with deadline
at least Ci,min +1 must be accepted by the algorithm. Let j∗ be the last job with
deadline at leat d′j ≥ Ci,min + 1 which is started before time Ci,min in σ. Let s∗
be the starting time of job j∗. It is obvious that P (s∗) contains just one job j∗.

If s∗ < Ci,min − 1(see Figure 6), then according to the algorithm, P (s∗)
contains only one job and it is an open job group at s∗. Let I ′1 = {j|rj ≤
s∗}. Now we consider I ′1\P (s∗). According to the algorithm P (s∗) cannot affect
the configuration of the schedule of the algorithm on job set I ′1\P (s∗), so if
I ′1\P (s∗) is a counterexample we derive a smaller counterexample than I, it is a
contradiction; if it is not, then we construct I ′ from I. We change the release time
of jobs in P (s∗) into s∗ and delete all the jobs arrived before s∗; For other jobs
in I ′, they are the same as the jobs in I. Then we get a smaller counterexample
I ′ than I. It arrives at a contradiction.

If s∗ = Ci,min− 1(see Figure 7), then at time s∗ = Ci,min− 1 there must exist
two jobs that have not been arranged. According to the algorithm the other job
must have deadline at least Ci,min +1, so another job should be arranged at time
Ci,min when j∗ is completed. It is a contradiction.
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Fig. 6. The case that s∗ < Ci,min − 1
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Fig. 7. The case that s∗ = Ci,min − 1

We further give two lemmas below. The omitted proofs will be included in the
full paper.

Lemma 6. L1 ≤ l1. Furthermore, if L1 = l1, then C′
1,min > C1,max; if L1 =

l1 − 1
2 , then C′

1,max ≥ C1,max.

Lemma 7. Li ≤ li for i = 1, . . . , k. Furthermore, if Li = li, then C′
i,min >

Ci,max; if Li = li − 1
2 , then C′

i,max ≥ Ci,max.

Theorem 3. The competitive ratio of algorithm MEDF is 3
2 .

Proof. Now we consider the last period. By Lemma 7, we have Lk ≤ lk. It is
easy to verify ak ≤ 3. Otherwise if we schedule the last ak jobs at Ck,min using
EDF , then the last job is not a critical job. So after the deletion of the last job
from I, it is still a counterexample. It is a contradiction. So we have ak ≤ 3.

Case 1. If ak = 0, Lk ≤ 1
2 (fk + 1) by Lemmas 5 and 7. If fk is even, then the

theorem holds; If it is odd, we will prove that Lk ≤ 1
2fk. Suppose that it is not

true, Lk = 1
2 (fk + 1). If Lk−1 = lk−1, then we have C′

k−1,min > Ck−1,max. In
this period 1

2 (fk + 1) − lk−1 jobs are blocked. We have xk ≥ 1
2 (fk + 1) − lk−1.

If xk = 1
2 (fk + 1) − lk−1, all these xk jobs must be accepted by the optimal

schedule, otherwise Lk < 1
2 (fk + 1)− 1 ≤ 1

2fk. Because bk = 1, all these xk jobs
must arrive before sk. According to the algorithm, these jobs should be started
before sk in the schedule σ. It is a contradiction. If xk = 1

2 (fk +1)− lk−1 +1, we
can derive a similar contradiction with the same analysis. Thus Lk ≤ 1

2fk. It is
easy to verify Lk ≤ 1

2fk for the case that Lk−1 ≤ lk−1 − 1
2 . Therefore Lk ≤ 1

2fk.

Case 2. If ak = 1, then the last job j1 must have deadline d1 = Ck,max + 1.
Otherwise, if d1 > Ck,max + 1, then we consider the job j2 that is started at
time Ck,max − 1. By the algorithm d2 < Ck,min + 1. If not, then α > 0 and
d2 ≥ Ck,min + 1. Job j2 should not have been started at Ck,max − 1. So we
have d2 < Ck,min + 1. By the algorithm after the deletion of job j1, it is still a
counterexample. It is a contradiction. Thus d1 = Ck,max + 1. If Lk = lk, then
C′

k,min > Ck,max. We get bk ≤ 2 and Lk ≤ 1
2 (fk +1); If Lk ≤ lk− 1

2 , then bk ≤ 3.
Hence Lk ≤ 1

2 (fk + 1).

Case 3. If ak = 2, then the last job must have deadline Ck,max + 2. Otherwise
if we schedule the last two jobs at Ck,min using EDF , then the last job is not a
critical job. After the deletion of the last job, it is still a counterexample. It is a
contradiction. So the last job have deadline Ck,max +2. If Lk = lk, then we have
C′

k,min > Ck,max. Therefore bk ≤ 4 and Lk ≤ 1
2 (fk + 2); If Lk ≤ lk − 1

2 , then we
have bk ≤ 5 and thus prove Lk ≤ 1

2 (fk + 2).
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Case 4. If ak = 3, then the last job must have deadline Ck,min + 3. Otherwise
if we schedule the last three jobs at Ck,min using EDF , then the last job is not
a critical job. After the deletion of the last job, it is still a counterexample. So
the last job have deadline Ck,min + 3. If Lk = lk, then we have C′

k,min > Ck,max

by Lemma 7. Thus bk ≤ 5, so Lk ≤ 1
2 (fk + 3); If Lk ≤ lk − 1

2 , we get bk ≤ 7. So
it is obvious that Lk ≤ 1

2 (fk + 3).
Summarizing the above case analysis, we show that the competitive ratio of

the algorithm is 3/2.

4 Final Remarks

We consider the problem scheduling jobs of unit-length online to maximize the
number of early jobs. Other than the single machine case in which a greedy
algorithm can achieve the best ratio of two, the case that m ≥ 2 becomes much
more complex. It is easy to have an online algorithm with competitive ratio
of two. To improve the bound we design a non-trivial optimal 3/2-competitive
online algorithm for m = 2. Our algorithms satisfy the assumption of immediate
notification. An obvious question is to improve the Simple Algorithm LS for
the general case of m machines. Before closing the paper we propose a stronger
property than immediate notification, called immediate decision. As a job is
coming the scheduler is asked to decide immediately whether to accept the job
or not, if yes when to start it (its deadline must be met). Note that the algorithm
LS has this property but the algorithm MEDF does not. It is interesting to see
an optimal online algorithm with immediate decision even for m = 2.
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Abstract. We study the nonpreemptive online scheduling of jobs with
deadlines and weights. The goal of the scheduling algorithm is to maxi-
mize the total weight of jobs completed by their deadlines. As a special
case, the weights may be given as the processing times of jobs, where the
job instance is said to have uniform value density.

Most previous work of nonpreemptively scheduling jobs online con-
centrates on a single machine and uniform value density. For the single
machine, Goldwasser [6] shows a matching upper bound and lower bound
of (2 + 1

κ
) on the best competitive ratio, where every job can be delayed

for at least κ times its processing time before meeting its deadline. This

paper is concerned with multiple machines. We provide a (7 + 3 1
κ
)-

competitive algorithm defined on multiple machines. Also we consider
arbitrary value density, where jobs have arbitrary weights. We derive
online scheduling algorithms on a single machine as well as on multiple
machines.

1 Introduction

The problem of scheduling jobs with deadlines has extensively been studied
in the literature. In this problem, a set of jobs with release times, processing
times, and deadlines is given as a input. The output is a schedule of jobs in
which the jobs are completed by their deadlines. This paper is concerned with
an online environment, where jobs arrive over time, and their processing times
and deadlines are revealed at the release times. The online scheduling algorithms
have to make decisions with no information about the future arrivals of jobs.

The job has a weight which represents its importance or a gain of a system
when serving it. The total gain of a system is the sum of weights of jobs which
are completed by their deadlines. So the goal of a scheduling algorithm is to
maximize the gain of the system. In many cases, the weight of the job may be
given as its processing time.

The scheduling algorithms are divided into preemptive and nonpreemptive.
The preemptive algorithm can abort a job in its execution and resume it later,
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but the nonpreemptive algorithm cannot stop a job after accepting it. In a field of
online deadline scheduling, there are a large number of researches for the preemp-
tive algorithms both on a single machine [1, 2, 4] and on multiple machines [3].
In this paper, we will focus our attention on the nonpreemptive algorithms. In
this case, a little number of results on a single machine are known [5, 6, 12], but
there are few ones on multiple machines. We are interested in multiple machines.

In case the weight of a job is given as its processing time, Goldwasser [6]
provided an optimal online algorithm on a single machine for an instance pa-
rameterized by a term, called a patience. This paper can be considered as an
generalization of [6] to multiple machines, which was proposed as one of further
studies in citegoldwasser. In case the weight of a job is given arbitrarily, to the
best of our knowledge, there is no previously known work for the nonpreemptive
scheduling.

Notation. In an input instance I, each job Jj has release time rj , processing
time pj , deadline dj , and weight wj . The expiration time xj is defined by dj−pj ,
which means the latest time when the job Jj can be started while still meeting
its deadline. Then we define the slack sj of Jj by xj − rj . We assume all jobs
in I satisfy the following inequality: sj ≥ κpj, for a nonnegative constant κ,
called patience. The weight of a job divided by its processing time, namely, wj

pj
,

is called the value density of the job and denoted by λj . The importance ratio of
an input instance I, denoted by λ, is the ratio of the largest value density to the
smallest value density. When the weights of all jobs are given as their processing
times, the importance ratio is 1 and I is said to have uniform value density.
For convenience, we assume the smallest processing time is 1 and we denote the
largest processing time as Δ.

Related work. Most previous work considers the case when the instance has
uniform value density. In this problem, the online algorithms will maximize the
total processing time of the completed jobs. For nonpreemptive scheduling, the
problem was initiated by Lipton and Tomkins [12]. They studied only the in-
stance where all jobs have zero slack, that is, the job should be accepted as
soon as it arrives, if not, it must be rejected. This problem is called online
interval scheduling. The authors provide an O((log Δ)1+ε)-competitive random-
ized algorithm, and a lower bound of Ω(log Δ) on the competitive ratio of any
randomized online algorithm. Goldman et. al. [5] eliminate the assumption of
zero slack, allowing jobs to have arbitrary slacks, specifically, κ = 0. They show
there is also an O(log Δ)-competitive randomized algorithm and for jobs with
an equal processing time, there is a 2-competitive algorithm. In [6], Goldwasser
introduced the patience κ. For a job instance with an equal processing time, he
shows a simple (1 + 1

	κ
+1 )-competitive algorithm and the ratio is best possible
for any deterministic online algorithm. For arbitrary processing times, he shows
there is a (2 + 1

κ )-competitive algorithm and the ratio is also best possible.
The above results all deal with the problem of a single machine. There is few

work about multiple machines, following the outcomes on the single machine.
In [11], Lee considers the problem of multiple machines to obtain a randomized
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algorithm on a single machine. The randomized algorithm simulates a randomly-
chosen machine, envisaging the schedule of the deterministic algorithm for mul-
tiple machines. In [7], it is shown that a simple greedy algorithm has the same
upper bounds as those in [6] on its competitive ratios even if it is defined on
multiple machines.

For arbitrary value density, i.e., the case where each job has an arbitrary value
of a weight, there is a little work only for the preemptive scheduling. Koren and
Shasha [10] provide an optimal online algorithm with its competitive ratio having
a matching upper bound and lower bound of (1 +

√
λ)2. Also they extend the

problem to the multiple machines in [9]. In [8], the resource augmentation model
is studied, where the throughput of the online algorithm on multiple machines
is compared with that of the offline optimal algorithm on a single machine.

Our results. For uniform value density, we present a (7 + 3
√

1
κ )-competitive

algorithm defined on multiple machines. It is an improvement on the upper
bound of O( 1

κ ) given in [7]. For arbitrary value density, we first derive a lower
bound on the competitive ratio of any online algorithm on a single machine.
Moreover, we provide a simple algorithm with the competitive ratio matching
the lower bound. Also we propose an online algorithm for multiple machines.

Throughout the paper, for a set S of jobs, ||S|| denotes the total weight of jobs
in S. Also for a job J , p(J), w(J), and sl(J) denotes the processing time of J ,
the weight of J , and the slack of J , respectively.

2 Uniform Value Density

In this section, we consider the case when the weights of jobs are given as their

processing times. We will present an O(
√

1
κ )-competitive online algorithm, de-

fined on multiple machines, where the number of machines, denoted by m, is at
least two. The machines are divided into classes so that each class consists of
two machines. Of course, when m is odd, the last class has only one machine.
Specifically, the class ci contains the machine m2i−1 and m2i, for i = 1, . . . , �m

2 �.
For the convenience of analysis, the algorithm does not use the machine in the
last class when m is odd.

There is a pool of jobs, waiting to be scheduled. If a job in a pool cannot meet
its deadline anymore, that is, it is not scheduled until its expiration time, then it
is canceled from the pool. We will adopt an identical algorithm to each class. At
any time in the execution of the algorithm, only one machine in the class is active,
that is, a job can be scheduled only on the active machine in the class. For a class
ci, we define a variable active-machinei to denote its active machine. Assume
at time t, a job J is given in ci, to be scheduled. If the active-machinei is idle,
schedule J on it. Otherwise, we consider the job J ′ which the active-machinei

currently processes in ci. Then we compare the processing times of J and J ′. In
case p(J) ≥ C · p(J ′), if the other machine M than active-machinei in ci, called
the inactive machine, is idle at t, then update active-machinei to M and schedule
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J on M . If there is a job J ′′ processed on M at t, then put J into the pool. But
we consider the time s when the job J ′′ is completed after t. If J can be scheduled
at s without violating its deadline, that is, its expiration time is greater than or
equal to s, then we say that J is reserved from J ′ at s and the time s is called a
reservation time of J . In case p(J) ≤ C · p(J ′), put J into the pool. Thus with
the independent algorithms of the classes, we can design the master algorithm
A. Whenever a job arrives, a job is completed on active-machinei in a class ci or
a reservation time is met, A makes decisions. When a job J arrives, J is given to
the classes subsequently from c1. After J is given to ci, the above algorithm is
performed in ci, and if J is not scheduled in ci and put into the pool, then J is
given to the next class ci+1, if any. When a job is completed on active-machinei

in a class ci, choose the job with the longest processing time in the pool and
schedule it on active-machinei. Lastly, when a reservation time s is met, if the
time s is defined in a class ci and M is the inactive machine in ci, then choose
the job with the longest processing time among all the jobs which are reserved
at s in the pool, if any. If such a job exists, then update active-machinei to M
and schedule it on M .

We consider specific periods in the execution time of the algorithm A. The
period in which a job is processed on active-machinei for every class ci is called
a busy period. Then the whole period in the execution of A is divided into busy
periods and the other periods, called loose periods. At any time in a loose period,
there is an active-machinei for some class ci on which no job is processed. Then
we first pay attention to the jobs with expiration times lying in a loose period,
called patient jobs. We can prove that A schedules all patient jobs. Note that no
job arrives during any loose period.

Lemma 1. All patient jobs are scheduled in the execution of the algorithm A.

Proof. Assume that J is a patient job with expiration time lying in a loose period
(s, t) and not scheduled by A. At time s, J would remain in the pool since its
expiration time is after s. Then J could be scheduled on an idle active-machinei

for some class ci. It is a contradiction. ��

The jobs other than the patient jobs are called urgent jobs, which have expiration
times lying in busy periods. All jobs are classified into urgent jobs and patient
jobs. For the sake of convenience, we consider only the urgent jobs that are
scheduled by the offline optimal algorithm OPT but rejected by our algorithm
A. We call them missing jobs. If a missing job J has its expiration time lying in
a busy period I, then J arrives in I, because if J arrived before I, J would be
scheduled in a loose period by A. Also the missing job J will be scheduled and
rejected within I by OPT and A, respectively.

Here we can derive a simple upper bound on the competitive ratio of A.
Let J be a missing job with expiration time lying in a busy period I. Then J
arrives in I. Thus J may be completed within I or if not, from the definition
of the patience κ, we can see that p(J) is at most 1

κ times the length of the
interval I. Also, if a job is scheduled by OPT and not a missing job, then from
lemma 1, it is scheduled by A. Consequently, let O and A be the set of jobs
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scheduled by OPT and A, respectively, and let M be the set of missing jobs.
Then ||O|| ≤ ||M||+ ||O \M|| ≤ 3(1 + 1

κ )||A||+ ||A|| = (4 + 3
κ )||A||, because in

A, there are at least �m
2 � − 1 machines processing a job in a busy period. Thus

we obtain the upper bound of (4 + 3
κ ) on the competitive ratio of A. From now

on, we will try to derive an upper bound of O(
√

1
κ ). Since κ ≥

√
κ if κ ≥ 1,

hereafter, we assume that 0 < κ < 1.
Let J be a job given at time t in a class ci in A. If there is a job J ′ currently

processed on active-machinei such that p(J) ≥ C · p(J ′) and there is also a
job J ′′ processed at t on the inactive machine M , then we can prove that J is

reserved at s if C is given as
√

1
κ , where the time s is the completion time of

J ′′. Since
√

1
κ > 1, we can easily see that the inactive machine M is also idle

whenever active-machinei is idle. When J ′ is scheduled at time u, there may be
two cases: If J ′ was chosen from the pool after the completion of a job, then
M was idle at time u. It is a contradiction. If J ′ was scheduled, satisfying that

p(J ′) ≥
√

1
κp(J ′′), then we can see that p(J) ≥

√
1
κp(J ′) ≥ 1

κp(J ′′). Therefore
the slack of J is sufficiently large to satisfy that sl(J) ≥ κp(J) ≥ p(J ′′). It says
that J can be scheduled after J ′′ on M , that is, J is reserved at the time s when
J ′′ is completed.

Lemma 2. Let J be a job given in a class ci at time t in A. If a job J ′ is
currently processed on active-machinei such that p(J) ≥ C · p(J ′) and a job J ′′

is processed at t on the inactive machine M , then J is reserved at s if C is given

as
√

1
κ , where the time s is the completion time of J ′′.

Let J be a missing job, arriving in a busy period I. Then J is scheduled on a
machine mj within I by OPT . Let mj belong to a class ci. If J starts to be
processed at time s, then in A, we consider the job which the active-machinei

in the class ci processes at time s. It is called the blocking job of J and it is
denoted by bJ . Note that several missing jobs may have a same blocking job.
Here we will show that if missing jobs have a same blocking job, then the total
processing time of the missing jobs is bounded by the processing times of the
blocking job and a job reserved from the blocking job.

Lemma 3. If missing jobs J1, . . . , Jn, scheduled on a same machine and arranged
in order of their start times in the optimal schedule, have a same blocking job b,
then,

n∑
i=1

p(Ji) ≤ (1 +

√
1
κ

)p(b) + p(b̃),

where b̃ is reserved from b and scheduled at the reservation time if such a job
exists.

Proof. Let C =
√

1
κ . If the block job b is processed during [s, t]. Then only the

last missing job Jn can be completed after time t. So,
∑n−1

i=1 p(Ji) ≤ p(b). If
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Jn arrives before s, then we consider the last time u when Jn is checked by A.
Note that in A, a job is checked at its arrival time, its reservation time, or a
completion time of a job. Let a be the job processed on the active-machinei at
u, where b is processed in a class ci. Since Jn is a missing job, we can see that
w(Jn) ≤ Cw(a). Then, w(Jn) ≤ Cw(b) since w(a) ≤ w(b). If Jn arrives after s,
then from the lemma 2, w(Jn) ≤ w(b̃) if p(Jn) ≥ Cp(b). ��

Here we can see that the total processing time of the missing jobs is bounded by

the throughput of A. Let C =
√

1
κ andM be the set of all missing jobs. Also let

B be the set of all blocking jobs and B̃ be the set of all jobs reserved from blocking
jobs and scheduled at the reservation times. Then directly from the lemma 3,
we can see that ||M|| ≤ 2(1 + C)||B||+ 2||B̃|| if m is even. In the case when m
is odd, the jobs scheduled on the last machine in the schedule of OPT have the
jobs scheduled on the class cn−1 as the blocking jobs, defined similarly to the
above, where n = �m

2 �. Then we can also see that ||M|| ≤ 3(1+ C)||B||+ 3||B̃||.

Corollary 1. Let M be the set of all missing jobs and let A be the set of all
jobs scheduled by A. Then,

||M|| ≤ 3(2 +

√
1
κ

)||A||.

As a consequence of the above lemmas, we show that A is O(
√

1
κ )-competitive.

Theorem 1. Let κ > 0 be the patience of a job instance. Then the nonpreemp-

tive online algorithm A defined on multiple machines is (7 + 3
√

1
κ )-competitive.

Proof. Let A and O be the set of all jobs scheduled by A and OPT , respectively,
and letM be the set of all missing jobs. Also let U and P be the set of all urgent
jobs and the set of all patient jobs, respectively. Then all jobs in (O ∩ U) \M
are scheduled by A and from the lemma 1, all jobs in P are also scheduled by
A. So from the corollary 1,

||O|| ≤ ||M||+ ||O \M|| ≤ (7 + 3
√

1
κ )||A||. ��

3 Jobs with Arbitrary Weights

In this section, we will study about an online scheduling for jobs with weights.
Before we consider the multiple machines case, we will deal with the single
machine. In both case, each job Ji has a constant number wi, representing its
importance and a value density λi = wi

pi
. Also we consider the importance ratio λ,

the ratio of the maximum value density to the minimum value density. Similarly
to the previous section, we define busy periods, loose periods, urgent jobs, and
patient jobs. Then the lemma 1 still holds in both case.
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3.1 Single Machine

First we are concerned with the difficulty of the problem. We derive a lower
bound on the competitive ratio of any online algorithm on a single machine.

Theorem 2. Let κ > 0 and λ be the patience of the job instance and the im-
portance ratio, respectively. Then the competitive ratio of any online algorithm
on a single machine is at least 1 + λ(1 + 1

κ ).

Proof. Let α = κ + 1 be an integer. At time 0, there arrives a job J1 with the
processing time of α+2ε, an infinite deadline, and the weight of α+2ε. Then the
job J1 must be scheduled at some time t by any online algorithm B so that it
may have a bounded competitive ratio. At time t+ ε, α jobs with the processing
time of 1, the deadline of t + α + ε, and the weight of λ arrive. Also at the same
time, there arrives another job J2 with the processing time of 1 + 1

κ and the
weight of (1 + 1

κ)λ. The job J2 has the deadline of t + α + (1 + 1
κ ) + ε. Then

all the given jobs satisfy the definition of the patience κ. Also we see that the
α jobs and the job J2 have their expiration times of at most t + α + ε. So they
cannot be scheduled due to J1. But OPT can schedule all the jobs, delaying the
first job J1 after the schedule of the other jobs. Thus the competitive ratio of
B is at least 1 + λα

α+2ε (1 + 1
κ ). By choosing sufficiently small ε, the lower bound

becomes 1 + λ(1 + 1
κ ). ��

Here we present an optimal online algorithm with the competitive ratio to meet
the lower bound. It is a simple greedy algorithm G which at any idle time
of the machine, schedules any job having already arrived. For convenience, we
choose the job with the largest weight. The schedule of G is divided into busy
periods and the other ones. The analysis can be performed independently in
each busy period and we will concentrate on only one busy period. So all jobs
are assumed to arrive in the busy period [0, 
]. The urgent jobs and the patient
jobs are defined to have expiration times in [0, 
] and after time 
, respectively.
The set of all urgent jobs and the set of all patient jobs are denoted by U and
P , respectively.

Theorem 3. Let κ > 0 and λ be the patience of the job instance and the im-
portance ratio, respectively. The greedy algorithm G is 1 +λ(1 + 1

κ )-competitive.

Proof. Let O and G be the set of all jobs scheduled by OPT and G, respectively.
The jobs scheduled by G in [0, 
] are denoted by J1, . . . , Jn, in order. Let Ji have
the processing time pi and the value density vi, i = 1, . . . , n. Then, ||G|| =∑

i vipi ≥ vmin
, where vmin is the smallest value density in the job instance.
We also consider the jobs O1, . . . , Om in U ∩O in order. Each job Oi has the

processing time po
i and the value density vo

i . Then only the last job Om may
be completed after time 
. Assume that Om is completed after time 
. Then,∑m−1

i=1 po
i ≤ 
 and κpo

m ≤ 
. Thus, ||U ∩ O|| =
∑

i vo
i po

i ≤ vmax(
 + �
κ ), where

vmax is the largest value density. So the upper bound on the competitive ratio
of G is derived as follows: ||O|| = ||P ∩O||+ ||U ∩O|| ≤ ||G||+ λ(1 + 1

κ )||G|| =
(1 + λ(1 + 1

κ ))||G||. ��



50 J.-H. Kim

3.2 Multiple Machines

To obtain an algorithm Aw, we will slightly modify the algorithm A given in
the previous section. In A, we compared the processing times of J and J ′, for
the arriving job J and the currently processed job J ′. But in Aw, we compare
their weights, that is, we use the inequality w(J) ≥ C · w(J ′). When the job J
arrives at time t, if w(J) ≥ C · w(J ′) and the inactive machine M is idle, then
update active-machinei to M and schedule J on M . If there is also a processed
job J ′′ on M , then put J into the pool and if J ′′ is completed at time s while
J ′ is still processed at s, we say that J is reserved from J ′ at s and s is the
reservation time of J . When a job is completed at t on active-machinei, we
choose the job J with the largest weight in the pool. If M is idle at t, then we
schedule J on active-machinei. If there is a job J ′′ processed at time t on M ,
then we schedule J on active-machinei only if w(J) ≥ C ·w(J ′′). Otherwise, we
just update active-machinei to M . When a reservation time s is met, choose the
job with the largest weight among all jobs reserved at s, if any and if such a job
exists, update active-machinei to M and schedule the chosen job on M . Here

we choose C as max{1,
√

λ
κ}. As in the previous section, we can define a missing

job J and its blocking job bJ in the same meaning. Then the following lemmas
are derived.

Lemma 4. Let J be a job given in a class ci at time t in Aw. If a job J ′ is
currently processed on active-machinei such that w(J) ≥ C ·w(J ′) and a job J ′′

is processed at t on the inactive machine M , then J can be scheduled at time s,
where s is the completion time of J ′′.

Proof. There are two cases in which J ′ is scheduled. One is that J ′ arrives after

the start time of J ′′ and satisfies w(J ′) ≥
√

λ
κw(J ′′), and the other is that

J ′ is scheduled after a completion of a job. In the latter case, J ′ also satisfies

w(J ′) ≥
√

λ
κw(J ′′). Thus we can see that w(J) ≥ λ

κw(J ′′). From the definition

of the patience κ, sl(J) ≥ κp(J) ≥ p(J ′′)λw(J′′)/p(J′′)
w(J)/p(J) ≥ p(J ′′). It says that J

can be scheduled after the completion of J ′′. ��

Lemma 5. If missing jobs J1, . . . , Jn, scheduled on the same machine and
arranged in order of their start times in the optimal schedule, have the same
blocking job b, then,

n∑
i=1

w(Ji) ≤ (1 + Δ)(Cw(b) + w(b̃)),

where b̃ is the job scheduled next to b in the class if such a job exists.

Proof. First we see that
∑n−1

i=1 pi ≤ p(b). Let Jj be a missing job for j = 1, . . . , n
and let s be the time when Jj starts to be processed in the optimal schedule.
We consider the last time t when Jj is checked by Aw before s. Let a be the job
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processed at t in the class. If a is not b, then we can see that w(Jj) ≤ Cw(a).
Since w(a) ≤ w(b), w(Jj) ≤ Cw(b). If a is exactly b, then either w(Jj) ≤ Cw(b)
or w(Jj) ≤ w(b̃). Therefore, w(Jn) ≤ Cw(b) + w(b̃) and

n−1∑
i=1

w(Ji) ≤
n−1∑
i=1

w(Ji)pi ≤
n−1∑
i=1

pi(Cw(b) + w(b̃)) ≤ p(b)(Cw(b) + w(b̃))

≤ Δ(Cw(b) + w(b̃)). ��

Corollary 2. Let M be the set of all missing jobs and let A be the set of all
jobs scheduled by A. Then,

||M|| ≤ 3(1 + Δ)(C + 1)||A||.

From corollary 2, an upper bound on the competitive ratio of Aw is given.

Theorem 4. Let κ > 0 and λ be the patience of the job instance and the im-
portance ratio, respectively, and let Δ be the largest processing time. Then Aw

is (1 + 3(1 + Δ)(max{1,
√

λ
κ}+ 1))-competitive.

From theorem 4, in case κ ≥ λ, i.e., κ is sufficiently large, Aw is (7 + 6Δ)-
competitive. If Δ = 1, i.e., each job has an equal processing time, then Aw is

13-competitive. In case κ ≤ λ, for the equal processing time, Aw is (7 + 6
√

λ
κ )-

competitive.
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Abstract. We consider the relationship of two fixed point theorems
for direction-preserving discrete correspondences. We show that, for any
space of no more than three dimensions, the fixed point theorem [4] of
Iimura, Murota and Tamura, on integrally convex sets can be
derived from Chen and Deng’s fixed point theorem [2] on lattices by
extending every direction-preserving discrete correspondence over an in-
tegrally convex set to one over a lattice. We present a counter example
for the four dimensional space. Related algorithmic results are also pre-
sented for finding a fixed point of direction-preserving correspondences on
integrally convex sets, for spaces of all dimensions.

1 Introduction

A recent work on discrete fixed point introduced by Iimura [4] has attracted a
series of work on related problems. Iimura, Murota and Tamura [6] improved the
original proof of Iimura. Chen and Deng presented an alternative discrete fixed
point theorem for general domain with a matching algorithmic bound for all finite
dimensions [2]. In [8], Laan, Talman and Yang presented an iterative algorithm
for the zero point problem. Friedl, Ivanyosy, Santha and Verhoeven obtained a√

n upper bound for the dimension two Sperner problem [7], thus a matching
bound when combined with the lower bound of Crescenzi and Silvestri [3].

These problems are closely related. The matching bound of Friedl, Ivanyosy,
Santha and Verhoeven for the Sperner problem is in some sense a mirror result
of an earlier work of Hirsch, Papadimitriou and Vavasis on 2D approximate fixed
point [5]. In addition, the higher dimensional query complexity for the Sperner
problem of Friedl, Ivanyosy, Santha and Verhoeven, i.e., with query time linear
in the separation number of the skeleton graph of the manifold and the size of
its boundary, compares closely with the upper bound of Chen and Deng [2], for
the query complexity of finding a discrete fixed point.

In this work, we set to understand the relationship between the discrete fixed
point theorem of Iimura, Murota and Tamura, and the discrete fixed point
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theorem of Chen and Deng. In both cases, the discussion focuses on direction-
preserving correspondences. The main differences are the restriction of the do-
mains for which the theorems could apply. Murota, Iimura and Tamura consider
a domain which is integrally convex. Informally, a point in the convex hull of
the domain can be represented by a convex combination of integral points in
the domain within unit distance from it. The work of Chen and Deng allows
the domain not to be convex at all. Moreover, the result of Murota, Iimura and
Tamura restricts the correspondence to be bounded in the domain. A more gen-
eral boundary condition for correspondence is presented in Chen and Deng [2].
It is therefore natural to believe that the work of Murota, Iimura and Tamura
can be derived from the seemingly more general version of Chen and Deng.

Indeed, for dimension two and three, we confirm it by embedding an integra-
lly convex set in a lattice so that the bounded correspondence on the integrally
convex set can be extended to a bounded and direction-preserving function on
the lattice. Any fixed point of this function leads to a fixed point of the original
correspondence. Therefore, a claim of existence of a fixed point on the lattice
leads to a claim of existence of a fixed point in the integrally convex set. Such a
direct extension, however, does not carry over to higher dimensions. We derive
an interesting counter example for four-dimensional space.

There is another unsettled issue for the discrete fixed point theorem of Murota,
Iimura and Tamura, that of algorithmic issues. In [8], Laan, van der Talman, and
Yang presented an iterative algorithm which is shown to terminate with a fixed
point. Our extension theorem for two and three dimensional spaces directly an-
swers this problem and derives a matching algorithmic bound. For higher constant
dimensional spaces, we need to refine the domain to derive an algorithmic solution.

In section 2, we define a fixed point problem called FPCd. Previous results
are then reviewed in section 3. We formalize the concept of function extension
mechanism in section 4. After presenting positive results for both two and three
dimension spaces, we derive a counter example for the four-dimensional space in
section 5. Section 6 gives a sketch of an algorithm to solve problem FPCd, for
spaces of all dimensions, which implies a matching bound for the time complexity
of FPCd. Finally, we conclude in section 7 with discussions on the difference
between the two approaches.

2 Definition of Problem FPCd

In this section, we will define a fixed point problem called FPCd. It originates
from the fixed point theorem of Iimura, Murota and Tamura [4, 6] concerning
direction-preserving correspondences on integrally convex sets.

Definition 1. Let X be a nonempty finite subset of Zd and Γ : X →→ X be a
nonempty-valued correspondence ( that is, for every x ∈ X, Γ (x) ⊂ X ).

A point x ∈ X is said to be a fixed point of Γ if x ∈ Γ (x).
For each x ∈ X, let τ(x) ∈ Γ (x) denote the projection of x onto Γ (x), i.e.,

||τ(x) − x ||2 = min
y∈Γ (x)

||y − x ||2
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where ||y − x ||2 = (
∑d

i=1(yi − xi )2 )1/2.

Definition 2. A correspondence Γ : X →→ X where X ⊂ Zd is said to be
direction-preserving on X if for all x, x′ ∈ X with ||x − x′ ||∞ ≤ 1, we have
(τi(x)− xi ) (τi(x′)− x′

i ) ≥ 0 for every 1 ≤ i ≤ d.

We now define two classes of convex sets in Zd, integrally convex sets and dis-
cretely convex sets, which play important roles in the fixed point theorem.

Definition 3. A finite set X ⊂ Zd is integrally convex if for all points y ∈ X,
y ∈ X ∩N(y), where N(y) = { z ∈ Zd

∣∣ ||z − y ||∞ < 1 }.

Definition 4. A finite set X ⊂ Zd is discretely convex if X = X ∩ Zd.

Theorem 1 (Theorem of Iimura, Murota and Tamura [6]). Let X ⊂ Zd

be a nonempty integrally convex set. For every nonempty, discretely convex-
valued and direction-preserving correspondence Γ from X to itself, there must
exist a fixed point x∗ ∈ X such that x∗ ∈ Γ (x∗).

In brief, the task of the fixed point problem FPCd is to find a fixed point
of correspondence Γ which satisfies all the conditions in Theorem 1. Formally
speaking, the input includes both the set X and correspondence Γ . Here X is
described by all the extreme points of convex set X. This representation of X is
succinct, according to the following lemma.

Lemma 1. For every d ≥ 1, there exists an integer Nd such that, for all inte-
grally convex sets X ⊂ Zd, the number of extreme points of X is less than Nd.

On the other hand, correspondence Γ looks like a black box to algorithms. We
only consider algorithms which are based on correspondence evaluations. Such
an algorithm should behaves as follows: It makes up a test point r1 ∈ X , sends
it to the black box and receives τ(r1). Based on r1 and τ(r1), it computes a new
test point r2 and evaluate τ(r2). It continues until a fixed point of Γ is reached.
We assume that each evaluation of τ takes one step.

Diameter of the integrally convex set X , that is, n = maxx,y∈X ||x − y ||∞,
is taken as the input size of FPCd. We are interested in the time complexity
Td(n) of problem FPCd. Our main result is stated in the following theorem.

Theorem 2. For every constant d ≥ 2, Td(n) = Θ(nd−1).

Problem FPCd is closely related to problems DFPd and AFPd [2].

3 Previous Results on Fixed Point Problems

In this section, we review both the problem definitions and algorithmic results
in [2]. For every 1 ≤ k ≤ d, we use ek to denote the kth unit vector of Zd. Here
ek

k = 1 and ek
i = 0 for all 1 ≤ i �= k ≤ d,.
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Definition 5. For all p < q ∈ Zd, Ap,q = { r ∈ Zd
∣∣ ∀ 1 ≤ i ≤ d, pi ≤ ri ≤ qi }.

Its boundary is defined as Bp,q = { r ∈ Ap,q

∣∣ ∃ 1 ≤ i ≤ d, ri = pi or qi }.

Definition 6. Function f : S → { 0,±e1,±e2 ... ± ed } where S ⊂ Zd is said
to be direction-preserving if for all r1, r2 ∈ S which satisfy ||r1 − r2 ||∞ ≤ 1, we
have ||f(r1)− f(r2) ||∞ ≤ 1.

When S = Ap,q, f is said to be bounded if r + f(r) ∈ Ap,q for all r ∈ Bp,q.

It is proved in [2] that any function f which is both bounded and direction-
preserving has a zero point r∗ ∈ Ap,q such that f(r∗) = 0. The task of problem
DZPd is to find such a point in Ap,q. To get information of f , algorithms make
up test points and evaluate f at these points. Similarly, we use T 1

d (n) to denote
the time complexity of DZPd, where n = max1≤i≤d (qi − pi).

Definition 7. Map G : Ed = [0, 1]d → Rd satisfies a Lipschitz condition with
constant M if ||G(x) − G(y) ||∞ ≤M ||x − y ||∞ for all x, y ∈ Ed.

We use LM,d to denote the set of all those maps F : Ed → Ed such that
G(x) = F(x)− x satisfies a Lipschitz condition with constant M .

By Brouwer’s fixed point theorem, every mapF ∈ LM,d has a fixed point x∗ ∈ Ed

such that F(x∗) = x∗. Given a map F ∈ LM,d and ε > 0, the output of problem
AFPd is an approximate fixed point x∗ ∈ Ed with error bounded by ε. More
exactly, x∗ should satisfy ||F(x∗) − x∗ ||∞ ≤ ε. Similarly, F looks like a black
box to algorithms, which can only be accessed by evaluations. We use T 2

d (M, ε)
to denote the time complexity of problem AFPd.

Theorem 3 ([2]). For every constant d ≥ 2,

T 1
d (n) = Θ(nd−1) and T 2

d (M, ε) = Θ
((M

ε

)d−1
)
.

In fact, the lower bound of Td(n) in Theorem 2 can be easily derived from the
lower bound of T 1

d (n) above.

4 Extension Mechanism for Low Dimensional Spaces

In this section, we focus on a natural idea to solve problem FPCd. First, we
formalize the concept of function extension mechanism Md. Its existence gives
an algorithm for FPCd with time complexity O(nd−1). M2 and M3 are then
constructed and we get the upper bound in Theorem 2 for cases d = 2 and 3.

4.1 Definition of Function Extension Mechanism Md

The discrete approach presented in this section is based on the existence of al-
gorithms for problem DZPd with time complexity O(nd−1). Let Ap,q be the
smallest set that contains X which is the domain of Γ and τ . A function exten-
sion mechanism Md extends map τ to be a direction function f from Ap,q to
{ 0,±e1,±e2 ... ± ed } which is both bounded and direction-preserving. We can
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use any algorithm for problem DZPd to find a zero point of f . Properties of
Md guarantee that, given a zero point of f , one can find a fixed point of map τ
(and thus, correspondence Γ ) very efficiently.

Definition 8. Given an input pair (X, Γ ) of FPCd, if the integrally convex
set X is non-degenerate, that is, X is a d-polytope in Rd, then function exten-
sion mechanism Md = (Ad,Bd) for d-dimensional space constructs a direction
function f from Ap,q to { 0,±e1, ... ±ed }.

The following five properties should be satisfied:

– P1. Function f is both bounded and direction-preserving on Ap,q;

– P2. For every r ∈ Ap,q, algorithm Ad takes (r, X, τ) as input and computes
f(r) with O(1) (d is viewed as a constant here ) running time;

– P3. For every r ∈ X, f(r) = 0 if and only if τ(r) = r;

– P4. For evert r ∈ X such that τ(r) �= 0, f(r) · (τ(r) − r) > 0;

– P5. For every zero point r of f such that r /∈ X, algorithm Bd takes (r, X, τ)
as input and computes a fixed point r′ ∈ X of τ with O(1) running time.

Clearly, once we find a mechanism Md for d-dimensional space, we get an al-
gorithm for FPCd with time complexity O(nd−1) ( if X is degenerate, then we
exhaustively check every point in X , since |X | ≤ nd−1 ). From now on, we always
assume that X is non-degenerate.

4.2 Function Extension Mechanism M2 for Case d = 2

M2 is closely related to a map ψ from Ap,q to X . For every r ∈ X , ψ(r) = r.
Otherwise, ψ(r) = r̃ where

|r1 − r̃1 | = min
r′∈X, r2=r′

2

|r1 − r′1 |.

The construction of function f is described in figure 1.
Properties P2, P3 and P4 are easy to verify. For property P5, if r �∈ X and

f(r) = 0, then f(r′) = 0 where r′ = ψ(r). With the succinct representation of
X , r′ = ψ(r) can be computed in O(1) time. Proof of the following lemma is
available in the full version [1].

Lemma 2. f constructed by M2 is both bounded and direction-preserving.

Function Extension Mechanism M2

1: for any r ∈ X

2: if τ (r) = 0 then f ′(r) = 0
3: else if τ2(r) �= 0 then f ′(r) = sign (τ2(r)) e2

4: else f ′(r) = sign (τ1(r)) e1

5: for any r ∈ Ap,q, f(r) = f ′(ψ(r))

Fig. 1. Details of the Function Extension Mechanism M2
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4.3 Function Extension Mechanism M3 for Case d = 3

Behavior of the mechanism M3 is similar to M2, while the details are a little
more complicated. First, we divide Ap,q into three pairwise disjoint sets, X , S1
and S2 where

S1 = { r /∈ X, r ∈ Ap,q

∣∣ ∃ r′ ∈ X, r2 = r′2 and r3 = r′3 },
S2 = { r /∈ X ∪ S1 , r ∈ Ap,q

∣∣ ∃ r′ ∈ X ∪ S1, r1 = r′1 and r3 = r′3 }.

We then define two maps. ψ1 is from X ∪ S1 to X . For all r ∈ X , ψ1(r) = r.
For all r ∈ S1, ψ1(r) = r̃ where

|r1 − r̃1 | = min
r′∈X, r2=r′

2, r3=r′
3

|r1 − r′1 |.

Map ψ2 is from Ap,q to X ∪ S1. For all r ∈ X ∪ S1, ψ2(r) = ψ1(r). For all point
r ∈ S2, ψ2(r) = r̃ where

|r2 − r̃2 | = min
r′∈X∪S1, r1=r′

1, r3=r′
3

|r2 − r′2 |.

Given a map τ , M3 first convert it into a direction function f ′ from X to
{0,±e1,±e2 ,±e3 }. After extending f ′ to be f ′′ on X ∪ S1 using map ψ1, we
employ map ψ2 to extend f ′′ onto Ap,q. The difficulty here is that, to keep
the direction-preserving property, we must be careful when dealing with some
boundary points of X .

Definition 9. Point r ∈ X is said to be a left (or right ) boundary point of X
if (r1 − 1, r2, r3) /∈ X (or (r1 + 1, r2, r3) /∈ X ). We use LX (or RX ) to denote
the set of left (or right ) boundary points of X.

From the definition of integrally convex sets, we get the following lemma.

Lemma 3. For all points r1, r2 ∈ LX (or RX ) which satisfy |r1
2 − r2

2 | ≤ 1 and
|r1

3 − r2
3 | ≤ 1, we have | r1

1 − r2
1 | ≤ 2.

Furthermore, if |r1
1 − r2

1 | = 2, then |r1
2 − r2

2 | = |r1
3 − r2

3 | = 1.

Definition 10. Pair (r1, r2 ) where r1, r2 ∈ LX (or r1, r2 ∈ RX ) is said to be
a bad pair of X if | r1

2 − r2
2 | = | r1

3 − r2
3 | = 1 and | r1

1 − r2
1 | = 2. We use BX to

denote the set of bad pairs of X.
r ∈ X is said to be bad if there exists r′ ∈ X such that (r, r′) ∈ BX .

Each bad pair (r1, r2) of X gives a supporting hyperplane Hr1,r2 = (u, a) of X
where |ui | = 1, for all 1 ≤ i ≤ 3. For example, if r1 = (0, 0, 0) and r2 = (2, 1, 1)
are two left boundary points, then one can prove both (1, 1, 0) and (1, 0, 1) belong
to LX . These points together define a hyperplane Hr1,r2 = (−1, 1, 1, 0). With
Hr1,r2 = (u, a), we define Sr1,r2 = {−u1 e1,−u2 e2,−u3 e3}.

On the other hand, for a bad point r ∈ X , there might be more than one
point r′ such that (r, r′ ) ∈ BX . We define Sr =

⋂
(r,r′)∈BX

Sr,r′ which has the
following property.
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Lemma 4. For every bad point r ∈ X, 1 ≤ |Sr | ≤ 3.
If Sr = {+ek } (or Sr = {−ek}) where 1 ≤ k ≤ 3, then rk = min r′∈X r′k

(or rk = maxr′∈X r′k ). Furthermore, if k �= 1, then there are exactly two points
r′ ∈ X such that (r, r′ ) ∈ BX .

If |Sr | > 1 and τ(r) �= r, then there exists a unit vector cek ∈ Sr such that
cek · (τ(r) − r) > 0.

For every bad point r such that Sr = {cek } where k �= 1 and |c | = 1, we define
vectors vL, vR ∈ {±e1,±e2,±e3 } based to the value of τ(r) and the shape of
X around r. Only the case for c = 1 and k = 3 is described below, as other cases
are similar.

Case 1: (r, rL), (r, rR ) ∈ BX where rL = (r1 − 2, r2 − 1, r3 − 1), rR =
(r1 +2, r2 +1, r3−1). If τ3(r) < 0, then vL = vR = −e3. Otherwise, we have
τ1(r) = τ2(r). If τ1(r) > 0, then vL = +e1 and vR = +e2, or else vL = −e2

and vR = −e1.

Case 2: (r, rL), (r, rR ) ∈ BX where rL = (r1 − 2, r2 + 1, r3 − 1), rR =
(r1 +2, r2−1, r3−1). If τ3(r) < 0, then vL = vR = −e3. Otherwise, we have
τ1(r) = −τ2(r). If τ1(r) > 0, then vL = +e1 and vR = −e2, or else vL = +e2

and vR = −e1.

In both cases, we have vL · (τ(r) − r) > 0, vL ∈ Sr,rL , vR · (τ(r) − r) > 0 and
vR ∈ Sr,rR . Details of the mechanism M3 are described in figure 2. Similarly,
properties P2, P3, P4 and P5 are easy to verify. Proof of the following lemma is
available in the full version.

Function Extension Mechanism M3

1: for any r ∈ X

2: if τ (r) = 0 then f ′(r) = 0
3: else if r is a bad point of X and |Sr | > 1 then
4: there must exist k such that cek ∈ Sr and cτk(r) > 0, set f ′(r) = cek

5: else let k be the largest integer satisfies τk(r) �= 0, set f ′(r) = sign (τk(r)) ek

6: for any r ∈ X S1

7: if r ∈ X then f ′′(r) = f ′(r)
8 : else if f ′(ψ1(r)) = 0 then f ′′(r) = 0
9: else if ψ1

1(r) = min r′∈X r′
1 then f ′′(r) = +e1

10: else if ψ1
1(r) = max r′∈X r′

1 then f ′′(r) = −e1

11: else if r′ = ψ1(r) is a bad point of X and Sr′ = { cek } where k �= 1 then
12: if r1 < r′

1 then f ′′(r) = vL

13: else f ′′(r) = vR

14: else f ′′(r) = f ′(ψ1(r))
15: for any r ∈ Ap,q, f(r) = f ′′(ψ2(r))

Fig. 2. Details of the Function Extension Mechanism M3
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Lemma 5. f constructed by M3 is both bounded and direction-preserving.

5 A Counter Example for 4-Dimensional Space

Although function extension mechanism Md does exist for cases d = 2 and 3,
we find great difficulty in designing Md for higher dimensional spaces. In this
section, we construct a set of maps S in the 4-dimensional space and prove the
non-existence of mechanismM4.

The domain of maps in S is

X =
{

r ∈ Z4
∣∣∣ ∀ 1 ≤ i ≤ d, ri ≥ 0 and r1 + r2 + r3 + r4 ≤ n

}
which can be divided into layers X = X1 ∪ X2 ... ∪ Xn = Y ∪ Z. Here set
Xi = {r ∈ X | r4 = i}, Y = Xn ∪Xn−1 ... ∪Xn−5 and Z = X − Y . For every
r ∈ Z, we construct a map τr as follows, and S = {τr | r ∈ Z }.

For every two maps τr , τr′ ∈ S, τr(p) = τr′(p) for all p ∈ Y . Values of τ ,
where τ ∈ S, on the first four layers Xn, Xn−1, Xn−2 and Xn−3 are described
in figure 3. In this figure, an arrow cek on point r means Γ (p) = { p + cek }
and τ(p) = p + cek. For every p ∈ Xn−4, if ||p − (2, 0, 0, n − 4) ||∞ > 1, then
τ(p) = p− e4. If p = (2, 0, 0, n− 4), then τ(p) = p− e1. Otherwise, τ(p) − p =
τ((p1, p2, p3, p4+1))−(p1, p2, p3, p4+1). Finally, τ(p) = p−e4 for every p ∈ Xn−5,.

e3

e1

e2

+ e 4

- e 4

Fig. 3. A Counter Example

Values of τr on Z are described as follows. For every p ∈ Z, if p = r, then
τr(p) = p. Otherwise, we have two cases. If ||r ||1 > ||p ||1 where ||r ||1 =

∑4
i=1 ri,

letting k be an integer such that rk > pk, then τr(p) = p + ek. If ||r ||1 ≤ ||p ||1,
letting k be an integer such that rk < pk, then τr(p) = p − ek. One can prove
the following property of maps in S.

Lemma 6. τr : X → X is direction-preserving and r is its only fixed point.
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Now we prove the non-existence of mechanismM4. Let’s make a reduction to ab-
surdity, considering that there exists a mechanismM4 = (Ad,Bd), however, sat-
isfies all the five properties P1, P2 ...P5, then for every map τr ∈ S, it constructs
a direction-preserving function fr. By property P4, we have fr(r′) = τr(r′)− r′

for every r′ ∈ X . Since fr is direction-preserving, we must have fr(r∗) = 0 where
r∗ = (1, 1, 1, n− 2).

Let’s pick a map τr ∈ S arbitrarily and run Bd with input (r∗, X, τr). Af-
ter constant steps, it should output a fixed point r′ of τr according to P5. By
Lemma 6, we have r′ = r. This means that maps in S can be recognized within
constant steps, which contradicts with the fact that |S | = Θ(n4). As a result,
our assumption is wrong and no such mechanism exists.

6 An Algorithm for Problem FPCd

In this section, we briefly describe an algorithm for FPCd and prove the upper
bound in Theorem 2, for spaces of all dimensions.

Definition 11. For every point r ∈ Zd, we define a hypercube Cr,n ⊂ Rd as

Cr,n =
{

x ∈ Rd
∣∣∣ ri ≤ xi ≤ ri + n, for all 1 ≤ i ≤ d

}
.

Let (Γ, X) be an input instance of FPCd, then we use Cr,n to denote the smallest
hypercube containing X . Starting from Γ , we build a map F from Cr,n

to itself. Details of the construction can be found in the full version. We give the
following lemmas without proof.

Lemma 7. Given an input instance (Γ, X) of problem FPCd, for every point
x ∈ Cr,n, F(x) can be computed in O(1) time.

Lemma 8. For every constant d ≥ 2, there exists a constant Dd such that, for
every input instance (Γ, X) of problem FPCd, map F belongs to LDd,d.

Lemma 9. For every point x∗ ∈ X such that ||F(x∗) − x∗ ||∞ < 1/(d + 1)2,
there must exist a fixed point of correspondence Γ in N(x∗) ∩ X. Recall that
N(x∗) = { r ∈ Zd | ||r − x∗ ||∞ < 1 }.

Lemma 10. For every x ∈ Cr,n such that ||F(x) − x||∞ < 1/(d1/2(d + 1)2),
point x∗ = ΨX(x) must satisfy ||F(x∗) − x∗ ||∞ < 1/(d + 1)2. Here ΨX is the
projection onto X where ||x − ΨX(x) ||2 = miny∈X ||x− y ||2.

F can be scaled to be a map F ′ from Ed = [0, 1]d to itself as follows. For every
point x ∈ Ed, F ′(x) − x = (F(nx + r) − (nx + r))/n.

The reason we build F and F ′ is to find a fixed point of Γ . By Lemma 8,
one can prove that the new map F ′ also belongs to LDd,d, thus we can use an
algorithm for AFPd to compute an ε = 1/(d1/2(d + 1)2n) approximate fixed
point x of F ′, and x∗ = nx + r must be an 1/(d1/2(d + 1)2) approximate fixed



62 X. Chen and X. Deng

Algorithm for Problem FPCd

1: Let (Γ, X) be the input instance of problem FPCd

2: Let F and F ′ be the two maps constructed
3: Use an algorithm for AFPd to find an ε approximate fixed point x of F ′

4: compute x∗ = nx + r

5: if x∗ ∈ X , then
6: query Γ for every point in N(x∗) ∩ X and output a fixed point of Γ

7: else
8: compute x′ = ΨX (x∗)
9 : query Γ for every point in N(x′) ∩ X and output a fixed point of Γ

10: endif

Fig. 4. The Algorithm for Fixed Point Problem FPCd

point of F . Lemma 9 and 10 together show that, once we get x∗, a fixed point
of Γ can be located easily.

The algorithm is described in figure 4. Let’s analyze its time complexity. For
every test point x ∈ Ed which is queried by the AFPd algorithm, constant steps
are sufficient to compute F ′(x) according to Lemma 7. By Theorem 3, the time
used by the AFPd algorithm in line 3 is O ((Dd/ε)d−1) = O (nd−1). This gives
us the upper bound of time complexity Td(n) in Theorem 2.

7 Concluding Remarks

In this paper, we described two different approaches to solve the discrete fixed
point problem FPCd. In the discrete approach, we try to extend map τ to be a
direction-preserving function f on lattice Ap,q. In the continuous approach, we
construct a Lipschitz map F3 from Cr,n to itself. While the former only works
for low dimensional spaces, the latter solves problem FPCd for spaces of all
dimensions. But how does the algorithm for problem AFPd work? Actually, it
samples map F3 with a suitable interval, builds a direction function which is
both bounded and direction-preserving, and employs an algorithm for problem
DZPd to find an zero point which is also an approximate fixed point of F3 [2].

Thus in both approaches, we construct (explicitly or implicitly) a bounded
and direction-preserving function on some lattice. The difference is that, the
lattice of the continuous approach has much higher density than the one of
the discrete approach. While no function extension mechanism exists for high
dimensional spaces, we can always construct a direction-preserving function on
a denser lattice implicitly using the continuous method.
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Abstract. We investigate LP-polytopes generated by mean payoff
games and their properties, including the existence of tight feasible solu-
tions of bounded size. We suggest a new associated algorithm solving a
linear program and transforming its solution into a solution of the game.

1 Introduction

The goal of this paper is to investigate linear programming formulations for
mean payoff games (MPGs) [8, 9], a well-known problem in NP∩coNP, with an
open P-membership status. Recently combinatorial randomized subexponential
algorithms for linear programming were successfully applied for solving several
kinds of games [5, 6, 2, 1, 3]. However, to our knowledge, there are no previous
attempts at investigating LP-formulations for MPGs and associated polyhedra,
except recent work [2, 1, 3] representing some infinite games as instances of the
new so-called controlled linear programming problem (CLPP). In contrast, LP-
formulations and relaxations are well studied and understood for the overwhelm-
ing majority of combinatorial optimization problems [13].

Several naturally arising questions we address and solve are as follows.

1. Is it possible to describe/approximate solutions to an MPG by linear con-
straints, i.e., as a polyhedron or a polytope?

2. Do “real” solutions to MPGs lie inside this polytope, how can they be char-
acterized, are they vertices of this polytope?

We present several surprisingly interesting and simple properties, classify-
ing feasible solutions of the MPG-polytopes and giving new insights into the
combinatorial structure of the problem. Based on these, we describe a new
MPG-solving algorithm, which solves a linear program and then transforms (if
necessary) an optimal solution into a solution of the game by “tightening”.
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More specifically, we represent an MPG by a linear system with a totally
unimodular matrix, defining a nonempty integral MPG-polytope. Some vertices
of this polytope represent the so-called “tight” feasible solutions, which solve
the corresponding MPG. We suggest a new algorithm for finding tight solutions
based on minimizing a simple linear function and “tightening” an optimal so-
lution. In contrast to the TSP-polytope, for which no LP-description is to be
expected, MPG-polytopes are easily characterized, and any game can be solved
by optimizing a single (but unknown) linear function over such polytope. This
provides for a certain reduction in the size of the search space and is suggestive
for a new class of algorithms.

Combinatorial optimization and linear programming seem to be very produc-
tive tools for solving games. In [6] we generalized the shortest paths problem
to the controlled or longest shortest paths problem, and used it together with
combinatorial linear programming for solving MPGs. Combinatorial structures
underlying iterative improvement for games are explored in [5]. A related line of
research concerns applications of the Linear Complementarity Problem (LCP)
[10, 7], a nonlinear optimization theory we recently successfully applied to solving
several classes of infinite games and P-matrix Generalized LCPs [4, 14].

2 Preliminaries

2.1 Mean Payoff Games

We start by recalling basic definitions about mean payoff games (MPGs) and
then introduce the 0-mean partition problem, to which all other problems for
MPGs are polynomially reducible. The 0-mean partition problem is convenient
for the linear programming formulations and simplifies descriptions of different
algorithms. We further show that simplifying restrictions to ergodic MPGs (all
vertices have the same value), ergodic bipartite MPGs (players strictly alter-
nate moves), and ergodic complete bipartite MPGs (the game graph is complete
bipartite) can be done without loss of generality.

A mean payoff game (MPG) is a two-player game, played on a finite directed
edge-weighted graph G = (V, E, w), where the set of vertices V is partitioned
into two nonempty sets Vmax, Vmin, every vertex has at least one outgoing edge
(no sinks or leaves), and the weight function w is integer-valued.

We assume throughout the paper that n = |V | is the number of vertices of the
game graph G, nmax = |Vmax|, nmin = |Vmin|, and W is the maximal absolute
edge weight; thus w : E → {−W, . . . , W}.

Given an MPG, a play develops in the following way. Initially, a pebble is
placed in some vertex v0 and players Max and Min start constructing an infinite
sequence of edges {(vi, vi+1)}+∞

i=0 . If the pebble is in a vertex vi ∈ Vmax then Max
selects an outgoing edge from vi and moves the pebble to its destination vertex
vi+1, otherwise Min makes the analogous choice and move.

Players Max and Min are adversaries, the first one wants to maximize,
whereas the second one wants to minimize, respectively, the values
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lim inf
k→∞

1
k

k−1∑
i=0

w(vi, vi+1), and lim sup
k→∞

1
k

k−1∑
i=0

w(vi, vi+1). (1)

It turns out that MPGs are solvable in pure positional strategies for both
players, and every vertex has a value ν(v) [8, 9]. This value is equal to both limits
in (1), and both players can secure it by applying these strategies. Moreover,
when one player fixes his pure positional strategy, an optimal counterstrategy of
his adversary is polynomial time computable. Consequently the problem whether
the value of a vertex is above/below a certain threshold is in NP∩coNP.

An MPG is called bipartite if E ⊆ (Vmax× Vmin)∪ (Vmin×Vmax), i.e., players
strictly alternate moves. A bipartite MPG is complete if E = (Vmax × Vmin) ∪
(Vmin × Vmax), and incomplete otherwise. As usual, the weight of a cycle is the
sum of edge weights along the cycle.

2.2 0-Mean Partition Problem for MPGs

In this paper we concentrate on the following restricted problem, which poly-
nomially subsumes the problem of computing values of MPGs (as well as other
problems, as ergodic partitioning, finding optimal strategies). It also simplifies
the the algorithms, structure and properties of LP-representations.

0-Mean Partition Problem for MPGs.

Given: a bipartite MPG G without 0-weight cycles.
Find: a partition of vertices of G into sets G>0 and G≤0 of vertices with positive

and nonpositive values. ��

Restricting to this problem, with the additional constraints as stated, is no loss
of generality. We summarize it in the following two propositions.

Proposition 1. Finding values of MPGs is polynomial time reducible to the
0-mean partitioning problem.

Proof. For an arbitrary MPG, adding a constant k to every edge weight adds k
to every vertex value; multiplying every edge weight by a constant k multiplies
every vertex value by k. This is because values are defined by mean values of
optimal cycles wrt positional strategies, and because every cycle mean changes
by additive or multiplicative constant, respectively. Therefore, partitioning with
a rational mean threshold reduces to 0-mean partitioning.

Values of an MPG vertices are rationals with numerators and denominators up
to nW and n, respectively. If a value is known to belong to an interval of length ≤
1/n2, then it is uniquely determined (the smallest difference between two values
is 1

n−1 −
1
n ). Bisecting the range [−W, W ] with rational thresholds, polynomially

many in n and log W times, each time invoking the partition algorithm, we may
uniquely determine the value of a vertex [9, 15, 6]. ��

Proposition 2. In the 0-mean partition problem the following assumptions can
be done without loss of generality:
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1. the game graph has no 0-weight cycles,
2. the game graph is bipartite,
3. the values of all vertices are of the same sign;
4. the game graph is complete bipartite (with |Vmax| = |Vmin|).

Every reduction from general MPGs to a restricted case is polynomial.

Proof. Given an arbitrary MPG, consider the following chain of reductions.
1. Multiplying every edge weight by n+1 and subtracting one does not change

signs of positive- and negative-weight cycles, but 0-weight cycles (if any) become
negative-weight. The 0-mean partition remains the same.

2. The straightforward solution is to introduce a vertex of the opposite player
between two vertices of the same player. This, however, may increase the number
of vertices quadratically. A more economic solution, leading to just a linear
increase in the number of vertices is depicted in the figure below (the outgoing
edge from the new vertex gets weight 0). Note that this transformation may
actually change means of cycles, but not 0-means partitions, which is enough for
our purpose of computing values.

⇒

3. Let v be an arbitrary vertex of a bipartite MPG G without 0-weight cycles.
Construct G′ by adding a new backward edge from every vertex u �= v of G to
v of weight −M for an edge from a Max vertex and of weight +M for a Min
vertex, where M = (n− 1)W + 1. Suppose, a play in G′ starts from v. If Max
can secure a positive value of v in G, he can use the same strategy as in G never
using new edges. If Min never uses his new edges, then the value is the same
as in G. But if Min is the first to use his heavy edge back to v, the cycle thus
formed has a mean ≥ [(n − 1)W + 1 − (n − 1)W ]/n > 0 (and we refer to the
equivalence of finite and infinite MPGs [8]). The case when v has negative value
in G is symmetric. Now suppose a play starts in any other vertex v′ �= v. Then
each player can reach v and then follow the same strategy as he uses from v.
The signs of means in infinite plays thus formed, one starting from v′, the other
from v, are the same (the initial finite path does not matter (this argument also
depends on the equivalence between finite and infinite MPGs [8]). Hence, in G′

values of all vertices are of the same sign.
4. Let M = (n − 1)W + 1. Add all missing edges between Vmax and Vmin of

weight −M or +M depending on whether an edge leaves a Max or a Min vertex.
This makes the graph complete bipartite and preserves the signs of all values.
We can also assume both partitions have the same number of vertices. ��

Remark 1. In the above chain of reductions the numbers of vertices and edges
grow just linearly in the number of vertices n. In contrast, maximum absolute
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weights in each of 1, 3, and 4 are multiplied by n, resulting in the overall weight
multiplication by n3. Our algorithm operates on bipartite MPGs without 0-
weight cycles. Thus, assumptions 1, 2 cost us a factor of n in the weight increase.

2.3 Longest Shortest Paths (LSP)

The Longest Shortest Paths problem has previously been successfully applied to
solve MPGs in randomized subexponential time [6, 5]. Here we will use it to prove
the existence of small tight feasible solutions of the MPG-generated systems of
linear constraints (Section 4).

The Longest Shortest Path Problem.

Given: a weighted digraph (without 0-weight cycles) with a sink and a set of
controlled vertices.

Find: a selection of exactly one edge from each controlled vertex maximizing
the lengths of the shortest paths from each vertex to the sink. ��

3 LP Formulations for MPGs

The definition below does not assume that an MPG is bipartite nor complete.

Definition 1 (Linear Slack Constraints). For an MPG G let SG, called
slack constraints, be the following system of linear constraints:

1. for every edge x
w→ v with x ∈ Vmax write constraints

x = v + wxv + sxv, (2)
sxv ≥ 0, (3)

where sxv is a Max slack variable for the edge;
2. similarly, for every edge y

w→ v with y ∈ Vmin write constraints

y + s′yv = v + w′
yv, (4)

s′yv ≥ 0, (5)

where s′yv is a Min slack variable for the edge. ��

We adopt the convention that primed s′ and w′ denote Min slacks and weights
of edges outgoing from Min vertices. In the sequel we will freely identify edges
with their corresponding equality constraints.

The simple LP-formulation above allows one to derive many interesting MPG
properties to be discussed below. We start with the simplest, but useful

Proposition 3. For a cycle in an MPG G let wi, si, s′i (for i ∈ I) be weights
of all edges, all Max slacks, and all Min slacks on the cycle. Then SG implies∑

i∈I

wi +
∑
i∈I

si −
∑
i∈I

s′i = 0. (6)
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Proof. Just sum up left- and right-hand sides of the equalities corresponding to
edges on the cycle. ��

This proposition partially explains why the bipartite requirement is useful. In-
deed, whenever a positive weight cycle traverses only Max vertices in G, or a
negative weight cycle traverses only Min vertices, the system SG is infeasible,
because (6) cannot be satisfied.

With the introductory purpose of explaining the usefulness of linear slack
constraints, let us temporarily assume complete bipartiteness. Say that a solution
to a linear slack system is tight for Max (for Min, resp.), if for every Max vertex
(Min vertex, resp.) at least one outgoing edge has slack zero (we call such edges
tight). The following proposition shows that tight solutions determine the winner.

Proposition 4. If the system of slack constraints has a tight solution for

1. Max, then Max can enforce a nonnegative cycle in the corresponding MPG
from every vertex;

2. Min, then Min can enforce a nonpositive cycle in the corresponding MPG
from every vertex.

Proof. Let Max use any tight edges with zero slacks as his strategy. Then, by
(6), for every cycle that Min can create the sum of edge weights on the cycle is
nonnegative. The proof of the second claim is analogous. ��

The next section addresses the existence of (tight) solutions for the MPG linear
slack constraints and their relation to determining the winner. Now we introduce
MPG-polyhedra.

Definition 2 (MPG Polyhedron). An MPG-polyhedron is the feasible set of
the linear slack constraints corresponding to an MPG; see Definition 1. ��

We have seen above that some MPGs may induce empty polyhedra. The next
section shows that bipartite MPGs always have nonempty polyhedra. Here we
state simple properties of MPG-polyhedra.

Proposition 5. An MPG-polyhedron has no vertices.

Proof. Suppose (x, y, s) is a vertex. Then (x + α1, y + α1, s) (1 is a vector of
ones, α ∈ R) is also a feasible solution to slack constraints. Thus, any MPG-
polyhedron, with each point contains a line, hence has no vertices. ��

In Section 4 we introduce additional bounding constraints and an MPG-poly-
hedron becomes an MPG-polytope (bounded polyhedron), with vertices.

Another useful property of MPG-polyhedra is their integrality.

Proposition 6. For any MPG-polyhedron P one has conv(P ) = conv(PI).

Proof. Any MPG-generated linear slack system can be written as [A I](x, y, s)T

= b, where the entries in A correspond to x and y variables, and the identity
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matrix corresponds to the slacks. Every row of A has exactly one +1 and one
−1 entry and is thus totally unimodular. Totally unimodularity for [A I] follows
directly, since it is preserved when adding a column with at most one nonzero,
being ±1 [12, p. 280]. By [12, Theorem 19.1, p. 266], the polyhedron {v| [A I] v ≤
b} is integral whenever b is integral. Duplicating a row and multiplying a row by
−1 preserve total unimodularity and the polyhedron {v| [A I] v = b} is integral.

��

As a consequence, any linear function over an MPG-polyhedron with finite op-
timum, has an integral optimum. Moreover, optimizing any linear function over
an MPG-polyhedron can be done in strongly polynomial time, because the con-
straint matrix consists of 0 and ±1 entries.

4 Existence of Tight Solutions

In this section we consider linear slack systems corresponding to bipartite (not
necessarily complete) MPGs and show that they possess tight feasible solutions
of bounded size. We first generalize the notion of tightness, introduced (for the
case of complete bipartite MPGs) in the previous section.

Definition 3 (Tight Solution). Given a linear slack system SG obtained from
a bipartite MPG G without 0-weight cycles, say that a solution to SG is tight if
there is a partition of vertices of G into sets X and N such that:

1. every Min vertex in X has a tight edge to X;
2. every Max edge from X leads to X;
3. every Max vertex in N has a tight edge to N ;
4. every Min edge from N leads to N . ��

(Note that in the case of an ergodic MPG, e.g., a complete bipartite MPG, either
X or N should be necessarily empty.)

A tight solution to a slack system gives the 0-mean partitioning for the asso-
ciated MPG as shows the following

Proposition 7. G>0 = N and G≤0 = X.

Proof. If a play starts in N , then Max may just use his tight edges to stay in
N . When a cycle is eventually formed, by (6), the sum of weights on the cycle
is positive (there are no 0-weight cycles); hence, the mean is also positive.

Symmetrically, if a play starts in X , then Min just uses his tight edges to
stay in X . When a cycle is eventually formed, by (6), the sum of weights on the
cycle is nonpositive; hence, the mean is also nonpositive. ��

Here comes the main result of this section. Although there are well-known general
bounds on some feasible solution to a system of linear constraints (if it exists)
[12, Ch. 10], our bounds for MPG-generated constraints are stronger. We also
show that tight solutions of bounded size always exist. In Section 5 we prove
related results for complete bipartite MPGs.
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Theorem 1 (Tight Solution Existence). A linear slack system of every bi-
partite MPG without 0-weight cycles always has a tight solution with integral
components of absolute value O(nW ), where n is the number of vertices and W
is the maximal absolute edge weight.

Proof. Add retreat edges, of weight 0, from all Max vertices to the sink (new
vertex), and of weight M = (2n − 1)W + 1 from all Min vertices to the sink.
The resulting graph determines an instance of the Longest Shortest Paths (LSP)
problem [6]. In this instance optimal positional strategies of both players create
no cycles, because each cycle is either positive or negative, which one of the
players always wants to avoid (and can due to bipartiteness). Thus all optimal
plays end up in the sink, through a 0- or M -weight retreat edge. The unique
[6] solution (with all components finite, because every cycle is broken by one
of the players selecting to retreat) determines a feasible solution to the linear
slack system. Optimal edges for both players have associated slacks equal zero.
Moreover, by the properties of the shortest paths [6] and optimality for both
players, the following conditions are satisfied for every edge (v, u) of the game
graph, because d(v), d(u) are shortest path distances:

d(v) ≤ w(v, u) + d(u), if v ∈ Vmin, (7)
d(v) ≥ w(v, u) + d(u), if v ∈ Vmax. (8)

These conditions ensure that all slacks are nonnegative. Moreover, at least one
slack per vertex is zero, since d(v) are defined by shortest paths.

Let the required sets X and N be as follows:

1. N is the set of vertices starting from which Max can force a play into a
Min vertex from which Min retreats through the retreat edge with weight
M , when both players can use tight edges only;

2. X is the set of vertices starting from which Min can force a play into a
Max vertex from which Max retreats through the retreat edge with weight
0, when both players can use tight edges only.

The graph on tight edges is acyclic, bipartite, spanning all vertices of the
game graph, with leaves being vertices selecting retreat edges. Therefore, N and
X form a partition, which can be easily computed, after topological sorting,
by dynamic programming. We have to show that Max has no edges (including
non-tight) from X to N and Min has no edges (including non-tight) from N to
X (see Definition 3).

Since X and N do not intersect and shortest distances inside them are defined
by tight edges, the choice of the weights for the retreat edges implies the bounds
on the values of Max and Min vertices in X and N summarized in the table.

X N

Max [0, (n − 1)W ] [nW + 1, 2nW + 1]
Min [−W, (n − 1)W ] [nW + 1, (2n − 1)W + 1]

In the left column, the common upper bound is explained by the fact that the
longest path in X may traverse at most n− 1 edges of weight at most W . The



72 O. Svensson and S. Vorobyov

lower bounds 0 and −W in the left column are due to the Max retreat and to
bipartiteness: the best Min can do is to go to the 0-value vertex via a −W edge.
In the right column, the common lower bound is because the shortest path in
N is through the M -weighted retreat and at most n − 1 edges of weight −W .
The upper bound for a Min variable is due to the retreat weight, and for a Max
variable it is just W larger.

To show that Max has no edges from X to N , assume, toward a contradiction,
that Max has an edge from v ∈ X to u ∈ N . The bound from the table above
together with (8) imply w(v, u) < −W , a contradiction, since W is the maximal
absolute edge weight. A similar argument shows that Min cannot have edges
from N to X .

Now delete the sink and retreat edges to return to the original game. All
equalities in the associated linear slack system are satisfied. This solution is
tight as shown above. Note that some 0 slacks for some variables can disappear
(in the vertices where a retreat was taken).

Since a slack s is always equal s = x−y±w, from the table above we conclude
that all slacks are at most O(nW ). ��

Remark 2. We can thus impose additional bounding constraints for all variables
in the linear slack systems from Definition 1. The feasible set becomes a polytope
with vertices, which we call an MPG-polytope.

Proposition 8. An MPG-polytope of a bipartite game always has at least one
vertex, which is a tight solution.

Proof. Consider a tight solution, which exists by Theorem 7. Minimize the sum
of slacks, which are zero in the tight solution, over the MPG-polytope. Obviously,
the value of the optimum will be zero. Furthermore, the optimal solution can be
attained in a vertex of the polytope. ��

Proposition 11 shows a simple form of a linear target function for a complete
bipartite MPG with an optimum attained in a tight solution.

Corollary 1. Vertices of an MPG-polytope of a bipartite game are integral. ��

5 MPGs on Complete Bipartite Graphs

In this section we assume that MPGs are played on complete bipartite graphs
Kp,p. Thus the number of vertices n = 2p. We use a convention that xi, yi denote
variables associated to the i-th vertex of Max and Min respectively, sij and s′ij
denote slacks for Max and Min edges, and wij , w′

ij denote edge weights of Max
and Min. Slack equality constraints (2) and (4) in this case are (for 1 ≤ i, j ≤ p):

xi = yj + wij + sij , (9)
yi + s′ij = xj + w′

ij . (10)
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5.1 Invariant Properties

Proposition 9. Every solution to a linear slack constraint system SG obtained
from a complete bipartite MPG G satisfies the invariant∑

ij

sij −
∑
ij

s′ij = −
∑
ij

(wij + w′
ij).

Proof. Sum up all equalities (9) and (10). This gives
∑

s′ij =
∑

sij +
∑

(wij +
w′

ij), since each variable xi, yi appears in the left- and right-hand sides of (9),
(10) the same number of times. ��

The following proposition shows that one can optimize any of the several linear
functions over the MPG-polytope. They happen to possess the same optimal
solutions, i.e., are equivalent.

Proposition 10. For any complete MPG-generated SG the following functions
are similar up to scaling and a constant additive term:

1)
∑
i,j

sij , 2)
∑
i,j

s′ij , 3)
∑
i,j

sij +
∑
i,j

s′ij , 4)
∑

i

xi −
∑

i

yi.

Proof. Equivalence of 1-3 follows from Proposition 9. To prove equivalence of 1
and 4, we use the fact that sij = xi − yj + wij . Thus∑

ij sij = (x1 − y1 + w11) + (x1 − y2 + w12) + . . . + (x1 − yn + w1n)+
(x2 − y1 + w21) + (x2 − y2 + w22) + . . . + (x2 − yn + w2n)+
...
(xn − y1 + wn1) + (xn − y2 + wn2) + . . . + (xn − yn + wnn)

= n(
∑

i xi −
∑

i yi) + c, where c is a constant. ��

5.2 Complete Bipartite MPGs as Linear Programs

The next proposition asserts that there is always a simple linear target function
over the feasible polytope of a complete bipartite MPG with the optimum, which
solves the game.

Proposition 11. Let SG be a linear slack system obtained from a complete bi-
partite MPG. Then there exist vectors a, b ∈ Np such that

∑
i ai =

∑
i bi = p and

the optimal solution to SG with the objective function min
∑

i aixi−
∑

i biyi has
either a tight solution for Max or for Min and thus solves the corresponding
MPG. Moreover, one of the vectors a, b consists of ones only.

Proof. Suppose Max has a winning strategy, hence a tight solution. Then the
sum of the slacks corresponding to his optimal edges (tight), taken one per vertex,∑

(i,j)∈I sij has minimal solution 0. But this sum is equal
∑

(i,j)∈I(xi−yj−wij) =∑n
i−1 xi −

∑n
j=1 bjyj + C, where bj counts how many times yj is selected as a

destination of some Max optimal edge. The proof, when Min has a winning
strategy is symmetric. ��
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As a consequence, for a complete bipartite MPG, the corresponding slack poly-
tope has a vertex solving the game (which also follows by Proposition 8). We
state two other simple corollaries.

Corollary 2. The problem of deciding the winner for a complete MPG reduces
to the problem of determining:

1. the number of Max vertices that play, in a winning positional strategy, to
the Min vertex yi, for each i, if Max has a winning strategy, or

2. the number of Min vertices that play, in a winning positional strategy, to
the Max vertex xi, for each i, if Min has a winning strategy. ��

Corollary 3. If Max has a winning strategy where every Max vertex selects an
unique Min vertex. The game is solvable with the objective function min

∑
i xi−∑

i yi. The case for Min is symmetric. ��

5.3 Search Space

Proposition 11 allows one to somewhat reduce the search space of all positional
strategies in a complete bipartite MPG.

Proposition 12. The problem of finding vectors a, b such that it is possible
to recover the winning player from the optimal solution to SG with objective
function min

∑
i aixi −

∑
i biyi has strictly smaller search space than deciding

the optimal strategy of one player.

Proof. In a complete MPG G played on the graph Kp,p both players have pp

number of strategies.
Consider the problem of finding vectors a, b recovering the winning player

from an optimal solution to SG with objective function min
∑

i aixi −
∑

i biyi

(as explained in the proof of Proposition 11).
If Max has a winning strategy, we can assume a = 1. It remains to find the

correct bi’s. Any vector b with p nonnegative integer components summing up
to p can be represented by a word of p− 1 zeros (bucket separators) and p ones,
i.e., p buckets and p items. The number of possible ways to distribute the items
are (2p− 1)!/(p!(p− 1)!) =

(2p−1
p

)
= O(22p).

Similarly, if Min is winning the number of ways to select the vector a is O(22p).
Thus, the number of different meaningful objective functions are bounded by
O(22p), which is o(pp) = o(2p log p). ��

6 0-In-Out Property

In this section we only assume that MPGs are bipartite, but not necessarily
complete. Consider the following interesting

Definition 4 (0-in-out property). Say that a solution to an MPG-generated
system of slack constraints satisfies the 0-in-out property if

∀i ∈ Vmax ∃j ∈ Vmin(sij = 0 ∨ s′ji = 0) ∧ ∀i ∈ Vmin ∃k ∈ Vmax(s′ik = 0 ∨ ski = 0).
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Informally, it stipulates that every vertex has at least one incoming or outgoing
0-slack (tight) edge. Two propositions below summarize interesting relations
between tight solutions to systems of slack constraints, solutions minimizing∑

xi −
∑

yi,1 and solutions with the 0-in-out-property.

Proposition 13. Every solution to an MPG-generated system of slack con-
straints, which minimizes

∑
xi −

∑
yi, possesses the 0-in-out property.

Proof. An xi with nonzero slacks on all outgoing and incoming edges can be
decreased thus diminishing the target value. Similarly, a yi with nonzero slacks
on all outgoing and incoming edges can be increased thus diminishing the target
value. ��

Proposition 14. For every Max- or Min-tight solution to an MPG-generated
system of slack constraints there corresponds a tight solution satisfying the 0-in-
out property with a smaller or equal target value

∑
xi −

∑
yi.

Proof. A Max-tight solution has 0-in-out property satisfied for all Max vertices.
If the property is not satisfied for a vertex yi, then its value can be increased,
keeping the tightness, and decreasing the target value. The proof for the Min-
tight solutions is completely similar. ��

6.1 Minimizing Slacks Does Not Give Tight Solutions

Thus, both: 1) tight solutions (modified, if necessary as explained in the proof
of Proposition 14) and 2) solutions minimizing

∑
xi −

∑
yi, satisfy the 0-in-out

property. A natural challenging question is: whether tight solutions can always
be found among minimizing

∑
xi −

∑
yi? This plausible conjecture, if true,

would allow us to limit the search for tight solutions among those minimizing∑
xi −

∑
yi. Unfortunately, this promising conjecture fails, as demonstrated by

the counterexample in Figure 1.

u1

u2

u3

v1

v2

v3

1

2

2

Fig. 1. A complete bipartite MPG where the dotted edges have weight −2 and the
edges that are not in the figure have weight 0

1 Recall that xi, yi are variables associated with the i-th vertex of Max and Min.
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By Proposition 10, for any systems of linear slack constraints corresponding
to complete bipartite MPGs, minimizing the objective function

∑
i xi −

∑
i yi is

equivalent tominimizing the objective functions
∑
{Max slacks},

∑
{Min slacks},

and
∑
{All slacks}.

It is easy to see that the value of min
∑

i xi −
∑

i yi, when Max uses his
winning strategy (always plays to v3) is 7, because u1 = v3 + 1, u2 = v3 + 2,
u3 = v3 + 2, v2 = u1 − 2, v1 = u1 − 2. Letting all Max variables equal 2 and all
Min variables equal 0 is also feasible, but then u1 has no tight outgoing edges.
Thus, a Max- or Min-tight solution can have a larger value than the minimal
value of the objective function

∑
i xi −

∑
i yi.

7 Slacks Update “Tightening” Algorithm

Despite the fact (described by the previous counterexample) that there may be
no tight solutions (solving MPGs) among those minimizing

∑
xi −

∑
yi, the

idea to start from such a solution and transform it into a tight one seems quite
tempting. We now develop this idea and describe an algorithm for finding tight
solutions for MPG-generated systems of slack constraints, and thus solves MPGs
by Proposition 7. The algorithm applies to systems obtained from bipartite (not
necessarily complete) MPGs without 0-weight cycles. The proof of correctness
and the intuitions underlying the algorithm go in parallel with its description.

The Algorithm starts by finding a solution to slack constraints minimizing∑
xi −

∑
yi (in strongly polynomial time). By Proposition 13, every vertex has

at least one (incoming or outgoing) tight edge.

Main Loop. Let X0 and N0 be the sets of Max and Min vertices without
tight outgoing edges. If one of these sets is empty, the 0-mean partition is found
(Proposition 7). Temporarily delete all non-tight edges. Let X be the set of
vertices starting from which Min can force a play into X0, and N be the set
of vertices from which Max can force a play into N0. (Both sets may be easily
computed in polynomial time, as shown below.)

We claim that X and N form a partition of the game vertices. Indeed, every
vertex is an endpoint (source or destination) of at least one tight edge. Note also
that the graph induced by tight edges is acyclic (this follows from Proposition 3,
because a cycle with all slacks 0 should be 0-weight, absent by assumption).
Topologically sort it, and proceed from leaves (which are either in X0 ⊆ X or
in N0 ⊆ N) backwards in the topological order as follows. For a Max vertex
v with all successors already decided to be in X or N , put v to N if it has a
tight edge to N , and to X otherwise, and symmetrically for a Min vertex. This
classifies all vertices as members of either X or N . At this stage:

– there are no tight Max edges from X to N , by definition of X ; equivalently,
all Max edges from X to N , denote them Emax(X, N), are non-tight;

– there are no tight Min edges from N to X , by definition of N ; equivalently,
all Min edges from N to X , denote them Emin(N, X), are non-tight;

– note that there may exists tight Max edges from N to X , as well as tight
Min edges from X to N .
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Terminate? If the set of edges Emax(X, N)∪Emin(N, X) is empty, the 0-mean
partition is found: G≤0 = X and G>0 = N (see Proposition 7), and the algorithm
terminates. (Both X , N may be nonempty if the graph is not complete bipartite.)

Update. Let δ > 0 be the minimal slack assigned to edges in Emax(X, N) ∪
Emin(N, X) (all such edges are non-tight; see above). Now, either 1) increase
the values of all vertices in N by δ, or 2) decrease the values of all vertices
in X by δ. This does not violate any constraints, and preserves the property
that every vertex has at least one in- or outgoing tight constraint/edge. Indeed,
all constraints corresponding to edges from X to X and from N to N remain
satisfied (since we increase or decrease the values of variables in both sides of
constraints by the same δ). Proceed to the Main Loop. ��

Note that in the Update step: a) at least one non-tight edge in Emax(X, N) ∪
Emin(N, X) becomes tight, but b) all tight edges in Emax(N, X) ∪ Emin(X, N),
if any, become non-tight. Therefore, we unfortunately do not have monotonic
increase of the set of tight edges. However, once a vertex obtains a tight outgoing
edge, it keeps at least one such edge forever. Thus, the set of vertices possessing
tight edges monotonically increases. Consequently, the sets X0 and N0 may only
decrease (monotonicity). Every increase, in the Update step, of values of vertices
in N decreases the positive slacks of all edges leaving vertices in N0 and going
to X , and the positive slacks of all edges leaving vertices in X0 and going to
N (there is always at least one such edge; otherwise the algorithm terminates.
(The decrease case 2) is analogous.) Therefore, after pseudopolynomially many
steps at least one vertex in X0 ∪N0 will obtain a tight edge and will leave the
set X0 ∪N0 forever. We summarize the above argument in the following

Theorem 2. The described algorithm is pseudopolynomial, O(|G| ·n ·W ), where
G is the size of the game graph, n the number of its vertices, and W is the largest
absolute edge weight. ��

Note, retrospectively, that this algorithm is similar in spirit to the iterated poten-
tial transformation algorithm of [9] (proved exponential in [9] and pseudopolyno-
mial in [11]). Our algorithm is based on completely different principles. Moreover,
our proof and the algorithm description are considerably simpler.

8 Conclusions

The idea to describe MPGs by linear constraints and investigate the associ-
ated polytopes using linear programming methods appears natural and useful.
It reveals simple algebraic properties of MPG-polytopes and allows for a new
transparent LP-based algorithm for solving MPGs. In a forthcoming paper we
will present further properties of MPG-polytopes and a dual algorithm, which
allow for a faster convergence to a tight solution.
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Abstract. We study atomic routing games on networks in which players
choose a path with the objective of minimizing the maximum congestion
along the edges of their path. The social cost is the global maximum
congestion over all edges in the network. We show that the price of
stability is 1. The price of anarchy, PoA, is determined by topological
properties of the network. In particular, PoA = O(� + log n), where � is
the length of the longest path in the player strategy sets, and n is the
size of the network. Further, κ − 1 ≤ PoA ≤ c(κ2 + log2 n), where κ is
the length of the longest cycle in the network, and c is a constant.

1 Introduction

A fundamental issue in the management of large scale communication networks
is to route the packet traffic so as to optimize the network performance. Our
measure of network performance is the worst bottleneck (most used link) in
the system. We model network traffic as finite, unsplittable packets (atomic
flow) [22, 26], where each packet’s path is controlled independently by a self-
ish player. The Nash equilibrium (NE) is a natural outcome for a game with
selfish players – a stable state in which no player can unilaterally improve her
situation. In the recent literature, the price of anarchy (PoA) [15, 24] and the
price of stability (PoS) [1, 2] have become prevalent measures of the quality of
the equilibria of uncoordinated selfish behavior relative to coordinated optimal
behavior. The former quantifies the worst possible outcome with selfish agents,
and the latter measures the minimum penalty in performance required to ensure
a stable equilibrium outcome.

We study routing games with N players corresponding to N source-destination
pairs of nodes on a network G. The strategy set available to each player is a set
of edge-simple paths from the player’s source to the destination (typically the
strategy set consists of all edge-simple paths in G). A pure strategy profile is a
selection of a single path (strategy) by each player from her respective strategy
set. We study pure Nash equilibria. In our context, a pure strategy profile cor-
responds to a routing p, a collection of paths, one for each player. We refer to
Nash equilibra in this context as Nash-Routings. A routing p causes congestion
in the network: the congestion Ce on an edge e is the number of paths in p that
use this edge; the congestion Cpi of a path pi ∈ p is the maximum congestion
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over all edges on the path; the congestion C of the network is the maximum
congestion over all edges in the network. The dilation D is the maximum path
length in p.

Since a packet is to be delivered along each player’s path, a natural choice
for social cost is the maximum delay incurred by a packet. The packets can be
scheduled along the paths in p with maximum delay O(C +D) [6, 17, 18, 23, 25].
In heavily congested networks, C � D, and the maximum delay of a packet is
governed by the congestion C. Thus, the network congestion is an appropriate
social cost – this choice for the social cost is often referred to as the maximum
social cost [4, 5, 15, 27].

Consider player i with path pi ∈ p. It is shown in [3] that player i’s packet
can be delivered in time Õ(Cpi + |pi|), where |pi| is the path length (this holds
for all players simultaneously). In congested networks, Cpi � |pi|, and so it is
appropriate to use Cpi as the player cost, along her chosen path. This choice of
player cost is typically referred to as the maximum player cost. The maximum
player cost is is appropriate since this is what governs the delay experienced by
that player in a highly congested network [3]. In the literature it is common to use
the sum player cost (instead of the maximum) [7, 9, 14, 15, 21, 27]. However, the
sum of congestions does not govern the packet delays, since when a packet waits
for a particular congested edge to clear of other packets, the other congested
edges in its path can be cleared simultaneously. It is the maximum player and
social costs that are appropriate metrics for atomic routing games.

1.1 Contributions

We give the first comprehensive analysis of routing games with maximum player
and social cost. We study the quality of pure Nash-Routings with respect to the
price of stability and anarchy.

In our first result, we establish that there exist optimal Nash-Routings where
the social cost (congestion) is equal to the optimal coordinated cost; in other
words, PoS = 1 (the price of stability expresses the ratio of the optimal social
cost in the Nash-Routing with the optimal coordinated cost). We also show
that any best response dynamic, a sequence of best response moves of players,
converges to a Nash-Routing in a finite amount of time. Thus, we can easily
obtain Nash-Routings, starting from arbitrary initial routings.

Theorem 1. For every routing game:
(i) There is a pure Nash-Routing which is optimal (PoS = 1).
(ii) Every best response dynamic converges to a Nash-Routing in finite time.

We continue by examining the quality of the worst case Nash-Routings. The
price of anarchy, PoA, expresses the ratio of the social cost in the worst-case
Nash-Routing to the optimal coordinated cost. We bound the price of anarchy in
terms of topological properties of the network. The next result bounds the price
of anarchy for arbitrary instances of routing games in terms of the maximum
path-lengths in the strategy sets:
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Theorem 2. For any routing game where the strategy sets of the payers have
paths with length at most 
, PoA < 2(
 + log n).

Theorem 2 gives good bounds for the price of anarchy for networks where it
is natural to use paths with short length. For example in the Hypercube and
Butterfly [16], if we choose bit-fixing paths, then 
 = O(log n), which implies
that PoA ≤ c log n, for some constant c.

Our next result characterizes the worst case Nash-Routing in terms of the
longest cycle of the network. For a graph G, the edge-cycle number κe(G) is the
length of the longest edge simple cycle in G; we will drop the dependence on G
when the context is clear.

Theorem 3. For any undirected graph G with edge-cycle number κe,
(i) there exists a routing game for which PoA ≥ κe − 1;
(ii) for any routing game, PoA ≤ c(κe

2 + log2 n), for some constant c.

Let m denote the number of edges in the network. Since κe ≤ m, we have that
PoA ≤ c·m2. In graphs with Euler cycles, κe = m. Therefore, Theorem 3 implies
that m− 1 ≤ PoA ≤ c ·m2 (we use c to represent a generic constant).

The lower bound of Theorem 3 (part i) is obtained by constructing a game
instance where the players have their sources and destination on the largest
cycle. To prove the upper bound of Theorem 3 (part ii), we use Theorem 2. For
2-connected graphs, every pair of nodes has two edge-disjoint paths connecting
them (Menger’s theorem [32]), from which we establish that 
 ≤ c · κe

2. The
cycle upper bound follows immediately by using Theorem 2.

If the graph G is not 2-connected, then the relation 
 ≤ c · κe
2 may not

hold. To obtain the result for a general graph G, we decompose G into a tree of
2-connected components. We show that if in G the Nash-Routing has network
congestion C, then there is some 2-connected component G′ which has congestion
C′ ≈ C. At the same time the players in G′ are in a partial Nash-Routing, where
many of them are locally optimal. A generalization of Theorem 2 to partial
Nash-Routings, helps to establish the upper-bound of Theorem 3.

1.2 Related Work

General congestion games were introduced and studied in [22, 26]. The applica-
tion of game theory in computer science, specifically the introduction of the price
of anarchy was introduced in [15]. Since then, many models have been studied,
categorized by: the topology of the network; the nature of the player and social
costs; the nature of the traffic (atomic or splittable); the nature of the strategy
sets; the nature of the equilibria studied (pure or mixed). A brief taxonomy of
some relevant existing results, according to the kind of flow (atomic or splittable)
and equilibria (mixed or pure), and according to the social cost SC and player
cost pc (sum or maximum), are shown in the following two tables.

Atomic Flow Splittable Flow
Pure [4, 19, 26], [31]∗, Our Work [27, 28, 29, 30]
Mixed [7, 8, 9, 11, 12, 13, 14, 15, 20, 21, 24]∗ [5], [10]∗
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Max SC Sum SC Other SC **
Max pc Our Work – – [19]
Sum pc [4, 5, 27] [7, 8, 9, 10, 11, 14, 15, 21, 24]∗ [4, 28, 29, 30], [13, 31]∗ [12, 20]∗ [19, 26]

(∗: A Specific network model is used, eg. parallel links, or specific player strategy
sets, eg. singleton sets. ∗∗: Results on existence or convergence to equilibrium,
as opposed to quality of equilibria).

Typically, the research in the literature has focused on computing upper and
lower bounds on the price of anarchy. The vast majority of the work on maximum
social cost has been for parallel link networks, with only a few recent results on
general topologies [4, 5, 27]. Essentially, all of the work has focused on the sum
player cost, which corresponds to the sum of the edge congestions on a path (as
opposed to the maximum edge congestion on the path, which we consider here).

The only result which has a brief discussion of the maximum player cost is
[19] where the authors focus on parallel link networks, but also give some results
for general topologies. In [19], the main content is to establish the existence of
pure Nash-Routings. We present a systematic study of pure Nash-Routings in
atomic routing games. Pure equilibria with atomic players and maximum player
cost introduces essentially combinatoric conditions for the equilibria, in contrast
to infinitelly splittable flow, or mixed equilibria, which can be characterised by
Wardrop-type equilibrium conditions.

Outline of Paper. In Section 2 we give some basic definitions. We prove Theorem
1 in Section 3. We continue with the proof of Theorem 2 in Section 4. The lower
bound of Theorem 3 is proven in Section 5. In the same section we prove the
upper bound of Theorem 3 for 2-connected graphs. We give the general version
of the upper bound in Section 6. We conclude in Section 7. Some of the technical
proofs have been omitted for space considerations, and will be presented in a
full version of this paper.

2 Definitions

An instance R of a routing (congestion) game is a tuple (N, G, {Pi}i∈N), where
N = {1, 2, . . . , N} are the players, G = (V, E) is an undirected connected graph
with |V | = n, and Pi is a collection of edge-simple paths. Each path inPi is a path
in G that has the same source si ∈ V and destination ti ∈ V ; each path in Pi is
a pure strategy available to player i. A pure strategy profile p = [p1, p2, · · · , pN ]
is a collection of pure strategies (paths), one for each player, where pi ∈ Pi. We
refer to a pure strategy profile as a routing. On a finite network, a routing game
is necessarily a finite game.

For any routing p and any edge e ∈ E, the edge-congestion Ce(p) is the num-
ber of paths in p that use edge e. For any path p, the path-congestion Cp(p)
is the maximum edge congestion over all edges in p, Cp(p) = maxe∈p Ce(p).
The network congestion is the maximum edge-congestion over all edges in E,
C(p) = maxe∈E Ce(p). The social or global cost SC(p) is the network con-
gestion, SC(p) = C(p). The player or local cost pci(p) for player i is her
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path-congestion, pci(p) = Cpi(p). When the context is clear, we will drop the
dependence on p and use Ce, Cp, C, SC, pci.

We use the standard notation p−i to refer to the collection of paths
{p1, · · · , pi−1, pi+1, · · · , pN}, and (pi;p−i) as an alternative notation for p which
emphasizes the dependence on pi. Player i is locally optimal in routing p if
pci(p) ≤ pci(p′i;p−i) for all paths p′i ∈ Pi. A routing p is in a Nash Equilibrium
(p is a Nash-routing) if every player is locally optimal. Nash-routings quantify
the notion of a stable selfish outcome. A routing p∗ is an optimal pure strat-
egy profile if it has minimum attainable social cost: for any other pure strategy
profile p, SC(p∗) ≤ SC(p).

We quantify the quality and diversity of the Nash-routings by the price of
stability (PoS) and the price of anarchy (PoA) (sometimes referred to as the
coordination ratio). Let P denote the set of distinct Nash-Routings, and let SC∗

denote the social cost of an optimal routing p∗. Then,

PoS = inf
p∈ P

SC(p)
SC∗ , PoA = sup

p∈ P

SC(p)
SC∗ .

3 Existence of Optimal Nash-Routings

The goal in this section is to establish Main Theorem 1. For routing p, the con-
gestion vector C(p) = [m0(p), m1(p), m2(p), . . .], where each component mk(p)
is the number of edges with congestion k. Note that

∑
k mk(p) = m, where m is

the number of edges in the network. The social cost (network congestion) SC(p)
is the maximum k for which mk > 0. We define a lexicographic total order on
routings as follows. Let p and p′ be two routings, with C(p) = [m0, m1, m2, . . .],
and C(p′) = [m′

0, m
′
1, m

′
2 . . .]. Two routings are equal, written p=c p′, if and

only if mk = m′
k for all k ≥ 0; p<c p′ if and only if there is some k∗ such that

mk∗ < m′
k∗ and ∀k > k∗, mk ≤ m′

k.
Let (N, G, {Pi}i∈N) be an instance of a routing game. Since there are only

finitely many routings (as a player’s path may use any edge at most once), there
exists at least one minimum routing w.r.t. the total order <c . There may be
many distinct routings all of which are minimum (and equal to each other). Let
p∗ be a minimum routing (which exists); then, for all routings p, p∗≤c p. Every
minimum routing is optimal; indeed, if SC(p) < SC(p∗) for some other routing
p, then the maximum k for which mk(p) > 0 is smaller than the corresponding
k for p∗, contradicting the fact that p∗≤c p.

Lemma 1. Every minimum routing (at least one exists) is optimal.

A greedy move is available to player i if she can obtain a lower path congestion
by changing her current path from pi to p′i – the greedy move takes the original
routing (pi;p−i) to (p′i;p

′
−i) in which pi is replaced by p′i.

Lemma 2. If a greedy move by any player takes p to p′, then p′<c p.

Thus, a greedy move decreases the number of high congestion edges, by trans-
ferring the congestion to lower congestion edges. Since there are only a finite
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number of routings, every best response dynamic is finite. By Lemma 2, no
player can have an available greedy move at a minimum routing, as this would
contradict the minimality of the routing. Hence,

Lemma 3. Every minimum routing is an optimal Nash-routing.

Hence, PoS = 1. Theorem 1 now follows from Lemmas 2 and 3.

4 Path Length Bound on Price of Anarchy

Here, we prove Theorem 2. In order to do so we will use the edge-expansion
process, that we introduce here. Before we describe this technique we need to
give some necessary definitions.

Let R = (N, G, {Pi}i∈N) be an instance of a routing game. Let P =
⋃

i∈N Pi.
The path-length of R is 
 = maxp∈P |p|. A path-cut for player i is a set of edges
Ei such that every path in Pi must use at least one of the edges in Ei. The
congestion of a path-cut C(Ei) is the minimum congestion of any edge in Ei,
C(Ei) = mine∈Ei Ce. If player i is locally optimal with congestion pci, then every
alternative path for that player must have congestion at least pci − 1.

Lemma 4. Let p = [p1, p2, · · · , pN ] be a routing for which player i is locally
optimal. Then, there is a path-cut Ei for player i with congestion C(Ei) ≥ pci−1.

4.1 Edge-Expansion Process

If only some players are locally optimal in a routing p, then p is a partial Nash-
Routing (a Nash-Routing is a special case of a partial Nash-Routing). The edge
expansion process applies to any partial Nash-Routing.

Suppose routing p has network congestion C, and suppose that at least one
player is locally optimal with player cost C. Let E0 be the set of edges with
congestion C0 = C that are used by at least one locally optimal player, and let
Π0 be the set of these locally optimal players that use at least one edge in E0.
By Lemma 4, each player in Π0 has a path-cut with congestion at least C0 − 1.
Let E1 denote the union of E0 with all these path-cuts of every player in Π0.
Thus, E0 ⊆ E1 and each edge in E1 has congestion at least C1 = C0 − 1. Let Π1
denote the set of locally optimal players whose paths in p use at least one edge
in E1. Note that Π0 ⊆ Π1. Each player in Π1 has player cost at least C1, since
every edge in E1 has congestion at least C1.

We repeat this process as follows. Suppose that for i ≥ 1, edge set Ei has been
constructed as the union of Ei−1 with path cuts for the players in Πi−1, thus
every edge in Ei has congestion at least Ci = Ci−1−1 = C−i. We now construct
Πi, the set of locally optimal players whose paths use at least one edge in Ei;
every player in Πi has player cost at least Ci. By Lemma 4, each player in Πi

has a path-cut with congestion Ci− 1, and we construct Ei+1 to be the union of
Ei with all these path-cuts of the players in Πi.

Using this inductive construction, we obtain a sequence of edge sets, E0 ⊆
E1 ⊆ E2, · · · , with C(Ej) ≥ Cj = C − j, and corresponding to each edge set,
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a set of locally optimal players Π0 ⊆ Π1 ⊆ Π2 · · · . We continue this inductive
construction up to edge set Es which is the first set for which |Es| ≤ 2|Es−1|. We
will refer to this process as the edge-expansion process.

4.2 Edge-Expansion Properties

Since |Ei| ≤ 1
2n2 and each expansion at least doubles the size of the edge set,

Lemma 5. |Es| ≥ 2s−1 and 1 ≤ s < 2 logn.

In routing p, let F (C′) ⊆ N denote the set of non-locally optimal players with
player cost at least C′. We now establish a relationship between the congestion
of a partial Nash-Routing and the optimal routing.

Lemma 6. C < 2
 · (C∗ + F (C − 2 log n)) + 2 logn.

Proof. From the edge-expansion process, each edge in Es−1 has congestion at
least Cs−1. Let M be the number of times edges in Es−1 are used by the paths
in p. Then, M > Cs−1 · |Es−1|. By construction, in p, the congestion in each
of the edges of Es−1 is caused only by the players in A = Πs−1 ∪ B, where
B ⊆ F (Cs−1) contains the non locally optimal players that use edges in Es−1.
Since path lengths are at most 
, each player in A can use at most 
 edges in
Es−1. Hence, Cs−1 · |Es−1| < M ≤ 
 · |A|. Since, |A| ≤ |Πs−1| + |F (Cs−1)|, we
obtain, Cs−1 < �

|Es−1| · (|Πs−1|+ |F (Cs−1)|). We now bound |Πs−1|.
Es contains a path-cut for every player in Πs−1, and every such player must use

at least one edge in Es in any routing, including the optimal routing p∗. Thus,
edges in Es are used at least |Πs−1| times, hence some edge is used at least
|Πs−1|/|Es| times, by the pigeonhole principle. Hence, C∗ ≥ |Πs−1|/|Es| (note
that |Es| > 0). By the definition of s, |Es| ≤ 2|Es−1|. Hence, |Πs−1| ≤ 2|Es−1|C∗,
and Cs−1 < 2
 ·

(
C∗ + |F (Cs−1)|

2|Es−1|

)
. Since Cs−1 = C − (s − 1) and 2|Es−1| ≥ 2s

(Lemma 5), we obtain C < 2
 ·
(
C∗ + |F (C−s+1)|

2s

)
+ s− 1. To conclude, 2s ≥ 2,

and note that C′′ < C′ implies F (C′) ⊆ F (C′′), hence |F (C′)| is non-increasing
in C′. Thus |F (C − s + 1)| ≤ |F (C − 2 log n)|.

Since in a Nash-Routing, F (C′) = 0, ∀C′ > 0, by dividing the result of Lemma
6 with C∗, we obtain Theorem 2.

5 Basic Cycle Bounds on Price of Anarchy

Here, we first give the lower bound (part i) of Theorem 3 for the price of anarchy;
we then prove the upper bound (part ii) of Theorem 3, for the special case of
2-connected graphs. The next result establishes the lower bound of Theorem 3.

Lemma 7. For any graph G, there is a routing game with PoA ≥ κe(G) − 1.

Proof. Let Q = e1, . . . , eκe be an edge simple cycle with length κe. We construct
a routing game with κe players, where player i corresponds to edge ei = (ui, vi)
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in Q, that is, the source of i is si = ui and the destination ti = vi. The strategy
set of i is the collection of all edge simple paths from si to ti.

There are two special paths in the strategy set of player i, the forward path
which is composed solely of the edge (ui, vi), and the backward path which con-
sists of the remaining edges of cycle Q. Since Q is edge simple, if every player
uses his forward path C = 1. Thus, the optimal social cost is 1. If on the other
hand, all the players use their backward paths (backward routing p̄), then player
i uses every edge in Q except ei exactly once. Thus, the congestion on every edge
in Q is N − 1 = κe − 1. Hence, if p̄ is a Nash-Routing, then PoA ≥ κe − 1.

We will show that p̄ is a Nash-Routing by contradiction. Suppose that some
player k is not locally optimal – so player k has lower congestion for some other
path p. Since every edge on Q has congestion κe− 1 in routing p̄, at least κe− 2
players other than player k use every edge on Q. Thus, if p uses any edge on
Q, then pck(p; p̄−k) = κe − 1, which does not improve its cost, so we conclude
that p does not use any edge on Q. Therefore, p has length at least 2 (since
p �= ek and G is not a multi-graph). Thus, replacing ek ∈ Q by p results in a
new edge simple cycle Q′ that is strictly longer than Q, a contradiction. Thus,
p̄ is a Nash-Routing.

We now continue with the upper bound on the price of anarchy. A graph G is k-
connected if its minimum edge-cut has size at least k. By Menger’s theorem [32],
G is k-connected if and only if there are at least k edge-disjoint paths between
every two nodes. Let L be the longest path length in G.

Lemma 8. If G is 2-connected, then κe(G) ≥
√

2L− 3
2 .

The proof relies on the observation that the longest path p must have at least√
L edges in common with the largest cycle q, since otherwise, we would be able

to construct a larger cycle by combing pieces of p and q.
Lemma 8 bounds the longest path length in G with respect to κe(G).

Theorem 2 bounds the price of anarchy in terms of the longest path 
 in the
players’ strategy sets. Since 
 ≤ L, we obtain the following result, with proves
the upper bound of Theorem 3 for 2-connected graphs:

Lemma 9. For any routing game on a 2-connected graph G, PoA ≤ c(κe
2(G)+

log n), for some constant c.

6 Cycle Upper Bound for General Graphs

We now prove the upper bound (part ii) of Theorem 3 for general graphs. We
will bound the price of anarchy with respect to the square of the longest cycle.
The main idea behind the result is that any Nash-Routing in G can be mapped
to a partial Nash-Routing on some 2-connected subgraph of G. In this partial
Nash-Routing, many players are locally optimal, and we can apply Lemma 6 in
combination with Lemma 7 to obtain the result.



Atomic Routing Games on Maximum Congestion 87

6.1 Canonical Subgraphs

Consider an arbitrary connected graph G = (V, E). A subgraph G′ = (V ′, E′) of
G contains a subset of the nodes, V ′ ⊆ V , and a subset of the edges E′ ⊆ E,
where each edge in E′ is incident with two nodes in V ′. We say that G′ is an
induced subgraph by the node set V ′ if E′ contains all the edges in E that are
incident with a pair of vertices in V ′. We say that two subgraphs are adjacent
if the intersection of their node sets is non-empty. The union of two subgraphs
G′ = (V ′, E′) and G′′ = (V ′′, E′′) is Ĝ = (V ′ ∪ V ′′, E′ ∪ E′′).

We will focus on 2-connected subgraphs. It is easy to verify that G contains
a 2-connected subgraph if and only if it is not a tree. A 2-connected subgraph
G′ is maximal if there is no larger 2-connected subgraph G′′ = (V ′′, E′′) that
contains G′, so if G′′ is 2-connected, then E′ �⊂ E′′. Let A1, . . . , Aα be all the
maximal 2-connected subgraphs of G, where α ≥ 1, and Ai = (VAi , EAi). Any
two subgraphs Ai and Aj , i �= j, are node-disjoint since otherwise their union
would be 2-connected, which contradicts their maximality.

Therefore, we can construct from G two subgraphs A and B, where A consists
of A1, . . . , Aα, while B consists of the remaining edges in G: A = (VA, EA) and
B = (VB , EB), where EA =

⋃α
i=1 EAi , EB = E − EA, and VA and VB are the

nodes adjacent to the edges in EA and EB, respectively. Note that graphs A and
B are edge-disjoint, however, they may have common nodes. Subgraph B consists
also of one or more disjoint maximal connected components (each containing
at least two nodes), which we will denote B1, . . . , Bβ . (Graph A consists of
connected components A1, . . . , Aα.) We refer to the Ai as the type-a canonical
subgraphs of G and the Bi as the type-b canonical subgraphs of G. One can show:

Lemma 10. Every type-b subgraph is a tree. Any pair of type-a and type-b sub-
graphs can have at most one common node.

We now define a simple bipartite graph H = (VH , EH) that represents the
structure of G. In VH = {a1, . . . , aα, b1, . . . , bβ}, the nodes ai, bj correspond to
the the type-a canonical subgraph Ai and the type-b canonical subgraph Bj

respectively. The edge (ai, bj) ∈ EH if and only if the canonical subgraphs Ai

and Bj are adjacent (have a common node). The bipartition for H is (A,B),
where A = {a1, . . . , aα} and B = {b1, . . . , bβ}. The nodes in H inherit the same
type as their corresponding canonical subgraph in G. Since G is connected, it
follows immediately that H is connected too. Further, we have:

Lemma 11. Graph H is a tree.

6.2 Canonical Subpaths

A node in G can belong to at most one type-a subgraph and one type-b subgraph,
since no two canonical subgraphs of the same type are adjacent. If a node is a
member of one canonical subgraph, then its type is the type of the subgraph.
If the node belongs to two canonical subgraphs then it is of type-a (we assign
it to the type-a canonical subgraph). An edge belongs to exactly one canonical
subgraph and inherits the type of that subgraph.
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Let p = v1, v2, . . . , vk, k > 1, be an edge-simple path in G. We can write p as
a concatenation of subpaths p = q1q2 · · · qk, where |qi| > 0, ∀i, with the following
properties: (i) the subpaths are edge disjoint; (ii) all the nodes of a subpath qi

are in the same subgraph and have the same type, which will also be the type
and subgraph of qi; (iii) the types of the subpaths alternate, i.e. the types of qi

and qi+1 are different; (iv) There is no type-a subpath with one node (any type-a
subpath with one node can be merged with two adjacent type-b subpaths in the
same type-b subgraph). We refer to the qi as the canonical subpaths of p. Note
that there is a unique canonical subpath decomposition for path p.

Since type-b subgraphs are trees and graph H is a tree, an arbitrary path
in G can form cycles only inside type-a canonical subgraphs (in the respective
type-a canonical subpaths). As a consequence, a path from a source node to a
destination node follows a unique sequence of type-b edges (the union of all the
edges in the type-b subpaths). Thus, we can obtain the following crucial result
on paths that connect the same endpoints in G.

Lemma 12. Any two edge-simple paths from nodes s to t in G use the same
sequence of type-b edges.

6.3 Subgames in Canonical Subgraphs

Consider a routing game R = (N, G, {Pi}i∈N) in G. Let p be a routing with
network congestion C. Let p∗ denote an optimal routing for R with congestion
C∗. An immediate consequence of Lemma 12 is that every path in p uses the
same type-b edges as its corresponding path in p∗, hence

Lemma 13. Any type-b edge e has the same congestion in p and p∗, i.e.
Ce(p) = Ce(p∗) ≤ C∗.

By Lemma 13, all the edges in p with congestion higher that C∗ must occur in
type-a subpaths.

Lemma 14. For path p, if Cp(p) > C∗, then p must have a type-a subpath q
with Cq(p) = Cp(p).

Suppose now that p is an arbitrary Nash-Routing which has network congestion
C. For a type-a subgraph Λ, let pΛ = {p1, . . . , pγ} denote the paths in p that
use edges in Λ, and denote the respective users as NΛ, where |NΛ| = γ. Let
QΛ = {q1, . . . , qγ} denote the type-a canonical subpaths of the paths in pΛ that
are in Λ (qi is a subpath of pi).

In subgraph Λ, we define a new routing gameRΛ = (NΛ, Λ, {PΛ
i }i∈NΛ), where

PΛ
i contains all the type-a subpaths of Pi that are in Λ and have the same source

and destination as qi. We refer to RΛ as the subgame of R for subgraph Λ. QΛ

is a possible routing for RΛ. If qi is locally optimal for player i in Λ, we say
that its corresponding path pi in G is satisfied in subgame RΛ. In other words,
if path pi is satisfied in RΛ, player i does not wish to change the choice qi in
Λ. Every player with high player cost (higher than C∗) must be satisfied in a
type-a subgraph, since otherwise it would violate Lemma 14. Thus:
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Lemma 15. If player i has path pi and pci > C∗, then player i is satisfied in
some subgame RΛ in a type-a subgraph Λ, and player i has congestion pci in Λ.

6.4 Main Result

Consider routing game R = (N, G, {Pi}i∈N) in G and a Nash-Routing p with
congestion C(p) = C. Lemma 15, implies that each user is satisfied in some
type-a subgraph (not necessarily the same). In any type-a subgraph, the result-
ing routing in the subgame may be a partial Nash-Routing, since some users
may not be satisfied in it. We first show that there is a subgraph with high
congestion where the number of unsatisfied players is bounded. For a canonical
type-a subgraph Λ, let FΛ(C′) denote the set of non-locally optimal players in
the subgame RΛ whose congestion in R is at least C′. We will use CΛ to denote
the congestion in the canonical subgraph Λ. We have:

Lemma 16. Suppose that C(p) > C∗ + x(1 + log n) for some x > 0. Then,
there is a type-a canonical subgraph Λ with congestion CΛ ≥ C − x log n and
|FΛ(CΛ − x)| ≤ 2C∗.

By combining Lemma 6 and Lemma 16 we obtain the following result which
establishes the upper bound of Theorem 3.

Lemma 17. PoA ≤ c · (κe
2(G) + log2 n), for some constant c.

Proof. Let x = 2 log n. If C ≤ C∗ + x(1 + log n), then there is nothing to prove
because C/C∗ ≤ 1 + 2 logn(1 + log n)/C∗ ≤ c log2 n, for some generic constant
c. So, suppose that C > C∗ + x(1 + log n). By Lemma 16, there exists a type-a
subgraph Λ such that CΛ ≥ C − 2 log2 n and |FΛ(CΛ − 2 logn)| ≤ 2C∗. By
applying Theorem 6 to the subgame RΛ we obtain,

CΛ < 2
 · (C∗
Λ + FΛ(CΛ − 2 logn′)) + 2 log n′,

where 
 is the length of the longest edge-simple path in the player strategy
sets in RΛ, n′ is the number of nodes in Λ and C∗

Λ is the optimal congestion
for the subgame RΛ. Note that n′ ≤ n, and the subgame RΛ cannot have a
higher optimal congestion than the full game R, hence C∗ ≥ C∗

Λ. Since |FΛ| is
monotonically non-increasing (FΛ(C′) ⊆ FΛ(C′′) for C′′ < C′), we have that:

C − 2 log2 n < 2
 · (C∗ + F (CΛ − 2 log n)) + 2 log n ≤ 2
 · (C∗ + 2C∗) + 2 log n.

From Lemma 8, 
 ≤ cκe
2(Λ) ≤ cκe

2(G), and so C ≤ c · (κe
2(G)C∗ + log2 n).

After dividing by C∗, we obtain the desired result.

7 Discussion

We believe that the price of anarchy upper bound can be improved. Specifically,
we leave open the following conjecture: for any routing game, PoA ≤ κe − 1.
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An interesting future direction is to obtain similar results when the latency
functions at each link are more general and not necessarily identical. We conclude
by noting that all our results have been stated for paths that are edge-simple.
Specifically the strategy set for the players is a set of edge-simple paths and the
social and player costs are the maximum edge-congestion in the network and
player path respectively. Exactly analogous results can be obtained for strategy
sets containing node-simple paths with the social and player costs being the
maximum node-congestion in the network and player path respectively. In this
case, the bounds on the price of anarchy are in terms of the node-cycle number
(the length of the longest node-simple cycle).
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Abstract. This paper formulates a model of advertising prices in which
a homogeneous product is not intended for sales at conventional stores.
The product is sold by means of advertising instead. Applications of this
model can be found on numerous sales activities include, for example,
insurance companies, television shopping channels and Internet e-tailers
who advertise their products and prices by sending e-mails to potential
buyers or by means of popup windows. This paper makes endogenous
both firm advertising and price strategies in the model.

1 Introduction

Stigler’s (1961) seminar article motivates a growing body of theoretical litera-
ture investigating firm price strategy and consumer behavior with incomplete
information. See, for example, Varian (1980), Salop and Stiglitz (1982), Rob
(1985), Janssen and Moraga (2000), Hopkins and Seymour (2000), and Morgan
and Sefton (2001).

Most of these models are based on the crucial assumption that buyers are
freely endowed with perfect information regarding the number and locations of
sellers. As a result, buyers may gather price information by visiting one seller
after another. However, this assumption is unnecessarily true in reality.

There may be occasions that consumer search is impossible or costly. Butters
(1977) considers the market for a homogeneous good, in which sellers randomly
allocate advertisements indicating their price and location among buyers, and
buyers have no other means of gathering information about sellers. Butters’
(1977) assumption rises to the occasion that firms rely their sales heavily on
advertising, and that “buyers’ behavior is passive; they simply order at the
lowest price of which they are aware”.

Butters’ (1977) model is helpful in analyzing firm strategies when sellers are
also responsible for the provision of price and firm information. In particular,
insurance companies sell their products by visiting customers, and the possi-
bility that buyers visit insurance companies is negligible. Butters (1977) is also
applicable to other sales activities, for example, Internet e-tailers who advertise
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their products and prices with popup windows or by sending e-mails to poten-
tial customers, and sales representatives who sell their products through personal
relation with their clients.

Following Butters (1977), Kessner and Polborn (2000) propose a model of
sales for heterogeneous products. Buyers differ in their preference for quality.
Kessner and Polborn (2000) derive an equilibrium price distribution density that
is related to the density of consumers. Kessner and Polborn (2000) also apply
their model on a test of price dispersion in the German life insurance market.
They suggest that it is important to distinguish between price dispersion and
market failure, and that “if price dispersion is due to heterogeneous qualities,
different prices are no indication of market failure”.

This paper is concerned with the price distribution of a homogeneous good.
The following assumptions distinguish this paper from Butters (1977). Butters
(1977) assumes that a firm may advertise different prices to different buyers. This
paper assumes that each firm charges all buyers the same price. This assumption
seems more realistic since charging all customers the same price for an identical
good is prevalent in practice. Butters (1977) assumes that each customer buys
exactly one unit of the good. This paper relaxes Butters’ (1977) restriction by
assuming that individual demand is elastic.

This paper yields different conclusions in comparison with Butters (1977).
In Butters (1977), neither the number of firms nor the number of consumers
appears in the equilibrium price distribution function. This paper derives an
equilibrium price distribution that is related to the number of firms.

The remainder of this paper is organized as follows. Section 2 formulates
the model. Section 3 derives the equilibrium distribution of advertising prices.
Section 4 illustrates the model with a numerical example. Section 5 contains
concluding remarks.

2 The Basic Model

In the market for a homogeneous good, there exist n ≥ 2 identical sellers and
l ≥ 2 identical buyers. Let N = {1, 2, · · · , n} denote the set of sellers, and
L = {1, 2, · · · , l} denote the set of buyers. Both sellers and buyers are assumed
to be risk neutral. Transactions are conducted on the take-it-or-leave-it basis.

All firms have identical marginal production costs c ≥ 0. Let p ≥ 0 be the
price paid by the consumer. The individual demand function is given by

x = x (p) ≥ 0 (1)

There exists a unique pm ∈ (0,∞) such that

pm = arg max
p≥0
{(p− c)x (p)} (2)

Firms randomly allocate advertisements indicating their prices and locations
among buyers. There is no way for firms to direct their advertisements to any
specific buyers. The cost of sending an advertisement is b ∈ [0,∞). Each firm
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charges the same price to all customers. The probability that a buyer receives
the advertisement from a firm is q ∈ (0, 1), and q is identical for all firms. One
might think of a model in which each firm randomly drops h advertisements into
buyers’ mailboxes. If h < l, then q = h/l < 1.

Receiving advertisements entails no cost on buyers. A buyer receives an adver-
tisement from a firm is independent to the buyer receives advertisements from
other firms. Additionally, a buyer may purchase the good only if he receives at
least one advertisement. If two or more firms advertise the same lowest price, a
consumer buys the good by choosing a firm at random.

The above assumptions are basically following Butters (1977). One can imag-
ine a multi-period model, in which at the beginning of each period firms randomly
allocate advertisements among buyers. At the end of each period, those buyers
who receive at least one advertisement purchase the good from the seller who
advertised the lowest price.

Definition: Let Fq (p) denote the distribution of advertising prices, where q =
h/l is the probability that a representative buyer receives the advertisement
from a representative firm, h ∈ [0, l] is the number of advertisements sent by a
representative firm, and E [π (p)] is the expected profit of a representative firm
who charges the price p ∈

[
p, p
]
, where

[
p, p
]
⊂ [0,∞) is the support of Fq (p).

If Fq (p), h∗ ∈ [0, l] and E [π (p)] satisfy the following conditions:

1. E [π (p)] = π is a constant for every (p, h) ∈
[
p, p
]
× {h∗}; and

2. E [π (p)] ≤ π for every (p, h) ∈ [0,∞)× [0, l].

Then {Fq (·) , h∗, π} is a symmetric mixed-strategy equilibrium of the above pric-
ing game, Fq (p) and h∗ are equilibrium price and advertising strategies of firms,
respectively.

3 Analysis

For ease of exposition, assume for the present that the advertising cost b = 0 and
that q = h/l is given. These assumptions will be relaxed later. For any j ∈ N , if
firm j sells the good for price p to a customer, then the transaction brings firm
j the following profit

π (p) = (p− c)x (p) (3)

Let ξ be the number of firms whose advertisements successfully reach a repre-
sentative buyer. Since there are a total of n firms, ξ has a Binomial distribution
with parameters n and q. For every m = 0, 1, · · · , n, let αi denote the probability
that a representative buyer receives advertisements from m firms. Then

αm = P (ξ = m) = Cm
n bm (1− b)n−m (4)

Suppose the distribution of market price is Fq (·) on the support
[
p, p
]
⊂

[0,∞). For any j ∈ N and k ∈ L, the probability that buyer k purchases the
product from firm j is
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δp =
n∑

m=1
αm

Cm−1
n−1
Cm

n
[1− Fq (p)]m−1 = 1

n

n∑
m=1

mαm [1− Fq (p)]m−1 (5)

where p is the price advertised by firm j, αmCm−1
n−1

/
Cm

n is the probability that
buyer k receives the advertisement from firm j conditional on buyer k receives
advertisements from m firms, [1− Fq (p)]m−1 is the probability that p is the
lowest of the m prices. Substituting (4) in (5) yields

δp = 1
n

n∑
m=1

mCm
n qm (1− q)n−m [1− F (p)]m−1 = q [1− qF (p)]n−1 (6)

Let η be the number of customers who buy the product from firm j. Since
there are a total of l buyers in the market, η has a Binomial distribution with
parameters l and δp. If firm j advertises price p and all other n− 1 firms inde-
pendently advertise prices according to F (·), then the expected profit for firm
j is

E [π (p)] =
l∑

i=0
iP (η = i)π (p) =

l∑
i=0

iCi
l δ

i
p (1− δp)

l−i
π (p)

= lδpπ (p) = lq [1− qFq (p)]n−1 π (p)
(7)

where π (p) is given by (3). By definition, if {Fq (·) , h, π} is a non-degenerate
mixed-strategy equilibrium, then evaluating (7) at p = p yields

E [π (p)] = π = E [π (p)] = lq (1− q)n−1
πq (p) (8)

for any p ∈
[
p, p
]
, where

[
p, p
]
⊂ [0,∞) is the support of Fq (·). It follows from

(2) that pm > 0 is the highest price an optimizing firm would ever charge. Hence
p = pm. Substituting p = pm in (8) yields the expected profit

π = E [π (p)] = lq [1− qFq (pm)]n−1
π (pm) = lq (1− q)n−1

πq (pm) (9)

Inserting (9) in (8) and solving for Fq (p) yields the equilibrium price distrib-
ution

Fq (p) =
1
q

{
1− (1− q)

[
π (pm)
π (p)

] 1
n−1
}

(10)

for every p ∈
[
p, pm

]
. Substituting Fq

(
p
)

= 0 in (10) and solving for p yields

p = π−1
[
(1− q)n−1

π (pm)
]

(11)

This establishes the following proposition.

Proposition 1. Let {Fq (·) , h, π} be a symmetric mixed-strategy equilibrium
of the pricing game. If the equilibrium advertising strategy h is given and the
advertising cost is b = 0, then Fq (·) is given by (10) and (11), and π is given
by (9).

If the advertising cost is b > 0 and advertising strategy h is given, then
equation (8) can by rewritten as follows

π̃ ≡ π − hb ≡ E [π (p)]− hb = lq [1− qFq (p)]n−1
π (p)− hb (12)
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for every p ∈
[
p, pm

]
. Solving for Fq (·) in (12) yields (10). This proves the

following proposition.

Proposition 2. Let {Fq (·) , h, π̃} be a symmetric mixed-strategy equilibrium
of the pricing game. If the equilibrium advertising strategy h is given and the
advertising cost is b > 0, then Fq (·) is given by (10) and (11), and π̃ (q) is
given by

π̃ (q) = lq (1− q)n−1
π (pm)− hb = lq

[
(1− q)n−1

π (pm)− b
]

(13)

Note that, in Proposition 2, the expected profit π̃ (q) is a function in q. To
determine the equilibrium advertising strategy h∗, one only has to solve

q∗ ≡ arg max
q∈[0,a]

π̃ (q) = arg max
q∈[0,a]

lq
[
(1− q)n−1

π (pm)− b
]

(14)

Differentiating (13) with respect to q and setting the derivative equal zero yields
the necessary condition

(1− nq∗) (1− q∗)n−2
π (pm)− b = 0 (15)

Since advertising cost b ≥ 0, (15) implies q∗ ≤ 1/n. Taking derivative of (15)
yields the sufficient condition

− (n− 1) (1− q∗)n−3 (2− nq∗)π (pm) ≤ 0 (16)

which gives q∗ ≤ 2/n. It follows that, if (15) holds, then (16) holds. Therefore,
(15) is also sufficient for (14). If (15) and (16) hold, then the optimal advertising
strategy is h∗ = q∗l. However, to prove h∗ is optimal is more difficult than to
derive it.

Proposition 3. Let h∗ ∈ (0, l) and q∗ = h∗/l. If (15) and (16) hold, then
{Fq∗ (·) , h∗, π∗} is a symmetric mixed-strategy of the pricing game, the equilib-
rium price distribution is given by

Fq∗ (p) =
1
q∗

{
1− (1− q∗)

[
π (pm)
π (p)

] 1
n−1
}

(17)

for every p ∈
[
p∗, pm

]
, where

p∗ = π−1
[
(1− q∗)n−1

π (pm)
]

(18)

and the expected profit is given by

π∗ = lq∗ (1− q∗)n−1 π (pm)− h∗b = lq∗
[
(1− q∗)n−1 π (pm)− b

]
(19)

where π (p) is given by (3).
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Proof of Proposition 3. In the pricing game described in Section 2, a Nash
equilibrium is an n-tuple of strategies (s1, s2, · · · , sn) such that, for every j ∈ L,
if all other firms L\ {j} play (s1, s2, · · · , sj−1, sj+1, · · · , sn), then firm j has no
incentives to deviate his strategy sj , where sj = (Fq∗ (·) , h∗) for all j ∈ L.

To prove h∗ is an optimal advertising strategy in a Nash equilibrium, one has
to start with asymmetric strategies.

Suppose that firm j ∈ L decides to send g ≤ l advertisements among buyers,
and that all other n − 1 firms L\ {j} each sends h ≤ l advertisements among
buyers. The probability that a buyer receives the advertisement from firm j is
a = g/l. And the probability that a buyer receives the advertisement from firm
s ∈ L\ {j} is q = h/l. Let ξn−1 be the number of advertisements a representative
buyer receives from firms belong to L\ {j}. ξn−1 has a Binomial distribution
with parameters n − 1 and q. For every m = 0, 1, · · · , n − 1, let τm denote the
probability that a representative buyer receives advertisements from m firms
belong to L\ {j}. Then

τm = P (ξn−1 = m) = Cm
n−1q

m (1− q)(n−1)−m (20)

for every m = 0, 1, · · · , n−1. Let ξj be the number of advertisements a represen-
tative buyer receives from firm j. Then ξj = 0 with probability 1− a and ξj = 1
with probability a. Let ξ be the total number of advertisements a representative
buyer receives. Then

α̃m = P (ξ = m) = nb(1−a)−m(a−q)
n Cm

n−1q
m−1 (1− q)(n−1)−m (21)

for every m = 0, 1, · · · , n− 1. And

α̃n = P (ξ = n) = aqn−1 (22)

Suppose that firm j advertises price p and that all other n− 1 firms indepen-
dently advertise prices according to F (·). For every k ∈ L, the probability that
buyer k purchases the product from firm j is given by (5). Substituting α̃m for
αm in (5) yields

δ̃p =
(

1
1−q

)
[1− qFq(p)]n−2 ( 1

n

)
{nq(1− a) [1− qFq(p)] + (a− q) [1 + nqFq(p)]}

(23)

Note that, if a = q, then (23) simply reduces to (6). Let η̃ be the number of
customers who buy the product from firm j. Since there are a total of l identical
buyers in the market, η̃ has a Binomial distribution with parameters l and δ̃p.
Therefore, the expected profit of firm j is given by

π̃ (a, p) ≡ E [π (p)]− hb ≡
l∑

i=0
iP (η = i)π (p)− hb

=
l∑

i=0
iCi

l δ̃
i
p

(
1− δ̃p

)l−i

π (p)− hb = lδ̃pπ (p)− hb

= l
[
[n (1− q)]−1 [1− qFq (p)]n−2 {nq (1− a) [1− bFq (p)]

+ (a− q) [1 + nqFq (p)]} π (p)− ab]

(24)
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where the last equality follows from a = h/l. Let
[
p, pm

]
⊂ [0,∞) be the support

of Fq (·). If {Fq (·) , h, π̃} is an equilibrium, then π̃ (a, p) = π̃ (a) for all p ∈
[
p, pm

]
.

That is
π̃ (a) = lq

[
(1− q)n−1

π (pm)− b
]

+ (a− q) l
( 1

n

) [(
1 + nq2

)
(1− q)n−3

π (pm)− nb
] (25)

Note that the first term in (25) is the expected profit of a representative firm,
which is given by (13). The difference a− q of advertising strategies only affects
π̃ (a) through the second term in (25). Denote

A(q) = l

(
1
n

)[(
1 + nq2) (1− q)n−3 π (pm)− nb

]
(26)

If A(q) > 0, then firm j has incentives to increase a; and the reverse is true if
A(q) < 0. Firm j knows that all other firms can see this just as well as he does.
If firm j thinks a∗ is optimal, he might expect q∗ = a∗ as well. This justifies
a symmetric solution to the game. The second term can be dropped from (25).
It follows from (15) and (16) that q∗ solves (14) is optimal for all firms. Hence,
h∗ = q∗l is an optimal advertising strategy for all firms. Equations (17) through
(19) follow by Proposition 2. This completes the proof of Proposition 3.

Varying the number n ≥ 2 of firms in (19), denote

V (n) ≡ max
q∈[0,a]

lq
[
(1− q)n−1

π (pm)− b
]

= lq∗
[
(1− q∗)n−1

π (pm)− b
]

(27)

where q∗ is given by (14). Note that, by varying the number n ≥ 2 of firms in
(14), q∗ is a function of n. It follows by the Envelope Theorem that

V ′ (n) = lq∗ (1− q∗)n−1
π (pm) ln (1− q∗) ≤ 0 (28)

where the inequality follows by the fact that q∗ ∈ [0, 1]. Since the optimal ex-
pected profit is a decreasing function in n, the expected profit approaches zero
as more and more firms enter the market. The solution to the following equation
set with respect to (n, q∗) gives the number of firms in the long run:

lq∗
[
(1− q∗)n−1

π (pm)− b
]

= 0

(1− nq∗) (1− q∗)n−2
π (pm)− b = 0

(29)

where the first equation refers to zero expected profit, and the second refers to
optimal condition. Unfortunately, there does not exist an explicit solution to
(29). A numerical solution to (29) is derived in the next section.

4 Numerical Example

Consider the model in which the individual demand function is x (p) = 5 − p,
and the marginal cost is c = 1. It follows that

π (p) = (p− c)x (p) = (p− 1) (5− p) = −p2 + 6p− 5
pm = argmax

p≥0
π (p) = argmax

p≥0

{
−p2 + 6p− 5

}
= 3

π (pm) = −p2
m + 6pm − 5 = 4

(30)
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The inverse individual profit function is given by

p = π−1 (π̂) =
1
2

[
6−
√

36− 4 (5 + π̂)
]

(31)

for any π̂ ∈ [0, 4]. Suppose that there are n = 4 firms and l = 100 consumers.
It costs a firm b = 0.1 to send an advertisement. If each firm randomly delivers
h = 50 advertisements among consumers, then the probability that a consumer
receives the advertisement from a firm is q = h/l = 50/100 = 1/2, and the
equilibrium distribution of advertising prices is given by

Fq (p) =
1
q

{
1− (1− q)

[
π (pm)
π (p)

] 1
n−1
}

= 2

{
1− 1

2

(
4

−p2 + 6p− 5

) 1
3
}

(32)

for every p ∈
[
p, pm

]
=
[
p, 3
]
, where the lowest price a representative firm will

charge is
p = π−1

[
(1− q)n−1

π (pm)
]

= 1
2

(
6−
√

14
)

(33)

The expected profit of a representative firm is

π̃ = lq
[
(1− q)n−1

π (pm)− b
]

= 100
(

1
2

)[(
1− 1

2

)4−1

4− 0.1

]
= 20 (34)

However, {Fq (·) , h, π̃} is unnecessarily a Nash equilibrium of the pricing
game. To find a Nash equilibrium, one can solve problem (14) of the model

q∗ ≡ arg max
q∈[0,a]

lq
[
(1− q)n−1

π (pm)− b
]

= 0.2392 (35)

If q∗ = 0.2392, the equilibrium distribution of advertising prices is

Fq∗ (p) =
1

0.2392

{
1− (1− 0.2392)

(
4

−p2 + 6p− 5

) 1
3
}

(36)

for every p ∈
[
p, pm

]
=
[
p, 3
]
, where

p∗ = π−1
[
(1− q∗)n−1

π (pm)
]

= 1.5038 (37)

The expected profit of a representative firm is

π∗ = lq∗
[
(1− q∗)n−1

π (pm)− b
]

= 39.7420 (38)

One can solve the following equation set to determine the number of firms in
the long run

lq∗
[
(1− q∗)n−1

π (pm)− b
]

= 100q∗
[
(1− q∗)n−1 4− 0.1

]
= 0

(1− nq∗) (1− q∗)n−2
π (pm)− b = (1− nq∗) (1− q∗)n−2 4− 0.1 = 0

(39)
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A feasible way to solve (39) numerically is employ the following iterative
method

q∗k+1 = 1
nk
− 1

nk(1−q∗
k)

nk−2
π(pm)

nk+1 = ln b−ln π(pm)
ln(1−q∗

k+1)
+ 1

(40)

for k = 1, 2, · · ·, where (q∗0 , n0) = (0.1, 4) is given. Three steps of iteration give
n = 47190, q∗ = 1.82× 10−5 and π∗ = 8.54× 10−9.

5 Conclusion

This paper derives the equilibrium price distribution in the market for a ho-
mogeneous good, where buyers are passive in information gathering. The game
described in this paper can be referred to as a temporal price dispersion model.
In Varian’s (1980) model of sales, temporal price dispersion arises when firms
randomize their prices so as to price discriminate against uninformed customers.

As shown in Section 2, the model in this paper can be viewed as the same
pricing game being repeated in discrete time periods. At the beginning of each
period, each firm selects a price according to the equilibrium distribution and de-
livers advertisements among buyers. At the end of each period, those consumers
who receive at least one advertisement buy the good at the lowest price they are
aware of. Price dispersion characterized in this paper is persistent.

Standard economics textbooks tell us that, in a market with complete infor-
mation, the market will reduce to complete competition model, as the numbers
of buyers and sellers approach infinity. In a market with incomplete information,
this rule unnecessarily holds.

The equilibrium price distributions derived by Butters (1977) and Kessner
and Polborn (2000) are irrelevant to either the number of buyers or the num-
ber of sellers. In this paper, the equilibrium price distribution is related to the
number of sellers, but the number of buyers does not affect the equilibrium price
distribution. The equilibrium price distribution derived in this paper permits
comparative statics with variable firm numbers.
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Abstract. It is well known that faithful (i.e. dependency preserving)
decompositions of relational database schemas into Boyce-Codd Normal
Form (BCNF) do not always exist, depending on the set of functional
dependencies given, and that the corresponding decision problem is NP-
hard. The only algorithm to guarantee both faithfulness and BCNF (if
possible) proposed so far in [Os79] is a brute-force approach which always
requires exponential time. To be useful in practice, e.g. in automated
design tools, we require more efficient means.

In this paper we present an algorithm which always finds a faithful
BCNF decomposition if one exists, and which is usually efficient, and
exponential only in notorious cases.

1 Introduction

We begin by introducing some basic terms from relational database theory. A
relation schema R = {A1, A2, . . . , An} is a set of attributes. A relation r over
a schema R is a set of tuples (where each tuple represents one data item), and
each element of the tuple corresponds to one attribute in R.

With each relation schema we associate a set F of functional dependencies
(FD). A FD on R is an expression of the form X → Y (read ”X determines
Y ”) where X and Y are subsets of R. We say that a FD X → Y holds on a
relation r over R if every pair of tuples in r that coincides on all attributes in
X also coincides on all attributes in Y . We call a FD X → Y trivial if Y ⊆ X ,
or, equivalently, if it holds on every relation.

A set F of FDs over R implies a FD X → Y , written F � X → Y , if X → Y
holds on every relation r over R for which all FDs in F hold. We say that F
implies a set G of FDs if F implies every FD in G. If F and G imply each other,
we call G a cover of F (and vice versa).

A relation schema R is in Boyce-Codd Normal Form (BCNF) w.r.t. a set F
of FDs on R if and only if for every non-trivial FD X → Y ∈ F the left hand
side (LHS) X is a key for R, i.e., X → R ∈ F+, where

F+ := {X → Y |X, Y ⊆ R, F � X → Y } .

This normal form is desirable as it prevents redundancy and update anomalies
caused by such redundancy [MR87].

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 102–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A standard approach to achieve BCNF (or at least the weaker third normal
form (3NF)) is to decompose R into several smaller relation schemas Ri ⊆ R,
such that each Ri is in BCNF. For this, we need to define what FDs hold on
each Ri. The projection of a set F of FDs onto a subschema Ri ⊆ R is

F [Ri] := {X → Y ∈ F |XY ⊆ Ri}

For each Ri, the set of FDs on Ri that are implied by F , is then F+ [Ri].
When we ask whether Ri is in BCNF, it is w.r.t. this set F+ [Ri].

To ensure that the decomposed schema can hold the same data as the original
schema, we must ask for a decomposition that has the lossless join property,
that is to say if we project some relation over R onto the Ri and then join them
back together, we get back the original relation. Furthermore, the decomposition
should be dependency preserving or faithful, i.e., (

⋃
Fi)

+ = F+, where Fi is
a cover for F+ [Ri] (when describing the decomposition, we usually want to
represent F+ [Ri] by a smaller cover for it).

Unfortunately, there does not always exist a faithful BCNF decomposition1 -
consider e.g. the schema R = ABC with FDs

F = {AB → C, C → B} .

The well-known decomposition algorithms ([MR87], [TF80]) produce a lossless
BCNF decomposition, which however is not always faithful. While this is some-
times unavoidable, there are cases where they do not produce a faithful decom-
position even though one exists (example 1).

Example 1. Consider the schema CLRT containing the attributes C=Course,
L=Lecturer, R=Room, T=Time with the functional dependencies

F = {C → L, CT → R, LT → C, RT → C}

The only FD in F for which the left hand side is not a key is C → L, so the
algorithm from [MR87] produces the decomposition

R′ =
{

(CL, {C → L}) ,
(CRT, {CT → R, RT → C})

}
The missing FD LT → C is not implied by {C → L} ∪ {CT → R, RT → C},
thus the decomposition is not faithful.

On the other hand, the popular synthesis algorithm in its various forms ([BD79],
[MR87], [LL99]) produces a faithful decomposition, but the resulting relations
Ri need not be in BCNF. And again, there are cases where a faithful BCNF
decomposition exists, but the synthesis algorithm does not find one:

Example 2. Consider again the schema CLRT with the FDs

F = {C → L, CT → R, LT → C, RT → C}

1 As the condition of being lossless does not conflict with BCNF or faithfulness, we
usually will not mention it.
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If we synthesize a decomposition by projecting on the attributes involved in each
FD in F and eliminate contained sets, we get the decomposition

R′ =
{

(CLT, {C → L, LT → C}) ,
(CRT, {CT → R, RT → C})

}
While this decomposition is clearly faithful, the subschema CLT, {C → L,
LT → C} is not in BCNF as the left hand side C of C → L is not a key
for CLT .

Since the schema CLT is not in BCNF, the information who is lecturer of a course
is stored multiple times (once for each lecture time). Thus, in order to change
the lecturer of a course, multiple tuples need to be updated. These problems
are avoided by the BCNF decomposition CL, CRT from example 2, but there
we lost LT → C which prevented us from creating tables where a lecturer is
supposed to give different courses at the same time.

The question of whether a faithful BCNF decomposition exists has been
shown to be NP-hard [BB79], so we cannot hope to always find one (if it exists)
in polynomial time. In the following we will present an algorithm which does
always find a faithful BCNF decomposition if it exists, and computes a faith-
ful decomposition into 3NF otherwise. While the runtime of this algorithm is
exponential in the worst case, it appears to be efficient in practise.

2 Linear Resolution and Atomic Closure

The central idea of our approach is to compute all ”minimal” FDs in F+. While
the number of such FDs can grow exponentially in the number of attributes and
FDs, it often turns out to be reasonably small. The main contribution of this
paper is an efficient algorithm for computing the set of all ”minimal” FDs.

In the following R denotes a relation schema with FD set F . The variables
X, Y, Z shall denote subsets of R, while A, B, C denote single attributes.

Definition 1. (i) A FD X → A is called singular.
(ii) A non-trivial singular FD X → A ∈ F+ is called atomic, if and only if for
all Y � X we have Y → A /∈ F+.
(iii) The atomic closure F of F is the set of all atomic FDs in F+.
(iv) A set G ⊆ F is called canonical cover if G+ = F+ and for all H � G we
have H+ �= F+.

Example 3. Consider the set of FDs

F = {A→ B, AB → C, BC → AD}

(i) The FDs A→ B and AB → C are singular but BC → AD is not.
(ii) While A→ B is atomic, AB → C is not, since A→ C ∈ F+.
(iii) For the atomic closure of F we get

F = {A→ B, A→ C, BC → A, BC → D, A→ D}
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(iv) The canonical covers of F are

{A→ B, A→ C, BC → A, BC → D} ,
{A→ B, A→ C, BC → A, A→ D}

Checking whether a FD X → Y is implied by a set F of functional dependencies
is easy: We can do so by computing the closure X of the left hand side X , which
is the set of all attributes determined by X :

X :=
{

A ∈ R|X → A ∈ F+}
Once computed, we only need to check whether the right hand side Y is a subset
of X. Computing X can be done quickly using the well-known closure algorithm:

Algorithm. ”closure”

X := X
while ∃X ′ → Y ∈ F with X ′ ⊆ X, Y � X do

X := XY
end

However, creating all possible FDs on R and testing whether they are implied
by F is inefficient. In order to compute F efficiently, we need some method for
deriving new FDs. In our approach we use a single derivation rule, namely the
resolution rule

X → A AY → B

XY → B

which is easily checked to be sound, i.e. the FDs at the top imply the FD at the
bottom. We can then derive new FDs implied by a given set of FDs by applying
the resolution rule multiple times:

A→ B
AB → C BC → D

AB → D
A→ D

The derivation tree above derives A→ D from the FDs A→ B, AB → C, BC →
D. Note that the derivation tree is right-linear, i.e. the left branch always ends
in a leaf (a FD in F , rather than an arbitrary sub-tree, in this case A→ B and
AB → C). We shall refer to such derivation trees as linear resolution trees.

The following theorem, which shows that such derivations are possible in
general, is central, as it allows us to create a fast algorithm for computing F .

Theorem 1. Let F be a set of singular FDs. Then every atomic FD in F can
be derived from F using the resolution rule

X → A AY → B

XY → B
(1)

This result still holds if we restrict ourselves to derivations where the substituting
FDs X → A lie in F , i.e. for every atomic FD Xi → Ai ∈ F there exists a linear
resolution tree deriving Xi → Ai from F .
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Proof: Let X → A ∈ F , and thus A ∈ X \ X . We use the known fact that
the ”closure” algorithm works. For any run of the ”closure” algorithm let Xi →
Ai ∈ F, i = 1 . . . k be the FDs X ′ → Y used to compute X , in that order. We
start our derivation with Xk → A (= Ak), and then successively use Xi → Ai

for i = k − 1, . . . , 1 in the resolution rule (1):

Xi → Ai Ui+1 → A

Ui → A

provided Ai ∈ Ui+1. In this, the derived left hand sides Ui have the form

Uk = Xk, Ui =
{

Xi (Ui+1 \Ai) if Ai ∈ Ui+1
Ui+1 else

It is easy to see that Uj ⊆ X ∪ {A1, . . . , Aj−1}, and in particular U1 ⊆ X .
Since X → A is atomic, we get U1 = X , thus we have indeed constructed the
derivation we wanted. �

Note that the intermediate FDs Ui → A during the derivation need not be
atomic, as Ui need not be minimal. As example 4 shows, this is unavoidable.

Example 4. Consider the set

F = {A→ B, A→ C, BC → D}

The atomic FD A → D cannot be derived using (1) without intermediate non-
atomic FDs: The only possible applications of the resolution rule are

A→ B BC → D

AC → D
and

A→ C BC → D

AB → D
,

and neither AC → D nor AB → D are atomic.

Since we are only interested in atomic FDs, we reduce the left hand side of any
FD we derive. As the reduced FD implies the derived one, this still allows us
to derive all atomic FDs, and it can reduce the number of possible derivation
sequences considerably. This is all we need to turn theorem 1 into an efficient
algorithm (that we shall name linear resolution) which computes the atomic
closure F of any set of functional dependencies F . Note that we can easily
compute a canonical cover of F by splitting up FDs by their right hand side
attributes, reducing the left hand sides and removing redundant FDs [MR87].

Algorithm. “linear resolution” to compute F

compute a canonical cover F ′ of F
F := F ′

for all Y → B ∈ F do
for all X → A ∈ F ′ with A ∈ Y, B /∈ X do
// derive (XY \A)→ B by rule (1)
find U ⊆ (XY \A) with U → B atomic
if U → B /∈ F then append it to F

end
end
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Example 5. Starting with the canonical cover

F = {C → L, CT → R, LT → C, RT → C}

from examples 1 and 2, we use resolution:

RT → C C → L

RT → L
,
LT → C CT → R

LT → R

The newly found FDs RT → L and LT → R are already atomic, so we add
them to F . We then test whether new resolution steps have become possible:

CT → R RT → L

[CT → L]
,
C → L LT → R

[CT → R]

The FD CT → L gets LHS-minimized (we minimize the left hand side) to
C → L, which has already been found. The FD CT → R is already contained
in F as well, so no further atomic FDs can be derived. We therefore get:

F = F ∪ {RT → L, LT → R}

Theorem 2. The “linear resolution” algorithm computes F correctly.

Proof: The algorithm computes all atomic FDs that can be derived using (1),
which by theorem 1 are all. Instead of storing the potentially non-atomic FD
(XY \A)→ B it stores the stronger result U → B. Thus any derivation which
requires (XY \A)→ B can be replaced by a derivation using U → B as initial
FD instead. �

3 Faithful BCNF Decomposition

In the following we will use the atomic closure F to construct a faithful BCNF
decomposition R′, provided it exists. In this we take the same approach as was
taken in [Os79], and refer the reader to proves given there.

The following lemma allows us to focus on making our decomposition faithful
and in BCNF, and not worry about making it lossless.

Lemma 1. [BD79] Every faithful decomposition of R containing a subschema
which forms a key of R is lossless.

Every minimal key is in BCNF, as the projection of F+ on it contains only
trivial FDs. Thus we can easily make a faithful BCNF decomposition R′ lossless
(without losing faithfulness or BCNF) by adding a minimal key as additional
subschema if R′ doesn’t contain a key of R.

When synthesizing a decomposition from a set of FDs, we need to use a cover
with the ”right” FDs, so that the subschemas created are in BCNF.

Definition 2. A FD X → Y ∈ F+ is called critical (w.r.t. F ) if XY is not in
BCNF (w.r.t. F+ [XY ]). A cover G of F is called critical if it contains a critical
FD. A FD or cover that is not critical is called uncritical.
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Theorem 3. [Os79] The following are equivalent:
(i) A schema (R, F ) has a faithful, lossless decomposition into BCNF
(ii) F has an uncritical cover
(iii) F has an uncritical atomic cover

We may test whether a FD is critical by using F as follows:

Lemma 2. [Os79] A FD X → A is critical w.r.t. F if and only if there exists
a FD Y → B ∈ F with Y B ⊆ XA and XA � Y .

Guided by theorem 3, we try to find an uncritical canonical cover F ′′ of F as
follows: for each X → A ∈ F we check whether it is critical, and if so whether
it is redundant. If it is redundant we discard it, otherwise we can be sure that
there exists no uncritical atomic cover, and thus no FLBD. We can then create
F ′′ from the remaining FDs by eliminating redundant ones.

We then apply the synthesis algorithms [BD79] using this cover, i.e. our
decomposition will consist of those subschemas XA where X → A ∈ F ′′, plus
a minimal key if needed. Thus, even if no uncritical cover if found, we obtain a
decomposition into 3NF [BD79].

Algorithm. “least critical cover synthesis”

compute F
F ′′ := F
for all X → A ∈ F ′′ do
for all Y → B ∈ F do
if Y B ⊆ XA and XA � Y then

if X → A ∈ (F ′′ \ {X → A})+ then
remove X → A from F ′′

end
end
for all X → A ∈ F ′′ do
if X → A ∈ (F ′′ \ {X → A})+ then
remove X → A from F ′′

else
add schema XA to R

end
remove all schema Ri ∈ R with Ri � Rj ∈ R
if R contains no key, add a minimal key

Theorem 4. [Os79] Either the “least critical cover synthesis” algorithmcomputes
a faithful, lossless BCNF decomposition R, or no such decomposition exists.

4 Improvements and Complexity Analysis

In this section we shall discuss possible improvements and implementation issues
for the basic algorithms presented. Based on these improvements we present a
brief complexity analysis. For this we shall use the following variables:
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k = number of attributes in R
n = number of FDs in F
f = number of FDs in F

4.1 Linear Resolution

We start with the algorithm for computing the atomic closure F . By splitting up
FDs by their right hand side attributes, the number of FDs in F can increase.
To avoid this, we use the original set F and replace the singular resolution rule
(1) by the generalized resolution rule

X → Z Y → A

X
(
Y \X

)
→ A

Z ∩ Y �= ∅ (2)

Since all attributes in X \X are extraneous in XY and thus could be removed
when minimizing the left hand side, we don’t lose any derivations. As with
singular resolution, rule (2) only needs to be applied if A /∈ X .

The set of all atomic FDs with right hand side A can be computed inde-
pendently from other atomic FDs, as the linear resolution process only utilizes
FDs in F and atomic ones with right hand side A. We may thus compute the
minimal left hand sides for each attribute A individually, which allows us an-
other optimization: For any FD X → Z ∈ F with A ∈ X we compute a minimal
U ⊆ X such that U → A is atomic (provided A /∈ X , otherwise we discard
X → Z completely). These FDs U → A are used as initial FDs for deriving
FA :=

{
X → A ∈ F

}
. The FD X → Z can then be removed from F for the

purpose of linear resolution, since any application of (2) using X → Z with
A ∈ X results in a FD XY ′ → A which can be LHS-minimized to a FD U → A
already contained in the initial set.

Our optimized linear resolution algorithm is given below.

Algorithm. “linear resolution” revised

for each X → A ∈ F compute X
for each A ∈ RHS (F ) :=

⋃
X→Z∈F

Z do

FA := ∅, FA := ∅
for each X → Z ∈ F do
if A /∈ X then
add X → Z to FA

else if A /∈ X then
find U ⊆ X with U → A atomic
if U → A /∈ FA then append it to FA

end
for all Y → A ∈ FA do
for all X → Z ∈ FA with Y ∩ Z �= ∅ do
// derive X

(
Y \X

)
→ A by rule (2)

find U ⊆ X
(
Y \X

)
with U → A atomic
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if U → A /∈ FA then append it to FA

end
end

end
F :=

⋃
FA

A complexity analysis for the revised linear resolution algorithm is straight
forward. Computing X for each X → A ∈ F can be performed in O

(
kn2
)
,

given that each X can be computed in O (kn) using the ”closure” algorithm
[BB79]. The most time consuming step is the removal of extraneous attributes
from X

(
Y \X

)
. Each test whether an attribute is extraneous requires one run

of the ”closure” algorithm. Thus finding a minimal U takes O
(
k2n
)

operations.
Checking whether or not U → A ∈ FA can be done in O (k) using an appro-
priate data structure to represent FA (e.g. a binary tree with different branches
indicating whether an attribute is contained in the left hand side of a FD). This
is done at most f · n times (plus kn times for initialization), which leads to an
overall complexity of O

(
f · k2n2

)
.

4.2 Least Critical Cover Synthesis

While the improvements which we shall present in the following reduce the run-
time of our ”least critical cover synthesis” algorithm considerably, they do not
improve its worst-case complexity behavior. We shall therefore begin with a brief
complexity analysis.

Computation of F can be done in O
(
f · k2n2

)
as described earlier. Pre-

computing Y for each Y → B ∈ F can be done in O (f · kn) using the ”closure”
algorithm, so that the condition

Y ⊆ XA and XA � Y

can be tested in O (k). The number of such tests is at most f2, leading to a
complexity of O

(
f2 · k

)
. The redundancy test

X → A ∈ (F ′′ \ {X → A})+

can be performed in O (f · k) using the ”closure” algorithm. At most f such
tests are performed (both loops combined), which again gives us O

(
f2 · k

)
as

bound. Since R contains at most f schemas, removal of contained schemas from
R can be performed in O

(
f2 · k

)
as well. Checking whether R contains a key

can be done in O (f · kn). A minimal key can be found in O
(
k2n
)

by starting
with the trivial key R and testing for each attribute whether it can be removed
while maintaining a key of R. Adding these complexities up leads to an overall
bound of O

(
f · k2n2 + f2 · k

)
.

We want to reduce the number of FDs for which we check for criticality and
redundancy. Furthermore, we often do not start with a single relation schema,
but rather with a decomposition from an earlier design. This decomposition is
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reflected by the form of the FDs given. It is therefore desirable to keep the cover
F ′′ produced as close to the original cover F ′ as possible.

We do so by maintaining a cover FR, which gets initialized with F ′. We then
check all FDs in FR for being critical. If we find a critical one, we need to check
whether it is redundant, and if so, substitute it for one or more non-critical ones
from F ′′. These two tasks can be combined: when checking whether X → A ∈ FR

is redundant by computing the closure X (up to the point where A is added),
we check any FD to be used for criticality (discarding FDs tested critical to
avoid double-testing) and use only non-critical ones. If X → A turns out to be
redundant, we replace it by the FDs used in computing the closure.

Algorithm. for substituting X → A ∈ FR

X ′ := X, Subst := ∅
while A /∈ X ′ do
if ∃Y → B2∈ FR \ {X → A} with Y ⊆ X ′, B /∈ X ′ then
add B to X ′

else
if ∃Y → B ∈ F ′′ with Y ⊆ X ′, B /∈ X ′ then
if Y → B critical then
remove Y → B from F ′′

else
add B to X ′

add Y → B to Subst
else
return ”X → A not redundant”

end
FR := (FR\ {X → A}) ∪ Subst
F ′′ := F ′′\Subst

Note that all critical Y → B ∈ F ′′ \ FR we find are redundant since FR

is a cover for F , so we need not perform a costly check before removing them
from F ′′. After substituting critical FDs from FR, we may no longer have a
non-redundant cover. Also, some of the sets XA for X → A ∈ FR may contain
additional atomic FDs. We can find those while checking for criticality. For
G ⊆ F let contained (G) denote the set of such additional atomic FDs, i.e.

contained (G) :=
⋃

X→A∈G

F [XA]

Having computed F [XA] for each X → A ∈ FR, we now remove redundant FDs
from FR. When checking whether a FD X → A ∈ FR is redundant, we check
redundancy w.r.t. contained (FR \ {X → A}) rather than FR\{X → A}. Having
constructed R, we can attempt to merge schemas to reduce their number. For
this, we can use F to check whether the merged schema Ri ∪Rj is in BCNF.
2 The data structure used to speed up the ”closure” algorithm as described in [BB79]

can be used to perform this check quickly as well.
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5 Other Applications and Related Work

The linear resolution algorithm can also be used to compute all minimal left hand
sides X for any given right hand side Y , i.e. all minimal X with X → Y ∈ F+.
For this, we simply start with some minimal left hand side X ⊆ Y such that
X → Y .

Theorem 5. Let F be any set of singular FDs over R and Y ⊆ R. Then any
FD X → Y ∈ F+ with minimal left hand side X can be derived from Y → Y
using linear resolution.

Proof: Let X be minimal with X → Y ∈ F+. For every Ai ∈ Y \X there exists
a minimal Xi ⊆ X with Xi → Ai ∈ F . By theorem 1 every Xi → Ai ∈ F has
a linear resolution tree in F . Combining these resolution trees to substitute all
Ai ∈ Y \ X in Y → Y (possibly skipping some if the attribute Ai has been
eliminated in an earlier step) yields a linear resolution of X ′ → Y for some
X ′ ⊆

⋃
Xi ⊆ X . Since X is minimal X ′ = X . �

In particular, linear resolution can be used to compute all minimal keys of a
relation, and thus all prime attributes. This application was already found in
[LO78]. The same author discusses an algorithm for finding a faithful BCNF
decomposition in [Os79] similar to the basic version of our ”least critical cover
synthesis” algorithm, but does not provide efficient means for computing F .

As well, the atomic closure F can be used to compute the atomic closure of
the projection of F+ over some subschema S, using the identity

F+ [S] = F [S]

This allows us to compute covers for the schemas produced in our BCNF de-
composition. A similar approach was taken in [Go87], where the resolution rule
is used in a non-linear fashion, but other optimizations are applied.

In [MC92] a sufficient but not necessary condition for the existence of a
faithful BCNF decomposition is given, which can be checked in polynomial time.
The condition actually ensures that every atomic FD is uncritical, and can be
viewed as a way of identifying easy cases.

The subject of schema normalization has gained new interest in recent years
with the advance of XML-databases [Sc05]. We note that the approach presented
here can be generalized to complex-valued data models such as XML, although
this is outside the scope of this paper.

6 Conclusion

We have shown how to compute the atomic closure of a set of FDs efficiently,
and how to utilize it in finding a faithful BCNF decomposition. Our algorithm
guarantees to find a faithful BCNF decomposition whenever one exists, and
may likely generate better decompositions (for which fewer subschemas violate
BCNF) than ”standard” synthesis otherwise.
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We have implemented the algorithms described, and run them on several
thousand test schemas with up to 50 attributes and up to 100 FDs. In all cases a
faithful BCNF decomposition was found (or determined that none exists) within
seconds. This is in contrast to the algorithm given in [Os79], which computes F
using brute-force and proves completely infeasible for schemas of that size.

From these test results and our complexity analysis we conclude that our
approach is practical for reasonably large schemas (as long as the FD sets are
not specifically designed to break the algorithm).
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Abstract. Many of scheduling algorithms that provide a predefined
bandwidth to a traffic flow fall into a category of Latency-rate (LR)
server. A series of LR servers can be viewed as a virtual node with an
LR server of the latency which is simply the summation of individual la-
tencies of actual LR servers. Deficit Round Robin (DRR) is such an LR
server and the simplest one to implement, so that it is adopted in many
real systems. In this research we suggest a novel policy of Instant Ser-
vice, which is applicable to any round-robin schedulers. We then apply
this policy to DRR, make a variation called DRR with Instant Service
(DRR-IS), and analyze it. We prove that the DRR-IS is still an LR
server. We calculate its latency and investigate its fairness characteris-
tics. We demonstrate the DRR-IS, compared with DRR, provides about
30% better latency while have the same complexity and the same fairness.

1 Introduction

The problem of guaranteeing a QoS (Quality of Service) within a packet switch-
ing network has been extensively studied and several solutions to this problem
have been suggested. One of such suggestions is the IntServ (Integrated Services)
in which the QoS is guaranteed by means of reserving, allocating and providing
an amount of predefined resource to a data traffic unit, which often is called a
flow or a session. Providing the allocated bandwidths, or service rates, or simply
rates of an output link to multiple sharing flows plays a key role in this ap-
proach. A scheduling algorithm selects the next packet to transmit, and decides
when it should be transmitted, on the basis of given performance metrics. Two
well-established performance metrics of those algorithms are the delay and the
fairness. The representative and pioneering solutions for scheduling algorithms
that provide bandwidths to flows are Packet-level Generalized Processor Sharing
(PGPS) [1] and Weighted Fair Queueing (WFQ) [2]. These early traffic schedul-
ing algorithms and their variations, empowered by packet-level approximations
of precise schedulers based on fluid-flow traffic model, are able to provide mini-
mum delay and maximum fairness to each flows, while providing promised rates.
This group of algorithms, called sorted priority scheduling algorithms however,
generally need to sort packet deadlines and therefore suffer from the implemen-
tation complexity, which is O(log N) at best, while N is the number of active
flows in a scheduler [3]. This sorting bottleneck makes practical implementations
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of these algorithms problematic, and necessitates the design of simpler schemes.
A simple round robin based algorithm, Deficit Round Robin (DRR) [4], and its
variations [5, 6, 7] can maintain the crucial property of providing the allocated
service rates, that of the PGPS and WFQ, without the complexity of sorted
priority scheduling algorithms. In fact a simple weighted round-robin (WRR)
scheduler would provide a rate to a flow if the size of packets is homogenous.
When the packet size varies, however, as in the most existing networks, a flow
with smaller packets gets disadvantage as the rounds go. Therefore redemptions
for flows with shorter packets are necessary, and this is where the idea of register-
ing deficit and redeeming later was introduced, and called DRR. The complexity
of the basic DRR can be as low as O(1). The DRR and its variations cannot
match the performance of sorted priority algorithms, especially in terms of the
delay bound. There are numerous upgrades to the basic DRR in this regards,
but they all suffer from additional complexity, which one would like to avoid
considering the original paradigm of adopting round robin based algorithms.

The DRR, with many other rate-providing servers, is proved to be a Latency-
Rate server [10], or simply LR server. For a scheduling algorithm to belong to the
LR server class, it is only required that the average rate of service offered by the
server to an active flow, over any interval between the time Θ after the beginning
of the busy period and the end of the busy period, is at least equal to its reserved
rate. A busy period of a flow is a period of time during which the average arrival
rate of the flow remains at or above its reserved rate. The parameter Θ is called
the latency of the server. All the work-conserving servers that guarantee rates,
including WFQ, PGPS, WRR, DRR, and many other schedulers exhibit this
property and can therefore be modeled as LR servers. The behavior of an LR
server is determined by two parameters, the latency and the allocated rate. The
latency of an LR server may be considered as the worst-case delay seen by the
first packet of the busy period of a flow. The latency of a particular scheduling
algorithm may depend on its internal parameters, its transmission rate on the
outgoing link, and the allocated rates of various flows. It was shown, however,
that the maximum end-to-end delay experienced by a packet in a network of
LR servers can be calculated from only the latencies of the individual servers on
the path of the flow, and the traffic parameters of the flow that generated the
packet. More specifically for a leaky-bucket constrained flow,

Di ≤
σi

ρi
+

k∑
j=1

Θ
(Sj)
i , (1)

where Di is the delay of flow i within a network, σi and ρi are the well known
leaky bucket parameters, the burstiness and the average rate, respectively, and
Θ

(Sj)
i is the latency of the server Sj .
In this research we suggest a novel concept of Instant Service, which is ap-

plicable to any round-robin scheduling algorithms. We then apply this concept to
DRR, make a variation called DRR with Instant Service (DRR-IS), and analyze
it. We prove that the DRR-IS is still an LR server and calculate its latency. The
DRR-IS, compared with DRR, turns out to provide about 30% better latency
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while introducing no additional complexity at all. In the next section we describe
the core algorithm and basic properties of DRR. We then introduce DRR-IS and
analyze its performance, both in terms of delay and fairness, in section 3. In sec-
tion 4 numerical results are shown from scenarios of real-time traffic services in
residential network environments. DRR and other LR servers are compared.

2 Previous Works on Deficit Round Robin

In this section we describe the detail of DRR behavior, and its latency given by
[10]. A DRR scheduler maintains a deficit counter per each flow, thus per each
queue. A flow i is assigned with a quantum value φi, which represents a relative
amount of service a flow will receive. A round is defined as a time interval during
which all the active flows receive service opportunities, one per each flow. We
will call this service opportunity a turn of a flow. At the start of the flow i’s
turn, the deficit value δi is incremented as much as the quantum value of the
flow, φi. The size of the head packet of the flow i then is compared with the
δi. If δi is larger or equal to the head packet size, then the head packet gets
service and leave the queue. Whenever a packet is served, δ is decremented as
much as the size of the served packet. The second head packet of the queue,
which now becomes the head packet is then compared with the δi again. This
process continues until the δi becomes smaller than the head packet. When this
happens the next flow enters a turn and the packets within this flow will be
served. Using this policy, the DRR can achieve O(1) complexity, given that the
φi is set to be greater than or equal to the maximum packet size of the flow i, for
all i [9]. This is because otherwise a flow may not receive a service at all during
a turn, and the amount of calculation required for serving a packet in a flow
increases consequently. DRR can provide a lower bound of the service amount
offered to a flow, in terms of number of turns. This important property of DRR
is summarized in the following lemma.

Lemma 1. Assume that flow i is continuously backlogged during [t1, t2). Let k
be the number of DRR turns given to i during the interval [t1, t2). The service
received by i during this period, Wi(t1, t2), is given by

Wi(t1, t2) ≥ kφi − δk
i , (2)

where δk
i is the deficit value of i, at the end of the kth round, counting from the

first round within [t1, t2).

Proof. See the proof of lemma 2 of [4]. ��
In an accompanying research [10], DRR is proved to be an LR server. The
latency of the DRR server is given as

3F − 2φi

r
, (3)

where F is defined as the frame size, which is the sum of all φi over i, and r is the
output link capacity. Note that F does not represent the actual number of bytes
served during a specific round, but the average number of bytes served in a round.
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3 Analysis of DRR-IS

We assume a packet switch where a set of flows share a common output link.
We denote with ρi the bandwidth, or the rate allocated to flow i. We assume
that the switches are store-and-forward devices. We denote by server an output
link controller of a switch, whose mission is to schedule packets destined for the
output link and then transmit the scheduled packets accordingly. Let Ai(τ, t)
denote the arrivals from flow i during the interval (τ, t) and Wi(τ, t) the amount
of service received by flow i during the same interval. In a system based on the
fluid-flow model both Ai(τ, t) and Wi(τ, t) are continuous functions of t. In the
packet-by-packet model, however, we assume that Ai(τ, t) increases only when
the last bit of a packet is received by the server; likewise Wi(τ, t) is increased
only when the last bit of the packet in service leaves the server. We further
denote that a flow i is backlogged when one or more packets of i are waiting for
service. In other words, if Ai(0, t) −Wi(0, t) is larger than zero then the flow i
is backlogged at t. Therefore a backlogged period of flow i is any period of time
during which packets belong to flow i are continuously queued in the server.
When a packet from a previously inactive flow enters a server, the backlogged
period of that flow starts and the flow is said to be now activated.

Every round-robin scheduler maintains an active list, with which information
of active flows and the service order among them are updated. A newly activated
flow is enqueued to the active list. When a flow becomes inactive, it is dequeued
from the active list. Exactly where in this one dimensional linked list we should
enqueue a flow is the key idea of this research. A round-robin scheduler including
DRR has a head and a tail in the active list. When a flow is activated, this flow
is enqueued after the current tail, so that it becomes a new tail. If this flow is
activated during the head flow’s turn, it has to wait almost a whole round’s worth
of time to receive a service. Instant Service policy lets an activated flow be served
after the current flow’s turn. The precise algorithm can be stated as the following:

1. Assume that a flow i is activated during another flow g’s turn. The flow i
gets service right after the flow g’s turn is finished.

2. If more than one flow are activated during another flow’s turn, the service
order among these new flows may be determined arbitrarily.

Let us apply the IS policy to DRR and analyze it. Consider the following server
with a set of flows V . The number of total flows is v. Among these v flows, n flows
are backlogged and are initially being served according to the DRR algorithm.
Let the set of these backlogged flows be N . Let the flow under our interest be i
and assume i is activated during another flow g’s service turn. g belongs to N .
Further let the number of flows activated during the g’s turn be m and let the
set of these flows be M . According to the IS policy, the flows in M will receive
service after the g’s turn and the order among the flows in M will be determined
arbitrarily, and therefore the flow i may be the last among them in the worst case.

Let us define the system S(M, N) be the server in which a set of flows N is
initially backlogged and a set of flows M is activated during an arbitrary flow
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g’s turn, where g ∈ N . In such a system M ⊂ V , N ⊂ V , and M ∩N = {}. Let
us further define the following time instants.

T0: the time flow i is activated (becomes backlogged).
tk: the finish time of the kth round of the system.
τk: the finish time of flow i’s turn within the kth round.

Figure 1 depicts the time instants, assuming that the flow i is the last one served
among the flows in M .

Fig. 1. Time instants of the system S(M, N)

3.1 Latency

Lemma 2. For any system S(M, N), n(M) + n(N) < v, there always exists a
system S(M ′, N ′), M ′ ⊂ V , N ′ ⊂ V , and M ′ ∩ N ′ = {}, which satisfies the
inequality,

W
S(M,N)
i (T0, t) ≥W

S(M ′,N ′)
i (T0, t), M �= M ′, N �= N ′, ∀t > T0. (4)

Proof. It is suffice for the proof to show a case in which the (4) is satisfied.
Consider a system S(M, N), where the sum of each number of elements, n(M)
plus n(N), is less than the total number of flows, v. For such a system S(M, N),
there always exists a system S(M∗, N), M∗ = M ∪ {i∗}, for i∗ not belong to
either M nor N . The flow under observation i is an element of both M and M∗. In
the system S(M∗, N), i∗ and i become backlogged during the same flow’s service
time, therefore i∗ can be served prior to i. In this case, τ

S(M,N)
k < τ

S(M∗,N)
k , ∀k >

0. If i∗ receives service after i, then τ
S(M,N)
k = τ

S(M∗,N)
k . Therefore τ

S(M,N)
k ≤

τ
S(M∗,N)
k in any case. By the definition of τk,

W
S(M,N)
i (T0, τ

S(M,N)
k ) = W

S(M∗,N)
i (T0, τ

S(M∗,N)
k ), ∀k > 0. (5)

Moreover Wi(T0, t) is a monotonically increasing function, therefore

W
S(M,N)
i (T0, t) ≥W

S(M∗,N)
i (T0, t), ∀t > T0, (6)

and the (4) holds. ��
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Lemma 3. For an arbitrary N , n(N) < v, N ⊂ V ,

W
S(M,N)
i (T0, t) ≥W

S(V −N,N)
i (T0, t), n(M) + n(N) < v,∀t > T0. (7)

Proof. Lemma 3 is a direct consequence of lemma 2. ��

Lemma 3 implies that in a case where n flows are backlogged, the service received
by i, Wi, is minimized when all the remaining v − n flows, including i, are
activated during another flow’s single service turn.

Theorem 1.

Wi(T0, t) ≥ max
{

0, ρi

(
t− T0 −

2F + φmax − φi

r

) }
, (8)

where φmax = maxj �=i,j∈V {φj}.

Proof. Let us define the following sets of flows. Let A be the set of flows, which
will receive service after the flow i in a round, among those which have been
backlogged before i is activated. Similarly let B be the set of flows, which will
receive service before the flow i in a round, among those which have been back-
logged before i is activated. Further let C be the flows which are activated in
the same flow’s turn with i. In summary, A∪B = N and C ∪{i} = M . Let g be
the flow during whose service time the flows in M are activated. The following
inequalities hold.

τ1 − T0 ≤
1
r

{
max
j∈B

(φj + δ0
j − δ1

j ) +
∑
j∈C

(φj − δ1
j ) + (φi − δ1

i )
}

. (9)

τl − τl−1 ≤
1
r

{ ∑
j∈A

(φj + δl−2
j − δl−1

j ) +
∑
j∈B

(φj + δl−1
j − δl

j)

+
∑
j∈C

(φj + δl−1
j − δl

j) + (φi + δl−1
i − δl

i)
}

, (10)

for l, 2 ≤ l ≤ k. Summing the inequality (10) over l, from 2 to k, and the
inequality (9) we get

τk − T0 ≤
1
r

{
max
j∈B

(φj + δ0
j − δ1

j ) +
∑
A

δ0
j +
∑
B

δ1
j +
∑
C

φj + φi

−(
∑
A

δk−1
j +

∑
B

δk
j +
∑
C

δk
j + δk

i ) + (k − 1)F
}
. (11)

maxB(φj + δ0
j − δ1

j )+
∑

B δ1
j ≤ maxB φj +maxB(δ0

j − δ1
j )+
∑

B δ1
j , and without

loss of generality, we can let maxj∈B(δ0
j − δ1

j ) = δ0
h − δ1

h, h ∈ B, and then
maxB(δ0

j − δ1
j ) +

∑
B δ1

j ≤
∑

B φj . Moreover
∑

A δ0
j ≤
∑

A φj . Therefore
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τk − T0 ≤
1
r
{max

j∈B
φj +

∑
j∈{A∪B∪C}

φj + φi + (k − 1)F − δ}

≤ 1
r
{φmax + kF − δ}, (12)

where φmax = maxj �=i,j∈V {φj}, and

δ =
(∑

A

δk−1
j +

∑
B

δk
j +
∑
C

δk
j + δk

i

)
. (13)

We get

k ≥ 1
F
{r(τk − T0)− φmax + δ}. (14)

Inequality (12) comes from that τk−T0 is maximized when A∪B∪C ∪{i} = V ,
because of lemma 3. Based on the inequality (14) and lemma 1, we obtain

Wi(T0, τk) = Wi(T0, tk) ≥ 1
F
{r(τk − T0)− φmax + δ}φi − δk

i

= ρi(τk − T0)− (
φmax − δ

F
)φi − δk

i . (15)

Note that ρi/r = φi/F .
From here we investigate the lower bound of the amount of service received

by flow i in an arbitrary time within the time interval (τk−1, τk]. For a given
Wi(T0, τk), Wi(T0, t) is minimized under the condition that the amount of data
sent by flow i during kth turn is at its maximum, 2φi − δk

i . Let’s denote by t∗

the time instant in the interval (τk−1, τk], at which the service of the first packet
of flow i is completed. Since the first packet size is less than or equal to φi, the
total data served is 2φi − δk

i , and by the definition of t∗, t∗ ≤ τk − (φi − δk
i )/r.

Therefor, for any t ≤ t∗,

Wi(T0, t)≥ max{0, ρi(τk − T0)− (
φmax − δ

F
)φi − δk

i − 2φi + δk
i }

= max
{
0, ρi

(
τk − T0 −

φmax − δ

r
− 2F

r

)}
≥ max

{
0, ρi

(
t− T0 +

φi − δk
i

r
− φmax − δ

r
− 2F

r

)}
= max

{
0, ρi

(
t−T0−

2F +φmax−(
∑

A δk−1
j +

∑
B δk

j +
∑

C δk
j )−φi

r

)}
≥ max

{
0, ρi

(
t− T0 −

2F + φmax − φi

r

)}
. (16)

After t∗, flow i receives service with constant rate r ≥ ρi and therefore the
above relation holds for the remaining time within the interval (τk−1, τk] as well.
Therefore the theorem holds for any time t ≥ T0. ��

From the definition of the LR servers and theorem 1, we conclude as the
following.
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Corollary 1. Deficit Round Robin with Instant Service (DRR-IS) is an LR
server and its latency is (2F + φmax − φi)/r.

The service lower bound we calculated is in fact as tight as possible. It is suffi-
cient to show an example that satisfies the above relation. Let us assume that
connection i is activated at T0, at which time v− 1 flows, i.e. all the other flows
are already backlogged. Moreover T0 is exactly the start of flow g’s turn. Right
after the service completion of the flow g, according to DRR-IS policy, the flow i
gets service. The size of the first packet of i is Δφi, and the size of the second one
is φi. In such a case, from the flow i, during the first round only the first packet
is served, while only the second packet is served in the next round. From T0 it
takes to complete the first round (φg +δ0

g−δ1
g +Δφi +

∑
j �=i,j �=g(φj +δ0

j −δ1
j ))/r.

From the start of the second round to the service completion of the flow i in the
second round, it takes (φg + δ1

g − δ2
g + φi)/r. Let us further assume the packets

served during this time interval for all the other flows are of sizes as large as
possible. That is to say δ1

j = 0, ∀j �= i, ∀j �= g, δ2
g = 0, and δ0

j = φj−Δφj, ∀j �= i.
Further let maxj �=i φj = φg and finally Δφi = Δφj � F , then from T0 to the i’s
service completion in the second round it takes

(
2

v∑
j=1

φj + φmax − φi

)
/r, (17)

which actually is the latency we obtained in the theorem 1. In other cases where
some of flows including g are backlogged and all the other flows including i are
activated during a single service time of g, the same results were obtained. We
omit rigorous arguments because of the space limitation.

3.2 Fairness

It was suggested [3] the use of the difference in normalized service offered to any
two flows as the measure of fairness for a scheduling algorithm. More precisely,
an algorithm is considered close to fair if for any two flows i and j that are
continuously backlogged in an interval of time (t1, t2),∣∣∣∣∣WS

i (t1, t2)
ρi

−
WS

j (t1, t2)
ρj

∣∣∣∣∣ ≤ FS , (18)

where WS
i (t1, t2) is the service offered to flow i by a server S in the interval

(t1, t2), and FS is the fairness measure of server S. A server is perfectly fair
if FS is zero. The GPS is such a perfect server. Any packet-by-packet server,
however, cannot be perfectly fair because packets must be served one at a time.
It was proved that the FS of DRR is 3F/r, where F is the frame size [11]. We
argue that DRR-IS has the same fairness measure as DRR.

Lemma 4. For a DRR-IS server,

FS =
3F

r
. (19)
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Proof. The proof takes a similar approach as the lemma 3.13 of [11], which is
about the DRR’s fairness. Let the flows i and j be backlogged since T0. Consider
an arbitrary time instant t, t > T0. Without loss of generality, assume the flow
i received more service than j, in [T0, t). Let k be the number of turns that i
has experienced in [T0, t). For such t, the difference between the service offered
to these two flows is at its maximum when i is served one more turn, the service
offered to i is at its maximum, and the service offered to j is at its minimum. In
other words, Wi(T0, t) ≤ kφi+φi and Wj(T0, t) ≥ (k−1)φj−φj . The normalized
service difference is therefore

Wi(T0, t)
ρi

− Wj(T0, t)
ρj

≤ 3F

r
, (20)

since φi/F = ρi/r. The lemma follows. ��

4 Numerical Results

We compare the latencies of well known LR servers, as well as the DRR-IS.
We focus on a residential network environment, where the number of nodes,
the number of hops to travel, and the number of flows are confined and pre-
dictable. Moreover in such networks the demand for real-time service is strong,
especially for video and high quality audio applications. IEEE 802.3 Residential
Ethernet Study Group [12] defines a bound for maximum end-to-end delay to be
2ms in a network of 7 hops for stringent audio applications[13]. This bound is
obtained by considering human perception on interactive audio sessions, where
many audio signals from various instruments and voices are generated, trans-
mitted, processed and then heard by human. We assume the Fast Ethernet links
are used across the network, therefore the link capacities are all 100Mbps. We
compare the latencies of Packetized GPS, DRR, DRR-IS, and Aliquem DRR[8]
in a single node, as the maximum packet (equivalently a Ethernet frame in a
conventional expression) length varies. The Aliquem DRR is an implementation
practice of a DRR with quantum size less than the maximum packet size, there-
fore can be considered as a generalized DRR. The maximum packet size varies
from 84 to 1538 bytes, including the 12 bytes worth of inter-frame gap and 8
bytes of preamble. We consider the following two scenarios.

In the first scenario there are eight flows, demanding 10Mbps per each flow.
Figure 2 depicts the latencies of LR servers. The quantum size of Aliquem DRR
is set to 100 bytes, or to the maximum packet size when the maximum packet
size is less than 100 bytes. The quantum size of DRR and DRR-IS is set to
the maximum packet size. In the case where the maximum packet size is 1538
bytes, as in a normal Ethernet network, the latencies for PGPS, DRR, DRR-
IS, and Aliquem DRR are 1.35ms, 2.71ms, 1.97ms, and 1.90ms, respectively.
The above numerical results are for a single node, therefore the 2ms end-to-
end delay requirement is never met. An immediate solution for this problem
is to reduce the maximum packet size. With a reduced maximum packet size,
100 bytes for example, the latencies are 0.088ms, 0.176ms, 0.128ms, and 0.176ms,
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Fig. 2. Latencies of Schedulers in Scenario 1

respectively. The latency of DRR-IS is the smallest among DRR variations, since
the Aliquem DRR can not have the advantage of the reduced quantum size. In
this case the delay in a 7 hops network can be within the 2ms requirement, even
with the leaky-bucket related delay element of the equation (1). For example, if
the maximum burst size and the average rate of the leaky bucket are 100 bytes
and 10Mbps, respectively, then the maximum end-to-end delay of seven DRR-IS
servers’ network with 100 bytes maximum packet size is 0.976ms, which is well
below the 2ms requirement.

The second scenario is similar to the first one. There are two types of flows.
There are thirty flows of the first type demanding 1Mbps per each flow. Five
flows of the second type demanding 10Mbps each. Notice that the total offered
load to an output link is 80%, which is the same as in the first scenario. Let us
observe a flow from the first type, which demands 1Mbps. Figure 3 demonstrates
the latencies experienced by an 1Mbps flow. The quantum size of this 1Mbps
flow for Aliquem DRR is set to min(100byte, max. packet size) and for DRR and
DRR-IS, it is set to the maximum packet size. The quantum sizes of 10Mbps flows
should be ten times of these values. In this thiner flows scenario, the latencies are
much longer. The smallest latency in this scenario is what the PGPS can provide
with 83 bytes maximum packet, which is 0.682ms and far from satisfactory. This
is due to the larger frame size because of the larger number of flows and the
quantum size that is ten times larger than the maximum packet size for 10Mbps
flows. There is a partial solution to this problem, called Stratified Round-robin,
which is to hierarchically separate flows into several classes according to the de-
manding rates and then apply DRR only within a class, therefore eliminates any
chance that a quantum size becomes much larger than the packet size [6]. This
server, however, is not an LR server, therefore the exact maximum end to end
delay bound cannot be calculated. The Instant Service policy can still be applied
to Stratified RR, and an immediate performance improvement is expected.
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Fig. 3. Latencies of Schedulers in Scenario 2

5 Conclusion

The Instant Service (IS) policy is proved to perform well, and when applied
to the basic DRR, it is shown to perform clearly better than the original by
about 30% in terms of latency. In terms of fairness, the DRR and DRR-IS have
the same performance. This is remarkable considering the minor modification
on the enqueue process of the active list of a round robin scheduler. It can be
interpreted that the IS policy improves the transient response of round-robin
schedulers. While providing the reserved rates for equilibrium-state flows intact,
the IS policy minimizes the penalty for flows in the transient state, near the ac-
tivation time. This benefit can be easily appreciated for a flow which is activated
and deactivated frequently. The IS policy may be applicable and advantageous
to other schedulers than round-robin.

DRR-IS is proved to be still an LR server, therefore an end-to-end delay is
obtainable by only summing individual latencies of each servers and the leaky-
bucket related delay element. Moreover the IS policy is orthogonal to the other
improvements such as the generalization of quantum size or the hierarchical
round-robin. The IS policy can be applied to the basic DRR with one of these
improvements at the same time.
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Abstract. We introduce a novel invertible transform for two-
dimensional data which has the objective of reordering the matrix so
it will improve its (lossless) compression at later stages. The transform
requires to solve a computationally hard problem for which a randomized
algorithm is used. The inverse transform is fast and can be implemented
in linear time in the size of the matrix. Preliminary experimental results
show that the reordering improves the compressibility of digital images.

1 Introduction

Every day massive quantities of two-dimensional data are produced, stored and
transmitted. Digital images are the most prominent type of data in this cat-
egory. However, matrices over finite alphabets are used to represent all sorts
of information, like graphs, database tables, geometric objects, etc. From the
compression standpoint, two-dimensional data has to be treated differently than
one-dimensional data. In order to obtain good compression of 2D data, one
has to exploit the dependencies (or equivalently, expose the redundancies) both
between the rows and the columns of the matrix.

Lossless compression algorithms are typically composed by a pipeline of in-
dependent stages, usually ending with a statistical encoder. For example, the
celebrated bzip2 employs a pipeline composed by the Burrows-Wheeler trans-
form (BWT), a move-to-front encoder, and finally an Huffman compressor. Each
step somewhat reorder the data so that redundancies get exposed and removed
by the subsequent stages. The objective of the BWT is exactly that of elucidating
the dependencies between adjacent symbols in the original text string.

In this paper we propose an invertible transform for two-dimensional data over
an alphabet Σ. For simplicity, we assume Σ = {0, 1}. The extension to larger
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alphabets is immediate and is not pursued here. The goal of the transform is to
“boost” the compression achieved by later stages. The transform is described by
a simple recursive algorithm, which can be outlined as follows.

Given the matrix to be transformed, first search for the largest columnwise-
constant (resp., rowwise-constant) submatrix, that is, a submatrix identified by
a subset of rows and the columns (which are not necessarily contiguous) whose
columns (resp., rows) are constant (i.e., either all 0 or 1). Reorder the rows and
the columns such that the columnwise-constant (or rowwise-constant) submatrix
is moved to the left-upper corner of the matrix. Recursively apply the transform
on the rest of the matrix. Stop the recursion when the partition produces a
matrix which is smaller than a predetermined threshold (see Figure 3 for an
illustration of this process).

The intriguing question is whether this somewhat simple matrix transforma-
tion helps compression. Arguments can be made in favor or against. On one
hand, each columnwise-constant (or rowwise-constant) submatrix can be rep-
resented compactly in a canonical form (first all the 0-columns, then all the
1-columns) by the list of its rows and columns. If a matrix can be decomposed
into a small number of large constant submatrices, one would expect an im-
provement in compressibility. On the other hand, while the transform groups
together portions of the matrix which are similar, the reordering can also break
the local dependencies that exist in the original matrix between adjacent rows
and columns. Breaking these dependencies could increase the entropy and have
a negative impact on the compressibility.

The contribution of this paper is twofold. First, we present a novel invertible
transform for 2D data. The design of the transform went through a series of
refinements, and here we present the result of such process (Section 5). We
also studied the computational cost of the transform, which turns out to be
unbalanced. The inverse transform is extremely fast and simple, whereas the
direct transform is very expensive. Our compression-boosting phase is therefore
suitable to applications in which the data is compressed once and decompressed
many times, like large repositories of digital images where images are stored and
rarely modified.

The computational cost of the forward transform depends on the complexity
of finding the largest columnwise-constant/rowwise-constant submatrix. In [1] we
studied theoretically the general version of this problem. Although the problem
turns out to be NP-hard, a relatively simple randomized algorithm that has good
performance in practice was introduced in [1]. For completeness of presentation,
we will briefly outline the algorithm in Section 4. The interested reader can refer
to the original paper for more details.

Second, we study empirically the effects of the transform on the compressibil-
ity of two-dimensional data by comparing the performance of gzip and bzip2
before and after the application of the transform on synthetic data and digital
images. The preliminary results in Section 6 show that the transform boosts
compression.
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In closing, we want to point out that since our transform simply changes
the representation of the data and it does not deal with the encoding problem
(i.e., assigning bits to symbols), here we are not proposing a complete data
compression software tool. Also, since we our transform is not optimized for
digital images, the transform is not an image compression tool either. As said
above, the primary use of our transform primary is as a preprocessing step to
reorder the data so that the downstream compression with standard lossless
encoder would be more efficient.

2 Related Works

Since we are not proposing a new compression method, we will not delve into the
vast literature on lossless image compression. There are however, a few related
works on the idea of reordering the columns and/or the rows of a matrix with
the objective of reducing the storage space or the access time to the element of
the matrix.

In [3, 4, 5], the main concern is to compress database tables by exploiting
the dependencies between the columns. In [3], Buchsbaum et al. observe that
partitioning the table into blocks of columns and compressing each block of
columns individually could improve compression. The key problem is to find
the optimal partition of columns. In the follow-up paper [4], the authors add
the possibility of rearranging the columns. Their tool, called pzip outperforms
gzip by a factor of two on database tables. Along the same line of research,
the authors of [5] introduce the k-transform which captures the dependencies
between k + 1 columns of a matrix. Although the problem of computing the
k-transform for k ≥ 2 is NP-hard, the proposed polynomial-time heuristic for
the 2-transform performs remarkably well compared to pzip, bzip2 and gzip.

The task of compressing boolean (sparse) matrices is also addressed in
[6, 7, 8, 9, 10]. For example, in [9] the objective is to reorder the columns of a
matrix such that the 1’s in each row appear consecutively. Again, the problem
of finding a reordering which minimizes the number of runs of 1’s is NP-hard.
This problem reduces to solving a traveling salesman problem for which the
authors propose an heuristic algorithm. In [10] the objective is to find a reorder-
ing of both rows and columns of a boolean matrix so that the matrix can be
broken into homogeneous rectangles and the description complexity involved in
describing those rectangles (called cross-association) is minimized. The prob-
lem is defined in an information theoretical context and a two-stage heuristics
algorithm is proposed.

3 Notations and Problem Definition

The input to the transform is a two-dimensional n ×m matrix X ∈ {0, 1}n×m.
The element (i, j) of X is denoted by X[i,j]. A contiguous submatrix from row
i1 to row i2 and from column j1 to column j2 is denoted by X[i1:i2,j1:j2].
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A row selection of size k of X is defined as a subset of the rows R =
{i1, i2, . . . , ik}, where 1 ≤ is ≤ n for all 1 ≤ s ≤ k. Similarly, a column se-
lection of size l of X is defined as a subset of the columns C = {j1, j2, . . . , jl},
where 1 ≤ jt ≤ m for all 1 ≤ t ≤ l. Given a row selection R, we say that a
column j, 1 ≤ j ≤ m, is constant with respect to R if the symbols in the j-th
column of X restricted to the rows in R, are identical.

The submatrix X[R,C] induced by the pair (R, C) is defined as the matrix

X[R,C] =

X[i1,j1] X[i1,j2] · · · X[i1,jl]
X[i2,j1] X[i2,j2] · · · X[i2,jl]
· · · · · · · · · · · ·

X[ik,j1] X[ik,j2] · · · X[ik,jl]

A submatrix induced by a pair (R, C) is called columnwise-constant (resp.,
rowwise-constant) if all its columns (resp., rows) are constant. Hereafter, for
brevity we will use the term constant submatrix to denote either a columnwise-
constant or a rowwise-constant submatrix.

Example. Given the 6× 6 matrix X =

001011
101101
100110
101001
111101
110110

over the alphabet Σ = {0,1},

a selection (R, C) = ({2, 4, 5}, {1, 3, 5, 6}) results in the columnwise-constant

submatrix X[R,C] =
1101
1101
1101

. X[R,C] is the largest area columnwise-constant sub-

matrix in X .
The main computational problem is the following. Given a matrix X ∈

{0, 1}n×m, find a constant submatrix with the largest area. This problem is
strongly related to the Maximum Edge Biclique problem since a n ×m bi-
nary matrix can also be interpreted as the adjacency matrix of a bipartite graph.
The biclique problem requires to find the biclique which has the maximum num-
ber of edges which corresponds to the largest constant submatrix composed only
of 1’s. This problem was proved to be NP-hard in [11] by reduction to 3Sat.
The weighted version of this problem was shown to be NP-hard by Dawande et
al. [12]. A 2-approximation algorithm based on LP-relaxation was given in [13].

4 Finding the Largest Columnwise-Constant Submatrix

Given that the problem of finding the largest constant submatrix of 1’s is NP-
hard, it is unlikely that a polynomial time algorithm could be found. In [1] we
introduced a randomized algorithm which is able to find the optimal solution
with probability 1 − ε, where 0 < ε < 1. For completeness of presentation,
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Fig. 1. An illustration of a recovery of a constant submatrix (shaded boxes), assuming
r∗ = 3

next we give a brief outline of the algorithm for the largest columnwise-constant
submatrix. Rowwise-constant submatrices can be found along the same lines.

Recall that we are given a matrix X ∈ {0, 1}n×m and the objective of the
algorithm is to discover a columnwise-constant submatrix X(R∗,C∗). Let us as-
sume that the submatrix X(R∗,C∗) is maximal. To simplify the notation, let us
call r∗ ≡ |R∗| and c∗ ≡ |C∗|.

The key idea is the following. Observe that if we knew R∗, then C∗ could be
determined by selecting the constant columns with respect to R∗. If instead we
knew C∗, then R∗ could be obtained by taking the maximal set of rows which
read the same symbol on the columns C∗. Unfortunately, neither R∗ nor C∗ is
known. Our approach is to “sample” the matrix by randomly selecting subsets
of columns (or rows), expecting that eventually one of the subsets will overlap
with the solution (R∗, C∗).

In the following we describe how to retrieve the solution by sampling columns
(one has also the choice to sample the rows). First, select a subset S of size k
uniformly at random from the set of columns {1, 2, . . . , m}. Assume for the time
being that S ∩ C∗ �= ∅. If we knew S ∩ C∗, then (R∗, C∗) could be determined
by the following three steps (1) select the string(s) w that appear exactly r∗

times in the rows of X[1:n,S∩C∗], (2) set R∗ to be the set of rows in which w
appears and (3) set C∗ to be the set of constant columns corresponding to R∗.
An example is illustrated in Figure 1.

The algorithm would work, but there are a few problems that need to be
solved. First, the set S ∩ C∗ could be empty. The solution is to try several
different sets S, relying on the argument that the probability that S ∩C∗ �= ∅ at
least once will approach one with more and more selections. The second problem
is that we do not really know S∩C∗. But, certainly S∩C∗ ⊆ S, so our approach
is to check all possible subsets of S. The final problem is that we assumed that we
knew r∗, but we do not. The solution is to introduce a row threshold parameter,
called r̂, that replaces r∗.

As it turns out, we need another parameter to avoid producing submatrices
with small area which could potentially degrade the compressibility at later
stages as discussed in Section 5. The column threshold parameter ĉ is used to
discard submatrices whose number of columns is smaller than ĉ. The algorithm
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Largest Columnwise Constant Submatrix(X, t, k, r̂, ĉ)
Input: X is a n × m matrix over {0, 1}

t is the number of iterations
k is the selection size
r̂, ĉ are the “thresholds” on the number of rows and columns, resp.

1 repeat t times
2 select randomly a subset S of columns such that |S| = k
3 for all subsets U ⊆ S do
4 D ← all strings composed of either 0 or 1 induced by X[1:n,U] that

appear at least r̂ times
5 for each string w in D
6 V ← rows corresponding to w
7 Z ← all constant columns corresponding to V
8 if |Z| ≥ ĉ then save (V, Z)
9 return the (V, Z) that maximizes |V | × |Z|

Fig. 2. A sketch of the algorithm that discovers large columnwise-constant submatrices

considers all the submatrices which satisfy the user-defined row and column
thresholds as candidates. Among all candidate submatrices, only the ones that
maximize the total area are kept.

A sketch of the algorithm is shown in Figure 2. The algorithm depends on
four key parameters, namely the selection size k, the row threshold r̂, the col-
umn threshold ĉ, and the number of iterations t. A detailed discussion on how to
choose each of these can be found in [1]. The worst case time complexity of the al-
gorithm Largest Columnwise Constant Submatrix is O

(
tk2k(kn + nm)

)
.

Because of the randomized nature of the approach, there is no guarantee
that the algorithm will find the solution after a fixed number of iterations. We
therefore need to choose t so that the probability that the algorithm will recover
the solution in at least one of the t trials is 1 − ε, where 0 < ε < 1. In [1], we
proved that the algorithm is able to find the maximal solution with probability
1− ε when the number of random selections t satisfies

t ≥ log ε

log
((

m−c∗
k

)
+
∑k

i=1

(
1−
(
1− 1

|Σ|i
)n−r∗)(

c∗
i

)(
m−c∗
k−i

))
− log

(
m
k

) (1)

5 Forward Transform

As mentioned in the introduction, our strategy to boost the compressibility of
two-dimensional data is to recursively decompose the input matrix based on the
presence of large columnwise-constant or rowwise-constant submatrices found by
the randomized search described above. The input to the recursive decomposition
algorithm is the original matrix X along with user-defined thresholds (r̂ and ĉ)
and the number of iterations t. If one fixes ε, then the number of iterations t can
be computed using equation (1).



132 Q. Yang, S. Lonardi, and A. Melkman

a

b

c

original

matrix

find

largest

uniform

submatrix

reorder

(a,b+c)

decomposition

a

a b

(a+c,b)

decomposition

b

c
c

Fig. 3. Illustration of one step of the forward transform. Depending on the size of the
constant submatrices in a+c, b, a, b+c either the decomposition (a + c, b) or (a, b + c)
is chosen.

The recursive decomposition is carried out as follows. First, the procedure
Largest Columnwise Constant Submatrix (and possibly also the proce-
dure Largest Rowwise Constant Submatrix) is ran on X . If a constant
submatrix is found, the rest of the matrix is partitioned into two submatrices
depending on the size of the constant submatrices discovered at the next recur-
sion level, as illustrated in Figure 3.

The decision whether to choose the partition (a+c, b) or the partition (a, b+c)
depends on the size of the constant submatrices found in the resulting matrices
a+c, b, b+c, and a. Let us call A1, A2, B1, B2 the areas of the constant subma-
trices found in a+c, b, a, b+c, respectively. Based on the values of A1, A2, B1,
and B2 we studied three distinct criteria to determine the partition. The first is
based on the condition A1 + A2 > B1 + B2 (hereafter called sum). The second
and the third tests are max{A1, A2} > max{B1, B2} (called max) and A1 > B2
(called indiv1). In all cases, if the test is true the algorithm chooses the partition
(a + c, b). Otherwise, the algorithm chooses the partition (a, b + c). A discussion
on how the test type affects the final compressed size is reported in Section 6.

Once the partition is determined, the randomized search is performed re-
cursively on the newly formed matrices in the same manner. The recursion
stops when the matrix becomes non-decomposable. We say that a matrix is
non-decomposable if either it has less than r̂ rows or less than ĉ columns, or if
the largest constant submatrix contained in it is smaller than r̂ × ĉ.

The reason behind our choice of splitting in (a + c, b) or (a, b + c), instead of
(a, b, c) is the following. Each time the algorithms partitions the matrix, we risk
to split large constant submatrices that we could have potentially found later.

1 Note that in this latter case we do not need to search in b and a.
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The smaller is the number of matrices we split, the higher are the chances of
finding large constant submatrices. Experimental results (not shown) confirmed
our choice.

It should be noted that the user-defined thresholds (r̂ and ĉ) play an im-
portant role in the transform. If the thresholds are too low, there is a danger
of having a deep recursion tree and potentially finding a large number of tiny
constant submatrices. If the thresholds are too high, there will be just a few con-
stant submatrices. Both cases will have a negative impact on the compression.
An experimental study regarding the choice of these thresholds is reported in
Section 6.

6 Implementation, Experiments and Results

We now describe how the transformed data is represented. Clearly, each constant
submatrix can be represented very succinctly. The column indices of columnwise-
constant submatrices are reordered so that each row reads 00. . . 0011. . . 11. Thus,
each constant submatrix can be represented by the list of rows and column
indices, and where the transition from 0 to 1 takes place. Non-decomposable
submatrices are saved contiguously in row-major order. The content of non-
decomposable matrices is saved in a file called string.

Row and column indices of constant and non-decomposable submatrices are
saved in another file called index. For each set of row and column indices, the
first index is saved as it is, while the rest is saved as differences between adjacent
indices. The length file is used to record the number of rows and the number of
columns for constant and non-decomposable submatrices, along with a binary
flag to indicate whether the submatrix is constant or non-decomposable.

The information contained in the files string, index and length allows one to
invert the transform and reconstruct the original matrix. The inverse transform
is simple and extremely fast. Basically, the matrix is reconstructed element by
element in the order of the indices stored in index. The inverse transform was
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implemented and tested to make sure that we had all the information necessary
to recover the original matrix. The time complexity of the inverse transform is
linear in the size of input.

In order to determine whether the transform improves compression, we com-
pared the size of the file obtained by compressing the original matrix against the
overall size of the files string, index and length compressed with the same pro-
gram. We employed two popular lossless compression algorithms, namely gzip
and bzip2.

We tested the three criteria (sum, max, indiv) discussed in Section 5 on several
images and simulated data. The result on the image bird is reported in Figure 4
for different choices of the thresholds. In the majority of our experiments, the
strategy indiv appeared to be the best. Therefore, all experimental tests that
follow employ the indiv test.

6.1 Simulations on Synthetic Data

We generated several datasets, each composed of four random matrices of size
256 × 256 over a binary alphabet. In each of the four matrices we embedded one,
two, three, and four columnwise-constant submatrices of size 64×64, respectively.
The position and the content of each embedded submatrix were randomly chosen
under the condition that the submatrices did not overlap with each other.

For each matrix we compared the compression size obtained with gzip and
bzip2 before and after the transform. The performance of the transform was
measured on several datasets. Table 1 shows the results averaged on all datasets.
The results are very stable with respect to the choices of r̂ and ĉ. Any choice in
the range 10 to 60 produces almost identical results. The number of iterations t
was set to 10, 000.

The goal of these simulations was twofold. First, it allowed us to test the
ability of our randomized search to recover the embedded submatrices. Failures
in recovering all the submatrices are typically due to the recursive partitioning.
If the partitioning process happens to split an embedded submatrix, there is no
hope of recovering it as a single piece. This observation is behind the idea of
partitioning into (a+ c, b) or (a, b+ c) instead of partitioning into. (a, b, c). That
may avoid splitting a potentially large constant submatrix that lies in a + c or
b + c.

Table 1. Results on 256 × 256 synthetic data. File matrixi contains i embedded
columnwise-constant submatrices of size 64 × 64. Parameters: r̂ = 10, ĉ = 10, t =
10, 000.

filename gzip transform+gzip bzip2 transform+bzip2
matrix1 11,121 10,041 11,014 10,197
matrix2 11,111 9,536 11,051 9,712
matrix3 11,094 8,989 10,951 9,194
matrix4 11,061 8,395 10,919 8,530



A Compression-Boosting Transform for Two-Dimensional Data 135

Table 2. Comparing the compressibility of 256 × 256 binary images before and after
the transform. Threshold parameters r̂ = 60, ĉ = 60. Iterations t = 10, 000.

filename size gzip transform+gzip bzip2 transform+bzip2
bird 65,792 1,978 1521 1,778 1581
camera 65,792 4,330 3693 3,839 3664
lena 65,792 3,450 3186 3,026 2930

peppers 65,792 3,186 2941 2,757 2671
tulips 65,792 5,133 4695 4,483 4329

Second, this synthetic data is arguably the most favorable type of data for
our transform. The “background” of the matrix is random, and therefore there
are very few dependencies between rows and columns. The large majority of the
dependencies are the ones created by the embedding of the constant submatrices.
In some sense, this data represents the best case scenario. This is shown by a
considerable improvement in the file size after the transform is applied.

6.2 Experiments on Digital Binary Images

In order to determine whether the transform can boost the compressibility of
general data, we tested the transform on five 256×256 images downloaded from
the Internet (namely bird, camera, lena, peppers, and tulips, all of which
are commonly used in the data compression community). Each 8 bpp greyscale
image was converted to binary by setting to black each pixel whose brightness
was below 128 and to white each pixel above 128. Table 2 shows the compres-
sion results before and after the transform (for r̂ = 60, ĉ = 60, t = 10, 000).
In all the images we tested, the transform improves the lossless compression
downstream.

In these experiments, we considered only columnwise-constant matrices. We
tested an implementation of the transform that also searches for rowwise-constant
matrices, but it did not boost the compressibility further.

Although a comparison of the results in Table 2 against a specialized lossless
image tool, say JBIG, would appear appropriate, it is not. Our transform is (1)
general purposed (i.e., not optimized for digital images), and (2) not a complete
compression tool. As said in the introduction, we do not deal with the encoding
problem (we are in fact relying on gzip and bzip2), nor we are necessarily bound
to process digital images. If we were to compare the results of the table against
JBIG, the performance of gzip/bzip2would also part of the equation, and these
tools have not been designed specifically to compress digital images.

Next, we tested how sensitive is the transform to the choice of the parameters
r̂ and ĉ, and to the number of iteration t. We selected the image bird, and we
ran the transform on different parameter choices. We computed the total number
and the average area of the columnwise-constant submatrices found (Figure 5),
for several choices of r̂ = ĉ and for two values for t. We also recorded the total
proportion of the matrix which was covered by columnwise-constant submatrices
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(the rest is non-decomposable), and the final size of the files after compression
(Figure 6). Observe that when the thresholds are low, the proportion of the
matrix covered by columnwise-constant submatrices is quite high. However with
low thresholds, the transform finds a large number of columnwise-constant sub-
matrices which average area is low (Figure 5), which in turn results in large file
sizes for index and length. Compared to the file string, files index and length
are considerably harder to compress. Therefore, the consequence of choosing
thresholds too low is poor compression boosting. Good compression relies on
finding a balance between the gain of representing a portion of the matrix a
single bit and the cost of adding the extra information necessary to reconstruct
the original matrix.

The optimal value of the thresholds r̂ = ĉ for the image bird is around 40, but
other values in the range 40 to 70 achieve very similar results. We carried out the
same analysis on other 256× 256 images, and the same general considerations
apply. With respect to the final compression, in most cases the larger is the
number of iterations t, the better is the compression.
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Abstract. We give logarithmic approximation algorithms for the non-
metric uncapacitated multicommodity and multilevel facility location
problems. The former algorithms are optimal up to a constant factor,
the latter algorithm is far away from the lower bound, but it is the first
algorithm to solve the general multilevel problem. To solve the multi-
commodity problem, we also define a new problem, the friendly tour
operator problem, which we approximate by a greedy algorithm.

1 Introduction

The facility location problem and many variants have been studied extensively
in both the operation research and computer science niterature [11, 13, 17]. In
the basic uncapacitated facility location problem (UFL) we are given a set C of
n clients and a set F of m facilities. Each facility f ∈ F has an opening cost
f0, and connecting a client c ∈ C to f costs cf . These costs can be arbitrary
real numbers, although they will be positive in most applications. In this paper,
all facility location problems will be uncapacitated, so we will henceforth omit
‘uncapacitated’ when speaking about facility location problems.

We may consider the sets C and F as the two sides of a bipartite graph.
Consider a set E of edges (or links) between C and F . Let FE be the subset of
facilities incident to at least one edge. If (c, f) is an edge in E, then we say c
can satisfy its demand, and f satisfies the demand of c. E is a feasible solution
if every client in C can satisfy its demand (i.e., every client is incident to at least
one edge). The cost of E is defined as

cost(E) =
∑

f∈FE

f0 +
∑

(c,f)∈E

cf ,
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where the first sum is the startup cost of FE and the second sum is the connection
cost (or link cost). UFL is the problem of finding a solution of minimum cost.

In metric UFL, the link costs obey the triangle inequality. In particular, in
geometric UFL the clients and facilities are points in the plane (or more general,
in Rd).

In this paper we will discuss four variants of non-metric UFL, two variants
of the multicommodity facility location problem, the multilevel facility location
problem,a and the multilevel concentrator location problem. These problems are
defined in Section 2. In Section 3 we state our new results and review previous
related work. In Section 4 we give our new asymptotically optimal approximation
algorithms for the two multicommodity facility location variants. In Section 5, we
then give approximation algorithms for the multilevel facility location problem
and for the multilevel concentrator location problem. We end the paper with
some remarks and open problems in Section 6.

2 The Models

2.1 Multicommodity Facility Location

The multicommodity facility location problem (MCFL) generalizes UFL by intro-
ducing a set S of k different commodities (or services). In UFL, we only have a
single commodity. Each client c demands one unit of each commodity in a subset
Sc ⊆ S, whereas each facility f can only offer a subset Sf ⊆ S of commodities
(but arbitrary many units of each type). A collection of links E is a feasible
solution if each client can satisfy its demand for each of its commodities. In a
more general setting, we might also consider a weighted version of MCFL where
clients have a certain non-negative demand for each commodity and facilities
have only limited capacity for each demand.

Note that the link costs do not scale with the number of commodities served by
the link. Once established, a link can be used to satisfy the demands for several
commodities without additional cost. MCFL is a natural model, for example, for
planning the locations of network switches (for a computer network in a large
building, or telephone switchboards in a city) where we want to minimize the
setup cost plus the cost of connecting each client to a switch.

We could generalize MCFL by charging an independent link cost for the com-
modities, i.e., if a client satisfies his demands for several commodities from one
facility, it must pay the link cost for each commodity. However, this problem
can be reduced to UFL by splitting each client into several clients at the same
location, one for each commodity.

Another generalization of UFL is the facility location with service installation
cost problem (FLSC) [14]. If facility f satisfies the demand for commodity s of
some client, it must pay a one-time installation cost fs for this commodity. Note
that now a feasible solution must specify the links E and for each facility f the
set Df ⊆ Sf of commodities provided by f , and each client must be able to
satisfy its demands from some facilities that provide the commodities and have
paid the respecitve startup costs. The startup cost of f is then
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f0 +
∑

s∈Df

fs .

Ravi and Sinha called these cost functions linear [12].

2.2 Multilevel Facility Location

Let k ≥ 1 be some integer. In the k-level facility location problem (k-UFL) we
consider a (k + 1)-layer graph, where the first layer C = F0 is the set of clients,
and the next k layers F1, . . . ,Fk are sets of facilities. Each edge (link) has a cost.
We are interested in paths connecting a client in layer F0 with some facility in
the last layer Fk. The cost of such a path, call a link path, is the sum of its
individual link costs. A feasible solution is a set E of link paths such that each
node in F0 is incident to at least one link path. Intuitively, each client has a
demand for a commodity available at any facility in layer k, which then must be
routed to the client via facilities at the intermediate k − 1 layers. Note that in
this model an edge can incur multiple cost if it is used in several link paths.

If an edge only incurs cost once even if it is shared by several link paths, we
are dealing with the k-level concentrator location problem (k-LCLP). Here, each
client must be satisfied by a facility in F1, each facility in F1 must be satisfied
by a facility in F2, etc. Formally, our goal is to choose subsets ∅ �= Vt ⊆ Ft, for
1 ≤ t ≤ k, such that

∑
j∈D

min
k∈V1

cjk +
k−1∑
t=1

∑
j∈Vt

min
i∈Vt+1

cji +
k∑

t=1

∑
it∈Vt

fit

is minimized.

3 Background and New Results

3.1 Multicommodity Facility Location

Facility location problems are usually NP-hard, and approximation algorithms
for many variants have been studied [11, 13, 17]. The multicommodity facility
location problem, however, has only been studied recently. Ravi and Sinha [12]
gave a first O(log |S|)-approximation algorithm for metric UFL when each client
can only demand a single commodity. The result generalizes to the case of clients
demanding several commodities, but if they satisfy them over the same link,
the link cost will also be charged several times (so this model is different from
MCFL). Their result is based on an IP formulation of the problem that can be
approximated by rounding fractional LP solutions.

Shmoys et al. [14] gave a primal-dual 6-approximation algorithm for FLSC
under the assumption that facilities can be ordered by increasing installation
costs, with the same order for all commodities.

We present in this paper the first approximation algorithms for non-metric
MCFL and FLSC. They are purely combinatorial, not based on IP-approximations.
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For MCFL we give an Hh-approximation, where h is the total number of commodi-
ties demanded by all the clients, i.e., h =

∑
c∈S |Sc|. Since h ≤ nk, this is an

O(log(nk))-approximation. For FLSC we give a (3Hh)-approximation, which is
also an O(log(nk))-approximation. If all facilities f have startup-cost f0 = 0, the
approximation ratio is only 2Hh. We also show that our approximation ratios are
asymptotically optimal. This follows easily from the non-approximability lower
bound bound for the set cover problem by Feige [5].

Both algorithms are based on the well-known greedy minimum weight set
cover (SC) approximation algorithm by Chvátal [4]. This algorithm iteratively
picks the set for which the ratio of weight over newly covered elements is min-
imized, giving a SC approximation of ratio of Hd, where d is the number of
elements in the set to be covered. As Hochbaum observed [8], the same algo-
rithm, with the same approximation factor, can be applied to other problems as
long as they can be reduced to SC and as long as it is possible to compute in every
step in polynomial time the subset (or its equivalent structure) minimizing the
relative weight of the newly covered elements. For UFL, this condition is fulfilled,
with C the set to be covered, so there is an Hn-approximation for UFL [8].

We will see in Section 4 that we can also easily use the SC approximation for
MCFL. However, for FLSC computing the minimum relative weight set in every
step is rather difficult. Since we cannot easily compute an optimal set, we use a 3-
approximation, which is the reason for the factor of 3 in the 3Hn-approximation
ratio of the FLSC algorithm. The 3-approximation is the solution of a new prob-
lem we define, the friendly tour operator problem (FTO). Such a quasi-greedy
approach has been used before, see for example [7].

3.2 Multilevel Facility Location

Multilevel facility location has a long history in operations research [1, 3, 9, 16].
Of course, 1-UFL is nothing but UFL. Shmoys et al. [15] gave the first constant
factor approximation algorithm for the metric case, and the current best known
result is a 1.52-approximation by Mahdian et al. [10]. Guha and Khuller showed
that it is unlikely to be approximated within a factor of 1.463 [6].

Shmoys et al. [15] extended their filtering and rounding technique for met-
ric 1-UFL to metric 2-UFL, resulting in a 3.16-approximation algorithm. Later,
Aardal et al. [2] showed that metric k-UFL can be approximated in polynomial
time by a factor of 3 for any positive integer k using a linear programming re-
laxation. For small values of k, better approximation algorithms are known: 1.77
for k = 2, 2.51 for k = 3, and 2.81 for k = 4 [18]. For non-metric 2-UFL, Zhang
gave an O(ln n)-approximation [18].

In this paper, we present the first approximation algorithm for general non-
metric k-UFL. The approximation ratio of our algorithm is O(lnk n). The algo-
rithm is defined inductively, starting with the classical O(ln n)-approximation
for 1-UFL. In the inductive step, we again make use of the greedy SC approx-
imation technique. With a very similar algorithm,we can also solve the k-level
concentrator location problem where we just have a hierarchy of k levels of
facilities.
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4 Multicommodity Facility Location

4.1 Set Cover and Facility Location

We first quickly review the relationship between UFL and SC, since this is at
the heart of all our algorithms. We follow loosely the exposition by Vygen [17,
Section 3.1].

In the set cover problem we are given a finite set U , a family X of subsets of U
which together cover U , and non-negative weights c(V ) on the sets V ∈ X . The
task is to find a subset Y ⊆ X covering U of minimum total weight. SC is a special
case of UFL: let the elements in U be the clients, the subsets in X the facilities,
the weight of a set V ∈ X the startup cost of the facility, and let the link cost of
client c ∈ U to facility V ∈ X be zero if c ∈ V and infinity if c �∈ V . Now, every
solution to UFL corresponds to a set cover of the same cost, and vice versa.

Conversely, UFL can be considered a special case of set cover. For an instance
of UFL, define a star to be a pair (f, C) with f ∈ F and C ⊆ C (meaning that
we link all the clients in C to facility f). The cost of this star is

f0 +
∑
c∈C

cf ,

and its effectiveness is
f0 +

∑
c∈C cf

|C| ,
i.e., the relative cost per client in the star. Then we can define a SC instance by
choosing C as the set U and all possible subsets of C as X , where C ⊆ C has
cost equal to the minimum cost of a star (f, C), minimized over all f ∈ F . Now,
an optimal solution to SC corresponds to an optimal solution to UFL of the same
cost, and vice versa.

Chvátal’s greedy SC approximation algorithm iteratively picks a set for which
the ratio of weight over newly covered elements is minimized [4]. If we apply
this algorithm to UFL, we must in every step pick the most effective star. Al-
though there are exponentially many stars, we do not need to compute them
all. Instead, we can find the most effective star among the stars (f, Cf

k ), where
f is an arbitrary facility, and Cf

k denotes the first k clients in a linear order
with nondecreasing link cost to f , for k = {1, . . . , n}. Having identified the most
effective star, we then open the facility and henceforth disregard all clients in
this star. We refer to this algorithm as the standard star algorithm.

4.2 Approximating MCFL

In MCFL, each client can demand several commodities. If the client decides to
satisfy its demand for one commodity from a facility, then it can, without addi-
tional cost, satisfy all demands that the facility provides from that facility. This
means, if we pick a star in the standard star algorithm, the facility should satisfy
all unsatisfied demands of the clients in the star. Thus, we should change the
definition of effectiveness of a star (f, C) to
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f0 +
∑

c∈C cf∑
c∈C |Sf ∩ Sc| .

In the definition of Cf
k we now order the clients in linear order with nondecreasing

link cost divided by number of demands that could maximally be satisfied by f ,
i.e., we sort them by nondecreasing

cf

|Sf ∩ Sc| .
Theorem 1. The modified standard star algorithm gives an Hh-approximation,
where h is the total number of commodities demanded by all the clients.

Proof. We have to show that the modified linear order of clients in the defin-
ition of Cf

k guarantees that we indeed find a most effective star. This proof is
straightforward and omitted in this extended abstract. ��

4.3 The Friendly Tour Operator Problem

To solve FLSC, we must define a new problem that we need as a subroutine, the
friendly tour operator problem (FTO). Consider a tour operator who would like
to organize a tour for tourists. Each tour t incurs a fixed cost t0 (maybe the
profit of the tour operator). There is a certain finite set A of actions that can be
arbitrarily combined in a tour. Let At denote the set of actions offered in tour
t. Each action a incurs a cost ta (maybe an entrance fee). There is also a set T
of tourists. Each tourist x demands to participate in some set Ax of actions. He
will only join the tour t if Ax ⊆ At. The total cost of t will be

t0 +
∑
a∈At

ta ,

which is equally shared by all participants. The goal of the friendly tour oper-
ator is not to maximize his profit, but to offer a tour of minimum cost for the
participants.

We could model the problem as a hypergraph problem, where the nodes are
the actions and the hyperedges are the tourists. Then the problem generalizes the
densest subgraph problem which is NP-hard. So we cannot solve FTO optimally
in polynomial time. But we can find a good approximation to the best tour by
a simple greedy algorithm, Approx-FTO.

Starting with all actions, in each step we first compute the average cost of the
current action set and then discard that action (and all tourists demanding it)
that maximizes the quotient of the cost of the action and the number of tourists
demanding the action (i.e., intuitively we discard an action if it has high cost
and is not high in demand). In the sequence of action sets computed, we then
choose the one with lowest average cost.

Theorem 2. Let d be the maximum number of actions any tourist demands.
Then, Approx-FTO achieves an approximation factor of d if t0 = 0 and a factor
of d + 1 if t0 ≥ 0.
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Proof. Let A� be an optimal set of actions and OPT be the value of the optimal
solution. Let T � be the number of tourists participating in the optimal tour, and
let D�

b denote how many of them are demanding action b ∈ A�.
Let a be the first action in A� deleted by Approx-FTO. Right before this

happens, let A be the current set of actions, T be the number of remaining
tourists, cost be the current average cost, and for any b ∈ A let Db denote the
number of tourists demanding action b. Clearly, D�

b ≤ Db for all b. Therefore,
ta

Da
≤ OPT , because otherwise A� − {a} would be a better solution than A�.

We choose a in the next step because ta

Da
≥ tb

Db
, for all b ∈ A. Since each

tourist can demand at most d actions, we have
∑

b∈A Db ≤ d · T . Putting all
together, we obtain

cost ≤
t0 +

∑
b∈A tb

T
≤ t0

T �
+

d ·
∑

b∈A tb∑
b∈A Db

≤ OPT + d · ta

Da
≤ (d + 1) ·OPT .

If t0 = 0, the first OPT term vanishes and we get a d-approximation. ��

As the following example shows, our analysis of Approx-FTO is tight if d = 2.
In this case, we can model FTO as a graph problem with actions as nodes and
edges as tourists. We assume startup cost t0 = 0. Consider the graph G which
is the union of Kn,n and S2n, where Kn,n is the complete bipartite graph with
node partitions U and V , where |U | = |V | = n, and S2n is a star with 2n + 1
nodes, namely a center node v and 2n leaves. Each node in U has cost 1 + ε,
where ε > 0 is sufficiently small. The cost of v is 2, while the leaves all have
cost 1

n . The nodes in V have cost zero. The optimal solution is in this case
the Kn,n, with minimum average cost 1+ε

n . But Approx-FTO will first delete a
node in Kn,n (which has maximum ratio 1+ε

n ) and eventually find S2n as the

solution with average cost 2+2n· 1
n

2n = 2
n .

4.4 Approximating FLSC

In FLSC, each facility has some additional startup cost for providing a commodity.
Therefore, it may now happen that a client satisfies one demand from one facility
but a second demand from another facility although the first facility could also
satisfy the second demand (but its startup cost for this demand is too high).

We must redefine cost and effectiveness of a star, and even stars itself. Consider
a facility f at some step of the algorithm. If it had been used before, its startup
cost is now zero. If some of its commodities are already in use from earlier
clients, their startup costs are also zero. A star is now a triple (f, C, S), where S
is a subset of commodities provided by the star. We may assume that S always
includes all commodities that are already in use at the facility (they can now be
used for free by other clients). The cost of the star is then defined as

f0 +
∑
s∈S

fs +
∑
c∈C

cf ,
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and its effectiveness is
f0 +

∑
s∈S fs +

∑
c∈C cf∑

c∈C |S ∩ Sc| .

After choosing a most effective star, we only discard the demands of the clients
that have been satisfied (a client can be discarded when all its demands are
satisfied).

The problem is how to find a most effective star in polynomial time. There
does not seem to be a natural linear order of clients in the definition of Cf

k

that guarantees that we indeed find the most effective star among the Cf
k . Since

we cannot find the best star, we approximate it. Note that to compute a most
effective star we only have to solve an FTO for each facility f and then choose
the cheapest of all of them. To be more precise, for fixed f , the FTO uses t0 = f0.
There are n + k actions, one for each commodity and one for each link from f
to a client. The cost of an action is the corresponding cost in FLSC. For each
client c ∈ C and unsatisfied comodity s ∈ Sc, there is a tourist demanding the
two actions c and the link from f to c.

Theorem 3. The modified standard star algorithm using Approx-FTO as a sub-
routine to approximate a most efficient star gives a 2Hh-approximation, where
h is the total number of commodities demanded by all the clients, if f0 = 0 for
all f ∈ F , and a 3Hh-approximation in the general case.

Proof. The theorem follows from the standard star algorithm together with the
approximation of the most effective star given in Theorem 2. ��

4.5 Lower Bounds

FLSC is clearly a generalization of MCFL, so any lower bound for the approximation
factor of MCFL is also a lower bound for FLSC.

Theorem 4. There is no polynomial approximation algorithm for MCFL and
FLSC with an approximation factor of (1 − ε) · max{lnn, lnk}, for any ε > 0,
where n is the number of clients and k is the number of commodities.

Proof. We give two reductions from SC. Let |U | = n. Recall that there is no
polynomial time approximation algorithm for SC with an approximation factor
of (1 − ε) · lnn, for any ε > 0, unless NP ⊆ DTIME[nO(log log n)] [5].

The reduction given in Subsection 4.1, where we have a single commodity and
clients correspond to elements in U , gives a lower bound of lnn.

In the second reduction, let each commodity correspond to a unique element
in U . There is only one client demanding all commodities. For each subset in X ,
there is a facility with startup cost 1 providing the corresponding commodities.
All connection costs are zero. Now any set cover corresponds to a MCFL solution
of the same cost. Thus, we cannot approximate MCFL with a factor better than
ln k. ��
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5 k-Level Facility Location

We must define a more general version of k-UFL, k-UFL�, which has an additional
input parameter 
. In this problem, we can first choose s subset of 
 clients which
is then optimally served by some set of facilities. Note that k-UFLm is just the
original k-UFL.

We define our approximation algorithm for k-UFL inductively. First, we give
an O(ln 
)-approximation algorithm for 1-UFL�. Then we show how to lift an
O(lnk−1 
)-approximation for (k − 1)-UFL� up to an O(lnk 
)-approximation for
k-UFL�.

5.1 Approximating 1-UFL�

The ln 
-approximation algorithm for 1-UFL� is very similar to the greedy algo-
rithm for 1-UFL. When we compute the most effective star for facility f , we only
consider sets Cf

k for k = 1, . . . , 
, and we stop when we have satisfied 
 clients.

Theorem 5. The modified standard star algorithm computes a ln 
-approxima-
tion for 1-UFL�, for any 1 ≤ 
 ≤ m. ��

5.2 Approximating k-UFL�

Suppose we have an approximation algorithm APPROX-(k − 1)-UFL� for (k −
1)-UFL� for every 1 ≤ 
 ≤ n. Then we can construct an algorithm APPROX-k-UFL�

for k-UFL� as follows.
Consider a fixed facility f ∈ Fk. We construct an instance for (k − 1)-UFL�

as follows. The set of clients remains unchanged, also the set of facility levels
F1, . . . ,Fk−1. What changes is the connection cost between Fk−2 and Fk−1. We
increase the cost of each original edge (u, v) between the two levels by the cost
of the original edge (v, f). Intuitively, we are extending the last edge on a path
from a client to a node in level k − 1 by the edge leading to f in level k.

In the standard star algorithm, we would now compute, for each facility, the
best way to connect it with 1, 2, 3, . . . clients, and then choose the cheapest star.
Here we cannot easily compute these values. Instead, we again approximate
them.

Let cost(f, j) be the cost of an approximation computed by APPROX-(k −
1)-UFLj, for 1 ≤ j ≤ 
. We compute all these values for all f and j and determine
the smallest one. This tells us which facility f in level k to choose. We choose all
the facilities and connections computed in the corresponding approximation of
the (k−1)-level problem, and we connect f to all facilities chosen on level k−1.

Theorem 6. If APPROX-(k − 1)-UFL� can achieve an approximation factor of
O(lnk−1 
), for all 1 ≤ 
 ≤ n, then APPROX-k-UFL� computes an O(lnk 
)-
approximation. ��

Theorem 7. There exists a lnk n-approximation algorithm for k-UFL. ��
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5.3 The k-Level Concentrator Location Problem

It is not hard to modify our algorithm for k-UFL to approximate k-LCLP. The
only change is in the inductive step when we change the connection costs of
edges between layers k − 2 and k. Instead, we now increase the startup costs of
facilities on layer k − 1 by the cost of the edge to facility f on layer k.

Theorem 8. There exists a lnk n-approximation for k-LCLP. ��

6 Conclusions

We presented the first logarithmic approximation algorithms for the non-metric
multicommodity facility location problem. Note that in our model the connection
costs do not scale with the number of commodities that use a connection. This
actually generalizes the case where connection costs scale. For FLSC, our algo-
rithms have an additional constant factor of 2 or 3, which may not be necessary
for an optimal approximation algorithm.

We also presented the first poly-logarithmic approximation algorithm for the
non-metric k-level facility location problem. We conjecture that this problem
admits a logarithmic approximation for any k ≥ 1.
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Abstract. Given d > 2 and a set of n grid points Q in �d, we design a
randomized algorithm that finds a w-wide separator, which is determined
by a hyper-plane, in O(n

2
d log n) sublinear time such that Q has at most

( d
d+1 + o(1))n points one either side of the hyper-plane, and at most

cdwn
d−1

d points within w
2 distance to the hyper-plane, where cd is a

constant for fixed d. In particular, c3 = 1.209. To our best knowledge, this
is the first sublinear time algorithm for finding geometric separators. Our
3D separator is applied to derive an algorithm for the protein side-chain
packing problem, which improves and simplifies the previous algorithm
of Xu [26].

1 Introduction

The work in this paper aims for efficient identification of width-bounded sepa-
rators for a given set of points in the d-dimensional Euclidean space and their
applications to intractable practical problems. Intuitively, a width-bounded sep-
arator utilizes a simple structured hyper-plane to divide the set into two “bal-
anced” subsets, while at the same time maintaining a “low density” of the set
within a given distance to the hyper-plane. This new notion of separators was
initially introduced by Fu in [11], and it was shown that these separators are
very suitable in solving a number of distance-bounded geometric problems such
as the protein folding problem in the HP model in [10] and some other intractable
problems in [11, 6].

The main contributions of this paper are summarized as follows:

In section 5, we present an O(n
2
d log n) sublinear time randomized algorithm

for finding a with-bounded separator in the dimensioinal Euclidean space �d
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for d > 2. To our best knowledge, this is the first sublinear time algorithm
for finding geometric separators. For many other geometric problems, a higher
dimension brings higher computational complexity. However, it is interesting to
notice that the exponent of our algorithm’s computational complexity is reversely
propotional to the dimension of the space.

In section 6, we exhibit an application of our sublinear time separator to the
protein side-chain packing problem. One of the most fundamental problems in
the molecular biology is to predict a protein’s 3D structure when given its 1D
amino-acid sequence. Although much effort has been made for decades, this prob-
lem remains unsolved. An important component of the general protein structure
prediction problem is the protein side-chain packing problem. It determines the
side-chain positions onto the fixed backbone [23]. This problem has been proved

to be NP-complete [1]. Recently, a r
O(n

2
3 log n)

ave time algorithm was shown by
Xu [26], where rave is the average number of side-chain rotamers in a protein.
We apply width-bounded separators to the protein side-chain packing problem.
The length of side-chain of each amino acid is small compared to the size of
one protein. Two side-chains in a protein molecular do not interact with each
other if their distance is slightly larger than the sum of their lengths according
to models used in (e.g. [4, 5, 26]). Using our width-bounded separators, we ob-

tain an algorithm with computational time r
O(n

2
3 )

max , where rmax is the maximal
number of side-chain rotamers among a protein. Since the number of rotamers
is usually small, we assume both rave and rmax are constants, hence our new
algorithm has a better complexity bound.

2 The Related Work

There have been extentive efforts on finding separators due to their critical roles
in many issues of algorithm design and analysis. Because of space limit we cannot
give a comprehensive review of the related work but list some representative
results in this area. Lipton and Tarjan [16] proved that every n vertex planar
graph has at most

√
8n vertices whose removal separates the graph into two

disconnected parts of size at most 2
3n. Their 2

3 -separator has been improved
by a series of papers [7, 12, 2, 8] with the best record 1.97

√
n by Djidjev and

Venkatesan [8]. Spielman and Teng [25] showed a 3
4 -separator with size 1.82

√
n

for planar graphs. Separators for more general graphs were derived in [13, 3, 22].
A planar graph can be induced by a set of non-overlapping discs on the plane
such that every vertex corresponds to a disc center and each edge corresponds
to a tangent relationship between two discs. The separator developed by Miller,
Teng and Vavasis [17] is a generalization of planar graph separators to the d-
dimensional Euclidean space. Some O(

√
k · n) size separators for k-thick systems

and the related algorithms were derived in [18, 19, 17, 24].
The study of width-bounded separators were initiated by Fu in [11] and has

yielded successful applications in [10, 6]. Our width-bounded geometric separator
has some interesting advantages over previous geometric separators such as the



Sublinear Time Width-Bounded Separators 151

popular geometric separator by Miller, Teng and Vavasis [17]. First, the width-
bounded separator has a simple linear structure as the separator is determined
by a hyper-plane and a width parameter w, but Miller et al.’s separator is a
sphere, which can be also found in linear time [9]. The linear structure is very
crucial for us in deriving sublinear time algorithm in this paper. Second. the
width-bounded separator has a smaller constant in its size upper bound factor
than other separators. The constant factor was not clearly given in Miller et al.’s
separator. Furthermore, their separator only has a balance condition bounded
by d+1

d+2n due to their transformation to a higher dimension, while The balance
condition of the width-bounded separator is bounded by d

d+1n. Third, the width-
bounded separator can be used to deal with an arbitrary set of points via using
a set of grid points and weights to characterize the distribution of points from
the input set.

3 Notations, Definitions, and Width-Bounded Separators

For any finite set A, |A| denotes the number of elements in A. Let � be the
set of all real numbers. For two points p1, p2 in the d-dimensional Euclidean
space �d, dist(p1, p2) is the Euclidean distance between p1 and p2. For a set
A ⊆ �d, dist(p1, A) = minq∈A dist(p1, q). The diameter of any P ⊆ �d is
maxp1,p2∈P dist(p1, p2). For a > 0 and a set A of points in �d, if the distance
between every two points in A is at least a, then A is called a-separated. For
ε > 0 and a set Q of points in �d, an ε-sketch of Q is another set P of points
in �d such that each point in Q has a distance ≤ ε to some point in P . We say
P is a sketch of Q if P is an ε-sketch of Q for some constant ε > 0 (that does
not necessarily depend on the size of Q). A sketch set is usually a 1-separated
set such as a grid point set. A weight function w : P → [0,∞) is often used to
measure the density of Q near each point in P . Let f : �d → � be a smooth
function. Its surface is the set L(f) = {v ∈ �d|f(v) = 0}. A hyper-plane in �d

through a fixed point p0 ∈ �d is defined by the equation (p− p0) · v = 0, where
v is a normal vector of the plane and “ .” is the usual vector inner product. A
hyper-plane in �d is determined by L(f) for some linear function f : �d → �.

Definition 1. Given any Q ⊆ �d with a sketch P ⊆ �d, a constant a > 0, and a
weight function w : P → [0,∞), an a-wide-separator is determined by the surface
L(f) for some linear function f : �d → �. The separator has two measurements
for its quality of separation: (1) balance(L(f), Q) = max(|Q1|,|Q2|)

|Q| , where Q1 =
{q ∈ Q|f(q) < 0} and Q2 = {q ∈ Q|f(q) > 0}; and (2) density(L(f), P, a

2 , w),
where in general density(A, P, x, w) =

∑
p∈P,dist(p,A)≤x w(p) for any A ⊆ �d

and x > 0. When f is fixed or no confusion arises, we use balance(L, Q) and
density(L, P, a

2 , w) to stand for balance(L(f), Q) and density(L(f), P, a
2 , w), re-

spectively.

Definition 2. A (b, c)-partition of �d divides the space into a disjoint union of
regions P1, P2, . . ., such that each Pi, called a regular region, has a volume of b
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and a diameter ≤ c. A (b, c)-regular point set A is a set of points in �d with a
(b, c)-partition P1, P2, . . ., such that each Pi contains at most one point from A.
For two regions A and B, if A ⊆ B (A ∩B �= ∅), we say B contains (intersects
resp.) A.

Let Bd(r, o) be the d-dimensional ball of radius r at center o. Its volume is
Vd(r) = 2(d+1)/2π(d−1)/2

1·3···(d−2)·d rd if d is odd, or 2d/2πd/2

2·4···(d−2)·drd otherwise. Let Vd(r) = vd ·
rd, where vd is a constant for the fixed dimension d. In particular, v1 = 2, v2 = π
and v3 = 4π

3 . We will use the following well-known fact that can be easily derived
from Helly Theorem (see [21]).

Lemma 1. For an n-element set P in the d-dimensional space �d, there is a
point q with the property that any half-space that does not contain q, covers at
most d

d+1n elements of P . (Such a point q is called a centerpoint of P .)

Definition 3. Let a > 0, p and o be two points in �d. Define Prd(a, p0, p) to
be the probability that the point p has ≤ a perpendicular distance to a random
hyper-plane L through the point p0. Define function fa,p,o(L) = 1 if p has a
distance ≤ a to the hyper-plane L through o, or 0 otherwise. The expectation of
function fa,p,o(L) is E(fa,p,o(L)) = Prd(a, o, p). Assume P = {p1, p2, . . . , pn}
is a set of n points in �d and each pi has weight w(pi) ≥ 0. Define function
Fa,P,o(L) =

∑
p∈P w(p)fa,p,o(L).

We give an upper bound for the expectation E(Fa,P,o(L)) for Fa,P,o(L) in the
lemma below.

Lemma 2. [11] Let d ≥ 2. Let o be a point in �d, a, b, c > 0 be constants
and ε, δ > 0 be small constants. Assume that P1, P2, . . . , form a (b, c)-partition
for �d, and the weights w1 > · · · > wk > 0 satisfy k · maxk

i=1{wi} = O(nε).
Let P be a set of n weighted (b, c)-regular points in a d-dimensional plane with
w(p) ∈ {w1, . . . , wk} for each p ∈ P . Let nj be the number of points p ∈ P with
w(p) = wj for j = 1, . . . , k. We have E(Fa,P,o(L)) ≤ (kd · (1

b )
1
d + δ) ·a ·

∑k
j=1 wj ·

n
d−1

d
j + O(n

d−2
d +ε), where kd = d·hd

d−1 · v
1
d

d with hd = 2(d−1)vd−1
d·vd

. In particular,

k2 = 4√
π

and k3 = 3
2

( 4π
3

) 1
3 .

Definition 4. Let a1, . . . , ad > 0 be positive constants. A (a1, . . . , ad)-grid reg-
ular partition divides �d into a disjoint union of a1 × · · · × ad rectangular
regions. A (a1, . . . , ad)-grid (regular) point is a corner point of a rectangular
region. Under certain translation and rotation, each (a1, . . . , ad)-grid regular
point is represented as (a1t1, . . . , adtd) for some integers t1, . . . , td. For a point
p = (x1, . . . , xd) ∈ �d, if x1, . . . , xd are all integers, then p is simply called a
grid point (it is a (1, . . . , 1)-grid regular point). For each point q and a hyper-
plane L in �d, define sd(q, L) to be the signed distance from q to L, which is
sd(q, L) = (q− q0) · vL, where q0 is a point on L, and vL is the normal vector of
the plane L with the first nonzero coordinate to be positive.
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For a hyper-plane L in �d, if L is through a point q0 and has the normal vector
v, then it has linear equation (u−q0)·v = 0. If q ∈ �d and lq = sd(q, L), then the
hyper-plane L′ through q and parallel to L has equation (u− (q0 + lqv)) · v = 0.
We use L(lq) to represent such a hyper-plane L′.

For an interval I ⊆ R, ‖I‖ is the length of I. For example, ‖[a, b)‖ = b−a. We
often use Pr(E) to represent the probability of an event E. For a real number
x, �x� is the largest integer y ≤ x, and �x� are the least integer z ≥ x. For an
interval [a, b] ⊆ R, define center([a, b]) to be a+b

2 .

Lemma 3. Let P be a finite set of points in �d and q0 be a fixed point in
�d. Then for a random hyper-plane L through q0, Pr(sd(p1, L) = sd(p2, L) for
p1, p2 ∈ P with p1 �= p2) = 0.

Proof. A random hyper-plane L through a fixed point q0 can be characterized
by the equation (q − q0) · vL = 0, where vL is the normal vector of L. Each unit
vector can be considered as a point of the surface of the unit ball Bd(1, o), where
o = (0, . . . , 0) is the origin point. The surface area size of Bd(r, o) is equal to
dVd(r)

dr
= dvdr

d−1. The surface area of Bd(r, o) is of dimension d− 1.
For two fixed points p1 and p2, if sd(p1, L) = sd(p2, L), then (p1 − q0) · vL =

(p2 − q0) · vL. It implies that (p1 − p4) · vL = 0. Consider the sub-area on the
surface of B(1, o): {v|(p1 − p2) · v = 0 and v · v = 1}, which is the intersection
between a plane (p1 − p2) · v = 0 and Bd(1, o), and is of dimension d − 2. It is
easy to see that it has area size 0 in the d-dimensional space. The lemma follows
since the union of a finite number of areas of area size 0 still has 0 area size. �

4 An Overview of Our Techniques

Given any set Q of points in �d with a sketch P , the idea of our techniques
for finding an a-width-bound separator is to transform the problem from the
d-dimensional space to the 1-dimensional space. By Lemma 1 and Lemma 2,
we can see the existence of a hyper-plane that satisfies both the balance and
the density conditions. Lemma 2 gives an upper bound on the expectation of
Fa,P,o(L). By Markov’s inequality, Pr(Fa,P,o(L) > (1 + α)E(Fa,P,o(L))) ≤ 1

1+α .
Thus, a random hyper-plane L has probability≥ 1− 1

1+α = α
1+α that Fa,P,o(L) ≤

(1 + α)E(Fa,P,o(L)). The chance is amplified if we repeat the random selection
of the hyper-plane L multiple times.

Let nP = |P | and nQ = |Q|. After a hyper-plane L is fixed, we try to find
another hyper-plane L′ that is parallel to L. We want L′ to guarantee the desired
balance and density conditions. To do so, we compute signed distances for all the
points in Q and P to the hyper-plane L. Those signed distances are all different
for the points in Q and, respectively, for the points in P (by Lemma 3). These
signed distances are all in the 1-dimensional real axis, and finding L′ can be done
via finding a “right position” among these distances, hence this transforms the
problem from the d-dimensional space into to the 1-dimensional space as follows:
Find the interval b [D1,d+1, Dd,d+1] such that both the left side (−∞, D1,d+1)
and the right side (Dd,d+1, +∞) have roughly nQ

d+1 signed distances from Q to L.
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So, every hyper-plane L′ (parallel to L) with a signed distance in [D1,d+1, Dd,d+1]
to L guarantees the balance condition. For an interval I, we compute its weight
as the sum of the weights of the points of P with their signed distances in I.
We then look for an interval [x − a, x + a] that has x ∈ [D1,d+1, Dd,d+1] and
the smallest weight. Finally, we let L′ be a hyper-plane with a signed distance x
to L. The balance boundaries D1,d+1 and Dd,d+1 can be detected by sampling
a small number of points from Q. Using the Chernoff bound, we have a high
probability that there is a small fraction difference from the exact boundaries.
Similarly, the desired interval can be also detected by sampling a small number
of points from P .

5 The Sublinear Time Randomized Algorithm

We use the following well-known Chernoff bound (see [20] for a proof) and sim-
plied version in Lemma 4. The proofs of many lemmas are omitted in the confer-
ence version of this paper and will be included in the full version of this paper.

Theorem 1. [20] Let X1, · · · , Xn be n independent random 0, 1 variables, where
Xi takes 1 with probability pi. Let X =

∑n
i=1 Xi, and μ = E[X ]. Then for any

δ > 0, (1) Pr(X < (1−δ)μ) < e−
1
2 μδ2

, and (2)Pr(X > (1+δ)μ) <
[

eδ

(1+δ)(1+δ)

]μ
.

Lemma 4. Let X1, · · · , Xn be n independent random 0, 1 variables, where Xi

takes 1 with probability p. Let X =
∑n

i=1 Xi. Then for any 1
3 > ε > 0, (1)

Pr(X < pn− εn) < e−
1
2 nε2 , and (2)Pr(X > pn + εn) < e−

1
3 nε2 .

Theorem 2. Let d ≥ 2 be the fixed dimension number and v be a positive para-
meter. Let a, b, c > 0 be constants and δ, s1, s2 > 0 be small constants. Let Q be
another set of nQ points in �d, and P be a set of nP (b, c)-regular points, which
form a sketch for Q. Let w1 > w2 · · · > wk > 0 be positive weights with k ·w1 =
O(ns1

P ), w1
wk

= o(n
1
d

P ), k
wk

= O(ns2
P ), and w be a mapping from P to {w1, · · · , wk}.

There exists an O(v2 · (n
2
d +2(s1+s2)
P · log nP + log nQ)) time randomized algo-

rithm to find a hyper plane M with probability ≥ 1− 1
2v such that (1) each half

space has ≤ ( d
d+1 + δ)nQ points from Q, and (2)

∑
p∈P and dist(p,M)≤a w(p) ≤(

kd · b
−1
d + δ

)
· a ·
∑k

j=1 wjn
d−1

d

j + O(n
d−2

d +s1

P ) for all large nP , where nj ≥ 1 is
the number of points p ∈ P with w(p) = wj (j = 1, · · · , k).

Proof. We use two phases to find the separator hyper-plane. The first phase
determines the orientation of the hyper-plane by selecting a random hyper-plane,
and finds the region of the separator hyper-plane for a balanced partition. The
second phase finds the position of the separator plane with a small sum of weights
for the points of the set P close to it. Without loss of generality, we assume that
0 < δ < 1. Since nj ≥ 1(j = 1, · · · , k), we have k ≤ nP . Let b =

∏d
i=1 ai. Select

constant c0 > 0 and let δ1 = c0δ so that (kd · b
−1
d +3δ1)(1+δ1)2 ≤ (kd · b

−1
d + δ

2 ).
Let a1 = a(1 + δ1) and α = δ1. Let c1 be a constant such that
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k · w1 ≤ c1n
s1
P and

k

wk
≤ c1n

s2
P . (1)

Let o be the center point from Lemma 1 (our algorithm does not need to find
such a center point o, but will use its existence). By Lemma 2, E(Fa1,P,o) ≤ (kd ·
b

−1
d +δ1)·a1 ·

∑k
j=1 wjn

d−1
d

j +O(n
d−2

d
+s1

P ). By Markov inequality, Pr(Fa1,P,o(L) ≥
(1 + α)E(Fa1,P,o)) ≤ 1

1+α . This tells us that a random hyper-plane L has the
probability at least 1− 1

1+α such that there exists a separator hyper-plane L′ (it
may be through o) that satisfies the conditions of the theorem and is parallel to
L. We assign the values to some parameters:

r = c4v, where c4 is a constant to be fixed later (2)

δ2 =
δ1 · a
c1

(3)

ε =
δ2

3c1n
1
d +s1+s2

P

(4)

ε0 =
δ

6
(5)

ε1 = 5ε0 (6)

m1 =
3(ln 100 + r + log nQ)

ε20
(7)

m2 =
(ln 100 + 2 log nP + r)

ε2
(8)

Phase 1 of the algorithm: The input of our algorithm is P, Q, nQ = |Q|, and
nP = |P |. Each input point p ∈ P has the format < (x1, · · · , xd), w(p) >, where
p = (x1, · · · , xd) and w(p) is the weight of p. The algorithm starts with the follow-
ing steps: Select a fixed point o∗ ∈ �d and a random plane L through o∗ (random
hyper-plane can be selected via selecting a random normal vector). Select m1
random points q1, · · · , qm1 from Q and let Q′ =< q1, · · · , qm1 > represent the list
of these points (one point may appear multiple times). For each qj ∈ Q′, compute
its signed distance dqi = sd(qi, L) to L. Find the �( 1

d+1 − ε1)m1�-th least point
D∗

1,d+1 = sd(q∗1 , L) for dq1 , · · · , dqm1
. Find the �( d

d+1 + ε1)m1�-th least point
D∗

d,d+1 = sd(q∗2 , L) for dq1 , · · · , dqm1
. Select m2 random points p1, · · · , pm2 from

P and let P ′ =< p1, · · · , pm2 > represent the list of these points. For each pi ∈ P ′,
compute dpi = sd(pi, L). It is well-known that finding the i-th element from a list
takes linear steps. The computation above takes O(m1 +m2) steps. In the rest of
the algorithm, we locate the position of the separator hyper-plane by finding its
signed distance to L. Its position will be at the center of an interval of size 2a. In
the rest of the proof, we treat both P and Q as lists of points from �d. Each point
appears only at most once on both P and Q. Let td = kd · b

−1
d + δ. For q ∈ �d

and A ⊆ �d, define Pr(A, L,← q) = |{q′|q′∈A and sd(q′,L)≤sd(q,L)}|
|A| . For a list of

points B =< x1, · · · , xm > from �d and a point q ∈ �d, define XB,L,q(i) = 1 if
sd(qi, L) ≤ sd(q, L), or 0 otherwise. We also define Y (B, L, q) =

∑m
i=1 XB,L,q(i).
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Lemma 5. It has probability ≥ 1 − e−r

50 such that Pr(Q, L,← q∗1) ∈ [ 1
d+1 −

δ, 1
d+1 −

δ
6 ] and Pr(Q, L,← q∗2) ∈ [ d

d+1 + δ
6 , d

d+1 + δ].

Phase 2 of the algorithm: In this phase, we will find a position of L′ (parallel
to L) with the signed distance to L in the range [D∗

1,d+1, D
∗
d,d+1]. Lemma 5 guar-

antees (with high probability) that each position in the interval [D∗
1,d+1, D

∗
d,d+1]

gives a balance partition. We look for the position that has the small sum of
weights for the points of P close to L′.

For a list A =< x1, · · · , xm >, |A| = m is denoted to be the length of A and
x ∈ A means that x is one of the elements in A (x = xi for some 1 ≤ i ≤ m).
For a real subset J ⊆ R and a list A of finite points in �d, define

Pr∗(A, L, J, wj) =
|{|p|p ∈ A and w(p) = wj and sd(p, L) ∈ J}|

|A| ,

and Z(A, L, J, wj) =
∑

p∈A X∗
L,p,J,wj

, where X∗
L,p,J,wj

= 1 if sd(p, L) ∈ J and
w(p) = wj , or 0 otherwise. We also define W (A, L, J)=

∑
p∈A and sd(p,L)∈J w(p).

By the definitions, It is easy to see that

W (A, L, J) =
k∑

j=1

wjZ(A, L, J, wj) =
k∑

j=1

wjPr∗(A, L, J, wj)|A|. (9)

Since
∑k

j=1 nj = nP , we have that nj ≥ nP

k for some 1 ≤ j ≤ k. By (1), we have

that ns2
P ≥ k

c1wk
≥ k

d−1
d

c1wj
. This implies that n

d−1
d −s2

P ≤ c1wj(nP

k )
d−1

d ≤ c1wjn
d−1

d

j

for some 1 ≤ j ≤ k. By (3), for some 1 ≤ j ≤ k,

δ2 · n
d−1

d −s2

P ≤ δ1 · a · wjn
d−1

d

j . (10)

Lemma 6. Let f ≤ nP be an integer and H1, H2, · · · , Hf ⊆ � be f real inter-
vals. It has probability ≥ 1− 1

100e−r such that W (P, L, Hi) ∈ [W (P ′, L, Hi)nP

m2
−

δ2n
d−1

d −s2

P , W (P ′, L, Hi)nP

m2
+ δ2n

d−1
d −s2

P ]) for i ≤ f .

Case 1. |D∗
1,d+1 −D∗

d,d+1| ≥ 3an
2
d

P . Partition [D∗
1,d+1, D

∗
d,d+1] into disjoint in-

tervals [l1, l2), [l2, l3), · · · , [lu−1, lu), [lu, lu+1] such that each li+1−li(i = 1, · · · , u)

is equal to |D∗
1,d+1−D∗

d,d+1|
g1(nP ) ≥ 3a, where g1(nP ) = u = n

2
d

P . Let Ji = [li, li+1) if
i < u, and Ju = [lu, lu+1]. Compute W (P ′, L, Ji) for i = 1, · · · , u, which takes
O(m2 + g1(nP )) = O(m2) steps. The algorithm selects J = Ji0 that has the
least W (P ′, L, Ji0) and let L′ = L(center(Ji0)), which takes O(g1(nP )) = O(m2)
steps. Assume that Ji1 is the interval with the least W (P, L, Ji1 ).

Lemma 7. It has probability ≥1− 1
50e−r such that W (P, L, Ji0)≤

(
kd · b

−1
d +δ

)
·

a ·
∑k

j=1 wj · n
d−1

d

j .
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Case 2. |D∗
1,d+1 −D∗

d,d+1| < 3an
2
d

P . Let J∗ be interval such that center(J∗) ∈
[D∗

1,d+1, D
∗
d,d+1] and |J∗| = 2a1 = 2a(1 + δ1) and W (P, L, J∗) is the least.

Subcase 2.1. |D∗
1,d+1 −D∗

d,d+1| ≤ δ1a. Let J = [D∗
1,d+1 − a, D∗

1,d+1 + a] and
let L′ = L(D∗

1,d+1) (In other words, L′ = L(center(J))). Clearly, J ⊆ J∗ and
W (P, L, J) ≤W (P, L, J∗).

Subcase 2.2. δ1a < |D∗
1,d+1−D∗

d,d+1| < 3an
2
d

P . Let g2(nP ) be the least integer

v ≥ 2 such that |D∗
d,d+1−D∗

1,d+1|+2a

v ≤ δ1a
3 . Since v ≥ 2 and |D∗

d,d+1−D∗
1,d+1|+2a

v−1 >

δ1a
3 , we have

|D∗
d,d+1−D∗

1,d+1|+2a

v = v−1
v

|D∗
d,d+1−D∗

1,d+1|+2a

v−1 > v−1
v

δ1a
3 ≥

δ1a
6 . There-

fore, v ≤ |D∗
d,d+1−D∗

1,d+1|+2a
δ1a
6

≤ 3an
2
d
P +2a
δ1a
6

= 6(3n
2
d
P +2)
δ1

= O(n
2
d

P ). Let s =
|D∗

d,d+1−D∗
1,d+1|+2a

g2(nP ) ∈ [ δ1a
6 , δ1a

3 ]. Partition [D∗
1,d+1 − a, D∗

d,d+1 + a] into the union
of g2(nP ) disjoint intervals of size s: [r1, r2)∪ [r2 , r3)∪· · · ∪ [rv−1, rv)∪ [rv , rv+1],
where v = g2(nP ) and ri+1 = ri + s for i = 1, · · · , v. Let Ii = [ri, ri+1)
for i = 1, · · · , v − 1 and Iv = [rv, rv+1]. Let J∗

i = Ii ∪ Ii+1 · · · ∪ Ii+h−1 for
i = 1, . . . , v − h + 1, where h is an integer with 2a < h · s < 2a + 2s. The algo-
rithm selects the interval J = J∗

i2
that has the least W (P ′, L, J∗

i2
). Finally, the

algorithm outputs L′ = L(center(J)) for the separator hyper-plane. We analyze
the algorithm for the case 2.

Lemma 8. Assume that J is the interval output from the case 2 (either subcase
2.1 or subcase 2.2). It has probability ≥ 1 − 1

100e−r such that W (P, L, J) ≤
W (P, L, J∗) + 2δ1 · awjn

d−1
d

j for some j ≤ k.

For a list A of finite points in �d and a hyper-plane M1, define F1(M1, a, A) =∑
pi∈A and dist(pi,M1)≤a w(pi). If M1 and M2 are two hyper-planes with signed

distance dM1,M2 = sd(p, M1) for some point p in the M2, then F1(M2, a, A) =
W (A, M1, J), where J is the interval [dM1,M2 ,−a, dM1,M2 + a]. The the hyper-
plane L(center(J∗

i2
)) output by the algorithm has that F1(L(center(J∗

i2
)), a, P ′)≤

F1(L(center(J∗)), a1, P
′) + 2δ1 · awjn

d−1
d

j for some j ≤ k. See the section ?? for
the algorithm description in the Appendix.

Time and accuracy of the algorithm: After the hyper-plane L is selected
in phase one, by Lemma 5 we have the probability at least 1 − e−r that both
Pr(Q, L,← q∗1) ∈ [ 1

d+1 − δ, 1
d+1 −

δ
6 ] and Pr(Q, L,← q∗2) ∈ [ d

d+1 + δ
6 , d

d+1 + δ].
This means every L′ (parallel to L) with the signed distance in the interval
[D∗

1,d+1, D
∗
d,d+1], it has at most ( d

d+1 + δ)nQ points of Q in each of the half
spaces. In phase 2, we have probability at least 1− e−r to output the separator

L′ such that F1(L′, a, P ) ≤
(
kd · b

−1
d + δ

)
· a ·
∑k

j=1 wj · n
d−1

d

j (case 1 of phase

1, see Lemma 7) or F1(L′, a, P )) ≤ F1(L(J∗), a1, P ) + 2δ2wjn
d−1

d

j (case 2 of
phase 2, see Lemma 8), where J∗ is the interval of length 2a1 with the least
F1(L(J∗), a1, P ) and center between D∗

1,d+1 and D∗
d,d+1.

Assume that L is a fixed hyper-plane and L∗ is a another hyper-plane that is
parallel to L and F1(L∗, a1, P ) is the least. By Lemma 7 and Lemma 8, it has
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probability ≥ (1 − e−r)2 such that we can get another L′ (parallel to L) such

that F1(L′, a, P ) ≤ F1(L∗, a1, P ) + 2δ1wjn
d−1

d

j for some j ≤ k or F1(L′, a, P ) ≤(
kd · b

−1
d + δ

)
· a ·
∑k

j=1 wj · n
d−1

d

j . The number of points in Q in each side of L′

is ≤ ( d
d+1 + δ)nQ.

We have probability at most 1
1+α that Fa1,P,o(L) ≥ (1 + α)E(Fa1,P,o). If the

algorithm repeats z times, let L1, · · · , Lz be the random hyper planes selected for
L. With probability ≥ (1 − ( 1

1+α )z), one of those Lis has another hyper-plane
L∗

i such that L∗
i is parallel to Li and has Fa1,P,o(L∗

i ) ≤ (1 + α)E(Fa1,P,o).
Therefore, we have probability at least (1 − ( 1

α+1 )z)(1 − e−r)2z to find out

such a L′ with F1(L′, a, P ) ≤ (1 + α)E(Fa1,P,o) + 2δ1wjn
d−1

d
j for some j ≤

k or F1(L′, a, P ) ≤
(
kd · b

−1
d + δ

)
· a ·

∑k
j=1 wj · n

d−1
d

j . Thus, F1(L′, a, P ) ≤(
kd · b

−1
d + δ

)
· a ·
∑k

j=1 wjn
d−1

d

j + O(n
d−2

d +s1

P ).

Now we give a bound for the probability. Let z = 2r
ln(1+α) . Then 1− ( 1

1+α )z >

1− e−r. Therefore, (1− ( 1
1+α )z)(1− e−r)2z > (1− e−r)2z+1 > 1− (2z + 1)e−r >

1− 1
2v , where we let r = c4v for some constant c4 large enough.

The phase 1 of the algorithm takes O(m1 + m2) steps. The case 1 of phase
2 takes O(m2) steps. The case 2 of phase 2 takes O(m2) steps. Totally, it takes
O(z(m1+m2)) = O(v·(n

2
d +2(s1+s2)
P ·(log nP +v)+v log nQ)) = O(v2·(n

2
d +2(s1+s2)
P ·

log nP + log nQ)) steps. �

Corollary 1. Let d ≥ 2 be the dimension number and the parameter v > 0. Let
a > 0 be a constant and δ > 0 be a small constant. There exists a randomized
O(v2n

2
d log n) time such that given a set Q of n grid points in �d, the algorithm

finds a hyper-plane L with probability at least 1 − 1
2v such that each side of L

has at most ( d
d+1 + δ)n points of Q, and the number of points of Q with distance

≤ a to L is ≤ (kd + δ)an
d−1

d .

6 An Application to Protein Side-Chain Packing Problem

We follow the description of Xu [26] for the model of protein side chain packing.
The side-chain prediction problem can be formulated as follows. We use a reside
interaction graph G = (V, E) to represent a protein resides and their interactions.
Each vertex in V represents a residue of the protein. For each reside i ∈ V , D(i)
is the set of all possible rotamers of side chain i. There is an interaction edge
(i, j) ∈ E if and only if there are l ∈ D(i) and k ∈ D(j) such that there exist
an atom in the rotamer l conflicts with another atom in the rotamer k. Two
atoms conflict each other iff their distance is less than the sum of their radii.
For each two rotamers l ∈ D(i) and k ∈ D(j) (i �= j), there is an associated
score Pi,j(l, k) if residue i interacts with residue j. For each rotamer l ∈ D(i),
there is a score Si(l), which characterizes the interaction energy between l and
the backbone of the protein. The prediction problem is to give A(i) ∈ D(i)
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to residues i ∈ V so that the following energy value is minimized. E(G) =∑
i∈V Si(A(i)) +

∑
i�=j,(I,j)∈E Pi,j(A(i), A(j)).

For more detailed description about the protein side chain packing, see (e.g.
[23, 4, 26, 5]). Let d∗u be distance such that there is no interaction between two
resides if their distance is ≥ d∗u. Let d∗l be the minimal distance between two
amino acids. Both d∗u and d∗l are constants.

Theorem 3. There exists a r
O(n

2
3 )

max -time algorithm to find the optimal solution
for the protein side chain packing problem, where rmax is the maximal number
of rotamers of one amino acid. In other words, rmax = maxi |D(i)|.

Proof. Our algorithm is based on the divide and conquer method. Let d0 = d∗l

√
2

2
be the unit distance. Since d∗l =

√
2d0, we consider that the minimal distance

between two amino acids is dl =
√

2 and the minimal distance for the interaction
between two side chains is du = d∗

u

d0
. For a grid point p = (x, y, z) (x, y, z are

integers), define cube(p) = {(u, v, w) ∈ �3|x − 1
2 ≤ u < x + 1

2 and y − 1
2 ≤

v < y + 1
2 and z − 1

2 ≤ w < z + 1
2}. The 3D space �3 is partitioned into

many cubes: �3 = cube(p0) ∪ cube(p1) ∪ · · ·. For different grid points p �= p′,
cube(p)∩ cube(p′) = ∅. Each amino acid is represented by the position of its Cα.
Therefore, no two amino acids can stay at the same cube(p) for any grid point
p. Let P be the set of all grid points p such that cube(p) contains the Cα for an
amino acid.

Let w = du + 2
√

2. By Corollary 1, there exists a w-wide separator L plane
such that each side has at most (3

4 + δ)n contain amino acid, and the number of
grid points (with amino acids in its cube) is bounded by 1.209wn

2
3 , where δ > 0

is an arbitrary small constant. The w-wide separator partitions the problem into
P1, S and P2, where S is the separator area. Clearly, a side chain whose amino
acid Cα is in cube(p) with p ∈ P1 does not interact another side chain in P2
because of the w-wide separator between P1 and P2.

The number of ways to arrange the side chains in the separator area S is
bounded by r1.209wn

2
3

max . We only need O(n) time for computing the separator. We
assume that rmax ≥ 2 (otherwise, it is trivial). Let T (n) is the computational
time for the protein side chain packing problem with n resides. Solving each
sub-problem Pi(i = 1, 2) takes T ((3

4 + δ)n) steps. We have the recursive T (n) ≤

2(r1.209wn
2
3

max + O(n))T ((3
4 + δ)n). This gives that T (n) = r

O(n
2
3 )

max . �
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Abstract. For a given x-monotone polygonal curve each of whose edge
lengths is between l and 2l, we consider the problem of approximating
it by another x-monotone polygonal curve using points of a square grid
so that there exists a small number of different edge lengths and every
edge length is between l and βl, where β is a given parameter satisfying
1 ≤ β ≤ 2. Our first algorithm computes an approximate polygonal curve
using fixed square grid points in O((n/α4) log(n/α)) time. Based on this,
our second algorithm finds an approximate polygonal curve as well as an
optimal grid placement simultaneously in O((n3/α12) log2(n/α)) time,
where α is a parameter that controls the closeness of approximation.
Based on the approximate polygonal curve, we shall give an algorithm
for finding a uniform triangular mesh for an x-monotone polygon with a
constant number of different edge lengths.

1 Introduction

In this paper, we consider the following problem: given an x-monotone polygonal
curve P each of whose edge lengths is between l and 2l, where l is the prede-
termined standard edge length, the problem is to approximate P by another
x-monotone polygonal curve using points of a given square grid. This problem is
motivated by the problem of finding a triangular mesh with a constant number
of different edge lengths [18]. Since it seems to be difficult in general to find a
triangulation for a given polygon such that the number of different edge lengths
is constant, we considered in our previous paper [18] the following problem:

Input: An x-monotone polygon P each of whose edge lengths is between l and
2l and a parameter β with 1 ≤ β ≤ 2.
Output: An x-monotone polygon Q which approximates P appropriately, and
triangulation of Q such that (i) boundary edge lengths of Q are between l and

� Supported by JSPS Grant-in-Aid for Scientific Research on priority areas of New
Horizons in Computing.

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 161–172, 2006.
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βl, (ii) the edges and the angles of the triangles are uniform and (iii) the number
of different edge lengths is constant, where uniformity is measured by ratio of
the maximum edge length to minimum one and by minimum angle.

In [18], we have presented an algorithm for this problem which can be regarded
as an extension of the results of [14, 19]. The idea of the algorithm in [18] is that
the location of every vertex of Q and every Steiner point for the triangulation
is determined so that it coincides with a point of square grid of width αl, where
0 < α < 1. This obtained a triangular mesh with 3π/8α2+o(1/α2) different edge
lengths in O(n/α4(1/α2 +log(n/α))) time. A parameter α controls the closeness
of approximation of Q as well as the number of different edge lengths. In this
paper, we will study the problem for finding an optimal placement of the square
grid and an approximate polygon simultaneously which has not been studied
before. We only consider translation of the grid in finding an optimal placement.

Motivating application. In the field of architecture, the surface of large-span
structure such as dome structure is represented by triangulation consisting of
the bars and joints called triangular truss. From practical viewpoint, there are
constraints on structural strength and construction cost. As to the strength of
the structure, the lengths of members and angles between consecutive members
incident to a joint are critical properties that determine the performance. On
the other hand, a cost to realize the structure heavily depends on the number of
different member lengths. From this standpoint, we are concerned with how to
realize an architectural structure with a limited number of different elements.

Historical Perspective. The polygonal curve approximation, especially curve
simplification, has various applications for cartography, computer graphics, and
geographic information system, and has been extensively studied. In particular,
Imai and Iri [13] proposed two different approaches to this problem. The first one
is min-# problem: given an error ε, find an approximation curve within ε with
minimum number of vertices. The second one is min-ε problem: given an integer
m, find an approximation curve consisting of at most m vertices with minimum
error. A number of algorithms have been developed to solve the above problems
under various constraints and error criteria (see e.g. [2, 4, 6, 7, 10, 12, 13, 17]). In
this paper, we will consider the error criterion mostly used in the literature of
curve approximations, which is called tolerance zone criteria [4, 6, 7, 12, 13, 17],
or also called Hausdorff error measure in [2]. It is assumed in most of papers that
original vertices are used for vertices of the approximation curve. In our problem,
we do not make such assumption since we consider the problem of approximating
a polygonal curve by using points of a square grid. Several algorithms for the
min-# and the min-ε problems under uniform metric, namely L∞ metric, whose
vertices need not be a subset of vertices of the original curve are developed
in [9, 11, 12]. For L1 and L2 metric, Aronov et al. [5] gave fully polynomial-time
algorithm under min-sum criteria, however there is no polynomial time algorithm
for min-ε problem under L2 metric to our knowledge.

Our results. In this paper, we will propose two algorithms for polygonal curve
approximation using grid points. The first one gives an optimal polygonal curve
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approximation using fixed grid points in O((n/α4) log(n/α)) time (Section 2).
Using this algorithm as a subroutine, we propose an algorithm for finding both
an optimal polygonal curve approximation and an optimal placement of the
square grid simultaneously in O((n3/α12) log2(n/α)) time (Section 3).

For the easiness of exposition, we assume that 1/α is an integer throughout
the paper.

2 Approximation of a Polygonal Curve Using a Fixed
Grid

Let P be a given piecewise linear curve in the plane which is defined as a se-
quence of vertices 〈p1, . . . , pn〉, such that any two consecutive vertices pi and
pi+1 are connected by the line segment pipi+1. First, we introduce the func-
tion which measures the error between the original curve and the approximate
one with respect to the previous function used in many curve simplification
algorithm mentioned in the introduction. The basic approach adopted therein
assumes that the vertices 〈pi1 , . . . , pim〉 of Q is a subset of the vertices of P
with i1 = 1 and im = n, and the error of an approximate curve is defined
as Hausdorff error measure with Lh metric, (e.g. h = 1, 2 or ∞). In this pa-
per, we consider L2 metric, d : R2 × R2 → R. For a vertex x and a set A, let
d(x, A) be the distance between x and A, i.e. d(x, A) = miny∈A d(x, y). The
Hausdorff error under L2 metric between a line segment pjpk and P is defined
as dH(pjpk, P ) = maxj≤l≤k d(pl, pjpk). Thus, the error between P and Q under
Hausdorff error measure is defined as dH(Q, P ) = max1≤j≤m−1 dH(pij pij+1 , P ).
Notice that in our problem the vertices of an approximate polygon are not a
subset of the vertices of P . Let Q = 〈q1, . . . , qm〉 be an approximate polyg-
onal curve of P . Define a mapping φ : R2 → R2 such that, for a vertex qi,
φ(qi) is a point (not necessarily a vertex) of P which is nearest from qi, i.e.
d(qi, φ(qi)) = mink=1,...,n−1 d(qi, pkpk+1). Then, we define the Hausdorff error
between the segment qiqi+1 and P as

dH(qiqi+1, P ) =
max{d(qi, φ(qi)), d(qi+1, φ(qi+1)), max

j+1≤l≤k
{d(pl, qiqi+1)}} if j < k

max{d(qi, φ(qi)), d(qi+1, φ(qi+1))} if j = k,

(1)

where j and k are indices such as φ(qi) ∈ pjpj+1 and φ(qi+1) ∈ pkpk+1. Then,

dH(Q, P ) = max
1≤i≤m−1

dH(qiqi+1, P ). (2)

We now give the rigorous definition of our problem:

Input: An x-monotone polygonal curve P with vertices VP = 〈p1, . . . , pn〉 =
〈(x1, y1), . . . , (xn, yn)〉 and x1 ≤ · · · ≤ xn such that each edge length is between
l and 2l, a square grid G of width αl with 0 < α < 1 and a parameter β with
1 ≤ β ≤ 2.
Output: An x-monotone polygonal curve Q = 〈q1, . . . , qm〉 with minimum Haus-
dorff error such that each qi coincides with a grid point, and each edge length is
between l and βl.
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The algorithm consists of the following steps. In the first step we enumerate
candidate grid points which are defined as C = {c ∈ VG | d(c, P ) ≤ δ}, where
VG is a set of vertices of G and δ will be determined later. Next we construct
a network containing geometric information, by which the problem reduces to
finding an optimal path on the network.

Candidate grid points. For computational efficiency, it is necessary to enu-
merate candidate grid points. From the following lemma, we set δ to

√
2l.

Lemma 1. Let Q be the approximate polygon which minimizes Hausdorff error.
Then, dH(Q, P ) is less than

√
2l.

For each pjpj+1 of P , there are O(1/α2) candidate grid points in {x ∈ VG |
d(x, pjpj+1) ≤

√
2l}, because every pjpj+1 is assumed to be less than 2l. Then,

we have that the total number of candidate grid points is O(n/α2).

Constructing a network. We introduce a directed network N = (V, E), where
V = C and E = {(c1, c2) | c1, c2 ∈ C, x-coordinate of c2 is greater than or equal
to that of c1and l ≤ d(c1, c2) ≤ βl}. The edge (c1, c2) is assigned a weight
dH(c1c2, P ) which is the error between c1c2 and P . Notice that if the segment
c1c2 is vertical, (c1, c2) is bidirected.

Let ε∗ be the error of the optimal solution. Since there is at least one vertex
of the optimal solution in a circle with radius ε∗ centered at p1, we add an
auxiliary node ns to V as a starting node and edges from ns to the nodes
associated with the candidate points in {c ∈ C | d(c, p1) ≤

√
2l}. Similarly, we

add an auxiliary point nt as a terminal node as well as edges from the candidate
points in {c ∈ C | d(c, pn) ≤

√
2l} to nt. The arcs added have no weights.

Finding an optimal path. Sorting all the edge weights, we perform a binary
search on the edge weights. When the binary search focuses on the edge weight
w, we check by a depth-first search whether a path from ns to nt exists in the
network which consists of the edges whose weights are at most w. The total
number of nodes in N is O(n/α2). Number of edges incident to one node are
O(1/α2). Therefore, the total number of edges in N is O(n/α4). Therefore, the
total time to get an optimal solution is O((n/α4) log(n/α)).

3 Approximation of a Polygonal Curve with an Optimal
Grid Layout

The grid layout affects the value of the error between the original polygonal
curve P and an optimal approximate curve Q∗. The method that we stated in
the previous section produces a different solution Q∗ depending on a position of
grid. Thus, in this section we will be concerned with finding a grid layout such
that dH(Q∗, P ) is minimum. We call such grid layout an optimal grid layout. The
difficulty of this problem lies in that (i) candidate grid points move depending
on the choice of the square grid position and (ii) the nearest edge of P from a
candidate point as well as the weight dH(c1c2, P ) of an edge (c1, c2) also changes
depending on the grid. In order to overcome the difficulty (i), we enlarge the
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set of candidate grid points appropriately. For the second difficulty (ii), we do
as follows. First, instead of considering optimization problem, we consider a
decision problem D(ε). Given an error bound ε > 0, D(ε) asks whether there
exists an approximate polygonal curve Q and a translation vector t in R2 such
that dH(Q ⊕ t, P ) ≤ ε, where A ⊕ t = {a + t | a ∈ A} denotes the Minkowski
sum between a set A and a vector t. Now, note that t can be restricted to be
in [−αl

2 , αl
2 ] × [−αl

2 , αl
2 ] because we consider the grid of width αl. We use the

simple notation R to stand for [−αl
2 , αl

2 ]× [−αl
2 , αl

2 ]. In order to solve D(ε), R is
decomposed into regions such that in each region f the set E of candidate edges
is classified into two classes E1 and E2 such that dH(e⊕ t, P ) ≤ ε holds for any
e ∈ E1 and for any t ∈ f while dH(e⊕ t, P ) > ε holds for any e ∈ E2. If e ∈ E1 in
f , it is called available in f . Once such decomposition is obtained, we can solve
D(ε) easily: we can test whether there exists a path from a starting node ns to
a terminal node nt using only available edges in each face of R. If there exists
such a path for some region in R, then the answer of D(ε) is “yes”, otherwise
“no”. Such decomposition of R can be defined as follows. For every candidate
edge cicj , we compute the curves defining the region of dH(cicj ⊕ t, P ) ≤ ε
based on Eq.(1). Union of such curves over all candidate edges gives the desired
decomposition of R.

Candidate grid points and the associated network. Define C(t) = {c ∈
VG⊕t | d(c, P ) ≤

√
2l} which is a set of candidate grid points shown by Lemma 1.

From Lemma 1, we have at least one approximate polygonal curve using the
points of C(t). Then, redefining C = {c ∈ VG | d(c, P ) ≤

√
2(1 + α)l} as a set of

candidate grid points, we can easily see that C(t) ⊂ C holds for any t ∈ R.
In a manner similar to the way explained in the previous section, if available

edges are given, we can construct the associated network N = (V, E) although
the edge weights are not given because t is not fixed.

Decomposition of the space of t. Consider a line segment c1c2 which is
associated with an edge (c1, c2) ∈ E. Translating it by a vector t results in a line
segment c1c2 ⊕ t. We now consider the curves defining the region of dH(c1c2 ⊕
t, P ) ≤ ε in R.

First, let us define some notations. For two sets A and B, the Minkowski sum
between A and B is defined as A ⊕ B = {a + b | a ∈ A, b ∈ B}. Let Bε denote
a disk of radius ε around the origin. For a segment pipi+1 of P , let pipi+1 ⊕Bε

is called racetrack which consists of a rectangle of width 2ε with two semicircles
of radius ε attached to its sides. Let P ε be a union of the racetracks of all edges
of P , i.e. P ε =

⋃n−1
i=1 (pipi+1 ⊕Bε).

Suppose φ(c1 + t) and φ(c2 + t) belong to pjpj+1 and pkpk+1 respectively.
Then, from the edge weight definition in (1), dH(c1c2⊕ t, P ) ≤ ε is equivalent to

d(c1 + t, φ(c1 + t)) ≤ ε and d(c2 + t, φ(c2 + t)) ≤ ε (3)

and if j < k

d(pl, c1c2 ⊕ t) ≤ ε for l = j + 1, j + 2, . . . , k. (4)
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First, we consider the inequalities (3). The inequality d(c1 + t, φ(c1 + t)) ≤ ε
implies that the vertex c1+t is inside of P ε. Thus, it is rewritten as t ∈ P ε⊕(−c1).
Similarly, the inequality d(c2 + t, φ(c2 + t)) ≤ ε is rewritten as t ∈ P ε ⊕ (−c2).
Then, the inequality (3) is defined by the curves d(c1 + t, φ(c1 + t)) = ε and
d(c2 + t, φ(c2 + t)) = ε which form the boundaries of (P ε ⊕ (−c1)) ∩ R and
(P ε ⊕ (−c2)) ∩R in R. See Fig.1(a) for example.

Next, let us consider the inequality (4). Note that the indices j and k change
depending on t. The region in R such that j and k do not change is determined by
the Voronoi diagram, Vor(P ), of the segments of P each of whose Voronoi edges
is either line segment or paraboloid arc. Then the Voronoi diagram Vor(P ⊕
(−c1)) ∩ R decomposes the space of t into the regions in each of which the
segment of P nearest to c1 + t is determined. So we decompose R into the faces
of Vor(P ⊕ (−c1))∩R. Similarly Vor(P ⊕ (−c2))∩R decomposes R into regions
in each of which the segment of P nearest to c2 + t is determined. Thus, the
decomposition of R is also defined by union of Voronoi edges of Vor(P⊕(−c1))∩R
and Vor(P⊕(−c2))∩R. In each face f of such decomposition, the closest segment
of P to c1 + t as well as the closest one to c2 + t are fixed, (see Fig.1(b)). Let
pjpj+1 and pkpk+1 be the nearest segments from c1 + t and c2 + t for t ∈ f ,
respectively, and let Bε(pl) be a closed disk of radius ε centered at pl. The
inequality d(pl, c1c2 ⊕ t) ≤ ε implies (c1c2 ⊕ t) ∩ Bε(pl) �= ∅, which says that
there exists a point x ∈ c1c2 such that t + x ∈ Bε(pl). This is equivalent to
t ∈ Bε(pl) ⊕ (−x). Then, d(pl, c1c2 ⊕ t) ≤ ε if and only if t ∈ Bε(pl) ⊕ (−c1c2).
Define Iε

pl
(c1, c2) := Bε(pl)⊕ (−c1c2), which is also a racetrack whose boundary

is defined by two line segments and two semicircles (see Fig.1(c)).
In summary, the desired decomposition in each of whose faces a set of available

edges do not change is defined by a collection of

(i) the boundary of (P ε ⊕ (−ci)) ∩R for all ci ∈ C,
(ii) Voronoi edges of Vor(P ⊕ (−ci)) ∩R for all ci ∈ C and
(iii) the boundary of Iε

pl
(ci, cj) ∩R for all pl ∈ VP and for all (ci, cj) ∈ E.

Decision problem D(ε). The outline of our algorithm for solving D(ε) is as
follows:

1. Calculate the curves (i), (ii) and (iii).
2. Compute the arrangement A defined by a collection of all these curves.
3. Sweep the arrangement A. Every time we visit a new face f , we construct

a network N consisting of only available edges, and check whether a path
from ns to nt exists by depth-first search. The algorithm returns “yes”, if
such a path exists until sweeping is finished.

Now, let us show how we efficiently implement Steps 3. The arrangement A is
defined by the collection of the curves (i), (ii) and (iii). Therefore, there exist
three kinds of events as follows while sweeping the arrangement:

(a) The sweep line crosses a segment of (P ε⊕ (−ci))∩R, which informs that ci

gets inside of P ε or gets out of P ε.
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: P" è (à c2) \ R

: P" è (à c1) \ R

Pε

P1c

2c

pl

(a)

: Vor(Pè (à c1) \ R)

: Vor(Pè (à c2) \ R)

pl

Pε

P1c

2c

(b)

Pε

P1c

2c

I"pl(c1; c2)

pl

: I"pl(c1; c2) \ R

(c)

Fig. 1. Example of the decomposition of the space of t. (a) Shaded areas represent
P ε ⊕ (−c1) ∩ R and P ε ⊕ (−c2) ∩ R. (b) Dashed line segments are Voronoi edges of
Vor(P ). Vor(P ⊕(−c2))∩R decomposes R into two regions. (c) Shaded region represents
Iε

pl
(c1, c2).

(b) The sweep line crosses a segment of Vor(P ⊕ (−ci)) ∩R, which informs the
change of the nearest segment of ci among the edges of P .

(c) The sweep line crosses a segment of Iε
pl

(ci, cj)∩R, which informs that either
d(pl, cicj) ≤ ε or d(pl, cicj) > ε newly holds.

We now describe four data structures which are updated corresponding to above
events. (1) Array PL for candidate points ci ∈ C is such that PL[i]= 1 if
ci ∈ P ε, PL[i]= 0 otherwise. (2) Array NL for candidate points is such that
NL[i]= k represents that the nearest segment from ci is pkpk+1. (3) Three-
dimensional array IA for candidate edge (ci, cj) ∈ E and pl ∈ VP is such that
IA[i][j][l]= 1 if d(pl, cicj) ≤ ε holds, IA[i][j][l]= 0 otherwise. (4) Two-
dimensional array AL for candidate edge (ci, cj) ∈ E is such that AL[i][j]= 1
if the edge (ci, cj) is available, AL[i][j]= 0 otherwise. Then, let us show how
they are updated according to the events (a), (b) and (c) while sweeping the
arrangement.

Lemma 2. The time to update the data structures PL, NL, IA and AL is
O(n/α2) for each event (a), (b) and (c).

Proof. Event (a): Two subcases are possible: (a1) ci gets inside of P ε, and (a2)
it gets outside of P ε. In case (a1), PL[i] is updated from 0 to 1. For each
(ci, cj) ∈ E (or (cj , ci) ∈ E) incident to ci AL[i][j] (or AL[j][i]) may change.
Updating AL[i][j] is done as follows: compute indices ki, kj of the nearest
segments of ci and cj by NL[i] and NL[j], and then set AL[i][j]= 1 if PL[j]= 1
and IA[i][j][l]= 1 for all ki + 1 ≤ l ≤ kj . Checking IA[i][j][l] for all
ki + 1 ≤ l ≤ kj takes O(n) time. Since there are O(1/α2) edges incident to ci in
the network, the update of the date structures for (a1) takes O(n/α2) time. In
case (a2), PL[i] is updated from 1 to 0 and AL[i][j] (or AL[j][i]) is set to 0
for all edges (ci, cj) ∈ E ((cj , ci) ∈ E). This can be done in O(1/α2) time.
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Event (b): Suppose the nearest segment of ci changes to pkipki+1. NL[i] is
updated to ki. Then, consider cicj or cjci incident to ci. Updating AL[i][j]
is done by computing index kj of the nearest segment of cj by NL[j], and
then setting AL[i][j]= 1 if PL[i]= 1, PL[i]= 1 and IA[i][j][l]= 1 for all
ki + 1 ≤ l ≤ kj , setting AL[i][j]= 0 otherwise. Checking IA[i][j][l] for all
ki + 1 ≤ l ≤ kj takes O(n) time. Thus, updating of the date structures for (b)
can takes O(n/α2) time.

Event (c): Two subcases are possible, i.e. (c1) d(pl, cicj) becomes less than
or equal to ε, and (c2) it becomes larger than ε. In case (c1), IA[i][j][l] is
changed to 1. Compute indices ki, kj of the nearest segments of ci and cj by NL[i]
and NL[j]. Update AL[i][j] to 1 if PL[i]= 1, PL[j]= 1 and IA[i][j][l]= 1
for all ki + 1 ≤ l ≤ kj . Checking IA[i][j][l] for all ki + 1 ≤ l ≤ kj takes O(n)
time in worst case. In case (c2), IA[i][j][l] is changed to 0, and accordingly
update AL[i][j] to 0. Thus, updating of the date structures for (c) takes O(n)
time. ��

Finally, to analyse the complexity of A, we prove the following lemma.

Lemma 3. The arrangement A is defined by O(n/α4) line segments, circu-
lar arcs and paraboloid arcs. Then, the complexity of the arrangement A is
O(n2/α8).

Proof. First, let us define some notations. For a region A, define N(A) to be
the total number of segments bounding the region A. For a point x, let R(x) be
a closed square region centered at x with width αl. Then, the total number of
segments of A is

∑
ci∈C N((P ε⊕ (−ci))∩R) +

∑
ci∈C N(Vor(P ⊕ (−ci))∩R)+∑

(ci,cj)∈E

∑
pl∈VP

N(Iε
pl

(ci, cj)∩R). (i) Let us consider the first term. We have∑
ci∈C N((P ε⊕ (−ci))∩R) =

∑
ci∈C N(P ε∩R(ci)). This is at most the number

of intersection points between the squares of G and the boundary of P ε. Since
all of edge lengths of P are given less than 2l, the boundary of each racetrack
intersects O(1/α) squares of G. Hence,

∑
ci∈C N(P ε ∩R(ci)) = O(n/α).

(ii) Next let us consider the second term. We have
∑

ci∈C N(Vor(P ⊕ (−ci))∩
R) =

∑
ci∈C N(Vor(P )∩R(ci)). This is at most the number of intersection points

between the squares cantered at ci ∈ C and Voronoi edges of Vor(P ). Let us
consider the region P δ′

, where δ′ =
√

2(1 + 2α)l. Note that
⋃

ci∈C R(ci) ⊂ P δ′
.

Considering the Voronoi edges which are inside P δ′
, we can show that each

of such Voronoi edges is included in one racetrack of P δ′
. Since diameter of the

racetrack is at most 2l+2δ′, each Voronoi edge appeared inside P δ′
has the length

less than 2l + 2δ′. Therefore, the number of intersections between one Voronoi
edge and squares R(ci) for all ci ∈ C is O(1/α). Since the total number of Voronoi
edges of Vor(P ) is O(n) (see [15]), we have

∑
ci∈C N(Vor(P ⊕ (−ci)) ∩ R) =

O(n/α).
(iii) Finally, consider the third term. For pl ∈ VP and ci, cj ∈ C, Iε

pl
(ci, cj)

represents the space of t such that the line segment cicj ⊕ t intersects a circle
Cε

pl
centered at pl with radius ε. Let us consider how many cicj with (ci, cj) ∈ E

intersect a circle Cε
pl

. The number of endpoints of the segments which intersect
Cε

pl
is O(1/α2). Then, the total number of segments which intersects Cε

pl
is
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O(1/α4). Hence,
∑

(ci,cj)∈E

∑
pl∈VP

N(Iε
pl

(ci, cj)) = O(n/α4). This proves the
theorem. ��

Let us analyse the time complexity of D(ε). Since there are O(n/α4) segments
from Lemma 3, A can be computed in time O((n2/α8) log(n/α)), (see [8]). In
each face of A, the algorithm computes a network consisting of available edges
and check whether a path from ns to nt exists by depth-first search. For two
adjacent faces, the update of the network can be done in O(n/α2) time from
Lemma 2. For each face, depth-first search can be computed in time O(n/α4)
because the number of edges in the network is O(n/α4). In summary, we have
proved the following theorem.

Theorem 1. Given a parameter ε, the running time to compute the decision
problem D(ε) is O((n3/α12) log(n/α)).

Minimization problem. We solve the minimization problem by applying a
parametric search on the parameter ε. See [16] for the definition and description
of the parametric search technique, and see [1, 3] for the details of how it is
applied in geometric optimisation problems. Now, we have a sequential decision
problem D(ε), and clearly D(ε) is monotone in ε, meaning that if D(ε0) answers
“yes” for some ε0, then D(ε) also answer “yes” for all ε > ε0. We wish to find
the smallest value ε∗ such that D(ε∗) answers “yes”. Megiddo’s idea is to run
a “generic” version of the decision problem on the unknown ε∗. The generic
algorithm does not have to solve the same problem as the concrete decision
algorithm. For us, we consider the following generic algorithm:

• Compute the curves (i), (ii) and (iii) on ε∗.
• Compute all intersections among the curves (i), (ii) and (iii).

Let Ts be the running time of the sequential algorithm for the decision prob-
lem. This generic algorithm is consisting of the intersection queries among line
segments, circular arcs and paraboloid arcs, each of which depends on the sign
of a polynomial. From Lemma 3, there are O(n2/α8) such pairs of segments,
then generic algorithm can be done in Tp = O(1) steps using P = O(n2/α8)
processors, each for a pair of segments. Each of the intersection queries can be
answered by examining the sign of at most quadratic polynomial in ε, and such
comparison has at most two critical values. In each step of the parametric search,
to resolve the intersection queries on ε∗, we call the decision problem on these
critical values. It is known that, for each step in the parallel generic algorithm,
we take O(P+Ts logP) time. Then, the total time to obtain an optimal solution
is O(Tp(P + Ts logP)) = O((n3/α12) log2(n/α)).

Theorem 2. Given an x-monotone polygonal curve P with n vertices, one can
solve the curve approximation problem in time O((n3/α12) log2(n/α)) with min-
imum Hausdorff error such that each vertex of the approximate curve coincides
with a point of a square grid of width αl, where 0 < α < 1.
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4 Polygon Approximation

Suppose that we are given an x-monotone polygon P which consists of two x-
monotone curves, one is an upper x-monotone curve 〈p1, . . . , pm〉 and the other
is a lower x-monotone curve 〈pm, . . . , pn+1 = p1〉. In this section, we will study
the problem for approximating P by another x-monotone polygon Q using grid
points. In the same manner as in polygonal curve approximation, we consider
the decision problem D(ε) and the directed network N = (V, E) consisting
of available edges. Let us explain how to construct N . First, we calculate the
candidate grid points Cup and Clow for the upper and lower curves, and construct
two directed networksNup andNlow corresponding to Cup and Clow, respectively.
Direction of an edge is defined as was explained in Section 2. Finally, we combine
Nup and Nlow as follows. Let V1, V2, V3 and V4 be sets of candidate points in
{c ∈ Cup | d(c, p1) ≤

√
2(1+α)l}, {c ∈ Cup | d(c, pm) ≤

√
2(1+α)l}, {c ∈ Clow |

d(c, pm) ≤
√

2(1 + α)l} and {c ∈ Clow | d(c, p1) ≤
√

2(1 + α)l}, respectively. We
connect a directed edge from each node c2 ∈ V2 to the node c3 ∈ V3 with weight
0 if both c2 and c3 represent the same vertex. The resulting combined network is
the desired N . Although V1 = V4, the nodes in V1 and V4 are regarded as distinct
nodes. To construct the network consisting of available edges, we decompose the
space of the translation vector t as in the previous section, which is defined by
a collection of curves, (i), (ii) and (iii). After N is constructed, for each node c1
in V1, we test whether there exists a path from c1 to c4 ∈ V4 where c4 is the
same point as c1. Since there are O(1/α2) elements in V1, the time to solve the
decision problem is O((1/α2) · (n3/α12) log(n/α)). The minimization problem
can be done in a manner similar to the one explained in Section 3. Thus, we can
derive the following:

Theorem 3. Given an x-monotone polygon P with n vertices, one can solve the
polygon approximation problem in time O((n3/α14) log2(n/α)) with minimum
Hausdorff error such that each vertex of the approximate curve coincides with a
point of a square grid of width αl, where 0 < α < 1.

5 Experimental Results

We have implemented the algorithm for polygon approximation with a fixed grid
and triangular mesh generation with a constant number of different edge lengths
which has presented in [18]. To show how a grid layout affects the solutions,
we have performed the polygon approximation with several grid layouts. Given
initial x-monotone polygon in Fig. 2(a) and setting parameters such that l = 50,
α = 0.5 and β = 2.0, we shall show the results of polygon approximations for the
best grid layout and the worst one in Fig. 2(b) and (c), respectively. Fig. 2(d) is
the result of the triangulation for the polygon approximation with the best grid
layout. The numerical results are given in Table 1. It is observed from the table
that the total number of different edge lengths is very small.
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(a) (b)

(c) (d)

Fig. 2. (a) Initial polygon. (b) Approximate polygon with the best grid layout. (c)
Approximate polygon with the worst grid layout. (d) Triangular mesh with 7 kinds of
different edge lengths for the polygon in (c). (l = 50, α = 0.5 and β = 2.0).

Table 1. The experimental results with best grid layout and worst one. (l = 50, α = 0.5
and β = 2.0)

� of lengths Max length Min length Hausdorff error

The best layout 7 100.0 50.0 6.7
The worst layout 7 100.0 50.0 21.0

6 Conclusion and Future Works

In this paper, we considered the polygonal curve approximation problem us-
ing square grid points. We presented a developed algorithm for finding an ap-
proximate polygonal curve as well as an optimal grid layout simultaneously in
O((n3/α12) log2(n/α)) time.

Considering the application to architecture, the following problems are left for
future works: (i) Extension to curved surface and (ii) Characterization of curved
surfaces realized by a constant number of different edge lengths.
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Abstract. We consider a variant of Heilbronn’s triangle problem by
asking for fixed integers d, k ≥ 2 and any integer n ≥ k for a distribution
of n points in the d-dimensional unit cube [0, 1]d such that the minimum
volume of the convex hull of k points among these n points is as large as
possible. We show that there exists a configuration of n points in [0, 1]d,
such that, simultaneously for j = 2, . . . , k, the volume of the convex
hull of any j points among these n points is Ω(1/n(j−1)/(1+|d−j+1|)).
Moreover, for fixed k ≥ d+1 we provide a deterministic polynomial time
algorithm, which finds for any integer n ≥ k a configuration of n points
in [0, 1]d, which achieves, simultaneously for j = d + 1, . . . , k, the lower
bound Ω(1/n(j−1)/(1+|d−j+1|)) on the minimum volume of the convex
hull of any j among the n points.

1 Introduction

For integers n ≥ 3, Heilbronn’s problem asks for the supremum Δ2(n) of the
minimum area of a triangle formed by three of n points over all distributions
of n points in the unit square [0, 1]2. It has been observed by Erdős, see [16],
that Δ2(n) = Ω(1/n2), which can be seen by considering for primes n the
points Pk = 1/n · (k mod n, k2 mod n), k = 0, 1, . . . , n − 1. Komlós, Pintz and
Szemerédi [10] improved this lower bound to the currently known best lower
bound Δ2(n) = Ω(log n/n2), see [4] for a deterministic polynomial time algo-
rithm achieving this lower bound. Upper bounds were given in a series of papers
by Roth [16, 17, 18, 19] and Schmidt [20], and the currently known best upper
bound is due to Komlós, Pintz and Szemerédi [9], who proved that Δ2(n) =
O(2c

√
log n/n8/7) for some constant c > 0. We remark that for n points, which

are chosen uniformly at random in [0, 1]2, the expected value of the minimum
area of a triangle is Θ(1/n3), as was shown recently by Jiang, Li and Vitany [8].

A variant of Heilbronn’s problem in dimension d ≥ 2, which has been consid-
ered by Barequet, asks for the supremum Δd+1,d(n) – over all distributions of
n points in the d-dimensional unit cube [0, 1]d – of the minimum volume of a
(d + 1)-point simplex among n points. Barequet showed in [2] the lower bound
Δd+1,d(n) = Ω(1/nd) for fixed d ≥ 2, see [3] for an on-line version for dimensions
d = 3, 4. His lower bound was improved in [11] to Δd+1,d(n) = Ω(log n/nd), and
in [15] for dimension d = 3 a deterministic polynomial time algorithm was given,
which achieves Δ4,3(n) = Ω(log n/n3). Recently, Brass [5] improved the upper
bound Δd+1,d(n) = O(1/n) to Δd+1,d(n) = O(1/n(2d+1)/(2d)) for odd d ≥ 3.

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 173–184, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



174 H. Lefmann

Here we consider the following generalization of Heilbronn’s problem: for fixed
integers d, k ≥ 2 and any integer n ≥ k find n points in the d-dimensional unit
cube [0, 1]d, such that the minimum volume of the convex hull of any k points
among these n points is as large as possible. Let the corresponding supremum
values – over all distributions of n points in [0, 1]d – on the minimum volumes
of the convex hull of k points among n points be denoted by Δk,d(n).

This problem has been investigated also by Chazelle, who considered it in con-
nection with lower bounds on the query complexity of range searching problems.
He proved in [7] that for any fixed dimension d ≥ 2 there exists a constant c > 0
such that a random set of n points in the unit cube [0, 1]d satisfies with proba-
bility greater than 1− 1/n, that the volume of the convex hull of any k ≥ log n
points is Ω(k/n), indeed it holds Δk,d(n) = Θ(k/n) for log n ≤ k ≤ n for fixed
d ≥ 2. An extension of the range of k might also improve his lower bounds on
the query complexity, see [7].

Here we consider the case of fixed values k and d. Areas of triangles aris-
ing from n points in [0, 1]d have been investigated in [12], where for fixed di-
mension d ≥ 2 it has been shown that Δ3,d(n) = Ω((log n)1/(d−1)/n2/(d−1))
and Δ3,d(n) = O(1/n2/d). Moreover, for fixed k ≤ d + 1 it has been proved
recently in [14] that Δk,d(n) = Ω((log n)1/(d−k+2)/n(k−1)/(d−k+2). For the spe-
cial case of dimension d = 2 and arbitrary k ≥ 3 it was shown in [13] that
Δk,2(n) = Ω((log n)1/(k−1)/n(k−1)/(k−2).

Here we prove the following lower bounds, in particular for k > d.

Theorem 1. Let d, k ≥ 2 be fixed integers.

(i) Then, for any integer n ≥ k there exists a configuration of n points in the
unit cube [0, 1]d, such that, simultaneously for j = 2, . . . , k, the volume of
the convex hull of any j points among these n points is

Ω(1/n(j−1)/(1+|d−j+1|)). (1)

(ii) Moreover, for fixed k ≥ d + 1 there is a deterministic polynomial time
algorithm, which finds for any integer n ≥ k a configuration of n points in
[0, 1]d, which, simultaneously for j = d + 1, . . . , k, achieves the lower bound
Ω(1/n(j−1)/(1+|d−j+1|)) on the volume of the convex hull of any j among
the n points in [0, 1]d.

Our arguments remain valid if d and k are functions of n, but then the lower
bound (1) will depend on d and j. Notice that for fixed integers d, j ≥ 2, Theorem
1 yields Δj,d = Ω(1/n(j−1)/(1+|d−j+1|)). Concerning upper bounds, for fixed
integers d, j ≥ 2 a partition of [0, 1]d into d-dimensional subcubes each of volume
Θ(n−1/j), yields Δj,d(n) = O(1/n(j−1)/d) for j ≤ d + 1 and Δj,d(n) = O(1/n)
for j ≥ d + 1. Moreover, for even integers j, 2 ≤ j ≤ d + 1, the upper bound can
be improved to Δj,d(n) = O(1/n(j−1)/d+(j−2)/(2d(d−1))), see [14].

Somewhat surprisingly, achieving by a deterministic polynomial time
algorithm for the same n points in [0, 1]d the lower bound Δj,d(n) =
Ω(1/n(j−1)/(1+|d−j+1|)), simultaneously for j = 2, . . . , k, where d, k ≥ 2 are
fixed integers, causes so far some difficulties w.r.t. the lower dimensional sim-
plices, i.e. , for 4 ≤ j ≤ d.
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2 Lower Bounds

Let dist (Pi, Pj) be the Euclidean distance between the points Pi, Pj ∈ [0, 1]d. A
simplex given by the points P1, . . . , Pj ∈ [0, 1]d, 2 ≤ j ≤ d + 1, is the set of all
points P1+

∑j
i=2 λi ·(Pi−P1) with

∑j
i=2 λi ≤ 1 and λ2, . . . , λj ≥ 0. The ((j−1)-

dimensional) volume of a simplex given by j points P1, . . . , Pj ∈ [0, 1]d, 2 ≤ j ≤
d + 1, is defined by vol (P1, . . . , Pj) := 1/(j− 1)! ·

∏j
i=2 dist (Pi; 〈P1, . . . , Pi−1〉),

where dist (Pi; 〈P1, . . . , Pi−1〉) is the Euclidean distance of the point Pi from the
affine real space 〈P1, . . . , Pi−1〉 generated by the vectors P�

2 −P�
1 , . . . , P�

i−1−P�
1

attached at P1. For j points P1, . . . , Pj ∈ [0, 1]d, j ≥ d + 1, let vol (P1, . . . , Pj)
be the (d-dimensional) volume of the convex hull of the points P1, . . . , Pj .

First we prove part (i) of Theorem 1.

Proof. Let d, k ≥ 2 be fixed integers. For arbitrary integers n ≥ k, we se-
lect uniformly at random and independently of each other N := k · n points
P1, P2, . . . , PN from the unit cube [0, 1]d.

Set vj := βj/nγj for constants βj , γj > 0, j = 2, . . . , k, which will be fixed
later. Let V := {P1, P2, . . . , PN} be the random set of chosen points in [0, 1]d.
For j = 2, . . . , k, let Ej be the set of all j-element subsets {Pi1 , . . . , Pij} ∈
[V ]j of points in V such that vol (Pi1 , . . . , Pij ) ≤ vj . We estimate the expected
numbers E(|Ej |) of j-element sets in Ej , j = 2, . . . , k, and we show that for
a suitable choice of the parameters v2, . . . , vk all numbers E(|Ej |) are not too
big, i.e. , E(|E2|) + · · · + E(|Ek|) ≤ (k − 1) · n. Thus, there exists a choice of N
points P1, P2, . . . , PN ∈ [0, 1]d such that |E2|+ · · ·+ |Ek| ≤ (k − 1) · n. Then, for
j = 2, . . . , k, we delete one point from each j-element set of points in Ej . The
remaining points yield at least n points such that the volume of the convex hull
of any j points of these at least n points is at least vj .

Lemma 1. Let d, k ≥ 2 be fixed integers. For j = 2, . . . , k, there exist constants
cj,d > 0 such that for every real vj > 0 it is

E(|Ej |) ≤ cj,d ·N j · v1+|d−j+1|
j . (2)

Proof. For reals vj > 0 and random points P1, . . . , Pj ∈ [0, 1]d we give an upper
bound on the probability Prob (vol (P1, . . . , Pj) ≤ vj). We assume that the
points P1, . . . , Pj are numbered such that for 2 ≤ g ≤ h ≤ j and g ≤ d + 1 it is

dist (Pg; 〈P1, . . . , Pg−1〉) ≥ dist (Ph; 〈P1, . . . , Pg−1〉) . (3)

The point P1 can be anywhere in [0, 1]d. Given the point P1, the probabil-
ity, that the point P2 ∈ [0, 1]d has from P1 a Euclidean distance within the
infinitesimal range [r1, r1 + dr1], is at most the difference of the volumes of the
d-dimensional balls with center P1 and with radii (r1 +dr1) and r1, respectively,
hence

Prob (r1 ≤ dist (P1, P2) ≤ r1 + dr1) ≤ d · Cd · rd−1
1 dr1 ,

where Cd denotes the volume of the d-dimensional unit ball in Rd.
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Given the points P1 and P2 with dist (P1, P2) = r1, the probability that the
Euclidean distance of the point P3 ∈ [0, 1]d from the affine line 〈P1, P2〉 is within
the infinitesimal range [r2, r2 + dr2] is at most the difference of the volumes of
two cylinders centered at the line 〈P1, P2〉 with radii r2+dr2 and r2, respectively,
and, by assumption (3), with height 2 · r1 = 2 · dist (P1, P2), thus

Prob (r2 ≤ dist (P3; 〈P1, P2〉) ≤ r2 + dr2) ≤ 2 · r1 · (d− 1) · Cd−1 · rd−2
2 dr2 .

In general, let the points P1, . . . , Pg, g < j and g < d + 1, be given with
dist (Px; 〈P1, . . . , Px−1〉) = rx−1 for x = 2, . . . , g. For g ≤ j − 2 and g ≤ d − 1,
by (3) the projection of the point Pg+1 onto the affine space 〈P1, . . . , Pg〉 is
contained in a (g − 1)-dimensional box with volume 2g−1 · r1 · · · rg−1, hence

Prob (rg ≤ dist (Pg+1; 〈P1, . . . , Pg〉) ≤ rg + drg)
≤ 2g−1 · r1 · · · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g drg . (4)

For g = j − 1 < d, to satisfy vol (P1, . . . , Pj) ≤ vj , we must have 1/(j −
1)! ·
∏j

i=2 dist (Pi; 〈P1, . . . , Pi−1〉) ≤ vj . By (3) the projection of the point Pj

onto the affine space 〈P1, . . . , Pj−1〉 is contained in a (j − 2)-dimensional box
with volume 2j−2 · r1 · · · rj−2, and the point Pj has Euclidean distance at most
((j − 1)! · vj)/(r1 · · · rj−2) from the affine space 〈P1, . . . , Pj−1〉, which happens
with probability at most

2j−2 · r1 · · · rj−2 · Cd−j+2 ·
(

(j − 1)! · vj

r1 · · · rj−2

)d−j+2

. (5)

For d ≤ g ≤ j − 1, the projection of the point Pg+1 onto the affine space
〈P1, . . . , Pd〉 is contained in a (d − 1)-dimensional box with volume at most
2d−1 · r1 · · · rd−1. Since vol (P1, . . . , Pd, Pg+1) ≤ vj by monotonicity, the point
Pg+1 has Euclidean distance at most (d! · vj)/(r1 · · · rd−1) from the affine space
〈P1, . . . , Pd〉, which happens with probability at most

2d−1 · r1 · · · rd−1 ·
2 · d! · vj

r1 · · · rd−1
= d! · 2d · vj . (6)

Thus, for j ≤ d with (4) and (5) and some constants c∗j,d, c
∗∗
j,d > 0, we obtain

Prob (vol (P1, . . . , Pj) ≤ vj)

≤
∫ √

d

rj−2=0
· · ·
∫ √

d

r1=0
2j−2 ·

Cd−j+2 · ((j − 1)!)d−j+2 · vd−j+2
j

(r1 · · · rj−2)d−j+1 ·

·
j−2∏
g=1

(
2g−1 · r1 · · · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g

)
drj−2 . . . dr1

≤ c∗∗j,d · v
d−j+2
j ·

∫ √
d

rj−2=0
. . .

∫ √
d

r1=0

j−2∏
g=1

(
r2j−2g−3
g

)
drj−2 . . . dr1

≤ c∗j,d · v
d−j+2
j as 2 · j − 2 · g − 3 ≥ 1

= c∗j,d · v
1+|d−j+1|
j as j ≤ d. (7)



Distributions of Points and Large Convex Hulls of k Points 177

Moreover, for j = d + 1, . . . , k, by (4) and (6) for constants c∗j,d, c
∗∗
j,d > 0 we infer

Prob (vol (P1, . . . , Pj) ≤ vj)

≤
∫ √

d

rd−1=0
· · ·
∫ √

d

r1=0
(d! · 2d · vj)j−d ·

·
d−1∏
g=1

(
2g−1 · r1 · · · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g

)
drd−1 . . . dr1

≤ c∗∗j,d · v
j−d
j ·

∫ √
d

rd−1=0
· · ·
∫ √

d

r1=0

d−1∏
g=1

(
r2d−2g−1
g

)
drd−1 . . . dr1

≤ c∗j,d · v
j−d
j as 2 · d− 2 · g − 1 ≥ 1

= c∗j,d · v
1+|d−j+1|
j as j ≥ d + 1. (8)

By (7) and (8) we have Prob (vol (P1, . . . , Pj) ≤ vj) ≤ c∗j,d · v
1+|d−j+1|
j for

constants c∗j,d > 0, j = 2, . . . , k. Since there are
(
N
j

)
choices for j out of the N

random points P1, . . . , PN ∈ [0, 1]d, inequality (2) follows. �

By (2) and Markov’s inequality there exist N = k · n points P1, . . . , PN in the
unit cube [0, 1]d such that for j = 2, . . . , k:

|Ej | ≤ k · cj,d ·N j · v1+|d−j+1|
j . (9)

Lemma 2. Let d, k ≥ 2 be fixed integers. Then, for every βj , γj with 0 < βj ≤
1/(cj,d · kj+1)1/(1+|d−j+1|) and γj ≥ (j − 1)/(1 + |d− j + 1|), j = 2, . . . , k, it is

|Ej | ≤ N/k . (10)

Proof. For j = 2, . . . , k, by (9) and using vj = βj/nγj we infer

|Ej | ≤ N/k

⇐= k · cj,d ·N j · v1+|d−j+1|
j ≤ N/k

⇐⇒ kj+1 · cj,d · β1+|d−j+1|
j · nj−1−γj(1+|d−j+1|) ≤ 1 ,

which holds for j − 1 ≤ γj · (1 + |d− j + 1|) and kj+1 · cj,d · β1+|d−j+1|
j ≤ 1. �

Fix γj := (j−1)/(1+|d−j+1|) and βj := 1/(cj,d·kj+1)1/(1+|d−j+1|), j = 2, . . . , k.
By Lemma 2 we have |E2| + · · · + |Ek| ≤ ((k − 1)/k)) · N . For j = 2, . . . , k,
we discard one point from each j-element set in Ej . Then, the set I ⊆ V of
remaining points contains a subset of size N/k = n. These n points in [0, 1]d

satisfy, simultaneously for j = 2, . . . , k, that the volume of the convex hull of
each j of these n points is bigger than vj = βj/n(j−1)/(1+|d−j+1|), which finishes
the proof of part (i) and (1) in Theorem 1. �
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3 A Deterministic Algorithm

Here we derandomize the probabilistic arguments from Section 2 to show The-
orem 1, part (ii). Throughout this section, let k ≥ d + 1. Let Bd(T ) denote the
d-dimensional ball with radius T around the origin. Then Bd(T ) ∩ Zd is the set
of all points P ∈ Zd, which have Euclidean distance at most T from the origin.
To provide a deterministic polynomial time algorithm which, for any integer
n > 0, finds a configuration of n points in [0, 1]d, such that the volume of the
convex hull of small sets of points is large, we discretize the unit cube [0, 1]d by
considering, for T large enough, but bounded from above by a polynomial in n,
all points in Bd(T )∩Zd. This set Bd(T )∩Zd will be rescaled later by the factor
T d. However, with this discretization we have to take care of degenerate sets of
points, where a set {P1, . . . , Pj} ⊂ [0, 1]d with j ≥ d + 1 is called degenerate,
if all points P1, . . . , Pj are contained in a (d− 1)-dimensional affine subspace of
Rd, otherwise {P1, . . . , Pj} is called non-degenerate.

Set vj := βj · T d/n(j−1)/(j−d) for suitable constants βj > 0, j = d + 1, . . . , k,
which will be fixed later. We construct for j = d + 1, . . . , k two types of j-
element edges. For points Pi1 , . . . , Pij ∈ Bd(T ) ∩ Zd, let {Pi1 , . . . , Pij} ∈ Ej if
and only if vol (Pi1 , . . . , Pij ) ≤ vj and {Pi1 , . . . , Pij} is not contained in a (d−1)-
dimensional affine subspace of Rd, i.e. , the set {Pi1 , . . . , Pij} is non-degenerate.
Moreover, let {Pi1 , . . . , Pij} ∈ E0

j if and only if {Pi1 , . . . , Pij} is contained in a
(d− 1)-dimensional affine subspace of Rd.

To give upper bounds on these numbers |Ej | and |E0
j | of j-element sets, j =

d + 1, . . . , k, we use lattices in Zd.
A lattice L in Zd is a subset of Zd, which is generated by all integral linear

combinations of some linearly independent vectors b1, . . . , bm ∈ Zd, hence L =
Zb�1 + · · ·+Zb�m. The parameter m = rank(L) is called the rank of the lattice L,
and the set B = {b1, . . . , bm} is called a basis of L. The set FB := {

∑m
i=1 αi · bi |

0 ≤ αi ≤ 1, i = 1, . . . , m} ⊆ Rd is called the fundamental parallelepiped FB of B,
its volume is vol(FB) := (det(G(B)� ·G(B)))1/2, where G(B) := (b1, . . . , bm)d×m

is the d × m generator matrix of B (up to the ordering of the vectors). If B
and B′ are two bases of a lattice L in Zd, then the volumes of the fundamental
parallelepipeds are equal, i.e., vol(FB) = vol(FB′ ), see [6].

For integers a1, . . . , an ∈ Z, which are not all equal to 0, let gcd(a1, . . . , an) de-
note the greatest common divisor of a1, . . . , an. For vectors a =
(a1, . . . , ad)� ∈ Rd and b = (b1, . . . , bd)� ∈ Rd let 〈a, b〉 :=

∑d
i=1 ai · bi be

the standard scalar product. The length of a vector a ∈ Rd is defined by
‖a‖ :=

√
〈a, a〉. For a lattice L in Zd let span(L) be the linear space over the

reals, which is generated by the vectors in L. For a subset S = {P1, . . . , Pk} ⊂ Rd

of points the rank of S is the dimension of the linear space over the reals, which
is generated by the vectors P�

2 − P�
1 , . . . , P�

k − P�
1 .

A vector a = (a1, . . . , ad)� ∈ Zd\{0d} is called primitive, if gcd(a1, . . . , ad) = 1
and aj > 0 with j = min{i | ai �= 0}. A lattice L in Zd is called m-maximal,
if rank(L) = m and no other lattice L′ �= L in Zd with rank(L′) = m contains
L as a proper subset. There is a one-to-one correspondence between m-maximal
lattices in Zd and primitive vectors a = (a1, . . . , ad)� ∈ Zd \ {0d}:
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(i) For each lattice L in Zd with rank(L) = d − 1 ≥ 1 there is exactly one
primitive vector aL = (a1, . . . , ad)� ∈ Zd \{0d} with 〈aL, x�〉 = 0 for every
x ∈ L. This vector aL ∈ Zd \ {0d} is called the primitive normal vector of
the lattice L.

(ii) For each lattice L′ in Zd with rank(L′) = d− 1 there is exactly one (d− 1)-
maximal lattice L in Zd with L′ ⊆ L.

(iii) There exists a bijection between the set of all (d− 1)-maximal lattices L in
Zd and the set of all primitive vectors aL in Zd.

For a (d − 1)-maximal lattice L in Zd, a residue class of L is a set L′ of the
form L′ = x + L with x ∈ Zd.

The proofs of Lemmas 3 – 6 concerning lattices can be found in [15].

Lemma 3 ([15]). Let L be a (d−1)-maximal lattice in Zd with primitive normal
vector aL ∈ Zd and with basis B.

(i) There exists a point v ∈ Zk\L such that Zd can be partitioned into the residue
classes s·v+L, s ∈ Z, and, for each point x ∈ L, it is dist(s·v+x, span(L)) =
|s|/‖aL‖.

(ii) The volume of the fundamental parallelepiped FB fulfills vol(FB) = ‖aL‖.

Lemma 4 ([15]). Let d ∈ N be fixed. Let S ⊆ Bd(T ) ∩ Zd be a set of points
with rank(S) ≤ d− 1. Then there exists a (d− 1)-maximal lattice L of Zd such
that S is contained in some residue class L′ = v + L of L for some v ∈ Zd, and
L has a basis b1, . . . , bd−1 ∈ Zd with maxi=1,...,d−1 ‖bi‖ = O(T ).

The next lemma is crucial in our considerations to estimate the numbers |Ej |
and |E0

j | of j-element sets, j = d + 1, . . . , k.

Lemma 5 ([15]). Let d ∈ N be fixed. Let L be a (d − 1)-maximal lattice of Zd

with primitive normal vector aL ∈ Zd, and let B = {b1, . . . , bd−1} be a basis of
L with maxi=1,...,d−1 ‖bi‖ = O(T ). Then the following hold:

(i) The primitive normal vector aL satisfies ‖aL‖ = O(T d−1).
(ii) For every residue class L′ of L it is |L′ ∩Bd(T )| = O

(
T d−1/‖aL‖

)
.

For integers g, l ∈ N let rg(l) be the number of representations x2
1 + · · ·+ x2

g = l
with x1, . . . , xg ∈ Z.

Lemma 6 ([15]). Let g, r ∈ N be fixed integers. Then, for all integers m ∈ N:

m∑
l=1

rg(l)
lr

=

⎧⎨⎩O
(
mg/2−r

)
if g/2− r > 0

O (log m) if g/2− r = 0
O(1) if g/2− r < 0.

Lemma 7. Let d, k ≥ 2 be fixed integers with k ≥ d + 1. For j = d + 1, . . . , k,
there exist constants cj,0 > 0, such that the numbers |E0

j | of j-element degenerate
sets of points in Bd(T ) ∩ Zd satisfy

|E0
j | ≤ cj,0 · T (d−1)j+1 · log T. (11)
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Proof. By Lemma 4, each degenerate j-element subset of points in Bd(T )∩Zd is
contained in a residue class L′ of some (d−1)-maximal lattice L in Zd, and L has
a basis b1, . . . , bd−1 ∈ Zd with ‖bi‖ = O(T ), i = 1, . . . , d − 1. By Lemma 5(i), it
suffices to consider all (d− 1)-maximal lattices L with primitive normal vectors
aL ∈ Zd of length ‖aL‖ = O(T d−1).

Having fixed a (d − 1)-maximal lattice L in Zd, which is determined by its
primitive normal vector aL ∈ Zd, by Lemma 3(i), there are O(T · ‖aL‖) residue
classes L′ of the lattice L with L′ ∩ Bd(T ) �= ∅. By Lemma 5(ii), each set
L′ ∩ Bd(T ) contains O(T d−1/‖aL‖) points. From each set L′ ∩ Bd(T ) we can
select j points in

(
O(T d−1/‖aL‖)

j

)
ways to obtain a degenerate set of j points.

This implies

|E0
j | = O

⎛⎝ ∑
a∈Zd, ‖a‖=O(T d−1)

T · ‖a‖ ·
(

T d−1/‖a‖
j

)⎞⎠
= O

⎛⎝T (d−1)j+1 ·
∑

a∈Zd, ‖a‖=O(T d−1)

1
‖a‖j−1

⎞⎠
= O

⎛⎝T (d−1)j+1 ·
O(T 2d−2)∑

l=1

rd(l)
l(j−1)/2

⎞⎠ = O
(
T (d−1)j+1 · log T

)
,

since, by Lemma 6, we have
∑m

l=1 rd(l)/l(j−1)/2 = O(log m) for j = d + 1 and∑m
l=1 rd(l)/l(j−1)/2 = O(1) for j = d + 2, . . . , k. �

Lemma 8. Let d, k ≥ 2 be fixed integers with k ≥ d + 1. For j = d + 1, . . . , k,
there exist constants cj > 0, such that the numbers |Ej | of j-element non-
degenerate sets of points in Bd(T ) ∩ Zd with the volume of their convex hull
at most vj, fulfill

|Ej | ≤ cj · T d2 · vj−d
j . (12)

Proof. For j = d + 1, . . . , k, consider j points P1, . . . , Pj ∈ Bd(T ) ∩ Zd with
vol (P1, . . . , Pj) ≤ vj , where {P1, . . . , Pj} is non-degenerate. Let these points be
numbered such that for 2 ≤ g ≤ h ≤ j and g ≤ d + 1 it is

dist (Pg; 〈P1, . . . , Pg−1〉) ≥ dist (Ph; 〈P1, . . . , Pg−1〉) . (13)

By Lemma 4, the points P1, . . . , Pd ∈ Bd(T ) ∩ Zd are contained in a residue
class L′ of some (d − 1)-maximal lattice L in Zd with primitive normal vector
aL ∈ Zd, where L has a basis b1, . . . , bd−1 ∈ Zd with ‖bi‖ = O(T ) for i =
1, . . . , d − 1. By Lemma 5(i), it suffices to consider all (d − 1)-maximal lattices
L with primitive vectors aL ∈ Zd of length ‖aL‖ = O(T d−1).

We fix a (d−1)-maximal lattice L in Zd, which is determined by its primitive
normal vector aL ∈ Zd. By Lemma 3(i), there are O(T · ‖aL‖) residue classes
L′ of L with L′ ∩ Bd(T ) �= ∅. By Lemma 5(ii), from each set L′ ∩ Bd(T ) we
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can select d points P1, . . . , Pd in
(
O(T d−1/‖aL‖)

d

)
ways. By (13) we infer for the

(d − 1)-dimensional volume vol (P1, . . . , Pd) > 0, as otherwise {P1, . . . , Pj} is
degenerate. Also by (13) the projection of each point Pi ∈ Bd(T ) ∩ Zd, i =
d+1, . . . , j, onto the residue class L′ is contained in a (d−1)-dimensional box of
volume 2d−1 · (d− 1)! ·vol (P1, . . . , Pd), which, by Lemma 3(ii), contains at most

2d−1 · (d− 1)! · 2d−1 · vol (P1, . . . , Pd)/‖aL‖ (14)

points of L′, since P1, . . . , Pd ∈ L′. With vol (P1, . . . , Pd, Pi) ≤ vj it follows that
dist (Pi, 〈P1, . . . , Pd〉) ≤ d · vj/vol (P1, . . . , Pd) , and, by Lemma 3(i), each point
Pi ∈ Bd(T ) ∩ Zd, i = d + 1, . . . , j, is contained in one of at most

‖aL‖ · d · vj/vol (P1, . . . , Pd) (15)

residue classes L′′ of L. By (14) in each residue class L′′ we can choose at most
(d− 1)! · 22d−2 · vol (P1, . . . , Pd)/‖aL‖ points Pi ∈ Bd(T ) ∩ Zd, hence with (15)
each point Pi, i = d + 1, . . . , j, can be chosen in at most d! · 22d−2 · vj ways.
Applying this to each point Pd+1, . . . , Pj ∈ Bd ∩ Zd, we infer the upper bound

|Ej | = O

⎛⎝ ∑
a∈Zd, ‖a‖=O(T d−1)

T · ‖a‖ ·
(

T d−1/‖a‖
d

)
· vj−d

j

⎞⎠
= O

⎛⎝T d2−d+1 · vj−d
j ·

∑
a∈Zd, ‖a‖=O(T d−1)

1
‖a‖d−1

⎞⎠
= O

⎛⎝T d2−d+1 · vj−d
j ·

O(T 2d−2)∑
l=1

rd(l)
l(d−1)/2

⎞⎠ = O(T d2 · vj−d
j ) ,

since, by Lemma 6, we have
∑m

l=1 rd(l)/l(d−1)/2 = O(m1/2). �

For fixed integers d, j, k ≥ 2 the sets Ej and E0
j , can easily be constructed in time

polynomial in T . Namely, by considering every j-element subset S ⊂ Bd(T )∩Zd

of points, we determine all degenerate sets of j points in Bd(T )∩Zd and all non-
degenerate sets of j points in Bd(T ) ∩ Zd with volume of their convex hulls at
most vj in time O(T dj), since there are

(
O(T d)

j

)
j-element subsets in Bd(T )∩Zd.

Let |Bd(T ) ∩ Zd| = C′
d · T d, where C′

d > 0 is a constant. We enumerate the
points in Bd(T )∩ Zd by P1, . . . , PC′

d·T d . To each point Pi associate a parameter
pi ∈ [0, 1], i = 1, . . . , C′

d · T d, and define a potential function F (p1, . . . , pC′
d·T d):

F (p1, . . . , pC′
d
·T d) := 2pC′

dT d/2 ·
C′

dT d∏
i=1

(
1− pi

2

)
+

+
k∑

j=d+1

∑
{i1,...ij}∈Ej

pi1 · · · pij

2 · k · pj · cj · T d2 · vj−d
j

+
k∑

j=d+1

∑
{i1,...,ij}∈E0

j
pi1 · · · pij

2 · k · pj · cj,0 · T (d−1)j+1 · log T
.
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With the initialisation p1 := · · · := pC′
d·T d := p = (2 · k · n)/(C′

d · T d) ≤ 1, i.e. ,

say T d = ω(n), we infer by Lemmas 7 and 8 that F (p, . . . , p) < (2/e)pC′
dT d/2 +

(2k − 2d)/(2k), which is less than 1 for p · C′
d · T d ≥ 7 · ln k. Using the linearity

of F (p1, . . . , pC′
d·T d) in each pi, we minimize F (p1, . . . , pC′

d·T d) by choosing one
after the other pi := 0 or pi := 1 for i = 1, . . . , C′

d · T d, and finally we obtain
F (p1, . . . , pC′

d·T d) < 1. With V ∗ = {Pi ∈ Bd(T )∩Zd | pi = 1} this yields a subset
V ∗ ⊆ Bd(T ) ∩ Zd of points and subsets E0∗

j := [V ∗]j ∩ E0
j and E∗j := [V ∗]j ∩ Ej

of j-element sets, j = d + 1, . . . , k, such that

|V ∗| ≥ p · C′
d · T d/2 (16)

|E∗j | ≤ 2 · k · pj · cj · T d2
· vj−d

j (17)

|E0∗
j | ≤ 2 · k · pj · cj,0 · T (d−1)j+1 · log T . (18)

By choice of the parameters vj , j = d +1, . . . , k, the running time of this deran-
domization is O(T d +

∑k
j=d+1(|Ej |+ |E0

j |)) = O(T dk), which is polynomial in T
for fixed integers d, k ≥ 2.

Lemma 9. For j = d + 1, . . . , k, and 0 < βj ≤ (C′j
d /(2j+2 · kj+1 · cj,d))1/(j−d),

it is
|E∗j | ≤ |V ∗|/(2 · k) .

Proof. By (16) and (17) with vj := βj · T d/n
j−1
j−d , and p = (2 · k · n)/(C′

d · T d),
and with βj > 0 it is

|E∗j | ≤ |V ∗|/(2 · k)

⇐= 2 · k · pj · cj · T d2 · vj−d
j ≤ p · C′

d · T d/(4 · k)

⇐⇒ 8 · k2 ·
(

2 · k · n
C′

d · T d

)j−1

· cj · T d2−d ·
(

βj · T d

n
j−1
j−d

)j−d

≤ C′
d

⇐⇒ 2j+2 · kj+1 · cj · βj−d
j ≤ C′j

d ,

which holds for βj−d
j ≤ C′j

d /(2j+2 · kj+1 · cj), j = d + 1, . . . , k. �

Lemma 10. For j = d + 1, . . . , k, and T/(log T )1/(j−1) = ω(n), it is

|E0∗
j | ≤ |V ∗|/(2 · k) .

Proof. By (16) and (18), with p = (2 · k · n)/(C′
d · T d), j = d + 1, . . . , k, we infer

|E0∗
j | ≤ |V ∗|/(2 · k)

⇐= 2 · k · pj · cj,0 · T (d−1)j+1 · log T ≤ p · C′
d · T d/(4 · k)

⇐⇒ 8 · k2 ·
(

2 · k · n
C′

d · T d

)j−1

· cj,0 · T (d−1)j−d+1 · log T ≤ C′
d

⇐⇒ 2j+2 · kj+1 · cj,0 ·
nj−1

T j−1 · log T ≤ C′j
d ,

which holds for T/(logT )1/(j−1) = ω(n). �
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With T := n · log n and βj := (C′j
d /(2j+2 · kj+1 · cj)1/(j−d), j = d + 1, . . . , k,

the assumptions of Lemmas 9 and 10 are fulfilled. By deleting in time O(|V ∗|+∑k
j=d+1(|E∗j |+ |E0∗

j |))O(T kd) one point from each j-element set in E∗j and E0∗
j ,

j = d + 1, . . . , k, the remaining points yield a subset V ∗∗ ⊆ V ∗ of size at least
|V ∗|/k ≥ p ·C′

d ·T d/(2 ·k) = n. Then these at least n points in Bd(T )∩Zd satisfy
that the volume of the convex hull of any j of these points, j = d + 1, . . . , k, is
at least vj , i.e. , Ω(T d/n(j−1)/(j−d)). After rescaling by the factor T d, we have
at least n points in the unit cube [0, 1]d such that the volume of the convex hull
of any j of these points is Ω(1/n(j−1)/(j−d)), j = d + 1, . . . , k. Altogether the
running time of this deterministic algorithm is O((n · log n)dk) for fixed d, k ≥ 2,
hence polynomial in n, which finishes the proof of Theorem 1, part (ii).

4 Concluding Remarks

Our arguments yield a deterministic polynomial time algorithm for obtain-
ing a distribution of n points in [0, 1]d, which, for fixed integers j ≥ d + 1,
shows Δj,d(n) = Ω(1/n(j−1)/(1+|d−j+1|)). With the results from [14], i.e. , us-
ing a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] on uncrowded
hypergraphs we can improve Theorem 1 slightly (Details are omitted here),
namely for fixed integers d, k ≥ 3 and a fixed integer j0 with 3 ≤ j0 ≤ d + 1
one can find in polynomial time a configuration of n points in [0, 1]d, such
that, simultaneously for j = 2, . . . , k but j �= j0, the volume of the convex
hull of j points among these n points is at least Ω(1/n(j−1)/(1+|d−j+1|)) and
Δj0,d(n) = Ω((log n)1/(d−j0+2)/n(j0−1)/(d−j0+2). It would be interesting to get
such an improvement by a logarithmic factor for the same n points in [0, 1]d,
simultaneously for 3 ≤ j ≤ k, for fixed d, k.

Moreover, improvements of the existing upper bounds, which were given in the
introduction, are desirable. Also investigations of this problem for non-constant
values of k might be of interest in view of the results of Chazelle [7].
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Hypergraphs, Journal of Combinatorial Theory Ser. A, 32, 1982, 321–335.

2. G. Barequet, A Lower Bound for Heilbronn’s Triangle Problem in d Dimensions,
SIAM Journal on Discrete Mathematics 14, 2001, 230–236.

3. G. Barequet, The On-Line Heilbronn’s Triangle Problem in Three and Four Di-
mensions, Proceedings ‘8rd Annual International Computing and Combinatorics
Conference COCOON’02’, LNCS 2387, Springer, 2002, 360–369.

4. C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heil-
bronn’s Problem, SIAM Journal on Computing 30, 2000, 383–390.

5. P. Brass, An Upper Bound for the d-Dimensional Heilbronn Triangle Problem,
SIAM Journal on Discrete Mathematics 19, 192–195, 2005.

6. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Vol. 99, Springer-
Verlag, New York, 1971.



184 H. Lefmann

7. B. Chazelle, Lower Bounds on the Complexity of Polytope Range Searching, Jour-
nal of the American Mathematical Society 2, 637–666, 1989.

8. T. Jiang, M. Li and P. Vitany, The Average Case Area of Heilbronn-type Triangles,
Random Structures & Algorithms 20, 2002, 206–219.
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Abstract. Given two sets A and B of m non-intersecting line segments
in the plane, we show how to compute in O(m log m) time a data struc-
ture that uses O(m) space and allows to answer the following query in
O(log m) time: Given a parabola γ : y = ax2 + bx + c, does γ separate A
and B? This structure can be used to build a data structure that stores
a simple polygon and allows ray-shooting queries along parabolic trajec-
tories with vertical main axis. For a polygon with complexity n, we can
answer such “stone throwing” queries in O(log2 n) time, using O(n log n)
space and O(n log2 n) preprocessing time. This matches the best known
bound for circular ray shooting in simple polygons.

1 Introduction

Ray shooting is a fundamental problem in computational geometry. We are given
a set of geometric objects in Rd (usually d = 2 or 3) that we wish to pre-
process and store in such a way that we can quickly answer queries of the form:
given a query ray (a half-infinite line segment), determine the first object hit
(intersected) by the ray. Ray shooting arises in computer graphics, in visual-
ization, and in other geometric problems such as collision detection and motion
planning.

In some applications, ray-shooting queries need to be performed along rays
that are not straight. Motion planning for car-like robots, for instance, makes
use of ray-shooting queries along circular arcs. In this paper, we consider another
natural ray-shooting query: which object will be hit first by a flying stone that
moves under the influence of gravity along a parabolic trajectory?

We are aware of only one previous result that addresses ray shooting along
parabolic trajectories: Sharir and Shaul [9] very recently gave a near-linear size
data structure for triangles in 3D with sublinear query time.

We concentrate here on ray shooting inside a simple polygon of complexity n.
For straight rays, this problem has been solved by Hershberger and Suri [6],
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who gave a data structure that requires linear space and answers queries in
time O(log n). For circular rays, Agarwal and Sharir [1] gave a data structure
achieving O(log4 n) query time with O(n log3 n) space. This was improved to
O(log2 n) query time with O(n log n) space by Cheng et al. [4] using a novel
hierarchical decomposition of simple polygons.

We make use of Cheng et al.’s hierarchical decomposition and of their frame-
work for ray shooting. This framework guides the search for the answer to a
ray-shooting query inside a simple polygon. All that remains to be done to im-
plement parabolic ray-shooting queries is to provide a data structure that stores
two sets A and B of line segments and allows queries of the form: given a parabola
γ, decide whether A lies entirely above γ, and whether B lies entirely below γ.
(Note that since we are interested in trajectories under the influence of gravity,
our parabolas are concave and have a vertical main axis. In other words, they
can be expressed in the form y = ax2 + bx + c, with a < 0.) We will call this a
parabola separation query.

Our result is a data structure for parabola separation queries that stores
m segments in space O(m log m) and has query time O(log m). Plugging this
data structure into Cheng et al.’s framework [4] results in a data structure that
stores a simple polygon P of complexity n in space O(n log n) and allows to
answer ray-shooting queries along parabolic arcs originating inside P in query
time O(log2 n). These bounds equal the best known bounds for circular ray
shooting. We omit a detailed description of the application of this framework;
the result follows from Lemma 5 in Cheng et al. [4].

Separation queries are of interest indepently of their application to ray shoot-
ing. Let A and B be sets of planar line segments. A line 
 is a strong separator
of A and B if all segments of A lie in one closed half-plane defined by 
, and all
segments of B lie in the other closed half-plane defined by 
. Note that segments
from both sets are allowed to lie on 
.

Given A and B, a strong separator 
 can be found in linear time by solving
a two-dimensional linear program (it suffices to ensure that the endpoints of A
and B are separated). The query version of this problem is to preprocess A and
B into a data structure that allows us to determine quickly whether a given line
is a strong separator. This can be done by computing the feasible region of the
linear program, and preprocessing it for point location.

Our result answers the analogous question when 
 is a parabola, albeit only
for the case of parabolas with vertical main axis.

Parabola separation queries consist of two independent queries: (a) Determine
whether A lies above γ; and (b) determine whether B lies below γ. In Section 2
we give a solution for part (b) that is very similar to the solution for lines
mentioned above: We simply compute the space of all feasible parabolas, and
preprocess it for point location. Our solution for (a) in Section 3 is much more
complicated. This is due to the fact that it does not suffice to test the parabola
against the endpoints of the segments. We describe a solution based on Abstract
Voronoi diagrams as defined by Klein [7].
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2 Does B Lie Below the Parabola?

For a parabola γ given by its equation γ : y = ax2 + bx + c where a < 0, let γ−

denote the closed region lying below the parabola, that is γ− := {(x, y) ∈ R2 |
y � ax2 + bx + c}.

We are given a set B of m line segments, which we wish to preprocess and
store in a data structure such that we can answer the following query: Given a
parabola γ, does B lie entirely in γ−?

Since γ− is convex, a segment pq lies in γ− if and only if both p and q lie
in γ−. It therefore suffices to test whether the set S of the 2m endpoints of
segments in B lies in γ−.

We represent the parabola γ : y = ax2 + bx + c as the point (a, b, c) ∈ R3.
Each point pi = (xi, yi) defines a linear constraint in this space: pi ∈ γ− if
and only if yi � ax2

i + bxi + c. Since all 2m constraints can be written in the
form c � yi − x2

i a − xib, the set of parabolas γ with B ⊂ γ− is the region in
(a, b, c)-space above these 2m planes.

We can now solve our problem as follows: We compute the upper envelope
of these 2m planes in time O(m log m), project it onto the (a, b)-plane, and
preprocess it for planar point location, using O(m log m) preprocessing time and
O(m) space [5]. For each face of the subdivision, we store the point pi defining
the plane supporting the corresponding facet of the upper envelope. To answer
a query for a parabola γ : y = ax2 + bx + c, we locate the point (a, b) in our
subdivision in time O(log m), and determine the corresponding point pi ∈ S.
We then have B ⊂ γ− if and only if yi � ax2

i + bxi + c, which we can test in
constant time.

Theorem 1. Given a set B of m line segments, we can build in time O(m log m)
a data structure of size O(m) that allows us to answer in O(log m) time queries
of the form: Given a parabola γ : y = ax2 + bx + c, where a < 0, does B ⊂ γ−?

3 Does A Lie Above the Parabola?

We will make use of an entirely different parametrization of parabolas in this
section. Recall that any parabola can be expressed as the locus of points equidis-
tant from a point (the focus) and a line (the directrix ). Since our parabola γ has
vertical main axis, its directrix is a horizontal line y = k, and its focus w lies
below the directrix.

We will express a parabola γ using the two parameters k ∈ R and w ∈ R2,
such that γ = {p ∈ R2 | ||wp|| = |k − yp|}, where p = (xp, yp). Since the focus
lies below the parabola, the closed region γ+ lying above the parabola γ is then
γ+ := {p ∈ R2 | ||wp|| � |k − yp|}.

We are given a set A of m non-intersecting line segments,1 which we wish to
preprocess and store in a data structure such that we can answer the following
query: Given a parabola γ, does A lie entirely in γ+? The answer to this question
1 Segments are allowed to share endpoints.
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does not change if we replace A by its lower envelope. We start by computing
this lower envelope, in time O(m log m), so that in the following we can assume
that any vertical line intersects only one segment, or perhaps the right endpoint
of one segment and the left endpoint of another segment. (There are no vertical
segments, as they have been replaced by a point.) In other words, in the following
we assume that A is x-monotone.

We first observe that for a point p ∈ R2, we can rewrite the condition p ∈ γ+

as follows:

p ∈ γ+ ⇔ ||wp|| � |k − yp| ⇔ ||wp|| � k − yp ⇔ ||wp||+ yp � k.

Here we made use of the fact that if k − yp is negative, then p lies above the
directrix, and therefore in γ+.

Let us now define a pseudo-distance function d(u, p) with additive weight (for
the point p) as follows:

d(u, p) := ||up||+ yp.

From the above we find that p ∈ γ+ if and only if d(u, p) � k.
Consider now a segment s ∈ A. Since s is compact and d(u, p) is contin-

uous, the set {d(u, p) | p ∈ s} attains its minimum, and so we can define
d(u, s) := minp∈s d(u, p). Now we observe that s ⊂ γ+ if and only if for all
p ∈ s we have d(w, p) � k, which is equivalent to d(w, s) � k. Similarly,
A ⊂ γ+ if and only if for all s ∈ A we have d(w, s) � k, which is equiva-
lent to mins∈A d(w, s) � k. It follows that we can decide whether A ⊂ γ+ if we
are able to compute mins∈A d(u, s) for a given query point u ∈ R2 (namely the
focus w of the parabola).

We have now reduced the problem to the well-known post-office problem (but
using a somewhat unusual pseudo-distance function): We want to store our set
A of line segments in such a way that we can quickly find the element s ∈ A
nearest to a given query point u. Our solution to this problem will be completely
analogous to the standard solution of the Euclidean post-office problem: We will
compute the Voronoi diagram of the set A (under our distance function d) and
preprocess it for point-location. It remains to show that the Voronoi diagram
has linear complexity, and can be computed in O(m log m) time (point-location
with linear storage and O(log m) query time can then be done using standard
techniques).

In general, the Voronoi diagram of segments where each segment carries an
additive weight is not a well-behaved Voronoi diagram: Voronoi regions can be
disconnected, and the diagram can have quadratic complexity. On first sight,
our problem looks even harder, as our distance function is more general: our
weights vary along each segment site. Nevertheless, we will be able to show that
our Voronoi diagram is well behaved, making use of the special structure of our
problem: First, our set A is x-monotone. Second, our additive weights are rather
special—the weight is identical to the y-coordinate of the point on the site.

We start by giving a geometric interpretation of our distance function d(u, p).
We observe that the Voronoi diagram is invariant under translations, so we
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Fig. 1. Geometric interpretation of d(u, p)
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Fig. 2. Fermat’s law enforces equal angles at p

can and will assume from now on that the set A lies entirely above the x-
axis (denoted �). For p ∈ s, s ∈ A, the weight yp of p is then the distance of
p from �. It follows that for u ∈ R2, the distance d(u, p) is the length of the
shortest path from u to � passing through p, see Fig. 1.

Assume now that p ∈ s is the point realizing d(u, s), that is d(u, p) = d(u, s).
That means that p is the point in s that minimizes the length of the path up�.

If u lies vertically above s, then clearly the shortest possible path from u to
� through s is a vertical segment, and so p lies vertically below u. On the other
hand, if u lies below the supporting line of s, then the path up� enters and leaves
s from below. If p is an interior point of s, then this path must be locally optimal,
and so Fermat’s law implies that it enters and leaves s under equal angles α,
see Fig. 2. The angle α is fixed by the slope of s, and so this situation arises
whenever u lies in the shaded region. For all other u ∈ R2, the shortest path
from u to � through s uses an endpoint of s.

We can therefore partition the plane into five convex regions R1, . . . , R5 as in
Fig. 3. In regions R1 and R2, the shortest path to � goes through endpoint p1, in
region R3 it goes through endpoint p2. For u ∈ R4, the shortest path to � is a ver-
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�

p1

p2

s

R1

R2

R3
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Fig. 3. The five regions with respect to s

tical segment, while for u ∈ R5 it touches s from below according to Fermat’s law.
The figure shows various points in the five regions with their shortest path to �.

We observe now that in each of the five regions the distance function d(x, s)
can be written in a simple form. In R1, R2, and R3, it is simply the distance to
a point with an additive weight. In R4, it is the distance to �. In R5, it is the dis-
tance to �′, the mirror image of � when reflected around the supporting line of s.

We now define the Voronoi region VR(s, A) of a segment s ∈ A as

VR(s, A) := {u ∈ R2 | ∀s′ ∈ A with s′ �= s we have d(u, s) < d(u, s′)}. (1)

Lemma 1. Let A be an x-monotone set of line segments, and let s ∈ A. Then
we have:

• All interior points p of s, and all points u vertically above such an interior
point p ∈ s lie in VR(s, A).
• Let u ∈ VR(s, A), and let p ∈ s be the point with d(u, p) = d(u, s). Then
the segment up lies entirely in VR(s, A).
• VR(s, A) is path-connected.

Proof. (i) Let p be an interior point of s, and let u either be identical to p or
lie vertically above p. Then the vertical segment from u to � intersects s, and
its length is d(u, s). Since A is x-monotone and p is an interior point of s, this
segment does not intersect any other segment s′ ∈ A. It follows that any path
from u to � through another segment s′ �= s cannot be straight, and is therefore
longer than d(u, s).

(ii) Let v be a point on the segment up, and assume v �∈ VR(s, A). This implies
that there is a point q ∈ s′, s′ �= s, such that d(v, q) � d(v, s) � d(v, p). Then
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the length of the path uvq� is at most d(u, p), which implies d(u, q) � d(u, p),
and u �∈ VR(s, A), a contradiction.

(iii) Follows from (i) and (ii): Let u and v be in VR(s, A), and let p, q ∈ s be
their nearest points on s. Then the path upqv lies in VR(s, A). ��

Consider now two segments s, s′ ∈ A. We are interested in their bisector, that
is, the set

J(s, s′) := {u ∈ R2 | d(u, s) = d(u, s′)}. (2)

Let us also define the regions “dominated” by s and s′:

D(s, s′) := {u ∈ R2 | d(u, s) < d(u, s′)}, (3)

D(s′, s) := {u ∈ R2 | d(u, s′) < d(u, s)}. (4)

The regions D(s, s′), J(s, s′), and D(s′, s) form a disjoint partition of R2.

Lemma 2. Let A be an x-monotone set of line segments, and let s, s′ ∈ A. Then
the bisector J(s, s′) is an infinite simple curve consisting of at most 25 conic
arcs. J(s, s′) partitions R2 into the two unbounded connected regions D(s, s′)
and D(s′, s).

Proof. We partition the plane into the five convex regions Ri for s, and similarly
into the five region R′

i for s′. The intersection of each pair Ri ∩ R′
j is a convex

polygon Rij . Each Rij either belongs entirely to D(s, s′) or D(s′, s), or intersects
both of them. In the latter case, Rij∩J(s, s′) is the intersection of Rij with either
a line, a parabola, or a hyperbola. It follows that J(s, s′) is the union of at most
25 conic arcs.2

Applying Lemma 1 to the set {s, s′} implies that D(s, s′) = VR(s, {s, s′}) is
path-connected and unbounded, and the same holds for D(s′, s). It follows that
J(s, s′) is a single simple infinite curve. ��

We now have all the necessary ingredients to prove that our Voronoi diagram is
an Abstract Voronoi diagram as defined by Klein [7]. We start by recalling Klein’s
definition of Abstract Voronoi diagrams: We are given a set A of (abstract)
objects with a total order ≺. For any pair s, s′ ∈ A with s �= s′, let D(s, s′)
be either empty or an open unbounded subset of the plane, and let J(s, s′) be
the boundary of D(s, s′). J(s, s′) is called the bisecting curve of s and s′. The
following conditions must hold:

(i) J(s, s′) = J(s′, s), and the regions D(s, s′), J(s, s′) and D(s′, s) form a
partition of R2 (into three disjoint sets).

(ii) If ∅ �= D(s, s′) �= R2 then J(s, s′) is homeomorphic to the open interval
(0, 1).

(iii) Any two bisecting curves intersect in a finite number of connected compo-
nents.

2 Clearly, the bound 25 is far too pessimistic. For instance, R4 and R′
4 can never

intersect. We leave it to the reader to determine the exact number of pieces.
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Define now R(s, s′) as D(s, s′) ∪ J(s, s′) if s ≺ s′, and as D(s, s′) otherwise.
The extended Voronoi region EVR(s, A) of s is the intersection of all regions
R(s, s′) for s ∈ A, s′ �= s, and the Voronoi region VR(s, A) of s is the interior of
EVR(s, A). For any non-empty subset A′ ⊂ A, the Voronoi regions must satisfy
the following two conditions:

(iv) For all s ∈ A′ with EVR(s, A′) �= ∅: VR(s, A′) �= ∅ and both EVR(s, A′) and
VR(s, A′) are path-connected.

(v) R2 =
⋃

s∈A′ EVR(s, A′).

Lemma 3. Let A be an x-monotone set of line segments. Then {VR(s, A) | s ∈
A} is an Abstract Voronoi diagram.

Proof. We define D(s, s′) as in (3). Lemma 2 implies that D(s, s′) is an open
unbounded subset of R2, that J(s, s′) as defined in (2) is indeed its boundary,
and that conditions (i), (ii), and (iii) hold.

It is easy to see that VR(s, A′) as defined in (1) is the interior of EVR(s, A′),
and that EVR(s, A′) is a subset of the closure of VR(s, A′). Lemma 1 therefore
implies condition (iv), and condition (v) holds trivially. ��

We can now state the main result of this section.

Theorem 2. Given a set A of m non-intersecting line segments, we can build
in time O(m log m) a data structure of size O(m) that allows us to answer in
O(log m) time queries of the form: Given a parabola γ : y = ax2 + bx + c, where
a < 0, does A ⊂ γ+?

Proof. As mentioned, we first replace A by its lower envelope in time O(m log m)
to obtain a set of m segments that is x-monotone. We then compute in expected
time O(m log m) the Voronoi diagram of A under our distance function, using the
randomized incremental algorithm by Klein et al. [8]. The diagram is a planar
subdivision of complexity O(m), and can be preprocessed in time O(m log m)
using space O(m) to answer point-location queries in time O(log m).

To answer a query, we locate the focus w of the parabola in the Voronoi
diagram. This tells us a segment s ∈ A such that d(w, s) = mins′∈A d(w, s′). It
suffices to test whether s lies in γ+ to finish the query. ��

4 Conclusions

We gave a data structure for parabola separation queries based on an Abstract
Voronoi diagram. Similar diagrams had been studied by Ahn et al. [2] and by
Bae and Chwa [3].

It remains an interesting open problem to find an efficient solution for ray
shooting along general parabolic arcs, that is, where the direction of the directrix
is not known in advance. It would also be interesting to perform ray shooting
along general conic. The eccentricity would become another parameter of the
query.
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Abstract. In this paper we deal with sensitivity analysis of combina-
torial optimization problems and its fundamental term, the tolerance.
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1 Introduction

After an optimal solution to a combinatorial optimization problem has been
determined, a natural next step is to apply sensitivity analysis (see Sotskov
et al. [22]), sometimes also referred to as post-optimality analysis or what-if
analysis (see e.g., Greenberg [11]). Sensitivity analysis is also a well-established
topic in linear programming (see Gal [5]) and mixed integer programming (see
Greenberg [11]). The purpose of sensitivity analysis is to determine how the
optimality of the given optimal solution depends on the input data. There are
several reasons for performing sensitivity analysis. In many cases the data used
are inexact or uncertain. In such cases sensitivity analysis is necessary to de-
termine the credibility of the optimal solution and conclusions based on that
solution. Another reason for performing sensitivity analysis is that sometimes
rather significant considerations have not been built into the model due to the
difficulty of formulating them. Having solved the simplified model, the deci-
sion maker wants to know how well the optimal solution fits in with the other
considerations.

The most interesting topic of sensitivity analysis is the special case when the
value of a single element in the optimal solution is subject to change. The goal of
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such perturbations is to determine the tolerances being defined as the maximum
changes of a given individual cost (weight, distance, time etc.) preserving the
optimality of the given optimal solution. The first successful implicit application
of upper tolerances for improving the Transportation Simplex Algorithm is ap-
peared in the so called Vogel’s Approximation Method (see Reinfeld and Vogel
[19]) and has been used for a straightforward enumeration of the k-best solutions
for some positive integer k (see e.g., Murty [16] and Van der Poort et al. [25])
as well as a base of the MAX-REGRET heuristic for solving the three-index as-
signment problem (see Balas and Saltzman [1]). The values of upper tolerances
have been applied for improving the computational efficiency of heuristics and
branch-and-bound algorithms for solving different classes of NP-hard problems
(for example of the traveling salesman problem (TSP) see Goldengorin and Jäger
[6], Goldengorin et al. [9], Turkensteen et al. [24]). Also for the TSP, Helsgaun
[13] improved the Lin-Kernighan heuristic by using the lower tolerances to the
minimum 1-tree with great success.

Computational issues of tolerances to the minimum spanning tree problem
and TSP are addressed in Chin and Hock [3], Gordeev et al. [10], Gusfield [12],
Kravchenko et al. [14], Libura [15], Ramaswamy and Chakravarti [17], Shier and
Witzgall [20], Sotskov [21], Tarjan [23]. Recently, Volgenant ([27]) has suggested
an O(n3) algorithm for computing the upper and lower tolerances for all arcs in
the Assignment Problem. Ramaswamy et al. have reviewed the sensitivity anal-
ysis problem for the maximum capacity path problem (see [18] and references
within) and suggested an elegant reduction of the sensitivity analysis problem
for the shortest path and maximum capacity path problems in an undirected
network to the minimum cost interval problem. For an extensive account on
computational issues of upper and lower tolerances in the context of sensitiv-
ity analysis in combinatorial optimization, see among others, Gal [4], Gal and
Greenberg [5], Goldengorin and Sierksma [8] and Greenberg [11].

The purpose of this paper is to give an overview over the terms of upper
and lower tolerances for the three most natural types

∑
,
∏

, MAX of objective
functions. To our best knowledge we have not found any publications treating
the sensitivity analysis problem for a general class of combinatorial optimization
problems with different types of objective functions. The paper is the first which
deals with tolerances in an exact, general and comprehensive way, so that dis-
crepancies of previous descriptions can be avoided, e.g. all of above mentioned
papers have used but not indicated an important assumption that the set of
feasible solutions to a combinatorial optimization problem under consideration
is independent of the cost (objective) function. Furthermore, this coherent con-
sideration leads to new results about tolerances.

The paper is organized as follows. In section 2 we define a combinatorial
minimization problem and give all notations which are necessary for the terms
of upper and lower tolerances. In section 3 we define the upper tolerance and
give characteristics of it. Especially, we show that the upper tolerance is well
defined with respect to the problem instance, i.e., that the upper tolerance of an
element with respect to an optimal solution S� of a problem instance P doesn’t
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depend on S� but only on P itself. Furthermore we show how to characterize
elements with upper tolerance +∞ or > 0 and how the upper tolerance can
be computed. In section 4 we show similar relations for the lower tolerance. In
section 5 we give relationships between lower and upper tolerances which mostly
are direct conclusions from the sections 3 and 4. Our main result for objective
functions of type

∑
is that under certain conditions the minimum value of upper

tolerance equals the minimum value of lower tolerance and the maximum value
of upper tolerance equals the maximum value of lower tolerance. Similar results
for objective functions of type

∏
, MAX do not hold. We summarize our paper

in section 6 and propose directions for future research. For the non-trivial proofs
of the statements we refer to the full version of the paper ([7]).

2 Combinatorial Minimization Problems

A combinatorial minimization problem P is given by a tuple (E , D, c, fc) with

• E is a finite ground set of elements.
• D ⊆ 2E is the set of the feasible solutions.
• c : E → R is the function which assigns costs to each single element of E .
• fc : 2E → R is the objective (cost) function which depends on function c

and assigns costs to each subset of E .

A subset S� ⊆ E is called an optimal solution of P , if S� is a feasible so-
lution and the costs fc(S�) of S� are minimal1, i.e., S� ∈ D and fc(S�) =
min{fc(S); S ∈ D}. We denote the set of optimal solutions by D�. There are
some particular monotone cost functions which often occur in practice:

• [Type
∑

] The cost function fc : 2E → R is of type
∑

, if for each S ∈ 2E :
fc(S) =

∑
e∈S c(e) holds.

• [Type
∏

] The cost function fc : 2E → R is of type
∏

, if for each S ∈ 2E :
fc(S) =

∏
e∈S c(e) and for each e ∈ E : c(e) > 0 holds.

• [Type MAX] The cost function fc : 2E → R is of type MAX2, if for each
S ∈ 2E : fc(S) = max{c(e); e ∈ S} holds.

These three objective functions are monotone, i.e., the costs of a subset of E
don’t become cheaper if the costs of a single element of E are increased.

In the remainder of the paper, we only consider combinatorial minimization
problems P = (E , D, c, fc) which fulfill the following three conditions.

Condition 1.The set Dof the feasible solutions of P is independent of function c.

Condition 2. The cost function fc : 2E → R is either of type
∑

, type
∏

, or
type MAX.
1 Analogous considerations can be made if the costs have to be maximized, i.e., for

combinatorial maximization problems.
2 Such a cost function is also called bottleneck function.
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Condition 3. There is at least one optimal solution of P, i.e., D� �= ∅.

Note that the Traveling Salesman Problem (TSP), Minimum Spanning Tree
(MST), and many other combinatorial minimization problems fulfill these three
conditions (see Bang-Jensen and Gutin [2]).

Given a combinatorial minimization problem P = (E , D, c, fc), we obtain a
new combinatorial minimization problem if we increase the costs of a single ele-
ment e ∈ E by some constant α ∈ R. We will denote the new problem by Pα,e =

(E , D, cα,e, fcα,e), which is formally defined by cα,e(e) =
{

c(e) , if e �= e
c(e) + α , if e = e

for each e ∈ E and fcα,e is of the same type as fc. Further define P−∞,e =
limα→−∞ Pα,e and P+∞,e = limα→+∞ Pα,e.

We need some more notations with respect to a combinatorial minimization
problem P . Let e be a single element of E .

• fc(P) denotes the costs of an optimal solution S� of P .
• For M ⊆ D, fc(M) denotes the costs of the best solution included in M . The

costs fc(S) of either infeasible or empty set S are defined as +∞. Obviously,
for each M ⊆ D: fc(P) ≤ fc(M) holds.
• D−(e) denotes the set of the feasible solutions of D each of which doesn’t

contain the element e ∈ E , i.e., D−(e) = {S ∈ D; e �∈ S}.
Analogously, D+(e) denotes the set of the feasible solutions D each of which
contains the element e ∈ E , i.e., D+(e) = {S ∈ D; e ∈ S}.
• D�

−(e) denotes the set of the best feasible solutions of D each of which doesn’t
contain the element e ∈ E , i.e.,

D�
−(e) = {S ∈ D; e �∈ S and (∀S′ ∈ D)(e �∈ S′ ⇒ fc(S) ≤ fc(S′) }

The elements of D�
−(e) are called S�

−(e).
Analogously, D�

+(e) denotes the set of the best feasible solutions D each of
which contains the element e ∈ E , i.e.,

D�
+(e) = {S ∈ D; e ∈ S and (∀S′ ∈ D)(e ∈ S′ ⇒ fc(S) ≤ fc(S′) }

The elements of D�
+(e) are called S�

+(e).

3 Upper Tolerances

Let P = (E , D, c, fc) be a combinatorial minimization problem which fulfills
Conditions 1, 2, and 3. Consider an optimal solution S� of P and fix it.

For a single element e of this optimal solution S�, let the upper tolerance
uS�(e) of element e with respect to S� be the supremum by which the costs of
e can be increased such that S� remains an optimal solution, provided that the
costs of all other elements e ∈ E \ {e} remain unchanged, i.e., for each e ∈ S∗

the upper tolerance is defined as follows:

uS�(e) := sup{α ∈ R; S� is an optimal solution of Pα,e}
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Because of the monotonicity of the cost function it holds:

uS�(e) := inf{α ∈ R; S� is not an optimal solution of Pα,e}

As S� is an optimal solution of P0,e, which is P , the upper tolerance uS�(e)
is either a non-negative number or +∞. Because of Condition 2, for each e ∈ S�

with uS�(e) < +∞, it holds:

uS�(e) = max{α ∈ R; S�is an optimal solution of Pα,e}

Theorem 1. Let S� be an optimal solution of P with e ∈ S∗. e is contained in
every feasible solution of P if and only if uS�(e) = +∞, i.e., e ∈

⋂
S∈D S ⇐⇒

uS�(e) = +∞.

Theorem 2. The upper tolerance of an element doesn’t depend on a particular
optimal solution of P, i.e.,

(∀S1, S2 ∈ D�) (∀e ∈ S1 ∩ S2) uS1(e) = uS2(e)

Thus, if a single element e ∈ E is contained in at least one optimal solution S� of
P , the upper tolerance of e does not depend on that particular optimal solution
S� but only on problem P itself. Hence, we can refer to the upper tolerance of
e with respect to an optimal solution S� as upper tolerance of e with respect to
P , uP(e).

Note that the upper tolerance of an element e which is not contained in any
optimal solution is not defined. For these elements e ∈ E , we set uP(e) :=
undefined.

Theorem 3. If e ∈ E with uP(e) �∈ {undefined, +∞}, then for all ε > 0 the
element e is not contained in any optimal solution of PuP (e)+ε,e.

Theorem 3 states that, for all e ∈ E with uP(e) �= undefined and uP(e) �= +∞,
increasing the costs of e by uP(e) + ε for ε > 0 makes the element uninteresting
for optimal solutions.

Theorem 4. For each single element e ∈ E which is contained in at least one
optimal solution S� of P, the upper tolerance of e is given by

• uP(e) = fc(D�
−(e))− fc(P), if the cost function is of type

∑
• uP(e) = fc(D�

−(e))−fc(P)
fc(P) · c(e), if the cost function is of type

∏
• uP(e) = fc(D�

−(e))− c(e), if the cost function is of type MAX

Theorem 5. For each single element e ∈ E it holds for a cost function of type∑
,
∏

and MAX: fc(D�
−(e)) = fc+∞,e(P).

Theorem 4 and Theorem 5 tell us how to compute the upper tolerance of a
single element e ∈ E with respect to P . We observe (see also Ramaswamy and
Chakravarti [17], Van Hoesel and Wagelmans [26]):
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Corollary 1. The upper tolerance of one element e ∈ E can be computed by
solving two different instances of P for a cost function of type

∑
,
∏

and solving
one instance of P for a cost function of type MAX, i.e., the computation of the
upper tolerance has the same complexity as P itself.

Theorem 6. If the cost function is either of type
∑

or
∏

, then a single element
e in at least one optimal solution is contained in every optimal solution if and
only if its upper tolerance is greater than 0, i.e., e ∈

⋂
S�∈D� S� ⇐⇒ uP(e) > 0

or equivalently
⋂

S�∈D� S� = {e; uP(e) > 0}.

Theorem 6 characterizes those elements which are contained in every optimal
solution. We only have to know the upper tolerance of an element. Unfortunately,
this property doesn’t hold for a cost function of type MAX.

Remark 1. In general, for a cost function of type MAX only the direction “⇒”
of Theorem 6 holds, but not the direction “⇐”.

Corollary 2. Let the cost function be either of type
∑

or of type
∏

. There is
only one optimal solution of P if and only if the upper tolerance uP(e) > 0 for
all e with uP(e) �= undefined.

Remark 2. Note that Condition 1 is crucial for all these properties, in particular
for Theorem 4.

4 Lower Tolerances

Now, let S� be an optimal solution of P which doesn’t contain the element e ∈ E .
Analogously to the considerations which we have made with respect to the upper
tolerance, we can ask for the supremum by which the costs of element e can be
decreased such that S� remains an optimal solution, provided that the costs of
all other elements remain unchanged. More formally, we define for all e ∈ E \S�:

lS�(e) := sup{α ∈ R; fc−α,e is monot. and S� is an optimal solution of P−α,e}

Because of the monotonicity of the cost function it holds:

lS�(e) :=inf{α ∈ R; fc−α,e is monot. and S� is not an optimal solution of P−α,e}

Note that if the cost function of the combinatorial minimization problem is
of type

∏
, the costs of the elements have to be greater than zero to guarantee

monotonicity. In the following, let δmax(e) be defined as

δmax(e) :=

⎧⎨⎩
+∞ , if fc is either of type

∑
or of type MAX

c(e) , if fc is of type
∏

δmax(e) is the supremum by which element e can be decreased such that the cost
function remains either of type

∑
,
∏

, or MAX.
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As S� is an optimal solution of P−0,e which is P , the lower tolerance lS�(e) is
either a non-negative number or +∞ if e �∈ S�. More exactly, it holds for each
e ∈ E \ S�:

0 ≤ lS�(e) ≤ δmax(e)

Because of Condition 2, for each e ∈ E \ S� and each lS�(e) < δmax(e), it
holds:

lS�(e) = max{α ∈ R; fc−α,e is monot. and S� is an optimal solution of P−α,e}

Theorem 7. Let the cost function be of type
∑

or
∏

and let S� be an optimal
solution of P. Then, an element e isn’t contained in a feasible solution if and
only if lS�(e) = δmax(e), i.e., e ∈ E \

⋃
S∈D S ⇐⇒ lS�(e) = δmax(e).

Remark 3. In general, for a cost function of type MAX only the direction “⇒”
of Theorem 7 holds, but not the direction “⇐”.

Remark 3 partly puts lower tolerances with respect to a cost function of type
MAX in question. It states that the lower tolerance of an element can be very
large, namely +∞, although this element can be included in a feasible solution.
It can be shown that the element can be included in an optimal solution. This
contradicts the intuition that an element with large lower tolerance is not a
“good” element and should not be included in solutions by heuristics.

Theorem 8. The lower tolerance of an element doesn’t depend on a particular
optimal solution of P, i.e., (∀S1, S2 ∈ D�)(∀e �∈ S1 ∪ S2) : lS1(e) = lS2(e).

Thus, if there is at least one optimal solution S� of P which doesn’t contain
element e, the lower tolerance of e doesn’t depend on that particular optimal
solution but only on problem P itself. As for upper tolerances, we can refer to
the lower tolerance of e with respect to an optimal solution S� as lower tolerance
of e with respect to P , lP(e).

The lower tolerance of an element e which is contained in every optimal solu-
tion is not defined, yet. For these elements e, we set lP(e) := undefined.

Theorem 9. If e ∈ E is a single element with lP(e) �∈ {undefined, δmax(e)},
then element e is contained in every optimal solution of P−(lP(e)+ε),e for all
0 < ε < δmax(e)− lP(e).

Theorem 9 states that if we decrease the costs of e by more than lP(e), then an
optimal solution will contain element e, provided that lP(e) is neither undefined
nor δmax(e).

Let for a single element e ∈ E and a cost function of type MAX

g(e) :=
{

minS∈D+(e) maxa∈S\{e}{c(a)} , if D+(e) �= ∅
+∞ , if D+(e) = ∅

Obviously, it holds:

fc−∞,e(P) = min{g(e), fc(D�
−(e))}
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Theorem 10. For each single element e ∈ E it holds

• fc(D�
+(e)) = limK→+∞(fc−K,e(P) + K), if the cost function is of type

∑
• fc(D�

+(e)) = limK→c(e)−

(
fc−K,e

(P)
c(e)−K · c(e)

)
, if the cost function is of type

∏
• fc(D�

+(e)) = max{g(e), c(e)}, if the cost function is of type MAX

Theorem 11. For each single element e ∈ E with lP(e) �= undefined, the lower
tolerance of e with respect to P is given by

• lP(e) = fc(D�
+(e))− fc(P), if the cost function is of type

∑
• lP(e) = fc(D�

+(e))−fc(P)
fc(D�

+(e)) · c(e), if the cost function is of type
∏

• lP(e) =
{

c(e)− fc(P) , if g(e) < fc(P)
+∞ , otherwise , if the cost function is of type MAX

Theorem 10 and Theorem 11 tell us how to compute the lower tolerance of a
single element e ∈ E with respect to P . We observe

Corollary 3. The lower tolerance of a single element e ∈ E can be computed by
solving two different instances of P for a cost function of type

∑
,
∏

and solving
one instance of P for a cost function of type MAX, i.e., the computation of the
lower tolerance has the same complexity as P itself.

Theorem 12. If the cost function is either of type
∑

or
∏

, then a single el-
ement e ∈ E isn’t contained in any optimal solution if and only if its lower
tolerance is greater than 0, i.e., e �∈

⋃
S�∈D� S� ⇐⇒ lP(e) > 0 or equivalently

E \
⋃

S�∈D� S� = {e; lP(e) > 0}.

Theorem 12 characterizes those elements which are never included in an optimal
solution.

Remark 4. In general, for a cost function of type MAX only the direction “⇒”
of Theorem 12 holds, but not the direction “⇐”.

5 Relationship Between Lower and Upper Tolerances

The following properties hold for each cost function fc either of type
∑

or
∏

.

Corollary 4. Let the cost function be either of type
∑

or of type
∏

. For all
e ∈ E, the equivalence lP(e) = undefined ⇐⇒ uP(e) > 0 holds.

Proof. The statement follows from Theorem 6 and the definition of lower
tolerance. �

Corollary 5. Let the cost function be either of type
∑

or of type
∏

. For all
e ∈ E, the equivalence uP(e) = undefined ⇐⇒ lP(e) > 0 holds.

Proof. The statement follows from Theorem 12 and the definition of upper
tolerance. �
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Corollary 6. Let the cost function be either of type
∑

or of type
∏

. For each
e ∈ E which is contained in at least one optimal solution of P but not in all, i.e.,
e ∈ ∪S�∈D�S� and e �∈ ∩S�∈D�S�, the equation uP(e) = lP(e) = 0 holds.

Proof. Both the upper tolerance and the lower tolerance of e are defined.
uP(e) = 0 holds because of Theorem 6. lP(e) = 0 holds because of
Theorem 12. �
Actually, there are much more close interrelations between lower and upper
tolerances.

Let uP,min = min{ uP(e); e ∈ E and uP(e) �= undefined} and lP,min =
min{ lP(e); e ∈ E and lP(e) �= undefined} be the smallest upper and lower
tolerance with respect to P . Furthermore, let ΔP,min be defined as ΔP,min =
min{ δmax(e); e ∈ E }.

Corollary 7. Let the cost function be either of type
∑

or of type
∏

. Provided
that there are at least two different optimal solutions, i.e., |D�| ≥ 2, the equation
uP,min = lP,min = 0 holds.

Proof. As there are at least two optimal solutions S1 and S2, there is an element
e1 with e1 ∈ S1 \ S2 or e1 ∈ S2 \ S1. Thus, e1 ∈ ∪S�∈D�S� and e1 �∈ ∩S�∈D�S�.
By Corollary 6, these two properties of e1 implies uP(e1) = 0 and lP(e1) = 0.
Thus uP,min = lP,min = 0 holds. �
Much more interesting is the case that there is only one optimal solution. Here,
both the minimal upper tolerance and the minimal lower tolerance are greater
than 0. Nevertheless, they are equal. First, we analyze the special case that there
is only one feasible solution of P .

Lemma 1. Let the cost function be either of type
∑

or of type
∏

. If the set D
of the feasible solutions of P consists of only one element, say S, i.e., | D |= 1,
then uP,min = +∞ and

• lP,min = +∞, if S = E
• lP,min = ΔP,min, if S = ∅
• lP,min ≥ ΔP,min, if S �= E and S �= ∅

Remark 5. Note that for the set of the feasible solutions D we have D �= ∅
(Condition 3), but nevertheless it might hold: ∅ ∈ D.

Corollary 8. Let the cost function be of type
∑

. If the set D consists of only
one element, i.e., | D |= 1, then uP,min = lP,min = +∞ holds.

Proof. The corollary is implied by Lemma 1 as ΔP,min = +∞ for a cost
function of type

∑
. �

Lemma 2. Let the cost function be of type
∑

. Provided that no feasible solution
is a subset of another feasible solution and there are at least two different feasible
solutions but only one optimal solution, i.e., |D ≥ 2| and |D�| = 1, then the
equation uP,min = lP,min holds. In particular, 0 < lP,min �= +∞ and 0 <
uP,min �= +∞.
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Theorem 13. Let the cost function be of type
∑

. Provided that no feasible
solution is a subset of another feasible solution, then the equation uP,min =
lP,min holds.

Proof. The statement is implied by Corollary 7, Corollary 8, and Lemma 2. �

Remark 6. If we relax the condition that no feasible solution is a subset of an-
other feasible solution, then Theorem 13 doesn’t hold.

Remark 7. In general, Theorem 13 doesn’t hold for a cost function of type
∏

.

Remark 8. In general, Theorem 13 doesn’t hold for a cost function of type MAX.

Corollary 9. Let the cost function be of type
∑

. Provided that no feasible solu-
tion is a subset of another feasible solution, there is only one optimal solution of
P if and only if the lower tolerance lP(e) > 0 for all e with lP(e) �= undefined.

Proof. The statement follows from Corollary 2, Theorem 13 and the definition
of uP,min and lP,min. �

Finally, we consider the largest upper and lower tolerance with respect to P ,
uP,max = max{ uP(e); e ∈ E and uP(e) �= undefined} and lP,max = max{ lP(e);
e ∈ E and lP(e) �= undefined}. We define G := { e ∈

⋃
S�∈D� S�; uP(e) =

uP,max} and H := { e ∈ E \
⋂

S�∈D� S�; lP(e) = lP,max}.
We call the set of feasible solutions D connected, if D satisfies

a)
(⋃

e∈
⋃

S�∈D� S�

⋃
S�

−(e)∈D�
−(e) S�

−(e)
)
∩H �= ∅

b)
(⋃

e∈E\
⋂

S�∈D� S�

⋃
S�

+(e)∈D�
+(e) (E \ S�

+(e))
)
∩G �= ∅

It is easy to see that conditions a) and b) are equivalent to the conditions a’)
and b’):

a’) ∃e ∈
⋃

S�∈D� S� ∃S�
−(e) ∈ D�

−(e) : S�
−(e) ∩H �= ∅

b’) ∃e ∈ E \
⋂

S�∈D� S� ∃S�
+(e) ∈ D�

+(e) : (E \ S�
+(e)) ∩G �= ∅

Theorem 14. Let the cost function be of type
∑

. If the set of the feasible solu-
tions D is connected, then the equation uP,max = lP,max holds.

We illustrate the conditions a) and b) and Theorem 14 by the following combi-
natorial minimization problem P = (E , D, c, fc):

• E = {v, x, y, z} with c(v) = 1, c(x) = 2, c(y) = 4, and c(z) = 8
• D = { {v, x}, {y, z} }
• fc is a cost function of type

∑
The only optimal solution is {v, x}. It holds uP(v) = 9 and uP(x) = 9 which

implies uP,max = 9 and lP(y) = 9 and lP(z) = 9 which implies lP,max = 9.
Therefore uP,max = lP,max. Furthermore it holds G={v, x}, H ={y, z}, D�

−(v) =
{{y, z}}, D�

−(x) = {{y, z}}, D�
+(y) = {{y, z}}, and D�

+(z) = {{y, z}}. As condi-
tion a’) and condition b’) hold, D is connected.
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Remark 9. The condition that the set of the feasible solutions D is connected is
only a sufficient, but not a necessary condition for uP,max = lP,max, i.e., there
is a combinatorial minimization problem, where uP,max = lP,max, although D
is not connected,

Remark 10. In general, Theorem 14 doesn’t hold for a cost function of type
∏

.

Remark 11. In general, Theorem 14 doesn’t hold for a cost function of type
MAX.

6 Summary and Future Research Directions

In this paper we have rigorously defined and studied the properties of upper
and lower tolerances for a general class of combinatorial optimization problems
with three types of objective functions, namely with types

∑
,
∏

, and MAX.
Theorems 2 and 8 indicate that the upper and lower tolerances do not depend
on a particular optimal solution under the condition that the set of the feasible
solutions is independent on the costs of ground elements.

For problems with the objective functions of types
∑

and
∏

Theorem 6 im-
plies that the upper tolerances can be considered as an invariant characterizing
the structure of the set of all optimal solutions as follows. If all upper tolerances
are positive (see Corollary 2), then the set of optimal solutions contains a unique
optimal solution. If some upper tolerances are positive and others are zeros, then
the set of optimal solutions contains at least two optimal solutions such that the
cardinality of their intersection is equal to the number of positive upper toler-
ances. If all upper tolerances are zeros, then the set of optimal solutions contains
at least two optimal solutions such that the cardinality of their intersection is
equal to zero, i.e., there is no common element in all optimal solutions. Similar
conclusions can be made from Theorem 12 and Corollary 9 if we replace each
optimal solution by its complement to the ground set.

One of the major problems, when solving NP-hard problems by means of the
branch-and-bound approach, is the choice of the branching element which keeps
the search tree as small as possible. Using tolerances we are able to ease this
choice. Namely, if there is an element from the optimal solution of the current
relaxed NP-hard problem (we assume that this optimal solution is a non-feasible
solution to the original NP-hard problem) with a positive upper tolerance, then
this element is in all optimal solutions of the current relaxed NP-hard problem.
Hence, branching on this element means that we enter a common part in all
possible search trees emanating from each particular optimal solution of the
current relaxed NP-hard problem. Therefore, branching on an element with a
positive upper tolerance is not only necessary for finding a feasible solution to
the original NP-hard problem but also is a best possible choice. An interesting
direction of research is to develop tolerance based b-n-b type algorithms for
different NP-hard problems with the objective functions of types

∑
and
∏

.
Many modern heuristics for finding high quality solutions to a NP-hard prob-

lem delete high cost elements and save the low cost ones from a relaxed NP-hard
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problem. A drawback of this strategy is that in terms of either high or low cost
elements the structure of all optimal solutions to a relaxed NP-hard problem can-
not be described. A tolerance of an element is the cost of excluding or including
that element from the solution at hand. Hence, another direction of research is
to develop tolerance based heuristics for different NP-hard problems with the
objective functions of types

∑
and
∏

.
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Abstract. In this note we discuss a class of exponential penalty func-
tion policies recently proposed by Iyengar and Sigman for controlling a
stochastic knapsack. These policies are based on the optimal solution of
some related deterministic linear programs. By finding explicitly their
optimal solution, we reinterpret the exponential penalty function poli-
cies and show that they belong to the class of threshold policies. This
explains their good practical behavior, facilitates the comparison with
the thinning policy, simplifies considerably their analysis and improves
the bounds previously proposed.

1 Introduction

Recently, Iyengar and Sigman [1] proposed an exponential penalty function pol-
icy for controlling a loss network. A loss network is a network of resources, each
with a known capacity. Requests for using the capacity are divided into classes,
corresponding to arrival rates, service duration, resource requirements, and the
profit they will bring for the network. There is no waiting room, so at every
arrival of a request, it must be decided whether to accept the request or not. An
admitted request occupies the allocated resource for the service duration and
releases all the resources when it leaves the network. The objective is to design
an admission policy that optimizes an appropriate performance measure of the
revenue.

A major part of [1] is dedicated to the stochastic knapsack, which is a loss
network with only one resource. For a review on other policies proposed for
controlling the stochastic knapsack, see [5].

In this note we will focus on the exponential penalty function policy proposed
in [1] for controlling a stochastic knapsack. This policy is based on the solution
to a linear program. By solving this LP explicitly, we will show that for the
stochastic knapsack, this policy reduces to a threshold policy. From the optimal
solution of this LP we will derive an index, called the ”threshold” index, which
will divide the classes of different indices into two groups: one that will always
be rejected, and one that will be accepted if there is enough capacity to accom-
modate them. The requests belonging to the class with the threshold index, are
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c© Springer-Verlag Berlin Heidelberg 2006
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accepted only if they satisfy an extra condition, given by the penalty function.
By interpreting the exponential penalty function policy as a threshold policy, we
are then able to improve the bounds on the expected reward rate obtained in [1]
and to compare the exponential policy with the thinning policy proposed in [3].

This note closely follows [1] and is organized as follows. In Section 2 we present
in detail the stochastic knapsack problem. With the exception of the last sec-
tion, we will present the analysis for exponential service times. In Section 3 we
discuss bounds for the expected reward rate achieved by admission policies in
a stochastic knapsack. We start by discussing the upper bound proposed in [1]
on the expected reward rate achieved by a policy and tighten it. Then we fo-
cus on the exponential penalty function policy and show that it is a threshold
policy. This will lead to improved lower bounds for the expected reward rate.
We continue by discussing the bounds in the ”steady-state” regime. In Section 4
we will compare the exponential penalty function policy and the thinning policy
(for the stochastic knapsack). In Section 5 we generalize the results presented in
the previous sections to service times with a general distribution. We conclude
with some remarks on the exponential penalty function policy for the stochas-
tic knapsack and discuss why the results presented in this note are not easily
generalized to loss networks.

2 Admission Control in the Stochastic Knapsack

The stochastic knapsack problem is a special case of a loss network problem
and can be formulated as follows. There is a knapsack (network) of capacity
b ∈ R+. Requests for using the network belong to m independent Poisson arrival
classes. Class i requests have an arrival rate λi and a service duration Si which
is exponentially distributed with rate μi (with the exception of Section 5), i.e.,
Si ∼ exp(μi). The requests in class i need a capacity bi and pay ri per unit time
during their service duration. There is no waiting room in the system, therefore,
each arriving request must either be accepted to the system and assigned a
capacity allocation or rejected. When an accepted request departs after service
completion, it releases all the allocated resources simultaneously. For simplicity,
we will assume that the system is initially empty (all results easily generalize to
the case when the system is not initially empty ).

Let T(i,n), i = 1, ..., m, n ≥ 1 denote the arrival epoch of the nth class i
request. Since all admission decisions are made at arrival epochs, a feasible ad-
mission control policy π can be described as a collection of random variables
π = {π(i,n), i = 1, ..., m, n ≥ 1}, with π(i,n) = 0 denoting that request of type i
arriving at the epoch T(i,n) is rejected and π(i,n) = 1 denoting that the request
is accepted.

Let xπ
i (t) be the number of class i requests in the system at time t under

policy π. Define xπ(t) = (x1(t), ..., xm(t)). A request class i can be accepted
only if there is sufficient capacity to accommodate it, that is

m∑
i′=1

bi′xi′ (t) + bi ≤ b.
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The system controller is permitted to reject requests even if there is sufficient
capacity.

The instantaneous reward rate Rπ(t) under policy π at time t is given by

Rπ(t) =
m∑

i=1

rix
π
i (t).

The objective of the controller is to choose a policy π that maximizes a cer-
tain function of the reward rate process {Rπ(t), t ≥ 0}. Common performance
measures for finite time horizon problems are either the expected total re-
ward E[

∫ T

0 Rπ(s)ds] or the expected discounted reward E[
∫ T

0 e−βsRπ(s)ds], with
β > 0; for infinite horizon problems, appropriate measures are either the dis-
counted reward E[

∫∞
0 e−βsRπ(s)ds], β > 0 or the long-run average reward limit

limT→∞
1
T E[
∫ T

0 Rπ(s)ds].
In [1] the authors construct feasible policies that perform well both in the

transient period and in steady state. They first establish an upper bound R∗(t)
on the achievable expected reward rate E[Rπ(t)] and then construct a feasible
policy π̄ with expected reward rate E[Rπ(t)] ) R∗(t). Thus, the policy π̄ satisfies

E[
∫ T

0
e−βsRπ(s)ds] ≤

∫ T

0
e−βsR∗(s)ds ) E[

∫ T

0
e−βsRπ̄(s)ds],

for β > 0, which means that π̄ is approximately optimal for any finite time
horizon, and

lim
T→∞

1
T

E[
∫ T

0
Rπ(s)ds] ≤ lim

T→∞

1
T

∫ T

0
R∗(s)ds ) lim

T→∞

1
T

E[
∫ T

0
Rπ̄(s)ds],

that is, π̄ is approximately optimal in steady state as well.
In the next sections we will discuss the admission policy π̄ proposed in [1].

We will prove that it is a threshold policy, i.e., only classes of a certain index
are admitted to the network. This will also lead to improved bounds and an
analytical comparison with the thinning policy proposed by Kelly.

3 Control Policies for the Stochastic Knapsack

3.1 Upper Bound on the Achievable Reward Rate

In this section we discuss the upper bound on the achievable reward at time t
proposed in [1] and show a simple way of calculating it.

Let π denote any feasible control policy for the single resource model. Let xπ
i (t)

denote the number of class i requests at time t. Since (xπ
i (t))i=1,m is feasible,

m∑
i=1

biE[xπ
i (t)] ≤ b.
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Clearly, E[xπ
i (t)] ≤ E[qi(t)], where qi(t) is the number of class i requests at

time t in a corresponding M/M/∞ system. Since the system is initially empty,
E[qi(t)] = ρi(1− e−μit) , where ρi = λi

μi
(see e.g. [6] page 75). Hence,

α = (
E[xπ

1 (t)]
ρ1

, ...,
E[xπ

m(t)]
ρm

)

is feasible for the following linear program:

maximize

m∑
i=1

riρiαi

P (t) s.t.
m∑

i=1

biρiαi ≤ b,

0 ≤ αi ≤ 1− e−μit.

Let α∗(t) denote an optimal solution of the linear program P(t) and let R∗(t)
denote its optimal value. Clearly,

E[Rπ(t)] =
m∑

i=1

riE[xπ
i (t)] ≤ R∗(t).

In [1] the authors find an upper bound on E[Rπ(t)] by finding an upper bound
on R∗(t). Next we show how the exact value of R∗(t) can be directly calculated.

Note that the problem P(t) is a continuous knapsack problem (see e.g. [4]).
Thus, an optimal solution can be found as follows. Suppose from now on that
the classes are indexed in decreasing order of the profit to capacity ratio, i.e.,

r1

b1
≥ ... ≥ rm

bm
.

Let k∗(t) be the index with the following property:

k∗(t)−1∑
i=1

biρi(1− e−μit) ≤ b and
k∗(t)∑
i=1

biρi(1 − e−μit) > b. (1)

Then, the optimal solution of P(t) is given by:

α∗
i (t) =

⎧⎪⎪⎨⎪⎪⎩
1− e−μit, for i < k∗(t)− 1
b− k∗(t)

i=1 biρi(1−e−μit)

bk∗(t)ρk∗(t)(1−e
−μk∗(t)t)

, for i = k∗(t)

0, for i > k∗(t).

(2)

Hence, we have obtained the following upper bound.

Theorem 1. The reward rate Rπ(t) of any feasible policy π satisfies

E[Rπ(t)] ≤ R∗(t) =
k∗(t)∑
i=1

riρiα
∗
i (t),

where R∗(t) is the optimal value of (P) and α∗
i (t) is given by (2).
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3.2 The Exponential Penalty Function Policy

In this section we describe the penalty function policy proposed in [1] and show
that it is a threshold policy. This leads to improved lower bounds for the expected
reward obtained by the penalty function policy and facilitates the comparison
with the thinning policy proposed by Kelly [3].

Next we introduce two linear programs which play an essential role in describ-
ing and analyzing the penalty policy.

Define the ”steady state” version of P (t) as

maximize
m∑

i=1

riρiαi

P s.t.

m∑
i=1

biρiαi ≤ b,

0 ≤ αi ≤ 1.

Since P is a continuous knapsack problem, it’s optimal solution α∗ has the
following structure:

α∗
i =

⎧⎪⎨⎪⎩
1, for i < k∗

b− k∗
i=1 biρi

bk∗ ρk∗ , for i = k∗

0, for i > k∗,

(3)

where k∗ is the index for which
k∗−1∑
i=1

biρi ≤ b and
k∗∑
i=1

biρi > b.

Consider the following perturbation of the program P.

maximize

m∑
i=1

riρiαi

Pε s.t.

m∑
i=1

biρiαi ≤
b

1 + 4ε
,

0 ≤ αi ≤ 1.

The optimal solution αε of Pε is : αε
i = 1, for i ≤ kε, αε

kε ∈ (0, 1) and αε
i = 0, for

i ≥ kε, where kε is the index for which

kε−1∑
i=1

biρi ≤
b

1 + 4ε
and

kε∑
i=1

biρi >
b

1 + 4ε
.

Denote by R∗, respectively R∗
ε , the optimal value of P , respectively Pε. By

comparing the feasibility regions and the optimal solutions of the problems P (t),
P and Pε, we obtain the following relationships among them.
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Lemma 1. a) kε ≤ k∗ ≤ k∗(t)
b) R∗

ε ≤ R∗ ≤ R∗(t).

In our analysis, we will also make use of the dual problems D, respectively Dε,
of P , respectively Pε:

minimize ub +
m∑

i=1

vi minimize u
b

1 + 4ε
+

m∑
i=1

vi

D s.t. vi + biρiu ≥ riρi, i = 1, ..., m Dε s.t. vi + biρiu ≥ riρi, i = 1, ..., m

v ≥ 0,u ≥ 0 v ≥ 0,u ≥ 0

The next lemma will prove useful in the analysis of the exponential penalty
policy.

Lemma 2. If (u∗, v∗) is optimal solution for both D and Dε, then rk∗
bk∗ = rkε

bkε
.

Proof. From the complementary slackness conditions follows that the optimal
solutions (u∗, v∗) of D and (uε, vε) of Dε are equal to:

u∗ =
rk∗

bk∗

v∗ =

{
(ri − rk∗

bk∗ bi)ρi, for i = 1, ..., k∗

0, for i ≥ k∗ + 1

and

ukε =
rkε

bkε

vkε =

{
(ri − rkε

bkε
bi)ρi, for i = 1, ..., kε

0, for i ≥ kε + 1.

Hence, for (u∗, v∗) to be optimal for Dε, it is necessary that rk∗
bk∗ = rkε

bkε
.

The penalty function policy π̄ proposed in [1] can be described as follows. The
classes of requests that may be accepted by the penalty function policy are
restricted to the ones with α∗

i �= 0, where α∗ is the optimal solution of P. Hence,
only the classes of index at most k∗ are considered.

”Construct” an ”augmented network” as follows. Additional to the initial
system, called system 0, consider a fictitious infinite capacity system, called
system 1. The state of the augmented network (formed by system 0 and system 1
together) at time t is s(t) = (x(t), y(t)) ∈ Z2m, where xi(t), i ∈ {1, ..., m} denotes
the number of class i requests in system 0 at time t and yi(t), i ∈ {1, ..., m}
denotes the number of class i requests being served in system 1 at time t. System
0 is initially empty, and system 1 is initialized with y0

i (0−) = (1 − αε
i)ρi, for

i = 1, kε. Note that y0
i (0−) = 0, for i < kε.
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For each class i, define the following penalty function Ψi(s):

Ψi(s(t)) = exp(β
bixi(t)

c0
i

) + exp(β
biyi(t)

c1
i

).

An incoming request of type i is accepted in server 0 if it fits into the knapsack
and the following condition holds

∂Ψi(s(t))
∂xi

≤ ∂Ψi(s(t))
∂yi

, (4)

otherwise it is sent to server 1, where it stays its service time and then leaves
the network. The constants c0

i , c
1
i and β are defined as

c0
i = (1 + 4ε)αε

ibiρi and c1
i = (1 + 4ε)(1− αε

i)biρi, (5)

β ≤ ε min{c
0
i

bi
,
c1
i

bi
: c0

i �= 0 and c1
i �= 0} (6)

where αε is the optimal solution of (Pε).

Remark 1. Condition (4) is equivalent with:

xi(t)
c0
i

≤ yi(t)
c1
i

+
1

βbi
log(

c0
i

c1
i

).

Interpretation of the penalty policy. Based on the exact expression of αε,
we are now able to reinterpret the penalty policy π̄ as follows:

ACCEPT all the requests of classes i < kε that fit into the knapsack,
REJECT all the requests of classes i > kε

ACCEPT the requests of class kε if

xkε(t)
αε

kε

≤ ykε(t)
1− αε

kε

+
(1 + 4ε)ρkε

β
log(

αε
kε

1− αε
kε

)

The rejected requests are sent to system 1, where they remain for the duration
of their service time.

Remark 2. Since all requests of class i, i < kε, are accepted as long as there is
capacity, we conclude that the exponential penalty policy proposed in [1] is a
threshold policy with the threshhold index kε.

3.3 On a Lower Bound on the Expected Reward Achieved by π̄

In this section we will show how the analysis of the exponential penalty function
policy presented in [1] can be simplified and improved by interpreting the policy
as a threshold policy. We will first summarize the results obtained in [1].
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Let ξi(t), respectively ηi(t) be the number of class i requests in system 1 at
time t that were rejected by the penalty function, respectively by the capacity
constraints.

Clearly, for each i ≤ m,

E[xi(t)] = E[qi(t)] + E[y0
i (t)]− E[yi(t)]

≥ E[qi(t)] + E[y0
i (t)]− (E[ξi(t)] + E[ηi(t)]). (7)

Hence, one way to obtain lower bounds for E[xi(t)], is to obtain upperbounds
for E[ξi(t)], respectively E[ηi(t)].

These upper bounds are obtained by comparison with x̃i(t), respectively ỹi(t),
the number of requests of type i present at time t in system 0, respectively system
1, in the network if the capacity was infinite.

Between xi(t), x̃i(t), ξi(t) and ηi(t), the following relationships exist (see [1]
for the proofs):

Lemma 3. a)For each i ≤ m, xi(t)
d
≤ x̃i(t) and ỹi(t)

d
≤ yi(t), where X

d
≤ Y

denotes the fact that, for all u ≥ 0, P (X ≥ u) ≤ P (Y ≥ u).

b)For each i ≤ m, E[e
βbix̃i(t)

b ] ≤
(
2e(1− ε

2 )β
) c0i

b and E[ỹi(t)] ≤ (1+ς)(1−αε
i)ρi,

where ς =
(

log(2)
β + 1− ε

2

)
(1 + 4ε)− 1.

c) For each i ≤ m, E[ξi(t)] ≤ E[ỹi(t)].
d) For each i ≤ m, E[ηi(t)] ≤ 2ρie

− ε
2 (β−4)(1− e−μit).

Substituting the bounds obtained in Lemma 3 in formula (7), one can lower
bound the expected reward achieved by policy π̄:

Theorem 2. For ε < 1
4 ,

E[R̄(t)] ≥ max{
m∑

i=1

riρi(1 − e−μit)(αε
i − 2e−

ε
2 (β−4))− ς(1− αε

i)), 0}, (8)

where ς =
(

log(2)
β + 1− ε

2

)
(1 + 4ε)− 1 and c0

i , c
1
i , β are given by (5) and (6).

We proceed now with the tightening of the bound in Theorem 2.
First, remark that for i > kε, xi(t) = 0, hence these types of requests will

not bring any profit. Therefore, in the remainder of this note, we will omit
from the analysis the classes of index higher then kε. Moreover, the definition
of x̃i(t), together with the fact that kε is the threshold index, implies that for
i < kε, x̃i(t)

d= qi(t). Hence, for these classes E[e
βbix̃i(t)

b ] can be obtained exactly,
namely:

E[e
βbix̃i(t)

b ] = E[e
βbiqi(t)

b ] = eρi(1−e−μit)(e
βbi

b −1) ≤ eρi(ε+1)(1−e−μit) βbi
b , (9)

where for the last inequality we have used the fact that for x ∈ (0, 1), ex ≤ x+x2

and that βbi

b ≤ ε.



Note on a Class of Admission Control Policies 215

Also, for i < kε, ỹi(t)
d= ξi(t)

d= 0.
Consider now E[ηi(t)]. For i ≤ kε,

E[ηi(t)] =
∫ t

0
λiP (

kε∑
i=1

bixi(u) ≥ b− bi)e−μi(t−u)du (10)

≤
∫ t

0
λiP (

kε∑
i=1

bix̃i(u) ≥ b− bi)e−μi(t−u)du (11)

≤ e−β(1− bi
b )
∫ t

0
λiE[e

kε

i=1
βbi

b x̃i(u)]e−μi(t−u)du (12)

= e−β(1− bi
b )
∫ t

0
λi

kε∏
i=1

E[e
βbi

b x̃i(u)]e−μi(t−u)du, (13)

where in (11) we have used Lemma 3 a), in (12) we have used Markov’s inequality
and in (13) we have used the independency of the x̃i’s.

By substituting in (13) the expression for E[e
βbix̃i(t)

b ] obtained in (9) for indices
i < kε and the bound given in Lemma 3 b) for i = kε, we obtain that:

E[ηi(t)] ≤ 2
c0
kε
b e−

ε
2 (β−4)(1− e−μit). (14)

Finally, by combining (7), the bound in Lemma 3 b) and c) for i = kε (for
i �= kε, ξi(t) = 0), and (14) , we improve the lower bounds on the expected
number of requests of each type in the network at time t and on the expected
reward achieved by policy π̄ as follows.

Theorem 3. a) For i < kε,

E[xi(t)] ≥ ρi(1− e−μit)max{1− 2
c0
kε
b e−

ε
2 (β−4), 0}.

For i = kε,

E[xkε(t)] ≥ ρkεmax{(1− e−μkε t)(αkε − 2
c0
kε
b e−

ε
2 (β−4))− ς(1− αε

kε), 0}.

b) For ε < 1
4 , the average return E[R̄(t)] obtained by policy π̄ can be bounded

from below as follows:

E[R̄(t)] ≥
kε−1∑
i=1

riρi(1− e−μit)max{1− 2
c0
kε
b e−

ε
2 (β−4), 0}+

+ rkερkε max{(1− e−μkεt)(αε
kε − 2

c0
kε
b e−

ε
2 (β−4))− ς(1− αε

kε), 0}. (15)

Remark 3. From the comparison of the upper bound on the achievable reward
R∗(t) and the lower bound given in Theorem 3, we conclude that if kε is close
to k∗(t), and if β >> 1, the quality of the bounds is very good. However, if ε is

chosen such that ε2

2 ≤
bkε

b , then it can be proven that 1 < 2
c0
kε
b e−

ε
2 (β−4), which

implies that the lower bound given in the previous theorem is 0.
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3.4 Bounds of the Exponential Penalty Policy in a Limiting Regime

In this section we will discuss the behaviour of policy π̄ when t → ∞ and the
influence of the choice of ε on the policy in this regime.

Denote by L(t) the lower bound in Theorem 3. Clearly, the following relation
holds:

lim
t→∞

L(t)
R∗ = max{1− 2

c0
kε
b e−

ε
2 (β−4), 0}(1−

I{kε<k∗}
∑k∗−1

i=kε riρi + rk∗ρk∗αk∗∑k∗−1
i=1 riρi + rk∗ρk∗αk∗

)

−max{(1− e−μkε t)(αε
kε − 2

c0
kε
b e−

ε
2 (β−4))

− ς(1− αε
kε), 0}

rkερkε∑k∗−1
i=1 riρi + rk∗ρk∗αk∗

, (16)

where I{kε<k∗} = 1 if kε < k∗ and 0 otherwise.
Note that the classes that cause the bound in (16) to deviate from 1 are

the ones that are admitted in the knapsack problem P but are not admit-
ted in the perturbed knapsack problem Pε. It is then intuitive that by re-
stricting the number of such classes, the bound improves. This is exactly what
happens by choosing e.g. ε such that ε < max{ε0, 1

4}, with ε0 = max{ε :
D and Dε have the same optimal solution}, as in [1], Corollary 1. From Lemma
1 follows that if ε < ε0, for each k such that kε ≤ k ≤ k∗, rk

bk
= rk∗

bk∗ . If for each
k �= k∗, rk

bk
�= rk∗

bk∗ , then the classes admitted into the knapsack in problem P and
Pε coincide (kε = k∗). The only difference is that in Pε, a lower fraction of class
k∗ is admitted.

4 On the Penalty Function Policy and the Thinning
Policy

The thinning policy was proposed by Kelly in [3]. In [1], the authors compare
experimentally the exponential penalty function policy with the thinning policy
and conclude that the first policy performs better in the transient period and
the second in steady state. In this section we will see that by interpreting both
policies as threshold policies, one can explain to a certain extent their behaviour.

The thinning policy, which we will denote by π̃, is based on α∗, the optimal
solution of the ”steady state program” P. It accepts a request of type i with
probability α∗

i if it fits into the knapsack and if it does not fit, it rejects it.
Based on the exact calculation of α∗, we conclude that the thinning policy can
be described as follows:

ACCEPT a request of type i < k∗ if it fits into the knapsack,
REJECT all requests of types i > k∗ ,
ACCEPT a request of type k∗ with probability αk∗ .
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Note that the definitions of the problems P and Pε imply that kε < k∗. Hence,
the exponential penalty policy and the thinning policy treat the classes i < kε

and i > k∗ in the same way. The only difference between the two policies con-
sists in the way they treat the classes kε ≤ i ≤ k∗. The superior behavior of the
exponential penalty policy on the thinning policy in transient period, observed
experimentally in [1], may be due to the fact that by rejecting ”some less prof-
itable” classes, i.e., the classes of index kε < i ≤ k∗, there will be more space in
the knapsack for ”the more profitable” ones.

5 General Service

In this subsection we assume that the service duration Si has a general distrib-
ution with mean 1

μi
, i = 1, ..., m. Let gi denote the density and Gi denote the

cumulative distribution function (CDF) of the service duration i = 1, ..., m.
Since the LP’s P and D only depend on the mean service time, they will

remain the same. The program P (t) changes as follows. For the number of users
qi(t) in service at time t in an M/G/∞ system, it is known that E[qi(t)] =
ρi(1 − Ge

i (t)), where Ge
i (t) is the tail of the equilibrium CDF of the class i

service time distribution (see e.g. [6]). Thus, the only change in P (t) is that the
tail e−μit is replaced by Ge

i (t).
Denote this new LP by P̃ (t), by α̃ his optimal solution and by R̃(t) the

optimal value of P̃ (t). Again, P̃ (t) is a continuous knapsack problem, so the
optimal solution is 0− 1, but for at most one class. Let k̃(t) be the index of this
class.

Theorem 1 can be easily generalized for the case where the service times have
a genral distribution.

Theorem 4. For general service times, the reward rate Rπ(t) of any feasible
policy π satisfies

E[Rπ(t)] ≤ R̃(t) =
k̃(t)−1∑

i=1

riρi + rk̃(t)ρk̃(t)α̃k̃(t).

Consider next the exponential penalty policy π̄. For finding similar lower bounds
to the one in Theorem 3, in [1] extra assumptions on Gi are introduced. Let gt

i

and Gt
i be the density and the CDF of the remaining service time of a class i

request conditioned on that it has been in service for time t units. Then, the tail

Ḡt
i(s) = 1−Gt

i(s) =
Ge

i (t + s)−Ge
i (s)

Ge
i (t)

and

gt
i(s) = −dḠt

i(s)
ds

=
ge

i (s)− ge
i (t + s)

Ge
i (t)

.

Assumption 1. The function gt
i(s) is a decreasing function of t for all i =

1, ..., m, i.e., gt
i(0) ≥ limtu→∞ gu

i (0) = ge
i (0) = μi, for all i = 1, ..., m.
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Note that, since for classes i < kε one can obtain better bounds by estimating
the number of users of class i accepted in the knapsack with the number of users
in service at time t in an M/G/∞ queue, the assumption above is not necessary
only for the class kε (see also Remark 9). However,unless the class kε is fixed
from before (e.g. equal to k∗), we cannot renounce at the assumption above for
all classes i < kε. Since ε < 1

4 , we can though assume general service times
for the classes i < k 1

4
(the classes accepted into the knapsack when the total

capacity is b
2 ). Also, since the classes of index i, i > k∗ are never admitted into

the knapsack, we can assume general service time for them as well.
Under Assumption 1 for the classes k 1

4
< i < k∗, Theorem 3 has the following

equivalent.

Theorem 5. For ε < 1
4 , the average return E[R̄(t)] obtained by policy π̄ can be

bounded from below as follows:

E[R̄(t)] ≥
kε−1∑
i=1

riρi max{1− Ḡe
i (t)− 2

c0
kε
b e−

ε
2 (β−4)(1− e−μit), 0}+

+ rkερkε max{(1− Ḡkε(t) + ς)αε
kε − 2

c0
kε
b e−

ε
2 (β−4)(1− e−μkε )

+ Ḡkε(t)− Ḡe
kε(t)− ς, 0}.

5.1 Concluding Remarks

In this note we have shown, based on the optimal solution of some continuous
knapsack problems, that the exponential penalty function policy proposed in [1]
for controlling loss networks reduces to a threshold policy in the case of the sto-
chastic knapsack. Thus, all requests up to a certain index (the ”threshold” index)
are accepted if there is enough space in the knapsack. Only for accepting the
requests of the class with the threshold index one makes use of the penalty func-
tion. As a consequence, the question whether the exponentiality of the penalty
functions is necessary is reduced to one single class, namely the class with the
”threshold” index. Furthermore, we were able to improve the bounds proposed
in [1] and to compare the exponential penalty policy with the thinning policy
proposed in [3].

In the last section of [1], the authors generalize the penalty approach to control
loss networks and to problems in which the constraints in the LP characterizing
the ”steady state” define a general polytope. Since the optimal solution of this
LP’s is not as structured as the optimal solution of continuous knapsack prob-
lems, the simplified analysis and the improved bounds presented in this note do
not extend to the general case.
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Abstract. The bottleneck optimization problem is to find a feasible
solution that minimizes the bottleneck cost. In this paper, we consider
the inverse bottleneck optimization problems with bound constraints on
modification under weighted l1 norm, weighted sum-Hamming distance
and weighted bottleneck-Hamming distance. That is, given a feasible
solution F ∗, we aim to modify the cost function under some measure
such that F ∗ becomes an optimal solution to the bottleneck optimiza-
tion problem. We show that the inverse problem under weighted l1 norm
and weighted sum-Hamming distance can be reduced to O(m) mini-
mum cut problems, while the inverse problem under weighted bottleneck-
Hamming distance can be reduced to O(log m) cut feasibility problems,
where m = |E|.

1 Introduction

Inverse optimization problems have always been the focus of extensive research
recently, which span a wide variety of applications and vary from traffic plan-
ning to high speed communication, to computerized tomography, to isotonic
regression, to conjoint analysis in marketing, etc [4, 2]. Given a candidate so-
lution x∗ for an optimization problem, the inverse optimization problem is to
perturb the model parameters by a minimum cost so that x∗ is optimal for
the perturbed problem. The generally used measures of the modification cost
are (weighted) l1, l2, l∞ norms and (weighted) Hamming distance. Specially, the
(weighted) Hamming distance has generated wide interest in [2, 5, 6, 9].

We consider the Bottleneck Optimization Problem (BOP) on a network G =
(V, E, c), where c is a cost function defined on the edge set E. Let F be a set
of edges that have some required properties. For example, F might be a path
between a pair of nodes, an assignment of some of the nodes to others, or a
spanning tree of G. We call F a feasible solution and let F be the set of all
feasible solutions [3]. The problem (BOP) is to find a feasible solution that
minimizes the bottleneck cost of F , which is mathematically formulated below.

(BOP ) min
F∈F

max
e∈F

c(e)
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S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 220–230, 2006.
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Although many inverse optimization problems have been well studied (see the
survey [4]), only few results on the inverse bottleneck optimization problems are
given. Cai, Yang and Zhang [1] proved that the inverse center location problem
is strongly NP-hard. Zhang et al. [7, 8] presented polynomial algorithms for
some inverse max-min (or min-max) optimization problems. Guan and Zhang [3]
proposed a general method for the inverse bottleneck problem under weighted
l∞ norm by solving a series of bottleneck cut problems.

In this paper, we consider the inverse bottleneck optimization problems with
bound constraints on modification under weighted l1 norm, weighted sum-
Hamming distance and weighted bottleneck-Hamming distance. That is, given a
feasible solution F ∗, we aim to find a new cost function c∗ under some measure
such that F ∗ becomes an optimal solution to the bottleneck optimization prob-
lem minF∈F maxe∈F c∗(e), i.e., maxe∈F ∗ c∗(e) ≤ maxe∈F c∗(e) for any F ∈ F .
We show that the inverse problem under weighted l1 norm and weighted sum-
Hamming distance can be reduced to O(m) minimum cut problems, while the
inverse problem under weighted bottleneck-Hamming distance can be reduced
to O(log m) cut feasibility problems, where m = |E|.

In the remainder of the paper, the inverse problems under weighted l1 norm
and Hamming distance are considered in Sections 2 and 3, conclusions and
further research are given in Section 4.

2 Inverse Problem Under Weighted l1 Norm

Now let us consider the inverse bottleneck optimization problem (IBOPs) under
weighted l1 norm. Given a feasible solution F ∗, a weight function w > 0 and
two bound functions l ≥ 0 and u ≥ 0 defined on the edge set E, the problem
(IBOPs) is to find a new cost function c∗ which solves the following problem:

min fs(E, c∗) :=
∑
e∈E

w(e)|c∗(e)− c(e)|

(IBOPs) s.t. max
e∈F ∗

c∗(e) ≤ max
e∈F

c∗(e), ∀ F ∈ F ,

c− l ≤ c∗ ≤ c + u.

Before discussing the inverse bottleneck optimization problem, let us first
provide an important property of the bottleneck optimization problem. We define
a cut X of a family F as a subset of E which intersects all the feasible solutions
F ∈ F . For any F ∈ F , let g(F, c) := maxe∈F c(e) be the bottleneck cost. In
fact, we have

Lemma 1. [3] For any feasible solution F+, F+ is an optimal solution to the
bottleneck optimization problem minF∈F maxe∈F c(e) if and only if E+ := {e ∈
E|c(e) ≥ g(F+, c)} is a cut of F .

Next we analyze the properties of the inverse problem (IBOPs), based on which
we will present a general method to solve it.
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Lemma 2. If c∗ is an optimal solution of problem (IBOPs), maxe∈F ∗ c∗(e) =
p∗, and p∗ ≤ min{c(e) + u(e)|e ∈ E, c∗(e) �= c(e)}, then for any edge e ∈ E,

c∗(e) =
{

p∗, if c∗(e) �= c(e),
c(e), otherwise.

(1)

Proof. Obviously, for any optimal solution c̄, we have c̄(e) ≤ p∗ for any e ∈ F ∗,
and c̄(e) = c(e) for any edge e /∈ F ∗ satisfying c(e) ≥ p∗. Thus it is easy to check
that c∗ defined by (1) is a feasible solution of problem (IBOPs).

Now we assume there is an optimal solution c̄ such that c̄(e′) �= c(e′), c̄(e′) �=
p∗ = c∗(e′), and c̄(e) = c∗(e) for any edge e �= e′, we must have e′ ∈ F ∗ and
c̄(e′) < p∗. If c(e′) ≥ p∗, then c(e′) ≥ c∗(e′) > c̄(e′), and thus fs(E, c∗) =
fs(E, c̄)−w(e′)(p∗− c̄(e′)) < fs(E, c̄), which contradicts the optimality of c̄. On
the other hand, if c(e′) < p∗, let

c̃(e) :=
{

c(e), if e = e′,
c∗(e), otherwise,

then c̃ is also a feasible solution. Furthermore, we have c̃(e′) = c(e′) < p∗ =
c∗(e′). Then it is obvious that fs(E, c̃) = fs(E, c∗)−w(e′)(p∗−c(e′)) < fs(E, c∗),
which contradicts the optimality of c∗. The proof is completed. �

Let Fb be an optimal solution to the problem (BOP) minF∈F g(F, c). It is clear
that g(Fb, c) ≤ g(F ∗, c∗) ≤ g(F ∗, c). Let c = max{g(Fb, c), g(F ∗, c − l)} be the
largest lower bound of new bottleneck cost on F ∗, then the possible value of
g(F ∗, c∗) is in the interval [c, g(F ∗, c)]. Consider the collection of distinctive val-
ues of the costs c and the upper bounds on costs within the interval [c, g(F ∗, c)],
that is, the set

({c(e)|e ∈ E} ∪ {c(e) + u(e)|e ∈ E} ∪ {c}) ∩ [c, g(F ∗, c)].

Sort these values in a strictly increasing order, say c = q1 < q2 < · · · < qt =
g(F ∗, c), where t = O(m) and m = |E|. Then we have

Theorem 1. The problem (IBOPs) has an optimal solution c∗ satisfying (1)
such that the bottleneck cost of F ∗ under c∗ is one of the components qh, 1 ≤
h ≤ t, that is, there are an optimal solution c∗ and an index h (1 ≤ h ≤ t) such
that p∗ = maxe∈F ∗ c∗(e) = qh.

Proof. Suppose that c∗ is an optimal solution of problem (IBOPs), which sat-
isfies qi−1 < p∗ = maxe∈F ∗ c∗(e) < qi. Let H1 := {e ∈ E|c∗(e) < c(e)} and
H2 := {e ∈ E|c∗(e) > c(e)}.

Case 1: If
∑

e∈H1
w(e) ≥

∑
e∈H2

w(e), then define

c̃(e) :=
{

qi, if c∗(e) �= c(e),
c(e), otherwise.

First note that c(e)− l(e) ≤ p∗ < qi ≤ c(e)+u(e) for any edge e ∈ H1∪H2. Next
we show that maxe∈F c̃(e) ≥ maxe∈F ∗ c̃(e) for any F ∈ F , then c̃ is a feasible
solution. Notice that
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p∗ = max
e∈F ∗

c∗(e) = max{ max
e∈F ∗∩(H1∪H2)

c∗(e), max
e∈F ∗\(H1∪H2)

c∗(e)}

= max{p∗, max
e∈F ∗\(H1∪H2)

c(e)}.

Then
max

e∈F ∗\(H1∪H2)
c(e) ≤ p∗ < qi (2)

and
max
e∈F ∗ c̃(e) = max{qi, max

e∈F ∗\(H1∪H2)
c(e)} = qi.

Furthermore, for any F ∈ F ,

max
e∈F

c̃(e) = max{ max
e∈F∩(H1∪H2)

c̃(e), max
e∈F\(H1∪H2)

c̃(e)}

= max{qi, max
e∈F\(H1∪H2)

c(e)} ≥ qi = max
e∈F ∗

c̃(e).

For the optimality, we have

fs(E, c∗)− fs(E, c̃)

=
∑

e∈H1

[w(e)(c(e) − p∗)− w(e)(c(e) − qi)]

+
∑

e∈H2

[w(e)(p∗ − c(e))− w(e)(qi − c(e))]

=
∑

e∈H1

w(e)(qi − p∗) +
∑

e∈H2

w(e)(p∗ − qi)

= [
∑

e∈H1

w(e)−
∑

e∈H2

w(e)](qi − p∗)

≥ 0.

Hence, we can construct an optimal solution c̃ which meets the requirement of
the theorem. In fact, in this case, we must have

∑
e∈H1

w(e) =
∑

e∈H2
w(e).

Case 2: If
∑

e∈H1
w(e) <

∑
e∈H2

w(e), then let

c̃(e) :=
{

qi−1, if c∗(e) �= c(e),
c(e), otherwise.

First note that for any edge e ∈ H2, c(e) ≤ qi−1 < p∗ ≤ c(e) + u(e), and for any
edge e ∈ H1, we have e ∈ F ∗. Then c(e)− l(e) ≤ c ≤ qi−1 < p∗ ≤ c(e). Next we
show that maxe∈F c̃(e) ≥ maxe∈F ∗ c̃(e) for any F ∈ F . It follows from (2) that

max
e∈F ∗\(H1∪H2)

c(e) ≤ qi−1,

then for any F ∈ F ,

max
e∈F

c̃(e) = max{qi−1, max
e∈F\(H1∪H2)

c(e)}

≥ qi−1 = max{qi−1, max
e∈F ∗\(H1∪H2)

c(e)} = max
e∈F ∗

c̃(e).
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Furthermore,

fs(E, c∗)− fs(E, c̃) = [
∑

e∈H1

w(e) −
∑

e∈H2

w(e)](qi−1 − p∗) > 0,

that is, fs(E, c∗) > fs(E, c̃), which contradicts the optimality of c∗. Thus this
case can not happen and we complete the proof. �

For a given value p, we define the restricted inverse bottleneck optimization
problem (IBOPs(p)) under weighted l1 norm as follows:

min
∑
e∈E

w(e)|c∗(e)− c(e)|

(IBOPs(p)) s.t. max
e∈F ∗

c∗(e) ≤ max
e∈F

c∗(e), ∀ F ∈ F ,

max
e∈F ∗

c∗(e) = p,

c− l ≤ c∗ ≤ c + u.

According to Theorem 1, we can obtain an optimal solution of problem (IBOPs)
by solving all t restricted problems (IBOPs(p)) (p = q1, · · · , qt) and then choos-
ing from the t optimal solutions the one that has the minimum objective value.

Now let us handle the restricted inverse problem (IBOPs(p)). Let F ∗(p) :=
{e ∈ F ∗|c(e) > p}, E(p) := {e ∈ E|c(e) < p} and E(p) := {e ∈ E(p)|p ≤
c(e) + u(e)}. Define a capacity vector wp : E(p)→ R as follows:

wp(e) :=
{

w(e)(p− c(e)), ∀e ∈ E(p),
+∞, ∀e ∈ E(p)\E(p).

If E+(p) := {e ∈ E|c(e) ≥ p} is a cut of F , then it follows from Lemma 1
that

c∗(e) :=
{

p, ∀e ∈ F ∗(p),
c(e), otherwise,

is an optimal solution of problem (IBOPs(p)), and the optimal value is∑
e∈F ∗(p)

w(e)(c(e) − p).

Otherwise, let F(p) := {F ∈ F|F ⊆ E(p)}, we aim to increase the cost of at
least one edge to p for each set F ∈ F(p). That is, we need to find the minimum
cut of family F(p) under the capacity vector wp defined below.

min
∑
e∈K

wp(e)

(MC(p)) s.t. K ⊆ E(p) is a cut of family F(p).

Denote by K(p) the optimal solution to problem (MC(p)) and let wp(K(p)) :=∑
e∈K(p) wp(e) be the corresponding objective value.
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If wp(K(p)) = +∞, then the instance is infeasible; otherwise, define c∗ as
follows:

c∗(e) :=
{

p, ∀ e ∈ K(p) ∪ F ∗(p),
c(e), otherwise.

(3)

Then we have

Theorem 2. If E+(p) := {e ∈ E|c(e) ≥ p} is not a cut of F and wp(K(p)) <
+∞, then the cost vector c∗ defined by (3) is an optimal solution to problem
(IBOPs(p)), and the corresponding objective value is∑

e∈F ∗(p)

w(e)(c(e) − p) + wp(K(p)).

Proof. We first show that c∗ is a feasible solution. Obviously, maxe∈F ∗ c∗(e) = p
and c− l ≤ c∗ ≤ c + u. Now we claim that E+(p) = {e ∈ E|c∗(e) ≥ p} is a cut
of F . Otherwise, there is a feasible solution F ′ ∈ F such that c∗(e) < p for any
e ∈ F ′. Then F ′ ∩ (K(p)∪F ∗(p)) = ∅ and c∗(e) = c(e) < p, thus F ′ ∈ F(p) and
F ′ ∩K(p) = ∅, which is impossible since K(p) is a cut of F(p).

In order to prove the optimality of c∗, we suppose c̃ is an optimal solution to
problem (IBOPs(p)), then by Lemma 2, we have

c̃(e) =
{

p, if c̃(e) �= c(e),
c(e), otherwise.

Define Ẽ(p) := {e ∈ E(p)|c̃(e) = p}. We claim that Ẽ(p) is a cut of F(p).
Otherwise, there is a feasible solution F ′ ∈ F(p) such that F ′ ∩ Ẽ(p) = ∅.
Then for any edge e ∈ F ′, c̃(e) = c(e) < p, and hence maxe∈F ′ c̃(e) < p, which
contradicts the feasibility of c̃. Moreover,∑

e∈E(p)

w(e)(c̃(e)− c(e)) =
∑

e∈Ẽ(p)

w(e)(p− c(e))

=
∑

e∈Ẽ(p)

wp(e) ≥
∑

e∈K(p)

wp(e) = wp(K(p)),

and ∑
e/∈E(p)

w(e)(c(e) − c̃(e)) ≥
∑

e∈F ∗(p)

w(e)(c(e) − p).

Thus c∗ is an optimal solution to problem (IBOPs(p)). �

Note that when solving the restricted problem (IBOPs(p)), if there exists no cut
of F(p) in E(p), then the instance is infeasible. Furthermore, we have

Lemma 3. [3] If E(p) is not a cut of F(p), then E(q) is not a cut of F(q) for
all q ≥ p.
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It follows from Lemma 3 that if cqi(K(qi)) = +∞ for some checking point qi, then
cqj (K(qj)) = +∞ for all checking points qj ≥ qi. Hence in real implementation,
we may employ the binary search strategy to determine the smallest index r
such that cqr (K(qr)) < +∞, then check the points in the interval [q1, qr]. As a
result, we can conclude that

Theorem 3. The inverse problem (ICBPs) can be solved in O(mTs) operations,
where Ts is the complexity to solve the corresponding minimum cut problem.
Moreover, if the minimum cut problem can be solved in strongly polynomial time,
then the inverse problem can be solved in strongly polynomial time, too.

3 Inverse Problem Under Weighted Hamming Distance

Now let us consider the inverse bottleneck optimization problem under weighted
Hamming distance. Given a feasible solution F ∗, a weight function w > 0 and
two bound functions l ≥ 0 and u ≥ 0 defined on the edge set E, the inverse
problem (IBOPsH) under weighted sum-Hamming distance is to find a new cost
function c∗ which solves the following problem:

min fsH(E, c∗) :=
∑
e∈E

w(e)H(c∗(e), c(e))

(IBOPsH ) s.t. max
e∈F ∗

c∗(e) ≤ max
e∈F

c∗(e), ∀ F ∈ F ,

c− l ≤ c∗ ≤ c + u,

where H(c∗(e), c(e)) is the Hamming distance between c∗(e) and c(e), that is,
H(c∗(e), c(e)) = 0 if c∗(e) = c(e) and 1 otherwise.

The inverse problem (IBOPbH) under weighted bottleneck-Hamming distance
can be defined similarly.

min fbH(E, c∗) := max
e∈E

w(e)H(c∗(e), c(e))

(IBOPbH) s.t. max
e∈F ∗

c∗(e) ≤ max
e∈F

c∗(e), ∀ F ∈ F ,

c− l ≤ c∗ ≤ c + u.

Note that for the inverse problem under weighted Hamming distance, we only
care about whether the cost of an edge is modified or not, but not concern
about the magnitude of modification as long as it is restricted in a given inter-
val. Concretely, the inverse problem (IBOPsH) under weighted sum-Hamming
distance is to minimize the weighted number of modified edges, while the prob-
lem (IBOPbH) under weighted bottleneck-Hamming distance is to minimize the
maximal weight of modified edges.
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3.1 Inverse Problem Under Weighted Sum-Hamming Distance

Based on the above analysis, we can easily conclude that

Lemma 4. If the inverse problem (IBOPsH) is feasible, then there is an optimal
solution c∗ satisfying maxe∈F ∗ c∗(e) = p∗ such that

c∗(e) =

⎧⎪⎪⎨⎪⎪⎩
p∗, if c∗(e) �= c(e), c(e)− l(e) ≤ p∗ ≤ c(e) + u(e),
c(e)− l(e), if c∗(e) �= c(e), p∗ < c(e)− l(e),
c(e) + u(e), if c∗(e) �= c(e), p∗ > c(e) + u(e),
c(e), otherwise.

(4)

Consider the collection of distinctive values

({c(e)|e ∈ E} ∪ {c(e) + u(e)|e ∈ E} ∪ {c}) ∩ [c, g(F ∗, c)],

and sort them in a strictly increasing order, say c = q1 < q2 < · · · < qt =
g(F ∗, c), where t = O(m), then we can similarly conclude that

Theorem 4. The problem (IBOPsH) has an optimal solution c∗ satisfying (4)
such that p∗ = maxe∈F ∗ c∗(e) = qh for some index h ∈ {1, · · · , t}.

Next we extend the method for the weighted l1 norm to the weighted sum-
Hamming distance. Consequently, we also handle the restricted inverse problem
(IBOPsH(p)) for a given value p, which is defined as follows:

min
∑
e∈E

w(e)H(c∗(e), c(e))

(IBOPsH(p)) s.t. max
e∈F ∗

c∗(e) ≤ max
e∈F

c∗(e), ∀ F ∈ F ,

max
e∈F ∗

c∗(e) = p,

c− l ≤ c∗ ≤ c + u.

Let F ∗(p) := {e ∈ F ∗|c(e) > p}. If E+(p) := {e ∈ E|c(e) ≥ p} is a cut of F ,
then it follows from Lemma 1 that

c∗(e) :=
{

p, ∀e ∈ F ∗(p),
c(e), otherwise,

is an optimal solution of problem (IBOPsH(p)), and fsH(E, c∗) :=
∑

e∈F ∗(p) w(e).
Otherwise, let E(p) := {e ∈ E|c(e) < p}, E(p) := {e ∈ E(p)|p ≤ c(e) + u(e)},
and F(p) := {F ∈ F|F ⊆ E(p)}. Define a capacity vector below:

wp(e) :=
{

w(e), ∀e ∈ E(p),
+∞, ∀e ∈ E(p)\E(p).

Then find the minimum cut K(p) of family F(p) under the capacity vector wp.
Let wp(K(p)) :=

∑
e∈K(p) wp(e) be the capacity of minimum cut.
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If wp(K(p)) = +∞, then the instance is infeasible; otherwise,

c∗(e) :=
{

p, ∀ e ∈ K(p) ∪ F ∗(p),
c(e), otherwise,

(5)

is an optimal solution of problem (IBOPsH(p)), and the value of objective func-
tion is fsH(E, c∗) :=

∑
e∈K(p)∪F ∗(p) w(e).

Similar to the inverse problem under weighted l1 norm, the inverse problem
(IBOPsH) can also be reduced to O(m) minimum cut problems.

3.2 Inverse Problem Under Weighted Bottleneck-Hamming
Distance

For a given edge weight w(eik
), let Ek := {e ∈ E|w(e) ≤ w(eik

)},

ck(e) :=

⎧⎨⎩
c(e)− l(e), if e ∈ Ek ∩ F ∗,
c(e) + u(e), if e ∈ Ek\F ∗,
c(e), if e /∈ Ek,

(6)

maxe∈F ∗ ck(e) = pk, and E+
k := {e ∈ E|ck(e) ≥ pk}. Let

cpk(e) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pk, if e ∈ Ek ∩ F ∗, pk ≤ c(e) + u(e),
c(e)− l(e), if e ∈ Ek ∩ F ∗, pk > c(e) + u(e),
pk, if e ∈ Ek\F ∗, c(e)− l(e) ≤ pk ≤ c(e) + u(e),
c(e) + u(e), if e ∈ Ek\F ∗, pk < c(e)− l(e) or pk > c(e) + u(e),
c(e), if e /∈ Ek,

(7)

and E+
pk

:= {e ∈ E|cpk(e) ≥ pk}. Then we have the properties below.

Lemma 5. If E+
k is a cut of F , then E+

pk
is also a cut of F .

Proof. It is sufficient to show that E+
k ⊆ E+

pk
, which can be proved by the five

cases listed in (7). For any edge e ∈ E+
k in Case 1 and 3, ck(e) ≥ pk = cpk(e), then

e ∈ E+
pk

. For any edge e ∈ E+
k in Case 2, we have ck(e) ≥ pk > c(e)+u(e), which

contradicts the feasibility of ck, and thus the case can not happen. Similarly, we
ignore the edges e in Case 4 satisfying pk > c(e) + u(e). For edges e in Case 4
satisfying pk < c(e)− l(e) and in Case 5, when e ∈ E+

k , then cpk(e) = ck(e) ≥ pk,
and thus e ∈ E+

pk
. The proof is completed. �

Lemma 6. If E+
pk

is not a cut of F , then for any c̃ with c− l ≤ c̃ ≤ c + u and
fbH(E, c̃) = w(eik

), Ẽ+ := {e ∈ E|c̃(e) ≥ p̃ = maxe∈F ∗ c̃(e)} is not a cut of F .

Proof. First we claim that p̃ ≥ pk. It is easy to see that

p̃ = max{ max
e∈F ∗∩Ek

c̃(e), max
e∈F ∗\Ek

c̃(e)} = max{ max
e∈F ∗∩Ek

c̃(e), max
e∈F ∗\Ek

c(e)}

≥ max{ max
e∈F ∗∩Ek

(c(e)− l(e)), max
e∈F ∗\Ek

c(e)} = pk.
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Second, it is sufficient to show that Ẽ+ ⊆ E+
pk

, which can be proved in a similar
way as in Lemma 5. Here we take Case 4 for example. For any edge e ∈ Ẽ+ in
Case 4 satisfying pk < c(e) − l(e), then cpk(e) = c(e) + u(e) ≥ c̃(e) ≥ p̃ ≥ pk,
and thus e ∈ E+

pk
. The lemma holds. �

It follows from Lemma 6 that if E+
pk

is not a cut of F , then there is no fea-
sible solution c̃ of problem (IBOPbH) with fbH(E, c̃) ≤ w(eik

). Specially, if
w(eik

) = maxe∈E w(e), then Ek = E; moreover, if E+
pk

is not a cut of F in this
case, the instance is infeasible. Next we present a general algorithm to solve the
inverse bottleneck optimization problem (IBOPbH) under weighted bottleneck-
Hamming distance by performing a binary search on the weights w(e) of edges
e ∈ E. In each iteration, we are mainly to check whether the set E+

pk
is a cut of

F or not, which is equivalent to checking if Ḡk = (V, E\E+
pk

) contains a feasible
solution of F or not. Let �x� be the maximal integer not greater than x.

Algorithm 5. (A general algorithm to solve problem (IBOPbH))
Input: A system (V, E;F) with four functions w, c, l and u defined on E.
Step 1. Sort all the weights w(e) of edges e ∈ E in a strictly increasing order,

i.e., w(ei1) < w(ei2 ) < · · · < w(eiτ ). Put a := 1 and b := τ .
Step 2. If E+

pτ
is not a cut of F , then the instance is infeasible, stop.

Step 3. If b− a = 1, then output the modified cost cb and the objective value
fbH(E, cb) = w(eib

), stop. Otherwise, go to Step 4.
Step 4. Let k := �(a + b)/2�, Ek := {e ∈ E|w(e) ≤ w(eik

)}, pk := max
e∈F ∗

ck(e)

and E+
pk

:= {e ∈ E|cpk(e) ≥ pk}, where ck and cpk are defined as in (6) and (7),
respectively. If E+

pk
is a cut of F , then put b := k, else put a := k. Return to

Step 3.

As a conclusion, we have

Theorem 6. The inverse problem (IBOPbH) under weighted bottleneck-Ham-
ming distance can be solved in O(TbH log m) operations, where TbH is the time
to check if E+

pk
is a cut of F or not. Furthermore, if the cut feasibility problem can

be determined in strongly polynomial time, then the inverse problem (IBOPbH)
can be solved in strongly polynomial time, too.

For example, the inverse bottleneck assignment problem under weighted bottle-
neck-Hamming distance can be solved in O(n3 log m) operations, where n =
|V | [3].

4 Conclusion and Further Research

In this paper, we consider the inverse bottleneck optimization problems with
bound constraints on modification under weighted l1 norm, weighted sum-Ham-
ming distance and weighted bottleneck-Hamming distance. That is, given a fea-
sible solution F ∗, we aim to modify the cost function under some measure such
that F ∗ becomes an optimal solution to the bottleneck optimization problem.
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We show that the inverse problem under weighted l1 norm and weighted sum-
Hamming distance can be reduced to O(m) minimum cut problems, while the
inverse problem under weighted bottleneck-Hamming distance can be reduced
to O(log m) cut feasibility problems.

Guan and Zhang [3] showed that the inverse bottleneck optimization prob-
lems with bound constraints on modification under weighted l∞ norm can be re-
duced to O(m2) bottleneck cut problems. Furthermore, Zhang, Yang and Cai [8]
clarified that whether there is a polynomial algorithm for the inverse min-max
spanning tree problem under weighted l2 norm is a promising problem, although
we can deduce from the results in this paper and in [8] that the inverse min-max
spanning tree problems under weighted l∞ norm, weighted l1 norm, weighted
sum-Hamming distance and weighted bottleneck-Hamming distance can all be
solved in strongly polynomial time.

Therefore, as a further research topic, we can try to find a general method to
solve the inverse bottleneck optimization problem under weighted l2 norm, and
present polynomial algorithms for some specific inverse bottleneck optimization
problems according to their combinatorial properties.
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Abstract. In this paper, we consider the quickest flow problem in a net-
work which consists of a directed graph with capacities and transit times
on its arcs. We present an O(n log n) time algorithm for the quickest flow
problem in a network of grid structure with uniform arc capacity which
has a single sink where n is the number of vertices in the network.

1 Introduction

It is very important to establish crisis management systems against large-scale
disasters such as big earthquakes, conflagrations and tsunamis. We need to con-
sider the crisis management against disasters to secure evacuation pathways and
to effectively guide residents to a safe place. In our work, we adopt dynamic
network flows as a model for evacuation. A dynamic network flow is defined on
a network which consists of a directed graph D = (V, A) with capacity c(e) and
transit time τ(e) on every arc e ∈ A. For example, if we consider urban evac-
uation, vertices model buildings, rooms, exits and so on, and an arc models a
pathway or a road connecting vertices. For an arc e, capacity c(e) represents the
number of people which can traverse the arc e per unit time, and τ(e) denotes
the time it takes to traverse e. Given a network with initial supplies at vertices,
the problem is to find an optimal dynamic network flow such that we can send all
the initial supplies to sinks as quickly as possible. In the case where a network
has several sources and sinks which have specified supply or demand respec-
tively, this problem can be solved by the algorithm of Hoppes and Tardos [1]
in polynomial time. However their running time is high-order polynomial, and
hence is not practical in general. So it is necessary to devise a faster algorithm
for a tractable and practically useful subclass of this problem.

In this paper, we restrict our attention to grid networks with uniform arc
capacity. The condition that arc capacity is uniform is practically acceptable
because the width of road or corridor is generally standardized. Restriction of
network structure to grid networks is useful since such structure often appears
in modelling building corridors and city streets. We present an O(n log n) time
algorithm for the quickest flow problem in a network of grid structure with
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uniform arc capacity which has a single sink where n is the number of vertices
in the network.

Previous Works. As mentioned above, Hoppes and Tardos proposed a polyno-
mial time algorithm for the problem [1]. As a special class of networks, Mamada
et al. [2] considered tree networks with a single sink and presented an O(n log2 n)
time algorithm. For the case of tree networks with multiple sinks, Mamada et
al. [3] presented an O(n log3 n) time algorithm for two-sink case and Mamada
et al. [4] presented an O(n2k log2 n) time algorithm for k-sink case under the
restriction that all the supplies going through a common vertex are sent to a
single sink. However, to the authors’ knowledge, no one has ever studied special
class of networks other than tree networks for the evacuation problem.

Organization. Section 2 gives necessary definitions and preliminaries. Section 3
considers the quickest flow problem for grid networks with uniform arc capacity
and proposes an O(n log n) time algorithm. Section 4 concludes the paper.

2 Problem Formulation and Notations

We consider a network N = (D = (V, A), c, τ, bv, V
∗), where D is a directed

graph, V is a set of vertices, A is a set of arcs, c: A → R+ is the upper bound
for the rate of flow that enters each arc per unit time, τ : A → Z+ is a transit
time function, bv ∈ R+ gives an initial supply of v ∈ V , and V ∗ ⊂ V is a set
of sinks. Here R+ denotes the set of nonnegative reals and Z+ denotes the set
of nonnegative integers. For simplicity, we write c(v, w) and τ(v, w) instead of
c((v, w)) and τ((v, w)) respectively for any (v, w) ∈ A. Given a network, our
problem is to compute the minimum time required to send all supplies to sinks.

Here we define a discrete-time dynamic network flow f : A × Z+ → R+. For
any arc e ∈ A and θ ∈ Z+, we denote by f(e, θ) the flow rate entering the arc e
at time θ which arrives at the head of e at time θ+τ(e). We call f : A×Z+ → R+
a feasible dynamic flow in N if it satisfies the following three conditions, i.e.,
capacity constraint, flow conservation, and demand constraint [2].

Capacity constraint: For any arc e ∈ A and θ ∈ Z+,

0 ≤ f(e, θ) ≤ c(e). (1)

Flow conservation: For any v ∈ V and Θ ∈ Z+,

∑
e∈Δ+(v)

Θ∑
θ=0

f(e, θ)−
∑

e∈Δ−(v)

Θ∑
θ=τ(e)

f(e, θ−τ(e))≤bv. (2)

Demand constraint: There exists a time Θ ∈ Z+ such that

∑
e∈Δ−(V ∗)

Θ∑
θ=τ(e)

f(e, θ−τ(e))−
∑

e∈Δ+(V ∗)

Θ∑
θ=0

f(e, θ)=
∑

v∈V \V ∗
bv. (3)
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Here Δ+(V ′) ≡ {(v, w) ∈ A, | v ∈ V ′, w /∈ V ′}, and Δ−(V ′) ≡ {(v, w) ∈ A | v /∈
V ′, w ∈ V ′} for any V ′ ⊆ V . For simplicity, we write Δ+(v) and Δ−(v) instead
of Δ+({v}) and Δ−({v}), respectively. For a feasible dynamic flow f , let Θ(f)
denote the completion time for f , i.e., the minimum time Θ satisfying (3), and let
FN denote the set of all feasible dynamic flows in N . The quickest flow problem
asks to find a feasible dynamic flow f that minimizes Θ(f).

Here we define flow-table [2] which is a function from Z+ to R+. There are
two kinds of flow-tables, arriving-table ATv for each vertex v ∈ V , and sending-
table STe for each arc e ∈ A. Arriving-table ATv represents the sum of the flow
rates arriving at the vertex v as a function of time θ, i.e.,

ATv(θ) = Bv(θ) +
∑

e∈Δ−(v) f(e, θ − τ(e)) (4)

where we regard the initial supply bv as a flow-table Bv as follows: Bv(0) = bv

and Bv(θ) = 0 if θ �= 0. Sending table STe represents the flow rate entering the
arc e as a function of time θ, i.e.,

STe(θ) = f(e, θ). (5)

We define T as a function of flow-table FT as follows: T (FT ) = max{θ ∈
Z+ |FT (θ) > 0}. T (STe) + τ(e) represents the time to complete the evacuation
from e.

In this paper, we will focus our attention on grid graph as an underlying
graph of a network. For simplicity, we assume a grid graph is on N2 grid points
{1, . . . , N}×{1, . . . , N} in the plane, and let n = N2. Here a vertex is identified
with (i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N . A sink r is specified as one
of vertices. The distance between two vertices (i, j) and (i′, j′) is defined as
|i− i′|+ |j − j′|. Two vertices (i, j) and (i′, j′) are connected by an edge if and
only if |i − i′| + |j − j′| = 1 (Fig. 1(a)). The edge which connects v and v′ is
directed from v to v′ if and only if the distance from v′ to r is smaller than
that from v to r (Fig. 1(b)). A network defined on a grid graph is called grid
network. We assume throughout this paper that, in networks we are concerned
with, the capacities of all arcs have the same value c ∈ R+ and the transit
times of all arcs take the same value τ ∈ Z+. Notice that we define c and τ as
not a function but an integer here. From this assumption, we use the notation
N = (D = (V, A), bv, V ∗) for simplicity by omitting the capacity function and
the transit time function. In addition to the above assumption for the capacities
and the transit times of arcs, we assume a sink is an inner vertex, i.e. the in-
degree of a sink is four (the other case can be similarly treated).

Given a grid network N =(D=(V, A), bv, V
∗={r}), we consider the quickest

flow problem QF formally defined as follows:

QF: minimize T (AT f
r ) subject to f ∈ FN

where AT f
r is the arriving-table at the sink r with respect to f .

For any vertices v and w such that there exists a directed path from v to w,
we define l(v, w) as the sum of transit times of arcs on the path. Vertex set V is
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partitioned into layers according to the distance from r. Thus, a directed graph D
can be viewed as a layered graph. A layered graph D = (V, A) is a directed graph
consisting of several layers which partition V into subsets V 0(= {r}), V 1, V 2, . . .
such that vertices v ∈ V i and w ∈ V j are connected by a directed arc (v, w)
only if i− j = 1, and V p (p−th layer) denotes the set of all of vertices satisfying
l(v, r) = pτ (Fig. 1(c)). A network defined on a layered graph is called a layered
network.

(a)

r

v

v′

(b)

1V2V

3V

r

(c)

Fig. 1. (a)Grid network (b)Sink r and direction of arcs (c)Layers of grid network

Now we define mτ = max{l(v, r) | bv > 0, v ∈ V } for a grid network. A vertex
v ∈ V p is said to be at level p, and an arc connecting between V p and V p−1 is
said to have a level p . For any v ∈ V , let CHv denote the set of children of v
(i.e., w ∈ CHv has a level higher than v by one), and let PAv denote the set of
parents (i.e., w ∈ PAv has a level smaller than v by one).

3 Quickest Flow Problem for Grid Networks

In this section, we consider the quickest flow problem for a grid network N =
(D = (V, A), bv, V ∗ = {r}). First we explain the overall idea of our algorithm.

Our algorithm benefits from the structure of a grid graph. Let CHr =
{u1, u2, u3, u4}. By the way of directing arcs of a grid graph, we can decom-
pose V into eight subsets, U1, U2, U3, U4 and W1, W2, W3, W4 as in Fig. 2 where
Ui denotes the set of vertices on horizontal or vertical axis whose supplies are all
sent to sink r through arc (ui, r) and Wi denotes the set of vertices whose sup-
plies are sent to sink r through either (ui, r) or (ui+1, r) (we assume throughout
the paper that the index i is given as (i mod 4) + 1). Here let Hi, i = 1, 2, 3, 4
be a subgraph induced by Wi−1 ∪Ui ∪Wi ∪ {r}. For an optimal dynamic flow f
for problem QF, it can be decomposed into four flows fi, i = 1, 2, 3, 4 such that
each fi represents the flow of supplies which reaches r through arc (ui, r). The
sub-flow fi, i = 1, 2, 3, 4 induces a rooted graph Di such that its vertex set and
arc set are defined as those which a positive amount of fi passes through. Notice
that Di contains an arc (ui, r) and its vertex set is a subset of Wi−1∪Ui∪Wi∪{r}
(Di is clearly a subgraph of Hi).

The proposed algorithm is based on the following four ingredients.

Theorem 1. There exists a subgraph H ′
i of Hi which spans Wi−1∪Ui∪Wi∪{r}

for i = 1, 2, 3, 4 such that H ′
i are arc disjoint for i �= j.
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It is easy to see that the above theorem holds from Fig 3. Notice that that
arc-disjoint subgraph H ′

i are not uniquely determined.
Now suppose that for every v ∈ Wi with i = 1, 2, 3, 4, the amounts of sup-

ply (denoted by bv,i and bv,i+1 respectively) which reach r via arcs (ui, r) and
(ui+1, r) respectively are fixed.

Theorem 2. Let us consider dynamic flow problems QFi defined on H ′
i such

that the supply of v ∈ Wi−1 ∪ Ui ∪Wi is bv,i. The optimal objective value for
QFi for every i does not depend on the choice of arc-disjoint subgraphs H ′

i, but
remains the same.

Theorem 3. There exists an optimal dynamic flow f such that fi and fj does
not share any arc for every i �= j.

From these facts, when bi and bi+1 are fixed for every v ∈ Wi and every i with
i = 1, 2, 3, 4, an optimal flow of QF can be found by independently obtaining an
optimal flow f∗

i for QFi for each i. Since the subgraph H ′
i is a rooted tree, the

solution of QFi can be given by simply specifying the supply at each v ∈Wi−1∪
Ui ∪Wi. Therefore, the problem QF reduces to finding an optimal allocation of
bv to bv,i and bv,i+1 for each v ∈ Wi with i = 1, 2, 3, 4, and we call this problem
the optimal allocation problem for supplies. Moreover, we prove the following
theorem. Consequently, we can solve the quickest flow problem for grid networks
with uniform arc capacity efficiently as will be shown in Section 3.2.

Theorem 4. The optimal allocation problem for supplies can be transformed
into the min-max resource allocation problem under network constraints [5, 6, 7].

r

1W

2W 3W

4W

1u

2u

3u

4U

3U

2U

1U

4u

Fig. 2. Decomposition of N

r

1H ′

2H ′

3H ′

4H ′

Fig. 3. H ′
1, H

′
2, H

′
3, H

′
4

From the above discussion, our algorithm consists of two phases: (1) The first
phase is to reduce the quickest flow problem QF to the optimal allocation prob-
lem for supplies, and (2) the second phase is to reduce the optimal allocation
problem for supplies to the min-max resource allocation problem under network
constraints [5, 6, 7].
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3.1 Reduction the Quickest Flow to the Optimal Allocation
Problem for Supplies

In this subsection, we prove that the quickest flow problem QF can be reduced
to the optimal allocation problem for supplies. From the above discussion, the
reduction is done by proving Theorem 2 and Theorem 3.

3.1.1 Proof of Theorem 2
Theorem 2 is proved after showing Lemma 1 and Lemma 2. We prove these
lemmas by using properties of flow-tables. Thus, before proving these lemmas
we introduce operators concerning flow-tables: shifting, and ceiling [2], and we
will then show some basic properties of those operations.

Definition 1 (table shifting). For any flow-table FT , τ ∈ Z+ and θ ∈ Z+,
we define Sτ (FT ) as follows : Sτ (FT )(θ) = 0 if θ < τ and Sτ (FT )(θ) = FT (θ−
τ) if θ ≥ τ .

It is easy to see that for any flow-tables FT1, FT2 and τ1, τ2 ∈ Z+, Sτ1(FT1 +
FT2) = Sτ1(FT1) + Sτ2(FT2) and Sτ1+τ2(FT1) = Sτ1(Sτ2(FT1)) hold. From the
above definitions and (4), (5) can be rewritten as

ATv = Bv +
∑

e∈Δ−(v) Sτ(e)(STe). (6)

Definition 2 (table ceiling). For any flow-table FT and c ∈ R+, [FT ]c is
a flow-table obtained by carrying over the excess of FT (θ) (i.e. FT (θ) − c) to
FT (θ + 1) in the order of θ = 0, 1, . . ..

c c

FT [ ]cFT
the sum of flow

time

Fig. 4. Table ceiling

Here we show two facts concerning flow-tables.

Fact 1. For any flow-tables FT1, FT2 and for any c ∈ R+, [[FT1]c + FT2]c =
[FT1 + FT2]c.

Fact 2. For any flow-table FT , c ∈ R+ and τ ∈ Z+, Sτ ([FT ]c) = [Sτ (FT )]c
holds.

Here it should be noted that given a network N = (D = (V, A), bv, V
∗) and ATv

for a v ∈ V and the distribution of ATv to each e ∈ Δ+(v) as AT e
v , we can

assume STe = [AT e
v ]c holds for any e ∈ Δ+(v) in order to attain an optimal
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r�
1V�

2V�
3V�

1mV −��mV ��

Fig. 5. Layered network L

solution [8]. Thus, throughout this paper, we restrict the set of feasible dynamic
flows to those which satisfy this condition.

Let us now return to Theorem 2 again. Here we consider a layered network
L = (D̃ = (Ṽ , Ã), b̃v, Ṽ

∗ = {r̃}) with |Δ−(r̃)| = 1, where Ṽ p = {v ∈ Ṽ | l(v, r̃) =
pτ}, m̃ is the number of layers in L, B̃v denotes the extension of b̃v to flow-
table, B̃

p
=
∑

v∈Ṽ p B̃v for any p ∈ {1, 2, . . . , m̃} (Fig. 5). We show the following
lemmas concerning L. Lemma 1 shows the relationship between the arriving-
tables of vertices whose level is p and those of vertices whose level is p + 1.

Lemma 1. For any feasible flow of L we have

[
∑

v∈Ṽ p ATv]c = [B̃
p

+ Sτ (
∑

u∈Ṽ p+1 ATu)]c.

Proof. Consider ATv for v ∈ Ṽ p. Then

ATv = B̃v +
∑

u∈CHv
Sτ (ST(u,v)) (7)

holds by (6). Here we define {AT
(u,v)
u | v ∈ PAu} as a distribution of ATu for

u ∈ Ṽ p+1 such that
∑

v∈PAu
AT

(u,v)
u = ATu and ST(u,v) = [AT

(u,v)
u ]c hold. It is

clear that such distribution always exists. Thus, we have

[
∑

v∈Ṽ p ATv]c

= [
∑

v∈Ṽ p(B̃v +
∑

u∈CHv
Sτ (ST(u,v)))]c (by (7))

= [
∑

v∈Ṽ p B̃v +
∑

v∈Ṽ p

∑
u∈CHv

Sτ (ST(u,v))]c

= [B̃
p

+
∑

u∈Ṽ p+1

∑
v∈PAu

Sτ (ST(u,v))]c

= [B̃
p

+
∑

u∈Ṽ p+1

∑
v∈PAu

Sτ ([AT
(u,v)
u ]c)]c (by ST(u,v) = [AT

(u,v)
u ]c)

= [B̃
p
+
∑

u∈Ṽ p+1

∑
v∈PAu

[Sτ (AT
(u,v)
u )]c]c (by Fact 2)

= [B̃
p

+
∑

u∈Ṽ p+1

∑
v∈PAu

Sτ (AT
(u,v)
u )]c (by Fact 1)

= [B̃
p

+ Sτ (
∑

u∈Ṽ p+1

∑
v∈PAu

AT
(u,v)
u )]c

= [B̃
p

+ Sτ (
∑

u∈Ṽ p+1 ATu)]c (by
∑

v∈PAu
AT

(u,v)
u = ATu). ��

The following lemma is immediate from Lemma 1. This lemma says that the
minimum completion time remains the same for any layered network with a single
sink whose in-degree is one, and thus it does not change as long as the initial
supply and the level of every vertex remain the same. This proves Theorem 2.
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Lemma 2. In the layered networkL of Lemma 1, we have ATr̃ =[
∑m̃

i=1 Siτ (B̃
i
)]c.

Proof. We first prove

[
∑

v∈Ṽ p ATv]c = [
∑m̃

i=p S(i−p)τ (B̃
i
)]c (8)

holds for any p ∈ {1, . . . , m̃} by induction on p. Let us first consider the case
of p = m̃. Since ATv = B̃v holds for any v ∈ Ṽ m̃, we have [

∑
v∈Ṽ m̃ ATv]c =

[
∑

v∈Ṽ m̃ B̃v]c. Next assume that the lemma is true for p = t + 1. Thus, by
Lemma 1 and the induction hypothesis, we have

[
∑

v∈Ṽ t ATv]c

= [B̃
t
+ Sτ (

∑
v∈Ṽ t+1 ATv)]c (by Lemma 1)

= [B̃
t
+ Sτ ([

∑
v∈Ṽ t+1 ATv]c)]c (by Fact 1 and Fact 2)

= [B̃
t
+ Sτ ([

∑m̃
i=t+1 S(i−(t+1))τ (B̃

i
)]c)]c (by the induction hypothesis )

= [
∑m̃

i=t S(i−t)τ (B̃
i
)]c. (by Fact 1 and Fact 2).

This completes the proof of (8). Let CHr̃ = {v1}. [ATv1 ]c = [
∑m̃

i=1 S(i−1)τ (B̃
i
)]c

holds from (8). Thus, from ATr̃ = Sτ ([ATv1 ]c), the lemma follows. ��
Notice that the lemma does not always hold if the in-degree of r̃ is more than
one.

3.1.2 Proof of Theorem 3
Next let us consider Theorem 3. There may be an arc e such that both fi and
fj(i �= j) share. If there is such an arc e, it is called a mixed arc with respect to
f , and such flow f is called a mixed flow.

Proof. (Theorem 3) Let us consider an optimal dynamic flow f̂ , and assume
that it is a mixed flow. Let us decompose f̂ into f̂i, i = 1, 2, 3, 4, and Di for f̂i

be D̂i ≡ (V̂i, Âi).
From the proof assumption, Âi ∩ Âj �= ∅ for some i �= j. Let us define a

network N̂i for D̂i such that the arc capacity and the transit time of all e ∈ Âi

remain the same as the original problem, and the initial supply of v ∈ V is
equal to bv,i. Now, it holds for i = 1, 2, 3, 4 that f̂i is a feasible dynamic flow
of N̂i. Here let us define a network Ni such that initial supply of vertices, the
arc capacity and transit time are the same as N̂i and the underlying graph is
H ′

i ≡ (Vi, Ai) as the one shown in Fig. 3. Notice that V̂i ⊆ Vi holds.
If we independently consider the dynamic flow problems for N̂i, i = 1, 2, 3, 4,

the optimal objective values for Ni and N̂i are the same for each i = 1, 2, 3, 4
from Lemma 2. Let f∗

i for i = 1, 2, 3, 4 denote an optimal dynamic flow for
Ni, i = 1, 2, 3, 4 respectively, and let f̂∗

i for i = 1, 2, 3, 4 denote an optimal
dynamic flow for N̂i, i = 1, 2, 3, 4, respectively. Then, we have

Θ(f∗
i ) = Θ(f̂∗

i ) ≤ Θ(f̂i).

This proves the theorem because Ni with i = 1, 2, 3, 4 are arc-disjoint. ��
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3.1.3 Problem Reformulation
Let us consider the four arc-disjoint networksNi defined in the proof of Theorem
3. Recall that for each v ∈Wi, i = 1, 2, 3, 4, bv,i and bv,i+1 denotes the amounts
of supply which go to r through Ni and Ni+1 respectively. We say that bv,i

and bv,i+1 are allocated to Ni and Ni+1, respectively. For a vertex v on Ui with
i = 1, 2, 3, 4, all the supply goes to v using Ni. In this case, we say that bv,i(= bv)
is assigned to Ni. In general, let Bv and Bv,i denote the flow-table corresponding
to bv and bv,i respectively. Then the quickest flow problem QF can be written
as follows:

minimize maxi=1,2,3,4 T ([
∑

v∈V Sl(v,r)(Bv,i)]c)
subject to Bv,i = Bv and Bv,j = 0, j �= i for v ∈ Ui,

Bv,i + Bv,i+1 = Bv and Bv,j = 0, j �= i, i + 1 for v ∈ Wi,

For every p and i, let bp
i =

∑
v∈V p∩(Wi−1∪Ui∪Wi) bv,i which represents the

amounts of supply of vertices at level p allocated to Ni, and let Bp
i denote

its flow-table extension. Then from Lemma 2, the completion time for Ni is ex-
pressed as T ([

∑m
p=1 Spτ (Bp

i )]c). Therefore, the allocation of bv of a particular
vertex v ∈ V p ∩ (Wi−1 ∪Wi) does not affect the minimum completion time for
Ni but only the total amounts bp

i allocated to Ni does affect it. From this ob-
servation, we contract the set V p ∩Wi into a single vertex wp

i for each p with
1 ≤ p ≤ m and i with 1 ≤ i ≤ 4 such that the initial supply of wp

i is equal
to
∑

v∈V p∩Wi
bv which is simply denoted by ap

i . Let up
i denote a single vertex

corresponding to V p∩Ui. The initial supply of up
i is denoted by gp

i . Let the allo-
cation of ap

i to Ni and Ni+1 be ap
i,i and ap

i,i+1, respectively. Therefore, defining
the flow-table FTi such as

FTi(pτ) = gp
i + ap

i,i + ap
i−1,i, p = 1, 2, . . . , m, (9)

the minimum completion time of Ni is equal to T ([FTi]c). Here we introduce
the following theorem to calculate T ([FTi]c) efficiently.

Lemma 3. For any flow-table FT and c ∈ R+,

T ([FT ]c) = max
0≤θ≤T (FT )

⌈
{cθ +

∑T (FT )
t=θ FT (t)}/c

⌉
− 1

Proof. We give a sketch of the proof. The idea is to prove the time that satisfies
max0≤θ≤T (FT ){cθ +

∑T (FT )
t=θ FT (t)} is equal to

max
{

θ ∈ Z+

∣∣∣∑θ
t=0 FT (t) =

∑θ
t=0[FT ]c, θ < T ([FT ]c)

}
+ 1.

This claim can be proved by the properties of any flow-table FT as follows:∑θ
t=0 FT (t) ≥

∑θ
t=0[FT ]c(t) for any θ ∈ Z+, and∑θ

t=0 FT (t) =
∑θ

t=0[FT ]c(t) for any θ ∈ Z+ with [FT ]c(θ) < c. ��

Thus, from Lemma 3 and (9), QF can be reduced to the following problem QF′.

QF′ : minimize max
1≤i≤4

max
1≤p≤m

{cpτ +
∑m

k=p FTi(kτ)}
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3.2 Reduction to Min-Max Resource Allocation Problem Under
Network Constraints

The problem QF′ can be reduced to the min-max resource allocation problem
under network constraints as will be shown below. This problem is a kind of min-
max flow problem with multiple sources and sinks in a static network [5, 6, 7]
which is defined as follows. Suppose we are given a network with multiple sources
and sinks such that a fixed amount of supply is associated with each source, and
the cost function γt(xt) which is nondecreasing in xt is associated with each sink
t where xt denotes the amount of flow entering t. Then the problem asks to find
a (static) flow that minimizes the maximum of the cost functions of sinks.

all
t

m
C

2
C1

C

Fig. 6. Illustration of the entire network constructed in Section 3.2

We will explain how we construct a (static) network (see Fig. 6) for which
finding an optimal solution for the min-max resource allocation problem pro-
duces an optimal solution of the problem QF′. The network to be constructed
consists of m components C1, C2, . . . , Cm. Each component Cp except Cm has
four layers while Cm has three layers. The first layer of each component Cp

has eight sources which correspond to vertices wp
i , up

i , i = 1, 2, 3, 4 defined in
the previous subsection. The second and third layers consists of four vertices
denoted by vp

1,i, v
p
2,i, i = 1, 2, 3, 4. The fourth layer consists of a single vertex vp
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The connection between the layers are as shown in Fig. 7(a). Vertex wp
i is con-

nected to vp
1,i and vp

1,i+1 such that the flows on (wp
i , vp

1,i) and (wp
i , vp

1,i+1) repre-
sent the allocation of ap

i to Ni and Ni+1, respectively. The vertex up
i is connected

to vp
1,i and the flow on (up

i , v
p
1,i) represents the supply gp

i allocated to Ni. In gen-
eral, if p is large, V p∩Ui may become empty. This case can be treated by letting
gp

i = 0. Only the arcs from the second to third layer have finite capacity cτ
in Cp with 1 ≤ p ≤ m − 1 while the arcs in Cm have infinite capacity. The
capacity of the other arcs is ∞. All vertices vp

3 with 1 ≤ p ≤ m − 1 are con-
nected to tall. The vertices vm

2,i, i = 1, 2, 3, 4 of Cm as well as tall are sinks of this
network which are associated with a cost function. The actual cost function for
each vm

2,i, i = 1, 2, 3, 4 is equal to the amount of the flow entering it. The cost
function associated with tall takes zero irrespective of the flow value entering
it. In addition to this, we prepare arcs between consecutive components. More
precisely, as shown in Fig. 7(c), there is an arc from vp

1,i to vp+1
1,i for each p with

1 ≤ p ≤ m− 1 and i with 1 ≤ i ≤ 4. The capacity of this arc is defined to be ∞.
This arc is called a bridge.

The meaning of the capacity cτ on the arcs from the second to the third layer
in Cp with 1 ≤ p ≤ m− 1 is as follows. Let us consider FTi of (9) and perform
ceiling operation to obtain the completion time of Ni. If the amounts of supply
carried over to time p′τ plus the amount FTi(p′τ) is less than or equal to cτ ,
max1≤p≤m{cpτ +

∑m
k=p FTi(kτ)} is attained for p > p′. Thus, a positive flow

going through a bridge stands for the situation that the amounts of supply carried
over to time p′τ plus the amount FTi(p′τ) is larger than cτ and thus a positive
amount of flow will be carried over to FTi((p′+1)τ). The cost function associated
with the min-max resource allocation problem here associated with each sink
vm
2,i, i = 1, 2, 3, 4 is the amount of the excess carried over to time mτ when

performing ceiling operation to FTi which is equivalent to max1≤p≤m{cpτ +∑m
k=p FTi(kτ)} − cmτ . Since cmτ is constant, the min-max resource allocation

problem defined in this subsection solves the problem QF′.
It is known that the min-max resource allocation problem for the network

with |V | vertices, |A| arcs and |T | sinks can be solved in O(|T |(|V ||A| log |V |+
|T | log M

|T |)) time where M denotes the sum of supplies [5, 6, 7]. The second term
in the parenthesis, i.e., O(|T | log M

|T | ), is the time required to solve the resource
allocation problem without the network constraints. Since our cost function as-
sociated with vm

2,i, i = 1, 2, 3, 4 is linear, we can reduce the time to O(|T |) (the
details are omitted). In our case, |T | is constant and |V | = O(

√
n), |A| = O(

√
n),

thus the running time becomes O(n log n).

4 Conclusion

We have presented an O(n log n) time algorithm for the quickest flow problem
in a grid network with uniform arc capacity. The algorithm proposed in this
paper can be extended to a general layered network N such that (1) the transit
time from a vertex v to a sink r dose not depend on the choice of a path, and
(2) the underlying layered graph D can be decomposed into arc-disjoint layered
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graphs D1, D2, . . . , Dk which spans V1, V2, . . . , Vk respectively, where CHr =
{v1, v2, . . . , vk} and Vi is the set of vertices from which vi is reachable in D.
Thus, the result can also be generalized to the case where the arc capacity is
a multiple of c by regarding the arc as multiple ones as long as the resulting
layered graph satisfies the requirement just mentioned above.
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Abstract. We study an extension of the set cover problem, the con-
nected set cover problem, the problem is to find a set cover of minimal
size that satisfies some connectivity constraint. We first propose two al-
gorithms that find optimal solutions for two cases, respectively, and then
we propose one approximation algorithm for a special case that has the
best possible performance ratio. At last we consider how to apply the
obtained result to solve a wavelength assignment problem in all optical
networks.
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1 Introduction

Given a set system (U,F), where U contains n elements and F is a family of m
subsets of U such that every element of U belongs to at least one subset in F ,
here each subset in F has a positive weight, a set cover C of U is a subfamily of
F such that every element in U is in at least one of the subsets in C. The set
cover problem is to find a set cover with the minimal total weight of subsets in
the set cover. For this famous NP-hard problem, Johanson [4] proposed a simple
greedy algorithm for the unweighted case (or equivalently all weights are the
same) with approximation ratio upper bounded by 1 + lnn, and later Chvátal
[2] generalized their algorithms to the weighted case and proved the same result.

The set cover problem has many applications in practice. For example, Ruan
et al [7] studied how to route and allocate wavelengths to a broadcast con-
nection so that the total wavelength conversions required is minimized. Under
some conditions they formulate this problem as two closely related set cover
problems, the minimum wavelength-covering problem and the minimum vertex-
wavelength-covering problem. But some practical problems may have special
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configurations and the set cover model may not appropriate for them. In par-
ticular, the set cover model proposed by Ruan el al [7] is not applicable to the
case of limited wavelength conversions. In this case, connectedness of a set cover
appears to be an important requirement.

We therefore in this paper consider a natural extension of the set cover prob-
lem, the connected set cover problem. Besides the universal set U and a family F
of U , we are also given a graph G with vertex-set V (G) = F and edge-set E(G)
consisting some edges between some pairs of subsets in F . A set cover C ⊆ F of
U is called connected if the induced subgraph G(C) is connected, where G(C)
is a subgraph of G that consists of all edges whose two endpoints are both in
C. The problem is to find a connected set cover with the minimal number of
subsets. It is easy to see that the classic set cover problem is a special case of
the connected set cover problem with a completed graph.

In this paper we will first show that the connected set cover problem is NP -
hard even if at most one vertex of the given graph has degree greater than two,
and it cannot be solved in polynomial-time. We then propose two polynomial-
time algorithms for the case where every vertex in the graph has degree at most
two. For the case where at most one vertex has degree greater than two, we
propose an approximation algorithm with performance ratio at most 1 + lnn
that is the best possible. In the end we discuss an application of the connected
set cover problem to the wavelength assignment of broadcast connections in the
optical networks.

2 Complexity Study

In this section, we study the complexity of the connected set cover problem for
some special graphs. We shall see that the difficulty in solving the connected set
cover problem not only lies in the structure of (U,F) system but also related to
the property of give graph G. Graph G is called a line graph if two vertices in
V (G) have degree one and all others have degree two. Graph G is called a ring
graph if it is connected and every vertex in V (G) has degree two. Graph G is
called a spider graph if G is a tree and only one vertex has degree greater than
two, a spider graph is particularly called a star graph if one vertex has degree
greater than one while all others have degree one.

Theorem 1. The connected set cover problem on star graphs is NP-hard.

Proof. Given an instance of the set cover problem of uniform weight, (U,F), we
construct an instance of the connected set cover problem, (U ′,F ′) and a graph
G on F ′ as follows: the universal set U ′ = U ∪ {u0}, where u0 /∈ U , the family
F ′ = F ∪ {u0}, and graph G has edge-set E(G) = {(u0, f) | f ∈ F}. Clearly, G
is a star graph and every set cover of U ′ must include subset {u0} of U ′. Thus
the set cover problem has a set cover C if and only if the connected set cover
problem has a set cover C ∪ {u0}.

Theorem 2. The connected set cover problem on line or ring graphs can be
solved in polynomial time.
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Proof. Every line graph G can be represented by a path (f1f2 · · · fm−1fm), where
each vertex fi corresponds to a subset in F , and f1 and fm have degree one (they
are two ends of the path). Notice in this case that any connected set cover consists
of subsets whose corresponding vertices make a subpath (fifi+1 · · · fj−1fj) for
some i, j with i ≤ j. Thus to find the minimum connected set cover we just need
to check all

(
m
2

)
possible solutions (some of them may not be set covers) and

then choose the minimum one. This method requires time O(m3n).
Similarly, for ring graphs we just need to check all m(m−1) possible solutions

and then choose the minimum one. This method also requires time O(m3n).

3 Efficient Algorithms for Line and Ring Graphs

In the proof of Theorem 2 we have described a simple algorithm for the con-
nected set cover problem for line and ring graphs, respectively, both have time-
complexity of O(m3n). In this section, we will propose more efficient algorithms
for these two special cases.

We first study how to find the minimum connected set cover in line graphs
in an efficient way. The basic idea is to delete as many vertices as possible until
the remaining vertices cannot constitute a set cover. This can be carried out
as follows: (1) Delete the vertices from the leftmost to the right one by one
until the remaining vertices can not constitute a set cover, and then delete the
vertices from the rightmost to left one by one until the remaining vertices can
not constitute a set cover. (2) Do the same operations as in (1) but in the
reverse order, that is, deleting first from the rightmost to left and then from
the leftmost to right. (3) Delete the rightmost and then the leftmost vertices
alternatively until the remaining vertices can not constitute a set cover. When
the process is stopped, if the last vertex is deleted from the left (right) side
then repeat delete the vertices from left (right) until the remaining vertices
can not constitute a set cover. (4) Choose the best of these three solutions
obtained.

16151413121110987654321 17

161514 5432 1110987 1312

LR RL LRLR   OPT

Fig. 1. An counterexample

Denote the above three operations by LR, RL, and LRLR. Unfortunately, the
above described method could not find the optimal solution. Fig. 1 gives such
an example with U = {i | i = 1, 2, · · · , 9} and F = {fj | j = 1, 2, · · · , 17}, where
fi is defined as follows.
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f1 = {4, 5, 9}, f2 = {3, 9}, f3 = {6, 8}, f4 = {3, 4, 7},
f5 = {1, 2, 5}, f6 = {7, 9}, f7 = {6, 7}, f8 = {8},
f9 = {2, 3}, f10 = {4, 5}, f11 = {5, 9}, f12 = {1, 2, 3, 4, 5},
f13 = {5, 6, 7, 8, 9}, f14 = {1, 2, 3}, f15 = {4, 5, 6}, f16 = {7, 8, 9},
f17 = {1, 4, 7}.

It can be verified that LR, RL,and LRLR produce three different solutions, but
neither of them is optimal. Observe that the optimal solution {f12, f13} is on
the right half side of the line graph and does not contain the central vertex f9.
However, we shall see that if the optimal solution contain the central vertex,
then the above method can be modified to find the optimal solution.

The above example and analysis suggest that we should first find such an
optimal solution that contains the central vertex, and then find those two optimal
solutions that belong to the left and right half sides of line graph, respectively.
In the end we just choose the best solution among these three solutions.

To implement this method, we can modify operations LR and RL as follows:
deleting vertices from left to right, or from right to left is stopped until the
remaining vertices can not constitute a set cover or the central vertex is reached,
and modify LRLR as follows:adding neighbor vertex (and its adjacent edge) of
left endnodes of current path and deleting vertices from rightmost to left one
by one until the remaining vertices can not constitute a set cover. We use RR
represent the operation deleting vertices from rightmost to left is stopped until
the remaining vertices can not constitute a set cover. The algorithm is described
below as a recursive procedure, where initially i = 1 and j = m.

Algorithm A. Finding an Optimal Set Cover in Line Graphs

procedure LineCover(i, j):
if j − i ≤ 2 then return fi or fj if one of them covers U
else find a cover F1 = {fl1 , fl1+1, · · · , fr1} applying modified LR on path

between fi and fj ;
find a cover F2 = {fl2 , fl2+1, · · · , fr2} applying modified RL on path
between fi and fj ;
find a cover F3 = {fl3 , fl3+1, · · · , fr3} applying procedure
Modified LRLR on path between fl1 and fr1 and path
between fl2 and fr2 ;
return the best among {F1, F2, F3, LineCover(i, j+i

2 ), LineCover( j+i
2 , j)}.

procedure Modified LRLR

Input: F1 = {fl1, fl1+1, · · · , fr1} and F2 = {fl2 , fl2+1, · · · , fr2}
if l1 − l2 ≤ 1 or r1 − r2 ≤ 1 then return the best among {F1, F2}
else for j = 1, 2, · · · , l1 − l2 − 1 do

find a cover Fj = {fl1−j , · · · , fr′
j
} by applying RR on path

between fl1−j and fr′
j−1

.
return the best among {Fj |j = 1, 2, · · · , l1 − l2 − 1}.
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Theorem 3. Given an instance of the connected set cover problem, (U,F) and
a line graph G on F , Algorithm A finds an optimal solution to the problem in
O(nm2) time.

Proof. Notice that if the optimal solution does not include the central vertex in
the line graph, then it must be in either the left half or the right half of the line
graph. Thus to prove that the algorithm returns an optimal solution, it suffices
to show that if there exists an optimal solution F ∗ = {fl, fl+1, · · · , fr−1, fr} that
contains the central vertex, then it can be found by one of the three operations.

Let us denote the solutions obtained by applying modified operations LR, RL,
and LRLR with i = 1 and j = m, by Fi for i = 1, 2, 3, respectively. By the rules of
operations LR, RL, and LRLR, we have l2 ≤ l3 ≤ l1 and r1 ≥ r3 ≥ r2. See Fig. 2.

11 r22 3l 3
m
21 mll rr

Fig. 2. For the proof of Theorem 3

It is easy to verify that when l = l1, F ∗ = F1, when r = r2, F ∗ = F2, and
when l < l1 and r > r2, F ∗ = F3. Thus the solution returned by the algorithm
is optimal.

For the time-complexity of the algorithm, notice that in invoking the pro-
cedure LineCover(i, j) each of the two operations LR, and RL deletes at most
O(j − i) vertices and operation LRLR add and deletes total at most O(j − i)
vertices, and to check if the remaining vertices make a set cover needs time
O(mn). In addition, the procedure LineCover(i, j) is invoked at most ·2k times
for subpaths of length m/2k, each time produces 3 solutions; In the total at most
3
∑log2 m

k=0 2k = 3m solutions are produced, this requires time bounded by

3
log2 m∑
k=0

2k(
m

2k
)2n ≤ 6m2n.

To find the best solution among 3m ones requires times O(m). Thus the algo-
rithm has the running time at most O(m2n).

We now study how to find the minimum connected set cover in ring graphs
in an efficient way. For the simplicity of the presentation, we just consider the
case of even m. The basic idea is to make the given ring graph into a line graph
by removing a vertex, say f1, and then apply Algorithm A to the resulting
line graph. Notice however that the minimum connected set cover may include
vertex f1 excluded from the line graph. Thus we need to apply Algorithm A to
the line graph obtained by removing the vertex fm

2 +1, which is on the opposite
side of vertex f1. As a result, we find two connected set covers. See Fig. 3.

If the better of these two solutions has size less than m/2, then this must be the
optimal solution. Otherwise it has size greater than m/2. In this case, the optimal
solution must contain both vertices f1 and fm

2 +1 and includes either all vertices
in {f1, f2, · · · , fm

2 +1} or all vertices in {fm
2 +1, fm

2 +2, · · · , fm, f1}. Therefore we
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vertices oppositive to each other on the ring
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Fig. 4. (a) The original ring graph, (b) and (c) ring graphs obtained by merging half
number of vertices

can shrink the ring graph of size m to two ring graphs of size m/2 by merging
all vertices in {f1, f2, · · · , fm

2 +1} and {fm
2 +1, fm

2 +2, · · · , fm, f1} into one vertex
f ′
1 and f ′

m
2 +1, respectively. See Fig. 4. In the end, we return the best of the four

obtained solutions.
The problem is now reduced to two subproblems such that optimal solu-

tions must contain the new vertex f ′
1 (f ′

m
2 +1) in two ring graphs of half size,

where the universal set also becomes smaller since those vertices covered by
{f1, f2, · · · , fm

2 +1} and {fm
2 +1, fm

2 +2, · · · , fm, f1} should be removed. This
process is repeated until the optimal solution is found. The algorithm is again
more formally described as a recursive procedure, where initially i = 1, j = m
and U ′ = U .

Theorem 4. Given an instance of the connected set cover problem, (U,F) and
a ring graph G on F , Algorithm B finds an optimal solution to the problem in
O(m2n) time.

Proof. The correctness of the proof follows from two facts: (1) If the optimal
solution Fopt has size less than m/2, then it must be either F1 or F2 since it must
be included in either F \{f1} or F \{fm

2 +1} (maybe in both of them). (2) If Fopt
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has size greater than m/2 and it is not equal to F1 or F2, then it must be either
{fm

2
, · · · , f1}∪RingCover(1, m/2, UL) or {f1, · · · , fm

2
}∪RingCover(m/2, 1, UR).

Algorithm B. Finding an Optimal Set Cover in Ring Graphs

procedure RingCover(1, m, U):
if m− 1 ≤ 2 then return f1 or f2 or {f1, f2} if one of them covers U .
else find the optimal cover F1 with f1 removed using Algorithm A,

find the optimal cover F2 with fm removed using Algorithm A,
find the optimal cover F3 with f1 included using
Procedure RingCover(i, j, U ′, fi) on ring (1, m).

return the best of three covers, F1, F2, F3.

procedure RingCover(i, j, U ′, fi):
if j − i ≤ 2 then return fi or fj if one of them covers U .
else find the optimal cover F1 with f i+j

2
removed using Algorithm A,

if the cover has size less than j−i
2 then return it

else set UL be the set consisting of vertices in U not covered by
{f j+i

2
, · · · , fi}, fi = ∅

set UR be the set consisting of vertices in U not covered by
{fi, · · · , f j+i

2
}, fi = ∅.

return the best of three covers, F1,
{f j+i

2
, · · · , fi} ∪ RingCover(i, j+i

2 − 1, UL, fi), and

{fi, · · · , f j+i
2
} ∪ RingCover( j+i

2 + 1, i, UR, fi).

For the time-complexity of the algorithm, notice that each time when we
invoke the procedure RingCover(i, j, U ′), we produce F1 using Algorithm
A, this requires time O(n(j − i)2) by Theorem 3. In addition, the procedure
LineCover(i, j) is invoked at most ·2k times for subrings of length m/2k, each
time produces 2 solutions; In the total at most 2

∑log2 m
k=0 2k = 2m solutions are

produced, this requires time bounded by

2
log2 m∑
k=0

2k6(
m

2k
)2n ≤ 24m2n.

To find the best solution among 2m ones requires times O(m). Thus the algo-
rithm has the running time at most O(m2n).

4 Approximation Algorithm for Spider Graphs

As in the previous section we have proved that the connected set cover prob-
lem is NP -hard even for star graphs, thus in this section we will propose an
approximation algorithm for the problem in spider graphs. We will show that
this algorithm has almost the best possible approximation ratio.
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Suppose that G is a spider graph with central vertex f0 ∈ V (G) having degree
k > 2. We now decompose the graph into line subgraphs L1, L2, · · · , Lk, which
have a common end f0. Then there are two possible cases for an optimal set
cover F ∗, (1) it consists of only vertices in one of the line subgraphs, and (2) it
includes at least two vertices belonging to different line graphs. For case (1) we
can find the optimal solution by running Algorithm A k times (just choose the
best among k solutions). For case (2) we can first transform the problem into the
set cover problem, and then solve the problem approximately by the generalized
greedy algorithm [2].

The transformation can be done as follows: For each subset f ∈ F with f �= f0,
which corresponds to a vertex in graph G, we define a new subset f ′ that is the
union of the subsets whose corresponding vertices in G are on the path p(f, f0)
between f and f0 and delete the elements contained in f0, and define f ′

0 = f0.
We then construct a new family of subsets F ′ = {f ′ | f ∈ F}. We also assign a
weight w(f ′) to f ′ which is equal to the number of edges in p(f, f0), f �= f0, and
w(f ′

0) = 1. The following lemma shows that the new set system (U,F ′) has the
property that we need for our algorithm.

Lemma 1. The set system (U,F) with a graph G on F has a minimum con-
nected set cover C of size |C| that includes subset f0 if and only if the set system
(U,F ′) has a minimum weighted set cover C′ with weight w(C′) = |C|.

Proof. “Only-if”: For i = 1, 2, · · · , k, let f i ∈ C be the subset whose correspond-
ing vertex in Li has the longest path to f0. Then C contains every subset whose
corresponding vertex is on path p(f i, f0). Clearly, the size of C \ {f0} is equal
to the sum of number of edges in path p(f i, f0) for i = 1, 2, · · · , k. Hence f

′
0 and

f
′
i for i = 1, 2, · · · , k constitute a set cover of U that has weight |C|.
“If”: Notice that C′ does not contain two subsets f ′ and g′ such that the

corresponding vertices f and g are in the same line graph Li for some i, otherwise
either f ′ ⊂ g′ or g′ ⊂ f ′, thus one of them is redundant contradicting that C′

is a minimum set cover. Let f ′
i ∈ C be the subset which includes w(f ′

i) vertices
in Li \ {f0}, i = 1, 2, · · · , k. Hence the union of the subsets whose corresponding
vertices are within w(f ′

i) distance from f0 on line graph Li, for i = 1, 2, · · · , k,
makes a connected set cover C of U with size |C| =

∑
i w(f ′

i).

Algorithm C. Finding Connected Set Covers in Spider Graphs

Decompose the spider graph into line graphs Li’s.
Find the optimal set cover Fi for each i using Algorithm A.
Construct a new set system (U,F ′).
Find a set cover F ′

0 of U using the generalized greedy algorithm.
Produce the corresponding set cover F0 of (U,F ′) from F ′

0.
Return the best set cover among {Fi | i = 0, 1, 2 · · ·}.
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Theorem 5. Given an instance of the connected set cover problem, (U,F) and
a spider graph G on F , Algorithm C returns a solution in time of O(m2n)
whose size is at most log n times that of the optimal solution.

Proof. Let Fopt be an optimal solution, and FC be a solution returned by
Algorithm C. If a line graph Li contains Fopt for some i, then FC = Fopt. If
not (there are two sets in Fopt such that one is in line graph Li while the other
in line graph Lj ), w(FC ) ≤ w(F ′

0) ≤ log nw(Fopt), the last inequality comes
from Chvátal’s result [2].

In fact, we will show that Algorithm C is the best possible approximation
algorithm for the connected set cover problem in spider graphs. To prove this
we need the following lemma due to Feige [3].

Lemma 2. For any 0 < ρ < 1, there is no approximation algorithms with per-
formance ratio ρ lnn for the set cover problem unless NP ⊂ DTIME(npoly log n).

Theorem 6. For any 0 < ρ < 1, there is no approximation algorithms with
performance ratio ρ lnn for the connected set cover problem in spider graphs
unless NP ⊂ DTIME(npoly log n).

Proof. Suppose, by contradiction argument, that there exists an algorithm Aρ′

with approximation performance ratio ρ′ < 1 for the connected set cover problem
in spider graphs. We now design an algorithm Aρ for the set cover problem using
algorithm Aρ′ as a subroutine.

Given an instance I of the set cover problem, a set system (U,F), construct
an instance I ′ of the connected set cover problem, a set system (U ′,F ′) and a
graph G on F ′ as follows: Let U = {ui | i = 1, 2, · · · , n}, F= {fi|i = 1, 2, · · · , m},
and take k = �ρ′/(1− ρ′)�. w.l.o.g suppose that k < m. Set U ′ = U ∪ {u0} ∪W
and F ′ = F ∪ {fij | i = 1, 2, · · · , m, j = 1, 2, · · · , k} ∪ {u0}, and spider graph
G has central vertex u0 and m paths < u0fi1fi2 · · · fikfi > are attached to u0
for i = 1, 2, · · · , m, where W = {i1, i2, · · · , im},

⋃k
j=1 fij = W, i = 1, · · · , m,

and for every pair (i, j) �= (i′, j′), fij �= fi′j′ . It is easy to see that instance I
has a set cover C with |C| > 1 if and only if instance I ′ has a set cover C′

with |C| > 2 and C′ = C ∪ {fij | fi ∈ C} ∪ {u0}. Let Copt and C′
opt be optimal

solutions to instances I and I ′, respectively, then |C′
opt| = k|Copt| + 1 if Copt

is not a singleton. We now apply algorithm Aρ′ to instance I ′ and obtain a set
cover C′ satisfying |C′| ≤ ρ′(ln n)|C′

opt|. Thus we have

k|C|+ 1 ≤ ρ′(ln n)(k|Copt|+ 1) = kρ′(lnn)|Copt|+ ρ′ lnn,

from which we deduce

|C| < ρ′(lnn)|Copt|+
ρ′

k
lnn ≤ ρ′(ln n)(1 +

1
k

)|Copt|.

This contradicts Lemma 2 since ρ′(1 + 1/k) < 1.
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5 Application

In this section we shall study the wavelength assignment problem of broadcast
connections in optical networks, which is a special case of the connected set cover
problem. An optical network can be modelled as a connected graph G(V, E, w),
where V is the vertex-set of graph G representing the set of routing nodes in
the network, E is the edge-set of graph G corresponding to optical fiber links
between nodes in the network, and w(e) represents the wavelengths available
on edge e ∈ E. Fig. 5(a) shows an example of such a network of 10 vertices.
Observe that 5 wavelengths {w1, w2, · · · , w5} are used in the network, but only
two wavelengths w2 and w3 are available on edge between v4 and v8.

In multi-hop optical networks where wavelength converters are equipped at
routing nodes, a broadcast connection between communication nodes consists of
one or more light-trees. A wavelength conversion is required at the joint of two
light-trees if they use different wavelengths. In an all optical network, the optical
signal is allowed in the optical domain throughout the conversion process, how-
ever shifting wavelength channels from one to another makes routing/switching
complicated. Thus an incoming wavelength at a routing node is allowed to con-
vert to a subset of available wavelengths [6]; In particularly, it is allowed to be
shifted only to neighboring wavelengths. For example, w3 can only be shifted to
w2 or w4. Thus it is desirable to minimize the number of wavelength used to
reduce the conversion delay and workload of routing nodes.

Our problem here is how to construct a spanning tree T of given graph
G(V, E, w) such that the number of wavelengths used is minimized. Fig. 5(b)
shows an optimal wavelength assignment for the example given in Fig. 5(a),
where four wavelengths are needed and wavelength conversions are required at
vertices v4 and v8.

Let us see how to formulate this problem as a connected set cover problem.
Let U be the vertex-set V , and fi be the set of vertices in V that are incident to
some edges e with wi ∈ w(e), that is the set of vertices covered by wavelength
wi. For the example of Fig. 5(a), f1 = {v2, v3, v4, v5}. First we assume that
the vertices in fi induce a connected subgraph of G(V, E, w). The network of
Fig. 5(a) satisfies this assumption. Now define a graph Gw on the set system
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Fig. 5. (a) An optical networks, and (b) an optimal wavelength assignment
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(U,F = {fi}) such that there is an edge between fi and fi+1 if and only if
fi ∩ fi+1 �= ∅. Clearly, Gw is a line graph of union of two or more line graphs.

Thus we can use Algorithm A to find the minimal number of wavelengths
to cover all vertices in V . As a result, we obtain a subgraph of G(V, E, w) with
only selected wavelengths on its edges. Notice that the subgraph may not be a
tree, so we need to remove some edges. Moreover, there may exist some edge e
with w(e) including more than one wavelengths selected, so we must determine
which one to use. These two tasks can be carried out as follows: remove edges
and the wavelength wi such that the vertices in the resulting fi still constitute
a connected subgraph of G(V, E, w). Fig. 6 shows the obtained subgraph of
example Fig. 5(a). After removing two edges (v2, v3), (v6, v7), and wavelengths
w2 and w3 on (v3, v4) and (v4, v8), respectively, we get the optimal solution as
shown in Fig. 5(b).
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Fig. 6. Establishing a broadcast connection from the obtained subgraph

In the end let us consider the case where the vertices in fi do not induce a
connected subgraph of G(V, E, w) for some i. In this case we can modify the
original graph G(V, E, w) as follows: Suppose that the vertices in fi form k
disjoint connected components C1, C2, · · · , Ck for some k > 1. We can replace
one wavelength wi by k different dummy wavelengths wi1, wi2, · · · , wik in such a
way that wavelength wij is available on all edges in Cj . These k new wavelengths
are not introduced physically in the network, they are just wavelength wi and
used only for the simplicity of discussion. After such a modification, we are able
to use the above described method.

6 Conclusions

We have studied the connected set cover problem and also discussed its appli-
cation to the wavelength assignment problem of broadcast connections in all
optical networks.

Another possible application comes from the biological conservation [1,5]. The
problem concerned is how to establish a series of protected areas or reserves
in order to conserve species or habitat types. The objective is to select the
minimal number of sites (from some candidate sites) to represent all species
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in the area. Clearly, this can be modeled as a set cover problem. The obtained
solution, however, often produces a highly fragmented network since the solution
generally neglect the spatial location of sites. This restricts the possibility of
dispersal between sites, which for many species may be essential for long-term
persistence. When incorporating considerations of reserve connectivity and the
cost, we will get a weighted version of the connected set cover problem, which is
more difficulty to solve.
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Abstract. In this paper, a branch and bound algorithm for computing the
treewidth of a graph is presented. The method incorporates extensions of existing
results, and uses new pruning and reduction rules, based upon properties of the
adopted branching strategy. We discuss how the algorithm can not only be used
to obtain exact bounds for the treewidth, but also to obtain upper and/or lower
bounds. Computational results of the algorithm are presented.

1 Introduction

The notions treewidth, pathwidth and branchwidth have received a growing interest in
recent years not only because of their theoretical significance in (algorithmic) graph
theory, but also because many problems that are intractable on graphs, including a large
number of well-known NP hard problems, have been shown to be polynomial-time and
even linear-time solvable on graphs that are given together with a tree decomposition
of width at most some constant k. (See e.g., [6, 8].)

Arnborg et al. [2] proved that computing the treewidth of a graph is an NP-hard
problem. So, in recent years, many different algorithms have been designed to compute
the treewidth exactly, approximately, or do preprocessing. Many of these algorithms
have been designed for special classes of graphs, but in this paper, we will focus on
algorithms that work on general undirected graphs.

A number of these algorithms were approximation algorithms. These are polynomial
time approximation algorithms for treewidth, that have approximation ratio O(log n)
[6] or O(log k) [1], where k is the actual treewidth of the input graph. Other algo-
rithms [1] have a constant approximation ratio, but their running time is exponential in
the treewidth. On the other hand there were several proposals for heuristic algorithms
for upper and lower bound on the treewidth. Some of these algorithms are based on
the concept of graph triangulation. These are Maximum Cardinality Search, Lexico-
graphic Breadth First search algorithms, Minimum Degree, Minimum Fill-in, MFEO1,
MFEO2, RATIO1 and RATIO2. Other heuristics are based on other ideas, e.g., the
Minimum Separating Vertex Set algorithm. Some examples of lower bound methods
are Maximum Minimum Degree, MMD+, D-LB, and contraction and treewidth lower
bounds algorithms. See e.g. [3, 6, 8, 10, 12, 14].

Using the above techniques may help to find a close value for the treewidth of a
graph, but in many cases, not the exact one. Therefore, there is a need for algorithms
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that produce the exact treewidth, at least for some graphs. Bodlaender [7] invented a
linear-time algorithm to decide whether the treewidth of a graph is at most a constant
k. Unfortunately, this algorithm is exponential in a polynomial in k and hence appears
to be impractical even for k = 4, see [16].

Well known techniques that we can use to design an algorithm for finding the exact
treewidth are for example Branch-and-Bound and Integer Linear Programming. In this
paper we introduce an algorithm for finding the treewidth of a graph using a Branch-
and-Bound technique. The results of this study may suggest further research into the
effects of using branch and bound technique to find the treewidth of graphs.

In 2003, Gogate and Dechter [13] reported on work on a branch and bound algorithm
on treewidth. Independently, part of the work reported in the current paper had been
done before publication of [13]. There are some significant differences in details and
results between [13] and this paper. We report here also on these differences.

A generalization of the algorithm can be used to compute the weighted treewidth of
weighted graphs. In this paper, we focus on the unweighted case. Furthermore, more
than one variant of the algorithm has been developed and implemented to test the effect
of using different pruning rules on the efficiency of the algorithm. Finally, it is interest-
ing to note that, for some large graphs, it is infeasible to find the exact treewidth of the
graph in a reasonable time by using branch and bound. Therefore, we developed our
algorithm such that it yields better lower and/or upper bounds on the treewidth in such
cases.

Several proofs are skipped in this extended abstract due to space constraints.

2 Definitions and Preliminary Results

Throughout this paper G = (V, E) denotes a finite, simple and undirected graph,
where V is the set of vertices of the graph and E the set of edges of the graph. A
subgraph of a graph G(V, E), induced by a set of vertices W ⊆ V , is denoted by
G[W ] = (W, {{v, w} ∈ E|v, w ∈ W}). A graph H is a minor of graph G, if H can
be obtained from G by zero or more vertex deletions, edge deletions, and edge contrac-
tions. Edge contraction is the operation that replaces two adjacent vertices v and w by
a single vertex that is connected to all neighbors of v and w. The set of neighbors of
a vertex v is denoted N(v) = {w ∈ V |{v, w} ∈ E}. The set of neighbors of v plus
v itself is denoted N [v] = N(v) ∪ {v}. In the same manner we define N0[v] = {v},
N i+1[v] = N [N i[v]], N i+1(v) = N i+1[v] \ N i[v]. We can extend the above def-
inition to a set of vertices instead of one vertex. Suppose that S is a set of vertices,
then N0[S] = S, N i+1[S] = N [N i[S]], N i+1(S) = N i+1[S] \ N i[S], N [S] =⋃

v∈S N [v], N(S) = N [S] \ S, i ∈ N . A vertex v in G is called simplicial, if its
neighbors N(v) form a clique in G. A vertex v in G is called almost simplicial, if its
neighbors except one form a clique in G, i.e., if v has a neighbor w such that N(v)−{w}
is a clique. A graph G is called triangulated (or: chordal) if every cycle of length four
of more possesses a chord. A chord is an edge between two non consecutive vertices
of the cycle. A graph H = (V, F ) is a triangulation of graph G = (V, E), if G is a
subgraph of H and H is a triangulated graph.
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Definition 1. Let x be a vertex in a graph G = (V, E). The fill-in of x in a graph G,
is the number of edges that must be added between the neighbors x, N(x), to make x
simplicial, i.e.,

fill-in(x) = |{{v, w}|v, w ∈ N(x), {v, w} �∈ E}|

The fill-in-excluding-one neighbor of x in a graph G is the minimum number of edges
that must be added between vertices in N(x) (minus one vertex), such that x is almost
simplicial, i.e.,

fill-in-excl-one(x) = minz∈N(x)|{{v, w}|v, w ∈ N(x)− {z}, {v, w} �∈ E}|

Definition 2. A tree decomposition of the graph G = (V, E) is a pair (X, T ) in which
T = (I, F ) a tree, and X = {Xi|i ∈ I} a collection of subsets of V , one for each node
of T , such that

⋃
i∈I Xi = V , for all {u, v} ∈ E, there exists an i ∈ I with u, v ∈ Xi,

and for all i, j, k ∈ I: if j is on path from i to k in T , then Xi ∩Xk ⊆ Xj . The width
of the tree decomposition ((I, F ), {Xi|i ∈ I}) is maxi∈I |Xi − 1|. The treewidth of a
graph G is the minimum width over all tree decompositions of G.

3 The Branch and Bound Algorithm for Treewidth BB-tw

The main elements of the branch and bound algorithm for finding the treewidth of a
graph, BB-tw, are: The space of all feasible solutions, the upper and lower bounds on
the treewidth, and the rules for pruning the feasible solutions that do not contain optimal
solution. These are described in Sections 3.1 and 3.2. More details are discussed in
Sections 3.3 – 3.6.

3.1 Problem Description

Several algorithms for determining or approximating the treewidth of a graph are based
on triangulations formed from vertex orderings.

Definition 3. A linear ordering of a graph G = (V, E) is a bijection f : V →
{1, 2, · · · , |V |}, also denoted as [f(1), · · · , f(|V |)]. A linear ordering of the vertices
of a graph G, σ = [v1, · · · , vn] is called a perfect elimination order (p.e.o.) of G, if for
every 1 ≤ i ≤ n, vi is a simplicial vertex in G[vi, · · · , vn], i.e., the higher numbered
neighbors of vi form a clique.

Lemma 1. (See [8].) A graph G is triangulated, if and only if G has a perfect elimina-
tion order (p.e.o).

Definition 4. Let v be a vertex in a graph G. Eliminating a vertex v from a graph G,
eliminate(vG), is the procedure of adding an edge between every pair of non-adjacent
neighbors of v in G, and then removing v and its incident edges from G. We call the
graph G′ obtained from eliminating a vertex v from a graph G, a temporary graph of
G. I.e., G′(W, F ) = G(V − {v}, E − {{v, w}|{v, w} ∈ E, {v, w} �∈ F}).
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Lemma 2. Let G′ = (V ′, E′) be a minor of graph G = (V, E). Then
treewidth(G′) ≤ treewidth(G).

Let σ = [v1, · · · , vn] be a linear ordering of G = (V, E), n = |V |. Construct a graph
H as follows: Set H = G; for i = 1 to n, add to H an edge between each pair of
non-adjacent higher numbered neighbors (in H) of vi. H is the graph obtained from
G by the fill-in procedure with respect to σ; σ is a perfect elimination scheme for H ,
hence H is chordal. The following theorem is well known.

Theorem 1. Let G = (V, E) be a graph, k = |V |. The following statements are equiv-
alent.

– The treewidth of G is at most k.
– G has a triangulation with maximum clique size at most k + 1.
– There is a linear ordering σ of width at most k.

Lemma 3. Let H be a triangulation obtained from applying the fill-in procedure on a
graph G due to an ordering σ of the vertices of G. Then, the treewidth of G is at least
the size of the maximum clique in H minus 1.

Thus, we take as the space of all feasible solutions for the computation of the treewidth
of G the set of all possible linear orderings of the vertices of G. We represent these by
a search tree of all possible solutions Tr by taking a root r, and having for each node
a child for each possible choice of the next vertex in the elimination ordering. Thus,
a node in the search tree represents a fixed initial part of the linear ordering. From
this point, we look for the best ordering of the vertices not in the initial part. This is
equivalent to looking for a linear ordering for the graph, obtained by eliminating all
vertices in this initial part.

Initializing the space of all feasible solutions. Suppose that the given graph is as in
Figure 1 and the initial value for the upper bound on the treewidth of this graph equals 9.
Furthermore, suppose we use the above method for building the search tree, and we use
only one pruning rule in the branch and bound algorithm, that is, if the degree of the cur-
rent elimination vertex in the temporary graph is greater than the value of the reported
upper bound, then we skip the search operation from the current node in the search
tree to its next right sibling. Hence, the first elimination ordering that the algorithm will
check is [1, . . . ,27]. This means that we have to visit more nodes in the space of all
feasible solutions than that we have to visit if we have build this space in the following
manner. Instead of arranging the available nodes in the tree in ascending order, due to
their labels, from left to right in each level of each subtree of the search tree, we arrange
these nodes in each level due to their sequence in the perfect elimination ordering for
finding the best upper bound on the treewidth. Therefore, the initial values of the first
elimination ordering for implementing BB-tw algorithm on the graph in Figure 1 will
be [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,2,3,4,5,6,7,8,9,1] when we
use for example the elimination ordering obtained from finding the upper bound on the
treewidth by using the Minimum Fill-in Heuristic. Thus, the number of visited nodes in
the tree becomes smaller by using this method for building the search tree. As a result,
the running time of the branch and bound algorithm for finding the treewidth of a graph
becomes also smaller.
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3.2 Pruning Rules

In a branch and bound algorithm, we do not search the entire search tree, but speed up
the computation by omitting several parts of the search tree, of which we have estab-
lished that we do not need these parts for finding the optimal solution. We consider a
number of pruning rules.

Pruning Rule 1: The upper bound equals to the lower bound. Before starting the
branch-and-bound search, we compute the upper bounds on the treewidth of the given
graph by using the heuristics introduced in [3], and the lower bounds on the treewidth
by using two heuristics, namely, the Degeneracy heuristic and Ramachandramurthi γ
parameter of the graph [15]. We report the best upper and lower bounds obtained from
these heuristics. Then, we check whether the best lower bound equals the best upper
bound, and if so, then this value is returned as the treewidth of the given graph; other-
wise we start the branch and bound. This comparison is also done when a new (better)
upper or lower bound for the treewidth is found during the branch-and-bound search.

Moreover, in nodes in the search tree, we compute the degeneracy lower bound, and
prune when this value is not smaller than the best known upper bound.

Pruning Rule 2: Number of vertices in the temporary graph. Let G′ = (V ′, E′)
be the temporary graph obtained by eliminating a set of vertices X ⊆ V from a graph
G = (V, E). Let max be the maximum degree of all vertices in the initial part σ0 of
the elimination ordering, as represented by the node the search currently is on. Let α be
the maximum degree of the vertices in σ0 at the moment of their elimination. As any
linear ordering that starts with σ0 has width at most β = max(α, |V ′| − 1), we prune
when β < ub with ub the currently best known upper bound, and set ub to β.

Pruning Rule 3: The degree of the eliminated vertex. If the degree of a vertex v
in the temporary graph is larger than or equal to the best upper bound known for the
treewidth of the input graph, then we know that eliminating v will give an elimination
ordering whose width is at least the degree of v, hence will not yield an improvement to
the upper bound. Thus, the branch which selects v as next vertex to be eliminated can
be pruned at this point.

Pruning Rule 4: Equivalent elimination orderings. Gogate and Dechter [13] ob-
served that in some cases, swapping two successive vertices does not affect the width of
a linear ordering. We use a simpler but equivalent test. Suppose v and w are succesive
vertices in a linear ordering σ, and v and w are not adjacent or v and w are adjacent and
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each has a higher numbered neighbor that is not a neighbor of the other, then the order-
ing σ′, obtained by swapping v and w in σ, has the same width as σ. Thus, we prune
the search tree as follows: for such a pair of vertices v, w, when we have looked at a
branch representing the elimination orderings starting with x1, . . . , xi, v, w, we prune
the branch representing the orderings starting with x1, . . . , xi, w, v.

Pruning Rule 5: Simplicial and strongly almost simplicial vertices. Given a lower
bound β for the treewidth (of the original graph), a vertex is strongly almost simplicial
if it is almost simplicial and its degree is at most β. It is known (see [5]) that for each
simplicial or strongly almost simplicial vertex v, there is always a linear ordering of
minimum width that starts with v. Thus, at each point in the search tree, we check if
there is a simplicial or strongly almost simplicial vertex v. If so, we have only one
branch, selecting v as the vertex to be eliminated, and we prune all sibling branches
selecting a vertex �= v.

3.3 The Edge Addition Rule

Gogate and Dechter use another rule, based on the notion of improved graph. If two
vertices v and w have at least ub + 1 common neighbors, where ub is an upper bound
for the treewidth, then adding the edge {v, w} does not increase the treewidth (see [9]).
Thus, the algorithm of [13] has at nodes a step that looks for such pairs of nonadjacent
vertices with many common neighbors, and if found, adds the edge. The hope is that
this leads to larger degree vertices that may be pruned by Rule 3.

However, a close analysis of the step shows that it will not help to prune the search
tree, and hence only unnecessary spends time: Suppose v and w have at least ub + 1
common neighbors, but are not adjacent. As long as no common neighbor of v and w
has been eliminated, the degrees of v and w are too large to have these vertices selected;
after a common neighbor is eliminated, v and w are anyhow adjacent. Thus, we save
time, and do not use this edge addition rule.

3.4 Balancing the Use of Pruning Rules

Using a pruning rule can have a positive or a negative effect on the running time: the
time saved by the reduction of the number of considered nodes in the search tree should
be less than the time used for testing the validity of the rules. Also, the gain obtained by
using some pruning rule may depend on what other rules are also used. Pruning rules
2 and 3 should always be used. For the other rules, we have tested their effect on the
running time when used separately and when used in combination with other pruning
rules on a large number of graphs.

3.5 The Algorithm

In Figure 2, we give one version of the BB-tw algorithm. In the first step of the algo-
rithm, we check if the best upper and lower bounds for the treewidth of the given graph,
obtained form the heuristics, are equal. If so, we return this value as the treewidth of the
graph. Otherwise, we initialize the best upper bound found so far to the treewidth and
the perfect elimination ordering for the best upper bound to the elimination ordering
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Algorithm BB-tw(S, σ, ub, i)

1 if ((n − i) < max) /* PR2 */

2 set ub ← max; max ← max′; σ ← σ′; G′ ← G;

3 if (ub = lb) { return(ub); exit(); } /* PR1 */

4 else

5 foreach v in G′ do

6 if (degree(v) < ub) /* PR3 */

7 if (not((∃ ordering O have been tested before the current

8 elimination ordering σ such that, O[k] = σ[k], k = 1, · · · i − 2&
9 σ[i − 1] = w & O[i − 1] = v & O[i] = w) & (({v, w} �∈ E(G′′))

10 or ({v, w} ∈ E(G′′) & |N(v)| = 0 or |N(w) = 0)) /* PR4 */

11 if (degeneracy(G′) < ub)
12 set G′′ ← G′; eliminate v from G′;

13 set S′ ← S; remove v from S;

14 set σ′ ← σ; add v to position i in the ordering σ;

15 if (degree(v) > max)
16 set max′ ← max; max ← degree(v);

17 BB-tw (S, σ, ub, i + 1);

18 G′ ← G′′; max ← max′; S ← S′; σ ← σ′;

19 if(max > ub) return;

20 endif

end BB-tw;

Fig. 2. A general scheme for the BB-tw Algorithm

for the treewidth. Next, we look for the linear ordering with a better upper bound in the
search tree. We prune any ordering from the search tree, which does not yield a better
upper bound than that we have reported yet.

We have developed several different versions of the algorithm depending on which
pruning rules we incorporate and how we incorporate them in the algorithm. This allows
us to see which of the different setups is most effective.

Note: We declare G′ and lb in the algorithm as global parameters. The initial value of
G′ equals the given graph G and the initial value of the lb is lbh. The values of the
parameters of the first call for the algorithm are BB-tw (peoubh

, [ ], ubh, 0), where ubh

and lbh are the best upper and lower bounds obtained from the upper bound and lower
bound heuristics for the the treewidth of G, and peoub is the perfect elimination ordering
corresponds to the best upper.

Theorem 2. If the BB-tw algorithm terminates normally, then the upper bound ob-
tained from this algorithm equals the exact treewidth of the graph.
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Incorporating the Simplicial and Strongly Almost Simplicial Pruning Rule in the
BB-tw Algorithm
We have tested two methods for incorporating the Simplicial and Strongly Almost Sim-
plicial pruning rule in the branch and bound algorithm. In the first method, we check
at each visited node v in the search tree, whether or not v is simplicial or strongly al-
most simplicial in the temporary graph G′. In the case that v is simplicial or strongly
almost simplicial, we test if the degree of v is less than the best upper bound reported
up to now, ub. If it satisfies this condition too, then we prune the subtrees rooted at the
siblings of this node from the search tree, eliminate the vertex from the graph G′ and
set the value of the parameter max to the maximum value of its current value and the
degree of the eliminated vertex. However, if v is simplicial or strongly almost simplicial
and its degree in G′ is greater than or equal to the ub, then we prune the subtree rooted
at the parent of v from the search tree.

In the second method, at each visited node v in the search tree, we find all simplicial
and strongly almost simplicial vertices in G′. Then, if there is no vertex amongst these
whose degree is greater than or equal to the reported upper bound, ub, then we eliminate
all these vertices from the graph, set the value of max to the maximum value of its
current value and the maximum degree of these vertices, and prune all the subtrees
rooted at the sibling of each of these vertices, such that if v1, · · · , vm are simplicial
vertices in G′ and they are siblings of the current visited node v in the search tree, then
we eliminate the subtrees rooted at the siblings of v1, then we eliminate the subtrees
rooted at the children of v1 except the subtree rooted at the node v2, and so on until the
subtree rooted at vm. However, if there is a vertex amongst these simplicial or strongly
almost simplicial vertices its degree is greater than or equal to ub, then we eliminate the
subtree rooted at the parent of the node v from the search tree.

3.6 A Memory Friendly Data Structure

In order to save memory and time, we use an elegant data structure, which is a variant
of the adjacency matrix representation of graphs. Assume the vertices are numbered
1, 2, . . . , n. We have an n by n integer matrix A, with for i < j, Aij = 1 if {i, j} ∈ E,
and Aij = 0 otherwise. The diagonal entries Aii are used to denote if i is already
eliminated; Aii = −1 if i is not eliminated, and Aii = k if i is the kth eliminated
vertex. The lower half of the matrix is used to give fill-in edges: for j < i, Aij is
initially 0, and becomes k if the edge {i, j} is created when eliminating vertex k. We
use this matrix as a global variable, and thus have very little parameters to pass on when
doing recursive calls in the search, thus giving a considerable gain in speed.

4 Using the Branch and Bound Algorithm for Finding Better
Upper and Lower Bounds for the Treewidth

If the branch and bound algorithm does not terminate within reasonable time, then it still
often can be used as an upper bound or lower bound heuristic. For this, we initialize the
upper bound for the treewidth in the BB-tw algorithm with the best upper bound value
obtained from heuristic algorithms. When we terminate the algorithm (e.g., after a pre-
determined amount of time), we report the best upper bound found by the algorithm,
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with its corresponding linear ordering. Thus, the algorithm either terminates normally,
and yields the exact treewidth, or gives an upper bound.

To use the algorithm as a lower bound method, we give the algorithm as upper bound
value some integer α. α can be any value, and does not need to be a real upper bound
on the treewidth. Now, the algorithm may possibly find a solution of width less than α.
If it terminates without having found such a solution, we know that α is a lower bound
to the treewidth of G.

We have employed a scheme where we restart the branch and bound algorithm with
several different values for the upper bound; each restart is made after the algorithm has
run for some fixed amount of time (e.g., 10 minutes or an hour).

Branch and bound flexibility. The branch and bound technique has a clear advantage
over other treewidth lower and upper bounds techniques: it is often known as the ’any
time’ property. When given enough time, the algorithm can find the exact bound, but
using more time allows to obtain better bounds. Lower or upper bound heuristic give
one lower or upper bound value, and when this is not the exact value, giving the heuristic
more time does not help to get closer or equal to the exact value.

5 Experimental Results

In this section, we report on computational experiments for the branch and bound algo-
rithm BB-tw. Our experiments are conducted on a large number of graphs and networks.
Because of space constraints, we will show only some of these results in two tables.

Table 1 shows 15 instances of sizes between 21 and 50 vertices. Table 2 shows 12
instances of sizes between 67 and 450 vertices. The Alarm, Oesoca, Vsd and Wilson
are probabilistic networks taken from medical applications; several versions exist of the
Myciel networks. The Barley and Mildew networks are used for agricultural purposes,
the Water network models a water purification process and Oow-trad, Oow-bas, Oow-
solo, and Ship-ship networks are developed for maritime use. The other graphs are
obtained from the well-known DIMACS benchmarks for vertex coloring. 1

The algorithm was implemented using C++ on Windows 2000 PC with Pentium 4,
2.8 GHz processor. The tables shown in this section include besides the basic informa-
tion for the graph, also columns for the treewidth of the graph (tw), the initial upper
bound (ub), the method used for finding the initial upper bound (ub − heuristic), and
the running time of the algorithm (time). We use the character ”*” in the column time
to indicate that the algorithm did not terminate normally, namely, the algorithm ran out
of time. We defined one hour as the maximum limit time for running the algorithm on
the input graph, i.e., if the algorithm did not find the exact treewidth within one hour,
then it was ended and returned an upper bound value for the treewidth.

All the instances we have chosen to show in Tables 1 and 2 have the following prop-
erty. The best known upper bound on treewidth of each instance does not equal the
best known lower bound on the treewidth of the same instance, obtained from upper
and lower bound heuristics. In other words, we have excluded each instance from Ta-
bles 1 and 2 whose known upper bound equals to its known lower bound. The BB-tw

1 http://www.cs.uu.nl/people/hansb/treewidthlib, 2004 - 2005.
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algorithm needs less than one second to determine the exact treewidth of any graph
when the upper bound on the treewidth equals the lower bound on the treewidth of a
graph.

We observe that BB-tw algorithm was able to determine the exact treewidth for all
instances of sizes less than 50 vertices except one, namely, Ship-ship, within one hour
time. Whereas, the algorithm was able to determine the exact treewidth of only 4 graphs
of the large size given in Table 2 within one hour time.

We confirm the observation of Gogate and Dechter [13], that graphs of small
treewidth (close to 1) and large (close to n) are easy for BB-tw algorithm also.

Table 1.

Graphname |V | |E| lb ub ub-heuristic tw time

Alarm 37 65 2 4 MFEO1 4 0
Barley 48 126 3 7 MFEO1 7 30.443
Mildew 35 80 2 4 MFEO1 4 0
myciel4 24 71 8 11 MF 10 0.2
myciel5 47 236 14 20 MFEO1 19 178.7
Oesoca+ 67 208 9 11 MFEO1 11 0.02
Oow-bas 27 54 2 4 MFEO1 4 0
Oow-solo 40 87 4 6 MFEO1 6 275.608
Oow-trad 33 72 4 6 MFEO1 6 86.772
Queen5 5 25 320 12 18 MFEO1 18 0.62
Queen6 6 36 580 15 26 MF 25 10.62
Ship-ship 50 114 4 8 MFEO1 8 *
VSD 38 62 2 4 MFEO1 4 0
Water 32 123 8 10 MF 9 0.07
Wilson 21 27 2 3 MFEO1 3 0

Table 2.

Graphname |V | |E| lb ub ub-heuristic tw t

anna 138 986 11 12 MFEO1 12 0.911
david 87 812 11 13 MFEO1 13 56.72
dsjc125 1 125 736 15 64 MFEO1 64 *
dsjc125 5 125 3891 55 109 RATIO2 109 *
dsjc250 1 250 3218 43 177 MFEO1 177 *
inithx.i.2 645 13980 31 35 MF 31 0.01
inithx.i.3 621 13969 31 35 MF 31 0.02
games120 120 1276 10 38 RATIO2 38 *
LE450 5A 450 5714 53 304 RATIO2 304 *
myciel6 95 755 12 35 MFEO1 35 *
myciel7 191 2360 31 66 MFEO1 66 *
school1 385 19095 80 209 RATIO2 209 *
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6 Conclusions

We can summarize the main results from implementing the BB-tw algorithm as follows:

1. The branch and bound algorithm is efficient for finding the treewidth, namely, it
gives the treewidth of a graph in reasonable time, if the given graph has one or
more of the following properties:

• The graph consists of at most 20 vertices.
• The graph is triangulated or almost triangulated, namely, includes many

cliques.
• The differences between the degrees of the vertices of the graph are relatively

large. In other words, the distribution of the degrees of the vertices is irregular.
• The treewidth of the graph is small (less than 7).
• The graph has a treewidth which is close to the graph cardinality.

2. The branch and bound algorithm is not efficient for finding the treewidth, if the
given graph has one or more of the following properties:

• The graph consists of a large number of vertices and a large number of edges.
• If the distribution of the degrees of the vertices of the graph is regular, namely,

the degrees of the vertices of the graph are close to each other.

3. It is difficult to predict the running time of the algorithm when the given graph has
a large number of vertices and edges.

4. The ordering of the pruning rules in the BB-tw algorithm has a significant effect
on the running time of the algorithm. Two different ordering of the pruning rules in
the algorithm may guide, in many instances, to two different running times of the
algorithm for the same instance.

5. The efficiency of the algorithm depends critically on the effectiveness of the branch-
ing and bounding rules used; bad choices could lead to repeated branching, without
any pruning, until the temporary graph becomes very small. In that case, the method
would be reduced to an exhaustive enumeration of the domain, which is often im-
practically large.

6. The branch and bound algorithm BB-tw can be improved in two directions. The
first one has to do with the data type we use for representing the graph in the
memory. In the current version of the algorithm, we have defined all the values
of the adjacency matrix as integers, whereas we believe that the values of the upper
part can be defined as bits. The second direction has to do with incorporating more
effective pruning and reduction rules in the algorithm. A third approach is to look
for a large clique in the input graph, and using the fact that there is an elimination
ordering with optimal width that ends with the vertices on the clique.

7. A generalization of the algorithm can be used to compute the weighted treewidth
of weighted graphs. This will be reported elsewhere, with other results on weighted
treewidth.

Acknowledgments. We would like to thank Gerard Tel for useful comments on earlier
versions of this paper, and Arie Koster for joint work on the data structure of Section 3.6.
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Abstract. Given a class of graphs G, a graph G is a probe graph of G if
its vertices can be partitioned into two sets P (the probes) and N (non-
probes), where N is an independent set, such that G can be embedded
into a graph of G by adding edges between certain vertices of N. If the
partition of the vertices into probes and nonprobes is part of the input,
then we call the graph a partitioned probe graph of G. We give the first
polynomial-time algorithm for recognizing partitioned probe distance-
hereditary graphs. By using a novel data structure for storing a multiset
of sets of numbers, the running time of this algorithm is O(n2), where
n is the number of vertices of the input graph. We also show that the
recognition of both partitioned and unpartitioned probe cographs can be
done in O(n2) time.

1 Introduction

To analyze long DNA sequences, restricted enzymes are used to cut the DNA into
smaller fragments called clones. The clones are then reproduced many times
for further research. To resequence the DNA strand, tests are performed to de-
termine whether a pair of clones overlap in the longer DNA sequence. In DNA
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physical mapping, one wishes to find the linear order of the clones based upon
experimental information. To save some experimental cost to test the overlap
between clones, the following algorithm is proposed by Zhang et al. [19, 22]. The
clones are distinguished as being either probes or nonprobes. No experiments
are performed to test whether pairs of nonprobes overlap, but a probe is tested
against each other probe or nonprobe.

In graph terminology, we are given a graph G whose vertices are distinguished
as being either probes or nonprobes. The set of all nonprobes is an independent
set of G. A certain property π defines a class of graphs G. We want to construct a
graph H having property π by adding certain edges to G between vertices iden-
tified as nonprobes. We call it the partitioned probe-G-graph recognition problem.
In the original DNA mapping problem, the graph H should be an interval graph. A
graph G = (V, E) is called an interval graph if each vertex v ∈ V can be assigned
an interval Iv on the real line such that (x, y) ∈ E if and only if Ix∩Iy �= ∅. Thus
we formulate the above DNA physical mapping based on incomplete overlapping
information as the partitioned probe-interval-graph recognition problem.

Definition 1 ([5]). Let G be a class of graphs. A graph G = (V, E) is a probe
graph of G if its vertex set can be partitioned into a set of probes P and an
independent set of nonprobes N, such that G can be made into a graph H ∈ G

by adding edges between certain nonprobes. We call H an embedding of G.

If the partition of the vertices of a graph G into a set of probes P and a set of
nonprobes N is part of the input, then we call G a partitioned probe graph of G,
if G can be embedded into a graph of G by adding edges between certain vertices
of N. In this paper we denote a partitioned graph as G = (P + N, E), and when
this notation is used it is to be understood that N is an independent set. We will
refer to the class of (partitioned) probe graphs of the class of (XXX) graphs as
(partitioned) probe (XXX) graphs where (XXX) is the name of a graph class.

Efficient algorithms for the recognition of partitioned probe interval graphs
appeared in [16, 18]. Partitioned and unpartitioned probe chordal graphs were
handled along the way in [2, 12], starting the research into other graph classes.
A recognition algorithm for unpartitioned probe interval graphs appeared in [5].
Probe interval bigraphs were studied in [4]. Cycle-free probe interval graphs
were addressed in [21]. If the complement of any graph G in graph class G is
also a graph in G, we call graph class G a self-complementary class of graphs.
The recognition of partitioned and unpartitioned probe graphs of some self-
complementary classes, such as cographs and split graphs, were studied in [6].

The partitioned probe-G recognition problem is a special case of the graph
sandwich problem for graph class G, defined as follows. Given two graphs G1 =
(V, E1) and G2 = (V, E2) with E1 ⊆ E2, determine whether there exists a graph
G = (V, E) with E1 ⊆ E ⊆ E2 such that G ∈ G [11]. When E2 − E1 is the set of
edges of a clique, we obtain the partitioned probe-G recognition problem. In [11]
it is shown that the sandwich problem can be solved in polynomial time for
threshold graphs, splitgraphs, and cographs. The problem is NP-complete for
comparability graphs, permutation graphs, and for several other graph classes.
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In this paper, we solve the partitioned probe recognition problem for two
graph classes, namely, for the class of distance hereditary graphs and for the
class of cographs. We give the first polynomial-time recognition algorithm for
probe distance-hereditary graphs. By using a novel data structure for storing a
multiset, the running time of this algorithm is O(n2), where n is the number of
vertices of the graph. We also show that the recognition of both partitioned and
unpartitioned probe cographs can be done in O(n2) time.

2 Recognizing Partitioned Probe Distance Hereditary
Graphs

A graph G is a pair G = (V, E), where the elements of V are called the vertices
of G, and where E is a family of two-element subsets of V called the edges. We
denote edges of a graph G as (x, y) and we call x and y the endvertices of the
edge. Unless stated otherwise, a graph is regarded as undirected. For a vertex x

we write N(x) for its set of neighbors, and N[x] = N(x) ∪ {x}. We write n = |V |

for the number of vertices and m = |E| for the number of edges. For a graph
G = (V, E) and a subset S ⊆ V of vertices, we write G[S] for the subgraph of G

induced by S. For a subset W ⊆ V of vertices of a graph G = (V, E) we write
G − W for the graph G[V − W], i.e., the subgraph induced by V − W. For a
vertex x we write G − x rather than G − {x}.

Definition 2 ([14]). A graph is distance hereditary if the distance between any
two vertices in any connected induced subgraph equals the distance in the original
graph.

Definition 3. A pendant vertex in a graph is a vertex of degree 1.

Definition 4. A twin in a graph is a module1 with two vertices. A twin is true
if the vertices are adjacent. Otherwise the twin is false.

Theorem 1 ([1]). Let G be a graph. The following conditions are equivalent:

1. G is distance hereditary.
2. G does not contain a house, hole, domino, or gem as an induced subgraph.
3. Every connected induced subgraph of G with at least two vertices has a pendant

vertex or a twin.
4. For every pair of vertices x and y with d(x, y) = 2, there is no induced x, y-

path of length greater than 2.

Affirmation of membership in the class of distance-hereditary graphs can be
obtained using a linear-time algorithm [7, 10, 15].

Definition 5. Let G = (P+N, E) be a partitioned graph. A pair of vertices {x, y}

is a probe twin if one of the following holds:
1 A module is a subset M of vertices such that for all vertices x, y ∈ M and z ∈ V −M

(x, z) ∈ E if and only if (y, z) ∈ E.
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1. x, y ∈ P and {x, y} is a module in G, or
2. x, y ∈ N and {x, y} is a module in G, or
3. x ∈ P, y ∈ N and N(y) − x = (N(x) − y) ∩ P.
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Fig. 1. A house, a hole, a domino, and a gem

Lemma 1. Assume x is a pendant vertex in G. Then G is probe distance hered-
itary if and only if G − x is probe distance hereditary.

Proof. Consider an embedding of G − x into a distance-hereditary graph. Ob-
viously, adding x as a pendant vertex to the embedding does not introduce a
house, hole, domino, or gem. ��

Theorem 2. A partitioned graph G = (P + N, E) is partitioned probe distance
hereditary if and only if every connected induced subgraph with at least two ver-
tices has a pendant vertex or a probe twin.

Proof. Assume that G is partitioned probe distance hereditary. We may assume
that G is connected. We show that G has a pendant vertex or a probe twin. Let H

be an embedding of G. Assume H has a pendant vertex x. Since G is connected,
x is also pendant in G. If H has a twin, say {x, y}, then {x, y} is obviously a probe
twin in G.

Assume that every connected induced subgraph of G has a pendant vertex or
a probe twin. Let x be a pendant vertex in G. By induction, G−x is partitioned
probe distance hereditary. By Lemma 1, G is also partitioned probe distance
hereditary.

Assume G has a probe twin {x, y}. If at least one of them is a nonprobe, then
let x be a nonprobe. By induction, G−x is partitioned probe distance hereditary.
We may add x to an embedding of G − x as a true twin or a false twin of y. We
do not create a house, hole, domino, or gem, since these forbidden graphs are
twin-free. Therefore, the graph is an embedding of G. ��

By Theorem 2 we can test whether a partitioned graph G is a partitioned probe
distance-hereditary graph by checking whether we can repeatedly remove a pen-
dant vertex or a vertex of a probe twin from G until G becomes empty. It is
fairly easy to see that finding a pendant vertex or a probe twin can be done in
O(n + m) time. We get an O(n2 + nm)-time algorithm for the recognition of
partitioned probe distance-hereditary graphs. In the following we show that this
algorithm can be implemented to run in O(n2) time using a data structure to
speed up the procedure of finding probe twins. The data structure is a binary
tree that stores a multiset. It is similar to a trie (see [20, p. 104]) and is used to
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test whether there are two sets that are equal in the multiset. In the following we
describe the data structure first, and then the implementation of the recognition
algorithm using the data structure.

A multiset differs from a set in that each element has a multiplicity, which
is a natural number indicating (loosely speaking) how many times it is in the
multiset. In this paper we consider multisets whose elements are subsets of V =
{1, . . . , n} and denote them by calligraphic capitals, like S. For clarity of notation,
we use {1, 2, 3} for a normal set with elements 1, 2, and 3 and use {∗ 2, 2, 3 ∗}
for a multiset with elements 2, 2, and 3. It is possible that the empty set is an
element of a multiset S.

Definition 6. The representative of a nonempty multiset S, denoted by r(S), is
defined as follows. If |S | = 1 or when all sets in S are equal then let r(S) = n+1.
Otherwise, r(S) is the smallest number r such that there exist U, U′ ∈ S, with
r ∈ U and r /∈ U′.

We recursively define as follows a binary tree, RT(S), for a multiset S. The binary
tree RT(S) is a rooted tree. Each node x in RT corresponds with a multiset X (x),
and is associated with a list Υ(x) (possibly nil), which is the set of “univer-
sal” elements less than r(X (x)) contained in all elements of X (x), in increasing
order. We also use Υ(x) to denote the corresponding set. The label �(x) is the
representative r(X (x)).

1. If r(S) = n + 1, then RT is a tree consisting of one node x which is the root.
In this case, X (x) = S, Υ(x) is the ordered list of elements of any set in S,
and �(x) = r(S).

2. Suppose r(S) ≤ n. For the root x of RT, X (x) = S, Υ(x) is the ordered list
of {s | s < r(S) and s ∈ U for all U ∈ S}, and �(x) = r(S). Let SL and SR be
two multisets where

SL = {∗ U − Υ(x) | U ∈ S and r(S) /∈ U ∗}, and
SR = {∗ U − (Υ(x) + �(x)) | U ∈ S and r(S) ∈ U ∗} .

The left and right children of x are the root of RT(SL) and the root of RT(SR),
respectively.

Denote the root of RT(S) by ρ(S). For each leaf node x of RT, let P(x) be the
path in RT from x to ρ. For each edge (y, z) of P(x), let S(y, z) = Υ(z) if z is
the left child of y and S(y, z) = �(y) + Υ(z) if z is the right child of y. Let S(x)
denote the set that is the union of S(y, z)’s of all edges (y, z) visited by P(x),
where z is a child of y, and Υ(ρ(S)).

For example, let

n = 6, S = {∗ {1, 2, 3}, {1, 2, 3}, {1, 2, 4, 5}, {1, 4, 5, 6}, {1, 4, 5, 6} ∗} .

Then RT(S) is a tree with five vertices, x1, x2, x3, x4, and x5, where x1 is
the root, x2 and x3 are the left and right children of x1, respectively, and x4

and x5 are the left and right children of x3, respectively. Then �(x1) = 2,
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Υ(x1) = {1}, X (x2) = {∗ {4, 5, 6}, {4, 5, 6} ∗}, �(x2) = 7, Υ(x2) = {4, 5, 6}, X (x3) =
{∗ {3}, {3}, {4, 5} ∗}, �(x3) = 3, Υ(x3) = ∅, X (x4) = {∗ {4, 5} ∗}, �(x4) = 7, Υ(x4) =
{4, 5}, X (x5) = {∗ ∅, ∅ ∗}, �(x5) = 7, Υ(x5) = ∅. Also, S(x2) = {1, 4, 5, 6},
S(x4) = {1, 2, 4, 5}, and S(x5) = {1, 2, 3}.

There is a surjective mapping from the elements in S to the leaf nodes of
RT(S). Let x be a leaf node of RT(S). It is easy to see that |X (x)| > 0, and there
are |X (x)| copies of the set S(x) in S. Conversely, if U ∈ S, then there exists a
leaf node x of RT such that U = S(x). In our application, in each leaf node x

we store |X (x)| pointers with each of them pointing to a copy of the set S(x) in
S. These pointers are bidirectional. The tree RT(S) is a binary tree and every
internal node has two children. If x is a leaf node, then |X (x)| ≥ 1. Therefore
the number of nodes of RT(S) is O(|S |).

Definition 7. 1. Denote the size of S as ‖S‖, where ‖S‖ =
∑

U∈S |U|.
2. Denote the number of nodes in RT(S) by n(RT(S)).
3. Let W denote the set of leaves of RT(S). Define ‖RT‖, the size of RT(S), as

‖RT‖ = n(RT(S)) +
∑

x∈V(RT(S))

| Υ(x)| +
∑

x∈W

|X (x)| .

4. Let x be a leaf node of RT(S). We say that a set U ∈ S is in X (x), denoted
by U ∈ X (x), if U = S(x).

Notice that we don’t store X (x) of any node x. We only store |X (x)| pointers,
each of them pointing to a copy of the set U = S(x) in each leaf node x of S.

Lemma 2. ‖RT(S)‖ = O(‖S‖+ |S |).

Lemma 3. Two sets S and S′ in S are equal if and only if they are in X (x) for
some leaf node x of RT(S).

Hence, by Lemma 3, there exist two equal sets in S if and only if there exists a
leaf node x of RT(S) such that both sets are in X (x).

In our applications, we need pointers to speed up the operations on RT(S).
For each s ∈ {1, . . . , n} we maintain a list of pointers that point to the position in
lists Υ(x) of all X that contain s. For each s ∈ {1, . . . , n} we also maintain a list
of pointers that point to nodes x with �(x) = s. These pointers are bidirectional,
i.e., for each s ∈ Υ(x) or s = �(x) of a node x there is a pointer that points back
to the pointer of s pointing to it. For each set U ∈ S we maintain a pointer that
points to the leaf node x where U is in X (x). In the following we assume all
binary trees RT(S) contain these pointers, and all operations performed on the
binary trees of multsets update pointers accordingly.

In the following, we describe a basic procedure that merges two binary trees
RT(S) and RT(S′) of multisets S and S′, respectively. Let x = ρ(S) and x′ =
ρ(S′). Given RT(S) and RT(S′), procedure merge(x, x′) constructs RT(S+S′) in
time proportional to ‖RT(S)‖+‖RT(S′‖−‖RT(S+S′)‖+ |S |+ |S′|. By definition,
�(x) = r(S) and �(x′) = r(S′). For notational brevity, use r and r′ for r(S) and
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r(S′), respectively. We describe procedure merge(x, x′) recursively as follows.
Assume r ≤ r′. The case where r > r′ can be done in a similar way.

Compute r∗ = r({Υ(x), Υ(x′)}). Since Υ(x) and Υ(x′) are in increasing order,
r∗ can be computed in O(|{s | s ∈ Υ(x), s ≤ r∗}| + 1) time. There are several
cases. In the following, for an internal node z let zL and zR denote the left and
right children of z. If z is not the root, denote the parent of z by zP.

1. r∗ = n + 1. By definition, Υ(x) = Υ(x′). All sets in S + S′ contain Υ(x).
(a) r = n + 1. By the assumption, r = r′ = r∗ = n + 1. Hence all sets in
S+S′ are equal. Both RT(S) and RT(S′) are trees of a single node. Output
the tree obtained from RT(S) by replacing X (x) with X (x) + X ′(x′ as
RT(S + S′). The list of X (x) + X ′(x) can be obtained in O(1) time by
concatenating the two lists.

(b) r < n + 1. There are two cases.
i. r = r′. Some sets in S and in S′, but not all of them, contain r.

Call merge(xL, x′
L) and merge(xR, x′

R), recursively. Then replace
the subtrees of RT(S) rooted at xL and xR with the trees returned
by merge(xL, x′

L) and merge(xR, x′
R), respectively, and output the

tree rooted at x.
ii. r < r′. All sets in S′ do contain Υ(x) = Υ(x′) but do not contain any

number k where r ≤ k < r′. Replace Υ(x′) with the empty set. Call
merge(xL, x′), recursively. Replace the subtree of RT(S) rooted at
xL with the tree merge(xL, x′), and output the tree rooted at x.

2. r < r∗ < n + 1. Clearly, r∗ /∈ Υ(x) but r∗ ∈ Υ(x′). All sets in S′ contain
Υ(x) but do not contain any number k where r ≤ k < r∗. Replace Υ(x′) with
{s ∈ Υ(x′) | s ≥ r∗}. Call merge(xL, x′), recursively. Replace the subtree of
RT(S) rooted at xL by merge(xL, x′). Output the tree rooted at x.

3. r = r∗ < n + 1. All sets in S′ contain both r and Υ(x). Replace Υ(x′) by
{s ∈ Υ(x′) | s > r}. Call merge(xR, x′), recursively. Replace the subtree of
RT(S) rooted at xR with the tree merge(xR, x′). Output the tree rooted at
x.

4. r∗ < r. Assume r∗ ∈ Υ(x). Then r∗ ∈ S for all S ∈ S and r∗ /∈ S′ for any
S′ ∈ S′. Create a new node y as the root of RT(S + S′). Let Υ(y) = {s ∈
Υ(x) | s < r∗} and �(y) = r∗. Let x be the right child of y and Υ(x) = {s ∈
Υ(x) | s > r∗}. Let x′ be the left child of y, and Υ(x′) = {s′ ∈ Υ(x′) | s′ > r∗}.
Output the tree rooted at y. The case where r∗ ∈ Υ(x′) is similar.

Lemma 4. One can merge two binary trees RT(S) and RT(S′) of two multisets
S and S′, respectively, into the binary tree RT(S + S′) of multiset S + S′ in
O(‖RT(S)‖+ ‖RT(S′)‖− ‖RT(S + S′)‖ + |S | + |S′|) time.

Proof. The proof is by induction. There are several cases in the merge procedure.
We present a tithe in this extended abstract. The whole hog can be found in the
full version.

Since numbers in Υ(x) and Υ(x′) are in increasing order, r∗, {s ∈ Υ(x) | s < r∗},
{s ∈ Υ(x) | s > r∗}, and {s′ ∈ Υ(x′) | s′ > r∗} can be obtained in O(|{s ∈
Υ(x) + Υ(x′) | s ≤ r∗}|) time if r∗ < n + 1 and in O(|Υ(x)| + 1) time otherwise.
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Consider Case 1(a). It takes O(|Υ(x)|+1) time to compute r∗. The sizes of RT(S)
and RT(S′) are O(1+ |S |+ |Υ(x)|) and O(1+ |S′|+ |Υ(x′)|), respectively. The size
of RT(S + S′) is O(1 + |S | + |S′| + |Υ(x)|). Since Υ(x) = Υ(x′), RT(S) + RT(S′) −
RT(S + S′) = |Υ(x)| + 1, and it takes O(|Υ(x)| + 1 + n(RT(S)) + n(RT(S′))) time
to obtain RT(S + S′), the lemma is clearly true in this case. ��

Lemma 5. Given S, RT(S) can be constructed in O(‖S‖+ |S |2 + n|S |) time.

Proof. First we sort the integers in each set in S in increasing order, which can
be done in O(n) time for each set, since integers are not greater than n. Hence,
the sorting step takes O(n|S |) time. Then, we build the binary tree RT({S}) for
each set S ∈ S. The binary tree of each multiset {S} can be built in O(1) time,
since the integers in S are sorted. The total size of these trees is O(‖S‖ + |S |).
Let T be the set of these trees. While T consists of more than one tree, pick any
two trees in T and merge them. Eventually, the only tree left in T is RT(S). By
Lemma 4, it takes O(‖S‖ + |S |2) to merge the initial |S | binary trees into one.
Therefore RT(S) can be constructed in O(‖S‖+ |S |2 + n|S |) time. ��

In our applications of the binary tree of a multiset, we never insert any new set
into the tree. The operations needed in our applications are deleting a set from
the tree and deleting an element s from all the sets that contain s. These two
deletion operations reduce the size of the tree. For U ∈ S we write S − U for
the multiset obtained from S by deleting one copy of U from it. If U is not in S,
S − U = S. For s ∈ {1, . . . , n}, let S − s be the multiset {∗ U − s | U ∈ S ∗}. The
binary tree supports the operation of deleting a set U from S, i.e., obtaining
RT(S − U) from RT(S) as follows. Follow the pointer of U that points to the
position of U in the list storing X (x) of leaf node x where U ∈ X (x). If |X (x)| > 1,
we simply remove U from X (x).2 In the following we assume |X (x)| = 1. If x is
a root, i.e., RT(S) is a single node, then RT(S) becomes empty. In the following
assume x is a leaf node, x is not the root, and y is the parent of x.

i. Assume x = yL. If y is the root, then remove both x and y from RT(S);
let yR be the new root; and replace Υ(yR) by the concatenation of Υ(y) +
�(y) + Υ(yR). Otherwise, remove x and y from RT(S), let yR be the child of
yP instead of y, and replace Υ(yR) by Υ(y) + �(y) + Υ(yR).

ii. Assume x = yR. If y is the root, then remove both x and y from RT(S); let
yL be the new root; and replace Υ(yL) by Υ(y)+Υ(yL). Otherwise, remove
x from RT(S), let yL be the child of yP instead of y, and replace Υ(yL) by
Υ(y) + Υ(yL).

Lemma 6. For any set U ∈ S, one can obtain RT(S − U) from RT(S) in O(1)
time.

2 The removal of leaf x from RT(S) implies also the deletion all those pointers that
point to leaf x and the integers in Υ(x). Likewise, the removal of a set U from X (x)

not only means the deletion of U from X (x) but also the deletion of the pointer of
U ∈ S that points to the position of U in X (x).
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Lemma 7. Given RT(S), one can determine in O(|S |) time whether there exist
two sets in S that are equal, and find them if they exist.

Proof. We can check in O(|S |) time whether there exists a leaf node x of RT(S)
with |X (x)| > 1. ��

Lemma 8. For any integer s ∈ {1, . . . , n}, one can obtain RT(S−s) from RT(S)
in O(‖RT(S)‖− ‖RT(S − s)‖+ |S |) time.

Proof. Follow the pointers of s to finds all x’s with �(x) = s or s ∈ Υ(x). For
a node x with s ∈ Υ(x), remove s from Υ(x). For a node x with �(x) = s,
clearly x is not a leaf node. Replace the subtree rooted at x with merge(xL, xR).
Let y be the root of merge(xL, xR). Replace Υ(y) with Υ(y) + Υ(x). Suppose
both nodes u and v have the property that either the label of the node is s

or the list associated with the node contains s. Then it is not hard to verify
that neither u is an ancestor of v nor v is an ancestor of u. Thus all subtrees
of RT(S) rooted at xL, xR, yL, and yR are distinct. Therefore the procedure
merge always merges distinct subtrees, and the number of nodes visited by all
merge procedures is O(|S |). The total size reduction for all merge procedures
is O(‖RT(S)‖ − ‖RT(S − s)‖). By Lemma 4, the deletion of s from S takes
O(‖RT(S)‖− ‖RT(S − s)‖ + |S |) time. ��

Our algorithm maintains four multisets of sets of vertices: S1 = {∗N[x] | x ∈ P ∗},
S2 = {∗N(x) | x ∈ P ∗}, S3 = {∗N[x]∩P | x ∈ P+N ∗}, and S4 = {∗N(x)∩P | x ∈
P + N ∗}. If one of these has repeated elements, by Lemma 7 a probe twin can
be found in O(n) time, once the four binary trees for these multisets have been
built. The total size of the four binary trees is O(n + m). In addition to the
trees, we maintain the degree of all vertices and a list P of pendant vertices,
vertices of degree one. A pendant vertex can be found in O(1) time from list P.
Whenever we remove a pendant vertex or a probe twin v, we update the degrees
of all vertices and list P in O(|N(v)|) time. The four binary trees are also updated
by deleting the neighborhood sets of the removed pendant or probe twin vertex
and obtaining RT(Si − v) from RT(Si), 1 ≤ i ≤ 4. By Lemma 8, the total time
in deleting vertices from the four binary trees is O(n2), since the initial size of
the four binary trees is O(n + m) and they become empty at the end of the
algorithm. Thus the algorithm can be implemented to run in O(n2) time and
we have the following theorem.

Theorem 3. There exists an O(n2) algorithm to test whether a partitioned
graph G is a partitioned probe distance-hereditary graphs and to find an em-
bedding for G in the affirmative case.

3 Recognizing Probe Cographs

A cograph is a graph without an induced P4, i.e., an induced path with four
vertices. Since the complement of a P4 is again a P4, it follows that cographs form
a self-complementary class of graphs. By now there are many characterizations
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known, and various characterizations are used in the literature to define the
class.

Theorem 4 ([8]). Cographs can be characterized as follows:

1. A graph consisting of a single vertex is a cograph.
2. Let G1 and G2 be cographs. Then the join of G1 and G2, obtained by making

every vertex of G1 adjacent to every vertex of G2 is again a cograph.
3. Let G1 and G2 be cographs. Then the (disjoint) union of G1 and G2 is again

a cograph.
4. There are no other cographs.

Notice that this decomposition recursively defines a cotree in which leaves cor-
respond with the vertices of the graph and internal vertices are labeled as joins
or unions. There is a wide variety of linear time cograph recognition algorithms.
To mention just a few, see, e.g., [9, 13].

In the following we show that the problem of recognizing probe cographs can
be reduced to the problem of recognizing partitioned probe cographs in O(n+m)
time.

Theorem 5. The problem of recognizing probe cographs can be reduced to the
problem of recognizing partitioned probe cographs in O(n + m) time.

Proof. If G is disconnected, then the problem reduces to the problem of testing
whether each connected component of G induces a probe cograph in G. If G

is disconnected, then all the nonprobes must lie in one component of G. The
problem reduces to the problem of testing whether each connected component of
G is a cograph, except possibly one which is a probe cograph. Using the modular
decomposition tree [17] of G, we can locate in linear time a set of modules
which partition V(G), such that each module is connected and the complement
is connected. We call a graph coconnected if its complement is connected. The
graph G is a probe cograph if and only if the graph G[C] is a probe cograph
for each such module C, with one additional restriction. For each module in the
decomposition tree which induces a graph which is not coconnected, there can
be only one coconnected component which is not a cograph. (This information
can be read from the tree.)

In the following assume G and G are connected. First we run the cograph
recognition algorithm of, e.g., [9, 13] which tests whether G is a cograph (we
assumed it was not) and produces an induced P4 in G if it is not. Let the induced
P4 found by the algorithm be P = [a, b, c, d]. We distinguish two possibilities.

Case 1. Assume a, c ∈ N and b, d ∈ P. First, test whether G = (P + N, E),
where P = N(a) + N(c) and N = V(G) − (N(a) + N(c)), is a partitioned probe
cograph. If it is then we are done. Otherwise consider an embedding H of G,
which must be the join of two cographs H1 and H2. It is not hard to see that
{a, b, c, d} ⊆ V(H1) or {a, b, c, d} ⊆ V(H2). Assume the former is the case. There
must exist a nonprobe α ∈ V(H2) since otherwise G would be disconnected. Then
α is adjacent to b and to d and not adjacent to a nor c. Consider

Ω = {α | [a, b, α, d] is an induced P4 in G}
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The vertices of Ω must all be nonprobes (or we have a P4 we cannot destroy)
and we have P = N(a) + N(Ω). Note that this case includes the possibility that
P = N(a)+N(c). Since Ω can be found in O(n+m) time, so can P. The feasible
partition can be tested by an algorithm recognizing partitioned probe cographs.
The case where a, c ∈ P and b, d ∈ N is similar.

Case 2. Assume a, d ∈ N and b, c ∈ P. Similarly to Case 1, if N(a) + N(d) is
not the complete set of probes, then the vertices {a, b, c, d} cannot lie in both H1

and H2. Assume {a, b, c, d} ⊆ V(H1). There exists a nonprobe α ∈ V(H2) ∩ N.
In G, α is adjacent to b and c and not adjacent to a and d. Now, it is easy to
see that P = N(a) + N(α). Find the set

Ω = {α | b, c ∈ N(α) and a �∈ N(α) and d �∈ N(α)}

All vertices of Ω must be nonprobes; otherwise, there exists a house in any
embedding. Thus in this case P = N(a) + N(d) + N(Ω). Since Ω can be found
in O(n + m) time, so can P. ��

Obviously, by Theorem 1, cographs are distance hereditary. Cographs can be
characterized as those graphs for which every nontrivial induced subgraph has a
twin [3, Theorem 11.3.3]. Thus, partitioned probe cographs are those partitioned
graphs for which every connected induced subgraph with at least two vertices
has a probe twin. Therefore the recognition algorithm for partitioned probe
distance hereditary graphs can be easily modified to recognize partitioned probe
cographs. By Theorem 5 we obtain the following theorem.

Theorem 6. There exists an O(n2) algorithm to test whether a graph G is a
(partitioned or unpartitioned) probe cograph and to find an embedding for G in
the affirmative case.

In Memoriam
It is with deep sadness that we report the death of our friend Jiping (Jim) Liu
on 14 January 2006, as the result of an automobile accident.
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Abstract. We describe an improved algorithm for solving the Max-
imum Clique problem in a graph using a novel sampling technique
combined with a parameterized k-vertex cover algorithm. Experimen-
tal research shows that this approach greatly improves the execution
time of the search, and in addition, provides intermediate results dur-
ing computation. We also examine a very effective heuristic for finding
a large clique that combines our sampling approach with fast indepen-
dent set approximation. In experiments using the DIMACS benchmark,
the heuristical approach established new lower bounds for four instances
and provides the first optimal solution for an instance unsolved until
now. The heuristic competitively matched the accuracy of the current
best exact algorithm in terms of correct solutions, while requiring a frac-
tion of the run time. Ideally such an approach could be beneficial as a
preprocessing step to any exact algorithm, providing an accurate lower
bound on the maximum clique, in very short time.

1 Introduction and Background

The problem of finding a vertex cover in a graph, G = (V, E), that is to say a
subset of vertices VC ⊆ V , |VC | ≤ K, such that every edge is adjacent to one of
the vertices in VC , is one of the original six problems shown to be NP-complete
by Karp [17]. This problem, among its many applications, figures prominently
in VLSI design, computational biology, to name a few.

Downey and Fellows [11, 12] developed parameterized tractability as a frame-
work for studying classes of problems that are NP-complete and yet for which
there exist efficient algorithms that decide the problem in time bounded by an
exponential function of some fixed parameter. Such problems are called fixed-
parameter tractable, or FPT. Problems that are in the class FPT have the prop-
erty that their instances can be reduced in polynomial time to instances of size
bounded by a function of a fixed parameter, k, and thus FPT algorithms have
a complexity described by O(nO(1) + f(k)), where n is the size of the problem
instance and f is an arbitrary function. For example, the best FPT algorithm
that solves the k-Vertex Cover problem, i.e., we wish to determine if a graph,
G = (V, E), has a vertex cover of size bounded by a constant, k, has complex-
ity O(k|V | + 1.2852k)[9]. The W -hierarchy consists of classes of problems that
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are not likely to be fixed-parameter tractable, with the class W [1] representing
the lowest level of intractability [13, 12]. For example, k-Independent Set is
complete for W [1].

A clique is a subset, C ⊆ V , such the vertices of C form a complete subgraph
in G. The Clique problem, like Vertex Cover, is one of the original NP-
complete problems. A wealth of different approaches have been used to tackle
the problem, including graph coloring [28] and integer programming formulations
[26], not to mention heuristics (for a survey, see Pelillo [23]). The complement
graph of G is the graph G = (V, E), where E = {(i, j)|i, j ∈ V, (i, j) �∈ E}. C is
a clique in G if and only if C is an independent set in G. Finally, a graph G has
a vertex cover of size k if and only if the complement graph G has a clique of
size n− k.

In parameterized complexity theory, the k-Clique problem is W [1]-complete
[12]. Abhu-Khzam, Langston, Shanbhag [1], Abhu-Khzam, et al. [2], and later
Baldwin, et al. [4], describe experiments that use a parallel FPT k-vertex cover
implementation for solving the k-Clique problem by determining a minimum
vertex cover in the complemented input graph.

In the conventional realm, the algorithm of Wood [27] is based on a branch-
and-bound approach that uses a fractional coloring procedure [3] as an upper
bound heuristic. Östegard [19] uses a strategy that is similar to dynamic pro-
gramming, where the problem is solved for subsequently increasing numbers of
nodes. An optimal value from previous computations is used as the minimal
value for the current problem. The algorithm of Fahle [14] introduces simple
cost-based domain filtering [15]. The approach restricts the candidate set by
eliminating vertices that can not be used to extend the clique under construc-
tion, or by fixing certain vertices that will be in the current clique. The algorithm
of Regin [24], also based on constraint programming, proposed two new upper
bounds on the largest clique and a new search strategy used to control the search
for an optimal solution. We direct the reader to Bomze, et al. [6] for a thorough
survey on exact algorithms.

2 Maximum Clique Algorithms

In this section, we introduce a graph sampling technique that we combine with
a k-vertex cover algorithm to develop an improved algorithm for a finding max-
imum clique in a graph. We will later describe a heuristic for the maximum
clique problem that is not based on determining a vertex cover, but instead on
calculating an independent set.

Let G = (V, E) be a graph and assume v ∈ V is a member of a clique, C ⊆ V ,
of G. In what follows, we use N(v) to denote the set of vertices adjacent to
some vertex v ∈ V , N [v] to denote the set N(v) ∪ {v}, and G(N [v]) is the
subgraph induced by N [v]. The algorithms exposited in this section are based
on the following theorem.

Theorem 1. Let G = (V, E) be a graph and assume v ∈ V is a member of a
clique, C ⊆ V , of G. If C is the largest clique of which v is a member, then
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the maximum independent set of the complement of the subgraph G(N [v]) is
exactly C.

Proof. The proof follows from the definition of a clique and the relationship
between the Minimum Vertex Cover, Maximum Independent Set and
Maximum Clique problems.

What makes Theorem 1 effective is that the parameterized approaches (for exam-
ple, Abhu-Khzam, Langston, Shanbhag [1]) solve the Maximum Clique prob-
lem by searching the entire complemented graph. Depending on the maximum
degree of the graph, Δ(G), it can be asymptotically more efficient to process
some subset of complemented subgraphs.

2.1 Vertex Cover-Based Maximum Clique Algorithm

We can in fact derive an algorithm whereby we extract the subgraph G(N [v]),
form its complement, G(N [v]), and determine a minimum vertex cover for this
subgraph. A maximum independent set for G(N [v]) is the largest of all cliques in
G of which v is a member. Although determining such a local maximum clique
remains of exponential time complexity, the benefit arises from limiting the size
of the complemented subgraph that is searched. If our candidate vertex v is a
member of the maximum clique then we can determine the maximum clique
without having to search the entire complemented graph G = (V, E).

Algorithm description. The algorithm consists of the following steps:

1. Given an input graph, G = (V, E), randomly choose some vertex, v, deg(v) >
2, and extract the subgraph G(N [v]);

2. generate the complement of subgraph G(N [v]), denoted G(N [v]);
3. determine a minimum vertex cover of subgraph G(N [v]);
4. generate the maximum clique by extracting the corresponding maximum

independent set;
5. repeat at Step (1) for some fixed number of iterations.

For some instances, the subgraph G(N [v]) extracted in Step (2) may be almost
as large as the graph G. In such a case, we use modified versions of steps (2),
(3), (4), repeated some fixed number of times:

2a. randomly choose a vertex, z ∈ G(N(v)), deg(z) > 2, and extract the sub-
graph G(N [v] ∩N [z]);

2b. generate the complemented subgraph G(N [v] ∩N [z]);
2c. determine a minimum vertex cover of subgraph G(N [v] ∩N [z]);
3. generate the maximum clique by extracting the corresponding maximum

independent set;
4. repeat at Step (2a) for some fixed number of iterations.

This two-level sampling assumes that if the initial guess of v was correct then
we are presented with even better probability of guessing a vertex that is also
in the clique, z ∈ N(v), within the smaller subgraph. The approach accelerates
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the process of calculating the minimum vertex cover by further restricting the
size of the complemented subgraph. In the case of the heuristic algorithm, it
helps generate more precise solutions by limiting the subset of vertices that are
inspected by the heuristic.

If we iterate through all vertices, solving for the minimum vertex cover in each
subgraph, we will find the maximum clique for the graph. On the other hand,
one can compromise between accuracy and speed: the more random guesses that
are made, the more confident one becomes that the largest clique has been (or
will be) found. As we will see, this contrasts with other search algorithms that
can fail to find a clique within some allotted time, or can not improve on the
largest clique no matter how much time is allowed.

2.2 Heuristic Maximum Clique Algorithm

As with most heuristics, one is willing to trade-off the cost of attempting to find
an optimal solution for an algorithm of lower complexity that returns possibly
suboptimal solution quickly. Because examining the complemented subgraph still
require time exponential in the maximum degree of the graph, it is interesting
to consider heuristical solutions to those subproblems.

Algorithm description. In our initial conception, we considered a simple ver-
tex cover heuristic to accelerate the algorithm, in place of the exact k-vertex
cover algorithm. The heuristic consisted of removing the vertex with highest
degree (and all incident edges), and adding it to the vertex cover. The final
implemented version of the algorithm consisted of the same steps as shown in
Section 2.1, except that we use the heuristic below to calculate an independent
set (cf. ([21, 9])) for subgraph G(N [v] ∩N [z]):

1. Select vertex, w ∈ N [v] ∩N [z], where w has minimum degree;
2. add w to the independent set;
3. remove N [w] from G(N [v] ∩N [z]);
4. repeat at Step (1) until G(N [v] ∩N [z]) has no edges.

Ideally, any sophisticated heuristic/approximation scheme could be used in this
case, producing possibly improved results (within approximation limits, of course).

3 Experimental Results

We use the following methodology in the experimental phase of our research.
In the exact parameterized setting, we compare our algorithm that combines
k-vertex cover with sampling, to a conventional k-vertex cover-based approach.
Both are parallel implementations and so we make a relative comparison between
these two FPT algorithms.

We next compare a (sequential) heuristic version of our algorithm to the
current best exact implementations for the Maximum Clique problem. We
adopt this approach for the following reasons:
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1. While there are no current experimental evaluations between heuristic algo-
rithms, Regin [24] recently published an admirable tabulation of the perfor-
mance of some exact algorithms.

2. We wish to investigate the quality of the solutions obtained by the heuristic
approach, while noting the time required to obtain the solutions. Clearly
the exact algorithms perform much more work than the heuristic and so run
time comparisons, while interesting, are not meant to indicate superiority.

We found that in practice the vertex cover heuristic, described in Section 2.2,
generally induced unspectacular clique sizes compared to the known solutions
(similar results are observed in [5]). In contrast, we experimented with the simple
independent set heuristic and found it produced surprisingly better results. The
choice of this heuristic (attributed to Erdös) for our experiments was based on
its simplicity and ease of implementation, although ultimately any sophisticated
heuristic/approximation would do. As it turns out, this particular heuristic in
fact corresponds to an existing approach: select the vertex with highest degree (in
the original graph), add it to the clique, delete all its non-neighboring vertices,
and repeat until the remaining graph is empty (cf. (Johnson [16])).

In general, algorithms for finding maximum cliques rely on massive exper-
imentation to determine their effectiveness. To expedite our experiments, we
make use of two separate platforms. Our first experimental platform consisted
of a shared-memory SunFire 6800, configured with 20 900MHz UltraSPARC-III
processors and 20GB of memory. Our second experimental platform consisted
of a 2.0GHz Intel Xeon processor with 512MB RAM and 60GB of disk storage.
Execution time was measured as wall clock time in seconds and includes the
time taken to read the input graph from a file and output the solution size.

A run consists of a single execution of the code, given some sampling parame-
ters, out of which the size of the largest clique found is output. An experiment
consists of some number of runs on a given instance and taking the largest clique
produced out of all the runs. During a run on instance, Gi = (Vi, Ei), the code
generates a random sample set of vertices, S1 ⊆ Vi, |S1| = α1|Vi|. For each ver-
tex v ∈ S1, we generate a second random sample set, S2 ⊆ N(v), |S2| = α2|S1|.
Finally, for each z ∈ S2 we extract the subgraph induced by G(N [v]∩N [z]), com-
plement the subgraph, and extract the maximum independent set. This clique
is then checked in the original graph to ensure its correctness.

It is difficult to directly compare the algorithm of Section 2.1 with the results
in [1, 2, 4], as they have implemented a different kernelization algorithm. Instead
we use a readily-available FPT k-vertex cover algorithm described in [7] and
compare it against itself, i.e., we measure the performance of our k-vertex cover
code running on a complemented graph instance versus our new maximum clique
algorithm. This provides a relative performance comparison that carries over to
any k-vertex cover algorithm. Because of the time required to calculate an exact
minimum vertex cover, we restrict our experiment to consisting of one run for the
parallel k-vertex cover algorithm using 9 processors on the first platform. This is
compared to one run of the maximum clique algorithm on the same input with
sampling parameters α1 = 0.10 and α2 = 0.05. We justify using the parallel
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Table 1. Graph instances derived from experimental biological data

Graph |K| Density |V | |E|
Somatostatin 14 0.22 559 33652
WW 22 0.45 425 40182
Thrombin (10) 24 0.19 646 40717

Table 2. Graph instances derived from experimental biological data

Graph |K| Density |V | |E|
globin10 12 0.16 972 75,386
globin15 23 0.32 972 149,473
pp sh2-3 3 0.05 148 494
pp sh2-10 17 0.27 726 69,982
sh2-5 7 0.08 839 26,612
sh2-10 23 0.37 839 129,697

platform in this series because the minimum vertex cover of a complemented
graph can become significantly large and we wish to conduct the experiments in
a reasonable time.

Given the shorter execution time of the heuristic algorithm, each experiment
is repeated sequentially 50 times on each graph instance using our second plat-
form. We consider an experiment to consist of 10 runs of the heuristic, and the
time for an experiment is taken as the average time of the 10 runs. We take as
sampling parameters α1 = α2 = 0.10. We compare the heuristic performance
with implementations of the algorithms of Wood [27], Östegard [19], Fahle [14],
and Regin [24]. Our platform closely resembles that of Regin1 so we can draw
directly upon his observations to evaluate the accuracy (and to a lesser extent,
the run times) of our algorithm against previous work. In Section 3 we present
a table adapted from [24] that includes measurements for all four algorithms.

Data sets. We used two different types of graphs for our experiments with the
objective of studying the performance of the algorithms using both real-world
and public domain benchmark data. The first set of graphs, Table 1, comprise
a small subset selected from our experiments in [7, 8]. The second set, Table 2,
are those cited in Baldwin, et al. [4] from which the authors derived phyloge-
netic trees based on proteins domains. The third set comprise the atendentious
DIMACS benchmark [10].

FPT k-vertex cover maximum clique algorithm performance. The ob-
jective of this experiment is to demonstrate the efficacity of the algorithm from
Section 2.1. We selected the instances WW , Somatostatin, and Thrombin, and
used the parallel k-vertex cover code described in [7, 8], running on 9 processors.

For each graph instance we measure the total execution time, the time required
before a clique matching the optimal size is found, and the number of times
1 His platform was an Intel Pentium IV, 2.0GHz, 512MB RAM.
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Table 3. Summary of k-vertex cover-based maximum clique algorithm results using
biological datasets

Graph |K| k-VC: G k-VCMax. clique: two-level sampling (10%, 5%)
Total time (hr) Total time (hr) Largest first found (hr) No. of largest

Somatostatin 14 02:18:37 00:29:40 00:03:03 7
WW 22 43:34:15 19:33:12 02:45:01 21
Thrombin (10) 24 DNF 198:42:11 116:39:45 10

Table 4. Summary of heuristic algorithm results using biological datasets

Graph |K| Avg. |K| Avg. run time (s) Avg. exp. time (s) Largest found
globin10 12 12.00 4.52 45.22 50
globin15 23 22.57 29.87 298.70 50
pp sh2-3 3 1.81 0.01 0.10 50
pp sh2-10 17 16.92 6.81 68.06 50
sh2-5 7 6.26 0.27 2.72 48
sh2-10 23 22.00 28.91 289.10 11

a clique matching the optimal size is found. We emphasize the relative speed
with which an optimal clique is found rather than the actual run times. In
Table 3 we observe that the sampling algorithm completed in a shorter time
than that required to find a minimum vertex cover in a complemented graph.
The experiment with the Thrombin instance highlights one of the benefits of the
new maximum clique algorithm: the new algorithm generated several cliques of
size 23 within 48 hours of starting and ultimately found several cliques matching
the optimal size before termination. In contrast, the algorithm searching for a
minimum vertex cover in the complemented graph had in that same time only
processed two cover instances (sizes k = 623 and k = 621). The execution on
the complemented graph was terminated after 2 weeks, never having completed
its search.

Maximum clique heuristic performance. The software we developed for
these experiments used libraries of graph and set manipulation routines made
available by Östegard [20].

We see from Table 4 that the heuristic performed excellently on real-world
data, with the exception instance Sh2-10 . In the latter case the average clique
size produced by the heuristic was very close to the optimal.

We follow the methodology of Regin for testing the performance of the heuris-
tic algorithm against the DIMACS clique benchmark set, i.e., code execution
on a given instance taking longer than 14,400 seconds is terminated. Table 5
summarizes the performance data for Wood, Östegard, Fahle, and Regin’s algo-
rithms for the benchmark (adapted from [24]). The timing measurements have
been scaled appropriately to compensate for different processor speeds.

We divide the datasets in two groups, based on the amount of time they require
to complete the series of experiments within the 4 hour time limit. For each graph
instance we measure the average clique size found during the 50 experiments, the
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Table 5. Performance comparison of recent maximum clique algorithms

DIMACS Wood Östegard Fahle Regin
Graph |K| |K| Time (s) |K| Time (s) |K| Time (s) |K| Time (s)

brock400 1 27 fail fail ≥ 24 fail 27 11,340.80
brock400 2 29 fail fail ≥ 29 fail 29 7,910.60
brock400 3 31 fail fail ≥ 24 fail 31 4,477.23
brock400 4 33 fail fail ≥ 25 fail 33 6,051.77
brock800 1 23 fail fail ≥ 21 fail ≥ 21 fail
brock800 2 24 fail fail ≥ 20 fail ≥ 20 fail
brock800 3 25 fail fail ≥ 20 fail ≥ 20 fail
brock800 4 26 fail fail ≥ 20 fail ≥ 20 fail
hamming10-2 512 512 0 512 0.84 512 5.16 512 1.04
hamming10-4 ≥ 40 fail fail ≥ 32 fail ≥ 40 fail
johnson16-2-4 8 8 13.05 8 0.09 8 7.91 8 3.80
johnson32-2-4 ≥ 16 fail fail ≥ 16 fail ≥ 16 fail
johnson8-2-4 4 4 0 4 0 4 0 4 0
johnson8-4-4 14 14 0 14 0 14 0.03 14 0
keller4 11 11 1.23 11 0.17 11 2.53 11 0.50
keller5 27 fail fail ≥ 25 fail ≥ 27 fail
keller6 ≥ 59 fail fail ≥ 43 fail ≥ 54 fail
MANN a9 16 16 0 16 0 16 0 16 0
MANN a27 126 126 46.95 fail 126 10,348.87 126 18.48
MANN a81 ≥ 1, 100 fail fail ≥ 996 fail ≥ 1, 100 fail
p hat500-1 9 9 0.91 9 0.10 9 0.60 9 2.30
p hat500-2 36 36 17.81 36 142.93 36 203.93 36 32.69
p hat500-3 50 fail fail ≥ 48 fail 50 12,744.70
p hat700-1 11 11 2.69 11 0.22 11 2.67 11 6.01
p hat700-2 44 fail fail 44 2,086.63 44 255.79
p hat700-3 ≥ 62 fail fail ≥ 54 fail ≥ 62 fail
p hat1000-1 10 10 18.88 10 1.95 10 16.43 10 27.80
p hat1000-2 46 fail fail ≥ 44 fail 46 16,845.70
p hat1000-3 ≥ 68 fail fail ≥ 50 fail ≥ 66 fail
p hat1500-1 12 fail fail 12 119.77 12 480.84
p hat1500-2 ≥ 65 fail fail ≥ 52 fail ≥ 63 fail
san1000 15 15 43.59 15 0.17 15 3,044.09 15 102.80
san400 0.5 1 13 13 0.75 13 0 13 6.74 13 1.19
san400 0.7 1 40 40 13.25 fail 40 425.99 40 23.28
san400 0.7 2 30 30 415.12 30 168.70 30 159.72 30 67.53
san400 0.7 3 22 fail fail 22 617.07 22 273.23
san400 0.9 1 100 fail fail 100 7,219.53 100 1,700.00
sanr200 0.7 18 22.50 18 4.70 18 24.99 18 4.30
sanr200 0.9 fail fail ≥ 41 fail 42 150.08
sanr400 0.5 13 22.55 13 2.21 13 23.09 13 17.12
sanr400 0.7 fail fail 21 15,925.00 21 3,139.11

average time of all the runs, the average time for the experiments, and a count of
the number of times that an experiment found a clique that matched the largest
known size. Table 6 consists of instances that were sampled with α1 = α2 = 0.10.
The same methodology is used to test the algorithm on instances in Table 2. As
the instances in Table 7 were large, we limited the sampling to α1 = 0.01 and
α2 = 0.05. In the tables, we list in boldface entries of particular interest.

In comparing the results in Table 5 and Table 6 we see the heuristic algorithm
consistently outperforms the algorithms of Wood, Östegard, and Fahle, and is
faster than that of Regin while producing a competitive number of optimal or
similar answers. While the shorter run times are not unexpected, the quality of
the results are quite surprising. In general, when the heuristic fails it does so for
the same instances as does the current best algorithm, while generating compara-
ble suboptimal answers in a fraction of the time. For example, the solution to the
Brock800 1 instance matches the current best suboptimal answer, but required
much less time to compute (80 seconds). Another such instance is P hat700-
3 , where the heuristic found a solution matching the best lower bound in less
than a minute. Regin’s algorithm exceeded the 4 hour time limit while finding
a solution of the same size. There are many cases where the heuristic finds the
largest clique extremely quickly (e.g., Johnson32-2-4 , Keller5 ), San400 0.9 1 ,
Sanr400 0.7 ).
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Table 6. Summary of heuristic algorithm results using DIMACS benchmark

Graph |K| Avg. |K| Avg. run time (s) Avg. exp. time (s) Largest found

brock400 1 27 24.08 8.17 81.68 0
brock400 2 29 24.35 8.17 81.70 17
brock400 3 31 24.61 8.13 81.32 22
brock400 4 33 26.49 8.19 81.92 47
brock800 1 23 20.81 225.41 2,254.14 0
brock800 2 24 20.78 223.14 2,231.40 0
brock800 3 25 21.13 245.43 2,454.32 0
brock800 4 26 20.55 221.80 2,218.06 0
hamming10-2 512 512.00 1,900.45 19,004.48 50
hamming10-4 ≥ 40 36.00 439.04 4,390.44 0
johnson16-2-4 8 8.00 0.09 0.90 50
johnson32-2-4 ≥ 16 16.00 25.30 253.04 50
johnson8-2-4 4 4.00 0.01 0.08 50
johnson8-4-4 14 14.00 0.02 0.22 50
keller4 11 11.00 0.20 2.00 50
keller5 27 27.00 106.67 1,066.74 50
MANN a9 16 16.00 0.01 0.14 50
MANN a27 126 125.00 24.95 249.48 0
p hat500-1 9 9.00 0.60 6.00 50
p hat500-2 36 35.66 6.59 65.92 50
p hat500-3 50 49.02 21.81 218.10 37
p hat700-1 11 10.29 1.94 19.38 50
p hat700-2 44 43.99 24.74 247.44 50
p hat700-3 ≥ 62 60.26 4.50 44.96 25
p hat1000-1 10 10.00 6.81 68.14 50
p hat1000-2 46 45.72 91.62 916.20 50
p hat1000-3 ≥ 68 65.08 331.23 3,312.30 0
p hat1500-1 12 11.22 35.58 355.76 45
p hat1500-2 65 64.09 514.32 5,143.22 34
san1000 15 10.48 5.09 50.94 29
san400 0.5 1 13 11.60 2.46 24.60 50
san400 0.7 1 40 39.94 6.63 66.26 50
san400 0.7 2 30 29.62 6.46 64.56 50
san400 0.7 3 22 20.31 6.43 64.28 50
san400 0.9 1 100 100.00 16.42 164.18 50
sanr200 0.7 18 17.77 0.45 4.54 50
sanr200 0.9 42 41.37 1.08 10.76 50
sanr400 0.5 13 12.58 1.91 19.12 50
sanr400 0.7 21 20.82 6.46 64.56 50

Table 7. Summary of heuristic algorithm results using large DIMACS instances

Graph |K| Avg. |K| Avg. run time (s) Avg. exp. time (s) Largest found
keller6 ≥ 59 55.00 1,007.27 10,072.70 0
MANN a81 ≥ 1, 100 1,096.00 13,961.40 139,614.00 0

Most surprising, the heuristic improves on the best lower bound for four as
yet unsolved instances, and solves a fifth instance optimally. For the instance
Brock800 3 , it determined a clique of size 22. The previous best lower bound for
these graphs was 20. For the instances Brock800 2 and Brock800 4 the heuristic
found cliques of size 21 in each graph. The heuristic found a clique of size 55 in
the Keller6 instance, where previously the best suboptimal clique size was 54.
For the instance P hat1500-2 the heuristic found a clique matching the optimal
size of 65. The best lower bound until now was size 63 as determined by Regin.

We do observe two cases of oversampling. When solving the Hamming10-2
instance (Table 6), the algorithm found a clique matching the largest known
size very quickly, but it continued to search through its rather large sample set,
incurring an unnecessarily long run time. In the case of the MANN a81 instance
(Table 7), the heuristic found a relatively large clique in one run within the time
limit, although the experiment exceeded the time limit.
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3.1 Discussion of Experimental Results

It is important to note that the effectiveness of the algorithms are a function
of the maximum clique size and the sampling rate. Cases where the maximum
clique size is small and there are many such cliques, or the maximum clique is
large (in relation to the vertex set), are clearly the most favorable circumstances.
The contrary situations can be ameliorated with higher sampling at the cost of
the longer execution time. Unless we iterate though all the vertices and solve
each subgraph exactly, as in the algorithm introduced in Section 2.1, sampling is
not guaranteed to find the maximum clique. The motivation for the experimen-
tal work is to verify the effectiveness of the approach in practice, particularly
using real-world datasets, and to a certain extent the experiments do speak for
themselves.

As mentioned in Section 2.2, the vertex cover heuristic generally produced
unspectacular clique sizes compared to those generated by the independent set
heuristic. The dominant factor determining the quality of a solution is the prob-
ability of error at each step, dependent on the number of choices available. The
subtle algorithmic difference was significant in that the vertex cover heuristic re-
quired many more steps to determine a cover for the subgraph and, at each step
in the heuristic, there were many possible choices of vertices of high degree. On
the other hand, the independent set heuristic required fewer steps to complete
and, at each step, there were generally very few vertices of minimum degree to
choose from. (Alternately, in the original subgraph, the vertices of high degree
were generally members of the clique.) Again it is important to emphasize that
the heuristic, though quicker than the exact algorithms, does not guarantee a
solution is optimal. Nonetheless, its degree of accuracy is surprising. Although
one may call into question the variety and hardness of the DIMACS instances
given the success of the simple heuristic, experiments on the real-world datasets
nonetheless demonstrate some practicality of the approach. Finally, given the
availability of more sophisticated heuristic/approximation schemes, one can ex-
pect higher quality solutions, again at the expense of more time.

4 Conclusion

We describe an improved algorithm for solving the Maximum Clique problem
in a graph using a novel sampling technique combined with the FPT k-vertex
cover algorithm. Experimental research shows that this approach greatly im-
proves the execution time of the search, and in addition, provides intermediate
results during computation. We also experimented with a very effective heuristic
for finding a large clique that combines our sampling approach with fast inde-
pendent set approximation. In experiments using the DIMACS benchmark, the
heuristical approach established new lower bounds for four instances and pro-
vides the first optimal solution for an instance unsolved until now. The heuristic
competitively matched the accuracy of the current best exact algorithm in terms
of correct solutions, while requiring a fraction of the run time. Of equal or greater
importance, both approaches performed well on real-world datasets.



A New Approach for Solving the Maximum Clique Problem 289

The research presented here opens several exciting avenues for future explo-
ration, which we are currently pursuing. Because of the speed of the heuristic,
it could be used as a preprocessing phase for other clique algorithms, by pro-
viding a relatively accurate lower bound for the largest clique in the graph.
Indeed, many exact algorithms would benefit from this preprocessing by allow-
ing them to converge more quickly to larger solutions. We are also investigating
how our maximum clique algorithms could be augmented with various clique
size-bounding heuristics as pruning strategies to improve performance.
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Abstract. In this paper we present the first set of approximation and
inapproximability results for the Exemplar Breakpoint Distance Prob-
lem. Our inapproximability results hold for the simplest case between
only two genomes G and H, each containing only one sequence of genes
(possibly with repetitions).
– For the general Exemplar Breakpoint Distance Problem, we prove

that the problem does not admit any approximation unless P=NP;
in fact, this result holds even when a gene appears in G (H) at most
three times.

– Even on a weaker definition of approximation (which we call weak
approximation), we show that the problem does not admit a weak
approximation with a factor m1−ε, where m is the maximum length
of G and H.

– We present a factor-2(1 + log n) approximation for an interesting
special case, namely, one of the two genomes is a k-span genome (i.e.,
all genes in the same gene family are within a distance k = O(log n)),
where n is the number of gene families in G and H.

1 Introduction

In the genome comparison and rearrangement area, a standard problem is to
compute the number (i.e., genetic distances) and the actual sequence of genetic
operations needed to convert a source genome to a target genome. This problem
is important in evolutionary molecular biology. Typical genetic distances include
edit [15], signed reversal [18, 16, 1] and breakpoint [23], etc. (The idea of signed re-
versal and, implicitly, breakpoint, was initiated as early as in 1936 by Sturtevant
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and Dobzhansky [21].) Recently, conserved interval distance was also proposed
to measure the similarity of multiple sequences of genes [4]. (Interested readers
are referred to [11, 12] for a summary of the research performed in this area.)

Until very recently, in genome rearrangement research, it is always assumed
that each gene appears in a genome exactly once. Under this assumption, the
genome rearrangement problem is in essence the problem of comparing and sort-
ing signed permutations [11, 12]. However, this assumption is very restrictive and
is only justified in several small virus genomes. For example, this assumption does
not hold on eukaryotic genomes where paralogous genes exist [17, 20]. On the one
hand, it is important in practice to compute genomic distances, e.g., Hannenhalli
and Pevzner’s method [11], when no gene duplications arise; on the other hand,
one might have to handle this gene duplication problem as well. In 1999, Sankoff
proposed a way to select, from the duplicated copies of genes, the common ances-
tor gene such that the distance between the reduced genomes (exemplar genomes)
is minimized [20]. A general branch-and-bound algorithm was also implemented
in [20]. Recently, Nguyen, Tay and Zhang proposed to use a divide-and-conquer
method to compute the exemplar breakpoint distance empirically [17].

For the theoretical part of research, it was shown that computing the signed
reversals and breakpoint distances between exemplar genomes are both NP-
complete [2]. Recently, Blin and Rizzi further proved that computing the con-
served interval distance between exemplar genomes is NP-complete [3]; more-
over, it is NP-complete to compute the minimum conserved interval matching
(i.e., without deleting the duplicated copies of genes). Before this work, there
has been no formal theoretical results on the approximability of the exemplar
genomic distance problems except the NP-completeness proofs [2, 3].

In this paper, we present the first set of inapproximability and approxima-
tion results for the Exemplar Breakpoint Distance problem, given two genomes
each containing only one sequence of genes drawn from n identical gene fami-
lies. (Some of the results hold subsequently for the Exemplar Reversal Distance
problem.) For the One-sided Exemplar Breakpoint Distance Problem, which is
also known to be NP-complete, we obtain a factor-2(1 + logn), polynomial-time
approximation. The approximation algorithm follows the greedy strategy for
Set-Cover, but constructing the family of sets is non-trivial and is related to a
new problem of longest constrained common subsequences which is related to but
different from the recently studied constrained longest common subsequences [5].

2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes1. The order of the genes
corresponds to the position of them on the linear chromosome and the signs
correspond to which of the two DNA strands the genes are located. While most
of the past research are under the assumption that each gene occurs in a genome
1 In general a genome could contain a set of such sequences. The genomes we focus in

this paper are typically called singletons.
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once, this assumption is problematic in reality for eukaryotic genomes or the
likes where duplications of genes exist [20]. Sankoff proposed a method to select
an exemplar genome, by deleting redundant copies of a gene, such that in an ex-
emplar genome any gene appears exactly once; moreover, the resulting exemplar
genomes should have a property that certain genetic distance between them is
minimized [20].

The following definitions are very much following those in [3]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that
each element is with a sign (+ or −). In general, we allow the repetition of a
gene family in any genome. Each occurrence of a gene family is called a gene,
though we will not try to distinguish a gene and a gene family if the context
is clear. Given a genome G = g1g2...gm with no repetition of any gene, we say
that gene gi immediately precedes gj if j = i + 1. Given genomes G, H , if gene
a immediately precedes b in G and neither a immediately precedes b nor −b
immediately precedes −a in H , then they constitute a breakpoint in G. The
breakpoint distance is the number of breakpoints in G (symmetrically, it is the
number of breakpoints in H).

The number of a gene g appearing in a genome G is called the cardinality of
g in G, written as card(g,G). A gene in G is called trivial if g has cardinality
exactly 1; otherwise, it is called non-trivial. In this paper, we assume that all the
genomes we discuss could contain both trivial and non-trivial genes. A genome G
is called r-repetitive, if all the genes from the same gene family appear at most r
times in G. A genome G is called a k-span genome, if all the genes from the same
gene family are within distance at most k in G. For example, G = −adc− bdaeb
is 2-repetitive and it is a 5-span genome.

Given a genome G = g1g2 · · · gm, an interval [gi, gj] is simply the substring
gigi+1 · · · gj (which will also be denoted as G[i, j]). Example: given G′ = bdc−ag−
e−fh,G′′ = bdce−gafh, between the interval I1 = dc−ag−e−f, I2 = dce−gaf ,
there are 2 breakpoints. A signed reversal on a genome G simply reverses the
order and signs of all the elements in an interval of G. In the previous example,
if a signed reversal operation is conducted on I1 then we obtain a new genome
G∗ = bfe − ga − c − dh. (All the reversals concerned in this paper are signed
reversals. Henceforth, we simply use reversal to make the presentation simpler.)
The reversal distance between genomes G and H is the minimum number of
reversals to transfer G into H .

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears
exactly once in G′. For example, let G = bcaadagef there are two exemplar
genomes: bcadgef and bcdagef .

The Exemplar Breakpoint (Reversal) Distance Problem is defined as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.

Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the breakpoint (reversal) distance between them is at most K?
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In the next three sections, we present inapproximability/approximation re-
sults for the optimization versions of these problems, namely, to compute or
approximate the minimum value K in the above formulation. Given a mini-
mization problem Π , let the optimal solution of Π be OPT . We say that an
approximation algorithm A provides a performance guarantee of α for Π if for
every instance I of Π , the solution value returned by A is at most α × OPT .
(Usually we say that A is a factor-α approximation for Π .) Typically we are
interested in polynomial time approximation algorithms.

In many biological problems, the optimal solution value OPT could be zero.
(For example, in some minimum recombination haplotype reconstruction prob-
lems the optimal solution could be zero.) In that case, if computing such a zero
optimal solution value is NP-complete then the problem does not admit any
approximation (unless P=NP). However, in reality one would be happy to ob-
tain a solution with value one or two. Due to this reason, we relax the above
(traditional) definition of approximation to a weak approximation. Given a mini-
mization problem Π , let the optimal solution of Π be OPT . We say that a weak
approximation algorithm B provides a performance guarantee of α for Π if for
every instance I of Π , the solution value returned by B is at most α×(OPT +1).

3 Inapproximability Bounds

In this section, we present a series of inapproximability bounds on the Exemplar
Breakpoint Distance Problem.

Theorem 1. If both G and H are 2-repetitive genomes, then the Exemplar
Breakpoint Distance Problem cannot be approximated within a factor 1.36.

Proof. We use a reduction from Vertex Cover to the Exemplar Breakpoint Dis-
tance Problem in which each gene appears in G (H) at most twice. Dur and
Safra proved that Vertex Cover cannot be approximated within a factor 1.36 [9].

Given a graph T = (V, E), V = {v1, v2, · · · , vn}, E = {e1, e2, · · · , em}, we
construct G and H as follows. (We assume that the vertices and edges are sorted
by their corresponding indices.) Let Ai be the sorted sequence of edges incident
to vi and −Ai be the signed reversal of Ai. (# is not a gene and is used only for
the readability purpose.)
G : A1#A2# · · ·#An−1#An

H : −A1#−A2# · · ·#−An−1#−An

We claim that T has a vertex cover of size K iff the exemplar breakpoint
distance between G and H is K − 1.

If T has a vertex cover of size K, then the claim is trivial. Firstly, construct
the exemplar genomes G, H as follows. For all i, if vi is in the vertex cover, then
leave Ai in G and −Ai in H and delete all Aj ,−Aj in G,H for which vj is not in
the vertex cover of T . Finally, if ei appears twice in the current genomes G and
H, say in As, At, then delete one copy of ei in either As or At arbitrarily (say
in As), and delete the corresponding copy of −ei in −As. The final exemplar
genomes obtained, G and H , obviously have a breakpoint distance of K − 1. In
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fact, a breakpoint in G, H can only occur at the # positions—between some Ai

and Aj in G (−Ai and −Aj in H).
If the exemplar breakpoint distance between G and H is K−1, the first thing

to notice is that there is no breakpoint in Ai and −Ai; in other words, deleting
ej in Ai inconsistently (say, by deleting ej in Ai and deleting −ej in −As instead
of in −Ai) would increase the number of breakpoints in the exemplar genomes
G, H . Therefore, we can obtain a pair of exemplar genomes G, H by enforcing the
breakpoints to be in between Ai and Aj in G (and symmetrically, −Ai and −Aj

in H), with all redundant edges between them deleted. Clearly, the remaining
Ai’s in G (and −Ai’s in H) correspond to a vertex cover of size K in T .

v v

vv

1 2

3 v54

e
e e

e

e

1
2

3
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Fig. 1. Illustration of a simple graph for the reduction

In the example shown in Figure 1, we have
G : e1e2#e2e3e4#e1#e3e5#e4e5 and
H : −e2 − e1#− e4 − e3 − e2#− e1#− e5 − e3#− e5 − e4.

Corresponding to the optimal vertex cover {v1, v2, v5}, we have G : e1e2#e3e4#e5
and H : −e2 − e1#− e4 − v3#− e5. ��

Corollary 1. If both G and H are 2-repetitive, then the Exemplar Reversal Dis-
tance Problem cannot be approximated within a factor 1.36.

In [17] it was claimed that the Exemplar Breakpoint Distance Problem cannot
be approximated within a constant factor. But the proof, which was included in
Nguyen’s thesis, in fact implies a stronger c log n inapproximability bound as the
reduction was from Set Cover. We extend Theorem 3.1 below to obtain a much
simpler and clean proof of the c log n inapproximability bound, even though this
is not the strongest inapproximability bound in this section.

Corollary 2. The Exemplar Breakpoint Distance Problem cannot be approxi-
mated within a factor c log n, for some constant c > 0.

Proof. Similar to the proof of Theorem 3.1, we use a reduction from Dominating
Set to the Exemplar Breakpoint Distance Problem in which each gene appears
in G (H) as many as n − 1 times. Raz and Safra proved that Dominating Set
cannot be approximated within a factor c log n, for some c > 0 [19].

Given a graph T = (V, E), V = {v1, v2, · · · , vn}, E = {e1, e2, · · · , em}, we
construct G and H as follows. (We assume that the vertices and edges are sorted
by their corresponding indices.) Let Bi be the sorted sequence of vertices incident
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to vi and −Bi be the signed reversal of Bi. (# is not a gene and is again used
only for the readability purpose.)

G : v1B1#v2B2# · · ·#vn−1Bn−1#vnBn

H : −B1 − v1#−B2 − v2# · · ·#−Bn−1 − vn−1#−Bn − vn

We claim that T has a dominating set of size K iff the exemplar breakpoint
distance between G and H is K − 1.

If T has a dominating set of size K, then the claim is again trivial. Firstly, con-
struct the exemplar genomes G, H as follows. For all i, if vi is in the dominating
set, then leave viBi in G and −Bi − vi in H and delete all other vjAj ,−Aj − vj

in G,H for which vj is not in the dominating set of T . Finally, if vi appears x
times in the current genomes G and H, then arbitrarily delete x − 1 copies of
vi in all vsBs which contains vi, and delete the corresponding copy of −vi in
−Bs − vs. The final exemplar genomes obtained, G and H , obviously have a
breakpoint distance of K−1. In fact, a breakpoint in G, H can only occur at the
# positions—between some viBi and vjBj in G (−Bi − vi and −Bj − vj in H).

If the exemplar breakpoint distance between G and H is K−1, the first thing
to notice is that there is no breakpoint in viBi and −Bi − vi; in other words,
deleting vj in viBi inconsistently (say, by deleting vj in viBi and deleting −vj

in −Bs − vs instead of in −Bi − vi) would increase the number of breakpoints
in the exemplar genomes G and H . Therefore, we can obtain a pair of exemplar
genomes G and H by enforcing the breakpoints to be in between viBi, vjBj

in G (and symmetrically, −Bi − vi,−Bj − vj in H), with all redundant vl’s
deleted. Clearly, the remaining viBi’s in G (and −Bi − vi’s in H) correspond to
a dominating set of size K in T .

In the example shown in Figure 1, we have
G : v1v2v3#v2v1v4v5#v3v1#v4v2v5#v5v2v4 and
H : −v3−v2−v1#−v5−v4−v1−v2#−v1−v3#−v5−v2−v4#−v4−v2−v5.

Corresponding to the optimal dominating set {v1, v4}, we have G : v1v2v3#v4v5
and H : −v3 − v2 − v1#− v5 − v4. ��

Corollary 3. The Exemplar Reversal Distance Problem cannot be approximated
within a factor c log n, for some constant c > 0.

Proof. Construction is the same as above. The claim that T has a dominating
set of size K iff the exemplar reversal distance between G and H is K can be
proved similarly. ��

Next, we show an even stronger negative result for the Exemplar Breakpoint
Distance Problem; namely, deciding whether the exemplar distance between G
and H is zero is NP-complete. This implies that for the Exemplar Breakpoint
Distance Problem there is no approximation unless P=NP. From now on we
simply call this problem the zero breakpoint distance (ZBD) problem.

Theorem 2. Deciding if two genomes G and H have zero breakpoint distance
is NP-complete.
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Proof. We construct a reduction from the SAT problem [10] to the ZBD problem.
Let F = f1

∧
f2
∧
· · ·
∧

fq be a conjunctive normal form, where each sub-
formula fi is a disjunctive clause like (x2

∨
x5
∨
¬x7). We construct a pair of

sequences G andH such that F is satisfiable iff G andH have breakpoint distance
zero.

Assume that x1, x2, · · · , xn are the boolean variables in the formula F . For
each variable xi, we construct two sequences Si and S∗

i . Let fi1 , · · · , fiu be the
sub-formulas in F that contains xi, and let fj1 , · · · , fjv be the sub-formulas of
F that contains ¬xi. Let Si = fi1 · · · fiufj1 · · · fjv and S∗

i = fj1 · · · fjvfi1 · · · fiu ,
where f1, · · · , fq are considered as the names of q genes in G and H.

Let G = S1g1S2g2 · · · gn−1Sn and H = S∗
1g1S

∗
2g2 · · · gn−1S

∗
n, where g1, · · · , gn

are (peg) genes that occur only once in G or H.
Assume that x1 = b1, · · · , xn = bn are assignments that make F true. If

bi = 1, adjust both Si and S∗
i to S′

i = fi1 · · · fiu and S∗′
i = fi1 · · · fiu , respec-

tively. If bi = 0, adjust both Si and S∗
i to S′

i = fj1 · · · fjv and S∗′
i = fj1 · · · fjv ,

respectively. It is easy to see that G′ = S′
1g1S

′
2 · · ·S′

n−1gn−1S
′
n is the same as

H ′ = S∗′
1 g1S

∗′
2 · · ·S∗′

n−1gn−1S
∗′
n . Since the assignments make F true, each sub-

formula ft ∈ {f1, · · · , fq} is true due to xi = bi for some i. That is, ft must
occur in Si and S∗

i . If ft occurs more than once in G′ and H ′ then we can delete
their corresponding occurrences in G′ and H ′. Finally, notice that both G′ and
H ′ contain all q + n− 1 genes in {f1, · · · , fq, g1, · · · , gn−1}.

Assume that G is converted into G′′ and H is converted into H ′′ via re-
moving some genes such that G′′ = H ′′ and they contain all genes in the set
{f1, · · · , fq, g1, · · · , gn−1}. Let S”

i and S∗”
i be the substrings in G′′ and H ′′ with

respect to Si and S∗
i in G and H respectively. This implies that S”

i and S∗”
i

are the common subsequence of either fi1 · · · fiu or fj1 · · · fjv , because Si =
fi1 · · · fiufj1 · · · fjv and S∗

i = fj1 · · · fjvfi1 · · · fiu . If S”
i is empty then we can

assign a value to xi arbitrarily. If S”
i is not empty and it is a subsequence of

fi1 · · · fiu then we assign xi = 1. If S”
i is not empty and it is a subsequence of

fj1 · · · fjv then we assign xi = 0. As each ft ∈ {f1, · · · , fq} occurs in G′′, H ′′

once, it must occur in a non-empty S”
i . It is easy to see that F is true by the

assignments to those variables x1, · · · , xn.
The reduction takes linear (in the length of F , |F |) time. A sub-formula fj

with y literals appears in G (H) exactly y times and there are n − 1 additional
peg genes in G (H). Therefore, the length of G and H are both bounded by c|F |
for some constant c > 1. ��
The above theorem implies that the Exemplar Breakpoint Distance problem
does not admit any approximation unless P=NP—if such a polynomial-time
approximation existed then it would be able to decide whether G and H have
zero breakpoint distance in polynomial time hence contradicting Theorem 3.5. If
we parameterize the ZBD problem to kZBD, which is to decide if two k-repetitive
sequences have zero break point distance, then the above theorem can be further
strengthened as follows.

Theorem 3. Deciding if two 3-repetitive genomes have zero breakpoint distance
is NP-complete.
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Proof. Using the same reduction, a 3SAT sub-formula fj with three literals
appears in G (H) exactly three times. Therefore, we can reduce 3SAT to 3ZBD
in linear time. ��

We now have the following corollary.

Corollary 4. Unless P=NP, the Exemplar Reversal Distance Problem cannot
be approximated even if both G and H are 3-repetitive.

4 Weak Inapproximability Bounds

In this section, we try to generalize Theorem 3.5 to obtain some inapproxima-
bility bound under a weak approximation model. Let opt(G,H) be the optimal
exemplar breakpoint distance between G and H. (We also use d(X, Y ) to denote
the minimum breakpoint distance between two genomes X and Y , where X
and Y do not have to be exemplar.) We obtain the following inapproximability
bounds under a much weaker model of approximation.

Theorem 4. Let ε > 0 and g(x) : N → N be a function computable in poly-
nomial time. If there is a polynomial time algorithm such that given G and
H of length at most m it can return exemplar genomes G and H satisfying
d(G, H) ≤ g(m)opt(G,H) + m1−ε, then P=NP.

Proof. Let f be a SAT formula. Let G(f), H(f) be the sequences as constructed
in Theorem 3.5 such that f is satisfiable if and only if d(G(f), H(f)) = 0.

Let u be the length of f . Then |G(f)| = |H(f)| ≤ cu for some positive constant
c > 1. Let x be a number such that ux > u(1+x)(1− ε

2 ). Let M = ux.
Let Σ(S) be the alphabet of a sequence S. If Σi is a different set of letters

with |Σi| = |Σ(S)|, we define S(Σi) to be a new sequence obtained by replacing
all letters in S, in one to one fashion, by those in Σi.

Let Σ1, Σ2, · · · , ΣM be M disjoint sets of letters of size |Σ(G(f))|. Let G1 =
G(f)(Σ1), G2 = G(f)(Σ2), · · · , GM = G(f)(ΣM ) be the sequences derived from
G(f). Let H1 = H(f)(Σ1), H2 = G(f)(Σ2), · · · , HM = G(f)(ΣM ) be the se-
quences derived from H(f).

Define G = G1s1G2s2 · · ·GMsM and H = H1s1H2s2 · · ·HMsM , where si is a
peg gene appearing only once in G and H. The total length of G,H is bounded by
c(u+1)M ≤ 2cux+1. Let m be the maximum length of G andH, then m ≤ c′ux+1

for some c′ > 2.
Assume that some polynomial time algorithm A outputs G, H such that G is

an exemplar genome of G and H is an exemplar genome of H, and d(G, H) ≤
g(m)d(G,H) + m1−ε, we can then decide if f is satisfiable by checking whether
d(G, H) ≤ m1−ε. If f is satisfiable, it is easy to see that d(G,H) = 0 then
d(G, H) ≤ m1−ε. If f is not satisfiable, then from Theorem 3.5 d(Gi, Hi) ≥ 1.
As no letter is shared by Gi, Gj , we have d(G,H) ≥ M = ux > u(1+x)(1− ε

2 ) ≥
(m

c′ )1−
ε
2 > m1− 3

4 ε when m is sufficiently large. Since G, H are exemplar genomes
of G,H, d(G, H) > m1− 3

4 ε. ��
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Corollary 5. Let ε > 0. If there is a polynomial time algorithm such that given
G and H of length at most m it can return exemplar genomes G and H satisfying
d(G, H) ≤ m1−ε[opt(G,H) + 1], then P=NP.

This negative result shows that even under a much weaker model, it is not
possible to obtain a good approximation unless P=NP. In next section, we will
present a factor-2(1+logn) approximation for the One-Sided Exemplar Reversal
Distance Problem in which one of the two genomes is a k-span genome. It is not
surprising that this problem is also known to be NP-complete, in fact, it is
NP-complete even when k = 1 [2].

5 A 2(1 + log n)−Approximation for the One-Sided Case

Given a k-span genome Gk and a general genome H, each is a sequence con-
taining O(m) signed or unsigned genes (drawn from the n gene families and
genes from the same family in Gk are at most k positions away and there are
possibly any kind of repetitions in H), the problem is to compute the minimum
exemplar breakpoint distance between two exemplar genomes G, H (obtained by
deleting redundant genes in Gk and H). Let Gk = a1a2 · · · an1 ,H = b1b2 · · · bm1 .
Throughout this section we assume that k = O(log n).

Let opt(Gk,H) be the size of the optimal solution of the above One-sided
Exemplar Breakpoint Distance Problem.

Let A = [ai, ai+sp−1 ] ∈ Gk and B = [bj , bj+tp−1 ] ∈ H. If a gene family, which
is a multi-set of genes in Gk(H), all appear in A (B) then it is called a multi-
set of whole-family genes in A (B). Example: Let G3 = ga − fgedbedc− e and
H = acefgac− fbebdach− g. Consider the interval IG = a− fgedbed in G3 and
the interval IH = gac− fbebdc in H. The multi-set of whole-family genes in IH

is {{b, b}, {d}}.
Given A = [ai, ai+sp−1 ] ∈ Gk and B = [bj , bj+tp−1 ] ∈ H, an interval I =

c1c2...cp or its signed reversal −I is called a Non-Breaking Interval (NB-interval
for short) if I contains no repetition of any gene, for each multi-set of whole-
family genes in A and B one of them must appear in I, and I appears in Gk with
c1 = ai, c2 = ai+s1 , · · · , cp = ai+sp−1 (or c1 = −ai+sp−1 , c2 = −ai+sp−2 , · · · , cp =
−ai) and in H with c1 = bj , c2 = bj+t1 , · · · , cp = bj+tp−1 (or c1 = −bj+tp−1 , c2 =
−bj+tp−2 , · · · , cp = −bj) for some sp−1 > sp−2 > · · · > s1 > 0 and some tp−1 >
tp−2 > · · · > t1 > 0. The length p is called the size of I. Given A = [ai, ai+sp−1 ] ∈
Gk and B = [bj , bj+tp−1 ] ∈ H, we are interested in computing a NB-interval
of maximum size (length). Notice that a maximum NB-interval is very much a
longest constrained common subsequence of A and B, it is related to but different
from the recently studied constrained longest common subsequence [5]. From now
on, we will only talk about maximum NB-intervals, which we will simply use NB-
intervals if the context is clear.

Now let A = g1g2 · · · gN , B = h1h2 · · ·hM be strings on z identical gene fam-
ilies, and g1 = h1, gM = hN . We assume that both A, B are long enough, say,
at least of length 20k (otherwise we can simply use a brute-force method).
Let W (A[i, j]), W (B[s, t]) be the whole-family gene sets in A[i, j] and B[s, t]
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respectively. We show below a polynomial time dynamic programming algo-
rithm to compute the NB-interval between strings A, B. Let A[i, j] = PaHPb,
where |Pa| = |Pb| = k. Since A is a k-span genome, Pa, Pb have no common
genes when |H | ≥ k. Let Ha, Hb be exemplar genomes selected from Pa, Pb re-
spectively. In the dynamic programming table, table(i, j, Ha, Hb, s, t) stores a
longest constrained common subsequence HaV Hb of A[i, j] and B[s, t] such that
W (A[i, j]), W (B[s, t]) all appear in HaV Hb and there is no repetition of any
gene in HaV Hb.

Let A[i, j] = PaHPb, with H = H1PcPdH2 and |Pc| = |Pd| = k. Assume that
A[i, j1] = PaH1Pc and A[j1, j] = PdH2Pb, we can merge table(i, j1, Ua, Ub, s, t1)
and table(j1+1, j, Ta, Tb, t1+1, t) into table(i, j, Ha, Hb, s, t)—if UbTa is exemplar
and selected from PcPd then all whole family genes in PcPd must be in UbTa and
no gene is repeated in UbTa; moreover, among all such candidates we select the
longest one as UbTa. So when j1, t1 is fixed this merge takes O(k2 + n) = O(n)
time. As we need to try different combinations j1 and t1, the final content in
table(i, j, Ha, Hb, s, t), which should be the longest, can be computed in O(n3)
time, provided that table(i, j1, Ua, Ub, s, t1) and table(j1 + 1, j, Ta, Tb, t1 + 1, t)
are already available.

There are at most 2k ways to select Ha from Pa (Hb from Pb). Therefore, this
dynamic programming algorithm uses O(22kn5) space (there are O(22kn4) cells
in the table, each could store a sequence of length O(n)) and it takes O(22kn7)
time to compute the (maximum) NB-interval between A and B, which is stored
in table(1, N,−,−, 1, M). Finally, notice that each signed/unsigned gene in Gk

or H is a degenerate (maximum) NB-interval of length one.
This dynamic programming algorithm will be used as a subroutine in our

final approximation for the One-sided Exemplar Breakpoint Distance Problem.
Now consider the problem of covering all genes in Gk and H using the minimum
number of (disjoint) NB-intervals. Let C∗(Gk,H) be the size of the optimal
solution for this covering problem.

Lemma 1. C∗(Gk,H) ≤ opt(Gk,H) + 1.

Proof. Trivial, as each breakpoint in the exemplar genomes G, H can only occur
between two NB-intervals. ��
We now show how to obtain a factor 2(1+logn) approximation for C∗(Gk,H) by
converting it to a set-cover problem (X,F). In this case, each (degenerate and
non-degenerate) NB-interval is a set S ∈ F . X contains all of the n genes. The
problem is to compute the minimum number of (disjoint) NB-intervals which
cover all the genes. The algorithm follows the greedy method [7, 13, 14].

(1) Start with Gk,H. Enumerate all pairs of intervals A = [ai, ai+s] and B =
[bj , bj+t] with ai = bj , ai+s = bj+t. For each such pair (A, B), use the above
dynamic programming algorithm to compute a maximum length NB-interval.

(2) Among all the maximum NB-intervals computed at Step (1), select one
with the maximum size, I, and put it in the approximation solution.

(3) Delete all the (signed/unsigned) genes in I to have two updated versions
of Gk,H. Repeat Step (1)-(2) until all the genes are covered.
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Let App(Gk,H) be the number of the NB-intervals obtained in the above
approximation solution. Following [7, 13, 14], we have the following lemma.

Lemma 2. App(Gk,H) ≤ (1 + log n) · C∗(Gk,H).

We have the following theorem.

Theorem 5. App(Gk,H) ≤ 2(1 + log n) · opt(Gk,H).

Proof. By Lemmas 5.1 and 5.2, App(Gk,H) ≤ (1+ logn) · opt(Gk,H)+ logn+1.
When opt(Gk,H) > 0, App(Gk,H) ≤ (1 + log n) · opt(Gk,H) + log n + 1 ≤ (1 +
log n) · opt(Gk,H) + (1 + log n) · opt(Gk,H) = 2(1 + log n) · opt(Gk,H). When
opt(Gk,H) = 0, which can be identified by the above dynamic programming
algorithm, we can ignore using this approximation algorithm. ��

The running time of the above approximation algorithm is as follows: There could
be O(n) rounds in the greedy selection process. At each round we could have enu-
merated O(n2) intervals and each call to the dynamic programming procedure
takes O(22kn7) time. Therefore, the overall running time of the approximation
algorithm is O(22kn10). The approximation algorithm uses O(22kn5) space.

We comment that for this problem, when k = 1, the above factor-2(1+ log n)
approximation can be greatly simplified. The complex dynamic programming
method can be replaced by a Longest Common Subsequence computation [6]
and the algorithm runs in O(n5) time and O(n2) space, which is clearly much
more efficient.

6 Concluding Remarks

We present the first set of inapproximability/approximation results for the
Exemplar Breakpoint Distance Problem. Although it seems that the general
problem does not admit any approximation, for a special one-sided case, de-
cent approximation does exist. This also partially conforms with the real-life
dataset that repetitions of genes are typically pegged and not very far away [17].
It would be interesting to study some meaningful special cases. For example,
can be obtain a good approximation when G is 2-repetitive and H is a 3-span
genome?
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Abstract. We study the λ-seed problem of a string in this paper. Given
a string x of length n and an integer λ, the λ-seed problem is to find
all the sets of λ substrings of x that cover a superstring of x, assuming
that each element of the set is of equal length. We present an efficient
algorithm that can compute all the λ-seeds of x in O(n2) time.

1 Introduction

The most common regularities in strings, notably periods, covers and seeds,
correspond to those repetitive structures of strings. Among them, a substring
w is a period of a nonempty string x if x is a prefix of a string constructed by
concatenations of w, which grasps the typical and classical regularity. The other
two related categories are generalized by periods in the way that superpositions
as well as concatenations are considered, whereas only concatenations are allowed
for periods.

A substring w of x is called a cover of x if and only if x can be constructed by
concatenations and superpositions of w, so that every position of x lies within
some occurrence of w in x. Apostilico, Farach and Iliopoulos first introduced the
notion of covers in [1], where a linear-time algorithm for computing the shortest
cover of x was presented. A series of linear-time algorithms that improved on
this result then followed: Breslauer [3] described a linear-time online algorithm
for computing the shortest cover of every prefix of x. Moore and Smyth [13] gave
a solution to find all the covers of x, and recently Li and Smyth [12] solved both
the all-covers problem and the shortest-cover problem by constructing the cover
array for the string. As to parallel computation, Iliopoulos and Park [10] gave a
work-time optimal O(log log n) algorithm for finding all the covers of x.

Extending the idea of covers in the sense that a set of substrings of x are
considered instead of a single string, Iliopoulos and Smyth [11] introduced the
idea of k-covers and studied the minimum k-cover problem. This problem is to
compute the minimum set of substrings of x each of length k that covers x,
which was then proved to be NP-complete in [6]. We [14] proposed an associated
problem, that is, the λ-cover problem to find all the sets of λ substrings each of

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 303–313, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



304 Q. Guo, H. Zhang, and C.S. Iliopoulos

equal length that cover x, then gave a general algorithm to solve this problem
in O(n2) time.

A seed can be thought of as a generalized cover, since it aims at a substring of
x that covers a superstring of x. Iliopoulos, Moore and Park [8] introduced this
notion for the first time and gave an O(n log n)-time algorithm for computing all
the seeds of x. A parallel algorithm that requires O(log n) time and O(n log n)
work was presented [5] for the same problem.

Inspired by the λ-cover problem, we now intend to study the λ-seed problem.
Formally speaking, given a string x of length n and an integer λ, the λ-seed
problem is to find all the sets W = {w1, w2, . . . , wλ} of substrings of x such
that:

(1) |w1| = |w2| = · · · = |wλ|;
(2) There exists a superstring y = uxv of x with |u|, |v| < |wi| such that y can

be constructed by concatenating or overlapping copies of the strings w1, w2,
. . . , wλ.

If λ = 1, this problem is actually to compute all the seeds of x, which has been
solved in O(nlogn) time [8]. Thus, this paper simply considers the case λ > 1 and
focuses on solving the λ-seed problem of a string. The motivation comes from
the efforts to analyze a DNA sequence in the hybridization approach, where we
require a set of sample substrings of fixed length to determine the base pairs.

This paper is organized as follows. Section 2 gives preliminaries used through-
out the paper. In Section 3, we present an optimal algorithm that finds all the
λ-seeds of a string in O(n2) time. Finally we conclude and discuss our future
research interests in Section 4.

2 Preliminaries

Let Σ be a finite alphabet consisting of a set of characters. A string over the
given alphabet is a sequence of zero or more symbols of the alphabet. A string
x of length n is represented by x[1..n] = x[1]x[2] · · ·x[n], where x[i] ∈ Σ for
1 ≤ i ≤ n. The empty string is the empty sequence (of zero length) denoted
by ε. The set of all nonempty strings over Σ is denoted by Σ+, then the set
of all strings over the alphabet Σ including the empty string is denoted by
Σ∗ = Σ+ ∪ {ε}.

A string w is a substring of x if x = uwv for u, v ∈ Σ∗. Equivalently, x is
a superstring or an extension of w; uw is a left extension of w; wv is a right
extension of w. A substring of length p is called a p-substring for short. For a
nonempty substring w = x[i..j], we say that w occurs at position i and i is an
occurrence of w in x. A string w is a prefix of x if x = wu for u ∈ Σ∗. Similarly,
w is a suffix of x if w = uw for u ∈ Σ∗.

The string xy is a concatenation of two strings x and y. The concatenation
of k copies of x is denoted by xk. For two strings x = x[1..n] and y = y[1..m]
such that x[n− i + 1..n] = y[1..i] for some i ≥ 1, the string x[1..n]y[i + 1..m] is
a superposition of x and y with i overlaps, we say that x and y are overlapping.
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A repeat of x is a substring r ∈ Σ+ such that x = u1ru2 = v1rv2 with
u1, u2, v1, v2 ∈ Σ∗ and |u1| �= |v1|. A substring w is said to be a cover of x
if x can be constructed from concatenated and/or overlapped copies of w. In
other words, w covers x. A substring w is called a seed of x if there exists an
extension of x (possibly x itself) that can be constructed by concatenations and
superpositions of w. For example, the string x = abababa has a cover aba and a
seed bab.

Definition 1. Let w1, w2, . . . , wk be the substrings of x, we say that a set
W = {w1, w2, . . . , wk} is a combination of k substrings drawn from x, called for
short a k-combination of x. And, W is called a (k, p)-combination of x if each
wi (1 ≤ i ≤ k) is of length p. We also say that, a k-combination W occurs at
position j if j is an occurrence of any wi in x.

Definition 2. Given a string x of length n and a certain integer p, we say that
a (λ, p)-combination W = {w1, w2, . . . , wλ} is a (λ, p)-cover of x if and only if
every position of x lies within an occurrence of some wi (1 ≤ i ≤ λ), and a
(λ, p)-seed of x if and only if W is a (λ, p)-cover of a superstring y = uxv of x
with |u|, |v| < p.

The λ-seed problem is actually to determine all the (λ, p)-seeds of x. To avoid
triviality, we assume that 1 < p < n/λ. The reason for this assumption is
because we can trivially find a set of (λ, p)-covers of x if p ≥ n/λ, then easily
obtain the (λ, p)-seeds of x. It is evident that any (λ, p)-combination serves as
a candidate for both (λ, p)-covers and (λ, p)-seeds. Consequently, we need to
record all the occurrences of the (λ, p)-combinations of x, then check which ones
are true (λ, p)-seeds.

We use Crochemore’s partitioning [7] to find all exact repeats of a string. The
main idea of this well-known algorithm is based on the following definition of
the equivalence relation over the positions of the string:

Definition 3. Given a string x[1..n] ∈ Σ∗, two positions i, j ∈ {1, . . . , n−p+1}
of x, then (i, j) ∈ Ep iff x[i...i + p− 1] = x[j...j + p− 1], noted iEpj.

That is, two positions i and j of x belong to the same one Ep-class when two
p-substrings of x starting at i and j are identical. Clearly each class of Ep of
cardinality not less than two records the occurrences of a repeat of length p.
Since Ep+1 is a refinement of Ep, the algorithm first computes E1, then itera-
tively builds E2, E3, . . . until all classes are singleton. Utilizing the “smaller-half
trick” [2] [7], the partitioning takes O(nlogn) time to detect the sets of the start-
ing positions of all the repeating substrings of x. More details of this algorithm
can be found in the original paper [7].

3 Computing the λ-Seeds of x

Trivially, a (λ, p)-cover is always a (λ, p)-seed. But more commonly, the first
(resp. last) appearance of a (λ, p)-seed in x might be incomplete, shown as the
structure of a suffix (resp. prefix) of an element in the set.
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Definition 4. Given a (λ, p)-combination W = {w1, w2, . . . , wλ} of x, we say
that W is a candidate (λ, p)-seed if there exists a substring x′ of x = ux′v such
that W covers x′ and |u|, |v| < p. For maximal such x′, we call u (resp. v) the
head (resp. tail) of x with respect to W .

Fig. 1. A candidate (λ, p)-seed of x

Fig. 1 shows a candidate (λ, p)-seed W of the given string x. Assume that the
first and the last appearance of W in x′ is wi and wj respectively(1 ≤ i, j ≤ λ),
in order for a candidate (λ, p)-seed to be a true one, it must suffice to cover a
left extension of the string uwi as well as a right extension of the string wjv.
If it does, a (λ, p)-seed of x can be reported. Relying on this fact, we give the
following algorithm for computing the λ-seeds of x.

Step 1. For a certain p (1 < p < n/λ), list all the (λ, p)-combinations and
record their occurrences in x.

This step is the same with Step 1 of our general algorithm for solving the λ-
cover problem [14], since a (λ, p)-combination can serve as a candidate for both
(λ, p)-covers and (λ, p)-seeds as we mentioned earlier. We now simply give a brief
outline of this algorithm.

The algorithm initially finds valid (λ, p)-combinations for induction in the
base case, which is the first p such that the number of distinct substrings of x is
greater than λ. Then it works iteratively to deduce all the (λ, p)-combinations
and their occurrences in x according to the (λ, p− 1)-combinations.

The iterative deduction rests on the construction of the Equivalence Class
Tree (ECT), which expresses the relationship between each Ep−1-class and cor-
responding Ep-classes. Let {C1, . . . , Ck} be the Ep−1-classes, we can create the
ECT as follows: The root of the ECT has label 0. There are k nodes of depth
p − 1, each of which is denoted by the index of Ci(1 ≤ i ≤ k). The sons of the
node corresponding to Ci are the indices of the Ep-classes partitioned by Ci by
scanning one more character to the right. Note that, Ci is a union of these Ep-
classes. For the convenience of explanation, we label every node by the substring
itself instead of the index of its equivalence class.

To achieve an efficient induction, we build a position string to store all the
occurrences of a k-combination in x in the following way:

Definition 5. Let Cwi be the equivalence class corresponding to a substring wi

of x, C{w1,w2,...,wk} = {i1, i2, . . . , im} for a k-combination W = {w1, w2, . . . , wk}
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be the occurrences of W in x, then a position string L{w1,w2,...,wk} for W is a
string of length n such that for every position i in L:

L{w1,w2,...,wk}[i] =

⎧⎨⎩
i1, i = i1;
it − it−1, i = it (2 ≤ t ≤ m);
0, otherwise.

The position string L is a string composed of numbers, which identifies each
position where a k-combination of x appears by the distance between its current
and previous occurrence, and other positions by 0.

We consider the iterative computation of the (λ, p)-combinations and their
occurrences in x from the (λ, p − 1)-combinations. Given a certain (λ, p − 1)-
combination S = {s1, s2, . . . , sλ}, it might produce a series of (λ, p)-combinations
as a result of the partitioning of each Ep−1-class Csi( 1 ≤ i ≤ λ) according to
the ECT. Let the number of sons of si in the ECT be ri for 1 ≤ i ≤ λ, then
the relevant p-substrings can be denoted by w1

i , w2
i ,. . . , wri

i , clearly ri ≤ |Σ|.
From i = 1 to i = λ, we successively replace si by li among these ri p-substrings
respectively. Every current combination obtained after si being replaced is saved
to be further updated, denoted by Wi. In other words, we first compute {W1},
then update each W1 to obtain {W2}, etc., until {Wλ} is iteratively created.
Obviously, {Wλ} consists of all the (λ, p)-combinations associated with the given
(λ, p− 1)-combination S.

The induction of {Wj} (2 ≤ j ≤ λ) from {Wj−1} can be stated as follows:
Consider any Wj−1,

1. if Wj−1 contains sj : Keep all those members of Wj−1 located before sj ,
namely, l1 + l2 + . . . + lj−1 p-substrings produced respectively by s1, s2, . . . ,
sj−1 unchanged. The following cases need to be discussed by checking sj .
(a) sj is not the last element of Wj−1: replace sj by lj among rj sons of sj

according to ECT, then remove lj − 1 from the remaining si’s (i > j) in
the case of lj �= 0; or delete sj and reserve all the remaining si’s (i > j) in
the case of lj = 0, which leads to one Wj . Let λ′ = λ−(l1+l2+. . .+lj−1).
i. rj < λ′: As 0 ≤ lj ≤ rj and rj ≤ |Σ|, in this case there are at

most
∑min(|Σ|,λ′−1)

lj=1 C
lj
min(|Σ|,λ′−1)C

λ′−lj
λ′−1 + 1 Wj ’s, which is a con-

stant dependent only on λ′ and |Σ|, or on λ and |Σ| since each li
(1 ≤ i ≤ j − 1) reckons on them.

ii. rj ≥ λ′: In this case, 0 ≤ lj ≤ λ′, rj ≤ |Σ|. The cardinality of {Wj}
is at most

∑λ′

lj=1 C
lj
|Σ|C

λ′−lj
λ′−1 + 1, a constant independent of p.

(b) sj is the last element of Wj−1: Replace sj with exactly λ′ among rj p-
substrings partitioned by sj in the case of rj ≥ λ′; or delete this Wj−1
otherwise.

2. if Wj−1 does not contain sj : {Wj} ←Wj−1.

The position string for any Wλ can also be computed by iteratively updating the
position string for S as shown in the procedure UPDATE. We create a doubly
linked list to store all the nonzero-value positions i of a position string, where
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i.left and i.right points to the previous and the next one respectively. Initially,
for all 2 ≤ i ≤ n − 1, i.left = i − 1, i.right = i + 1; for i = 1, i.left =NULL,
i.right = i + 1; for i = n, i.left = i− 1, i.right =NULL. The list for a position
string LWλ

can be iteratively updated along with the induction of Wλ from
S (see while loop). Observe that the occurrences of Wλ in x can be viewed
as removing all the occurrences of wj

i ’s (1 ≤ i ≤ λ, 1 ≤ j ≤ ri) that are not
included in Wλ from those of S in x. When an occurrence i′ needs to be removed,
the distance between adjacent nonzero-value positions, etc. i′.left and i′.right,
should be correspondingly updated (line 2-6 of while loop). The list is as well
updated by directly linking i′.left with i′.right (line 10-11 of while loop). After
all the “removed” positions are examined, we get the position string Lcur for
Wλ.

Step 2. Filter all the (λ, p)-combinations to determine candidate (λ, p)-seeds.

We define three variables to represent the maximal differences between adjacent
occurrences, the first and the last occurrence of a λ-combination in x, denoted
by MAX-GAP, pos0, post respectively.

Initially, MAX-GAP=1, pos0 = 1, post = n. The values of these three vari-
ables of Wλ can also be iteratively calculated along with the induction of Wλ

from S, as shown in the procedure UPDATE. Suppose that MAX-GAP, pos0,
post for the (λ, p − 1)-combination S = {s1, s2, . . . , sλ} are g0, e0 and et re-
spectively. As we mentioned earlier, when a position i′ is removed, the distance
between adjacent nonzero-value positions are correspondingly updated (line 2-6
of while loop), then MAX-GAP is maintained as the larger one between this
updated distance and the current MAX-GAP (line 7 of while loop). Similarly, if
the current pos0 (resp. post) is removed, then the next (resp. previous) nonzero-
value position pos0.right (resp. post.left) is updated as the new one (line 8-9 of
while loop).

procedure UPDATE
REMOVE ← ∅;
for i← 1 to λ do

for j ← 1 to ri do
if wj

i �∈Wλ then REMOVE ← every element of Cwj
i
;

Lcur ← LS;
Lcur[n− p + 2]← 0;
MAX-GAP ← g0;
pos0 ← e0;
post ← et;
while REMOVE not empty do

pos remove← extract an element from REMOVE;
temp← Lcur[pos remove];
pl← pos remove.left;
pr← pos remove.right;
Lcur[pos remove]← 0;
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Lcur[pr]← Lcur[pr] + temp;
MAX-GAP ← max(MAX-GAP, Lcur[pr]);
if pos remove = pos0 then pos0 ← pr;
if pos remove = post then post ← pl;
pr.left← pl;
pl.right← pr;

end do
end

Clearly, when the position string for a certain (λ, p)-combination Wλ is ob-
tained, the corresponding values of MAX-GAP, pos0, post are also acquired.
By Definition 4, any Wλ with MAX-GAP> p or the length of the head or
tail with respect to Wλ is larger than or equal to p should be eliminated. As
|u| = pos0− 1, |v| = n− post +1− p, we follow that any (λ, p)-combination with
p ≥ max(pos0, �(n−post +2)/2�, MAX-GAP) is qualified to become a candidate
(λ, p)-seed.

For example, suppose that x = abbabbaababbab and λ = 3, we can obtain
the position string for a (3, 3)-combination L{bba,baa,aba} = 02003102003000 fol-
lowing Step 1. Furthermore, we get: MAX-GAP=3, pos0 = 2 and post = 11.
Therefore, We determine {bba, baa, aba} to be a candidate (3, 3)-seed.

Step 3. Test each candidate (λ, p)-seed if it is a true one.

Consider a candidate (λ, p)-seed W = {w1, w2, . . . , wλ}, suppose that the first
and the last appearance of W in x is the element wi and wj separately (1 ≤ i, j ≤
λ), then uwi = x[1..pos0 + p− 1], wjv = x[post..n]. We use the ECT to test if a
candidate (λ, p)-seed can cover a right extension of wjv, while we construct the
Reversed Equivalence Class Tree (RECT) to help checking whether a candidate
can cover a left extension of uwi.

The RECT is built similar to the ECT, with the major distinction that the
refinement of Ep from Ep−1 scans characters in the contrary direction, that is,
from left to right in the ECT, backward in the RECT. Next we illustrate the
construction of the RECT and the ECT.

Consider the example x = abbabbaababbab, both trees have label 0 as root.
Let Cw be the equivalence class associated with a substring w of x. Since there
are two E1-classes: Ca = {1, 4, 7, 8, 10, 13}, Cb = {2, 3, 5, 6, 9, 11, 12, 14}, we can
add two nodes a and b of depth 1 into both trees. At stage 2, scanning one
more character to the right, class Ca is partitioned into two subclasses: Cab =
{1, 4, 8, 10, 13}, Caa = {7}, both bearing node a as their parent in the ECT. If
Ca reads one character to the left, two E2-classes Cba and Caa are produced. We
hence put nodes ba and aa into the RECT as a’s sons. Note that, it does not
imply that Ca itself is partitioned into Cba and Caa, but that we partition with
respect to Ca the class Cb obtaining Cba and partition with respect to Ca the
class Ca obtaining Caa. The same work can be done on Cb, getting two nodes bb
and ba of depth 2 in the ECT and two sons bb and ab in the RECT. Sequentially,
as soon as the length p increases and the new Ep-classes are acquired, the nodes
at this level are created and added into these two trees. The construction of both
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Fig. 2. The ECT of x = abbabbaababbab

Fig. 3. The RECT of x = abbabbaababbab

the ECT and the RECT is finished once the computation of equivalence classes
stops, that is, all classes are composed of only one element or p = n/2.

Following this method we build the ECT and the RECT of the given exam-
ple, respectively shown in Fig. 2 and Fig. 3. We label those special substring in
the ECT (resp. RECT) such that each of them aligns with the end (resp. start)
of x, called end-aligned substrings (resp. start-aligned substrings) in the follow-
ing context. In other words, the ending position of the last appearance of an
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end-aligned substring in x is position n, while the first occurrence of a start-
aligned substring in x is position 1. For example, b, ab, bab, bbab, abbab, babbab
are all end-aligned, while the substrings a, ab, abb, abba, abbab, abbabb are start-
aligned, thus boxes are drawn to mark them respectively in the ECT and the
RECT. Furthermore, it is easily noticed that:

Fact 1. In any path from the leaf to the root of the ECT (resp. RECT), an
internal node represents a prefix (resp. suffix) of the leaf, in order of decreasing
length.

This fact allows us to test a candidate (λ, p)-seed using the following approach,
where two parts are involved.

Case 1. Check the tail v with respect to a candidate (λ, p)-seed W .

Recall that if the last appearance of W = {w1, w2, . . . , wλ} in x is wj (1 ≤
i, j ≤ λ), W should be able to cover the right extension of the string wjv.

Consider any element wk in W (1 ≤ k ≤ λ, |wk| = p), we can observe from the
ECT that if wk is a marked node, then the tail v with respect to W is the empty
string, which allows us to be relieved of the further testing. If wk is unmarked,
we can trace up in the branch where wk is located to the nearest marked node
s. By Fact 1, s identifies the longest prefix of wk that is end-aligned.

(i) if |s| < |v|, wjv cannot be constituted by concatenations or superpositions
of wj and any prefix of wk.

(ii) if |s| ≥ |v|, wjv is concatenated or overlapped by wj and s, s = x[n−|s|+1..n]
is the last incomplete appearance of wk in x. We call such s a valid prefix of
wk, as shown in Fig. 1. Note that wj and wk might equal or differ.

Obviously, our task is to examine every element of W if it has a valid prefix. If
no such substring exists, we can immediately claim that W is not a (λ, p)-seed.
Once a valid prefix is found, we realize that W succeeds in covering the right
extension of wjv. Consider the candidate (3, 3)-seed W = {bba, baa, aba} of the
example string acquired in Step 2. Observe from Fig. 2 that bba has a valid
prefix b such that |b| = |v| = 1. Actually, baa and aba both have valid prefixes as
well. Therefore, this candidate wins its way to the further testing for the head
covering. To efficiently implement the above tail testing, our algorithm redefines
each node in the ECT as below:

Definition 6. A node in the ECT is denoted by a triple: Node(w)=(w, P-Align,
E-Align), where w stands for the equivalence class for a string w or simply w
itself. P-Align points to the nearest ancestor of w that is marked in the ECT.
E-Align is a boolean value for w, where E-Align=TRUE if w itself is end-aligned,
and E-Align=FALSE otherwise.

For instance, a substring bbabb of x = abbabbaababbab can be denoted in the
ECT as: Node(bbabb)=(bbabb, bbab, FALSE). When a new Ep-class is computed,
the corresponding node triple of depth p is updated and inserted into the ECT.
For any node w of depth p, there are two possibilities regarding updating its
values:
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(i) if w is a marked node, that is, post + p − 1 = n where post is the last
occurrence of w in x, then Node(w).E-Align= TRUE, Node(w).P-Align= w.

(ii) if w is an unmarked node, then Node(w).E-Align=FALSE, Node(w).P-
Align= Node(pw).P-Align where pw is the parent of w in the ECT.

Given this node triple, checking for a node w if it has a valid prefix is a direct
one-step operation.

Case 2. Check the head u with respect to a candidate (λ, p)-seed W .

With a slight modification, checking the head is symmetric to the case of
checking the tail. As we discussed before, W should be able to cover the left
extension of the string uwi.

We utilize the RECT to help checking the head. Recall that in the RECT,
the start-aligned substrings are marked. We then examine every element wk in
W (1 ≤ k ≤ λ) if it has a valid suffix s such that s is the closest marked ancestor
of wk in the RECT, and |s| ≥ |u|. Once a valid suffix is found, we declare that
W succeeds in checking the head.

Every node in the the RECT is also denoted by a triple: Node(w)=(w, P-
Align, E-Align), with the distinction that E-Align stands for a boolean symbol
identifying if w itself is start-aligned or not, and P-Align points to the nearest
ancestor of w in the RECT that is marked. Above computation for the values of
the nodes holds in this case.

Theorem 1. The above algorithm can solve the λ-seed problem in O(n2) time.

Proof. As we discussed earlier, the ECT and the RECT are both constructed
along with the partitioning of equivalence classes, when the values of every
node triple are updated simultaneously. The construction for each tree requires
O(n log n) time.

At a certain stage p, recall that the cardinality of {Wj} is dependent only on
|Σ| and λ. That is, the number of (λ, p)-combinations associated with a given
(λ, p−1)-combination is a constant independent of p. The position string for any
Wλ can be computed using the procedure UPDATE, which takes O(1) time for
each “removed” position. Taking all the (λ, p)-combinations into account, every
position is examined for constant times in the procedure UPDATE. Therefore,
Step 1 costs O(n) time for all the n positions.

The values of MAX-GAP, pos0, post are updated along with updating position
strings, which does not take more time than computing the position strings.
Thus Step 2 requires O(1) time to determine whether a (λ, p)-combination is a
candidate (λ, p)-seed or not, then O(n) time for all the O(n) (λ, p)-combinations.

Step 3 simply executes some arithmetic operations, which runs in constant
time for any element in the candidate {λ, p}-seed, and constant time for all the
λ elements.

To sum up, our algorithm takes O(n) time for computing the (λ, p)-seeds for
a certain p. Since there are at most n/λ stages, the overall complexity of this
algorithm is O(n2).
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4 Conclusions

In this paper we introduce the λ-seed problem of a string and present an O(n2)-
time algorithm for solving this problem.

Our future direction is focused on a valid definition for the approximate λ-
cover and the approximate λ-seed problem of a string and seeking solutions to
these problems. We are also interested in the general λ-seed problem that does
not limit the size of each element in the set to be equal.
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Abstract. We study the subsequence packing problem: given a string
T and a collection of strings {Si}, find disjoint subsequences {Ti} of
T with maximum total length such that each Ti is a subsequence of
Si. We prove the NP-completeness of the decision problem, present the
first non-trivial deterministic approximation, and show its applications
to DNA sequencing verification and preemptive job shop scheduling with
two machines.

1 Introduction

Given a string T and a collection of strings C = {S1, S2, . . . , Sn} over the same
alphabet Σ, a subsequence packing (or packing for short), P = {T1, T2, . . . , Tn},
is a collection of n disjoint subsequences of T such that, for 1 ≤ i ≤ n, each Ti

is also a subsequence of Si (that is, Ti is a common subsequence of T and Si).
Given an instance (Σ, T, C), the subsequence packing optimization problem is to
find a packing of maximum size, where the size of a packing is the total length
of its disjoint subsequences: ‖P‖ =

∑n
i=1 |Ti|. Given an instance (Σ, T, C, x),

where x is a positive integer, the subsequence packing decision problem is to
decide whether there exists a packing of size x.

We can visualize the subsequence packing problem as a game in which each of
the n + 1 strings is represented by a stack of characters with the first character
at the top. In each step of the game, a player can either pop one of the n + 1
stacks or, if the top of the stack T is identical to the top of a stack Si, pop the
two stacks and declare a match. The game continues until all stacks are empty;
the goal is to maximize the number of matches.

The subsequence packing problem is a direct generalization of the longest com-
mon subsequence problem: when the collection C contains only a single string S1,
the maximum subsequence packing is simply the longest common subsequence
of two strings S1 and T . The longest common subsequence problem is a classic
string matching problem with numerous applications to bioinformatics and com-
putational biology [6]. The subsequence packing problem itself has applications
to both DNA sequencing verification and preemptive job shop scheduling.

1.1 Application to DNA Sequencing Verification

The most common strategy for DNA sequencing [1] today is the shotgun method.
In this method, copies of a genome are first broken apart randomly into many
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short fragments. These fragments together cover the whole genome, that is, for
each base pair location in the genome, there is at least one fragment that includes
it. If, on average, each base pair location is included in k fragments, we say these
fragments are a k-fold coverage of the genome. Each fragment of the genome
is short enough that its sequence can be determined by experimental methods.
Given the short sequences corresponding to the fragments, a computer then tries
to arrange them into the whole genome, using the overlap between the sequences
to deduce their order and to guide the assembly.

The shotgun method has been successfully applied in sequencing the genomes
of Haemophilus influenzae (a bacterium, the first organism to have its complete
genome sequence determined by the shotgun method), mouse, and even human
[9]; it is the technique of choice for sequencing small genomes. However, the
sequencing of highly repetitive genomes still poses an intriguing problem for
scientists. If a genome is highly repetitive, fragments with the same sequence
may come from different locations of the genome—to resolve these ambiguities is
challenging and often requires a post-sequencing verification process to guarantee
the accuracy of the deduced sequence. We next sketch a verification method
based on subsequence packing.

We first introduce some notations. S[i] denotes the i’th character of the string
S; S[i..j] = S[i]S[i + 1] . . . S[j] denotes the substring of S between indices i and
j. S1S2 denotes the concatenation of the two strings S1 and S2; Sk denotes the
concatenation of k copies of the string S. The empty string is denoted by ε.

Given a collection of strings C = {S1, . . . , Sn} that is a k-fold coverage
of a longer string S = S[1] . . . S[μ] of length μ, we compose a string T =
(S[1])k . . . (S[μ])k of length kμ, in which each character of S is repeated k times.
If C is a perfect k-fold coverage of S, that is, if each character of S is covered by
exactly k strings in C, then the subsequence packing instance (Σ, T, C) has opti-
mal packing size exactly kμ. To illustrate our idea, we give the following example
where C = {S1, S2, S3, S4} is a perfect two-fold coverage of the string S:

S: CGTACGTACGTA T: CCGGTTAACCGGTTAACCGGTTAA
S1: CGTA C G T A
S2: CGTA C G T A
S3: CGTACGTA C G T A C G T A
S4: CGTACGTA C G T A C G T A

The observation above implies that, if the sequence S deduced from C by
the shotgun method is close to the real sequence S∗, then the optimal packing
size for the constructed instance (Σ, T, C) must be close to kμ. Therefore, an
algorithm for the subsequence packing problem can be used to indirectly verify
the accuracy of a DNA sequencing.

1.2 Application to Preemptive Job Shop Scheduling

We have shown a biological application of the subsequence packing problem. The
earliest motivation of subsequence packing, however, is not biology but schedul-
ing. In fact, subsequence packing over the binary alphabet is closely related to
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preemptive job shop scheduling with two machines. This relation was first discov-
ered by Bansal et al. [3]. They designed a randomized approximation algorithm
for subsequence packing to indirectly approximate the notoriously difficult job
shop scheduling problem.

The problem of preemptive job shop scheduling with two machines, as noted
by Anderson et al. [2], arises naturally in the scheduling of a computer system in
which the CPU and the IO processing powers are modeled by two preemptible
machines. In this scheduling problem, there is a set J = {Ji}i=1..n of n jobs
that must be processed on two machines M0 and M1. Each job Ji consists of a
sequence of operations of unit processing time that must be processed in order
(the unit processing time implicitly models the preemption). Each operation of
a job must be scheduled on a particular machine, either M0 or M1. At any time,
a machine can process at most one operation, and a job may be processed by
at most one machine. For a given schedule, let Ci be the completion time of the
job Ji; the optimization goal is to find a schedule that minimizes the maximum
completion time Cmax = maxi Ci. The standard notation for this scheduling
problem is J2|pmtn|Cmax, where J2 means job shop with two machines, pmtn
means preemption, and Cmax refers to the optimization goal.

Let � be the maximum length, that is, the maximum number of operations,
of a job. Let Li be the load of the machine Mi, and define L = max{L0, L1}.
The makespan Cmax of any schedule is at least L. If Li < L, then Mi has L−Li

idle time units in which a dummy job of L − Li operations can be inserted
without changing the optimal makespan. Without loss of generality, we assume
that L0 = L1 = L. We have Cmax ≥ max{L, �}.

J2|pmtn|Cmax was shown to be NP-hard [5] in 1978. The first non-trivial
1.5 approximation was presented by Sevastianov and Woeginger [8] in 1998.
Sevastianov and Woeginger used max{L, �} as the lower bound for Cmax in their
approximation, and noted that any approximation ratio better than 1.5 would
require a new lower bound. In 2000, an expected 1.5 approximation for the
online version was achieved by Kimbrel and Saia [7]. In 2001, Anderson et al.
[2] presented a linear-time (linear in the total number of operations) algorithm
that finds a schedule with makespan Cmax ≤ L + �/2. This algorithm has the
same worst-case approximation ratio 1.5, but for certain cases it is superior to
the previous 1.5 approximation; for example, if all n jobs are of equal length,
then this algorithm achieves a 1 + 1

2n approximation. Moreover, Anderson et
al.’s result revealed the most difficult case of the problem: one long job is amidst
many short jobs. An effective algorithm must schedule the short jobs in parallel
to the long job in as many time units as possible.

This difficult case was recently modeled by Bansal et al. [3] as a subsequence
packing problem over the binary alphabet: each short job Ji is represented by
a binary string Si in which a character 0 corresponds to an operation on M0
and a character 1 to an operation on M1; the long job is represented by a
binary string T with the inverted 0/1 correspondence. The number of matches
in a packing for the subsequence packing instance ({0, 1}, T, {Si}) is equal to
the number of time units in which an operation of a short job is scheduled in
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parallel to an operation of the long job. For this problem, Bansal et al. presented
a randomized algorithm based on linear programming relaxation that achieves
an expected 1

1−1/e ≈ 1.58 approximation. This randomized algorithm was then
combined with Anderson et al.’s algorithm into an expected 1 + e

3e−2 ≈ 1.44
approximation for J2|pmtn|Cmax. It is not obvious how their algorithm can be
derandomized; the current best deterministic approximation ratio is still 1.5 to
our knowledge. We found that, using Bansal et al.’s technique, we can derive the
first deterministic bound for J2|pmtn|Cmax that is less than 1.5.

In this paper, we further the study of the subsequence packing problem. First,
we prove the NP-completeness of the decision problem. Next, we present the first
non-trivial deterministic approximation for the optimization problem. Finally, we
use Bansal et al.’s technique to derive an improved deterministic approximation
for the problem of preemptive job shop scheduling with two machines.

2 The Hardness Result

Theorem 1. The subsequence packing decision problem is NP-complete.

Proof. The decision problem is clearly in NP: in polynomial time, we can assign
each character of the string T non-deterministically to one of the n + 1 sub-
sequences {Ti}i=1..n+1, use the first n subsequences {Ti}i=1..n as the packing
(Tn+1 is the subsequence of unmatched characters in T ), check whether each Ti

is also a subsequence of Si, for 1 ≤ i ≤ n, and whether
∑n

i=1 |Ti| ≥ x. We next
prove that the decision problem is NP-hard.

Our proof is based on a reduction from the NP-hard bin packing problem [4].
Given a set of m positive integers I = {ti}i=1..m (the items), a positive integer
a (the capacity), and a positive integer b, the bin packing decision problem is
to decide whether I can be partitioned into b disjoint subsets {I1, . . . , Ib} (the
bins) such that, for each Ij , 1 ≤ j ≤ b, the sum of the integers in Ij does not
exceed a. Bin packing is strongly NP-hard, that is, it remains NP-hard even if
the integers in the input instance are encoded in unary.

Given a bin packing instance (I, a, b), we construct a subsequence packing
instance (Σ, T, C, x) as follows: Σ is the binary alphabet {0, 1}; T is the string
(0a1a)b; C contains a string Si = 0ti1ti for each integer ti in I, 1 ≤ i ≤ m, and, in
addition, ab−

∑m
i=1 ti copies of the string 01 for padding (we assume that a ≥ ti,

for 1 ≤ i ≤ m, and that ab ≥
∑m

i=1 ti to exclude the trivial negative cases); and
x = 2ab. The parameter x is both the length of the string T and the total length
of the n = m + ab−

∑m
i=1 ti strings in C; therefore, in any solution for the con-

structed subsequence packing instance (Σ, T, C, x), each character of the strings
in C is matched to a distinct character in the string T , that is, the strings in C
are interwoven into the string T . Assuming that the input bin packing instance
is encoded in unary, the size of the constructed subsequence packing instance is
clearly polynomial in the input size; our reduction is therefore polynomial. To
complete the proof, we need to show that (I, a, b) is a positive instance of bin
packing if and only if (Σ, T, C, x) is a positive instance of subsequence packing.
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We first prove the “only if” direction. Let {Ij}j=1..b be a solution for the bin
packing instance (I, a, b). We show how to pack all the strings in C into the
string T . Intuitively, each of the b substrings of T in the form of 0a1a simulates
a bin to be filled. Let Cj ⊆ C be the collection of strings that correspond to the
items in Ij , and let C′

j ⊆ C be a −
∑

ti∈Ij
ti copies of the padding string 01.

The strings in Cj + C′
j have exactly a 0s and a 1s. To pack these strings, all of

the pattern 0z1z , into the j’th substring 0a1a, first match all the 0s, then match
the 1s.

We next prove the “if” direction. We show that, in any solution for the subse-
quence packing instance (Σ, T, C, x), each substring 0a1a of T must be filled by
complete strings in C, that is, no string in C is packed into more than one “bin.”
Let Cj ⊆ C be the collection of strings that are used to fill the j’th substring
0a1a. We examine how the first substring 0a1a is filled by the strings in C1.
Before the 1s in a string 0z1z in C1 can be matched to the 1s in the substring
0a1a, the preceding z 0s in 0z1z must all be matched. If some strings in C1 are
not completely packed into the substring 0a1a, then the number of matched 0s
in C1 must exceed the number of matched 1s in C1, which is impossible because
the substring 0a1a contains equal numbers of 0s and 1s. Therefore, the strings
in C1 are completely packed into the first substring 0a1a and their total length
is exactly 2a. It follows by induction that {Cj}j=1..b is a partition of C. For
each non-padding string Si in Cj , we put the corresponding item ti into Ij . The
resulting partition {Ij}j=1..b is a solution for the bin packing instance (I, a, b).
This completes the proof. ��

3 The Algorithms

3.1 Dynamic Programming Algorithm

Given a subsequence packing instance (Σ, T, C), where C = {S1, . . . , Sn}, we
denote by P (t; s1, . . . , sn) an optimal packing for the sub-instance

(Σ, T [1..t], {S1[1..s1], . . . , Sn[1..sn]}).

An optimal packing for the complete instance

(Σ, T, {S1, . . . , Sn})

is therefore P (|T |; |S1|, . . . , |Sn|) and can be computed by a dynamic program-
ming algorithm with the base conditions

P (t; 0, . . . , 0) = {ε, . . . , ε}
P (0; s1, . . . , sn) = {ε, . . . , ε}

and the recurrence

P (t; s1, . . . , sn) = max

⎧⎨⎩
P (t− 1; s1, . . . , sn)
maxi P (t; s1, . . . , si − 1, . . . , sn)
maxi P (t− 1; s1, . . . , si − 1, . . . , sn)⊕i

t,si
,
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where the operation

P (t− 1; s1, . . . , si − 1, . . . , sn)⊕i
t,si

extends the subsequence Ti of the partial packing P (t− 1; s1, . . . , si− 1, . . . , sn)
with the character Si[si] if it matches the character T [t]. Intuitively, the recur-
rence means that either the character T [t] is unmatched, or a character Si[si] is
unmatched, or the character T [t] is matched to a character Si[si].

Let �T = |T | and LS =
∑

i |Si|. The dynamic programming table has

(|T |+ 1) · (|S1|+ 1) · · · (|Sn|+ 1) = O

(
�T

(
LS

n
+ 1
)n)

cells; each cell takes O(n) time to fill. The total running time of the algorithm
is O(n�T (LS

n + 1)n). We have the following theorem.

Theorem 2. The dynamic programming algorithm solves the subsequence pack-
ing optimization problem and runs in O(n�T (LS

n + 1)n) time.

3.2 Greedy Algorithm

For a sequence S and a character c, we define |S|c to be the number of cs in
S. Given a subsequence packing instance (Σ, T, {Si}), Mc = min{|T |c,

∑
i |Si|c}

is the maximum number of c-c matches that can appear in any packing for the
instance. It follows that the optimal packing size is at most

∑
c∈Σ Mc. On the

other hand, the Pigeonhole Principle implies that

max
c∈Σ

Mc ≥
∑
c∈Σ

Mc/|Σ|. (1)

Using this bound, we can design a greedy algorithm: first find the character
c ∈ Σ that maximizes Mc, then compute a packing of size Mc containing only
c-c matches. This algorithm has a simple implementation that runs in time
linear in the total length of the strings and achieves a |Σ| approximation for the
subsequence packing problem. We have the following theorem.

Theorem 3. The greedy algorithm approximates the subsequence packing opti-
mization problem with ratio |Σ| and runs in O(�T + LS) time.

In some cases, the greedy algorithm can indeed find the optimal packing; for
example, when T = 1t0t and Si = 0si1si , a packing may contain either 0-0
matches or 1-1 matches, but not both. However, using only (1) as the bound,
the approximation ratio |Σ| of the greedy algorithm is the best possible, as we
can see from the example T = 0t1t and Si = 0si1si .

3.3 Hybrid Algorithm

Combining the dynamic programing algorithm and the greedy algorithm, we
design a hybrid algorithm that trades better approximation ratio with increased
time complexity:
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1. Find the character c ∈ Σ that maximizes Mc.
2. Partition the collection C = {Si}i=1..n into �n

k � sub-collections {Cj} each of
size at most k.

3. For each Cj , 1 ≤ j ≤ �n
k �,

(a) Gather all the cs in the strings in C − Cj into a single string S′
j. If

|S′
j | > |T |, truncate S′

j to length |T |. Extend Cj to C′
j : C′

j ← Cj + {S′
j}.

(b) Use the dynamic programming algorithm to find an optimal packing O′
j

for the instance (Σ, T, C′
j).

(c) Break the subsequence in O′
j that corresponds to the string S′

j into |C−
Cj | smaller subsequences, one for each string in C − Cj . The result is a
packing Oj for the instance (Σ, T, C).

4. Find the index j that maximizes ‖Oj‖. Output Oj .

Theorem 4. The hybrid algorithm approximates the subsequence packing opti-
mization problem with ratio |Σ|/(1+ |Σ|−1

�n
k � ) and runs in O(n�2

T (LS

k + 1)k) time.

Proof. Given a packing P for the instance (Σ, T, C) and a sub-collection Cj ⊆ C,
we denote by Pj ⊆ P the induced packing for the sub-instance (Σ, T, Cj).

Let P ∗ be an optimal packing for the instance (Σ, T, C). Let P be a greedy
packing for (Σ, T, C) that maximizes the number of c-c matches and, at the
same time, satisfies the additional constraint that, for each string Si ∈ C, the
subsequence Ti ∈ P contains at least as many cs as the subsequence T ∗

i ∈ P ∗,
that is |Ti|c ≥ |T ∗

i |c. Such a packing P always exists because we can start from
P ∗, discard all the non-c-c matches, “shift” the c-c matches in the packing to
the front of each string Si and the string T as far as possible, then extend the
packing by greedily matching the remaining cs.

The optimal packing P ∗ contains ‖P ∗‖ − ‖P‖ more matches than the greedy
packing P . According to the Pigeonhole Principle, there is at least one sub-
collection Cj among the �n

k � sub-collections of C such that, for the sub-instance
(Σ, T, Cj), the packing P ∗

j contains (‖P ∗‖ − ‖P‖)/�n
k � more matches than the

packing Pj , that is, ‖P ∗
j ‖ − ‖Pj‖ ≥ (‖P ∗‖ − ‖P‖)/�n

k �.
For each string Si ∈ Cj ⊆ C, the subsequence T ∗

i ∈ P ∗
j ⊆ P ∗ contains as

most as many cs as the subsequence Ti ∈ Pj ⊆ P . The total number of cs in
the subsequences in P ∗

j is at most the total number of cs in the subsequences in
Pj , which is ‖Pj‖. This implies that, even after we extract all the subsequences
in P ∗

j from the string T , the remaining part of T still contains enough cs to
form ‖P‖− ‖Pj‖ additional c-c matches with the strings in C −Cj . That is, we
can extend the packing P ∗

j for the sub-instance (Σ, T, Cj) to a packing for the
instance (Σ, T, C) by greedily adding at least ‖P‖−‖Pj‖ c-c matches. Based on
the observation that the non-c characters in the strings in C−Cj are essentially
ignored by this extension, our hybrid algorithm simply gathers all the cs in these
strings into a temporary string S′

j , then computes an optimal packing for the
extended sub-instance (Σ, T, C′

j) where C′
j = Cj + {S′

j}. The size of the packing
output by the hybrid algorithm is at least

‖P ∗
j ‖+ ‖P‖ − ‖Pj‖
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≥ ‖Pj‖+
‖P ∗‖ − ‖P‖
�n

k �
+ ‖P‖ − ‖Pj‖

= ‖P‖
(

1− 1
�n

k �

)
+
‖P ∗‖
�n

k �

≥ ‖P
∗‖
|Σ|

(
1− 1
�n

k �

)
+
‖P ∗‖
�n

k �

= ‖P ∗‖
1 + |Σ|−1

�n
k
�

|Σ| .

We now analyze the running time of the hybrid algorithm, which is clearly
dominated by the dynamic programming algorithm for the �n

k � sub-problems.
The sub-problem for Cj takes O(k�2

T (Lj

k +1)k) time, where Lj is the total length
of the strings in Cj and is at most LS . The total running time for the �n

k � sub-
problems is O(n�2

T (LS

k + 1)k). ��
When the alphabet is binary, and when the parameter k is chosen to be 2, we
have the following corollary.

Corollary 1. The subsequence packing optimization problem over the binary
alphabet has a 2

1+1/�n
2 � approximation that runs in O(n�2

T L2
S) time.

4 Preemptive Job Shop Scheduling with Two Machines

We show that, using Bansal et al.’s technique, our approximation for the sub-
sequence packing problem over the binary alphabet can used to derive the first
deterministic bound for J2|pmtn|Cmax that is less than 1.5. We first prove the
following lemma.

Lemma 1. For 0 < δ ≤ 5−
√

13
3 ≈ 0.465, a 2 − δ approximation for the subse-

quence packing problem over the binary alphabet implies a 1.5−δ′ approximation
for J2|pmtn|Cmax, where δ′ = δ

8−2δ .

Proof. From 0 < δ < 5−
√

13
3 and δ′ = δ

8−2δ , a calculation shows that 1 − 2δ′ <
2−2δ. We generalize Bansal et al.’s proof and consider the following three cases:

1. � ≤ (1 − 2δ′)L: Anderson et al.’s algorithm finds a schedule of makespan at
most L + �/2. A lower bound L gives the approximation ratio at most

1 +
�

2L
≤ 1 +

1− 2δ′

2
= 1.5− δ′.

2. � ≥ (2−2δ)L: Again, Anderson et al.’s algorithm finds a schedule of makespan
at most L + �/2. A lower bound � gives the approximation ratio at most

L

�
+ 0.5 ≤ 1

2− 2δ
+ 0.5 = 1.5− 1− 2δ

2− 2δ
.

A calculation shows that, when δ ≤ 5−
√

13
3 , we have 1−2δ

2−2δ ≥
δ

8−2δ = δ′. The
approximation ratio is at most 1.5− δ′ in this case.
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3. (1 − 2δ′)L ≤ � < (2 − 2δ)L: Let V denote the optimal packing size for the
corresponding subsequence packing problem. The number of operations in
the long job is �; let �′ be the total number of operations in the short jobs.
At least �′ − V operations of the short jobs cannot be scheduled in parallel
to the long job; they take at least �′−V

2 time units. The optimal makespan
is at least

� +
�′ − V

2
=

� + �′

2
+

�− V

2
= L +

�− V

2
.

On the other hand, the makespan of our approximation is at most 2L− V
2−δ .

Therefore, the approximation ratio is at most

f(V ) =
2L− V

2−δ

L + �−V
2

=
2L(2− δ)− V

2L + �− V
· 2
2− δ

.

Since � < (2−2δ)L, we have 2L(2−δ) > 2L+�. Therefore, f(V ) is monoton-
ically increasing in V . Since V ≤ �, f(V ) reaches the maximum

g(�) =
2L(2− δ)− �

2L
· 2
2− δ

= 2− �

L(2− δ)

at V = �, and g(�) reaches the maximum

2− 1− 2δ′

2− δ

at � = (1 − 2δ′)L. A calculation shows that, when δ′ = δ
8−2δ , we have

2− 1−2δ′
2−δ = 1.5− δ′. Again, the approximation ratio is at most 1.5− δ′. ��

Anderson et al.’s algorithms runs in O(L) time; our hybrid approximation algo-
rithm runs in O(n�2

T L2
S) time. Note that �T = � and LS = O(L). Lemma 1 and

Corollary 1 together imply the following theorem.

Theorem 5. J2|pmtn|Cmax has a 1.5 − Θ( 1
n ) approximation that runs in

O(n�2L2) time.

It is interesting to note that, for the online version of J2|pmtn|Cmax, Kimbrel
and Saia [7] proved that no algorithm can achieve a competitive ratio less than
1.5− 1

2n against an oblivious adversary.

5 Future Work

We believe the subsequence packing problem is a fundamental combinatorial
problem with important real-world applications. We intend to continue our work
in the following directions:
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1. J2|pmtn|Cmax is a very difficult problem whose upper bound 1.5 had re-
mained intact for nearly two decades. Both the recent breakthrough by
Bansal et al. [3] and our modest improvement showed that the subsequence
packing problem is at the core of its complexity. Can we design a determin-
istic algorithm for subsequence packing over the binary alphabet with an
approximation ratio that is a constant strictly less than 2? Lemma 1 shows
that this will immediately imply a deterministic algorithm for J2|pmtn|Cmax
with a constant approximation ratio strictly less than 1.5.

2. For the application of subsequence packing to DNA sequencing verification,
we can assume that the span of each subsequence Ti, that is, the difference
of its starting and ending indices in T , is a constant times its length. Does
this assumption change the complexity of the subsequence packing problem?
Can we design a better approximation algorithm with this assumption?

3. Bansal et al. presented a randomized approximation algorithm [3] for subse-
quence packing over the binary alphabet. Can we generalize this algorithm
from binary alphabet to any constant-size alphabet (in particular, alphabet
of size four for DNA sequences)?
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Abstract. In this paper, I present a frequency reassignment problem (FRP) 
arising from the installation of new base stations for capacity expansion in 
mobile telecommunication systems, and develop an integer programming (IP) 
formulation along with some valid inequalities. Also, I develop a novel 
decomposition based heuristic algorithm. Computational results show that the 
developed valid inequalities are quite strong, and that the developed heuristic 
algorithm finds a feasible solution of good quality within reasonable time 
bound.  

1   Introduction 

This paper deals with a frequency reassignment problem (FRP) arising from the 
installation of new base stations (BSs) in a mobile telecommunication network. When 
we add new BSs to the current mobile telecommunication network in order to expand 
the capacity or service area, we need to assign frequencies to new BSs. However, if 
we cannot find frequencies to assign to new BSs that do not incur interference with 
the frequencies used by the existing BSs, we need to change the frequencies that are 
already assigned to the existing BSs in order to avoid (or minimize) interference 
between frequencies. Interference may occur between frequencies assigned to 
adjacent BSs if the frequencies are not separated enough. Interference between 
frequencies may degrade the service quality, and may reduce the capacity of a code 
division multiple access (CDMA) network (see [9]. As addressed in [6], pseudo noise 
(PN) code  (corresponding to frequency in general term) reassignment process in a 
CDMA network requires quite long time, during which service quality may degrade 
significantly. Also, if two or more adjacent BSs change their frequencies in parallel, 
large geographical area may become out-of-service. This may cause heavy traffic load 
to the adjacent BSs. Consequently, this may make the CDMA network in this local 
area unstable [6]. Thus, we need to determine a subset of existing BSs to perform 
frequency reassignment, the sequence of frequency reassignments and the new 
frequencies to reassign to these existing BSs along with the frequencies to assign to 
new BSs carefully. Also, during the frequency reassignment process, we may observe 
interference between new frequencies assigned to the existing BSs and the current 
frequencies assigned to the existing BSs to perform frequency reassignment. Thus, the 
interference that may occur during the frequency reassignment process should be 
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taken into account when we design frequency reassignment process even if we can 
transform the existing frequency assignment matrix to an optimized frequency 
assignment matrix incurring minimum interference. 

 

Fig. 1. Frequency reassignment example: (a) initial assignment, (b) reassignment example 1 
and (c) reassignment example 2 

Frequency BS  
t = 0 t = 1 t = 2

1 1 1 1 
2 3 5* 5 
3 5 5 3* 
4 − − 7 

 
Frequency 

BS 
t = 0 t = 1 t = 2 t = 3 

1 1 1 1 1 
2 3 3 5* 5 
3 5 7* 7 3* 
4 − − − 7 

Fig. 2. Frequency reassignment process of Fig. 1(c): (a) reassignment process example 1 and 
(b) reassignment process example 2 

For example, suppose that we have a network with three BSs, 1, 2 and 3, having 
initial frequency 1, 3 and 5, respectively, and we add a new BS, indexed by 4. This is 
illustrated in Fig. 1(a), where the minimum distance between frequencies assigned to 
adjacent BSs to avoid interference is denoted by the number on links. Here, note that 
the current frequency assignment incurs no interference. As shown in Fig. 1(b), we can 
assign frequency 8 to the new BS 4 without changing the initial frequencies assigned to 
the existing BSs. However, if we are allowed to use frequencies from 1 to 7, we have 
to reassign frequencies to the existing BSs in order to obtain an interference free 
frequency assignment. Fig. 1(c) illustrates an example of frequency reassignment 
using the frequencies from 1 to 7. Now, suppose that simultaneous frequency 
reassignments at the BSs 2 and 3 are not allowed. Then, we have to change the 
frequencies assigned to the BSs 2 and 3 in order or in reverse order. Based on the 
frequency assignment of Fig. 1(c), two alternative frequency reassignment processes 
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are illustrated in Fig. 2. As shown in Fig. 2(a), we can change the frequency of BS 2 
from 3 to 5 first. Then, we change the frequency of BS 3 from 5 to 3, and assign 
frequency 7 to the BS 4. Here, note that the number of frequency reassignments is 
two. Also, note that at period t = 1 both the BSs 2 and 3 use the same frequency of 5, 
in which case mobile stations connected to the BSs 2 and 3 may experience severe 
interference. Thus, we consider an alternative frequency reassignment process as 
shown in Fig. 2(b). In this case, the minimum distance requirement is satisfied at all 
periods. However, the number of frequency reassignments is three. 

Although not presented in this example, we cannot find an interference free 
frequency assignment if we are allowed to use the frequencies from 1 to 6. Thus, it 
may be more practical to consider frequency reassignment allowing minimum 
interference rather than allowing no interference when the frequency reassignment is 
completed unlike the work by Han [6] that seeks to find an interference free 
frequency assignment at the end of frequency reassignment. In this context, this paper 
considers the problem FRP that minimizes the total cost consisting of frequency 
reassignment cost and interference cost that may occur when the frequency 
reassignment is completed as well as the interference cost that may occur during the 
frequency reassignment process.  

On the frequency reassignment problem, Han [6] showed that this problem belongs 
to NP-hard class, and developed two integer programming (IP) formulations for the 
problem FRP that does not allow interference when the frequency reassignment is 
completed. Although there are numerous studies on frequency assignment problem 
(FAP) such as [2], [3], [5], [7], [8], [10]-[12], to the best of my knowledge, frequency 
reassignment is considered only by Han [3]. Aardal et al. [1] summarized the results 
of quite may research papers on FAP.  

This paper is organized as follows. In Section 2, a mathematical formulation and 
some valid inequalities are developed. Also, a compact formulation is derived by 
applying some preprocessing rules. In Section 3, an effective heuristic procedure 
based on a decomposition principle is proposed. Computational results are provided 
in Section 4, and Section 5 concludes this paper. 

2   Formulation 

Let us define some notations in order to formulate the problem FRP. Let N be a set of 
existing BSs, and let V be a set of new BSs. Also, let K be a set of frequencies, and let 
T be a set of time periods for frequency reassignments. Let E = {(i, j): r(i, j) > 0 for i, 
j(> i) ∈ N ∪ V}, where r(i, j) is the minimum distance to avoid interference between 
the frequencies assigned to the BSs i and j(> i) ∈ N ∪ V. In particular, we define E(N) 
= {(i, j): r(i, j) > 0 for i, j(> i) ∈ N}. And, let A be a set of pairs of adjacent BSs (i, j) 
∈ E(N) such that simultaneous frequency reassignments at the BSs i and j(> i) ∈ N are 
not allowed. Now, let us define decision variables and input parameters. Let xtik = 1 if 
frequency k ∈ K is assigned to the BS i ∈ N ∪ V at t ∈ T, and 0 otherwise. Also, let yti 
= 1 if a new frequency is assigned to the BS i ∈ N at t ∈ T, and 0 otherwise. Let vt = 1 
if frequency reassignment is completed at t ∈ T, and 0 otherwise. And, let us denote 
the frequency reassignment cost by ci for BS i ∈ N. Let utij = 1 if the distance between 
the frequencies assigned to the BSs i and j(> i) ∈ N ∪ V, respectively, is less than  
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r(i, j), and 0 otherwise. When utij = 1 for t = 1,…, |T| − 1 and (i, j) ∈ E(N), interference 
cost pij occurs. Also, if utij = 1 for t = |T| and (i, j) ∈ E, interference cost qij occurs. 
Here, note that (q) needs to be set quite large compared to (p) since (q) indicates the 
interference cost that may occur after the frequency reassignment is completed. Let 
(hik) be the input vector indicating the current frequency assignment to the BS i ∈ N at 
t = 0. That is, if frequency k ∈ K is assigned to the BS i ∈ N at t = 0, we set hik = 1, 
and 0 otherwise.  

Using the above notations, we can formulate the problem FRP as follows, denoted 
by P1.  

P1: Minimize   t ∈ T  i ∈ N ci yti +  t = 1,…, |T| − 1  (i, j) ∈ E pij utij +  (i, j) ∈ E qij u|T|ij

Subject to 

 k ∈K xtik = 1   t ∈ T, i ∈ N,         (1) 
 k ∈K xtik = vt   t ∈ T, i ∈ V,         (2) 
 t ∈T vt ≥ 1             (3) 

xtik + xtjl ≤ 1 + utij   t ∈ T, (i, j) ∈ E, k, l ∈ K: |k − l| < r(i, j),      (4)  
yti ≥ xtik − x(t−1)ik  t ∈ T, i ∈ N, k ∈ K,         (5)
yti ≥ x(t−1)ik − xtik  t ∈ T, i ∈ N, k ∈ K,        (6) 
yti + ytj ≤ 1   t ∈ T, (i, j) ∈ A,         (7) 
xtik ∈ {0,1}    t ∈ T, i ∈ N ∪ V, k ∈ K,  
yti ∈ {0,1}    t ∈ T, i ∈ N, 
utij ∈ {0,1}    t ∈ T, (i, j) ∈ E,  
vt ∈ {0,1}    t ∈ T,

where x0ik = hik for i ∈ N and k ∈ K. 
 
Constraint (1) forces that a frequency should be assigned to each existing BS at all 

time periods in T. Constraint (2) forces that a frequency should be assigned to each 
new BS when the frequency reassignment is completed. Constraint (3) forces that 
frequency reassignment should be completed within |T| time periods. Constraint (4) 
expresses the interference between frequencies assigned to a pair of adjacent BSs. 
Constraints (5) and (6) express the frequency reassignment at existing BSs. Constraint 
(7) prohibits simultaneous frequency reassignments for a pair of adjacent BSs in A. 

Remark 1. Note that if the initial frequency assignment (h) is interference free, there 
exists an optimal solution such that v|T| = 1 and vt = 0 for all t = 1,…, |T| − 1. Thus, 
assuming that the (h) is interference free, we can delete constraint (3), which in turn 
enables us to set xtik = 0 for all t = 1,…, |T| − 1, i ∈ V and k ∈ K and to set utij = 0 for 
all t = 1,…, |T| − 1, (i, j) ∈ E − E(N). Then, we can rewrite the P1 as follows, denoted 
by P2. 

P2: Minimize  t ∈ T  i ∈ N ci yti +  t = 1,…, |T| − 1  (i, j) ∈ E(N) pij utij +  (i, j) ∈ E qij u|T|ij 
Subject to 

 k ∈K xtik = 1   t ∈ T, i ∈ N,          (8) 
 k ∈K x|T|ik = 1   i ∈ V,           (9) 

xtik + xtjl ≤ 1 + utij     t = 1,…, |T| − 1, (i, j) ∈ E(N), k, l ∈ K: |k − l| < r(i, j),       (10)  
x|T|ik + x|T|jl ≤ 1 + u|T|ij  (i, j) ∈ E, k, l ∈ K: |k − l| < r(i, j),      (11)  
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yti ≥ xtik − x(t−1)ik  t ∈ T, i ∈ N, k ∈ K,        (12)
yti ≥ x(t−1)ik − xtik  t ∈ T, i ∈ N, k ∈ K,       (13) 
yti + ytj ≤ 1   t ∈ T, (i, j) ∈ A,        (14) 
xtik ∈ {0,1}   t ∈ T, i ∈ N, k ∈ K,  
x|T|ik ∈ {0,1}   i ∈ V, k ∈ K,  
yti ∈ {0,1}    t ∈ T, i ∈ N, 
utij ∈ {0,1}    t = 1,…, |T| − 1, (i, j) ∈ E(N),  
u|T|ij ∈ {0,1}    (i, j) ∈ E.

Next, we develop some valid inequalities based on the constraints (10), (11) and (14) 
in order to enhance the lower bound of the P2. 

Remark 2. For t = 1,…, |T| − 1, (i, j) ∈ E(N) and k ∈ K, we obtain the following valid 
inequalities by lifting the constraint (10).  

 xtik +  f = max{1, k − (r(i, j) − 1)},…, min{|K|, k + (r(i, j) − 1)} xtjf ≤ 1 + utij,     (15a) 

and 

 xtjk +  f = max{1, k − (r(i, j) − 1)},…, min{|K|, k + (r(i, j) − 1)} xtif ≤ 1 + utij.     (15b) 

Here, note that the valid inequalities (15a) and (15b) dominate the constraints (10). 
Similarly, we can derive valid inequalities based on the constraint (11). For (i, j) ∈ E 
and k ∈ K at t = |T|, we can derive the following valid inequalities. 

 x|T|ik +  f = max{1, k − (r(i, j) − 1)},…, min{|K|, k + (r(i, j) − 1)} x|T|jf ≤ 1 + u|T|ij,     (16a) 

and 

 x|T|jk +  f = max{1, k − (r(i, j) − 1)},…, min{|K|, k + (r(i, j) − 1)} x|T|if ≤ 1 + u|T|ij.     (16b) 

Also, note that the valid inequalities (16a) and (16b) dominate the constraints (11). 
Now, let us consider constraint (14), from which we can derive a clique inequality as 
follows. 

  i ∈ C yti ≤ 1   t ∈ T,         (17) 

where C is a clique of the graph G(A) induced by the edge set A. Separating the 
inequality (17) amounts to finding a maximal clique in a graph G(A). This problem is 
known to be NP-hard. Thus, we implement heuristic procedure for separating the 
inequality (17) from G(A). Our approach is as follows. First, we detect a triangle 
subgraph G(S), where S  A. Then, we expand G(S) by simple greedy procedure that 
adds a new BS i  N not in G(S) until we cannot find any new BS to add. Then, we let 
C = {i  G(S)}.  

3   Heuristic Algorithm 

In this section, we develop an efficient heuristic algorithm based on a decomposition 
principle. Let x~ be a frequency assignment at t = |T|. If we let |T| = 1, we can delete 
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index t ∈ T from the P2. Then, the P2 reduces to as follows, denoted by P3. Thus, by 
solving the P3, we can obtain a frequency assignment at t = |T|, denoted by .~x  

P3: Minimize  i ∈ N  k ∈K ci (1 − hik) xik +  (i, j) ∈ E qij uij 

Subject to 
 k ∈K xik = 1    i ∈ N ∪ V,  

xik + xjl ≤ 1 + uij  (i, j) ∈ E, k, l ∈ K, |k − l| < r(i, j), 
xik ∈ {0,1}    i ∈ N ∪ V, k ∈ K, 
uij ∈ {0,1}    (i, j) ∈ E. 

If x~ is given, we can define a set Ω = {i ∈ N: ikx~ ≠ hik for some k ∈ K}. Thus, to find a 

feasible solution to the P2 it is sufficient to determine at what time period t ∈ T to 
perform frequency reassignment for the BSs in Ω considering the constraint (14). 
Letting Ω(t) ⊆ Ω be a set of BSs to perform frequency reassignment at t ∈ T, any 
partition of Ω over T, {Ω(t): t ∈ T}, defines a feasible solution to the P2 if Tt∈ Ω(t) 

= Ω and (i, j) ∉ A for i, j(> i) ∈ Ω(t) and t ∈ T. Then, the outline of the heuristic 
algorithm can be described as follows. First, we find a frequency assignment at t = 
|T|, ,~x which automatically defines Ω. Then, we find a feasible solution {Ω(t): t ∈ T} 

such that Ω(s) ∩ Ω(t) = ∅ for all s and t(> s) ∈ T. That is, we change the initial 
frequency assigned to the BS in Ω only once. Then, we resume this process by finding 
an alternative feasible solution to the P3, .~x The above process is repeated for a given 

time bound. 

3.1   Algorithm for Finding an Initial Solution 

Below, we describe an heuristic algorithm to find an initial feasible solution {Ω(t): t ∈ 
T} such that Ω(s) ∩ Ω(t) = ∅ for all s and t(> s) in T. 

 
Initialize. Let Ω(t) = ∅ for t ∈ T, and let t = 1. 

Step 1. Find a frequency assignment x~ at t = |T| and get Ω. If Ω = ∅, stop. Otherwise, 

go to Step 2. 
Step 2. If {(i, j) ∈ A: i, j ∈ Ω} = ∅, stop. Otherwise, go to Step 3. 
Step 3. Pick an arbitrary BS i ∈ Ω. Then, let Ω(t) = {i} and Ω = Ω − {i}. If Ω = ∅, 
stop. Otherwise, go to Step 4. 
Step 4. Pick an arbitrary BS j ∈ Ω such that (i, j) ∉ A for all i ∈ Ω(t). Then, let Ω(t) = 
Ω(t) + {j} and Ω = Ω − {j}. If Ω = ∅, stop. Otherwise, resume Step 4. If such BS is 
not found, let t = t + 1 and go to Step 3. 

Remark 3. For finding a frequency assignment at t = |T|, ,~x at Step 1, we solved the 

P3 using a commercial optimization software, CPLEX Version 9.0 [4]. If the above 
heuristic algorithm terminates at Step 1 or at Step 2, x~ defines an optimal solution to 

the P2 provided that we solved the P3 optimally. However, if the above heuristic 
procedure terminates at Step 3 or at Step 4, we need to calculate the interference cost 
incurred by the current partition {Ω(t): t ∈ T}. If no interference is observed, we see 
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that the current partition {Ω(t): t ∈ T} defines an optimal solution to the P2 provided 
that we solved the P3 optimally. Otherwise, we improve the initial solution, which is 
described in the following.  

3.2   Improving Algorithm 

First, we seek to minimize the interference cost (p) by finding an optimal partition of 
Ω over T, {Ω(t): t ∈ T}. If we cannot reduce the interference cost (p) for given Ω, we 
generate an alternative ,~x which defines a new set Ω. Then, we try to minimize the 

interference cost (p) again based on a new Ω. This process is repeated for a given time 
limit. Another termination criterion is that we fail to find a new .~x In Section 3.2.1, 

we describe a procedure that minimizes the interference cost (p) based on an 
incumbent Ω. And, in Section 3.2.2, we describe a procedure that finds an alternative 
frequency assignment at t = |T| in order to derive a new Ω. 

3.2.1   Minimizing the Interference Cost (p) 
For given Ω, minimizing the interference cost (p) is equivalent to optimally solving 
the following problem, denoted by P4.  

 
P4: Minimize  t = 1,…, |T| − 1  i, j(≠ i) ∈ Ω pij utij 

Subject to 
xtif(i) + xtig(i) = 1   t = 1,…, |T| − 1, i ∈ Ω,   
xtig(i) + xtjf(j) ≤ utij + 1  t = 1,…, |T| − 1, i, j(≠ i) ∈ Ω, |f(i) − g(j)| < r(i, j), 
yti = x(t−1)if(i) + xtig(i) − 1 t ∈ T, i ∈ Ω,     
yti + ytj ≤ 1   t ∈ T, i, j(> i) ∈ Ω if (i, j) ∈ A, 

 t ∈T yti = 1    i ∈ Ω,    
xtif(i) ∈ {0,1}   t = 1,…, |T| − 1, i ∈ Ω,  
xtig(i) ∈ {0,1}   t ∈ T, i ∈ Ω, 
yti ∈ {0,1}   t ∈ T, i ∈ Ω, 
utij ∈ {0,1}    t = 1,…, |T| − 1, i, j(≠ i) ∈ Ω, |f(i) − g(j)| < r(i, j),  

where f(i) = argk ∈ K{hik = 1} and g(i) = argk ∈ K{ ikx~ = 1} for i ∈ Ω. 

Note that the P4 determines the optimal time period t ∈ T at which we change the 
initial frequency f(i) to a new frequency g(i) for each BS i ∈ Ω in order minimize the 
interference cost (p). Here, note that the P4 can be obtained from the P2 by  

• setting x|T|ik = ikx~ for i ∈ N ∪ V, k ∈ K,  

• setting xtik = ikx~ for t = 1,…, |T| − 1, i ∈ N − Ω, k ∈ K, and 

• adding  t ∈T yti = 1 for i ∈ Ω to the P2. 

3.2.2   Finding an Alternative Frequency Assignment 
We already have a frequency assignment at t = |T|. Thus, we try to find an alternative 
frequency assignment at t = |T|, which can be obtained by solving the modified P3. 
For the sake of notational convenience, let us denote the incumbent x~ by w. Then, we 

can find a new x~ by solving the P3 after adding the following constraint to the P3: 
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 i ∈ N ∪ V  k ∈ K ikik xw ≤ |N ∪ V| − 1. 

If the updated P3 returns no feasible solution, or if the optimal objective value of the 
updated P3 is greater than the total cost of the best solution to the P2, we terminate 
the heuristic procedure. Otherwise, we minimize the interference cost (p) based on a 
new x~ by performing the procedure described in Section 3.2.1. 

4   Computational Results 

In order to evaluate the performance of the proposed heuristic procedure and the 
effectiveness of the developed valid inequalities, we randomly generated test 
problems as follows.  

 
Step 1. Generate |N| + |V| BSs at random on a rectangle with scale 1,000 by 1,000, 
and calculate the distance for all pairs of BSs. 
Step 2. If the distance dij between a pair of BSs i and j(> i) ∈ N ∪ V is greater than a 
threshold R, we set r(i, j) = 0, otherwise, we set r(i, j) = R/dij . In our test, we set R = 
300 or 400 depending on the number of BSs.  
Step 3. Find an interference free initial frequency assignment (hik) for i ∈ N and k ∈ 
K, using the following procedure. 

Step 3.1 Pick an arbitrary BS and assign frequency of 1. 
Step 3.2 Find a combination of BS and frequency {i, f}, where i denotes the BS 

that is not assigned with any frequency and is adjacent to at least one of the BSs that 
are already assigned with frequencies, and f denotes the lowest index frequency that 
incurs no interference with adjacent BSs. Then, assign frequency f to the BS i. If there 
exists any BS that is not assigned with any frequency, resume Step 3.2. Otherwise, go 
to Step 4.  
Step 4. Let |K| be the integer value of the highest frequency index used in Step 3 
multiplied by 0.9. For each BS, if the assigned frequency is less than or equal to |K|, 
let this BS belong to the set N. Otherwise, let this BS belong to the set V, and delete 
the initial frequency assigned to it. 
Step 5. Let A = {(i, j) ∈ E(N): dij < 0.7 × R}. And, let ci be a random integer value in 
the rage [10, 20] for i ∈ N. Also, let pij = (ci + cj) × r(i, j) for (i, j) ∈ E(N) and let qij = 
10 × (ci + cj) × r(i, j) for (i, j) ∈ E. 

 
The developed heuristic algorithm was coded in Visual Basic 6.0 coupled with 

CPLEX 9.0 (see [4]), and was tested on a Pentium IV PC (CPU: 2.8GHz, RAM: 
512Mbytes). Computational results are presented in Table 1, where P2V denotes the 
P2 enhanced by the valid inequalities (15), (16) and (17) at the root node of branch-
and-bound tree. We terminated the CPLEX optimization procedure and the heuristic 
algorithm after 10,000 seconds and after 1,000 seconds, respectively. Also, we limited 
computation time for solving the P3 to 100 seconds. Computation time is presented in 
parenthesis. Also, the mark “NA” represents that CPLEX optimization procedure 
failed to find an initial feasible solution in 10,000 seconds. From Table 1, we see that  
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the valid inequalities (15), (16) and (17) significantly improves the lower bound of the 
P2. Also, we see that the proposed heuristic algorithm finds a feasible solution of 
good quality to the most test problems within 1,000 seconds. In particular, the 
heuristic algorithm finds an optimal solution to the 7 test problems out of 30 test 
problems, which is indicated by asterisk mark (*) at the fifth column “Opt.” of Table 1. 
Also, the marks “b”, “w” and “e” indicate that the heuristic algorithm found a 
“better”, “worse” and “equally good” feasible solution, respectively, compared with 
that obtained by the P2V. Another observation is that P3 provides tight lower bound.  

Table 1. Computational results of test problems 

Size Lower bound Upper bound 
  No 

|N|, |V|, |E|, |K|, |T| P2LP, P2VLP, P3 P2V, Heuristic 
Opt. 

1 19, 1, 76, 17, 19 48, 115, 578(2) 598(10K), 598(21) e 
2 19, 1, 75, 13, 19 85, 217, 770(1) 770(10K), 770(1) e 
3 18, 2, 51, 8, 18 86, 314, 637(1) 637(106), 637(1) * 
4 19, 1, 62, 15, 19 50, 106, 219(1) 219(746), 219(1) * 
5 18, 2, 58, 11, 18 107, 362, 965(2) 1026(6.7K), 1072(1K) w 
6 18, 2, 50, 10, 18 107, 256, 1003(1) 1100(7.3K), 1121(1K) w 
7 19, 1, 85, 16, 19 55, 113, 339(1) 750(10K), 387(1K) b 
8 19, 1, 96, 16, 19 62, 152, 402(1) 402(10K), 402(1) * 
9 16, 4, 74, 12, 16 116, 279, 1246(11) 1350(10K), 1442(1K)  w 

10 19, 1, 69, 14, 19 63, 130, 530(2) 530(6.6K), 530(2) * 
11 29, 1, 158, 15, 29 109, 251, 387(1) 1450(10K), 410(1K) b 
12 27, 3, 164, 17, 27 159, NA, 993(28) NA(10K), 1002(1K) b 
13 28, 2, 136, 19, 28 68, 177, 290(1) 1020(10K), 311(1K) b 
14 28, 2, 168, 17, 28 72, 237, 627(25) 3181(10K), 632(1K) b 
15 29, 1, 181, 17, 29 69, 154, 492(6) 1150(10K), 580(133) b 
16 28, 2, 143, 14, 28 137, 313, 826(6) 2982(10K), 826(6) b 
17 27, 3, 154, 17, 27 97, 252, 695(19) 3894(10K), 773(1K) b 
18 28, 2, 141, 20, 28 103, NA, 783(19) NA(10K), 863(1K) b 
19 29, 1, 131, 17, 29 47, 121, 395(1) 1335(10K), 395(1) * 
20 29, 1, 157, 18, 29 41, 132, 264(1) 810(10K), 264(1) * 
21 37, 3, 276, 19, 18 135, 289, 676(90) NA(10K), 831(1K) b 
22 38, 2, 308, 24, 19 79, 246, 373(48) 901(10K), 513(1K) b 
23 39, 1, 266, 23, 19 89, 156, 172(1) 172(81), 172(1) * 
24 37, 3, 288, 20, 18 151, NA, NA(100) NA(10K), 920(1K) b 
25 38, 2, 302, 22, 19 76, NA, 576(23) NA(10K), 590(1K) b 
26 38, 2, 267, 20, 19 50, 152, NA(100) 1740(10K), 1021(1K) b 
27 37, 3, 271, 20, 18 175, 374, 768(15) 2700(10K), 921(1K) b 
28 38, 2, 308, 26, 19 87, 140, 376(9) 1346(10K), 399(1K) b 
29 38, 2, 287, 23, 19 82, 215, 576(20) 2089(10K), 829(1K) b 
30 38, 2, 233, 20, 19 94, 255, 395(6) 1205(10K), 443(1K) b 
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5   Conclusion 

In this paper, we addressed a new frequency reassignment problem arising from the 
installation of new BSs in a CDMA based mobile radio network. And, we developed 
mathematical formulations for this problem along with some valid inequalities. For 
solving large size problems, we developed heuristic algorithm that decomposes the 
original problem into two sub-problems and solves the two sub-problems in turn 
repeatedly. Computational results show that the developed valid inequalities are quite 
strong and that the proposed heuristic algorithm finds a feasible solution of good 
quality within reasonable time limit.  

Further research task is to develop a meta-heuristic procedure in order to handle 
larger problem instances. Also, as an extension of this study, frequency reassignment 
for the global system for mobile communications (GSM) based telecommunication 
system, allocating multiple frequencies to each BS, should be followed. 
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Abstract. We propose polynomial time approximation algorithms for
minimum span channel (frequency) assignment problems, which is known
to be NP-hard. Let α be the approximation ratio of our algorithm and
W ≥ 2 be the maximum of numbers of channels required in vertices. If an
instance is defined on a perfect graph G, then α ≤ 1 + (1 + 1

W−1 )Hω(G),
where Hi denotes the i-th harmonic number. For any instance defined on
a unit disk graph G, α is less than or equal to (1 + 1

W−1 )(3Hω(G) − 1).
If a given graph is 4 or 3 colorable, α is bounded by (2.5 + 1.5

W−1 ) and
(2 + 1

W−1 ), respectively. We also discuss well-known practical instances
called Philadelphia instances and propose an algorithm with α ≤ 12/5.

1 Introduction

In this paper, we denote the set of non-negative (positive) integers by Z+ (N),
respectively. Let G = (V, E) be an undirected simple graph. We introduce a non-
negative integer vertex weight function (vector) w : V → Z+, a non-negative
integer edge length function (vector) l : E → Z+ and a non-negative integer
k ∈ Z+. A channel assignment of (G, w, l, k) is an assignment φ : V → 2N such
that

|φ(v)| ≥ w(v) (∀v ∈ V ),
|c1 − c2| ≥ k (∀c1, ∀c2 ∈ φ(v), ∀v ∈ V ),
|c1 − c2| ≥ l({u, v}) (∀c1 ∈ φ(u), ∀c2 ∈ φ(v), ∀{u, v} ∈ E).

Given a channel assignment φ, a span of the channel assignment φ, denoted by
span(φ), is defined by span(φ) def.= max{c1 − c2 + 1 | c1, c2 ∈ ∪v∈V φ(v)}. A min-
imum span channel assignment problem (G, w, l, k) finds a channel assignment
φ of (G, w, l, k) which minimizes span(φ).

The minimum span channel assignment problem is a kind of discrete versions
of channel assignment problems which originated from wireless communication
networks [1, 2]. Channel assignment problems are also called frequency assign-
ment problems and/or radio channel assignment problem. For problems related
to radio channel assignment problems, see McDiarmid’s survey papers [3, 4]. The
minimum span channel assignment problem includes the ordinary vertex color-
ing problem as a special case. It is known that if there exists a polynomial time
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algorithm for the vertex coloring problem which provides a performance guaran-
tee of O(nε) for a constant ε > 0, then P=NP [5]. When a given graph is perfect,
we can solve the vertex coloring problem in polynomial time [6].

In this paper, we propose approximation algorithms for minimum span chan-
nel assignment problems. Let α be the approximation ratio of our algorithm and
W ≥ 2 be the maximum of numbers of vertex weights. If an instance is defined
on a perfect graph G, then α ≤ 1 + (1 + 1

W−1 )Hω(G), where Hi denotes the i-th
harmonic number. For any instance defined on a unit disk graph G, α is less
than or equal to (1+ 1

W−1 )(3Hω(G)−1). If a given graph is 4 or 3 colorable, α is
bounded by (2.5+ 1.5

W−1 ) and (2+ 1
W−1 ), respectively. We also discuss well-known

practical instances called Philadelphia instances and propose an algorithm with
α ≤ 12/5.

2 Algorithms

In this section, we describe our algorithm for the case that 0 < ∃l ≤ k, ∀e ∈
E, l(e) = l. In this case, the minimum span channel assignment problem remains
NP-hard, since the problem still includes the vertex coloring problem. First, we
introduce a naive algorithm. Given a graph G and a vertex weight w, (G, w)+
denotes a subgraph of G induced by a set of vertices with positive weights.
Throughout this paper, W denotes the maximum of vertex weights.

Algorithm 1
Step 1: Find a coloring of graph (G, w)+. Let c be a number of used colors.
Step 2: For each vertex v whose color is i ∈ {1, . . . , c}, we assign channels

{1 + (i− 1)l, 1 + (i− 1)l + max{cl, k},
. . . , 1 + (i− 1)l + (w(v) − 1)max{cl, k}}.

It is clear that Algorithm 1 gives a channel assignment to the problem (G, w, l, k)
whose span is less than or equal to

1 + (c− 1)l + (W − 1)max{cl, k} ≤ cl + (W − 1)max{cl, k} ≤W max{cl, k}.

Since l ≤ k, the span is bounded by 1 + (W − 1)k, if c = 1. The sequence

(1 + (i− 1)l, 1 + (i− 1)l + max{cl, k}, . . . , 1 + (i− 1)l + (w(v) − 1)max{cl, k})

is an arithmetic sequence with the first term 1 + (i− 1)l, common difference of
max{cl, k} and length of w(v). Thus we can output the set of channels by a triplet
(1 + (i − 1)l, max{cl, k}, w(v)). If we use a polynomial time coloring algorithm
in Step 1 and output a channel assignment by a set of triplets representing
arithmetic sequences, then the time complexity of Algorithm 1 is bounded by a
polynomial of the input size of the problem (G, w, l, k). Here we note that the
input size of the problem (G, w, l, k) is O(|V |�log W+1�+|E|�log L+1�+�log k�),
where L denotes the maximum of edge lengths.
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Next, we propose our algorithm. Let (G, w)≥d be a subgraph of G induced
by {v ∈ V | w(v) ≥ d}. For any graph G′, ω(G′) and χ(G′) denote the clique
number and the chromatic number of G′, respectively. Clearly, d ≤ d′ implies
that ω((G, w)≥d) ≥ ω((G, w)≥d′). Throughout this paper, n denotes the number
of vertices in G. We define a sequence (W (1), W (2), . . . , W (n)) by

W (q) def.=
{

0 ( if q > ω(G)),
max{d | ω((G, w)≥d) ≥ q} ( if q ≤ ω(G)).

The definition above implies that W (1) = W . Let (w1, w2, . . . , wn) be a sequence
of vertex weight vectors defined by

wn(v) + wn−1(v) + · · ·+ wq(v) = min{W (q), w(v)} (∀v ∈ V, 1 ≤ ∀q ≤ n).

Clearly, the equality w1 + w2 + · · · + wn = w holds. Our algorithm finds a
channel assignment φq for each problem (G, wq , l, k) by applying Algorithm 1,
independently. Lastly, we output a channel assignment φ defined by

φ(v) = ∪n
q=1{c + p0 + p1 + · · ·+ pq−1 | c ∈ φq(v)} (∀v ∈ V )

where

pq =
{

0 ( if q = 0 or span(φq) = 0),
span(φq) + k − 1 ( if q ≥ 1 and span(φq) > 0).

The span of an assignment φ is bounded by
∑n

q=1 span(φq) + (k − 1)(W − 1),
since the inequality |{q ∈ {1, 2, . . . , n} | span(φq) > 0}| ≤ W holds. We briefly
describe our algorithm below.

Algorithm 2
Step 1: When W = 1, solve the problem by Algorithm 1 and stop.
Step 2: Obtain the sequence (W (1), . . . , W (n)).
Step 3: Construct the sequence of vertex weights (w1, w2, . . . , wn) defined by

wq(v) := min{W (q), w(v)} − min{W (q + 1), w(v)} (∀v ∈ V, 1 ≤ ∀q < n)
and wn(v) := min{W (n), w(v)} (∀v ∈ V ).

Step 3: For each q ∈ {1, 2, . . . , n}, we solve the problem (G, wq , l, k) by Algo-
rithm 1 and output an assignment obtained by merging n assignments.

3 Approximation Ratios

In this section, we discuss the approximation ratio of our algorithm. Throughout
this section, we assume that 0 < ∃l ≤ k,∀e ∈ E, l(e) = l.

3.1 Lower Bounds

First, we give some lower bounds which plays an important role to analyze the
approximation ratio.

Lemma 1. The optimal span Z∗ of the problem (G, w, l, k) satisfies that

k(W − 1) ≤ Z∗ − 1, and qlW (q) ≤ Z∗ + l − 1 (∀q ∈ {2, 3, . . . , n}).
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Proof. The existence of a vertex v satisfying w(v) = W implies that 1 + k(W −
1) ≤ Z∗. From the definition of W (q) (2 ≤ q ≤ n), the graph (G, w)≥W (q)
contains a clique Q ⊆ V satisfying |Q| = q and w(v) ≥ W (q) (∀v ∈ Q). Thus
1 + l(qW (q)− 1) ≤ 1 + l(

∑
v∈Q w(v) − 1) ≤ Z∗ holds. ��

When ω(G) = 1, we can use the trivial 1-coloring at Step 1 of Algorithm 1, and
Algorithm 2 finds an optimal solution. Now we discuss the approximation ratio
of Algorithm 2 in case ω(G) ≥ 2 and W = 1.

Lemma 2. When W = 1 and ω(G) ≥ 2, the approximation ratio of Algorithm 2
is less than or equal to (c− 1)/(ω(G)− 1).

Proof. In case W = 1, Algorithm 2 is essentially equivalent to Algorithm 1.
When W = 1, Algorithm 1 finds a channel assignment whose span is bounded
by 1 + (c − 1)l. Lemma 1 shows that Z∗ ≥ 1 − l + lqW (q) (2 ≤ ∀q ≤ n). By
setting q = ω(G), the inequality c ≥ ω(G) ≥ 2 implies that the approximation
ratio is bounded by

1 + (c− 1)l
Z∗ ≤ 1 + (c− 1)l

1− l + lω(G)W (ω(G))
=

1 + (c− 1)l
1 + (ω(G)− 1)l

≤ c− 1
ω(G)− 1

.
��

Let w1, w2, . . . , wn be the decomposition of vertex weight vector w defined in
the previous section. The following lemma gives a lower bound of the number of
colors required for coloring (G, wq)+.

Lemma 3. The clique number of the graph (G, wq)+ is less than or equal to q.

Proof. Assume that (G, wq)+ has a clique Q whose size is q + 1. For any vertex
v ∈ Q, 0 < wq(v) = min{W (q), w(v)} −min{W (q + 1), w(v)} and thus w(v) >
W (q + 1). It implies that clique Q is contained in the graph (G, w)≥W (q+1)+1 .
Contradiction. ��

3.2 Perfect Graphs

A graph G is perfect if and only if every induced subgraph of G satisfies χ(G) =
ω(G). In Step 1 of Algorithm 1, we can find a coloring of (G, wq)+ with
χ((G, wq)+) = ω((G, wq)+) colors in polynomial time [6]. We can obtain the
sequence (W (1), W (2), . . . , W (n)) by using ordinary binary search technique in
polynomial time. Thus, the total time complexity of Algorithm 2 is bounded
by a polynomial of the input size of the problem, where we output a channel
assignment by a set of triplets for representing arithmetic sequences.

Theorem 1. Let G be a perfect graph and IG a class of instances of minimum
span channel assignment problems defined on G.

For any instance I ∈ IG with W = 1, Algorithm 2 finds an optimal solution
of I. For any instance I ∈ IG with W ≥ 2, the approximation ratio of Algo-
rithm 2 is bounded by 1 + (1 + 1

W−1 )Hω(G), where Hi denotes the i-th harmonic
number.
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Proof. We omit the trivial case that ω(G) = 1. When W = 1 and ω(G) ≥ 2,
Lemma 2 implies that the approximation ratio is bounded by (χ(G)−1)/(ω(G)−
1) = 1 and thus Algorithm 2 finds an optimal solution.

Next, we consider the case that W ≥ 2. Lemma 3 and perfectness of G implies
that χ((G, wq)+) = ω((G, wq)+) ≤ q. For each q ∈ {1, 2, . . . , n}, Algorithm 1
finds an optimal coloring of the graph (G, wq)+ and outputs a channel assignment
whose span is bounded by W q max{ql, k}, where W q denotes the maximum of
vertex weights wq(v) (v ∈ V ). In the following, we define W (n+1) = 0. Let A be
the span of a channel assignment obtained by Algorithm 2 and Z∗ the optimal
span. Then the following inequalities hold;

A ≤ (k − 1)(W − 1) +
∑n

q=1 W q max{ql, k}
≤ k(W − 1) +

∑n
q=1(W (q)−W (q + 1))max{ql, k}

= k(W − 1) +
∑ω(G)

q=1 (W (q)−W (q + 1))max{ql, k}

≤ Z∗ + W (1)max{l, k}+
∑ω(G)

q=2 W (q)(max{ql, k} −max{(q − 1)l, k})

≤ Z∗ + Wk +
∑ω(G)

q=2 W (q)l ≤ Z∗ + (Z∗ + k − 1) + (Z∗ + l − 1)
∑ω(G)

q=2 (1/q)

≤ Z∗ + (Z∗ + k) + (Z∗ + k)
∑ω(G)

q=2 (1/q)

≤ Z∗ + (Z∗ + Z∗−1
W−1 )

∑ω(G)
q=1 (1/q) ≤ (1 + (1 + 1

W−1 )Hω(G))Z∗
��

3.3 Unit Disk Graphs

A graph G = (V, E) is called a unit disk graph if the vertex set V is a point-set on
2-dimensional space and a pair of vertices is adjacent if and only if the Euclidean
distance between them is less than or equal to 1. There exists a polynomial time
algorithm for finding a vertex coloring of a given unit disk graph G satisfying
that the required number of colors is bounded by 3ω(G) − 2 (see [7, 8]). We
can employ the algorithm in Step 1 of Algorithm 1. Since the maximum clique
problem defined on a unit disk graph G is solvable in polynomial time (see [9]),
we can find the sequence (W (1), . . . , W (n)) in polynomial time by employing
ordinary binary search technique. If we adopt the procedures above, Algorithm 2
becomes a polynomial time algorithm.

Theorem 2. Let G be a unit disk graph and IG a class of instances of minimum
span channel assignment problems defined on G.

For any I ∈ IG with W = 1, the approximation ratio of Algorithm 2 is
bounded by 3. For any instance I ∈ IG with W ≥ 2, the approximation ratio of
Algorithm 2 is bounded by (1 + 1

W−1 )(3Hω(G) − 1).

Proof. We omit the trivial case that ω(G) = 1. In case W = 1 and ω(G) ≥ 2,
Lemma 2 implies that the approximation ratio is bounded by (c−1)/(ω(G)−1) ≤
(3ω(G)− 2− 1)/(ω(G)− 1) = 3.

Next, we consider the case that W ≥ 2. For each q ∈ {1, 2, . . . , n}, Lemma 3
implies that Algorithm 1 finds a coloring of graph (G, wq)+ with at most 3q− 2
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colors and outputs an assignment whose span is bounded by W q max{(3q −
2)l, k}, where W q denotes the maximum of vertex weights wq(v) (v ∈ V ). In the
following, we define W (n+1) = 0. The span A of a channel assignment obtained
by Algorithm 2 and the optimal span Z∗ satisfy the following,

A ≤ (k − 1)(W − 1) +
∑n

q=1 W q max{(3q − 2)l, k}
≤ k(W − 1) +

∑n
q=1(W (q)−W (q + 1))max{(3q − 2)l, k}

= k(W − 1) +
∑ω(G)

q=1 (W (q)−W (q + 1))max{(3q − 2)l, k}

=Z∗ + W (1)max{l, k}+
∑ω(G)

q=2 W (q)(max{(3q − 2)l, k} −max{(3q − 5)l, k})

≤ Z∗ + Wk +
∑ω(G)

q=2 W (q)3l ≤ Z∗ + (Z∗ + k − 1) + (Z∗ + l − 1)
∑ω(G)

q=2 (3/q)

≤ 2(Z∗ + k) + (Z∗ + k)
∑ω(G)

q=2 (3/q) ≤ (Z∗ + k)3
∑ω(G)

q=1 (1/q)− (Z∗ + k)

≤ (Z∗ + Z∗−1
W−1 )(3Hω(G) − 1) ≤ (1 + 1

W−1 )(3Hω(G) − 1)Z∗
��

3.4 General Cases

In the previous subsections, we dealt with perfect graphs and unit disk graphs.
Here, we extend our results to general cases.

First, we consider a graph class G satisfying following three properties:

1. for any G ∈ G, every induced subgraph H of G is in G,
2. there exists a polynomial time α-approximation algorithm for the coloring

problem instances defined on graphs in G,
3. there exists a polynomial time exact algorithm for the maximum clique prob-

lem instances defined on graphs in G.

Then Algorithm 2 is a polynomial time
(
1 +
(
1+ 1

W−1

)
αHω(G)

)
-approximation

algorithm for a class of instances of minimum span channel assignment problem
defined on graphs in G. If G is the class of perfect graphs and unit disk graphs,
then α = 1 and α = 3 hold, respectively.

Next, we consider a case that we have a c-coloring of a given (general) graph
G. In the following, we describe a modified version of Algorithm 2. The defin-
ition of W (2) implies that W (2) attains the minimum value of W ′ subject to
the condition that the graph G≥W ′+1 is a set of isolated vertices. Thus, we can
calculate the value W (2) in polynomial time. We introduce vertex weight vectors
w̃1, w̃2 defined by w̃2(v) = min{W (2), w(v)} and w̃1 = w − w̃2. Our algorithm
applies Algorithm 1 to problems (G, w̃1, l, k), (G, w̃2, l, k), and obtain two as-
signments φ1 and φ2, independently. When we solve (G, w̃2, l, k), we use a given
c-coloring of G in Step 1 of Algorithm 1. When we solve (G, w̃1, l, k), we use the
trivial 1-coloring of (G, w̃1)+. Then we output a channel assignment defined by
φ(v) = φ1(v) ∪ {c + (k − 1) + span(φ1) | c ∈ φ2(v)} (∀v ∈ V ).

Theorem 3. Let G be a c-colorable graph with c ≥ 3 and IG a class of instances
of minimum span channel assignment problems defined on G.
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For any I ∈ IG with W = 1, the approximation ratio of Algorithm 2 is bounded
by c− 1. For any I ∈ IG with W ≥ 2, the approximation ratio of Algorithm 2 is
bounded by (1/2)(1 + c + c−1

W−1 ).

Proof. We omit the trivial case that W (2) = 0. If W (2) > 0, then ω(G) ≥ 2. In
case that W = 1 and W (2) > 0, Lemma 2 implies that the approximation ratio
is bounded by (c− 1)/(ω(G)− 1) ≤ c− 1.

Next, we consider the case that W ≥ 2 and W (2) > 0. Algorithm 1 finds
a channel assignment of (G, w̃1, l, k) whose span is bounded by 1 + (W̃ 1 − 1)k
where W̃ 1 is the maximum of vertex weights w̃1(v) (v ∈ V ). For the problem
(G, w̃2, l, k), Algorithm 1 outputs a channel assignment whose span is bounded
by 1 + (c − 1)l + (W̃ 2 − 1)max{cl, k} where W̃ 2 denotes the maximum of ver-
tex weights w̃2(v) (v ∈ V ). The span A of a channel assignment obtained by
Algorithm 2 and the optimal span Z∗ satisfy that

A ≤ (1 + (W̃ 1 − 1)k) + (k − 1) + (1 + (c− 1)l + (W̃ 2 − 1)max{cl, k})
≤ (1 + (W −W (2)− 1)k) + (k − 1) + (1 + (c− 1)l + (W (2)− 1)max{cl, k})
= (1 + Wk − k) + (c− 1)l + (W (2)− 1)(max{cl, k} − k)
= (1 + Wk − k) + (c− 1)l + (W (2)− 1)(max{cl, k} −max{l, k})
≤ Z∗ + (c− 1)l + (W (2)− 1)(cl − l) = Z∗ + W (2)l(c− 1)

≤ Z∗ + Z∗+l−1
2 (c− 1) = Z∗ + (1/2)(c− 1)Z∗ + (1/2)(c− 1)(l − 1)

≤ (1/2)(1 + c)Z∗ + (1/2)(c− 1)k ≤ (1/2)
(
1 + c + c−1

W−1

)
Z∗. ��

When a given graph G is planar, G is 4-colorable. Some instances of the minimum
span channel assignment problem are defined on a triangular lattice, which is
3-colorable. The above theorem gives bounds of the approximation ratio of our
algorithm for these cases.

Corollary 1. Assume that W ≥ 2. When a given graph G is 4-colorable, the
approximation ratio of Algorithm 2 is bounded by 2.5 + 1.5/(W − 1). When we
have a 3-coloring of a given graph, the approximation ration of Algorithm 2 is
bounded by 2 + 1/(W − 1).

4 Philadelphia Instances

In this section, we discuss a class of practical instances in Philadelphia In-
stances [10]. A triangular lattice graph Tm,n has a vertex set {(xe1 + ye2) | x ∈
{0, 1, 2, . . . , m−1}, y ∈ {0, 1, 2, . . . , n−1}}where e1

def.= (1, 0), e2
def.= (1/2,

√
3/2),

and an edge set consists of pairs of vertices with unit distance. In this section,
we denote Tm,n by T for simplicity. We denote the 3rd power of the graph T by
T 3. Here, we consider a class of Philadelphia instances, which is defined on T 3.
Let l∗(e) be a weight of an edge e in T 3 defined by

l∗(e) def.=

{
2 (e is an edge in T ),
1 (otherwise).
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The minimum span channel assignment problem (T 3, w, l∗, 5) includes a class of
the Philadelphia instances [10]. The minimum span channel assignment problem
(T 3, w, l∗, 5) is NP-hard, since the problem includes the multicoloring problem
defined on T 3 which is known to be NP-hard.

Figure 1 shows a coloring c∗ of T 3 defined by

c∗(v) def.=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (0, 0) | x, y ∈ Z},
2, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (0, 2) | x, y ∈ Z},
3, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (2, 0) | x, y ∈ Z},
4, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (−1, 0) | x, y ∈ Z},
5, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (−1, 2) | x, y ∈ Z},
6, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (1, 0) | x, y ∈ Z},
7, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (0,−1) | x, y ∈ Z},
8, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (2,−1) | x, y ∈ Z},
9, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (0, 1) | x, y ∈ Z},
10, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (1,−1) | x, y ∈ Z},
11, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (−1, 1) | x, y ∈ Z},
12, v ∈ {(2x + 4y)e1 + (2x− 2y)e2 + (−1,−1) | x, y ∈ Z}.

Since T 3 has a clique of size 12, the coloring c∗ is an optimal coloring of T 3.
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Fig. 1. The coloring c∗ of a graph T 3
m,5

It is clear that Algorithm 1 gives a channel assignment to the problem
(T 3, w, l∗, 5) whose span is at most 12 + 12(W − 1) = 12W , when the color-
ing c∗ is used in Step 1 of Algorithm 1. Since Lemma 1 holds for the problem
(T 3, w, l∗, 5), the optimal span of the problem is at least 1+5(W −1) = 5W −4.
Thus we have the following.

Lemma 4. Algorithm 1 (with c∗) finds a channel assignment of (T 3, w, l∗, 5)
whose span A and the optimal span Z∗ satisfies

A ≤ 12W =
12
5

(5W − 4) +
48
5
≤ 12

5
Z∗ +

48
5

.
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In a similar way, we can estimate approximation ratio of Algorithm 1 for each
‘Philadelphia instance’.
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Weighted Broadcast in Linear Radio Networks

Gautam K. Das and Subhas C. Nandy

Indian Statistical Institute, Kolkata - 700 108, India

Abstract. The non-homogeneous version of the range assignment prob-
lem in Ad-Hoc wireless network is studied in the context of information
broadcast and accumulation. Efficient algorithms are presented for the un-
bounded and bounded-hop broadcast problems for a set of radio-stations
when they are placed on a straight line. This improves time complexity
of the existing results for the same two problems by a factor of n, where
n is the number of radio-stations [2]. An easy to implement algorithm
for the unbounded version of accumulation problem is also presented for
the non-homogeneous version of the range assignment problem. Its worst
case running time complexity is O(n2). The same algorithm works when
the radio-stations are placed in Rd.

1 Introduction

In Ad-Hoc wireless network, the range assignment problem is studied extensively
in the context of information broadcast, accumulation and all-to-all communi-
cation [15]. Here, a set of radio-stations S = {s1, s2, . . . , sn} is assumed to be
placed in IRd, d ≥ 1. If a radio-station is assigned a range ρ, it can commu-
nicate with any other radio-station(s) located in the hyper-sphere of radius ρ.
The cost of assigning a range ρi to a radio-station si is wi × ρμ

i , where μ is a
fixed constant, which is assumed to be 2 for all practical applications, and wi is
a constant specified apriori for each radio-station si. In the broadcast problem,
a source node s∗ ∈ S is specified, and we need to assign ranges to the radio-
stations in S such that s∗ can broadcast message to all other nodes in S using
at most h hops (1 ≤ h ≤ n − 1). In accumulation problem, all the members of
S need to send the message to the source station s∗. In both cases, the objec-
tive is to minimize the total power required for all the members in S. In each
of these problems, if the restriction on the number of hops h is not mentioned,
(i.e., h = n− 1 in the worst case), then it is referred to as the unbounded version
of that problem. There is another classification of the broadcast/accumulation
range assignment problems, namely homogeneous and non-homogeneous cases.
In the homogeneous case, wi values are assumed to be same for all i. But, the
practical environment insists studying the non-homogeneous version, where wi

values differ due to several locality parameters of the radio-stations.
The homogeneous h-hop broadcast range assignment problem (h > 2) in

IRd is known to be NP-complete even for d = 2 [4]. A dynamic programming
based algorithm is proposed in [1] for the 2-hop broadcast range assignment in
IR2 which needs O(n7) time in the worst case. Approximation algorithms are

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 343–353, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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available for the unbounded broadcast problem (i.e., h = n − 1) in IR2, with
approximation factor equal to 12 [16]. In [7], the homogeneous h-hop broadcast
range assignment problem is considered for d = 1. Here the radio-stations are
placed on a straight line, and the proposed algorithm runs in O(hn2) time. The
time complexity of this problem is improved to O(n2) in [9]. For a detailed survey
in the broadcast range assignment problem, see [5, 14].

Though there is a long history of the homogeneous broadcast range assignment
problem, the non-homogeneous version is studied very little. The first work on
this problem appeared in [2]. A number of variations of the problem studied and
algorithms are proposed using dynamic programming, as stated below.

For the unbounded case (i.e., h = n − 1), the time and space complexities of
the proposed algorithm are O(n3) and O(n2) respectively.

For the h-hop broadcast, the time and space complexities of the proposed al-
gorithms are O(hn4) and O(hn2) respectively.

For the unbounded multisource broadcast, the time and space complexities are
O(n6) and O(n2) respectively.

In higher dimension (i.e., d > 2) and μ = 1, the problem is formulated as a
shortest path problem in a graph, and the proposed algorithm produces a
3-approximation result in O(n3) time.

For μ > 1, the proposed algorithm works for some special (mentioned as q-
spread) instances and produces q-approximation algorithm for all-to-all com-
munication.

For the linear radio-network, the homogeneous h-hop accumulation range as-
signment problem is studied in [3], and an O(hn3) time algorithm is proposed
using dynamic programming. Next, the proposed algorithm is used to design a
2-approximation algorithm for h-hop all-to-all communication. Heuristic algo-
rithms are proposed in [6] for the homogeneous h-hop accumulation problem in
IR2. The performance analysis of the algorithms are done assuming the distrib-
ution of points (radio-stations) from different bivariate statistical distributions.

We will consider the non-homogeneous version of the broadcast /accumulation
problem in linear radio network. Using graph-theoretic formulation, we propose
algorithms for unbounded and bounded hop broadcast range assignment problem
with time complexities O(n2) and O(hn3) respectively. This is an improvement
on the existing results (in [2]) by a factor of n in both the cases. Next, we consider
the unbounded version of the accumulation problem in the non-homogeneous
case. Our proposed algorithm runs in O(n2) time and it works for any arbitrary
dimension (i.e., d ≥ 1). This result is important due to the fact that, the range
assignment problem for the unbounded version of both broadcast and all-to-all
communication are NP-complete for d ≥ 2, but for the accumulation problem,
it is solvable in polynomial time.

In spite of the fact that the model considered in this paper is simple, it is very
much useful in studying road traffic information system where the vehicles follow
roads and messages are to be broadcasted along lanes. Typically, the curvature
of the road is small in comparison to the transmission range so that we can
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consider that the vehicles are moving on a line [3]. Linear radio networks have
been observed to be important in several recent studies [3, 7, 11, 12, 13].

2 Preliminaries

Let S = {s1, s2, . . . , sn} be the set of n radio-stations on a straight line from
left to right. The radio-station sj is assigned with an weight wj ≥ 0, for j =
1, 2, . . . , n. Let sα ∈ S be the source radio-station where from the message needs
to be broadcast. Let R = {ρ(s1), ρ(s2), . . . , ρ(sn)} be a range assignment, where
ρ(si) be the range assigned to si. The graph G = (V, E) with V = S and
E = {(si, sj), ρ(si) ≥ δ(si, sj)} is referred to as the broadcast communication
graph for the range assignmentR, where δ(si, sj) denotes the Euclidean distance
between si and sj .

Definition 1. An edge e = (si, sj) is said to be functional in the h-hop broadcast
communication graph G if the removal of this edge indicates that there exists a
radio-station sk ∈ S which is not reachable from sα using a h-hop path.

Consider a path Π = {sα = si1 , si2 , . . . , sik
= sj} from source station sα to a

station sj (j > α) in graph G corresponding to a range assignment R. An edge
(siα , siα+1) is said to be a right back edge if iα−1 < iα and iα+1 < iα. Similarly,
on a path from sα to a node sj (j < α) a left back edge can be defined.

Lemma 1. If α = 1 (resp. α = n) (i.e. the source station is at one end of
the linearly ordered radio-stations) then in the optimum (minimum cost) h-hop
non-homogeneous broadcast range assignment, there is no functional right (resp.
left) back edge.

Proof. Let α = 1. Suppose there exists a functional right back edge e = (si, sj) on
the path Π in the communication graph corresponding to the optimum broadcast
range assignment (see the dashed edge in Fig. 1(a)). Note that, j < i, and there
are paths from sα to both si and sj without using that back edge. In order to
communicate with a radio-station sk, k > i, there is an path from sj to sk. Note

(a)

(b)

s1 sj si sk sn

s1 sj si sk sn

Fig. 1. Proof of Lemma 1
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that the broadcast is still possible from sα to all the members in S if we remove
the edge e from graph G by setting ρ(si) = 0 (see Fig. 1(b)). Thus, we have a
contradiction as the total power consumption gets reduced.

Definition 2. In a h-hops broadcast range assignment R a left-bridge −−→sasb

corresponds to a pair of radio-stations (sa, sb) such that a < α, b > α and
δ(sa, sb) ≤ ρ(sa) < δ(sa, sb+1).

The bridge −−→sasb is said to be functional if there exists a radio-station si ∈ S
such that no h-hop path from sα to si exists which can avoid the direct (1-hop)
communication −−→sasb.

Similarly, we can define a right-bridge (←−−sdsc as in Fig. 2(b)) and a functional
right-bridge in a broadcast range assignment R.

Lemma 2. If −−→sasb and −−−→sa′sb′ are two functional left-bridges corresponding to a
h-hops weighted broadcast range assignment R with a < a′, then b′ < b.

Proof. On the contrary, let b′ ≥ b (see Figure 2(a)). Now any path from source
sα to sa implies that there is also a path from sα to sa′ . Since b′ ≥ b, all the
radio-stations sk (α < k ≤ b) is reachable using the left-bridge −−−→sa′sb′ . Thus, the
left bridge −−→sasb no longer remains functional.

(a)

(b)

sa sb scsd s
*s1 sn

s1 sb’sbs
* snsa sa’

Fig. 2. (a) Contrary of Lemma 2 and (b) Contrary of Lemma 3

Lemma 3. Let −−→sasb be a functional left-bridge and ←−−sdsc be a functional right-
bridge corresponding to a h-hops non-homogeneous broadcast range assignment
R. Now, if a < d then c < b.

Proof. On the contrary, let c ≥ b (see Figure 2(b)). Now, the path from the
source sα to sa can use the right-bridge ←−−sdsc or not. If that path use the right-
bridge ←−−sdsc, then obviously left-bridge −−→sasb will not be functional. Again, if the
path does not use right-bridge←−−sdsc, then obviously right-bridge←−−sdsc will not be
functional.

Definition 3. A functional left-bridge −−−→sa∗sb∗ is said to be leftmost functional
left-bridge in a h-hops non-homogeneous broadcast range assignment R, if the
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following conditions hold: (i) there is no other functional left-bridge −−→sasb with
a < a∗ and b > b∗ (see Fig. 3(a)), (ii) there is no functional right-bridge ←−−sdsc

with c > b∗ and d ≤ a∗ (see Fig. 3(b)), and (iii) there is no functional right-
bridge ←−−sdsc with c = b∗ and d < a∗ (see Fig. 3(c)). Similarly, one can define a
rightmost functional right-bridge ←−−−sd∗sc∗ .

(a)

(b)

scs
*

s
*sa sbsa* sb*

sa* sb*sd

(c)

s
*sa* sb*=scsd

sn

sn

sn

s1

s1

s1

Fig. 3. Impossible configurations of leftmost functional left bridge

3 Unbounded Non-homogeneous Broadcast Problem

In this section, we consider unbounded version (h = n − 1) of the non-homo-
geneous broadcast problem. First we solve this problem when the source radio-
station is at one end (i.e., α = 1 or n).

Let M be an array of size n, where M [i] is the cost of broadcasting from si

to all the radio-stations in the set S+
i = {si, si+1, . . . , sn}. The following lemma

helps in easy computation of the optimum range assignment.

Lemma 4. If i < n then M [i] = minn
k=i(wi × (δ(si, sk))2 + M [k]), and if i = n

then M [i] = 0.

Proof. The case where i = n is trivial. So, we consider the case where i < n.
It is clear that, if there is a path from si to sn in the communication graph
corresponding to a range assignment, then that range assignment is a feasible
solution for the broadcast from si to all the members in S+

i . By Lemma 1, in the
optimum range assignment there is no functional back edge. Thus, there exists
some sk ∈ S+

i such that si first reaches sk in 1-hop, and then reaches sn in a
minimum cost path. This proves the lemma.
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Similarly, we can compute another array N of size n where N [i] contains
the cost of minimum broadcast range assignment from si to all the nodes in
S−

i = {s1, s2, . . . , si}. By Lemma 3, we have the following result.

Lemma 5. The computation of the arrays M and N needs O(n2) time.

Next, we will consider the case where the source radio-station is in an arbitrary
position α (∈ [1, n]).

Lemma 6. Let −−→sasb be a functional left-bridge and ←−−sdsc be a functional right-
bridge corresponding to a unbounded ((n − 1)-hop) broadcast range assignment
R. Now, if a > d then c > b.

Proof. On the contrary, let b ≥ c. We need to consider the following two cases
: (i) δ(sa, sd) ≤ δ(sb, sc) and (ii) δ(sa, sd) > δ(sb, sc). In case (i), sd is covered
by the range of sa, and so the right-bridge ←−−sdsc will not remain functional. By
similar argument, in case (ii) also the left-bridge −−→sasb will not be functional.

Lemmata 3 and 6 says that the optimum unbounded non-homogeneous broadcast
range assignment will either be (i) bridge-free or there is (ii) a leftmost functional
left-bridge or (iii) a rightmost functional right-bridge. We compute the optimum
solution in each of the three cases separately. Finally, the one having optimum
cost is reported.

3.1 The Solution Having No Functional Bridge

Let R+
i be the optimum range assignment for the non-homogeneous unbounded

broadcast to the radio-stations S+
i = {si, si+1, . . . , sn} from source station si,

and R−
i be the optimum range assignment for the non-homogeneous unbounded

broadcast to the radio-stations S−
i = {s1, s2, . . . , si} from source si. We can

adopt the technique mentioned earlier using the array M to compute R+
i and

R−
i . Now, our algorithm executes as follows:

Step 1: Compute two arrays M and N .
Step 2: Assign ρ(sα) = max(δ(sα, sα−1), δ(sα, sα+1)). Let ρ(sα) corresponds to

sα−1, and it covers sα+1, sα+2, . . . , sj to the right.
Step 3: The cost of the optimum solution for assigning ρ(sα) = δ(sα, sα−1) is

obtained as

C = N [α− 1] + wα × (ρ(sα))2 +
j

min
i=α+1

M [i]

Initialize opt cost with C. In the last part of the expression for C, we have
chosen the minimum among M [i] values for i = α+1, i = α+2 . . . j because
the weights assigned to the radio-stations may be different.

Step 4: Consider each element s ∈ S−
α−2 ∪S+

j+1 in order of their distances from
sα. Assign ρ(sα) = δ(sα, s), and use Step 3 for computing the cost of the
optimum range assignment with the current range of sα. If the present value
of C is less than opt cost, then update opt cost.
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3.2 The Solution Having Left-Most Functional Left-Bridge

We first compute a complete digraph G with the vertices corresponding to radio-
stations S. The weight of a directed edge (sa, sb) is wa × (δ(sa, sb))2. Let P be
an array with P [a] containing the cost of the shortest path from sα to sa in the
graph G. The array P can be computed using Dijkstra’s single source shortest
path algorithm in O(n2) time [8].

We consider the optimum broadcast range assignment with ←−−sdsc as the right-
most functional right-bridge, for each pair (sc, sd), sc ∈ S+

α+1 and sd ∈ S−
α−1.

Let this covers sc+1, sc+2, . . . , sj . The cost of this range assignment is computed
as follows:

C = P [c] + wc × (δ(sc, sd))2 + N [d] +
j

min
i=α+1

M [i]

In order to expedite this computation, we may apply a linear pass prior to
execution of this step. This computes an array M ′, where M ′[i] = minj

i=α+1 M [i].
The process is repeated to compute the cost of optimum broadcast range

assignment with −−→sasb as the left-most functional left-bridge, for each pair (sa, sb),
sa ∈ S−

α−1 and sb ∈ S+
α+1. The total time complexity of this pass is O(n2). Thus

we have the following theorem:

Theorem 1. The worst case time complexity of computing the non-homogeneous
unbounded broadcast range assignment is O(n2).

4 Non-homogeneous h-Hop Broadcast Problem

If the number of hops is restricted to a specified integer h (∈ [1, n−1]), the graph-
theoretic approach, described above, does not works. We apply the dynamic
programming approach for solving this problem. We first compute three n × h
matrices, namely A, B and C, whose each entry is a tuple (χ, γ), as mentioned
below. These are used for computing the optimum cost range assignment for the
non-homogeneous h-hop broadcast range assignment problems.

(a) A[i, j].χ = the minimum cost for communicating message from si to sn

using at most j hops, and A[i, j].γ = index k of the radio-station in S where
the first hop takes place for the minimum cost j-hops path from si to sn,
i.e., ρ(si) = δ(si, sk)). Note that, this broadcasts the message from si to all
the radio-stations S+

i+1 = {si+1, si+2, . . . , sn}.
(b) B[i, j].χ = the minimum cost for communicating message from si to s1 using

at most j hops, and B[i, j].γ = index k of the radio-station in S where the
first hop takes place for the minimum cost j-hops path from si to s1 as in (a)
part. Note that, this broadcasts the message from si to all the radio-stations
S−

i−1 = {si−1, si−2, . . . , s1}.
(c) C[i, j].χ = the minimum cost of communicating message from sα to si using

at most j hops, and C[i, j].γ = index k of the radio-station in S where the
last hop (to si) takes place in the minimum cost j-hops path from sα to si.
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We explain the computation of matrices A and C. The computation of the matrix
B is similar to that of A.

The elements of the first row of matrix A are A[i, 1] = (wi × (δ(si, sn))2, n) for
i = 1, 2, . . . , n. After computing the (j − 1)-th row, the computation of the
j-th row is as follows:
A[i, j].χ = minn

k=i(wi×(δ(si, sk))2+A[k, j−1].χ). If the minimum is achieved
for k = θ, then we set A[i, j].γ = θ.

The elements of the first row of matrix C are C[i, 1] = (wα × (δ(sα, si))2, α),
for i = 1, 2, . . . , n. After computing the (j − 1)-th row, the computation of
the j-th row is as follows:
C[i, j].χ = minn

k=1(C[k, j − 1].χ + wk × (δ(sk, si))2). If the minimum is
achieved for k = θ, then we set C[i, j].γ = θ.

It is clear from the above discussion that the time required for computing the
matrices A, B and C is O(hn2).

Lemma 7. Let −−→sasb, −−−→sa′sb′ are two left-bridges and ←−−sdsc, ←−−−sd′sc′ are two right-
bridges such that (i) a′ < a, (ii) c′ > c, (iii) d < a and b > c, and (iv) d′ < a′

and b′ > c′. Now, if −−→sasb and ←−−sdsc are functional then both of the −−−→sa′sb′ and
←−−−sd′sc′ are not functional in the optimum non-homogeneous h-hop broadcast range
assignment.

Proof. Since −−→sasb and ←−−sdsc are functional, therefore, in the optimum solution
the path from sα to sa′ and sc′ do not contain the bridge ←−−−sd′sc′ and −−−→sa′sb′

respectively. Let in the optimum solution sa′ and sc′ are reached from sα using �
and k hop respectively. Now, if � > k, then reaching sa′ using ←−−−sd′sc′ is sufficient,
in this case ←−−sdsc is no more functional. By similar argument, if � < k, then −−→sasb

is no more functional. Now, let � = k. In this case, either sd′ is covered by the
range of sa′ or sb′ is covered by the range of sc′ . Therefore, both of the −−−→sa′sb′

and ←−−−sd′sc′ are not functional.

In the following two subsections we describe the method of computing the op-
timum range assignment for the h-hop broadcast with (i) no functional bridge
and (ii) with the left-most functional left-bridge. The optimum solution with
rightmost functional right-bridge is similarly computed.

4.1 The Solution Having No Functional Bridge

The algorithm for the non-homogeneous h-hop broadcast range assignment prob-
lem having no functional bridge is more or less similar to the algorithm with
unbounded version of the same problem described in section 3. The only change
is in the arrays M and N . The elements of the arrays M and N Changed is as
follows such that M [i] = A[i, h− 1] and N [i] = B[i, h− 1].

4.2 The Solution Having Functional Bridge

In this subsection, we solve the problem with functional bridge. To solve this
problem, we consider each of the left-bridge −−→sasb(a < α < b) as the leftmost
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and right bridge ←−−sdsc(d < α < c) as the rightmost functional bridge and find
feasible range assignment. Here, we solve the problem having leftmost functional
left-bridge. By similar argument, we can compute the solution having rightmost
functional right-bridge.

The Solution with Leftmost Functional Left-Bridge
Let −−→sisj be the last functional left-bridge. We consider each such left-bridge as
a last functional left-bridge. Now, we want to compute the optimum weighted
broadcast range assignment with last functional left-bridge −−→sisj . Let it reaches
s� to the left of si. The algorithm is as follows :
For each j(� ≤ j ≤ h), we compute the cost of following range assignment, and
choose one having minimum cost.

Take the range assignment from sα to si in k-hops with minimum cost and
let for this range assignment s�, s�+1, . . . , sj−1 is reachable using h�(= k +
1), h�+1, . . . , hj−1 hops. It needs to mention that, h� = h�+1 = . . . = hi−1 = k+1.
Now, consider the minimum cost range assignment among sp to s� using at most
(h− hp)-hops, where � ≤ p ≤ j − 1. Then take the range assignment from sj to
sn in (h− k − 1)-hops with minimum cost.

5 Weighted Accumulation Problem

In this section, we solve the accumulation problem for h = n− 1 in O(n2) time
for the radio-stations located on d-dimensional (d > 0) Euclidean space. And if
the radio-stations are located on a line, then we can solve h-hops accumulation
problem in O(hn3) time using the method in [3].

Let S = {s1, s2, . . . , sn} be a set of n radio-stations located on a d-dimensional
Euclidean space and W = {w1, w2, . . . , wn} be the weight set of the radio-station
in S, where weight wi(1 ≤ i ≤ n) correspond to radio-stations si. Without loss
of generality, assume sn be the sink radio-station. To solve the accumulation
problem, we construct a weighted complete directed graph G = (V, E), where
vertex set V of G corresponds to set of radio-stations S and weight of edge
e = (si, sj) is equal to wi× (δ(si, sj))2. Here, we solve the accumulation problem
by solving the minimum-cost arborescence problem in the augmented graph G′ =
(V, E′) (say) of the graph G.

Arborescence Problem. Given a weighted directed graph G∗ and a root node
r, the minimum cost arborescence problem is to find the minimum-cost spanning
tree in G∗ directed out of r. Here, tree cost is the sum of the tree arc cost.

Computation of G′ from G. The only change in G′ from G is edge weights and
the change of edge weights is as follows : interchange the edge weights between
edges (u, v), (v, u) ∈ G, for each u, v ∈ V . For each u, v ∈ V , there are arcs
(u, v), (v, u) ∈ G, as G is a complete directed graph.

From the definition of arborescence problem, it follows that the solution of
minimum cost accumulation problem in G is equivalent to the solution of mini-
mum cost arborescence problem in G′. Gabow et. al. in [10], propose an algorithm
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for solving arborescence problem optimally in O(n log n+m) time in a weighted
directed graph with n vertices and m edges. Therefore, the weighted accumu-
lation problem can be solved in O(n2) time for the unbounded version of the
problem.
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Abstract. Due to the increasing security threats in the Internet, new
overlay network architectures have been proposed to secure privileged
services. In these architectures, the application servers are protected by
a defense perimeter where only traffic from entities called servelets are
allowed to pass. End users must be authorized and can only communi-
cate with entities called access points (APs). APs relay authorized users’
requests to servelets, which in turn pass them to the servers. The iden-
tity of APs are publicly known while the servelets are typically secret.
All communications are done through the public Internet. Thus all the
entities involved forms an overlay network. The main component of this
distributed system consists of n APs. and m servelets. A design for a net-
work is a bipartite graph with APs on one side, and the servelets on the
other side. If an AP is compromised by an attacker, all the servelets that
are connected to it are subject to attack. An AP is blocked, if all servelets
connected to it are subject to attack. We consider two models for the
failures: In the average case model, we assume that each AP i fails with
a given probability pi. In the worst case model, we assume that there is
an adversary that knowing the topology of the network, chooses at most
k APs to compromise. In both models, our objective is to design the
connections between APs and servelets to minimize the (expected/worst-
case) number of blocked APs. In this paper, we give a polynomial-time
algorithm for this problem in the average-case model when the number
of servelets is a constant. We also show that if the probability of failure
of each AP is at least 1/2, then in the optimal design each AP is con-
nected to only one servelet (we call such designs star-shaped), and give
a polynomial-time algorithm to find the best star-shaped design. We ob-
serve that this statement is not true if the failure probabilities are small.
In the worst-case model, we show that the problem is related to a prob-
lem in combinatorial set theory, and use this connection to give bounds
on the maximum number of APs that a perfectly failure-resistant design
with a given number of servelets can support. Our results provide the
first rigorous theoretical foundation for practical secure overlay network
design.
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1 Introduction

Providing secure and highly available services using the shared Internet in-
frastructure is very challenging due to security threats in the Internet.
Distributed Denial of Service (DDoS) attacks are a major threat to Internet se-
curity. Attacks against high-profile web sites such as Yahoo, CNN, Amazon and
E*Trade in early 2000 [7] rendered the services of these web sites unavailable
for hours or even days. During the hour long attack against root Domain Name
Servers (DNS) in Oct, 2002, only four or five of the 13 servers were able to with-
stand the attack and remain available to legitimate Internet traffic throughout
the strike [13]. Internet service would have started degrading if the attack had
been sustained long enough for the information contained in the secondary DNS
caches to start expiring—a process that usually takes from a few hours to about
two days. A recent attack on June 15, 2004 against Akamai’s DNS servers caused
several major customers of Akamai’s DNS hosting services, including Microsoft
Corp., Yahoo Inc., and Google Inc. to suffer brief but severe slowdown [22] in
their web performance. The event was marked by being a step beyond “simple
bandwidth attacks” on individual web sites to more sophisticated targeting of
core upstream Internet routers, DNS servers and bandwidth bottlenecks.

To defend against DDoS attacks, one can trace the attack sources and punish
the perpetrators [3, 5, 19, 21, 4, 20, 8, 1, 11]. Due to the large number of compro-
mised hosts (known as Zombies) used in the attack, finding the attack origin can
be very difficult. Techniques to prevent DDoS attacks and/or to mitigate the effect
of such attacks while they are raging on have been proposed [12, 6, 17, 9, 14, 16, 15].
These mechanisms alone do not prevent DDoS attacks from disrupting Internet
services as they are reactive in nature. Recent research efforts [9, 2] have focused on
designing overlay network architectures where certain critical elements are hidden
from the attackers. The key entities in these architectures are access points (APs),
servelets and end application servers. The end application servers are protected
by a defense perimeter. Routers at the boundary are installed with filters which
only allow traffic from the servelets in. The servelets are hidden from the attackers.
Only a subset of access points are allowed to access each servelet. User requests
must be authorized by access points and the requests are tunneled to their corre-
sponding servelets via access points. The servelets then communicate with the end
application servers. The access points can be geographically well placed to service
the end users. The number of access points is assumed to be much larger than the
number of secret servelets. All communications go through the public Internet.
Thus all the entities involved form an overlay network.

The ability of such distributed systems to service their users is character-
ized by how many access points can still communicate to the end application
servers, should an attack happens. This depends on how the access points are
connected to the servelets. Intuitively, if a vulnerable access point connects to all
the servelets, once it is compromised, all the servelets will be subject to DDoS
attacks. In the worse case, this in turn denies all other access points from access-
ing the servelets. The network must be designed to resist such attacks. However,
how the network should be designed has not been rigorously analyzed. In this
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paper, we formalize the problem as a combinatorial optimization problem with
the objective to maximize the number of surviving access points. We first define
our problem settings.

Definition 1. A design for a network with n APs and m servelets is a bipartite
graph with APs on one side, and the servelets on the other side. If an AP fails
(or is compromised), it attacks all the servelets that are connected to it and we
say that these servelets are attacked. If all servelets connected to an AP are
attacked, we say that the AP is blocked. By definition, we say any compromised
AP is blocked.

We are interested in designing secure networks in which the number of blocked
APs is minimized. We consider two models of failures:

– In the average case model, we assume that each AP i fails with a given
probability pi. Our objective is to design the connections between APs and
servelets to minimize the expected number of blocked APs1.

– In the worst case model, we assume that there is an adversary that knowing
the topology of the network, chooses at most a given number k of APs to
compromise. Our objective is to design the connections between APs and
servelets to minimize the worse-case number of blocked APs.

This paper presents the first theoretical study of secure overlay network de-
sign. Our results provide guidelines for practical design of such networks.

The rest of this paper is organized as follows. In Section 2, we study the
problem in the average case model. We first prove a lemma on the structure of
the optimal design. This lemma restricts the number of possible solutions and
gives a polynomial-time algorithm for the problem where the number of servelets
is constant. It also implies a polynomial-time algorithm for the case that each AP
can be connected to at most one servelet. We prove that if all failure probabilities
are large enough (namely, greater than 1

2 ), then the optimal design is of this form,
and therefore can be found in polynomial time. At the end of Section 2, we give
an example that if failure probabilities are not small, then the optimal design is
not necessarily star shaped, and in fact, the best star-shaped design can be worse
than the optimal design by an arbitrary factor. Finally, in Appendix A, we show
hardness results for computing the expected number of blocked APs for a given
network. In Section 3, we study the worst case model. We establish a connection
between the secure network design problem and a problem in combinatorial set
theory, and use this to give the optimal design for one failed AP. For constant
number of failed APs, we use the probabilistic method to bound the maximum
number of APs that we can support using a fixed number of servelets without
blocking any other APs. We conclude in Section 4 with several open questions.

2 The Average-Case Model

In this section, we study the average case model. We give polynomial-time algo-
rithms for this problem in two cases: when the number of servelets is a constant,
1 For a detailed justification of this model, please see [2].
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and when the probability of failure of each AP is at least 1/2. We also demon-
strate the difficulty of the problem in Appendix A by showing that even when
a design is given, computing the probability that a given AP will be blocked or
the expected number of APs that will be blocked is #P -complete.

Our algorithms are based on the following lemma about the structure of the
optimal design.

Lemma 1. Assume that APs are ordered in decreasing order of their failure
probabilities, i.e., p1 ≥ p2 ≥ . . . ≥ pn. For an AP i, let Si be the set of servelets
connected to i. There exists an optimal design in which for all i < j < k, if
Si = Sk, then Sj = Si.

Proof. Assume that there is no optimal design with the desired property. Let
S1, . . . , Sn be an optimal solution in which for some i < j < k, Si = Sk but
Sj �= Si. Note that Si = Sk implies that if either i or k fails, then both i and k
are blocked. In particular, the expected number of blocked APs given that i fails
is equal to the expected number of blocked APs given that k fails and is equal
to the expected number of blocked APs given that i and k fail. Let B11 be the
expected number of blocked APs given that j fails and at least one of i and k fail.
Let B10 be the expected number of blocked APs given that at least one of i and
k fail and j does not fail. Similarly, let B01 be the expected number of blocked
APs given that j fails but neither i nor k fails and B00 be the expected number
of blocked APs given that none of i and k and j fails. From this definitions, it
is straightforward to see that B11 ≥ B01. The expected number P∗ of blocked
APs in an optimal design can be expressed as follows.

P∗ = E[#blocked APs]
= pj(pi + pk − pipk)B11 + (1− pj)(pi + pk − pipk)B10

+ (1− pi)pj(1− pk)B01 + (1− pi)(1 − pj)(1− pk)B00

Now we prove that the set of servelets of j can be exchanged with the set of
servelets of either i or k without increasing the expected number of blocked
APs. For contradiction, assume that both these exchanges increase the expected
number of blocked APs. The expected number of blocked APs after exchanging
i and j can be written as

P1 = E[#blocked APs]
= pi(pj + pk − pjpk)B11 + (1 − pi)(pj + pk − pjpk)B10

+ (1− pj)pi(1− pk)B01 + (1− pj)(1− pi)(1− pk)B00

Similarly, the expected number of blocked APs after exchanging j and k is

P2 = E[#blocked APs]
= pk(pi + pj − pipj)B11 + (1− pk)(pi + pj − pipj)B10

+ (1− pi)pk(1− pj)B01 + (1− pi)(1− pk)(1− pj)B00
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By our assumption, we have P∗ < P1 and P∗ < P2. Therefore,

pjpkB11 + piB10 + pj(1− pk)B01 < pipkB11 + pjB10 + pi(1− pk)B01

Thus,
(pi − pj)(pkB11 −B10 − (1− pk)B01) > 0

Since pi ≥ pj , this implies

pkB11 −B10 − (1− pk)B01 > 0 (1)

Similarly, P∗ < P2 implies

piB11 −B10 − (1− pi)B01 < 0 (2)

By subtracting (1) from (2), we get (pi − pk)B11 < (pi − pk)B01, and hence
B11 < B01. However, this is impossible by the definition of B11 and B01. �
Using Lemma 1, we can prove the following result.

Theorem 1. There is a polynomial-time algorithm that constructs the optimal
design in the average case model when the number of servelets is at most a
constant.

Proof Sketch. Assume that APs are ordered in the decreasing order of their
failure probabilities, i.e., p1 ≥ p2 ≥ . . . ≥ pn. Let Si denote the set of servelets
connected to the AP i. From Lemma 1, we know that there are indices 1 =
α0 < α1 < α2 < · · · < αs = n + 1 such that for each j ∈ [αi, αi+1), Sj = Sαi ,
and the sets Sα0 , Sα1 , . . . , Sαs−1 are pairwise distinct. Since the total number
of distinct sets of servelets is 2m, there are at most

(
n+2m

2m

)
(2m)! ways to pick

the indices α0, . . . , αs and the corresponding Si’s. This number is bounded by
a polynomial in n if m is a constant. Therefore, the algorithm can check all
such configurations. Computing the expected number of blocked APs for each
configuration can also be done in polynomial time when m is a constant. �
If we can connect each AP to at most one servelet, the resulting graph is a union
of stars. We say that the design is star-shaped in this case. The following theorem
proves that the optimal star-shaped design can be found in polynomial time.

Theorem 2. The optimal star-shaped design can be computed in polynomial
time.

Proof. Let the failure probabilities of the APs be p1 ≤ p2 ≤ . . . ≤ pn. It is
easy to see that the proof of Lemma 1 holds even if the design is restricted to a
star-shaped design. This shows that in the optimal star-shaped design we should
partition the APs 1, . . . , n into at most m + 1 consecutive parts each of which is
connected to no servelet or to one of the servelets. This can be done by dynamic
programming in polynomial time. We observe that the subset of APs that are
connected to none of the servelets should be among the APs with larger failure
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probability. Let A[k, t] be the minimum (over the choice of the star-shaped de-
sign) of the expected number of blocked APs when the set of APs consists of
1, 2, . . . , k and there exists t servelets. Let B(a, b) be the expected number of
blocked APs among the APs a, a + 1 . . . , b, if they are all connected to the same
servelet (and no other AP is connected to this servelet). Note that B(a, b) can
be easily computed in polynomial time for each a and b. It is not hard to see that
A[k, t] = min {min1≤l≤k{A[l, t− 1] + B(l + 1, k)}, min1≤l≤k{A[l, t] + k − l}} and
A[k, 0] = k. Using this recurrence, the values of A[k, t] can be computed in poly-
nomial time. The value of the best star-shaped design is given by A[n, m]. �
It might appear that star-shaped designs are weaker than general designs. The
following theorem shows that if all failure probabilities are at least 1

2 , there is
an optimal design that is star-shaped.

Theorem 3. If all failure probabilities are at least 1
2 then there is a star-shaped

optimal design and therefore an optimal design can be found in polynomial time.

Proof. We start from an optimal design, D, and prove that we can change
this design to a star-shaped design without increasing the expected number of
blocked APs.

First we prove that we can get rid of all the cycles in the optimal design D. If
there is a cycle in D, then there is a chordless cycle C in D as well. The length
of cycle C is even and is at least 4. We consider two cases:

Case 1: |C| ≥ 6. In this case, let cycle C be s1c1s2c2 . . . skcks1, where
ci’s are APs and si’s are servelets. We claim that removing one of the match-
ings c1s1, c2s2, . . . , cksk or c1s2, c2s3, . . . , ck−1sk, cks1 will not increase the ex-
pected number of blocked APs. Let D1 be the design D after removing the
matching c1s1, c2s2, . . . , cksk and D2 be the design after removing the matching
c1s2, c2s3, . . . , ck−1sk, cks1. Removing a matching from C will not increase the
blocking probability of any AP other than c1, c2, . . . , ck. So it is enough to ar-
gue that the expected number of blocked APs in c1, c2, . . . , ck decreases as we
remove one of these two matchings. Let Eci for all 1 ≤ i ≤ k be the event that
all of servelets that are connected to ci and are not in the set {s1, s2, . . . , sk} are
attacked. Let Esi be the event that at least one of the APs that are connected
to servelet si fails. The probability of Eci is denoted by Pci , and the probability
of Eci and not Esj is denoted by Pcis̄j . Similarly, the probability of Eci and Esj

and not Esl
is denoted by Pcisj s̄l

, etc. Let PT (ci) be the blocking probability of
ci in design T . Then,

PD(ci) = pi + (1− pi)
(
Pci − Pcis̄i(1− pi−1)

− Pcis̄i+1(1− pi+1) + Pcis̄i s̄i+1(1− pi−1)(1− pi+1)
)
.

Furthermore PD1(ci) = pi + (1− pi)Pcisi and PD2(ci) = pi + (1− pi)Pcisi+1 .
In order to prove that the expected number of blocked APs is not more in

one of the designs D1 and D2, it is enough to prove that PD(ci) ≥ 1
2 (PD1(ci) +

PD2(ci)). In order to prove this, it is enough to show the following:

P := Pci − Pcis̄i(1− pi−1)− Pci s̄i+1(1 − pi+1) + Pcis̄i s̄i+1(1 − pi−1)(1 − pi+1)
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≥ 1
2
(Pcisi + Pcisi+1)

Using Pci = Pcisi + Pcis̄i = Pcisi+1 + Pcis̄i+1 , we have:

P ≥ 1
2
(Pcisi + Pcis̄i + Pcisi+1 + Pcis̄i+1)− Pcis̄i(1− pi−1)− Pci s̄i+1(1 − pi+1)

≥ 1
2
(Pcisi + Pcisi+1)

where we use the fact that pi−1 ≥ 1
2 and pi+1 ≥ 1

2 .

Case 2: |C| = 4. Let cycle C be c1s1c2s2c1. The analysis of this case is very
similar to the that of |C| > 4. We use the same notation as in the previous case.
Again we prove that removing one the matchings c1s1, c1s2 or c1s2, c2s1 will not
increase the expected number of blocked APs. Let D, D1 and D2 be an opti-
mal design, and this design after removing matchings c1s1, c1s2 and c1s2, c2s1,
respectively.

PD(ci) = pi + (1− pi)(Pci − (1 − pi+1)(Pci s̄1 + Pci s̄2 − Pcis̄1 s̄2))

≥ 1
2
(pi + (1− pi)Pcis1 + pi + (1 − pi)Pcis2)

+ (1− pi)(pi+1 −
1
2
)(Pci s̄1 + Pci s̄2)

≥ 1
2
(PD1(ci) + PD2(ci)) + (1− pi)(pi+1 −

1
2
)(Pci s̄1 + Pci s̄2)

≥ 1
2
(PD1(ci) + PD2(ci))

Thus, in at least one of the designs D1 and D2, the expected number of blocked
APs is less than or equal to the expected number of blocked APs in D.

After getting rid of all cycles, D is a tree. Next, we show that it is possible to
change this tree to a star-shaped design without increasing the expected number
of blocked APs. Again, we consider two cases:

Case 1: There is a leaf s in tree D that is a servelet.
In this case, let c be the AP connected to servelet s. Removing all edges of c to
servelets other than s will decrease the expected number of blocked APs among
APs other than c. Furthermore, the blocking probability of c will not increase,
since c has a private servelet s.

Case 2: All leaves of D are APs.
Consider a connected component of D which is not a star. Now consider a leaf
AP c in this component. AP c is connected to servelet s. Servelet s must have
a neighboring AP c′ which is connected to at least one other servelet s′, for
otherwise the component would be a star. We claim that removing the edge
c′s′ decreases the expected number of blocked APs. Let D′ be the tree after
removing c′s′.

The blocking probability of all APs except c′ decrease in D′. In the following,
we prove that removing c′s′ also decreases the sum of blocking probabilities of
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the APs c and c′. Let Pc′ be the probability that all servelets connected to c′,
except possibly s, are attacked. Let Ps be the probability that one AP other
than c′ and c in the neighborhood of s fails. As before, let PD(c) be the blocking
probability of AP c in the design D. Using the fact that D is a tree, we have

PD(c) = pc + (1− pc)(pc′ + Ps − pc′Ps)
PD(c′) = pc′ + (1− pc′)Pc′(pc + Ps − pcPs)
PD′(c) = pc + (1− pc)Ps

PD′(c′) = pc′ + (1− pc′)Pc′ .

Therefore,

PD(c) + PD(c′) = pc + (1− pc)(pc′ + Ps − pc′Ps) + pc′

+ (1− pc′)Pc′(pc + Ps − pcPs)
= PD′(c) + PD′(c′) + (pc′ − (1 − pc′)Pc′)(1− pc)(1− Ps)
≥ PD′(c) + PD′(c′),

where in the last inequality we use the fact that pc′ ≥ 1
2 and Pc′ ≤ 1, and hence

pc′ − (1 − pc′)Pc′ ≥ 0. This completes the proof of this case.
Using the above operations, we can change the tree-shaped design D to a star-

shaped design without increasing the expected number of blocked APs. Hence,
we can change any optimal design to an optimal tree-shaped design and then to
an optimal star-shaped design. �
Another case for which we can show that there is an optimal star-shaped design
is when the number of servelets is two.

Theorem 4. If the number of servelets is two, then there is an optimal design
that is star-shaped.

Proof. For simplicity, we prove the theorem assuming all APs have the same
failure probability p. The proof in the general case is similar. Let q = 1 − p.
Let A00, A10, A01, and A11 be the set of APs connected to none of the servelets,
to servelet 1, to servelet 2, and to both servelets in an optimal solution. Let
nuv = Auv for 0 ≤ u, v ≤ 1 and n = n01 + n10 + n11. Let P1 be the prob-
ability that servelet 1 is not attacked. For i ∈ A10, P1 = Pr[i is blocked] =
1 − qn10+n11 . For i ∈ A01, P2 = Pr[i is blocked] = 1 − qn01+n11 . For i ∈ A11,
P3 = Pr[i is blocked] = 1 − qn01+n11 − qn10+n11 + qn01+n10+n11 . Thus, the ex-
pected number of blocked APs is equal to P∗ = n10P1 +n01P2 +n11P3. WLOG,
assume that n01 ≥ n10. We prove that moving one of the APs from A11 to A10
decreases the expected number of blocked APs. Before moving this AP from A11
to A10,

P∗ = n− (n10 + n11)qn10+n11 − (n01 + n11)qn01+n11 + n11q
n01+n10+n11

After this movement, the expected number of blocked APs is

P=n−(n10 + n11)qn10+n11 − (n01 + n11 − 1)qn01+n11−1 + (n11 − 1)qn01+n10+n11
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Now we have,

P∗ − P = qn01+n11−1[(n01 + n11)(1− q)− 1 + qn10+1]
≥ qn01+n11−1[(n01 + n11)p− 1 + (1− p)n10+1]
≥ qn01+n11−1(n01 + n11 − n10 − 1)p
≥ 0

where the last two inequalities are from (1 − p)n10+1 − 1 > −p(n10 + 1) and
n01 + n11 ≥ n10 + 1. Therefore, we can move all APs from A11 to either A10 or
A01 without increasing the expected number of blocked APs. Thus, there is a
star-shaped optimal solution. �
The above proof was based on a local operation that removes one of the edges
attached to an AP of degree more than one. However, this local operation can
increase the expected number of blocked APs when the number of servelets is
more than two. For example, consider a cycle of size six with three APs and three
servelets. It is not hard to show that removing any of the edges of this design
will increase the expected number of blocked APs. In the following theorem, we
show that without an assumption on the failure probabilities or the number of
servelets, the optimal design need not be star shaped.

Theorem 5. There is an instance of the secure network design problem in which
the expected number of blocked APs in the optimal design is larger than that of
the optimal star-shaped design by an arbitrary factor.

Proof. Choose a sufficiently large number m, and let n =
(

m
m/2

)
and p = 1/n2.

We first analyze the expected number of blocked APs in the best star-shaped
design with these parameters. Let ni denote the number of APs connected to the
ith servelet in such a design, and n0 denote the number of APs not connected
at all. The expected number of blocked APs can be expressed as

n0 +
m∑

i=1

ni (1− (1− p)ni) ≥
m∑

i=0

ni (1− (1 − p)ni) .

There is at least one i, 0 ≤ i ≤ m, with ni ≥ n/(m + 1). Thus, the above
expression is at least

n

m + 1

(
1− (1− p)n/(m+1)

)
≥ n

m + 1

(
pn

m + 1
− p2n2

(m + 1)2

)
≥ pn2

2(m + 1)2
,

where the first inequality follows from (1− p)s ≤ 1− ps + p2s2.
Now, we propose a different design and analyze the expected number of

blocked APs in such a design. For each of the n =
(

m
m/2

)
APs, we pick a dis-

tinct subset of m/2 servelets, and connect the AP to the servelets in this set.
This design guarantees that if only one AP is attacked, then no other AP will
be blocked. We use this to bound the expected number of blocked APs. By the
union bound, the probability that more than one AP is attacked can be bounded
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by n2p2. In this case, we bound the number of blocked APs by n. Similarly, with
probability at most np, exactly one AP is attacked, and in this case only one
AP (the one that is attacked) is blocked. Thus, the expected number of blocked
APs is at most n2p2 × n + np× 1 = 2/n.

Therefore, the ratio of the expected number of blocked APs in the latter design
to the one in the best star-shaped design is at most 4(m + 1)2/n, which tends
to zero as m tends to infinity. �

3 The Worst-Case Model

In this section, we study a model where an adversary selects at most a given
number k of APs to compromise, and the objective is to minimize the number of
blocked APs in the worst case. We observe that the worst-case model is closely
related to the following problem in extremal combinatorics.

Definition 2. Let A = (A1, A2, . . . , An) be a family of subsets of the universe
U = {1, 2, . . . , m}. We call the family A k-union free if for any Ai0 , . . . , Aik

∈ A
such that ij �= it for j �= t, we have Ai0 �⊆ ∪1≤j≤kAij . In particular, a family A
is 1-union free if none of the elements of A is a subset of another. Let Lk(m)
be the maximum number of subsets in a k-union free family of subsets of the
universe {1, 2, . . . , m}.

We call a design perfect for k failures, if no matter which k APs fail, no other AP
is blocked. It is not difficult to see that there exists a perfect design for k failures
with m servelets and n APs if and only if n ≤ Lk(m). The following theorem
gives lower and upper bounds on the value of Lk(m). The lower bound in this
theorem is proved by Kleitman and Spencer [10] for a more general problem.
We include the proof here for the sake of completeness. We also give an upper
bound based on Sperner’s theorem. Sperner’s theorem gives a tight bound on
the maximum number of subsets in a 1-union free family of subsets. See also
Ruszinkó [18] for an upper bound for a related problem.

Theorem 6. For every k and m,

(1− kk

(k + 1)k+1 )−m/(k+1) ≤ Lk(m) ≤ k

(
1 +
(

m
m
2

) 1
k

)
= O(k2m/km−1/(2k)).

Proof. We start by proving the upper bound. Let A = (A1, A2, . . . , An) be a
k-union-free family of subsets of {1, 2, . . . , m}. Consider unions of k distinct sets
from A. We claim that no two such unions, say Ai1 ∪· · ·∪Aik

and Aj1 ∪· · ·∪Ajk
,

are equal unless {i1, . . . , ik} = {j1, . . . , jk}. The reason for this is that if two such
unions are equal and there is an index il not contained in {j1, . . . , jk}, then we
have Ail

⊆ Aj1 ∪ · · · ∪ Ajk
, contradicting the assumption that A is k-union-

free. Therefore, the collection of sets that are obtained by taking the union
of k distinct sets in A contains exactly

(
n
k

)
distinct sets. Furthermore, similar
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reasoning shows that no set in this collection is contained in another. Therefore,
by Sperner’s theorem, this collection can contain at most

(
m

m/2

)
sets. Thus,

(
n

k

)
≤
(

m

m/2

)
⇒ n ≤ k

(
1 +
(

m
m
2

) 1
k

)
= O(k2m/km−1/(2k)),

completing the proof of the upper bound.
To prove the lower bound, we use the probabilistic method to construct a k-

union-free collection of sets of the required size. Fix p = 1
k+1 , and pick each of the

n sets in the collection by picking each element in {1, . . . , m} independently with
probability p. Therefore, for a given set of indices i0, i1, . . . , ik, the probability
that Ai0 ⊆ Ai1∪· · ·∪Aik

is precisely (1−p(1−p)k)m = (1− kk

(k+1)k+1 )m. Therefore,
by the union bound, the probability that the collection is not k-union-free is less
than nk+1(1− kk

(k+1)k+1 )m. Hence, if we pick n ≤ (1− kk

(k+1)k+1 )−m/(k+1), there is
a nonzero probability that the resulting collection is k-union-free. This completes
the proof of the lower bound. �
Note that the above theorem suggests a randomized algorithm for our network
design problem: put each edge in the graph with probability 1

k+1 . We can bound
the expected number of blocked APs resulting from this randomized algorithm
using similar ideas of the proof of the above theorem. For small values of k, this
algorithm works exponentially better than the optimal star-shaped design.

The only case where we know the exact value of Lk(m) is when k = 1. In this
case, we can prove the following stronger theorem.

Theorem 7. If k = 1, then there is a design in which the maximum number
of APs an adversary can block is at most

⌈
n/
(

m
	m/2


)⌉
. Conversely, for every

design for such a network, there is a strategy for the adversary to block at least⌈
n/
(

m
	m/2


)⌉
APs.

Proof Sketch. We can obtain a design for k = 1 by duplicating each of the(
m

	m/2

)

subsets of size �m/2� of the set of servelets
⌈
n/
(

m
	m/2


)⌉
times, and

associate an AP to each subset. To prove the other direction, we use the fact
that the collection of all subsets of a set of size m can be partitioned into

(
m

	m/2

)

chains. Therefore, in every design there are at least
⌈
n/
(

m
	m/2


)⌉
APs that are

connected to sets of servelets belonging to the same chain. Hence, if the adversary
compromises the AP connected to the subset at the top of this chain, all other
APs connected to the subsets in this chain will fail. �

4 Conclusion

In this paper, we presented the first theoretical study of the secure network design
problem. We showed that in the average case model, when failure probabilities
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are large (greater than 1
2 ), there is an optimal star-shaped design, and such

a design can be computed in polynomial time. On the other hand, there are
instances with small failure probabilities where the optimal star-shaped design is
arbitrarily worse than the optimal design. The case of small failure probabilities
seems to be related to the stronger model where an adversary is allowed to select
at most k APs to compromise. We observed that in this model, a random design
performs considerably better than the optimal star-shaped design.

We still do not know of any hardness result or a polynomial-time algorithm for
the general case of the secure network design problem, although the connection
between this problem and the problem of finding a tight bound on the size of
the largest k-union-free family of sets (which is a long-standing open problem)
suggests that computing the exact optimum is difficult. Even an approxima-
tion algorithm for this problem, or tighter bounds for the k-union-free problem,
would be interesting. Lovasz Local Lemma gives us a small improvement in the
lower bound, but more significant improvement seem to require new techniques.
Finally, it would be interesting to prove Theorem 3 with a weaker assumption
(e.g., that probabilities are greater than a small constant), or show that such a
generalization is not true.
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A Expected Number of Blocked APs: A Hardness Result

In terms of hardness, we can show that given a particular design, it is hard to
compute the probability that a given AP is blocked, and the expected number
of APs that will be blocked.

Theorem 8. The following two problems are #P-complete:

– Given a design and assuming uniform failure probabilities of p = 1/2, com-
pute the probability that a given AP i will be blocked.

– Given a design and assuming uniform failure probabilities of p = 1/2, com-
pute the expected number of APs that will be blocked.

Proof Sketch. For the first problem, we can give a reduction from the problem of
computing the number of solutions of a set-cover instance. The second problem
can be reduced to the first by adding a “private servelet” for each AP except
one. �
Even though finding the exact expected number of blocked APs is hard, it is
not hard to approximate within a factor of 1 + ε for any positive constant ε by
sampling polynomially many times and taking the average. Note that the above
theorem does not show any hardness result for finding the optimal network. The
complexity of this problem for general failure probabilities is still open.
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Abstract. This paper discusses the portfolio selection problem based
on the possibilistic theory. The possibilistic portfolio model with general
constraints to investment is proposed by means of possibilistic mean
value and possibilistic variance. The conventional probabilistic mean-
variance model can be simplified under the assumption that the returns
of assets are triangular fuzzy numbers. Finally, a numerical example of
the portfolio selection problem is given to illustrate our proposed effective
means and approaches.

1 Introduction

The mean-variance methodology for the portfolio selection problem, posed orig-
inally by Markowitz [1], has played an important role in the development of
modern portfolio selection theory. It combines probability and optimization
techniques to model the behavior investment under uncertainty. In the mean-
variance portfolio selection problem, previous research includes Perold [2], Pang
[3], VÖRÖS [4] and Best [5], etc.. The key principle of the mean-variance model
is to use the expected return of a portfolio as the investment return and to use
the variance of the expected returns of the portfolio as the investment risk. The
basic assumption for using Markowitz’s mean-variance model is that the situa-
tion of asset markets in future can be correctly reflected by asset data in the past,
that is, the mean and covariance of assets in future is similar to the past one. It
is hard to ensure this kind of assumption for real ever-changing asset markets.

Recently, a few of authors such as Watada [6], Tanino and Guo [7], Inuiguchi
and Tanino [8], Zhang and Nie [9] etc., studied the fuzzy portfolio selection
problem. Watada [6] presented portfolio selection models where he used fuzzy
numbers to represent the decision maker’s aspiration levels for the expected
rate of return and a certain degree of risk. Inuiguchi and Tanino [8] introduced
a novel possibilistic programming approach to the portfolio selection problem:
their approach, which prefers a distributive investment solution, is based on
the minimax regret criterion (the regret which the decision maker is ready to
undertake). Tanaka and Guo [7] proposed the portfolio selection models based on
� Corresponding author.

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 367–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



368 W.-G. Zhang, Q. Chen, and H.-L. Lan

fuzzy probabilities and possibilistic distributions. Zhang and Nie [9] introduced
the admissible efficient portfolio model under the assumption that the expected
returns and risks of assets have admissible errors.

Zadeh [10] proposed possibility theory based on possibilistic distributions.
Dubois and Prade [11-12] developed it further. Carlsson and Fullér [13] defined
the notions of possibilistic mean value and variance of fuzzy numbers. Carlsson
[14] introduced a possibilistic approach to selecting portfolios with highest utility
score. Zhang et.al [15] considered the portfolio selection problem based on a new
crisp possibilistic variance and a new crisp possibilistic covariance of fuzzy num-
bers. Zhang and Wang [16] discussed the general weighted possibilistic portfolio
selection problem. In this paper, we consider the portfolio selection problem un-
der general constraints to investment. The possibilistic mean value corresponds
to the return, while the possibilistic variance corresponds to the risk. We obtain
a simple programming model to replace Markowitz’s mean-variance model under
general linear constraints to investment.

2 Possibilistic Mean and Variance

Let us introduce some definitions, which we shall need in the following section.
A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex
and continuous membership function of bounded support. The family of fuzzy
numbers will be denoted by F .

Let A be a fuzzy number with γ− level set [A]γ = [a1(γ), a2(γ)](γ > 0).
Carlsson and Fullér [13] introduced the possibilistic mean value of A as

M(A) = 1
2 [

1
0 a(γ)Pos[A≤a(γ)]dγ

1
0 Pos[A≤a(γ)]dγ

+
1
0 b(γ)Pos[A≥b(γ)]dγ

1
0 Pos[A≥b(γ)]dγ

]

=
∫ 1
0 γ[a(γ) + b(γ)]dγ,

(1)

where Pos denotes possibility, i.e.,

Pos[A ≤ a1(γ)] = Π((−∞, a1(γ)]) = γ,

Pos[A ≥ a2(γ)] = Π([a2(γ),∞)) = γ.

Let A with [A]γ = [a1(γ), a2(γ)] and B with [B]γ = [b1(γ), b2(γ)](γ ∈ [0, 1])
be two fuzzy numbers. Carlsson and Fullér [13] also introduced the possibilistic
variance and covariance of fuzzy numbers as

V ar(A) =
1
2

∫ 1

0
γ[a2(γ)− a1(γ)]2dγ (2)

and

Cov(A, B) =
1
2

∫ 1

0
γ[(a2(γ)− a1(γ))(b2(γ)− b1(γ))]dγ, (3)

respectively.
The following theorem was showed by Carlsson and Fullér [13].
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Theorem 1. Let A and B be two fuzzy numbers and let λ, μ ∈ R. Then

V ar(λA + μB) = λ2V ar(A) + μ2V ar(B) + 2|λμ|Cov(A, B),

where the addition of fuzzy numbers and the multiplication by a scalar of fuzzy
number are defined by the sup-min extension principle (Zadeh [10]).

Theorem 1 means that the possibilistic variance of linear combinations of fuzzy
numbers can easily be computed in a similar manner as in probability theory.

The following theorem is easily obtained.

Theorem 2. Let A1, A2, . . . , An be n fuzzy numbers and let λ0, λ1, . . . , λn be
n + 1 real numbers. Then

M(λ0 +
n∑

i=1

λiAi) = λ0 +
n∑

i=1

λiM(Ai),

V ar(λ0 +
n∑

i=1

λiAi) =
n∑

i=1

λ2
i V ar(Ai) + 2

n∑
i<j=1

|λiλj |Cov(Ai, Aj),

where the addition of fuzzy numbers and the multiplication by a scalar of fuzzy
number are defined by the sup-min extension principle (Zadeh [10]).

3 Possibilistic Efficient Portfolio Model

Let us give a brief description of Markowitz’s mean-variance model. Assume that
there are n risky assets, the return rate of asset j is denoted as a random variable
rj with expected return rj = E(rj) and the proportion of total investment funds
devoted to this asset is denoted as xj , j = 1, . . . , n. In order to describe conve-
niently, we set x = (x1, x2, . . . , xn)′, r = (r1, r2, . . . , rn)′ and F = (1, 1, . . . , 1)′.
We use prime (′) to denote matrix transposition and adopt the convention that
all non-primed vectors are column vectors.
Then the return associated with the portfolio x = (x1, x2, . . . , xn)′ is r = r′x.
The expected return and variance of r are, respectively, given by

E(r) = r′x, D(r) = x′Vx,

where r = (r1, r2, . . . , rn)′ and V = (σij)n×n are the expected return vector and
covariance matrix of returns, respectively.
Markowitz’s mean-variance model for portfolio selection can be formulated as

min x′Vx
s.t. r′x = μ,

F′x = 1,
x ≥ 0.

(4)
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In order to use the mean-variance model (4), it is necessary to estimate the
probability distribution, strictly speaking, a expected return vector and a co-
variance matrix. It means that all the expected returns, variances, covariances
of risky assets can be accurately estimated by an investor. In the mean-variance
model (4) uncertainty is equated with randomness, which actually combines both
objectively observable and testable random events with subjective judgments of
the decision maker into probability assessments. A purist on theory would ac-
cept the use of probability theory to deal with observable random events, but
would frown upon the transformation of subjective judgments to probabilities.
It is well-known that the returns of risky assets are in a fuzzy uncertain eco-
nomic environment and vary from time to time, the future states of returns and
risks of risky assets cannot be predicted accurately. Fuzzy number is a powerful
tool used to describe an uncertain environment with vagueness and ambiguity.
In many important cases, it might be easier to estimate the possibility distribu-
tions of rates of return on risky assets, rather than the corresponding probability
distributions. Based on these facts, we discuss the portfolio selection problem
under the assumption that the returns of assets are fuzzy numbers.

In next section, we consider a financial market with n risky assets and a
risk-less asset. Let r0 be the interest rate of the risk-less asset. Analogous to
Markowitz’s mean-variance methodology for the portfolio selection problem, the
possibilistic mean value is termed measure of investment return and the pos-
sibilistic variance is termed measure of investment risk. Probabilic mean and
variance in the model (4) may be replaced by possibilistic mean and possibilistic
variance. The general possibilistic mean-variance model for the portfolio selec-
tion problem may be described by

min V ar[r′x + r0(1− F′x)]
s.t. M [r′x + r0(1− F′x)] ≥ μ,

x ∈ H,
(5)

where H is a convex set that represents additional constraints on the choice of x.
Let ri = (ai, αi, βi), i = 1, . . . , n be triangular fuzzy numbers with center ai,

left-width αi > 0 and right-width βi > 0.
Then a γ−level of ri is computed by

[ri]γ = [ai − (1 − γ)αi, ai + (1− γ)βi],

for all γ ∈ [0.1], i = 1, . . . , n.
According to (1), (2) and (3), we easily obtain

M(ri) = ai −
αi

6
+

βi

6
,

V ar(ri) =
(αi + βi)2

24
,

Cov(ri, rj) =
(αi + βi)(αj + βj)

24
.
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Then the possibilistic mean value of the return associated with the portfolio x
is given by

M [r′x + r0(1− F′x)] = M(
n∑

i=1
rixi) + r0(1−

n∑
i=1

xi)

=
n∑

i=1
M(ri)xi + r0(1−

n∑
i=1

xi)

=
n∑

i=1
(ai + βi−αi

6 )xi + r0(1−
n∑

i=1
xi).

The possibilistic variance of the return associated with the portfolio x is given by

V ar[r′x + r0(1− F′x)] = 1
24 [

n∑
i=1

(αi + βi)2x2
i +

n∑
i�=j=1

(αi + βi)(αj + βj)|xi||xj |]

= 1
24 [

n∑
i=1

(αi + βi)|xi|]2.

Thus, the possibilistic mean-variance model of portfolio selection problem may
be described by

min V ar(r) = 1
24 [

n∑
i=1

(αi + βi)|xi|]2

s.t.
n∑

i=1
(ai + βi−αi

6 )xi + r0(1−
n∑

i=1
xi) ≥ μ,

x ∈ H,

(6)

where H is a convex set that represents additional constraints on the choice of x.
Furthermore, the possibilistic mean-variance model (6) is equal to the follow-

ing programming:

min
n∑

i=1
(αi + βi)|xi|

s.t.
n∑

i=1
(ai − r0 + βi−αi

6 )xi ≥ μ− r0,

x ∈ H,

(7)

where H is a convex set that represents additional constraints on the choice of x.
It should be noted that the model (7) contains 3n unknown parameters, but

the conventional probabilistic mean-variance model (5) contains (n2 + 3n +
2)/2 unknown parameters. Clearly, the unknown parameters are greatly de-
creased to compare the model (7) with conventional probabilistic mean-variance
methodology.

Especially, if ri = (ai, αi), i = 1, . . . , n are symmetric triangular fuzzy num-
bers, that is αi = βi, then the possibilistic mean-variance model (7) may be
described by
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min
n∑

i=1
αi|xi|

s.t.
n∑

i=1
(ai − r0)xi ≥ μ− r0,

x ∈ H,

(8)

where H is a convex set that represents additional constraints on the choice of x.
If H only contains linear constraints and xi ≥ 0 for all i = 1, . . . , n, the

possibilistic mean-variance model (7) is a simple linear programming, using some
related algorithms for solving linear programming problem easily obtain the
possibilistic efficient portfolios.

4 Numerical Example

In order to illustrate our proposed effective means and approaches of the efficient
portfolios in this paper, we considered a real portfolio selection example. In this
example, we selected five stocks from Shanghai Stock Exchange, their returns
ri, i = 1, . . . , 5 were regarded as symmetric triangular fuzzy numbers. Based on
both the historical data and the future information, A γ− level set of ri, i =
1, . . . , 5 are given by

[r1]γ = [0.069 + 0.021γ, 0.111− 0.021γ],

[r2]γ = [0.105 + 0.03γ, 0.165− 0.03γ],

[r3]γ = [0.123 + 0.042γ, 0.207− 0.042γ],

[r4]γ = [0.15 + 0.06γ, 0.27− 0.06γ],

[r5]γ = [0.174 + 0.081γ, 0.336− 0.081γ].

We selected a risk-less asset which is current deposit of bank, the lending interest
rate r0 is 2%. The lower bound vector and upper bound vector of x are given by

L = (0.1, 0.1, 0.1, 0.1, 0.1)′

and
U = (0.4, 0.4, 0.5, 0.6, 0.7)′,

respectively.
Thus, we obtain the possibilistic mean-variance model:

min 0.021x1 + 0.03x2 + 0.042x3 + 0.06x4 + 0.081x5
s.t. 0.07x1 + 0.115x2 + 0.145x3 + 0.19x4 + 0.235x5 + 0.02 ≥ μ,

0.1 ≤ x1 ≤ 0.4,
0.1 ≤ x2 ≤ 0.4,
0.1 ≤ x3 ≤ 0.5,
0.1 ≤ x4 ≤ 0.6,
0.1 ≤ x5 ≤ 0.7,
x1 + x2 + x3 + x4 + x5 ≤ 1.
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Table 1. The possibilistic efficient portfolios

μ 0.12 0.17 0.19 0.21
x1 0.1 0.1 0.1 0.1
x2 0.3130 0.3733 0.1067 0.1
x3 0.1 0.1 0.1 0.1
x4 0.1 0.3267 0.5933 0.1667
x5 0.1 0.1 0.1 0.5333

We give the possibilistic efficient portfolios as μ = 0.12, 0.17, 0.19, 0.21 in Table 1.
Table 1, representing the possibilistic efficient portfolio, shows that the in-

vestor does need to invest total capital to risky assets except μ = 0.12. It is
71.30% that the proportion of total investment funds devoted to five risky assets
associated with the possibilistic efficient portfolio x = (0.1, 0.3130, 0.1, 0.1, 0.1)′

at μ = 0.12.

5 Conclusions

In this paper, we have considered the portfolio selection problem based on pos-
sibilistic mean and variance under assumption that the returns of assets are
fuzzy numbers. We have used the possibilistic means, variances and covariances
to replace the probabilistic means, variances and covariances in Markowitz’s
mean-variance model, respectively. We have obtained the possibilistic mean-
variance model for portfolio selection under general linear constraints to in-
vestment, which can better integrate the experts’ knowledge and the managers’
subjective opinions to compare with conventional probabilistic mean-variance
methodology. Our proposed possibilistic approaches to selecting portfolios can
better describe an uncertain decision problem with vagueness and ambiguity.
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Abstract. Discount auction is a market mechanism for buying hetero-
geneous items in a single auction. The suppliers submit discount bids,
which consist of two parts: the individual cost for each of the items and
discounts based on the number of items procured. The winner determi-
nation problem faced by the buyer is to determine the winning suppliers
and their corresponding winning items, such that the total cost of pro-
curement is minimized. This problem is NP-hard and in this paper we
propose a novel branch and bound algorithm called as branch on price,
which uses a tight integer programming formulation with valid inequal-
ities. Computational experiments show that the proposed algorithm is
many folds faster than the existing algorithm.

1 Introduction

Online auction mechanisms over the Internet pose several algorithmic challenges.
The design of Internet auctions [1] is inherently a multidisciplinary activity re-
quiring expertise from disciplines like economics, game theory, operations re-
search, and computer science. One of the algorithmic aspects in auction design
is the design of algorithms for the winner determination problem (WDP). The
WDP is an optimization problem faced by the auctioneer to select a set of win-
ning bidders and their corresponding winning quantity of items, such that the
total profit (cost) is maximized (minimized). The WDP need to be solved once
or several times in an auction depending on the auction dynamics. The solution
time of the WDP plays a significant role in the auction implementation.

Discount auction (DA) is an auction mechanism for procuring heterogeneous
items in a single auction [2]. In procurement auctions, buyer is the auctioneer
and the suppliers (sellers) are the bidders. In DA, each supplier submits a dis-
count bid, which consists of two parts: individual costs for each of the items
and a discount function defined over the number of items. Through the discount
function, the supplier conveys to the buyer the discount that he can avail on
the original cost, depending on the number of items procured. The WDP to be
solved by the buyer is to determine the winning suppliers and their respective
winning items such that the total cost of procurement is minimized. It is easy
to see that without the discount function the WDP is polynomially solvable
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(for each item, choose the minimum cost supplier), but with the discount func-
tion, the WDP is NP-hard [3]. A branch and bound algorithm was proposed
in [3] which used the embedded network structure in the WDP to generate the
bounds. These bounds were tighter than that of the linear programming (LP)
relaxation of an integer programming (IP) formulation for the WDP. In this pa-
per, we propose a tighter formulation by adding valid inequalities to the original
IP formulation. Using this formulation we develop a novel branch and bound al-
gorithm, which branches on the price of the items rather than on the fractional
decision variables. The improved formulation, together with the novel branching
scheme, results in a superior algorithm that is many fold faster than the existing
algorithm.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
DA and define the WDP. The existing IP formulation and the proposed tighter
formulation are presented in Sect. 3. The branch on price algorithm is system-
atically developed in Sect. 4. Section 5 presents the results of computational
experiments comparing the proposed algorithm with the existing algorithm. We
conclude the paper in Sect. 6.

2 Discount Auctions

The buyer is interested in procuring M different items and there are N suppliers.
Each of the item is indivisible, i.e. it can be supplied by only one supplier. An
item need not refer to a single unit. It can be a computer or a computer and a
printer or hundred computers, but it cannot be supplied by multiple suppliers. An
item is denoted by index m and a supplier by index j. Each supplier can submit
only one discount bid and hence the index j denotes both the supplier and his
bid. The discount bid j consists of two parts: (1) cost Qm

j for each item m and
(2) discount θi

j for i (= 1, . . . , M) items. The bid can be compactly expressed as
an ordered pair of M -tuples: ((Q1

j , . . . , Q
m
j , . . . , QM

j ), (θ1
j , . . . , θi

j , . . . , θ
M
j )). Note

that m denotes a particular item and i denotes any i number of items. If the
buyer procures items 2, 4, and 7 from bid j, then the cost of procurement is
(1−θ3

j )(Q
2
j+Q4

j+Q7
j). All the Qm

j are positive (possibly infinite for an unavailable
item) and the θi

j are non-decreasing over i (the discount cannot decrease with
the number of items bought).

The DA is related to two well known auctions: volume discount auctions and
combinatorial auctions. In volume discount auctions [4], the suppliers provide
discount based on the quantity procured. However, the auction is for procuring
multiple units of an item, in contrast to the DA which is for procuring single
unit of different items. The discount in DA is for the number of different items
procured. Combinatorial auctions [5] is for trading different items in a single
auction like DA. The bidder can submit several combinatorial bids, one for each
of the possible subsets of the items. This is applicable in scenarios where the cost
of a combination of items can be more or less than the sum of individual costs
of items. By quoting a single price for a combination of items, a combinatorial
bid can express complementarity or substitutability among the items in the
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combination. The DA can be considered as a special instance of the combinatorial
auctions where the discount function enables to determine the bid price of a
combination of items [3]. The winner determination algorithms for combinatorial
auctions are well studied [6] and hence one can use them for DA. However, the
DA is only a special instance of combinatorial auctions, and hence algorithms
that exploit the structure of DA will be more effective. A branch and bound
algorithm that exploits the network structure of the WDP was proposed in [3].
In the following, we first propose a tight IP formulation with valid inequalities,
followed by a novel branch and bound algorithm called as branch on price.

3 IP Formulations and LP Relaxations

3.1 An IP Formulation

An IP formulation for the WDP was proposed in [2]. The formulation uses
effective cost pim

j , which is the cost of item m from bid j, when i items are
procured from j.

pim
j = (1− θi

j)Q
m
j (1)

The WDP can be restated as choosing the items with minimal sum of effective
costs subject to the demand and supply constraints. The IP formulation is:

min
∑

j

∑
i

∑
m

pim
j wim

j (2)

subject to ∑
i vi

j ≤ 1 ∀j (3)∑
m wim

j = ivi
j ∀i, j (4)∑

j

∑
i wim

j = 1 ∀m (5)

wim
j , vi

j ∈ {0, 1} ∀j, i, m (6)

The binary decision variable wim
j is to choose an item m from bid j with

effective cost pim
j and vi

j is to choose i items from j. If
∑

i vi
j = 0, then no

items are chosen from j. Constraints (4) ensures that the items chosen from
j are consistent with their effective cost: if i items are chosen, then they have
the effective cost with respect to i. Constraints (5) ensures that every item is
procured from only one supplier. Thus the constraint sets (3) and (4) are for
supply constraints and constraint set (5) is for the demand constraints. The
binary decision variables {wim

j } can be relaxed to be continuous, as for any
feasible allocation of {vi

j} variables, there exists an allocation for {wim
j } with

binary values.

3.2 LP Relaxation

The LP relaxation of the above IP formulation has interesting parallels with
network optimization problems, in particular the transportation problem. Con-
sider the following transportation problem with N supply nodes and M demand
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nodes. Each supplier corresponds to a supply node who can supply M items
and each demand node corresponds to an item with a demand of one unit. The
cost of transporting a unit from source j to sink m is pMm

j . Let {xm
j } denote

the optimal flow in the above transportation network. The following solution is
optimal to the LP relaxation of the WDP:

– wim
j = 0, ∀j, m, and i < M

– vi
j = 0, ∀j and i < M

– wMm
j = xm

j ∀j, m

– vi
j = m wMm

j

M ∀j, i

The optimality of the above solution was proved in [2] using duality theory.
The LP relaxation, in essence, violates the discount constraint by procuring less
number of items from a supplier but with a maximum discount for M items. It
is worth noting that only variables {vi

j} take continuous values.

3.3 A Tight Formulation with Valid Inequalities

To improve the lower bound generated by the LP relaxation, we add some valid
inequalities to the IP formulation. Valid inequalities [7] are essentially redundant
constraints to the original IP formulation. However, they may serve as cuts for
the LP relaxation by reducing the continuous solution space thereby resulting in
tighter bounds. The following valid inequalities serve as cuts in the LP relaxation
for the WDP:

wim
j ≤ vi

j ∀j, i, m (7)

They are obviously valid for the IP formulation. However, they exclude the
optimal solution of the LP relaxation of the original IP. The LP solution had
binary values for {wim

j } and fractional values for {v}. With the valid inequalities
added as cuts, this optimal solution is no longer feasible and hence one can expect
a tighter lower bound.

The optimal solution to the new LP relaxation with cuts satisfies the following
properties:

1. If vi
j > 0, then number of non-zero wim

j s are greater than or equal to i.
2. The {wim

j } take binary values only if {vi
j} are binary.

The first property is a direct consequence of the valid inequalities and the con-
straint set (4). The second property follows from the first. In the following,
we develop a branch and bound algorithm using the improved IP formulation
with cuts.

4 Branch on Price

In this section we propose branch on price (BoP), an optimal branch and bound
(B&B) algorithm for solving the WDP. B&B is an exact intelligent enumerative
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technique that attempts to avoid enumerating a large portion of the feasible inte-
ger solutions [8, 9]. It is a widely used approach for solving discrete optimization,
combinatorial optimization, and integer programming problems in general. The
B&B approach first partitions the overall set of feasible solutions into two or
more sets and as the algorithm proceeds the set is partitioned into many simpler
and smaller sets, which are explored for the optimal solution. Each such set is
represented by a candidate problem (CP). A typical iteration of B&B consists of:

– Selection/Removal of a CP from the list of CPs
– Determining the lower bound of the selected CP
– Fathoming or pruning, if possible, the selected CP
– Determining and updating the incumbent solution, if possible
– Branching strategy: If the CP is not fathomed, branching creates sub-

problems which are added to the list of CPs

The algorithm first starts with the original IP as the only CP in the list, that
is, the entire feasible set of solutions is considered at this point. The above steps
are repeated until the list of CPs is empty. We use the LP relaxation of the tight
IP formulation to generate lower bounds for BoP. The details of other steps of
the BoP are explained below.

4.1 Branching Criteria and the Candidate Problem

The common branching technique in B&B algorithms using LP relaxation as
the bounding technique is variable dichotomy: to branch on a fractional integer
variable by imposing bounds on the variables. According to the properties of
the optimal LP solution mentioned in Sect. 3.3, either all variables are binary
(in which case optimal to the IP) or many variables are fractional. The variable
dichotomy branching is to chose a particular vi

j or a particular wim
j that is

fractional, to create two CPs by imposing the variable to equal to 0 and 1,
respectively. The branching on a vi

j is more generic than that on a wim
j . The

former splits the solution space based on the number of items supplied by a bid,
whereas the latter is more specific about an item, supplied by a particular bid
that supplies a certain number of other items. In essence, the variable dichotomy
branching is about branching on the fractional decision variables, which may be
more than one for the LP relaxation of the tight formulation. We propose here
a novel technique to create candidate problems by branching on the price of
an item.

Most of the integer variables in an IP formulation of combinatorial or discrete
optimization problems are auxiliary variables created to impose logical con-
straints or linear constraints. Hence branching on such variables directly may
not have logical or natural implication on the way the subsequent candidate
problems are created. Further, the size of the solution set of these candidate
problems may not be balanced, thus resulting in a unbalanced search tree. For
example, a candidate problem created by fixing wim

j = 1 may have very less
number of solutions compared with the CP created by fixing wim

j = 0. Instead
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Fig. 1. Branching Strategy of BoP

of creating CPs by branching on fractional variables, we create by branching on
the price of an item, which is fractionally supplied by more than one supplier.

Let wim
j be fractional. Due to the constraint (5), there exists at least one

another wi′m
j′ with both i �= i′ and j �= j′, which is fractional. Let βm be the

price of the item m as dictated by the LP solution:

βm =
∑

j

∑
i

pim
j wim

j (8)

We create two CPs, CP- and CP+, by branching on the above price. The CP-
is created by adding the following constraints:

wim
j = 0 if pim

j ≥ βm, ∀j, i, m (9)

The CP+ is created by adding constraints

wim
j = 0 if pim

j < βm, ∀j, i, m (10)

The two CPs partition the IP feasible solution space. The optimal LP solution
(which is infeasible) does not belong to the solution space of the relaxations of
the either of the CPs. To facilitate this branching, we represent a CP by using
bounds on the prices of each of the items.

The CP essentially represents the feasible solution space it contains. We
present a compact representation using an allowable price range [βm, β

m
) for

each item m. Algebraically, this is achieved by imposing the following bounds in
the IP formulation: wim

j = 0 if pim
j is outside the above range. The initial CP

contains all the solutions and hence βm = minj{pMm
j } and β

m
= maxj{p1m

j }+ε,
for some ε > 0. If an item m′ is chosen for branching with price βm′

, then CP-

has [βm′
, βm′

) and CP+ has [βm′
, β

m′
], as the respective price range for m′.

This is illustrated in Fig. 1. Note that the price range of other items will remain
the same as that of the parent CP.

The above branching scheme imposes many variables to be zero, across several
bids, rather than just fixing one variable to 0 or 1, as in the variable dichotomy
branching. Further, such a branching is more meaningful in terms of the WDP.
The βm can be considered as the price of the item m and the branch and bound
algorithm is searching for the optimal price from the set of {pim

j }, subject to
the discount and demand constraints. Violation of the discount and the demand
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constraints leads βm to be a convex combination of some of the prices from
the set {pim

j }. The proposed branching scheme partitions the set such that the
same convex combination cannot be encountered again, thereby removing the
violation in the constraints. In this way, one can expect that the algorithm will
converge fast towards the optimal prices. It is worth noting that even though
the βm is a real number and thus the branching could be infinitely divisible, the
possible optimal values it can take is NM and hence the number of branches is
finite.

If there are more than one item which has fractional allocations, the algorithm
has to choose one item to branch upon. Let βm be the price of item m defined
by the convex combination (8). The item m′ to branch on is chosen according
the following rule:

m′ = arg min
m
{βm − βm : βm > βm} (11)

The above rule chooses the item whose price is closest to its lower bound,
but not equal to it. According to the rules of the creation of CPs, branching on
an item with βm = βm will create an infeasible CP- with range [βm, βm) and
CP+ with range [βm, β

m
), which is same as its parent CP. To avoid an infinite

loop, we consider only items whose price is strictly greater than its lower bound.
However, a pathological case might arise with all items having their prices equal
to their respective lower bounds. In this situation, we chose an item m randomly
and create only CP+ with range [βm + ε, β

m
). The ε > 0 is chosen such that it

is small enough to exclude just the price βm. Note that there is no CP- created
and with this new CP+ creation, it is possible that a feasible IP solution with
prices {βm} might be excluded in the search. However, this does not happen as
the BoP will find such an IP solution, if it exists, using the heuristic algorithm
to be explained next.

4.2 Heuristic Algorithm to Determine Incumbent Solutions

Incumbent solutions are feasible IP solutions to the WDP that are obtained in
the course of the algorithm. Usually in B&B, an incumbent solution is obtained if
the LP relaxation provides optimal IP solutions. For BoP, we propose a rounding
heuristic to obtain a feasible IP solution from the optimal LP solution for each
CP. Let {wim

j } be the optimal LP solution. If all are binary, then it is a feasible
solution to the IP. The following heuristic constructs a feasible solution from the
fractional LP solution.

1. (Initialize) Sj = 0, ∀j
2. do ∀m: k = argj maxj,i{wim

j }; Sk ← Sk + 1;
3. Construct a transportation network with winning bids as sources and items

as sinks. The source corresponding to winning bid j has a supply of Sj > 0
and each sink has a unit demand. The cost of flow from j to m is p

Sj,m
j . Let

{xm
j } be the optimal flow. Assign v

Sj

j = 1 and w
Sj ,m
j = xm

j .
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The winning bid for an item m is chosen as the one with the largest wim
j value.

This is used to determine the number of winning items Sj for each winning bid.
This is in turn used to determine the winning items with the consistent discount
prices p

Sj ,m
j . This will provide a better IP solution than directly rounding the

largest wim
j to 1. Using this heuristic, an incumbent solution is obtained when-

ever a new CP is created and the best known solution is updated and stored.
Thus BoP is an anytime algorithm that can be terminated anytime with a fea-
sible solution available.

4.3 Fathoming and Pruning

If the lower bounding technique provides an optimal solution to the CP, then
the CP is said to be fathomed, that is, no further probe into the CP is required.
A CP can also be fathomed if the problem is infeasible with the given price
ranges. Pruning is another technique by which a CP can removed from further
analysis. If the lower bound of a CP is greater than the objective value of the
best incumbent solution, then the CP can be removed from further analysis as
it cannot guarantee a better solution than what is already obtained. BoP has an
incumbent solution right from the first node in the search and hence prunes lot
of futile nodes, reducing the solution time.

4.4 Search Strategy

In each iterative step of B&B, a CP is selected and removed from the list of
CPs for further analysis. We used best first search as the search strategy, which
explores the best CP from the current list of CPs. This reduces the search space,
but it has to store all the unexplored CPs in memory. One need not store the
entire LP formulation for the CP, but just the information about the price range.
Based on this price range, variables bounds are imposed on the LP formulation,
to determine the lower bound. Once the lower bound is determined, the bounds
are removed and the same LP model could be used by the other CPs. BFS is
implemented by creating a priority queue that holds the list of CPs. At every
iteration, the root of the queue, which is the CP with the least lower bound, is
deleted from the queue and explored. If it is not fathomed or pruned, then two
new CPs are generated and added to the queue.

4.5 The Algorithm

We present here the high level pseudocode of BoP. The list of CPs is stored in
a priority queue pq. The deletemin operation of the priority queue returns the
CP with the least lower bound. If the selected CP is not pruned, two child
CPs are generated and added to the priority queue if they are not infeasi-
ble/fathomed/pruned. The priority queue is implemented using the binary heap
data structure. Every insertion and deletion is of complexity O(log P ), where
P is the current size of the queue [10]. The is and bs store the incumbent and
the best incumbent solution, and ls stores the LP solution. The Z(· ) denotes
the optimal objective value of the solution (· ). At the end of the algorithm, bs
contains the optimal solution to the WDP.
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1. (Initialize)
cp ← {[βm, β

m
)}; pq = ∅; ls = ∅; is = ∅; bs = ∅;

2. ls← LowerBound(cp); is← Heuristic(ls); bs← is;
3. if Z(ls) = Z(is) end;
4. pq.insert(cp);
5. while pq �= ∅ do:

(a) cp← pq.DeleteMin();
(b) if Z(LowerBound(cp)) ≥ Z(bs) end;
(c) Create(cp−);
(d) ls← LowerBound(cp−); is← Heuristic(ls);
(e) if Z(is) < Z(bs) bs← is;
(f) if Z(ls) < Z(bs) pq.insert(cp−);
(g) Create(cp+);
(h) ls← LowerBound(cp+); is← Heuristic(ls);
(i) if Z(is) < Z(bs) bs← is;
(j) if Z(ls) < Z(bs) pq.insert(cp+);

5 Computational Experiments

In this section we present the computational experiments comparing the pro-
posed BoP with the existing winner determination algorithm [3], which we hence-
forth refer as branch on supply (BoS). First, we present a brief review of BoS, to
point out the differences in the design philosophy of BoS and BoP.

5.1 Branch on Supply

BoS is also a B&B algorithm, which used the embedded network structure in
DA. The WDP in DA can be considered as a transportation network with N
supply nodes (bids) and M demand nodes (one for each item), as shown in Fig. 2.
Each supply node has a supply of M units and each demand node has a unit
demand. A flow in the network connecting node j to node m indicate that bid j is
supplying item m. The complicating feature of the network is the cost c(j, m) of
the flow in the arc (j, m), which is the function of number of units supplied from
node j. This is different from the conventional nonlinear cost network models,
where the cost will vary based on the flow through the arc, whereas in this case
the cost varies on the total flow from the supply node. The LP relaxation of the
original IP formulation, discussed in Sect. 3.2 is indeed the above network with
the cost on arc c(j, m) fixed as pMm

j , which is the least among pim
j , having the

highest discount.
The BoS does not use the IP formulation or its LP relaxation directly, but

rather uses the above network structure. The CP is represented by a supply
range [Sj , Sj ] for each bid j. This means that the CP contains all solutions in
which, bid j can supply items in range [Sj , Sj ]. The lower bound is determined
by solving an interval transportation problem with supply for each node in the
above interval and the cost on link (j, m) as p

Sj ,m
j . The search nodes are created

by branching on the number of items supplied by a supplier. This is in contrast
with the BoP, which branches on the price of an item rather than the supply of
a bid.
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Fig. 2. The transportation network structure of DA

5.2 Experimental Setup

The two algorithms BoS and BoP were compared on the basis of the CPU time to
solve the problem to optimality. The sample problems were randomly generated
for M = 5 and M = 10, with N varying from 10 to 50, in intervals of 10. The
other parameters of the problem were generated as follows. A relative cost rcm

for each of the item m was chosen randomly in range [0.2, 1], with at least two
items each taking one of the boundary values. The individual cost of m for each
of the bids are chosen in the following way:

Qm
j = Random[0.5, 1] × rcm (12)

The individual costs are chosen in such a way that at least one bid has the
maximum relative cost rcm and one has the minimum cost 0.5 × rcm. For the
discount functions, θ1

j = 0 and θM
j was chosen randomly in range [0.15, 0.2].

With the above values chosen, the discount type for each of the bids were ran-
domly chosen from the following types: linear, marginally decreasing, marginally
increasing, step, and arbitrary. All of them are increasing functions and based
on the type, the intermediate value for θm

j were determined. The experiments
were carried out on a Windows XP based PC equipped with a 2.8GHz Intel
P4 processor with 1GB RAM. The algorithms were coded in Java, and for the
model building and solving of LP relaxations and transportation problems, ILOG
Concert Technology of CPLEX 9.0 [11] was used.

5.3 Experimental Results

For M = 5 and M = 10, with N varying from 10 to 50, 50 DA problem instances
were randomly generated for each of the M and N combinations. The BoS and
BoP were applied to each of the problem instances. The average computational
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Table 1. Average Computational Time in milliseconds

M = 5 M = 10
N BoS BoP BoS BoP
10 73.12 11.76 2478.20 31.76
20 223.76 24.44 20846.44 115.04
30 545.00 71.80 76083.36 337.48
40 961.44 66.12 285967.96 944.48
50 1773.64 129.56 638697.20 1456.24

time (over the 50 problem instances) for each of the algorithms are shown in
Table 1. The BoP is many folds faster than BoS on all problem sizes.

6 Conclusions and Future Research

In this paper we presented a branch and bound algorithm BoP to solve the WDP
in discount auctions to optimality. It uses a tight IP formulation with valid in-
equalities, which provides better lower bounds. The BoP uses a novel branching
strategy instead of the traditional variable dichotomy branching. The price of
each of the items as dictated by the LP solution are determined and are used
to decide the branching. The computational experiments show that the BoP is
many folds faster than the existing algorithm BoS. Though the BoP is clearly
better than BoS, its performance could be improved further in many ways. The
strategy used to choose an item for branching was the item with price close to
its lower bound. There are other possible strategies: choose an item from a bid
that has highest number of fractional solutions, choose an item with minimum
weighted distance between its price and the effective costs of the fractional solu-
tions, etc. The best first search was used as the search strategy. Other strategies
like depth first search and breadth first search, along with the branching strate-
gies needs to be computationally tested to find the best combination of strategies.
The computational experiments should take into account different kinds of data
instances to study the effect of the algorithm on the instance type.
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Abstract. We derive a polynomial time algorithm to compute a sta-
ble solution in a mixed matching market from an auction procedure as
presented by Eriksson and Karlander [5]. As a special case we derive
an O(nm) algorithm for bipartite matching that does not seem to have
appeared in the literature yet.

1 Introduction

In past years scientists from different fields such as game theory, economics,
computer science, and combinatorial optimization have focused on the problem
of two-sided matching markets where there are two finite and disjoint sets of
agents, P and Q, that are to be matched in pairs consisting of one P -agent
and one Q-agent. Two famous models of two-sided matching markets are the
marriage model of Gale and Shapley [9] and the assignment game of Shapley
and Shubik [17].

In the marriage model (see e. g. [13, 11]) the two sets of agents are usually
referred to as the eligible marriage candidates in some small village. Each agent
has preferences over the agents of the opposite set. A marriage is called stable
when there is no pair which is not matched but prefers each other over their
partners. Using the algorithm named “men propose – women dispose” Gale and
Shapley [9] proved the existence of such a stable marriage when the preference
lists are strict.

In the assignment game money plays a prominent role. It is modeled as a
continuous variable. A matching and an allocation of its weight to the players
compose a solution of the assignment game which is called outcome. By a stable
outcome we mean a solution where no pair gets allocated less than the weight of
its connecting edge. Shapley and Shubik [17] observed that stable outcomes coin-
cide with the primal-dual pairs of solutions of the maximum weighted matching
linear program, thereby showing the existence of a stable outcome. However, al-
gorithms and complexity issues of game theoretical solution concepts have raised
attention only recently (see e. g. Deng and Papadimitriou [3], Faigle et al. [6],
Deng et al. [4]) and the classical algorithm for weighted bipartite matching,
namely the Hungarian Method of Kuhn [14], is not as prominent in game theory
as it is in combinatorial optimization.

S.-W. Cheng and C.K. Poon (Eds.): AAIM 2006, LNCS 4041, pp. 387–394, 2006.
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Quite similar results such as the non-emptiness of the set of stable matchings
and the lattice structure of the core have been established for these two models.
To find a satisfactory explanation for the similarities in behavior between the two
models Roth and Sotomayor [16] themselves offered a first model containing both
the two old models as special cases and showed that its set of stable solutions, if
it is non-empty, also has the lattice property under certain conditions. Eriksson
and Karlander [5] modified this model to the RiFle assignment game, another
common generalization of the two old models, and gave an algorithmic proof of
the non-emptiness of its set of stable solutions. This algorithm computes a stable
solution not in polynomial time but in pseudopolynomial time. For the classical
special cases, it coincides with “men propose – women dispose”, respectively with
the “exact” auction procedure of [2]. The existence of stable solutions in presence
of irrational data is proved by Eriksson and Karlander only via arguments from
non-standard analysis.

We consider the model of Eriksson and Karlander [5]. A careful analysis
of their algorithm reveals that a proper implementation solves the problem in
O(n4). This implementation was developed in parallel with [12] where we derive
another polynomial time algorithm, to compute a stable solution for the same
model, from the key lemma in Sotomayor [18]. Both algorithms run in O(n4),
where 2n is the number of players and n2 is the size of a problem instance.

In the next section we briefly introduce the model and its notion of stability.
Then we design a polynomial time algorithm to compute a stable solution in
Section 3. Finally, we discuss the behavior of the algorithm in the special cases
of Stable Matching, Assignment Game and cardinality matching and summarize
differences from and similarities to the algorithm from [12].

2 Notation

We have two sets of players P (firms indexed by i) and Q (workers indexed
by j) w.l.o.g. satisfying |P | = |Q| =: n. Let furthermore P ∪ Q be partitioned
into flexible players (F ) and rigid players (R). Consider the complete bipartite
graph on P ∪̇Q. An edge (i, j) is called rigid if one of i or j is in R and flexible,
otherwise. For each edge (i, j) there are nonnegative numbers aij and bij . The
sum aij + bij is the productivity of a cooperation between i and j. A pair of
functions u : P → R and v : Q→ R is called a payoff. If i cooperates with j and
(i, j) is a free edge the productivity can be freely divided into payoffs ui and vj

while ui = aij and vj = bij must hold if (i, j) is a rigid edge.

Definition 1. A payoff (u, v) is called stable if for any edge (i, j) ∈ P ×Q we
have

(i) ui + vj ≥ aij + bij if (i, j) is a free edge and
(ii) ui ≥ aij or vj ≥ bij if (i, j) is a rigid edge.

A stable outcome is a stable payoff (u, v) together with a bijective map μ : P → Q
(denoted by (u, v; μ)) so that
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(iii) ui ≥ 0 and vj ≥ 0 for all (i, j) ∈ P ×Q.
(iv) ui + vj = aij + bij for μ(i) = j and {i, j} ⊆ F .
(v) ui = aij and vj = bij for μ(i) = j and {i, j} ∩R �= ∅.

Let μ : P → Q be a map. If μ(i) = j then we say i proposes to j. A proposal is
called free or rigid if the corresponding edge is free resp. rigid. A firm i (a worker
j) is called mapped if i ∈ μ−1(Q) (resp. j ∈ μ(P )) and unmapped, otherwise. If
there are firms i1, i2 so that μ(i1) = μ(i2) = j then j is called doubly mapped.
We denote by

QU the set of unmapped workers,
Q2μ the set of doubly mapped workers,
QR the set of workers that have a rigid proposal, and by

Q2R the set of workers with at least 2 rigid proposals.

Let furthermore

f
(v,μ)
ij :=

⎧⎪⎪⎨⎪⎪⎩
aij + bij − vj if (i, j) is a free edge
aij if (i, j) is rigid and vj < bij

aij if (i, j) is rigid and vj = bij and μ(i) = j
0 otherwise

define the possible profit of i from j if j receives vj .
The strategy of the algorithm is the following: The map μ always defines

stable relations but is not necessarily injective. In the course of the algorithm
we will try and increase |μ(P )|, keeping stability of the relations, until the map
is injective. The procedure to increase |μ(P )| acts on the augmentation digraph
G(v,μ) = (P ∪Q, A) with backward arcs (j, i) for μ(i) = j and forward arcs (i, j)
for j ∈ D

(v,μ)
i where

D
(v,μ)
i = {j ∈ Q | f (v,μ)

ij = max
k

f
(v,μ)
ik }

is the set of workers that maximize the potential benefit of firm i. A directed
path P in G(v,μ) that connects a doubly mapped worker j1 ∈ Q2μ with another
worker js is called (μ-)alternating resp. (μ-)augmenting if js is not mapped.

3 An Algorithm to Find a Stable Outcome

Eriksson and Karlander [5] assume integer data and in one step increase a free
payoff by at most one. We modify this approach in such a way that we increase
the payoff by the smallest possible amount that changes the augmentation di-
graph. Our strategy to make the map μ : P → Q bijective is as follows: As in the
classical “men propose – women dispose” algorithm from Gale and Shapley [9]
workers with more than one rigid proposal choose the best one and dispose the
rest. This way some firms become temporarily unmapped. Each of these un-
mapped firms has to place another proposal until every worker has at most one
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rigid proposal. Next, we search the graph G(v,μ) for alternating paths that reach
a worker in QU ∪ QR and alternate the map μ along the path. If none of the
above is possible, we increase the payoffs v of workers which are reachable by
an alternating path until G(v,μ) receives a new edge and the process is repeated
until the map becomes injective.

The algorithm uses several sub-procedures:

Propose(i): Places a proposal from i to a worker in D
(v,μ)
i , i. e. chooses μ(i) ∈

D
(v,μ)
i .

Dispose(j, i∗): Disposes all firms i �= i∗ that made a rigid proposal to j, i. e. sets
μ(i) to be undefined for all i ∈ μ−1(j) \ {i∗}.

Alternate(P): μ is alternated along the alternating path P , i. e. all arcs are
reoriented and μ is modified such that it uses the new backward arcs. If P
is augmenting then the size of the image of μ increases by 1.

BFS(G, Q2μ): Returns all vertices reachable from Q2μ in G.
PlaceRigidProposals: This procedure is the “men propose – women dis-

pose” algorithm of Gale and Shapley [9]. Here, we denote by PU the set of
temporarily unmapped firms. See Algorithm 2.

HungarianUpdate: Increases the payoffs of all workers reachable from a dou-
bly mapped worker. See Algorithm 3 for details.

Algorithm 1. An Algorithm to Find a Stable Outcome
v ← 0
PlaceRigidProposals
while Q2μ �= ∅

while ∃ μ-alternating path to j ∈ (Q \ μ(P )) ∪ QR do
Alternate(P)
PlaceRigidProposals

end while
HungarianUpdate

end while

Algorithm 2. PlaceRigidProposals
while PU �= ∅ do

for all i ∈ PU do
Propose(i)

end for
for all j ∈ Q2R do

Let i∗ be the favorite proposal in μ−1(j)
Dispose(j, i∗)
vj ← bi∗j

end for
end while

Theorem 1. Algorithm 1 eventually finishes with a stable outcome and can be
implemented to run in O(n4) time.
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Algorithm 3. HungarianUpdate

P̄ ∪̇Q̄ ←BFS(G(v,μ), Q2μ)
ui ← maxj f

(v,μ)
ij

Δ ← min{ui − f
(v,μ)
ik | i ∈ P̄ , k ∈ Q \ Q̄}

for all j ∈ Q̄ do
vj ← vj + Δ

end for

Proof. In any iteration of the inner loop of line 4 in Algorithm 1 |μ(P )| is in-
creased or a rigid proposal is disposed. If there is a path to Q\μ(P ) then |μ(P )|
increases. If the path ends in j ∈ QR then PlaceRigidProposals is called
and disposes at least one rigid edge. Note, that a rigid edge once disposed will
never be proposed again. If no path exists at all then v is increased by Hun-
garianUpdate until this is the case and in each call of HungarianUpdate at
least one new arc shows up in G(v,μ). Thus, the procedure is finite.

The while-loop in line 4 of Algorithm 1 might be iterated more than once with-
out finding a path as desired. Anyway, HungarianUpdate can be implemented
so that its consecutive calls until a path is found need O(n2) time in sum includ-
ing an update of the augmentation graph by reusing the BFS-structure from the
previous call and storing a minimum distance Δj from unmapped vertices and
vertices in QR to the current BFS forest (see e. g. Galil [10] or Hochstättler et
al. [12] for details). Hence, after O(n2) time steps we can augment μ or dispose
a rigid edge which can happen at most O(n2) times. Hence, without considering
the complexity of PlaceRigidProposals the algorithm runs in O(n4).

We also can implement PlaceRigidProposals at a total cost of O(n4)
without any effort. For the first call we have to place n proposals taking O(n2)
time including the time to find a favorite partner for any i ∈ P . Note that the
preference lists may change during the course of the algorithm thus, sorting the
lists in a preprocessing does not suffice to speed up the procedure. For each
discarded rigid edge we have to find a new favorite partner and after each call
of PlaceRigidProposals in the inner while-loop we may freely use O(n2) to
update the augmentation graph which happens at most O(n2) times taking the
number of rigid edges into account. Thus, the overall complexity of PlaceRigid-
Proposals is O(n4). As the total cost of Alternate is bounded by O(n3) we
get a total complexity of O(n4).

Next we will show that the algorithm produces a stable outcome. In any stage
of the algorithm let ūi := maxj f

(v,μ)
ij . Then (ū, v) is stable and (ū, v; μ) satisfies

(iv) and (v) of Definition 1 since μ(i) = j implies j ∈ D
(v,μ)
i . As v monotonically

increases we also have v ≥ 0. A worker with no proposer always has payoff zero
and is therefore of non-negative value to all firms. Hence together with (iv) and
(v) this implies u ≥ 0. When the algorithm terminates μ is bijective and thus,
(ū, v; μ) is a stable outcome. ��
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4 Special Cases and Remarks

Cardinality Matching. If R = ∅ and aij + bij ∈ {0, 1} for any edge (i, j) the
problem reduces to finding a matching of maximum cardinality among edges with
productivity 1 (referred to as 1-edges). The presented algorithm (see Algorithm 4
for the reduced version) does not seem to have appeared in the literature yet and
differs from the standard approach which starts with an empty matching M and
searches the graph of 1-edges G1

M for an M -augmenting path. The algorithm
presented here starts with a total but not surjective (and therefore not injective)
map μ on the set of nodes in P with at least one 1-edge. A μ-alternating path in
the graph of 1-edges G1

μ is a path from a doubly mapped worker to an unmapped
worker using only 1-edges (forward) and μ-edges (backward) and is used to
modify the map in a similar fashion as the augmentation of matchings is done
in more classical algorithms. Here, the size of the image of μ increases. If no
such μ-augmenting path exists, then the set of doubly mapped workers Q2μ

together with the set of firms which are mapped to a worker not in Q2μ form
a vertex cover of G1

μ with the same cardinality as the image of μ resulting in a
maximum matching constructed from μ as in Algorithm 4 (e. g. [8]). If a perfect
matching exists, we turn a total (not necessarily injective) map into an injective
map instead of making a partial injective map (i. e. a matching) total.

Algorithm 4. Cardinality Matching by Increasing the Image of a Map
for all i ∈ P do

μ(i) ← j ((i, j) is a 1-edge)
end for
while ∃ μ-augmenting path in G1

μ to j ∈ (Q \ μ(P )) do
Alternate(P)

end while
for all j ∈ P, μ−1(j) �= ∅ do

M ← M ∪ {(i, j)} (i ∈ μ−1(j))
end for

While the standard approach is essentially due to Ford and Fulkerson [7] the
approach presented here reminds of the preflow-push algorithm (see e. g. [1]),
as in the first step we send as much flow as possible from nodes in P to nodes
in Q. Then, nodes in Q2μ correspond to excess nodes, i. e. nodes that violate
Kirchhoff’s law. However, the strategy of lifting node potentials in preflow-push
in successive steps does not seem to have anything in common with the aug-
menting path procedure used here.

A naive implementation of Algorithm 4 leads to an O(nm) algorithm. Note,
that the main difference to the classical approach is in the orientation of the
arcs in the search graph. While in the standard approach backward arcs are
matchings, here we have exactly one backward arc ending in each non-isolated
vertex of P . Thus, the ratio of forward to backward arcs decreases and the search
tree in average should be shorter. We wonder if this approach might lead to more
efficient implementations for cardinality matching.
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Weighted Bipartite Matching. If R = ∅ the algorithm reminds of the Hun-
garian Method. Like the latter our method is a primal-dual algorithm and can
be viewed to start with a weighted vertex cover (u, v) if we set ui ← maxj f

(v,μ)
ij .

We then search for alternating paths or update the payoffs if no such path can
be found. Up to a different notion of an augmenting path (i. e. a different algo-
rithm for cardinality matching) and a different orientation of the search graph
this strategy is identical with that of the Hungarian Method (see e. g. Frank [8]
for a transparent presentation).

Stable Marriage. When F = ∅ our model coincides with the Stable Marriage
Model, since the aij at firm i resp. bij at worker j may as well be replaced by
preference lists. The algorithm is identical to the classical “men propose – women
dispose” algorithm of Gale and Shapley [9], that proceeds in rounds.

Comparison with the Algorithm in [12]. The algorithm in [12] to find a
stable outcome differs from the algorithm presented here in various ways. In [12]
(especially rigid) proposals are made asynchronously and not in rounds as in the
present implementation. Furthermore, this algorithm is a direct extension of the
Hungarian Method as introduced in Kuhn [15, Variant 2], while the algorithm
presented here is a direct extension of the original “men propose – women dis-
pose” algorithm of Gale and Shapley [9]. Also the concepts of augmenting paths
differ as described above.
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Jäger, Gerold 194
Jeong, Hongkyu 114
Jiang, Minghui 314
Jiang, Yiwei 11
Jin, Hui 387
Joung, Jinoo 114

Kameshwaran, S. 375
Kamiyama, Naoyuki 231
Kao, Ming-Yang 10
Katoh, Naoki 161, 231
Kim, Hyo-Sil 185
Kim, Jae-Hoon 43
Kloks, Ton 267

Koehler, Henning 102
Kuang, Guoliang 92

Lan, Hai-Lin 367
Lazard, Sylvain 185
Lefmann, Hanno 173
Li, Jian 138
Li, Li (Erran) 354
Liu, Jiping 267
Lonardi, Stefano 126

Magdon-Ismail, Malik 79
Mahdian, Mohammad 354
Matsui, Tomomi 334
Melkman, Avraham 126
Mirrokni, Vahab S. 354
Miyamoto, Yuichiro 334
Molitor, Paul 194

Nandy, Subhas C. 343
Nickel, Robert 387

Peng, Sheng-Lung 267

Schott, René 185
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