05EC021

SN

M.Tech. Degree Examination, Dec. 07 / Jan. 08 CMOS VLSI Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

1 a. Briefly explain the second order effects in MOSFET.

(07 Marks)

- b. With neat diagram and transfer characteristics, explain the CMOS inverter. Obtain the necessary expressions for the same.

 (08 Marks)
- c. Calculate the native threshold voltage for an n-transistor at 300° k for a process with a silicon substrate with $N_A = 1.8 \times 10^{16}$ /cc, $t_{ox} = 200 \, \text{Å}$. Assume $\phi_{ms} = -0.9 \, \text{V}$, $Q_{fc} = 0$, $\eta_I = 1.45 \times 10^{10}$ /cc. (05 Marks)
- 2 a. With relevant response curves, explain the transmission gate output characteristics for change in control input and for change in switched input. (06 Marks)
 - b. Obtain the scaling factors for the following i) Gate delay ii) Current density iii) Switching energy.

 (06 Marks)
 - c. With neat fabrication sketches. Explain the silicon on insulator (SOI) COMS process.

(08 Marks)

- 3 a. Explain the CMOS process enhancement with reference to i) metal interconnect ii) polysilicon/refractory metal inter connect. (06 Marks)
 - b. For the following structure obtain values for Cm, Cp, Cg and C_T. Given that the relative values of capacitances are metal $1 = 0.075 \square Cg$, polysilicon = $0.1 \square Cg$.

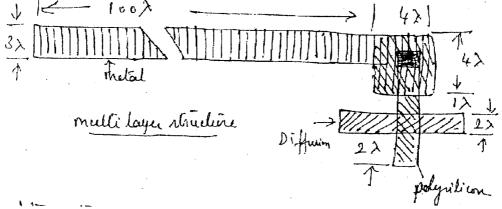


Fig. Q 3(b)

(08 Marks)

c. Obtain the CMOS circuit and stick diagram for the following function f = (A + BC)D.

(06 Marks)

- 4 a. With a neat diagram, obtain the parasitic device capacitance in CMOS 2 input NOR gate for kN = 4 KP and explain the circuit operation. (06 Marks)
 - b. Differentiate between AOI logic and OAI logic with a suitable example of each. (08 Marks)
 - c. For the given function F = AB + A'C' + AB'C obtain the i) CMOS TG realization
 - ii) COMS transistor realization.

(06 Marks)

- 5 a. With a neat gate level schematic and CMOS circuit explain the CMOS SR latch circuit based on clocked NOR2 gates.
 - b. Briefly discuss the charge storage and charge leakage in n mos pass transistor. (06 Marks)
 - c. Calculate the worst case time for the following data given $V_{TO}=0.8~V,~\nu=0.4~V^{1/2},~|2\phi_F|=0.6V$, $C_{OX}=0.065~f$ F / μ m², $C_{metal}^1=0.036f$ F/ μ m², $C_{poly}^1=0.055f$ F/ μ m², $C_{jo}=0.095~f$ F/ μ m², $C_{josw}=0.2~f$ F/ μ m. $I_{leakage}=0.85~p$ A.

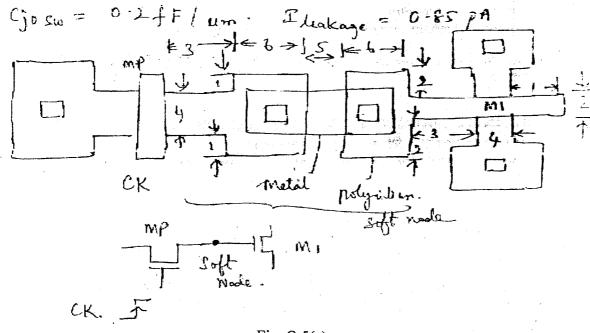


Fig. Q 5(c)

(08 Marks)

- 6 a. Bring out the difference between Ratioed logic and ratio less logic with respect to 3 bit shift register. (06 Marks)
 - b. Dynamic CMOS logic circuit cannot be cascaded. Justify the statement.

(06 Marks)

- c. With relevant diagram, explain the NORA CMOS logi e[NP Domino logid].
- (08 Marks)
- 7 a. Explain with necessary expressions and transfer characteristics the differential amplifier.
 (08 Marks)
 - b. Discuss the general principle of the Band-gap reference and hence obtain expression for V_{BE}.
 (07 Marks)
 - c. Briefly explain the clock distribution network with relevant sketches.
- (05 Marks)

8 Write short notes on:

(10 Marks)

- a. Differential inverter
- b. Complementary pass transistor logic (CPL)
- c. Domino CMOS logic
- d. Latch up phenomenon.

(10 Marks)
