GBCS SCHEME

USN									18EC72
	l .	1	ı	1	ı		1	7,000	

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 VLSI Design

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With necessary circuit diagram, explain the operation of tristate inverter. Also realize a 2:1 multiplexer using tristate inverter. (08 Marks)
 - b. Implement a D flipflop using transmission gates and explain its operation with necessary tining diagram. (08 Marks)
 - c. Realize CMOS compound gate for the function $Y = \overline{A(B+C) + DE}$. (04 Marks)

OR

- 2 a. Explain the operation of MOSFET with necessary diagrams. Also derive the equation for drain current in linear and saturation region of operation. (10 Marks)
 - b. Draw the circuit of CMOS inverter and explain its DC transfer characteristics. (06 Marks)
 - c. Explain the following non-ideal effects channel length modulation, mobility degradation.

(04 Marks)

Module-2

- a. Explain CMOS n-well fabrication process with necessary diagrams. (12 Marks)
 - b. What is scaling. Compute drain current, power, current density and power density for constant field and constant voltage scaling. (08 Marks)

OR

- 4 a. Draw the layout of $Y = \overline{(A+B+C)D}$ and estimate the area. (08 Marks)
 - b. Mention different types of MOSFET capacitances and explain with necessary diagrams and equations. (06 Marks)
 - c. With neat diagram, explain lambda based design rules for wires and contacts. (06 Marks)

Module-3

- 5 a. Develop the RC delay model to compute the delay of the logic circuit and calculate the delay of unit sized inverter driving another unit inverter. (08 Marks)
 - b. Explain Cascode Voltage Switch Logic (CVSL). Also realize two input AND/NAND using CVSL. (06 Marks)
 - c. Explain linear delay model. Compare the logical efforts of the following gates with the help of schematic diagrams:
 - i) 2-input NAND gate ii) 3-input NOR gate.

OR a. Explain: i) pseudo nMOS ii) ganged CMOS with necessary circuit examples. (06 Marks)

- b. Estimate t_{pdf} and t_{pdr} of a 3-input NAND gate if the output is loaded with h identical gates.

 Use Elmore delay model. (08 Marks)
- c. Explain skewed gates with an example.

(06Marks)

6

Module-4

- 7 a. With necessary circuit diagrams, explain resettable latches with
 - i) synchronous reset

ii) asynchronous reset.

(08 Marks)

b. Compute the output voltage V_{out} in the following pass transistor circuits. Assume $V_t = 0.7$. (Ref. Fig.Q7(b)).

Fig.Q7(b)

(06 Marks)

c. With necessary diagram, explain a D flipflop with two-phase non-overlapping clocks.

(06 Marks)

OR

- 8 a. With necessary circuit diagram explain 3-bit dynamic shift register with depletion load.
 (08 Marks)
 - b. Realize $F = \overline{A_1 A_2 A_3 + B_1 B_2}$ using dynamic CMOS logic. Also explain the cascading problem in dynamic logic with necessary example. (08 Marks)
 - c. Explain the general structure of ratioless synchronous dynamic logic with relevant diagram.

 (04 Marks)

Module-5

9 a. With necessary circuit diagram, explain the operation of three transistor DRAM cell.

(08 Marks)

b. Explain full CMOS SRAM cell with necessary circuit topology.

(08 Marks)

- c. Explain the terms:
 - i) Observability
 - ii) Controllability
 - iii) Fault coverage

(04 Marks)

OR

- 10 a. What is a fault model? Explain stuck-at model with examples. (07 Marks)
 - b. Mention the approaches used in design for testability. Explain scan based testing using necessary diagrams. (07 Marks)
 - c. Draw the circuit of 3-bit BIST register and explain.

(06 Marks)