

# Sixth Semester B.E. Degree Examination, June/July 2024 Operating System

Time: 3 hrs.

1

2

3

6

b.

Max. Marks: 100

(12 Marks)

(08 Marks)

(08 Marks)

## Note: Answer any FIVE full questions, choosing ONE full question from each module.

### Module-1

- a. List common tasks performed by the operating system and when/who these tasks are performed. (10 Marks)
- b. Make use of figures to explain the two resource allocation strategies. (10 Marks)

#### OR

- a. Explain classes of operating systems with an emphasis on prime concerns and key concepts used. (10 Marks)
  - b. With the help of a neat diagram, explain Time Sharing system. (10 Marks)

### Module-2

- a. With a neat state transition diagram, explain fundamental state transition. (12 Marks)
  - b. Make use of figures to explain, (i) Kernel level threads (ii) User level threads. (08 Marks)

### OR

4 a. Calculate average turnaround time and mean weighted turn around for the set of processes shown in Fig. Q4 (a), using (i) FCFS scheduling policy (ii) RR Scheduling policy. Assume  $\delta = 1$  second.

| Processes                | <b>P</b> <sub>1</sub> | <b>P</b> <sub>2</sub> | P <sub>3</sub> | <b>P</b> <sub>4</sub> | P <sub>5</sub> |
|--------------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|
| Admission time (seconds) | 0                     | 2                     | 3              | 4                     | 8              |
| Service time (seconds)   | 3                     | 3                     | 5              | 2                     | 3              |
| Table Fig. Q4 (          | a)                    | 15                    | 5              |                       | 2              |

b. Explain scheduling in, (i) UNIX (ii) LINUX

### Module-3

- 5 a. Obtain the comparison between contiguous and non-contiguous memory allocation.
  - b. Explain all the fields of page table.(06 Marks)c. Explain : (i) Segmentation(ii) Segmentation with paging.(08 Marks)

#### OR

a. With a neat diagram, explain demand loading of a page.

| Consider the following | pag            | e rei          | tere           | nce            | strii          | ng a           | nd t | ıme            | stri | ng fo           | or a p          | proce           | ss :            |
|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|------|----------------|------|-----------------|-----------------|-----------------|-----------------|
| Page reference string  | 5              | 4              | 3              | 2              | 1              | 4              | 3    | 5              | 4    | 3               | 2               | 1               | 5               |
| Reference time string  | t <sub>1</sub> | t <sub>2</sub> | t <sub>3</sub> | t <sub>4</sub> | t <sub>5</sub> | t <sub>6</sub> | t7   | t <sub>8</sub> | t9   | t <sub>10</sub> | t <sub>11</sub> | t <sub>12</sub> | t <sub>13</sub> |

## Table of Fig. Q6 (b)

Assume Alloc = 4, apply (i) LRU (ii) FIFO page replacement policies and find total number of page faults in each case. (12 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be in the second second

# 18EC641

|    |         | Madala 4                                                                          |            |
|----|---------|-----------------------------------------------------------------------------------|------------|
| 7  | 9       | L ist facilities provided by File System and IOCS.                                | (02 Marks) |
| /  | a.<br>b | Describe file operations performed on files.                                      | (06 Marks) |
|    | 0.      | Make use of figures to explain.                                                   |            |
|    | C.      | (i) Sequential file organization                                                  |            |
|    |         | (i) Direct access file organization                                               |            |
|    |         | (iii) Index sequential file organization                                          | (12 Marks) |
|    |         | (m) index sequential me organization.                                             |            |
|    |         | OR                                                                                |            |
| Q  | 2       | Explain various fields of File Control Block (FCB).                               | (08 Marks) |
| 0  | a.<br>b | Explain following methods of disk space allocation using figures,                 |            |
|    | 0.      | (i) Linked allocation                                                             |            |
|    |         | (ii) Indexed allocation.                                                          | (12 Marks) |
|    |         | (ii) indexed une carloin                                                          |            |
|    |         | Module-5                                                                          |            |
| 0  | а       | Explain (i) Direct and Indirect naming                                            |            |
| ,  | u.      | (ii) Blocking and Non blocking sends in message passing                           | (08 Marks) |
|    | h       | With the help of figures, explain                                                 |            |
|    | υ.      | (i) Inter process message control block                                           |            |
|    |         | (i) Buffering of Interprocess messages in message passing.                        | (12 Marks) |
|    |         |                                                                                   |            |
|    |         | OR                                                                                |            |
| 10 | я       | Describe events related to resource allocation and condition for resource dead lo | ock.       |
| 10 | a.      |                                                                                   | (06 Marks) |
|    | b.      | Explain dead lock handling approaches.                                            | (06 Marks) |
|    | C       | Explain dead lock prevention approaches with clear illustration.                  | (08 Marks) |

Explain dead lock nanding approaches with clear illustration. c.

2 of 2