Sixth Semester B.E. Degree Examination, June/July 2023 Data Mining and Data Warehousing

Time: 3 hrs.

2

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Datawarehouse. Explain Multitier Architecture of Data Warehousing with diagram.

(10 Marks)

b. Explain ETL process with the neat diagram.

(10 Marks)

a. Explain the schemas of multi-dimensional data models.

(10 Marks)

b. Explain data cube operations with example.

(10 Marks)

Module-2

3 a. Explain different methods of indexing OLAP data.

(10 Marks)

Explain the following preprocessing techniques:

(i) Feature subset selection.

(ii) Sampling.

(10 Marks)

OR

a. List the different types of Dataset and explain with an example.

(10 Marks)

b. Consider X = (0, 1, 0, 1), Y = (1, 0, 1, 0). Find cosine, correlation, Euclidean, Jaccard and SMC. (10 Marks)

Module-3

5 a. A database has five transactions. Let min $\sup = 60\%$ and min $\inf = 80\%$.

Table Q5 (a)

	and the second	1 4010 Q5 (a)
	TID	Items.bought
	T_{100}	$\{M,O,N,K,E,Y\}$
	T ₂₀₀	$\{D,O,N,K,E,Y\}$
	T_{300}	$\{M,A,K,E\}$
	T_{400}	$\{M,U,C,K,Y\}$
#	T_{500}	$\{C,O,O,K,I,E\}$

(i) Find all frequent itemsets using Apriori Algorithm.

(ii) List all the strong association Rules.

(12 Marks)

b. Identify and explain the alternative methods for generating frequent itemsets.

(08 Marks)

OR

6 a. Construct FP tree by showing tree separately after reading each transaction and find the frequent itemset generation. Consider the transaction dataset:

Table : Q6 (a)

TID	Items.bought		
100	$\{f, a, c, d, g, i, m, p\}$		
200	{a, b, c, f, l, m, o}		
300	$\{b, f, h, j, o\}$		
400	$\{b, c, k, s, p\}$		
500	{a, f, c, e, l, p, m, n }		

Let min-support = 3

(12 Marks)

b. Explain the various measures of evaluating association patterns.

(08 Marks)

1 of 2

Module-4

7 a. Explain the general approach for solving classification problem.

(08 Marks)

b. Build a decision tree using Hun't Algorithm for the given dataset.

		and the second second		
Tid	Home	Marital	Annual	Defaulted
	owner	status	Income	Borrower
1	yes	Single	125 K	No 🥀
2	No	Married	100 K	No.
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75/K	No
10	No	Single	90 K	Yes

Table Q7 (b)

(12 Marks)

(08 Marks)

OR*

8 a. Explain K-nearest neighbor classification algorithm with example.

b. State Bays theorem and explain how bayes theorem is used in the Naïve Bayesian classifier with example. (12 Marks)

Module-5

9 a. Calculate the cluster for the following 8 points (x, y). Represents into 3 clusters $A_1(2, 10) A_2(2, 5) A_3(8, 4) B_1(5, 8) B_2(7, 5) B_3(6, 4) C_1(1, 2) C_2(4, 9)$ (10 Marks)

b. Explain the following:

(i) Density based clustering.

(ii) Graph based clustering.

(10 Marks)

OF

10 a. What are the basic approaches used for generating a agglomerative hierarchical clustering?
(10 Marks)

b. Explain DBSCAN algorithm with example.

(10 Marks)