CBCS SCHEME

USN 18EC55

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Electromagnetic Waves

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law in vector form.

(05 Marks)

- b. Derive the relationship between dot products between unit vectors of the three coordinate systems. Transform the following vectors to spherical system at the point given:
 - i) $10a_x$ at P(3, 2, 4)

ii) 10a_v at Q(5, 30°, 4)

(07 Marks)

c. Four 10nc positive charges are located in z=0 plane at the corners of a square 8cm on a side. A fifth 10nc charge is located at a point 8cm distant from other charges. Calculate the magnitude of total force on this fifth charge for $E=E_0$. (08 Marks)

OR

- 2 a. Using Coloumb's law, derive the expression for electric field Intensity 'E' due to an infinite sheet of charge of surface charge density ρ_s c/m². (08 Marks)
 - b. Four uniform sheets of charge are located as 20 Pc/m² at y = 7; -8 Pc/m^2 at y = 3; 6 P c/m^2 at y = -1; -18 Pc/m^2 at y = -4. Find E at i) $P_A(2, 6, -4)$ ii) $P_B(10^6, 10^6, 10^6)$. (06 Marks)
 - c. Find the net outward flux (ψ) through the surface of a cube 2m on an edge centered at origin if D = $5x^2ax + 10za_z$ c/m². (The edges of cube are parallel to coordinate axes). (06 Marks)

Module-2

a. State and prove Gauss law in Integral form.

(05 Marks)

- b. Find the volume charge density at the points indicated if
 - i) $D = 4\rho z \sin \phi \ a_{\rho} + 2\rho z \cos \phi \ a_{\phi} + 2\rho^{2} \sin \phi \ a_{z} \ c/m^{2} \ at \ P_{A} \left(1, \frac{\pi}{2}, 2\right)$
 - ii) $D = \sin\theta \cos\phi a_r + \cos\theta \cos\phi a_\phi \sin\phi a_\phi c/m^2 \text{ at } P_B\left(2, \frac{\pi}{3}, \frac{\pi}{6}\right)$ (07 Marks)
- c. Evaluate both sides of Divergence Theorem if $D = \frac{5r^2}{4} a_r c/m^2$ in spherical co-ordinate for the volume enclosed between r = 1m and r = 2m. (08 Marks)

OR

- 4 a. Find the work done in moving a 5 μ c charge from origin to P(2, -1, 4) through $E = 2xyza_x + x^22a_y + x^2y$ a_z V/m via the path:
 - i) Straight line segments (0, 0, 0) to (2, 0, 0) to (2, -1, 0) to (2, -1, 4)
 - ii) Straight line x = -2y; z = 2x.

(08 Marks)

- b. Find 'E' at P(3, 60°, 25°) in free space, given $V = \frac{60 \sin \theta}{r^2} V$. (06 Marks)
- c. Derive equation of continuity. Given $J = -10^6 z^{1.5}$ a_z A/m² in a region $0 \le \rho \le 20 \mu m$, find the total current crossing a surface z = 0.1 m. (06 Marks)

Module-3

- a. Derive the expression for capacitance of a cylindrical capacitor using Laplace equation.
 - b. Assume $V = V_0$ at $\rho = a$ and V = 0 at $\rho = b$, b > a. In spherical co-ordinate V = 865 V at r = 50 cm and $E = 748.2 \text{ a}_r$ at r = 85 cm. Determine the location of voltage reference if potential depends only on 'r'. (08 Marks)
 - c. Verify whether the potential function $V = 2x^2 3x^2 + z^2$ satisfies Laplace equation.

(04 Marks)

(04 Marks)

- Derive the expression for magnetic field intensity 'H' at the centre of a square current carrying loop of I amps with side 'L' meters using Biot Savart's law.
 - b. Given $H = \frac{x+2y}{z^2} a_y + \frac{2}{z} a_z$ A/m. find J. Use J to find total current passing through the surface $z = 4, 1 \le x \le 2, 3 \le y \le 5$. (08 Marks)
 - c. Explain the concept of scalar and vector magnetic potential.

Module-4

- The point charge Q = 18nc has a velocity of 5×10^6 m/s in the direction 7 $a_v = 0.6 a_x + 0.75 a_y + 0.3 a_z$. Calculate the magnitude of the force exerted on the charge by the field.
 - i) $B = -3a_x + 4a_y + 6a_z mT$
 - ii) $E = -3a_x + 4a_y + 6a_z kV/m$ (08 Marks)
 - b. The magnetization in a magnetic material for which $\chi_m = 8$ is $150z^2$ a_x A/m. At z = 4cm, find the magnitude of i) J ii) J_T iii) J_B . (06 Marks)
 - c. Derive the expression for the force between two differential current elements. (06 Marks)

OR

- a. Derive the expression for the boundary conditions between two magnetic medias. (06 Marks) 8
 - b. Let the permittivity be $5\mu H/m$ in region A where x < 0 and $20~\mu H/m$ in region B where x < 0 and 20 μ H/m in region B where x > 0. If $K = 150a_y - 200a_z$ A/m at x = 0 and $H_A = 300a_x - 400a_y + 500a_z$ A/m. Find i) $|H_{tA}|$ ii) $|H_{NA}|$ iii) $|H_tB|$ iv) $|H_{NB}|$.

(08 Marks)

A circular loop of radius 10cm radius is located in x - y plane in a magnetic field B = 0.5 $\cos (377t) (3a_v + 4a_z)$ T. Determine the voltage induced in the loop.

Module-5

- a. What is the inconsistency of Ampere's law with continuity equation? Derive the modified Ampere's law by Maxwell for time varying fields.
 - b. Given $E = E_m \sin(\omega t \beta z) a_v V/m$, find i) D ii) B iii) H. sketch E and H at t = 0. (08 Marks)
 - c. Prove that the conduction current is equal to the displacement current between the two plates for $V = V_0 e^{j\omega t}$ in a parallel plate capacitor. (06 Marks)

- Show that the intrinsic impedance of the perfect dielectric $\eta = \frac{|E|}{|H|} = \sqrt{\frac{\mu}{E}}$ and show that its
 - value in free space is 377Ω . (08 Marks)
 - A uniform plane wave of a frequency 300MHz travels in +x direction in a lossy medium with $E_r = 9$, $\mu_r = 1$ and $\sigma = 10$ mhos/m. Calculate γ , α , β and η . (06 Marks)
 - State and prove Poynting theorem. (06 Marks)

