2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fifth Semester B.E. Degree Examination, June/July 2023 **Automata Theory and Computability**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define the following terms with example 1
 - i) Alphabet ii) Power of an alphabet iii) Language

(06 Marks)

- b. With a neat diagram, explain a hierarchy of language classes in automata theory. (04 Marks)
- c. Define deterministic finite state machine. Design DFSM
 - i) To accept strings having odd number of a's and odd number of b's
 - ii) To accept strings having number of a's divisible by 5 and number of b's divisible by 3. (10 Marks)

OR

Convert the following NDFSM [Refer Fig Q2(a)] to its equivalent DFSM.

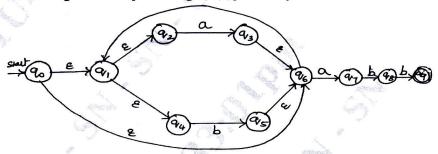


Fig Q2(a)

(10 Marks)

Define distinguishable and indistinguishable states minimize the following DFSM shown in

I a	ble	Q2(0)
	δ	a	b
\rightarrow	A	В	E
	В	C	F
*	C	D	Н
a de	D	E	Н
	E	F	I
*	F	G	В
	G	Н	В
	Н	I	C
*	I	A	E

(10 Marks)

Module-2

- Define regular expression. Obtain a regular expression for the following: 3
 - $L = \{a^n b^m \mid n \ge 4, m \le 3\}$
 - $L = \{w : n_a(w) \text{ mod } 3 = 0 \text{ where } w \in (a, b)^*\}$
 - $L = \{w : \text{ strings ends with ab or ba where } w \in \{a, b\}^*\}$
 - $L = \{a^{2n}b^{2m} \mid n \ge 0, m \ge 0\}$

(10 Marks)

b. Consider the DFSM shown below

States		0	1
\rightarrow	q_1	q_2	q_1
	q_2	q_3	qı
*	q_3	q_3	q_2

Obtain the regular expression $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and simplify the regular expression as much as possible. (10 Marks)

OR

a. Using Kleen's theorem, prove that only language that can be defined with a regular expression can be accepted by source FSM. (10 Marks)

b. State and prove pumping lemma for regular language and show that the language $L = \{a^ib^j \mid i > j\}$ is not regular. (10 Marks)

Module-3

5 a Define context free grammar. Design CFG for the following language.

i) $L = \{0^i \ 1^j \mid i \# j, i \ge 0, j \ge 0\}$ ii) $L = \{a^n b^m \mid n \ge 0, m \ge n\}$

b. Define Ambiguity consider the grammar

 $E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid a/b$

Find Leftmost and Rightmost derivation and parse tree for the string a + b * a + b, show that the grammar is ambiguous. (10 Marks)

OR

6 a. Define Chomsky normal form and Greibach normal form. Convert the following grammar to CNF

 $S \rightarrow OA \mid 1B$

 $A \rightarrow OAA \mid 1S \mid 1$

 $B \rightarrow 1BB \mid 0S \mid 0$

(10 Marks)

(10 Marks)

b. Define a PDA. Obtain PDA to accept the language L = {wcw^R / w∈ {a, b}* where w^R is reverse of w by a final state. Draw transition diagram. Write sequence of moves made by PDA to accept the string aabcbaa.

Module-4

7 a. Define Turing machine. Explain with neat diagram the working of a Turing machine model. (06 Marks)

b. Design turning machine to accept the language $L = \{a^nb^nc^n \mid n \ge 1\}$. Draw the transition diagram and shown the moves made by turing machine for the string aabbcc. (14 Marks)

OR

8 a. Explain various technique used for construction of turing machine.

(05 Marks)

b. Explain the following;

i) Multitape Turing machine

ii) Non-deterministic Turing machine

iii) Linear bounded automata

(15 Marks)

Module-5

9 a. Explain halting problem in Turing machine prove that

 $HALT_{TM} = \{(M, W) \mid The Turing machine M halts on input w\}$ is undecidable. (10 Marks)

b. Define decidable language prove that DFA is decidable language (A_{DFA} is decidable)

(10 Marks)

OR

10 a. Explain quantum computers

(06 Marks)

b. Explain Church-Turing Thesis

(07 Marks)

c. Explain post correspondence problem.

(07 Marks)