Fifth Semester B.E. Degree Examination, July/August 2021 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Define the following terms with examples alphabet, powers of an alphabet string, string concatenation and languages. (10 Marks)
 - b. Define DFSM. Design a DFSM to accept each of the following languages:
 - i) $L = \{W \in \{0.1\}^* : W \text{ is ending with } 011\}$
 - i) $L = \{W \in \{0.1\}^* : W \text{ has odd numbers of a's and even numbers of b's} \}$ (10 Marks)
- 2 a. Convert the following NDFSM to DFSM:

δ	3	∡ a 🤻	b	c
→p	φ	{ p }	{q}	{r}
q	{ p }	{ q }	{r}	φ
*r	{q}	{r}	φ	{p}

(10 Marks)

b. Define distinguishable and Indistinguishable states. Minimize the following DFSM.

naule s	state	D. 1V1		
δ	a	b		
→A	В	F		
В	G	C		
*C	A	C		
D	C	G		
E	Н	F		
F	C	G		
G	G	$\mathbf{E}_{\mathscr{A}}$		
Н	G	C		

(10 Marks)

- a. Define Regular expression. Write the regular expression for the following languages:
 - To accept strings of a's and b's such that third symbol from the right is 'a' and fourth symbol from the right is 'b'.
 - ii) $L = \{a^n b^m; n \ge 4, m \le 3\}$

(10 Marks)

b. Build a regular expression from the following FSM (Finite State Machine).

(06 Marks)

Fig.Q.3(b)

c. Write an equivalent NDFSM for the following regular expression $a(a^* + b^*)^*b$. (04 Marks)

- Show that regular languages are closed under complement and intersection. (10 Marks)
 - State and prove pumping lemma theorem for regular languages. And show that the language $L = \{WW^{\hat{R}} : W \in \{0, 1\}^* \text{ is not regular}\}.$ (10 Marks)
- Define CFG (Context Free Grammar). Design CFG for the languages. 5
 - $L = \{O^{2n}1^m | n >= 0, m >= 0\}$
 - $L = \left\{ O^{i} 1^{j} 2^{k} \middle| i = j \text{ or } j = k \right\}$ (10 Marks)
 - b. Define Ambiguity. Is the following grammar ambiguous? Give reason S → iCts iCtSeS a

(10 Marks) $C \rightarrow b$

- Define CNF (Chomsky Normal Form). Convert the following CFG to CNF. $S \rightarrow aACa, A \rightarrow B|a, B \rightarrow C|c, C \rightarrow cC|\epsilon$ (10 Marks)
 - b. Define PDA (Push Down Automata). Design a PDA to accept the following language, $L = \{a^nb^n : n > = 0\}$. Draw the transition diagram for the constructed PDA. Show the ID's (10 Marks) for the string aaabbb.
- Define a Turing Machine. Explain the working of a Turing Machine. (08 Marks) 7
 - b. Design a Turing Machine to accept $L = \{0^n 1^n 2^n | n >= 0\}$. Draw the transition diagram. Show the moves made for string 001122 (12 Marks)
- Design a TM for addition of 2 numbers (2 + 3) with transition diagram and ID for the same. 8
 - (14 Marks) (06 Marks) Define and differentiate DTM and NDTM.
- (08 Marks) Explain post correspondence problem.
 - (08 Marks) Explain Halting problem in Turing Machine
 - (04 Marks) Write a note on Church Turing Hypothesis.
- Explain three variants of Turing Machine. (12 Marks) 10 a.
 - (08 Marks) Write a note on Quantum Computation.