Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Automata Theory and Computability**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Construct the DFSM for the following languages: 1
 - $L = \{W \mid W \in \{a, b\}^* \mid W \text{ does not contain the substring a a b}\}\$ (i)
 - $L = \{W \mid W \in \{a, b\}\}$ where W ends either with a b or b a (ii)

(08 Marks) (08 Marks)

Minimize the given Fig. Q1 (b) DFSM by applying min DFSM method.

Fig. Q1 (b)

Explain the operations on strings and languages.

(04 Marks)

OR

By applying ndfsm to dfsm convert the given Fig. Q2 (a) DFSM to its equivalent DFSM. 2 (10 Marks)

Fig. Q2 (a)

Construct DFSM for the language,

 $L = \{W \mid W \in \{a, b\} \text{ where } W \text{ is having even number of a's and odd number of b's} \}$

(05 Marks)

Explain the difference between DFSM and NDFSM with example.

(05 Marks)

Module-2

- Illustrate that the regular languages are closed under union, concatenation and compliment. 3
 - State and prove pumping Lemma for regular languages and prove that the following languages are not regular.

 $L = \{a^n b^n \mid n \ge 0\}$ (i)

 $L = \left\{ WW^{R} \mid W \in \left\{a, b\right\}^{*} \right\}$ (ii)

(10 Marks)

Consider the FSM M given in Fig. Q4 (a). Use the fsmtoregx heuristic method to construct a regular expression that describe L(m).

Fig. Q4 (a)

Write the regular expression for the following languages;

 $L = \left\{ a^{2n}b^{2m} \mid n \ge 0, m \ge 0 \right\}$

- $L = \{a^n b^m \mid m \ge 1, n \ge 1, n + m \ge 3\}$
- (06 Marks) $L = \{W \mid W \in \{a, b\}^* \text{ and } |W| \text{ is multiples of 3} \}$ (iii)
- c. Draw a FSM for the given below regular expressions:
 - $(0+1)^* o (0+1)^* o$ (i)
 - $ab(a+b)^*a$ (ii)

(06 Marks)

Obtain a context free Grammar for the language: 5

 $L = \left\{ 0^{2n} 1^m \mid n \ge 0, m \ge 0 \right\}$

 $L = \{0^{i}1^{j}2^{k} \mid i = j \text{ or } j = k\}, i, j, k \ge 0$

(04 Marks)

Convert the following CFG into CNF:

 $R = \{A \rightarrow a\}$

 $B \rightarrow b \mid bR$

 $A \rightarrow BaC$

 $A \rightarrow BbC$

(06 Marks)

} where A is the start symbol Design a PDA to accept the language $L = \{a^n b^n \mid n \ge 0\}$, draw the transition diagram and (10 Marks) show the string acceptance for W=aaabbb.

OR

- What is ambiguous grammar? Prove that the given grammar is ambiguous : $S \rightarrow (S) |SS| \in$ 6
 - Design a PDA for the language $L = \{WCW^R \mid W \in \{a,b\}^*\}$ and draw the transition diagram (10 Marks) and show the string acceptance for W = a a b c b a a.

c. Convert the following CFG to CNF

 $R = \{S \rightarrow XY \\ X \rightarrow A \\ A \rightarrow B/a \\ Y \rightarrow bT \\ T \rightarrow Y/C$

(04 Marks)

Module-4

7 a. Design a Turing Machine to accept $L = \{0^n 1^n 2^n \mid n \ge 0\}$. Draw the transition diagram and show the moves made for the string $W = a \ a \ b \ b \ c$ c. (10 Marks)

b. Explain multitape Turing machine and prove that language accepted by multitape turing machine is also accepted by singletape turing machine. (10 Marks)

OR

8 a. Explain non-deterministic turing machine and prove that there exists equivalent DTM.

(10 Marks)

b. Design a Turing machine for the language, $L = \left\{ W \mid W \in \left\{ a, b \right\}^* \text{ where W is a string of palindrome of } | \text{ odd or even length} \right\}.$ Draw the transition diagram. Show the string acceptance for W = ababa. (10 Marks)

Module-5

a. Explain post correspondence problem. (07 Marks)

b. Explain Halting problem in Turing machine.

(06 Marks)

(07 Marks)

c. Explain recursively enumerable language.

OF

Write short notes on:

- a. Growth rate of function.
- b. Classes of P & NP
- c. Quantum computers.
- d. Church Turing Thesis

(20 Marks)