18AI56

Fifth Semester B.E. Degree Examination, June/July 2024 Mathematic for Machine Learning

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find all solutions of the inhomogeneous system of linear equations Ax = b where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 2 \end{bmatrix} \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}. \tag{07 Marks}$$

b. Find the image and kernel of a linear. Mapping

$$\phi: \mathbf{R}^{4} \to \mathbf{R}^{2}, \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} \to \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}.$$
 (07 Marks)

c. Consider R³ with $\langle \cdot, \cdot \rangle$ defined for all x, y \in R³ as $\langle x, y \rangle = x^T A y$, $A = \begin{bmatrix} 4 & 2 & 1 \\ 0 & 4 & -1 \\ 1 & -1 & 5 \end{bmatrix}$

gs <, > an inner product?

(06 Marks)

OR

2 a. Find all solutions of system of equations:

$$-2x_1 + 4x_2 - 2x_3 - x_4 + 4x_5 = -3$$

$$4x_1 - 8x_2 + 3x_3 - 3x_4 + x_5 = 2$$

$$x_1 - 2x_2 + x_3 - x_4 + x_5 = 0$$

$$x_1 - 2x_2 - 3x_4 + 4x_5 = a.$$

(07 Marks)

- b. Show that the vectors $\alpha_1 = (1, 0, -1)$ $\alpha_2 = (1, 2, 1)$, $\alpha_3 = (0, -3, 2)$ form a basis for \mathbb{R}^3 . Express each of the standard basis vector Q linear combination of α_1 , α_2 , α_3 . (07 Marks)
- c. Define an inner product space. For any vector α . β in an inner product space V prove that $||\alpha + \beta|| \le ||\alpha|| + ||\beta||$. (06 Marks)

3 a. For a subspace $U = \text{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\} \le R^3$ and $x = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \in R^3$ find the coordinates λ of x in

terms of the subspace U, the projection point $\pi_U(x)$ and the projection matrix P_{π} . (10 Marks)

b. Diagonalize the matrix
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 1 & 3 & -2 \\ 1 & 2 & -1 \end{bmatrix}$$
. (10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

OR

- 4 a. Apply gram Schmidt orthogonalization process to the basis B = (1, 1, 1), (-1, 0, 1), (-1, 2, 3) of the inner product space R^3 to find an orthogonal basis of R^3 . (10 Marks)
 - b. Find singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$. (10 Marks)

Module-3

5 a. Compute the partial derivative $\frac{\partial f}{\partial A}$ for the function f = Ax where $A \in R^{3x2}$ and $x \in R^2$.

(07 Marks)

- b. Consider $f(x_1, x_2) = x_1^2 + 2x_2$ where $x_1 = \sin t$ and $x_2 = \cos t$. find derivative of f with respect to t. (06 Marks)
- c. Obtain the gradient $\frac{df}{dx}$ for the function f(x) = Ax, $f(x) \in R^M$, $A \in R^{MXN}$, $x \in R^N$. (07 Marks)

OR

6 a. Consider the linear model $y = \phi \ \theta$ wher $\theta \in R^D$ is a parameter vector, $\phi \in R^{NXD}$ are input features and $y \in R^N$ are corresponding observation we define least squares loss function:

$$L(e): ||e||^2, e(\theta); y - \phi\theta. \text{ Find } \frac{\partial L}{\partial \theta}.$$
 (06 Marks)

- b. For the function $f(x) = \sqrt{x^2 + \exp(x^2) + \cos(x^2 + \exp(x^2))}$ find $\frac{\partial f}{\partial x}$. (07 Marks)
- c. Consider the matrix $R \in \mathbb{R}^{MXN}$ and $f : \mathbb{R}^{MXN} \to \mathbb{R}^{NXN}$ with $f(R) = R^T R = K \in \mathbb{R}^{NXN}$ find gradient dK/dR.

Module-4

- 7 a. The probability that the noise level of a wide band amplifier will exceed 2dB is 0.05. Find the probabilities that among 12 such amplifiers the noise level of:
 - i) One will exceed 2dB
 - ii) Atmost 2 will exceed 2dB
 - iii) Two or more will exceed 2dB.

(06 Marks)

b. Let X_1 and X_2 have the joint probability distribution:

X_1	0	1.	2
0	0.1	0.4	0.1
1	0.2	0.2	0

- i) Find marginal distribution of x_1 and x_2
- ii) Find $P(x_1 + x_2 > 1)$
- iii) Find conditional probability distribution of x_1 given $x_2 = 1$. And x_1 and x_2 are Independent.
- c. If x is a Poisson variate such that P(x = 2) = 9P(x = 4) + 90 P(X = 6). Find mean of x.

(07 Marks)

(07 Marks)