Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Signals and Systems**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define Signal. List the various classifications of signals with suitable expressions/diagrams. 1 (06 Marks)
 - Sketch the even and odd components of the following signals

i) x(n) = u(n) - u(-n-1)

ii) x(t) = r(t) - 2r(t-1) + r(t-2) where $r(t) = t \cdot u(t)$.

(08 Marks)

c. Determine whether the following signals are energy or power signals. Also determine their average power/total energy

i) $x(n) = \alpha^n u(n)$ (ii) $x(t) = 5ws (\pi t)$.

(06 Marks)

- List all the continuous time elementary signals with necessary expressions and suitable 2 diagrams.
 - Determine whether the following signals are periodic or not. If periodic, determine their fundamental period

 $x(n) = Cos\left(\frac{\pi}{2}n\right) \cdot Cos\left(\frac{\pi}{4}n\right)$

 $x(t) = 2\cos t + 3\cos(\pi t)$

(06 Marks)

For signals x(t) and y(t) as given in Fig Q2(c), sketch the following

ii) x(t+1)(2-1)

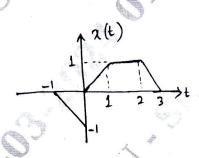
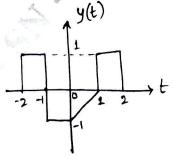



Fig Q2(c)

(08 Marks)

Module-2

- List all the basic system properties with respect to continuous time systems, with definition, 3 necessary expressions and example. (08 Marks)
 - Convolute $x(n) = \{1, 2, -1, 1\}$ and $h(n) = \{1, 0, 1\}$ using graphical method.

(04 Marks)

For an LTI system characterized by impulse response $h(n) = \beta^n \ u(n), \ 0 < \beta < 1$, find the output of the system for input x(n) given by $x(n) = \alpha^n [u(n) - u(n-10)]$.

OR

Determine whether the systems given by the following input output are causal, linear, time invariant, stable. Justify (08 Marks)

i) y(n) = (n + 1) x(n) ii) y(t) = x(t) + 10

Derive the equation for convolution sum.

(04 Marks)

Convolute the signals $x_1(t) = \{u(t+2) - u(t-1)\}$ and $x_2(t) = u(2-t)$.

(08 Marks)

Module-3

State and prove the associative property of convolution integral. 5

(04 Marks)

Given the impulse response, determine whether each of the following systems are stable, memoryless, causal. Justify your answer with suitable explanation.

i) $h(n) = (0.8)^n u(n+2)$

ii) $h(t) = e^{-6t}u(3-t)$

Obtain the Fourier series representation for the signal $x(t) = Sin(2\pi t) + Cos(3\pi t)$. Sketch the magnitude and phase spectra.

OR

Evaluate the step response for the systems with impulse response as given below. 6

 $h(t) = e^{-|t|}$

ii) $h(n) = \left(\frac{1}{2}\right)^n u(n)$

(10 Marks)

Find the Fourier series of the signal shown in Fig Q6(b)

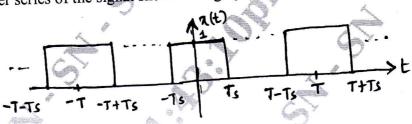


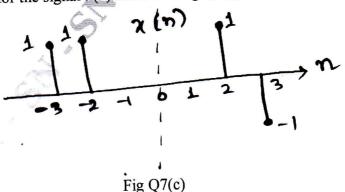
Fig Q6(b)

(10 Marks)

Module-4

State and prove the time shift property of Discrete Time Fourier Transform.

(04 Marks)


Evaluate the Fourier transform of the following signals. Also draw spectrum.

(08 Marks)

 $x(t) = e^{-at} \cdot u(t), a > 0$

 $x(t) = \delta(t)$ ii)

Evaluate the DTFT for the signal x(n) shown in Fig Q7(c)

(08 Marks)

OR

8 a. Using appropriate properties, find the DTFT of the signal $x(n) = Sin\left(\frac{\pi}{4}n\right)\left(\frac{1}{4}\right)^n u(n-1)$.

(08 Marks)

b. Determine the inverse Fourier transform of the following signals

i)
$$x(jw) = \frac{5jw + 12}{(jw)^2 + 5jw + 6}$$

ii)
$$x(jw) = \frac{jw}{(2+jw)^2}$$

(08 Marks)

c. State and prove time differentiation property of Fourier transform.

(04 Marks)

Module-5

9 a. List all the properties of Region of convergence (ROC).

(04 Marks)

b. Determine the Z-transform, the ROC and the locations of poles and zeros of x(z) for the following signals

i)
$$x(n) = -\left(\frac{3}{4}\right)^n u(-n-1) + \left(\frac{-1}{3}\right)^n u(n)$$

ii)
$$x(n) = n \cdot Sin\left(\frac{\pi}{2}n\right)u(-n)$$

(08 Marks)

- c. Find the inverse z-transform of $x(z) = \frac{1-z^{-1}+z^{-2}}{\left(1-\frac{1}{2}z^{-1}\right)(1-2z^{-1})(1-z^{-1})}$ with following ROCs
 - i) 1 < |z| < 2

ii)
$$\frac{1}{2} < |z| < 1$$
.

(08 Marks)

OR

- 10 a. Determine the z-transform and ROC for the signal $x(n) = \left(\frac{1}{2}\right)^n \{u(n) u(n-10)\}$. (04 Marks)
 - b. Using power series expansion method, determine inverse Z-transform of

i)
$$x(z) = \cos(z^{-2}) \text{ ROC } |z| > 0$$

ii)
$$x(z) = \frac{1}{1 - \left(\frac{1}{4}\right)z^{-2}} ROC |z| > \frac{1}{4}.$$

(08 Marks)

e. Find the transfer function and the impulse response of a causal LTI system if the input to the system is $x(n) = \left(-\frac{1}{3}\right)^n u(n)$ and the output is $y(n) = 3(-1)^n u(n) + \left(\frac{1}{3}\right)^n u(n)$. (08 Marks)

* * * * *