18EC44

USN

Fourth Semester B.E. Degree Examination, June/July 2024 **Engineering Statistics and Linear Algebra**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Derive mean, variance and characteristic function for uniformly distributed random variable. 1 (10 Marks)

The cdf for random variable z is $F_z(z) = \begin{cases} 1 - \exp(-2z^{3/2}) \end{cases}$ otherwise

Evaluate $P(0.5 < z \le 0.9)$

(04 Marks)

c. It is given that E[X] = 2 and $E[X^2] = 6$.

Find standard deviation of X.

If $Y = 6X^2 + 2X - 13$. Find mean of Y.

(06 Marks)

OR

Given the data in the following table:

K	1	2	3	4	5
XK	2.1	3.2	4.8	5.4	6.9
$p(x_K)$	0.21	0.18	0.20	0.22	0.19

(i) Plot pdf and cdf of discrete random variable X.

(ii) Write expression for $f_x(x)$ and $F_x(x)$ using unit delta functions and unit step functions.

b. The random variable X is uniformly distributed between 0 and 2. $Y = 3x^3$. What is the pdf

c. The ransom variable X is uniformly distributed between 0 and 5. The event B is $B = \{X > 3.7\}.$ What are $f_{X/B^{(x)}}$, $\mu_{X/B}$ and $\sigma_{X/B}^2$? (06 Marks)

Module-2

a. A bivariate Pdf is given as

 $f_{XY}(x, y) = 0.2\delta(x) \ \delta(y) + 0.3\delta(x-1) \ \delta(y) + 0.3\delta(x) \ \delta(y-1) + C\delta(x-1) \ \delta(y-1)$

- What is the value of the constant C?
- What are the Pdfs for X and Y? ii)
- What is $F_{XY}(x, y)$ when $(0 \le x \le 1)$ and $(0 \le y \le 1)$? iii)
- What are $F_{XY}(x, \alpha)$ and $F_{XY}(\alpha, y)$ iv)

Are X and Y independent? V)

(08 Marks)

- The mean and variance of random variable X are -1 and 2. The mean and variance of random variable Y are 3 and 4. The correlation coefficient $\rho_{XY} = 0.5$. What are the (05 Marks) covariance COV[XY] and the correlation E[XY].
- Write a short note on Chi-square random variable and students random variable. (07 Marks)

OR

X is a random variable, $\mu_X = 4$ and $\sigma_X = 5$, Y is a random variable, $\mu_Y = 6$ and $\sigma_Y = 7$. The correlation coefficient is 0.2. If U = 3X + 2Y. What are var[u], cov[uX] and cov[uY]?

Let 'X' and 'Y' be exponentially distributed random variable with $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$

Obtain the characteristic function and Pdf of W = X + Y.

(06 Marks)

The Random variables X_i have same mean of $m_x = 4$ and variance of $\sigma_X^2 = 1.5$. For $w = \sum_{i=1}^{150} X_i$, determine m_w and σ_w^2 . Also for $w = \frac{1}{150} \sum_{i=1}^{150} X_i$, determine m_y and $\sigma^2 y$. (06 Marks) Comment on the result.

- Define the following: 5
 - Random processes (i)
 - Stationary processes. (ii)

(04 Marks)

- (06 Marks) Write the properties of Autocorrelation function.
- Show that the random process $X(t) = A\cos(\omega_C t + \theta)$ is wide sense stationary. ' θ ' is (10 Marks) uniformly distributed in the range $-\pi$ to π .

- a. For the random process $X(t) = A\cos(\omega_C t + \theta)$, A and ω_C are constants. θ is a random variable, uniformly distributed between $\pm \pi$. Show that this process is ergodic.
 - Determine the power spectral density of the random process $X(t) = A\cos(\omega_C t + \theta)$ and plot the same. Here θ is random variable uniformly distributed over 0 to 2π . Hence obtain average power of X(t). If the frequency becomes zero, X(t) = A i.e. a d.c. signal, then obtain power spectral density and autocorrelation function.
 - A wide sense stationary random process X(t) is applied to a LTI system with impulse response $h(t) = ae^{-at}u(t)$. Find the mean value of the output Y(t) of the system if (04 Marks) E[X(t)] = 6 and 'a' = 2

Module-4

Write the complete solution as x_p + multiplies of s in the null space.

$$x + 3y + 3z = 1$$

$$2x + 6y + 9z = 5$$

-x - 3y + 3z = 5

(06 Marks)

- Find bases for the four subspaces associated with $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix}$. (04 Marks)
- Find orthogonal vector A, B and orthonormal vector q1 q2 from a, b using Gram Schmidt process. Factorize into A = QR. $a = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $b = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$. (10 Marks)

OR

8 a. Reduce A to echlon form. Which combination of rows of A produce zero row? What is the left Null space?

$$A = \begin{bmatrix} 1 & 2 & b_1 \\ 3 & 4 & b_2 \\ 4 & 6 & b_3 \end{bmatrix}$$
 (04 Marks)

b. Project the vector b onto the line through a. Check that e is perpendicular to a.

$$b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 (08 Marks)

c. In order to fit best straight line through four points passing through $b=0,\ 8,\ 8,\ 20$ at $t=0,\ 1,\ 3,\ 4$. Set up and solve normal equations $A^TA^{\hat{x}}=A^Tb$. (08 Marks)

Module-5

9 a. Mention the properties of determinants.

- b. If $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$, show that matrix A is positive definite matrix. (06 M)
- c. Find the eigen values of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$. (06 Marks)

OR

- 10 a. Diagonalize the following matrix, if possible $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$. (10 Marks)
 - b. Find a singular value of decomposition of, $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$. (10 Marks)
