18EC44

Fourth Semester B.E. Degree Examination, Jan./Feb. 2023 Engineering Statistics & Linear Algebra

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define cdf, pdf and pmf with example.

(06 Marks)

b. The following is the pdf for random variable U,

$$f_{U}(u) = \begin{cases} C \exp\left(-\frac{u}{2}\right), & 0 \le u < 1\\ 0, & \text{otherwise} \end{cases}$$

Find the value that C must have and evaluate $F_U(0.5)$

(06 Marks)

c. Given the data in the following table:

k	Xk	P(x _k)			
10	2.1	0.21			
2	3.2	0.18			
3	4.8	0.20			
4	5.4	0.22			
5	6.9	0.19			

- (i) Plot pdf and cdf of the discrete random variable X.
- (ii) Write expression for $f_X(x)$ and $F_X(x)$ using unit delta functions and unit step function. (08 Marks)

OR

2 a. Define Expectation, Variance and characteristic functions.

(04 Marks)

b. Explain the probability models for Gaussian and exponential random variables.

(08 Marks)

c. The random variable X is uniformly distributed between 0 and 4. The random variable Y is obtained from X using $y = (x-2)^2$. Evaluate CDF and PDF for Y. (08 Marks)

Module-2

a. Obtain the expressions for different bivariate expectations.

(06 Marks)

- b. It is given that E[X] = 2.0 and that $E[X^2] = 6$. Find the standard deviation of X. Also if $Y = 6X^2 + 2X 13$, find μ_Y . (07 Marks)
- c. The mean and variance of random variable X are -2 and 3; the mean and variance of Y are 3 & 5. The covariance COV[XY] = -0.8. Find correlation co-efficient ρ_{XY} and correlation E[XY].

OR

4 a. The joint pdf of a bivariate random variable X and Y is given by,

 $F_{XY}(x,y) = \begin{cases} k(x+y), & 0 < x, y < z \\ 0, & \text{otherwise} \end{cases}$ where k is constant.

- (i) Find the value of k.
- (ii) Find the marginal pdf's of X and Y.
- (iii) Are X and Y independent?

(06 Marks)

- b. The random variable U has a mean of 0.3 and a variance of 1.5
 - (i) Find the mean and variance of Y if $Y = \frac{1}{53} \sum_{i=1}^{53} u^{i}$
 - (ii) Find the mean and variance of Z if $Z = \sum_{i=1}^{53} u_i$

In these two sums, the ui's are IID.

(04 Marks)

c. Explain briefly Chi square random variable

(10 Marks)

Module-3

- 5 a. Explain Random process, stationarity and wide sense stationarity random process. (06 Marks)
 - b. X(t) and Y(t) are independent, jointly wide sense stationarily random processes given by $X(t) = A\cos(\omega_1 t + \theta_1)$ and $Y(t) = B\cos(\omega_2 t + \theta_2)$. If W(t) = X(t).Y(t), find Auto Correlation function $R_W(Z)$.
 - c. Define Auto Correlation Function (ACF) of a random process. List and prove the properties of Auto Correlation. (08 Marks)

OF

6 a. Explain Wiener-Kenchin relations.

(06 Marks)

b. A PSD is shown in Fig. Q6 (b) where constants are a = 55, b = 5, $\omega_0 = 1000$, $\omega_1 = 100$. Solve the values for $E[X^2(t)]$, σ_X^2 and μ_X .

Fig. Q6 (b)

(06 Marks)

c. Assume that the following table is obtained from a windowed sample function obtained from a random Ergodic process. Solve for the ACF for Z = 0, 2 and 4 ms.

-			1	00	1.6	20	2.5	2.5	1 6	1 0
x(t)	1.5	2.1	1.0	2.2	-1.6	- 2.0	- 2.3	2.3	1.0	1.0
k	0	1	2	3	4	/5>	6	7	8	9

(08 Marks)

Module-4

7 a. Define vector space and axioms of vector spaces.

(06 Marks)

b. Let W be the subspace of R5 spanned by

$$x_1 = \begin{pmatrix} 1 & 2 & -1 & 3 & 4 \end{pmatrix}, x_2 = \begin{pmatrix} 2 & 4 & -2 & 6 & 8 \end{pmatrix}, x_3 = \begin{pmatrix} 1 & 3 & 2 & 2 & 6 \end{pmatrix}$$

 $x_4 = \begin{pmatrix} 1 & 4 & 5 & 1 & 8 \end{pmatrix}, x_5 = \begin{pmatrix} 2 & 7 & 3 & 3 & 9 \end{pmatrix}$

Find the basis and dimension of W.

(06 Marks)

c. If vectors
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$

Then show that the vectors U, V and W form orthogonal pairs. Also find the length of vectors U, V and W. (08 Marks)

OR

- 8 a. Determine whether the vectors (1 4 9), (3 1 9) and (9 3 12) are linearly dependent or independent. (06 Marks)
 - b. List and explain four fundamental subspaces.

(06 Marks)

c. Apply Gram-Schmidt process to vectors to obtain an orthonormal basis for $v_3(R)$ with the standard inner product. $v_1 = \begin{pmatrix} 2 & 2 & 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 & 3 & 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix}$ (08 Marks)

Module-5

- 9 a. Reduce the matrix A to U. Find det(A). $A = \begin{bmatrix} 2 & 5 & 3 \\ 1 & 2 & 4 \\ -1 & 3 & 6 \end{bmatrix}$. (04 Marks)
 - b. Find Eigen values and Eigen vectors of matrix, $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$. (10 Marks)
 - c. What is positive definite matrix? Mention the methods of testing positive definiteness. Check the following matrix for positive definiteness.

$$S_1 = \begin{bmatrix} 5 & 6 \\ 6 & 7 \end{bmatrix}.$$

(06 Marks)

OF

10 a. Compute $A^{T}A$ and AA^{T} . Find eigen values and unit Eigen vectors for $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$. Multiply

the three matrices, $U \sum V^T$ to recover A.

(12 Marks)

b. Expand the determinant $A = \begin{bmatrix} 3 & 1 & 4 & 2 \\ 1 & 5 & 2 & 6 \\ 2 & 3 & 7 & 1 \\ 4 & 1 & 2 & 3 \end{bmatrix}$

(08 Marks)