

Fourth Semester B.E. Degree Examination, June/July 2024 Analog Circuits

Time: 3 hrs.

1

2

Max. Marks: 100

(04 Marks)

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the design concept of common emitter collector to Base feedback resistor biasing circuit and explain how collector to base feedback resistor provides a negative feedback in the circuit. (07 Marks)
- b. Considering the conceptual circuit of common source MOSFET amplifier, derive the expression for transconductance g_m and voltage gain A_V . (08 Marks)
- c. For common emitter voltage divider circuit having $\beta = 100$, $R_1 = 10 \text{ K}\Omega$, $R_2 = 5 \text{ K}\Omega$, $R_C = 1 \text{ K}\Omega$ and $R_E = 500 \Omega$ is provided with DC biasing voltage $V_{CC} = 10 \text{ V}$, Calculate V_{CE} and I_C . (05 Marks)

OR

- a. Derive an expression for small signal collector current, transconductance g_m and voltage gain A_V in BJT, when small signal V_{bc} is applied between base and emitter. (10 Marks)
 - b. Design voltage divider bias circuit using MOSFET to establish $I_D = 0.5$ mA and MOSFET

parameter are $V_t = 1$ V and $K'_n \left(\frac{\omega}{L}\right) = 0.5$ mA/V². Assume $V_{DD} = 15$ V. (10 Marks)

Module-2

- 3 a. Explain Three basic configurations of MOSFET amplifier and derive expression for characteristic parameter of amplifiers. (08 Marks)
 - b. Briefly explain the Barkhausen criteria for oscillation.
 - c. For an n-channel MOSFET with $t_{ox} = 10$ nm, $L = 1 \mu m$, $W = 10 \mu m$, $L_{ov} = 0.05 \mu m$, $C_{Sbo} = C_{dbo} = 10$ fF, $V_O = 0.6$ V, $V_{SB} = 1$ V, $V_{DS} = 2$ V. Calculate the following capacitance when the transistor is operating in saturation, (i) C_{OX} (ii) C_{OV} (iii) C_{gs} (iv) C_{gd} (v) C_{sb} and C_{db} .

(i) C_{OX} (ii) C_{OV} (iii) C_{gs} (iv) C_{gd} (v) C_{sb} and C_{db} . Consider $\epsilon_{ox} = 3.45 \times 10^{-11}$ (08 Marks)

OR

- 4 a. Explain the working of RC phase shift oscillator and show how RC network provides 180° of phase shift. (08 Marks)
 - b. In a transistor Calpitts oscillator $C_1 = 1$ nF and $C_2 = 1000$ nF. Find the value of L for a frequency of 100 kHz. (04 Marks)
 - c. Explain the High frequency response of common source MOSFET amplifier with its equivalent circuit. (08 Marks)

1 of 2

Module-3

- Explain the effect of negative feedback on input and output resistance of voltage series 5 a. (10 Marks) feedback amplifier.
 - b. Explain transformer coupled Class A power amplifier and show that the maximum efficiency of transformer coupled Class A power amplifier is 50%. (10 Marks)

OR

- Draw the block diagram of four types of feedback topologies and compare them with respect 6 a. (10 Marks) to input and output resistance.
 - b. Compare Class B pushpull and complementary symmetry power amplifiers. (04 Marks)
 - c. In a Class B push pull amplifier operating with $V_{CC} = 25V$ provides a 22 V peak signal to an 8 Ω load. Find (iii) input power (ii) dc current drawn from the supply (i) Peak load current
 - (iv) Output current efficiency (v) power dissipation (06 Marks)

Module-4

7

10

(06 Marks)

- State the ideal op-amp characteristics. a. Design a linear combination circuit using op-amp to obtain output $V_0 = -2V_1-8V_2-V_3$ with b. $R_{fn} \geq 20\,k\Omega$ at all the inputs and all the resistances $\leq 200\,k\Omega$ (04 Marks)
- Draw the circuit of 3 op-amp instrumentation amplifier and derive the expression for its C. (10 Marks) output voltage.

OR

- Explain the working of voltage follower using op-amp and show that its gain is unity. State 8 a. (06 Marks) its advantages.
 - (06 Marks) b. Explain the working of zero crossing detectors.
 - Design an inverting Schmitt trigger to have trigger voltages of $\pm 4V$ using op-amp 741 with C. (08 Marks) supply of ± 15 V. Consider $I_{B(max)} = 500$ nA.

Module-5

- With neat circuit diagram, explain the operation of R-2R D/A converter. (10 Marks) 9 a. (06 Marks)
 - Explain the working of pulse width modulation circuit using 555 IC.
 - b. Design a low pass filter using op-amp at a cut off frequency of 1 kHz with pass gain of 2 and C. (04 Marks) choose $C = 0.01 \ \mu F$

OR

- Explain with neat circuit diagram the working of positive precision Half Wave Rectifier. a. (06 Marks)
- b. Design a monostable 555 timer circuit to produce an output pulse of 10 sec wide and draw (04 Marks) the circuit diagram. Choose $C = 100 \ \mu F$.
- Draw the circuit of second order low pass filter and explain its operation. (10 Marks) C.

2 of.2