CBCS SCHEME

USN						18EC42

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Analog Circuits**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Mention and explain the design issues of a classical biasing for BJT using collector-to-base 1 feedback resistor and which uses single power supply.
 - b. Design classical bias network of amplifier to establish a current $I_E = 1$ mA using a power supply $V_{CC} = +12 \text{ V}$ and transistor has $\beta = 100$. (10 Marks)

- Explain the design of biasing technique for discrete MOSFET by fixing V_G and connecting a 2 resistance in source and drain-to-Gate feedback resistor. (10 Marks)
 - b. Determine voltage gain of transistor amplifier for the circuit shown in Fig.Q2(b). Assume $\beta = 100.$

Fig.Q2(b)

(10 Marks)

Module-2

- Deduce and expression for upper cut off frequency of MOSFET common source amplifier. (10 Marks)
 - b. Find the mid band gain A_M and the upper 3-dB frequency f_H of a CS amplifier fed with a signal source having an internal resistance R_{sig} = 100 K Ω . The amplifier has R_G = 4.7 M Ω , $R_D = R_L = 15 \text{ K}\Omega$, $g_m = 1 \text{ mA/V}$, $r_0 = 150 \text{ K}\Omega$, $C_{gs} = 1 \text{ PF}$ and $C_{gd} = 0.4 \text{ pf}$. (10 Marks)

- With a neat circuit diagram, explain the operation of FET based phase shift oscillator.
 - (10 Marks) With a neat circuit diagram, explain the operation of crystal oscillator along with relevant equation for frequency of oscillation. (10 Marks)

Module-3

Discuss the properties of negative feedback. 5

(10 Marks)

- Using ideal structure and equivalent circuit. Deduce an expression for input and output resistance of:
 - Series shunt feedback amplifiers
 - Shunt-shunt configuration

(10 Marks)

OR

6 a. Derive an expression efficiency of class C power amplifier.

(10 Marks)

b. Deduce an expression for output resistance by discussing the circuit operation of class AB output stage. (10 Marks)

Module-4

7 a. For a practical inverting amplifier the values of R_1 and R_f are 470 Ω and 4.7 $K\Omega$. The various specifications for opamp used are:

Open loop gain = 2×10^5

Input resistance = $2 M\Omega$

Output resistance = 75Ω

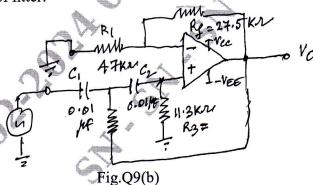
Single break frequency = 5 Hz

Supply voltages = ± 15 V

Calculate closed loop voltage gain, i/p and o/p resistance and bandwidth with feedback.

(10 Marks)

b. Mention and explain the requirements of a good instrumentation amplifier and analyze three opamp instrumentation amplifier. (10 Marks)


OR

- 8 a. Design an opamp Schmitt trigger with following specifications UTP = 2V, LTP = -4V and the output swings between $\pm 10V$. If the input is $5\sin \omega t$, plot the waveforms of input and output. (10 Marks)
 - b. Discussing the circuit operation of (i) DC amplifiers (ii) AC amplifiers, using OPAMPS.

 (10 Marks)

Module-5

- 9 a. Explain the circuit operation of monoshot using IC555. Derive the expression of pulse width. (10 Marks)
 - b. For the circuit shown in Fig.Q9(b), determine the lower cutoff frequency and then plot the frequency response of fitter.

(10 Marks)

OR

- a. Discuss the circuit operation of Astable multivibrator using IC555. Derive an expression for frequency of oscillations. (10 Marks)
 - b. Discuss the working of successive approximation ADC.

(10 Marks)

* * * * *