USN

18AU42

(04 Marks)

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Fluid Mechanics

GBGS SCHEME

Time: 3 hrs.

1

2

4

5

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define surface tension. Prove that the relationship between surface tension and pressure 4π
 - inside a droplet of liquid in excess of outside pressure is given by $P = \frac{4\sigma}{d}$. (06 Marks)
- b. Explain the phenomenon of capillarity. Obtain an expression for capillary rise of a liquid. (06 Marks)
- c. A 15 cm diameter vertical cylinder rotates concentrically inside another cylinder of diameter 15.10 cm. Both cylinders are 25 cm high. The space between the cylinders is filled with a liquid whose viscosity is unknown. If a torque of 12 Nm is required to rotate the inner cylinder at 100 rpm. Determine the viscosity of the fluid. (08 Marks)

OR

- a. Obtain an expression for pressure variation in a fluid at rest. (06 Marks)
 - b. Explain U-tube differential manometer with sketch and relation. (06 Marks)
 - c. A circular plate 3m diameter is immersed in water in such a way that its greatest and least depths below the free surface are 4m and 1.5 m respectively. Determine the total pressure on one face of the plate and position of the centre of pressure.
 (08 Marks)

Module-2

- 3 a. Derive an expression for the metacentric height of a floating body analytically. How will you determine the metacentric height of a floating body experimentally? Explain with sketch. (12 Marks)
 - b. With neat sketches, explain the conditions of equilibrium for floating and submerged bodies. (08 Marks)

OR

- a. Distinguish between :
 - (i) Steady flow and unsteady flow
 - (ii) Laminar and Turbulent flow
 - b. Obtain an expression for continuity equation for a three dimensional steady incompressible flow. (08 Marks)
 - c. Prove that for potential flow, the stream function satisfy the Laplace equation. (08 Marks)

Module-3

- a. Derive an expression for Bernoulli's theorem from first principle and state the assumptions made for such a derivation. (10 Marks)
 - b. A pump has a tapering pipe running full of water. The pipe is placed vertically with the diameters at the base and top being 1.2 m and 0.6 m respectively. The pressure at the upper end is 240 mm of Hg vacuum, while the pressure at the lower end is 15 kN/m². Assume the head loss to be 20% of difference of velocity head. Calculate the discharge, the flow is vertically upwards and difference of elevation is 3.9 m.

18AU42

OR

Derive the expression for the rate of flow of fluid through venturimeter. (08 Marks) 6 a. Derive an expression for discharge through a triangular notch.

(08 Marks) (04 Marks)

(04 Marks)

(06 Marks)

(08 Marks)

(06 Marks)

What is difference between pitot-tube and pitot-static tube? C.

Module-4

- The efficiency η of a fan depends on density ρ dynamic viscosity μ of the fluid, angular 7 a. velocity ω , diameter D of the rotor and the discharge Q. Express η in terms of dimensionless (10 Marks) parameters. (06 Marks) What is similitude? Explain types of similarities. b.
 - Define: (i) Reynolds number (ii) Mach number c.

b.

OR

How will you determine the loss of head due to friction in pipes by using: 8 a. (12 Marks) (i) Darcy formula (ii) Chezy's formula Obtain expression for head loss in a sudden expansion in the pipe. (08 Marks) b.

Module-5

- Derive an expression for the velocity distribution for viscous flow through a circular pipe. 9 a.
 - (08 Marks) b. Prove that the velocity distribution for viscous flow between two parallel plates when both plates are fixed across a section is parabolic in nature. Also prove that maximum velocity is equal to one and a half times the average velocity. (12 Marks)

OR

Prove that the momentum thickness for boundary layer flows is given by $\theta = \int_{-\infty}^{\infty} \frac{u}{U} \left(1 - \frac{u}{U}\right) dy$. 10 a.

- Derive an expression for velocity of sound wave in a fluid. b.
- Explain propagation of pressure waves in a compressible fluid. c.

2 of 2