USN	1													CÁ	Q.	r.			18MR	.33
		Г	`hir	d S	en	iest	ter	В.	E.	De	gree	Exa	min	atior	ı. Ju	ine/	Julv	202	4	
							В	as	ic	T	neri	noc	lyna	ami	CS		J			
Tir	ne:	3 hrs.										A. 0					$\leq \mathbf{N}$	Aax.	Marks: 1(00
											C					C				
	Na	ote: 1.	Ans	wer	any	, F I	VE.	full	qu	estio	ns, ch	oosir	ig ON	E full	l ques	stion	from	each	module.	
		2.	Use	of T	The	rmo	dyn	ami	ic d	ata 1	Hand	book	is peri	nitted						
									(and a	Mod	lule-1	<u>1</u>		63					
1	a.	Defi	ine th	ne fo	llov	wing	, wi	th e	xan	ples	8:			, 1						
		i) ;;)	Ope	n sy	vste:	m		0					.43	desima						
		iii)	Path	seu s	nctio	on	C	5	7				6	7						
		iv)	Poir	nt fu	nct	ion.	1					4	4						(08 Mar	:ks)
	b.	Dist	ingui	ish b	oetw	/een	J					(encert	Þ							
		1) ii)	Mie	rose	re a	na e	nd n	nsiv	e pi	opic	noint	ofvi	ew.					·	(04 Mar	cks)
	Ç.	Stat	e Zei	roth	lav	v of	the	ermo	ody	nam	ics. T	he te	mpera	ture, 1	t, on	a cer	rtain :	scale	is defined	in
		term	ns of	the	the	ermo	ome	tric	pro	oper	y x b	y the	e relat	ion t	$= a \cdot l$	n x	+ b v	where	a and b	are
		cons	stants	s. Or	n th	is sc	ale	the	ten	nper	ature o	of ice	and s	team	point	s are	0 and	l 100,	respective	ely.
		Exp	erime therr	ents	rev	eal t r	that	$\mathbf{x}_i =$	= 1.8	36 ai	$d x_s =$	= 6.81	. Find	the te	emper	ature	e for a	n x va	$\frac{100 \text{ of } 2.3}{(08 \text{ Mar})}$	on ks)
		tills	the f				P						3	·		G	5		(00 1111	KSJ
							10	9'			C	R	0		A	4				
2	a. h	List	the c	lissi	mila	aritie	es b	etw	een	hea	d and	work	rlz in n	olutro	nion	roco	70 (D)	$V^{n} = c^{n}$	(04 Mar	·ks) ·ks)
	О. С	A ce	ertair	ie ex	iss (of ai	ir is		mpr	esse	d fror	n 1 b	ar. 0.1	m^3 to	6 ba	ir in	a pist	on cv	linder dev	vice
		acco	ording	g to	PV	1.4 =	= c.	Fir	nd t	he v	vork o	of con	npress	sion fo	or air	. Ha	d the	comp	pression be	een
		carr	ied o	ut ł	nyp	erbo	lica	lly	bet	weet	n the	same	initia	l stat	e and	l the	same	fina	l pressure	as
		abov	/e? v	vnat	wc	ula	bet	the y	wor	k do	ne on	air?							(10 Mar	'KS)
			, D				;4	100	3"		Mod	lule-2	2							
3	a.	Stat	e and	1 ex	plai	in th	ne f	ĭrst	law	v of	therm	odyn	amics	Give	e its	equat	tion w	vith re	eference to	о а
	G	cycl	ic an	d no	n c	yclic	c pr	oces	SS.	h.	. annin		dad f	histics	1000	nisto	n aa t	bot th	(06 Mar	·ks)
	D.	A II the	ula 19 fluid	s col is li	nnr inea	ied i ir fii	n a inct	ion	inde of t	the y	/ sprin	e P =	aea, 1	$\sim V_{\rm o}$	ness The in	ntern	n so i al ene	rgy o	of the fluid	i is
		give	n by	U =	34	+ 3.	.15I	PV,	wh	ere l	J is in	kJ, P	in kP	a and	V in	m ³ . I	f the	fluid o	changes fr	om
		an ii	nitial	stat	eot	f 170	OkPa	a, 0.	.031	n^3 to	a fina	al stat	te of 4	00kPa	a, 0.0	$6m^3$,	with	no wo	ork other th	nan
		that	done	on	the	piste	on,	find	l the	dire	ection	and r	nagnit	ude o	t the	work	and h	ieat tr	anster. (08 Mar	rks)
	c.	Stea	m at	a ra	te o	f 0.4	42k	g/s a	and	enth	alpy c	of 278	SkJ/k	g and	a vel	ocity	of 33	.3m/s	is supplie	d
		to a	stead	lily o	ope	ratin	ng tu	urbi	ne.	The	steam	leave	es the	turbin	e at 1	00m	s and	an er	thalpy of	:
		2512	2kJ/k 201-1	g.T	he :	$ \lim_{t \to t} $	pip	be is	3m	abc	ve the	e exit	pipe.	Kate c	of hea	t loss	trom	the t	urbine casi	ing (ks)
		15 0.	47KJ	5. V	v IId	1 15 1	inc	how	UI (Julp	ui UI li	in tul	onic:						(00 1111	

CBCS SCHEME

Module-2

- b. A fluid is confined in a cylinder by spring loaded, frictionless piston so that the pressure in the fluid is linear function of the volume P = a + b V. The internal energy of the fluid is given by U = 34 + 3.15 PV, where U is in kJ, P in kPa and V in m³. If the fluid changes from an initial state of 170 kPa, 0.03 m³ to a final state of 400 kPa, 0.06 m³, with no work other than that done on the piston, find the direction and magnitude of the work and heat transfer. (08 Marks)
- Steam at a rate of 0.42kg/s and enthalpy of 2785kJ/kg and a velocity of 33.3m/s is supplied C. to a steadily operating turbine. The steam leaves the turbine at 100m/s and an enthalpy of 2512kJ/kg. The inlet pipe is 3m above the exit pipe. Rate of heat loss from the turbine casing (06 Marks) is 0.29kJ/s. What is the power output of the turbine?

- 4 a. Define Kelvin-Plank statement and Clausius statement of 2nd law of thermodynamics show that they are equivalent. (10 Marks)
 - b. A heat pump working on a carnot cycle takes in energy from a reservoir maintained at 5°C and delivers it to another reservoir where temperature is 77°C. The heat pump derives power for its operation from a reversible heat engine operating with in the higher and lower temperature of 1077°C and 77°C for every 100kJ/kg of energy supplied to reservoir at 77°C, estimate the energy taken from the reservoir at 1077°C. (10 Marks)

Module-3

- 5 a. State and prove Clausius in equality. What is the significance of Clausius in equality? (10 Marks)
 - b. An adiabatic vessel contains 85kg of oil at a temperature of 27°C. A spherical ball made of steel of 10kg at 727°C is immersed in oil. Determine change in entropy for the universe. Take $C_{P_{oil}} = 3.5$ kJ/kgK, $C_{P_{steel ball}} = 0.5$ kJ/kgK. (10 Marks)

OR

- 6 a. Define dryness fraction of steam? What are methods used to measure dryness fraction? With neat sketch explain any one. (10 Marks)
 - b. A rigid vessel of 2m³ volume is filled with superheated steam at 20 bar and 350°C. The vessel is cooled until the steam is just dry saturated. Calculate the mass of steam in the vessel, the final pressure of steam and amount of energy transferred as heat to the surroundings. (10 Marks)

Module-4

7

8

- a. Write Maxwell relations. (04 Marks) b. Show that the change in entropy when a perfect gas under goes a polytropic change $PV^n = C$ is given by $(S_2 - S_1) = \left(\frac{\gamma - n}{n - 1}\right)C_v \ell_n \left(\frac{T_1}{T_2}\right)$. (06 Marks)
- c. 0.2kg of air with pressure 1.5 bar and temperature 27°C is compressed to a pressure of 15 bar according to the law $PV^{1.25} = C$. Determine: i) Work done on or by the air ii) Heat flow to or from the air iii) Change in entropy for air R = 0.287kJ/kgK r = 1.4 $C_v = 0.718$ kJ/kgK. (10 Marks)

OR

a. Show the internal energy of an ideal gas is a function of temperature only. (08 Marks)
b. A gas of mass 1.5kg undergoes a quasistatic expansion which follows a relationship P = a + bv, where a and b are constants. The initial and final pressure are 100kPa and 200kPa respectively and the corresponding volumes are 0.2m³ and 1.2m³. The specific internal energy of the gas is given by the relation u = 1.5pv - 85kJ/kg, where P is the kPa and V is the m³/kg. Calculate the net heat transfer and the maximum internal energy of the gas attained during expansion. (12 Marks)

[•]2 of 3

Module-5

- 9 a. Explain:
 - i) Daltoni law of partial pressures
 - ii) Amagets law of additive volumes
 - b. A ballon of spherical shape 6m in diameter is filled with hydrogen gas at a pressure of 1 bar abs and 20°C. At a later time the pressure of the gas is 94% of its original pressure at the same temperature.
 - i) What mass of the original gas must have escaped if the dimensions of the ballon is not changed?
 - ii) Find the amount of heat removed to cause the same drop in pressure at constant volume. Take C_v for hydrogen as 10400J/kgK. (10 Marks)

OR

- **10** a. Write a short note on:
 - i) Compressibility factor
 - ii) Law of corresponding states
 - iii) Compressibility chart
 - iv) Vanderwaal's equation of state.

(12 Marks)

- b. A mixture of 0.5kg of CO₂ and 0.3kg of N₂ is compressed from $P_1 = 1$ atm $T_1 = 20^{\circ}$ C
 - to $P_2 = 5atm$ in a polytropic process for which $\eta = 1.3$. Find : i) Find final temperature
 - ii) The work iii) The heat transfer iv) the change in entropy of the mixture. (08 Marks)

(10 Marks)