USN

Third Semester B.E. Degree Examination, June/July 2024 **Network Theory**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive the expression for, 1
 - Δ to Y transformation (i)
 - Y to Δ transformation (ii)

(10 Marks)

Determine the equivalent resistance between A and B of the network shown in Fig. Q1 (b). (10 Marks)

Fig. Q1 (b)

Determine the current i₂ and voltage v₁ for the circuit shown in Fig. Q2 (a). (10 Marks)

Fig. Q2 (a)

Determine the value of V_2 , such that current through 4 Ω resistor is zero, using mesh current analysis method for the network shown in Fig.Q2 (b). (10 Marks)

1 of 4

Module-2

3 a. State Super position theorem. Using superposition theorem, find the voltage V_1 across 3Ω resistor for the Network shown in Fig. Q3 (a). (10 Marks)

Fig. Q3 (a)

b. Evaluate the current through the load resistor R_L for the circuit shown in Fig. Q3 (b) using Millman's Theorem. (10 Marks)

OR

- 4 a. Explain the procedure to find Norton's equivalent resistance in a network which has both dependent and independent sources with an example. (06 Marks)
 - b. Find the value of Z_L for which maximum power transfer occurs in the circuit shown in Fig. Q4 (b). (04 Marks)

Fig.Q4 (b)

c. Determine the current flowing through the 6 Ω resistor for the circuit shown in Fig. Q4 (c) using Thevenin's theorem. (10 Marks)

Fig. Q4 (c)

Module-3

5 a. Explain the transient behavior of R, L and C. Also explain the procedure for evaluating transient behavior. (10 Marks)

b. In the circuit shown in Fig. Q5 (b) the switch 'S' is moved from a to b at t=0. Evaluate the values of i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t=0^+$. If R=1 Ω , L=1 H, C=0.1 μF and V=100 V. Assume steady state is achieved when K is at 'a'.

OR

6 a. Evaluate i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$ for the circuit shown in Fig. Q6 (a), when switch K is changed from position 1 to 2 at t = 0, the steady state having been reached before switching.

(10 Marks)

Fig. Q6 (a)

b. Find the values of $i_1, i_2, \frac{di_1}{dt}, \frac{di_2}{dt}$, $\frac{d^2i_1}{dt^2}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$ for the circuit shown in Fig. Q6 (b). (10 Marks)

Module-4

- 7 a. Obtain Laplace transform of,
 - (i) Step function
 - (ii) Ramp function
 - (iii) Impulse function.

(10 Marks)

- b. Find the Laplace transform of the periodic waveform shown in Fig. Q7 (b).
- (10 Marks)

Fig. Q7 (b)

OR

- 8 a. Deduce the Laplace transform of the following:
 - (i) $\sin^2 t$
 - (ii) Cos²t
 - (iii) Sinot

(10 Marks)

b. State and prove Initial and Final value theorems.

(10 Marks)

Module-5

- 9 a. Express Z-parameters in terms of h-parameters and what are hybrid parameters. (10 Marks)
 - b. Determine the transmission parameters for the network shown in Fig. Q9 (b).

Fig. Q9 (b)

(10 Marks)

OR

- 10 a. Define the followings:
 - (i) Resonance
 - (ii) Q-factor
 - (iii) Band width
 - (iv) Selectivity.

(08 Marks)

b. Prove that the resonating frequency in a R-L-C series circuit is geometrical mean of half power frequencies is $f_0 = \sqrt{f_1 f_2}$. (12 Marks)

* * * * *