

1 of 2

(10 Marks)

18EE34

b. Fig.Q4(b) shows a single stage CE amplifier with unbypassed emitter resistance. Find
 (i) A_i (ii) R_i (iii) A_v (iv) A_{VS} (v) A_i

(10 Marks)

(10 Marks)

(10 Marks)

Module-3

a. Explain need for cascading of amplifiers. (04 Marks)
b. Explain with a neat block diagram Two stage cascaded amplifier. (06 Marks)
c. Derive A_i, Z₀ and A_V for Darlington Emitter follower. (10 Marks)

OR

6 a. Explain with neat block diagram concept of feedback amolifier. (10 Marks)
 b. Derive the expression for output resistance for a voltage series feedback amplifier and voltage shunt feedback amplifier (10 Marks)

Module-4

- 7 a. Explain with neat circuit diagram transformer coupled class A amplifier. Derive equation for maximum efficiency. (10 Marks)
 - b. Explain classification of Power amplifiers.

5

OR

- 8 a. Explain with neat circuit diagram R-C phase shift oscillator.
 - b. In a Wein bridge oscillator $R_1 = R_2 = 100 k\Omega$ and ganged variable capacitor has a range from 50 pF to 500 pF. Find the range of frequency of the oscillations possible. If the frequency derived is 50 k Ω more than the maximum frequency calculated above, find the value of resistance to be connected in parallel with 100 k Ω . (10 Marks)

Module-5

9 a. Explain construction of n-channel JFET and also explain the working principle. (10 Marks)
b. The p-channel FET has a |I_{DSS}| = -12 mA ; |V_p| = 5V, V_{GS} is 5.32V. Calculate I_D , g_m and g_{mo}. (10 Marks)

OR

- 10 a. With neat diagram explain constructional details of P-channel depletion type MOSFET and also explain its working. (10 Marks)
 - b. For the circuit shown in Fig.Q10(b), calculate (i) I_D (ii) V_{GS} (iii) V_G (iv) V_{DS} (v) V_s

(10 Marks)