GBGS SCHEME

USN							18CS33
				i	i		

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Analog and Digital Electronics

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1	a.	What is biasing?	' Mention different BJT	biasing techniques	s. Explain vo	ltage divider bias.
---	----	------------------	-------------------------	--------------------	---------------	---------------------

b. Explain relaxation oscillator. (08 Marks)
(06 Marks)

c. Write a note on opto coupler. (06 Marks)

OR

- 2 a. Explain active filters. List advantages of active filters over passive filters. (06 Marks)
 - b. Explain with diagram, R-2R ladder type D to A converter. (08 Marks)
 - c. Define op-amp. Explain the performance parameters of op-amp. (06 Marks)

Module-2

3 a. Explain Don't Care condition with an example.

(04 Marks)

b. Reduce the following functions using K-map technique:

 $F(P, Q, R, S) = \Sigma m(0, 1, 4, 8, 9, 10) + d(2, 11)$

(08 Marks)

Using Quine McClusky method, simplify the expression:

 $F(P, Q, R, S) = \Sigma m(0, 3, 5, 6, 7, 11, 14)$

Write the gate diagram for the same.

(08 Marks)

OR

4 a. Explain entered variable map method.

(05 Marks)

- b. Apply Quine McClusky method to find the essential prime implicants for the Boolean expression $f(a, b, c, d) = \Sigma m(1, 3, 6, 7, 9, 10, 12, 13, 14, 15)$ (07 Marks)
- c. For the below expression, draw the logic diagram using AOI logic for minimal sum. Obtain minimal sum using K-map.

$$F(a, b, c, d) = \Sigma m(1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 15)$$
 (08 Marks)

Module-3

- 5 a. What is hazard? List the types of hazards. Explain static 0 and static 1 hazard. (06 Marks)
 - b. Differentiate between combinational and sequential circuit.

(06 Marks)

c. Implement the following using PLA:

$$A(x, y, z) = \Sigma m (1, 2, 4, 6)$$

$$B(x, y, z) = \sum m(0, 1, 6, 7)$$

 $C(x, y, z) = \Sigma m (2, 6)$

(08 Marks)

6 a. Implement the following function using 8:1 multiplexer:

 $f(a, b, c, d) = \sum m(0, 1, 5, 6, 8, 10, 12, 15)$ (07 Marks)

b. What is programmable logic array? How does PLA differ from PAL? (06 Marks)

OR

c. Realize the following using 3:8 decoder:

(i) $f(a, b, c) = \sum m(1, 2, 3, 4)$ (ii) $f(a, b, c) = \sum m(3, 5, 7)$ (07 Marks)

		Module-4
7	a.	What are the three different models for writing a module body in VHDL? Give example for
		any one model. (06 Marks)
	b.	Derive characteristic equation for JK, T, D and SR flip flop. (08 Marks)
	c.	Give VHDL code for 4:1 multiplexer using conditional assign statement. (06 Marks)
		OR
8	a.	Using structural model, write VHDL code for Half Adder. (06 Marks)
	b.	Derive the excitation table for JK and SR flip flop. How SR flip flop is converted to T flip
		flop? (08 Marks)
	c.	With logic diagram, explain JK flip flop. (06 Marks)
		Module-5
9	a.	Define counter. Design synchronous counter for the sequence 0, 4, 1, 2, 6, 0, 4 using JK
		flip-flop. (08 Marks)
	b.	What is shift register? With a neat diagram, explain 4 bit parallel in serial out shift register.
		(08 Marks)
	c.	Write a note on sequential parity checker. (04 Marks)
		OR
10	a.	With a neat diagram, explain ring counter. (06 Marks)
	b .	Design and implement MOD 5 synchronous counter using JK flip-flop. Explain with timing
	٠.	diagram. (08 Marks)
	c.	Write a note on parallel adder with accumulator. (06 Marks)